

Lecture Notes in Computer Science 6223
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Tal Rabin (Ed.)

Advances in Cryptology –
CRYPTO 2010

30th Annual Cryptology Conference
Santa Barbara, CA, USA, August 15-19, 2010
Proceedings

13

Volume Editor

Tal Rabin
IBM T.J.Watson Research Center
Hawthorne, NY, USA
E-mail: talr@us.ibm.com

Library of Congress Control Number: 2010931385

CR Subject Classification (1998): E.3, G.2.1, F.2.1-2, D.4.6, K.6.5, C.2, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-14622-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14622-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© International Association for Cryptologic Research 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

CRYPTO 2010, the 30th Annual International Cryptology Conference, was spon-
sored by the International Association for Cryptologic Research (IACR) in co-
operation with the IEEE Computer Society Technical Committee on Security
and Privacy and the Computer Science Department of the University of Cal-
ifornia at Santa Barbara. The conference was held in Santa Barbara, Califor-
nia, during August 15-19, 2010, in conjunction with CHES 2010 (Workshop on
Cryptographic Hardware and Embedded Systems). Zulfikar Ramzan served as
the General Chair.

The conference received 203 submissions. The quality of the submissions was
very high, and the selection process was a challenging one. The Program Com-
mittee, aided by a 159 external reviewers, reviewed the submissions and after an
intensive review period the committee accepted 41 of these submissions. Three
submissions were merged into a single paper and two papers were merged into
a single talk, yielding a total of 39 papers in the proceedings and 38 presenta-
tions at the conference. The revised versions of the 39 papers appearing in the
proceedings were not subject to editorial review and the authors bear full re-
sponsibility for their contents. The best-paper award was awarded to the paper
“Toward Basing Fully Homomorphic Encryption on Worst-Case Hardness” by
Craig Gentry.

The conference featured two invited presentations. This year we celebrated
25 years from the publication of the ground-breaking work of Shafi Goldwasser,
Silvio Micali and Charles Rackoff “The Knowledge Complexity of Interactive
Proof-Systems.” We had the privilege of having “GMR” give the first invited
talk of the conference. The second invited talk was in a joint session with CHES.
The topic was “Is Theoretical Cryptography Any Good in Practice?” and the
talk was jointly given by Ivan Damg̊ard and Markus Kuhn. The program also
included a Rump Session, chaired by Daniel J. Bernstein and Tanja Lange,
featuring short informal talks on new and in-progress results.

I am in debt to the many people who contributed to the success of the
conference, and I apologize to those I have forgotten. First and foremost I thank
the authors who submitted their papers; a conference is only as good as the
submissions that it receives. The Program Committee members made a great
effort contributing their time, knowledge, expertise and taste and for that I am
grateful. I also thank the large number of external reviewers who assisted in the
process. (The Program Committee and sub-reviewers are listed in the following
pages.) The submission and review process used the software that Shai Halevi
designed and I received a lot of help from him in running it.

And always, I want to thank my friends at IBM Research, Rosario Gennaro,
Craig Gentry, Shai Halevi, Charanjit Jutla, Hugo Krawczyk and Vinod Vaikun-
tanathan – being part of this group makes everything so much more worthwhile.

June 2010 Tal Rabin

CRYPTO 2010

The 30th International Cryptology Conference

August 15–19, 2010, Santa Barbara, California, USA

Sponsored by the
International Association for Cryptologic Research (IACR)

in cooperation with
IEEE Computer Society Technical Committee on Security and Privacy,
Computer Science Department, University of California, Santa Barbara

General Chair

Zulfikar Ramzan Symantec

Program Chair

Tal Rabin IBM Research

Program Committee

Michel Abdalla ENS, France
Adi Akavia Weizmann Institute, Israel
Amos Beimel Ben-Gurion University, Israel
Xavier Boyen Université de Liège, Belgium
Christian Cachin IBM Research, Zurich, Switzerland
Serge Fehr CWI, The Netherlands
Johan H̊astad Royal Institute of Technology, Sweden
Carmit Hazay Weizmann Institute and IDC Herzelia, Israel
Susan Hohenberger Johns Hopkins, USA
Thomas Holenstein ETH, Switzerland
Yael Tauman Kalai Microsoft Research - New England, USA
John Kelsey NIST, USA
Eike Kiltz CWI, The Netherlands
Eyal Kushilevitz Technion, Israel
Tanja Lange Technische Universiteit Eindhoven,

The Netherlands
Yehuda Lindell Bar-Ilan University, Israel
Ilya Mironov Microsoft Research, USA
Tal Moran Harvard, USA

VIII Organization

Jesper Buus Nielsen University of Aarhus, Denmark
Eiji Okamoto University of Tsukuba, Japan
Pascal Paillier Gemalto, France
Rafael Pass Cornell University, USA
Giuseppe Persiano University of Salerno, Italy
Thomas Peyrin Ingenico, France
Leonid Reyzin Boston University, USA
Matt Robshaw Orange Labs, France
Palash Sarkar Indian Statistical Institute, India
abhi shelat University of Virginia, USA
Vinod Vaikuntanathan IBM Research, USA
Brent Waters University of Texas, Austin, USA
Hoeteck Wee Queens College, CUNY, USA
Andrew Yao Tsinghua University, China

Advisory Members

Shai Halevi (CRYPTO 2009 Program Chair) - IBM Research
Phil Rogaway (CRYPTO 2011 Program Chair) - University of California,

Davis

External Reviewers

Divesh Aggarwal
Shweta Agrawal
Jae Hyun Ahn
Joel Alwen
Benny Applebaum
Gilad Asharov
Aslan Askarov
Jean-Philippe Aumasson
Roberto M. Avanzi
Steve Babbage
Daniel J. Bernstein
Luk Bettale
Rishiraj Bhattacharyya
Sanjay Bhattacherjee
Niek Bouman
Elette Boyle
Zvika Brakerski
Eric Brier
Dan Brown
Jan Camenisch
Sbastien Canard
Ran Canetti

Anne Canteaut
Claude Carlet
David Cash
Nishanth Chandran
Donghoon Chang
Melissa Chase
Sanjit Chatterjee
Lily Chen
Victor Chen
Nathan Chenette
Cline Chevalier
Christophe Clavier
Jean-Sébastien Coron
Scott Coull
Giovanni Di Crescenzo
Dana Dachman-Soled
M. Prem Laxman Das
Blandine Debraize
Cécile Delerable
Yevgeniy Dodis
Chandan Dubey
Renaud Dubois

Maria Dubovitskaya
Leo Ducas
Dejan Dukaric
Orr Dunkeman
Sebastian Faust
Matthias Fitzi
Manuel Forster
Pierre-Alain Fouque
David Freeman
Georg Fuchsbauer
Thomas Fuhr
Benjamin Fuller
Steven Galbraith
Clemente Galdi
Sharon Goldberg
Prasant Gopal
Dov Gordon
Louis Goubin
Aline Gouget
Vipul Goyal
Matthew Green
Iftach Haitner

Organization IX

Mike Hamburg
Nadia Heninger
Javier Herranz
Martin Hirt
Dennis Hofheinz
Esther Hänggi
Vincenzo Iovino
Yuval Ishai
Abhishek Jain
Otto Johnston
Antoine Joux
Charanjit Jutla
Seny Kamara
Bhavana Kanukurthi
Alexandre Karlov
Dmitry Khovratovich
Hugo Krawczyk
Gunnar Kreitz
Robin Künzler
Allison Lewko
Huijia Rachel Lin
Carolin Lunemann
Vadim Lyubashevsky
Subhamoy Maitra
Willi Meier
Alfred Menezes
Daniele Micciancio
Steve Miller
Hart Montgomery
Jorge Nakahara
Mridul Nandi

Gregory Neven
Phong Nguyen
Mats Näslund
Adam O’Neill
Eran Omri
Claudio Orlandi
Ilan Orlov
Duong Hieu Phan
Omkant Pandey
Periklis

Papakonstantinou
Bryan Parno
Anat Paskin
Souradyuti Paul
Chris Peikert
Ray Perlner
Ludovic Perret
Christiane Peters
Krzysztof Pietrzak
David Pointcheval
Stefan Popoveniuc
Emmanuel Prouff
Elizabeth Quaglia
Somindu C. Ramanna
Dominik Raub
Christian Rechberger
Andrew Regenscheid
Matthieu Rivain
Yannis Rouselakis
Andrea Röck
Subhabrata Samajder

Gil Segev
Yannick Seurin
Igor Shparlinski
Francesco Sica
Martijn Stam
John Steinberger
Henning Stichtenoth
Kunal Talwar
Christophe Tartary
Böjrn Terelius
Stefano Tessaro
Emmanuel Thomé
Mehdi Tibouchi
Tomas Toft
Luca Trevisan
Wei-lung (Dustin) Tseng
Meltem Turan
Dominique Unruh
Muthuramakrishnan

Venkitasubramaniam
Damien Vergnaud
Ivan Visconti
Bogdan Warinschi
Stephanie Wehner
Daniel Wichs
Douglas Wikström
Severin Winkler
Christopher Wolf
Bo-Yin Yang
Shona Yu
Hila Zarosim

Table of Contents

Leakage

Circular and Leakage Resilient Public-Key Encryption under Subgroup
Indistinguishability (or: Quadratic Residuosity Strikes Back) 1

Zvika Brakerski and Shafi Goldwasser

Leakage-Resilient Pseudorandom Functions and Side-Channel Attacks
on Feistel Networks . 21

Yevgeniy Dodis and Krzysztof Pietrzak

Protecting Cryptographic Keys against Continual Leakage 41
Ali Juma and Yevgeniy Vahlis

Securing Computation against Continuous Leakage 59
Shafi Goldwasser and Guy N. Rothblum

Lattice

An Efficient and Parallel Gaussian Sampler for Lattices 80
Chris Peikert

Lattice Basis Delegation in Fixed Dimension and Shorter-Ciphertext
Hierarchical IBE . 98

Shweta Agrawal, Dan Boneh, and Xavier Boyen

Homomorphic Encryption

Toward Basing Fully Homomorphic Encryption on Worst-Case
Hardness . 116

Craig Gentry

Additively Homomorphic Encryption with d-Operand Multiplications . . . 138
Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz

i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits 155
Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan

Theory and Applications

Interactive Locking, Zero-Knowledge PCPs, and Unconditional
Cryptography . 173

Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai

XII Table of Contents

Fully Secure Functional Encryption with General Relations from the
Decisional Linear Assumption . 191

Tatsuaki Okamoto and Katsuyuki Takashima

Structure-Preserving Signatures and Commitments to Group
Elements . 209

Masayuki Abe, Georg Fuchsbauer, Jens Groth,
Kristiyan Haralambiev, and Miyako Ohkubo

Efficient Indifferentiable Hashing into Ordinary Elliptic Curves 237
Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore,
Hugues Randriam, and Mehdi Tibouchi

Key Exchange, OAEP/RSA, CCA

Credential Authenticated Identification and Key Exchange 255
Jan Camenisch, Nathalie Casati, Thomas Gross, and Victor Shoup

Password-Authenticated Session-Key Generation on the Internet in the
Plain Model . 277

Vipul Goyal, Abhishek Jain, and Rafail Ostrovsky

Instantiability of RSA-OAEP under Chosen-Plaintext Attack 295
Eike Kiltz, Adam O’Neill, and Adam Smith

Efficient Chosen-Ciphertext Security via Extractable Hash Proofs 314
Hoeteck Wee

Attacks

Factorization of a 768-Bit RSA Modulus . 333
Thorsten Kleinjung, Kazumaro Aoki, Jens Franke,
Arjen K. Lenstra, Emmanuel Thomé, Joppe W. Bos,
Pierrick Gaudry, Alexander Kruppa, Peter L. Montgomery,
Dag Arne Osvik, Herman te Riele, Andrey Timofeev, and
Paul Zimmermann

Correcting Errors in RSA Private Keys . 351
Wilko Henecka, Alexander May, and Alexander Meurer

Improved Differential Attacks for ECHO and Grøstl 370
Thomas Peyrin

A Practical-Time Related-Key Attack on the KASUMI Cryptosystem
Used in GSM and 3G Telephony . 393

Orr Dunkelman, Nathan Keller, and Adi Shamir

Table of Contents XIII

Composition

Universally Composable Incoercibility . 411
Dominque Unruh and Jörn Müller-Quade

Concurrent Non-Malleable Zero Knowledge Proofs 429
Huijia Lin, Rafael Pass, Wei-Lung Dustin Tseng, and
Muthuramakrishnan Venkitasubramaniam

Equivalence of Uniform Key Agreement and Composition Insecurity 447
Chongwon Cho, Chen-Kuei Lee, and Rafail Ostrovsky

Computation Delegation and Obfuscation

Non-Interactive Verifiable Computing: Outsourcing Computation to
Untrusted Workers . 465

Rosario Gennaro, Craig Gentry, and Bryan Parno

Improved Delegation of Computation Using Fully Homomorphic
Encryption . 483

Kai-Min Chung, Yael Kalai, and Salil Vadhan

Oblivious RAM Revisited . 502
Benny Pinkas and Tzachy Reinman

On Strong Simulation and Composable Point Obfuscation 520
Nir Bitansky and Ran Canetti

Multiparty Computation

Protocols for Multiparty Coin Toss with Dishonest Majority 538
Amos Beimel, Eran Omri, and Ilan Orlov

Multiparty Computation for Dishonest Majority: From Passive to
Active Security at Low Cost . 558

Ivan Damg̊ard and Claudio Orlandi

Secure Multiparty Computation with Minimal Interaction 577
Yuval Ishai, Eyal Kushilevitz, and Anat Paskin-Cherniavsky

A Zero-One Law for Cryptographic Complexity with Respect to
Computational UC Security . 595

Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek

Pseudorandomness

On Generalized Feistel Networks . 613
Viet Tung Hoang and Phillip Rogaway

XIV Table of Contents

Cryptographic Extraction and Key Derivation: The HKDF Scheme 631
Hugo Krawczyk

Time Space Tradeoffs for Attacks against One-Way Functions and
PRGs . 649

Anindya De, Luca Trevisan, and Madhur Tulsiani

Pseudorandom Functions and Permutations Provably Secure against
Related-Key Attacks . 666

Mihir Bellare and David Cash

Quantum

Secure Two-Party Quantum Evaluation of Unitaries against Specious
Adversaries . 685

Frédéric Dupuis, Jesper Buus Nielsen, and Louis Salvail

On the Efficiency of Classical and Quantum Oblivious Transfer
Reductions . 707

Severin Winkler and Jürg Wullschleger

Sampling in a Quantum Population, and Applications 724
Niek J. Bouman and Serge Fehr

Author Index . 743

Circular and Leakage Resilient
Public-Key Encryption

under Subgroup Indistinguishability
(or: Quadratic Residuosity Strikes Back)

Zvika Brakerski1 and Shafi Goldwasser2

1 Weizmann Institute of Science
zvika.brakerski@weizmann.ac.il

2 Weizmann Institute of Science and Massachusetts Institute of technology
shafi@theory.csail.mit.edu

Abstract. The main results of this work are new public-key encryp-
tion schemes that, under the quadratic residuosity (QR) assumption (or
Paillier’s decisional composite residuosity (DCR) assumption), achieve
key-dependent message security as well as high resilience to secret key
leakage and high resilience to the presence of auxiliary input information.

In particular, under what we call the subgroup indistinguishability as-
sumption, of which the QR and DCR are special cases, we can construct
a scheme that has:

– Key-dependent message (circular) security. Achieves security
even when encrypting affine functions of its own secret key (in fact,
w.r.t. affine “key-cycles” of predefined length). Our scheme also
meets the requirements for extending key-dependent message secu-
rity to broader classes of functions beyond affine functions using
previous techniques of Brakerski et al. or Barak et al.

– Leakage resiliency. Remains secure even if any adversarial low-
entropy (efficiently computable) function of the secret key is given to
the adversary. A proper selection of parameters allows for a “leakage
rate” of (1− o(1)) of the length of the secret key.

– Auxiliary-input security. Remains secure even if any sufficiently
hard to invert (efficiently computable) function of the secret key is
given to the adversary.

Our scheme is the first to achieve key-dependent security and auxiliary-
input security based on the DCR and QR assumptions. Previous schemes
that achieved these properties relied either on the DDH or LWE assump-
tions. The proposed scheme is also the first to achieve leakage resiliency
for leakage rate (1−o(1)) of the secret key length, under the QR assump-
tion. We note that leakage resilient schemes under the DCR and the QR
assumptions, for the restricted case of composite modulus product of safe
primes, were implied by the work of Naor and Segev, using hash proof
systems. However, under the QR assumption, known constructions of
hash proof systems only yield a leakage rate of o(1) of the secret key
length.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 1–20, 2010.
c© International Association for Cryptologic Research 2010

2 Z. Brakerski and S. Goldwasser

1 Introduction

The “classical” definition of semantic secure public-key encryption by Gold-
wasser and Micali [16], requires that an efficient attacker with access to the
public encryption-key must not be able to find two messages such that it can
distinguish a random encryption of one from a random encryption of the other.
Numerous candidate public-key encryption schemes that meet this definition
have been presented over the years, both under specific hardness assumptions
(like the hardness of factoring) and under general assumptions (such as the ex-
istence of injective one-way trapdoor functions).

This notion of security, however (as well as other commonly accepted ones),
does not capture certain situations that may occur in the “real world”:

– Functions of the secret decryption-key can be encrypted and sent (note that
semantic security only guarantees security with respect to messages which
an efficient attacker can find).

– Information about the secret key may leak.
– The same secret key may be used in more than one application, or more

generally the attacker can somehow obtain the value of a hard-to-invert
function of the secret key.

In recent years, extensive research effort has been invested in providing encryp-
tion schemes which are provably secure even in the above settings. Such schemes
are said to achieve key-dependent message (KDM) security, leakage-resilience,
and auxiliary-input security in correspondence to the above real world settings.
To date, we know of: (1) Candidate schemes which are KDM secure under the
decisional Diffie-Hellman (DDH) and under the learning with errors (LWE)
assumptions; (2) Candidate schemes that are resilient to key leakage of rate
(1− o(1)) (relative to the length of the secret key), under the LWE assumption
and under the DDH assumption. In addition, candidate scheme achieving some
leakage resilience under a general assumption: the existence of universal hash-
proof systems, with a leakage rate depending on the hash proof system being
used; (3) Candidate schemes that are auxiliary input secure under the DDH
assumption and under the LWE assumption.

In this work, we present an encryption scheme that achieves all of the above
security notions simultaneously and is based on a class of assumptions that
we call subgroup indistinguishability assumptions. Specifically, this class includes
the quadratic residuosity (QR) and the decisional composite residuosity (DCR)
assumptions, both of which are related to the problem of factoring large numbers.
In addition, our schemes have the following interesting property: the secret key
consists of a randomly chosen binary vector independent of the group at hand.
The instantiation of our scheme under QR enjoys the same useful properties
for protocol design as the original [16] scheme, including re-randomization of
ciphertexts and support of the XOR homomorphic operation over the {0, 1}
message space, with the added benefit of leakage resilience.

To best describe our results, we first, in Section 1.1, describe in detail the back-
ground for the new work, including the relevant security notions and previous

Circular and Leakage Resilient Public-Key Encryption 3

results. Second, in Section 1.2, we describe in detail the new results and encryp-
tion schemes. Then, in Section 1.3, we describe the new techniques. Section 1.4 dis-
cusses some additional related works and Section 1.5 contains the paper
organization.

1.1 Background

Key-dependent messages. The shortcoming of the standard security defi-
nition in the case where the plaintext to be encrypted depends on the secret
key was already noticed in [16]. It was later observed that this situation is not
so unlikely and may sometimes even be desirable [9,1,21]. Black, Rogoway and
Shrimpton [5] formally defined KDM-security: the attacker can obtain encryp-
tions of (efficient) functions of its choosing, taken from some specified class of
functions F , applied to the secret key. The requirement is that the attacker can-
not tell if all of its queries are answered by encryptions of some constant symbol
0, instead of the requested values. This definition is extended to the case of many
(say n) users that can encrypt each others’ secret keys: the attacker’s queries
now contain a function to be applied to all secret keys, and an identity of the
user whose public key should be used to encrypt. This latter case is referred to
as KDM(n)-security while the single-user case is called KDM(1)-security.

Boneh, Halevi, Hamburg and Ostrovsky [6] constructed a public key encryp-
tion scheme that is KDM(n) secure w.r.t. all affine functions,1 under the deci-
sional Diffie-Hellman (DDH) assumption, for any polynomial n. This first result
was followed by the work of Applebaum, Cash, Peikert and Sahai [3] who proved
that a variation of Regev’s scheme [25] is also KDM secure w.r.t. all affine func-
tions, under the learning with errors (LWE) assumption.

More recent works by Brakerski, Goldwasser and Kalai [8] and by Barak, Hait-
ner, Hofheinz and Ishai [4] presented each general and different techniques to
extend KDM-security to richer classes of functions. In [8], the notion of entropy-
κ KDM-security is introduced. A scheme is entropy-κ KDM-secure if it remains
KDM-secure even if the secret key is sampled from a high-entropy distribution,
rather than a uniform one. They show that an entropy-κKDM-secure scheme im-
plies a scheme that is KDM-secure w.r.t. roughly any pre-defined set of functions
of polynomial cardinality. In [4], the notion of targeted public-key encryption is
introduced. A targeted encryption scheme can be thought of as a combination
of oblivious transfer and encryption: it is possible to encrypt in such a way that
the ciphertext is decryptable only if a certain bit of the secret key takes a prede-
fined value. They show that a targeted encryption scheme implies a KDM-secure
scheme w.r.t. all functions computable by circuits of some predefined (polyno-
mial) size. These two results achieve incomparable performance. While in the
former, the public key and ciphertext lengths depend on the size of the function
class (but not on its complexity) and are independent of the number of users
n, in the latter the public key size does not depend on the function class, but

1 More precisely “affine in the exponent”: the secret key is a vector of group elements
g1, . . . , g� and the scheme is secure w.r.t. functions of the form h ·∏ gai

i .

4 Z. Brakerski and S. Goldwasser

the ciphertext length is linear in the product of n times the complexity of the
functions.

Leakage resiliency. The work on cold boot attacks by Halderman et al. [17],
gave rise to the notion of public-key encryption resilient to (bounded) memory
leakage attacks, presented by Akavia, Goldwasser and Vaikuntanathan [2] and
further explored by Naor and Segev [22]. In their definition, security holds even if
the attacker gets some information of its choosing (depending on the value of the
public key) on the scheme’s secret key, so long as the total amount of information
leaked does not exceed an a-priori information theoretic bound. More formally,
the attacker can request and receive f(sk) for a length-restricted function f .2

[2,22] presented public-key encryption schemes that are resilient to leakage of
even a 1 − o(1) fraction of the secret key (we call this the “leakage rate”). In
particular, [2] showed how this can be achieved under the LWE assumption, while
[22] showed that this can be achieved under the DDH (or d-linear) assumption.
It is further shown in [22] that some leakage resilience can be achieved using any
universal hash proof system (defined in [10]), where the leakage rate depends on
the parameters of the hash proof system. This implies secure schemes under the
the QR and DCR assumptions as well. However, using the known hash proof
systems, the leakage rate achievable under the QR assumption was only o(1) —
much less than the desired 1 − o(1). Based on the DCR assumption, a leakage
rate of (1 − o(1)) was achievable [22,10,11].

Auxiliary input. Dodis, Kalai and Lovett [13] and Dodis, Goldwasser, Kalai,
Peikert and Vaikuntanathan [12] considered the case where the leakage is not re-
stricted information theoretically, but rather computationally. In the public key
setting, the attacker is allowed to access any information on the secret key, with
the following computational restriction: as long as recovering the secret key sk
from said information f(pk, sk), for f of the attackers choosing, is computation-
ally hard to a sufficient extent (see discussion of several formalizations in [12]).
This notion of security was termed security in the presence of auxiliary input (or
auxiliary-input security, for short). Public-key auxiliary-input secure encryption
schemes under the DDH and LWE assumptions were recently presented in [12].

1.2 New Results

Let us define a generalized class of assumptions called subgroup indistinguisha-
bility (SG) assumptions. A subgroup indistinguishability problem is defined by
a group GU (“the universe group”) which is a direct product of two groups
GU = GM × GL (interpreted as “the group of messages” and “the language
group”) whose orders, denoted by M,L respectively, are relatively prime and
where GM is a cyclic group. Essentially, the subgroup indistinguishability as-
sumption is that a random element of the universe GU is computationally in-
distinguishable from a random element in GL. In other words, the language GL

2 To be more precise, the requirement is that the min-entropy of the secret sk drops
by at most a bounded amount, given f(sk).

Circular and Leakage Resilient Public-Key Encryption 5

is hard on average in the universe GU . The precise definition is a little more
involved, see Section 3 for details.

Two special cases of the subgroup indistinguishability assumptions are the
quadratic residuosity (QR) assumption on Blum integers and Paillier’s decisional
composite residuosity (DCR) assumption. This is easily seen for QR as follows.
Let integer N = p · q, where p, q are random primes of equal bit-length, Z

∗
N =

{x ∈ ZN : gcd(x,N) = 1}, JN denote the group of Jacobi symbol (+1) elements
of Z∗

N , and QRN = {x2 : x ∈ Z∗
N} denote its subgroup of quadratic residues. The

quadratic residuosity (QR) assumption is then, that the uniform distributions
over JN and QRN are computationally indistinguishable. Taking N to be a Blum
integer where p, q = 3 (mod4) (otherwise the orders of GL,GM we define next
will not be relatively prime) and setting GU = JN , GL = QRN (which is of odd
order), and GM = {±1} (which is cyclic and has order 2), the QR assumption
falls immediately into the criteria of subgroup indistinguishability assumptions.

We are now ready to describe the new encryption scheme for a given subgroup
problem (GU ,GM ,GL) where h is a generator for GM . In general, we view the
plaintext message space as the elements hm ∈ GM (sometimes the exponent m
itself can be viewed as the message). For the case of QR, the plaintext message
space is GM = {±1}.

A word on the choice of parameters is in order. All parameters are measured as
a function of the security parameter k. As customary, in the QR and DCR cases,
think of the security parameter as the size of the modulus N (i.e. k = �logN�).
We let � denote a parameter whose value is polynomially related to k,3 selected
in accordance to the desired properties of the scheme (KDM security, amount of
leakage resilience etc.).

The Encryption Scheme for Subgroup Problem (GU , GM , GL) with
Parameter �:

– Key generation. Set the secret key to a random binary vector s = (s1, . . . , s�)
of length �. Set the public key to be the tuple (g1, . . . , g�, g0) where g1, . . . , g�
are uniformly chosen elements of GL and g0 =

∏
g−si

i . (For the QR assump-
tion, the public key thus consists of � random squares, followed by a product
of a random subset of them, selected by the secret key s).

– Encryption. On input message hm,4 sample a uniform integer r from a large
enough domain and output the ciphertext (gr

1 , . . . , g
r
� , h

m · gr
0). (For the QR

assumption case, encryption is of single bits {±1}, and the ciphertext is the
tuple of squares in the public key, raised to a random power, where the last
one is multiplied by the plaintext message.)

– Decryption. On ciphertext (c1, . . . , c�, c0), compute hm = c0 ·
∏
csi

i . (For the
case of QR, m = c0 ·

∏
csi

i .) In general, recoverability of the exponent m
depends on whether taking discrete logs in base h of hm is easy.

We remark that the basic structure of our construction is strikingly similar to
[6], where the public key also contains � independent “random” elements and
3 More precisely, � is a polynomial function �(k).
4 Recall that h is a generator of GM , which is a part of the description of GU .

6 Z. Brakerski and S. Goldwasser

an additional element that is statistically close to uniform, but in fact is a com-
bination of the previous ones. The difference and challenge is in how to prove
security. This challenge is due to the fact that the subgroup indistinguishability
assumptions seem inherently different from the DDH assumption. In the latter,
for cyclic group G where DDH is assumed, the assumption implies that the dis-
tribution (g1, g2, gr

1, g
r
2) is computationally indistinguishable from (g1, g2, g′1, g

′
2)

giving complete re-randomization (a similar property follows for LWE). Such re-
randomization does not follow nor is it necessarily true from subgroup indistin-
guishability. Rather, we will have to use the weaker guarantee that (g1, g2, gr

1, g
r
2)

is indistinguishable from (g1, g2, hr′ · gr
1, h

r′′ · gr
2), giving only “masking” of the

message bits.
Similarly to the scheme of [6], our scheme is lacking in efficiency. This is most

noticeable in our QR-based scheme, where the encryption of one bit requires
a ciphertext containing � + 1 group elements, each of size roughly the security
parameter k. The situation is somewhat better when relying on DCR: there
each such ciphertext encrypts Ω(k) bits. Improved efficiency can be achieved
by using the same values g1, . . . , g� with many vectors s, however this makes
KDM security hold only with respect to a less natural function class (this is
similar to the more efficient LWE based scheme of [3]) and significantly reduces
leakage resiliency. Coming up with more efficient KDM secure or leakage resilient
schemes remains an interesting open problem.

We prove the following properties for the new encryption scheme.

Property 1: KDM-Security. First, we prove that the scheme is KDM(1)-secure
w.r.t. affine functions of the secret key. To show this for QR case, we show that
for any affine function specified by a0, . . . , a�, the encryption of (−1)a0+

∑
i aisi is

indistinguishable from the encryption of (−1)0. For the general case, it is more nat-
ural to view KDM(1) with respect to the affine functions “in the exponent”: for any
h0, h1, . . . , h� ∈ GM where hi = hai , for the generator h, we show that an encryp-
tion of h0 ·

∏
hsi

i = ha0+
∑

i aisi is indistinguishable from an encryption of h0.
Second, we prove that for any polynomial value of n, the above encryption

scheme satisfies KDM(n) security, if � is larger than, roughly, n logL. We note
thus that the public key size and ciphertext size grow with n to achieve provable
KDM(n) security. Interestingly, in the works of [6,3], � did not need to grow with
n. This seems difficult to achieve without the complete “re-randomization” prop-
erty discussed above which does follow from the DDH and LWE assumptions,
but not from ours.

Finally, we can also show that our scheme can be used to obtain KDM security
for larger classes of functions than affine function: The scheme is entropy-κ KDM-
secure (for proper values of �), as required in [8] and therefore implies a scheme
that is secure w.r.t. functions of the form a0 +

∑
i aifi(sk) for (roughly) any set

of polynomially-many efficiently computable functions {f1, . . . , f�}. Our scheme
also implies a targeted encryption scheme, as required in [4], and therefore implies
that for any polynomial bound p, there is a scheme that is secure w.r.t. all
functions computable by size-p circuits.

Circular and Leakage Resilient Public-Key Encryption 7

Property 2: Improved Key-Leakage Resiliency. We prove that the new
scheme is resilient to any leakage of a (1 − o(1)) fraction of the bits of the se-
cret key. Stated differently, if one specifies in advance the amount of leakage λ (a
polynomial in the security parameter) to be tolerated, we can choose � to obtain
a scheme that is secure against a leakage of λ bits. The growth of � is additive in λ
(i.e. � = �0 + λ) and therefore we can select the value of � to obtain schemes that
are resilient to leakage of a (1 − (�0/�)) = (1− o(1)) fraction of the secret key.

We emphasize that while schemes with the above guarantees were known
under LWE [2] or DDH [22], and even (implicitly) under DCR [22,10], this
was not the case under QR. Previous results with regards to QR-based leakage
resiliency [22,10] could only approach a leakage rate of 1/k = o(1) (recall that
k is the security parameter, or the bit-length of the modulus N), compared to
(1− o(1)) in our scheme.

In addition, previous constructions of QR and DCR based hash proof systems
required that the modulus used N = p ·q is such that p, q are safe primes. We do
not impose this restriction. In the QR case we only require that p, q = 3 (mod 4)
(i.e. N is a Blum integer) and in the DCR case we only require that p, q have
the same bit-length.

Property 3: Auxiliary Input Security. We prove that our schemes remain
secure when the attacker has access to additional information on the secret
key sk, in the form of fpk(sk), where fpk is a polynomial time function (which
may depend on the public key) that is evaluated on the secret key sk. First,
we consider the case where f is such that the transition (fpk(sk), pk) → sk is
computationally hard. Namely, that retrieving the secret key sk given the public
key pk and the auxiliary information fpk(sk), is sufficiently hard. This notion was
termed weak auxiliary-input security in [12]. In turn, [12] show how to leverage
weak auxiliary-input security to achieve security when the requirement on f is
weaker: now, only the transition fpk(sk) → sk needs to be hard. The latter is
called auxiliary-input security.

We conclude that for all δ > 0, we can select the value of � such that the
scheme is auxiliary-input secure relative to any function that is hard to invert (in
polynomial time) with probability 2−�δ

. We note that the input to the function
is the secret key – a length � binary string, and therefore we measure hardness
as a function of � (and not of the security parameter k).

1.3 Our Techniques

The circular security, leakage resiliency and auxiliary-input security properties
of our scheme are proved using a new technical tool introduced in this work:
the interactive vector game. This proof technique can also provide an alternative
proof for the KDM(1)-security, leakage resiliency and auxiliary-input security of
(known) public-key encryption schemes based on DDH and LWE, thus providing
an alternative, more generic proof for some of the results of [6,3,22,12].5

5 In this work, the interactive vector game is defined only for our subgroup indistin-
guishability assumptions, but it easily extends to other assumptions.

8 Z. Brakerski and S. Goldwasser

This suggests an alternative explanation to the folklore belief that the three
notions are related: that it is the proof technique that is related in fact. Namely,
the proof techniques for each property can be generalized to interactive vector
games which, in turn, imply the other properties.

We proceed to overview the proofs of security for the various properties of
our scheme. Again, let us consider the groups GU = GM × GL with h being a
generator for GM , such that the subgroup indistinguishability assumption holds.

To best explain the ideas of the proof, let us consider, as a first step, a
simple semantically secure encryption scheme (which is a generalization of the
Goldwasser-Micali scheme [15]). An encryption of 0 is a random element g ∈ GL

and an encryption of 1 is h·g (in the QR case, the encryption of (+1) is a random
quadratic residue and the encryption of (−1) is a random quadratic non-residue).
The two distributions are clearly indistinguishable (consider the indistinguish-
able experiment where g is uniform in GU). In order to decrypt, one needs some
“trapdoor information” that would enable to distinguish between elements in
GL and GU (such as the factorization of the modulus N in the QR (and DCR)
case).

The first modification of this simple idea was to fix g and put it in the public
key, and set the ciphertext for hm to hm · gr for r large enough. Note that the
sender does not know the order of GU : Indeed, in the QR case, knowing the
order of the group JN , which is ϕ(N)

2 , enables to factor N . For the QR case, this
modification still amounts to encrypting (+1) by a random square, and (−1) by
a random non-square.

The second modification does away with the need of the secret key owner
to distinguish between elements in GL and GU (e.g. with the need to know the
factorization of N in the QR case), by replacing the “trapdoor information” with
a secret key that is a uniform binary vector s = (s1, . . . , s�). Holding the secret
key will not enable us to solve subgroup indistinguishability, but will enable us
to decrypt as in [6]. We take a set of random elements g1, . . . , g� ∈ GL and define
g0 =

∏
g−si

i . If � is large enough, then the leftover hash lemma implies that g0
is almost uniform. As the ciphertext is (gr

1, . . . , g
r
� , h

m · gr
0), one can recover hm

using s. Recovering m itself is also possible if the discrete logarithm problem in
GM is easy, as is the case in the QR scenario.

The crux of the idea in proving security is as following. First, we note that
the distribution of g0 is close to uniform in GL, even given g1, . . . , g� (by the
leftover hash lemma). Recall that in a DDH-based proof, we could claim that
((g1, . . . , g�, g0), (gr

1 , . . . , g
r
� , g

r
0)) is computationally indistinguishable from

((g1, . . . , g�, g0), (g′1, . . . , g
′
�, g

′
0)) (where g′i are uniform). However, based on sub-

group indistinguishability, a different method is required: Consider replacing g0
with g′0 = h · g0, the distribution ((g1, . . . , g�, g0), (gr

1 , . . . , g
r
� , g

r
0)) is computa-

tionally indistinguishable from ((g1, . . . , g�, h · g0), (gr
1 , . . . , g

r
� , h

r · gr
0)) under the

subgroup indistinguishability assumption. The crucial observation now is that
since the orders of GM and GL are relatively prime, then in fact g′r0 = hr′ · gr

0 ,
where r′ is independent of r. Combined with the fact that GM is cyclic, we

Circular and Leakage Resilient Public-Key Encryption 9

get that ((g1, . . . , g�, g0), (gr
1 , . . . , g

r
� , g

r
0)) is indistinguishable from ((g1, . . . , g�, h ·

g0), (gr
1 . . . gr

� , h
′ · gr

0)), for a random h′ ∈ GM . Semantic security now follows.
To address the issues of circular security, leakage resiliency and auxiliary-

input, we generalize the idea presented above, and prove that the distributions
((g1, . . . , g�), (ha1 · gr

1 , . . . , h
a� · gr

�)) and ((g1, . . . , g�), (gr
1 , . . . , g

r
�)) are indistin-

guishable. We provide an interactive variant of this claim, which we call an
interactive �-vector game, where the values of a1, . . . , a� ∈ Z are selected by the
distinguisher and can depend on (g1, . . . , g�), and show that the above is hard
even in such case. The interactive vector game will be employed in the proofs of
all properties of the scheme.

For key-dependent message security, we consider the ciphertext (gr
0, g

r
1, . . . , h ·

gr
i , . . . , g

r
�). This ciphertext will be decrypted to hsi and in fact can be shown

(using an interactive vector game) to be computationally indistinguishable from
a legal encryption of hsi . Key-dependent message security follows from this fact.

Proving KDM(n)-security for our scheme is more complex. To illustrate this,
we contrast it with the ideas in the proof of [6]. They used homomorphism and
re-randomization to achieve KDM(n)-security: Their scheme is shown to have
homomorphic properties that enable to “shift” public keys and ciphertexts that
are relative to a certain secret key, into ones that are relative to another se-
cret key. In order to apply these “shifts”, one only needs to know the relation
between the original and final keys (and not the keys themselves). In addition,
their scheme is shown to have re-randomization properties that enable to take
a public key (or ciphertext) and produce an independent public key (or cipher-
text) that corresponds to the same secret key (and message, in the ciphertext
case). These two properties enable simulating the KDM(n)-security game using
only one “real” secret key, fabricating the n required keys and ciphertexts using
homomorphism and re-randomization. In [3], similar ideas are employed, but
the re-randomization can be viewed as implicit in the assumption (the ability to
generate independently looking vectors that are in fact linearly related).

Our scheme can be shown to have such homomorphic properties, but it doesn’t
enjoy as strong re-randomizability as required to use the above techniques. As an
example, consider a public key pk = (g0, g1, . . . , g�) corresponding to a secret key
sk = (s1, . . . , s�), i.e. g0 =

∏
g−si

i . Let j ∈ [�] and consider p̂k = (ĝ0, ĝ1, . . . , ĝ�)
defined as follows: for all i �∈ {j, 0}, set ĝi = gi; for j, set ĝj = g−1

j ; and finally

set ĝ0 = gj · g0 = ĝ
−(1−sj)
j ·∏i�=j ĝ

−si

i . We get that p̂k is a properly distributed
public key corresponding to the secret key ŝk = sk⊕ ej (sk XORed with the jth

unit binary string). Namely, we were able to “shift” a public key to correspond
to another (related) secret key, without knowing the original key. However, the
joint distribution of pk, p̂k is easily distinguishable from that of two indepen-
dent public keys. What we lack is the ability to re-randomize p̂k so that it is
distributed as a public key for ŝk which is independent of pk.

Intuitively, this shortcoming requires us to use more “real randomness”. Our
proof simulates the KDM(n)-security game using only one “real” secret key, as
in the idea presented above. This secret key is used to fabricate n secret and

10 Z. Brakerski and S. Goldwasser

public keys. However, when we want to apply the leftover hash lemma to claim
that the g0 components of all n fabricated public keys are close to uniform, we
need the one real secret key to have sufficient entropy. This requires a secret
key whose size is linear in n. These ideas, combined with the ones used to prove
KDM(1) security, give our final proof.

The property of entropy-κ KDM-security requires that the scheme remains
secure even when the secret key is sampled from a high-entropy (but not nec-
essarily uniform) distribution. This is shown to hold using the leftover hash
lemma, since

∏
gsi

i is a 2-universal hash function. A targeted encryption scheme
is obtained similarly to the other constructions in [4], by using the fact that we
can “fabricate” ciphertexts that correspond to affine functions of the secret key
without knowing the secret key itself.

Leakage resiliency and auxiliary-input security are proven by an almost identi-
cal argument: consider a case where we replace the ciphertext (hm ·gr

0, g
r
1 , . . . , g

r
�)

with a computationally indistinguishable one: (h−
∑

σisi ·hm ·gr
0, h

σ1 ·gr
1, . . . , h

σ� ·
gr
�), where σi ∈ ZM are uniform. Computational indistinguishability (even for

a known secret key) follows from the interactive vector game mentioned above.
For leakage-resilience, the leftover hash lemma implies that so long as there is
sufficient entropy in s after the leakage,

∑
σisi will be close to uniform and will

“mask” the value of m. For auxiliary input we use the generalized Goldreich-
Levin theorem of [12] to show that

∑
σisi is close to uniform in the presence of

a function of s that is hard to invert, even given the public key. Thus obtaining
weak auxiliary-input security. In the QR case, the inner product is over Z2 and
therefore we can use the “standard” Goldreich-Levin theorem [14], which implies
better parameters. We use leveraging (as used in [12]) to obtain the full result.

1.4 Other Related Work

Cramer and Shoup [10] presented the notion of hash proof systems, which are sim-
ilar to subgroup indistinguishability assumptions. Their implementations from
QR and DCR also do not require the factorization of N in order to decrypt. How-
ever they use the discrete logarithm of (their analog to) the gi’s as a secret key
for the system. Our scheme can be seen as taking another step towards “strip-
ping” the secret key of all structure: in our scheme, it is just a uniform sequence
of bits (resulting in a weaker form of a hash proof system that is “universal on
average”).

Hemenway and Ostrovsky [19] show how to construct lossy trapdoor functions
(see [24] for definition) from the QR and DCR assumptions (among other as-
sumptions). Similar ideas can be used in a straightforward manner to construct
lossy trapdoor functions from subgroup indistinguishability assumptions with
special properties.

1.5 Paper Organization

Due to space constraints, this extended abstract only discusses the construction
based on the QR assumption. In addition, some of the proofs are omitted. We

Circular and Leakage Resilient Public-Key Encryption 11

refer the reader to the full version of this paper [7] for the complete presentation,
including all details.

Preliminaries and definitions are presented in Section 2. The definition of
subgroup indistinguishability assumptions and instantiations from QR and DCR
appear in Section 3.

Our QR-based encryption scheme is presented in Section 4, followed, in Sec-
tion 5, by introduction of the interactive vector game: a central technical tool
to be used for the analysis throughout the paper. KDM-security is discussed in
Section 6, leakage-resilience in Section 7 and auxiliary-input security in Section 8.

2 Preliminaries

We denote scalars in plain lowercase (x ∈ {0, 1}) and vectors in bold lowercase
(x ∈ {0, 1}n). The ith coordinate of x is denoted xi.

For vectors g,h ∈ Gn, where G is a multiplicative commutative group, we
denote by gr the vector whose ith coordinate is gr

i . We denote by h ·g the vector
whose ith coordinate is hi · gi. Note that this does not denote an inner product.
For a group element g ∈ G and a vector x ∈ Z, we let gx denote the vector
whose ith coordinate is gxi.

Let X be a probability distribution over a domain S, we write x
$← X to

indicate that x is sampled from the distribution X . The uniform distribution
over a set S is denoted U(S). We use x

$← S as abbreviation for x $← U(S).
An ensemble X = {Xk}k is ε = ε(k)-uniform if for all k, Xk is within statis-
tical distance ε(k) from the uniform distribution. Statistical and computational
indistinguishability are defined in the standard way. We write negl(k) to denote
an arbitrary negligible function, i.e. one that vanishes faster than the inverse of
any polynomial.

We use the following simple lemma.

Lemma 2.1. Let T,N ∈ N and let x $← [T], then x (modN) is (N/T)-uniform
in ZN .

We use the following lemma which is an immediate corollary of the leftover hash
lemma and explicitly appears in [6, Lemma 2].

Lemma 2.2. Let H be a 2-universal hash family from a set X to a set Y . Then
the distribution (h, h(x)) where h

$← H, x $← X is
√

|Y |
4|X| -uniform in H × Y .

The following lemma states the properties of a class of hash functions that we
use.

Lemma 2.3. Let G be any finite commutative group and let � ∈ N. Then the
set of functions H = {hg1,...,g�

: {0, 1}� → G}g1,...,g�∈G where hg1,...,g�
(x) =∏

i∈[�] g
xi

i , is 2-universal.

We use the standard definitions of KDM security, leakage resilience and auxiliary
input security as appear, e.g., in [6,22,12], respectively.

12 Z. Brakerski and S. Goldwasser

3 Subgroup Indistinguishability Assumptions

We present the class of subgroup indistinguishability assumptions in Section 3.1
and then discuss instantiations under the QR and DCR assumptions in Sec-
tion 3.2.

3.1 Definition of a Subgroup Indistinguishability (SG) Problem

Let GU be a finite commutative multiplicative group, such that GU is a direct
product of two groups: GU = GM ×GL (interpreted as the “message group” and
the “language group”), where GM is cyclic of order M , GL is of order L (and is
not necessarily cyclic) and GU is of order M ·L (we abuse notation and use M,L
to index the groups and to denote their orders). We require that gcd(M,L) = 1.
Let h be a generator for GM such that h is efficiently computable from the
description of GU . We require that there exists an efficient algorithm OPGU to
perform group operations in GU , and also that there exist efficient sampling
algorithms SGM , SGL that sample a random element from GM , GL respectively.
We further require that an upper bound T ≥M · L is known.

We stress that as always, all groups described above are in fact families of
groups, indexed by the security parameter k. To be more precise, there exists
a polynomial time randomized algorithm that given the security parameter 1k,
outputs IGU = (OPGU , SGM , SGL , h, T). We refer to IGU as an instance of GU .

For any adversary A we denote the subgroup distinguishing advantage of A
by

SGAdv[A] =
∣∣∣ Pr
x

$←GU

[A(1k, x)]− Pr
x

$←GL

[A(1k, x)]
∣∣∣ .

That is, the advantageA has in distinguishing between GU and GL. The subgroup
indistinguishability (SG) assumption is that for any polynomial A it holds that
for a properly sampled instance IGU , we have SGAdv[A] = negl(k) (note that in
such case it must be that 1/L = negl(k)). In other words, thinking of GL ⊆ GU

as a language, the assumption is that this language is hard on average. We define
an additional flavor of the assumption by

SG′Adv[A] =
∣∣∣ Pr
x

$←GL

[A(1k, h · x)]− Pr
x

$←GL

[A(1k, x)]
∣∣∣ .

It follows immediately that for any adversary A there exists an adversary B such
that SG′Adv[A] ≤ 2 · SGAdv[B].

3.2 Instantiations

We instantiate the SG assumption based on the QR and DCR assumptions.
For both instantiations we consider a modulus N defined as follows. For se-

curity parameter k, we sample a random RSA number N ∈ N: this is a number
of the form N = pq where p, q are random k-bit odd primes.

We note that our instantiations work even when the modulus N is such that
QRN is not cyclic.

Circular and Leakage Resilient Public-Key Encryption 13

Instantiation Under the QR Assumption with Any Blum Integer. Con-
sider a modulus N as described above. We use JN to denote the set of elements
in Z∗

N with Jacobi symbol 1, we use QRN to denote the set of quadratic residues
(squares) modulo N . Slightly abusing notation JN ,QRN also denote the respec-
tive groups with the multiplication operation modulo N . The groups JN ,QRN

have orders ϕ(N)
2 , ϕ(N)

4 respectively and we denote N ′ = ϕ(N)
4 . We require that

N is a Blum integer, namely that p, q = 3 (mod4). In such case it holds that
gcd(2, N ′) = 1 and (−1) ∈ JN \QRN .

The quadratic residuosity (QR) assumption is that for a properly generated
N , the distributions U(JN) and U(QRN) are computationally indistinguishable.6

This leads to the immediate instantiation of the SG assumption by setting GU =
JN , GM = {±1}, GL = QRN , h = (−1), T = N ≥ 2N ′.

Instantiation Under the DCR Assumption. The decisional composite resid-
uosity (DCR) assumption, introduced by Paillier [23], states that for a properly
generated RSA number N , it is hard to distinguish between a random element in
Z
∗
N2 and a random element in the subgroup of N th-residues {xN : x ∈ Z

∗
N2}. The

group Z∗
N2 can be written as a product of the group generated by 1 + N (which

has order N) and the group of N th residues (which has order ϕ(N)). This implies
that setting GU = Z∗

N2 , GL = {xN : x ∈ Z∗
N2} and GM = {(1 + N)i : i ∈ [N]}

provides an instantiation of the SG assumption, setting h = (1+N) and T = N2.
It is left to check that indeed gcd(N,ϕ(N)) = 1. This follows since p, q are odd
primes of equal length: assume w.l.o.g that p/2 < q < p, then the largest prime
divisor of ϕ(N) = (p − 1)(q − 1) has size at most (p− 1)/2 < p, q and the claim
follows.7

4 Description of the Encryption Scheme

We now present our QR-based scheme E [�].
Parameters. The scheme is parameterized by � ∈ N which is polynomial in
the security parameter. The exact value of � is determined based on the specific
properties we require from the scheme.

The message space of E [�] is M = {0, 1}, i.e. this is a bit-by-bit encryption
scheme.
Key generation. The key generator first samples a Blum integer N . We note
that the same value of N can be used by all users. Furthermore we stress that
no entity needs to know the factorization of N . Therefore we often refer to N as
a public parameter of the scheme and assume that it is implicitly known to all
users.

6 The QR assumption usually refers to random RSA numbers, which are not necessar-
ily Blum integers. However, since Blum integers have constant density among RSA
numbers, the flavor we use is implied.

7 If greater efficiency is desired, we can use a generalized form of the assumption, pre-
sented in [11].

14 Z. Brakerski and S. Goldwasser

The key generator also samples s $← {0, 1}� and sets sk = s. It then samples
g $← QR

�
N and sets g0 = (

∏
i∈[�] g

si

i)−1. The public key is set to be pk = (g0,g)
(with N as an additional implicit public parameter).
Encryption. On inputs a public key pk = (g0,g) and a message m ∈ {0, 1},
the encryption algorithm runs as follows: it samples r $← [N2],8 and computes
c = gr and c0 = (−1)m · gr

0 . It outputs a ciphertext (c0, c).
Decryption. On inputs a secret key sk = s and a ciphertext (c0, c), the decryp-
tion algorithm computes (−1)m = c0 ·

∏
i∈[�] c

si

i and outputs m.
The completeness of the scheme follows immediately by definition.

5 The Interactive Vector Game

We define the interactive �-vector game played between a challenger and an
adversary. We only present the QR-based game and refer the reader to [7] for
full details.
Initialize. The challenger samples b $← {0, 1} and also generates a Blum integer
N and a vector g $← QR

�
N . It sends N and g to the adversary.

Query. The adversary adaptively makes queries, where each query is a vector
a ∈ {0, 1}�. For each query a, the challenger samples r

$← [N2] and returns
(−1)a · gr if b = 0 and gr if b = 1.
Finish. The adversary outputs a guess b′ ∈ {0, 1}.

The advantage of an adversary A in the game is defined to be

IV�Adv[A] = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| .

Under the QR assumption, no poly(k)-time adversary (where k is the security
parameter) can obtain a non-negligible advantage in the game, as formally stated
below.

Lemma 5.1. Let A be an adversary for the interactive �-vector game that makes
at most t queries, then there exists an adversary B for QR such that

IV�Adv[A] ≤ 4t� ·QRAdv[B] + 2t�/N .

Proof. A standard hybrid argument implies the existence of A1 which is an
adversary for a 1-round game (t = 1 in our notation) such that IV�Adv[A] ≤
t · IV�Adv[A1].

We consider a series of hybrids (experiments). For each hybrid Hi, we let
Pr[Hi] denote the probability that the experiment “succeeds” (an event we define
below).

8 A more natural choice is to sample r
$← [|JN |], but since |JN | = 2N ′ = ϕ(N)

2
is hard

to compute, we cannot sample from this distribution directly. However, since r is
used as an exponent of a group element, it is sufficient that (r mod 2N ′) is uniform
in Z2N′ , and this is achieved by sampling r from a much larger domain. We further
remark that for the QR case, it is in fact sufficient to use r

$← [(N − 3)/4].

Circular and Leakage Resilient Public-Key Encryption 15

Hybrid H0. In this experiment, we flip a coin b $← {0, 1} and also sample i $← [�].
We simulate the 1-round game with A1 where the challenger answers a query a
with (gr

1, . . . , g
r
i−1, (−1)b·ai · gr

i , (−1)ai+1 · gr
i+1, . . . , (−1)a� · gr

�). The experiment
succeeds if b′ = b.

A standard argument shows that

IV�Adv[A1]
2�

=
∣∣∣∣Pr[H0]− 1

2

∣∣∣∣ .

Hybrid H1. In this hybrid we replace gi (which is a uniform square) with (−gi).
We get that there exists B such that |Pr[H1]− Pr[H0]| ≤ 2 ·QRAdv[B].

We note that in this hybrid the adversary’s query is answered with

(gr
1 , . . . , g

r
i−1, (−1)b·ai · (−gi)r, (−1)ai+1 · gr

i+1, . . . , (−1)a� · gr
�) .

Hybrid H2. In this hybrid the only change is that now r
$← Z2N ′ (recall that

N ′ = ϕ(N)
4) rather than U([N2]). By Lemma 2.1 it follows that |Pr[H2]− Pr[H1]|

≤ 1/N . We note that while N ′ is not explicitly known to any entity, this argu-
ment is statistical and there is no requirement that this hybrid is efficiently
simulated.

We denote r1 = (r mod 2) and r2 = (r mod N ′). Since N ′ is odd, the Chinese
Remainder Theorem implies that r1, r2 are uniform in Z2,ZN ′ respectively and
are independent. The answer to the query in this scenario is therefore

(gr
1 , . . . , g

r
i−1, (−1)b·ai · (−gi)r, (−1)ai+1 · gr

i+1, . . . , (−1)a� · gr
�) =

(gr2
1 , . . . , gr2

i−1, (−1)b·ai+r1 · gr2
i , (−1)ai+1 · gr2

i+1, . . . , (−1)a� · gr2
�) .

However since r1 is a uniform bit, the answer is independent of b. It follows
that Pr[H2] = 1

2 . Thus IV�Adv[A1] ≤ 4� · QRAdv[B] + 2�/N , and the result
follows. �

6 KDM Security

In this section, we discuss the KDM-security related properties of our QR-based
scheme (for the general discussion and full details, see full version [7]). We prove
the KDM(1)-security of E [�], for � ≥ logN + ω(log k), in Section 6.1. Then, in
Section 6.2, we state that for � ≥ n · logN +ω(log k), E [�] is also KDM(n)-secure.
Finally, extensions beyond affine functions are stated in Section 6.3.

We define Faff to be the class of affine functions over Z2. Namely, all functions
of the form fa0,a(x) = a0 +

∑
aixi, where ai, xi ∈ Z2.

We use KDMFAdv[A] to denote the advantage of an adversary A in distin-
guishing between a case where it gets legal encryptions of functions in F and
the case where it gets encryptions of the constant message 0.

16 Z. Brakerski and S. Goldwasser

6.1 KDM(1)-Security

The intuition behind the KDM(1)-security of E [�] is as follows. Consider a public
key (g0 =

∏
g−si

i ,g) that corresponds to a secret key s, and a function fa0,a ∈
Faff. The encryption of fa0,a(s) = (−1)a0+

∑
aisi is

(c0, c) = ((−1)a0+
∑

aisi · gr
0,g

r) = ((−1)a0 ·
∏

((−1)ai · gr
i)

−si ,gr) .

We notice that if s, a0,a are known, then c0 is completely determined by c =
gr. Therefore, if we replace gr with (−1)a · gr (an indistinguishable vector,
even given the public key, by an interactive vector game), we see that (c0, c) is
indistinguishable from (c′0, c

′) = ((−1)a0 · gr
0, (−1)a · gr), even when the secret

key and the message are known. Applying the same argument again, taking
into account that g0 is close to uniform, implies that (c′0, c

′) is computationally
indistinguishable from (gr

0 ,g
r), which is an encryption of 0. A formal statement

and analysis follow.

Theorem 6.1. Let A be a KDM(1)
Faff

-adversary for E [�] that makes at most t

queries, then there exists an adversary B such that

KDM(1)
Faff

Adv[A] ≤ 4t(2�+ 1) ·QRAdv[B] +
√
N · 2−� +O(t�/N) .

The theorem implies that taking � = logN + ω(log k) is sufficient to obtain
KDM(1)-security.

Proof. The proof proceeds by a series of hybrids. Let b′ denote A’s output.
Hybrid H0. In this hybrid, the adversary gets the public key, queries functions
fa0,a ∈ Faff and gets legal encryptions of the functions of the secret key.
Hybrid H1. In this hybrid, we change the way the challenger answers the ad-
versary’s queries. Recall that in hybrid H0, the query fa0,a ∈ Faff was an-
swered by (c0, c) = ((−1)a0+

∑
aisi · gr

0 ,g
r). In hybrid H1, it will be answered by

(c0, c) = ((−1)a0 · gr
0, (−1)a · gr).

We prove that∣∣∣∣Pr
H1

[b′ = 1]− Pr
H0

[b′ = 1]
∣∣∣∣ ≤ IV�Adv[A′] ≤ 4t� ·QRAdv[B1] +O(t�/N) ,

for some A′,B1, even when s is fixed and known.
To see this, we notice that in both hybrids c0 = (−1)a0 ·∏i∈[�]((−1)ai · c−1

i)si

and g0 =
∏

i∈[�] g
−si

i . Therefore an adversaryA′ for the interactive �-vector game
can simulate A, sampling s on its own and using g to generate g0 and “translate”
the challenger answers. Applying Lemma 5.1, the result follows.
Hybrid H2. In this hybrid, we change the distribution of g0, which will now
be sampled from U(QRN). By Lemma 2.3 combined with Lemma 2.2, (g0,g) is√

N ′
2�+2 ≤

√
N

2�+2 -uniform. Thus∣∣∣∣Pr
H2

[b′ = 1]− Pr
H1

[b′ = 1]
∣∣∣∣ ≤
√

N

2�+2 .

Circular and Leakage Resilient Public-Key Encryption 17

Hybrid H3. In this hybrid, we again change the way the challenger answers
queries. Now instead of answering (c0, c) = ((−1)a0 ·gr

0, (−1)a·gr)), the challenger
answers (c0, c) = (gr

0,g
r). The difference between H2 and H3 is now a t-query

interactive (� + 1)-vector game and thus by Lemma 5.1,∣∣∣∣Pr
H3

[b′ = 1]− Pr
H2

[b′ = 1]
∣∣∣∣ ≤ 4t(�+ 1) ·QRAdv[B2] +O(t�/N) ,

for some B2.
Hybrid H4. We now revert the distribution of g0 back to the original

∏
i∈[�] g

−si

i .
Similarly to H2, we have∣∣∣∣Pr

H4
[b′ = 1]− Pr

H3
[b′ = 1]

∣∣∣∣ ≤
√

N

2�+2 .

However, hybrid H4 is identical to answering all the queries of the adversary by
encryptions of 0. Summing the terms above, the result follows. �

6.2 KDM(n)-Security

A formal statement for the QR case follows.

Theorem 6.2. Let A be a KDM(n)
Faff

-adversary for E [�] that makes at most t

queries, then there exists an adversary B such that

KDM(n)
Faff

Adv[A] ≤ 4nt(2�+ 1) ·QRAdv[B] + (N · 2−�/n)n/2 +O(nt�/N) .

Thus, taking � = n · logN + ω(log k) is sufficient for KDM(n)-security.

6.3 Beyond Affine Functions

Two building blocks have been suggested in [8,4] to obtain KDM-security w.r.t.
a larger class of functions. Our scheme has the properties required to apply both
constructions, yielding the following corollaries (that can be generalized to any
SG assumption, see full version [7]).

The first corollary is derived using [8, Theorem 1.1]. A set of functions H =
{h1, . . . , h� : hi : {0, 1}κ → {0, 1}} is entropy preserving if the function f(x) =
(h1(x)‖ · · · ‖h�(x)) is injective (the operator ‖ represents string concatenation).

Corollary 6.1. Consider E [�] and let κ be polynomial in the security parame-
ter such that κ ≥ logN + ω(log k). Then for any entropy preserving set H =
{h1, . . . , h� : hi ∈ {0, 1}κ → {0, 1}} of efficiently computable functions, with
polynomial cardinality (in the security parameter), there exists a KDM(1)-secure
scheme under the QR-assumption w.r.t. the class of functions

F =
{
f(x) = a0 +

∑
aihi(x) : (a0, a) ∈ Z2 × Z

�
2

}
.

The second corollary is derived using [4, Theorem 4.1].

18 Z. Brakerski and S. Goldwasser

Corollary 6.2. Based on the QR assumption, for any polynomial p there exists
a KDM(1)-secure encryption scheme w.r.t. all functions computable by circuits
of size p(k) (where k is the security parameter).

7 Leakage Resiliency

We prove that the scheme E [�] (our QR based scheme) is resilient to a leakage
of up of λ = � − logN − ω(log k) bits. This implies that taking � = ω(logN),
achieves (1− o(1)) leakage rate.

Intuitively, to prove leakage resiliency, we consider the case where instead
of outputting the challenge ciphertext ((−1)m · gr

0,g
r), we output ((−1)m ·

(−1)
∑

σisi · gr
0, (−1)σ · gr), for a random vector σ

$← Z
�
2. The views of the ad-

versary in the two cases are indistinguishable (by an interactive vector game).9

Using the leftover hash lemma, so long as s has sufficient min-entropy, even
given g0 and the leakage, then

∑
σisi is close to uniform. In other words, the

ciphertexts generated by our scheme are computationally indistinguishable from
ones that contain a strong extractor (whose seed is the aforementioned σ), ap-
plied to the secret key. This guarantees leakage resiliency.10 The result in the
QR case is formally stated below, where LeakλAdv[A] denotes the advantage of
an adversary A in breaking the security of the scheme using λ bits of leakage.

Theorem 7.1. Let A be a λ-leakage adversary for E [�]. Then there exists an
adversary B such that

LeakλAdv[A] ≤ 8� ·QRAdv[B] +
√
N · 2λ−� +O(�/N) .

8 Auxiliary-Input Resiliency

As in previous work, we start by stating weak auxiliary-input security in Lemma
8.1 below and then derive general auxiliary-input security for sub-exponentially
hard functions in Corollary 8.1.

A function f is ε-weakly uninvertible if for any efficient A, Pr[A(1k, pk,
fk(sk, pk)) = sk] ≤ ε(|sk|).
Lemma 8.1. Let ε(�) and f be such that ε is negligible and f is ε-weakly un-
invertible function (more precisely, family of functions). Then under the QR
assumption, the scheme E [�] is secure even with auxiliary input f(sk).

We note that the above may seem confusing since it appears to imply auxiliary-
input security, and thus also semantic security, regardless of the value of �.

9 Of course the latter ciphertext can only be generated using the secret key, but the
indistinguishability holds even when the secret key is known.

10 In the spirit of [22], we can say that our scheme defines a new hash proof system
that is universal with high probability over illegal ciphertexts, a property which is
sufficient for leakage resiliency.

Circular and Leakage Resilient Public-Key Encryption 19

However, we recall that if � is too small, then we may be able to retrieve s from
pk without the presence of any auxiliary input. Therefore the value of � must be
large enough in order for f to be weakly uninvertible.

We can then derive the following corollary.

Corollary 8.1. Assuming that a subgroup indistinguishability assumption holds,
then for any constant δ > 0 there is an encryption scheme that is resilient to
auxiliary input f(sk) any function f is hard to invert with probability 2−�δ

.

Acknowledgments. The authors wish to thank Gil Segev for illuminating
discussions. The first author wishes to thank Microsoft Research New-England,
for hosting him at the time of this research.

References

1. Adão, P., Bana, G., Herzog, J.C., Scedrov, A.: Soundness of formal encryption in
the presence of key-cycles. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D.
(eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396. Springer, Heidelberg (2005)

2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

3. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and
circular-secure encryption based on hard learning problems. In: Halevi (ed.) [18],
pp. 595–618

4. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010)

5. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003)

6. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008)

7. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability (or: Quadratic residuosity strikes back). In:
Cryptology ePrint Archive, Report 2010/226 (2010), http://eprint.iacr.org/

8. Brakerski, Z., Goldwasser, S., Kalai, Y.: Circular-secure encryption beyond affine
functions. In: Cryptology ePrint Archive, Report 2009/485 (2009),
http://eprint.iacr.org/

9. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

10. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

11. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

http://eprint.iacr.org/
http://eprint.iacr.org/

20 Z. Brakerski and S. Goldwasser

12. Dodis, Y., Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V.: Public-
key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)

13. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In:
Mitzenmacher, M. (ed.) STOC, pp. 621–630. ACM, New York (2009)

14. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
STOC, pp. 25–32. ACM, New York (1989)

15. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: STOC, pp. 365–377. ACM, New York
(1982)

16. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

17. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot
attacks on encryption keys. In: van Oorschot, P.C. (ed.) USENIX Security Sym-
posium, pp. 45–60. USENIX Association (2008)

18. Halevi, S. (ed.): CRYPTO 2009. LNCS, vol. 5677. Springer, Heidelberg (2009)
19. Hemenway, B., Ostrovsky, R.: Lossy trapdoor functions from smooth homomor-

phic hash proof systems. In: Electronic Colloquium on Computational Complexity
(ECCC), vol. 16(127) (2009), http://eccc.uni-trier.de/report/2009/127/

20. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction
paradigm for hybrid encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 590–609. Springer, Heidelberg (2010)

21. Laud, P., Corin, R.: Sound computational interpretation of formal encryption with
composed keys. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp.
55–66. Springer, Heidelberg (2004)

22. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi
(ed.) [18], pp. 18–35

23. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

24. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) STOC, pp. 187–196. ACM, New York (2008)

25. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 84–93. ACM, New York (2005)

http://eccc.uni-trier.de/report/2009/127/

Leakage-Resilient Pseudorandom Functions
and

Side-Channel Attacks on Feistel Networks

Yevgeniy Dodis and Krzysztof Pietrzak

New York University and CWI Amsterdam

Abstract. A cryptographic primitive is leakage-resilient, if it remains
secure even if an adversary can learn a bounded amount of arbitrary
information about the computation with every invocation. As a conse-
quence, the physical implementation of a leakage-resilient primitive is
secure against every side-channel as long as the amount of information
leaked per invocation is bounded.

In this paper we prove positive and negative results about the feasi-
bility of constructing leakage-resilient pseudorandom functions and per-
mutations (i.e. block-ciphers). Our results are three fold:
1. We construct (from any standard PRF) a PRF which satisfies a re-
laxed notion of leakage-resilience where (1) the leakage function is fixed
(and not adaptively chosen with each query.) and (2) the computation
is split into several steps which leak individually (a “step” will be the
invocation of the underlying PRF.)
2. We prove that a Feistel network with a super-logarithmic number
of rounds, each instantiated with a leakage-resilient PRF, is a leakage
resilient PRP. This reduction also holds for the non-adaptive notion just
discussed, we thus get a block-cipher which is leakage-resilient (against
non-adaptive leakage).
3. We propose generic side-channel attacks against Feistel networks. The
attacks are generic in the sense that they work for any round functions
(e.g. uniformly random functions) and only require some simple leakage
from the inputs to the round functions. For example we show how to
invert an r round Feistel network over 2n bits making 4·(n+1)r−2 forward
queries, if with each query we are also given as leakage the Hamming
weight of the inputs to the r round functions. This complements the
result from the previous item showing that a super-constant number of
rounds is necessary.

1 Introduction

Traditional cryptographic security definitions only give the adversary black-box
access to the primitive at hand. For example, a function F : Σk × Σm → Σn

(Σ def= {0, 1}) is pseudorandom if no efficient adversary given oracle access to
a function O : Σm → Σn can tell whether the oracle is a uniformly random
function or instantiated with F(K, .) for a random key K ∈ Σk.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 21–40, 2010.
c© International Association for Cryptologic Research 2010

22 Y. Dodis and K. Pietrzak

Unfortunately, this model does not capture many attacks in the real-world
where adversaries can attack concrete implementations of cryptosystems which
potentially leak information about their internal secret state during computa-
tion. Attacks exploiting such leakage are called side-channel attacks. Popular
side-channels that have been exploited for cryptanalytic attacks include running-
time [28], electromagnetic radiation [39,20] or power consumption [30].

Countermeasures. Side-channel attacks are a very real threat for systems used
in practice. Not surprisingly, much research has concentrated on developing coun-
termeasures against such attacks. This research is mostly done by practitioners
(i.e., the cryptographic hardware community) who are also active in finding and
exploiting new side-channels, [37] gives an overview of this research. The coun-
termeasures proposed are usually ad-hoc, in the sense that they aim to protect
against some particular, known attack, and are backed up by heuristic security
arguments. This is fundamentally different from the provable security approach
taken by modern cryptography, where one requires that a scheme is proven se-
cure against a class of resource bounded (e.g. polynomial time) adversaries and
not only particular attacks. This situation is very unsatisfying; after all, what
is a provably secure cryptosystem good for, if ultimately its security hinges on
an ad-hoc side-channel countermeasure? Nonetheless, until recently there was
almost no input from the theory community on side-channel countermeasures
as it was believed that this is a practical problem, and theory can only be of
limited use in this context. Fortunately, recent results indicate that this view
was much too pessimistic. In an early influential paper, Micali and Reyzin [35]
propose the “physically observable cryptography” framework which adapts the
concept of cryptographic reductions to the context of side-channel attacks. Only
very recently direct constructions of cryptographic schemes were proposed which
are provably secure against general classes of side-channel attacks. We’ll discuss
several such modes below.

Leakage-Resilient PRFs. A cryptographic primitive is leakage-resilient if it
remains secure even if the adversary can – with each invocation – learn a bounded
amount of arbitrary information about the computation. This notion was intro-
duced in [17], and is formally modelled by allowing the adversary to choose
(besides the regular input, if there is any) a leakage function g with bounded
range Σλ for some leakage parameter λ.1 After the invocation the adversary gets
– besides the regual output – the leakage g(τ) where τ is all data accessed by the
primitive during this invocation (that is, the part of the secret state that was
accessed and – if the primitive is probabilistic – any random coins used). We will
take a more “fine-grained” view and split an invocation into t > 1 sequential
steps, where the adversary is allowed to learn a bounded amount of information

1 The basic idea to consider adversaries who can learn any (sufficiently compress-
ing) function g(S) about the secret state S goes back to Maurer’s bounded storage
model [32,15,42]. The bounded retrieval model [14,8] adapts this to the computa-
tional setting.

Leakage-Resilient Pseudorandom Functions 23

g1(τ1), . . . , gt(τt) about every step. Here τi denotes absolutely all information
that is accessed in the i-th step.

As a consequence, the physical implementation of a leakage-resilient cryp-
tosystem will remain secure in the presence of any side-channel attack, as long
as the information exploited by this attack can be modelled by adaptively cho-
sen leakage functions as just described. A sufficient (but not necessary) condition
on the side-channel is to require that (1) the amount of information leaked per
invocation (or, in the fine-grained approach, per step) is at most λ bits and (2)
“only computation leaks information”, which means that parts of the memory
which are not accessed during an invocation (or step) will not leak.

Remark 1 (On “Only computation leaks information”). “Only computation leaks
information” is an assumption about the physical properties of cryptodevices,
and was originally put forward as one the “axioms” in the physically observable
cryptography framework of Micali and Reyzin [35]. As just mentioned, devices
adhering to this axiom are captured by the model of leakage resilience, but this is
only a sufficient condition and by no means necessary. For example, [38] explains
why the mathematical model of leakage-resilience also captures certain physical
attacks which explicitly violate this axiom, like “cold-boot attacks” [22] or when
considering memory that is subject to static leakage.

Limitations of Current Techniques. The only leakage-resilient primitives
that were constructed so far in the standard model are stream-ciphers [17,38] and
signature schemes [19]. A leakage-resilient public-key encryption scheme has been
constructed, but only in the idealised generic group model [27]. A central open
problem is this line of research is the construction of pseudorandom functions
(PRFs) and permutations (PRPs, or equivalently, block-ciphers). Block-ciphers
are the work horses of crypto. Not surprisingly, they are also a favourite target
of side-channel cryptanalysts.

In this work we consider the problem of constructing leakage-resilient PRFs
and PRPs. The techniques used in the construction of leakage-resilient stream-
ciphers and signature schemes crucially rely on key evolution. For example, in a
stream-cipher the key evolves naturally, while for signatures one can sample a
fresh public/secret key pair with each signature query and sign the new key with
an old key. Unfortunately it is not clear how to evolve the key of a PRF/PRP.
The same difficulty arises with public-key encryption, so the leakage-resilient
PKE scheme from [27] does not rely on evolution, but rather on sharing the
secret key. The sharing is rerandomized after each invocation. In order to decrypt
using the shares of the secret key without actually reconstructing it, one exploits
the homomorphic property of the group. Thus, even aside from the reliance
on idealised generic groups [27], this technique is not an option to construct
leakage-resilient PRFs/PRPs if we do not want to use inefficient techniques and
assumptions (like DDH) that are used in public-key cryptography.

Our PRF Results. As leakage-resilient PRFs seem out of reach with our cur-
rent techniques, we will consider a relaxed notion of leakage-resilience, where the

24 Y. Dodis and K. Pietrzak

leakage function is not adaptively chosen by the adversary before each invocation,
but is fixed. This notion still captures all side-channel attacks where the adversary
will always measure (almost) the same leakage if she performs exactly the same
computation. This for example captures timing and to some extent power-analysis
attacks2, but not probing attacks (where different wires can be probed on different
invocations on the same input.) We construct a PRF which is secure under this re-
laxed notion from any standard PRF. The construction, as illustrated on the left in
Figure 1, can be seen as a hybrid of the GGM construction [21] (which constructs
a PRF from any PRG) and the leakage-resilient stream cipher from [38].

Related Work. The idea to only consider non-adaptive leakage functions and that
this could be useful in the context of the GGM construction goes back at least to
Micali and Reyzin [35].3 A similar point for a particular leakage function (power
analysis) was made by Kocher [29]. The idea to consider leakage-resilience but
to fix the leakage function is due to Standaert et al. [41]. They suggest that the
GGM construction is secure in this setting if the PRG is modelled as a uniformly
random function and the leakage function is fixed.4

Side-Channel Attacks on Feistel. A pseudorandom permutation (PRP) F :
Σk × Σn → Σn is defined like a PRF, except that one requires that for every
key K ∈ Σk, F(K, .) is a permutation. A super PRP (sPRP) satisfies a stronger
notion where the adversary can also make inverse queries. The additional struc-
tural properties of permutations are often useful as they allow for better efficiency
and/or security. Block-ciphers, which are strong PRPs, are the “work horses” of
cryptography and a favourite target of side-channel cryptanalysts.

PRPs seem to be much more complicated objects than PRFs, but in a classical
paper, Luby and Rackoff [31] prove that a simple 3 round Feistel network (cf. Def-
inition 6) instantiated with PRFs, is a PRP. With one round more one even gets a
sPRP. More recently, [7] prove that a six round Feistel network instantiated with
2 If the power-analysis just leaks the number of wires set to 1, then this is captured, but

if the power-analysis leaks the number of wires that “switch” from 0 to 1, then this is
no longer possible.

3 From [35]: Our definitions allow for repeated computation to leak new information
each time. However, the case can be made (e.g., due to proper hardware design) that
some devices computing a given function f may leak the same information whenever
f is evaluated at the same input x. This is actually implied by making the leakage
function deterministic and independent of the adversary measurement. Fixed-leakage
physically observable cryptography promises to be a very useful restriction of our gen-
eral model (e.g., because, for memory efficiency, crucial cryptographic quantities are
often reconstructed from small seeds, such as in the classical pseudorandom function
of [21]).

4 The model considered is basically the random oracle model, but it is conceptually
used in a different way. In the RO model, a uniformly random function is accessible
to all parties, and security proofs only exploit the fact that a random oracle allows to
efficiently access an exponential amount of true randomness. In contrast, in [41] the
security proof exploits the fact that the adversarial leakage functions cannot query
the random oracle.

Leakage-Resilient Pseudorandom Functions 25

random functions is indifferentiable [34] from a uniformly random permutation.
These results suggest that a Feistel network with some small constant number of
rounds instantiated with leakage-resilient PRFs, would yield a leakage-resilient
PRP.

Unfortunately, this is not true. We show very simple side-channel attacks against
Feistel networks where the round functions can be arbitrary, and the only leak-
age is some (simple) function g(.) of the inputs to the round functions. We iden-
tify a simple property of leakage-functions function g(.) – which we call “recon-
structible” (cf. Definition 7) – that is sufficient for our attack to work. This prop-
erty is shared by many simple and natural leakage functions (like the Hamming
weight or the identity function with very high noise). Thus our attacks are quite
practical. We explain these attacks in detail in Section 3 (which is self contained
and can be read independently of the rest of this paper), here only giving the brief
summary. We show that getting leakage from any reconstructible leakage function
g(.) is sufficient to allow the side-channel attacker to invert the Feistel network on
any input using a number of forward queries which is exponential in the number of
rounds (and, thus, in polynomial time for any fixed constant number of rounds).
This breaks the security of any fixed-round Feistel network as a PRP.

For readers familiar with the notion of Indifferentiability [34,6], it might seem
that our attacks contradict the beautiful result of Coron et al. [7] showing that a
six round Feistel network with random functions is indifferentiable from a random
permutation. The reason this is not a contradiction is that the indifferentiability
simulator S is allowed to make arbitrary additional forward/backward queries to
the random permutation when trying to “fake” the six random round functions,
as opposed to the queries made by the distinguisher (which the simulator does not
even see). For example, for our attack making only forward queries, the simulator
will be “smart enough” to figure out the backward query we are “computing” using
our forward queries, and will make such a query in advance to avoid any inconsis-
tencies. Translated to the setting of leakage, the indifferentiability framework will
imply the following much weaker notion of security than the one we are aiming for:
aftermaking q block-cipher queries and observing the leakage, allbut specially cho-
sen poly(q) input/outputs of the block cipher will “look random”. In contrast, we
will ensure that every un-queried input/output pair will “look random”.

We also mention that [12] defined a notion of “honest but curious indifferentia-
bility”. As observed by [12,7] this notion is incomparable to standard indifferentia-
bility. On one hand, it is stronger because the simulator S is not allowed to make
any queries to P or P−1 (but only sees the queries made by the distinguisher). But
it is also weaker, as the distinguisher is not allowed to query intermediate round
functions, but only the entire Feistel network (or its simulation) together with
all the inputs/outputs of the internal round functions. This notion is much closer
to the setting of side-channel attacks, except with side-channels we allow a much
richer class of leakage functions (e.g., those that depend on the key). In fact, the
side-channel attacks we propose generalize (and strengthen) a lower bound from
[12] which basically corresponds to our attack for the special case where the leak-
age contains the entire inputs to the round functions.

26 Y. Dodis and K. Pietrzak

Leakage-Resilient PRPs. In light of the results discussed in the previous sec-
tion, the best we can hope for is that an r-round Feistel network Ψr, instantiated
with leakage-resilient PRFs, is secure against adversaries who make at most an
exponential (in r) number of queries. In Section 4 we show (again using tech-
niques from [12]) that this is indeed the case: the r-round Feistel network is a
secure leakage-resilient super PRP as long as the number of queries is bounded
by q ≤ 1.38r/2−1.

We notice that the leakage-resilient sPRP, as just described, is secure in an
attack scenario where the adversary with every query to Ψr gets to see all the
inputs5 to the r round functions and also leakage from every round function (as
computed by any leakage function for which the underlying leakage-resilient PRF
is secure). Also, the reductions works for other notions of leakage-resilience, in
particular for the original notion of leakage-resilience where the leakage-function
is chosen adaptively. Thus, although our current PRF constructions only give us
“non-adaptive-leakage” sPRPs, future advances in leakage-resilient PRFs would
immediately translate to stronger leakage-resilient sPRPs.

In contrast, when proposing attacks, we want to consider a setting where
the adversary is as limited as possible. As explained in the previous section,
the side-channel attacks we propose against Feistel require a very limited setting
where the only leakage the adversary gets is some simple function (e.g. Hamming
weight) of the inputs to the round functions. The attack works no matter what
the round functions are, they can be leakage-proof PRFs or even uniformly
random functions.

More Related Work. We shortly discuss some work on provable side-channel
security not already covered in the introduction. The more practical work on
this topic is too extensive to cover here, [37] gives an overview of this research.

Private Circuits. Ishai et al. [25,24] consider a model where the adversary can
choose some wires in the circuit on which the cryptographic algorithm is run,
and then learns the values carried by those wires during the computation (This
can be seen as a generalisation of exposure resilient cryptography [13], where
the adversary was restricted to learn some bits of the input.) They were the first
to prove how to implement any algorithm secure against an interesting side-
channel, i.e. probing attacks. This work uses techniques from general multiparty
computation (MPC).6 Recently Faust et al. [18] extended this result to signif-
icantly more general classes of leakage, in particular, they give a construction
5 The outputs of the round functions can be computed from the input: the output of

the ith round functions is the XOR of the inputs of rounds i− 1 and i + 1.
6 Formally, Ishai et al. prove the following: let t ≥ 0 be some constant and let [X]

denote a (t+1) out of (t+1) secret sharing of the value X. They construct a general
compiler, which turns every circuit G(.) into a circuit Gt(.) (of size O(t|G|)) such that
[G(X)] = Gt([X]) for all inputs X, and moreover one does not learn any information
on G(X) even when given the value carried by any t wires in the circuit Gt(.) while
evaluating the input [X]. This transformation uses multiparty-computation, which
is quite different from all other approaches we discuss here.

Leakage-Resilient Pseudorandom Functions 27

(also based on general MPC) which remains secure given leakage computed by
any function from a low complexity class like AC0. The main drawback of those
constructions is that the amount of leakage that can be tolerated is very small:
to tolerate t bits leakage, the circuits must be blown up by a factor of at least
t. Moreover the construction from [18] requires (albeit very simple) completely
leakage proof components.

(Continuous) Memory Attacks. A cryptographic scheme is secure against mem-
ory attacks, if it remains secure even if a bounded amount of information about
the secret key is given to the adversary. In this model [1,36,4] construct public-
key encryption schemes and [26,2] construct signature schemes, identification
schemes and key exchange protocols.7 Unlike leakage-resilience, here the leakage
function gets the entire secret state as input, and not only what was accessed.
On the downside – unlike leakage-resilience or private circuits – memory at-
tacks are a “one-shot” game where the total amount of leakage cannot be larger
than the length of the secret key. Very recently [10,5] extended the model of
memory attacks to the continuous setting. In their model the secret key gets
periodically updated (using local randomness and without changing the public
key), and a bounded amount about of information about the secret key can
leak in-between every two updates. The update phases can also leak, but only
a logarithmic amount. In this model, [10] construct identification, signature and
authenticated key agreement schemes, [5] construct signatures and PKE.

Auxiliary Input. [11] introduce the notion of security against auxiliary input,
where one requires the scheme to be secure even if the adversary is given some
leakage g(K) about the secret key as long as g(.) is uninvertible. That is, K
cannot be inverted given g(K) but with very small probability. In this model
private-key [11] and public-key [9] encryption schemes have been constructed.

Notation & Basic Definitions

– Σt denotes {0, 1}t, i.e. all bitstring of length t. Σ≤t def=
⋃t

i=0 Σ
t denotes all

bitstrings of length at most t, including the empty string ε.
– [a, b] denotes the interval {a, a+ 1, . . . , b}, [b] is short for [1, b].

– Sequential composition of functions is denoted with g ◦ f(x) def= g(f(x)).
– Concatenation of two strings x, y is denoted x‖y, or, if no confusion is pos-

sible, simply xy.
– wH(x) denotes the number of 1’s (i.e. Hamming weight) in x.
– Rm,n denotes a uniformly random function Σm → Σv, Pn a uniformly

random permutation over Σn.
– For X ∈ Σn we denote with X|i the i bit prefix of X .

7 Let us mention that PRFs and PRPs (i.e. the primitives considered in this paper)
that are secure against memory attacks do not even exist. E.g. we can trivially
distinguish F (K,X) (here K is the key and X is any fixed input to the PRF F (., .))
from uniform with advantage 1− 2−λ given as leakage the first λ bits of F (K, X).

28 Y. Dodis and K. Pietrzak

– pre(X) =
⋃n

i=0 X|i denotes the set of all prefixes of X , including the empty
string ε = X|0 and the entire X = X|n.

– We sometimes write Xq to denote a sequence X1, . . . , Xq of values.
– For a set X , X ∗← X denotes that X is assigned a value sampled uniformly

at random from X .
– We denote with δD(X ;Y) the advantage of a circuit D in distinguishing the

random variables X,Y , i.e.: δD(X ;Y) def= |Pr[D(X) = 1] − Pr[D(Y) = 1]|.
With δs(X ;Y) we denote maxDδ

D(X ;Y) where the maximum is over all
circuits D of size s.

K0 K1 Zε Kε

F

Z0 Z1

F K00 K01 K10 K11

Z10 Z11

K100 K101 K110 K111 F

Z100 Z101

F K1000 K1001 K1010 K1011

Z1010 Z1011

F

Y1011

Λε

Λ1

Λ10

Λ101

Λ1011

E(j, YL‖YR) =

E(j − 1, YR, C ⊕ YL)

f1 ⊕

...
...

fj ⊕

fj+1 ⊕

...
...

fr ⊕

YR C ⊕ YL

C

YL YR

E(j − 1, YR‖Xi)

f1 ⊕

...
...

fj ⊕

Bg

fj+1 ⊕

...
...

fr ⊕

YR Xi

C

C ⊕ Xi

g(C ⊕ Xi)

Xi

Fig. 1. Left: Illustration of the NALR-secure PRF Γ F,m : Σ3k+n × Σm → Σ4k+2n

(here shown for m = 4 and input 1011 ∈ Σm) from any standard (weak) PRF F :
Σk × Σn → Σ4k+2n. We consider adversaries who with each such query X can get
leakage ΛI for every I ∈ pre(X) which is defined as ΛI

def= g(KI , ZI , I), where g is any
function of bounded size s and range λ. And moreover all the ZI , I ∈ pre(X).
Right: Illustration of the second Claim from the proof of Theorem 2.

2 Leakage-Resilient PRFs

Figure 1 (left) illustrates our construction of a PRF F : Σk × Σm → Σn for
which we will show that it satisfies a relaxed notion of leakage-resilience where
the leakage function is a priori fixed (and not adaptively by the adversary with
every query). Recall the standard definitions of (weak) PRFs.

Definition 1 (PRF/weak PRF). F : Σκ × Σm → Σn is an (εprf , sprf , qprf)-
secure pseudorandom function (PRF) if no adversary of size sprf can distinguish
F (instantiated with a random key) from a uniformly random function, i.e. for
any A of size sprf making qprf oracle queries we have

Pr
K

[AF(K,.) → 1]− Pr
Rm,n

[ARm,n(.) → 1] ≤ εprf

Leakage-Resilient Pseudorandom Functions 29

F as above is a (εprf , sprf , qprf)-secure weak PRF if the above only holds for ran-
domly (and not adversarially) chosen inputs, i.e. for K ∗← Σκ and

for i = 1, . . . , qprf : Xi
∗← Σm Yi ← F(K,Xi) Ri ← Rm,n(Xi)

we have Pr[A(Xqprf , Y qprf) = 1]− Pr[A(Xqprf , Rqprf) = 1] ≤ εprf

Definition 2 below specifies what we mean by a PRF F being leakage-resilient
w.r.t. to a class of leakage functions L. Informally, we consider an adversary
A with access to two oracles. Initially, we sample a key K

∗← Σk. The first
oracle then takes as input some X ∈ Σm and outputs the output of the PRF
Y ← F(K,X) on this input and the leakage Λ ← g(K,X) (where g is any
function from the class L). The second oracle is either a uniformly random
function Rm,n, or the PRF F(K, .) (using the same key as K the first oracle.).
We require that no efficient A can distinguish these two cases. Of course we
have to require that A never queries the two oracles on the same input X , as
otherwise distinguishing becomes trivial.

The practical implication of this definition is as follows. Consider an adversary
who can launch a side-channel attack against F(K, .), where for every query
F(K,X) made she can measure some leakage Λ(K,X). If F is L resilient, and
the leakage Λ(K,X) can be modelled as Λ(K,X) = g(K,X) for some g ∈ L,
then for all inputs X ′ on which F(K, .) has not yet been queried, the output
F(K,X ′) will be indistinguishable from random.

Definition 2 (L-resilient PRF/PRP/sPRP). F : Σκ × Σm → Σn is a
(εprf , sprf , qprf)-secure L-resilient pseudorandom function if for every adversary
A of size sprf and every g ∈ L

Pr
K

[AFg(K,.),F(K,.) → 1]− Pr
K,Rm,n

[AFg(K,.),Rm,n(.) → 1] ≤ εprf (1)

Here A can make a total of qprf queries (arbitrarily scheduled) to his two oracles,
but the queries to the first and second oracle must be disjoint. The first oracle
Fg(K, .) takes as input X ∈ Σm and outputs F(K,X), g(K,X).
L-resilient pseudorandom permutations (PRP) are defined similarly, except

that now for every K, F(K, .) has to be a permutation and the random function
Rm,n in eq.(1) is replaced with a random permutation Pm. A L-resilient super
PRP (sPRP) is defined the same way, except that now we additionally allow
the adversary to make inverse queries. Here A is also not allowed to make an
inverse (forward) query Y to one oracle, if Y has been received as output to a
forward (inverse) query from the other oracle.

Definition 3 (NARL security). We say that a PRF F (same for PRP,sPRP)
is non-adaptive leakage-resilient if the computation of F(K,X) can be split into
t ≥ 1 steps, and F is L-resilient w.r.t. to a class L which can leak, for every of
the t steps, arbitrary λ bits of information about all the data that is accessed in
this step.

30 Y. Dodis and K. Pietrzak

Below we define our construction Γ F,m of a function as illustrated is Figure 1
for which we will prove that it is NARL secure if instantiated with any standard
weak PRF F. This construction can be seen as a hybrid of the GGM construction
[21] and the leakage-resilient stream-cipher from [38].

Definition 4 (Construction Γ F). For a functions F : Σk × Σn → Σ4k+2n,
we denote with Γ F a function Σ3k+n × Σm → Σ4k+2n defined as follows (cf.
Figure 1). The secret key K consists of the four values Zε ∈ Σn,Kε,K0,K1 ∈
Σk. The output on input X ∈ Σm is YX ← F(KX , ZX) where ZI ,KI for I ∈
pre(X) are recursively defined as

(ZI0, ZI1,KI00,KI01,KI10,KI11)← F(KI , ZI)

Figure 1 illustrates this construction for m = 4 on input X = 1011.

Theorem 1 below states that Γ F is NARL secure. Or more precisely, L-resilient,
where L contains all functions that leak λ bits of arbitrary information about
every invocation of F. How large λ can be depends on the security of F. Roughly,
if F cannot be broken with advantage 2−w, then we can leak λ = w/6 bits with
each of the n invocations of F. (and thus nw/6 bits in total.)

NARL security requires that the leakage in each of the m + 1 steps (i.e.the
invocations of the underlying F) can depend on absolutely all data that is ac-
cessed during this step. For step i (0 ≤ i ≤ m) this means ZI ,KI , where I = X|i
is the i bit prefix of the input X , but also the last two bits of I itself, as this
bits specify which part of the state8 must be accessed in this step. We will even
give the entire I as input to the leakage function.

Theorem 1. If F is a weak PRF, Γ F,m is a NARL super-PRP, where each
invocation of the underlying F is considered a step as in Def. 3. If the PRF
cannot be distinguished from random with advantage more than εprf , then we
can tolerate leakage of λ = log(ε−1

prf)/6 bits per step. The precise quantitative
statement is given below.

Assume F : Σk×Σn → Σ4k+2n is a (εprf , sprf , n/ε
2
prf) secure weak PRF (where

εprf ≥ n ·2−n/3 and n ≥ 20) and let λ = log(ε−1
prf)/6. Then Γ F,m : Σ3k+n×Σm →

Σ4k+2n is a (ε′prf , s
′
prf , q

′
prf) secure Ls,λ-resilient PRF for any q′prf and

s′prf = sprfε
2
prf/2

λ+2(n + k)3 − s ·m · q′prf ε′prf = 8 · q′2prf ·m · ε1/12prf

where the class Ls,λ contains all functions Lg indexed by a function g : Σk+n+m →
Σλ of size at most s defined as (with KI , ZI as in Definition 4)

Lg(K,X) = {ΛI , ZI : I ∈ pre(X)} ΛI
def= g(KI , ZI , I)

Recall that a random variable X has min-entropy k, denoted H∞(X) = k, if
Pr[X = x] ≤ 2−k for any x in the support. In the proof, we will extensively use
a computational version of this notion called HILL-pseudoentropy [23,3].
8 Let Id denote I where the last d bits deleted. Then before step I the state is

ZI10ZI11, KI200, KI201, KI210, KI211.

Leakage-Resilient Pseudorandom Functions 31

Definition 5 (HILL-pseudoentropy[23,3]). We say X has HILL pseudoen-
tropy k, denoted by HHILL

ε,s (X) ≥ k, if there exists a distribution Y with min-
entropy H∞(Y) = k where δs(X ;Y) ≤ ε.

Proof (of Theorem 1). Our construction Γ F,m is inspired by the construction of
the leakage-resilient stream-cipher from [38], and also the proof is very similar.
We will use several technical results from [38,17] which for space reasons are
moved to Appendix A.

It will be convenient to consider an adversary which is stronger than what is
actually required in the proof. We consider an adversary A who can adaptively
“explore” the tree structure underlying the Γ F,m construction. This is modeled
by giving her access to two oracles OK(.) and Ob

K(.). These are initialised with
a random key K (as used in Γ F,m), a random bit b and a uniformly random
function R. The Ob

K oracle takes inputs from Σm and outputs either random
outputs (if b = 1) or the output of Γ F,m (if b = 0). The OK oracle allows to
“explore” the tree structure of Γ F,m.

OK(I)→
{
ZI0, ZI1, ΛI if I ∈ Σ≤m−1

YI , ΛI if I ∈ Σm Ob
K(I)→

{
YI if b = 0
R(I) if b = 1

We put the additional restriction on the order in which queries can be made: A
can only make a query I to OK or Ob

K , if the |I| − 1 bit prefix of I has already
been queried (the first query can only be ε). Wlog. we assume that A never
makes the same query twice. A can never make the same query I ∈ Σm to both
oracles (which would trivially allow to distinguish the cases b = 0 and b = 1.)

A q′prf -query adversaryA′ who breaks the Ls,λ security of Γ F,m with advantage
ε can be turned into an adversary A of almost the same size who has advantage
ε in distinguishing the cases b = 0 and b = 1 in the experiment just described:
A query X to Γ F,m(X) can be simulated by making the queries pre(X) to OK .
A query X to the second oracle can be simulated the same way, except that the
query X is forwarded to Ob

K(.). This A makes at most (m−1)q′prf and q′prf queries
to the first and second oracle respectively. Thus it remains to upper bound

Pr
K

[AOK(.),O0
K(.) → 1− Pr

K,R
[AOK(.),O1

K(.) → 1]

This means we must show that the outputs of the oracle O0
K : I → F(KI , ZI)

are pseudorandom even given access to OK , and thus cannot be distinguished
from the uniformly random outputs of O1

K : I → R(I). Let viewi denote the
view of A after the ith query, the initial view is view0 = {Zε}. We say that
I ∈ Σ≤m is a “potential query” if A did not yet make the query I but all the
its prefixes pre(I) \ I. The following facts hold (with high probability) after the
ith query and for any potential query I. (We ignore the precise bounds on HILL
pseudoentropy, writing only HHILL to denote HHILL

ε,s for “small” ε and “large” s.)

1. KI and ZI are independent given the view viewi of A.
2. HHILL(KI |viewi) = k − 2λ and HHILL(ZI |viewi \ ZI) = k − 2λ.

32 Y. Dodis and K. Pietrzak

3. If KI , ZI satisfy fact 1 & 2 then
(a) F(KI , ZI) is pseudorandom given viewi.
(b) HHILL(F(KI , ZI)|ΛI , viewi) = |F(KI , ZI)| − 2λ.

Note that fact 3.(a) implies that a query I to O0
K will result in a pseudorandom

value F(KI , ZI). As just described, this establishes the theorem. The lemmata
below are given in Appendix A.

Fact 1 follows from Lemma 3 (originally from [16], also given as Lemma 5 in
[38]). The only reason we add ZI0ZI1 to the output of OK(I) (and not only the
leakage ΛI) is so we can apply this lemma.

Fact 3.(a) follows from Fact 2 using Lemmata 4 and 5, which state that
the output F(K,Z) of a weak PRF is pseudorandom as long as K and Z are
independent and have sufficiently high pseudoentropy.

Fact 3.(b) follows from Fact 3.(a) and Theorem 2 from [17] (or, independently
[40]), which states that a pseudorandom value like F(K,Z) has high pseudoen-
tropy, even if a bounded amount of information about the seed (in our case K,Z)
is leaked. The precise quantitative statement of Fact 3.(b) is given as Lemma 6
(which is Lemma 6 from [38]).

Finally, Fact 2 holds by induction over the queries that A makes using Fact
3.(b). To see this, note that Fact 2 holds initially for i = 0 as K0,K1,Kε, Zε

are independently and uniformly sampled. Now assume it holds after the ith
query, and A makes the query I (where |I| < m), then by Fact 3.(b) the newly
computed values ZI0, ZI1,KI00, . . . ,KI11 ← F(KI , ZI) will also satisfy Fact 2.

So far we have only established the qualitative statement that Γ F,m is a NARL
secure PRP but said nothing about the exact security as claimed in the proof.
The HILL-pseudoentropy in the facts above must be quantified, e.g. in fact 2.
above HHILL(KI |viewi) = k−2λ can be expressed as HHILL

ε,s (KI |viewi) = k−2λ for
some ε, s. One then has to do some bookkeeping bounding how this parameters
get worse (i.e. how s decreases and ε increases) during the run of the experiment.
As this is not very instructive we omit this calculations. The bounds we get here
are exactly the same bounds that are proven for the leakage-resilient stream-
cipher in [38] (when using the same F and the number of invocations to the
underlying F is the same). In fact, minor adaptions of the proof from [38] give us
the claimed bounds. The only difference is that the advantage ε′prf in this paper
is a factor q′prf larger, the reason is that our A can make q′prf “challenge queries”
to the Ob

K oracle, whereas in [38] only one challenge query is considered. �

3 Side-Channel Attacks on Feistel

In this section we put forward generic side-channel attacks on Feistel networks.
As Feistel networks (and minor variations thereof) are the only generic con-
structions of PRPs from PRFs known, this indicates that constructing leakage-
resilient PRPs from leakage-resilient PRFs might be significantly harder than
constructing PRPs from PRFs in the normal (non-leakage) setting. Below we
first define the Feistel network.

Leakage-Resilient Pseudorandom Functions 33

Definition 6 (Feistel, μ). For a function f : Σn → Σn, we denote with
Ψ [f] the permutation over Σ2n defined as Ψ [f](xL, xR) def= f(xL) ⊕ xR‖xL.
Ψ [f1, . . . , fr] denotes Ψ [fr] ◦ . . . ◦ Ψ [f1].

We define μ as (R0, . . . , Rr+1)
def= μ(Ψ [f1, . . . , fr], R1‖R0) where for i ≥ 1 :

Ri
def= Ri−1 ⊕ fi−1(Ri−1), so Ri is the input to the ith round function on input

X = R1‖R0.

In a classical paper, Luby and Rackoff prove that the advantage of any q-query
distinguisher in distinguishing Ψ3

def= Ψ [f1, . . . , f3] from a uniformly random per-
mutation overΣ2n is upper bounded by9 q2/2n if the fi : Σn → Σn are uniformly
random functions.10 This in particular implies that no adversary who can query
Ψ3 in forward direction can invert Ψ3 on a random Y ∈ Σ2n, unless she makes
q = Θ(2n/2) queries.

We consider a setting where the adversary not only can make queries to some
Feistel network Ψr

def= Ψ [f1, . . . , fr], but with each query X , besides the output
Y ← Ψr(X), also gets some “leakage” about the intermediate values.

We will consider different leakage functions g : Σn → Σ∗, our attack will work
for any functions which allow “reconstruction” as defined below

Definition 7 (reconstructible). A function g : Σn → Σ∗ is (k, δ) recon-
structible, if there exists an efficient algorithm Bg such that Pr[C′ = C] ≥ δ in
the experiment below:

1. Sample a random challenge C
∗← Σn.

2. Bg can adaptively make k queries X1, . . . , Xk to an oracle which on input
Xi outputs g(C ⊕Xi).

3. Bg outputs C′.

If g is probabilistic, then it is (k, δ) reconstructible if there exits a single Bg such
that the expectation (over the randomness of g) of the probability E[Pr[C′ = C]]
is at least δ. Two examples of reconstructible functions are given below.

Hamming-weight: The Hamming-weight function g : Σn → Σ
log n�, g(X) def=
wH(X) is (n, 1) reconstructible: For i ∈ [n] let B ask for Λi = g(X ⊕ ei),
where ei = 0i−110n−i−1 for i = 1, . . . , n. Note that Λi can only take two
values, wH(X)− 1 or wH(X) + 1, which is the case if the ith bit of X is 1
and 0 respectively.11

9 With one round more, the same result holds even if the distinguisher is allowed to
make inversion queries.

10 This then implies that Ψ [f1, . . . , f3] is a pseudorandom permutation if the fi’s are
pseudorandom functions. In fact, Luby-Rackoff proved this latter result directly, but
as advocated e.g. in [33], the detour via uniformly random objects is cleaner and
easier.

11 If all Λi are the same then X = 1n or 0n, which is the case can be deduced from Λ1

(which is n− 1 or 1 in those cases).

34 Y. Dodis and K. Pietrzak

Noise: For some γ > 0 consider the probabilistic function gγ : Σn → Σn which
flips every bit of its input with probability 1/2−γ (and each bit of every input
is flipped independently.) For any k, gγ is (k, 1−n ·e−2·k·γ2

) reconstructible:
Bgγ uses any sequence X1, . . . , Xk of distinct inputs, and guesses that the
ith bit of C is 0 iff the majority of the ith bits in gγ(C⊕X1), . . . , gγ(C⊕Xk)
is 0. By the Chernoff bound, the probability that the ith bit is guessed wrong
is at most e−2·k·γ2

, taking the union bound over all n bits we get the bound
as claimed.

Theorem 2. For some r ≥ 3 and any f1, . . . , fr : Σn → Σn, consider the r
round Feistel network Ψr = Ψ [f1, . . . , fr] and some leakage function g : Σn → Σ∗

which is (k, δ) reconstructible. Then there exists an attacker A which can invert
Ψr on any value Y with probability δ(k+1)r−2

, where A makes 4(k + 1)r−2 for-
ward queries to Ψr, and with each query X learns the output Ψr(X) and leakage
g(R1), . . . , g(Rr−1) about the inputs to the round functions (R0, . . . , Rr+1) ←
μ(Ψr, X). The running time of A is O((k+1)r−3|Bg|) where |Bg| is the running
time of Bg as in Definition 7.

In the theorem we only consider the case r ≥ 3, for r = 0, 1 or 2 one can
trivially invert with probability 1 making 0, 1 or 4 forward queries respectively.
This theorem generalizes Theorem 3.1 from [12], who consider the case where
the adversary gets all the Ri’s. (or equivalently, where g is (1, 1) reconstructible.)

Remark 2. Note that we don’t have to leak g(Ri) for i ∈ {0, 1, r, r + 1} as for
those i the entire Ri is already contained in the input or output. The above
theorem can also be proven (with worse bounds: (k+1)r queries and probability
δ(k+1)r

) in a weaker setting where the adversary does not even get to see the
output Ψr(X) = Rr‖Rr+1, but instead gets the leakage g(Rr), g(Rr+1).

Remark 3. The success probability δ(k+1)r−2
drops very fast in k and r. This

is not an issue for leakage functions where δ = 1 like Hamming weight. But
this also is good enough for noisy leakage, where we get a success probability
of (1 − n · e−2·k·γ2

)(k+1)r−2 ≥ (1 − n · e−2·k·γ2 · (k + 1)r−2) which approaches 1
exponentially fast in k.

Proof (of Theorem 2). The proof by induction on the number of rounds r. For
j ∈ [r] let Ψj

def= Ψ [f1, . . . , fj] denote the first j rounds of Ψr. For any j, 1 ≤ j ≤ r,

we let E(j, Yj)
def= Ψ−1

j (Yj), that is, the input Z such that the intermediate value
after j rounds in the computation Ψr(Z) is Yj . It will be convenient to define
E′(j, Yj) = {Z, Ψr(Z), g(R1), . . . , g(Rr)} where (R0, . . . , Rr+1) ← μ(Ψr, Z). We
show that

Claim. E′(1, YL‖YR) can be computed (with probability δ) making k+1 forward
queries to Ψr.

Leakage-Resilient Pseudorandom Functions 35

Proof (of Claim). As Z def= E(1, YL‖YR) is YR‖f1(YR)⊕YL, to get Z it is sufficient
to learn C

def= f1(YR). To get E′(1, YL‖YR) we then make one more Ψr query Z.
Let Bg be as in Definition 7, we will use it to reconstruct C as follows: For every
query Xi asked by Bg, we make the query YR‖Xi to Ψr. The answer will contain
the leakage Λ2 = g(C ⊕Xi), which is exactly what Bg expects as answer to his
query Xi. Thus after k queries we learn C with probability δ. �

Claim. For j ∈ [2, r − 2], E′(j, YL‖YR) can be computed (with probability δ)
making k + 1 queries to E′(j − 1, .).

Proof (of Claim). The proof of this claim is illustrated in Figure 1. The idea is
similar as in the previous claim; We will use Bg to reconstruct C def= fj(YR) (as
explained below) and then we get E′(j, YL‖YR) = E′(j−1, YR‖C⊕YL) with one
more E′(j − 1, .) query.

To reconstruct C = fj(YR), for every query Xi made by Bg, we ask for
E′(j − 1, YR‖Xi) which includes the leakage Λj+1 = g(C ⊕Xi)) as expected by
Bg. Thus after k queries X1, . . . , Xk, Bg outputs C = fj(YL) with probability δ.

Claim. For j ∈ {r − 1, r}, E′(j, YL‖YR) can be computed making 2 queries to
E′(j − 1, .).

Proof (of Claim). We ask for E′(j − 1, 0n‖YL) = {Z, Ψr(Z), . . .}, here Ψr(Z)
contains fj(YL) in the clear (it’s the left part of Ψr(Z) for j = r − 1 and right
part for j = r). Make one more E′(j − 1, .) query to get E′(j, YL‖YR) = E′(j −
1, YR‖fj(YL)⊕ YL). �

Let us for now assume that δ = 1 (i.e. Bg always reconstructs correctly) and
let Tj,r denote the number of forward queries to Ψr one has to make in order to
compute E′(j, .). By the above claims

1. T1,r = k + 1
2. Ti,r = (k + 1)Ti−1,r for i ∈ [2, r − 2].
3. Ti,r = 2 · Ti−1,r for i = r − 1 or i = r.

For i ≤ r − 2, the relations 1. and 2. are satisfied by

Ti,r ≤ (k + 1)i

So Tr−2,l = (k + 1)r−2, with 3. this gives

Tr,r = 4(k + 1)r−2

As claimed in the theorem. We just have to verify the success probability, the
error δ(k+1)r−2

comes up as follows: by the first claim, we can compute E(1, .)
with probability δ. For E(j, .) (1 < j ≤ r − 1) we need k + 1 invocations of
E(j − 1, .), thus the error exponentiates with k + 1. For j = r − 1 and j = r no
extra error is introduced. �

36 Y. Dodis and K. Pietrzak

4 Leakage-Resilient PRPs

Theorem 3 below states that an r round Feistel network, instantiated with L-
resilient PRFs, is a L′-resilient super PRP. Here L′ contains all leakage functions
which for every round round i ∈ [r] leak gi(Ki, Ri) where gi ∈ L is an admissi-
ble leakage function for the leakage-resilient PRF used in the round functions.
Moreover the round function inputs Ri are leaked entirely. Thus, if the PRF is
NALR secure, so is the super PRP. The number of queries a distinguisher can
make is exponential in r, thus for super-logarithmic r we get security against
any polynomial distinguisher.

Theorem 3. An r round Feistel network instantiated with NARL secure PRFs
is a NARL secure super PRP for q-query distinguishers satisfying q ≤ 1.38r/2−1.

More precisely, let F : Σk × Σn → Σn be a (εprf , sprf , q)-secure L-resilient
PRF and Ψr = Ψ [f1, . . . , fr] denote an r round Feistel network instantiated with
fi = F(Ki, .). Then Ψr (whose key is K def= {K1, . . . ,Kr}) is a (ε, s, q) L′-resilient
super-PRP for

q ≤ 1.38r/2−1 s = sprf − |F | · q · r ε = (2 + q · r) · εprf +
q6r6

5! · 2n
+
q2

2n

Where L′ contains, for every g1, . . . , gr ∈ L, the function g′ defined as

g′(K,X) = {g1(K1, R1), . . . , gr(Kr, Rr), R0, . . . , Rr+1}

with (R0, . . . , Rr+1)← μ(Ψr, X).

We will prove this theorem using a combinatorial lemma from [12]. Consider
an adversary A making q queries (forward or inverse) to Ψr = Ψ [f1, . . . , fr].
Let R[i, j] denote the input to the jth round function on the ith query. We say
R[i, j + 1] (resp. R[i, j − 1]) is “freshly generated” if the ith query is a forward
(resp. inverse) query where R[i, j] is fresh in the sense that R[i, j] �= R[k, j] for all
k < j (and thus fj has not been invoked on R[i, j] before). We say that for this
sequence of queries the 5-XOR condition holds, if some freshly generated value
can be expressed as the bitwise XOR of 5 previously computed round function
inputs. In [12] the following Lemma is proven

Lemma 1 (Lemma 4.1 from [12]). Let Ψr be any r round Feistel network.
For any s ≤ r/2, if after making q ≤ 1.38s/2 forward/inverse queries to Ψr the
5-XOR condition does not hold, then there is no collision on the input to the jth
round function for any j ∈ [s, r − s].

Next we show that it is hard to provoke the 5-XOR condition in Ψr.

Lemma 2. Assume an adversary A of size s can satisfy the 5-XOR condi-
tion with probability ε making q queries to Ψr(K, .) as in Theorem 3 (with each
query X also getting the leakage g′(K,X) for some g′ ∈ L′.) Then F is not a
(sprf , εprf , q)-secure L-resilient PRF where sprf = s+|F |·q ·r and εprf = ε

q·r− q5r5

5!·2n .

Leakage-Resilient Pseudorandom Functions 37

Proof. We define an adversary A′ (which will use A as a black-box) against the
L-resilience of F. As in Definition 2, A′ has access to Fg(K, .) (Where g ∈ L and
Fg(K,X) def= [F(K,X), g(K,X)].)12 and O(.), and has to guess whether O(.) is
a random function or F(K, .).
A′ first guesses a random query i and round j (1 ≤ i ≤ q, 1 ≤ j ≤ r). Then it

simulates an attack of A on Ψr, where for the first i queries it uses its first oracle
Fg(K, .) as the function for the jth round, and samples the round keys for the
other r − 1 rounds at random.

On the ith query, if the input to the jth round function is not fresh or the
5-XOR conditions already holds, A′ outputs 0 and stops. Otherwise it uses its
second oracle O(.) to compute the output, which gives a “freshly generated”
value R. If this value can be expressed as the XOR of 5 previous round values,
A′ outputs 1 and 0 otherwise.

Assume O(.) is a uniformly random function, then the probability that A′

outputs 1 is at most q5r5/(5! ·2n) as the output of O(.) is uniformly random, and
there are at most q5r5/5! possible values (i.e. each subset of 5 queries specifies
one possibility) which will trigger the 5-XOR condition.

Now assume the other case, where O(.) is F(K, .). If A will provoke the 5-
XOR condition (which holds with prob. ε), and A′ guessed which fresh query
will satisfy this condition for the first time (with happens with prob 1/(q · r)),
then A′ will output 1. Thus in this case A′ outputs 1 with prob. ε/(q · r).

By definition, the gap ε/q · r − q5r5/(5! · 2n) between those two probabilities
is A′ advantage in breaking the L-resilience of F. �

Proof (of Theorem 3). Consider an adversaryA of size s against the L′-resilience
of Ψr as specified in Definition 2. This A has access to two oracles, the first
being Ψg′

r (K, .) : X → [Ψr(K,X), g′(K,X)] and the second being either Ψr(K, .)
or a uniformly random permutation Pn(.) (we call this the real and random
experiment). By Lemma 2, in the real experiment the inputs to the functions in
round w

def= �r/2� and w+1 will be distinct with probability at least 1− ε′ where
ε′ = q ·r ·εprf +q6r6/(5!·2n). Conditioned on this, the output of the right oracle in
the real experiment is pseudorandom and thus cannot be distinguished from the
output of the right oracle Pn(.) in the random experiment but with probability
2 · εprf + q2/2n, here the 2εprf accounts for the output only being pseudorandom,
and the q2/2n accounts for the fact that even if those values were uniform, the
distribution would still be slightly off from what the oracle Pn in the random
experiment outputs (we omit the details here.) Thus, A cannot distinguish the
two experiments better than with probability ε′ + 2 · εprf + q2/2n. �

12 The following reduction also works for the original notion of leakage-resilience where
the leakage-function can be adaptively chosen. For this one must consider the oracle
FL (instead Fg) defined as FL(K, X, g) def= [F(K, X), g(K, X)] (where g ∈ L). Thus,
although our current PRF constructions only give us “non-adaptive-leakage” sPRPs,
future advances in leakage-resilient PRFs would immediately translate to stronger
leakage-resilient sPRPs.

38 Y. Dodis and K. Pietrzak

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009)

3. Barak, B., Shaltiel, R., Wigderson, A.: Computational analogues of entropy. In:
RANDOM-APPROX, pp. 200–215 (2003)

4. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability (or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(2010)

5. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Cryptography resilient to
continual memory leakage. Cryptology ePrint Archive, Report 2010/278 (2010),
http://eprint.iacr.org/

6. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

7. Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
1–20. Springer, Heidelberg (2008)

8. Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in
the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 225–244. Springer, Heidelberg (2006)

9. Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Public-
key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)

10. Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. Cryptology ePrint Archive, Report 2010/196 (2010),
http://eprint.iacr.org/

11. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC,
pp. 621–630 (2009)

12. Dodis, Y., Puniya, P.: Feistel networks made public, and applications. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 534–554. Springer, Heidelberg
(2007)

13. Dodis, Y., Sahai, A., Smith, A.: On perfect and adaptive security in exposure-
resilient cryptography. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 301–324. Springer, Heidelberg (2001)

14. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg
(2006)

15. Dziembowski, S., Maurer, U.M.: Tight security proofs for the bounded-storage
model. In: 34th ACM STOC, pp. 341–350. ACM Press, New York (2002)

16. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: FOCS, pp.
227–237 (2007)

17. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th FOCS, pp.
293–302. IEEE Computer Society Press, Los Alamitos (2008)

http://eprint.iacr.org/
http://eprint.iacr.org/

Leakage-Resilient Pseudorandom Functions 39

18. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: The computationally-bounded and noisy cases. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010)

19. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg
(2010)

20. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

21. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Jour-
nal of the ACM 33, 792–807 (1986)

22. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot
attacks on encryption keys. In: USENIX Security Symposium, pp. 45–60 (2008)

23. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

24. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keeping
secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308–327. Springer, Heidelberg (2006)

25. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

26. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

27. Kiltz, E., Pietrzak, K.: How to secure elgamal against side-channel attacks (2009)
(manuscript)

28. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

29. Kocher, P.C.: Design and validation strategies for obtaining assurance in coun-
termeasures to power analysis and related attacks. In: Proceedings of the NIST
Physical Security Workshop (2005)

30. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

31. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM Journal on Computing 17(2) (1988)

32. Maurer, U.M.: A provably-secure strongly-randomized cipher. In: Damg̊ard, I.B.
(ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 361–373. Springer, Heidelberg
(1991)

33. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)

34. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

35. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg
(2004)

36. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

40 Y. Dodis and K. Pietrzak

37. European Network of Excellence (ECRYPT). The side channel cryptanalysis
lounge, http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html

38. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2010)

39. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (ema): Measures and
counter-measures for smart cards. In: E-smart, pp. 200–210 (2001)

40. Reingold, O., Trevisan, L., Tulsiani, M., Vadhan, S.P.: Dense subsets of pseudo-
random sets. In: FOCS, pp. 76–85 (2008)

41. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.:
Leakage resilient cryptography in practice. Cryptology ePrint Archive, Report
2009/341 (2009), http://eprint.iacr.org/

42. Vadhan, S.P.: Constructing locally computable extractors and cryptosystems in
the bounded-storage model. Journal of Cryptology 17(1), 43–77 (2004)

A Technical Lemmata

Lemma 3 ([16]). Let A0, B0 be independent and φ1, φ2, . . . be any sequence of
functions. Let A1, A2, . . ., B1, B2, . . . and V1, V2, . . . be defined as

((Ai+1, Vi+1), Bi+1) := (φi+1(Ai, V1, . . . , Vi), Bi) if i is even
(Ai+1, (Vi+1, Bi+1)) := (Ai, φi+1(Bi, V1, . . . , Vi)) otherwise

Then Bi → {V1, . . . , Vi} → Ai (and Ai → {V1, . . . , Vi} → Bi) is a Markov chain
(or equivalently, Ai and Bi are independent given the V1, . . . , Vi)

Lemma 4 ([38]). For any α > 0 and t ∈ N: If F : {0, 1}κ × {0, 1}n → {0, 1}m
is a (εprf , sprf , qprf)-secure wPRF (for uniform keys), then it is a (ε′prf , s

′
prf , q

′
prf)-

secure wPRF even if the keys are only sampled from a distribution with min-
entropy κ− α with

qprf ≥ q′prf · t sprf ≥ s′prf · t εprf ≤ ε′prf/2
α+1 − q2prf

2n+1 − 2 · exp

(
− t · ε

′2
prf

8

)

Lemma 5 ([38]). Let β > 0, then if F : {0, 1}κ × {0, 1}n → {0, 1}m is a
(εprf , sprf , 1)-secure wPRF (for uniform inputs), it’s also a (ε′prf , s

′
prf , 1)-secure

wPRF if the input is chosen from a distribution with min-entropy m− β, where
for any t ∈ N

sprf ≥ s′prf · 2t εprf ≤ ε′prf/2
β+1 − 2 · exp

(
−2 · t · ε′2prf

64

)
Lemma 6 ([38]). Let F : {0, 1}κ × {0, 1}n → {0, 1}m be a (εprf , sprf , n/ε

2
prf)-

secure wPRF. Let K ∈ {0, 1}κ and X ∈ {0, 1}n be independent where H∞(K) =
κ − 2λ and H∞(X) = n − 2λ and let f : {0, 1}κ+n → {0, 1}λ be any leakage
function, then for λ ≤ log(ε−1

prf)/6

Pr
X,Y

[HHILL
ε′,s′ (F(K,X)|X, f(K,X)) ≥ m− 2λ] ≥ 1− 2−λ/2+1

with ε′ = 2−λ/2+2 and s′ = sprf/2λ+3(n + κ)3.

http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://eprint.iacr.org/

Protecting Cryptographic Keys against
Continual Leakage

Ali Juma and Yevgeniy Vahlis�

Department of Computer Science, University of Toronto
{ajuma,evahlis}@cs.toronto.edu

Abstract. Side-channel attacks have often proven to have a devastating
effect on the security of cryptographic schemes. In this paper, we address
the problem of storing cryptographic keys and computing on them in a
manner that preserves security even when the adversary is able to obtain
information leakage during the computation on the key.

Using any fully homomorphic encryption with re-randomizable cipher-
texts, we show how to encapsulate a key and repeatedly evaluate arbi-
trary functions on it so that no adversary can gain any useful information
from a large class of side-channel attacks. We work in the model of Mi-
cali and Reyzin, assuming that only the active part of memory during
computation leaks information. Our construction makes use of a single
“leak-free” hardware token that samples from a distribution that does
not depend on the protected key or the function that is evaluated on it.

Our construction is the first general compiler to achieve resilience
against polytime leakage functions without performing any leak-free com-
putation on the protected key. Furthermore, the amount of computation
our construction must perform does not grow with the amount of leak-
age the adversary is able to obtain; instead, it suffices to make a stronger
assumption about the security of the fully homomorphic encryption.

1 Introduction

Leakage-resilient cryptographic constructions – constructions that remain secure
even when internal state information leaks to the adversary – have received much
recent interest. Traditionally, security models have treated such internal state
information as perfectly hidden from the adversary. However, the development
of various side-channel attacks has made it clear that this traditional view is
inconsistent with physical reality. In a side-channel attack, an adversary obtains
information about the internal state of a device by measuring such things as
power consumption, computation time, and emitted radiation.

Cryptographic primitives with long term keys, such as encryption and signa-
ture schemes, are often targeted by such attacks. An adversary observing infor-
mation leakage from computation on the key can potentially accumulate enough
data over time to compromise the security of the scheme. Consequently, storing
� Supported by the Natural Sciences and Engineering Research Council of Canada

(NSERC).

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 41–58, 2010.
c© International Association for Cryptologic Research 2010

42 A. Juma and Y. Vahlis

keys and computing on them in adversarial environments has been an important
goal both in theory and practice. Indeed, many operating systems provide cryp-
tographic facilities that allow programs to access keys only through designated
functions, such as signing and encrypting. Smart cards provide a similar inter-
face in hardware. In both cases, the goal is to limit any adversary to interacting
with the scheme through designated channels. Nevertheless, information leakage
through physical side-channels is often sufficient to overcome such barriers and
break the scheme.

In this paper, we propose an approach for protecting cryptographic keys and
computing on them repeatedly in a manner that preserves the secrecy of the key
even when information about the state of the device continuously leaks to the
adversary. Towards this goal, we define a new primitive called a key proxy, which
encapsulates a key K and provides a structured way of evaluating arbitrary func-
tions on K. This allows, for example, the conversion of any pseudorandom func-
tion, signature scheme, or public-key encryption scheme into a leakage-resilient
variant of itself. Our construction withstands a bounded amount of leakage per
invocation (where an invocation occurs each time a function is evaluated on
K), but the total amount of leakage is unbounded. Previously, only stream ci-
phers, signature schemes, and identification scheme have been made resilient to
an unbounded total amount of leakage.

For our construction, we make use of the recently achieved fully homomorphic
encryption [12,4], and an additional “leak-free” component. We describe two
ways of instantiating this component, and in both cases the component samples
from a globally fixed distribution that does not depend on K.

Leakage-resilient cryptography. The problem of executing code in an adversar-
ial environment has always been on the minds of cryptographers. Still, most
cryptographic schemes are designed assuming that the hardware on which they
will be implemented is a black box device, and information is accessible to the
adversary only through external communication channels. Goldreich and Ostro-
vsky [13] consider the problem of protecting software from malicious users, and
define the concept of an oblivious RAM – a CPU that is capable of evaluat-
ing encrypted programs using a constant amount of leak-free memory and an
unbounded amount of memory that is fully visible to the adversary. The obliv-
ious RAM is initialized with a secret key, which is used to decrypt encrypted
instructions, execute them, and re-encrypt the output. The encrypted state of
the program is stored in the clear. Oblivious RAMs provide the strong security
guarantee that even if an adversary can keep track of the memory locations ac-
cessed by the computation, she is still unable to gain any additional information
about the program over what would normally be revealed through black box
access.

Since the work of Goldreich and Ostrovsky, the focus in leakage-resilient cryp-
tography has been steadily shifting towards allowing the adversary ever-growing
freedom in observing the computation of cryptographic primitives. Ishai, Sahai,
and Wagner [17] introduce “private circuits” – a generic compiler that transforms
any circuit into one that is resilient to probing attacks. In a probing attack, the

Protecting Cryptographic Keys against Continual Leakage 43

adversary selects a subset (of some fixed size) of the wires of the circuit and
obtains the values of these wires. Goldwasser, Kalai, and Rothblum [15] define
one-time programs – programs that come with small secure hardware tokens,
and can be executed a bounded number of times without revealing anything but
the output, even if the adversary observes the entire computation. The secure
tokens are the hardware equivalent of oblivious transfer – each token stores two
keys and reveals one of them upon request, while the second key is erased.

Micali and Reyzin [20] outline a framework for defining and analyzing cryp-
tographic security against adversaries that perform side channel attacks. They
introduce an axiom: only computation leaks information. That is, at any point
during the execution of an algorithm, only the part of memory that is actively
computed on may leak information. This allows for convenient modeling of leak-
age: an algorithm is described as a sequence of procedures and the set of variables
that is accessed by the procedure. The adversary may then obtain leakage sep-
arately from the contents of each set of variables as they are accessed during
the execution of the algorithm. The only-computation-leaks model (OCL) has
since been used to obtain stream ciphers [9,21] and signature schemes [10] that
remain secure even if the adversary obtains leakage from the active state each
time the primitive is used, and the total amount of leakage is unbounded. We
refer to such leakage as “continuous leakage” for the rest of the paper.

Faust et al [11] propose an alternative restriction on side-channel adversaries:
restricting the computational power of the leakage function but allowing leakage
on the entire state. Faust et al describe a circuit transformation that immunizes
any circuit against leakage functions that can be described as AC0 circuits1. The
transformed circuit can leak information from the entire set of wires at each
invocation, and makes use of a polynomial number of leak-free components that
generate samples from a fixed distribution that does not depend on the compu-
tation of the circuit. We make use of a similar leak-free component, although the
distribution generated by our component is significantly more complex than the
one in [11] due to the fact that we must defend against leakage functions that
are not restricted to circuits of small depth.

Very recently, specific leakage-resilient cryptographic primitives have been
constructed under even more general continuous leakage models. Dodis, Har-
alambiev, Lopez-Alt, and Wichs [7] have constructed several primitives, includ-
ing signature schemes and authenticated key agreement protocols, that remain
secure even if the entire state (and not just the active part) leaks information
continuously. The public key of the scheme remains fixed throughout the life-
time of the system. Brakerski, Kalai, Katz, and Vaikuntanathan [3] construct a
public-key encryption scheme that allows continuous leakage on the entire state,
and does not require a leak-free key update procedure. [3] also construct sig-
nature schemes and identity based encryption under slightly different leakage
models. As in our work, both above works provide protection against leakage
that can be described by arbitrary polynomial-time computable functions with
sufficiently short output.

1 AC0 circuits have constant depth and unbounded fan-in.

44 A. Juma and Y. Vahlis

In addition to the recent work on cryptographic constructions that are re-
silient to continuous leakage, there has been significant progress [1,2,22,19] on
obtaining resilience to “memory attacks” – side channel attacks where the ad-
versary obtains a bounded amount of information about the memory contents
of the device throughout its lifetime. Perhaps due to the bounded nature of this
type of leakage, constructions secure against memory attacks tend to be quite
efficient and do not require the algorithm to maintain a state.

Concurrent work of Goldwasser and Rothblum. In a concurrent paper [16], Gold-
wasser and Rothblum construct a general compiler that achieves resilience to
polynomial time leakage. Their construction relies on a linear number of leak-
free components, while ours relies on a single component. On the other hand,
they rely on the standard Decisional Diffie Hellman assumption, whereas we rely
on fully homomorphic encryption.

On testable leak-free components. When constructing leakage-resilient crypto-
graphic primitives, one has to take care in the nature and amount of components
that are assumed not to leak any information. It is preferable, but may not al-
ways be possible, to avoid such components altogether. For example, one can
protect any functionality against leakage given an arbitrary number of leak-free
gates that can decrypt a ciphertext, perform a logical operation on the plain-
text, and re-encrypt the result. Such a component can be used to evaluate the
circuit F on K gate by gate, keeping all intermediate values encrypted, and
thereby rendering leakage useless. However, building such leak-free components
may be as difficult as constructing a leak-free computer and forgetting all about
side-channels. Consequently, the focus of research in this area has always been
to reduce the power and amount of computation that is assumed to be a-priori
insulated from side-channel attacks.

Our construction uses a leak-free component that produces random encryp-
tions of some fixed message (in our case – 0̄) under a given public key in the
fully homomorphic encryption scheme. More specifically, the leak-free compo-
nent we use is a randomized component that, given pub, produces two random
encryptions of 0̄. Consequently, the computation performed by this component
does not depend on any user or adversarially supplied inputs, and in particular
does not depend on the key K or the function F that is evaluated on K. We call
such a component testable because it can be accurately simulated in a controlled
environment – all one has to do is feed the component random bits and randomly
generated public keys and observe its behavior. More generally, we say that a
component is testable if its inputs come from a globally fixed distribution that
is independent from other inputs to the system.

We propose testability as a rule of thumb for secure hardware components
in leakage resilient cryptography. All hardware components leak at least some
information such as timing (every computation takes time) and power consump-
tion. Therefore, the best we can hope for is that the information leaked by the
components that we assume to be leak-free is useless to the adversary. Testabil-
ity gives us the ability to observe the leakage from the secure component – as it

Protecting Cryptographic Keys against Continual Leakage 45

will happen during actual usage – and estimate whether the component is safe
to use. We note that the components used by [11] and [16] are testable.

In contrast to previous general compilers that achieve leakage resilience, we
use only one leak-free component, regardless of the size of the circuit that is
evaluated on K, or the amount of information leakage per invocation. Thus, our
construction does not require the number of leak-free components to grow with
the amount of leakage.

Our contributions. We study the problem of computing on a cryptographic key
in an environment that leaks information each time a computation is performed.
We show that in the OCL model with a single leak-free randomized token, a
cryptographic key can be protected in a manner that allows repeated compu-
tation on it while making sure that the adversary gains no information from
side-channel information leakage.

More precisely, we propose a tool which we call a key proxy – a stateful
cryptographic primitive that is initialized once with a key K, and then given
any circuit F computes F (K). Any leakage obtained by an adversary from the
computation of the key proxy can be computed given just F and F (K). Using
any fully homomorphic encryption (FHE) we construct a key proxy with the
following properties:

Resilience to adaptive polynomial time leakage. During each invocation of the
key proxy, we allow the adversary to adaptively select leakage functions that are
modeled as arbitrary circuits with a sufficiently short output. The exact amount
of round leakage that our construction can withstand depends on the level of
security of the underlying FHE. Assuming the most basic security for the FHE
(i.e. against polynomial time adversaries) permits security against O(log n) bits
of leakage each time a function is evaluated on K. More generally, given a 2l(n)-
secure FHE, our construction can withstand roughly l(n) bits of leakage per
invocation.

Independent complexity. The starting point of leakage-resilient cryptography
is that computation leaks information. It does not require a large leap of faith to
suspect that more computation leaks more information. In fact, to the best of
our knowledge, this is indeed the case for many side-channel attacks in practice.
The amount of computation performed by our key proxy construction does not
depend on the amount of leakage that the adversary obtains per invocation.
Instead, to get resilience to larger amounts of leakage, a stronger assumption
about the security of the underlying fully homomorphic encryption is used. This
allows us to avoid a circular dependency where, in order to obtain resilience to
larger amounts of leakage one must build a more complex device, which in turn
leaks more information.

One-time programs with efficient refresh. The one-time programs of [15] can
be implemented without leak-free one-time memory tokens by storing the con-
tents of the tokens in memory, and then accessing only the needed values dur-
ing computation. The one-time programs can then be refreshed occasionally
in a secure environment to allow continuous use. Currently, the refresh proce-
dure performs as much computation as the evaluation of the program that it

46 A. Juma and Y. Vahlis

protects. If one is willing to trade resilience against complete exposure of the
active memory (achieved by [15]) for resilience length bounded leakage then by
pre-computing the outputs of the leak-free tokens in our construction and stor-
ing them in memory we obtain one-time programs with an update procedure of
fixed complexity that does not depend on the protected program.

Our approach. The underlying building block for our construction is fully ho-
momorphic encryption. An FHE is a public-key encryption scheme that allows
computation on encrypted data. That is, given a ciphertext with corresponding
plaintext M , the public key, and a circuit F , there is an efficient algorithm that
computes an encryption of F (M).

For our construction, we partition the state of the key proxy into two parts, A
and B (or equivalently two devices). Given a key K, the key proxy is initialized
as follows. An FHE key pair (pri, pub) is generated and is stored in memory
A. Then, a random encryption C of K under pub is computed and is stored in
memory B. To evaluate a function F (described as a circuit) on K, the following
actions are performed. First, a new pair of keys (pri′, pub′) is generated and
stored in memory A, and an encryption Cpri = Encpub′(pri) of the old private
key is written to a public channel. Then, computing on memory B and the public
channel, the following two ciphertexts are generated homomorphically from C
and Cpri: an encryption Cres of F (K) and a fresh encryption Ckey of K. Note
that both Cres and Ckey are encryptions under the new public key pub′. The
ciphertext Cres is then sent back to memory A where it is decrypted, and F (K)
is returned as the output of the program. This basic approach is described in
Figure 1.

It is clear that without leakage, the above construction is secure. Of course,
the main difficulty is showing that leakage does not provide the adversary with
any useful information. Below we provide an informal description of two main
technical issues that arise.

Leakage on private keys and ciphertexts. It is easy to see that without refreshing
the encryption C of K, a leakage adversary will eventually learn all of K by
gradually leaking all of C and pri and then simply decrypting. Therefore, it is
clear that an update procedure is necessary. The algorithm described in Figure 1
performs such an update: After each invocation, memory A contains a freshly
generated private key and memory B contains an encryption of K under the
corresponding public key. However, we cannot directly claim that this refreshing
procedure provides the necessary level of security. The main difficulty stems
from the fact that the adversary obtains leakage on the private key in memory
A both before and after she obtains leakage on the encryption C of K under the
corresponding public key. In particular, if the adversary could obtain the entire
ciphertext C, she would be able to hardcode it into the second leakage function
that is applied to the private key. The leakage function would then decrypt C
and leak bits of information about K.

This requires us to make use of the fact that the adversary obtains only a
bounded amount of leakage on the ciphertext C, and never sees it completely.

Protecting Cryptographic Keys against Continual Leakage 47

Memory A Memory B

Contents of memory: prii
Contents of memory: C = Encpubi

(K),
Input: circuit F

(prii+1, pubi+1) = KeyGen(1n)
Encrypt Cpri = Encpubi+1(prii)
Set memory to prii+1

pubi+1,Cpri−−−−−−−→
Homomorphically compute using C, Cpri:
Cres = Encpubi+1(F (K))
and Ckey = Encpubi+1(K)
Set memory to Ckey

Cres←−−−−−−
Compute Y = Decprii+1(Cres)
Return Y

Fig. 1. Informal description of the construction

We argue that any leakage function that provides enough information about the
ciphertext in order to later learn something about the plaintext given the private
key, essentially acts as a distinguisher and can be used to break the semantic
security of the FHE.

Randomizable FHE. Ciphertexts produced by fully homomorphic encryption
schemes may carry information about the homomorphic computation that was
performed to obtain them. For instance, it is possible that the ciphertext Cres

is actually first decrypted to a string of the form (F (K),K) and then the de-
cryption algorithm ignores the second element in the pair. In this case, the
adversarial leakage function is clearly not forced to follow the honest decryption
algorithm and can make use of the intermediate values of the decryption process
to leak information about K. Similarly, the ciphertext Ckey may contain infor-
mation about the function F that was evaluated on K. For some applications,
such as encryption where F encodes in plain text the message to be encrypted,
this is undesirable since the adversary may use future leakage functions to gain
information about the message.

Fortunately, the homomorphic encryption schemes of Gentry [12] and of van
Dijk et al [4] have the following additional property: given any encryption C
of a message M and a random encryption C′ of M ′, the ciphertext C + C′,
where the addition is performed over the appropriate group of ciphertexts, is
a random encryption of M + M ′. Consequently, to address the issue described
above, we randomize both Cres and Ckey by adding random encryptions of zero
to both ciphertexts. In order to make use of the property described above, the
encryptions of zero need to be generated without leakage; otherwise, the leaked
information maintains a correlation between the randomized ciphertext and the
history of the computation that was used to produce the original ciphertext.

48 A. Juma and Y. Vahlis

We note that in the FHE schemes of [12] and [4], C′ has to be generated in a
special way in order to have enough noise to annihilate any dependence between
C+C′ and the computation history of C. For simplicity of exposition we ignore
this distinction, and instead remark that the randomization procedures of both
FHE schemes satisfy the properties needed for our construction.

Function privacy in key proxies. In the above description of key proxies, we re-
quire that the leakage obtained by the adversary can be simulated given just F
and F (K). However, in some applications, such as private-key encryption, the
function F itself also needs to be hidden. In the case of encryption, F contains
the message M , so an adversary can break semantic security simply by leak-
ing information about F , ignoring K completely. This raises a subtle modeling
issue: the message M must exist somewhere as plaintext, and if the adversary
obtains leakage on that computation, she will trivially break semantic security.
Therefore, irrespective of the definition of leakage-resilient key proxies, seman-
tic security cannot be achieved when every invocation of every algorithm leaks
information.

There are several ways in which this issue can be addressed. One solution
is to weaken the definition of semantic security by requiring that the plain-
texts have high pseudo-entropy2 given the leakage obtained by the adversary.
We avoid this approach both because it leads to complex definitions, and be-
cause it does not seem to have a clear advantage over the following much cleaner
solution. Instead, we allow the adversary to obtain leakage both before and af-
ter the challenge ciphertext is generated, but not on the computation of the
challenge ciphertext itself. This essentially means that while leakage can com-
promise individual encryptions, the long-term key remains safe. Under this re-
striction, our definition of key proxies provides the needed level of security.
This approach is consistent with previous definitions of leakage-resilient seman-
tic security (see e.g. [9,22,8,6]), and allows us to avoid additional complexity
in our definition. This is desirable especially given the fact that for some ap-
plications of key proxies, such as signature schemes, function privacy is not
necessary.

We mention briefly that another option is to define a leakage model for private-
key encryption which allows the encryption algorithm to perform some leak-free
pre-processing that is independent of the key. Then, the encryptor can generate
an encrypted version of the circuit F , which can be safely given to the adversary
without compromising security.

Organization. In Section 3, we describe the computational and leakage models
that we use, and define a leakage-resilient key proxy. In Section 4, we provide
our main construction, and analyze its security. In Section 5, we describe sev-
eral variants of our model and construction, and provide several applications of
leakage-resilient key proxies.

2 A distribution has pseudo-entropy ≥ k if it is computationally indistinguishable from
some distribution with min-entropy ≥ k.

Protecting Cryptographic Keys against Continual Leakage 49

2 Preliminaries

Notation. We write PPT to denote Probabilistic Polynomial Time. When we
wish to fix the random bits of a PPT algorithm M to a particular value, we
write M(x; r) to denote running M on input x and randomness r. We write
timen(M) to denote the running time of algorithm M on security parameter n.
We use x ∈R S to denote the fact that x is sampled according to a distribution
S. Similarly, when describing an algorithm we may write x←R S to denote the
action of sampling an element from S and storing it in a variable x.

It is common in cryptography to describe probabilistic experiments that test
the ability of an adversary to break a primitive. Given such an experiment Exp,
and an adversary A, we write A � Exp to denote the random variable repre-
senting outcome of Exp when run with the adversary A.

2.1 Fully Homomorphic Encryption

The main tool in our construction is a fully homomorphic public-key encryption
(FHE) system. Intuitively, such a system has the usual semantic security prop-
erties of a public-key encryption (PKE) scheme, but in addition, can perform
arbitrary computation on encrypted data. The outcome of this computation is
of course also encrypted. The first construction of FHE was given by Gentry in
[12], and is based on ideal lattices. Recently another construction was proposed
by van Dijk et al [4].

We do not go into the details of the FHE constructions, but rather present
the result with respect to an arbitrary FHE with an additional randomization
property, which is satisfied by both constructions.

Definition 1. Let FHE = (KeyGen,Enc,Dec,EncEval,Add, Subtract) be a tuple
of PPT algorithms, and let l : N→ N. We say that HPKE is an l(n)-secure fully
homomorphic public key encryption scheme if the following conditions hold:

1. The triple (KeyGen,Enc,Dec) is a public-key encryption scheme. We assume
without loss of generality that the private key is always the random bits of
KeyGen.

2. The algorithm EncEval(pub,C, F), where pub is a public key, C =(C1, . . . , Cn)
is a vector of ciphertexts with plaintexts (m1, . . . ,mn), and F is a circuit on n
inputs, outputs a string C′ which is a valid encryption of F (m1, . . . ,mn).

3. The algorithms Add and Subtract have the following properties:
(a) For all pri, for pub = KeyGen(pri), for all messages M1 and M2, for a

random encryption C1 of M1 under pub and for every encryption C2 of
M2 under pub, Add(pub, C1, C2) is distributed identically to Encpub(M1+
M2), and Subtract(pub, C1, C2) is distributed identically to Encpub(M1−
M2).

(b) For all ciphertexts C1 and C2, Add(pub, Subtract(pub, C2, C1), C1) = C2.
That is, subtracting a ciphertext is the inverse of adding it.

4. For every probabilistic adversary A running in time at most l(n), the advan-
tage of A in breaking the semantic security of FHE is at most 1/l(n).

50 A. Juma and Y. Vahlis

Remark 1. The algorithms Add and Subtract may be implemented as addition
and subtraction over the space of ciphertexts, though we do not require this. In
some fully homomorphic encryption schemes, Add and Subtract may not achieve
the exact requirement of step 3 above. Specifically, Add and Subtract may pro-
duce an encryption that cannot be computed on homomorphically using EncEval.
We note that this is not a problem for our construction since we only use EncEval
on encryptions of pri, which are ephemeral and never the output of Add or
Subtract. We avoid formalizing this issue to improve exposition.

3 Models and Definitions

In this section, we present the definition of a leakage-resilient key proxy (LRKP).
We start with a syntactic description of the primitive, and then describe the
security experiment and the leakage model.

Stateful Algorithms. Due to the continuous nature of side-channel attacks, it is
necessary for an LRKP to maintain a state in order to achieve security. We model
stateful algorithms by considering algorithms with a special input and output
structure. A stateful randomized algorithm takes as input a triple (x;R,S) where
x is the query to the algorithm, R is a random string, and S is a state (when R
is clear from context we omit it, and denote the input by (x;S)). It then outputs
(y, Snew) where y is the reply to the query, and Snew is the new state.

Definition 2. A key proxy is a pair KP = (KPInit,KPEval), where KPInit
is an algorithm, and KPEval is a stateful algorithm. For fixed c ∈ N and for
all n ∈ N, K ∈ {0, 1}nc

, KPInit(1n,K) outputs an initial state S. For every
circuit F : {0, 1}|K| → {0, 1}n, and random coins R, the stateful algorithm
KPEval(1n, F ;R,S) outputs F (K).

We now describe the security experiment of LRKPs. This experiment is param-
eterized by the leakage structure on a single invocation of the KPEval algorithm.
However, for clarity we start with the description of the general experiment, and
then provide details on the leakage that occurs at each invocation. We model
the the leakage resilience of a key proxy by requiring the leaked information to
be simulatable. That is, we require the existence of a simulator Sim that, given
F and F (K), can simulate the leakage and messages obtained by the adversary
during the computation of KPEval(1n, F ;R,S). No efficient adversary should be
able to tell whether she is getting actual leakage and messages, or interacting
with a simulator. We now describe the real and ideal security experiments:

Let KP = (KPInit,KPEval) be a key proxy. Let A and Sim be PPT algorithms,
n ∈ N, and consider the following two experiments:

ExpReal (Real Interaction). The interaction of the adversary with the key
proxy proceeds as follows:
1. A key K is chosen by the adversary, and KPInit(1n,K) is used to generate

an initial state S.

Protecting Cryptographic Keys against Continual Leakage 51

2. The adversary repeats the following steps an arbitrary number of times:
(a) The adversary submits a circuit F , which is evaluated on K by

KPEval. During the computation, the adversary acts as a single
invocation leakage adversary (described below in Definition 5) for
KPEval.

(b) At the end of the computation of KPEval, the adversary is given
F (K).

3. After the adversary is done making queries, it outputs a bit b.
ExpIdeal (Ideal Interaction). The interaction of the adversary with simulated

leakage proceeds as follows:
1. The adversary submits a key K, which is not revealed to the simulator.
2. The adversary then repeats the following steps an arbitrary number of

times:
(a) The adversary submits a circuit F , and Sim is given F and F (K).

The adversary then acts as a single invocation leakage adversary
according to Definition 5, except that the leakage functions are sub-
mitted to the simulator, which returns simulated leakage values and
messages.

(b) Eventually the adversary stops submitting leakage functions, and is
given F (K).

3. After the adversary is done making queries, it outputs a bit b.

Definition 3. We say that KP is a Leakage-Resilient Key Proxy if for every
PPT A there exists a PPT S and a negligible function neg(·) such that

|Pr[(A � ExpReal) = 1]− Pr[(A � ExpIdeal) = 1]| ≤ neg(n)

The above definition describes the security of an LRKP relative to some unspec-
ified procedure which allows the adversary to obtain leakage during each invoca-
tion of KPEval. The exact procedure for a single-invocation leakage depends on
the leakage model and on the structure of the implementation of KPEval. Below
we formalize the structure of our solution, and describe the leakage obtained by
the adversary during a single invocation of KPEval.

Our construction of KPEval is described as a protocol between two parties
EvalA and EvalB that leak information separately, and where the messages be-
tween EvalA and EvalB are public. In this format, our construction requires two
flows between the parties: one from EvalA to EvalB and one from EvalB to EvalA.
The following definition formalizes this structure.

Definition 4. A 2-round split state key proxy KP = (KPInit,KPEval) is a
key proxy such that the state S is represented as a pair S = (MemA,MemB) ∈
({0, 1}nd

)2 for some fixed d ∈ N, and the algorithm KPEval is described as four
algorithms (LeakFree,EvalA1,EvalB,EvalA2), each running in time polynomial in
n, where

1. EvalA1 takes as input MemA, OutLFA, and randomness RandA, and outputs
an updated state MemA′ ∈ {0, 1}nd

and a message MAB to EvalB.

52 A. Juma and Y. Vahlis

2. LeakFree takes as input message MAB and randomness RandLF, and outputs
string OutLF.

3. EvalB takes as input MemB, randomness RandB, OutLF, the message MAB,
and a circuit F : {0, 1}|K| → {0, 1}n of arbitrary size. It then outputs an
updated state MemB′ ∈ {0, 1}nd

and a message MBA to EvalA.
4. EvalA2 takes as input MemA′, the message MBA and outputs an updated

state MemA′′ and the result F (K).

The output of KPEval is F (K), and the updated state is (MemA′′,MemB′).

Recall that our construction requires a leak-free component. This leak-free com-
ponent is modeled by algorithm LeakFree above. A crucial point here is that
LeakFree receives only randomness and a public message as input, and, in par-
ticular, receives neither F nor the saved state (MemA,MemB) as inputs; there-
fore, regardless of the actual construction, the above definition prevents LeakFree
from carrying out the evaluation of F on K, which would make the construction
trivial.

We are now ready to describe the leakage structure on a single invocation of
a 2-round split state key proxy. The leakage model we use, commonly known as
“only computation leaks information” (OCL), lets the adversary obtain leakage
only on the active part of memory during each computation.

Definition 5. Let l : N → N and let KP be a 2-round split state key proxy. A
single invocation leakage adversary in the only-computation-leaks model chooses
a circuit f1, then sees f1(MemA,RandA) and MAB, chooses circuit f2, then
sees f2(MemB,OutLF,RandB) and MBA, chooses a circuit f3, and finally sees
f3(MemA′). The adversary is l-bounded if for all n the range of f1, f2, f3 is
{0, 1}l(n).

Note that in the above definition, the leakage functions can compute any internal
values that appear during the computations of EvalA1, EvalB, and EvalA2. This
means, for example, that it is unnecessary to explicitly provide MAB to f1 or
MBA to f2.

History freeness. In Definition 3 we allow information about the functions Fi

that are evaluated on K to leak to the adversary. In particular, it is possible that
during some invocation j the adversary can obtain, through leakage, information
about some previously queried function Fi. In the introduction we mentioned
that leakage-resilient variants of some applications, such as private-key encryp-
tion, are defined to allow leakage both before and after the generation of the
challenge ciphertext, but not on the challenge itself. However, if the state of
LRKP keeps a history of some of the functions that were applied to K, then by
leaking on it after the challenge was computed, the adversary may be able to
break the semantic security of the encryption. We note that the above defini-
tion is sufficient to obtain security in the presence of what we call “lunch-time
leakage” attacks – where the adversary obtains leakage only before the challenge
ciphertext is generated, but not after.

Protecting Cryptographic Keys against Continual Leakage 53

To address the above issue, and allow full leakage in applications such as
encryption, we introduce an additional information theoretic property that re-
quires that the state of the LRKP is distributed identically after all sequences of
functions that are evaluated on K. This property is satisfied by our construction,
and prevents the above mentioned “history attack”.

Definition 6. An LRKP (KPInit,KPEval) is called history free if for all n ∈
N and all K ∈ {0, 1}poly(n), there exists a distribution D over the states of
the LRKP such that for all j ∈ N, all sequences of functions F1, . . . , Fj :
{0, 1}|K| → {0, 1}n, and all sequences of random tapes R0, . . . , Rj−1, the ran-
dom variable {Sj+1|S1, . . . , Sj} over Rj is distributed according to D, where S1 =
KPInit(1n,K;R0) and Si is the updated state after KPEval(1n, Fi−1;Ri, Si−1).

4 Leakage-Resilient Key Proxies from Homomorphic
Encryption

Given a fully homomorphic public-key encryption scheme FHE = (KeyGen, Enc,
Dec, EncEval, Add, Subtract) we construct a leakage-resilient 2-round split state
key proxy LRKP = (KPInit,KPEval).

KPInit(1n,K): The algorithm KPInit(1n,K) first runs KeyGen(1n) to obtain a
public-private key pair (pub1, pri1) for the FHE. It then generates a cipher-
text Ckey = Encpub1

(K) and assigns MemA ← pri1 and MemB ← Ckey. The
output is an initial state that consists of two parts (MemA,MemB).

KPEval(1n, F ; (MemA,MemB)): The algorithm KPEval consists of four subrou-
tines: 〈LeakFree,EvalA1,EvalB,EvalA2〉 that are used as follows: on input
circuit F first generate (OutLFA,OutLFB) ←R LeakFree(1n). Then, follow
the protocol described in Figure 2 by computing

(MAB,MemA′)←R EvalA1(MemA,OutLFA);
(MBA,MemB′)←R EvalB(MemB,OutLFB,MAB);
Y ← EvalA2(MemA′,MBA)

The final state after one evaluation of KPEval is (MemA′,MemB′), and the
output is Y .

We now describe the subroutines 〈LeakFree,EvalA1,EvalB,EvalA2〉 of KPEval:

LeakFree(pub): Parse randomness as (rLF1, rLF2), and compute

CR0 = Encpub(0̄; rLF1)
CR1 = Encpub(0̄; rLF2)
OutLF = (CR0, CR1)

and output OutLF.

54 A. Juma and Y. Vahlis

The subroutines EvalA1, EvalB, and EvalA2 are described in Figure 2 as a two
round two party protocol where EvalA1 and EvalA2 specify the actions of party
A and EvalB specifies the actions of party B. In the definition of EvalB we use
subroutines Evaluate and Refresh that are defined as follows:

Evaluate(F,C, pri): Compute and output F (Decpri(C))
Refresh(C, pri): Compute and output Decpri(C)

Party A Party B

Contents of MemA: prii
Randomness: prii+1, r

i
pri

Contents of MemB: C′
key,i = Encpubi

(K)
Randomness: ri

B1, ri
B2

Input: Fi

EvalA1:
pubi+1 = KeyGen(prii+1)
Ci

pri = Encpubi+1(prii; r
i
pri)

MemA← prii+1

pubi+1,Ci
pri−−−−−−−−−−−→

(CR0,i, CR1,i) = LeakFree(pubi+1)

EvalB:
Cres,i = EncEval(pubi+1, C

i
pri,

Evaluate(Fi, C
′
key,i, ·); ri

B1)
Ckey,i+1 = EncEval(pubi+1, C

i
pri,

Refresh(C′
key,i, ·); ri

B2)
C′

res,i = Add(pubi+1, CR0,i, Cres,i)
C′

key,i+1 = Add(pubi+1, CR1,i,
Ckey,i+1)

MemB← C′
key,i+1

C′
res,i←−−−−−−−

EvalA2:
Yi = Decprii+1(C

′
res,i)

Output Yi

Fig. 2. The algorithm KPEval in its ith invocation

The correctness of this construction follows in a straightforward manner from
the correctness of the underlying FHE. We also note that our construction is
history free according to Definition 6. This is due to the fact that the values
assigned to MemA and MemB at the end of KPEval are independent from the
function F . In particular, MemA is simply a random private key, and MemB
contains an encryption of K which was obtained by a homomorphic evaluation
of Refresh on the previous contents of MemB and an encryption of the previous
private key, neither of which depends on F .

Protecting Cryptographic Keys against Continual Leakage 55

The bulk of the analysis is in showing that our construction is in fact leakage-
resilient according to Definition 3, where during each invocation the leakage
structure on the computation of KPEval is given in Definition 5. We now state
our main theorem.

Theorem 1. Let LRKP be the 2-round split state key proxy described in the
above construction, and let l : N → N. If FHE is a 2O(l(n))-secure fully homo-
morphic encryption then LRKP is leakage-resilient against all O(l(n))-bounded
adversaries in the OCL model.

The theorem follows as a corollary from the following lemma:

Lemma 1. Consider the experimentExpReal instantiated using scheme LRKP .
Then, for every function ε(n) > 0, every d > 0, every l : N → N, and every l-
bounded PPT adversary Adv that makes nd queries and gets leakage according to
the only-computation-leaks model, there exists a PPT simulator S such that if

|Pr[(Adv � ExpReal) = 1]− Pr[(Adv � S) = 1]| ≥ ε(n)

for infinitely many n, then for every function ε′(n) > 0 there exists an adversary
Adv′ that runs in time

23l(n)+7

ε′(n)2

(
3l(n) + 4 + log

1
ε′(n)

)
· timen (LRKP ↔ Adv)

and breaks the semantic security of (KeyGen,Enc,Dec) with advantage

ε(n)
3 · 22l(n)(nd + 1)

− 2ε′(n)

for infinitely many n. Specifically, S runs in time timen(LRKP ↔ Adv).

4.1 Proof Approach for Lemma 1

Let Adv be a PPT adversary according to Definition 3 that makes nd func-
tion evaluation queries and gets leakage according to the only-computation-leaks
model described in Definition 5. We define a sequence of experiments where the
initial experiment is the real security experiment ExpReal, and the final experi-
ment is such that the leakage obtained by the adversary for each KPEval query
F can be simulated given only (F, F (K)). Specifically, the final experiment in-
volves instantiating our construction with key 0̄ instead of K. We show that
if Adv can distinguish the initial experiment and the final experiment, we can
construct an adversary Adv′ that, roughly speaking, distinguishes variants of
these experiments that consist of only two rounds. We then show how pairs of
the leakage queries of Adv′ can be combined into a single query (of larger output
length) using a guess-and-check approach: when the adversary would normally
make the first of the pair of leakage queries, it instead guesses an output and ver-
ifies this guess when it makes the second leakage query; when the guess is wrong,

56 A. Juma and Y. Vahlis

the adversary outputs a randomly chosen bit. Repeatedly combining queries in
this manner yields an adversary that just makes a single leakage query and (es-
sentially) distinguishes encryptions of K and 0̄. To finish the proof, we use an
observation of Akavia et al [1] that every 2O(�(n))-semantically-secure public-
key encryption scheme remains secure when the adversary gets O(�(n)) bits of
leakage on KeyGen. We defer the details to the full version of this paper [18].

5 Extensions and Applications

Below we describe some variants and applications of our scheme.

Resilience against simultaneous leakage. In Definition 5, the adversary is
only allowed to see leakage from the part of memory where computation is occur-
ring. Our construction is also secure under an alternative leakage model where
the adversary is allowed to see independent leakage from both parts of memory
each time it makes a leakage query. The basic idea is to first show that our
construction is secure under a variant of Definition 5 where the adversary sees
an additional leakage f4 on memory B. Under this variant of Definition 5, the
adversary’s leakage queries strictly alternate between memory A and memory
B. We then use an observation of Pietrzak [21] that simultaneous but indepen-
dent leakage on two pieces of memory can be perfectly simulated by strictly
alternating leakage (of twice the output length) on these two pieces of memory.

Resilience against complete compromise. Our scheme can be viewed as
a protocol between two devices that communicate over a public channel. The
key remains hidden even if the memory contents of one of the devices are leaked
completely (for example, in a cold boot attack), provided that the compromise is
detected and no further computation is performed using the counterpart device.

One-time programs. Our construction can be modified to work without any
leak-free components by pre-computing a large number of tuples of the form
(pri, pub, C, C′) where C and C′ are encryptions of 0 under pub, and storing the
tuples in memory. Then, at each invocation, one such tuple is used (first pri
and pub are used by EvalA1, and then C,C′ are used by EvalB). Assuming that
only computation leaks information, the remaining tuples remain hidden until
they are accessed. Therefore, security is obtained following essentially the same
argument as the proof of Theorem 1. The number of invocations in this case is
bounded by the number of pre-computed tuples. This approach provides a weaker
security guarantee than the one time programs of [15] (i.e. only security against
leakage), but has the advantage that the pre-computing phase is independent
from the functionality that is being protected.

Concurrent composition. We have shown that an adversary interacting with
a single instance of our construction gains no information about the underlying
key. However, for some applications, such as private-key encryption where several
parties compute on the same agreed upon key, this may not suffice. It is quite
possible that the adversary is performing side-channel attacks on several parties

Protecting Cryptographic Keys against Continual Leakage 57

simultaneously, and is coordinating his leakage functions adaptively. In the full
version of this paper, we show that an adversary interacting concurrently with
several instances of our construction still gains no information through leakage.

Leakage-resilient private-key encryption. Extending the traditional no-
tions of semantically secure encryption to the leakage setting is non-trivial. In
particular, suppose that every invocation of the encryption algorithm leaks in-
formation. Then, since the plaintext of the adversary’s challenge message is an
input to the encryption algorithm, the adversary can trivially break semantic
security by leaking even a single bit about this message. To deal with this prob-
lem, several works [9,22,8,5] adopt the approach that the computation of the
encryption of the challenge is not allowed to leak. We follow this approach, and
show how to obtain semantically-secure private-key encryption in the leakage
setting using LRKPs. The details are deferred to the full version of this paper.

Leakage-resilient public-key encryption. Constructions of public-key en-
cryption schemes that are resilient to an a-priori bounded amount of leakage
were recently given by [22,2,5]. However, no constructions are known of PKEs
that remain secure under Chosen Ciphertext Attack (CCA), if the adversary can
obtain leakage during each decryption query. LRKPs provide a convenient way to
achieve such a construction. Specifically, given a CCA-PKE (KeyGen,Enc,Dec),
we construct a new PKE (KeyGen′,Enc,Dec′) where the encryption algorithm
stays the same; the key generation KeyGen′ runs KeyGen to obtain (pub, pri) and
then initializes an LRKP with pri. The public key is pub, and the private key is
the initial state state1 of the LRKP. The decryption algorithm is stateful, and
to decrypt a ciphertext C, Dec′ generates a circuit H(x) that computes that
function Decx(C), and then uses KPEval to evaluate it on the private key pri.

Acknowledgements. We thank Charles Rackoff for many hours of discussion.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Alwen, J., Dodis, Y., Wichs, D.: Leakage resilient public-key cryptography in the
bounded retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009)

3. Brakerski, Z., Kalai, Y., Katz, J., Vaikuntanathan, V.: Cryptography resilient to
continual memory leakage (2010) (manuscript)

4. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

5. Dodis, Y., Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V.: Public-key
encryption schemes with auxiliary inputs (2009)

6. Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Public-
key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)

58 A. Juma and Y. Vahlis

7. Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. Cryptology ePrint Archive, Report 2010/196 (2010),
http://eprint.iacr.org/

8. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC
2009: Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
pp. 621–630. ACM, New York (2009)

9. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS 2008:
Proceedings of the Annual IEEE Symposium on Foundations of Computer Science,
pp. 293–302. IEEE Computer Society, Washington (2008)

10. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg
(2010)

11. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting
against computationally bounded and noisy leakage. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg (2010)

12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009:
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp.
169–178. ACM, New York (2009)

13. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

14. Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V.: Robustness of the learn-
ing with errors assumption. In: Proceedings of the 1st Innovations in Computer
Science Conference, ICS 2010 (2010)

15. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

16. Goldwasser, S., Rothblum, G.: Securing computation against continuous leakage.
In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 59–79. Springer, Heidel-
berg (2010)

17. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

18. Juma, A., Vahlis, Y.: Protecting cryptographic keys against continual leakage.
Cryptology ePrint Archive, Report 2010/205 (2010), http://eprint.iacr.org/

19. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-10366-7

20. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

21. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

22. Segev, G., Naor, M.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

23. Standaert, F.X., Malkin, T., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

24. Standaert, F.X., Pereira, O., Yu, Y., Quisquater, J.J., Yung, M., Oswald, E.: Leak-
age resilient cryptography in practice. Cryptology ePrint Archive, Report 2009/341
(2009), http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-10366-7
http://eprint.iacr.org/

Securing Computation against Continuous
Leakage

Shafi Goldwasser1,� and Guy N. Rothblum2,��

1 Weizmann Institute of Science and MIT
2 Princeton University

Abstract. We present a general method to compile any cryptographic
algorithm into one which resists side channel attacks of the only compu-
tation leaks information variety for an unbounded number of executions.
Our method uses as a building block a semantically secure subsidiary bit
encryption scheme with the following additional operations: key refresh-
ing, oblivious generation of cipher texts, leakage resilience re-generation,
and blinded homomorphic evaluation of one single complete gate (e.g.
NAND). Furthermore, the security properties of the subsidiary encryp-
tion scheme should withstand bounded leakage incurred while performing
each of the above operations.

We show how to implement such a subsidiary encryption scheme under
the DDH intractability assumption and the existence of a simple secure
hardware component. The hardware component is independent of the
encryption scheme secret key. The subsidiary encryption scheme resists
leakage attacks where the leakage is computable in polynomial time and
of length bounded by a constant fraction of the security parameter.

1 Introduction

Modern cryptographic algorithms are designed under the assumption that keys
are perfectly secret, and computations done within one’s computer are opaque
to the outside. Still, in practice, keys do get compromised at times, and compu-
tations are not fully opaque for a variety or reasons. A particularly disturbing
loss of secrecy is as a result of side channel attacks.

These attacks exploit the fact that every cryptographic algorithm is ultimately
implemented on a physical device and such implementations enable “observa-
tions” that can be made and measured on computations which use secret data
and secret keys, or on the secret keys and data directly. Such observations can
and have lead to complete breaks of systems which were proven secure, with-
out violating any of the underlying mathematical principles. (see [KJJ99, RCL]
for just two examples). Recently, a growing body of research on side-channel-
resilient cryptography aims to build general mathematical models of realistic side
� This research is supported in part by ISF710267, BSF710613, NSF6914349 and an

internal Weizmann KAMAR grant.
�� Research supported by NSF Grants CCF-0635297, CCF-0832797 and by a Comput-

ing Innovation Fellowship.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 59–79, 2010.
c© International Association for Cryptologic Research 2010

60 S. Goldwasser and G.N. Rothblum

channel attacks, and to develop methods grounded in modern cryptography to
provably resist these attacks.

Modeling side channel attacks on a cryptographic algorithm so as to simul-
taneously capture real world attacks and achieve the right level of theoretical
abstraction, is an intriguing and generally controversial question. Indeed, the
number of answers seems to be nearly as high as the number of papers pub-
lished on the topic. Perhaps the only universally agreed on part of the modeling
is that each physical measurement should be modeled as the result of computing
an adversarially chosen but computationally bounded function � (the so called
“leakage” function) on the “internal state of the computation”. We find the most
important modeling questions to be:
– How should we characterize which leakage functions � can be measured?
– How many measurements occur and how often?
– Are all portions of the computation’s internal state subject to measurement

at the same time? Namely, what is the input to the leakage function �?
– Can we use secure hardware components, and if so which ones are reasonable

to assume as building blocks to achieve side channel security?

“Only computation leaks information” and the question of granularity. Micali
and Reyzin, in their pioneering work [MR04], set forth a model of physical se-
curity, which takes a particular approach at these modeling questions. One of
the axioms in their model was that any computation but only computation leaks
information (OC attack model). In other words, every time a computation step
of a cryptographic algorithm “touches” data which may contain portions of (but
not necessarily the entirety of): cryptographic secret keys, internally generated
randomness, and results of previous computations done on cryptographic keys,
a measurement on this data can be made by an adversary. However, data which
is not “touched” by a computation step of an algorithm, can not be measured
at this time (and thus does not leak). Stated in terms of leakage functions, this
means that a leakage function can be computed in each computation step, but
each such function is restricted to operate only on the data utilized in that
computation step. Within this model, various constructions of cryptographic
primitives [GKR08, DP08, Pie09, FKPR09] such as stream ciphers and digital
signatures, have been proposed and proved secure for certain leakage function
classes and under various computational intractability assumptions.

This is the model of attacks which we focus on in this paper. Our main result
addresses how to run any cryptographic algorithm (i.e an algorithm which takes
as input secret keys and uses secret randomness) securely in this model for an
unbounded number of executions.

Implicit in using this model, is the view of program execution (or computation)
as preceding in discrete ‘sub-computation steps’ S1, S2... Each sub-computation
Si computes on some data di (which is a combination of secret and public data
and randomness). At each Si, the side-channel attack adversary can request to
receive the evaluation of a new leakage function �i on di. The choice of �i to be

Securing Computation against Continuous Leakage 61

evaluated at step Si may depend on the results of values attained by previous
�1, ..., �i−1, but �i can only be evaluated on the di used in step Si.

An important question in evaluating results in the OC attack model emerges:
what constitutes a sub-computation step Si, or more importantly what is the
input data di to Si available to �i in this sub-computation? Let us look for exam-
ple at the beautiful work of Dziembowski and Pietrzak [DP08] which construct
secure stream ciphers in the OC model. Initialized with a secret key, their stream
cipher can produce an unbounded number of output blocks. In [DP08], the i-th
sub-computation is naturally identified with the computation of the i-th block of
the stream cipher. The input di to this sub-computation includes a pre-defined
function of the original input secret key. The class of tolerated leakage functions
�i (each computed on di) are (roughly) restricted to a length shrinking func-
tion whose output size is logarithmic in the size of the security parameter of
the stream cipher1. Another example is in the work of Faust et al. [FKPR09]
which construct secure randomized digital signature scheme which can generate
an unbounded number of signatures in the OC attack model. The i-th sub-
computation is identified with the computation of the ith signature, and di is
(essentially) fresh randomness generated for the i-th sub-computation. Coupled
with one-time signatures of [KV09], the class of leakage functions �i tolerated
are length shrinking functions whose output size is a constant fraction of the
size of the security parameter of the signature scheme, under the intractability
of DDH and various lattice problems.

An interesting practical as well as theoretical question is what granularity
(i.e. size of sub-computations) is reasonable to consider for general cryptographic
computation. Certainly, the larger the granularity (and the sub-computations),
the better the security guarantee. For security, ideally we’d prefer to allow the
leakage to work on the entire memory space of the computation. However, the
assumption that physical leakage is “local” in time and space, and applies to
small sub-computations as they happen, still encapsulates a rich family of at-
tacks. Carried to the extreme, one might even model leakage as occurring on
every single gate of a physical computation with some small probability, and
even this model may be interesting.

In this work, we advocate the approach of allowing the programmer of a
cryptographic computation, the freedom to divide the computation into arbi-
trary sub-computations, and then analyzing security by assuming that leakage
is applied to each sub-computation’s input independently (i.e. only computa-
tion leaks information). In particular, this will mean that the total amount of
leakage from a computation can grow with the complexity of the computation
(as well as the number of executions), as it well should, since indeed in practice
the possibility of leakage increases with the complexity (length of time) of the
computation. General approach aside, our positive results are much stronger: we
work with granularity that is a polynomial in a security parameter.

1 Alternatively stated, their construction of is based on an exponential hardness as-
sumption (where the assumption degrades as a function of the amount of leakage
tolerated).

62 S. Goldwasser and G.N. Rothblum

1.1 The Contributions of This Work

In this work we focus on general cryptographic computations in the OC attack
mode, and address the challenge of how to run any cryptographic algorithm
securely under this attack model, for any polynomial number of executions.

Our contributions are twofold. First, we show a reduction. Starting with a
subsidiary semantically secure bit encryption scheme E, which obeys certain
additional homomorphic and leakage-resilience properties (see below and Section
3), we build a compiler that takes any cryptographic algorithm in the form of a
Boolean circuit, and probabilistically transforms it into a functionally equivalent
probabilistic stateful algorithm. The produced algorithm can be run by a user
securely for an unbounded number of executions in the presence of continuous
OC side-channel attacks. Second, we show how to implement such a subsidiary
encryption scheme E under the DDH intractability assumption and using a
secure hardware component. The hardware component (see Section 1.1) samples
from fixed polynomial time computable distribution (it does not compute on any
secrets of the computation). The security assumed about the component is that
there is no leakage on the randomness it uses or on its inner workings.
The execution and adversary model: We start with a cryptographic algorithm
C and its secret key y (C is a member of a family of poly(n)-size Boolean cir-
cuits {Cn} and y ∈ {0, 1}n). In an initial off-line stage when no side-channel
attacks are possible, C(y, ·) is converted via a probabilistic transformation to an
algorithm EvalC with state – which is updated each time EvalC is executed,
and is functionally equivalent to C, i.e EvalC(·) = C(y, ·). After this initial
off-line stage, EvalC is computed on an unbounded number of public inputs
x1, x2,... which can be chosen by the adversary in the following manner. The
computation of EvalC(xi) is divided into sub-computations Ci,1, ..., Ci,n each of
which are evaluated on data di,1, ..., di,n respectively. At this stage, for each sub-
computation Ci,j , the OC side-channel adversary is allowed to request the result
of evaluating leakage function �i,j on di,j . The leakage functions we tolerate can
be chosen adaptively based on the result of previously evaluated leakage func-
tions, and belong to the class of polynomial time computable length shrinking
functions. We emphasize that after the initial off-line stages all computations of
EvalC (including its state update) are subject to OC side-channel attacks.
The security guarantee: is that even under the OC side-channels and adversari-
ally chosen inputs, the adversary learns no more than the outputs of C(y, ·) on
the chosen inputs (formally, there is a simulation guarantee). In particular, it
is important to distinguish between leakage incurred on the cryptographic algo-
rithm C(y, ·) being protected, and the leakage on the subsidiary cryptographic
scheme. There is constantly leakage on the subsidiary scheme’s secret keys, and
the specific scheme we use can handle this. On the other hand, for the algorithm
C(y, ·) there is no leakage at all on y. Only its black-box behavior it exposed.

For example, if we think of C as the decryption algorithm for any public-
key scheme, and y as its secret decryption key (which is completely unrelated
to the secret keys of the subsidiary cryptosystem we use as a tool!), then an
adversary who wants to decrypt a challenge ciphertext x1, and has OC leakage

Securing Computation against Continuous Leakage 63

access to the evaluation of EvalC(y, x2) for decrypting another ciphertext x2,
still cannot break the security of x1 and in particular cannot decrypt it. This
is a qualitatively different security guarantee from the setting of memory-bound
leakage [AGV09] or even in the more recent work of Brakerski et al. [BKKV10]
on public key encryption under continual leakage. In these works, no security
is guaranteed for a challenge ciphertext that is known to the adversary when it
chooses the leakage function.

The granularity of our sub-computations: We let a subsidiary security parameter
λ govern the granularity of the computation steps as follows. The computation
of EvalC is divided into sub-computations each of which consist of performing
a basic cryptographic operations (e.g. encrypt, decrypt, key generate, etc.) of
a subsidiary encryption scheme E with security parameter λ. Essentially, E is
used as a tool to emulate a secure executions of C, in such a way that a constant
number of cryptographic operations of E emulate the evaluation of each gate
of C. Thus the complexity of EvalC is O(poly(λ) · |C|). In accordance with
the OC attack model, leakage functions are assumed to apply to each input of
the cryptographic operations of E separately. The main idea behind obtaining
the leakage resilience for any algorithm C, is that whereas how C works is out
of our control (as it is a given), we can choose an E for which we are able
to continually refresh its keys. As each key will be utilized as input for only a
constant number of cryptographic operations, only a bounded number of leakage
functions (measurements) can be made on each key. Indeed, for an appropriately
chosen E, we can tolerate any polynomial time computable leakage functions,
whose output length is up to a constant fraction of the security parameter λ.
Note that the security parameter λ is chosen for the purposes of side-channel
security, and may be chosen to be different than the security parameter n of the
cryptographic algorithm C, by the implementer.

Leakage grows with the complexity of EvalC : The total amount of leakage that
our method can tolerate per execution of EvalC is O(λ · |C|) whereas and the
complexity of EvalC is O(poly(λ) · |C|)). Thus, our method tolerates more mea-
surements and leakage as the computation time increases. This is in contrast with
previous general compilers (see Section 1.2), where the size of the transformed
circuit grows as a function of the total amount of leakage tolerated.

Main tool: a subsidiary cryptosystem. The subsidiary cryptosystem uti-
lized by our compiler is a semantically secure bit encryption scheme with the
following special properties (even in the presence of OC side channel attacks).
See Section 3 for full definitions of these properties.
• Semantic Security under Multi-source Leakage. We require semantic
security to hold even against an adversary who can (measure) receive leakage
both from the secret key and the cipher-texts which we attempt to protect, and
are encrypted under this secret key. Note that we depart here from the [AGV09]
model in considering leakage also on the challenge ciphertexts, and not only on
the keys. A priori, this might seem impossible. The reason it is facilitated is
that due to the OC nature of our attacks an adversary can never apply a leakage

64 S. Goldwasser and G.N. Rothblum

function to the ciphertext and the secret-key at the same time (otherwise it could
decrypt); furthermore the leakage length bound ensures that the adversary will
not learn enough of the ciphertext to be useful for him at a later time when it
can apply an adaptively chosen leakage function to the secret key (otherwise,
again, it could decrypt the ciphertext).
• Key Refreshing. It should be possible to “refresh” secret keys in the scheme,
changing them into new keys, via a randomly generated correlation value. In
addition, we require that using the correlation value alone and without knowledge
of the secret key, one can also refresh old ciphertexts under the old secret key to
new ciphertext under the new secret key. Intuitively, this property is useful for
taking secret keys on which there has already been a large amount of leakage,
and transforming them into new keys on which there is less leakage (i.e. with
more entropy). The requirement that refreshing on ciphertexts must not use
the secret key, is due to the fact that otherwise a leakage function could be
evaluated on the ciphertext and key (which are computed on at the same time)
simultaneously and used to decrypt the ciphertext! The fact that the correlation
value alone can be used to refresh ciphertexts avoids attacks of this type.
• Oblivious Ciphertext Generation. It should be possible to generate fresh
encryptions of random bits. Even an OC adversary should not be able to tell
anything about the plaintexts in these new obliviously generated ciphertexts.
For example, the Goldwasser-Micali [GM84] cryptosystem naturally has this
property (by generating a random Jacobi symbol 1 element).
• Leakage Resilience Regeneration. It should be possible to “re-generate”
leakage resilience on ciphertexts and keys: i.e., to take a ciphertext and secret
key and repeatedly generate a new “random-looking” ciphertext and key pair,
encrypting the same value. The security requirement is that even after many
such regenerations (with accumulated ciphertext and key OC leakages), as long
as the amount of leakage between two successive regenerations is bounded, an
adversary cannot tell whether the original ciphertext was an encryption of 0 or
of 1. Intuitively, this property is useful for taking old ciphertexts and keys, on
which there has been previous leakage, and re-generating them into new ones
that are more secure (i.e. injecting new entropy).
• Blind Homomorphic NAND. It should be possible to take three cipher-
texts ci, cj , ck, encryptions of bi, bj , bk (respectively), and output a data string
hc (a “homomorphic ciphertext”) which can later be decrypted (using the secret
key) to yield b = (bi NAND bj) ⊕ bk.2 Moreover, we require a “blinding” prop-
erty: that the encrypted outcome hc contains no more information beyond the
plaintext outcome b, even w.r.t an adversary who can launch OC attacks on the
homomorphic evaluation, and who is later given OC access to the decryption
of hc (which also computes on the secret key). In particular, such an adversary
should not be able to learn anything about the values of bi, bj , bk beyond b. Note
that we do not require that hc itself be a ciphertext or support any further
homomorphic operations: i.e. we require only “one-shot” homomorphism.

2 Actually, we require homomorphic evaluation of a slightly more complex functional-
ity that also takes some plain-text inputs, see Section 3.

Securing Computation against Continuous Leakage 65

Instantiating the subsidiary cryptosystem. A slight modification of the
encryption scheme of Naor and Segev [NS09] and Boneh et al[BHHO08], ampli-
fied with a simple secure hardware device, satisfies all of these properties. Here
we highlight some of the novel challenges and ideas. See Section 3 for details.

We do not specify the scheme [NS09] in its full detail here, but only recall that
operates over a group G of order q where the Decisional Diffie Hellman Problem
(DDH) is hard. The secret key is a vector s ∈ GF[q]m for some small m > 0
(for our parameters m = 10 suffices) and the public key is gs, g for a generator
g. To encrypt b ∈ GF[q], the scheme masks gb by multiplying it by a group
element whose distribution is indistinguishable (under DDH) from g〈s,r〉, where
r ∈ GF[q]m is uniformly random. We note further that the scheme supports
homomorphic addition (over GF[q]) and scalar multiplication.

Semantic security under multi-source leakage. We need to prove that semantic
security holds when an adversary can launch a “multi-source” leakage attack
separately on the secret key and the cipher-texts which we attempt to protect
(encrypted under this secret key), a (constant fraction) of leakage is computed
on each. The proof of security uses ideas from theory of two source extractors.
In particular a theorem of Chor and Goldreich [CG88], showing how to extract
statistically close to uniform bits from two independent min-entropy sources. We
argue (assuming DDH) that the adversary’s view is indistinguishable from an
attack in which the plaintext b is masked by g〈s,r〉, where r is a uniformly random
vector in GF[q]m. Given the adversary’s separate leakage functions from the key
s and the ciphertext r, s and r will have sufficient entropy (because the amount
of leakage is bounded) and are independent random sources (because the leakage
operates separately on key and ciphertext). Using [CG88] we conclude that 〈s, r〉,
and also g〈s,r〉, are statistically close to uniform. This is all in an attack where
r is uniformly random, but this attack is (under DDH) indistinguishable from
the real one, and so semantic security holds. No secure hardware is used here.

Key refresh. Key refresh is enabled by the homomorphic properties of the Naor-
Segev cryptosystem. In particular, choosing a correlation value π ∈ GFqm, we
can add this value to the secret key and update the public key and any ciphertext
accordingly in a homomorphic manner, without accessing the secret key. No
secure hardware is used here.

Secure hardware. The secure hardware device CipherGen (see Section 3.1)
that is used in this work is simple. The device receives as input a public key
and mode of operation mode ∈ {0, rand}. In mode mode = 0 it computes and
outputs a fresh encryption of 0, and in mode mode = rand it chooses a uniformly
random bit b ∈ {0, 1} and computes and outputs a fresh encryption of b. I.e. it
only runs public key operations. We assume that when this device is invoked,
there is leakage on its input and output, but not on its internal workings or
randomness. It is interesting to compare this device to the device used by Faust et
al. [FRR+09]. Their device samples a random string whose XOR is 0. This can be
viewed as a string “encrypting” the bit 0. The adversary, who is bounded to AC0

66 S. Goldwasser and G.N. Rothblum

bounded length leakage functions, cannot determine the XOR, or “decryption”,
of the string that was generated. We also note that in several works addressing
continual leakage for particular functionalities, it is assumed that during parts
of the computation either there is no leakage from the computation’s internal
randomness [DHLAW10], or that leakage from the internal randomness is very
limited [BKKV10].

Oblivious Generation and Leakage-Resilience Regeneration. These two proper-
ties are satisfied almost immediately by the CipherGen secure hardware device.
Activating the device in mode rand generates opaquely a ciphertext encrypting a
random plaintext bit — giving immediately an oblivious generation procedure.
For ciphertext and key regeneration we first use key refreshing to regenerate
the secret key (injecting new entropy). We then use mode 0 of CipherGen to
generate a fresh encryption of 0, and add it to the ciphertext. This effectively
regenerates the randomness of the ciphertext, injecting new entropy.

Homomorphic blinded masked NAND. Perhaps the most challenging obstacle
in constructing the subsidiary cryptoscheme is coming up with a procedure for
computing blinded homomorphic masked NAND, i.e. given ciphertext c1, c2, c3
encrypting plaintexts b1, b2, b3 ∈ {0, 1}, computing a homomorphic blinded ci-
phertext containing (b1 NAND b2)⊕ b3.

Suppose for a moment that b3 = 0 (i.e. we are computing the NAND of
b1 and b2). We could homomorphically add the three ciphertexts, obtaining
an encryption d of a plaintext γ, where γ is either 0,1 or 2 (it is important
the homomorphic addition here is over GF[q] only). Here γ = 2 means that
b1 = b2 = 1 and the NAND is 0, and γ ∈ {0, 1} outcomes imply that the NAND
is 1. We note however that the exact value of γ ∈ {0, 1} leaks information about
the input b1 and b2, which we will need to “blind”.

There are two main ideas in blinding. The first is to use mode rand of
CipherGen to generate an encryption u of a random bit in μ ∈ {0, 1}. We
can then homomorphically compute an encryption of γ − μ − 2, which will al-
ways be non-zero if the NAND is 1, and will be zero w.p. 1/2 (over the ciphertext
generated by CipherGen) if the NAND is 0. Similarly, for the case where b3 = 1
we can compute an encryption of γ − μ which will have the same distribution
depending on the value of the masked NAND. In conclusion, if we compute ho-
momorphically an encryption of b1+b2−μ−2·(1−b3) we obtain an encryption of
a non-zero value when the NAND is 1, or a zero value w.p. 1/2 when the NAND
is 0. Repeating this several times, for different u, all the homomorphic decryptor
needs to do is check whether any of these homomorphic computations resulted
in a zero plaintext (in which case the output is 0) or not (there is a negligible
error probability of incorrect decryption). We emphasize, that for each cipher-
text generated in the above procedure, being an encryption of a zero or non-zero
plaintext exposes no information about the inputs (beyond the output). This is
because even an OC leakage adversary cannot tell whether CipherGen gener-
ated an encryption of 0 or 1. In a different context and cryptosystem, similar
ideas for blinding were used by Sander, Young and Yung [SYY99].

Securing Computation against Continuous Leakage 67

Still, another idea is necessary, as the specific non-zero plaintext value (e.g. 1
rather than 2) might leak information about the inputs. An initial observation is
that homomorphic multiplication by a random scalar e leaves zero ciphertexts as
encryptions of zero, but completely randomizes the plaintext values of non-zero
ciphertexts. This can blind the ciphertexts while maintaining (for correctness)
their plaintext being zero or non-zero (respectively). Unfortunately, in the pres-
ence of OC leakage there will be leakage on the value e, and this blinding will
not be secure. We handle the OC leakage using a more complicated blinding pro-
cedure, which essentially homomorphically multiplies the plaintext by an inner
product of two vectors e and f of random scalars. We use ciphertext regenera-
tion (mode 0 of CipherGen) in-between homomorphic sub-steps to ensure that
the leakage from each scalar is independent (or rather indistinguishable under
DDH from an experiment with independent leakage). In the end, even given the
leakage, the scalar 〈e,f〉 by which we multiply the ciphertext is indistinguishable
from uniform, even to an OC leakage adversary, and blinding is guaranteed.

Main result: the compiler. The main contribution of this paper is a compiler
which takes any cryptographic algorithm in the form of a Boolean circuit, and
transforms it into a functionally equivalent probabilistic stateful algorithm. In
this overview we assume an intuitive understanding of the subsidiary encryption
scheme E and its properties and letting (pkj , skj) denote public and secret key
pairs of E. See Section 4 for details. We emphasize that in the description that
ensues there is a distinction between a user who is executing the evaluation
algorithm and an adversary whose view of this execution (which proceeds by a
sequence of sub-computations) is only through the results of leakage functions
applied on secret data as sub-computations are actually performed on this data.

The input to the compiler is a secret input y ∈ {0, 1}n, and a public circuit C
of size poly(n) that is known to all (compiler and adversary alike). The circuit
takes as inputs y and also public input x ∈ {0, 1}n (which may have been chosen
by the adversary), and produces a single bit output.3 Without loss of generality,
the circuit C is composed of NAND gates with fan-in and fan-out 2, which are
organized in layers. The inputs of layer i arrive from the outputs of layer i− 1.
The output of the compiler on C and y is a probabilistic evaluation algorithm
EvalC with state (which will be updated during the run of EvalC) such that for
all x, C(y, x) = EvalC(x). The compiler is run once at the beginning of time and
is not subject to side-channels. See Section 2.2 for a formal security definition.

The idea of the evaluation algorithm is that in its state it keeps the value vj
of each wire j of the original input circuit C(y, x) in the following secret-shared
form: vj = aj

⊕
bj . The invariant for every wire is that the aj shares are public

and known to all whereas bj are secret and kept encrypted by the subsidiary
encryption algorithm E under a secret key skj (i.e. there is a key-pair for every
wire). We emphasize that the OC side-channel adversary does not actually ever
see even the cipher-text of plain text bj – let alone bj itself – in their entirely,
but rather only the result of a leakage function on these cipher-texts at the time
when they are involved in a sub-computation.
3 We focus on single bit outputs, the case of multi-bit outputs also follows naturally.

68 S. Goldwasser and G.N. Rothblum

At the outset of computing EvalC , for all input wires corresponding to the
y-input, aj = 0; for all input wires corresponding to the x input, bj = 0; for all
the other wires bj are chosen uniformly at random independently of the input;
This generation of random ciphertexts containing the bj value is done using
the oblivious generation procedure of E. Finally, for the circuit’s output wire,
boutput = 0. As the user selects an input x to run EvalC on, he sets aj on the
input wires of the x-input by the value of the bits of x, and is now ready to start
updating the shares aj on the internal wires and compute aoutput = C(y, x).

The crux of the idea is to show how the user can compute the public shares
corresponding to the internal wires of C(y, x). Here is where we use the fact
that encryption scheme E can support a blinded homomorphic evaluation of
a single NAND gate. Say, the user already computed the values of aj of all
wires j on layer s (starting from the input wires this will hold inductively).
Then, for each pair of wires i, j into a gate on layer s + 1 with output wire k,
the user will compute the public share of the output wire ak via a sequence
of sub-computations as follows: first, transform the cipher texts of bi, bj (using
the key-refresh property) to encryptions of the same plaintexts under the secret
key pkk; second, homomorphically using ai, aj and the cipher texts of bi, bj, bk
all under pkk compute a (blinded) ciphertext hck of ak under pkk (note that
ak = ((ai⊕bi) NAND (aj⊕bj))⊕bk)4 and finally, decrypt the blinded hck using
secret key skk to obtain ak. Note that this is one place the “only computation
leaks information” assumption is of essence. For example, if the leakage function
would have taken the inputs to the first sub-computation as well as to the third
sub-computation, it could have used skk to decrypt bi and discover in full the
value of vi, which of course would destroy the security of the entire construction
(since it is non black-box information about the computation being performed).
It is also important to note here that we will set the leakage parameter λ to be
such that the adversary cannot even see enough of the ciphertexts corresponding
to secret shares bj under any key (and in particular under skk). Otherwise, the
adversary could “remember” these ciphertexts and then adaptively choose a
future leakage function applied on skk to decrypt it. Proceeding inductively,
finally the user will compute aoutput and since boutput was set initially to 0, the
user has obtained voutput = aoutput .

Finally, to prepare for another execution of Eval(x′) for a new x′, all cipher-
texts and keys containing secret shares of the bits of the secret input y are
regenerated. This effectively “resets” the amount of leakage that has happened
on these ciphertexts and keys. In the next execution we again (from scratch)
choose a new oblivious encryption of a random bj for each internal wire j.

Summary: One of the main advantages of the above construction was that it let
us go from a procedure for blinded OC-secure homomorphic evaluation of a single
(NAND) gate, and obtain an evaluation mechanism for an arbitrary functionality
(using several other properties of the subsidiary cryptosystem). We note that if
the subsidiary cryptosystem supports more complex homomorphic computations,

4 Note that, in terms of leakage, this sub-computation may itself be separated into
smaller sub-computations.

Securing Computation against Continuous Leakage 69

we may hope to use the same framework to obtain a more efficient construction,
operating at the level of larger computations rather than gate-by-gate (perhaps
with improved granularity). We also note that the above construction should be
viewed mainly as a proof-of-concept, we did not attempt here to make it practical
enough for implementation.

1.2 Related Work

Our work is inspired by many beautiful classical techniques in the field of cryp-
tography. For one, the central idea of our compiler may be thought of as a
cross between the garbled circuit method originated by Yao [Yao82] and the
pioneering idea of Goldreich, Micali, and Wigderson [GMW87] of computing on
data by keeping it in a secret shared form and computing on the shares. Using
limited homomorphic properties of encryption schemes in order to perform re-
duced round oblivious circuit evaluation was proposed in the work of Sander,
Young, and Yung [SYY99]. Secure hardware was proposed in many prior works
in the context of achieving provable security, starting with work of Goldreich
and Ostrovsky [GO96] on software protection which assumes a universal secure
leak-free processor. Most importantly, our work should be compared to results
in other side channel attack models. We note that in the random oracle model
other works have appeared (we do not cover all these results here).

The pioneering work of Ishai, Sahai, and Wagner [ISW03] first considered
the questions of converting general cryptographic algorithms (or circuits) to
equivalent leakage resistant circuits. They treat leakage attacks which leak the
values of an a-priori fixed number of wires of the circuit, and produce leakage
resistent circuits which grow in size as a function of the total bound on number
of wires which are allowed to leak. The work applies to an unbounded number
of executions of the circuit, assuming leakage attacks only apply per execution.
Stated differently, the assumption is that the history of all past executions is
erased. This is closely inspired by the model of proactive security. In quantitative
terms, they place a global bound L on the number of wires whose values leak,
compile any circuit C into a new circuit of size roughly C · L2 which is resilient
to leakage of up to L wire values (in our work the leakage bound grows with the
complexity of the transformed circuit).

Faust, Tromer, Rabin, Reyzin, and Vaikuntanathan [FRR+09] also address
converting general cryptographic algorithms (or circuits) to equivalent leakage
resistant circuits extending [ISW03] significantly. They allow a (measurement)
a side channel attack on an execution to receive the result of a leakage function
which takes as input the entire existing (non-erased) state of the computation
(rather than values of single wires), but in return restrict the leakage functions
�i that can be handled to AC0. Quantitatively, as in [ISW03], they place a fixed
bound L on the amount of leakage, and blow up the computation size by a factor
of roughly L2. [FRR+09] require a secure hardware component as well.

The bounded memory leakage model [AGV09] has received much attention.
Here one allows � to be defined on the entire contents of memory including all
stored cryptographic secret keys, all previous computation done on the secret key

70 S. Goldwasser and G.N. Rothblum

results, and internally generated randomness. Obviously, in this strong setting,
if no erasures are incorporated in the system, one must bound the total amount
of information that measurements can yield on the original cryptographic keys,
or else they will eventually be fully leaked by the appropriate adversarial choice
of �. This is the model used in the works of [AGV09, NS09]. In contrast, in
our work, we are interested in the continuous leakage question. Namely, the
cryptographic algorithm initialized with secret cryptographic keys is invoked
again and again for a (not specified in advance) polynomial (in the size of the
initial cryptographic keys) number of times; each time the side-channel adversary
continues to get some information on the secrets of the computation. Thus, the
total amount of information that the adversary gets over the life time of the
system will unbounded.

Coming back to the OC attack model, the ideas of Goldwasser, Kalai, and
Rothblum [GKR08] in the work on one-time programs provide another avenue
for transforming general cryptographic circuits to equivalent leakage resistant
algorithms. The resulting leakage resistant algorithm will be secure in the OC
attack model if it is executed once. To obtain an unbounded number of execu-
tions of the original circuit, one can resort to an off-line/on-line per-execution
model where every execution is preceded by an off line stage in which the circuit
conversion into a leakage resistent algorithm is performed a-new (obviously us-
ing new randomness). This is done prior to (and independently from) the choice
of input for the coming execution. Surprisingly, the produced circuits are secure
even if all data which is touched by the computation leaks. Namely, in presence
of any polynomial time leakage functions including the identity function itself!

A recent independent work published in this proceedings is by Juma and
Vahlis [JV10]. They also work in the OC attack model and address the question
of how to run general computations in this model. They use as a tool a fully
homomorphic encryption scheme and a leakage free hardware component in-
dependent from the functionality being computed. In terms of granularity, they
divide each activation into two parts: one of which is large (a homomorphic com-
putation of the entire circuit), and the second of which is small (a decryption).
Quantitatively, To tolerate a leakage bound of L bits in total, they transform
the computation into one of size C · exp(L). Under stronger assumptions (e.g.
sub-exponential security of the fully homomorphic encryption) the transformed
computation can be of size C · poly(L).

2 Security Definitions

2.1 Leakage Model

Leakage Attack. A leakage attack is launched on an algorithm or on a data string.
In the case of a data string x, an adversary can request to see any efficiently
computable function �(x) whose output length is bounded by λ bits. In the case of
an algorithm, we divide the algorithm into disjoint sub-computations. We assume
that only computation leaks information, and so the adversary can request to
see a bounded-length function of each sub-computation’s input (separately).

Securing Computation against Continuous Leakage 71

Definition 1 (Leakage Attack A[λ : s](x)). Let s be a source: either a data
string or a computation. We model a λ-bit leakage attack of adversary A with
input x on the source s as follows.

If s is a computation (viewed as a boolean circuit with a fixed input), it is
divided into m disjoint and ordered sub-computations sub1, . . . , subm, where the
input to sub-computation subi should depend only on the output of earlier sub-
computations. A λ-bit Leakage Attack on s is one in which A can adaptively
choose PPTM functions �1, . . . �m, where �i takes as input the input to sub-
computation i, and has output length at most λ bits. For each �i (in order), the
adversary receives the output of �i on sub-computation subi’s input, and then
chooses �i+1. The view of the adversary in the attack consists of the outputs to
all the leakage functions.

In the case that s is a data string, we treat it as a single subcomputation. A
λ-bit leakage attack of A on s is one in which A adaptively chooses λ single-bit
functions of the string in its entirety.

Multi-Source Leakage Attacks. A multi-source leakage attack is one in which
the adversary gets to launch concurrent leakage attacks on several sources. Each
source is an algorithm or a data string. The leakages from each of the sources
can be interleaved arbitrarily, but each leakage is computed as a function of a
single source only.

Definition 2 (Multi-Source Leakage Attack A[λ : s1, . . . , sk](x)). Let
s1, . . . , sk be k leakage sources (algorithms or data strings, as in Definition 1).
We model a λ-bit multi-source leakage attack on [s1, . . . , sk] as follows. The ad-
versary A with input x runs concurrently k separate λ-bit leakage attacks, one
attack on each source. The attacks can be interleaved arbitrarily and adaptively.
The attacks on each of the sources separately form a λ-bit leakage attack as in
Definition 1. It is important that each leakage function is computed as a func-
tion of a single sub-computation in a single source (i.e. the leakages are never
a function of the internal state of multiple sources). It is also important that
the attacks launched by the adversary are concurrent and adaptive, and their
interleaving is controlled by the adversary.

Simulated Multi-Source Leakage Attacks. For security definitions, we will oc-
casionally want to replace the adversary’s access to one or more source in a
multi-source leakage attack with a view generated by a simulator. To facilitate
composition, we view some sources as fixed: these are outside of the simulator’s
control. Both the adversary and the simulator get leakage access to these fixed
sources (these are analogous to the environment in the UC framework [Can01]).
Access to all of the other sources is simulated by the simulator.

Definition 3 (Simulated Multi-Source Leakage Attack). Let s1, . . . , sk
each be either a special symbol ⊥ or a leakage source (algorithm or data string, as
in Definition 1). Denote by s′1, . . . , s

′
� the subset of s1, . . . , sk that are not⊥. A sim-

ulated λ-bit multi-source leakage attack (A[λ : s1, . . . , sk](x),S[λ′ : s′1, . . . , s′�](x
′))

on [s1, . . . , sk] is defined as follows.

72 S. Goldwasser and G.N. Rothblum

A with input x runs concurrently k separate λ-bit leakage attacks, one attack
on each of its k sources, as in Definition 2. The difference here is that the
sources which are ⊥ are all under the control of the simulator S. The simulator
S, which itself has an input x′ and can launch a λ′-bit multi-source leakage attack
on [s′1, . . . , s

′
�], produces the answers to all of the adversary’s queries to all of the

sources (including the ⊥ sources).
As in Definition 2, the adversary’s (and the simulator’s) access to its sources

can be interleaved arbitrarily. The only difference is that the adversary’s leakage
queries to some of the sources are answered by the simulator. The simulator’s
answers may also be adaptive and depend on its prior view, which includes all
of the adversary’s past queries to simulated sources.

As discussed above, the motivation for including sources that are outside the
simulator’s control is to facilitate composition between different components that
are each (on their own) resilient to multi-source leakage attacks. Throughout this
work, it will be the case that λ′ ≥ λ, and so it is “easy” for the simulator to
answer A’s queries to the “non-⊥ sources” (by making the same query itself).
The challenge is answering A’s queries to the “⊥-sources”.

2.2 Continuous Side-Channel Secure Compiler

We divide a side-channel-secure compiler into two parts: the first part, the ini-
tialization occurs only once at the beginning of time. This procedure depends
only on the circuit C being compiled and the private input y. We assume that
during this phase there are no side-channels. The second part is the evaluation.
This occurs whenever the user wants to evaluate the circuit C(·, y) on an input
x. In this part the user specifies an input x, the corresponding output C(x, y) is
computed, and side-channels are in effect.

Definition 4 (λ(·)-Continuous Side-Channel Secure Compiler). for a
circuit family {Cn(x, y)}n∈N, where Cn operates on two n-bit inputs, we will
say that a compiler (InitC ,EvalC) offers λ(·)-security under continuous side-
channels, if for every integer n > 0, every y ∈ {0, 1}n, and every security pa-
rameter κ, the following holds:

– Initialization: InitC(1κ, Cn, y) runs in time poly(κ, n) and outputs an initial
state state0

– Evaluation: for every integer t ≤ poly(κ), the evaluation procedure is run
on the previous state statet−1 and an input xt ∈ {0, 1}n. We require that
for every xt ∈ {0, 1}n, when we run: (output t, statet)← EvalC(statet−1, xt),
with all but negligible probability over the coins of InitC and the t invocations
of EvalC , outputt = Cn(xt, y).

– λ(κ)-Continuous Leakage Security: for every PPTM (in κ) leakage-adversary
A, there exists a PPTM simulator S s.t. the view of A when adaptively
choosing inputs (x1, x2, . . .xT) while running a continuous leakage attack on
the evaluation procedure, is indistinguishable from the view generates by S
which only gets the inputs-output pairs ((x1, C(x1, y)), . . . , (xT , C(xT , y))).

Securing Computation against Continuous Leakage 73

Formally, the adversary repeatedly and adaptively, in iterations t← 1, . . . , T ,
chooses an input xt and launches a λ(κ)-bit leakage attack on
EvalC(statet−1, xt) (see Definition 1). The view viewA,t of the adversary
in iteration t includes the input xt, the output outputt, and the leakages.
The complete view of the adversary is viewA = (viewA,1, . . . , viewA,T), a
random variable over the coins of the adversary, of the InitC and of the
EvalC procedure (in all of its iterations).
We note that modeling the leakage attacks requires dividing the EvalC pro-
cedure into sub-computations. In our constructions the size of these sub-
computations will always be at most polynomial in the security parameter.
The simulator’s view is generated by running the adversary with simulated
leakage attacks. In each iteration t the simulator gets the input xt chosen
by the adversary and the circuit output C(xt, y). It generates simulated side-
channel information as in Definition 3. It is important that the simulator sees
nothing of the internal workings of the evaluation procedure. We compute:

stateS,0 ← S(1κ, Cn), xt ← A(viewS,1, . . . , viewS,t−1),

(stateS,0, view t,S)← S(1κ, xt, C(xt, y), viewS,t−1)

where viewS,t is a random variable over the coins of the adversary when
choosing the next input and of the simulator. The complete view of the sim-
ulator is viewS = (viewS,1, . . . , viewS,T).
We require that viewS and viewA are computationally indistinguishable.

3 Subsidiary Cryptosystem and Hardware

We now present the subsidiary cryptosystem and hardware device we will use to
instantiate our main construction. We also define the properties we need from
the subsidiary cryptosystem. We omit the full formal details of the instantiations
of these properties by the subsidiary cryptosystem for lack of space, but direct
the reader back to Section 1.1 for an overview of these properties and how they
are instantiated.

3.1 The Naor-Segev/BHHO Scheme and Secure Hardware

Security is based on the Decisional Diffie-Hellman (DDH) Assumption: Let Gen
be a probabilistic group generator, s.t. G← Gen(1κ) is a group of order q = q(κ).
We will take G to be GF[q], i.e. the field of prime order q (which also supports
addition operations). The DDH assumption for Gen is that the ensembles below
are computationally indistinguishable:

(G, g1, g2, gr
1, g

r
2) : G← Gen(1κ), g1, g2 ∈R G, r ∈R GF[q]

(G, g1, g2, gr1
1 , gr2

2) : G← Gen(1κ), g1, g2 ∈R G, r1, r2 ∈R GF[q]

The cryptosystem has the following algorithms (we take m = 10, this choice is
arbitrary and effects the constant in the fraction of leakage we can tolerate):

74 S. Goldwasser and G.N. Rothblum

• KeyGen(1κ): choose g = (g1, . . . , gm) ∈R Gm and s = (s1, . . . , sm) ∈R GF[q]m.
Define: y =

∏m
i=1 g

si

i . Output pk = (g, y) and sk = s.
• Encrypt(pk, b ∈ {0, 1}): parse pk = (g, y) and choose r ∈R GF[q].
Output: c← (gr

1 , . . . , g
r
m, y

r · gb
1)

• Decrypt(sk, c): parse sk = s and c = (f1, . . . , fm, h). Compute h′ =
∏m

i=1 f
si

i .
Output 1 if h = g1 · h′ and output ⊥ otherwise.

CipherGen Secure Hardware. This device will be used to realize additional
useful properties for the subsidiary cryptosystem. We assume that when this
device is invoked, there is leakage on its input and output, but not on its internal
workings or randomness. The device receives as input a public key and mode
of operation m ∈ {0, rand}. In mode m = 0 it computes and outputs a fresh
encryption of 0, and in mode m = rand it chooses a uniformly random bit
b ∈ {0, 1} and outputs a fresh encryption of b.

3.2 Homomorphic and Leakage-Resilient Properties

Definition 5 (Semantic Security Under λ(·)-Multi-Source Leakage). An
encryption scheme (KeyGen ,Encrypt ,Decrypt) is semantically secure under
multi-source leakage attacks if for every PPTM adversaryA, when we run the game
below, the adversary’s advantage in winning (over 1/2) is negligible:

1. The game chooses a key pair (pk, sk)← KeyGen(1κ), chooses uniformly at
random a bit b ∈R {0, 1}, and generates a ciphertext c← Encrypt(pk, b).

2. The adversary launches a multi-source leakage attack on sk and c, and out-
puts a guess b′ for the value of b:

b′ ← A[λ(κ) : sk, c](pk)

The adversary wins if b′ = b.

Lemma 1. The Naor-Segev cryptosystem, as defined in Section 3.1, is seman-
tically secure under (λ = mq/3)-multi-source leakage.

Definition 6 (Key Refreshing). Anencryption schemesupports key-refreshing
if it has additional algorithms with the following properties:

1. The key refresh procedure Refresh(1κ) outputs a “correlation value” π every
time it is run.

2. The key correlation procedures output new secret and public keys pk′ ←
PKCor (pk, π) and sk′ ← SKCor(sk, π). Here pk′ is a public key correspond-
ing to sk′. We require that even for fixed sk, the new sk′ (as a function of a
randomly chosen π) is uniformly random.

3. The ciphertext correlation procedure transforms an encryption from one key
to the other. I.e. if c′ ← CipherCor (pk, c, π), then Decrypt(sk, c) =
Decrypt(sk′, c′).

4. The key linking procedure outputs a correlation value linking its two input
secret keys. I.e. if π ← KeyLink (sk, sk′), then sk′ = SKCor (sk, π).

Securing Computation against Continuous Leakage 75

5. A correlation-inverter CorInvert such that π−1 ← CorInvert(π) satisfies
that if sk′ = SKCor (sk, π), then sk = SKCor(sk′, π−1). Also for the corre-
sponding public keys pk = PKCor (pk′, π−1).

Definition 7 (λ(·)-Leakage Oblivious Generation). An encryption scheme
(KeyGen ,Encrypt ,Decrypt) supports oblivious generation if there exists a ran-
domized procedure OblivGen such that:

1. OblivGen outputs the encryption of a random bit:

∀b ∈ {0, 1} : Pr
c←OblivGen(pk)

[Decrypt(sk, c) = b] = 1/2

2. The security requirement is that there exists a Simulator S such that for
every bit b1 ∈ {0, 1} and every PPTM adversary A, when we run the game
below, the real and simulated views are indistinguishable:
(a) The game chooses a key pair (pk, sk)← KeyGen(1κ).
(b) In the real view, A launches a λ(κ)-bit multi-source leakage attack:

A[λ(κ) : sk, c0 ← OblivGen(pk), c0](pk)

In the simulated view, the game encrypts bit b1: c1 ← Encrypt(pk, b1),
and we run A with a simulated λ(κ)-multi-source leakage attack:

(A[λ(κ) : sk,⊥, c1](pk),S[λ′(κ) : sk, c1](pk))

I.e., here the leakage attacks on the oblivious generation procedure are
simulated by S. We require that λ′(κ) = O(λ(κ)) (the simulator may get
access to a little more leakage than the adversary).

Definition 8 (λ(·)-Leakage Ciphertext Regeneration). An encryption
scheme (KeyGen ,Encrypt ,Decrypt) supports oblivious generation if it has a pro-
cedure Regen such that:

1. When we run (pk′, sk′, c′) ← Regen(pk, sk, c), it is the case that
Decrypt(sk′, c′) = Decrypt(sk, c).

2. The security requirement is that for every PPTM adversary A that runs for
T repeated regenerations, every bit b ∈ {0, 1} (determining whether the input
ciphertext is an encryption of 0 or 1), the view generated by the adversary
in the game below is indistinguishable.
(a) The game chooses a key pair (pk0, sk0)← KeyGen(1κ) and generates a

ciphertext c0 ← Encrypt(pk, b).
(b) The adversary A launches λ(κ)-bit multi-source leakage attack on T re-

peated regenerations:

A[λ(κ) : sk0, c0, (pk1, sk1, c1)← Regen(pk0, sk0, c0),

sk1, c1, (pk0, c0pk2, sk2, c2)← Regen(pk1, sk1, c1),

. . . ,

skT−1, cT−1, (pkT , skT , cT)←Regen(pkT−1, skT−1, cT−1)](pk0, . . . , pkT)

76 S. Goldwasser and G.N. Rothblum

We further require that the input to each sub-computation in the Regen pro-
cedure depends either on the input secret key or the input ciphertext, but
never on both.

Homomorphic Masked NAND. A homomorphic masked NAND computation is
given three ciphertexts c1, c2, c3 encrypted under the same key and with corre-
sponding plaintexts b1, b2, b3 ∈ {0, 1}, and two plain-text values a1, a2 ∈ {0, 1}.
It should compute homomorphically (without using the secret key) compute a
“blinded” (see below) ciphertext hc that can later be decrypted to retrieve the
value ((a1 ⊕ b1) NAND (a2 ⊕ b2))⊕ b3.

Definition 9 (λ(·)-Leakage Blinded Homomorphic NAND). An encryp-
tion scheme (KeyGen, Encrypt, Decrypt) supports blinded homomorphic masked
NANDs if there exist procedures HomEval and HomDecrypt such that:

1. When take hc ← HomEval (pk, a1, a2, c1, c2, c3), for the secret key sk corre-
sponding to pk w.h.p. it holds that HomDecrypt(sk, hc) = ((a1⊕ b1) NAND
(a2 ⊕ b2))⊕ b3.

2. The result should be “blinded”. There exists a Simulator S such for every
PPTM adversary A, PPTM ciphertext generators G1, G2, G3,5 and plaintext
values a1, a2 ∈ {0, 1}, the real and simulated views in the game below are
indistinguishable:

(a) The game chooses a key pair (pk, sk) ← KeyGen(1κ) and generates ci-
phertexts c1 ← G1(pk), c2 ← G2(pk), c3 ← G3(pk) using random strings
r1, r2, r3 for G1, G2, G3 respectively.

(b) In the real view, the adversary A launches a multi-source leakage attack
on the homomorphic evaluation and decryption:

A[λ(κ) : sk, c3 ← G3(r3),
hc ← HomEval (pk, a1, a2, c1, c2, c3),
a3 ← HomDecrypt(sk, hc)](pk, a1, a2, r1, r2)

In the simulated view, the simulator does not get any access to homo-
morphic evaluation or decryption, but rather gets only the output a3 of
the homomorphic decryption:

(A[λ(κ) : sk, c3 ← G3(r3),⊥,⊥](pk, a1, a2, r1, r2),
S[λ′(κ) : sk, c3 ← G3(r3)](pk, a1, a2, r1, r2, a3))

We require that λ′(κ) = O(λ(κ)).

5 In the security proof for our construction these generation procedures will be the
OblivGen or Regen procedure.

Securing Computation against Continuous Leakage 77

4 A Continuous-Leakage Secure and Compiler

The compiler can be based on any subsidiary cryptosystem with the properties
of Section 3. We refer the reader to Section 1.1 for the construction overview and
preliminaries, and to Section 2.2 for the security definition. The initialization and
evaluation procedures are presented below in Figure 1. The evaluation procedure
is separated into sub-computations (which may themselves be separated into sub-
computations of the cryptographic algorithms). For each such sub-computation
we explicitly note which data elements are computed on (“touched”) in the sub-
computation. We defer the proof of security to the full version.

Initialization InitC(1κ, C, y)

For every input wire i, corresponding to bit j of the input y, generate new keys: (pki, ski)← KeyGen(1κ)
and compute an encryption ci = Encrypt(pki, yj). state0 ← {(pki, ski, ci)}i : i is a y-input wire

Evaluation EvalC(statet−1, xt)

1. Generate keys and ciphertexts for all wires of C except the y-input wires.
For the x input wires, generate fresh keys and encryptions of 0.
Proceed layer-by-layer (from input to output). For each gate g with input wires i and j and output
wire k: (repeat independently for gate g’s second output wire �)
(a) Generate a random correlation value πi,k ← Refresh(1κ). Apply this value to wire i’s keys to get

a new key pair for wire k: pkk ← PKCor(pki, πi,k), skk ← SKCor(ski, πi,k). Derive a correlation
value specifying the correlation between the keys of wires j and k: πj,k ← KeyLink(skk, skj).
Store the keys and correlation values. “Computed on” keys, correlation values

(b) Generate a ciphertext encrypting the share bk for wire k: for internal wires, use the oblivious
generation procedure to generate an encryption of a random bit ck ← OblivGen(pkk).
For the output wire o, generate an encryption co ← Encrypt(pko, 0).
Store the ciphertexts. “Computed on” ciphertexts

2. Compute the value of C(y, xt).
Proceed layer by layer (from input to output). For each gate g with output wire k and input wires
i, j, the previous gate evaluations yield the shares ai, aj ∈ {0, 1} of the gate’s input wires. Compute
an encryption of ak: (do the same independently for gate g’s second output wire �):
(a) First transform the ciphertexts ci and cj to be encryptions under pkk: c′i ←

CipherCor(pki, ci, πi,k) and c′j ← CipherCor(pkj , cj , πj,k). “Computed on” ciphertexts and cor-
relation values.

(b) Run the blinded homomorphic evaluation procedure: hck ← HomEval(pkk, ai, aj , c
′
i, c

′
j , ck).

“Computed on” ciphertexts.
(c) Compute ak ← HomDecrypt(skk, hck). “Computed on” hck and the secret key.
Taking o to be the output wire, the output is output t ← ao.

3. Generate the new state.
For each y-input wire i regenerate wire i’s keys and ciphertext: (pki, ski, ci)← Regen(pki, ski, ci).
The new state is statet ← {(i, pki, ski, ci)}i : i is a y-input wire.

Fig. 1. InitC , performed off-line without side channels, and EvalC , performed on input
xt in the presence of side-channel attacks

Theorem 1. Let (KeyGen ,Encrypt ,Decrypt) be a subsidiary encryption scheme
with security parameter κ and with the properties specified in Definitions 6 (key re-
freshing), 5 (multi-source leakage resilience), 7 (oblivious generation), 8 (leakage
resilience regeneration), and 9 (homomorphic masked NAND), all with

78 S. Goldwasser and G.N. Rothblum

λ = Ω(κ)-leakage resilience.6 Then the (InitC ,EvalC) compiler specified in Figure
1 offers Ω(κ)-leakage security under continuous side-channels as in Definition 4.

References

[AGV09] Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore
bits and cryptography against memory attacks. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

[BHHO08] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure en-
cryption from decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)

[BKKV10] Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Cryptography
resilient to continual memory leakage. Cryptology ePrint Archive, Re-
port 2010/278 (2010)

[Can01] Canetti, R.: Universally composable security: A new paradigm for cryp-
tographic protocols. In: FOCS, pp. 136–145 (2001)

[CG88] Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM J. Comput. 17(2),
230–261 (1988)

[DHLAW10] Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Efficient public-
key cryptography in the presence of key leakage. Cryptology ePrint
Archive, Report 2010/154 (2010)

[DP08] Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: An-
nual IEEE Symposium on Foundations of Computer Science, pp. 293–
302 (2008)

[FKPR09] Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.: Leakage-resilient signa-
tures. Cryptology ePrint Archive, Report 2009/282 (2009),
http://eprint.iacr.org/2009/282

[FRR+09] Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.:
Protecting against computationally bounded and noisy leakage (2009)
(manuscript)

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer,
Heidelberg (2008)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst.
Sci. 28(2), 270–299 (1984)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: STOC,
pp. 218–229 (1987)

[GO96] Goldreich, O., Ostrovsky, R.: Software protection and simulation on
oblivious rams. J. ACM 43(3), 431–473 (1996)

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware
against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 463–481. Springer, Heidelberg (2003)

[JV10] Juma, A., Vahlis, Y.: On protecting cryptographic keys against continual
leakage. Cryptology ePrint Archive, Report 2010/205 (2010)

6 We mean that there exists an explicit constant 0 < c < 1 s.t. we allow leakage of c ·λ
bits.

http://eprint.iacr.org/2009/282

Securing Computation against Continuous Leakage 79

[KJJ99] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg
(1999)

[KV09] Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage
resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
703–720. Springer, Heidelberg (2009)

[MR04] Micali, S., Reyzin, L.: Physically observable cryptography (extended ab-
stract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296.
Springer, Heidelberg (2004)

[NS09] Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer,
Heidelberg (2009)

[Pie09] Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg
(2009)

[RCL] Boston University Reliable Computing Laboratory. Side channel attacks
database, http://www.sidechannelattacks.com

[SYY99] Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for
nc1. In: FOCS (1999)

[Yao82] Yao, A.C.: Theory and application of trapdoor functions. In: Symposium
on Foundations of Computer Science, pp. 80–91 (1982)

http://www.sidechannelattacks.com

An Efficient and Parallel
Gaussian Sampler for Lattices

Chris Peikert�

Georgia Institute of Technology

Abstract. At the heart of many recent lattice-based cryptographic
schemes is a polynomial-time algorithm that, given a ‘high-quality’ basis,
generates a lattice point according to a Gaussian-like distribution. Unlike
most other operations in lattice-based cryptography, however, the known
algorithm for this task (due to Gentry, Peikert, and Vaikuntanathan;
STOC 2008) is rather inefficient, and is inherently sequential.

We present a new Gaussian sampling algorithm for lattices that is
efficient and highly parallelizable. We also show that in most crypto-
graphic applications, the algorithm’s efficiency comes at almost no cost
in asymptotic security. At a high level, our algorithm resembles the “per-
turbation” heuristic proposed as part of NTRUSign (Hoffstein et al., CT-
RSA 2003), though the details are quite different. To our knowledge, this
is the first algorithm and rigorous analysis demonstrating the security of
a perturbation-like technique.

1 Introduction

In recent years, there has been rapid development in the use of lattices for con-
structing rich cryptographic schemes.1 These include digital signatures (both
‘tree-based’ [13] and ‘hash-and-sign’ [8, 6]), identity-based encryption [8] and
hierarchical IBE [6, 1], noninteractive zero knowledge [19], and even a fully ho-
momorphic cryptosystem [7].

The cornerstone of many of these schemes (particularly, but not exclusive to,
those that ‘answer queries’) is the polynomial-time algorithm of [8] that samples
from a so-called discrete Gaussian probability distribution over a lattice Λ. More
precisely, for a vector c ∈ Rn and a “width” parameter s > 0, the distribution
DΛ+c,s assigns a probability proportional to exp(−π‖v‖2/s2) to each v ∈ Λ+ c
(and probability zero elsewhere). Given c, a basis B of Λ, and a sufficiently large
s (related to the ‘quality’ of B), the GPV algorithm outputs a sample from a
� This material is based upon work supported by the National Science Foundation

under Grant CNS-0716786. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

1 A lattice Λ ⊂ R
n is a periodic ‘grid’ of points, or more formally, a discrete subgroup

of R
n under addition. It is generated by a (not necessarily unique) basis B ⊂ R

n×k of
k linearly independent vectors, as Λ = {Bz : z ∈ Z

k}. In this paper we are concerned
only with full-rank lattices, i.e., where k = n.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 80–97, 2010.
c© International Association for Cryptologic Research 2010

An Efficient and Parallel Gaussian Sampler for Lattices 81

distribution statistically close to DΛ+c,s. (Equivalently, by subtracting c from
the output, it samples a lattice point from a Gaussian distribution centered
at −c.) Informally speaking, the sampling algorithm is ‘zero-knowledge’ in the
sense that it leaks no information about its input basis B (aside from a bound
on its quality), because DΛ+c,s is defined without reference to any particular
basis. This zero-knowledge property accounts for its broad utility in lattice-based
cryptography.

While the sampling algorithm of [8] has numerous applications in cryptogra-
phy and beyond, for both practical and theoretical purposes it also has some
drawbacks:

– First, it is rather inefficient : on an n-dimensional lattice, a straightforward
implementation requires exact arithmetic on an n× n matrix having Ω(n)-
bit entries (even ignoring some additional logn factors). While approximate
arithmetic and other optimizations may be possible in certain cases, great
care would be needed to maintain the proper output distribution, and the
algorithm’s essential structure appears difficult to make truly practical.

– Second, it is inherently sequential : to generate a sample, the algorithm per-
forms n adaptive iterations, where the choices made in each iteration affect
the values used in the next. This stands in stark contrast to other ‘embarrass-
ingly parallelizable’ operations that are typical of lattice-based cryptography.

1.1 Contributions

We present a new algorithm that samples from a discrete Gaussian distribution
DΛ+c,s over a lattice, given a ‘high-quality’ basis for Λ. The algorithm is espe-
cially well-suited to ‘q-ary’ integer lattices, i.e., sublattices of Z

n that themselves
contain qZn as a sublattice, for some known and typically small q ≥ 2. These in-
clude NTRU lattices [10] and the family of random lattices that enjoy ‘worst-case
hardness,’ as first demonstrated by Ajtai [3]. Most modern lattice-based crypto-
graphic schemes (including those that rely on Gaussian sampling) are designed
around q-ary lattices, so they are a natural target for optimization.

The key features of our algorithm, as specialized to n-dimensional q-ary lat-
tices, are as follows. It is:

– Offline / online: when the lattice basis is known in advance of the point c
(which is the norm in cryptographic applications), most of the work can be
performed as offline precomputation. In fact, the offline phase may be viewed
simply as an extension of the application’s key-generation algorithm.

– Simple and efficient : the online phase involves only O(n2) integer additions
and multiplications modulo q or q2, where the O-notation hides a small
constant ≈ 4.

– Fully parallelizable: for any P up to n2, the online phase can allocateO(n2/P)
of its operations to each of P processors.

– High-quality: for random bases that are commonly used in cryptographic
schemes, our algorithm can sample from a Gaussian of essentially the same

82 C. Peikert

‘quality’ as the prior GPV algorithm; this is important for the concrete se-
curity of applications. See Section 1.2 below for a full discussion.

We emphasize that for a practical implementation, parallelized operations on
small integers represent a significant performance advantage. Most modern com-
puter processors have built-in support for “vector” instructions (also known as
“single instruction, multiple data”), which perform simple operations on entire
vectors of small data elements simultaneously. Our algorithm can exploit these
operations very naturally. For a detailed efficiency comparison between our al-
gorithm and that of [8], see Section 1.2 below.

At a very high level, our algorithm resembles the “perturbation” heuristic pro-
posed for the NTRUSign signature scheme [9], but the details differ significantly;
see Section 1.3 for a comparison. To our knowledge, this is the first algorithm
and analysis to demonstrate the theoretical soundness of a perturbation-like
technique. Finally, the analysis of our algorithm relies on some new general facts
about ‘convolutions’ of discrete Gaussians, which we expect will be applicable
elsewhere. For example, these facts allow for the use of a clean discrete Gaus-
sian error distribution (rather than a ‘rounded’ Gaussian) in the “learning with
errors” problem [20], which may be useful in certain applications.

1.2 Comparison with the GPV Algorithm

Here we give a detailed comparison of our new sampling algorithm to the previous
one of [8]. The two main points of comparison are the width (‘quality’) of the
sampled Gaussian, and the algorithmic efficiency.

Gaussian Width. One of the important properties of a discrete Gaussian
sampling algorithm is the width s of the distribution it generates, as a function
of the input basis. In cryptographic applications, the width is the main quantity
governing the concrete security and, if applicable, the approximation factor of the
underlying worst-case lattice problems. This is because in order for the scheme
to be secure, it must hard for an adversary to find a lattice point within the
likely radius s

√
n of the Gaussian (i.e., after truncating its negligibly likely tail).

The wider the distribution, the more leeway the adversary has in an attack, and
the larger the scheme’s parameters must be to compensate. On the other hand,
a more efficient sampling algorithm can potentially allow for the use of larger
parameters without sacrificing performance.

The prior sampling algorithm of [8], given a lattice basis B = {b1, . . . ,bn},
can sample from a discrete Gaussian having width as small as ‖B̃‖ = maxi‖b̃i‖,
where B̃ denotes the Gram-Schmidt orthogonalization of B.2 (Actually, the
width also includes a small ω(

√
logn) factor, which is also present in our new

algorithm, so for simplicity we ignore it in this summary.) As a point of compar-
ison, ‖B̃‖ is always at most maxi‖bi‖, and in some cases it can be substantially
smaller.
2 In the Gram-Schmidt orthogonalization B̃ of B, the vector b̃i is the projection of

bi orthogonally to span(b1, . . . ,bi−1).

An Efficient and Parallel Gaussian Sampler for Lattices 83

In contrast, our new algorithm works for a width s as small as the largest
singular value s1(B) of the basis B, or equivalently, the square root of the largest
eigenvalue of the Gram matrix BBt. It is easy to show that s1(B) is always at
least maxi‖bi‖, so our new algorithm cannot sample from a narrower Gaussian
than the GPV algorithm can. At the same time, any basis B can always be
efficiently processed (without increasing ‖B̃‖) to guarantee that s1(B) ≤ n ·‖B̃‖,
so our algorithm is at worst an n factor looser than that of [8].

While a factor of n gap between the two algorithms may seem rather large,
in cryptographic applications this worst-case ratio is actually immaterial; what
matters is the relative performance on the random bases that are used as secret
keys. Here the situation is much more favorable. First, we consider the basis-
generation algorithms of [4] (following [2]) for ‘worst-case-hard’ q-ary lattices,
which are used in most theoretically sound cryptographic applications. We show
that with a minor modification, one of the algorithms from [4] outputs (with
overwhelming probability) a basis B for which s1(B) is only an O(

√
log q) factor

larger than ‖B̃‖ (which itself is asymptotically optimal, as shown in [4]). Because
q is typically a small polynomial in n, this amounts to a cost of only an O(

√
logn)

factor in the width of the Gaussian. Similarly, when the vectors of B are them-
selves drawn from a discrete Gaussian, as in the basis-delegation technique of [6],
we can show that s1(B) is only a ω(

√
logn) factor larger than ‖B̃‖ (with over-

whelming probability). Therefore, in cryptographic applications the performance
improvements of our algorithm can come at almost no asymptotic cost in secu-
rity. Of course, a concrete evaluation of the performance/security trade-off for
real-world parameters would require careful analysis and experiments, which we
leave for later work.

Efficiency. We now compare the efficiency of the two known sampling algo-
rithms. We focus on the most common case of q-ary n-dimensional integer lat-
tices, where a ‘good’ lattice basis (whose vectors having length much less than
q) is initially given in an offline phase, followed by an online phase in which a
desired center c ∈ Zn is given. This scenario allows for certain optimizations in
both algorithms, which we include for a fair comparison.

The sampling algorithm from [8] can use the offline phase to compute the
Gram-Schmidt orthogonalization of its given basis; this requires Ω(n4 log2 q) bit
operations and Ω(n3) bits of intermediate storage. The online phase performs
n sequential iterations, each of which computes an inner product between a
Gram-Schmidt vector having Ω(n)-bit entries, and an integer vector whose en-
tries have magnitude at most q. In total, these operations require Ω(n3 log q) bit
operations. In addition, each iteration performs a certain randomized-rounding
operation, which, while asymptotically poly(log n)-time, is not especially prac-
tical (nor precomputable) because it uses rejection sampling on a value that is
not known until the online phase. Lastly, while the work within each iteration
may be parallelized, the iterations themselves must be performed sequentially.

Our algorithm is more efficient and practical in the running time of both
phases, and in the amount of intermediate storage between phases. The offline
phase first computes a matrix inverse modulo q2, and a ‘square root’ of a matrix

84 C. Peikert

whose entries have magnitude at most q; these can be computed in O(n3 log2 q)
bit operations. Next, it generates and stores one or more short integer ‘perturba-
tion’ vectors (one per future call to the online phase), and optionally discards the
matrix square root. The intermediate storage is therefore as small as O(n2 log q)
bits for the matrix inverse, plus O(n log q) bits per perturbation vector. Option-
ally, the offline phase can also precompute the randomized-rounding operations,
due to the small number of possibilities that can occur online. The online phase
simply computes about 4n2 integer additions and multiplications (2n2 of each)
modulo q or q2, which can be fully parallelized among up to n2 processors.

Lastly, we mention that our sampling algorithm translates very naturally to
the setting of compact q-ary lattices and bases over certain rings R that are
larger than Z, where security is based on the worst-case hardness of ideal lattices
in R (see, e.g., [16, 21, 14]). In contrast to GPV, our algorithm can directly take
advantage of the ring structure for further efficiency, yielding a savings of an
Ω̃(n) factor in the computation times and intermediate storage.

1.3 Overview of the Algorithm

The GPV sampling algorithm [8] is based closely on Babai’s “nearest-plane”
decoding algorithm for lattices [5]. Babai’s algorithm takes a point c ∈ Rn and
a lattice basis B = {b1, . . . ,bn}, and for i = n, . . . , 1 computes a coefficient
zi ∈ Z for bi by iteratively projecting (‘rounding’) c orthogonally to the nearest
hyperplane of the form zibi+span(b1, . . . ,bi−1). The output is the lattice vector∑

i zibi, whose distance from the original c can be bounded by the quality of B.
The GPV algorithm, whose goal is instead to sample from a discrete Gaussian
centered at c, uses randomized rounding in each iteration to select a ‘nearby’
plane, under a carefully defined probability distribution. (This technique is also
related to another randomized-rounding algorithm of Klein [11] for a different
decoding problem.)

In addition to his nearest-plane algorithm, Babai also proposed a simpler (but
somewhat looser) lattice decoding algorithm, which we call “simple rounding.”
In this algorithm, a given point c ∈ Rn is rounded to the lattice point B�B−1c�,
where each coordinate of B−1c ∈ Rn is independently rounded to its nearest
integer. With precomputation of B−1, this algorithm can be quite practical
— especially on q-ary lattices, where several more optimizations are possible.
Moreover, it is trivially parallelized among up to n2 processors. Unfortunately, its
deterministic form it turns out to be completely insecure for ‘answering queries’
(e.g., digital signatures), as demonstrated by Nguyen and Regev [18].

A natural question, given the approach of [8], is whether a randomized vari-
ant of Babai’s simple-rounding algorithm is secure. Specifically, the natural way
of randomizing the algorithm is to round each coordinate of B−1c to a nearby
integer (under a discrete Gaussian distribution over Z, which can be sampled
efficiently), then left-multiply by B as before. Unlike with the randomized nearest-
plane algorithm, though, the resulting probability distribution here is unfortu-
nately not spherical, nor does it leak zero knowledge. Instead, it is a ‘skewed’
(elliptical) Gaussian, where the skew mirrors the ‘geometry’ of the basis. More

An Efficient and Parallel Gaussian Sampler for Lattices 85

precisely, the covariance matrix Ex[(x−c)(x−c)t] of the distribution (about its
center c) is approximately BBt, which captures the entire geometry of the basis
B, up to rigid rotation. Because covariance can be measured efficiently from only
a small number of samples, the randomized simple-rounding algorithm leaks this
geometry.3

Our solution prevents such leakage, in a manner inspired by the following
facts. Recall that if X and Y are two independent random variables, the prob-
ability distribution of their sum X + Y is the convolution of their individual
distributions. In addition, for continuous (not necessarily spherical) Gaussians,
covariance matrices are additive under convolution. In particular, if Σ1 and Σ2
are covariance matrices such that Σ1 + Σ2 = s2I, then the convolution of two
Gaussians with covariance matrices Σ1, Σ2 (respectively) is a spherical Gaussian
with standard deviation s.

The above facts give the basic idea for our algorithm, which is to convolve
the output of the randomized simple-rounding algorithm with a suitable non-
spherical (continuous) Gaussian, yielding a spherically distributed output. How-
ever, note that we want the algorithm to generate a discrete distribution —
i.e., it must output a lattice point — so we should not alter the output of the
randomized-rounding step. Instead, we first perturb the desired center c by a
suitable non-spherical Gaussian, then apply randomized rounding to the result-
ing perturbed point. Strictly speaking this is not a true convolution, because
the rounding step depends on the output of the perturbation step, but we can
reduce the analysis to a true convolution using bounds related to the “smoothing
parameter” of the lattice [17].

The main remaining question is: for a given covariance matrix Σ1 = BBt

(corresponding to the rounding step), for what values of s is there an efficiently
sampleable Gaussian having covariance matrix Σ2 = s2I− Σ1? The covariance
matrix of any (non-degenerate) Gaussian is symmetric positive definite, i.e., all
its eigenvalues are positive. Conversely, every positive definite matrix is the co-
variance of some Gaussian, which can sampled efficiently by computing a ‘square
root’ of the covariance matrix. Since any eigenvector of Σ1 (with eigenvalue
σ2 > 0) is also an eigenvector of s2I (with eigenvalue s2), it must be an eigenvec-
tor of Σ2 (with eigenvalue s2− σ2) as well. Therefore, a necessary and sufficient
condition is that all the eigenvalues of Σ1 be less than s2. Equivalently, the algo-
rithm works for any s that exceeds the largest singular value of the given basis
B. More generally, it can sample any (possibly non-spherical) discrete Gaussian
with covariance matrix Σ > Σ1 (i.e., Σ −Σ1 is positive definite).

3 Given the above, one might still wonder whether the covariance BBt could be sim-
ulated efficiently (without any privileged knowledge about the lattice) when B is
itself drawn from a ‘nice’ distribution, such as a discrete Gaussian. Indeed, if the
vectors of B were drawn independently from a continuous Gaussian, the matrix BBt

would have the so-called Wishart distribution, which can be generated ‘obliviously’
(without knowledge of B itself) using the Bartlett decomposition. (See, e.g., [12] and
references therein). Unfortunately, these facts do not quite seem to carry over to
discrete Gaussians, though they may be useful in another cryptographic context.

86 C. Peikert

In retrospect, the high-level structure of our algorithm resembles the “per-
turbation” heuristic proposed for NTRUSign [9], though the details are quite
different. First, the perturbation and rounding steps in NTRUSign are both de-
terministic with respect to two or more bases, and there is evidence that this is
insecure [15], at least for a large polynomial number of signatures. Interestingly,
randomization also allows for improved efficiency, since our perturbations can
be chosen with offline precomputation (as opposed to the deterministic method
of [9], which is inherently online). Second, the signing and perturbation bases
used in NTRUSign are chosen independently, whereas our perturbations are
carefully chosen to conceal the statistics that would otherwise be leaked by ran-
domized rounding.

2 Preliminaries

2.1 Notation

For a countable set X and a real-valued function f , we write f(X) to de-
note

∑
x∈X f(x). A nonnegative function f : N → R is called negligible, written

f(n) = negl(n), if it vanishes faster than any inverse polynomial, i.e., f(n) =
o(n−c) for every constant c ≥ 0. A function g : N → [0, 1] is called overwhelm-
ing if it is 1 − negl(n). The statistical distance between two distributions X
and Y (or two random variables have those distributions, respectively) is de-
fined as Δ(X,Y) = supA⊆D|X(A)− Y (A)|. When D is a countable set, we have
Δ(X,Y) = 1

2

∑
d∈D|X(d)− Y (d)|.

We use bold lower-case letters (e.g., x) to denote vectors in Rn, for an undeter-
mined positive integer dimension n that remains the same throughout the paper.
We use bold upper-case letters (e.g., B) for ordered sets of vectors, and iden-
tify the set with the matrix having the vectors as its columns. We frequently use
upper-case Greek letters such as Σ to denote (symmetric) positive (semi)definite
matrices, defined below. In contexts where a matrix is expected, we sometimes
use a scalar s ∈ R to denote s · I, where I is the identity matrix of appropriate
dimension. We let ‖B‖ = maxi‖bi‖, where ‖·‖ denotes the Euclidean norm.

2.2 Linear Algebra

A symmetric matrix Σ ∈ Rn×n is positive definite, written Σ > 0, if xtΣx > 0
for all nonzero x ∈ Rn. Equivalently, its spectral decomposition is

Σ = QD2Q−1 = QD2Qt,

where Q ∈ Rn×n is an orthogonal matrix (i.e., one for which QtQ = QQt = I)
whose columns are eigenvectors of Σ, and D is the real diagonal matrix of the
square roots of the corresponding eigenvalues, all of which are positive. We have
Σ > 0 if and only if Σ−1 > 0. We say that Σ is positive semidefinite, written
Σ ≥ 0, if xtΣx ≥ 0 for all x ∈ Rn; such a matrix may not be invertible. Positive
(semi)definiteness defines a partial ordering on symmetric matrices: we say that

An Efficient and Parallel Gaussian Sampler for Lattices 87

Σ1 > Σ2 if (Σ1 − Σ2) > 0, and likewise for Σ1 ≥ Σ2. It is the case that
Σ1 ≥ Σ2 > 0 if and only if Σ−1

2 ≥ Σ−1
1 > 0, and likewise for the analogous

strict inequalities.
For any nonsingular matrix B ∈ Rn×n, the symmetric matrix Σ = BBt is

positive definite, because

xtΣx = 〈Btx,Btx〉 = ‖Btx‖2 > 0

for nonzero x ∈ Rn. We say that B is a square root of Σ > 0, written B =
√
Σ,

if BBt = Σ. Every Σ > 0 has a square root B = QD, where Σ = QD2Qt is the
spectral decomposition of Σ as above. Moreover, the square root is unique up to
right-multiplication by an orthogonal matrix, i.e., B′ =

√
Σ if and only if B′ =

BP for some orthogonal matrix P. A square root of particular interest is given
by the Cholesky decomposition Σ = LLt, where L is a (unique) lower-triangular
matrix. GivenΣ, its Cholesky decomposition can be computed efficiently in fewer
than n3 multiplication and addition operations (on real numbers of sufficient
precision).

For a nonsingular matrix B, a singular value decomposition is B = QDPt,
where Q,P ∈ Rn×n are orthogonal matrices, and D is a diagonal matrix with
positive entries si > 0 (called the singular values) on the diagonal, in non-
increasing order. Under this convention, D is uniquely determined, and s1(B) =
maxu‖Bu‖ = maxu‖Btu‖, where the maximum is taken over all unit vectors
u ∈ Rn. Note that

Σ = BBt = QDPtPDtQt = QD2Qt,

so the eigenvalues of Σ are the squares of the singular values of B.

2.3 Gaussians

The n-dimensional Gaussian function ρ : Rn → (0, 1] is defined as

ρ(x) Δ= exp(−π · ‖x‖2) = exp(−π · 〈x,x〉).
Applying a linear transformation given by a nonsingular matrix B yields the
Gaussian function

ρB(x) Δ= ρ(B−1x) = exp
(−π · 〈B−1x,B−1x

〉)
= exp

(−π · xtΣ−1x
)
,

where Σ = BBt > 0. Because ρB is distinguished only up to Σ, we usually refer
to it as ρ√Σ .

Normalizing ρ√Σ by its total measure
∫

Rn ρ√Σ(x) dx =
√

detΣ over Rn, we
obtain the probability distribution function of the (continuous) Gaussian distri-
bution D√

Σ . It is easy to check that a random variable x having distribution
D√

Σ can be written as
√
Σ · z, where z has spherical Gaussian distribution D1.

Therefore, the random variable x has covariance

E
x∼D√

Σ

[
x · xt

]
=
√
Σ · E

z∼D1

[
z · zt

] · √Σt
=
√
Σ · I

2π
·
√
Σ

t
=

Σ

2π
,

88 C. Peikert

by linearity of expectation. (The I
2π covariance of z ∼ D1 arises from the inde-

pendence of its entries, which are each distributed as D1 in one dimension, and
have variance 1

2π .) For convenience, in this paper we implicitly scale all covariance
matrices by a 2π factor, and refer to Σ as the covariance matrix of D√

Σ.
The following standard fact, which will be central to the analysis of our sam-

pling algorithms, characterizes the product of two Gaussian functions.

Fact 1. Let Σ1, Σ2 > 0 be positive definite matrices, let Σ0 = Σ1 +Σ2 > 0 and
Σ−1

3 = Σ−1
1 +Σ−1

2 > 0, let x, c1, c2 ∈ Rn be arbitrary, and let c3 ∈ Rn be such
that Σ−1

3 c3 = Σ−1
1 c1 +Σ−1

2 c2. Then

ρ√Σ1
(x− c1) · ρ√Σ2

(x− c2) = ρ√Σ0
(c1 − c2) · ρ√Σ3

(x − c3).

2.4 Gaussians on Lattices

A lattice Λ is a discrete additive subgroup of Rn. In this work we are only concerned
with full-rank lattices, which are generated by some nonsingular basis B ∈ Rn×n,
as the set Λ = B · Zn = {Bz : z ∈ Zn}. When n ≥ 2, every lattice has infinitely
many bases, which are related by unimodular transformations: B′ and B generate
the same lattice if and only if B′ = BU for some unimodular U ∈ Z

n×n. The dual
lattice of Λ is defined as Λ∗ = {w ∈ Rn : 〈x,w〉 ∈ Z ∀ x ∈ Λ}. (We only need this
notion for defining the smoothing parameter of a lattice; see below.)

Let Λ ⊂ Rn be a lattice, let c ∈ Rn, and let Σ > 0 be a positive definite matrix.
The discrete Gaussian distribution DΛ+c,

√
Σ is simply the Gaussian distribution

restricted so that its support is the coset Λ+ c. That is, for all x ∈ Λ+ c,

DΛ+c,
√

Σ(x) =
ρ√Σ(x)

ρ√Σ(Λ+ c)
∝ ρ√Σ(x).

We recall the definition of the smoothing parameter from [17].

Definition 1. For a lattice Λ and positive real ε > 0, the smoothing parameter
ηε(Λ) is the smallest real s > 0 such that ρ1/s(Λ∗\{0}) ≤ ε.

Observe that if Λ1 is a sublattice of a lattice Λ0, then ηε(Λ1) ≥ ηε(Λ0) for any
ε > 0, because Λ∗

0 ⊆ Λ∗
1 and hence ρ1/s(Λ∗

0 \ {0}) ≤ ρ1/s(Λ∗
1 \ {0}) by positivity

of ρ1/s.
Note that the smoothing parameter as defined above is a scalar; in this work

we need to extend the notion to positive definite matrices.

Definition 2. Let Σ > 0 be any positive definite matrix. We say that
√
Σ ≥

ηε(Λ) if ρ√Σ−1(Λ∗\{0}) = ρ(
√
Σ · Λ∗\{0}) ≤ ε, i.e., if ηε(

√
Σ−1 · Λ) ≤ 1.

Lemma 1 (Corollary of [17, Lemma 4.4]). Let Λ be any n-dimensional
lattice. For any ε ∈ (0, 1), Σ > 0 such that

√
Σ ≥ ηε(Λ), and any c ∈ Rn,

ρ√Σ(Λ+ c) ∈ [1−ε
1+ε , 1] · ρ√Σ(Λ).

Proof. Follows directly by applying
√
Σ−1 as a linear transform to Λ, and by

ηε(
√
Σ−1 · Λ) ≤ 1.

An Efficient and Parallel Gaussian Sampler for Lattices 89

Lemma 2 (Special case of [17, Lemma 3.3]). For any ε > 0,

ηε(Zn) ≤
√

ln(2n(1 + 1/ε))/π.

In particular, for any ω(
√

logn) function, there is a negligible ε = ε(n) such that
ηε(Zn) ≤ ω(

√
logn).

3 Analysis of ‘Convolved’ Discrete Gaussians

In this section we prove some general facts about ‘convolutions’ of (possibly
non-spherical) discrete Gaussian distributions, which are important for the con-
ception and analysis of our sampling algorithm; we expect these facts to have
other applications as well. (Strictly speaking, the probabilistic experiments that
we analyze are not true convolutions, because we are adding random variables
that are not formally independent. However, the spirit of the experiment and its
outcome are entirely ‘convolution-like.’)

Because the proof of the theorem is rather technical, the reader who is inter-
ested in applications may wish to skip ahead to the next section after under-
standing the theorem statement.

Theorem 1. Let Σ1, Σ2 > 0 be positive definite matrices, with Σ = Σ1+Σ2 > 0
and Σ−1

3 = Σ−1
1 +Σ−2

2 > 0. Let Λ1, Λ2 be lattices such that
√
Σ1 ≥ ηε(Λ1) and√

Σ3 ≥ ηε(Λ2) for some positive ε ≤ 1/2, and let c1, c2 ∈ Rn be arbitrary.
Consider the following probabilistic experiment:

Choose x2 ← DΛ2+c2,
√

Σ2
, then choose x1 ← x2 +DΛ1+c1−x2,

√
Σ1

.

The marginal distribution of x1 is within statistical distance 8ε of DΛ1+c1,
√

Σ.
In addition, for any x̄1 ∈ Λ1 + c1, the conditional distribution of x2 ∈ Λ2 + c2
given x1 = x̄1 is within statistical distance 2ε of c3 + DΛ2+c2−c3,

√
Σ3

, where
Σ−1

3 c3 = Σ−1
1 x̄1.

If x2 is instead chosen from the continuous Gaussian distribution D√
Σ2

over
R

n, the marginal distribution of x1 is as above, and the conditional distribution of
x2 ∈ Rn given x1 = x̄1 ∈ Λ1 + c1 is within statistical distance 2ε of c3 + D√

Σ3
.

(In this setting, the lattice Λ2 and the hypothesis
√
Σ3 ≥ ηε(Λ2) are unneeded.)

Proof. We start by analyzing the joint distribution of x1 ∈ Λ1 + c1 and x2 ∈
Λ2+c2. Let x̄1 ∈ Λ1+c1 and x̄2 ∈ Λ2+c2 be arbitrary, and let Σ−1

3 c3 = Σ−1
1 x̄1.

Then we have

Pr[x1 = x̄1 ∧ x2 = x̄2]
= DΛ1+c1−x̄2,

√
Σ1

(x̄1 − x̄2) ·DΛ2+c2,
√

Σ2
(x̄2) (1)

=
ρ√Σ1

(x̄2 − x̄1) · ρ√Σ2
(x̄2)

ρ√Σ1
(Λ1 + c1 − x̄2) · ρ√Σ2

(Λ2 + c2)
(2)

∝ ρ√Σ(x̄1) · ρ√Σ3
(x̄2 − c3)

ρ√Σ1
(Λ1 + c1 − x̄2)

. (3)

90 C. Peikert

Equation (1) is by construction; Equation (2) is by definition of DΛ+c and by
symmetry of ρ√Σ1

; Equation (3) is by Fact 1. (The ρ√Σ2
(Λ2 + c2) term in the

denominator of (2) is the same for all x̄1, x̄2, so we can treat it as a constant of
proportionality.)

We now analyze the marginal distribution of x1. For any x̄1 ∈ Λ1 + c1, let
Σ−1

3 c3 = Σ−1
1 x̄1 as above; then we have

Pr[x1 = x̄1]

=
∑

x̄2∈Λ2+c2

Pr[x1 = x̄1 ∧ x2 = x̄2] (by construction)

∝ ρ√Σ(x̄1) ·
∑

x̄2∈Λ2+c2

ρ√Σ3
(x̄2 − c3)

ρ√Σ1
(Λ1 + c1 − x̄2)

(Equation (3))

∈ ρ√Σ(x̄1) · [1, 1+ε
1−ε] ·

ρ√Σ3
(Λ2 + c2 − c3)
ρ√Σ1

(Λ1)
(
√
Σ1 ≥ ηε(Λ1), Lemma 1)

⊆ ρ√Σ(x̄1) · [1−ε
1+ε ,

1+ε
1−ε] ·

ρ√Σ3
(Λ2)

ρ√Σ1
(Λ1)

(
√
Σ3 ≥ ηε(Λ2), Lemma 1)

∝ ρ√Σ(x̄1) · [1−ε
1+ε ,

1+ε
1−ε].

It follows that

Pr [x1 = x̄1] ∈ [(1−ε
1+ε)

2, (1+ε
1−ε)

2]· ρ√Σ(x̄1)
ρ√Σ(Λ1 + c1)

⊆ [1−16ε, 1+16ε]·DΛ1+c1,
√

Σ(x̄1),

because ε ≤ 1/2. The claim on the marginal distribution of x1 follows by defini-
tion of statistical distance.

When x2 is chosen from the continuous Gaussian D√
Σ2

, the analysis is almost
identical: we simply replace the summation over x̄2 ∈ Λ2 + c2 with integration
over x̄2 ∈ Rn. Because

∫
x̄2
ρ√Σ3

(x̄2 − c3) dx̄2 =
√

detΣ3 is independent of c3,
there is no need to invoke Lemma 1 a second time.

The analysis of the conditional distribution of x2 ∈ Λ2+c2 proceeds similarly;
due to space restrictions, we omit here it an refer the reader to the full version.

4 Discrete Gaussian Sampling Algorithms

In this section we define and analyze some new discrete Gaussian sampling al-
gorithms. We start in Section 4.1 by defining and analyzing some important
randomized-rounding subroutines. In Section 4.2 we describe a general-purpose
(but unoptimized) sampling algorithm, then in Section 4.3 we describe a highly
optimized sampling algorithm for q-ary lattices.

4.1 Randomized Rounding

We first need to define and analyze some simple ‘randomized-rounding’ opera-
tions from the reals to lattices, which are an important component of our sam-
pling algorithms.

An Efficient and Parallel Gaussian Sampler for Lattices 91

We start with a basic rounding operation from R to the integers Z, denoted
�v�r for v ∈ R and some positive real ‘rounding parameter’ r > 0. The output
of this operation is a random variable over Z having distribution v + DZ−v,r.
Observe that for any integer z ∈ Z, the random variables �z + v�r and z+�v�r are
identically distributed; therefore, we sometimes assume that v ∈ [0, 1) without
loss of generality. We extend the rounding operation coordinate-wise to vectors
v ∈ Rn, where each entry is rounded independently. It follows that for any
v ∈ Rn and z̄ ∈ Zn,

Pr [�v�r = z̄] ∝
∏
i∈[n]

ρr(z̄i − vi) = exp(−π‖z̄− v‖2/r2) = ρr(z̄− v).

That is, �v�r has distribution v +DZn−v,r, because the standard basis for Zn is
orthonormal.

The next lemma characterizes the distribution obtained by randomized round-
ing to an arbitrary lattice, using an arbitrary (possibly non-orthonormal) basis.

Lemma 3. Let B be a basis of a lattice Λ = L(B), let Σ = r2 ·BBt for some
real r > 0, and let t ∈ Rn be arbitrary. The random variable x = t−B�B−1t�r
has distribution DΛ+t,

√
Σ.

Proof. Let v = B−1t. The support of �v�r is Zn, so the support of x is t−B·Zn =
Λ + t. Now for any x̄ = t − Bz̄ where z̄ ∈ Zn, we have x = x̄ if and only if
�v�r = z̄. As desired, this event occurs with probability proportional to

ρr(z̄− v) = ρr(B−1(t− x̄)−B−1t) = ρr(−B−1x̄) = ρrB(x̄) = ρ√Σ(x̄).

Efficient rounding. In [8] it is shown how to sample from DZ−v,r for any v ∈ R

and r > 0, by rejection sampling. While the algorithm requires only poly(logn)
iterations before terminating, its concrete running time and randomness com-
plexity are not entirely suitable for practical implementations.

In this work, we can sample from v+DZ−v,r more efficiently because r is always
fixed, known in advance, and relatively small (about

√
logn). Specifically, given r

and v ∈ R we can (pre)compute a compact table of the approximate cumulative
distribution function of �v�r, i.e., the probabilities

pz̄ := Pr[v + DZ−v,r ≤ z̄]

for each z̄ ∈ Z in an interval [v − r · ω(
√

logn), v + r · ω(
√

logn)]. (Outside of
that interval are the tails of the distribution, which carry negligible probability
mass.) Then we can sample directly from v + DZ−v,r by choosing a uniformly
random x ∈ [0, 1) and performing a binary search through the table for the
z̄ ∈ Z such that x ∈ [pz̄−1, pz̄). Moreover, the bits of x may be chosen ‘lazily,’
from most- to least-significant, until z̄ is determined uniquely. To sample within
a negl(n) statistical distance of the desired distribution, these operations can all
be implemented in time poly(logn).

92 C. Peikert

4.2 Generic Sampling Algorithm

Here we apply Theorem 1 to sample from a discrete Gaussian of any sufficiently
large covariance, given a good enough basis of the lattice. This procedure, de-
scribed in Algorithm 1, serves mainly as a ‘proof of concept’ and a warm-up for
our main algorithm on q-ary lattices. As such, it is not optimized for runtime
efficiency (because it uses arbitrary-precision real operations), though it is still
fully parallelizable and offline/online.

Algorithm 1. Generic algorithm SampleD(B1, r, Σ, c) for sampling from a dis-
crete Gaussian distribution.
Input:

Offline phase: Basis B1 of a lattice Λ = L(B1), rounding parameter r = ω(
√

log n),
and positive definite covariance matrix Σ > Σ1 = r2 ·B1B

t
1.

Online phase: a vector c ∈ R
n.

Output: A vector x ∈ Λ + c drawn from a distribution within negl(n) statistical
distance of DΛ+c,

√
Σ .

Offline phase:
1: Let Σ2 = Σ −Σ1 > 0, and compute some B2 =

√
Σ2.

2: Before each call to the online phase, choose a fresh x2 ← D√
Σ2

, as x2 ← B2 ·D1.
Online phase:

3: return x← c−B1�B−1
1 (c− x2)�r.

Theorem 2. Algorithm 1 is correct, and for any P ∈ [1, n2], its online phase
can be executed in parallel by P processors that each perform O(n2/P) operations
on real numbers (of sufficiently high precision).

Proof. We first show correctness. Let Σ,Σ1, Σ2 be as in Algorithm 1. The output
x is distributed as

x = x2 + (c− x2)−B1
⌊
B−1

1 (c− x2)
⌉
r
,

where x2 has distribution D√
Σ2

. By Lemma 3 with t = (c− x2), we see that x
has distribution x2 +DΛ+c−x2,

√
Σ1

. Now because Λ = L(B1) = B1 ·Zn, we have√
Σ1 = rB1 ≥ ηε(Λ) for some negligible ε = ε(n), by Definition 2 and Lemma 2.

Therefore, by the second part of Theorem 1, x has distribution within negl(n)
statistical distance of DΛ+c,

√
Σ .

To parallelize the algorithm, simply observe that B−1
1 can be precomputed in

the offline phase, and that the matrix-vector products and randomized rounding
can all be executed in parallel on P processors in the natural way.

4.3 Efficient Sampling Algorithm for q-ary Lattices

Algorithm 2 is an optimized sampling algorithm for q-ary (integral) lattices Λ,
i.e., lattices for which qZn ⊆ Λ ⊆ Z

n for some positive integer q. These include

An Efficient and Parallel Gaussian Sampler for Lattices 93

Algorithm 2. Efficient algorithm SampleD(B1, r, Σ, c) for sampling a discrete
Gaussian over a q-ary lattice.
Input:

Offline phase: Basis B1 of a q-ary integer lattice Λ = L(B1), rounding parameter
r = ω(

√
log n), and positive definite covariance matrix Σ ≥ r2 · (4B1B

t
1 + I).

Online phase: a vector c ∈ Z
n.

Output: A vector x ∈ Λ + c drawn from a distribution within negl(n) statistical
distance of DΛ+c,

√
Σ .

Offline phase:
1: Compute Z = q ·B−1

1 ∈ Z
n×n.

2: Let Σ1 = 2r2 · B1B
t
1, let Σ2 = Σ − Σ1 ≥ r2 · (2B1B

t
1 + I), and compute some

B2 =
√

Σ2 − r2.
3: Before each call to the online phase, choose a fresh x2 from DZn,

√
Σ2

by letting
x2 ← �B2 ·D1�r.
Online phase:

4: return x← c−B1

⌊
Z(c−x2)

q

⌉
r
.

NTRU lattices [10], as well as the family of lattices for which Ajtai [3] first
demonstrated worst-case hardness.

Note that Algorithm 2 samples from the coset Λ + c for a given integral
vector c ∈ Zn; as we shall see, this allows for certain optimizations. Fortunately,
all known cryptographic applications of Gaussian sampling over q-ary lattices
use an integral c. Also note that the algorithm will typically be used to sample
from a spherical discrete Gaussian, i.e., one for which the covariance matrix
Σ = s2I for some real s > 0. As long as s slightly exceeds the largest singular
value of B1, i.e., s ≥ r · (2s1(B1) + 1) for some r = ω(

√
logn), then we have

Σ ≥ r2 · (4B1Bt
1 + I) as required by the algorithm.

Theorem 3. Algorithm 2 is correct, and for any P ∈ [1, n2], its online phase
can be implemented in parallel by P processors that each perform at most �n/P�
randomized-rounding operations on rational numbers from the set { 0

q ,
1
q , . . . ,

q−1
q },

and O(n2/P) integer operations.

When the width of the desired Gaussian distribution is much less than q, which
is the case in all known cryptographic applications of the sampling algorithm,
all the integer operations in the online phase may be performed modulo either
q or q2; see the discussion following the proof for details.

Proof. First observe that because Λ = L(B1) is q-ary, i.e., qZm ⊆ Λ, there exists
an integral matrix Z ∈ Zn×n such that B1Z = q·I. Therefore, Z = q·B−1

1 ∈ Zn×n

as stated in Step 1 of the algorithm. We also need to verify that x2 ← �B2 ·D1�r
has distribution D

Zn,
√

Σ2
in Step 3. Let w ∈ R

n have distribution B2 · D1 =
D√

Σ2−r2 . Then x2 has distribution

�w�r = w + (−w + �w�r) = w +DZn−w,r,

94 C. Peikert

by Lemma 3 (using the standard basis for Zn). Then because r ≥ ηε(Zn) for
some negligible ε = ε(n) and B2Bt

2 + r2 = Σ2, by Theorem 1 we conclude that
x2 has distribution D

Zn,
√

Σ2
as desired.

We now analyze the online phase, and show correctness. Because B−1
1 = Z/q,

the algorithm’s output x is distributed as

x2 + (c− x2)−B1�B−1
1 (c− x2)�r.

We would like to apply Lemma 3 (with t = c − x2) and Theorem 1 (with
Λ1 = Λ, Λ2 = Zn, c1 = c, and c2 = 0) to conclude that x has distribution
within negl(n) statistical distance of DΛ+c,

√
Σ. To do so, we merely need to

check that the hypotheses of Theorem 1 are satisfied, namely, that
√
Σ1 ≥ ηε(Λ)

and
√
Σ3 ≥ ηε(Zn) for some negligible ε = ε(n), where Σ−1

3 = Σ−1
1 +Σ−1

2 .
For the first hypothesis, we have

√
Σ1 = 2r ·B1 ≥ ηε(Λ) because Λ = B1 ·Zn,

and by Definition 2 and Lemma 2. For the second hypothesis, we have

Σ−1
3 = Σ−1

1 +Σ−1
2 ≤ 2 · (2r2B1Bt

1
)−1

=
(
r2B1Bt

1
)−1

.

Therefore,
√
Σ3 ≥ ηε(Λ) ≥ ηε(Zn), as desired. This completes the proof of

correctness.
For the parallelism claim, observe that computing Z(c − x2) and the final

multiplication by B1 can be done in parallel using P processors that each perform
O(n2/P) integer operations. (See below for a discussion of the sizes of the integers
involved in these operations.) Moreover, the fractional parts of the n-dimensional
vector Z(c−x2)

q are all in the set { 0
q , . . . ,

q−1
q }, and rounding these n entries may

be done independently in parallel.

Implementation notes. For a practical implementation, Algorithm 2 admits sev-
eral additional optimizations, which we discuss briefly here.

In all cryptographic applications of Gaussian sampling on q-ary lattices, the
length of the sampled vector is significantly shorter than q, i.e., its entries lie
within a narrow interval around 0. Therefore, it suffices for the sampling algo-
rithm to compute its output modulo q, using the integers {−� q2�, . . . , � q−1

2 �} as
the set of canonical representatives. For this purpose, the final multiplication by
the input basis B1 need only be performed modulo q. Similarly, Z and Z(c−x2)
need only be computed modulo q2, because we are only concerned with the value
of Z(c−x2)

q modulo q.
Because all the randomized-rounding steps are performed on rationals whose

fractional parts are in { 0
q , . . . ,

q−1
q }, if q is reasonably small it may be worthwhile

(for faster rounding) to precompute the tables of the cumulative distribution
functions for all q possibilities. Alternatively (or in addition), during the offline
phase the algorithm could precompute and cache a few rounded samples for each
of the q possibilities, consuming them as needed in the online phase.

An Efficient and Parallel Gaussian Sampler for Lattices 95

5 Singular Value Bounds

In this section we give bounds on the largest singular value of a basis B and
relate them to other geometric quantities that are relevant to the prior sampling
algorithm of [8].

5.1 General Bounds

The Gram-Schmidt orthogonalization of a nonsingular matrix B is B = QG,
where Q is an orthogonal matrix and G is right-triangular, with positive diagonal
entries gi,i > 0 (without loss of generality). The Gram-Schmidt vectors for B
are b̃i = gi,i · qi. That is, b̃1 = b1, and b̃i is the component of bi orthogonal
to the linear span of b1, . . . ,bi−1. The Gram-Schmidt orthogonalization can be
computed efficiently in a corresponding iterative manner.

Let B = QG be the Gram-Schmidt orthogonalization of B. Without loss of
generality we can assume that B is size-reduced, i.e., that |gi,j| ≤ gi,i/2 for every
i < j. This condition can be achieved efficiently by the following process: for
each j = 1, . . . , n, and for each i = j− 1, . . . , 1, replace bj by bj −�gi,j/gi,i� ·bi.
Note that the size reduction process leaves the lattice L(B) and Gram-Schmidt
vectors b̃i = gi,i · qi unchanged. Note also that ‖gi‖ ≤ √n · maxi gi,i, by the
Pythagorean theorem.

Lemma 4. Let B ∈ Rn×n be a size-reduced nonsingular matrix. We have

s1(B) ≤ √n ·
√∑

i∈[n]

‖b̃i‖2 ≤ n · ‖B̃‖.

The lemma is tight up to a constant factor, which may be seen by considering
the right-triangular matrix with 1s on the diagonal and 1/2 in every entry above
the diagonal.

Proof. Let B have Gram-Schmidt orthogonalization B = QG. We have

s1(B) = max
x
‖Btx‖ = max

x
‖Gtx‖ ≤

√∑
i∈[n]

(
√
n · gi,i)2 =

√
n ·
√∑

i∈[n]

g2
i,i,

where the maxima are taken over all unit vectors x ∈ Rn, the second equality
uses the fact that Q is orthogonal, and the first inequality is by Cauchy-Schwarz.

5.2 Bases for Cryptographic Lattices

Ajtai [2] gave a procedure for generating a uniformly random q-ary lattice from
a certain family of ‘worst-case-hard’ cryptographic lattices, together with a rel-
atively short basis B. Alwen and Peikert [4] recently improved and extended
the construction to yield asymptotically optimal bounds on ‖B‖ = maxi‖bi‖
and ‖B̃‖ = maxi‖b̃i‖. Here we show that with a small modification, one of the

96 C. Peikert

constructions of [4] yields (with overwhelming probability) a basis whose largest
singular value is within an O(

√
log q) factor of ‖B̃‖. It follows that our efficient

Gaussian sampling algorithm is essentially as tight as the GPV algorithm on
such bases. Due to space restrictions, we state the main result here; the proof
may be found in the full version.

Lemma 5. The (slightly modified) construction of [4, Section 3.2] outputs a
basis B such that s1(B) = O(

√
log q) · ‖B̃‖ with overwhelming probability.

5.3 Gaussian-Distributed Bases

Here we show that for a lattice basis generated by choosing its vectors from a dis-
crete Gaussian distribution over the lattice (following by some post-processing),
the largest singular value s1(B) of the resulting basis is essentially the same as
the maximal Gram-Schmidt length ‖B̃‖ (with high probability). Such a bound
is important because applications that use ‘basis delegation,’ such as the hierar-
chical ID-based encryption schemes of [6, 1], generate random bases in exactly
the manner just described.

Due to space restrictions, we state the main theorem here; the proof may be
found in the full version.

Theorem 4. With overwhelming probability, the RandBasis algorithm of [6] out-
puts a basis T such that ‖T̃‖ ≥ s · Ω(

√
n), and for any ω(

√
logn) function,

s1(T) ≤ s ·O(
√
n) · ω(

√
logn). In particular, s1(T)/‖T̃‖ = ω(

√
logn).

Acknowledgments. The author thanks Phong Nguyen and the anonymous
CRYPTO’10 reviewers for helpful comments.

References

[1] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

[2] Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999)

[3] Ajtai, M.: Generating hard instances of lattice problems. Quaderni di Matemat-
ica 13, 1–32 (2004); Preliminary version in STOC 1996 (1996)

[4] Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In:
STACS, pp. 75–86 (2009)

[5] Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986)

[6] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

[7] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp.
169–178 (2009)

An Efficient and Parallel Gaussian Sampler for Lattices 97

[8] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

[9] Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSIGN: Digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-
RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003)

[10] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288.
Springer, Heidelberg (1998)

[11] Klein, P.N.: Finding the closest lattice vector when it’s unusually close. In: SODA,
pp. 937–941 (2000)

[12] Kshirsagar, A.M.: Bartlett decomposition and Wishart distribution. The Annals
of Mathematical Statistics 30(1), 239–241 (1959),
http://www.jstor.org/stable/2237140

[13] Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital
signatures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer,
Heidelberg (2008)

[14] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with
errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
1–23. Springer, Heidelberg (2010)

[15] Malkin, T., Peikert, C., Servedio, R.A., Wan, A.: Learning an overcomplete basis:
Analysis of lattice-based signatures with perturbations (2009) (manuscript)

[16] Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Computational Complexity 16(4), 365–411 (2007); Preliminary ver-
sion in FOCS 2002 (2002)

[17] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaus-
sian measures. SIAM J. Comput. 37(1), 267–302 (2007); Preliminary version in
FOCS 2004 (2004)

[18] Nguyen, P.Q., Regev, O.: Learning a parallelepiped: Cryptanalysis of GGH and
NTRU signatures. J. Cryptology 22(2), 139–160 (2009); Preliminary version in
Eurocrypt 2006 (2006)

[19] Peikert, C., Vaikuntanathan, V.: Noninteractive statistical zero-knowledge proofs
for lattice problems. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
536–553. Springer, Heidelberg (2008)

[20] Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6) (2009); Preliminary version in STOC 2005 (2005)

[21] Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption
based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 617–635. Springer, Heidelberg (2009)

http://www.jstor.org/stable/2237140

Lattice Basis Delegation in Fixed Dimension and
Shorter-Ciphertext Hierarchical IBE

Shweta Agrawal1, Dan Boneh2,�, and Xavier Boyen3

1 University of Texas, Austin
2 Stanford University

3 Université de Liège, Belgium

Abstract. We present a technique for delegating a short lattice basis
that has the advantage of keeping the lattice dimension unchanged upon
delegation. Building on this result, we construct two new hierarchical
identity-based encryption (HIBE) schemes, with and without random
oracles. The resulting systems are very different from earlier lattice-based
HIBEs and in some cases result in shorter ciphertexts and private keys.
We prove security from classic lattice hardness assumptions.

1 Introduction

Hierarchical identity based encryption (HIBE) is a public key encryption scheme
where entities are arranged in a directed tree [HL02, GS02]. Each entity in the
tree is provided with a secret key from its parent and can delegate this secret
key to its children so that a child entity can decrypt messages intended for it, or
for its children, but cannot decrypt messages intended for any other nodes in the
tree. This delegation process is one-way: a child node cannot use its secret key
to recover the key of its parent or its siblings. We define HIBE more precisely in
the next section.

The first HIBE constructions, with and without random oracles, were based
on bilinear maps [GS02, BB04, BW06, BBG05, GH09, Wat09]. More recent
constructions are based on hard problems on lattices [CHKP10, ABB10] where
the secret key is a “short” basis B of a certain integer lattice L. To delegate the
key to a child the parent creates a new lattice L′ derived from L and uses B to
generate a random short basis for this lattice L′. In all previous constructions
the dimension of the child lattice L′ is larger than the dimension of the parent
lattice L. As a result, private keys and ciphertexts become longer and longer as
one descends into the hierarchy.

Our results. We first propose a new delegation mechanism that operates “in
place”, i.e., without increasing the dimension of the lattices involved. We then
use this delegation mechanism to construct two HIBE systems where the lattices
used have the same dimension for all nodes in the hierarchy. Consequently, pri-
vate keys and ciphertexts are the same length for all nodes in the hierarchy. Our
� Supported by NSF and the Packard Foundation.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 98–115, 2010.
c© International Association for Cryptologic Research 2010

Lattice Basis Delegation in Fixed Dimension 99

first construction, in Section 4, provides an efficient HIBE system in the random
oracle model. Our second construction, in Section 5, provides selective security in
the standard model, namely without random oracles. We prove security of both
constructions using the classic learning with errors (LWE) problem [Reg09].

To briefly explain our delegation technique, let L be a lattice in Zm and let
B = {b1, . . . , bm} be a short basis of L. Let R be a public non-singular matrix
in Zm×m. Observe that the set B′ := {Rb1, . . . , R bm} is a basis of the lattice
L′ := RL. If all entries of the matrix R are “small” scalars then the norm of the
vectors in B′ is not much larger than the norm of vectors in B. Moreover, using
standard tools we can “randomize” the basis without increasing the norm of the
vectors by much. The end result is a random short basis of L′. This idea suggests
that by associating a public “low norm” matrix R to each child, the parent node
can delegate its short basis B to a child by multiplying the vectors in B by the
matrix R and randomizing the resulting basis. Note that since the dimension of
L′ is the same as the dimension of L this delegation does not increase dimensions.

The question is whether delegation is one way: can a child L′ recover a short
basis of the parent L? More precisely, given a “low norm” matrix R and a random
short basis of L′, can one construct short vectors in R−1L′? The key ingredient
in proving security is an algorithm called SampleRwithBasis that given a lattice
L (for which no short basis is given) outputs a “low norm” matrix R along
with a short basis for the lattice L′ = RL. In other words, if we are allowed to
choose a low norm R then we can build a delegated lattice L′ = RL for which
a short basis is known even though no short basis is given for L. Algorithm
SampleRwithBasis shows that if it were possible to use a random short basis of
L′ to generate short vectors in L then it would be possible to solve SVP in
any lattice L — generate an L′ = RL with a known short basis and use that
basis to generate short vectors in L. More importantly, the algorithm enables us
to publish matrices R so that during the HIBE simulation certain private keys
are known to the simulator while others are not. The key technical challenge is
showing that these simulated matrices R are distributed as in the real system.

Comparison to other lattice-based HIBE. Table 1 shows how the HIBE
systems derived from our basis delegation mechanism compare to existing lattice-
based HIBE systems. In the random oracle model the construction compares
favorably to other lattice-based HIBE in terms of ciphertext and private key
size. In terms of computation time, the encryptor in our system computes an
�-wise matrix product when encrypting to an identity at depth �, which is not
necessary in [CHKP10]. However, this product is not message dependent and
need only be computed once per identity.

Our construction in the standard model treats identities at each level as k-bit
binary strings. Table 1 shows that the construction is only competitive with ex-
isting HIBEs [CHKP10, ABB10] in applications where k < � (such as [CHK07]
where k = 1). When k > � the construction is not competitive due to the k2 term
in the ciphertext length (compared to k� in [CHKP10] and � in [ABB10]). Nev-
ertheless, this HIBE is very different from the existing HIBEs and the techniques
of [ABB10] can potentially be applied to improve its performance.

100 S. Agrawal, D. Boneh, and X. Boyen

Table 1. A comparison of lattice-based HIBE schemes

selective secure ciphertext secret key pub. params. lattice security
HIBE length length length dimension n/α

[CHKP10] with RO Õ(�nd2) Õ(�3n2d2) Õ(n2d2) Õ(�dn) Õ(ddnd/2)

Sec. 4 with RO Õ(nd2) Õ(�n2d2) Õ(n2d2) Õ(dn) Õ((dn)
3
2 d)

[CHKP10] no RO Õ(k�nd2) Õ(k2�3n2d2) Õ(kn2d3) Õ(k�dn) Õ(dd(kn)d/2)

[ABB10] no RO Õ(�nd2) Õ(�3n2d2) Õ(n2d3) Õ(�dn) Õ(ddnd/2)

Sec. 5 no RO Õ(k2nd2) Õ(k3�n2d2) Õ(k3n2d3) Õ(kdn) Õ((kdn)kd+ d
2)

The table compares the lengths of the ciphertext, private key, and lattice dimension.
We let n be the security parameter, d be the maximum hierarchy depth (determined
at setup time), and � be the depth of the identity in question. When appropriate we
let k be the number of bits in each component of the identity. The last column shows
the SVP approximation factor that needs to be hard in the worst-case for the systems
to be secure (the smaller the better). We focus on selectively secure HIBE since for all
known adaptive lattice HIBE security degrades exponentially in the hierarchy depth.

Relation to bilinear map constructions. The recent lattice-based IBE
and HIBE systems are closely related to their bilinear map counterparts and
there may exist an abstraction that unifies these constructions. While the me-
chanics are quite different the high level structure is similar. The construction
and proof of security in [CHKP10] resembles the tree construction of Canetti
et al. [CHK07]. The construction and proof of security in [ABB10] resembles
the constructions of Boneh and Boyen [BB04] and Waters [Wat05]. The con-
structions in this paper have some relation to the HIBE of Boneh, Boyen, and
Goh [BBG05], although the relation is not as direct. Waters [Wat09] recently
proposed dual-encryption as a method to build fully secure HIBE systems from
bilinear maps. It is a beautiful open problem to construct a lattice analog
of that result using either the basis delegation in this paper or the method
from [CHKP10]. It is quite possible that two lattice-based dual-encryption HIBE
systems will emerge.

2 Preliminaries

Notation. Throughout the paper we say that a function ε : R≥0 → R≥0 is
negligible if ε(n) is smaller than all polynomial fractions for sufficiently large n.
We say that an event happens with overwhelming probability if it happens with
probability at least 1 − ε(n) for some negligible function ε. We say that inte-
ger vectors v1, . . . , vn ∈ Z

m are Zq-linearly independent for prime q if they are
linearly independent when reduced modulo q.

Lattice Basis Delegation in Fixed Dimension 101

2.1 Hierarchical IBE

Recall that an Identity-Based Encryption system (IBE) consists of four algo-
rithms [Sha85, BF01]: Setup, Extract, Encrypt, Decrypt. The Setup algorithm
generates system parameters, denoted by PP, and a master key MK. The Extract
algorithm uses the master key to extract a private key corresponding to a given
identity. The encryption algorithm encrypts messages for a given identity and
the decryption algorithm decrypts ciphertexts using the private key.

In a Hierarchical IBE [HL02, GS02], identities are vectors, and there is a fifth
algorithm called Derive. Algorithm Derive takes an identity id = (id1, . . . , idk) at
depth k and a private key SKid|� of a parent identity id|� = (id1, . . . , id�) for some
� < k. It outputs the private key SKid for the identity id which is distributed the
same as the output of Extract for id.

Selective and Adaptive ID Security. The standard IBE security model
of [BF01] allows an attacker to adaptively choose the identity it wishes to attack.
A weaker notion of IBE called selective security [CHK07] forces the adversary
to announce ahead of time the public key it will target. We use both notions,
but restrict the adversary to chosen-plaintext attacks.

Security Game. We define HIBE security using a game that captures a strong
privacy property called indistinguishable from random which means that the
challenge ciphertext is indistinguishable from a random element in the ciphertext
space. This property implies both semantic security and recipient anonymity, and
also implies that the ciphertext hides the public parameters (PP) used to create
it. For a security parameter λ, we let Mλ denote the message space and let
Cλ denote the ciphertext space. The selective security game, for a hierarchy of
maximum depth d, proceeds as follows.

Init: The adversary is given the maximum depth of the hierarchy d and
outputs a target identity id∗ = (I∗1, . . . , I

∗
k), k ≤ d.

Setup: The challenger runs Setup(1λ, 1d) (where d = 1 for IBE) and gives
the adversary the resulting system parameters PP.

Phase 1: The adversary adaptively issues queries on identities id1, id2, . . .
where no query is for a prefix of id∗. For each query the challenger runs
algorithm Extract to obtain a private key di for the public key idi and
sends di to the adversary.

Challenge: Once the adversary decides that Phase 1 is over it outputs a
plaintext M ∈ Mλ on which it wishes to be challenged. The challenger
chooses a random bit r ∈ {0, 1} and a random ciphertext C ∈ Cλ. If
r = 0 it sets the challenge ciphertext to C∗ := Encrypt(PP, id∗,M). If
r = 1 it sets the challenge ciphertext to C∗ := C. It sends C∗ as the
challenge to the adversary.

Phase 2: The adversary issues additional adaptive private key queries as in
phase 1 and the challenger responds as before.

Guess: Finally, the adversary outputs a guess r′ ∈ {0, 1} and wins if r = r′.

102 S. Agrawal, D. Boneh, and X. Boyen

We refer to such an adversary A as an INDr–sID-CPA adversary and define its
advantage in attacking E as AdvE,A,d(λ) =

∣∣Pr[r = r′]− 1/2
∣∣.

Definition 1. A depth d HIBE system E is selective-identity, indistinguish-
able from random if for all INDr–sID-CPA PPT adversaries A the function
AdvE,A,d(λ) is negligible. We say that E is INDr–sID-CPA secure for depth d.

We define the adaptive-identity counterparts to the above notions by removing
the Init phase from the attack game, and allowing the adversary to wait until the
Challenge phase to announce the identity id∗ it wishes to attack. The adversary
is allowed to make arbitrary private-key queries in Phase 1 and then choose an
arbitrary target id∗ as long as he did not issue a private-key query for a prefix of
id∗ in phase 1. The resulting security notion is defined using the modified game
as in Definition 1, and is denoted INDr–ID-CPA.

2.2 Statistical Distance

Let X and Y be two random variables taking values in some finite set Ω. Define
the statistical distance, denoted Δ(X ;Y), as

Δ(X ;Y) :=
1
2

∑
s∈Ω

∣∣Pr[X = s]− Pr[Y = s]
∣∣

We say that X is δ-uniform over Ω if Δ(X ;UΩ) ≤ δ where UΩ is a uniform
random variable over Ω. Two ensembles of random variables X(λ) and Y (λ) are
statistically close if d(λ) := Δ(X(λ);Y (λ)) is a negligible function of λ.

2.3 Integer Lattices

Definition 2. Let B =
[
b1
∣∣ . . .

∣∣ bm] ∈ Rm×m be an m × m matrix whose
columns are linearly independent vectors b1, . . . , bm ∈ Rm. The m-dimensional
full-rank lattice Λ generated by B is the set,

Λ = L(B) =
{
y ∈ R

m s.t. ∃s ∈ Z
m , y = B s =

m∑
i=1

si bi

}
Here, we are interested in integer lattices, i.e, when L is contained in Zm. We
let det(Λ) denote the determinant of Λ.

Definition 3. For q prime, A ∈ Zn×m
q and u ∈ Zn

q , define:

Λq(A) :=
{
e ∈ Z

m s.t. ∃s ∈ Z
n
q where A� s = e (mod q)

}
Λ⊥

q (A) :=
{
e ∈ Z

m s.t. Ae = 0 (mod q)
}

Λu
q (A) :=

{
e ∈ Z

m s.t. Ae = u (mod q)
}

Observe that if t ∈ Λu
q (A) then Λu

q (A) = Λ⊥
q (A) + t and hence Λu

q (A) is a shift
of Λ⊥

q (A) .

Lattice Basis Delegation in Fixed Dimension 103

2.4 The Gram-Schmidt Norm of a Basis

Let S be a set of vectors S = {s1, . . . , sk} in R
m. We use the following standard

notation:

– ‖S‖ denotes the L2 length of the longest vector in S, i.e. max1≤i≤k ‖si‖.
– S̃ := {s̃1, . . . , s̃k} ⊂ Rm denotes the Gram-Schmidt orthogonalization of the

vectors s1, . . . , sk taken in that order.

We refer to ‖S̃‖ as the Gram-Schmidt norm of S.

Micciancio and Goldwassser [MG02] showed that a full-rank set S in a lattice Λ
can be converted into a basis T for Λ with an equally low Gram-Schmidt norm.

Lemma 1 ([MG02, Lemma 7.1]). Let Λ be an m-dimensional lattice. There
is a deterministic polynomial-time algorithm that, given an arbitrary basis of Λ
and a full-rank set S = {s1, . . . , sm} in Λ, returns a basis T of Λ satisfying

‖T̃‖ ≤ ‖S̃‖ and ‖T ‖ ≤ ‖S‖√m/2

Ajtai [Ajt99] and later Alwen and Peikert [AP09] show how to sample an es-
sentially uniform matrix A ∈ Zn×m

q with an associated basis SA of Λ⊥
q (A) with

low Gram-Schmidt norm. The following follows from Theorem 3.2 of [AP09] tak-
ing δ := 1/3. The theorem produces a matrix A statistically close to uniform in
Zn×m

q along with a short basis. Since m is so much larger than n, the matrix A
is rank n with overwhelming probability and we can state the theorem as saying
that A is statistically close to a uniform rank n matrix in Z

n×m
q .

Theorem 1. Let q ≥ 3 be odd and m := �6n log q�. There is a probabilistic
polynomial-time algorithm TrapGen(q, n) that outputs a pair (A ∈ Zn×m

q , S ∈
Zm×m) such that A is statistically close to a uniform rank n matrix in Zn×m

q

and S is a basis for Λ⊥
q (A) satisfying

‖S̃‖ ≤ O(
√
n log q) and ‖S‖ ≤ O(n log q)

with all but negligible probability in n.

Notation: We let L̃TG := O(
√
n log q) denote the maximum (w.h.p) Gram-

Schmidt norm of a basis produced by TrapGen(q, n).

2.5 Discrete Gaussians

Definition 4. Let L be a subset of Z
m. For any vector c ∈ R

m and any positive
parameter σ ∈ R>0, define:

ρσ,c(x) = exp
(
−π ‖x− c‖2

σ2

)
and ρσ,c(L) =

∑
x∈L

ρσ,c(x)

104 S. Agrawal, D. Boneh, and X. Boyen

The discrete Gaussian distribution over L with center c and parameter σ is

∀y ∈ L , DL,σ,c(y) =
ρσ,c(y)
ρσ,c(L)

For notational convenience, ρσ,0 and DL,σ,0 are abbreviated as ρσ and DL,σ.
When σ = 1 we write ρ to denote ρ1. �

The distribution DL,σ,c will most often be defined over the lattice L = Λ⊥

q (A)
for a matrix A ∈ Zn×m

q or over a coset L = t+ Λ⊥
q (A) where t ∈ Zm.

Properties. The following lemma from [Pei] captures standard properties of
these distributions. The first property follows from Lemma 4.4 of [MR07]. The
last two properties are algorithms from [GPV08].

Lemma 2. Let q ≥ 2 and let A be a matrix in Zn×m
q with m > n. Let TA be a

basis for Λ⊥
q (A) and σ ≥ ‖T̃A‖ω(

√
logm). Then for c ∈ Rm and u ∈ Zn

q :

1. Pr
[
x ∼ DΛu

q (A),σ : ‖x‖ > √mσ
] ≤ negl(n).

2. There is a PPT algorithm SampleGaussian(A, TA, σ, c) that returns x∈Λ⊥
q (A)

drawn from a distribution statistically close to DΛ,σ,c.
3. There is a PPT algorithm SamplePre(A, TA, u, σ) that returns x ∈ Λu

q (A)
sampled from a distribution statistically close to DΛu

q (A),σ, whenever Λu
q (A)is

not empty.

Randomizing a basis: Cash et al. [CHKP10] show how to randomize a lattice
basis (see also [GN08, Sec. 2.1]).

RandBasis(S, σ):
On input a basis S of an m-dimensional lattice Λ⊥

q (A) and a gaussian parameter
σ ≥ ‖S̃‖ · ω(

√
logn), outputs a new basis S′ of Λ⊥

q (A) such that

– with overwhelming probability ‖S̃′‖ ≤ σ
√
m, and

– up to a statistical distance, the distribution of S′ does not depend on S. That
is, the random variable RandBasis(S, σ) is statistically close to RandBasis(T, σ)
for any other basis T of Λ⊥

q (A) satisfying ‖T̃‖ ≤ σ/ω(
√

logn).

We briefly recall how RandBasis works:
1. For i = 1, . . . ,m, let v ← SampleGaussian(A,S, σ, 0) and

if v is independent of {v1, . . . , vi−1}, set vi ← v, if not, repeat.
2. Convert the set of vectors v1, . . . , vm to a basis S′ using Lemma 1 (and using

some canonical basis of Λ⊥
q (A)).

3. Output S′.

The analysis of RandBasis in [CHKP10] uses [Reg09, Corollary 3.16] which shows
that a linearly independent set is produced in Step (1) w.h.p. after m2 samples
from SampleGaussian(A,S, σ, 0). It is not difficult to show that only 2m samples
are needed in expectation.

Lattice Basis Delegation in Fixed Dimension 105

2.6 Hardness Assumption

Security of all our constructions reduces to the LWE (learning with errors) prob-
lem, a classic hard problem on lattices defined by Regev [Reg09].

Definition 5. Consider a prime q, a positive integer n, and a distribution χ
over Zq, all public. An (Zq, n, χ)-LWE problem instance consists of access to an
unspecified challenge oracle O, being, either, a noisy pseudo-random sampler Os

carrying some constant random secret key s ∈ Zn
q , or, a truly random sampler

O$, whose behaviors are respectively as follows:

Os: outputs samples of the form (ui, vi) =
(
ui, u

�
i s+xi

) ∈ Z
n
q ×Zq, where, s ∈

Zn
q is a uniformly distributed persistent value invariant across invocations,

xi ∈ Zq is a fresh sample from χ, and ui is uniform in Zn
q .

O$: outputs truly uniform random samples from Zn
q × Zq.

The (Zq, n, χ)-LWE problem allows repeated queries to the challenge oracle O.
We say that an algorithm A decides the (Zq, n, χ)-LWE problem if

LWE-adv[A] :=
∣∣Pr[AOs = 1]− Pr[AO$ = 1]

∣∣
is non-negligible for a random s ∈ Zn

q .

Regev [Reg09] shows that for certain noise distributions χ, denoted Ψα, the
LWE problem is as hard as the worst-case SIVP and GapSVP under a quantum
reduction (see also [Pei09]). Recall that for x ∈ R the symbol �x� denotes the
closest integer to x.

Definition 6. For an α ∈ (0, 1) and a prime q let Ψα denote the distribution
over Zq of the random variable �q X� mod q where X is a normal random vari-
able with mean 0 and standard deviation α/

√
2 π.

Theorem 2 ([Reg09]). If there exists an efficient, possibly quantum, algorithm
for deciding the (Zq, n, Ψα)-LWE problem for q > 2

√
n/α then there exists an

efficient quantum algorithm for approximating the SIVP and GapSVP problems,
to within Õ(n/α) factors in the �2 norm, in the worst case.

The following lemma about the distribution Ψα will be needed to show that
decryption works correctly. The proof is implicit in [GPV08, Lemma 8.2].

Lemma 3. Let e be some vector in Zm and let y R← Ψ
m

α . Then the quantity
|e�y| treated as an integer in [0, q − 1] satisfies

|e�y| ≤ ‖e‖ qαω(
√

logm) + ‖e‖√m/2

with all but negligible probability in m.

As a special case, Lemma 3 shows that if x R← Ψα is treated as an integer in
[0, q− 1] then |x| < qαω(

√
logm) + 1/2 with all but negligible probability in m.

106 S. Agrawal, D. Boneh, and X. Boyen

3 Basis Delegation without Dimension Increase

Let A be a matrix in Zn×m
q and let TA be a “short” basis of Λ⊥

q (A), both given.
We wish to “delegate” the basis TA in the following sense: we want to determin-
istically generate a matrix B from A and a random basis TB for Λ⊥

q (B) such
that from A,B and TB it is difficult to recover any short basis for Λ⊥

q (A). Basis
delegation mechanisms were proposed by Cash et al [CHKP10] and Agrawal et
al. [ABB10] where the dimension of the matrix B was larger than the dimension
of the given A. In the resulting HIBE systems ciphertext and private key sizes
increase as the hierarchy deepens.

Here we consider a simple delegation mechanism that does not increase the
dimension. To do so we use a public matrix R in Zm×m where the columns of R
have “low” norm. We require that R be invertible mod q. Now, define B := AR−1

in Zn×m
q and observe that B has the same dimension as A. We show how to build

a “short” basis of Λ⊥
q (B) from which it is difficult to recover a short basis of A.

In the next section we use this to build new HIBE systems.
We begin by defining distributions on matrices whose columns are low norm

vectors. We then define the basis delegation mechanism.

Distributions on low norm matrices. We say that a matrix R in Zm×m is
Zq-invertible if R mod q is invertible as a matrix in Zm×m

q . Our construction
makes use of Zq-invertible matrices R in Zm×m where all the columns of R are
“low norm”.

Definition 7. Define σR := L̃TG ω(
√

logm) =
√
n log q · ω(

√
logm).

We let Dm×m denote the distribution on matrices in Zm×m defined as(DZm,σR

)m conditioned on the resulting matrix being Zq-invertible

Algorithm SampleR(1m). The following simple algorithm samples matrices
in Zm×m from a distribution that is statistically close to Dm×m.

1. Let T be the canonical basis of the lattice Z
m.

2. For i = 1, . . . ,m do ri
R← SampleGaussian(Zm, T, σR, 0).

3. If R is Zq-invertible, output R; otherwise repeat step 2.

In the full version we show that step 2 will need to be repeated fewer than two
times in expectation for prime q.

3.1 Basis Delegation: Algorithm BasisDel(A, R, TA, σ)

We now describe a simple basis delegation algorithm that does not increase the
dimension of the underlying matrices.
Inputs:

a rank n matrix A in Zn×m
q ,

a Zq-invertible matrix R in Zm×m sampled from Dm×m

(or a product of such),
a basis TA of Λ⊥

q (A),
and a parameter σ ∈ R>0.

(1)

Lattice Basis Delegation in Fixed Dimension 107

Output: Let B := AR−1 in Zn×m
q . The algorithm outputs a basis TB of Λ⊥

q (B).
Algorithm BasisDel(A,R, TA, σ)works as follows:

1. Let TA = {a1, . . . , am} ⊆ Zm. Calculate T ′
B := {Ra1, . . . , Ram} ⊆ Zm.

Observe that T ′
B is a set of independent vectors in Λ⊥

q (B).
2. Use Lemma 1 to convert T ′

B into a basis T ′′
B of Λ⊥

q (B). The algorithm in the
lemma takes as input T ′

B and an arbitrary basis of Λ⊥
q (B) and outputs a

basis T ′′
B whose Gram-Schmidt norm is no more than that of T ′

B.
3. Call RandBasis(T ′′

B, σ) and output the resulting basis TB of Λ⊥
q (B).

The following theorem shows that BasisDel produces a random basis of Λ⊥
q (B)

whose Gram-Schmidt norm is bounded as a function of ‖T̃A‖. The proof is given
in the full version.

Theorem 3. Using the notation in (1), suppose R is sampled from Dm×m and
σ satisfies

σ > ‖T̃A‖ · σR

√
mω(log3/2 m) .

Let TB be the basis of Λ⊥
q (AR−1) output by BasisDel.

Then TB is distributed statistically close to the distribution RandBasis(T, σ) where
T is an arbitrary basis of Λ⊥

q (AR−1) satisfying ‖T̃‖ < σ/ω(
√

logm). If R is a
product of � matrices sampled from Dm×m then the bound on σ degrades to σ >

‖T̃A‖ ·
(
σR

√
mω(log1/2 m)

)� · ω(logm) .

When R is a product for � matrices sampled from Dm×m then for the smallest
possible σ in Theorem 3 we obtain that w.h.p

‖T̃B‖ / ‖T̃A‖ ≤
(
mω(logm)

)� √
mω(logm) .

This quantity is the minimum degradation in basis quality as we delegate across
� levels of the HIBE hierarchy.

3.2 The Main Simulation Tool: Algorithm SampleRwithBasis(A)

All our proofs of security make heavy use of an algorithm SampleRwithBasis that
given a random rank nmatrix A in Zn×m

q as input generates a “low-norm” matrix
R (i.e., a matrix sampled from Dm×m) along with a short basis for Λ⊥

q (AR−1).

Algorithm SampleRwithBasis(A). Let a1, . . . , am ∈ Zn
q be the m columns of

the matrix A ∈ Zn×m
q .

1. Run TrapGen(q, n) to generate a random rank n matrix B ∈ Zn×m
q and a

basis TB of Λ⊥
q (B) such that ‖T̃B‖ ≤ L̃TG = σR/ω(

√
logm).

2. for i = 1, . . . ,m do:
(2a) sample ri ∈ Zm as the output of SamplePre(B, TB, ai, σR),

then Bri = ai mod q and ri is sampled from a distribution
statistically close to DΛ

ai
q (B),σR

.
(2b) repeat step (2a) until ri is Zq linearly independent of r1, . . . , ri−1.

108 S. Agrawal, D. Boneh, and X. Boyen

3. Let R ∈ Zm×m be the matrix whose columns are r1, . . . , rm.
Then R has rank m over Zq. Output R and TB.

By construction BR = A mod q and therefore B = AR−1 mod q. Hence, the
basis TB is a short basis of Λ⊥

q (AR−1). It remains to show that R is sampled
from a distribution close to Dm×m.

Theorem 4. Let m > 2n log q and q > 2 a prime. For all but at most a q−n

fraction of rank n matrices A in Zn×m
q algorithm SampleRwithBasis(A) outputs

a matrix R in Zm×m sampled from a distribution statistically close to Dm×m.
The generated basis TB of Λ⊥

q (AR−1) satisfies ‖T̃B‖ ≤ σR/ω(
√

logm) with over-
whelming probability.

The bound on ‖T̃B‖ is from Theorem 1. The difficult part of the proof is arguing
that R is sampled from a distribution statistically close to Dm×m. The proof is
based on a detailed analysis of the distribution from which R is chosen and is
given in the full version of the paper.

4 An HIBE in the Random-Oracle Model

Our first construction is a depth d HIBE secure in the random oracle model. In
the next section we describe an HIBE selectively secure in the standard model.

To encrypt a message m for identity id, the encryptor builds a matrix Fid

and encrypts m using the dual Regev public key system (described in [GPV08,
sec. 7]) using Fid as the public key. The matrix Fid is built by multiplying a fixed
matrix A, specified in the public parameters, by � “low norm” square matrices
generated by a random oracle H described in (2) below.

At level �, let id = (id1, id2, . . . , id�) ∈ ({0, 1}∗)�, where � ∈ [d]. We assume the
availability of a hash function H that outputs matrices in Zm×m:

H : ({0, 1}∗)≤d → Z
m×m
q : id �→ H(id) ∼ Dm×m (2)

where the requirement is that, over the choice of the random oracleH , the output
H(id) is distributed as Dm×m (as in Definition 7). In practice, the hash function
H can be built from a “standard” random function h : ({0, 1}∗)≤d → {0, 1}t by
using h as a coin generator for the sampling process in Algorithm SampleR(1m).
This method however is not indefferentiable in the sense of [CDMP05] and the
analysis requires that H itself be a random oracle.

4.1 Construction

The system uses a number of parameters that will be set in Section 4.2. The
parameters n,m and q are fixed across the levels of the hierarchy. In addition,
we have two level-dependent parameters: a guassian parameter σ̄ = (σ1, . . . , σd)
and a noise parameter ᾱ = (α1, . . . , αd).

For an identity id = (id1, . . . , id�) and 1 ≤ k ≤ � we use id|k to denote the
vector (id1, . . . , idk). Now, for a hierarchy of maximum depth d the scheme works
as follows:

Lattice Basis Delegation in Fixed Dimension 109

Setup(1n, 1d) On input a security parameter n and maximum depth d:

1. Invoke TrapGen(q, n) to generate a uniformly random matrix A ∈ Zn×m
q

and a short basis TA =
[
a1| . . . |am

] ∈ Zm×m for Λ⊥
q (A).

2. Generate a uniformly random vector u0 ∈ Zn
q .

3. Output the public parameters PP and master key MK given by,

PP =
(
A, u0

)
MK =

(
TA

)
Derive(PP, SKid|�, id): On input public parameters PP, a secret key SKid|� cor-

responding to a “parent” identity id|� = (id1, . . . , id�), and a “child” identity
id = (id1, . . . , id�, . . . idk) where k ≤ d do:
1. Let Rid|� = H(id|�) · · · H(id|2)H(id|1) ∈ Zm×m and

Fid|� = AR−1
id|� in Z

n×m
q . Then SKid|� is a short basis for Λ⊥

q (Fid|�).

2. Compute R = H(id|k) · · · H(id|�+1) ∈ Zm×m and set Fid = Fid|�R
−1.

3. Evaluate S′ ← BasisDel(Fid|�, R, SKid|�, σk) to obtain a short random
basis for Λ⊥

q (Fid).
4. Output the delegated private key SKid = S′.

Algorithm Extract(MK, id) works the same way by running Derive(PP,MK, id)
where Fid|0 = A and SKid|0 = MK.

Encrypt(PP, id, b): On input public parameters PP, a recipient identity id of
depth |id| = �, and a message bit b ∈ {0, 1}:
1. Compute Rid ← H(id|�) . . . H(id|2)H(id|1) in Zm×m.
2. Compute the encryption matrix Fid ← AR−1

id in Zn×m
q .

3. Now encrypt the message using Regev’s dual public key encryption (as
defined in [GPV08, sec. 7]) using Fid as the public key. To do so,

(a) Pick a uniformly random vector s R← Zn
q .

(b) Choose noise vectors x
Ψα�←− Zq and y

Ψm
α�←−∈ Zm

q . (Ψα is as in def. 6)
(c) Output the ciphertext,

CT =
(

c0 = u�
0 s+ x+ b � q

2
� , c1 = F�

id s+ y
)
∈ Zq × Z

m
q

Decrypt(PP, SKid,CT): On input public parameters PP, a private key SKid for
an identity id of length |id| = �, and a ciphertext CT:

1. Let τ� = σ�
√
m ω(

√
logm)

(≥ ‖S̃Kid‖ ω(
√

logm)
)
.

2. Construct the matrix Fid ∈ Zn×m
q as in step (2) of Encrypt.

3. Set did ← SamplePre(Fid, SKid, u0, τ�). Note that Fid did = u0 in Zn
q .

4. Compute w = c0 − d�
id c1 ∈ Zq.

5. Compare w and � q2� treating them as integers in [q] ⊂ Z:

if they are close, i.e., if
∣∣∣w−� q2�∣∣∣ < � q4� in Z, output 1; otherwise output 0.

110 S. Agrawal, D. Boneh, and X. Boyen

4.2 Parameters and Correctness

When the cryptosystem is operated as specified, during decryption of a cipher-
text encrypted to an identity at level � we have,

w = c0 − d�
id c1 = b � q

2
�+ x− d�

idy︸ ︷︷ ︸
error term

Since ‖did‖ ≤ τ�
√
m = σ� m ω(

√
logm) w.h.p, we have by Lemma 3 that the

norm of the error term is bounded w.h.p by

|x− d�
idy| ≤ qα�σ�m ω(logm) + σ�m

3/2 ω(
√

logm) (3)

In addition, by properties of RandBasis(·, σ�) the Gram-Schmidt norm of a secret
key SK� at level � satisfies w.h.p. ‖S̃K�‖ ≤ σ�

√
m. Therefore, with σ0 = L̃TG, for

the system to work correctly we need that:
- TrapGen can operate (i.e. m > 6n log q),
- the error term in (3) is less than q/5 w.h.p

(i.e. α� < [σ�mω(logm)]−1 and q > σ�m
3/2ω(

√
logm)),

- BasisDel used in Derive can operate (i.e. σ� > ‖S̃K�−1‖ σR

√
m ω(log3/2 m)

which follows from σ� > σ�−1 m
3/2 ω(log2 m)), and

- Regev’s reduction applies (i.e. q > 2
√
n/α� for all �).

To satisfy these requirements we set the parameters (q,m, σ̄, ᾱ) as follows tak-
ing n to be the security parameter (and letting � = 1, . . . , d):

m = 6n1+δ = O(dn log n) , q = m
3
2d+2 · ω(log2d+1 n)

σ� = m
3
2 �+ 1

2 · ω(log2� n) , α� = [σ� m ω(logn)]−1
(4)

and round up m to the nearest larger integer and q to the nearest larger prime.
Here we assume that δ is such that nδ > �log q� = O(d log n).

Observe that since σ� is increasing with � algorithm Extract generates the
same distribution on private keys as algorithm Derive for all identities at depth
greater than one, as required from our definition of HIBE.

Overall, the ciphertext size for all identities is Õ(d2n). Security depends on
the assumption that worst-case SVP cannot be solved to within a factor q

√
n =

Õ((dn)1.5d).

4.3 Security

We state the system’s security against both a selective and an adaptive adversary.
Selective security implies adaptive security in the random oracle model via a
simple generic transformation from [BB04]. However, proving adaptive security
directly gives a slightly simpler system. Recall that selective security in the
random oracle model means that the attacker must commit to the target identity
before issuing any type of query.

Lattice Basis Delegation in Fixed Dimension 111

Theorem 5. Let A be a PPT adversary that attacks the scheme of Section 4.1
when H is modeled as a random oracle. Let QH is the number of H queries made
by A and d be the max hierarchy depth. Then there is a PPT algorithm B that
decides LWE such that

1. If A is a selective adversary (INDr–sID-CPA) with advantage ε
then ε ≤ LWE-adv[B].

2. If A is an adaptive adversary (INDr–ID-CPA) with advantage ε
then ε ≤ LWE-adv[B] · (dQd

H) + negl(n).

where LWE-adv[B] is with respect to the parameters (Zq, n, Ψα) from Section 4.2.

Proof. We prove part (2) of the theorem. The proof of part (1) is similar and
a little simpler. Recall that LWE is about recognizing an oracle O defined
in Section 2.6. We use A to construct an LWE algorithm B with advantage
about ε/dQd

H .

Instance. B requests from O and receives, for each i = 0, . . . ,m, a fresh pair
(ui, vi) ∈ Z

n
q × Zq.

As the number of oracle calls is known a priori, the samples can be supplied
non-interactively at the beginning, e.g., here in the form of an instance with
(m+ 1) (n+ 1) elements of Zq.

Setup. B prepares a simulated attack environment for A as follows.

1. Select d uniform random integer Q∗
1, . . . , Q

∗
d ∈ [QH]. where QH is the maxi-

mum number of queries to H that A can make.
2. Sample d random matricesR∗

1, . . . , R
∗
d∼Dm×m by runningR∗

i ← SampleR(1m)
for i = 1, . . . , d.

3. Assemble the random matrix A0 ∈ Zn×m
q from m of the given LWE samples,

by letting the i-th column of A0 be the n-vector ui for all i = 1, . . . ,m.
4. Choose a random w ∈ [d] and set A← A0R

∗
w · · ·R∗

1. The matrix A is uniform
in Zn×m

q since all the R∗
i are invertible mod q and A0 is uniform in Zn×m

q .
5. Publish the public parameters PP =

(
A, u0

)
.

Random-oracle hash queries. A may query the random oracle H on any
identity id = (id1, . . . , idi) of its choice, adaptively, and at any time. B answers
the Q-th such query as follows. (We assume w.l.o.g. that the queries are unique;
otherwise the simulator simply returns the same output on the same input with-
out incrementing the query counter Q.)

Let i = |id| be the depth of id. If this is query number Q∗
i (i.e. Q = Q∗

i), define
H(id)← R∗

i and return H(id).
Otherwise, if Q �= Q∗

i :
1. Compute Ai = A · (R∗

i−1 · · · R∗
2 R

∗
1
)−1 ∈ Zm×m

q (where A1 = A).
2. Run SampleRwithBasis(Ai) to obtain a random R ∼ Dm×m and a short

basis TB for B = Ai R
−1 mod q.

3. Save the tuple (i, id, R,B, TB) for future use, and return H(id)← R.

112 S. Agrawal, D. Boneh, and X. Boyen

Secret key queries. A makes interactive key-extraction queries on arbitrary
identities id, chosen adaptively. B answers a query on id = (id1, id2, . . . , idk) of
length |id| = k ∈ [d] as follows.

1. Let j ∈ [k] be the shallowest level at which H(id|j) �= R∗
j . In the unlikely

event that H(id|j) = R∗
j for all j = 1, . . . , k the simulator aborts and fails.

2. Retrieve the saved tuple (j, id|j , R,B, TB) from the hash oracle query history.
This tuple was created when responding to a query for H(id|j) (w.l.o.g., we
can assume that an extraction query on id is preceded by a hash query on
all prefixes of id). By construction

B = A · (R∗
1)

−1 · · · (R∗
j−1)

−1 ·H(id|j)−1 mod q

and TB is a short basis for Λ⊥
q (B).

Notice that B is exactly the encryption matrix Fid|j (as defined in the En-
crypt algorithm) for the ancestor identity id|j = (id1, id2, . . . , idj) and there-
fore TB is a trapdoor for Λ⊥

q (Fid|j).
3. Run Derive(PP, TB, id) to generate a secret key for id from the private key

TB for the identity id|j . Send the resulting secret key to the adversary.

Challenge.A announces to B the identity id∗ on which it wishes to be challenged
and a message b∗ ∈ {0, 1} to be encrypted. We require that id∗ not be equal to,
or a descendant of, any identity id for which a private key has been or will be
requested in any preceding and subsequent key extraction query.

Let � = |id∗|. If there is an i ∈ [�] such that H(id∗|i) �= R∗
i , then the simulator

must abort. (Indeed, when this is the case, B is able extract a private key for id∗

and thus answer by itself the challenge that it intended to ask.)
Recall that A = A0R

∗
w · · ·R∗

1. If w �= � then the simulator aborts and fails.
Now, suppose w = � and id∗ is such that H(id∗|i) = R∗

i for all i ∈ [�]. Then by
definition

Fid∗ = A (R∗
1)

−1 · · · (R∗
�)

−1 = A0 ∈ Z
n×m
q

and B proceeds as follows:

1. Retrieve v0, . . . , vm ∈ Zq from the LWE instance and set v∗ =

⎡⎣ v1...
vm

⎤⎦ ∈ Z
m
q .

2. Blind the message bit by letting c∗0 = v0 + b∗ � q2� ∈ Zq.
3. Set c∗1 = v∗ ∈ Zm

q .
4. Set CT∗ = (c∗0, c

∗
1) and send it to the adversary.

When O is a pseudo-random LWE oracle then c0 = u�
0 s + x + b� q2� and c1 =

F�
id∗s+ y for some random s ∈ Zn

q and noise values x and y. In this case (c0, c1)
is a valid encryption of b for id∗.

When O is a random oracle then (v0, v∗) are uniform in (Zq×Zm
q) and there-

fore (c0, c1) is uniform in (Zq × Z
m
q).

Now, A makes more secret key queries, answered by B in the same manner as
before. Finally, A guesses whether CT∗ was an encryption of b∗ for id∗. B outputs
A’s guess and ends the simulation.

Lattice Basis Delegation in Fixed Dimension 113

The distribution of the public parameters is identical to its distribution in the
real system as are responses to private key queries. By Theorem 3, responses to
H oracle queries are as in the real system. Finally, if B does not abort then the
challenge ciphertext is distributed either as in the real system or is independently
random in (Zq,Z

m
q). Hence, if B does not abort then its advantage in solving

LWE is the same as A’s advantage in attacking the system.
Since A is PPT it only finds collisions on H with negligible probability. A

standard argument shows that the simulator can proceed without aborting with
probability Pr[¬abort] ≥ Q−�

H /d− negl(n) ≥ Q−d
H /d− negl(n) for some constant

c > 0. Then if A has advantage ε ≥ 0, B has advantage at least [ε/(dQd
H)] −

negl(n) in deciding the LWE problem instance.

5 Selectively Secure HIBE in the Standard Model

We briefly describe an HIBE of depth d that is selectively secure without random
oracles. The details are in the full version of the paper. The construction is a
binary tree encryption (BTE) which means that identities at each level are binary
(i.e. 0 or 1). To build an HIBE with k-bit identities at each level we assign k
levels of the BTE hierarchy to each level of the HIBE. The parameters used by
this system are shown in Table 1.

Setup: For a BTE of depth d the setup algorithm runs TrapGen(q, n) to generate
a random n ×m matrix A ∈ Z

n×m
q with a short basis TA ∈ Z

m×m for Λ⊥
q (A)

and samples 2d matrices R1,0, R1,1, . . . , Rd,0, Rd,1 ∈ Zm×m from the distribution
Dm×m using SampleR(1m). With u0 random in Zn

q the public params and master
key are

PP =
(
A , u0 , R1,0, R1,1 , R2,0, R2,1 , . . . , Rd,0, Rd,1

)
, MK =

(
TA

)
Extract: the secret key for an identity id = (id1, . . . , id�) ∈ {0, 1}�≤d is a short
random basis for the lattice Λ⊥

q (Fid) where

Fid = A (R1,id1)
−1 (R2,id2)

−1 · · · (R�,id�
)−1 ∈ Z

n×m
q (5)

Encryption and decryption are as in the system of Section 4.1 using the matrix
Fid from (5) in a dual-Regev encryption.

Security. The simulator is given an identity id = (id1, . . . , id�) ∈ {0, 1}� where the
attacker will be challenged. To simplify the description assume id is at maximum
depth, namely � = d. The case � < d is just as easy, but complicates the notation.

The simulator first constructs a matrix A0 ∈ Zn×m
q from the given LWE

challenge. It then samples random matrices

R1,id1 , R2,id2 , . . . , R�,id�
∈ Z

m×m

from the distribution Dm×m and sets A = A0 R�,id�
· · ·R2,id2 R1,id1 ∈ Zn×m

q .
Now, consider the d matrices

Fi = A (R1,id1)
−1 · · · (Ri,idi)

−1 for i = 0, . . . , d− 1.

114 S. Agrawal, D. Boneh, and X. Boyen

For each matrix Fi the simulator invokes SampleRwithBasis(Fi) to obtain a ma-
trix Ri,1−idi ∈ Zm×m and a short basis Ti for Λ⊥

q (Fi · (Ri,1−idi)−1). Finally, it
sends to the adversary the public parameters

PP =
(
A , u0 , R1,0, R1,1 , R2,0, R2,1 , . . . , Rd,0, Rd,1

)
where u0 is a random vector in Zn

q from the LWE challenge.
It is not difficult to see that the simulator can use T1, . . . , Td to generate

private keys for every node in the hierarchy except for the challenge identity id.
Moreover, for the challenge identity it can generate a ciphertext that will help
it solve the given LWE challenge as in Section 4.3, as required.

6 Conclusions

We presented a new lattice basis delegation mechanism and used it to construct
two HIBE systems, one secure in the random oracle model and one secure without
random oracles. The random oracle construction provides a lattice HIBE with
short ciphertexts and private keys. The standard model system is not as short.

This work raises a number of interesting open problems. First, our standard
model system processes bits of the identity one at a time. It would be interesting
to apply the techniques of [ABB10, Boy10] to obtain a selective HIBE that
processes many bits at a time so that the encryption matrix Fid is a product of
only � low-norm matrices for identities at depth �.

Another interesting problem is an adaptively secure HIBE in the standard
model where performance does not degrade exponentially in the hierarchy depth.
Using the lattice basis delegation method from this paper or from [CHKP10] in
Waters’ dual encryption system [Wat09] is a promising direction.

Acknowledgments. We thank David Freeman, Daniele Micciancio and Brent
Waters for helpful comments about this work.

References

[ABB10] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard
model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
553–572. Springer, Heidelberg (2010)

[Ajt99] Ajtai, M.: Generating hard instances of the short basis problem. In: Wie-
dermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS,
vol. 1644, pp. 1–9. Springer, Heidelberg (1999)

[AP09] Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices.
In: STACS, pp. 75–86 (2009)

[BB04] Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryp-
tion without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

[BBG05] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption
with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

Lattice Basis Delegation in Fixed Dimension 115

[BF01] Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer,
Heidelberg (2001)

[Boy10] Boyen, X.: Lattices mixing and vanishing trapdoors: A framework for fully
secure short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

[BW06] Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption
(without random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 290–307. Springer, Heidelberg (2006)

[CDMP05] Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damgard revis-
ited: how to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)

[CHK07] Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption
scheme. J. Crypto 20(3), 265–294 (2007); Abstract in Eurocrypt 2003 (2003)

[CHKP10] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to
delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 523–552. Springer, Heidelberg (2010)

[GH09] Gentry, C., Halevi, S.: Hierarchical identity based encryption with poly-
nomially many levels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444,
pp. 437–456. Springer, Heidelberg (2009)

[GN08] Gama,N.,Nguyen,P.:Predicting lattice reduction. In:Smart,N.P. (ed.)EU-
ROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: STOC (2008)

[GS02] Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Hei-
delberg (2002)

[HL02] Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481.
Springer, Heidelberg (2002)

[MG02] Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a crypto-
graphic perspective, vol. 671. Kluwer Academic Publishers, Boston (March
2002)

[MR07] Micciancio, D., Regev, O.: Worst-case to average-case reductions based
on gaussian measures. SIAM Journal on Computing (SICOMP) 37(1),
267–302 (2007); Extended abstract in FOCS 2004 (2004)

[Pei] Peikert, C.: Bonsai trees (or, arboriculture in lattice-based cryptography).
Cryptology ePrint Archive, Report (2009), /359,
http://eprint.iacr.org/

[Pei09] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector
problem. In: STOC, pp. 333–342 (2009)

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM 56(6) (2009); Extended abstract in STOC 2005 (2005)

[Sha85] Shamir, A.: Identity-based cryptosystems and signature schemes. In:
Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–
53. Springer, Heidelberg (1985)

[Wat05] Waters, B.: Efficient identity-based encryption without random oracles.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127.
Springer, Heidelberg (2005)

[Wat09] Waters, B.: Dual key encryption: Realizing fully secure IBE and HIBE
under simple assumption. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 619–636. Springer, Heidelberg (2009)

http://eprint.iacr.org/

Toward Basing Fully Homomorphic Encryption
on Worst-Case Hardness

Craig Gentry

IBM T.J Watson Research Center
cbgentry@us.ibm.com

Abstract. Gentry proposed a fully homomorphic public key encryption
scheme that uses ideal lattices. He based the security of his scheme on the
hardness of two problems: an average-case decision problem over ideal
lattices, and the sparse (or “low-weight”) subset sum problem (SSSP).

We provide a key generation algorithm for Gentry’s scheme that gener-
ates ideal lattices according to a “nice” average-case distribution. Then,
we prove a worst-case / average-case connection that bases Gentry’s
scheme (in part) on the quantum hardness of the shortest independent
vector problem (SIVP) over ideal lattices in the worst-case. (We can-
not remove the need to assume that the SSSP is hard.) Our worst-case
/ average-case connection is the first where the average-case lattice is
an ideal lattice, which seems to be necessary to support the security of
Gentry’s scheme.

1 Introduction

Recently, Gentry [10] presented a somewhat homomorphic encryption scheme
that uses ideal lattices, and proved its security based on an average-case decision
problem. In this paper, we focus on this somewhat homomorphic scheme and its
security. Our main results are:

– Algorithms for his scheme – most importantly, a KeyGen algorithm for gen-
erating secret and public bases of an ideal lattice – that permit the scheme’s
semantic security to be based on a search problem over ideal lattices having
a nice average-case distribution.

– A quantum worst-case / average-case reduction, which ultimately bases the
security of Gentry’s somewhat homomorphic scheme on the worst-case quan-
tum hardness of the shortest independent vector problem (SIVP) over ideal
lattices.

Gentry also showed that his somewhat homomorphic scheme, after some mod-
ifications, becomes “bootstrappable” and therefore can be used to construct a
fully homomorphic encryption (FHE) scheme [31,10]. He proved that the FHE
scheme is semantically secure if the original somewhat homomorphic scheme is
semantically secure and the sparse (or “low-weight”) subset sum problem (SSSP)
[11,25] is hard. Those results are generic enough to work with our instantiation

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 116–137, 2010.
c© International Association for Cryptologic Research 2010

Toward Basing Fully Homomorphic Encryption on Worst-Case Hardness 117

of KeyGen and the other algorithms. That is, we immediately obtain a FHE
scheme whose security is based on two problems: the SSSP and worst-case quan-
tum SIVP over ideal lattices.1 Since the SSSP is an average-case problem, it
remains an open problem to base FHE entirely on worst-case hardness. How-
ever, the more “troubling” of Gentry’s two assumptions (in our opinion) is that
the average-case decision problem over ideal lattices is hard. At least we can
replace this assumption with one involving worst-case hardness.

1.1 Related Work

In 1996, Ajtai [1] found a surprising reduction of worst-case lattice problems to
average-case ones. Unlike the random self-reduction of Diffie-Hellman, where the
worst-case and average-case instances are over the same group G, Ajtai’s worst-
case problem is a completely general problem (over lattices) that is unconstrained
by any parameters in the average-case problem. The average-case lattices in
Ajtai’s reduction are of a certain type: those generated by random parity-check
matrices modulo an integer q.

Following Ajtai, improved worst-case / average-case connections were de-
scribed in [8,22,23,28,24,26,20]. Also, various primitives have been based on
worst-case hardness, including collision-resistant hash functions [1,8,22,17,24,27],
public-key encryption [3,29,30,12,26,19], signatures [18,12], and (hierarchical)
identity-based encryption [12,9,7]. Ajtai [2] showed how to generate his average-
case lattices together with a short secret basis for the lattice that can be used as
a decryption key in an encryption scheme [12]; Alwen and Peikert [4] tightened
this result.

However, as far as we know, previous worst-case / average-case reductions
cannot be used to base Gentry’s somewhat homomorphic scheme on worst-case
hardness. The essential problem is that Gentry’s scheme [10] uses ideal lattices
and relies heavily on the structure of these lattices as algebraic ideals in a ring
to obtain homomorphism. However, in none of the previous reductions is the
average-case lattice an ideal lattice.

Some previous work describes worst-case / average-case reductions where
the worst-case lattice is an ideal lattice, and the average-case instances are de-
rived from ideal lattices, in a fashion somewhat similar to how Ajtai’s average-
case lattices are derived from a worst-case instance. For example, for the ring
R = Z[x]/(xn − 1) and fixed a1, . . . , am ∈ Rm, Micciancio [22,23] considered
the lattice formed by solutions v1, . . . ,vm ∈ Rm to

∑
i ai × vi = 0, and showed

that solving the bounded distance decoding problem (BDDP) or SIVP for such
“quasi-cyclic” lattices in the average-case allows one to solve the BDDP or SIVP
for “cyclic lattices” (ideal lattices in R) in the worst-case. While Micciancio’s
worst-case lattices are ideal lattices, the average-case lattices are not; they cor-
respond to modules, rather than ideals. Peikert and Rosen [28] demonstrated a

1 Technically, both in [10] and here, a “circular-security” assumption is also needed to
obtain an FHE scheme whose public key size is independent of the circuit depth of
the functions being homomorphically evaluated.

118 C. Gentry

very tight worst-case / average-case reduction where the worst-case lattices are
ideal lattices, and where the average-case lattices are derived from ideal lattices
in a way similar to that used by Micciancio. Some other results in this line of
work include [27,17,20].

However, again, previous work does not provide a worst-case / average-case
“random self-reduction” where both average-case and worst-case lattices are
ideal lattices of the same dimension in the same ring, which seems to be nec-
essary to preserve the algebraic structure used by Gentry’s scheme, and thus
necessary to support the security of Gentry’s somewhat homomorphic scheme.
This suggests that we need an approach fundamentally different from Ajtai’s and
other previous work. We also need a KeyGen algorithm for Gentry’s scheme that
generates an ideal lattice, together with a secret basis of the lattice, according
to the appropriate average-case distribution.

1.2 Our Worst-Case / Average-Case Self-reduction

We provide the first worst-case / average-case self-reduction where the average-
case lattice is an ideal lattice. We focus on the reduction for BDDP over ideal
lattices, but this reduction can be extended to other ideal lattice problems.
Combining with other results presented here and in prior work, this reduction
bases the security of Gentry’s somewhat homomorphic scheme on worst-case
hardness.

Our reduction makes heavy use of the algebraic properties of ideals. Interest-
ingly, and quite unlike other worst-case / average-case reductions, our reduction
uses an integer factoring oracle to factor ideals in the ring. This integer factoring
oracle can be instantiated efficiently with quantum computation [32], and hence
we get an efficient quantum reduction. The reduction is also meaningful in the
classical setting, since there are known sub-exponential factoring algorithms for
factoring (e.g., the number field sieve). If solving average-case problems over ideal
lattices is easy, our reduction implies that there are surprising sub-exponential
algorithms for solving worst-case problems over ideal lattices.

Since our worst-case and average-case instances involve ideal lattices of the
same dimension within the same ring R, one may prefer to think of our reduction
as a “random self-reduction”. It is an “imperfect” self-reduction in that the
approximation factor is larger in the worst-case problem than in the average-
case problem by a poly(n) factor (for the rings R that we use). However, as far
as we know, the BDDP is hard even for sub-exponential approximation factors
– i.e., for factors much larger than our reduction’s poly(n) lossiness.

Roughly speaking, the reduction works as follows. We are given the basis
BM of a worst-case ideal lattice M that corresponds to an ideal in the ring R,
together with a vector t ∈ Rn that is close to some vector u ∈M ; the BDDP is
to output u. To generate an average-case instance, we first sample a “random”
vector v from the inverse ideal M−1 according to a particular distribution. We
multiply (in the ring R) each of the basis elements of BM by v to obtain a basis
BL of the lattice for the ideal L = M · (v), and set u′ ← v × u. L will be an
ideal in R that is not divisible by M , since v ∈ M−1 and thus “cancels” M .

Toward Basing Fully Homomorphic Encryption on Worst-Case Hardness 119

However, due to v’s distribution, L’s geometry will be very closely related to M ;
in particular, solving BDDP for (L,u′) will help solve BDDP for (M,u). Toward
solving BDDP for (L,u′), we use our factoring oracle to find a “suitable” ideal
J that divides L (restarting if no suitable one exists), and output the instance
(J,u′) to our average-case BDDP solver. Note that L is a subset of J . As long
as L is not an overly sparse subset, and for suitable parameters, the closest
vector in J to u′ will also be in L. Hence, a BDDP solution to average-case
instance (J,u′) leads to a BDDP solution to the worst-case instance (M,u).
We show that J comes from our desired average-case distribution – i.e., that
it is uniformly random among regular prime ideals in R whose norms are in a
prescribed interval. Of course, the target vector u′’s distribution is not random
– i.e., is not independent of the worst-case instance – but we also show how to
randomize the target vector’s distribution. See Section 3 for details and proofs.

1.3 How to Generate an Average Ideal Lattice, and Other Results

In [10], Gentry mentions some ad hoc ways of generating an ideal lattice, together
with a secret basis for it. Here, we show how to generate ideal lattices (together
with a secret basis) according to the average-case distribution used in our worst-
case / average-case connection. Generating an ideal lattice according to this
distribution is easy, but generating it together with a “good” secret basis is
surprisingly difficult. Our solution to this problem is provided in Section 4.

Although the worst-case / average-case connection for BDDP over ideal lat-
tices (Section 3) and the key generation algorithm (Section 4) are our main
results, several other reductions are necessary to base our version of Gentry’s
somewhat homomorphic scheme on worst-case SIVP over ideal lattices. We sum-
marize these reductions in Section 5.

2 Preliminaries

2.1 Ideal Lattices

By an ideal lattice, we mean an ideal in the ring of integers R = OF , where f(x)
is a monic, irreducible polynomial of degree n, and F is the field Q[x]/(f(x)). A
good example to keep in mind is f(x) = xn + 1, where n is a power of 2. Then,
the ring of integers is simply Z[x]/(f(x)), integer polynomials modulo f(x). In
the full version, we address the general case Z[x]/(f(x)) ⊆ R ⊆ OF .

Each element of R is associated to a coefficient vector in Qn (in Zn in our
example). Since an ideal I ⊂ R is additively closed, the coefficient vectors asso-
ciated to elements of I form a lattice. The term “ideal lattice” emphasizes this
object’s dual nature as an algebraic ideal and a lattice.2

Ideals have additive structure as lattices, but they also have multiplicative
structure. The product of two ideals I and J is IJ = {∑v ×w : v ∈ I,w ∈ J},
where ‘×’ is ring multiplication. Let F = Q[x]/(f(x)) be the field containing R.

2 Alternative representations of an ideal lattice are possible – e.g., see [28,20].

120 C. Gentry

The inverse of a ideal I is I−1 = {w ∈ F : ∀v ∈ I,v×w ∈ R}. For example, the
inverse of (2) is (1/2) = {r/2 : r ∈ R}. (The inverse of any principal ideal (v)
is given by (v−1), where the inverse v−1 is taken in F , but for a non-principal
ideal the inverse is not always so simple.) We say that ideal I divides ideal J if
JI−1 ⊂ R. I is a prime ideal if I dividing A · B implies I divides A or B. The
ideal I−1 or JI−1 is sometimes called a fractional ideal, particularly when it is
not a subset of R.

Ideals in R have many of the nice properties of integers, especially when R is
the ring of integers. For example, in this case, ideals in R factor uniquely as a
product of prime ideals. Also, all ideals in R are invertible – i.e., I · I−1 = R.
Furthermore, one can define the norm of a fractional ideal Nm(I) as the index
[R : I], and this map is multiplicative: Nm(IJ) = Nm(I) ·Nm(J).

Just as the prime number theorem states that the number of primes less than
x is approximately x/ lnx, we have Landau’s prime ideal theorem [15]:
Theorem 1 (Theorem 8.7.2 from [5]). Let F be an algebraic number field
of degree n. Let πF (x) denote the number of prime ideals in OF whose norm is
≤ x. Let λ(x) = (lnx)3/5(ln lnx)−1/5. There is a c > 0 (depending on F) such
that

πF (x) = x/ lnx+O(xe−cλ(x))

With the Generalized Riemann Hypothesis, one can make a stronger statement.

Theorem 2 (Theorem 8.7.4 from [5]). Assume GRH. Let F be an algebraic
number field of degree n and discriminant ΔF . For x ≥ 2, we have

|πF (x)− x/ lnx| = O(
√
x(n lnx+ ln |ΔF |))

The constant implied by the “O” symbol is absolute.
Regarding Theorem 2, ΔF is upper-bounded by Δ(f), the discriminant of the
polynomial f . Since Δ(f) is the determinant of the Sylvester matrix formed by
f(x) and its derivative f ′(x), it is upper bounded by nn‖f‖2n, where ‖f‖ is the
Euclidean length of the coefficient vector of f(x) [33]. As in [10], we will always
use f(x) such that ‖f‖ = poly(n), which implies that ln |ΔF | = poly(n).

We let γf denote the minimal value such that ‖u× v‖ ≤ γf · ‖u‖ · ‖v‖ for all
u,v ∈ Q[x]/(f(x)). For the values of irreducible f(x) recommended in [10], we
have γf = poly(n). A nice property of ideal lattices in such rings is that they
are never too “oblong.” In particular, trivially, λn(I)/λ1(I) ≤ γf , where λk(I)
is the k-th minimum of the ideal lattice I.

Again, a good choice for f(x) is xn+1, where n is a power of 2. This polynomial
has the virtues of being irreducible, satisfyingR = OF = Z[x]/(f(x)), and having
small values of Δ(f), ‖f‖, and γf .

2.2 Gaussian Distributions and Other Preliminaries

For any real s > 0, define the Gaussian function on Rn centered at c with
parameter s as ρs,c(x) = exp(−π‖x − c‖2/s2) for all x ∈ Rn. The associated
discrete Gaussian distribution over lattice L is

Toward Basing Fully Homomorphic Encryption on Worst-Case Hardness 121

∀ x ∈ L,DL,s,c(x) =
ρs,c(x)
ρs,c(L)

,

where ρs,c(A) for set A denotes
∑

x∈A ρs,c(x). In other words, the probability
DL,s,c(x) is simply proportional to ρs,c(x), the denominator being a normaliza-
tion factor.

As in [24], for lattice L and real ε > 0, we define the smoothing parameter
ηε(L) to be the smallest s such that ρ1/s(L∗ \ {0}) ≤ ε. We say that s “exceeds
the smoothing parameter” of L if s ≥ ηε(L) for negligible ε. In particular, this
is true when s ≥ λn(L) · ω(

√
logn). Some useful lemmas are the following.

Lemma 1 (Lemma 4.4 of [24]). For any n-dimensional lattice L, vector c ∈
Rn, and reals 0 < ε < 1, s ≥ ηε(L), we have

Pr
x←DL,s,c

{‖x− c‖ > s
√
n} ≤ 1 + ε

1− ε
· 2−n

Lemma 2. Let I, J be ideal lattices in R. Then for any ε ∈ (0, 1/2), and s ≥
max{ηε(I), ηε(J)}, and any c ∈ Rn, ρs,c(I)/ρs,c(J) equals Nm(J)/Nm(I), up to
a multiplicative factor of between (1 + ε)2/(1− ε) and its inverse.

Proof. See full version.

We use ei to refer to the vector (0, . . . , 0, 1, 0, . . . , 0) with ‘1’ in the ith position.
We say that an equality a ≈ b holds “up to negligible error” if a = (1± ε) · b for
some negligible ε.

3 Random Self-reduction of Ideal Lattice Problems

In this section, we present our worst-case / average-case “random self-reduction”
for problems over ideal lattices, focusing on the bounded distance decoding prob-
lem (BDDP) [19,30]. We describe our average-case distribution, and specify our
average-case and worst-case versions of BDDP. Then we show how to “random-
ize” worst-case ideal lattices into ideal lattices from our average-case distribu-
tion. In Section 4, we establish that the average-case distribution is suitable for
KeyGen – i.e., we can efficiently (classically) sample an ideal lattice and a good
basis for it according to this distribution.

3.1 Our Average-Case Distribution and Hard Problem

Our average-case distribution is simple: uniform over prime (non-fractional) ide-
als in R that have norms in some specified interval [a, b].

Our average-case problem is really a “hybrid” of worst-case and average-case.

Definition 1 (HybridBoundedDistanceDecodingProblem(HBDDP)).
Fix ring R and algorithm IdealGen that samples ideals in R, outputting the Her-
mite normal form basis of the sampled ideal lattice. Fix a positive real

122 C. Gentry

sHBDDP. The challenger sets BJ
R← IdealGen(R). The challenger sets x subject

to the constraint that ‖x‖ < sHBDDP and sets t ← x mod BJ . The problem is:
given (BJ , t) (and the fixed values), output x.

The ideal lattice is generated according to an average-case distribution induced
by an algorithm IdealGen. However, the vector t is “worst-case”, in that t is only
required to be within a certain distance of the lattice; it need not be chosen
according to any known (or even samplable) distribution.

The worst-case BDDP (WBDDP) is identical, except the ideal lattice is not
necessarily chosen from an efficiently samplable distribution. For both of the
BDDPs, we assume that the s parameter is chosen so that the solution is unique.

We base the security of our version of Gentry’s scheme on HBDDP in the full
version (and sketch this result in Section 5). As part of this result, we reduce
HBDDP to a “purely” average-case BDDP where t is sampled according to a
Gaussian distribution. In the full version, we also provide more reductions that
(quantumly) reduce worst-case SIVP to WBDDP. We choose to focus on our
techniques for randomizing the lattice since they are more interesting.

3.2 Statement of the Reduction

Our reduction is stated in the following theorem. It uses parameters that must
satisfy certain conditions that we will specify momentarily.

Theorem 3. Let R be the ring of integers for field F = Q(x)/(f(x)). Let M ,
N , sWBDDP, t, a, and b satisfy the conditions. Suppose that there is an algorithm
A that solves sHBDDP-HBDDP with overwhelming probability (over the random
coins chosen by A) for a ε fraction of prime ideals J of R having norm in [a, b].
Then, there is an algorithm B, which given access to a factoring oracle, solves
with overwhelming probability the sWBDDP-WBDDP for any (worst-case) ideal
M of R with norm in [N, 2N] when 2t · sWBDDP ≤ sHBDDP. Regarding running
times, time(B) = time(A) · poly(n)/ε.

The conditions are as follows (s refers to sWBDDP):

– logN and log b are only polynomial in the lattice dimension n
– s = ω(

√
logn),

– s = γf · (b/N)1/n · ω(
√

logn),
– t ≥ γf · n1.5 · s,
– |Ia,b|/b is non-negligible, where Ia,b is the set of prime ideals with norm in

[a, b],
– a/b is non-negligible,
– a2 > 2N · etn0 where e is Euler’s constant and t0 = t+ s · √n.

Remark 1. Asymptotically, the requirement that |Ia,b|/b be non-negligible will
be satisfied if (b − a)/b is non-negligible. See Theorems 1 and 2.

To make the conditions more comprehensible, let us consider a concrete choice
of parameters. Set N = b = 2a. Then, for any g(n) = ω(

√
logn), we can set

Toward Basing Fully Homomorphic Encryption on Worst-Case Hardness 123

s = γf · g(n) and t = γf
2 · n1.5 · g(n). The condition a2 = N2/4 > 2N · etn0 is

met when N/8 > etn0 ≈ etn = e · γf
2n · n1.5n · g(n)n. This is a very mild lower

bound for N , considering that N is related to the norm of M . In particular, the
condition a2 > 2N · etn0 can be met even when λn(M) is small – e.g., polynomial
in n.

A “deficiency” of the reduction is that, according to the conditions, the norm
of the output average-case ideal is lower-bounded in terms of the norm of the
worst-case ideal. It would be preferable to remove this constraint. In a reduction
described in the full version, we show that ideals with “small” norms are the
“hard case” when one is given access to a factoring oracle, and therefore our
reductions ultimately apply even to average-case ideals with fairly small norms.

3.3 The RandomizeIdeal Algorithm

Toward proving Theorem 3, we present an algorithm RandomizeIdeal that, assum-
ing the conditions are met, “randomizes” a worst-case lattice into our average-
case distribution. In Section 3.4, we show that one can solve WBDDP by using
RandomizeIdeal in combination with a HBDDP-solver.

RandomizeIdeal(R,M,N, s, t, a, b):

1. Outputs ⊥ if the parameters do not satisfy the conditions.
2. Generates a vector v per the distribution DM−1,s,t·e1 ; sets L←M · (v).
3. Uses a factoring oracle to compute lattice bases of the prime ideal divisors
{pi} of L.

4. Sets J to be an ideal in {pi} with norm in [a, b]; if none exists, it aborts.
5. With probability Nm(J)/b, outputs a basis BJ of J , along with the vector

v; otherwise, it aborts.

Regarding Step 2, one can sample from DM−1,s,t·e1 by using the GPV algo-
rithm [12] with the independent set {ei} in M−1.

Regarding Step 3, let R′ = Z[x]/(f(x)) and consider the following theorem.

Theorem 4 (Kummer-Dedekind, as given in [33]). Consider the factor-
ization f(x) =

∏
i gi(x)ei mod p for prime integer p. The prime ideals pi ∈

Z[x]/(f(x)) of R′ whose norms are powers of p are precisely

pi = (p, gi(x))

There are polynomial time algorithms for factoring polynomials in Zp[x] – e.g.,
by Kaltofen and Shoup [14]. Therefore, in R′, if we have an integer factoring
algorithm to factor Nm(L), we can efficiently discover all of the prime ideals that
divide L. See [33] for details on how to extend this approach to rings R ⊃ R′.
Note that since R = OF , the factorization in Step 3 is unique.

Regarding Step 4, there will be at most one ideal in {pi} with norm in [a, b].
If there were two such ideals pi, pj, the norm of their product would be at least
a2 > 2N · etn0 , where we will show the latter term exceeds the norm of L, a
contradiction.

124 C. Gentry

Before proving the reduction, we must establish that RandomizeIdeal outputs
J according to our desired average-case distribution. We prove this in Lemma
6. Lemmas 3, 4 and 5 establish some preliminary facts.

Lemma 3. Suppose the conditions are met. The probability that the ideal L has
a divisor in Ia,b is non-negligible.

Proof. See full version.

Lemma 4. Suppose v = e1+u for ‖u‖ ≤ 1/(2γf). Then, e−2n·γf ·‖u‖ ≤ Nm((v))
≤ en·γf ·‖u‖. In particular, when v ∈ t · e1 + B(s

√
n), Nm((v)) ≤ e · tn0 .

Proof. (Lemma 4) See full version.

Lemma 5. Suppose the conditions are met. RandomizeIdeal(R,M,N, s, t, a, b)
aborts with non-overwhelming probability.

Proof. (Lemma 5) For Step 5, the probability of aborting is non-overwhelming,
since a/b is non-negligible and Nm(J) ≥ a. Regarding Step 4, we use Lemma
3, which establishes that, for our choice of parameters, there is a non-negligible
probability that M · (v) has a prime ideal divisor with norm in [a, b] when v is
sampled according to the above distribution. �

Lemma 6. Suppose the conditions are met. Then, RandomizeIdeal samples J as
a statistically uniform prime ideal (independent of M) subject to the constraint
that Nm(J) ∈ [a, b].

Proof. (Lemma 6) Consider the probability that a particular prime ideal J0 with
norm in [a, b] is chosen as the ideal J in Step 4 in a single trial if there is no
abort. (By Lemma 5, the probability of abort is non-overwhelming.) Assuming
v ∈ t · e1 + B(s · √n) (which is indeed the case with overwhelming probability
by Lemma 1), we claim that J0 is chosen iff v ∈ J0M

−1.
For the ‘if’ direction of our claim, if v ∈ J0M

−1, then J0 divides (is a super-
lattice of) L ← M · (v). Since Nm((v)) ≤ etn0 when v ∈ t · e1 + B(s · √n) by
Lemma 4, we have that Nm(L) = Nm(M) ·Nm((v)) ≤ 2N ·etn0 < a2 ≤ Nm(J0)2.
Consequently, besides J0, L cannot have any other prime ideal divisors with norm
in [a, b], and J0 is chosen. For the ‘only if’ direction, that J0 is chosen implies
that J0 divides (is a super-lattice of) L = M · (v). But then J0M

−1 is a super-
lattice of M−1M ·(v) = (v). Therefore, (v) is contained in J0M

−1; in particular,
v ∈ J0M

−1.
Given our claim, for fixed M , the probability that J0 is chosen in Step 4 is:

Pr[J0] ≈
∑

v∈J0M−1 Pr[v]∑
v∈M−1 Pr[v]

=
ρs,t·e1(J0M

−1)
ρs,t·e1(M−1)

(The approximate equality holds up to negligible error, since it relies on v ∈
t · e1 + B(s · √n).)

Toward Basing Fully Homomorphic Encryption on Worst-Case Hardness 125

We claim that s exceeds the smoothing parameters of J0M
−1 and M−1. As-

suming this claim, Lemma 2 implies that

ρs,t·e1(J0M
−1)

ρs,t·e1(M−1)
≈ Nm(M−1)/Nm(J0M

−1) = 1/Nm(J0)

up to negligible error. Step 5 uses rejection to adjust this probability from
1/Nm(J0) to 1/b, making the distribution statistically uniform (and statistically
independent of M) over all prime ideals with norms in [a, b].

It remains to prove our claim that s exceeds the smoothing parameters of
J0M

−1 and M−1. This is clearly true for M−1, which contains Zn as a sub-
lattice. Regarding J0M

−1, we have

s = γf · (b/N)1/n · ω(
√

logn)

≥ γf ·Nm(J0)1/n/Nm(M)1/n · ω(
√

logn)

≥ γf ·Nm(J0)1/n ·Nm(M−1)1/n · ω(
√

logn)

≥ γf ·Nm(J0M
−1)1/n · ω(

√
logn)

≥ γf · λ1(J0M
−1) · ω(

√
logn)

≥ λn(J0M
−1) · ω(

√
logn)

and the claim follows. �

3.4 Proof of the Reduction

Finally, we prove Theorem 3, showing how to use the procedure RandomizeIdeal
to reduce WBDDP to HBDDP.

Intuitively, RandomizeIdeal samples a vector v that is “nearly parallel” to e1
(since t s), so that multiplying the basis vectors in BM by v is similar (from a
geometric perspective) to multiplying by t. Thus, L is geometrically similar to a
simple scaling of M , and it is easy to see how a solution to a lattice problem over
L (e.g., to BDDP or SIVP) yields a solution to a lattice problem over M . As long
as L is not an overly sparse subset of J – e.g., suppose that (Nm(L)/Nm(J))1/n

is poly(n) – then λ1(J) will be only poly(n) less than λ1(L), and the BDDP
solution to (L,u′) will be the same as to (J,u′) as long as u′ is sufficiently close
to L.

Proof. (Theorem 3) B wants to solve the WBDDP instance (M,u). It does the
following:

1. Runs (BJ ,v) R← RandomizeIdeal(R,M,N, s, t, a, b).
2. Sets u′ ← (u× v) mod BJ .
3. Runs A on the instance (J,u′), receiving back a vector y such that u′−y ∈ J .

(If A does not solve this instance, restart.)
4. Outputs x← y/v.

126 C. Gentry

First, we verify that (J,u′) is a valid HBDDP instance that should be solvable
by A. By Lemma 6, RandomizeIdeal outputs the basis of an ideal J that is
statistically uniform among invertible prime ideals with norm in [a, b].

Now let us check that u′ is also valid. By assumption, there exist m ∈M and
z with ‖z‖ ≤ sWBDDP such that u = m+z. So, u′ = m′ +z′, where m′ ∈M · (v)
and z′ = z×v. Assuming v ∈ t ·e1 +B(s ·√n), which occurs with overwhelming
probability, we have

‖z′‖ = ‖z× v‖ ≤ t · ‖z‖+ γf · s ·
√
n · ‖z‖ ≤ 2t · sWBDDP ≤ sHBDDP

Since M · (v) is a sub-lattice of J , we have that u′ = j + z′ for some j ∈ J .
By the analysis above, A should solve the instance (J,u′) with probability at

least ε. If A solves this instance – i.e., B receives from A the unique vector y with
‖y‖ < sHBDDP such that u′ −y ∈ J . It must be that y = z′. Thus x = z′/v = z,
and B solves its WBDDP instance.

The probability that RandomizeIdeal does not abort and A succeeds is at
least ε/poly(n). These probabilities are independent over trials, and the claimed
running time of B follows. �

4 KeyGen According to the Average-Case Distribution

4.1 Our Approach at a High Level

For KeyGen, we want an algorithm IdealGen that generates a random ideal J
together with a short vector in w ∈ J−1 to be used as the secret key. Recall
how decryption works in Gentry’s somewhat homomorphic scheme, and suppose
that R = Z[x]/(f(x)) in this subsection for simplicity. A ciphertext is an integer
vector of the form c = j+e, where j ∈ J and e is a short noise vector containing
the message. Decryption involves computing the fractional part [w × c], which
equals [w × e] since w × j is in R and thus an integer vector. If w and e are
short enough – in particular, if we have the guarantee that all of the coefficients
of w×e have magnitude less than 1/2 – then [w×e] equals w×e exactly. From
w × e, the decrypter can recover e and the message.

How short should w be? Since λn(J−1) is at least Nm(J)−1/n, we cannot
expect w to be much shorter than this. (Recall that we choose R such that
λn(I)/λ1(I) is polynomial in n.) So, we will consider w to be a “good” secret key
with respect to ideal J if ‖w‖ ≤ g(n)·Nm(J)−1/n for some small polynomial g(n).
Now, how do we generate a random ideal J together with a “good” w ∈ J−1?

Our first step is to generate a “small” random ideal K – “small” in the sense
that its norm is in [ncn, 2ncn] for some small constant c, which guarantees that
λn(K) = poly(n). Since the norm of K is so small, e1 ∈ K−1 is trivially a
good secret key for K according to our definition. K is not useful as the ideal in
Gentry’s scheme, since even very small errors e make ciphertexts indecipherable.

But suppose, as a thought experiment, that we simply set J = K · (v) where
v = T · e1 for some large integer T . That is, J is simply a scaling of K. Then,
w ← e1/T is a vector in J−1 that satisfies our definition of a good secret key.
And J is “large” enough to handle larger error vectors.

Toward Basing Fully Homomorphic Encryption on Worst-Case Hardness 127

However, the simple scaling approach is obviously unsatisfactory for a few
reasons. First, it does not generate J according to our desired average-case dis-
tribution. Also, it may not even be secure: all of the coefficients of J ’s vectors are
divisible by T , and thus a ciphertext c leaks the value of e mod T . Obviously,
we want to avoid these deficiencies.

Instead, as our second step, we sample v← DK−1,S,T ·e1 where T/S = poly(n).
Then, as before, we set J = K · (v), and w ← e1/v. That is, we do the same
thing as in the simple scaling approach, except that we sample v from K−1

rather than from R, and we choose it to be very close to T · e1 rather than
being exactly equal. It turns out that, if v is very close to T · e1, then 1/v is
very close to e1/T . In particular, w will be a good secret key for J . Fortunately,
this approach avoids the deficiencies of simple scaling. We can prove that, by
including a couple of rejection steps – to output J only if it is prime, to fine-tune
the output distribution, etc. – the J sampled using this approach has the correct
average-case distribution.

Intuitively, why does this approach induce a random distribution on J? At a
very high level, we can ask: is J random geometrically (e.g., when one considers
the “shape” of the parallelepiped formed by J ’s shortest independent set), and
is J random algebraically (e.g., when one considers J ’s norm)? Geometrically, J
inherits K’s shape, since (up to some perturbation in the sampling of v) it is a
simple scaling of K. We choose K from a large enough space so that its shape,
and hence J ’s shape, is quite “random”. Algebraically, the fact that v is sampled
from K−1 “randomizes” J algebraically – in particular, J is not divisible by K.
But these are only intuitions. Before providing a more precise explanation, we
need to describe our IdealGen algorithm in more detail.

4.2 IdealGen: The Details

IdealGen uses parameters s = ω(
√

logn), t such that t ≥ 42 · γf · s · n1.5 and
t > 8 · γf · s · n1.5 · ‖f‖2, and α ≥ 1; let S = s · α and T = t · α. It invokes an
algorithm TempIdeal(R, i, j), described in Section 4.3, that outputs a uniformly
random ideal K with norm in [i, j] (but not a nontrivial “good” key for K).
IdealGen ultimately outputs a uniformly random prime ideal J with norm in
[2, 3] · t2nT n.

IdealGen:

1. Runs BK
R← TempIdeal(R, t2n, 4t2n).

2. Samples v R← DK−1,S,T ·e1 and sets w← 1/v; aborts if v /∈ T ·e1 +B(2S
√
n).

3. Sets J ← K · (v); aborts if J is not prime or Nm(J) /∈ [2, 3] · t2nT n.
4. Continues to Step 5 with probability Nm(K)/4t2n; otherwise, aborts.

5. Continues to Step 6 with probability β · ρS/T2,(1/T)·e1 (w)
ρS,T ·e1(v) , where β will be

defined later; otherwise, aborts.
6. With probability 2t2nT n/Nm(J), outputs w and the Hermite normal form

of J ; otherwise, aborts.

128 C. Gentry

Remark 2. IdealGen is precisely what we outlined above, aside from the prob-
ability of aborting in Steps 2-6. We will show that the probability of aborting
is non-overwhelming, and that these steps fine-tune the distribution so that J
is a uniformly random prime ideal with norm in the prescribed interval. The
algorithm can be re-run until it completes successfully.

Remark 3. In Step 2, one can sample from the distribution DK−1,S,T ·e1 by using
the GPV algorithm [12] with the independent set {ei} in K−1.

Remark 4. By Lemma 1, the vector v is in T · e1 + B(S
√
n) with overwhelming

probability. Note that we only abort in Step 2 if v /∈ T ·e1 +B(2S
√
n). We use a

ball of radius 2S
√
n instead of S

√
n in Step 2 for technical reasons – specifically,

Corollary 2 below and its use in the proof of Theorem 7.

Remark 5. Regarding Step 5, we must ensure that the “probability” is a number
in [0, 1]. We show that ρS/T 2,(1/T)·e1(w)/ρS,T ·e1(v) ∈ [e−6π

√
1/n, e6π

√
1/n]. (See

Lemma 10.) Therefore, we can take β ← e−6π
√

1/n.

To begin analyzing our IdealGen algorithm, we state some useful lemmas about
the vector v sampled in Step 2. Omitted proofs can be found in the full version.
The theme of these lemmas is that since v is very close to T · e1, it behaves in
many respects like T · e1.

Lemma 7. If v ∈ T · e1 + B(2S
√
n), then Nm((v)) ∈ [T n/1.1, 1.1 · T n].

Lemma 8. If v ∈ T ·e1 +B(2S
√
n), then it is the only vector in (v) inside that

ball.

Lemma 9. If ‖u‖ < 1/γf , then

e1/(e1 − u) = e1 + u + x for ‖x‖ ≤ γf · ‖u‖2
1− γf · ‖u‖

Corollary 1. If v ∈ T · e1 + B(2S
√
n), then w ∈ e1/T + B(4S

√
n/T 2).

Corollary 2. If w ∈ e1/T + B(S
√
n/T 2), then v ∈ T · e1 + B(2S

√
n).

Lemma 10. If v ∈ T · e1 + B(2S
√
n), then

ρS,T ·e1(v)/ρS/T 2,(1/T)·e1(w) ∈ [e−6π
√

1/n, e6π
√

1/n]

Our main results about IdealGen are captured in Theorems 5, 6, and 7 – namely,
that it outputs a good secret key for J , it does not abort very often (and therefore
can be efficiently re-run until it outputs a result), and it outputs J according to
the desired average-case distribution.

Theorem 5. The vector w output by IdealGen is a “good” key for J . Specifically,
‖w‖ < 6t2 · Nm(J)−1/n.

Toward Basing Fully Homomorphic Encryption on Worst-Case Hardness 129

Proof. (Theorem 5) By Corollary 1, w ∈ e1/T+B(4S
√
n/T 2). So, clearly, ‖w‖ <

2/T . On the other hand, Nm(J)−1/n ≥ 1/(31/nt2T). The result follows. �

Theorem 6. The probability of aborting in Steps 2-6 is non-overwhelming.

Proof. (Theorem 6) For Steps 4 and 6, the claim is clearly true. For Step 2, it
follows from Lemma 1.

For Step 5, we invoke Lemma 10, which implies we can set β ← e−6π
√

1/n, and
the algorithm will continue to Step 6 with at least (non-negligible) probability
e−12π

√
1/n.

For Step 3, an abort occurs if J is not prime or Nm(J) /∈ [2, 3] · t2nT n.
Asymptotically, Theorems 1 and 2 imply that, for an interval [cx, x] with con-
stant c < 1, prime ideals are a O(1/ log x) fraction of ideals. Given that Nm(J) =
Nm(K) · Nm((v)) and Nm((v)) ∈ [T n/1.1, 1.1 · T n] (by Lemma 7), Nm(J) falls
outside the interval only if Nm(K) falls outside of [2 · 1.1, 3/1.1] · t2n. By the
distribution of ideals (see Theorems 1 and 2) and the claimed distribution of
TempIdeal, this occurs only with only constant probability, in which case the
probability of aborting in Step 2 is a constant. �

Before getting to the last theorem, we state one more lemma.

Lemma 11. Let J be an ideal such that Nm(J) ∈ [2, 3] · t2nT n. Then S/T 2

exceeds the smoothing parameter of J−1.

Proof. (Lemma 11) We have

S

T 2 =
s

tT
≥ s · γf

21/nt2T
≥ s · γf

Nm(J)1/n
≥ s · γf · λ1(J−1) ≥ s · λn(J−1) .

Since s = ω(
√

logn), the result follows. �

Theorem 7. For any α ≥ 1, IdealGen with parameter α efficiently outputs a
prime ideal J that is statistically uniform subject to the constraint that Nm(J) ∈
[2, 3] · t3nαn.

Proof. (Theorem 7) Let K be the sets of ideals with norms in [1, 4] · t2n, and let
J be the sets of prime ideals with norms in [2, 3] · t2nT n. For convenience, we
define some sets of ideals associated to J ∈ J . Let

SJ = {K ∈ K : ∃v s.t. J = K · (v) and v ∈ T · e1 + B(2S
√
n)}

VJ = {w : J · (w) ∈ K and 1/w ∈ T · e1 + B(2S
√
n)}

WJ = {w : J · (w) ∈ K and w ∈ (1/T) · e1 + B(S
√
n/T 2)}

Define S′J identically to SJ , except they include only those K for which there is
exactly one such v. Lemma 8 implies that SJ = S′J .

Consider the probability Pr[J0] that a particular ideal J0 is chosen as J in
Step 3. We have

Pr[J0] =
∑

K∈SJ0

Pr[J0 ∧K] = c1 ·
∑

K∈SJ0

Pr[J0|K] = c1 ·
∑

K∈S′
J0

Pr[J0|K],

130 C. Gentry

for some universal constant c1, where the second inequality follows from the fact
that K is chosen uniformly by TempIdeal.

For a particular candidate pair (K0, J0) with K0 ∈ S′
J0

, let v0 be the unique
vector in J0K

−1
0 ∩ (T · e1 + B(2S

√
n)). We claim that, at Step 3,

Pr[J0|K0] = ρS,T ·e1(v0)/ρS,T ·e1(K
−1
0)

This follows because the latter quantity is Pr[v0|K0], and from the fact that J0
and v0 determine each other once K0 is fixed.

Now, consider the denominator ρS,T ·e1(K
−1
0); we claim that, for fixed (S, T),

this sum is proportional to Nm(K0), up to negligible error. This follows from
Lemma 2, and the fact that S exceeds the smoothing parameter of K−1

0 (since
Zn is a sub-lattice of K−1

0). So, after Step 3, we have

Pr[J0|K0] = c2 · ρS,T ·e1(v0)/Nm(K0)

up to negligible error for some universal constant c2. After Steps 4 and 5, we
have

Pr[J0|K0] = c3 · ρS/T 2,(1/T)·e1(w0)

up to negligible error for some universal constant c3, where w0 = 1/v0 and thus

Pr[J0] = c4 ·
∑

K0∈S′
J0

ρS/T 2,(1/T)·e1(w0)

We claim that∑
K0∈S′

J0

ρ S
T2 ,

e1
T

(w0) =
∑

w0∈VJ0

ρ S
T2 ,

e1
T

(w0) = ρ S
T2 ,

e1
T

(J−1
0) = c5 · Nm(J0) (1)

up to negligible error for some universal constant c5. This claim lets us complete
the proof. The abort in Step 6 adjusts this probability so that it becomes c5 ·
2t2nT n, independent of J0, and thus makes Pr[J0] statistically uniform across
all J0 ∈ J .

In Equation 1, the second sum is just a syntactic rewriting of the first sum.
To prove the second equality in Equation 1, first note that WJ0 ⊂ VJ0 ⊂ J−1

0 .
The first inclusion follows from the fact that, by Lemma 2, for every w0 ∈
(1/T) · e1 + B(S

√
n/T 2), it is the case that 1/w0 ∈ T · e1 + B(2S

√
n). The

second inclusion follow from the fact that each w0 satisfies (w0) = J−1K for
some K ∈ K; in particular, w0 ∈ J−1

0 . Now, we claim that∑
w0∈WJ0

ρ S
T2 ,

e1
T

(w0) = ρ S
T2 ,

e1
T

(J−1
0)

up to negligible error, which would establish the second equality (up to negligi-
ble error). This equality holds because WJ0 contains all of the w0’s in J−1

0 that

Toward Basing Fully Homomorphic Encryption on Worst-Case Hardness 131

contribute substantially to the sum. Specifically, since S/T 2 exceeds the smooth-
ing parameter of J−1

0 (by Lemma 11), the sum ρ S
T2 ,

e1
T

(J−1
0) is only negligibly

affected when restricted to the set J−1
0 ∩ ((1/T) · e1 + B(S

√
n/T 2)) (Lemma 1).

However, this set is contained in WJ , since if we set K0 ← J0 · (w0), then K0
is indeed in K, since Nm(K0) = Nm(J0) · Nm((w0)), which is in the interval
[2/1.1, 3 · 1.1] · t2n ⊂ [1, 4] · t2n.

The third equality in Equation 1 follows from Lemma 11 and Lemma 2. �

One aspect of the proof may seem a bit mysterious. Why did we use Step 5 to
convert Pr[J0] from a sum of ρ(v)’s to a sum of ρ(1/v)’s? Note that v ∈ J0K

−1

for some K, and w = 1/v ∈ J−1
0 K. Summing over ρ(w)’s is more natural, since

all of the points are in a single ideal – namely, J−1
0 . In contrast, summing over

vectors in J0K
−1 for different K’s is not a sum we know how to evaluate.

4.3 The TempIdeal Algorithm

Here, we construct an efficient algorithm TempIdeal(R, i, j) that outputs a uni-
formly random ideal K ⊂ R with norm in [i, j]. TempIdeal only needs to output
some basis of K, not necessarily a “good” basis. Let us begin at a high level by
considering some possible approaches.

Suppose we sample random v from R, and set K ← (v), re-sampling if
Nm(K) /∈ [i, j]. Then, K is a principal ideal, and unfortunately the probability
that a “random” ideal from R is principal is typically negligible in n. (More
accurately, the field F = Q(x)/(f(x)) has an associated class group, where each
member of the group consists of an equivalence class of ideals. The set of princi-
pal ideals is only one class, whereas the class group size is typically exponential
in n.) Clearly, this approach does not sample a “random” ideal.

A more promising approach is to use Kummer-Dedekind (Theorem 4), which
can actually be used to sample a uniformly random prime ideal, as follows.
Sample a uniform prime power pe ∈ [i, j], and use Kaltofen and Shoup [14]
to (efficiently) compute the factorization f(x) =

∏
i gi(x)ei mod p. Kummer-

Dedekind tells us that all prime ideals of Z[x]/(f(x)) having norm pe are of
the form (p, gi(x)), where gi(x) is an irreducible degree-e factor of f(x) modulo
p. There can be at most n ideals of norm pe. If there are r ≤ n such factors
gi(x), restart with probability 1 − r/n. Otherwise, sample one of these gi(x)’s
uniformly and output K ← (p, gi(x)). (It it is straightforward to extend this
method recover all prime ideals with norm pe in rings Z[x]/(f(x)) ⊂ R ⊆ OF

[33].) This works, but unfortunately we require TempIdeal to sample K from all
ideals with norm in [i, j], not just from prime ideals.

Consider the following modification to the above approach: sample a uniform
(possibly composite) integer N ∈ [i, j], and compute the factorization f(x) =∏

i gi(x)ei mod N , etc. But computing this factorization is hard in general when
N is composite. In fact, we do not see a way to generate a random ideal K
without knowing the factorization of its norm.

These considerations lead us to construct an algorithm for generating a ran-
dom factored ideal whose norm is in the prescribed interval, even though, in

132 C. Gentry

principle, we do not need the factorization. For this task, a good place to start
is to look at existing algorithms for generating a random factored integer – es-
pecially Kalai’s elegantly simple algorithm [13].

Kalai’s Algorithm for Generating a Random Factored Number:
Input: Integer b > 0.
Output: A uniformly random number 1 ≤ N ≤ b, with its factorization.

1. Generate a sequence b ≥ s1 > s2 > · · · > s� = 1 by uniformly choosing
si+1 ∈ {1, . . . , si − 1}. (Use b as s0.) Put all prime si’s in a list L.

2. For each si ∈ L, put si into L at least k additional times with probability
1/ski .

3. Let N be the product of the numbers in L (with repetition).
4. If N > b, restart.
5. Output N and the prime si’s with probability N/b; otherwise, restart.

Remark 6. Kalai presents his algorithm somewhat differently.

As Kalai highlights, the reason this algorithm works is because a prime p ≤ b is
in the sequence independently with probability exactly 1/p, since it occurs iff it
is chosen before any number in {1, . . . , p− 1}. That is, we could replace the first
step of Kalai’s algorithm with this alternative step without affecting the output
distribution:

1. For each prime number si ∈ [1, b], put si in a list L with probability 1/si.

Of course, the algorithm with this alternative step is grossly inefficient; Kalai’s
main insight is a way to obtain the same output efficiently. After this insight, the
remainder of the analysis is relatively straightforward. The prime p appears at
least e times in L independently with probability 1/pe through Step 2, and thus
the probability that a b-smooth number N is selected in Step 3 is proportional
to 1/N . The final two rejection steps ensure uniformity across numbers in [1, b].
By Mertens’ theorem, the algorithm will not restart in Step 4 with probability
θ(1/ log b). See Kalai’s one page paper for more details.

Our TempIdeal algorithm is a modification of Kalai’s algorithm that accounts
for the fact that there could be up to n prime ideals that are “tied” with the
same norm. To each integer s, we associate n ideals {Is,j}. Specifically, if there
are r ≤ n distinct prime ideals of norm s, we let Is,1, . . . , Is,r be these ideals,
and set Is,r+1 = · · · = Is,n = 1.

TempIdeal(R, a, b):

1. Generate a sequence b ≥ s1 > s2 > · · · > s� = 1 by uniformly choosing
si+1,j ∈ {1, . . . , si−1} for all j ∈ {1, . . . , n} and setting si+1 ← maxj{si+1,j}.
(Use b as s0.) Put each si that is a norm of a prime ideal in a list L.

2. For each si ∈ L, do the following. First, generate j ∈ [1, n] uniformly and put
the ideal Isi,j into multiset M . Then, for each j, insert at least k additional
instances of Isi,j into M with probability 1/ski .

Toward Basing Fully Homomorphic Encryption on Worst-Case Hardness 133

3. Remove those ideals in M that are equal to 1.
4. Let K be the product of the ideals remaining in M (with repetition).
5. If Nm(K) /∈ [a, b], restart.
6. Output a basis for K with probability Nm(K)/b; otherwise, restart.

Remark 7. Obviously, in Step 2, we could have avoided putting any ideals that
equal 1 in to M in the first place, since we remove them in Step 3. But we leave
this in, since it will make the analysis a bit simpler.

Theorem 8. TempIdeal uniformly samples an ideal K ⊂ R with norm in [a, b].
The algorithm takes time b/(a− b) · poly(n, log b).

To simplify the proof of Theorem 8, we define a “slow” version of the above
algorithm – SlowTempIdeal – which is analogous to the “slow” version of Kalai’s
algorithm with the alternative first step.

SlowTempIdeal(R, a, b):

1. For each si ∈ [1, b] that is the norm of a prime ideal, for each j ∈ [1, n], put
at least k instances of Isi,j into multiset M ′ with probability 1/ski . If there
is some ideal Isi,j in M ′, put si into L.

2. Run Steps 2-6 of TempIdeal(R, a, b).

Now, Theorem 8 follows from Lemmas 12, 14, and 15.

Lemma 12. The distribution of L is the same in TempIdeal and SlowTempIdeal,
and hence the two algorithms have the same output distribution.

Proof. (Lemma 12) Consider the probability that a fixed s is in L. For TempIdeal,
this equals the probability that s is in the sequence. If si > s, the probability
that si+1 ∈ [1, s] is sn/(si − 1)n, whereas the probability that si+1 ∈ [1, s − 1]
is (s − 1)n/(si − 1)n. Thus, when sampling si, the probability that si+1 is in
[1, s − 1] given that it is in [1, s] is (s − 1)n/sn. Consequently, since si+1 must
eventually be in [1, s] for some i, the probability that s is in the sequence is
1− (s− 1)n/sn. This probability is independent of whether or not other values
s′ are in L. For SlowTempIdeal, the probability that none of the n ideals Is,j is
in M ′ is (s−1)n/sn. So, the probability that some ideal Is,j is in M ′, and hence
s ∈ L, is the same as in TempIdeal: 1− (s− 1)n/sn. �

Lemma 13. Through Step 4 of SlowTempIdeal, the probability that a fixed ideal
K0 with prime ideal factors in [1, b] is selected is

1
Nm(K0)

·
∏

Nm(p)≤b

Nm(p)− 1
Nm(p)

where the product is over prime ideals.

134 C. Gentry

Proof. (Lemma 13) It is clear that the multisets M andM ′ have exactly the same
distribution conditioned on the list L. That is, if si /∈ L, neither multiset contains
an ideal Isi,j . If si ∈ L, then both M and M ′ contain a random non-empty
multiset S with elements from {Isi,1, . . . , Isi,n}, where Pr[S] is proportional to
1/s|S|

i . Therefore, we could have used M ′ instead of M beginning in Step 3 of
SlowTempIdeal without affecting the output distribution.

Remove the primes that equal 1 from M ′. A (nontrivial) ideal Isi,j is in M ′ at
least k times independently with probability 1/ski = 1/Nm(Isi,j)k, and therefore
exactly k times independently with probability (Nm(Isi,j)−1)/Nm(Isi,j)k+1. By
the independence of these probabilities, and by multiplicativity of the norm map
over ideals, the result follows. �

Lemma 14. SlowTempIdeal uniformly samples an ideal K ⊂ R with norm in
[a, b].

Proof. (Lemma 14) Given Lemma 13 – i.e., the fact that through Step 4 the
probability that some K0 is chosen equals 1/Nm(K0) times some universal con-
stant that is independent of K0 – it is clear that the final two rejection sampling
steps ensure that K is uniform among ideals with norm in [a, b]. �

Lemma 15. TempIdeal takes time b/(a− b) · poly(n, log b).

Proof. (Lemma 15) Let us consider the probability that a restart occurs.
Regarding Step 5, by Merten’s theorem for number fields, we have∏

Nm(p)≤b

(1− 1/Nm(p)) =
e−γ

aK

1
log b

+O(
1

log2 b
)

where aK is the residue of ζK(s), the Dedekind zeta-function, at s = 1, and γ
denotes Euler’s constant 0.577.... Denote the above term by α. By Lemma 13,
the probability that some K with norm at most b is selected in Step 4 is

α ·
∑

Nm(K)≤b

1/Nm(K)

There are θ(b) ideals of norm at most b (this follows from Theorems 1 and 2),
and thus the above sum is Ω(1/ log(b)).

Regarding Step 6, among K’s with norm at most b, approximately a (b−a)/b
fraction of them have norm at least a. (Again this follows from Theorems 1 and
2.) The result follows. �

5 Basing Gentry’s Somewhat Homomorphic Scheme on
SIVP over Ideal Lattices

We showed how to reduce WBDDP to HBDDP for our average-case distribution.
It remains to base our variant of Gentry’s scheme on HBDDP, and to reduce
SIVP to WBDDP. We sketch these results here. Details are in the full version.

Toward Basing Fully Homomorphic Encryption on Worst-Case Hardness 135

First, we specify some details of our variant. As in [10], the public key includes
ideals I and J , and a short independent set BI of I – e.g., where ‖BI‖ = poly(n).
J is output by our new IdealGen algorithm. The cosets of I form the plaintext
space. Regarding I, we have a new requirement: that Nm(I) is prime and very
small – i.e., poly(n). To find such an I, we can either construct f(x) to ensure that
the associated ring of integers has an ideal of small prime norm, or we can apply
Kummer-Dedekind (Theorem 4) to primes of size poly(n). By Theorem 8.7.7.
of [5], for appropriate values of f(x) and assuming GRH, applying Kummer-
Dedeking will eventually give us the basis a prime ideal p in R having poly(n)-
norm. From this basis, we can compute an independent set of p of length at most
Nm(p). We set I ← p and BI to be this independent set. We sample ciphertexts
per a Gaussian distribution: c← c′ mod BJ where c′ ← Dm+I,s,0 for some s.

To reduce HBDDP to the semantic security of this scheme, we first reduce HB-
DDP to a decision problem that we call the inner ideal membership problem
(IIMP): (roughly) given (BJ , t) where BJ

R← IdealGen(R) and t ← x mod BJ

for some x ∈ R with ‖x‖ < sIIMP, decide whether or not x ∈ I. Essentially, a
HBBDP-solver can use a IIMP-solver to find out which coset of I that x is in.
(For this search to be efficient, Nm(I) must be poly(n).) Using “Hensel lifting”,
the HBDDP-solver can recover x modulo Ik for large k – large enough that x be-
comes the shortest vector inx+Ik by such a large margin that is efficient to recover
x using Babai’s nearest plane algorithm. To reduce the IIMP to the semantic se-
curity of the scheme, we sample a uniform coset of I, set u ∈ R to be a short vector
in that coset, and set the challenge ciphertext as follows: c∗ ← c′ mod BJ where
c′ ← mb + t × u + DI,s,0. When x ∈ I, c′ ∈ mb + I, and the ciphertext has
the correct distribution. (This is not quite true: but we can smooth out the dis-
crepancy by choosing s large enough – in particular, so that s/sIIMP = poly(n)/ε.)
When x /∈ I, c′ is in a random coset of I that conveys no information about mb.
Overall, for some polynomial g(n), if there is an algorithm A that breaks the se-
mantic security of the scheme in time t with probability ε for parameter s, then
there is an algorithm that, for a O(ε) fraction of bases output by IdealGen, solves
HBDDP for parameter sHBDDP ≤ s ·ε/g(n) with overwhelming probability in time
O(t · Nm(I)/ε). This reduction is entirely classical (non-quantum).

To reduce SIVP to WBDDP (quantumly), the heavy lifting has already been
done by Regev [30]. He provided a quantum reduction of SIVP over the dual
lattice L∗ to BDDP over the lattice L. A bit more work is necessary to turn
his result into a quantum reduction of SIVP over an inverse ideal lattice I−1 to
BDDP over the ideal lattice I (the inverse of an ideal lattice is not the same as
its dual), and then to extend this result to SIVP over (non-inverse) ideals of R.

6 Conclusions and Open Problems

We showed that ideal lattice problems within some fixed rings are, in a sense,
random self-reducible. However, the reduction uses a factoring oracle. One open
problem is to find a random self-reduction that is efficient in the classical setting
– in particular, to find a reduction that does not use factorization.

136 C. Gentry

We presented a KeyGen algorithm that generates ideals according to our
average-case distribution, together with a secret key. However, this algorithm
is rather complicated, and one wonders whether there is a simpler approach.

While we are able to base Gentry’s somewhat homomorphic encryption scheme
on worst-case hardness, his FHE scheme requires an additional computational
assumption – namely, that the (average-case) SSSP is hard. Currently, we do
not have a worst-case / average-case reduction for the SSSP that would allow
his FHE scheme to be based entirely on worst-case hardness.

Acknowledgments. We thank Dan Boneh, Shai Halevi, Vadim Lyubashevsky,
Chris Peikert, Oded Regev, Vinod Vaikuntanathan, and the anonymous review-
ers for helpful comments and discussions.

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC 1996, pp. 99–108 (1996)

2. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999)

3. Ajtai, M., Dwork, C.: A public key cryptosystem with worst-case / average-case
equivalence. In: STOC 1997, pp. 284–293 (1997)

4. Alwen, J., Peikert, C.: Generating Shorter Bases for Hard Random Lattices. In:
STACS 2009, pp. 75–86 (2009)

5. Bach, E., Shallit, J.: Algorithmic Number Theory, vol. 1 (1996)
6. Banaszczyk, W.: New bounds in some transference theorems in the geometry of

numbers. Mathematische Annalen 296(4), 625–635 (1993)
7. Boyen, X.: Of Lettuces of Lattices: a Framework for Short Signatures and IBE

with Full Security. PKC 2010 (to appear 2010)
8. Cai, J.-Y., Nerurkar, A.P.: An Improved Worst-Case to Average-Case Connection

for Lattice Problems (extended abstract). In: FOCS 1997, pp. 468–477. IEEE, Los
Alamitos (1997)

9. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate
a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

10. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: STOC 2009,
pp. 169–178 (2009)

11. Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Stanford Uni-
versity (2009), http://crypto.stanford.edu/craig

12. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New
Cryptographic Constructions. In: STOC 2008, pp. 197–206 (2008)

13. Kalai, A.: Generating Random Factored Numbers. Easily. J. Cryptology 16(4),
287–289 (2003); Preliminary version in SODA 2002 (2002)

14. Kaltofen, E., Shoup, V.: Subquadratic-time factoring of polynomials over finite
fields. In: STOC 1995, pp. 398–406. ACM, New York (1995)

15. Landau, E.: Neuer Beweis des Primzahlsatzes und Beweis des Primidealsatzes.
Mathematische Annalen 56, 645–670

16. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Math. Ann. 261(4), 515–534 (1982)

http://crypto.stanford.edu/craig

Toward Basing Fully Homomorphic Encryption on Worst-Case Hardness 137

17. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

18. Lyubashevky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer,
Heidelberg (2008)

19. Lyubashevky, V., Micciancio, D.: On Bounded Distance Decoding, Unique Shortest
Vectors, and the Minimum Distance Problem. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009)

20. Lyubashevky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

21. Micciancio, D.: Improving Lattice Based Cryptosystems Using the Hermite Normal
Form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer,
Heidelberg (2001)

22. Micciancio, D.: Improved cryptographic hash functions with worst-case / average-
case connection. In: STOC 2002, pp. 609–618 (2002); Full version: Almost perfect
lattices, the covering radius problem, and applications to Ajtai’s connection factor.
SIAM Journal on Computing, 34(1):118–169 (2004)

23. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions from worst-case complexity assumptions. In: FOCS 2002, pp. 356–
365 (2002)

24. Micciancio, D., Regev, O.: Worst-Case to Average-Case Reductions Based on Gaus-
sian Measures. In: FOCS 2004, pp. 372–381 (2004); Full version: SIAM J. Comput.,
37(1), 267–302 (2007)

25. Nguyen, P.Q., Stern, J.: Adapting Density Attacks to Low-Weight Knapsacks. In:
Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 41–58. Springer, Heidelberg
(2005)

26. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: STOC 2009, pp. 333–342. ACM, New York (2009)

27. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006)

28. Peikert, C., Rosen, A.: Lattices that Admit Logarithmic Worst-Case to Average-
Case Connection Factors. In: Proc. of STOC 2007, pp. 478–487 (2007)

29. Regev, O.: New lattice-based cryptographic constructions. Journal of the
ACM 51(6), 899–942 (2004); Extended abstract in STOC 2003 (2003)

30. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. In: Proc. of STOC 2005, pp. 84–93 (2005)

31. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–180 (1978)

32. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509
(1997); Extended abstract in FOCS 1994 (1994)

33. Stevenhagen, P.: The Arithmetic of Number Rings. In: Algorithmic Number The-
ory, vol. 44. MSRI Publications (2008); See also Stevenhagen’s course notes Number
Rings

Additively Homomorphic Encryption
with d-Operand Multiplications

Carlos Aguilar Melchor1, Philippe Gaborit1, and Javier Herranz2

1 XLIM-DMI, Université de Limoges,
123, av. Albert Thomas

87060 Limoges Cedex, France
{carlos.aguilar,philippe.gaborit}@xlim.fr

2 Dept. Matemàtica Aplicada IV,
Universitat Politècnica de Catalunya,

C/ Jordi Girona, 1-3, 08034 Barcelona, Spain
jherranz@ma4.upc.edu

Abstract. The search for encryption schemes that allow to evaluate
functions (or circuits) over encrypted data has attracted a lot of attention
since the seminal work on this subject by Rivest, Adleman and Dertouzos
in 1978.

In this work we define a theoretical object, chained encryption schemes,
which allow an efficient evaluation of polynomials of degree d over en-
crypted data. Chained encryption schemes are generically constructed by
concatenating cryptosystems with the appropriate homomorphic proper-
ties; such schemes are common in lattice-based cryptography. As a par-
ticular instantiation we propose a chained encryption scheme whose IND-
CPA security is based on a worst-case/average-case reduction from uSVP.

Keywords: homomorphic encryption, secure function evaluation, lat-
tices.

1 Introduction

Secure function evaluation (SFE) is an essential ingredient to design protocols
where different users interact in order to obtain some information from the oth-
ers, at the same time that each user keeps private some of his information. In
(a simplified version of) SFE, a user Alice has a function f and a user Bob has
some data x. Depending on the setting, one of the two users, or both of them,
must obtain f(x) without learning each other’s input.

One solution for this problem uses the concept of garbled circuit, introduced
by Yao in [36]. Alice receives from Bob a garbled version of x, and sends back
a garbled version of f as well as some cryptographic material allowing Bob to
evaluate this function on x. After the end of the protocol, Bob learns f(x) and
nothing else about f , and Alice learns nothing about x. This solution is based
on the usage of encrypted truth tables for the garbled function and oblivious
transfer for the garbled data. The main drawback is that the size of the evaluated

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 138–154, 2010.
c© International Association for Cryptologic Research 2010

Additively Homomorphic Encryption with d-Operand Multiplications 139

ciphertext is at least linear in |f |. Alternative solutions were therefore proposed,
following a different paradigm (denoted as computing over encrypted data), to
get size sublinear in |f |. Here Bob sends to Alice some information related to x
(e.g. an encryption of x), Alice combines f and the data received from Bob, and
sends a reply to Bob. From this reply, Bob is able to learn f(x) and Alice learns
nothing about x (not even f(x)). If moreover, Bob does not learn anything about
f (besides f(x)) we say the protocol provides function privacy.

The garbled circuit approach provides generic protocols that work for virtually
any function f , which may not be the case in the computing over encrypted data
setting. On the other hand, the computing over encrypted data setting (on which
this paper is focused) can lead to protocols with a much lower communication
cost. Indeed, in the garbled circuit approach the communication includes an
encrypted description of f and an encrypted description of x. In the computing
over encrypted data setting only an encrypted description of x is sent and the
reply sent to Bob by Alice can be very compact, perhaps independent of the size
of f . More precisely, we will say that a secure evaluation is efficient for a family
of functions F if for f ∈ F the size of the information exchanged by Alice and
Bob is at most sublinear in the function size (and thus less than the size of the
information exchanged in the garbled circuit approach).

A family of functions that are specially interesting is the one of multivari-
ate polynomials with m monomials and degree d; that is P (X1, . . . , Xv) =∑m

�=1 P�(X1, . . . , Xv), where P�(X1, . . . , Xv) are monomials of degree at most d.
Many applications such as private information retrieval [21], or private searching
on streaming data [25] are based on the secure evaluation of low-degree multi-
variate polynomials with a large number of monomials (varying in real world
scenarios from thousands to billions and above). The only approach to obtain
efficient (and secure) evaluations of multivariate polynomials has been until now
the usage of homomorphic encryption schemes.

In order to provide such evaluations for degree d polynomials, these encryp-
tion schemes must allow to compute products of d plaintexts over encrypted data
(possibly with a large expansion factor), and to sum a very large number m of
these encrypted products with a small expansion factor (sublinear or logarithmic
in m). In this paper we propose a generic construction to obtain such properties
and we instantiate this construction with a well-known lattice-based cryptosys-
tem. The security of this particular instance is based on a worst-case/average-
case reduction from uSVP (see [24] for more details on hard problems related
to lattices), which has been proved as hard as other standard problems like
GapSVP or the Bounded Distance Decoding (BDD) problem in [22]. Other in-
stantiations can be found in [15] and [2], using respectively a cryptosystem with
security based in the worst-case hardness of LWE, and a cryptosytem with se-
curity based in the average-case hardness of particular instances of BDD [1].

Related Work. Since the introduction of the concept of homomorphic en-
cryption, by Rivest, Adleman and Dertouzos in [30], many schemes with homo-
morphic properties have been proposed. Most of them allow only to compute
over encrypted data one of the operations, either the product (RSA [31], El

140 C. Aguilar Melchor, P. Gaborit, and J. Herranz

Gamal [11]) or the sum of the plaintexts (Goldwasser-Micali [17] modulo 2 and
Paillier [26] modulo a hard-to-factor composite integer).

These schemes lead to an efficient evaluation of multivariate monomials of
any degree or multivariate polynomials of degree 1, but obtaining a scheme that
provides efficient evaluation of multivariate polynomials of arbitrary degree is
a much more complex problem. In order to evaluate a larger span of functions,
some protocols have tried to use the homomorphic encryption schemes that allow
to compute just one operation (sum or product) in a less direct way than just
using the provided plaintext-ciphertext map. In particular, Sander, Young and
Yung proposed a solution in [32], which allows to evaluate any constant fan-in
boolean circuit in NC1. The major drawback of their approach is that commu-
nication complexity is exponential in the depth of the circuit, which restricts
their protocol to circuits of logarithmic depth. Ishai and Paskin show in [19]
how to evaluate any branching program P through ciphertexts whose size de-
pends polynomially on the length of P . Such branching programs include, by a
result of Barrington [4], the circuits in NC1. Unfortunately, in order to evaluate
a multivariate polynomial with m monomials, we need an NC1 circuit of depth
in O(logm) or a branching program of length in O(m) (see [23]). Thus, neither
of these protocols are able to provide efficient evaluation of polynomials.

Finding an encryption scheme allowing an efficient direct computation over
encrypted data of degree d multivariate polynomials for d > 1 has been an open
issue for a long term. The first attempts that tried to provide a fully homomor-
phic encryption scheme (i.e. a scheme allowing to compute over encrypted data
both sums and multiplications arbitrarily), failed to resist to the research commu-
nity attacks: Fellows and Koblitz proposed Polly Cracker [12] which was broken
in [34], Grigoriev and Ponomarenko proposed another public-key scheme [18]
which was broken in [7]. For the case of symmetric cryptography, Domingo-
Ferrer proposed two schemes [9,10] which were broken in [6,35]. Fortunately, as
we already noted, in order to have efficient evaluations of degree d multivari-
ate polynomials we just need the encryption scheme to compute products of d
plaintexts over encrypted data (possibly with a large expansion factor), and to
sum a very large number m of these encrypted products with a small expan-
sion factor (sublinear or logarithmic in m). We will say that such a scheme is
d-multiplicative fully homomorphic. If for any d a d-multiplicative fully homo-
morphic instance of the scheme can be produced (possibly with an exponential
cost in d), we will say that the scheme is constant-bounded fully homomorphic.
If moreover the computational costs of the different functions of the encryption
scheme are at most polynomial in d, we will say it is leveled fully homomorphic.

Finding a non-trivial (i.e. for d > 1) d-multiplicative fully homomorphic en-
cryption scheme has also been a long standing open problem. The first step for-
ward was given in 2005, by Boneh, Goh and Nissim, who proposed [5] the first
efficient 2-multiplicative fully homomorphic encryption scheme. Their scheme al-
lows the SFE of polynomials of degree d = 2, as long as the output P (a1, . . . , at) is
a small number (the computational cost of decryption is polynomial on this num-
ber). The size of the ciphertexts is independent of the number m of monomials

Additively Homomorphic Encryption with d-Operand Multiplications 141

in the polynomial, and the secure function evaluation protocol provides function
privacy. In 2008, the authors proposed, in a preliminary version of this paper [2], a
way to obtain efficient constant-bounded fully homomorphic encryption schemes
(without function privacy).

In STOC 2009, Gentry proposed an elegant solution [13] for the (efficient)
leveled fully homomorphic encryption problem, in two steps. First, he proposed
an efficient constant-bounded fully homomorphic encryption scheme based on
the hardness of a new problem, the Ideal Coset Problem, which is close to a
decisional Closest Vector Problem (which is in turn an instance of the Bounded
Distance Decoding problem, see [24]). Second, he proposed an efficient leveled
fully homomorphic variant of this scheme, based on the Ideal Coset Problem and
a second new problem, the SplitKey Distinguishing Problem which seems to be
related to the Sparse Subset Sum Problem (in fact the scheme can be modified
to be fully homomorphic if circular security is assumed, see [13] for details). In
lattice-based encryption schemes the randomness distribution usually evolves as
homomorphic operations are done until the ciphertext becomes impossible to
decrypt, which places a limit on the number of operations that can be done. The
groundbreaking idea of Gentry is the proposal of a scheme that can “refresh”
this randomness to its initial state (more exactly close to the initial state), by
the homomorphic evaluation of its own decryption circuit, without revealing the
plaintext. In his PhD dissertation [14], Gentry recently presented a quantum re-
duction from the security of his leveled fully homomorphic scheme to the worst
case of the Shortest Independent Vector Problem (SIVP, see [24]) on ideal lat-
tices in a given ring R. Improvements and variations of Gentry’s schemes have
appeared very recently [33,8].

Finally, in [15], Gentry, Halevi and Vaikuntanathan have proposed a new
efficient 2-multiplicative encryption scheme (GHV for short) which improves the
proposal of Boneh, Goh, and Nissim in various ways. First, it is based on a worst-
case/average-case classical reduction from LWE (again, see [24]). Moreover, it
does not have restrictions in the size of the output. And finally, it can also be used
with our construction to obtain a constant-bounded homomorphic encryption
scheme.

Our Contribution. This paper is a major write up of [2]. With respect to
the related work as a whole, our main contribution is to provide a generic con-
struction of efficient constant-bounded fully homomorphic encryption schemes.
This construction can be instantiated using different encryption schemes as a
base. In particular, the encryption schemes of the fruitful field of lattice-based
cryptography seem specially well adapted, but other fields such as code-based
cryptography are promising too. The recent instantiation with GHV (proposed
in [15]), highlights the generic aspect of our contribution.

With respect to the proposal of Gentry [13], the main contribution comes
from the fact that the construction relies on the same security assumptions as
encryption schemes with simple-to-achieve homomorphic properties. Thus,
we benefit from the strong reductions available in simple lattice-based en-
cryption schemes, instead of the assumptions needed to get (somewhat) fully

142 C. Aguilar Melchor, P. Gaborit, and J. Herranz

homomorphic encryption schemes. In particular, this leads to assumptions on the
classical (by opposition to quantum) worst-case hardness of standard problems,
which moreover are done over pretty general lattices, namely integer lattices,
instead of ideal lattices over a given ring.

Finally, with respect to the generic proposals of Yao [36] and Sander et al. [32],
considering the secure evaluation of polynomials, the main advantage comes
from the bandwidth efficiency for low-degree polynomials with a large number
of monomials. Indeed, our construction can be used for the secure evaluation of a
polynomial with v variables, M monomials and degree d. In Table 1, we compare
the bandwidth required by these generic proposals with different instantiations
of our construction. The number of monomials is supposed to be bounded by a
polynomial in the security parameter κr/2 for a given r, and poly(κ) generically
denotes a polynomial function of the security parameter κ.

Table 1. Comparison of the bandwidth requirements of different solutions

Approach Required Bandwidth

Yao’s garbled circuits [36] M · d · poly(κ)

Sander-Young-Yung [32] (M · d)2 · poly(κ)

Õ(κ1.5+r)-uSVP instantiation Õ(M4d/r) · poly(κ)d

Õ(κ3.5+3r)-LWE instantiation [15] poly(log M)d · poly(κ)d

Optimal bound (for our construction) log M · poly(κ)d

Note that in the uSVP instantiation r can be chosen arbitrarily large to reduce
the bandwidth usage, but at the cost of a stronger security assumption. In the
LWE instantiation, this is pointless as bandwidth usage does not depend on r
and it is enough to set r such that κr/2 = O(M).

Last row of Table 1 would be ideally achieved by combining our construction
with an additively homomorphic encryption scheme, supporting M additions,
where the expansion factor between plaintexts and ciphertexts does not depend
on M . The scheme by Gentry [13] could be a candidate for such an encryption
scheme but, to the best of the authors knowledge, there is no such scheme with
a classical reduction (nor based on integer lattices).

For a given degree d and a growing number of monomials our construction
beats asymptotically the other approaches. For variable d, the comparison de-
pends on whether the polynomials are sparse or not, and on the number v of
variables. If the polynomials are very sparse, our solution will not be efficient.
On the other hand if the polynomials are dense (i.e. we have M " vd), our con-
struction will beat the other approaches if and only if the number of variables is
larger than the number of bits in a ciphertext of the encryption scheme used to
instantiate our construction. Classical applications of secure polynomial evalua-
tion, such as private information retrieval [21] or private searching on streaming

Additively Homomorphic Encryption with d-Operand Multiplications 143

data [25], result in dense polynomials with a large number of variables and should
thus benefit from this construction.

As opposed to the other solutions in this table, the construction that we intro-
duce in this work does not provide function privacy. An alternative construction
providing such a property is possible, but due to space restrictions it is left to
the long version of this paper. Some details about this alternative construction
are provided in Section 5.2.

2 Basic Idea

Let PKC = (KeyGen,Enc,Dec) be an encryption scheme such that the addition
of ciphertexts over the integers maps to an addition on the plaintext space and
such that 0 decrypts to 0. Let a, b ∈ {0, 1} and α ∈ Enc(pk, a), β ∈ Enc(pk, b),
with (α(1), . . . , α(t)) the bit-representation of α. We define the reconstruction
function R((α(1), . . . , α(t))) =

∑
i 2i−1α(i) = α.

The basic idea is to build the compound ciphertext α⊗β def= (α(1)β, . . . , α(t)β)
which encrypts redundantly a and b. Consider the following decryption algo-
rithm: first, decrypt each coordinate with Dec; then reconstruct the inner ci-
phertext with R, and decrypt it again with Dec.

What is interesting is that each coordinate of the compound ciphertext is
either 0 (which decrypts to 0) or β. If b = 0, all the coordinates will decrypt to 0
and the resulting null-vector will also decrypt to ab = 0 (as b = 0) whatever the
value of a is. On the other hand, if b = 1 all the coordinates in which we have
β will decrypt to 1, and we will thus get back (α(1), . . . , α(t)) which decrypts to
ab = a (as b = 1).

Toy Example

α = 110 β = 101 γ = α⊗ β = (101, 101, 000)
If β ∈ Enc(pk, 0)

γ
1st decryption−→ (0, 0, 0) reconstruction−→ 000

2nd decryption−→ 0

If β ∈ Enc(pk, 1)

γ
1st decryption−→ (1, 1, 0) reconstruction−→ 110

2nd decryption−→ a

Thus, these compound ciphertexts encrypt a product, but not very efficiently
(the data is redundant). However, as PKC provides an homomorphic operation,
we can add many of these compound ciphertexts, and the result will decrypt to
the sum of the products. This allows us to evaluate degree 2 polynomials over
encrypted data using a single vector of t coordinates, which will save bandwidth
if the number of added monomials is over t.

144 C. Aguilar Melchor, P. Gaborit, and J. Herranz

Finally, we can note that this construction can be easily generalized if α is a
vector of integers (we split each integer in bits and reconstruct them separately
on the decryption phase), which allows us to iterate the construction and evaluate
polynomials of degree d, at the price of an expansion factor for the length of the
ciphertexts which is exponential in d.

3 Chaining Encryption Schemes

3.1 (n, t)-Chainable Schemes

In this subsection we provide a definition of chainable encryption schemes. This
definition allows us to present the properties needed to chain schemes (or to
compute with them) as well as to have a short naming convention that highlights
a given scheme’s performance parameters. For integer values a < b, we denote
as [a, b] the set {a, a+ 1, . . . , b− 1, b}.
Definition 1. A scheme PKC = (KeyGen,Enc,Dec) is said (n, t)-chainable if the
key generation algorithm KeyGen takes as input a security parameter κ and a
positive integer m, and for any value of these parameters, there are two positive
integers n, t (which may be functions of κ and m), such that for any keypair
(pk, sk) ∈ KeyGen(1κ,m) the following holds:

– The plaintext space P is a subset of Z, and includes [0,m];
– The ciphertext space C is a subset of Z

n and includes 0n, moreover 0n is in
the support of the output of Enc(pk, 0);

– Bounded size: for any plaintext x ∈ P and any ciphertext c ∈ Enc(pk, x), all
the entries of c are smaller than 2t (i.e., Enc(pk, x) ⊂ [0, 2t − 1]n);

– m-limited homomorphism via integer addition: for any � ≤ m, a1, . . . , a� ∈
{0, 1} and any c1, . . . , c� with ci ∈ Enc(pk, ai), the integer vector c =

∑
i ci

is decrypted via Dec to the integer a =
∑

i ai (which is in [0,m]).

Lattice-based schemes with homomorphic properties are usually suitable (some-
times with a small transformation) for this definition. Note, however, that we
do not set any constraint on the ciphertext size n × t or its relation to m and
thus, that not all the schemes that fit into this definition will be able to provide
efficient (sub-linear in m) evaluations of polynomials. These issues will be dealt
with in Sections 4 and 5.

3.2 Chaining Schemes

In this subsection we present an algorithm that chains two encryption schemes
PKC1,PKC2 that are respectively (n1, t1)-chainable and (n2, t2)-chainable, into
a scheme PKC = chain(PKC1,PKC2), that is (n2n1t1, t2)-chainable. This scheme
has a worse ciphertext/plaintext expansion ratio than the two chained schemes,
but is interesting because given α ∈ Enc1(pk1, a1) and β ∈ Enc2(pk2, a2) we are
able to generate an element of Enc(pk, a1a2) (see Section 4).

Additively Homomorphic Encryption with d-Operand Multiplications 145

Chaining Algorithm: PKC = chain(PKC1,PKC2)

Input :
- An (n1, t1)-chainable scheme PKC1 = (KeyGen1,Enc1,Dec1)
- An (n2, t2)-chainable scheme PKC2 = (KeyGen2,Enc2,Dec2)

Output :
- An (n1t1n2, t2)-chainable scheme PKC = (KeyGen,Enc,Dec)

Consider the intermediate encryption scheme PKC′
1:

KeyGen′1(1
κ,m):

1 Return (pk1, sk1)← KeyGen1(1κ,m)
Enc′1(pk1, a) :
1 Sample α = (α(1), . . . , α(n1)) from Enc1(pk1, a)
2 Return α′ = (α′(1), . . . , α′(t1)︸ ︷︷ ︸

bits of α(1)

, . . . , α′((n1−1)t1+1), . . . , α′(n1t1)︸ ︷︷ ︸
bits of α(n1)

)

Dec′1(sk1, α
′):

1 Compute α = R1(α′) def= (
∑t1

j=1 2j−1α′(j), . . . ,
∑t1

j=1 2j−1α′((n1−1)t1+j))
2 Return a← Dec1(sk1, α)

Return a description of the final encryption scheme PKC:

KeyGen(1κ,m):
1 Set (pk1, sk1)← KeyGen1(1κ,m), (pk2, sk2)← KeyGen2(1κ,m)
2 Return ((pk1, pk2), (sk1, sk2))
Enc((pk1, pk2), a) :
1 Set α′ = (α′(1), . . . , α′(n1t1))← Enc′1(pk1, a)
2 For each j ∈ [1, n1t1] set βj ← Enc2(pk2, α

′(j))
3 Return γ = (β1, . . . , βn1t1)
Dec((sk1, sk2), γ):
1 For each j ∈ [1, n1t1], set α′(j) ← Dec2(sk2, γ

(j))
2 Return a← Dec′1(sk1, (α′(1), . . . , α′(n1t1)))

Proposition 1. PKC is (n1t1n2, t2)-chainable. Moreover, if the instance of PKC1
associated to (pk1, sk1) and the instance of PKC2 associated to (pk2, sk2) are m-
limited homomorphisms, the instance of PKC associated to ((pk1, pk2), (sk1, sk2))
is also an m-limited homomorphism.

Proof. Clearly, R1 is linear and therefore the instance of PKC′
1 associated to

(pk1, sk1) is an m-limited homomorphism via integer addition, as the instance

146 C. Aguilar Melchor, P. Gaborit, and J. Herranz

of PKC1 associated to the same keypair. For i ∈ [1,m], let ai ∈ {0, 1} and
γi ← Enc((pk1, pk2), ai). We have

m∑
i=1

γi =

(
m∑

i=1

βi,1, . . . ,

m∑
i=1

βi,n1t1

)

with βi,j ← Enc2(pk2, α
′(j)
i) and α′

i ← Enc′1(pk1, ai). Since the used instance of
PKC2 is an m-limited homomorphism via integer addition and each α

′(j)
i is in

{0, 1}, applying Dec2 to each coordinate, with secret key sk2, we obtain(
m∑
i=1

α
′(1)
i , . . . ,

m∑
i=1

α
′(n1t1)
i

)
=

m∑
i=1

α′
i

As the instance of PKC′
1 associated to (pk1, sk1) is also an m-limited homo-

morphism via integer addition, decrypting this vector with Dec′1 and the se-
cret key sk1 we obtain

∑m
i=1 ai, and thus the instance of PKC associated to

((pk1, pk2), (sk1, sk2)) is an m-limited homomorphism via integer addition.
Finally, as (0, . . . , 0) ∈ Enc((pk1, pk2), 0), and the ciphertexts are clearly vec-

tors of n1 ·t1 ·n2 scalars of t2 bits each, we therefore have that PKC is (n1t1n2, t2)-
chainable. �

Let us prove now that the chained scheme PKC resulting from PKC1 and PKC2
is IND-CPA secure if either of PKC1, PKC2 is IND-CPA secure. We recall first
the standard notion of indistinguishability under chosen-plaintext attacks (IND-
CPA security), for an encryption scheme PKC = (KeyGen,Enc,Dec). We use the
following game that an attacker A plays against a challenger:

(pk, sk)← KeyGen(1κ)
(St, a0, a1)← A(find, pk)
b← {0, 1} at random
c∗ ← Enc(pk, ab)
b′ ← A(guess, c∗, St).

The advantage of such an adversary A is defined as

Adv(A) =
∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ .
A public key encryption scheme enjoys IND-CPA security if Adv(A) is a negli-
gible function of the security parameter κ, for any attacker A running in poly-
nomial time (in κ).

Proposition 2 (IND-CPA Security). PKC = chain(PKC1,PKC2) is IND-
CPA secure if either of PKC1, PKC2 is IND-CPA secure.

Proof (Sketch.). Let us assume that there exists a CPA attacker A against PKC
and let us prove, then, that neither of PKC1, PKC2 can be IND-CPA. Specifically,
we can construct CPA attackers A1,A2 against the schemes PKC1 and PKC2.

Additively Homomorphic Encryption with d-Operand Multiplications 147

For PKC1, the attacker A1 is trivial as a random keypair of PKC1 can be
transformed in a random keypair of PKC by adding a random keypair of PKC2.
Moreover, the choice of the two plaintexts by A is maintained by A1, and the
challenges from Enc1 can be transformed into challenges following the distri-
bution of Enc by splitting them into bits and encrypting them through Enc2.
Finally, as the plaintexts are the same, Attacker A1 will output the same guess
as A will, and the success probability of both attackers will be exactly the
same.

For PKC2, the idea is similar, but we proceed in two steps. First, we de-
fine an attacker A′

2 able to distinguish between the distributions associated to
n1t1 plaintexts. Namely, if A chooses two plaintexts a0, a1, A′

2 chooses two sets
of plaintexts (α(1)

0 , . . . , α
(n1t1)
0), (α(1)

1 , . . . , α
(n1t1)
1), for α0 ← Enc1(pk1, a0) and

α1 ← Enc1(pk1, a1) which ensures that A, and therefore A′
2, is able to distin-

guish the challenges with an non-negligible advantage. Then, we use a standard
hybrid argument to derive from A′

2 an attacker A2 against PKC2.
�

The output of the chaining algorithm being itself chainable we can iteratively con-
struct a chain of d encryption schemes PKC1, . . . ,PKCd, if for any i ∈ [1, d] PKCi is
(ni, ti)-chainable, and obtain an (nd

∏d−1
j=1 njtj , td)-chainable encryption scheme

PKC, with (pk1, . . . , pkd) and (sk1, . . . , skd) as public and secret keys. Note that
PKC1, . . . ,PKCd need not to be different schemes and that we can chain d times an
(n, t)-chainable scheme PKC to itself. In this case we get an (n(nt)d−1, t)-chainable
scheme, which has the same public/secret keypair (pk, sk) as PKC.

4 Computing with Chained Schemes

4.1 Product and Polynomial Evaluation

Chained schemes being themselves chainable they provide a limited homomor-
phism via integer addition (by Definition 1). Thus, in order to compute sums
of plaintexts over encrypted data with them we just need to add up the cor-
responding ciphertexts. Computing products of plaintexts over encrypted data
is not as straightforward and requires to use ciphertexts of the multiplication
operands under the encryption schemes that form the chain. The following al-
gorithm shows how to proceed.

Product Computation Algorithm: γ = product(α, β)

Input :
- α ∈ Enc1(pk1, a1) for a1 ∈ {0, 1} and PKC1 (n1, t1)-chainable
- β ∈ Enc2(pk2, a2) for a2 ∈ {0, 1} and PKC2 (n2, t2)-chainable

148 C. Aguilar Melchor, P. Gaborit, and J. Herranz

Output :
- γ ∈ Enc((pk1, pk2), a1a2) for PKC = (KeyGen,Enc,Dec) = chain(PKC1,PKC2)

1 Split α into the bit vector α′ = (α′(1), . . . , α′(n1t1)) ∈ Enc′1(pk1, a1)
2 Multiply each one-bit scalar of this vector by β and output the result.

Proposition 3. The output of the above-described protocol product belongs to
Enc((pk1, pk2), a1a2).

Proof. We have product(α, β) = (α′(1)β, . . . , α′(n1t1)β). We want to prove that
there is γ ∈ Enc((pk1, pk2), a1a2) such that for all j ∈ [1, n1t1] we have α′(j)β =
γ(j). By the construction of a chained scheme, this is equivalent to: there is
α′

1,2 ∈ Enc′1(pk1, a1a2) such that α′(j)β ∈ Enc2(pk2, α
′(j)
1,2), for all j ∈ [1, n1t1].

If a2 = 1 set α′
1,2 = α′ ∈ Enc′1(pk1, a1) = Enc′1(pk1, a1a2). For each j ∈ [1, n1t1]

- if α′(j) = 1,

α′(j)β = β ∈ Enc2(pk2, a2) = Enc2(pk2, α
′(j))⇒ α′(j)β ∈ Enc2(pk2, α

′(j)
1,2)

- if α′(j) = 0,

α′(j)β = (0, . . . , 0) ∈ Enc2(pk2, 0) = Enc2(pk2, α
′(j))⇒ α′(j)β ∈ Enc2(pk2, α

′(j)
1,2)

⇒ if a2 = 1 the output of the algorithm is in Enc((pk1, pk2), a1a2).

If a2 = 0, set α′
1,2 = (0, . . . , 0) ∈ Enc′1(pk1, a1a2). For each j ∈ [1, n1t1]

- if α′(j) = 1,

α′(j)β = β ∈ Enc2(pk2, a2) = Enc2(pk2, 0)⇒ α′(j)β ∈ Enc2(pk2, α
′(j)
1,2)

- if α′(j) = 0,

α′(j)β = (0, . . . , 0) ∈ Enc2(pk2, 0)⇒ α′(j)β ∈ Enc2(pk2, α
′(j)
1,2)

⇒ if a2 = 0 the output of the algorithm is also in Enc((pk1, pk2), a1a2).
�

This algorithm can be used iteratively to obtain encrypted products of d plain-
texts. As these products are ciphertexts of a chained (and thus chainable) en-
cryption scheme, we can add them and the result will decrypt to the evaluation
of a degree d binary polynomial (if the homomorphic parameter m of the scheme
is larger than the number of monomials M). The following algorithms provide a
complete protocol for degree d polynomial evaluation over encrypted data. We
want to stress that the algorithms can be easily modified (to get more efficient
and simple), in case the input polynomial P has a more compact representation,
e.g. P = (X1 + 1)d.

Additively Homomorphic Encryption with d-Operand Multiplications 149

Polynomial Evaluation Algorithms: P =
∑M

�=1 X�1 . . .X�d
∈ Z2[X1, . . . , Xv]1

Setup KeyGenP (1κ,M):
Input :
- A security parameter 1κ

- A maximum number of monomials M
Output : A keypair (pk, sk) ∈ KeyGen(1κ,M) for PKC = (KeyGen,Enc,Dec) an
(n, t)-chainable scheme PKC

Encryption EncP (pk, (a1, . . . , av)):
Input :
- A public key pk of the afore-mentioned (n, t)-chainable scheme PKC
- A point (a1, . . . , av) in {0, 1}v in which the polynomial should be evaluated
Output : A set of ciphertexts αi ∈ Enc(pk, ai) for i ∈ [1, v]
1 Set αi ← Enc(pk, ai) for i ∈ [1, v]
2 Return α1, . . . , αv

Evaluation EvalP ((α1, . . . , αv), P):
Input :
- An encryption (α1, . . . , αv) of a point in {0, 1}v, through PKC

- The description of a polynomial P =
∑M

�=1 X�1 . . .X�d
∈ Z2[X1, . . . , Xv]

Output : A sum of ciphertexts, α, that decrypts to P (a1, . . . , av)
1 For � = 1, . . . ,M
2 α�,1

def= α�1

3 For j = 2, . . . , d
4 α�,j = product(α�,j−1, α�j)
5 Return α =

∑M
�=1 α�,d

Decryption DecP (sk, α)
Input :
- A secret key sk of the afore-mentioned (n, t)-chainable scheme PKC
- The output, α, of the evaluation algorithm
Output : P (a1, . . . , av)
1 PKC1,2 = chain(PKC,PKC)
2 For j = 3, . . . , d: PKC1,j = chain(PKC1,j−1,PKC)
4 Return (amod 2) for a← Dec1,d(sk, α)

Note that if the polynomial has a monomial of degree d′ < d it is enough to add
the following computation: For j ∈ [d′, d − 1]: α�,j+1 = product(α�,j , α0), where
α0 ∈ Enc(pk, 1). This step ensures that the protocol processes the polynomial
correctly.
1 Note that we do not use a standard indexing such as

∑M
�=1 Xi1,� . . . Xid,� and rather

implicitly associate to each � ∈ [1, M] a tuple (�1, . . . , �d) ∈ [1, v]d to reduce index
notations.

150 C. Aguilar Melchor, P. Gaborit, and J. Herranz

Proposition 4. The Polynomial Evaluation Algorithm is correct, produces an
output of (nt)d logm bits and if PKC is IND-CPA, the choice of the evaluation
point is private.

Proof (Sketch.). The correctness of the Product Algorithm guarantees that α�,j∈
Enc1,j(pk, a�1 · · · a�j) for any j ∈ [1, d] and any � ∈ [1,M] (denoting PKC1,1 =
PKC). Indeed, by induction, for j = 1 we have α�,1 ∈ Enc1,1(pk, a�1). Suppose
that we have α�,j ∈ Enc1,j(pk, a�1 · · · a�j). By the product algorithm correctness
we know that α�,j+1 = product(α�,j , α�j+1) is an encryption of a�1 · · · a�j+1 using

the encryption scheme chain(PKC1,j,PKC) def= PKC1,j+1. In other words, α�,j+1 ∈
Enc1,j+1(pk, a�1 · · · a�j+1), which completes the induction proof.

As each monomial computed in the main loop of the evaluation algorithm
is a ciphertext of PKC1,d, and PKC1,d is (n(nt)d−1, t)-chainable, the result of
the final step has (nt)d logm bits. Moreover, as the instance of PKC1,d associ-
ated to (pk, sk) is an M -limited homomorphism the result decrypts (mod 2) to
P (a1, . . . , av).

If PKC is IND-CPA, the indistinguishability of the evaluation points is straight-
forward using a standard hybrid argument. �

In order to have an efficient evaluation of a polynomial through chained schemes,
(nt)d logm must be sub-linear in m. As nt is the ciphertext size of PKC, we must
use an encryption scheme such that ciphertext size grows as o((m/ logm)1/d).
Such instantiations are presented in the next section.

4.2 Higher Moduli

The definitions, algorithms, and propositions, in this and the previous section
need only to be slightly changed in order to produce chained schemes that allow
to compute sums, products, and more generally evaluate polynomials, over Zr

for r > 2. Namely,

– In Definition 1, the homomorphic property must hold ∀a1, . . . , am ∈ [0, r−1]
– In the product algorithm the output is a sum of up to r ciphertexts;
– In the algorithm EvalP for the evaluation of a polynomial, we need an extra

final step in each monomial computation in which the associated ciphertext
is added to itself a given number of times (the coefficient in front of the
monomial).

In order to remain correct, the product algorithm and the polynomial EvalP
algorithm, require respectively m > r and m > Mrd (M being the number
of monomials of the polynomial). The rest of the definitions, algorithms and
propositions remain unchanged, but the proofs get harder to read, and we have
thus preferred to provide them only in the long version of this paper.

5 Specific Realizations

In this section we describe some encryption schemes that satisfy the conditions
given in Definition 1. These schemes are all based on lattices, and can be used

Additively Homomorphic Encryption with d-Operand Multiplications 151

at any point of a chain.2 On the other hand, it is obvious that the last encryp-
tion scheme in a chain does not need to have a ciphertext space which is an
additive group. Therefore, we can use for the last scheme PKCd other homo-
morphic encryption schemes, not necessarily based on lattices, as long as their
plaintext spaces are additive groups. This includes schemes like Paillier’s [26]
or Boneh-Goh-Nissim’s [5] (BGN for short). The advantage of using the BGN
scheme is that it provides an additional level of multiplications for free. That is,
if we have a d-chained encryption scheme where PKCd is the BGN cryptosys-
tem, then we could use the global scheme to evaluate multivariate polynomials
of degree up to d+ 1 (as long as the result of the evaluation is relatively small,
which is the drawback of BGN). Such a hybrid lattice-based and number-theory
encryption scheme allowing an efficient evaluation of degree d > 2 polynomials
over encrypted data is a surprising consequence of our approach.

5.1 A Scheme Based on uSVP

In [20], Kawachi, Tanaka and Xagawa propose a set of lattice-based encryption
schemes, derived from [16,28,29,3], that present some homomorphic properties.
In particular, we are interested in the variant of [28], whose IND-CPA security is
based on a worst-case/average-case reduction from Õ(κ1.5+r)− uSV P for given
security parameters κ, r (related to the underlying lattice). In this scheme, the
plaintext space is (Zp,+), for an arbitrary parameter p, and the ciphertext space
is (ZN ,+), with N = 28κ2

. As it is proved in [20], the scheme is an m-limited
additive homomorphism via addition modulo N , when m ·p < κr. As ZN is a Z-
module, adding up the ciphertext as integers, and applying the modN operation
just before the decryption gives the same result, and thus we have an m-limited
additive homomorphism via integer addition. Moreover, for any keypair 0 is an
encryption of 0 and thus, as long as m < p, the scheme is (1, t)-chainable, with
t = logN = 8κ2.

The output of the secure evaluation of a degree d polynomial with this scheme
has a size td logm = 8dκ2d logm. Using m < p and m · p < κr we get that the
output of the evaluation has roughly a size of 8dm4d/r logm bits, and therefore we
must have r > 4d in order to have an efficient evaluation. In terms of security, this
implies that this instantiation relies on the worst case hardness of Õ(κ1.5+4d)−
uSV P .

5.2 Other Schemes

As noted in the related work section, GHV [15] is another lattice-based en-
cryption scheme which can be used with our construction. The security of their
scheme is based on the worst-case hardness of LWE (for a given approximation
factor), which is equivalent to the worst-case hardness of several standard lattice
problems (see [27]).

2 Code-based schemes seem also an interesting alternative to be explored.

152 C. Aguilar Melchor, P. Gaborit, and J. Herranz

Gentry et al. note that their scheme has the same “multiplication-for-free”
property (described at the beginning of this section) as the cryptosystem of
Boneh et al. [5], allowing thus the evaluation of degree d + 1 polynomials with
a chain of just d schemes. In fact, it is possible to do much better, as even after
the multiplication for free GHV’s ciphertexts can undergo m additive operations,
and thus it is possible to alternate. First, we do a multiplication for free with
their scheme and then a multiplication with our construction. As the result
of our multiplication is a set of GHV’s ciphertexts, they can again undergo a
multiplication for free, and so on. With this improvement it is possible to evaluate
polynomials of degree 2d with just a chain of d schemes.

A second advantage of GHV is that ciphertext size grows only logarithmically
in m (whereas with the uSVP instantiation we present, it grows polynomially).
In order to use the full potential of this fact we must change our construction
and split the ciphertexts in groups of bits, instead of bits, just as it is presented
in [2] for the instantiation of our construction with the lattice-based scheme
of [1]. With such a construction it is possible to get a very small expansion
factor at each iteration of the chain, asymptotically close to 1, tweaking slightly
GHV. This is a major step forward, as it allows us to obtain an expansion
factor linear, instead of exponential, in d. Indeed, by chaining instances with
shrinking expansion factors, (2, 3/2, ..., (d − 1)/(d − 2), d/(d − 1)), the product
of the expansion factors of d chained schemes with the alternative construction
is d. Moreover, using the scheme’s blinding properties the instantiation also
ensures formula privacy. The full details of this alternative construction and its
instantiation with GHV are left to the long version of this paper.

Acknowledgments

We want to warmly thank Shai Halevi for his support and very valuable com-
ments on different versions of this work. We also want to thank Daniele Miccian-
cio for his encouraging and useful recommendations, as well as the reviewers of
Crypto’10 for their detailed comments.

The work of Javier Herranz is supported by Spanish MICINN Ministry, under
project MTM2009-07694; and also by a Ramón y Cajal grant, partially funded
by the European Social Fund (ESF) of the Spanish MICINN Ministry.

References

1. Aguilar Melchor, C., Castagnos, G., Gaborit, P.: Lattice-based homomorphic en-
cryption of vector spaces. In: The 2008 IEEE International Symposium on In-
formation Theory (ISIT 2008), Toronto, Ontario, Canada, pp. 1858–1862. IEEE
Computer Society Press, Los Alamitos (2008)

2. Aguilar Melchor, C., Gaborit, P., Herranz, J.: Additively homomorphic encryp-
tion with d-operand multiplications. Cryptology ePrint Archive, Report 2008/378
(2008), http://eprint.iacr.org/

http://eprint.iacr.org/

Additively Homomorphic Encryption with d-Operand Multiplications 153

3. Ajtai, M.: Representing hard lattices with O(n log n) bits. In: Gabow, H.N., Fagin,
R. (eds.) Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing, Baltimore, MD, USA, May 22-24, pp. 94–103. ACM, New York (2005)

4. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)

5. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

6. Cheon, J.H., Kim, W.H., Nam, H.S.: Known-plaintext cryptanalysis of the
Domingo-Ferrer algebraic privacy homomorphism scheme. Inf. Process. Lett. 97(3),
118–123 (2006)

7. Choi, S.J., Blackburn, S.R., Wild, P.R.: Cryptanalysis of a homomorphic public-
key cryptosystem over a finite group. J. Math. Cryptography 1, 351–358 (2007)

8. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic en-
cryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010, French Riviera.
LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

9. Domingo-Ferrer, J.: A new privacy homomorphism and applications. Information
Processing Letters 60(5), 277–282 (1996)

10. Domingo-Ferrer, J.: A provably secure additive and multiplicative privacy homo-
morphism. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp.
471–483. Springer, Heidelberg (2002)

11. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

12. Fellows, M., Koblitz, N.: Combinatorial cryptosystems galore! In: Finite Fields:
Theory, Applications, and Algorithms, Las Vegas, NV (1993). Contemp. Math.,
Amer. Math. Soc, vol. 168, pp. 51–61 (1994)

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
STOC 2009, pp. 169–178. ACM Press, New York (2009)

14. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity (2009), http://crypto.stanford.edu/craig

15. Gentry, C., Halevi, S., Vaikuntanathan, V.: A simple BGN-type cryptosystem from
LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 506–522.
Springer, Heidelberg (2010)

16. Goldreich, O., Goldwasser, S., Halevi, S.: Eliminating decryption errors in the
Ajtai-Dwork cryptosystem. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS,
vol. 1294, pp. 105–111. Springer, Heidelberg (1997)

17. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

18. Grigoriev, D., Ponomarenko, I.: Homomorphic public-key cryptosystems and en-
crypting boolean circuits. Applicable Algebra in Engineering, Communication and
Computing 17(3), 239–255 (2006)

19. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007)

20. Kawachi, A., Tanaka, K., Xagawa, K.: Multi-bit cryptosystems based on lattice
problems. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 315–
329. Springer, Heidelberg (2007)

21. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval (extended abstract). In: FOCS:
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 364–373
(1997)

http://crypto.stanford.edu/craig

154 C. Aguilar Melchor, P. Gaborit, and J. Herranz

22. Lyubashevsky, V., Micciancio, D.: On bounded distance decoding, unique shortest
vectors, and the minimum distance problem. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009)

23. Mahajan, M.: Polynomial size log depth circuits: between NC1 and AC1. BEATCS:
Bulletin of the European Association for Theoretical Computer Science 91 (2007)

24. Micciancio, D., Regev, O.: Lattice-Based Cryptography. In: Post Quantum Cryp-
tography, pp. 147–191. Springer, Heidelberg (2009)

25. Ostrovsky, R., Skeith III, W.E.: Private searching on streaming data. J. Cryptol-
ogy 20(4), 397–430 (2007)

26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

27. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: Proceedings of STOC 2009, pp. 333–342. ACM Press, New York (2009)

28. Regev, O.: New lattice based cryptographic constructions. Journal of the
ACM 51(6), 899–942 (2004)

29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM 56(6), 34 (2009)

30. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–180. Academic Press,
London (1978)

31. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

32. Sander, T., Young, A., Yung, M.: Non-interactive CryptoComputing for NC1. In:
Proceedings of the 40th Symposium on Foundations of Computer Science (FOCS),
pp. 554–567. IEEE Computer Society Press, New York (1999)

33. Smart, N., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

34. Steinwandt, R., Geiselmann, W.: Cryptanalysis of Polly Cracker. IEEE Transac-
tions on Information Theory 48(11), 2990–2991 (2002)

35. Wagner, D.: Cryptanalysis of an algebraic privacy homomorphism. In: Boyd, C.,
Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 234–239. Springer, Heidelberg
(2003)

36. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th An-
nual Symposium on Foundations of Computer Science, Toronto, Ontario, Canada,
pp. 162–167. IEEE, Los Alamitos (1986)

i-Hop Homomorphic Encryption and
Rerandomizable Yao Circuits

Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan

IBM T.J. Watson Research Center

Abstract. Homomorphic encryption (HE) schemes enable computing
functions on encrypted data, by means of a public Eval procedure that
can be applied to ciphertexts. But the evaluated ciphertexts so generated
may differ from freshly encrypted ones. This brings up the question of
whether one can keep computing on evaluated ciphertexts. An i-hop
homomorphic encryption scheme is one where Eval can be called on its
own output up to i times, while still being able to decrypt the result. A
multi-hop homomorphic encryption is a scheme which is i-hop for all i.
In this work we study i-hop and multi-hop schemes in conjunction with
the properties of function-privacy (i.e., Eval’s output hides the function)
and compactness (i.e., the output of Eval is short). We provide formal
definitions and describe several constructions.

First, we observe that “bootstrapping” techniques can be used to con-
vert any (1-hop) homomorphic encryption scheme into an i-hop scheme
for any i, and the result inherits the function-privacy and/or compact-
ness of the underlying scheme. However, if the underlying scheme is not
compact (such as schemes derived from Yao circuits) then the complexity
of the resulting i-hop scheme can be as high as nO(i).

We then describe a specific DDH-based multi-hop homomorphic en-
cryption scheme that does not suffer from this exponential blowup. Al-
though not compact, this scheme has complexity linear in the size of
the composed function, independently of the number of hops. The main
technical ingredient in this solution is a re-randomizable variant of the
Yao circuits. Namely, given a garbled circuit, anyone can re-garble it in
such a way that even the party that generated the original garbled circuit
cannot recognize it. This construction may be of independent interest.

1 Introduction

Computing on encrypted data epitomizes the conflict between privacy and func-
tionality, and has been receiving a great deal of attention lately. In the canonical
setting of this problem there are two parties – a client that holds an input x, and
a server that holds a function f . The client wishes to learn f(x) using minimal
interaction with the server and without giving away information about its input.
Similarly, the server may want to hide information about the function f from the
client (except, of course, the value f(x)). This problem arises in a wide variety
of practical applications such as secure cloud computing, searching encrypted
e-mail and so on.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 155–172, 2010.
c© International Association for Cryptologic Research 2010

156 C. Gentry, S. Halevi, and V. Vaikuntanathan

One way to achieve this goal is via the paradigm of “computing with encrypted
data” [15]: namely, the client encrypts its input x and sends the ciphertext to the
server, and the server “evaluates the function f on the encrypted input”. The
server returns the evaluated ciphertext to the client, who decrypts it and recovers
the result. An encryption scheme that supports computation on encrypted data
is called a homomorphic encryption (HE) scheme. Namely, in addition to the
usual encryption and decryption procedure, it has an evaluation procedure, that
takes a ciphertext and a function and returns an “evaluated ciphertext”, which
can then be decrypted to obtain the value f(x). Over the years there were many
proposals for encryption schemes that support computations of some functions
on encrypted data. In this work, however, we are only interested in schemes that
allow computation of any function on encrypted data.

A trivial implementation of the evaluation procedure is for the evaluated
ciphertext to include both the original ciphertext and the function f , and for the
client to decrypt the original ciphertext and then evaluate f on the result. The
problem with this trivial solution is that it does not hide the server’s function
from the client, and that it does not offload any of the client’s work to the server.
We are therefore interested also in the properties of function privacy (meaning
that the evaluated ciphertext hides the function) and compactness (meaning
roughly that the work involved in decrypting the evaluated ciphertext is less
than in computing the function “from scratch”).

1.1 Homomorphic Encryption vs. Secure Function Evaluation

Cachin, Camenisch, Kilian, and Müller [5] observed that the paradigm of “com-
puting with encrypted data” with function privacy can be instantiated using
any two-message protocol for two-party secure function evaluation (SFE). In-
deed, the specifications of these two primitives are very similar: we can think of
the first message in a 2-message SFE protocol as “encrypting” the first party’s
input, and the second message is the evaluation of a function held by the second
party on that encryption.

Following the observation of Cachin et al., there is a simple folklore construc-
tion of public-key homomorphic encryption scheme from any two-message SFE
protocol and an auxiliary CPA-secure public key encryption (e.g., [10,3], see
also Section 1.3 below). In particular, this construction can be used to convert
a protocol based on Yao’s garbled circuits [19] into a public-key homomorphic
encryption scheme. The resulting scheme is function private but not compact:
the client complexity is linear in the circuit size of the evaluated function f .

Many other schemes for “computing with encrypted data” can be found in the
literature, with client complexity that depends in various forms on the complex-
ity of the evaluated function f (e.g., its truth-table size [11], circuit depth [16],
branching-program length [10], polynomial degree [1], etc.) The new scheme of
Gentry [7] and its variants [18,17] are the first schemes where the client com-
plexity is independent of the complexity of f .
A remark about “fully homomorphic” encryption. We note that the
schemes in [7,18,17] are unique in that evaluated ciphertexts can be made

i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits 157

statistically close to freshly encrypted ones. We refer to schemes with this prop-
erty as “fully homomorphic” (as opposed to just “homomorphic” for schemes
without this property). It is easy to see that fully homomorphic schemes are
both compact and function private. Also, all the issues with multi-hop evalu-
ation that we consider in this work are trivialized for such schemes. For that
reason, fully homomorphic schemes are not the focus of the current work.

1.2 Multi-hop Homomorphic Encryption

Beyond the simple client-server setting from above, computing with encrypted
data is useful also in settings where several functions are computed on the same
encrypted data. For example, consider an email message encrypted under the
public-key of Alice, which is sent to alice@yahoo.com and promptly forwarded
to alice@gmail.com. Both Yahoo and Google have their own spam-tagging
algorithms that they want to apply to incoming emails, hence we may want to use
a homomorphic encryption scheme so that they can apply these algorithms to the
encrypted email. In this example, Yahoo can apply its spam-tagging algorithm
to the encrypted email and produce an (encrypted and) tagged email, and then
Google needs to apply its own spam-tagging algorithm to the result.

Another application with similar requirements is the setting of “autonomous
mobile agents” that was considered by Cachin et al. [5]. In this application, a
software agent is originated in some node in the network, and includes within
it an encryption of data from that node. The agent then roams the network,
visiting one node after another, and at each visited node it computes a func-
tion that depends on its current state and on the data from the visited node.
Finally, the agent returns to its originator, and the originator learns the result
of the composed function from all the visited nodes, as applied to the original
data.

What we need in these applications is a multi-hop homomorphic encryption
scheme, where the homomorphic function evaluation can be applied not only to
a fresh ciphertext, but also a ciphertext that was already subjected to another
homomorphic evaluation. We stress that evaluated ciphertexts may be very dif-
ferent from fresh ciphertexts, and it is not clear that the evaluation procedure
of the scheme can process this modified form. (Indeed, homomorphic encryption
schemes that are derived from generic secure computation protocols tend to have
this problem; see below.) Cachin et al. [5] described a solution to the multi-hop
setting based on Yao circuits, and our second construction in this work is an
extension of that solution.

The multi-hop setting implies a new function-privacy requirement, namely
multi-hop function privacy. For example, in the mail-forwarding example above,
Google may worry that Yahoo! will try to collude with the sender and receiver of
the email, in order to learn something about Google’s spam-tagging techniques.
Indeed, the solution of Cachin et al., which is described in Section 1.3 below,
suffers from exactly this problem. Ensuring multi-hop function privacy is the
main focus of our work.

158 C. Gentry, S. Halevi, and V. Vaikuntanathan

1.3 Homomorphic Encryption from Yao Circuits

For the sake of concreteness, we now describe the folklore construction of (1-hop)
homomorphic encryption from any two-message SFE protocol, and the extension
of Cachin et al. to the multi-hop setting based on Yao circuits. Consider the
structure of a two-message SFE protocol where a client holds an input x, a
server holds a function f , and the client wishes to receive f(x).
• The client sends to the server a message that “encodes” its input x, and
yet does not reveal x to a computationally bounded server. In other words, the
client’s message acts as an encryption of x.
• The server’s response encodes the result of the computation (namely f(x)),
and yet, reveals no more information to the client about the function f . In
other words, the server essentially performs a function-private evaluation of the
function f on an encrypted input.
• The client recovers the result f(x) from the server’s message, using her secret
randomness. This is the decryption procedure.

The above is still not quite a public-key encryption scheme: in particular,
there is no public key involved, and the same party (the client) is doing both
the encryption and the decryption. In contrast, a public key homomorphic en-
cryption should be thought of as a three-player game: first a recipient publishes
a public key, then a sender (client) encrypts the data x under that public key,
next an evaluator (server) computes a function f on the encrypted data, and
finally the recipient decrypts the result and recovers f(x).

Fortunately, we can get a public key HE scheme from a two-message SFE
protocol by using an auxiliary standard public-key encryption scheme: The re-
cipient chooses a public/secret key pair for some semantically secure encryption
scheme, the sender sends the first-message SFE message and in addition also
the encryption of the SFE randomness under the public key, and the evaluator
forwards the encrypted randomness to the recipient together with the second-
message SFE message. The recipient uses its secret key to decrypt and recover
the SFE randomness, and then uses the SFE procedure with this randomness to
recover f(x).
Extending to more than one hop. Consider next the setting where there
is a sender who holds an input x, two evaluators E1 and E2 who hold functions
f1 and f2 respectively, and the recipient wishes to receive f2(f1(x)). To achieve
this, the client would like to compute an encryption of x and send it to the
first evaluator, who computes an encryption of f1(x) and passes it to the second
evaluator. The question we ask is: Can E2 now compute on the output of E1?
For generic 1-hop homomorphic encryption (such as the construction above from
a generic 2-message SFE protocol), we only offer a partial answer to this ques-
tion: In Theorem 1 we show that “bootstrapping” techniques [7] can be used to
transform a 1-hop HE scheme into an i-Hop scheme for any i, but the size of the
ciphertext could grow by a polynomial factor for every hop (and hence we can
only carry out this procedure for a constant number of hops).

i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits 159

On the other hand, a scheme based on Yao’s garbled circuits [19] is easy to
extend to many hops without the exponential blowup in complexity. Recall that
in Yao’s garbled circuit construction, the server (who has a function) chooses two
random labels for every wire in the circuit that computes that function, and for
every gate it computes a “gate gadget” that allows the client to learn one of the
output labels if it knows one label on each input wire. The collection of all these
gate gadgets is called the “garbled circuit.” The server sends the garbled circuit
to the client, and engages in an oblivious transfer protocol where it reveals to the
client exactly one of the two labels on every input wire (without learning which
was revealed). The client uses the gadgets to learn one label on each wire, all the
way to the output wires of the circuit. The server also provides the client with
a mapping between the output labels and zero/one, hence allowing the client to
learn the output.

Cachin et al. [5] noted that this construction is extendable to more than one
hop: the second evaluator E2 receives the garbled circuit from the first evalua-
tor E1, and it can now just use E1’s output labels for its own input labels, thus
“connecting” these two circuits and proceeding with the protocol. Moreover this
extension offers a weak form of function privacy: if only the client is corrupted,
then the composed garbled circuit looks as if it was generated “from scratch” on
the compositions of the two circuits, and thus it hides them from the recipient.

However, privacy breaks down completely when E1 colludes with the recipient.
Now, E1 knows both the labels for each input wire of the garbled circuit that
E2 prepares. Thus, from the point of view of E1, the output of E2 is not garbled
at all, in fact E1 can completely recover f2.

Our main technical contribution is a re-randomizable variant of Yao circuits,
allowing E2 to re-randomize the labels of E1’s garbled circuit, thus obtaining
privacy even against a collusion of E1 and the recipient.

1.4 Summary of Our Results

Definition of multi-hop homomorphic encryption. Informally, in an i-
hop HE scheme, a sequence of i functions f1, . . . , fi can be homomorphically
evaluated one by one on a ciphertext c produced by encrypting a message x.
This is pictorially depicted as follows. (Here E1, . . . , Ei denote the i players –
evaluators – that hold the functions f1, . . . , fi).

Encryptor(x)
c0=Enc(x)→ E1(f1, c0)

c1→ . . . → Ej(fj , cj−1)
cj→ . . .

ci→ Decryptor

A multi-hop HE scheme is simply an i-hop scheme that works for any (polyno-
mial) i.

The definition of multi-hop function privacy requires that for every j ∈ [d],
even if all the evaluators except Ej combine their information, they still learn no
information about fj (other than its input and output). The formal definition
is simulation-based, extending the (1-hop) definition of Ishai and Paskin [10]. In
this work we only deal with the honest-but-curious setting, and only consider

160 C. Gentry, S. Halevi, and V. Vaikuntanathan

the case where all but one of the evaluators are corrupted (as opposed to an
arbitrary subset of them). Treatment of the more general cases is left for future
work.
Construction I: 1-hop → i-hop. In Section 3, we show how to convert a
1-hop HE scheme into an i-hop HE scheme for any i. This construction uses
a bootstrapping technique, similar to [7]: given a function f and an evaluated
ciphertext c that decrypts to some value x, we can express the value f(x) as a
function of the secret key, Ff,c(sk) def= f(Dec(sk, c)) = f(x). If we add to the
public key a fresh encryption of the secret key, we can then use the evaluation
procedure of the scheme to evaluate Ff,c on this fresh encryption, thus obtaining
a ciphertext that decrypts to f(x). As described, this construction relies on
circular security of the underlying scheme (since we publish an encryption of
the secret key). Just as in [7], we can avoid relying on circular security and still
support up to i hops, by having i public/secret key pairs and encrypting the j’th
secret key under the j + 1’st public key.

We note, however, that for non-compact HE schemes, the size of the evaluated
ciphertext can be polynomially larger than the size of the evaluated function.
Hence the ciphertext in the resulting i-hop scheme could grow by a factor of up
to kO(i) after i hops, where k is the security parameter. Thus, this construction
is viable only for a constant number of hops. Since by the folklore construction
(described in section 1.3), the existence of 1-hop HE schemes is equivalent to
the existence of two-message SFE protocols, we get:

Theorem 1 (Informal). If two-message secure function evaluation protocols
exist, then for any constant i there is a public key encryption scheme H(i) which
is i-hop homomorphic and i-hop function-private. There is a fixed polynomial
q(k) in the security parameter k such that on evaluating functions f1, . . . , fi on
a fresh ciphertext of H(i), the resulting evaluated ciphertext has size at most(∑i

j=1 |fj |
) · q(k)i.

We also note that if the underlying 1-hop HE scheme is compact, then the
construction above can be carried out without the exponential blowup, hence
we can extend it to an i-hop scheme for any polynomial i. Moreover, similar
bootstrapping techniques can be used to combine two 1-hop HE schemes – one
compact but not private and the other private but not compact – into a single 1-
hop scheme which is both private and compact. Using the construction above we
can then extend it to a compact and private i-hop scheme for any polynomial i.

Theorem 2 (Informal). Assume that there exist a 1-hop compact HE scheme,
and a (possibly different) 1-hop function-private HE scheme. Then, for every
polynomial p(k) there is an encryption scheme H(p), which is p(k)-hop homo-
morphic and p(k)-hop private. There is a fixed polynomial q(k) such that on
evaluating functions f1, . . . , fp(k) on a fresh ciphertext of H(p), the resulting ci-
phertext has size q(k) (independent of the size of the functions fj).

Construction II: Re-randomizable Yao → multi-hop. In Section 5, we
describe a scheme that can handle any polynomial number of hops, and is

i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits 161

semantically secure and function private under the decisional Diffie Hellman
assumption. The size of the ciphertext in this scheme grows linearly with the
size of the functions that are evaluated on the ciphertext, but independently of
the number of hops.

This encryption scheme essentially amends the Yao-garbled-circuit construc-
tion from the previous section, which only offered a weak form of function pri-
vacy. The problem there was that the garbled circuit produced by the second
evaluator E2 contains (as a sub-circuit) the garbled circuit produced by E1; this
reveals non-trivial information about the function f2 to the first evaluator. The
solution to this problem is to come up with a way to re-randomize Yao garbled
circuits. Roughly speaking, this is a procedure that takes a garbled circuit and
constructs a random garbled circuit for the same function.

We describe a variant of the garbled circuit construction that allows such
re-randomization. For the construction, we rely on the encryption scheme of
Boneh-Halevi-Hamburg-Ostrovsky [4], and on the oblivious-transfer protocol of
Naor-Pinkas and Aiello-Ishai-Reingold [13,2] (both of which are based on the
decisional Diffie-Hellman assumption, and have “nice” additive homomorphic
properties).

Theorem 3 (Informal). Under the decisional Diffie-Hellman assumption, there
is a public-key multi-hop homomorphic encryption scheme H∗ which is function-
private for any number of hops. Moreover, there is a fixed polynomial q(k) in the
security parameter such that on evaluating functions f1, . . . , fd on a fresh cipher-
text, the resulting ciphertext has size

(∑d
i=1 |fi|

) · q(k).
2 Definitions of Homomorphic Encryption

Nearly all our definitions rely on a security parameter, which is usually implicit.
By x ← X and x ∈R S we denote drawing from a distribution and choosing
uniformly from a set. We call a procedure efficient if it runs in time polynomial
in the length of its input. We say that two distributions are computationally
indistinguishable if any efficient distinguisher has only a negligible advantage in
distinguishing them. Throughout the writeup, adversarial algorithms are always
nonuniform.

A homomorphic encryption scheme consists of four procedures, E = (KeyGen,
Enc,Dec,Eval). KeyGen takes as input the security parameter and outputs a
public/secret key-pair, Enc takes the public key and a plaintext and outputs a
ciphertext, and Dec takes the secret key and a ciphertext and outputs a plaintext.
The Eval procedure takes a description of a function, the public key, and a
ciphertext, and outputs another ciphertext.
Multi-hop evaluation. We extend the Eval procedure from a single function
to a sequence of functions in the natural way. Below we say that an ordered
sequence of functions f = 〈f1, . . . , ft〉 is compatible if the output length of fj is
the same as the input length of fj+1 for all j. If f is a compatible sequence of t
functions, we denote its jth prefix by f j = 〈f1, . . . , fj〉. The composed function
ft(· · · f2(f1(·)) · · ·) is denoted (ft ◦ · · · ◦ f1).

162 C. Gentry, S. Halevi, and V. Vaikuntanathan

We define an extended procedure Eval∗ that takes as input the public key, a
compatible sequence f = 〈f1, . . . , ft〉, and a ciphertext c0. For i = 1, 2, . . . , t it
sets ci ← Eval(pk, fi, ci−1), outputting the last ciphertext ct.

Definition 1 (i-Hop Homomorphic Encryption). Let i = i(k) be a function
of the security parameter. A scheme E = (KeyGen,Enc,Dec,Eval) is an i-hop ho-
momorphic encryption scheme if for every compatible sequence f = 〈f1, . . . , ft〉
with t ≤ i functions, every input x to f1, every (pk, sk) in the support of KeyGen,
and every c in the support of Enc(pk;x),

Dec
(
sk,Eval∗(pk,f , c)

)
= (ft ◦ · · · ◦ f1)(x)

We say that E is a multi-hop homomorphic encryption scheme if it is i-hop for
any polynomial i.

We note that 1-hop homomorphic encryption is just the usual notion of homo-
morphic encryption, as formalized, e.g., in [10, Def 5].
Function privacy and compactness. Semantic security [9] is defined exactly
as for regular public-key encryption schemes (without regard to Eval). We omit
this definition due to space limitations.

To define function privacy, we view the operation of Eval∗ as a multi-party
protocol with one party per function, and formalize function-privacy as the usual
input-privacy property for these parties: roughly speaking, we require that even
if the recipient who holds the secret key colludes with all the parties but one,
the function of that one party still remains hidden, except perhaps (its size and)
the value that this function assumes on a single input.

Definition 2 (function privacy - honest-but-curious). An i-hop homo-
morphic encryption scheme E = (KeyGen,Enc,Dec,Eval) is function-private if
there exists an efficient simulator Sim such that for every compatible sequence
of functions f = 〈f1, . . . , ft〉 with t ≤ i, every j ≤ t, every input x for f1, every
(pk, sk) in the support of KeyGen, and every ciphertext cj−1 in the support of
Eval∗

(
pk,f j−1,Enc(pk;x)

)
, the following two distributions are indistinguishable

(even given x,fj and sk):

Eval(pk, fj , cj−1) and Sim
(
pk, cj−1, 1|fj |, (f1 ◦ · · · ◦ fj)(x)

)
We remark that Definition 2 can be extended in several different ways. An obvi-
ous extension would be to consider the malicious case (with or without assuming
that the public key and the initial ciphertext were created honestly). A second
possible extension is to consider a more general adversarial structure, where
the attacker can corrupt an arbitrary subset of the players (the encryptor, the
evaluators, and the decryptor), and we still want to ensure the privacy of the
non-corrupted ones. Yet another extension to Definitions 1 and 2 is to consider
an arbitrary network of functions (and not just a single chain). Finally, one could
strengthen the privacy guarantee, requiring that Eval∗ hides not only the func-
tions that the nodes compute but also the structure of the network itself (e.g.,
the number of functions in the chain). We leave all of these extensions to future
work.

i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits 163

Definition 3 (Compactness). A scheme E = (KeyGen,Enc,Dec,Eval) is i-hop
compact homomorphic if there exists a polynomial p(·) in (only) the security
parameter k, such that decryption of any ciphertext (even one that is the output
of Eval∗) w.r.t. the security parameter k can be implemented by a circuit of size
at most p(k).

Namely, for every value of k, there exists a circuit Dec(k) of size at most p(k),
such that the i-Hop property from Definition 1 holds for that decryption circuit.

The name “compactness” is justified by the fact that the length of the evaluated
ciphertexts cannot grow beyond p(k) (regardless of f), if they are to be decrypted
by a p(k)-size circuit. We comment that compactness and function privacy to-
gether are still formally weaker than the Ishai-Paskin notion of “privacy with
size hiding” [10, Def 8].

3 From 1-Hop to i-Hop Homomorphic Encryption

Below we show how to transform a 1-hop HE scheme to an i-hop scheme for any
constant i > 0. The price that we pay, however, is that the complexity of the
i-hop scheme (and in particular, the length of the evaluated ciphertexts) may
grow as large as kO(i) (for security parameter k).

The idea is that each evaluator (with function f) in the chain, upon receiving
the “evaluated ciphertext” c from its predecessor, applies again the evaluation
procedure, but not to its original function f . Rather, it applies the evaluation
procedure to the concatenation of f with the decryption function, namely to
the function Ff,c(sk) def= f

(
Dec(sk, c)

)
. This technique, which is reminiscent of

Gentry’s “bootstrapping” technique [7], works because (by induction) applying
Dec(sk, c) on the previous evaluated ciphertext outputs the value (fj−1 ◦ · · · ◦
f1)(x).
The Construction. Let H = (KeyGen,Enc,Eval,Dec) be a function-private
homomorphic 1-hop encryption scheme (that need not be compact). Let i be a
constant parameter of the system (that represents the number of hops that we
are shooting for). We construct a function-private i-hop homomorphic encryption
scheme H(i) = (KeyGen(i),Enc(i),Eval(i),Dec(i)) as follows.

KeyGen(i): Run KeyGen for i+ 1 times, to get for j = 0, 1, . . . , i:

(pkj , skj)← KeyGen, and for j < i also: αj ← Enc
(
pkj+1︸ ︷︷ ︸

key

; skj︸︷︷︸
ptxt

)
Defining αi =⊥, the public key is the set pk

(i) = {(pkj , αj) : j = 0, 1, . . . , i},
and the secret key is sk

(i) = (sk0, sk1, . . . , ski).
Enc(i)(pk(i); x): Set c0 ← Enc(pk0; x) and output

[
level-0, c0

]
.

Eval(i)(pk(i), c̃, fj+1): Parse the ciphertext as c̃ =
[
level-j, cj

]
. Compute the de-

scription of the function Ffj+1,cj (s)
def= fj+1(Dec(s; cj)), and set cj+1 ←

Eval(pkj+1; Ffj+1,cj , αj). Output
[
level-(j + 1), cj+1

]
.

164 C. Gentry, S. Halevi, and V. Vaikuntanathan

Dec(i)(sk(i); c̃): Parse the ciphertext as c̃ =
[
level-j, cj

]
. Compute and output

y ← Dec(skj ; cj).

Theorem 4. The scheme H(i) above is an i-hop function private homomorphic
encryption scheme.

Proof. (sketch) Correctness is easy to establish by induction. The correctness
of the underlying 1-hop homomorphic encryption scheme H implies that for all
j ≤ i we have

Dec(skj , cj) = Dec(skj ,Eval(pkj ; Ffj ,cj−1 , αj−1))
(a)
= Ffj ,cj−1(skj−1)

(b)
= fj(Dec(skj−1, cj−1))

(c)
= (fj ◦ . . . ◦ f1)(x),

where fj is the function that was used in the j’th hop, Equality (a) holds by
correctness of the underlying 1-hop scheme, Equality (b) holds by definition of
Ffj ,cj−1 , and Equality (c) holds by the induction hypothesis.

Semantic security of H(i) follows trivially from that of the underlying (1-hop)
encryption scheme. Similarly, i-hop function privacy follows easily from the 1-
hop privacy of the underlying scheme (and the fact that the size of Ffj ,cj−1 that
the H simulator needs can be computed easily from the size of fj and the size
of cj−1 both of which the simulator for H(i) knows).

Complexity. For “generic” 1-hop encryption schemes (such as the one that we
can obtain from two-message SFE using the folklore construction described in
Section 1.3), the size of the ciphertext resulting from Eval(f, c) is larger than
the input length |c| + |f | by some factor K which is polynomial in the security
parameter k. Hence the size of the circuit for Ffj ,cj−1 in our construction is at
least

K(· · ·K(K(|c0|+|f1|)+|f2|) · · ·)+|fj |= |c0|Kj−1+
j∑

t=1

|ft|Kj−t =
(j∑

t=1

|fj |
)·kO(j)

which means that after i hops the ciphertext grows as kO(i).

3.1 Compact and Function-Private Homomorphic Encryption

Recall that the exponential blowup in the construction above is due to the fact
that the ciphertext that results from Eval is larger than the function size (by
a multiplicative factor). On the other hand, if the underlying 1-hop scheme
is compact (and function-private), then the construction above would yield a
compact (and function-private) i-hop scheme.

Below we show that given a 1-hop scheme which is compact but not private,
and another 1-hop scheme which is private but not compact, we can combine
them to get a 1-hop scheme which is both compact and private (and thus also
i-hop compact and private scheme for all i, by the observation above).

i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits 165

The idea is to iterate the two schemes at every hop. First we apply the private
scheme to the function f that we want to evaluate, thus getting a “private
ciphertext” which is large but does not reveal information about f . Then we
apply the compact scheme to the decryption function of the private scheme,
in essence “compressing” the large ciphertext into a compact one which is still
decrypted to the same value. The result is clearly compact (since it outputs the
“compact ciphertext”). It is also function-private since the only dependence of
the compact ciphertext on the function f is via the value of the intermediate
“private ciphertext”, and even if we were to give the adversary the “private
ciphertext” itself, it would still not violate the function-privacy of f .1

We note that when using this technique, we again get a “hard-wired” pa-
rameter i that limits the number of hops that we can handle: to get an i-hop
scheme, the public key must have size linear in i. Thus, the resulting scheme is
not multi-hop, according to Definition 1. This limitation can be circumvented
by relying on the circular security of the resulting 1-hop schemes; the details are
deferred to the full version.

4 Extendable and Re-randomizable Secure Computation

Below we define the tool of “extendable and re-randomizable SFE”, and show
how it is used for multi-hop homomorphic encryption. In the next section we
show that this tool can be implemented under the decisional Diffie-Hellman
assumption. We begin with definitions (which are similar to Ishai et al. [10]).

We fix a particular “universal circuit evaluator” U(·, ·), taking as input a
description of a function f and an argument x, and returning f(x). Using U
we can view every bit-string f as describing a function (where f(x) is just a
shorthand for U(f, x)).

A two-message protocol for secure two-party computation to be run by Al-
ice (the client) and Bob (the server), is implemented by three polynomial-time
procedures Π = (SFE1, SFE2, SFE-Out), where:

1. The procedure SFE1(x) is run by the client with input x and randomness
r1 to get the “first message” m1. m1 is then sent to the server and r1 is kept
for later. We assume that r1 includes in particular all the randomness that the
client uses.

2. The procedure SFE2(f,m1) is run by the server with input a function f and
randomness r2. The output of this procedure m2 is then sent to the client.

3. Finally, the client runs the procedure SFE-Out(r1,m2) to recover an output
y. Correctness of the SFE protocol demands that the value y is equal to f(x).

By SFE1(x) (resp. SFE2(m1, f)), we mean the distribution generated by the
respective algorithms (over the choice of their randomness). We also say that

1 We comment that iterating the two systems in the opposite order also works: we
can apply the compact scheme to the function f and the private scheme to the
decryption of the compact one.

166 C. Gentry, S. Halevi, and V. Vaikuntanathan

(m1, r1) ∈ SFE1(x) (resp. (m2, r2) ∈ SFE2(m1, f)) to denote a particular element
in the support of the distribution (together with the randomness involved).

Definition 4 (Client and (honest-but-curious) Server privacy). A pro-
tocol Π = (SFE1, SFE2, SFE-Out) is said to be:

– Client-private, if for any two inputs x, x′ of the same length, the distributions
SFE1(x) and SFE1(x′) are indistinguishable (even given x, x′).

– Server-private in the honest-but-curious model, if there exists a polynomial
time simulator Sim such that for every input x and function f , and every
(m1, r1) ∈ SFE1(x), the distributions SFE2(f,m1) and Sim(m1, 1|f |, f(x))
are indistinguishable (even given f, x,m1 and r1).

We now define the notion of an extendable SFE protocol.

Definition 5 (Extendable SFE, honest-but-curious). A two-message SFE
protocol Π = (SFE1, SFE2, SFE-Out) is extendable, if there exists an efficient
procedure Extend such that for any two compatible functions f and f ′, any input x
to f , and for every (m1, r1) ∈ SFE1(x), the distributions Extend(SFE2(m1, f), f ′)
and SFE2(m1, f

′ ◦ f) are indistinguishable (even given x, f, f ′,m1 and r1).

Extendable SFE from Yao Circuits. The construction of Cachin et al. [5,
Sec. 5] can be cast in our language as describing an extendable SFE protocol
based on Yao’s garbled circuit construction [19]. As described in the introduction,
the idea is that since the garbled circuit for f includes both the 0-label and the
1-label on any output wire, it can be extended by treating these labels as the
input labels for f ′.

We comment that garbling the gates hides only the type of these gates and
not the topology of a circuit. To hide the function we must also use some form of
canonicalization of circuits, so that all circuits of a given size will have the same
topology. Moreover, to meet our definition of extendibility, it must be the case
that canonicalizing f , then extending it with f ′ and canonicalizing the whole
thing yields the same topology as canonicalizing the composed function f ′ ◦ f .

We note that such canonicalization is possible, and the size of the canonical-
ized circuits does not grow much. For example, a circuit of maximum width w
can be canonicalized to a leveled circuit with width w at every level, and a big
“multiplexer gate” between every two successive levels that determines what
output from the lower level goes to what input in the upper one. To get the
additional property that we need (where the order of canonicalization does not
matter) we would also have w output wires in the circuit, where the redundant
output wires have both labels set to 0. (We may also need to supply some dummy
gates that take as input the input wires and have both output labels set to 0, to
be able to pad the circuit if the maximum width of f ′ is larger than that of f .)
From Extendable to Re-randomizable. Note that extendable SFE by itself
already yields multi-hop homomorphic encryption with a weak form of function-
privacy: to a recipient that does not know the intermediate values (namely, the
output of SFE2(m1, f)), the output of Extend looks just as if it was generated

i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits 167

“from scratch” by running SFE2 with input f ′ ◦f , so Extend hides the function if
SFE2 does. This means that when the protocol Π is used for many hops, then as
long as all the intermediate hops are “trusted” not to reveal their intermediate
results (and only the sender and the recipient are honest-but-curious), using
Extend would maintain the privacy of everyone’s functions.

However, this solution still falls short of our function-privacy goal, since a col-
lusion between the recipient and the node that computed SFE2(m1, f) can reveal
the function f ′. In other words, the output of Extend may not be distributed like
SFE2(m1, f

′ ◦ f) given also the intermediate results from SFE2(m1, f). To over-
come this problem, we introduce the notion of a re-randomizable SFE: In a
nutshell, we want to transform the second message m2 ← SFE2(m1, f) into m′

2
such that even if the recipient and the party that computed m2, they cannot
distinguish m′

2 from random. Then, a node can re-randomize the message from
its predecessor, thus rendering the intermediate results held by the predecessor
irrelevant.

Definition 6 (Re-randomizableSFE,honest-but-curious).Atwo-message
SFE protocolΠ is re-randomizable if there exists an efficient procedure reRand such
that for every input x and function f and every (m1, r1) ∈ SFE1(x) and (m2, r2) ∈
SFE2(m1, f), the distributions reRand(m1,m2) and SFE2(m1, f) are indistinguish-
able, even given x, f,m1, r1,m2, r2.

From Extendable and Re-randomizable SFE to Multi-hop HE. Let
Π = (SFE1, SFE2, SFE-Out) be an extendable and re-randomizable two message
SFE protocol with client and server privacy, and let E = (KeyGen,Enc,Dec) be a
semantically secure public-key encryption scheme. We now describe the construc-
tion of the multi-hop homomorphic scheme H∗ = (KeyGen∗,Enc∗,Dec∗,Eval∗).

The key generation KeyGen∗ is the same as KeyGen for the underlying en-
cryption. The encryption procedure Enc∗(pk;x) first runs (m1, r1) ← SFE1(x),
then encrypts r1 using E to get c ← Enc(pk; r1), and finally, computes m2 ←
SFE2(m1, fID) (where fID is the identity function). The ciphertext is (c,m1,m2).

To evaluate a function fj on an H∗-ciphertext cj−1, first parse cj−1 as a tuple
(c,m1,m

(j−1)
2), then set m′

2 ← Extend(m(j−1)
2 , fj) and m

(j)
2 ← reRand(m1,m

′
2).

The evaluated ciphertext is (c,m1,m
(j)
2). Decrypting cj = (c,m1,m

(j)
2) con-

sists of using the decryption of E to get r1 ← Dec(sk, c), then outputting
y ← SFE-Out(r1,m

(j)
2).

Theorem 5 (Extendable+Re-randomizable ⇒ Multi-hop). Assume that
the encryption scheme E is semantically secure, the SFE protocol Π is extendable
and re-randomizable with client and server privacy, and in addition that the size
of any function f can be efficiently determined from the output of SFE2(m1, f).

Then the scheme H∗ above is a multi-hop function-private homomorphic en-
cryption scheme. Moreover, the size of an evaluated ciphertext in H∗ does not
depend on the number of hops, but only on the size of the composed function.

Proof. (sketch) Correctness of H∗ follows from the the correctness of Π , and
its extendability and re-randomizability: we know that SFE-Out would recover

168 C. Gentry, S. Halevi, and V. Vaikuntanathan

the right y when given the second message from SFE2, and by extendability
the output of Extend is the same as that of SFE2, no matter how many hops
were used. Semantic security follows from semantic security of the underlying
encryption and from the client-privacy of Π .

To show function privacy, we need to describe a simulator SimH∗ that on input
cj−1 = (c,m1,m

(j−1)
2), |fj |, and yj = (f1 ◦ · · · ◦ fj)(x), generates a distribution

indistinguishable from cj = (c,m1,m
(j)
2). The simulator recovers fromm

(j−1)
2 the

size |f1◦· · ·◦fj−1| and adds it to |fj | to get γ = |f1◦· · ·◦fj|. Then SimH∗ uses the
simulator for Π to get m(j)

2 ← SimΠ(m1, γ, yj) and outputs cj = (c,m1,m
(j)
2).

By the server-privacy of Π , the distribution of m(j)
2 so generated is indistin-

guishable from SFE2(m1, f1 ◦ · · · ◦ fj). On the other hand, by the extendability
and re-randomizability properties of Π , the distribution of m(j)

2 in H∗ is also
indistinguishable from the same SFE2(m1, f1 ◦ · · · ◦ fj). Hence these two distri-
butions are indistinguishable from each other. �

5 Extendable and Re-randomizable SFE from DDH

Given Theorem 5, we now focus on building an extendable and re-randomizable
SFE protocol. Our starting point is Yao’s garbled circuit construction [19], which
is extendable, but not re-randomizable. We seek a re-randomizable implemen-
tation of this scheme by using building blocks that are “sufficiently homomor-
phic” to support the randomization that we need. Specifically, we rely on the
oblivious-transfer protocol of Naor-Pinkas/Aiello-Ishai-Reingold [13,2], and on
the encryption scheme of Boneh-Halevi-Hamburg-Ostrovsky [4], the security of
both of which is equivalent to the decisional Diffie-Hellman assumption. Below
we briefly summarize some properties of these building blocks; a slightly longer
description (and the definitions of OT) can be found in the full version of this
paper [8].
Re-randomizable oblivious transfer. The protocol in [13,2] is a two-
message protocol. The receiver that has a choice bit σ ∈ {0, 1} sends the first
message m1 ← OT 1(σ), the sender that has two bits γ0, γ1 ∈ {0, 1} replies with
m2 ← OT 2(m1, γ0, γ1), and the receiver can recover the bit γσ from m2 and
the state that it keeps. Receiver security means that OT 1(0), OT 1(1) are indis-
tinguishable, and sender security means that OT 2(m1, γ0, γ1) can be simulated
knowing only m1 and γσ. We note that if the sender has two strings γ0,γ1,
(rather than just two bits) then it can use the same m1 from the receiver and
send many m2’s in reply, one for every bit position in the input vectors.

Another property we use is that the protocol from [13,2] is re-randomizable:
given m1,m2, anyone can re-randomize the reply, computing another random
m′

2 from the distribution OT 2(m1, γ0, γ1) (even without knowing γ0, γ1).
Key and plaintext additively homomorphic encryption. The BHHO
scheme [4] is a semantically secure public key encryption scheme where the se-
cret key is a string s ∈ {0, 1}� and the plaintext is also a string x ∈ {0, 1}n.

i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits 169

(In our application we use n = 2�.) The public key and ciphertexts are vectors
of elements over a group of some prime order q.

The BHHO scheme has the following “additively homomorphic” property: Let
T, T ′ be two known affine transformations on vectors overZq that map 0-1 vectors
to 0-1 vectors of the same length. Then, given a public key pk corresponding
to some secret key s and a ciphertext c ∈ Enc(pk; x), anyone can generate a
random public key pk

′ corresponding to T (s) and a random ciphertext c′ ∈
Enc(pk′;T ′(x)). In particular, this means that anyone can XOR known strings
Δ,Δ′ into s and x, and also anyone can permute the bits in either s or x (or
both) according to known permutations.

5.1 Our Construction

Our construction closely follows Yao’s original garbled circuit construction [19].
The client (Alice) on input x = 〈x1, . . . , xn〉, sends n first messages of the OT
protocol from above, using her input bit xi as the choice bit for the i’th message,
m1[i]← OT 1(xi).

The server (Bob) has a boolean circuit with fan-in-2 gates. Bob’s circuit has
n input ports, some number of output ports, and some number of internal gates.
Each wire in the circuit is therefore either an input wire (connecting an input port
to some internal gates and/or output ports), or a gate-output wire (connecting
the output of one internal gate to some other internal gates and/or output ports).
We stress that we allow the same wire to be used as input to several internal
gates or output ports.2

Bob receives from Alice the n OT first messages, m1[1], . . . ,m1[n]. He begins
by choosing at random two �-bit labels Lw,0, Lw,1 for every wire w, each having
exactly ��/2� 1’s. (Here � is the length of the BHHO secret key.) For each input
wire wi, corresponding to Alice’s first message m1[i], Bob computes the OT
second message for the two labels on the corresponding input wire, m2[i] ←
OT 2(m1[i];Lwi,0, Lwi,1).

Then, for an internal fan-in-2 gate (computing the binary operation �), Bob
computes four pairs of ciphertexts as follows: Let w1, w2 be the two input wires
for this gate and w3 be the output wire. Bob chooses four fresh random 2�-bit
masks δi,j for i, j ∈ {0, 1} and computes the four pairs:{(

EncLw1,i(δi,j), EncLw2,j ((Lw3,k|0�)⊕ δi,j)
)

: i, j ∈ {0, 1}, k = i � j
}

(1)

Namely, Bob uses the secret key Lw1,i to encrypt the mask δi,j itself, and the
other secret key Lw2,j to encrypt the masked label (concatenated with � zeros).
The “gadget” for this gate consists of the four pairs of ciphertexts from Eq. (1)
in random order. The garbled circuit that Bob sends back to Alice consists of
the n OT second messages m2[1], . . . ,m2[n], and the gadgets for all the gates in
the circuit (which we assume include an indication of which wire connects what
2 We assume that the two input wires at each gate are always distinct. This can be

enforced, e.g., by implementing a fan-in-1 gate (i.e., NOT) via a fan-in-2 XOR-with-
one gate.

170 C. Gentry, S. Halevi, and V. Vaikuntanathan

gates). In addition, for each output wire w with labels Lw,0 and Lw,1, Bob sends
an ordered pair of public keys, the first corresponding to Lw,0 and the second to
Lw,1. (We chose this particular mapping to enable re-randomization.)

Upon receiving this garbled circuit, Alice first uses the recovery procedure of
the OT protocol to recover one of the labels for each input wire. Then she goes
over the garbled circuit gate by gate as follows: For a fan-in-2 gate where she
knows the labels L1, L2 for the two inputs, she uses the key L1 to decrypt the
first component in each of the four pairs and uses the key L2 to decrypt the
second component of the four pairs. Then she XORs the two decrypted strings
from each pair, and if any of the resulting strings is of the form L∗|0� then she
takes L∗ to be the label of the output wire. (If more than one string has the
form L∗|0 then Alice takes the first one, and if none has this form then she sets
L∗ = 0�.) Upon recovering a label on an output port, she checks if this label
corresponds to the first or the second public keys that were provided for this
port, outputting zero or one accordingly. (Or ⊥ if it does not correspond to any
of them.) The proof of the following theorem is very similar to [12], and is given
in the full version.

Theorem 6. The protocol from above, using the BHHO encryption scheme, en-
joys both client and server privacy, under the DDH assumption.

Remark: balanced secret keys. We note that the BHHO scheme is used here
with secret keys that have exactly �/2 1’s in them, rather than with completely
uniform secret keys. This is used for the purpose of re-randomization, as de-
scribed in Section 5.2. We note that this variant of BHHO is also semantically
secure: In fact, Naor and Segev proved that under DDH, the BHHO scheme is
semantically-secure for every secret-key distribution with sufficient min-entropy
(cf. [14, Sec 5.2]). We use this stronger result in our proof of the re-randomization
property in Section 5.2.

5.2 Re-randomizing Garbled Circuits

We proceed to show how garbled circuits from above can be re-randomized.
We begin by observing that a simple re-randomization method that only XORs
random masks into the labels does not work: Observe that the re-randomizer
does not know which of the two labels on a wire was used as key (or input)
in what ciphertext, so it cannot use two different masks to randomize the two
different labels on a wire. Rather, it can only apply the same mask Δw to both
labels on a wire. But this is clearly not sufficient for randomization, since it
leaves the XOR of the two labels on each wire as it was before.

Moreover, such “partial randomization” is clearly insecure in our application:
Note that the predecessor of a node knows the two “old labels” for every wire in
its circuit, including the labels for the output wires (which are the current node’s
input wires). Also, the receiver (Alice) would learn one of the “new labels” on
these wire upon evaluation. Hence between the predecessor and Alice, they will
be able to reconstruct both new labels for every input, thus un-garbling the
circuit of the current node.

i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits 171

To overcome this problem, we rely on stronger homomorphic properties of
BHHO: Namely, viewing keys and plaintexts as vectors, it is homomorphic with
respect to any affine function over Zq. This means, in particular, that it is ho-
momorphic with respect to permutations (i.e., multiplications by permutation
matrices). Namely, we can transform a ciphertext EncL(L′) into Encπ(L)(π′(L′))
for any two permutations π, π′ of the bits. We therefore work with balanced
secret keys that have exactly �/2 1’s, and use permutations to randomize them.

Note that in the attack scenario from above, where a predecessor colludes
with the recipient, they will now know the old labels L,L′, and also one new
label, computed as π(L). In Lemma 1 we show that given these three values, the
other new label π(L′) still has a lot of min-entropy, provided that the Hamming
distance between L,L′ is not too small. In the honest-but-curious model, L and
L′ will be about �/2 apart, hence π(L′) will have min-entropy close to � (see
Lemma 1 below). The Naor-Segev result [14] then implies that it is safe to use
π(L′) as a secret key, which is indeed the way that it is used in the re-garbled
circuit. Putting all these arguments together, we have the following theorem:

Theorem 7. Under the DDH assumption, the BHHO-based protocol from above
is computationally re-randomizable.

The permutations lemma. Let HW�,k ⊆ {0, 1}� denote the set of all �-bit
strings with Hamming weight exactly k, and also let S� denote the set of all
permutations over � elements. Assume that � is even from now on. The lemma
below shows that for two strings L1 and L2, chosen uniformly at random from
HW�,�/2, and a random permutation π : [�] → [�], the string π(L2) has large
residual min-entropy even given L1, L2 and π(L1). For the lemma below, let
H̃∞(X |Y) be the average min-entropy of X given Y (cf. [6]), that is

H̃∞(X |Y) def= − log E
y←Y

(
max

x
Pr[X = x|Y = y]

)
= − log E

y←Y

(
2−H∞(X|Y =y)

)
Lemma 1. Let L1, L2 ∈R HW�,�/2, and π ∈R S� be uniformly random. Then:

H̃∞
(
π(L2) | L1, L2, π(L1)

) ≥ �− 3
2

log �

The proof is in the full version. It follows easily from the observation that given
L1, L2 and π(L1), the string π(L2) is distributed uniformly from among all
strings in HW�,�/2 whose Hamming distance from π(L1) equals the Hamming
distance between L1 and L2. �

Acknowledgments. We thank Yuval Ishai for several inspiring discussions.

References

1. Aguilar-Melchor, C., Gaborit, P., Herranz, J.: Additively Homomorphic Encryp-
tion with d-Operand Multiplications. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 138–154. Springer, Heidelberg (2010)

172 C. Gentry, S. Halevi, and V. Vaikuntanathan

2. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

3. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010)

4. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008)

5. Cachin, C., Camenisch, J., Kilian, J., Müller, J.: One-round secure computation
and secure autonomous mobile agents. In: Welzl, E., Montanari, U., Rolim, J.D.P.
(eds.) ICALP 2000. LNCS, vol. 1853, pp. 512–523. Springer, Heidelberg (2000)

6. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EU-
ROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

7. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp.
169–178. ACM, New York (2009)

8. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption
schemes. Cryptology ePrint Archive, Report 2010/145 (2010)

9. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

10. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007)

11. Kushilevitz, E., Ostrovsky, R.: Replication is NOT Needed: SINGLE Database,
Computationally-Private Information Retrieval. In: FOCS 1997, pp. 364–373.
IEEE, Los Alamitos (1997)

12. Lindell, Y., Pinkas, B.: A Proof of Security of Yao’s Protocol for Two-Party Com-
putation. J. Cryptology 22(2), 161–188 (2009)

13. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: ACM-SIAM Sym-
posium on Discrete Algorithms - SODA 2001, pp. 448–457. ACM, New York (2001)

14. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

15. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press,
London (1978)

16. Sander, T., Young, A., Yung, M.: Non-interactive CryptoComputing for NC1. In:
40th Annual Symposium on Foundations of Computer Science - FOCS 1999, pp.
554–567. IEEE, Los Alamitos (1999)

17. Smart, N., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

18. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

19. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual
Symposium on Foundations of Computer Science – FOCS 1982, pp. 160–164. IEEE,
Los Alamitos (1982)

Interactive Locking, Zero-Knowledge PCPs,
and Unconditional Cryptography�

Vipul Goyal1,��, Yuval Ishai2,� � �, Mohammad Mahmoody3,†,
and Amit Sahai4,‡

1 Microsoft Research, India
vipul@microsoft.com
2 Technion and UCLA

yuvali@cs.technion.ac.il
3 Princeton University

mohammad@cs.princeton.edu
4 UCLA

sahai@cs.ucla.edu

Abstract. Motivated by the question of basing cryptographic protocols
on stateless tamper-proof hardware tokens, we revisit the question of un-
conditional two-prover zero-knowledge proofs for NP. We show that such
protocols exist in the interactive PCP model of Kalai and Raz (ICALP
’08), where one of the provers is replaced by a PCP oracle. This strength-
ens the feasibility result of Ben-Or, Goldwasser, Kilian, and Wigderson
(STOC ’88) which requires two stateful provers. In contrast to previous
zero-knowledge PCPs of Kilian, Petrank, and Tardos (STOC ’97), in our
protocol both the prover and the PCP oracle are efficient given an NP
witness.

Our main technical tool is a new primitive that we call interactive
locking, an efficient realization of an unconditionally secure commitment
scheme in the interactive PCP model. We implement interactive locking
by adapting previous constructions of interactive hashing protocols to
our setting, and also provide a direct construction which uses a minimal
amount of interaction and improves over our interactive hashing based
constructions.

Finally, we apply the above results towards showing the feasibility of
basing unconditional cryptography on stateless tamper-proof hardware
tokens, and obtain the following results. (1) We show that if tokens
can be used to encapsulate other tokens, then there exist unconditional
and statistically secure (in fact, UC secure) protocols for general secure

� The full version of the paper is available at: http://eprint.iacr.org/2010/089
�� This work was done mostly while this author was at UCLA, supported in part

from NSF grants listed below.
� � � Supported in part by ISF grant 1310/06, BSF grants 2004361, 2008411, and NSF

grants 0716835, 0716389, 0830803, 0916574.
† This work done partially while this author was visiting UCLA. Supported by NSF

grants 0627526, 0426582 and 0832797.
‡ Supported in part by BSF grants 2004361, 2008411, and NSF grants 0916574,

0716389, 0627781, 0830803.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 173–190, 2010.
c© International Association for Cryptologic Research 2010

174 V. Goyal et al.

computation. (2) Even if token encapsulation is not possible, there are
unconditional and statistically secure commitment protocols and zero-
knowledge proofs for NP. (3) Finally, if token encapsulation is not pos-
sible, then no protocol can realize statistically secure oblivious transfer.

1 Introduction

What is the minimal amount of trust required for unconditionally secure cryptog-
raphy? Unconditional cryptography can be based on trusted two-party
functionalities such as oblivious transfer [1,2] or noisy channels [3], on bounded
storage assumptions [4], on the presence of an honest majority [5,6,7], or even
on the presence of a dishonest majority of non-communicating parties [8]. More
recently, there has been a considerable amount of work on cryptographic proto-
cols in which parties can generate and exchange tamper-proof hardware tokens.
In this model it was shown that unconditionally secure commitments [9] or even
general secure two-party computation [10] are possible, provided that the to-
kens can be stateful. In particular, stateful tokens can erase their secrets after
being invoked. The present work is motivated by the goal of establishing un-
conditional feasibility results for cryptography using stateless hardware tokens.
This question turns out to be related to the classical question of unconditional
multi-prover zero-knowledge proofs, which we revisit in this work. We start with
some relevant background.
Multi-Prover Zero-Knowledge. Since the introduction of zero-knowledge
proofs in the seminal work of Goldwasser, Micali, and Rackoff [11], a large body of
work has been devoted to understanding the capabilities and limitations of such
proofs. A particularly successful line of research studied the power of statistical
zero-knowledge (SZK) proofs — ones which guarantee that even computation-
ally unbounded verifiers can learn nothing from the interaction with the prover.
In contrast to computational zero-knowledge proofs [12], a major limitation of
SZK proofs which restricts their usefulness in cryptography is that they seem
unlikely to cover the entire class of NP [13,14]. The related goal of obtaining
any kind of unconditional zero-knowledge proofs for NP, which do not rely on
unproven intractability assumptions, seems as unlikely to be achieved (cf. [15])
at least until the elusive P vs. NP question is resolved.

Motivated by the above goals, Ben-Or, Goldwasser, Kilian, and Wigderson [8]
introduced in 1988 the model of multi-prover interactive proofs (MIPs), a natural
extension of the standard model of interactive proofs which allows the verifier to
interact with two or more non-communicating provers. The main result of [8] is
an unconditional two-prover SZK proof for any language in NP (see [16,17,18] for
subsequent improvements). A direct cryptographic application suggested in [8] is
that of proving one’s identity using a pair of bank cards. We will further discuss
these types of applications later.

In a very surprising turn of events, the initial work on zero-knowledge in the
MIP model led to a rapid sequence of developments that have literally trans-
formed the theory of computer science. This line of research culminated in the
first proof of the PCP Theorem [19,20].

Interactive Locking, Zero-Knowledge PCPs 175

The notion of probabilistically checkable proofs (PCPs) is very relevant to our
work. In 1988, Fortnow, Rompel, and Sipser [21] suggested an alternative model
for MIPs in which multiple provers are replaced by a single oracle, subsequently
called a PCP oracle or just a PCP. The difference between an oracle and a prover is
that an oracle, like a classical proof, cannot keep an internal state. When a prover is
askedmultiple queries, the answer to eachquery candepend on allprevious queries,
whereas the answer of an oracle to each query must depend on that query alone.
The latter difference makes soundness against PCP oracles easier to achieve than
soundness against provers, which explains the extra power ofPCPs over traditional
interactive proofs. However, as already observed in [8], the zero-knowledgeproperty
becomes harder to achieve when converting provers into oracles because oracles
have no control over the number of queries made by a dishonest verifier. In par-
ticular, if the verifier may query the entire domain of the oracle (as in the case of
traditionalpolynomial-lengthPCPs) then the oracle canno longer hide any secrets.

The question of replacing zero-knowledge provers by stateless oracles is
motivated by practical scenarios in which verifiers can “reset” provers to their
initial state, say by cutting off their power supply. (Note that similarly to zero-
knowledge provers, zero-knowledge PCP oracles should be randomized in the
sense that their answer depends both on the query and on a secret source of
randomness which is picked once and for all when the oracle is initialized.) This
motivation led to a recent line of work on resettable zero-knowledge, initiated
by Canetti, Goldreich, Goldwasser, and Micali [22]. The main results from [22]
show that, under standard cryptographic assumptions, there exist resettable
(computational) zero-knowledge proofs for NP. However, results along this line
do not seem relevant to the case of unconditional (and statistical) zero-knowledge
proofs, which are the focus of the present work.

Zero-knowledge PCPs. The question of unconditional zero-knowledge PCPs was
studied by Kilian, Petrank and Tardos [23] (improving over previous results im-
plicit in [18]). Specifically, it is shown in [23] that any language in NEXP admits
a proof system with a single PCP which is statistical zero-knowledge against
verifiers that can make any polynomial number of PCP queries (but are oth-
erwise computationally unbounded). However, as expected from proof systems
for NEXP, the answers of the PCP oracle cannot be computed in polynomial
time. This still leaves hope for scaling down the result to NP and making the
PCP oracle efficient given an NP witness. Unfortunately, such a scaled down
version presented in [23] has the undesirable side effect of scaling down the zero-
knowledge property as well, effectively restricting the number of queries made by
a cheating verifier to be much smaller than the (fixed polynomial) entropy of the
oracle. Thus, compared to typical feasibility results in cryptography, the results
of [23] for NP require us to either make an unreasonable assumption about the
computational capability of the (stateless) prover, or to make an unreasonable
assumption about the limitations of a cheating verifier.

Interactive PCPs. The above state of affairs motivates us to consider the Inter-
active PCP (IPCP) model, which was recently put forward by Kalai and Raz [24]

176 V. Goyal et al.

and further studied in [25]. This model can be seen as lying in between the pure
PCP model and the pure MIP model, thus aiding us in our quest for a “min-
imal” model for efficient unconditional zero-knowledge proofs for NP. In the
IPCP model there is one interactive prover as in the MIP model and one PCP
as in the PCP model. The study of IPCPs in [24] was motivated by the efficiency
goal of allowing shorter PCPs for certain NP languages than in the traditional
PCP model, at the price of a small amount of interaction with a prover. In con-
trast, our use of the IPCP model is motivated by the feasibility goal of obtaining
unconditional zero-knowledge proofs for NP with polynomial-time prover and
PCP oracle. Another difference is that while in the context of [24] a PCP is at
least as helpful as a prover, the zero-knowledge property we consider is harder
to satisfy with a PCP oracle than with a prover (as discussed above). The IPCP
model can be made strictly stronger than the MIP model by requiring soundness
to hold also with respect to stateful PCP oracles. We tackle this stronger variant
as well, but we stick to the basic IPCP model by default.

To meaningfully capture zero-knowledge proofs with polynomial-time provers
in the IPCP model, we extend the original IPCP model from [24] in two natural
ways. First, we allow the PCP to be randomized. Concretely, we assume that
both the prover and the PCP are implemented by polynomial-time algorithms
with three common inputs: an instance x, a witness w, and a random input
r. (This is analogous to earlier models for efficient multi-prover zero-knowledge
proofs for NP.) The length of both w and r is polynomial in |x|. Second, as dis-
cussed above, in order to allow the PCP oracle to hide secrets from the verifier
we need to use PCP oracles with a super-polynomial query domain, and we re-
strict cheating verifiers to make (an arbitrary) polynomial number of queries to
the oracle, but otherwise allow them to be computationally unbounded. Note,
however, that in contrast to the solutions from [23] we cannot use PCP ora-
cles with a super-polynomial entropy since we want our PCP to be efficiently
implementable.

This gives rise to the following feasibility question:

Are there (efficient-prover) statistical zero-knowledge proofs for NP in
the interactive PCP model?

Our Results. We answer the above question affirmatively, presenting an un-
conditional SZK proof for NP in the interactive PCP model with efficient prover
and PCP oracle. Zero-knowledge holds against cheating verifiers which can make
any polynomial (in fact, even sub-exponential) number of PCP queries, but are
otherwise computationally unbounded. Our protocol can be implemented in a
constant number of rounds. We also show how to get a similar protocol (with a
non-constant number of rounds) in the stronger variant of the IPCP model in
which a cheating PCP oracle may be stateful, thus strengthening the previous
feasibility result from [8].

Interactive locking. The main technical tool we use to obtain the above results (as
well as additional applications discussed below) is a new primitive which we call

Interactive Locking, Zero-Knowledge PCPs 177

an interactive locking scheme (ILS). This primitive extends in a natural way the
notion of non-interactive locking schemes which were defined and implemented
in [23]. The original locking primitive can be viewed as a PCP-based implementa-
tion of a non-interactive commitment with statistical hiding and binding. Roughly
speaking, a locking scheme is an oracle which hides a secret that can later be re-
vealed to the receiver by sending it a decommitment key. Given access to the oracle
alone, it is hard for the receiver to learn anything about the secret. However, it is
easy for the receiver to become convinced that at most one secret can be success-
fully decommitted even when the oracle is badly formed.

The locking scheme from [23] requires the oracle to have bigger entropy than
the number of queries against which the hiding property should hold. We prove
the intuitive fact that such a limitation is inherent, and therefore there is no
efficient-oracle non-interactive locking scheme which resists an arbitrary polyno-
mial number of queries. This is because intuitively if the entropy of the oracle is
bounded, then either: (1) the receiver is able to learn all the entropy by making
a polynomial number of queries, and therefore break the hiding property; or (2)
if some entropy is hidden no matter what queries the receiver makes, then a
cheating sender is able to create a “fake” oracle that can cheat on this entropy
and therefore be opened to any value, breaking the binding property.

This motivates our notion of an interactive locking scheme. An ILS is a locking
scheme in the IPCP model: the commitment phase can involve, in addition to
oracle queries by the receiver, interaction with the sender from whom the secret
originated. Here the sender and the oracle play the roles of the prover and PCP
oracle in the IPCP model, respectively. Decommitment still involves a single
message from the sender to the receiver. Somewhat surprisingly (and counter to
our own initial intuition), we show that interaction can be used to disrupt the
intuitive argument above.

We present several constructions of efficient interactive locking schemes. We
show how to obtain such schemes from interactive hashing — a primitive which
was introduced by Naor, Ostrovsky, Venkatesan, and Yung [26] for the purpose
of constructing statistically hiding and computationally binding commitment
schemes from any one-way permutation (see also [27,28,29]). The high level idea
of the transformation from interactive hashing to ILS is to “implement” a one-
way permutation by an oracle which contains a random point function (i.e., a
function that outputs 0 on all but one random point). To ensure the binding
property even when the oracle is badly formed, the receiver should query the
oracle on a small number random points to verify that it is not “too far” from
a point function. The (black-box) proof of security of the interactive hashing
protocol implies (unconditional) proof of security for the ILS.

The above connection allows us to use interactive hashing protocols from the
literature for obtaining interactive locking schemes, but leaves open the question
of minimizing the amount of interaction with the sender. We resolve this question
by presenting a novel direct construction of ILS which requires only a single
round of interaction with the sender.

178 V. Goyal et al.

The high level idea behind our single round ILS is as follows. The oracle
π constructed by the sender will be the zero function over {0, 1}n except for
an “interval” of size 2cn. That is, π(x) = 1 for a ≤ x ≤ a + 2cn and π(x) = 0
elsewhere. Depending on whether the sender commits to zero or one, the interval
will be planted in the first or second half of the oracle π. The position a of the
interval will be revealed to the receiver in the decommitment phase. When c < 1,
the interval size 2cn will be small enough to prevent the receiver from finding the
committed bit during the commitment phase. But now the sender is able to cheat
by planting intervals in both the first and second half of π. To guarantee binding,
we let the receiver ask a “challenge” question about the interval in such a way
that the sender cannot find a pair of planted intervals in the first and second
half of π with the same challenge answer. A natural idea is to use a pairwise
independent function h : {0, 1}n → {0, 1}dn and ask the sender to reveal h(a).
The sender is able to plant at most 2(1−c)n separate intervals in each half of π.
Each of the intervals in the first and second half of π will have the same hashes
with probability 2−dn. Therefore if 2(1 − c) < d, then with high probability
over the choice of h the sender is not able to find two intervals with the same
hash value h(a) and thus gets committed to a fixed bit. But now the information
revealed by h(a) might help the receiver find a non-zero point in π and break the
hiding property. We show how to modify the a known construction of pairwise
independent hash functions to get another function which is still almost pairwise
independent but has the additional property that the preimages of any hash value
are “scattered” in the domain of the hash function. The latter property prevents
the receiver from taking advantage of the knowledge of h(a) to find where the
interval is planted. Using this approach we simultaneously guarantee binding
and hiding.

Cryptography using hardware tokens. The above study of zero-knowledge in-
teractive PCPs and interactive locking schemes is motivated by a recent line
of research on the capabilities of cryptographic protocols in which parties can
generate tamper-proof hardware tokens and send them to each other. Katz [30]
shows that, under computational assumptions, general universally composable
(UC) secure two-party computation [31] is possible in this model if the tokens
are allowed to be stateful, and in particular can erase their secrets after being
invoked. It was subsequently shown that even unconditional security is possible
in this model, first for the case of commitment [9] and then for general tasks [10].
See [32,33,34] and references therein for other applications of stateful tokens in
cryptography.

Obtaining similar results using stateless tokens turns out to be more challeng-
ing. Part of the difficulty stems from the fact that there is no guarantee on the
functionality of tokens generated by malicious parties — they may compute ar-
bitrary functions of their inputs and may even carry state information from one
invocation to another. It was recently shown in [10], improving on [35], that any
one-way function can be used for basing (computationally) UC-secure two-party
computation on stateless tokens. More practical protocols which satisfy weaker
notions of security were given in [36]. These works leave open the question of

Interactive Locking, Zero-Knowledge PCPs 179

obtaining a similar result unconditionally, and with statistical security. (To get
around impossibility results in the plain model, the number of queries to a token
should be polynomially bounded, but otherwise malicious parties may be com-
putationally unbounded.) In fact, the constructions from [35,10,36] may lead to
a natural conjecture that achieving statistical security in this setting is impossi-
ble, since in these constructions all the “useful information” contained in tokens
can be learned by a computationally unbounded adversary using a polynomial
number of queries.

However, similar to the case of ILS discussed above, the combination of state-
less tokens and interaction turns out to be surprisingly powerful. As already
alluded to in [8], MIP protocols can naturally give rise to protocols in the hard-
ware token model. In our case, we implement the ILS (or IPCP) by having a
single sender (prover) create a stateless tamper-proof hardware token which im-
plements the PCP oracle and send it to the receiver (verifier). Applying this to
our results, this directly gives rise to the first unconditionally secure commitment
protocols and SZK proofs for NP using stateless tokens.

We show how this can be extended to general unconditionally secure (in fact,
UC-secure) two-party computation if parties are allowed to build tokens which
encapsulate other tokens: namely, the receiver of a token A is allowed to build
another token B which internally invokes A. The high level idea is the following.
By the completeness of oblivious transfer (OT) [2,37], it suffices to realize OT
using stateless tokens. This is done as follows. The OT sender’s input is a pair of
strings (s0, s1) and the OT receiver’s input is a selection bit b. The OT receiver
commits b using an ILS. Applying our best construction, this involves sending
a token A to the OT sender and responding to a random challenge message
received from the OT sender. The OT sender now prepares and sends to the
receiver a token B with the following functionality. Token B accepts a selection
bit b along with a corresponding decommitment message. It checks that the
decommitment is valid (this involves invocations of the token A, which token
B encapsulates) and then returns the string sb if decommitment was successful.
The binding property of the ILS guarantees that the OT receiver can learn at
most one string sb. The hiding property of the ILS guarantees that the sender
cannot learn b.

Interestingly, we also show a matching negative result: if token encapsulation
is not allowed, then statistically secure OT is impossible. This holds even if
both parties are guaranteed to follow the protocol except for making additional
queries to tokens in order to learn information about the other party’s input. The
proof of this negative result employs a variant of the recent notion of accessible
entropy from [38] and has the following high level intuition: In the standard
model without tokens, one way to explain why statistical OT is not possible is
to consider the randomness rR of the receiver conditioned on the transcript τ
of the protocol. If this conditional distribution reveals information about the
receiver’s choice b, then an unbounded sender can cheat by sampling from this
distribution. But if not, then an unbounded receiver can cheat by sampling from

180 V. Goyal et al.

this distribution for both values of b, and using the result to obtain both strings
s0 and s1 of the sender.

In the token model, however, this situation is not symmetric, since the sender
might not know what queries the receiver has asked from the tokens it holds (or
vice versa). Informally, we define a protocol (A,B) to have accessible entropy
if the parties can nevertheless (information theoretically) sample their random-
ness conditioned on the other party’s view. If an OT protocol did have accessible
entropy, then essentially the above impossibility argument would apply. (In con-
trast, the original definition of accessible entropy of [38] required that the parties
could efficiently sample, since the focus in that work was on analyzing protocols
secure against computationally bounded parties.)

The technical core of our impossibility result is the following technical lemma:
For any protocol (A,B) in the stateless token model, there is another protocol
(A′, B′) that differs from (A,B) only in that the parties ask (a polynomial num-
ber) more queries to the tokens that they hold. Furthermore, almost all the
entropy of the new protocol (A′, B′) is accessible. This lemma allows us to carry
out the intuition above and rule out statistically secure OT in the stateless token
model.

Organization. In Section 2, we define the notions of zero-knowledge IPCPs and
ILS, and show how to use ILS to build unconditional zero-knowledge IPCPs for
NP. We also show that interaction is required for efficient ILS. In Section 3, we
show how to construct ILS. In Section 4, we show the implications of our work
on (unconditionally secure) cryptography with tamper-proof hardware tokens.

2 Statistically Zero-Knowledge IPCP for NP

Interactive PCPs (Definition 1 below) were first introduced in [24] and combine
the notion of oracle algorithms with interactive algorithms. Here we define IPCPs
in a general way, not only for the purpose of a proof system, but rather as a
model of interaction consisting of two interactive algorithms and a prover. (This
way we can define our notion of interactive locking schemes as a protocol in the
IPCP model implementing the commitment functionality.)

Definition 1. (Adapted from [24]) An interactive probabilistically checkable
proof (IPCP) Γ = (P, π, V) consists of an interactive algorithm P (the prover),
an oracle π (the PCP oracle), and an interactive algorithm V (the verifier) such
that:

– P and π share common randomness rP , and V is given the randomness rV .
– P , π, and V will be given an input x of length |x| = n. P and π may also

receive a common private input w.1

– The PCP oracle π is a function of (rP , x, w, q) where q is a query of the
verifier V . Since (rP , x, w) is fixed at the beginning of the protocol, we might
simply use π(q) to denote the answer to the query q.

1 For example when (P, π) are efficient and L ∈ NP, w could be a witness for x ∈ L.

Interactive Locking, Zero-Knowledge PCPs 181

– P and V π engage in an interactive protocol during which V can query the
PCP oracle π and at the end V accepts or rejects.

By an efficient IPCP we mean one in which the prover P , the PCP oracle π,
and the verifier V run in polynomial time over the input length |x| = n.

By the round complexity of an IPCP we mean the number of rounds of interaction
between the verifier and the prover (and not the PCP oracle) where each round
consists of a message from the verifier followed by a message from the prover.
(See the full version of the paper for more discussion on this definition and a
comprehensive elaboration on the IPCP model.)

Now we define the notion of a proof system in the IPCP model which directly
incorporates the statistical zero-knowledge feature. We use a quantitative defi-
nition allowing us to speak about exponential zero-knowledge (rather than just
super-polynomial security).

Definition 2 (SZK-IPCP for languages). We say that Γ = (P, π, V) is an
SZK-IPCP for the language L with SZK (u(n), ε(n)) and soundness 1 − δ(n) if
the following holds:

– Completeness: If x ∈ L, then Pr[〈P, V π〉(x) = 1] = 1.
– Soundness: Γ has soundness 1 − δ if for all x �∈ L and for any arbitrary

prover P̂ and oracles π̂ it holds that Pr[〈P̂ , V π̂〉(x) = 1] ≤ δ(n).
– Statistical zero-knowledge (SZK): We say that the IPCP Γ is (u, ε)-

SZK for L with a straight-line2 simulator if there is a simulator Sim as
follows. The (straight-line) simulator Sim interacts with a (potentially ma-
licious) verifier V̂ , while the simulator Sim receives all the queries of the
the verifier (including both the queries asked from the prover and from the
oracle) and responds to them. Since an unbounded verifier can ask arbitrary
number of queries from its oracle, here we put a bound u on the number of
oracle queries asked by V̂ and demand the following to hold: For any v ≤ u,
if V̂ asks at most v oracle queries, then Sim runs in time poly(n, v) and
produces a view for V̂ which is ε-close to the view of V̂ when interacting
with (P, π).

We simply call Γ an SZK-IPCP for L with security u, if Γ is (1 − 1/u)-
(adaptively)-sound and (u, 1/u)-SZK.

Note that when u(n) is super-polynomial, Definition 2 implies zero-knowledge
against polynomial-time verifiers.

We prove that 2Ω(n)-secure constant-round SZK-IPCPs exist for any language
L ∈ NP where both the prover and the PCP oracle in our construction can be
implemented efficiently given a witness w for x ∈ L.

Theorem 3 (Constant-round SZK-IPCP for NP). For any language L ∈
NP there exists a 2-round efficient SZK-IPCP Γ2R for L with security 2Ω(n).
2 Since all of our simulators in this paper are straight-line, for sake of simplicity here

we only describe how to define SZK for IPCPs with straight-line simulators.

182 V. Goyal et al.

The simulator of Γ2R in Theorem 3 is straight-line and therefore by a result of
[39], for a small enough constant c, a 2cn-fold concurrent composition of Γ2R

remains (2Ω(n), 2−Ω(n))-SZK if the inputs to the instances of Γ2R are fixed in the
beginning.

Ideas of the proof of Theorem 3. Our main step to prove Theorems 3 is to
construct an “interactive locking scheme” (ILS) (Definition 5), a primitive cor-
responding to commitment schemes in the IPCP model. In Theorem 6 we present
an ILS with optimal round complexity (i.e. one round). Then we feed our ILS
(as a commitment scheme) into the well-known construction of [12] to achieve
zero-knowledge for NP with non-negligible soundness. A classical way to am-
plify the soundness of proof systems (while keeping the round-complexity) in the
standard model of interaction is to use parallel composition. Firstly we define
parallel composition of IPCPs (see the full version) in a careful way and prove
an optimal bound on how the soundness amplifies in such a parallel composition.
The latter result is interesting on its own since the IPCP model lies in between
the single-prover and the multi-prover models and it is known [21] that the par-
allel repetition does not amplify the soundness in a simple exponential form
(as one would wish). Secondly, we show that although the parallel composition
might hurt the zero-knowledge in general, by crucially using a special feature
of our ILS called “equivocability” (see Definition 5) one can prove that SZK is
preserved under parallel composition. Roughly speaking, an ILS is equivocable,
if a malicious sender can efficiently decommit to any desired value by changing
the content of the oracle after the commitment phase. See the full version for
the full proof of Theorem.

We also show how to achieve a 2Ω(n)-secure SZK-IPCP for any L ∈ NP
where the security holds even against stateful oracles. A stateful oracle can
save a state and behave as maliciously as an interactive algorithm. Namely, the
answers returned by a (malicious) stateful oracle can depend on the previous
queries asked to the oracle as well as the other queries asked in the same “round”
of queries. We call such IPCPs (secure against stateful oracles) adaptively-sound.

Theorem 4 (Adaptively-secure SZK-IPCP for NP). There exists a
(poly(n)-round) efficient SZK-IPCP Γadap for any L ∈ NP with adaptive-
security 2Ω(n).

Ideas of the proof of Theorem 4. To prove Theorem 4, we use ideas from [40]
about converting multi-prover proof systems into an equivalent two-prover one
(with non-negligible soundness) where the second prover is asked only one query.
When a prover is asked only one query, it can be considered as an oracle. In our
transformation to achieve adaptive security in the IPCP model, we use a similar
compiler to that of [40] over the IPCP Γ2R of Theorem 3 and crucially use the
fact that Γ2R is “public-coin” (i.e. the soundness holds even if the prover gets to
see which oracle queries are asked). A public-coin IPCP is one which is sound
even if the prover gets to see the oracle queries asked by the verifier. Finally we
use sequential composition to amplify the soundness. See the full version of the
paper for the full proof of Theorem.

Interactive Locking, Zero-Knowledge PCPs 183

3 Interactive Locking Schemes

An Interactive locking scheme is a commitment scheme implemented in the IPCP
model. A similar definition appeared in [23] without the interaction (i.e. only with
an oracle), but as we will see in Theorem 6 non-interactive locking schemes are
inherently inefficient and therefore not as applicable in cryptographic settings.

Definition 5 (Interactive locking scheme). Let Λ = (S, σ,R) be an efficient
IPCP (where we call S the sender, σ the locking oracle and R the receiver). Λ
is called an interactive locking scheme (ILS) for the message space Wn if it of
the following form:

The common input is 1n where n is the security parameter. (S, σ) receive
a private input w ∈ Wn which is called the committed message as well as the
private randomness rS . The receiver R gets the randomness rR. The receiver R
gets oracle access to the locking oracle σ and Rσ interacts with S in two phases:
(1) commitment phase and (2) decommitment phase. The decommitment phase
consists of only one message from the sender S to the receiver R which includes
the committed message w and the private randomness rS used by S. Following
this message the receiver R (perhaps after asking more queries from the oracle
σ) accepts or rejects. We demand the following properties to hold:

– Completeness: For any w ∈ Wn if all parties are honest the receiver always
accepts.

– Binding: We define Λ to be (1−δ)-binding if for any sender Ŝ and any oracle
σ̂, with probability at least 1−δ over the interaction of the commitment phase
there is at most one possible w such that Ŝ can decommit to successfully.

– Hiding: Let R̂ be any malicious receiver who asks at most u oracle queries
from σ, and let τw be the random variable which consists of the transcript
of the interaction of R with (S, σ) till the end of the commitment phase
when the committed message is w ∈ W . Λ is (u, ε)-hiding if for every such
malicious receiver R̂ and every {w1, w2} ⊆W it holds that SD(τw1 , τw2) ≤ ε.

– Equivocability: Λ is equivocable if there is an efficient sampling algorithm
Sam that given (τ, w) where τ is the transcript (including the oracle queries)
of the commitment phase of 〈S, R̂σ〉 (for an arbitrary receiver R̂) and any
w ∈W , Sam(τ, w) outputs r according to the distribution (rS | τ, w). Namely
r is sampled according to the distribution of the private randomness rS of
(S, σ) conditioned on w being the committed message and τ being the tran-
script of the commitment phase.

We simply call the ILS Λ u-secure if it is (1− 1/u)-binding and (u, 1/u)-hiding.
If W = {0, 1}, we call Λ a bit-ILS.

The following theorem presents an ILS with optimal round complexity.

Theorem 6. (A round-optimal ILS) Let �(n) = poly(n), then

1. There exist an efficient ILS Λ1R = (S, σ,R) for the message space {0, 1}�
with security 2Ω(n) which has a commitment phase of only one round.

184 V. Goyal et al.

2. Any ILS with a noninteractive commitment phase needs an inefficient oracle
σ and thus Λ has optimal round-complexity (as an efficient ILS).

In the full version of the paper we give a general construction of ILS from any
interactive hashing scheme with some minimal properties. Unfortunately non-
trivial interactive hashing needs at least two rounds of interaction and thus this
approach is incapable of giving us a round-optimal ILS. Due to space limit we
refer the reader for this connection to the full version and here will only present
the optimal construction.

Before proving Theorem 6 we need the following lemma whose proof is imme-
diate.

Lemma 7. For n > m let A be the family of n×m Boolean matrices as follows.
To get a uniform member of A, choose the first n−m rows all at random, and take
the last m rows to be an independently chosen at random conditioned on having
full rank m. Then for any 0 �= x ∈ {0, 1}n, it holds that PrA←A[xA = 0] ≤ 2−m

(and equivalently for any x1 �= x2 ∈ {0, 1}n and y ∈ {0, 1}m, it holds that
PrA←A[x1A = x2A] ≤ 2−m).

Construction 8 (A 1-round ILS) Suppose b ∈ {0, 1} is the private message
given to sender and the oracle (S, σ), and suppose R is the receiver. Let m =
3n/4. Below we associate {0, 1}n with the integers [0, 2n) and all additions and
subtractions below are modulo 2n.

The commitment phase of Λ1R:

1. Sender S chooses a ← {0, 1}n at random. Let fb be the function: fb(x) = 1
iff a ≤ x < a+2m, and let f1−b be the zero function over {0, 1}n. The locking
oracle will be the combination of the two functions σ = (f0|f1) (indexed by
the first bit of the query to σ).

2. Receiver R samples A← A from the family of matrices of Lemma 7 condi-
tioned on the last m rows of A being independent3 and sends A to S.

3. Sender S checks that the last m rows of A are independent, and if so he
sends h = aA to the receiver R.

The decommitment phase of Λ1R:

1. Sender S sends (b, a) to the receiver R.
2. Receiver R does the following checks and rejects if any of them does not hold.

(a) Check that aA = h.
(b) Check that f1−b(a) = 0, and fb(a) = 1.
(c) For each i ∈ [0,m], sample 10n random points from [a, a+ 2i) and check

that fb(x) = 1 for all of them, and also sample 10n random points from
(a− 2i, a− 1] and check that fb(x) = 0 for all of them

Proof (of Theorem 6).
Now we study the properties of the ILS Λ1R.
Completeness and Equivocability are immediate.

3 Note that the last rows of A are independent with probability 1− 2−m = 1− 2−n.

Interactive Locking, Zero-Knowledge PCPs 185

Binding. As a mental experiment we pretend that the randomness used during
the decommitment phase by R is chosen in the decommitment phase (rather
than in the beginning of the commitment phase).

For a fixed locking oracle σ, Let X0 (resp. X1) be the set of possible values of
a that sender S can send to the receiver R as the decommitment of b = 0 (resp.
b = 1) and get accepted in the decommitment phase with probability at least
2−2n. We prove that by the end of the commitment phase, with probability at
least 1− 2−n/8, it holds that |X0| = 0 or |X1| = 0 which means that the sender
has only one way to decommit the value b and get accepted with probability more
than 2−2n. But now if we choose the receiver’s randomness in the commitment
phase, since there are at most 2n+1 possible values for (b, a), it follows by a
simple average argument that with probability at least 1 − 22n−n−1 over the
commitment phase, the prover gets committed to only one possible value for
(b, a) which he can use to pass the decommitment phase successfully.

Claim. X0 ∩X1 = ∅.

Proof. If a ∈ X0 ∩X1. Then when a is used as the decommitment of 0, in Step
2b of the decommitment phase the receiver R checks that f0(a) = 1, f1(a) = 0.
On the other hand in the case of decommitting to 1, receiver R checks that
fb(a) = 0, f1−b(a) = 1, but they can’t both hold at the same time.

Claim. It holds that |X0| ≤ 2n−m and |X1| ≤ 2n−m.

Proof. We show that if {a, a′} ⊂ X0 then |a − a′| ≥ 2m (and this would show
that X0 ≤ 2n/2m). Assume on the contrary that a′ < a and a − a′ < 2m. Let
i ∈ [1,m] be such that 2i−1 ≤ a − a′ < 2i. Then by the pigeonhole principle
ether at least half of σ([a′, a]) are zero or at least half of the values σ([a′, a]) are
one. Without loss of generality let assume that at least half of σ([a′, a]) is zero.
In this case at least 1/4 of the values σ([[a′, a′ + 2i)]) are zero. But then by Step
2c of the decommitment phase (0, a′) will be accepted with probability at most
(3/4)10n < 2−2n, and therefore a′ �∈ X0 which is a contradiction.

Claim. With probability at least 1 − 2Ω(n) over the choice of A, it holds that
|X0| = 0 or |X1| = 0.

Proof. Fix any pair a0 ∈ X0 and a1 ∈ X1, we know that a0 �= a1. Therefore,
PrA[a0A = a1A] = PrA[(a0 − a1)A = 0] ≤ 2−m. Claim 3 yields that there are at
most 2n−m2n−m such pairs, so by using a union bound, with probability at least
1−2−m22n−2m = 1−22n−3m over the choice of A, it holds that X0A∩X1A = ∅

which implies that if the sender sends any hash value h, the consistency check
of Step 2a of the decommitment phase either makes |X0| = 0 or |X1| = 0.

As we said before Claim 3 implies that with probability 1− poly(n) · 22n−3m =
1−poly(n) ·2−n/4 ≥ 1−2−n/8 over the interaction in the commitment phase the
sender gets bound to a fixed b ∈ {0, 1} to which he can decommit successfully.

186 V. Goyal et al.

Hiding. Suppose receiver R can ask at most u ≤ 2n/8 queries from the locking
oracle σ. We claim that before sending the matrix A, all of receiver R’s queries to
σ are answered zero with probability at least 1−2−n/4. To see why, think of Z2n

as being divided into 2n−m = 2n/4 equal intervals such that a is the beginning of
one of them. Since receiver R asks up to 2n/8 queries, before sending the matrix
Z, he will ask a query from the interval beginning with a with probability at most
2n/8/2n/4 = 2−n/8. Therefore (up to 2−n/8 statistical distance in the experiment)
we can assume that the matrix A is chosen by receiver R independently of a.

After receiving h, the information that the receiver R knows about a is that
it satisfies the equation aA = h. If we choose and fix the first n −m bits of (a
potential) a, then the remaining bits are determined uniquely because the last
m rows of A are full rank. It means that for every y ∈ [0, 2n−m) there is a unique
solution for a in the interval [y2m, y2m + 2m), and they are all equally probable
to be the true answer from the receiver’s point of view.

Now again we claim that (although there are 2m nonzero points in fb) all the
queries that the receiver R asks from fb are answered 0 with probability at least
1−2−n/8. Let Z = {z | zA = h} be the set of possible values for a. For z ∈ Z, let
I(z) = [z, z+2m). We claim that no x ∈ {0, 1}n can be in I(z) for three different
z’s from Z. To see why, let z1 < z2 < z3 and that x ∈ I(z1) ∩ I(z2) ∩ I(z3).
But now the interval [y2m, y2m + 2m), containing z2 separates z1 and z3, and so
z3 − z1 > 2m. Therefore I(z1) ∩ I(z3) = ∅ which is a contradiction. So, if the
receiver R asks u queries from fb, he can ask queries from I(z)’s for at most 2u
different z’s (out of 2n−m many of them). As a mental experiment assume that a
is chosen from Z after the receiver R asked his queries, it holds that I(a) will be
an interval that the receiver R never asked any query from with probability at
least 1− u/2n−m ≥ 1− ·2−n/8. Therefore with probability at least 1− 2−n/9 all
of receiver R’s queries during the commitment phase will be answered zero. But
putting the oracle queries aside, the hash value h does not carry any information
about the bit-message b and therefore the scheme is (1− 2n/8)-hiding.

Now we turn to proving Part 2 of Theorem 6.
By a noninteractive locking scheme (NLS), we mean an ILS where the com-

mitment phase is noninteractive and sender S only participates in the decom-
mitment phase. Note that an efficient locking scheme by definition uses poly(n)-
sized circuits to implement the locking oracle σ, and therefore σ can have at
most poly(n) entropy. In this section we show that there exist no efficient NLS
with super-polynomial security.

Since we are going to prove that NLS’s cannot be efficient, we need to deal with
unbounded senders. Thus we can no longer assume that the decommitment phase
is only a message (b, rS) sent to the receiver, because the randomness rS used by
the sender can be exponentially long. Therefore to prove the strongest possible
negative result, we allow the decommitment phase of a NLS to be interactive.

The following theorem clearly implies Part 2 of Theorem 6.

Theorem 9. Let Λ = (S, σ,R) be any NLS for message space {0, 1} in which the
function σ of the locking oracle has Shannon entropy at most H(σ) ≤ uq

1000 when
the committed bit b is chosen at random b← {0, 1}. Let u be an upper bound on

Interactive Locking, Zero-Knowledge PCPs 187

the number of oracle queries to σ asked by the receiver R in the decommitment
phase. Then either of the following holds:

– Violation of binding: There is a fixed locking oracle σ̂, and a sender strat-
egy Ŝ such that when σ̂ is used as the locking orale, for both b = 0 and b = 1,
Ŝ can decommit successfully with probability at least 4/5.

– Violation of hiding: There exists an unbounded receiver R̂ who can guess
the random bit b ← {0, 1} used by (S, σ) with probability at least 4/5 by
asking at most u queries to the locking oracle σ.

Ideas of the proof of Theorem 9. Our main tool in proving Theorem 9 is the
notion of “canonical entropy learner” (EL). Roughly speaking, EL is an efficient-
query (computationally unbounded) algorithm which learns a randomized func-
tion f (with an oracle access to f) under the uniform distribution assuming that
f has a bounded amount of entropy. EL proceeds by choosing to ask one of the
“unbiased” queries of f at any step and stop if such queries do not exist. An
unbiased query x is one whose answer f(x) is not highly predictable with the
current knowledge gathered about f by EL. Whenever EL chooses to ask a query
it learns non-negligible entropy of f , and thus the process will stop after poly(n)
steps. On the other hand, when EL stops, all the remaining queries are biased
and thus will have a predictable answer over the randomness of f . We prove that
either the receiver is able to find out the secret message of the sender (in an NLS)
by running the EL algorithm, or otherwise if by the end of the learning phase
still part of the entropy left in the locking oracle is hiding the secret message,
then a malicious prover can plant at least two different messages in the locking
oracle in such a way that it can decommit to successfully.

4 On Oblivious Transfer from Stateless Hardware Tokens

In this section we prove that in the stateless hardware token model, there is no
statistically secure protocol for oblivious transfer (OT), when the only limitation
on malicious parties is being bounded to make polynomially many queries to the
tokens.

The stateless token model. In the stateless (tamper-proof hardware) token model,
two (computationally unbounded) interactive algorithms A and B will interact
with the following extra feature to the standard model. Each party at any time
during the protocol can construct a circuit T and put it inside a “token” and
send the token T to the other party. The party receiving the token T will have
oracle access to T and is limited to ask poly(n) number of queries to the token.
The parties can exchange poly(n) number of tokens during the interaction. The
stateless token model clearly extends the IPCP model in which there is only
one token sent from the prover to the verifier in the beginning of the game.
Therefore proving any impossibility result in the stateless token model clearly
implies the same result for the the IPCP model. It is easy to see that without

188 V. Goyal et al.

loss of generality the parties can avoid sending “explicit messages” to each other
and can only use tokens (with messages planted inside the tokens) to simulate
all the classical communication with the tokens.

Oblivious transfer by semi-honest parties. If one of the parties is semi-honest
(i.e. runs the protocol honestly, and only remember’s its view for further off-line
investigation), then in fact unconditionally secure OT is possible in the stateless
token model. If the receiver is honest, then the protocol is simply a token T sent
from the sender which encodes T (0) = x0, T (1) = x1. The receiver will read T (i)
to learn xi. Moreover it is well known that secure OT in one direction implies
the existence of secure OT in the other direction, so if the sender is semi-honest
unconditionally secure OT is possible in the stateless token model.

We prove that unconditionally secure OT is impossible in the stateless token
model, if both parties are slightly more malicious than just being semi-honest.
Roughly speaking, we define the notion of “curious” parties who run the original
protocol (honestly), but will ask more queries from the tokens along the way.4

We will prove that for any protocol (A,B) aiming to implement OT, there are
curious extensions of the original parties (Acur, Bcur) who break the security of
the protocol. We prove the following theorem.

Theorem 10 (No unconditional OT from stateless tokens). Let (S,R) be
any protocol for the oblivious transfer in the stateless token model. Then there
are curious extensions (Scur, Rcur) to the original algorithms where (Scur, Rcur)
(and thus (S,R)) is not a secure protocol for oblivious transfer even when the
inputs are random. More formally either of the following holds:

– Violation of sender’s security: When the sender S chooses x0 and x1 at
random from {0, 1} and interacts with Rcur, then Rcur can find out both of
x0 and x1 with probability at least 51/100.

– Violation of receiver’s security: When the receiver R chooses i← {0, 1}
at random and interacts with Scur, then Scur can guess i correctly with prob-
ability at least 51/100.

For a high level description of the ideas behind Theorem 10 we refer the reader
to the discussion in the Introduction.

Perhaps surprisingly we show that if the parties are allowed to build tokens
around the tokens received from the other party, then unconditional (UC) secure
computation is possible by using stateless tokens.

UC secure OT by encapsulation. For a discussion on ideas behind our UC secure
OT by token encapsulation we refer the reader to the Introduction and for more
details to the full version of the paper.

4 The term “honest but curious” is sometimes used equivalent to “semi-honest”. Our
notion is different from both of them because a curious party deviates from the
protocol slightly by learning more but emulates the original protocol honestly.

Interactive Locking, Zero-Knowledge PCPs 189

References

1. Rabin, M.O.: How to exchange secrets by oblivious transfer. TR-81, Harvard (1981)
2. Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the 20th

Annual ACM Symposium on Theory of Computing, STOC (1988)
3. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security as-

sumptions (extended abstract). In: FOCS, pp. 42–52 (1988)
4. Maurer, U.M.: Conditionally-perfect secrecy and a provably-secure randomized

cipher. J. Cryptology 5(1), 53–66 (1992)
5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-

cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1–10 (1988)

6. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC, pp. 11–19 (1988)

7. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC, pp. 73–85 (1989)

8. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive
proofs: How to remove intractability assumptions. In: STOC, pp. 113–131 (1988)

9. Moran, T., Segev, G.: David and Goliath commitments: UC computation for asym-
metric parties using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008)

10. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptogra-
phy on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 308–326. Springer, Heidelberg (2010)

11. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186–208 (1989); Preliminary
version in STOC 1985 (1985)

12. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their va-
lidity or all languages in NP have zero-knowledge proof systems. Journal of the
ACM 38(1), 691–729 (1991); Preliminary version in FOCS 1986 (1986)

13. Fortnow, L.: The complexity of perfect zero-knowledge. Advances in Computing
Research: Randomness and Computation 5, 327–343 (1989)

14. Aiello, W., H̊astad, J.: Statistical zero-knowledge languages can be recognized in
two rounds. J. Comput. Syst. Sci. 42(3), 327–345 (1991)

15. Ostrovsky, R., Wigderson, A.: One-way fuctions are essential for non-trivial zero-
knowledge. In: ISTCS, pp. 3–17 (1993)

16. Lapidot, D., Shamir, A.: A one-round, two-prover, zero-knowledge protocol for np.
Combinatorica 15(2), 204–214 (1995)

17. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-
prover interactive protocols. In: FOCS, pp. 16–25 (1990)

18. Dwork, C., Feige, U., Kilian, J., Naor, M., Safra, S.: Low communication 2-
prover zero-knowledge proofs for np. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 215–227. Springer, Heidelberg (1993)

19. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of np.
J. ACM 45(1), 70–122 (1998)

20. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

21. Fortnow, L., Rompel, J., Sipser, M.: On the power of multi-prover interactive
protocols. In: Theoretical Computer Science, pp. 156–161 (1988)

190 V. Goyal et al.

22. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: STOC, pp. 235–244 (2000)

23. Kilian, J., Petrank, E., Tardos, G.: Probabilistically checkable proofs with zero
knowledge. In: STOC: ACM Symposium on Theory of Computing, STOC (1997)

24. Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 536–547. Springer, Heidelberg (2008)

25. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: STOC, pp. 113–122 (2008)

26. Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge argu-
ments for NP using any one-way permutation. Journal of Cryptology 11(2), 87–108
(1998); Preliminary version in CRYPTO 1992 (1992)

27. Ostrovsky, R., Venkatesan, R., Yung, M.: Fair games against an all-powerful adver-
sary. In: AMS DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pp. 155–169 (1993); Preliminary version in SEQUENCES 1991 (1991)

28. Ding, Y.Z., Harnik, D., Rosen, A., Shaltiel, R.: Constant-round oblivious transfer
in the bounded storage model. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp.
446–472. Springer, Heidelberg (2004)

29. Haitner, I., Reingold, O.: A new interactive hashing theorem. In: IEEE Conference
on Computational Complexity, pp. 319–332 (2007); See also preliminary draft of
full version at the first author’s home page

30. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007)

31. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

32. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

33. Goldwasser, S., Kalai, Y.T., Rothblum, G.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

34. Hazay, C., Lindell, Y.: Constructions of truly practical secure protocols using stan-
dardsmartcards. In: ACM Conference on Computer and Communications Security,
pp. 491–500 (2008)

35. Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation
using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 545–562. Springer, Heidelberg (2008)

36. Kolesnikov, V.: Truly efficient string oblivious transfer using resettable tamper-
proof tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 327–342.
Springer, Heidelberg (2010)

37. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

38. Haitner, I., Reingold, O., Vadhan, S.P., Wee, H.: Inaccessible entropy. In: STOC,
pp. 611–620 (2009)

39. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols
and security under composition. In: STOC: ACM Symposium on Theory of Com-
puting, STOC (2006)

40. Ben-Or, M., Goldreich, O., Goldwasser, S., H̊astad, J., Kilian, J., Micali, S., Ro-
gaway, P.: Everything provable is provable in zero-knowledge. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, Heidelberg (1990)

Fully Secure Functional Encryption with
General Relations from the Decisional Linear

Assumption

Tatsuaki Okamoto1 and Katsuyuki Takashima2

1 NTT, 3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan
okamoto.tatsuaki@lab.ntt.co.jp

2 Mitsubishi Electric, 5-1-1 Ofuna, Kamakura, Kanagawa 247-8501, Japan
Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

Abstract. This paper presents a fully secure functional encryption
scheme for a wide class of relations, that are specified by non-monotone
access structures combined with inner-product relations. The security is
proven under a well-established assumption, the decisional linear (DLIN)
assumption, in the standard model. The proposed functional encryp-
tion scheme covers, as special cases, (1) key-policy and ciphertext-policy
attribute-based encryption with non-monotone access structures, and
(2) (hierarchical) predicate encryption with inner-product relations and
functional encryption with non-zero inner-product relations.

1 Introduction

1.1 Background

Although numerous encryption systems have been developed over several thou-
sand years, any traditional encryption system before the 1970’s had a great
restriction on the relation between a ciphertext encrypted by an encryption-key
(ek) and the decryption-key (dk) such that ek and dk should be equivalent. The
innovative notion of public-key cryptosystems in the 1970’s relaxed this restric-
tion, where ek and dk differ and ek can be published.

Recently, a new innovative class of encryption systems, functional encryption
(FE), has been extensively studied. FE provides more sophisticated and flexible
relations between the ek and dk where the ek and dk are parameterized by x
and v, respectively, and dkv can decrypt a ciphertext encrypted with ekx :=
(ek, x) iff R(x, v) holds for some relation R. FE has various applications in the
areas of access control for databases, mail services, and contents distribution
[2,7,9,16,17,22,23,24,25,27].

When R is the simplest relation or equality relation, i.e., R(x, v) holds iff
x = v, it is identity-based encryption (IBE) [3,4,5,6,10,12,13,15].

As a more general class of FE, attribute-based encryption (ABE) schemes
have been proposed [2,7,9,16,17,22,23,24,25,27], where either one of the param-
eters for ek and dk is a tuple of attributes and the other is a access struc-
ture or (monotone) span program M̂ along with a tuple of attributes, e.g.,

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 191–208, 2010.
c© International Association for Cryptologic Research 2010

192 T. Okamoto and K. Takashima

x := (x1, . . . , xd) for ek and v := (M̂, (v1, . . . , vd)) for dk, or v := (v1, . . . , vd) for
dk and x := (M̂, (x1, . . . , xd)) for ek. Here, some elements of the tuple may be
empty. The component-wise equality relations for (non-empty) attribute com-
ponents, e.g., {xt = vt}t∈{1,...,d}, are input to (monotone) span program M̂ ,
and R(x, v) holds iff the truth-value vector of (T(x1 = v1), . . . ,T(xd = vd)) is
accepted by M̂ , where T(ψ) := 1 if ψ is true, and T(ψ) := 0 if ψ is false (For
example, T(x = v) := 1 if x = v, and T(x = v) := 0 if x �= v). If M̂ is embedded
into decryption-key dkv (e.g., v := (M̂, (v1, . . . , vd)) for dk and x := (x1, . . . , xd)
for ek), it is called key-policy ABE (KP-ABE). If M̂ is embedded into a ci-
phertext (e.g., x := (M̂, (x1, . . . , xd)) for ek and v := (v1, . . . , vd) for dk), it is
ciphertext-policy ABE (CP-ABE).

Inner-product encryption (IPE) [17] is also a class of FE, where each parameter
for ek and dk is a vector over a field or ring (e.g., −→x := (x1, . . . , xn) ∈ Fn

q and−→v := (v1, . . . , vn) ∈ F
n
q for ek and dk, respectively), and R(−→x ,−→v) holds iff−→x · −→v = 0, where −→x · −→v is the inner-product of −→x and −→v . The inner-product

relation represents a wide class of relations including equality, conjunction and
disjunction (more generally, CNF and DNF) of equality relations and polynomial
relations.

There are two types of secrecy in FE, attribute-hiding and payload-hiding [17].
Roughly speaking, attribute-hiding requires that a ciphertext conceal the asso-
ciated attribute as well as the plaintext, while payload-hiding only requires that
a ciphertext conceal the plaintext. Attribute-hiding FE is called predicate en-
cryption (PE) [17]. Anonymous IBE and hidden-vector encryption (HVE) [9] are
a class of PE and covered by predicate IPE, or PE with inner-product relations.

Although many ABE and IPE schemes have been presented over the last sev-
eral years, no adaptively-secure (or fully-secure) scheme has been proposed in
the standard model except [18]. The ABE scheme in [18] supports monotone
access structures with equality relations and is secure under non-standard as-
sumptions over composite order pairing groups. The IPE scheme in [18] supports
inner-product relations and is secure under a non-standard assumption, whose
size depends on some parameter that is not the security parameter.

No adaptively-secure (or fully-secure) ABE (even for monotone access struc-
tures) or IPE scheme has been proposed under a well-established assumption in
the standard model, and no adaptively-secure (or fully-secure) ABE scheme with
non-monotone access structures has been proposed (even under non-standard as-
sumptions) in the standard model. In addition, to the best of our knowledge,
no FE scheme (even with selective security) has been presented that supports
more general relations than those for ABE, i.e., access structures with equality
relations, and those for IPE, i.e., inner-product relations.

1.2 Our Result

– This paper proposes an adaptively secure functional encryption (FE) scheme
for a wide class of relations, that are specified by non-monotone access struc-
tures combined with inner-product relations. More precisely, either one of the
parameters for ek and dk is a tuple of attribute vectors and the other is a

Fully Secure Functional Encryption with General Relations 193

non-monotone access structure or span program M̂ := (M,ρ) along with a
tuple of attribute vectors, e.g., x := (−→x 1, . . . ,

−→x d) ∈ Fn1+···+nd
q for ek and

v := (M̂, (−→v 1, . . . ,
−→v d) ∈ Fn1+···+nd

q) for dk. The component-wise inner-
product relations for attribute vector components, e.g., {−→x t · −→v t = 0 or not
}t∈{1,...,d}, are input to span program M̂ , and R(x, v) holds iff the truth-
value vector of (T(−→x 1 · −→v 1 = 0), . . . ,T(−→x t · −→v t = 0)) is accepted by span
program M̂ .
Similarly to ABE, we propose two types of FE schemes, the KP-FE and
CP-FE schemes. Although this paper focuses on the KP-FE scheme, similar
results are obtained for the CP-FE scheme (see the full version of this paper).
Note that in Section 5, parameter x for encryption is expressed by Γ :=
{(t,−→x t) | 1 ≤ t ≤ d} in place of a tuple of vectors (−→x 1, . . . ,

−→x d), where
1 ≤ t ≤ d means that t is an element of some subset of {1, . . . , d}, and
parameter v for the decryption key is expressed by S := (M,ρ) (not by
M̂ := (M,ρ) along with (−→v 1, . . . ,

−→v d) as described above), where ρ in S is
abused as ρ in M̂ combined with (−→v 1, . . . ,

−→v d) (see Definition 4).
Since the class of relations supported by the proposed FE scheme is more
general than that for ABE and IPE, the proposed FE scheme includes the
following schemes as special cases:
1. The (KP and CP)-ABE schemes for non-monotone access structures

with equality relations. Here, the underlying attribute vectors of the
FE scheme, {−→x t}t∈{1,...,d} and {−→v t}t∈{1,...,d}, are specialized to two-
dimensional vectors for the equality relation, e.g., −→x t := (1, xt) and−→v t := (vt,−1), where −→x t · −→v t = 0 iff xt = vt.

2. The IPE and non-zero-IPE schemes, where a non-zero-IPE scheme is a
class of FE with R(−→x ,−→v) iff −→x · −→v �= 0. Here, the underlying access
structure S of the FE scheme is specialized to the 1-out-of-1 secret shar-
ing. The IPE scheme is ‘attribute-hiding,’ i.e., it is the PE scheme for
the inner-product relations (see the full version for the proof).
In addition, if the underlying access structure is specialized to the d-out-
of-d secret sharing, our FE scheme can be specialized to a hierarchical
zero/non-zero IPE scheme by adding delegation and rerandomization
mechanisms (see the full version for the construction and proof).

– The proposed FE scheme with such a wide class of relations is proven to
be adaptively secure (adaptively payload-hiding against CPA) under a well-
established assumption, the decisional linear (DLIN) assumption (over prime
order pairing groups), in the standard model.
Note that even for FE with the simplest relations or the equality relations,
i.e., IBE, only a few IBE schemes are known to be adaptively secure under
well-established assumptions; the Waters IBE scheme [26] under the DBDH
assumption, and the Waters IBE scheme [28] under the DBDH and DLIN
assumptions.
The DLIN assumption is considered to be the simplest decisional assumption
regarding pairing group G, since the DLIN assumption is defined only over
G, the DDH assumption does not hold in G, and the DBDH assumption is
defined over two groups G and GT .

194 T. Okamoto and K. Takashima

– To prove the security, this paper elaborately combines the dual system en-
cryption methodology proposed by Waters [28] and the concept of dual pair-
ing vector spaces (DPVS) proposed by Okamoto and Takashima [20,21], in
a manner similar to that in [18]. See Section 2 (and the full version of this
paper) for the concept and actual construction of DPVS.
This paper also develops a new technique to prove the security based on the
DLIN assumption. This provides a new methodology of employing a simple
assumption defined on primitive groups to prove a complicated scheme that
is designed on a higher level concept, DPVS.
In our methodology, the top level of the security proof (based on the dual
system encryption methodology) directly employs only top level assump-
tions (assumptions by Problems 1 and 2), that are defined on DPVS. The
methodology bridges the top level assumptions and the primitive one, the
DLIN assumption, in a hierarchical manner, where several levels of assump-
tions are constructed hierarchically. Such a modular way of proof greatly
clarifies the logic of a complicated security proof.

– The efficiency of the proposed FE scheme is comparable to that of the ex-
isting ABE and IPE schemes. For example, if the proposed FE scheme is
specialized to the IPE scheme, the key and ciphertext sizes are (4n+5) · |G|,
while they are (2n + 3) · |G| for the IPE scheme in [18], where n is the di-
mension of the attribute vectors, and |G| denotes the size of an element of
pairing group G, e.g., 256 bits.

– It is easy to convert the (CPA-secure) proposed FE scheme to a CCA-secure
FE scheme by employing an existing general conversion such as that by
Canetti, Halevi and Katz [11] or that by Boneh and Katz [8] (using additional
8-dimensional dual spaces (Bd+1,B

∗
d+1) with nd+1 := 2 on the proposed FE

scheme, and a strongly unforgeable one-time signature scheme or message
authentication code with encapsulation). That is, we can present a fully
secure (adaptively payload-hiding against CCA) FE scheme for the same
class of relations in the standard model under the DLIN assumption as well as
a strongly unforgeable one-time signature scheme or message authentication
code with encapsulation (see the full version of this paper for the construction
and security proof).

1.3 Notations

When A is a random variable or distribution, y R← A denotes that y is randomly
selected from A according to its distribution. When A is a set, y U← A denotes
that y is uniformly selected from A. y := z denotes that y is set, defined or
substituted by z. When a is a fixed value, A(x) → a (e.g., A(x) → 1) denotes
the event that machine (algorithm) A outputs a on input x. A function f : N→ R

is negligible in λ, if for every constant c > 0, there exists an integer n such that
f(λ) < λ−c for all λ > n.

We denote the finite field of order q by Fq, and Fq \ {0} by F×
q . A vector sym-

bol denotes a vector representation over Fq, e.g., −→x denotes (x1, . . . , xn) ∈ Fn
q .

For two vectors −→x = (x1, . . . , xn) and −→v = (v1, . . . , vn), −→x · −→v denotes the

Fully Secure Functional Encryption with General Relations 195

inner-product
∑n

i=1 xivi. The vector
−→
0 is abused as the zero vector in Fn

q

for any n. XT denotes the transpose of matrix X . I� and 0� denote the � × �
identity matrix and the � × � zero matrix, respectively. A bold face letter de-
notes an element of vector space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n),
span〈b1, . . . , bn〉 ⊆ V (resp. span〈−→x 1, . . . ,

−→x n〉) denotes the subspace gener-
ated by b1, . . . , bn (resp. −→x 1, . . . ,

−→x n). For bases B := (b1, . . . , bN) and B∗ :=
(b∗1, . . . , b

∗
N), (x1, . . . , xN)B :=

∑N
i=1 xibi and (y1, . . . , yN)B∗ :=

∑N
i=1 yib

∗
i .

2 Dual Pairing Vector Spaces by Direct Product of
Symmetric Pairing Groups

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple
of a prime q, cyclic additive group G and multiplicative group GT of order q,
G �= 0 ∈ G, and a polynomial-time computable nondegenerate bilinear pairing
e : G×G→ GT i.e., e(sG, tG) = e(G,G)st and e(G,G) �= 1.

Let Gbpg be an algorithm that takes input 1λ and outputs a description of
bilinear pairing groups (q,G,GT , G, e) with security parameter λ.

In this paper, we concentrate on the symmetric version of dual pairing vector
spaces [20,21] constructed by using symmetric bilinear pairing groups given in
Definition 1.

Definition 2. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct
product of symmetric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -

dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · ×G over Fq, cyclic group GT of order q,

canonical basis A := (a1, . . . ,aN) of V, where ai := (

i−1︷ ︸︸ ︷
0, . . . , 0, G,

N−i︷ ︸︸ ︷
0, . . . , 0), and

pairing e : V× V→ GT .
The pairing is defined by e(x,y) :=

∏N
i=1 e(Gi, Hi) ∈ GT where x := (G1, . . . ,

GN) ∈ V and y := (H1, . . . , HN) ∈ V. This is nondegenerate bilinear i.e.,
e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then x = 0. For all
i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0 otherwise, and
e(G,G) �= 1 ∈ GT .

DPVS also has linear transformations φi,j on V s.t.φi,j(aj) = ai and φi,j(ak)

= 0 if k �= j, which can be easily achieved by φi,j(x) := (

i−1︷ ︸︸ ︷
0, . . . , 0, Gj ,

N−i︷ ︸︸ ︷
0, . . . , 0)

where x := (G1, . . . , GN). We call φi,j “distortion maps”.
DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N) and N ∈ N, and

outputs a description of paramV := (q,V,GT ,A, e) with security parameter λ
and N -dimensional V. It can be constructed by using Gbpg.

For the asymmetric version of DPVS, (q,V,V∗,GT ,A,A
∗, e), see the full version

of this paper. The above symmetric version is obtained by identifying V = V∗

and A = A
∗ in the asymmetric version.

196 T. Okamoto and K. Takashima

We describe random dual orthonormal bases generator Gob below, which is
used as a subroutine in the proposed FE scheme.

Gob(1λ,−→n := (d;n1, . . . , nd)) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ), ψ

U← F
×
q ,

N0 := 5, Nt := 4nt for t = 1, . . . , d,
for t = 0, . . . , d, paramVt

:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG),

Xt := (χt,i,j)i,j
U← GL(Nt,Fq), (ϑt,i,j)i,j := ψ · (XT

t)−1,

bt,i := (χt,i,1, . . . , χt,i,Nt)At =
∑Nt

j=1 χt,i,jat,j, Bt := (bt,1, . . . , bt,Nt),

b∗t,i := (ϑt,i,1, . . . , ϑt,i,Nt)At =
∑Nt

j=1 ϑt,i,jat,j, B∗
t := (b∗t,1, . . . , b∗t,Nt

),

gT := e(G,G)ψ , param−→n := ({paramVt
}t=0,...,d, gT)

return (param−→n , {Bt,B
∗
t }t=0,...,d).

We note that gT = e(bt,i, b
∗
t,i) for t = 0, . . . , d; i = 1, . . . , Nt.

3 Functional Encryption with General Relations

3.1 Span Programs and Non-monotone Access Structures

Definition 3 (Span Programs [1]). Let {p1, . . . , pn} be a set of variables. A
span program over Fq is a labeled matrix M̂ := (M,ρ) where M is a (�×r) matrix
over Fq and ρ is a labeling of the rows of M by literals from {p1, . . . , pn,¬p1, . . . ,
¬pn} (every row is labeled by one literal), i.e., ρ : {1, . . . , �} → {p1, . . . , pn,¬p1,
. . . , ¬pn}.

A span program accepts or rejects an input by the following criterion. For
every input sequence δ ∈ {0, 1}n define the submatrix Mδ of M consisting of
those rows whose labels are set to 1 by the input δ, i.e., either rows labeled by
some pi such that δi = 1 or rows labeled by some ¬pi such that δi = 0. (i.e.,
γ : {1, . . . , �} → {0, 1} is defined by γ(j) = 1 if [ρ(j) = pi] ∧ [δi = 1] or
[ρ(j) = ¬pi] ∧ [δi = 0], and γ(j) = 0 otherwise. Mδ := (Mj)γ(j)=1, where Mj is
the j-th row of M .)

The span program M̂ accepts δ if and only if
−→
1 ∈ span〈Mδ〉, i.e., some linear

combination of the rows of Mδ gives the all one vector
−→
1 . (The row vector has

the value 1 in each coordinate.) A span program computes a Boolean function f
if it accepts exactly those inputs δ where f(δ) = 1.

A span program is called monotone if the labels of the rows are only the positive
literals {p1, . . . , pn}. Monotone span programs compute monotone functions. (So,
a span program in general is “non”-monotone.)

We assume that the matrix M satisfies the condition: Mi �= −→0 for i = 1, . . . , �.
We now introduce a non-monotone access structure with evaluating map γ by

using the inner-product of attribute vectors, that is employed in the proposed
functional encryption schemes.

Fully Secure Functional Encryption with General Relations 197

Definition 4 (Inner-Products of Attribute Vectors and Access Struc-
tures). Ut (t = 1, . . . , d and Ut ⊂ {0, 1}∗) is a sub-universe, a set of attributes,
each of which is expressed by a pair of sub-universe id and nt-dimensional vector,
i.e., (t,−→v), where t ∈ {1, . . . , d} and −→v ∈ Fnt

q \ {
−→
0 }.

We now define such an attribute to be a variable p of a span program M̂ :=
(M,ρ), i.e., p := (t,−→v). An access structure S is span program M̂ := (M,ρ)
along with variables p := (t,−→v), p′ := (t′,−→v ′), . . ., i.e., S := (M,ρ) such that
ρ : {1, . . . , �} → {(t,−→v), (t′,−→v ′), . . ., ¬(t,−→v),¬(t′,−→v ′), . . .}.

Let Γ be a set of attributes, i.e., Γ := {(t,−→x t) | −→x t ∈ Fnt
q \ {

−→
0 }, 1 ≤ t ≤ d},

where 1 ≤ t ≤ d means that t is an element of some subset of {1, . . . , d}.
When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for span

program M̂ := (M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1 if
[ρ(i) = (t,−→v i)] ∧[(t,−→x t) ∈ Γ] ∧[−→v i ·−→x t = 0] or [ρ(i) = ¬(t,−→v i)] ∧[(t,−→x t) ∈ Γ]
∧[−→v i · −→x t �= 0]. Set γ(i) = 0 otherwise.

Access structure S := (M,ρ) accepts Γ iff
−→
1 ∈ span〈(Mi)γ(i)=1〉.

We now construct a secret-sharing scheme for a non-monotone access structure
or span program.

Definition 5. A secret-sharing scheme for span program M̂ := (M,ρ) is:

1. Let M be � × r matrix. Let column vector
−→
f T := (f1, . . . , fr)T

U← F
r
q .

Then, s0 :=
−→
1 · −→f T =

∑r
k=1 fk is the secret to be shared, and −→s T :=

(s1, . . . , s�)T := M · −→f T is the vector of � shares of the secret s0 and the
share si belongs to ρ(i).

2. If span program M̂ := (M,ρ) accept δ, or access structure S := (M,ρ) accepts
Γ , i.e.,

−→
1 ∈ span〈(Mi)γ(i)=1〉 with γ : {1, . . . , �} → {0, 1}, then there exist

constants {αi ∈ Fq | i ∈ I} such that I ⊆ {i ∈ {1, . . . , �} | γ(i) = 1} and∑
i∈I αisi = s0. Furthermore, these constants {αi} can be computed in time

polynomial in the size of matrix M .

3.2 Key-Policy Functional Encryption with General Relations

Definition 6 (Key-Policy Functional Encryption : KP-FE). A key-policy
functional encryption scheme consists of four algorithms.

Setup. This is a randomized algorithm that takes as input security parameter
and format −→n := (d;n1, . . . , nd) of attributes. It outputs public parameters
pk and master secret key sk.

KeyGen. This is a randomized algorithm that takes as input access structure
S := (M,ρ), pk and sk. It outputs a decryption key skS.

Enc. This is a randomized algorithm that takes as input message m, a set of
attributes, Γ := {(t,−→x t)|−→x t ∈ Fnt

q \ {
−→
0 }, 1 ≤ t ≤ d}, and public parameters

pk. It outputs a ciphertext ctΓ .

198 T. Okamoto and K. Takashima

Dec. This takes as input ciphertext ctΓ that was encrypted under a set of at-
tributes Γ , decryption key skS for access structure S, and public parameters
pk. It outputs either plaintext m or the distinguished symbol ⊥.

A KP-FE scheme should have the following correctness property: for all
(pk, sk) R← Setup(1λ,−→n), all access structures S, all decryption keys skS

R←
KeyGen(pk, sk, S), all messages m, all attribute sets Γ , all ciphertexts ctΓ

R←
Enc(pk, m, Γ), it holds that m = Dec(pk, skS, ctΓ) with overwhelming probabil-
ity, if S accepts Γ .

Definition 7. The model for proving the adaptively payload-hiding security of
KP-FE under chosen plaintext attack is:

Setup. The challenger runs the setup algorithm, (pk, sk) R← Setup(1λ, −→n), and
gives public parameters pk to the adversary.

Phase 1. The adversary is allowed to adaptively issue a polynomial number of
queries, S, to the challenger or oracle KeyGen(pk, sk, ·) for private keys, skS

associated with S.
Challenge. The adversary submits two messages m(0),m(1) and a set of at-

tributes, Γ , provided that no S queried to the challenger in Phase 1 ac-
cepts Γ . The challenger flips a coin b

U← {0, 1}, and computes ct
(b)
Γ

R←
Enc(pk,m(b), Γ). It gives ct

(b)
Γ to the adversary.

Phase 2. The adversary is allowed to adaptively issue a polynomial number of
queries, S, to the challenger or oracle KeyGen(pk, sk, ·) for private keys, skS

associated with S, provided that S does not accept Γ .
Guess. The adversary outputs a guess b′ of b.

We note that the model can easily be extended to handle chosen-ciphertext attacks
by allowing for decryption queries in Phases 1 and 2.

The advantage of adversary A in the above game is defined as AdvKP-FE,PH
A (λ)

:= Pr[b′ = b]− 1/2 for any security parameter λ. A KP-FE scheme is secure if
all polynomial time adversaries have at most a negligible advantage in the above
game.

Similarly we can define a ciphertext-policy FE (CP-FE) scheme (see the full
version of this paper).

4 Assumption

Definition 8 (DLIN: Decisional Linear Assumption). The DLIN problem
is to guess β ∈ {0, 1}, given (paramG, G, ξG, κG, ωξG, γκG, Yβ) R← GDLIN

β (1λ),
where

GDLIN
β (1λ) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ),

κ, ω, ξ, γ
U← Fq, Y0 := (ω + γ)G, Y1

U← G,

return (paramG, G, ξG, κG, ωξG, γκG, Yβ),

Fully Secure Functional Encryption with General Relations 199

for β U← {0, 1}. For a probabilistic machine E, we define the advantage of E for
the DLIN problem as:

AdvDLIN
E (λ) :=

∣∣∣Pr
[
E(1λ, ")→1

∣∣∣" R←GDLIN
0 (1λ)

]
−Pr
[
E(1λ, ")→1

∣∣∣" R←GDLIN
1 (1λ)

]∣∣∣ .
The DLIN assumption is: For any probabilistic polynomial-time adversary E, the
advantage AdvDLIN

E (λ) is negligible in λ.

5 Proposed KP-FE Scheme

We define function ρ̃ : {1, . . . , �} → {1, . . . , d} by ρ̃(i) := t if ρ(i) = (t,−→v) or
ρ(i) = ¬(t,−→v), where ρ is given in access structure S := (M,ρ). In the proposed
scheme, we assume that ρ̃ is injective for S := (M,ρ) with decryption key skS.
We will show how to relax the restriction in the full version of this paper.

In the description of the scheme, we assume that input vector,−→x t := (xt,1, . . . ,
xt,nt), is normalized such that xt,1 := 1. (If −→x t is not normalized, change it to
a normalized one by (1/xt,1) · −→x t, assuming that xt,1 is non-zero).

Setup(1λ, −→n := (d;n1, . . . , nd)) : (param−→n , {Bt,B
∗
t }t=0,...,d)

R← Gob(1λ,−→n),

B̂0 := (b0,1, b0,3, b0,5), B̂t := (bt,1, .., bt,nt , bt,3nt+1, .., bt,4nt) for t = 1, .., d,

B̂
∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4), B̂

∗
t := (b∗t,1, .., b

∗
t,nt

, b∗t,2nt+1, .., b
∗
t,3nt

) for t = 1, .., d,

pk := (1λ, param−→n , {B̂t}t=0,...,d), sk := {B̂∗
t }t=0,...,d,

return pk, sk.

KeyGen(pk, sk, S := (M,ρ)) :
−→
f

U← F
r
q ,
−→s T := (s1, . . . , s�)T := M · −→f T, s0 :=

−→
1 · −→f T, η0

U← Fq,

k∗
0 := (−s0, 0, 1, η0, 0)B∗

0
,

for i = 1, . . . , �,

if ρ(i) = (t,−→v i := (vi,1, . . . , vi,nt) ∈ F
nt
q \ {

−→
0 }), θi, ηi,1, .., ηi,nt

U← Fq,
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷

k∗
i :=(si + θivi,1, θivt,2, .., θivi,nt , 0nt , ηi,1, .., ηi,nt , 0nt)B∗

t
,

if ρ(i) = ¬(t,−→v i), ηi,1, . . . , ηi,nt

U← Fq,
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷

k∗
i := (si(vi,1, .., vi,nt), 0nt , ηi,1, .., ηi,nt , 0nt)B∗

t
,

return skS := (S,k∗
0 ,k

∗
1 , . . . ,k

∗
�).

Enc(pk, m, Γ :={(t,−→x t := (xt,1, .., xt,nt)∈F
nt
q \ {

−→
0 }) | 1 ≤ t ≤ d, xt,1 :=1}) :

δ, ϕ0, ϕt,1, . . . , ϕt,nt , ζ
U← Fq for (t,−→x t) ∈ Γ,

c0 := (δ, 0, ζ, 0, ϕ0)B0 ,

200 T. Okamoto and K. Takashima

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷
ct :=(δ(xt,1, .., xt,nt), 0nt , 0nt , ϕt,1, .., ϕt,nt)Bt for (t,−→x t)∈Γ,
cd+1 := gζ

Tm, ctΓ := (Γ, c0, {ct}(t,−→x t)∈Γ , cd+1).
return ctΓ .

Dec(pk, skS := (S,k∗
0 ,k

∗
1 , . . . ,k

∗
�), ctΓ := (Γ, c0, {ct}(t,−→x t)∈Γ , cd+1)) :

If S :=(M,ρ) accepts Γ := {(t,−→x t)}, then compute I and {αi}i∈I such that
s0 =

∑
i∈I αisi, and

I ⊆ {i ∈ {1, . . . , �} | [ρ(i) = (t,−→v i) ∧ (t,−→x t) ∈ Γ ∧ −→v i · −→x t = 0]
∨ [ρ(i) = ¬(t,−→v i) ∧ (t,−→x t) ∈ Γ ∧ −→v i · −→x t �= 0] }.

K := e(c0,k
∗
0)

∏
i∈I ∧ ρ(i)=(t,−→v i)

e(ct,k
∗
i)

αi

∏
i∈I ∧ ρ(i)=¬(t,−→v i)

e(ct,k
∗
i)

αi/(−→v i·−→x t)

return m′ := cd+1/K.

[Correctness]

e(c0,k
∗
0)
∏

i∈I ∧ ρ(i)=(t,−→v i) e(ct,k
∗
i)

αi ·∏i∈I ∧ ρ(i)=¬(t,−→v i) e(ct,k
∗
i)

αi/(−→v i·−→x t)

= g−δs0+ζ
T

∏
i∈I ∧ ρ(i)=(t,−→v i) g

δαisi

T

∏
i∈I ∧ ρ(i)=¬(t,−→v i) g

δαisi(−→v i·−→x t)/(−→v i·−→x t)
T

= g
δ(−s0+

∑
i∈I αisi)+ζ

T = gζ
T .

6 Security

The proofs of Lemmas 1–4 and 6–8, and Claim 1 are given in the full version of
this paper.

6.1 Theorem

Theorem 1. The proposed KP-FE scheme is adaptively payload-hiding against
chosen plaintext attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines E0, E+
h , Eh+1 (h =

0, . . . , ν − 1), whose running times are essentially the same as that of A, such
that for any security parameter λ,

AdvKP-FE,PH
A (λ) ≤ AdvDLIN

E0
(λ) +

ν−1∑
h=0

(
AdvDLIN

E+
h

(λ) + AdvDLIN
Eh+1

(λ)
)

+ ε,

where ν is the maximum number of A’s key queries and ε := (2dν+12ν+d+7)/q.

6.2 Lemmas

We will show three lemmas for the proof of Theorem 1.

Fully Secure Functional Encryption with General Relations 201

Definition 9 (Problem 1). Problem 1 is to guess β, given (param−→n , B̂0, B̂
∗
0,

eβ,0, {B̂t, B̂
∗
t , eβ,t,i}t=1,...,d;i=1,...,nt)

R← GP1
β (1λ,−→n), where

GP1
β (1λ,−→n) : (param−→n , {Bt,B

∗
t }t=0,...,d)

R← Gob(1λ,−→n),

B̂0 := (b0,1, b0,3, b0,5), B̂t := (bt,1, .., bt,nt , bt,3nt+1, .., bt,4nt) for t = 1, .., d,

B̂
∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4), B̂

∗
t := (b∗t,1, .., b

∗
t,nt

, b∗t,2nt+1, .., b
∗
t,3nt

) for t = 1, .., d,

u0
U← F

×
q , δ, δ0

U← Fq, (ut,i,j)i,j=1,...,nt

U← GL(nt,Fq) for t = 1, .., d,
e0,0 := (δ, 0, 0, 0, δ0)B0 , e1,0 := (δ, u0, 0, 0, δ0)B0 ,

for t = 1, . . . , d; i = 1, . . . , nt;

δt,i,j
U← Fq for j = 1, . . . , nt,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷
e0,t,i := (0i−1, δ, 0nt−i, 0nt , 0nt , δt,i,1, .., δt,i,nt)Bt ,
e1,t,i := (0i−1, δ, 0nt−i, ut,i,1, .., ut,i,nt , 0nt , δt,i,1, .., δt,i,nt)Bt ,

return (param−→n , B̂0, B̂
∗
0, eβ,0, {B̂t, B̂

∗
t , eβ,t,i}t=1,...,d;i=1,...,nt),

for β U← {0, 1}. For a probabilistic machine B, we define the advantage of B as
the quantity

AdvP1
B (λ) :=

∣∣∣Pr
[
B(1λ, ")→1

∣∣∣" R←GP1
0 (1λ,−→n)

]
−Pr
[
B(1λ, ")→1

∣∣∣" R←GP1
1 (1λ,−→n)

]∣∣∣ .
Lemma 1. For any adversary B, there exists a probabilistic machine E, whose
running time is essentially the same as that of B, such that for any security
parameter λ, AdvP1

B (λ) ≤ AdvDLIN
E (λ) + 5/q.

Definition 10 (Problem 2). Problem 2 is to guess β, given (param−→n , B̂0, B̂
∗
0,

h∗
β,0, e0, {B̂t, B̂

∗
t ,h

∗
β,t,i, et,i}t=1,...,d;i=1,...,nt)

R← GP2
β (1λ,−→n), where

GP2
β (1λ,−→n) : (param−→n , {Bt,B

∗
t }t=0,...,d)

R← Gob(1λ,−→n),

B̂0 := (b0,1, b0,3, b0,5), B̂t := (bt,1, .., bt,nt , bt,3nt+1, .., bt,4nt) for t = 1, .., d,

B̂
∗
0 := (b∗0,1, .., b

∗
0,4), B̂

∗
t := (b∗t,1, .., b

∗
t,nt

, b∗t,2nt+1, .., b
∗
t,3nt

) for t = 1, .., d,

τ, u0
U← F

×
q , ω, δ, γ0

U← Fq, w0 := τ/u0,

(zt,i,j)i,j=1,..,nt :=Zt
U← GL(nt,Fq), (ut,i,j)i,j=1,..,nt :=(Z−1

t)T for t=1, .., d,
h∗

0,0 := (ω, 0, 0, γ0, 0)B∗
0
, h∗

1,0 := (ω,w0, 0, γ0, 0)B∗
0
, e0 := (δ, u0, 0, 0, 0)B0,

for t = 1, . . . , d; i = 1, . . . , nt;(
wt,i,j

)
i,j=1,...,nt

:= τ · Zt, γt,i,j
U← Fq for j = 1, .., nt,

202 T. Okamoto and K. Takashima

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷
h∗

0,t,i := (0i−1, ω, 0nt−i, 0nt , γt,i,1, .., γt,i,nt , 0nt)B∗
t

h∗
1,t,i := (0i−1, ω, 0nt−i, wt,i,1, .., wt,i,nt , γt,i,1, .., γt,i,nt , 0nt)B∗

t

et,i := (0i−1, δ, 0nt−i, ut,i,1, .., ut,i,nt , 0nt , 0nt)Bt ,

return (param−→n , B̂0, B̂
∗
0,h

∗
β,0, e0, {B̂t, B̂

∗
t ,h

∗
β,t,i, et,i}t=1,..,d;i=1,..,nt),

for β U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem
2, AdvP2

B (λ), is similarly defined as in Definition 9.

Lemma 2. For any adversary B, there exists a probabilistic machine E, whose
running time is essentially the same as that of B, such that for any security
parameter λ, AdvP2

B (λ) ≤ AdvDLIN
E (λ) + 5/q.

Lemma 3. For p ∈ Fq, let Cp := {(−→x ,−→v)|−→x · −→v = p} ⊂ V × V ∗ where V is
n-dimensional vector space Fn

q , and V ∗ its dual. For all (−→x ,−→v) ∈ Cp, for all

(−→r ,−→w) ∈ Cp, Pr [−→x U = −→r ∧ −→v Z = −→w] = 1
/
$Cp, where Z U← GL(n,Fq), U :=

(Z−1)T.

6.3 Proof of Theorem 1

Proof Outline : At the top level of strategy of the security proof, we follow the
dual system encryption methodology proposed by Waters [28]. In the method-
ology, ciphertexts and secret keys have two forms, normal and semi-functional.
In the proof herein, we also introduce another form called pre-semi-functional.
The real system uses only normal ciphertexts and normal secret keys, and semi-
functional/pre-semi-functional ciphertexts and keys are used only in a sequence
of security games for the security proof.

To prove this theorem, we employ Game 0 (original adaptive-security game)
through Game 3. In Game 1, the target ciphertext is changed to semi-functional.
When at most ν secret key queries are issued by an adversary, there are 2ν game
changes from Game 1 (Game 2-0), Game 2-0+, Game 2-1 through Game 2-
(ν − 1)+ and Game 2-ν. In Game 2-h, the first h keys are semi-functional while
the remaining keys are normal, and the target ciphertext is semi-functional. In
Game 2-h+, the first h keys are semi-functional and the (h + 1)-th key is pre-
semi-functional while the remaining keys are normal, and the target ciphertext
is pre-semi-functional. The final game with advantage 0 is changed from Game
2-ν. As usual, we prove that the advantage gaps between neighboring games are
negligible.

For skS := (S,k∗
0 ,k

∗
1 , . . . ,k

∗
�) and ctΓ := (Γ, c0, {ct}(t,−→x t)∈Γ , cd+1), we focus

on
−→
k ∗

S
:= (k∗

0 ,k
∗
1 , . . . ,k

∗
�) and −→c Γ := (c0, {ct}(t,−→x t)∈Γ), and ignore the other

part of skS and ctΓ (and call them secret key and ciphertext, respectively) in
this proof outline. In addition, we ignore a negligible factor in the (informal)
descriptions of this proof outline. For example, we say “A is bounded by B”
when A ≤ B + ε(λ) where ε(λ) is negligible in security parameter λ.

Fully Secure Functional Encryption with General Relations 203

A normal secret key,
−→
k ∗ norm

S
(with access structure S), is the correct form of

the secret key of the proposed FE scheme, and is expressed by Eq. (1). Similarly,
a normal ciphertext (with attribute set Γ), −→c norm

Γ , is expressed by Eq. (2). A
semi-functional secret key,

−→
k ∗ semi

S
, is expressed by Eq. (8), and a semi-functional

ciphertext, −→c semi
Γ , is expressed by Eqs. (3)-(5). A pre-semi-functional secret key,−→

k ∗ pre-semi
S

, and pre-semi-functional ciphertext, −→c pre-semi
Γ , are expressed by Eq.

(6) and Eqs. (3), (7) and (5), respectively.
To prove that the advantage gap between Games 0 and 1 is bounded by the

advantage of Problem 1 (to guess β ∈ {0, 1}), we construct a simulator of the
challenger of Game 0 (or 1) (against an adversary A) by using an instance with
β

U← {0, 1} of Problem 1. We then show that the distribution of the secret
keys and target ciphertext replied by the simulator is equivalent to those of
Game 0 when β = 0 and Game 1 when β = 1. That is, the advantage of
Problem 1 is equivalent to the advantage gap between Games 0 and 1 (Lemma
4). The advantage of Problem 1 is proven to be equivalent to that of the DLIN
assumption (Lemma 1).

The advantage gap between Games 2-h and 2-h+ is similarly shown to be
bounded by the advantage of Problem 2 (i.e., advantage of the DLIN assump-
tion) (Lemmas 5 and 2). Here, we introduce special forms of pre-semi-functional
keys and ciphertexts,

−→
k ∗ spec.pre-semi

S
and −→c spec.pre-semi

Γ , respectively, such that
they are equivalent to pre-semi-functional keys and ciphertexts,

−→
k ∗ pre-semi

S
and

−→c pre-semi
Γ , respectively, except that w0r0 = a0 :=

∑r
k=1 gk and r0

U← Fq (note that

r0, w0
U← Fq for

−→
k ∗ pre-semi

S
and −→c pre-semi

Γ). These forms of keys and ciphertexts,−→
k ∗ spec.pre-semi

S
and −→c spec.pre-semi

Γ , are simulated by using Problem 2 with β = 1.
From the definition of these forms,

−→
k ∗ spec.pre-semi

S
can decrypt −→c spec.pre-semi

Γ for
any Γ when S accepts Γ , i.e., it is hard for simulator B+

h to tell (
−→
k ∗ spec.pre-semi

S
,

−→c spec.pre-semi
Γ) for Game 2-h+ from (

−→
k ∗ norm

S
, −→c semi

Γ) for Game 2-h under the
assumption of Problem 2. On the other hand, a0(= w0r0) is independently dis-
tributed from the other variables when S does not accept Γ (shown in Proof of
Claim 1 by using Lemma 3). That is, the joint distribution of

−→
k ∗ pre-semi

S
and

−→c pre-semi
Γ is equivalent to that of

−→
k ∗ spec.pre-semi

S
and −→c spec.pre-semi

Γ , when S does
not accept Γ (i.e., B+

h ’s simulation using Problem 2 with β = 1 is the same
distribution as that of Game 2-h+ from the adversary’s view). In other words,
w0 and r0 in

−→
k ∗ spec.pre-semi

S
and −→c spec.pre-semi

Γ (given by B+
h ’s simulation using

Problem 2 with β = 1) are correlated for the case that S accepts Γ or for simu-
lator B+

h ’s view, but adversary A cannot notice the correlation since A’s queries
should satisfy the condition that S does not accept Γ .

The advantage gap between Games 2-h+ and 2-(h+1) is similarly shown to be
bounded by the advantage of Problem 2, i.e., advantage of the DLIN assumption
(Lemmas 6 and 2).

Finally we show that Game 2-ν can be conceptually changed to Game 3
(Lemma 7).

204 T. Okamoto and K. Takashima

Proof of Theorem 1 : To prove Theorem 1, we consider the following (2ν+3)
games. In Game 0, a part framed by a box indicates coefficients to be changed
in a subsequent game. In the other games, a part framed by a box indicates
coefficients which were changed in a game from the previous game.

Game 0 : Original game. That is, the reply to a key query for S := (M,ρ) with
�× r matrix M is:

k∗
0 := (−s0, 0 , 1, η0, 0)B∗

0
,

for i = 1, . . . , �,

if ρ(i)=(t,−→v i),k∗
i :=(si+θivi,1, θivi,2, .., θivi,nt , 0nt , ηi,1, .., ηi,nt ,0nt)B∗

t
,

if ρ(i)=¬(t,−→v i),k∗
i :=(si(vi,1, .., vi,nt), 0nt , ηi,1, .., ηi,nt , 0nt)B∗

t
,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭(1)

where
−→
f

U← F r
q ,
−→s T := (s1, . . . , s�)T := M · −→f T, s0 :=

−→
1 · −→f T, θi, η0, ηi,1, . . . ,

ηi,nt

U← Fq, and −→v i := (vi,1, . . . , vi,nt) ∈ Fnt
q \ {

−→
0 }. The target ciphertext for

challenge plaintexts (m(0),m(1)) and Γ := {(t,−→x t) | 1 ≤ t ≤ d} is:

c0 := (δ, 0 , ζ, 0, ϕ0)B0 ,

ct := (δ(xt,1, . . . , xt,nt), 0nt , 0nt , ϕt,1, . . . , ϕt,nt)Bt for (t,−→x t) ∈ Γ,
cd+1 := gζ

Tm
(b),

⎫⎪⎪⎬⎪⎪⎭ (2)

where b
U← {0, 1}; δ, ζ, ϕ0, ϕt,1, . . . , ϕt,nt

U← Fq, and −→x t := (xt,1, . . . , xt,nt) ∈
Fnt

q \ {
−→
0 }.

Game 1 : Same as Game 0 except that the target ciphertext is:

c0 := (δ, r0 , ζ, 0, ϕ0)B0 , (3)

ct := (δ(xt,1, .., xt,nt), rt,1, .., rt,nt , 0
nt , ϕt,1, .., ϕt,nt)Bt for (t,−→x t) ∈ Γ, (4)

cd+1 := gζ
Tm

(b), (5)

where r0, rt,1, . . . , rt,nt

U← Fq.
Game 2-h+ (h = 0, . . . , ν −1) : Game 2-0 is Game 1. Game 2-h+ is the same
as Game 2-h except the reply to the (h + 1)-th key query for S := (M,ρ) with
�× r matrix M , and ct of the target ciphertext are:

k∗
0 := (−s0, w0 , 1, η0, 0)B∗

0
,

for i = 1, . . . , �,

if ρ(i) = (t,−→v i)

k∗
i := (si + θivi,1, θivi,2, .., θivi,nt , wi,1, .., wi,nt , ηi,1, .., ηi,nt , 0nt)B∗

t
,

if ρ(i) = ¬(t,−→v i)

k∗
i := (si(vi,1, .., vi,nt), wi,1, .., wi,nt , ηi,1, .., ηi,nt , 0nt)B∗

t
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6)

ct := (δ(xt,1, .., xt,nt), rt,1, .., rt,nt , 0
nt , ϕt,1, , , , ϕt,nt)Bt for (t,−→x t) ∈ Γ, (7)

Fully Secure Functional Encryption with General Relations 205

where w0
U← Fq,

−→g U← F r
q ,
−→a T := (a1, . . . , a�)T := M · −→g T, τi

U← Fq (i =

1, . . . , �), Zt
U← GL(nt,Fq), Ut := (Z−1

t)T for t = 1, . . . , d,

(wi,1, . . . , wi,nt) := (ai + τivi,1, τivi,2, . . . , τivi,nt) · Zt,

(wi,1, . . . , wi,nt) := ai(vi,1, . . . , vi,nt) · Zt,

(rt,1, . . . , rt,nt) := (xt,1, . . . , xt,nt) · Ut.

Game 2-(h + 1) (h = 0, . . . , ν − 1) : Game 2-(h + 1) is the same as Game
2-h+ except the reply to the (h + 1)-th key query for S := (M,ρ) with � × r
matrix M , and ct of the target ciphertext are:

k∗
0 := (−s0, w0, 1, η0, 0)B∗

0
,

for i = 1, . . . , �,

if ρ(i)=(t,−→v i),k∗
i :=(si+θivi,1, θivi,2, .., θivi,nt , 0nt , ηi,1, .., ηi,nt ,0nt)B∗

t
,

if ρ(i)=¬(t,−→v i),k∗
i :=(si(vi,1, .., vi,nt), 0nt , ηi,1, .., ηi,nt , 0nt)B∗

t
,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (8)

ct := (δ(xt,1, . . . , xt,nt), rt,1, . . . , rt,nt , 0
nt , ϕt,1, . . . , ϕt,nt)Bt for (t,−→x t) ∈ Γ,

where rt,1, . . . , rt,nt

U← Fq.
Game 3 : Same as Game 2-ν except that c0 and cd+1 of the target ciphertext
are

c0 := (δ, r0, ζ′ , 0, ϕ0)B0 , cd+1 := gζ
Tm

(b),

where ζ′ U← Fq (i.e., independent from ζ
U← Fq).

Let Adv
(0)
A (λ), Adv

(1)
A (λ),Adv

(2-h)
A (λ),Adv

(2-h+)
A (λ) and Adv

(3)
A (λ) be the ad-

vantage of A in Game 0, 1, 2-h, 2-h+ and 3, respectively. Adv
(0)
A (λ) is equivalent

to AdvKP-FE,PH
A (λ) and it is clear that Adv

(3)
A (λ) = 0 by Lemma 8.

We will show four lemmas (Lemmas 4-7) that evaluate the gaps between
pairs of Adv

(0)
A (λ),Adv

(1)
A (λ), Adv

(2-h)
A (λ),Adv

(2-h+)
A (λ),Adv

(2-(h+1))
A (λ) for h =

0, . . . , ν − 1 and Adv
(3)
A (λ). From these lemmas and Lemmas 1 and 2, we obtain

AdvKP-FE,PH
A (λ) = Adv

(0)
A (λ) ≤

∣∣∣Adv
(0)
A (λ) − Adv

(1)
A (λ)

∣∣∣ +
∑ν−1

h=0

∣∣∣Adv
(2-h)
A (λ)−

Adv
(2-h+)
A (λ)

∣∣∣+∑ν−1
h=0

∣∣∣Adv
(2-h+)
A (λ)− Adv

(2-(h+1))
A (λ)

∣∣∣+∣∣∣Adv
(2-ν)
A (λ)− Adv

(3)
A (λ)

∣∣∣
+Adv

(3)
A (λ) ≤ AdvP1

B0
(λ)+

∑ν−1
h=0 AdvP2

B+
h
(λ)+

∑ν−1
h=0 AdvP2

Bh+1
(λ)+ (2dν+ 2ν+ d+

2)/q ≤ AdvDLIN
E0

(λ) +
∑ν−1

h=0

(
AdvDLIN

E+
h

(λ) +AdvDLIN
Eh+1

(λ)
)

+ (2dν + 12ν+ d+ 7)/q.
This completes the proof of Theorem 1. �

Lemma 4. For any adversary A, there exists a probabilistic machine B0, whose
running time is essentially the same as that of A, such that for any security
parameter λ, |Adv

(0)
A (λ)− Adv

(1)
A (λ)| ≤ AdvP1

B0
(λ) + (d+ 1)/q.

206 T. Okamoto and K. Takashima

Lemma 5. For any adversary A, there exists a probabilistic machine B+
h , whose

running time is essentially the same as that of A, such that for any security
parameter λ, |Adv

(2-h)
A (λ)− Adv

(2-h+)
A (λ)| ≤ AdvP2

B+
h
(λ) + (d+ 1)/q.

Proof. In order to prove Lemma 5, we construct a probabilistic machine B+
h

against Problem 2 by using an adversary A in a security game (Game 2-h or
2-h+) as a black box as follows:

1. B+
h is given a Problem 2 instance, (param−→n , B̂0, B̂

∗
0,h

∗
β,0, e0, {B̂t, B̂

∗
t ,h

∗
β,t,j ,

et,j}t=1,...,d;j=1,...,nt).
2. B+

h plays a role of the challenger in the security game against adversary A.
3. At the first step of the game, B+

h provides A a public key pk := (1λ, param−→n ,

{B̂t}t=0,...,d) of Game 2-h (and 2-h+), that is a part of the Problem 2 in-
stance.

4. When the ι-th key query is issued for access structure S := (M,ρ), B+
h

answers as follows:
(a) When 1 ≤ ι ≤ h, B+

h answers semi-functional key (k∗
0 , . . . ,k

∗
�) with Eq.

(8), that is computed by using {B̂∗
t }t=0,...,d of the Problem 2 instance.

(b) When ι = h + 1, B+
h calculates (k∗

0 , . . . ,k
∗
�) by using

(h∗
β,0, {h∗

β,t,j}t=1,...,d;j=1,...,nt) of the Problem 2 instance as follows:

μt,l, μ̃k,l
U← Fq for t = 1, . . . , d; k = 1, . . . , r; l = 1, 2,

p∗
β,0 :=

∑r
k=1

(
μ̃k,1h

∗
β,0 + μ̃k,2b

∗
0,1

)
,

for t = 1, . . . , d; k = 1, . . . , r; j = 1, . . . , nt;
p∗

β,t,j := μt,1h
∗
β,t,j + μt,2b

∗
t,j , p̃∗

β,t,k,j := μ̃k,1h
∗
β,t,j + μ̃k,2b

∗
t,j ,

k∗
0 := −p∗

β,0 + b∗0,3,

for i = 1, . . . , �,
if ρ(i) = (t,−→v i), k∗

i :=
∑nt

j=1 vi,jp
∗
β,t,j +

∑r
k=1 Mi,kp̃∗

β,t,k,nt
,

if ρ(i) = ¬(t,−→v i), k∗
i :=

∑nt

j=1 vi,j(
∑r

k=1 Mi,kp̃∗
β,t,k,j),

where (Mi,k)i=1,...,�;k=1,...,r := M .
(c) When ι ≥ h+ 2, B+

h answers normal key (k∗
0 , . . . ,k

∗
�) with Eq. (1), that

is computed by using {B̂∗
t }t=0,...,d of the Problem 2 instance.

5. When B+
h receives an encryption query with challenge plaintexts (m(0),m(1))

and Γ := {(t,−→x t) | 1 ≤ t ≤ d} fromA, B+
h computes the challenge ciphertext

(c0, {ct}(t,−→x t)∈Γ , cd+1) such that for (t,−→x t) ∈ Γ ,

c0 := e0 + ζb0,3 + q0, ct :=
∑nt

j=1 xt,jet,j + qt, cd+1 := gζ
Tm

(b),

where ζ U← Fq, b
U← {0, 1}, q0

U← span〈b0,5〉, qt
U← span〈bt,3nt+1, . . . , bt,4nt〉,

and (b0,3, e0, {et,j}t=1,..,d;j=1,..,nt) is a part of the Problem 2 instance.
6. When a key query is issued by A after the encryption query, B+

h executes
the same procedure as that of step 4.

7. A finally outputs bit b′. If b = b′, B+
h outputs β′ := 1. Otherwise, B+

h outputs
β′ := 0.

Fully Secure Functional Encryption with General Relations 207

Claim 1. The distribution of the view of adversary A in the above-mentioned
game simulated by B+

h given a Problem 2 instance with β ∈ {0, 1} is the same
as that in Game 2-h (resp. Game 2-h+) if β = 0 (resp. β = 1).

The proof of Claim 1 is given in the full version of this paper. This completes
the proof of Lemma 5. �

Lemma 6. For any adversary A, there exists a probabilistic machine Bh+1,
whose running time is essentially the same as that of A, such that for any secu-
rity parameter λ, |Adv

(2-h+)
A (λ)− Adv

(2-(h+1))
A (λ)| ≤ AdvP2

Bh+1
(λ) + (d+ 1)/q.

Lemma 7. For any adversary A, Adv
(3)
A (λ) ≤ Adv

(2-ν)
A (λ) + 1/q.

Lemma 8. For any adversary A, Adv
(3)
A (λ) = 0.

References

1. Beimel, A.: Secure schemes for secret sharing and key distribution. PhD Thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Press,
Los Alamitos (2007)

3. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

4. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M.K. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

5. Boneh, D., Boyen, X., Goh, E.: Hierarchical identity based encryption with constant
size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
440–456. Springer, Heidelberg (2005)

6. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

7. Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption
scheme. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008)

8. Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using
identity based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 87–103. Springer, Heidelberg (2005)

9. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007)

10. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006)

11. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

208 T. Okamoto and K. Takashima

12. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

13. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

14. Gentry, C., Halevi, S.: Hierarchical identity-based encryption with polynomially
many levels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 437–456.
Springer, Heidelberg (2009)

15. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

16. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communication Security 2006, pp. 89–98. ACM, New York (2006)

17. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

18. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: Attribute-based encryption and (hierarchical) inner product en-
cryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

19. Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010)

20. Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector
decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 57–74. Springer, Heidelberg (2008)

21. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 114–231. Springer,
Heidelberg (2009)

22. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM Conference on Computer and Communi-
cation Security 2007, pp. 195–203. ACM, New York (2007)

23. Pirretti, M., Traynor, P., McDaniel, P., Waters, B.: Secure attribute-based systems.
In: ACM Conference on Computer and Communication Security 2006, pp. 99–112.
ACM, New York (2006)

24. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

25. Shi, E., Waters, B.: Delegating capability in predicate encryption systems. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldørsson, M.M., Ingølfsdøttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 560–578. Springer,
Heidelberg (2008)

26. Waters, B.: Efficient identity based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

27. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. ePrint, IACR,
http://eprint.iacr.org/2008/290

28. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)

http://eprint.iacr.org/2008/290

Structure-Preserving Signatures and
Commitments to Group Elements

Masayuki Abe1, Georg Fuchsbauer2, Jens Groth3, Kristiyan Haralambiev4,�,
and Miyako Ohkubo5,�

1 Information Sharing Platform Laboratories, NTT Corporation, Japan
abe.masyuki@lab.ntt.co.jp

2 École normale supérieure, CNRS - INRIA, Paris, France
http://www.di.ens.fr/~fuchsbau
3 University College London, UK

j.groth@ucl.ac.uk
4 Computer Science Department, New York University, USA

kkh@cs.nyu.edu
5 National Institute of Information and Communications Technology, Japan

m.ohkubo@nict.go.jp

Abstract. A modular approach for cryptographic protocols leads to a
simple design but often inefficient constructions. On the other hand,
ad hoc constructions may yield efficient protocols at the cost of losing
conceptual simplicity. We suggest structure-preserving commitments and
signatures to overcome this dilemma and provide a way to construct
modular protocols with reasonable efficiency, while retaining conceptual
simplicity.

We focus on schemes in bilinear groups that preserve parts of the
group structure, which makes it easy to combine them with other prim-
itives such as non-interactive zero-knowledge proofs for bilinear groups.

We say that a signature scheme is structure-preserving if its verifica-
tion keys, signatures, and messages are elements in a bilinear group, and
the verification equation is a conjunction of pairing-product equations. If
moreover the verification keys lie in the message space, we call them au-
tomorphic. We present several efficient instantiations of automorphic and
structure-preserving signatures, enjoying various other additional prop-
erties, such as simulatability. Among many applications, we give three
examples: adaptively secure round-optimal blind signature schemes, a
group signature scheme with efficient concurrent join, and an efficient
instantiation of anonymous proxy signatures.

A further contribution is homomorphic trapdoor commitments to group
elements which are also length reducing. In contrast, the messages of pre-
vious homomorphic trapdoor commitment schemes are exponents.

1 Introduction

The designer of cryptographic protocols faces a tension between choosing a mod-
ular approach using generic primitives that lead to a simple design but inefficient
� Work done while at NTT Information Sharing Platform Laboratories.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 209–236, 2010.
c© International Association for Cryptologic Research 2010

http://www.di.ens.fr/~fuchsbau

210 M. Abe et al.

protocols or using ad hoc constructions that sometimes yield efficient protocols
at the cost of losing conceptual simplicity. Cryptographic protocols often com-
bine general building blocks such as commitments, encryption, signatures, and
zero-knowledge proofs. While modular design is useful to show feasibility of
cryptographic tasks and also to illustrate a comprehensible framework, efficient
instantiations are sometimes left as a next challenge. Some cryptographic tasks
find “cleverly crafted” efficient solutions dedicated to their specific purposes.
Nevertheless, modular construction makes implementing more complex primi-
tives easier when the building blocks have reasonable instantiations. We suggest
structure-preserving commitments and signatures to provide a way to construct
modular protocols that retain conceptual simplicity and at the same time yield
reasonable efficiency.

A classical way of realizing efficient instantiations is to rely on the random-
oracle heuristic [BR93] for non-interactive zero-knowledge (NIZK) proofs—or to
directly use interactive assumptions (like the LRSW assumption [LRSW00] and
its variants, or “one-more” assumptions [BNPS03]). Due to a series of criticisms
starting with [CGH98] more and more practical schemes are being proposed and
proved secure in the standard model (i.e., without random oracles) and under
falsifiable (and thus non-interactive) assumptions [Nao03]. All schemes given in
this work satisfy these criteria.
Structure-Preserving Signatures. The combination of NIZK proofs of
knowledge and signatures appears frequently in privacy-protecting cryptographic
protocols such as group signatures [BMW03, KY05, BSZ05, Gro07], blind signa-
tures [Fis06, AO09], anonymous credentials [BCKL08, BCC+09], verifiably en-
crypted signatures [BGLS03, RS09], non-interactive group encryption [CLY09]
and many more.

An efficient non-interactive proof system in the standard model, however,
has been absent until recently. In [GS08], Groth and Sahai presented the first
(and currently the only) efficient non-interactive proof system for a large class
of statements over bilinear groups. The most interesting and widely used type is
a conjunction of pairing-product equations (PPE) whose variables are elements
of the bilinear group (cf. Section 2.4). A PPE consists of products of pairings
applied to the variables and constants from the group. For this type of equations,
the proofs are fully extractable which actually makes them proofs of knowledge.
This renders GS proofs particularly interesting for modular protocol design.

Research on signature schemes that are compatible with GS proofs was ini-
tiated in [Gro06]. While the design goal is clear and simple, giving an efficient
instantiation has proved hard for years. There are efficient signature schemes,
e.g., [BB04, CL04, BCKL08, CKS09], whose verification predicates are pairing-
product equations, but none of them have signatures and messages that exclu-
sively consist of group elements. Since only group elements can be extracted from
GS commitments, this entailed limited applicability of each scheme or stronger
security notions such as F -unforgeability [BCKL08].

The desirable properties of a signature scheme enabling modular design to-
gether with GS proofs are the following:

Structure-Preserving Signatures and Commitments to Group Elements 211

1. the scheme is unforgeable against chosen-message attacks;
2. the verification keys, messages, and signatures are elements of a bilinear

group; and
3. the verification predicate is a conjunction of pairing-product equations over

the key, the message and the signature.

Note that this proscribes the use of hash functions, which usually play a central
role in making signature schemes unforgeable against adaptive chosen-message
attacks. We therefore call such a scheme structure preserving. If in addition its
verification keys lie in the message space, we call it an automorphic signature
(since it signs its own keys besides preserving structure).

Combined with GS proofs, structure-preserving signatures allow to prove
knowledge of messages, signatures and/or verification keys without actually re-
vealing them. Proving knowledge of signatures has been used in many construc-
tion of group signatures, anonymous proxy signatures, anonymous credentials,
blind signatures, and others. Clearly, structure-preserving signatures combined
with the GS proof system will allow to instantiate those constructions with-
out resorting to interactive assumptions nor to the random-oracle model while
maintaining a modular design.

For example, Fischlin [Fis06] presented the following framework for round-
optimal blind signatures in the common reference string model. To obtain a
signature from the signer, the user commits to a message and sends the com-
mitment to the signer. Then, the signer signs the commitment and sends back
the signature. The user produces a NIZK proof of knowledge of a commitment,
an opening of the commitment to that message, and a signature on the com-
mitment. This proof constitutes a blind signature for the message. Despite its
simplicity, the scheme has not been instantiated efficiently in the standard model
because it requires a signature scheme which signs trapdoor commitments and
whose verification equations should mesh well with the GS proof system.

An application that also requires signing verification keys are anonymous
proxy signatures [FP08]. They enable users to delegate (and redelegate) their
signing rights to other users. A signature on behalf of another user (proxy signa-
ture) hides the identity of the proxy signer and possible intermediate delegators.
Instantiating anonymous proxy signatures requires a signature scheme that is
both GS compatible and enables users to sign other user’s verification keys to
delegate. Automorphic signatures can thus be used create a delegation chain of
which the proxy signer proves knowledge using GS proofs.
Trapdoor Commitments to Group Elements. A non-interactive commit-
ment scheme allows to create a commitment c to a message m. The commitment
hides the message, but we may later disclose m and demonstrate that c was a
commitment to m by revealing the randomness r used when creating it. This
is called opening the commitment. It is essential that once a commitment is
made, it is binding, meaning that it is infeasible to find two openings of the
same commitment to two different messages.

In this paper, we consider public-key trapdoor commitments [GQ88, Ped92]
which are also homomorphic and length reducing. The former means that

212 M. Abe et al.

messages and commitments belong to abelian groups and if we multiply two
commitments, we get a new commitment that contains the product of the two
messages, whereas the latter requires that the commitment is shorter than the
message.

An example would be a generalization of Pedersen commitments whose n
message components are in Zp. The public key consists of n+ 1 group elements
G1, . . . , Gn, H and a commitment to (m1, . . . ,mn) is C = Hr

∏n
i=1 G

mi

i . This
scheme is length-reducing since a commitment to n messages consists of only
one group element, a feature that has been found useful in contexts such as mix-
nets/voting, digital credentials, blind signatures, leakage-resilient one-way func-
tions, and zero-knowledge proofs [FS01, Nef01, Bra99, KZ06, ADW09, Lip03].

Common to all the homomorphic trapdoor commitment schemes is that they
are homomorphic with respect to addition in a ring or a field. However, in public-
key cryptography we often work over groups that are not rings or fields and it
is useful to commit to elements from such groups. Of course, if we know the
discrete logarithms of the group elements we want to commit to, we can commit
to them using Pedersen commitments. In general, we cannot expect to know the
discrete logarithms of the messages though, leaving us with the open problem of
constructing homomorphic trapdoor commitments to group elements.

Furthermore, such schemes could be combined with Pedersen commitments
since commitments of the latter scheme are single group element. So, if we have a
homomorphic trapdoor commitment scheme whose commitments to O(n) group
elements are of size O(1), we can commit to m · n elements in Zp using com-
mitment schemes with public keys of total size O(m+ n). In comparison, when
using only Pedersen commitments the public key would be of size O(m · n).

Finally, note that similarly to structure-preserving signatures, “GS compati-
bility” of a homomorphic trapdoor commitment scheme makes it a useful com-
ponent in constructing more advanced zero-knowledge arguments or giving an
efficient proof of knowledge of a message and/or an opening of a commitment.

1.1 Our Contribution

The paper presents three main results, all of them based on groups with a bilinear
map. We focus on constructions in asymmetric bilinear groups whereas those in
the symmetric setting are given in the full versions.

Firstly, we present a homomorphic trapdoor commitment to group elements.
The commitments are perfectly hiding, computationally binding, and length re-
ducing. An advantage of our commitment scheme is that the construction is very
simple. The public key consists of n + 1 group elements (GR, G1, . . . , Gn) from
G1 and we commit to M1, . . . ,Mn ∈ G2 by choosing R ∈ G2 at random and
computing the commitment

C = e(GR, R)
n∏

i=1

e(Gi,Mi) .

The commitment scheme is computationally binding under the double pairing as-
sumption, which we show to be implied by decisional Diffie-Hellman assumption

Structure-Preserving Signatures and Commitments to Group Elements 213

in G1. We extend our construction to commit to commitments as mentioned above
and present an honest verifier zero-knowledge argument of knowledge of the con-
tents of such commitments.

Next, we present the first instantiation of structure-preserving signatures on
group elements. The messages consist of 2 group elements from an asymmetric
bilinear group and signatures of 5 elements. Since the verification keys lie in the
message space, the scheme is actually an automorphic signature. The scheme is
proved secure under a variant of the strong Diffie-Hellman assumption [BB04],
a “q-type” assumption which holds in the generic-group model. We combine the
scheme with the GS proof system to construct the first efficient round-optimal
blind signature scheme, which also remains automorphic. Moreover, we give a
generic transformation from any automorphic signature scheme to one that signs
message vectors of arbitrary length that leaves the keys unchanged.

Lastly, we present a structure-preserving signature scheme which signs vec-
tors of general group elements. It has a constant signature size regardless of
the message length. Our scheme does not rely on setup assumptions nor the
messages having a specific structure, e.g. Diffie-Hellman pairs, like in the pre-
vious construction. While its verification key grows linearly in the maximum
message length, it is possible to extend the scheme to sign unbounded-length
messages at the cost of signatures growing proportionally to the length. This
way, it is possible to make the signature automorphic albeit less efficient than
the scheme above. The security is based on a novel strong, “q-type”, assumption
which is fairly complex. However, it has an optimal quadratic security bound in
generic bilinear groups unlike the popular strong Diffie-Hellman assumption and
its variations. Finally, we define the notion of simulatable signatures and give
an efficient instantiation. It is defined in the common reference string (CRS)
model and allows to create valid signatures using the trapdoor associated with
the CRS.
Applications: We illustrate the advantages of structure-preserving signature
schemes by presenting several useful applications. The round-optimal blind sig-
nature scheme of Fischlin described before, which is secure in the universal-
composability framework [Can01], is easily instantiated with such a building
block in hand. The only extra tool we need is a trapdoor commitment on mes-
sages in Zp whose commitments and openings are group elements. Such scheme
is easily derived from the Pedersen commitment scheme when working in bilinear
groups.

We then present a practical group signature scheme in the strongest security
model [BSZ05] which moreover supports concurrent join. The construction fol-
lows a commonly used approach, based on the technique of proving knowledge
of a signature.

Finally, we present the first efficient instantiation of anonymous proxy signa-
tures (APS) in the standard model. Since automorphic signatures allow certify-
ing public keys, delegation can be done by signing the delegatee’s public key. An
anonymous proxy signature is a GS proof of knowledge of a certification chain
that starts at the original delegator and ends at the message. We also discuss

214 M. Abe et al.

how to strengthen the anonymity guarantees of APS. Using blind automorphic
signatures, we give a protocol that hides the identity of the delegatee from the
delegator. Moreover, using randomizability of GS proofs, we show how to main-
tain anonymity of the intermediate delegators w.r.t. the delegatee.

We note that since the announcement of our work, automorphic signatures
have been used to construct the first fair blind signatures without random or-
acles [FV10] and non-interactively delegatable anonymous credentials [Fuc10].
The commitment schemes and the related assumptions have been used to con-
struct efficient leakage-resilient signatures and one-way relations [DHLAW10].
Moreover, one can use the commitment schemes to reduce the communication
complexity of Groth’s [Gro09b] sub-linear size zero-knowledge argument for cir-
cuit satisfiability from O(|C| 12) group elements to O(|C| 13) group elements.

1.2 Related Work

There are many examples of homomorphic commitments. Homomorphic cryp-
tosystems such as [ElG86, OU98, Pai99, BGN05] or Linear Encryption [BBS04]
can be seen as homomorphic commitment schemes that are perfectly binding
and computationally hiding. Commitments based on homomorphic encryption
can be converted into computationally binding and perfectly hiding homomor-
phic commitments, see for instance the mixed commitments of Damg̊ard and
Nielsen [DN02] and the commitment schemes used by Groth, Ostrovsky and
Sahai [GOS06], Boyen and Waters [BW06], Groth [Gro06] and Groth and Sa-
hai [GS08]. Even in the perfectly hiding versions of these schemes the size of a
commitment is larger than the size of a message though. This length increase
follows from the fact that the underlying building block is a cryptosystem whose
ciphertexts must be large enough to include the message.

There are also direct constructions of homomorphic trapdoor commitment
schemes such as Guillou and Quisquater commitments [GQ88] and Pedersen
commitments [Ped92]. The latter are one of the most used commitment schemes
in the field of cryptography. They are perfectly hiding with a trapdoor and if
the discrete-logarithm problem is hard they are computationally binding. There
are many variants of the Pedersen commitment scheme. Fujisaki and Okamoto
[FO97] and Damg̊ard and Fujisaki [DF02] for instance suggest a variant where
the messages can be arbitrary integers. However, none of the previous trapdoor
commitment schemes has messages from a group.

Feasibility of structure-preserving signatures on group elements was first shown
by Groth [Gro06], who presents a construction based on the decision linear as-
sumption (DLIN) [BBS04]. While it is remarkable that the security can be based
on a simple standard assumption, the scheme is not practical as signatures
consist of hundreds of thousands of group elements. Based on the q-Hidden LRSW
assumption, Green and Hohenberger [GH08] presented an efficient scheme that
provides security against random-message attacks. An extension to chosen-
message security is not known.

Independently of our work, Cathalo, Libert and Yung [CLY09] gave a practical
scheme based on a combination of the hidden strong Diffie-Hellman assumption,

Structure-Preserving Signatures and Commitments to Group Elements 215

the flexible Diffie-Hellman assumption, and the DLIN assumption. It was the first
structure-preserving signature scheme to sign single group elements. However, it
cannot sign its own verification keys and signatures on vectors grow linearly in
their length.

An instantiation, though not practical, of anonymous proxy signatures was
given in [FP09]. Moreover, they are similar to the delegatable anonymous creden-
tials from [BCC+09] in that they provide mechanisms enabling users to prove
possession of certain rights while remaining anonymous; and they consider re-
delegation of received rights. The interactive delegation protocol for anonymous
credentials provides even mutual anonymity of the delegator and the delegatee.
The two instantiations rely on similar assumptions.

1.3 Merging Our Results

This paper combines the results of three different lines of research. In [Gro09a]
Groth presented the first homomorphic trapdoor commitments to group elements
which are moreover length-reducing (Section 3). Fuchsbauer [Fuc09] gave the
first structure-preserving signatures on group elements and used it to efficiently
implement round-optimal blind signatures in the standard model (Section 4).
Abe, Haralambiev and Ohkubo [AHO10] gave the first constant-size signature
scheme on vectors of general group elements. They also explicitly defined the
notion of simulatable signatures, gave an efficient construction, and used it to
implement UC-secure round-optimal blind signatures (Sections 5 and 6.1).

2 Preliminaries

2.1 Bilinear Groups

We will work in bilinear groups of the form Λ = (p,G1,G2,GT , e, G,H) where

– p is a λ-bit prime, where λ is a security parameter
– G1,G2,GT are order p groups with efficiently computable group operations,

membership tests and map e : G1 ×G2 → GT

– G generates G1, H generates G2 and e(G,H) generates GT

– The map e is bilinear ∀A ∈ G1∀B ∈ G2∀x, y ∈ Zp : e(Ax, By) = e(A,B)xy

To simplify notation, we define G
∗
1 = G1\{1},G∗

2 = G2\{1} and G
∗
T = GT \{1}.

2.2 Assumptions

We will work with bilinear groups generated by a probabilistic polynomial-time
algorithm G that takes the security parameter as input. The schemes we present
will rely on one or more of the following computational assumptions about the
bilinear groups generated by G. We note right away that the assumptions imply
G1 �= G2 and furthermore some of them imply that we are working in so called
type III bilinear groups [GPS08] where there are no efficiently computable non-
trivial homomorphisms between the two base groups G1 and G2. We refer to the
full papers for schemes that work in type I and type II bilinear groups.

216 M. Abe et al.

Variants of DDH and CDH. The decisional Diffie-Hellman (DDH) problem
in a group G is, given (G,Ga, Gb, Gc), to decide whether c = ab. The symmetric
external Diffie-Hellman (SXDH) assumption in a bilinear group states that DDH
is hard in both groups.

Assumption 1 (SXDH). For Λ = (p,G1,G2,GT , e, G,H)← G(1λ), the deci-
sional Diffie-Hellman assumption holds in both G1 and G2.

The 2-out-of-3 CDH assumption [KP06] states that given (G,Ga, H), it is hard
to output (Gr , Har) for an arbitrary r �= 0. To break the Flexible CDH assump-
tion [LV08, CLY09], an adversary must additionally compute Gar . We further
weaken the assumption by defining a solution as (Gr, Gar, Hr, Har), and gener-
alize it to asymmetric groups by letting G ∈ G1 and H ∈ G2. The asymmetric
weak flexible CDH is defined as follows:

Assumption 2 (AWF-CDH). Let G ∈ G1, H ∈ G2 and a ∈ Zp be random.
Given (G,A = Ga, H), it is hard to output (Gr, Gar, Hr, Har) with r �= 0, i.e.,
a tuple (R,M,S,N) that satisfies

e(A,S) = e(M,H) e(M,H) = e(G,N) e(R,H) = e(G,S) (1)

Given a DDH instance (G,Ga, Gb, Gc), solving AWF-CDH for (G,Ga, H) yields
(Gr, Gar, Hr, Har); thus Gc = Gab can be checked by e(Gab, Hr) = e(Gb, Har).
We have thus

Lemma 1. The AWF-CDH assumption holds if the decisional Diffie-Hellman
assumption is hard in G1.

The Double Pairing Assumption. The double pairing problem is given ran-
domGR, GT ∈ G1 to find non-trivialR,S ∈ G2 satisfying e(GR, R)e(GT , T) = 1.

Assumption 3 (DBP). For all nonuniform polynomial-time adversaries A

Pr
[
Λ← G(1λ); GR, GT ← G1; (R, T)← A(Λ,GR, GT) :

(R, T) ∈ G
∗
2 ×G

∗
2 ∧ e(GR, R)e(GT , T) = 1

]
= negl(λ).

We show in the full papers the following lemma:

Lemma 2. The double pairing assumption holds if the decisional Diffie-Hellman
assumption is hard in G1.

The reverse double pairing problem, where the base groups are interchanged and
the challenge is to find a non-trivial pair (R,S) ∈ G2

1 is defined analogously.
Next, observe that given an answer to an instance of the DBP problem, one can

easily yield more answers. We eliminate such possibility by multiplying random
pairings to both sides of the equation. As one of those stays the same in all

Structure-Preserving Signatures and Commitments to Group Elements 217

instances, whereas the other, e(V,W), changes in each instance, the intuition
is that it would be hard to combine e(V,W) and e(V ′,W ′) into one equivalent
pairing e(V ′′,W ′′) — we call such a pairing flexible as it can be easily randomized
and, when relations with respect to the same base is known, combined with
another. Also, to make the assumption valid, we make a system of two such
equations and require that their solutions share a common element, Z.

Assumption 4 (Simultaneous Flexible Pairing Assumption (q-SFP)).
Let Λ be a bilinear groups setup and let GZ , FZ , GR, and FU be random gener-
ators of G1. Let (A, Ã), (B, B̃) be random pairs in G1×G2. For j = 1, . . . , q, let
Rj = (Z,R, S, T, U, V,W) that satisfies

e(A, Ã) = e(GZ , Z) e(GR, R) e(S, T) and (2)

e(B, B̃) = e(FZ , Z) e(FU , U) e(V,W). (3)

Given (Λ,GZ , FZ , GR, FU , A, Ã, B, B̃) and uniformly chosen R1, . . . , Rq, it is
hard to find (Z�, R�, S�, T �, U�, V �,W �) that fulfill relations (2) and (3) under
the restriction that Z� �= 1 and Z� �= Z ∈ Rj for every Rj.

We also show that the SFP assumption can be justified and has an optimal
bound in the generic bilinear group model.

Lemma 3. For any generic algorithm A, the probability that A breaks SFP with
� group operations and pairings is bound by O(q2 + �2)/p.

A variant of the q-strong Diffie Helmman assumption. The q-strong
Diffie-Hellman (SDH) assumption [BB04] implies hardness of the following two
problems in bilinear groups [FPV09]:

1. Given G,Gx and q − 1 pairs (G
1

x+ci , ci), output a new pair (G
1

x+c , c).

2. Given G,K,Gx,
(
(K ·Gvi)

1
x+ci , ci, vi

)q−1
i=1 , output a new ((K ·Gv)

1
x+c , c, v).

Boyen and Waters [BW07] define the hidden SDH assumption which states that
the first problem is hard when the pairs are substituted with triples of the form
(G1/(x+ci), Gci , Hci), for a fixed H . Analogously, Fuchsbauer et al. [FPV09] de-
fine the double hidden SDH (DHSDH) by giving the scalars in the second prob-
lem as exponentiations of two group elements. We adapt DHSDH to asymmetric
groups by giving generators G,F,K ∈ G1 and H ∈ G2; the elements ci and
vi are given as (F ci , Hci) and (Gvi , Hvi). Due to the pairing, a tuple can thus
be effectively verified. The assumption holds in the generic-group model [Sho97]
for both asymmetric and symmetric groups [Fuc09] and falls in the generalized
“Uber-Assumption” family [Boy08].

Assumption 5 (q-ADH-SDH). Let G,F,K ∈ G1, H ∈ G2 and x, ci, vi ∈ Zp

be random. Given (G,F,K,X=Gx; H,Y =Hx) and(
Ai = (K ·Gvi)

1
x+ci , Ci = F ci , Di = Hci , Vi = Gvi , Wi = Hvi

)
,

for 1 ≤ i ≤ q − 1, it is hard to output a new tuple ((K ·Gv)
1

x+c , F c, Hc, Gv, Hv)
with (c, v) �= (ci, vi) for all i.

218 M. Abe et al.

Note that a tuple (A,C,D, V,W) of this form satisfies the following equations:

e(A, Y ·D) = e(K · V,H) e(C,H) = e(F,D) e(V,H) = e(G,W) (4)

2.3 Digital Signatures

A digital signature scheme Sig = (Setup,KeyGen, Sign,Verify) consists of the
following algorithms: Setup outputs system parameters; KeyGen outputs a pair
(vk, sk) of verification and signing keys; and Sign(sk,M) outputs a signature
σ, which is verified by Verify(vk,M, σ). Signatures are existentially unforgeable
under chosen-message attack (EUF-CMA) [GMR88] if no adversary, given vk
and a signing oracle for messages of its choice, can output a pair (M,σ) s.t. M
was never queried and Verify(vk,M, σ) = 1.
Signatures are strongly EUF-CMA (sEUF-CMA) if no adversary can output a
valid pair (M,σ) such that (M,σ) �= (Mi, σi) for all i, with Mi being the i-th
oracle query and σi the response.

2.4 SXDH Groth-Sahai Proofs for Pairing-Product Equations

One of the main motivations of structure-preserving signatures is to combine
them with Groth-Sahai (GS) proofs [GS08], in particular witness-indistinguish-
able (WI) proofs of satisfiability of pairing-product equations (PPE). A PPE over
variables X1, . . . , Xm ∈ G1, Y1, . . . , Yn ∈ G2 is an equation of the form

n∏
i=1

e(Ai, Yi)
m∏
i=1

e(Xi, Bi)
m∏
i=1

n∏
j=1

e(Xi, Yj)γi,j = tT , (E)

determined by Aj ∈ G1, Bi ∈ G2, γi,j ∈ Zp, and tT ∈ GT .
Groth and Sahai define an extractable commitment scheme for group ele-

ments. The setup algorithm is given a bilinear group and outputs a commitment
key ck ∈ G4

1 × G4
2. A commitment Com(ck, X, ρ) to X ∈ Gi using randomness

ρ ∈ Z2
p is in G2

i (for i = 1, 2). These commitments are perfectly binding and
given an extraction key, the committed values can be recovered.

A proof of satisfiability of a PPE is constructed as follows. First, make com-
mitments to the satisfying witness (X1, . . . , Xm, Y1, . . . , Yn). Then make a proof
φ that the committed values satisfy the equation, using the values and the ran-
domness of the commitments. The proofs, which are in G4

1 × G4
2, are perfectly

sound: if a proof passes verification for a set of commitments then the committed
(and extractable) values satisfy the equation.

There is an alternative setup that outputs keys ck∗ which lead to commitments
and proofs that are equally distributed for all witnesses. Under SXDH, these keys
are indistinguishable from original keys; witness indistinguishability of GS proofs
follows thus from SXDH.

Note that due to extractability, a proof of satisfiability is actually a non-
interactive proof of knowledge of a witness; we will write thus

NIPK{(X1, . . , Xm, Y1, . . , Yn) :
∏
e(Ai, Yi)

∏
e(Xi, Bi)

∏∏
e(Xi, Yj)γi,j = tT }

and PKVrf for the verification algorithm.

Structure-Preserving Signatures and Commitments to Group Elements 219

If for a signature scheme, public keys, messages and signatures are group
elements that are verified by checking PPEs, we can commit to (encrypt) keys,
messages and/or signatures and prove validity of the committed values using GS
proofs.

Randomization. Groth-Sahai commitments can be randomized, in particular,
given c = Com(ck, X, ρ), one can compute Com(ck, X, ρ+ ρ′) for any ρ′ without
knowledge of X or ρ. Moreover, given commitments and a proof φ that the
committed values satisfy a PPE, we can randomize the commitments and adapt
φ to the randomized commitments [BCC+09]. WI implies that a randomized
proof is indistinguishable from a proof computed with a different witness.

3 Commitments

A non-interactive commitment scheme consists of three polynomial-time algo-
rithms (G,Gcom, com). G is a probabilistic polynomial-time setup algorithm that
takes as input the security parameter λ and outputs some setup information
Λ; in our commitment scheme G will be a bilinear group generator. Gcom is a
probabilistic polynomial-time algorithm that takes as input the setup Λ and and
generates a public commitment key ck and a trapdoor key tk. The commitment
key ck specifies a message space Mck, a randomizer space Rck and a commit-
ment space Cck. We assume it is easy to verify membership of the message space,
randomizer space and the commitment space and it is possible to sample ran-
domizers uniformly at random from Rck. The algorithm Com takes as input
the commitment key ck, a message m from the message space, a randomizer
r from the randomizer space and outputs a commitment c in the commitment
space. We call a message-randomizer pair an opening. Anybody with an opening
and a commitment can check whether the commitment is a commitment to the
message specified in the opening.

A commitment scheme should be binding, which means it is infeasible to find
two openings of the same commitment to two different messages. A commitment
scheme should also be hiding such that the commitment does not disclose any-
thing about the message. Our commitment scheme is a trapdoor commitment
scheme, which makes it hiding in a very strong sense. The commitment has a
trapdoor opening algorithm Topen that takes the trapdoor key, an opening of
a commitment and a message and outputs a randomizer such that the message
and the randomizer constitute a new opening of the commitment.

We will now describe our commitment scheme. The commitment scheme will
have message space Mck = Gn

2 , randomizer space Rck = G2 and commitment
space Cck = GT . In other words, we can commit to an n-tuple of base group
elements with a commitment that consists of a single target group element.

Setup: On input 1λ return Λ = (p,G1,G2,GT , e, G,H)← G(1λ).

Key generation: On input Λ pick GR ← G∗
1 and x1, . . . , xn ← Zp and set

G1 = Gx1
R , · · · , Gn = Gxn

R . The commitment and trapdoor keys are

ck = (Λ,GR, G1, . . . , Gn) and tk = (ck, x1, . . . , xn).

220 M. Abe et al.

Commitment: Using commitment key ck on input message (M1, . . . ,Mn) ∈
Gn

2 pick randomizer R← G2. The commitment is given by

C = e(GR, R)
n∏

i=1

e(Gi,Mi) .

Trapdoor opening: On a commitment C ∈ GT with opening (M1, . . . ,Mn, R)
∈ Gn

2 × G2 and another message (M ′
1, . . . ,M

′
n) ∈ Gn

2 use the trapdoor key
tk to compute the trapdoor randomizer R′ = R

∏n
i=1(Mi/M

′
i)

xi . This gives
us a trapdoor opening (M ′

1, . . . ,M
′
n, R

′) satisfying

C = e(GR, R)
n∏

i=1

e(Gi,Mi) = e(GR, R
′)

n∏
i=1

e(Gi,M
′
i) .

The commitment scheme has several useful properties. The commitment is length-
reducing, since a commitment to a tuple of messages yields a commitment consist-
ing of a single target group element. The commitment scheme is homomorphic
since multiplying two commitments yields a commitment to the entry-wise prod-
uct of the messages, i.e.,

e(GR, R)
n∏

i=1

e(Gi,Mi) · e(GR, R
′)

n∏
i=1

e(Gi,M
′
i) = e(GR, RR

′)
n∏

i=1

e(Gi,MiM
′
i).

The commitment scheme is perfectly hiding since for all messages (M1, . . . ,Mn) ∈
Gn

2 the commitment procedure returns a uniformly random commitment C ∈ GT

and therefore no information is leaked about the commitment. Indeed, with the
trapdoor key we can even take a commitment and its opening and create an open-
ing to any other message. Finally, we prove in the full papers that the commitment
scheme is computationally binding if the double pairing assumption holds for the
bilinear group generator G. We summarize these properties in the theorem below,
which we prove in the full papers.

Theorem 1. (G,Gcom,Com,Topen) described above is a homomorphic, perfectly
hiding trapdoor commitment scheme; and assuming the double pairing assump-
tion holds for G the commitment scheme is computationally binding.

It is straightforward to construct a similar type of commitment scheme for tuples
in Gn

1 using the reverse double pairing assumption.

Committing to commitments. The defining characteristic of our commit-
ment scheme is that we commit to base group elements as opposed to field
elements. This opens up new applications for commitment schemes. As a sim-
ple example, we can for instance construct commitments to commitments. Re-
call that Pedersen commitments to tuples (m1, . . . ,mn) ∈ Zn

p are of the form
C = Hr

∏n
j=1 H

mj

j . Each Pedersen commitment is a group element, and we can
commit to many Pedersen commitments using our commitment scheme. Com-
bining the two commitment schemes we can commit to n2 field elements from

Structure-Preserving Signatures and Commitments to Group Elements 221

Zp. Since both Pedersen commitments and our commitments are homomorphic,
the combined commitment scheme is also homomorphic. It also preserves the
trapdoor opening property and is perfectly hiding. A commitment consists of a
single group element in GT and the commitment key consists of approximately
2n group elements, so unlike the Pedersen commitment we have a commitment
key that is much smaller than the messages.

4 Automorphic Signatures

For elaborate applications, Groth-Sahai compatibility of a signature scheme is
not sufficient; in addition, the verification keys have to lie in the message space.
This enables constructions of certification chains (sequences of public keys linked
by certificates from one key on the next one), which can be anonymized by GS
proofs, as required by anonymous proxy signatures (see Section 6.3) and delegat-
able anonymous credentials. We call such a scheme an automorphic signature,
as it is able to sign its own keys and it is structure preserving.

Definition 1. An automorphic signature over Λ = (p,G1,G2,GT , e, G,H) is
an EUF-CMA secure signature whose verification keys lie in the message space.
Moreover, the messages and signatures consist of elements from G1 and G2, and
the verification predicate is a conjunction of pairing-product equations.

The trick that enables an efficient instantiation of automorphic signatures is to
define a message (and thus a verification key) as a pair of group elements of
the form (Gv, Hv). Hence, the message space is the set of Diffie-Hellman pairs
DH = {(Gv, Hv) | v ∈ Zp}. In Assumption 5, we could interpret G,F,K,H as
parameters, (X,Y) as the public key, (V,W) as the message and (A,C,D) as
the signature—since a signer holding the secret key x can choose c and pro-
duce (A,C,D) without knowing v. ADH-SDH states that these signatures are
unforgeable when the adversary gets q − 1 signatures on random messages.

To make the scheme secure against chosen-message attacks, we interpret Gv

in the definition of A as a trapdoor commitment to the message (M,N). The
key is an element T := Gt ∈ G1, where t is the trapdoor, and a commitment
to (M,N) is defined as V := T r ·M with opening (Gr, Hr). AWF-CDH implies
that the commitments are computationally binding. Trapdoor opening requires
knowledge of W such that (V,W) ∈ DH: for any (V,W), (M,N) ∈ DH, a valid
opening is ((V ·M)−t, (W ·N)−t).

The final signature will be (A,C,D) together with the opening of the com-
mitment (R,S); a signature is thus in G3

1 ×G2
2.

4.1 Instantiation

Our automorphic signature scheme Sig = (Setup,KeyGen, Sign,Verify) is defined
as follows.

Setup: On input 1λ run Λ = (p,G1,G2,GT , e, G,H) ← G(1λ), choose random
elements F,K, T ∈ G1 and output the parameters pp := (Λ,F,K, T). The
message space is DH := {(Gm, Hm) |m ∈ Zp}.

222 M. Abe et al.

Key generation: On input pp choose x ← Zp and return the verification key
vk := (Gx, Hx) and the signing key sk := x.

Signing: On input the parameters pp, a secret key x and a message (M,N) ∈
DH, choose c, r ← Zp and return

A := (K · T r ·M)
1

x+c C := F c D := Hc R := Gr S := Hr

Verification: On input pp, a public key (X,Y) and a message (M,N), both in
DH, and a signature (A,C,D,R, S), return 1 if

e(A, Y ·D) = e(K ·M,H) e(T, S)
e(C,H) = e(F,D)
e(R,H) = e(G,S)

(5)

Theorem 2. Under ADH-SDH and AWF-CDH, Sig is strongly unforgeable
against chosen-message attacks.

We refer to the full version [Fuc09] for a proof. Note that the scheme can also
be instantiated for G1 = G2. Our scheme (and the blind signature scheme in
the next section) can also be used to sign bit strings if we assume a collision-
resistant hash function Hash : {0, 1}∗ → Zp: before signing a message or verifying
a signature, we map m ∈ {0, 1}∗ to (M,N) := (GHash(m), HHash(m)) ∈ DH.

4.2 Automorphic Blind Signatures

We now show how to combine automorphic signatures with the Groth-Sahai
proof system to construct the first round-optimal blind signature scheme, satis-
fying standard security requirements as in [Oka06] (see Section 6.1 for a univer-
sally composable scheme). Similarly to Fischlin’s generic construction, our blind
signatures are defined as a proof of knowledge of a signature from an underlying
scheme, which perfectly hides the signature. We thus only have to ensure that
the signer does not learn the message while signing. In our scheme the user sends
a randomization of the message, on which the signer makes a “pre-signature”.
By adapting the randomness, the user can retrieve a signature on the message
(rather than on a commitment for which the user has to prove knowledge of
the opening, as in Fischlin’s construction). This increases useability of our blind
signatures for applications (cf. Section 6.3) and also makes them shorter.

To obtain a blind signature on (M,N), the user randomly picks ρ ← Zp and
blinds M by the factor T ρ. In addition to U := T ρ ·M , she sends a GS proof
of knowledge of (M,N,Gρ, Hρ). The signer now formally produces a signature1

on U , for which we have A = (K · T r · U)1/(x+c) = (K · T r+ρ ·M)1/(x+c); thus
A is the first component of a signature on (M,N) with randomness r + ρ. The
user can complete the signature by adapting randomness r to r+ ρ in the other
components. The blind signature is a GS proof of knowledge of this signature.
1 Note that the user does not obtain a signature on U (unless U = M), since it is

not an element of the message space; to produce (U, H logG U) ∈ DH, the user would
have to break AWF-CDH.

Structure-Preserving Signatures and Commitments to Group Elements 223

Obtain
(
(pp′, ck), vk, (M, N)

)
. Choose ρ← Zp, set P := Gρ, Q := Hρ, and send:

– U := T ρ ·M
– φ := NIPK

{
(M, N, P, Q) : e(M,H) = e(G, N)

∧ e(P, H) = e(G,Q) ∧ e(T, Q) e(M, H) = e(U,H)
}

Issue
(
(pp′, ck), x

)
. If φ is valid, choose c, r ← Zp and send:

A := (K · T r · U)
1

x+c C := F c D := Hc R′ := Gr S′ := Hr

Obtain sets R := R′ · P , S := S′ ·Q. If (A, C, D, R, S) is valid on (M, N) under vk,
it outputs

σ := NIPK
{
(A,C, D, R, S) : VerifySig

(
pp, vk, (M, N), (A, C, D, R, S)

)}
.

Fig. 1. Two-move blind signing protocol

Our blind signature scheme BSig = (Setup,KeyGen,Obtain, Issue,Verify) is de-
fined as follows.

Setup: On input 1λ run the setup algorithms for Sig and for Groth-Sahai
proofs; return the respective outputs pp′ and ck as parameters pp.

Key generation: The message space and key generation are defined as for Sig.

Signature issuing: The protocol consists of interactive algorithms Obtain, run
by the user, and Issue, run by the signer. Obtain has inputs pp, the signer’s
verification key vk and a message (M,N) ∈ DH. Issue has inputs pp and the
signing key x. The protocol is given in Figure 1.

Verification: On input pp, a verification key vk, a message (M,N) ∈ DH and
a signature σ, return 1 if σ is a valid Groth-Sahai proof, i.e.,

PKVrf{σ : VerifyA(vk, (M,N), ·)} = 1 .

Theorem 3. Under ADH-SDH and SXDH, scheme BSig is an unforgeable
blind-signature scheme.

Using soundness of Groth-Sahai proofs, unforgeability is shown by reduction to
the unforgeability of Sig, which holds under ADH-SDH and SXDH (the latter
implies AWF-CDH). Under SXDH, the user’s message (U, φ) computationally
hides (M,N) and the blind signature hides what the signer sends in the issuing;
together this can be shown to imply blindness. See [Fuc09] for a formal proof of
Theorem 3.

The round complexity of the scheme is optimal. A blind signature consists of
commitments to (A,C,D,R, S) in G6

1×G4
2 and GS proofs, which are in G4

1×G4
2,

for 3 equations. A blind signature is thus in G18
1 × G16

2 , the two messages sent
during issuing are in G17

1 ×G16
2 and G3

1×G2
2, respectively. Note that the scheme

remains automorphic since GS proofs consists of group elements and are verified
by checking pairing-product equations.

224 M. Abe et al.

4.3 Automorphic Signatures on Message Vectors

In order to sign vectors of messages of arbitrary length, we proceed as follows. We
first show how to transform any signature scheme whose message space forms
an algebraic group (and contains the public-key space) into one that signs 2
messages at once—if we exclude the neutral element from the message space
of the transform. A signature on a message pair will contain 3 signatures (of
the original scheme) on different products of the components. Note that DH,
the message space of Sig, is a group when the group operation is defined as
component-wise multiplication.

We then give a straightforward generic transformation from any scheme sign-
ing 2 messages (and whose verification keys lie in the message space) to one
signing message vectors of arbitrary length (Definition 3). Both transformations
do not modify setup and key generation and they are invariant w.r.t. the struc-
ture of verification; in particular, if the verification predicate of the original
scheme is a conjunction of PPEs then so is that of the transform.

Definition 2. Let Sig = (Setup,KeyGen, Sign,Verify) be a signature scheme
whose message space (M, ·) is an algebraic group that contains the verification
keys. The pair transform of Sig with message space M∗ ×M∗ is defined as
Sig′ = (Setup,KeyGen, Sign′,Verify′) with
Sign′(sk, (M1,M2)): Set (vk0, sk0)← KeyGen and return

σ :=
(
vk0, Sign(sk, vk0),

Sign(sk0,M1), Sign(sk0,M1 ·M2), Sign(sk0,M1 ·M3
2)
)

.

Verify′
(
vk, (M1,M2), (vk0, σ0, σ1, σ2, σ3)

)
: Return 1 if all of the following are 1:

Verify(vk, vk0, σ0)

Verify(vk0,M1, σ1) Verify(vk0,M1 ·M2, σ2) Verify(vk0,M1 ·M3
2 , σ3)

Theorem 4. If Sig is EUF-CMA secure then so is Sig′.

Definition 3. Let Sig = (Setup,KeyGen, Sign,Verify) be a signature scheme
with message spaceM×M, such thatM contains the verification keys. Assume
an efficiently computable injection I : {1, . . . , |M|} →M. The vector transform
of Sig is defined as Sig′′ = (Setup,KeyGen, Sign′′,Verify′′) with
Sign′′(sk, (M1, . . . ,Mn)): Set (vk0, sk0)← KeyGen and return

σ :=
(
vk0, Sign(sk, vk0, I(n)),

Sign(sk0,M1, I(1)), . . . , Sign(sk0,Mn, I(n))
)

.

Verify′′
(
vk, (M1, . . . ,Mn), (vk0, σ0, σ1, . . . , σn)

)
: Return 1 if the following are 1:

Verify
(
vk, (vk0, I(n)), σ0

)
Verify

(
vk0, (Mi, I(i)), σi

)
(for all 1 ≤ i ≤ n)

Theorem 5. If Sig is EUF-CMA secure then so is Sig′′.

We refer to [Fuc09] for proofs of Theorems 4 and 5 where we also discuss why
the construction in Definition 2 is optimal and why it seems somehow hard to
construct a generic vector transform directly.

Structure-Preserving Signatures and Commitments to Group Elements 225

5 Signatures on Vectors of Group Elements

In this section, we present the first constant-size structure-preserving signature
scheme for messages of general bilinear groups elements. We start by describing
useful randomization techniques, followed by the scheme description and various
extensions. Full details, as well as the byproduct of several trapdoor commitment
schemes, can be found in [AHO10].

5.1 Randomization Techniques

We introduce techniques that randomize elements in a pairing or a pairing prod-
uct without changing their value in GT . Let (p,G1,G2,GT , e, G,H)← G(1λ).

Inner Randomization (X ′, Y ′)← Rand(X,Y): A pairing A = e(X,Y) �= 1 is
randomized as follows. Choose γ ← Z∗

p and let (X ′, Y ′) = (Xγ , Y 1/γ). It then
holds that (X ′, Y ′) distributes uniformly over G1 × G2 under the condition of
A = e(X ′, Y ′). If A = 1, then first flip a coin and pick e(1, 1) with probability
1/(2p−1). If it is not selected, flip a coin and pick either e(1, X) or e(X, 1) with
probability 1/2. Then select X uniformly from the corresponding group except
for 1.

Sequential Randomization {X ′
i, Y

′
i }ki=1 ← RandSeq({Xi, Yi}ki=1): A pairing

product A = e(X1, Y1) e(X2, Y2) . . . e(Xk, Yk) is randomized into A = e(X ′
1, Y

′
1)

e(X ′
2, Y

′
2) . . . e(X ′

k, Y
′
k) as follows: Let (γ1, . . . , γk−1) ← Zk−1

p . We begin with
randomizing the first pairing by using the second pairing as follows. First verify
that Y1 �= 1 and X2 �= 1. If Y1 = 1, replace the first pairing e(X1, 1) with e(1, Y1)
with a new random Y1(�= 1). The case of X2 = 1 is handled in the same manner.
Then multiply 1 = e(X−γ1

2 , Y1) e(X2, Y
γ1
1) to both sides of the formula. We thus

obtain

A = e(X1X
−γ1
2 , Y1) e(X2, Y

γ1
1 Y2) e(X3, Y3) · · · e(Xk, Yk).

Next we randomize the second pairing by using the third one. As before, if
Y γ1

1 Y2 = 1 or X3 = 1, replace them to random values. Then multiply 1 =
e(X−γ2

3 , Y γ1
1 Y2) e(X3, (Y

γ1
1 Y2)γ2). We thus have

A = e(X1X
−γ1
2 , Y1) e(X2X

−γ2
3 , Y γ1

1 Y2) e(X3, (Y
γ1
1 Y2)γ2Y3) · · · e(Xk, Yk).

This continues up to the (k−1)-st pairing. When done, the value of the i-th pairing
distributes uniformly in GT due to the uniform choice of γi. The k-th pairing fol-
lows the distribution determined by A and preceding k− 1 pairings. To complete
the randomization, every pairing is processed by the inner randomization.

The sequential randomization can be used to extend a product of k pair-
ings to a product of arbitrary k′ pairings, k′ ≥ k, by appending e(1, 1) before
randomization. By {X ′

i, Y
′
i }k

′
i=1 ← RandExtend({Xi, Yi}ki=1) we denote the se-

quential randomization with extension. Parameters k and k′, k′ ≥ k, should be
clear from the input and the output.

Note that the algorithms yield uniform elements and thus may include pairings
that evaluate to 1GT . If it is not preferable, it can be avoided by repeating that
particular step once again excluding the bad randomness.

226 M. Abe et al.

5.2 Basic Signature Scheme

We define the signature scheme Sig = (G,KeyGen, Sign,Verify) below. In addition
to the common parameters outputted by the G algorithm, the key generation
algorithm KeyGen also takes a parameters k which determines the message space
Gk

2 ; messages of shorter length are implicitly padded with 1G2 -s. We do not use
any trusted setup, but only the bilinear group generation.

Setup: On input 1λ return Λ = (p,G1,G2,GT , e, G,H)← G(1λ).
Key generation: On input Λ and k, choose random generators GR, FU ← G∗

1.
For i = 1, . . . , k, choose γi, δi ← Z∗

p
2 and compute Gi = Gγi

R and Fi = F δi

U .
Choose γZ , δZ ← Z∗

p
2 and compute GZ = GγZ

R and FZ = F δZ

U . Also choose
α, β ← Z∗

p
2 and compute {Ai, Ãi}1i=0 ← RandExtend(GR, H

α) and
{Bi, B̃i}1i=0 ← RandExtend(FU , H

β). Set sk = (vk, α, β, γZ , δZ , {γi, δi}ki=1)
and vk = (Λ,GZ , FZ , GR, FU , {Gi, Fi}ki=1, {Ai, Ãi, Bi, B̃i}1i=0). Output
(vk, sk).

Signature issuing: On input sk and &M , choose ζ, ρ, τ, ϕ, ω randomly from Z
∗
p

and set:

Z = Hζ, R = Hρ−γZζ
∏k

i=1 M
−γi

i , S = Gτ
R, T = H(α−ρ)/τ ,

U = Hϕ−δZζ
∏k

i=1 M
−δi

i , V = Fω
U , W = H(β−ϕ)/ω.

Output σ = (Z,R, S, T, U, V,W) as a signature.
Verification: Oninputvk, &M ,andσ,parsethesignatureσas(Z,R, S, T, U, V,W).

Output 1 if the following equations:

A = e(GZ , Z) e(GR, R) e(S, T)
k∏

i=1

e(Gi,Mi) and (6)

B = e(FZ , Z) e(FU , U) e(V,W)
k∏

i=1

e(Fi,Mi) (7)

hold for A = e(A0, Ã0) e(A1, Ã1) and B = e(B0, B̃0) e(B1, B̃1). Output 0,
otherwise.

The following theorem is proved in [AHO10]:

Theorem 6. (G,KeyGen, Sign,Verify) described above provides perfect correct-
ness. It is existentially unforgeable against adaptive chosen-message attack if the
SFP assumption holds for G.
Next, we describe some notable properties of the signature scheme:

Partial Perfect Randomizability. Given a signature (Z,R, S, T, U, V,W) one
can randomize every element except for Z by applying the sequential random-
ization technique with small tweak as follows. Define the function
(R′, S′, T ′, U ′, V ′,W ′)← SigRand(R,S, T, U, V,W), as:

Structure-Preserving Signatures and Commitments to Group Elements 227

– Randomize (R,S, T) into (R′, S′, T ′) as follows.
• First, if T = 1, set S = 1 and choose T ← G∗

2.
• Then, choose "← Zp and compute

R′ = RT �, (S′, T ′)← Rand(SG−�
R , T)

– Randomize (U, S, T) into (U ′, S′, T ′) analogously.

Lemma 4. The above (R′, S′, T ′, U ′, V ′,W ′) distributes uniformly over (G2 ×
G1 × G2)2 under constraint that e(GR, R) e(S, T) = e(GR, R

′) e(S′, T ′) and
e(FU , U) e(V,W) = e(FU , U

′) e(V ′,W ′).

The claim implies that (S′, T ′, V ′,W ′) is information theoretically independent
of Z, the message, and the verification key. (In general, the same is true for
publishing any two elements from (R′, S′, T ′) and (U ′, V ′,W ′) respectively.)

Signature Binding Property. Roughly, it claims that no one but the signer
can obtain two signatures which have the same S and V . In the following formal
statement, the adversary is allowed to submit both &M and &M † to the signing
oracle. That is way the property is not implied by EUF-CMA in general.

Lemma 5. Under adaptive chosen message attacks, no adversary can output
(&M, σ) and (&M †, σ†) such that 1 = Verify(vk, &M, σ) = Verify(vk, &M †, σ†), &M �=
&M †, and (S, V) are shared in σ and σ†.

Hence, in a way, publishing (S, V) together with the verification key works as a
commitment on the signature and the message without revealing any information
(recall that (S, V) are chosen uniformly in the signing algorithm).

5.3 Variations and Extensions

In this section we describe various extensions and modifications of the above
scheme. Due to the space limitations, the ideas are only described briefly and
the full description is presented in the full version.

Messages ∈ Gk
1. When working with asymmetric pairings, it is possible to

define a “dual scheme” with a message space Gk
1 (by essentially swapping G1

and G2 in the above description).

Messages ∈ G
k1
1 × G

k2
2 . It is possible to combine the signature schemes with

message spaces G
k1
1 and G

k2
2 to obtain a signature scheme whose message space

is G
k1
1 × G

k2
2 . Note that this is not trivial, as there is no efficient mappings

between G1 and G2, and straightforward independent signing allows a forgery.
The transformation is applicable to (or required by) the extensions below.

Short Variable-Length Messages. Let 〈n〉 denote a deterministic encoding
of non-negative integer n (< p) to an element of G∗

2. By limiting the maximum
message length to be k−1, for a signature with message space Gk

2 , and appending
〈| &M |〉 to the input message &M , messages with length less than k can be treated.

228 M. Abe et al.

Unbounded-Length Messages. For a signature scheme with message space
Gk

2 , it is possible to sign messages from the space Gn
2 , n > k, by using a “chain-

ing” technique. The basic idea is to split the message vector into (almost) equal
chunks and sign each chunk along with the signature of the previous chunk (or
part of it using the signature binding property described above). This is useful
when the signer does not know a priori the maximum length of the messages or
has to sign her own verification key (e.g. automorphic signatures).

Strong One-time Signatures. Dropping the flexible part e(S, T) and e(V,W)
from the construction results in a strongly unforgeable one-time signature scheme
based on a (weaker) static assumption which is implied by the DBP.

Strongly Unforgeable Signatures. We construct a structure-preserving sig-
nature scheme with constant-size signatures that is sEUF-CMA secure. The
generic construction, combining a EUF-CMA and a one-time sEUF-CMA sig-
nature schemes, is optimized by sharing some parts of the verification keys.

vk Variations. We can replace {Ai, Ãi, Bi, B̃i}1i=0 with A = e(GR, H
α) and

B = e(FU , H
β) in a verification key, and use A and B directly in the verification

equations (6) and (7). The reason we include a representation of A (and B) in G1
and G2 is to address the needs to put the verification key into the base groups.
The GS proof system provides zero-knowledge property for statements that do
not include elements from GT except for 1GT . When WI is of only concern, we
do such replacement.

Symmetric Pairings. The signature scheme is also secure when working with
symmetric pairings (G1 = G2). The above extensions apply in that case as well.

5.4 Simulatable Signatures

A simulatable signature scheme SSig=(G,CrsGen,KeyGen,Check,Sign,Verify,Sim)
consists of algorithms for which Sig=((G + CrsGen),KeyGen,Sign,Verify) consti-
tutes a regular signature scheme. It is defined in the common reference string
(CRS) model and allows to create valid signatures using the trapdoor associated
with the CRS. The three algorithms not defined for regular signatures (CrsGen,
Check, Sim) are, respectively, for generating a CRS and the associated trapdoor,
for checking that a verification key produced by a user is valid, and for simulating
a signature on any valid message on behalf of any user using the trapdoor key
rather than the corresponding signing key. A simulatable signature is a useful
tool in combination with a witness indistinguishable (WI) proof system. Unlike
zero-knowledge (ZK) proofs, WI proof system does not accompany a simulator.
So when a signature is part of the witness and the signer is corrupt and use-
less, simulatable signature can provide a correct witness to the entity having the
trapdoor.

The notion is introduced in [AO09] but in an informal way dedicated for
their purposes. We present a formal treatment and give an efficient construction,
but due to the space limitation, we can only sketch the intuition, the security
definitions, and the construction details. Full details are presented in [AHO10].

Structure-Preserving Signatures and Commitments to Group Elements 229

The security properties we require from a simulatable signature scheme are
correctness, simulatability, and unforgeability, extended to a multi-user setting
where the adversary has access to a signing oracle for all correctly generated
verification keys in addition to a proof oracle for simulated signatures on any
valid verification key and message. Our construction shares a lot with our basic
signature scheme. The main difference is that to sign messages of length k, we
need k flexible pairings rather than 1, so the signature is of size 4k + 3 group
elements. The Verify algorithm is defined similarly, with the verification equations
being:

A = e(GZ , Z) e(GR, R)
k∏

i=1

e(Gi,Mi) e(Si, Ti) and (8)

B = e(FZ , Z) e(FU , U)
k∏

i=1

e(Fi,Mi) e(Vi,Wi) . (9)

So, for k = 1, the two schemes have the same signature distribution and verifica-
tion algorithms. The key generation algorithm of the basic scheme is divided into
two parts: CrsGen generating the elements on the right side of equations (8)-(9)
and KeyGen computing those on the left as well as a signature on the default
message (e.g. the all-1G2 vector). The CRS is, in fact, a commitment key for a
trapdoor commitment scheme similar to the one presented in Section 3, whereas
any vk is a commitment to the default message. The signing algorithm is quite
intricate as it opens the commitment, the signer’s vk, to any given message with-
out using the commitment trapdoor. That is why we need k flexible pairings to
achieve perfectly random distribution for a signature under the condition that
the verification equations are satisfied.

Theorem 7. The SSig described above is a perfectly correct signature scheme
and signature-simulatable. It is EUF-CMA with WI-simulation in the multi-user
setting for k = 1 if the SFP assumption holds for G.
The security for the case of k > 1 is shown under a generalization of the SFP
assumption and also presented in the full version.

6 Applications of Signatures on Group Elements

This section highlights the benefits of combining structure-preserving signatures
on group elements with the GS proof system when building applications. We
present the first efficient round-optimal non-committing blind signature scheme
which is adaptively secure in the universal-composability framework, efficient
group signatures with concurrent join under the strongest security definitions,
and efficient anonymous proxy signatures with enhanced anonymity properties.

230 M. Abe et al.

6.1 UC-Secure Blind Signatures

It has been an open problem to efficiently instantiate Fischlin’s [Fis06] framework
for UC-secure round-optimal blind signatures. We do so using our signature
scheme from Section 5 and a variant of Pedersen commitments [Ped92]. In fact,
we use the modification of [HKKL07, AO09] for which the generic construction
uses a NIWI proof system and a simulatable signature scheme as it achieves
adaptive security.

We instantiate the framework as follows: a user commits to a message m ∈ Zp,
with opening D = Gr, as C = HmY r and sends C to the signer. Note that the
verification equation for (D,m) being a valid opening is e(G,C) e(D,Y −1) =
e(G,Hm) which could be viewed as a “pairing-based variant” of Pedersen com-
mitment. The signer signs the commitment c using the simulatable signature
scheme from Section 5 and returns the signature to the user. Then, the user
computes a NIWI proof of knowledge π of a commitment C to the message m,
an opening D of the commitment for that message, and a valid signature on C
with respect to the signer’s verification key. The user outputs that proof as a
blind signature on the message m.

Details of the instantiation can be found in [AHO10]. The signature size is 28
group elements when working with symmetric pairings and 28 group elements
with asymmetric, while the total communication complexity is only 8 group
elements in both cases.

6.2 Group Signatures

Group signatures have enjoyed much interest since they were introduced by
Chaum and van Heyst [Cv91] almost twenty years ago. Most previous con-
structions, [CS97, ACJT00, BBS04, CL04, BSZ05, BW06, BW07, Gro06] among
others, could be viewed as unsatisfactory in some aspect: relying on the random-
oracle model, satisfying weaker security definitions, or not being efficient. The
scheme by Groth [Gro07] both is practical and satisfies the strengthened se-
curity definitions of [BSZ05]. However, it does not support concurrent join of
new users. Using our signature schemes in combination with the GS proof sys-
tem and an appropriate encryption scheme [Kil06, Sha07], we overcome this
shortcoming and construct a group signature scheme under the strongest se-
curity definitions which supports concurrent join while achieving comparable
efficiency.

Our construction follows a common approach used, e.g., in [CS97, Gro07].
The dynamic join protocol between a group member and the issuer simply con-
sists in the issuer signing the member’s verification key. To sign a message m,
the member signs the message using her secret key and gives a NIWI proof of
knowledge of a verification key, a signature on that key by the issuer, and a
signature on the message under that key. For the details of our constructions
and further discussions, we refer to the full versions of our papers.

Structure-Preserving Signatures and Commitments to Group Elements 231

6.3 Anonymous Proxy Signatures

Combined with Groth-Sahai proofs, automorphic signatures enable the first ef-
ficient instantiation of anonymous proxy signatures [FP08]. This primitive gen-
eralizes (multi-level) proxy signatures [MUO96, BPW03] and group signatures.
Consider a setting where users publish signature verification keys, which they
have previously registered with an authority. Proxy signatures enable users to
delegate others to sign on their behalf; moreover, received rights can be redele-
gated. Anonymity of proxy signatures guarantees that they neither reveal who
signed nor who redelegated. As for group signatures, an opening authority can re-
voke anonymity to deter from misuse. Every valid signature can be opened to reg-
istered users (traceability) and no coalition even comprising the authorities can
produce a signature that wrongfully accuses an honest user (non-frameability).

Automorphic signatures allow a straightforward instantiation of the generic
construction. To delegate to Bob, Alice signs his public key (and possibly some
public attributes). To redelegate to Carol, Bob forwards her the received sig-
nature and signs her public key. Carol makes a proxy signature by signing the
message and then making a proof of knowledge of the following: Bob’s key, Al-
ice’s signature on it, her own key, Bob’s signature on it, and her signature on the
message.2 Since all of them consist of elements of a bilinear group and validity
is expressed as pairing-product equations, Groth-Sahai (GS) proofs apply per-
fectly. The extraction key is given to the opener who can thus revoke anonymity
of a signature by retrieving the public keys of the intermediate delegators and
the proxy signer. A signature is verified by checking validity of the GS proof
with respect to Alice’s public key.

Enhanced Anonymity Guarantees. In the model of [FP08], anonymity holds
only w.r.t. the verifier. We show how to protect the privacy of the delegatee and
the delegators even during delegation. The delegatee remains anonymous if we
use the issuing protocol of the blind signature from Section 4.2 for delegation.
In the end, the delegatee holds an actual signature on her public key, as in the
original scheme, but without the delegator having learned her identity.

The previous delegators can remain anonymous w.r.t. the delegatee as well,
as due to the modularity of Groth-Sahai proofs, the “anonymization” of a sig-
nature need not be delayed until the proxy signing: instead of forwarding the
received delegation chain, a delegator forwards a proof of knowledge of it. The
delegatee can then extend the proof by one delegation step, or make a proxy
signature; before doing so, she randomizes the proof, which prevents linkability
of delegations and signatures. By additionally proving knowledge of his public
key and signature, the delegator can also hide his own identity. Unfortunately,
this is not compatible with blind delegation, while hiding the previous delegators
is. We refer to [Fuc09] for the details.

2 To guarantee traceability, Carol additionally proves knowledge of certificates from
the authority on the public keys. Moreover, to delegate, a user actually signs (a hash
value of) an identifier set by the original delegator and his position in the chain in
addition to the public key to achieve non-frameability.

232 M. Abe et al.

Acknowledgments

The second author is supported by EADS, the French ANR-07-TCOM-013-04
PACE Project and the European Commission through the ICT Program under
Contract ICT-2007-216676 ECRYPT II.

References

[ACJT00] Ateniese, G., Camenisch, J.L., Joye, M., Tsudik, G.: A practical and
provably secure coalition-resistant group signature scheme. In: Bellare,
M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Hei-
delberg (2000)

[ADW09] Alwen, J., Dodis, Y., Wichs, D.: Survey: Leakage-resilience and the
bounded-retrieval model. Invited Paper to International Conference on
Information Theoretic Security (2009),
http://cs.nyu.edu/~dodis/surveys.html

[AHO10] Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear
groups for modular protocol design. Cryptology ePrint Archive, Report
2010/133 (2010), http://eprint.iacr.org/

[AO09] Abe, M., Ohkubo, M.: A framework for universally composable non-
committing blind signatures. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 435–450. Springer, Heidelberg (2009)

[BB04] Boneh, D., Boyen, X.: Short signatures without random oracles.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidel-
berg (2004)

[BCC+09] Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A.,
Shacham, H.: Randomizable proofs and delegatable anonymous creden-
tials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125.
Springer, Heidelberg (2009)

[BCKL08] Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures
and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008)

[BGLS03] Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifi-
ably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EU-
ROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg
(2003)

[BGN05] Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ci-
phertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341.
Springer, Heidelberg (2005)

[BMW03] Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group sig-
natures: Formal definitions, simplified requirements, and a construction
based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)

[BNPS03] Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-
more-RSA-inversion problems and the security of Chaum’s blind signa-
ture scheme. Journal of Cryptology 16(3), 185–215 (2003)

http://cs.nyu.edu/~dodis/surveys.html
http://eprint.iacr.org/

Structure-Preserving Signatures and Commitments to Group Elements 233

[Boy08] Boyen, X.: The uber-assumption family (invited talk). In: Galbraith,
S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 39–56.
Springer, Heidelberg (2008)

[BPW03] Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature
schemes for delegation of signing rights. Cryptology ePrint Archive, Re-
port 2003/096 (2003), http://eprint.iacr.org/

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for
designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp.
62–73. ACM Press, New York (1993)

[Bra99] Brands, S.: Rethinking public key infrastructure and digital certificates–
building privacy. PhD thesis, Eindhoven Inst. of Tech., The Netherlands
(1999)

[BSZ05] Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The
case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 136–153. Springer, Heidelberg (2005)

[BW06] Boyen, X., Waters, B.: Compact group signatures without random ora-
cles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
427–444. Springer, Heidelberg (2006)

[BW07] Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size
group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 1–15. Springer, Heidelberg (2007)

[Can01] Canetti, R.: Universally composable security: A new paradigm for cryp-
tographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer So-
ciety Press, Los Alamitos (2001)

[CGH98] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology,
revisited (preliminary version). In: 30th ACM STOC, pp. 209–218. ACM
Press, New York (1998)

[CKS09] Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on
bilinear maps and efficient revocation for anonymous credentials. In:
Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500.
Springer, Heidelberg (2009)

[CL04] Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous cre-
dentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)

[CLY09] Cathalo, J., Libert, B., Yung, M.: Group encryption: Non-interactive
realization in the standard model. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 179–196. Springer, Heidelberg (2009)

[CS97] Camenisch, J., Stadler, M.: Efficient group signature schemes for large
groups (extended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

[Cv91] Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg
(1991)

[DF02] Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment
scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASI-
ACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg
(2002)

[DHLAW10] Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Efficient public-
key cryptography in the presence of key leakage. Cryptology ePrint
Archive, Report 2010/154 (2010), http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

234 M. Abe et al.

[DN02] Damg̊ard, I., Nielsen, J.B.: Perfect hiding and perfect binding universally
composable commitment schemes with constant expansion factor. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer,
Heidelberg (2002)

[ElG86] El Gamal, T.: On computing logarithms over finite fields. In: Williams,
H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 396–402. Springer, Hei-
delberg (1986)

[Fis06] Fischlin, M.: Round-optimal composable blind signatures in the com-
mon reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 60–77. Springer, Heidelberg (2006)

[FO97] Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove
modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)

[FP08] Fuchsbauer, G., Pointcheval, D.: Anonymous proxy signatures. In: Os-
trovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229,
pp. 201–217. Springer, Heidelberg (2008)

[FP09] Fuchsbauer, G., Pointcheval, D.: Proofs on encrypted values in bilinear
groups and an application to anonymity of signatures. In: Shacham, H.,
Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 132–149. Springer,
Heidelberg (2009)

[FPV09] Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Transferable constant-
size fair E-cash. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS
2009. LNCS, vol. 5888, pp. 226–247. Springer, Heidelberg (2009)

[FS01] Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer,
Heidelberg (2001)

[Fuc09] Fuchsbauer, G.: Automorphic signatures in bilinear groups and an ap-
plication to round-optimal blind signatures. Cryptology ePrint Archive,
Report 2009/320 (2009), http://eprint.iacr.org/

[Fuc10] Fuchsbauer, G.: Commuting signatures and verifiable encryption and
an application to non-interactively delegatable credentials. Cryptology
ePrint Archive, Report 2010/233 (2010), http://eprint.iacr.org/

[FV10] Fuchsbauer, G., Vergnaud, D.: Fair blind signatures without random or-
acles. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS,
vol. 6055, pp. 16–33. Springer, Heidelberg (2010)

[GH08] Green, M., Hohenberger, S.: Universally composable adaptive oblivious
transfer. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
179–197. Springer, Heidelberg (2008)

[GMR88] Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme se-
cure against adaptive chosen-message attacks. SIAM Journal on Com-
puting 17(2), 281–308 (1988)

[GOS06] Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new tech-
niques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 97–111. Springer, Heidelberg (2006)

[GPS08] Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptogra-
phers. Discrete Applied Mathematics 156(16), 3113–3121 (2008)

[GQ88] Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol
fitted to security microprocessor minimizing both trasmission and mem-
ory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp.
123–128. Springer, Heidelberg (1988)

http://eprint.iacr.org/
http://eprint.iacr.org/

Structure-Preserving Signatures and Commitments to Group Elements 235

[Gro06] Groth, J.: Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)

[Gro07] Groth, J.: Fully anonymous group signatures without random oracles.
In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–
180. Springer, Heidelberg (2007)

[Gro09a] Groth, J.: Homomorphic trapdoor commitments to group elements.
Cryptology ePrint Archive, Report 2009/007 (2009),
http://eprint.iacr.org/

[Gro09b] Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer,
Heidelberg (2009)

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415–432. Springer, Heidelberg (2008)

[HKKL07] Hazay, C., Katz, J., Koo, C.-Y., Lindell, Y.: Concurrently-secure blind
signatures without random oracles or setup assumptions. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 323–341. Springer, Heidelberg
(2007)

[Kil06] Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In:
Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600.
Springer, Heidelberg (2006)

[KP06] Kunz-Jacques, S., Pointcheval, D.: About the security of MTI/C0 and
MQV. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116,
pp. 156–172. Springer, Heidelberg (2006)

[KY05] Kiayias, A., Yung, M.: Group signatures with efficient concurrent join.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214.
Springer, Heidelberg (2005)

[KZ06] Kiayias, A., Zhou, H.-S.: Concurrent blind signatures without random
oracles. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116,
pp. 49–62. Springer, Heidelberg (2006)

[Lip03] Lipmaa, H.: Verifiable homomorphic oblivious transfer and private
equality test. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894,
pp. 416–433. Springer, Heidelberg (2003)

[LRSW00] Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems.
In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp.
184–199. Springer, Heidelberg (2000)

[LV08] Libert, B., Vergnaud, D.: Multi-use unidirectional proxy re-signatures.
In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008, pp. 511–520.
ACM Press, New York (2008)

[MUO96] Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating
signing operation. In: ACM CCS 1996, pp. 48–57. ACM Press, New York
(1996)

[Nao03] Naor, M.: On cryptographic assumptions and challenges (invited talk).
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109.
Springer, Heidelberg (2003)

[Nef01] Andrew Neff, C.: A verifiable secret shuffle and its application to e-
voting. In: ACM CCS 2001, pp. 116–125. ACM Press, New York (2001)

[Oka06] Okamoto, T.: Efficient blind and partially blind signatures without ran-
dom oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 80–99. Springer, Heidelberg (2006)

http://eprint.iacr.org/

236 M. Abe et al.

[OU98] Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure
as factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 308–318. Springer, Heidelberg (1998)

[Pai99] Paillier, P.: Public-key cryptosystems based on composite degree resid-
uosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 223–238. Springer, Heidelberg (1999)

[Ped92] Pedersen, T.P.: Non-interactive and information-theoretic secure veri-
fiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 129–140. Springer, Heidelberg (1992)

[RS09] Rückert, M., Schröder, D.: Security of verifiably encrypted signatures
and a construction without random oracles. In: Shacham, H. (ed.) Pair-
ing 2009. LNCS, vol. 5671, pp. 19–35. Springer, Heidelberg (2009)

[Sha07] Shacham, H.: A cramer-shoup encryption scheme from the linear as-
sumption and from progressively weaker linear variants. Cryptology
ePrint Archive, Report 2007/074 (2007), http://eprint.iacr.org/

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997)

http://eprint.iacr.org/

Efficient Indifferentiable Hashing into Ordinary
Elliptic Curves

Eric Brier1, Jean-Sébastien Coron2, Thomas Icart2,�, David Madore3,
Hugues Randriam3, and Mehdi Tibouchi2,4

1 Ingenico
eric.brier@ingenico.com

2 Université du Luxembourg
jean-sebastien.coron@uni.lu, thomas.icart@m4x.org

3 TELECOM-ParisTech
{david.madore,randriam}@enst.fr

4 École normale supérieure
mehdi.tibouchi@ens.fr

Abstract. We provide the first construction of a hash function into
ordinary elliptic curves that is indifferentiable from a random oracle,
based on Icart’s deterministic encoding from Crypto 2009. While almost
as efficient as Icart’s encoding, this hash function can be plugged into
any cryptosystem that requires hashing into elliptic curves, while not
compromising proofs of security in the random oracle model.

We also describe a more general (but less efficient) construction that
works for a large class of encodings into elliptic curves, for example the
Shallue-Woestijne-Ulas (SWU) algorithm. Finally we describe the first
deterministic encoding algorithm into elliptic curves in characteristic 3.

1 Introduction

Hashing into Elliptic Curves. Many elliptic curve cryptosystems require to
hash into an elliptic curve. For example in the Boneh-Franklin IBE scheme [4],
the public-key for identity id ∈ {0, 1}∗ is a point Qid = H1(id) on the curve.
This is also the case in many other pairing-based cryptosystems including IBE
and HIBE schemes [1,17,18], signature and identity-based signature schemes
[3,5,6,12,27] and identity-based signcryption schemes [8,21].

Hashing into elliptic curves is also required for some passwords based authen-
tication protocols, for instance the SPEKE (Simple Password Exponential Key
Exchange) [20] and the PAK (Password Authenticated Key exchange) [9], and
also for discrete-log based signature schemes such as [13] when instantiated over
an elliptic curve. In all those previous cryptosystems, security is proven when the
hash function is seen as a random oracle into the curve. However, it remains to

� Work done while working for SAGEM company.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 237–254, 2010.
c© International Association for Cryptologic Research 2010

238 E. Brier et al.

determine which hashing algorithm should be used, and whether it is reasonable
to see it as a random oracle.

In [4], Boneh and Franklin use a particular supersingular elliptic curve E for
which, in addition to the pairing operation, there exists a one-to-one mapping
f from the base field Fp to E(Fp). This enables to hash using H1(m) = f(h(m))
where h is a classical hash function from {0, 1}∗ to Fp. The authors show that
their IBE scheme remains secure when h is seen as a random oracle into Fp (in-
stead of H1 being seen as a random oracle into E(Fp)). However, when no pairing
operation is required (as in [9,13,20]), it is more efficient to use ordinary elliptic
curves, since supersingular curves require much larger security parameters (due
to the MOV attack [23]).

For hashing into an ordinary elliptic curve, the classical approach is inherently
probabilistic: one can first compute an integer hash value x = h(m) and then
determine whether x is the abscissa of a point on the elliptic curve:

y2 = x3 + ax+ b

otherwise one can try x + 1 and so on. Using this approach the number of
operations required to hash a message m depends on m, which can lead to a
timing attack (see [7]). To avoid this attack, one can determine whether x + i
is the abscissa of a point, for all i between 0 ≤ i < k, and use for example the
smallest such i; here k is a security parameter that gives an error probability of
roughly 2−k. However, this leads to a very lengthy hash computation.

The first algorithm to generate elliptic curve points in deterministic polyno-
mial time was published in ANTS 2006 by Shallue and Woestijne [25]. The algo-
rithm has running time O(log4 p) for any p, and O(log3 p) when p ≡ 3 (mod 4).
The rational maps in [25] were later simplified and generalized to hyper-elliptic
curves by Ulas in [26]; we refer to this algorithm as the Shallue-Woestijne-Ulas
(SWU) algorithm. Letting f : Fp → E(Fp) be the function defined by SWU, one
can then hash in deterministic polynomial time using H(m) = f(h(m)) where h
is any hash function into Fp.

Another deterministic hash algorithm for ordinary elliptic curves was recently
published by Icart in [19]. The algorithm works for p ≡ 2 (mod 3), with com-
plexity O(log3 p). Given any elliptic curve E defined over Fp, Icart defines a
function f that is an algebraic function from Fp into the curve. As previously
given any hash function h into Fp, one can use H(m) = f(h(m)) to hash into
E(Fp). As shown in [19], H is one-way if h is one-way.

The Random Oracle Model (ROM). Many cryptosystems based on elliptic
curves have been proven secure in the random oracle model, see for example
[1,3,4,5,6,8,9,12,17,18,20,21,27]. In the random oracle model [2], the hash func-
tion is replaced by a publicly accessible random function (the random oracle);
the adversary cannot compute the hash function by himself but instead he must
query the random oracle. Obviously, a proof in the random oracle model is not

Efficient Indifferentiable Hashing into Ordinary Elliptic Curves 239

fully satisfactory, because such a proof does not imply that the scheme will
remain secure when the random oracle is replaced by a concrete hash function.
Numerous papers have shown artificial schemes that are provably secure in the
ROM but completely insecure when the RO is instantiated with any function
family (see [11]). Despite these separation results, a proof in the ROM is believed
to indicate that there are no structural flaws in the design of the system, and
that no flaw will suddenly appear when a “well designed” hash function is used
instead.

For a cryptosystem that requires a hash function H into an ordinary elliptic
curve (such as [9,20]), one possibility could be to use H(m) = f(h(m)) where
f is either Icart or SWU’s function and h is a hash function into Fp. However
we know that neither Icart nor SWU’s function generate all the points of E;
for example, Icart’s function covers only " 5/8 of the points [15,16]; moreover
it is easy to see that the distribution of f(h(m)) is not uniform in Imf . There-
fore the current proofs in the random oracle model for H do not guarantee the
security of the resulting scheme when H(m) = f(h(m)) is used instead (even
if h is assumed to be ideal). In other words, even if a proof in the random
oracle for H can indicate that there are no structural flaws in the design of
the cryptosystem, using H(m) = f(h(m)) could introduce a flaw that would
make the resulting cryptosystem completely insecure (we give an example in
Section 5.1).

Our Results. We provide the first construction of a hash function H into
ordinary elliptic curves with the property that any cryptosystem proven secure
assuming H is a random oracle remains secure when our construction is plugged
instead (still assuming that the underlying h is a random oracle). For this we use
the indifferentiability framework of Maurer et al. [22]. As shown in [14], when
a construction H is indifferentiable from a random oracle, such a construction
can then replace a random oracle in any cryptosystem, and the resulting scheme
remains secure in the random oracle model for h.

Since the output of Icart and SWU functions only covers a fraction of the
elliptic curve points, we cannot use the construction H(m) = f(h(m)) for indif-
ferentiable hashing. Our main result is to show that for Icart’s function f , we
can use the following alternative construction which is almost as efficient:

H(m) := f(h1(m)) + f(h2(m))

where h1, h2 are two hash functions into Fp, and + denotes elliptic curve addition.
Therefore H(m) can be used in any cryptosystem provably secure with random
oracle into elliptic curves, and the resulting cryptosystem remains secure in the
random oracle model for h1 and h2.

However the proof involves somewhat technical tools from algebraic geome-
try, and it is not so simple to adapt to other encodings such as the SWU algo-
rithm. Therefore we describe a more general (but less efficient) construction that

240 E. Brier et al.

applies to a large class of encoding functions satisfying a few simple axioms.
Those encodings include Icart’s function, the SWU algorithm, new deterministic
encodings in characteristic 3, etc. More precisely, given an elliptic curve E
defined over Fp whose group of points is cyclic of order N with generator G, our
general construction is as follows:

H(m) := f(h1(m)) + h2(m)G

where h1 : {0, 1}∗ → Fp and h2 : {0, 1}∗ → ZN are two hash functions, and f is
SWU or Icart’s function. We show that H(m) is indifferentiable from a random
oracle when h1 and h2 are seen as random oracles. Intuitively, the term h2(m)G
plays the role of a one-time pad; this ensures that H(m) can behave as a random
oracle even though f(h1(m)) does not reach all the points in E. Note that one
could not use H(m) = h2(m)G only since in this case the discrete logarithm of
H(m) would be known, which would make most protocols insecure.1

We also show how to extend the two previous constructions to hashing into
the subgroup of an elliptic curve (with cyclic or non-cyclic group) and to hash-
functions into strings (rather than Fp). We also describe a slightly more efficient
variant of the SWU algorithm when p ≡ 3 (mod 4). Finally, we describe the
first deterministic encoding algorithm into elliptic curves in characteristic 3.
We summarize in Table 1 the known hashing algorithms into ordinary elliptic
curves.

2 Preliminaries

2.1 Icart’s Function

Consider an elliptic curve E over a finite field Fq, with q odd and congruent to
2 mod 3, with equation:

Y 2 = X3 + aX + b

Icart’s function is defined in [19] as the map fa,b : Fq → E(Fq) such that fa,b(u) =
(x, y) where:

x =
(
v2 − b− u6

27

)1/3

+
u2

3
y = ux+ v v =

3a− u4

6u

for u �= 0, and fa,b(0) = O, the neutral element of the elliptic curve. When q ≡ 2
(mod 3) we have that x �→ x3 is a bijection in Fq so cube roots are uniquely
defined with x1/3 = x(2q−1)/3. We recall the following properties of fa,b:

Lemma 1 (Icart). The function fa,b is computable in deterministic polynomial
time. For any point ' ∈ fa,b(Fq), the set f−1

a,b (') is computable in polynomial
time and #f−1

a,b (') ≤ 4. Moreover q/4 < #fa,b(Fq) < q.

1 For example in Boneh-Franklin IBE one could then decrypt any ciphertext.

Efficient Indifferentiable Hashing into Ordinary Elliptic Curves 241

Table 1. Known deterministic hashing algorithms into ordinary elliptic curves with
discriminant Δ �= 0. We denote by Q the set of quadratic residues. In char 2 we denote
by n the extension degree.

char(K) normal form discriminant Δ encoding condition

�= 2, 3 y2 = x3 + ax + b −16(4a3 + 27b2)

Icart [19] p ≡ 2 (mod 3)
SW [25] −

SWU [26] −
SWU, Sec. 7 p ≡ 3 (mod 4)

2 y2 + xy = x3 + ax2 + b b
Icart [19] odd n
SW [25] −

3 y2 = x3 + ax2 + b −a3b
Sec. 8.1 Δ ∈ Q
Sec. 8.2 Δ /∈ Q
Sec. 8.3 −

2.2 Indifferentiability

We recall the notion of indifferentiability introduced by Maurer et al. in [22].

Definition 1 (Indifferentiability [22]). A Turing machine C with oracle ac-
cess to an ideal primitive h is said to be (tD, tS , qD, ε)-indifferentiable from an
ideal primitive H if there exists a simulator S with oracle access to H and run-
ning in time at most tS, such that for any distinguisher D running in time at
most tD and making at most qD queries, it holds that:∣∣∣Pr

[
DCh,h = 1

]
− Pr

[
DH,SH

= 1
]∣∣∣ < ε

Ch is said to be indifferentiable from H if ε is a negligible function of the security
parameter k, for polynomially bounded qD, tD and tS.

It is shown in [22] that the indifferentiability notion is the “right” notion for
substituting one ideal primitive by a construction based on another ideal prim-
itive. That is, if the construction Ch is indifferentiable from an ideal primitive
H , then Ch can replace H in any cryptosystem, and the resulting cryptosystem
is at least as secure in the h model as in the H model; see [22] or [14] for a proof.

F ◦ h h H S

D 0/1

Fig. 1. The indifferentiability notion, illustrated with construction Ch = F ◦h for some
function F , and random oracles h and H

242 E. Brier et al.

3 Admissible Encodings and Indifferentiability

Our goal is to construct a hash function into elliptic curves that is indifferentiable
from a random oracle. First, we introduce our new notion of admissible encoding.
It can be seen as a generalization of the definition used in [4].

Definition 2 (Admissible Encoding). A function F : S → R between finite
sets is an ε-admissible encoding if it satisfies the following properties:
1. Computable: F is computable in deterministic polynomial time.
2. Regular: for s uniformly distributed in S, the distribution of F (s) is ε-

statistically indistinguishable from the uniform distribution in R.
3. Samplable: there is an efficient randomized algorithm I such that for any

r ∈ R, I(r) induces a distribution that is ε-statistically indistinguishable
from the uniform distribution in F−1(r).

F is an admissible encoding if ε is a negligible function of the security parameter.

The following theorem shows that if F : S → R is an admissible encoding, then
the hash function H : {0, 1}∗ → R with:

H(m) := F (h(m))

is indifferentiable from a random oracle into R when h : {0, 1}∗ → S is seen as a
random oracle. This shows that the construction H(m) = F (h(m)) can replace
a random oracle into R, and the resulting scheme remains secure in the random
oracle model for h.

Theorem 1. Let F : S → R be an ε-admissible encoding. The construction
H(m) = F (h(m)) is (tD, tS , qD, ε′)-indifferentiable from a random oracle, in the
random oracle model for h : {0, 1}∗ → S, with ε′ = 4qDε and tS = 2qD · tI ,
where tI is the maximum running time of F ’s sampling algorithm.

Proof. We first describe our simulator; then we prove the indistinguishability
property. As illustrated in Figure 1, the simulator must simulate random oracle
h to the distinguisher D, and the simulator has oracle access to random oracle
H . It maintains a list L of previously answered queries. Our simulator is based
on sampling algorithm I from F .
Simulator S:
Input: m ∈ {0, 1}∗
Output: s ∈ S
1. If (m, s) ∈ L, then return s
2. Query H(m) = r and let s← I(r)
3. Append (m, s) to L and return s.

We must show that the systems (Ch, h) and (H,SH) are indistinguishable. We
consider a distinguisher making at most qD queries. Without loss of generality,
we can assume that the distinguisher makes all queries to h(m) (or SH) for
which there was a query to Ch(m) (or H(m)), and conversely; this gives a total

Efficient Indifferentiable Hashing into Ordinary Elliptic Curves 243

of at most 2qD queries. We can then describe the full interaction between the
distinguisher and the system as a sequence of triples:

View = (mi, si, ri)1≤i≤2q

where si = h(mi) (or SH(mi)) and ri = Ch(mi) (or H(mi)). Without loss of
generality we assume that the mi’s are distinct.

In system (Ch, h) we have that si = h(mi). Therefore the si’s are uniformly
and independently distributed in S. Moreover we have ri = Ch(mi) = F (si) for
all i.

In system (H,SH) we have that ri = H(mi). Therefore the ri’s are uniformly
and independently distributed in R. Moreover we have si = I(ri) for all i. The
proof of the following Lemma is given in the full version of the paper [10]:

Lemma 2. For r uniformly distributed in R, the distribution of s = I(r) is
2ε-statistically indistinguishable from the uniform distribution in S.

This implies that in system (H,SH) the distribution of si = I(ri) is 2ε-
indistinguishable from the uniform distribution in S. Moreover from the defi-
nition of algorithm I we have that ri = F (si) except if si = ⊥. Therefore, the
statistical distance between View in system (Ch, h) and View in system (H,SH)
is at most 4qDε. This concludes the proof of Theorem 1. �

4 Our Main Construction

Let E be an elliptic curve over a finite field Fq with q ≡ 2 (mod 3). Let f : Fq →
E(Fq) denote Icart’s function to E. It is easy to see that Icart’s function f is
not an admissible encoding into E since as mentioned previously, the image of
f comprises only a fraction of the elliptic curve points. Therefore we cannot use
the construction H(m) = f(h(m)) for indifferentiable hashing (not even on Imf
since the distribution of f(u) is not uniform in Imf for uniform u ∈ Fq).

In this section, we describe a different construction which is almost as efficient.
Namely we prove that if h1, h2 : {0, 1}∗ → Fq are two hash functions in the
random oracle model, then the hash function H : {0, 1}∗ → E(Fq) defined by

H(m) := f(h1(m)) + f(h2(m))

is indifferentiable from a random oracle into the elliptic curve.

Theorem 2. If q > 213 is any 2k-bit prime power congruent to 2 mod 3 (even
or odd), and if the j-invariant of E is not in {0; 2592}, then the function

H(m) := f(h1(m)) + f(h2(m))

is (tD, tS , qD, ε′)-indifferentiable from a random oracle, where ε′ = 210 · qD · 2−k,
in the random oracle model for h1, h2 : {0, 1}∗ → Fq.

244 E. Brier et al.

Theorem 2 implies that this construction H(m) can be used in any cryptosys-
tem provably secure with random oracles into elliptic curves, and the resulting
cryptosystem remains secure in the random oracle model for h1 and h2. We
note that to prevent timing attacks (as in [7]), our construction H can easily
be implemented in constant time since Icart’s function can be implemented in
constant time.

To prove this result, it is enough, in view of Theorem 1, to show that the
function F : (Fq)2 → E(Fq) given by:

F (u, v) = f(u) + f(v)

is an ε-admissible encoding with ε = 28 · q−1/2.
F is clearly computable in deterministic polynomial time, so Criterion 1 of

admissible encodings is satisfied. To prove Criterion 2, we denote for any ' ∈
E(Fq):

N(') = #{(u, v) ∈ (Fq)2 | f(u) + f(v) = '} = #F−1(')

Proposition 1. If q is an odd prime power congruent to 2 mod 3, and if the
j-invariant of E is not in {0; 2592}, then for every point ' ∈ E(Fq) except at
most 144, we have ∣∣q −N(')

∣∣ ≤ 27 · √q
and all the remaining points ' satisfy N(') ≤ 25 · q.
Sections A.1 and A.2 are devoted to the proof of this proposition. Intuitively,
the idea of the proof is to show that, for all points ' ∈ E(Fq) except a few
exceptional ones, F−1(') is an irreducible algebraic curve of bounded genus in
the affine plane A2 over Fq. The estimate for the number of points then follows
from the Hasse-Weil bound.

In the full version of this paper, we show that Proposition 1 directly implies
Criterion 2, and that Criterion 3 easily follows from the point counting of [15,16].
Additionally, we prove that F is also an admissible encoding when using Icart’s
function f in characteristic 2.

5 A More General Construction

Our construction of Section 4 has the advantage of being simple and efficient as
it only requires two evaluations of Icart’s function. However, the proof involves
somewhat technical tools from algebraic geometry, and it is not so simple to
adapt to other encoding functions, such as the SWU algorithm.

At the cost of a small performance penalty, however, we describe a more
general construction that applies to a large class of encoding functions satisfying
a few simple axioms. Those encoding functions include Icart’s function, a simpler
variant of the SWU function, new deterministic encodings in characteristic 3, etc.
We call them weak encodings. They are defined as follows.

Definition 3 (Weak Encoding). A function f : S → R between finite sets is
said to be an α-weak encoding if it satisfies the following properties:

Efficient Indifferentiable Hashing into Ordinary Elliptic Curves 245

1. Computable: f is computable in deterministic polynomial time.
2. α-bounded: for s uniformly distributed in S, the distribution of f(s) is α-

bounded in R, i.e. the inequality Prs[f(s) = r] ≤ α/#R holds for any r ∈ R.
3. Samplable: there is an efficient randomized algorithm I such that I(r) in-

duces the uniform distribution in f−1(r) for any r ∈ R. Additionally I(r)
returns Nr = #f−1(r) for all r ∈ R.

The function f is a weak encoding if α is a polynomial function of the security
parameter.

The main difference with an admissible encoding is that in Criterion 2, the
distribution of f(s) is only required to be α-bounded instead of being ε-
indistinguishable from the uniform distribution. More precisely Criterion 2 for a
weak encoding requires:

∀r ∈ R, Pr
s

[f(s) = r] =
#f−1(r)

#S
≤ α

#R
(1)

From inequality (1) we have that any invertible function with bounded pre-image
and bounded #R/#S is a weak encoding; in particular, this is the case for Icart’s
function (the proof is given in the full version of the paper [10]).

Lemma 3. Icart’s function fa,b is an α-weak encoding from Fq to Ea,b(Fq), with
α = 4N/q, where N is the order of Ea,b(Fq).

When the output set is a group (such as the group of points on an elliptic
curve), we demonstrate how to construct an admissible encoding from any weak
encoding.

Theorem 3 (Weak→ Admissible Encoding). Let G be cyclic group of order
N noted additively, and let G be a generator of G. Let f : S → G be an α-weak
encoding. Then the function F : S × ZN → G with F (s, x) := f(s) + xG is an
ε-admissible encoding into G, with ε = (1 − 1/α)t for any t polynomial in the
security parameter k, and ε = 2−k for t = α · k.

We prove this theorem in the full version of this paper [10]. As a consequence,
we get that if f : S → G is any weak encoding to a cyclic group with generator
G, then the hash function H : {0, 1}∗ → G defined by:

H(m) := f(h1(m)) + h2(m)G

where h1 : {0, 1}∗ → Fp and h2 : {0, 1}∗ → ZN are two hash functions, is
indifferentiable from a random oracle in the random oracle model for h1 and h2.
In particular, this is the case when f is Icart’s function. We note that for elliptic
curves with non-cyclic group, we can easily adapt the previous construction with
H(m) = f(h1(m)) + h2(m)G1 + h3(m)G2 where (G1, G2) are the generators of
the group.

246 E. Brier et al.

5.1 Discussion

We see that the construction H(m) = fa,b(h1(m)) + fa,b(h2(m)) of Section 4
requires two evaluations of Icart’s function fa,b but no scalar multiplication. Since
fa,b is essentially a field exponentiation, and in practice field exponentiation is
roughly 10 times faster than scalar multiplication, the construction of Section 4
is approximately 5 times faster than the general construction of this section.

We note that for a number of existing schemes that are proven secure in the
random oracle model into an elliptic curve, it would actually be sufficient to
use H(m) = fa,b(h(m)) only. This is because for many existing schemes the
underlying complexity assumption (such as CDH or DDH) has the random self-
reducibility property. So in the security proof one “programs” the RO using a
random instance generated from the original problem instance. Then instead of
letting H(m) = P where P is from the random instance, one can adapt the
proof by letting f(h(m)) = P . To make sure that h(m) is uniformly distributed,
one can “replay” the random instance generation depending on the number of
solutions to the equation f(u) = P , as we do in the proof of Theorem 3.

However it is easy to construct a cryptosystem that is secure in the ROM but
insecure with H(m) = f(h(m)). Consider for example the following symmetric-
key encryption scheme: to encrypt with symmetric key k, generate a random r
and compute c = m+H(k, r) where the message m is a point on the curve and H
hashes into the curve; the ciphertext is (c, r). This scheme is semantically secure
in the ROM for H , since this is a one-time pad. But the scheme is insecure with
H(k, r) = f(h(k, r)) because in this caseH(k, r) is not uniformly distributed, and
for two messages m0 and m1 the attacker has a good advantage in distinguishing
between the encryption of m0 and m1.

6 Extensions

6.1 Extension to a Prime Order Subgroup

In many applications only a prime order subgroup of E is used, so we show how
to adapt the constructions of Sections 4 and 5 into a subgroup. Let E be an
elliptic curve over Fq with N points, and let G be a subgroup of prime order N ′

and generator G. Let � be the co-factor, i.e. N = � ·N ′. We require that N ′ does
not divide � (i.e. that (N ′)2 does not divide N), which is satisfied in practice for
key size and efficiency reasons.

We show that it suffices to scalar multiply by co-factor � the constructions of
Sections 4 and 5 and the resulting constructions are still indifferentiable hash
functions. More precisely, we consider the construction H : {0, 1}∗ → G with:

H(m) := �
(
fa,b(h1(m)) + fa,b(h2(m))

)
(2)

with h1, h2 : {0, 1}∗ → Fq and fa,b is Icart’s function.

Proposition 2. H is (tD, tS , qD, ε)-indifferentiable from a random oracle, in
the random oracle model for h1 and h2, with ε = 210 · qD · 2−k.

Efficient Indifferentiable Hashing into Ordinary Elliptic Curves 247

Informally, we show that the composition of two admissible encodings remains
an (almost) admissible encoding, and that multiplication by a co-factor is an ε-
admissible encoding, with ε = 0. This proves that H is an indifferentiable hash
function. See the full version of the paper [10] for the proof.

The same result holds for the construction of Section 5. In this case for both
cyclic and non-cyclic elliptic curves we simply use H(m) = �f(h1(m))+h2(m)G
where G is a generator of the subgroup.

6.2 Extension to Random Oracles into Strings

The constructions in the previous sections are based on hash functions into Fpn or
ZN . However in practice a hash function outputs a fixed length string in {0, 1}�.
We can modify our construction as follows. We consider an elliptic curve Ea,b

over Fp, with p a 2k-bit prime. We define the hash functionH : {0, 1}∗ → Ea,b(Fp)
with:

H(m) := fa,b
(
h1(m) mod p

)
+ fa,b

(
h2(m) mod p

)
where h1 and h2 are two hash functions from {0, 1}∗ to {0, 1}3k and fa,b is Icart’s
function.

Proposition 3. The previous hash function H is (tD, tS , qD, ε)-indifferentiable
from a random oracle, in the random oracle model for h1 and h2, with ε =
211 · qD · 2−k.

Informally, we first show that reduction modulo p is an admissible encoding
from {0, 1}� to Fp if 2� p. Since the composition of two admissible encodings
remains an (almost) admissible encoding, this shows that F (u, v) = f(u mod p)+
f(v mod p) is also an admissible encoding into E(Fp) and therefore H is an
indifferentiable hash function. The same result holds for the general construction
of Section 5. See the full version of the paper [10] for the proof.

7 A Simpler Variant of the SWU Algorithm

In this section, we describe a slightly simpler variant of the Shallue-Woestijne-
Ulas (SWU) algorithm over Fq, for q ≡ 3 (mod 4). Note that this condition is
usually satisfied in practice, since it enables to compute square roots efficiently.

Proposition 4 (Simplified Ulas maps). Let Fq be a field and let g(x) :=
x3 + ax+ b, where a, b �= 0. Let:

X2(t) =
−b
a

(
1 +

1
t4 − t2

)
, X3(t) = −t2X2(t), U(t) = t3g(X2(t))

Then U(t)2 = −g(X2(t)
) · g(X3(t)

)
.

248 E. Brier et al.

Proof. Let g(x) = x3 + ax + b. Let u be a non-quadratic residue and consider
the equation in x:2

g(u · x) = u3 · g(x) (3)

The first observation is that we can solve this equation for x because the terms
of degree 3 cancel:

g(u · x) = u3 · g(x)⇔ (ux)3 + a(ux) + b = u3(x3 + ax+ b)
⇔ aux+ b = u3ax+ u3b

⇔ x =
b(u3 − 1)
a(u− u3)

=
−b
a
·
(

1 +
1

u+ u2

)
The second observation is that since u is not a square, either g(u · x) or g(x)
must be a square. Therefore either x or u · x must be the abscissa of a point
on the curve. Moreover when q ≡ 3 (mod 4) we have that −1 is a quadratic
non-residue and we can take u = −t2. Finally from (3) we get:

g(u · x) · g(x) = u3 · g2(x) = −t6 · g2(x) = −(t3 · g(x))2

which gives the maps of Proposition 4. �

Simplified SWU algorithm:
Input: Fq such that q ≡ 3 (mod 4), parameters a, b and input t ∈ Fq

Output: (x, y) ∈ Ea,b(Fq) where Ea,b : y2 = x3 + ax+ b

1. α← −t2
2. X2 ← −b

a

(
1 + 1

α2+α

)
3. X3 ← α ·X2
4. h2 ← (X2)3 + a ·X2 + b; h3 ← (X3)3 + a ·X3 + b

5. If h2 is a square, return (X2, h
(q+1)/4
2), otherwise return (X3, h

(q+1)/4
3)

In the full version of the paper [10] we show that our simplified SWU algorithm
is a weak encoding into the curve. Therefore it can be used with the general
construction from Section 5. An implementation is also provided in the full
version of the paper [10].

8 Hashing in Characteristic 3

In characteristic 3 the normal form of an elliptic curve with j-invariant j �= 0
and discriminant Δ �= 0 is:

Y 2 = X3 + aX2 + b

with Δ = −a3b. It is easy to see that Icart’s technique cannot work in charac-
teristic 3, and the SWU algorithm does not work in characteristic 3 because the
2 A similar equation was used in [24] to show that there exists infinitely many elliptic-

curves with j-invariant equal to given j �= 0, 1728 and with Mordell-Weil rank ≥ 2.

Efficient Indifferentiable Hashing into Ordinary Elliptic Curves 249

elliptic curve has a different equation. In this section we show the first deter-
ministic3 encoding algorithms for elliptic curves in characteristic 3. We denote
by Q the set of quadratic residues in the field. An implementation of the three
algorithms is provided in the full version of the paper [10].

8.1 Algorithm for Δ ∈ Q

Proposition 5. Let F be a field of characteristic 3 and g(x) = x3 +ax2 + b with
a �= 0 and Δ = −a3b ∈ Q. Let η /∈ Q and let c such that c2 = −b/a. Let

X(t) = c ·
(

1− 1
η · t2

)
Then either g(X(t)) or g(η · t2 ·X(t)) is a quadratic residue.

Proof. As previously we choose u /∈ Q and we consider the equation in x:

g(u · x) = u3 · g(x) (4)

As previously the terms of degree 3 cancel, and using u3 − 1 = (u − 1)3 in char
3, we get:

g(u · x) = u3 · g(x)⇔ au2x2 + b = au3x2 + bu3

⇔ x2 =
b(u3 − 1)
a(u2 − u3)

=
b(u− 1)3

au2(1− u)
=
−b
a
·
(
u− 1
u

)2

Since Δ = −a3b ∈ Q, we have −b/a ∈ Q so we can compute c such that
c2 = −b/a. Therefore we can take the following solution for equation (4):

x = c ·
(

1− 1
u

)
For u we can take u = η · t2 where η /∈ Q is pre-computed. We recover the map
X(t) of Proposition 5. Moreover from equation (4) since u3 /∈ Q either g(x) or
g(u · x) must be a quadratic residue. �

From Proposition 5 we easily deduce a deterministic encoding algorithm.

8.2 Algorithm for Δ /∈ Q

Proposition 6. Let F be a field of characteristic 3 and g(x) = x3 +ax2 + b with
Δ = −a3b /∈ Q. Let x0 ∈ F such that g(x0) = 0. Let η /∈ Q. Let :

X(t) = −2 · x0 ·
(

1 +
1

η · t2
)

Let X1(t) = X(t) + x0 and X2(t) = η · t2 · X(t) + x0. Then either g(X1(t)) or
g(X2(t)) is a quadratic residue.

Proof. When Δ /∈ Q we have that g(x) = x3+ax2+b has a (unique) root x0 ∈ F.
Therefore we can let:
3 We allow for a probabilistic pre-computation phase given the elliptic curve parame-

ters.

250 E. Brier et al.

f(x) = g(x+ x0) = x3 + ax2 + b′x

where b′ = 2 · a · x0. A deterministic encoding for elliptic curves of equation
y2 = x3 + ax2 + b′x is already described in [26]. Given u /∈ Q one considers the
equation in x:

f(u · x) = u3 · f(x)⇔ au2x2 + b′ux = au3x2 + b′u3x

⇔ ax(u2 − u3) = b′(u3 − u)
⇔ axu2(1− u) = b′u(u− 1)(u+ 1)

⇔ x =
−b′
a
·
(
u+ 1
u

)
= −2 · x0 ·

(
1 +

1
u

)
Then either f(x) or f(u · x) is a square, which implies that either g(x + x0) or
g(u · x + x0) is a square. Letting u = η · t2 where η /∈ Q one recovers the maps
X(t), X1(t) and X2(t). �

8.3 Algorithm for Any Δ

In this section we describe a different encoding algorithm that works for any
discriminant Δ. We pre-compute η /∈ Q and z0, y0 such that aη · z2

0 − y2
0 + b = 0.

Deterministic Encoding Algorithm in char 3:
Input: t ∈ F

Output: (x, y) ∈ E(F)
1. Let z = (−z0t2 + 2y0t− aηz0)/(aη − t2)
2. Let y = y0 + t · (z − z0)
3. Let k = a/(b− y2)
4. Find the unique solution α of the linear system α3 + k · α = −k/a
5. Let x = 1/α and output (x, y)

We show in Appendix B that this also defines a deterministic encoding into
elliptic curves.

Acknowledgments

We would like to thank Pierre-Alain Fouque and the anonymous referees for
useful comments on this paper.

References

1. Baek, J., Zheng, Y.: Identity-based threshold decryption. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 262–276. Springer, Heidelberg
(2004)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

Efficient Indifferentiable Hashing into Ordinary Elliptic Curves 251

3. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

4. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

5. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

6. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

7. Boyd, C., Montague, P., Nguyen, K.Q.: Elliptic curve based password authenticated
key exchange protocols. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS,
vol. 2119, pp. 487–501. Springer, Heidelberg (2001)

8. Boyen, X.: Multipurpose identity-based signcryption (a swiss army knife for
identity-based cryptography). In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 383–399. Springer, Heidelberg (2003)

9. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

10. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient
indifferentiable hashing into ordinary elliptic curves. Cryptology ePrint Archive,
Report 2009/340 (2009) (full version of this paper), http://eprint.iacr.org/

11. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

12. Cha, J.C., Cheon, J.H.: An identity-based signature from gap diffie-hellman groups.
In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidel-
berg (2002)

13. Chevallier-Mames, B.: An efficient cdh-based signature scheme with a tight secu-
rity reduction. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 511–526.
Springer, Heidelberg (2005)

14. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

15. Farashahi, R.R., Shparlinski, I.E., Voloch, J.F.: On hashing into elliptic curves
(2010) (preprint), http://www.ma.utexas.edu/users/voloch/preprint.html

16. Fouque, P.-A., Tibouchi, M.: Estimating the size of the image of deterministic hash
functions to elliptic curves. Cryptology ePrint Archive, Report 2010/037 (2010),
http://eprint.iacr.org/

17. Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

18. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002)

19. Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009)

20. Jablon, D.P.: Strong password-only authenticated key exchange. SIGCOMM Com-
put. Commun. Rev. 26(5), 5–26 (1996)

http://eprint.iacr.org/
http://www.ma.utexas.edu/users/voloch/preprint.html
http://eprint.iacr.org/

252 E. Brier et al.

21. Libert, B., Quisquater, J.-J.: Efficient signcryption with key privacy from gap diffie-
hellman groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 187–200. Springer, Heidelberg (2004)

22. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

23. Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Transactions on Information Theory 39(5), 1639–
1646 (1993)

24. Mestre, J.-F.: Rang de courbe elliptiques d’invariant donné. Comptes rendus de
l’Académie des sciences. Série 1, Mathématique 314(12), 297–319 (1992)

25. Shallue, A., van de Woestijne, C.E.: Construction of rational points on elliptic
curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS,
vol. 4076, pp. 510–524. Springer, Heidelberg (2006)

26. Ulas, M.: Rational points on certain hyperelliptic curves over finite fields. Bull.
Polish Acad. Sci. Math. 55(2), 97–104 (2007)

27. Zhang, F., Kim, K.: Id-based blind signature and ring signature from pairings.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer,
Heidelberg (2002)

A Proof of Proposition 1

This appendix gives a proof of Proposition 1. For the sake of brevity, the proofs
of some technical lemmas are omitted in this extended abstract, and can be
found in the full version [10].

A.1 Geometric Interpretation of Icart’s Function

Icart’s function f admits a natural extension to the projective line over Fq by
setting f(∞) = O, the neutral element of the elliptic curve. Then, consider the
graph of f :

C = {(u,') ∈ P
1 × E | f(u) = '}

As shown in [19, Lemma 3], C is the closed subscheme of P1 × E defined by

u4 − 6xu2 + 6yu− 3a = 0 (5)

In other words, Icart’s function is the algebraic correspondence between P1 and
E given by (5).

Let j be the j-invariant of E:

j = 1728 · 4a3

4a3 + 27b2
∈ Fq

Save for a few exceptional values of j, we can precisely describe the geometry ofC.

Lemma 4. If j �∈ {0; 2592}, the subscheme C is a geometrically integral curve
on P1 × E with one triple point at infinity and no other singularity. Its nor-
malization C̃ is a smooth, geometrically integral curve of genus 7. The natural
map h : C̃ → E is a morphism of degree 4 ramified at 12 distinct finite points of
E(F̄q), with ramification index 2.

Efficient Indifferentiable Hashing into Ordinary Elliptic Curves 253

A.2 The Square Correspondence

In this context, the function (u, v) �→ f(u)+ f(v) occurring in our hash function
construction admits the following description. A point (u, v) in the affine plane
A

2, or more generally in P
1×P

1, corresponds to ' on the elliptic curve E if and
only if there is some point (α, β) ∈ C̃× C̃ over (u, v) such that h(α)+h(β) = '.

Consider the surface S = C̃ × C̃, and define the following two morphisms.
The map p : S → P1 × P1 is the square of the first projection, and s : S → E
is obtained by composing h× h : S → E × E with the group law E × E → E.
Then the set of points (u, v) ∈ P1×P1 corresponding to a given ' ∈ E is exactly
p(s−1(')) (and we can take the intersection with A2 if we are only interested in
affine points). This allows us to give a geometric proof of Proposition 1.

Let us first describe the geometry of the fibers s−1('). Denote by ρ1, . . . , ρ12
the 12 geometric points of E over which h is ramified, and let R = {ρi +
ρj}1≤i,j≤12 ⊂ E. The map s is of rank 1 at (α, β) if and only if h is of rank
1 at at least one of α or β, which is certainly the case when h(α) or h(β) is
not one the ρi. Therefore, s is smooth of relative dimension 1 over the open
subscheme E0 = E −R, and all points in E0 have smooth curves on S as fibers.
The following lemma makes this more precise.

Lemma 5. The fibers of s at all geometric points of E0 are smooth connected
curves on SF̄q

of genus 49.

Consider now a fiber Z of s at some Fq-point ' of E not in R. The previous
description says that Z is a smooth geometrically integral curve of genus 49 on
S. This gives a precise estimate of the number of Fq-points on Z in view of the
Hasse-Weil bound: ∣∣q + 1−#Z(Fq)

∣∣ ≤ 98
√
q

What we are interested in, however, is the number of points in p(Z), or more
precisely even, in p(Z)∩A2. But those numbers are related in a simple way when
Icart’s function is well-defined, i.e. q ≡ 2 (mod 3).

Lemma 6. Suppose that q ≡ 2 (mod 3), and let N be the number of Fq-points
in p(Z) ∩ A2. Then we have

q − 98
√
q − 23 ≤ N ≤ q + 98

√
q + 1

The first part of Proposition 1 now follows from the previous propositions: under
the hypotheses of that theorem, if ' ∈ E(Fq) does not belong to R, then N(') =
#{(u, v) ∈ (Fq)2 | f(u) + f(v) = '} satisfies∣∣q −N(')

∣∣ ≤ 98
√
q + 23 ≤ 27 · √q

as required. And obviously, there are at most 122 = 144 points in R.
It remains to bound N(') for an Fq-point ' ∈ R ∩E(Fq). To do so, consider

again Z = s−1(') the fiber at such a point, and E′ ⊂ E × E the image of Z

254 E. Brier et al.

under h×h (or equivalently, the fiber of the group law of E at '). The morphism
Z → E′ is of degree 16, so each point has at most 16 pre-images. Hence

N(') ≤ 16 ·#E′(Fq) ≤ 16
(
q + 1 + 2

√
q
) ≤ 25 · q

since q ≥ 5. This concludes the proof.

B Analysis of the Algorithm from Section 8.3

We consider the elliptic curve equation y2 = x3 + ax2 + b which we rewrite
x3 + ax2 + (b− y2) = 0. Letting α = 1/x, we get:

1
α3 +

a

α2 + (b − y2) = 0

Multiplying by α3/(b− y2), this gives:

α3 +
a

b− y2 · α = −1/(b− y2) (6)

Given k ∈ Fwe consider the function f(α) = α3 + k ·α. In char 3 this is a linear
function. We have:

f(α) = 0⇔ α = 0 or α2 = −k
Therefore f is bijective if and only if −k /∈ Q. When f is bijective its inverse
can be computed in deterministic polynomial time by solving a linear system.

Since k = a/(b − y2) in equation (6), we must have −a/(b− y2) /∈ Q so that
equation (6) has a unique solution. This is equivalent to −(b − y2)/a /∈ Q or
−(b− y2)/a = η · z2 for some fixed η /∈ Q. This gives:

aηz2 − y2 + b = 0

which is the equation of a conic which is easy to parameterize. Such parameter-
ization is computed at steps 1 and 2 of the algorithm in Section 8.3.

Credential Authenticated Identification and Key
Exchange

Jan Camenisch1, Nathalie Casati1, Thomas Gross1, and Victor Shoup2

1 IBM Research, work funded by the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no. 216483

2 NYU, work done while visiting IBM Research, supported by NSF grant
CNS-0716690

Abstract. This paper initiates a study of two-party identification and
key-exchange protocols in which users authenticate themselves by prov-
ing possession of credentials satisfying arbitrary policies, instead of using
the more traditional mechanism of a public-key infrastructure. Defini-
tions in the universal composability framework are given, and practical
protocols satisfying these definitions, for policies of practical interest,
are presented. All protocols are analyzed in the common reference string
model, assuming adaptive corruptions with erasures, and no random or-
acles. The new security notion includes password-authenticated key ex-
change as a special case, and new, practical protocols for this problem
are presented as well, including the first such protocol that provides re-
silience against server compromise (without random oracles).

1 Introduction

Secure two-party authentication and key exchange are fundamental problems.
Traditionally, the parties authenticate each other by means of their identities,
using a public-key infrastructure (PKI). However, this is not always feasible or
desirable: an appropriate PKI may not be available, or the parties may want to
remain anonymous, and not reveal their identities.

To address these needs, we introduce the notion of credential-authenticated
identification (CAID) and key exchange key exchange (CAKE), where the com-
patibility of the parties’ credentials is the criteria for authentication, rather than
the parties’ identities relative to some PKI.

We assume that prior to the protocol, the parties agree upon a policy, which
specifies the types of credentials they each should hold, along with additional
constraints that each credential should satisfy, and (possibly) relationships that
should hold between the two credentials. The protocol should then determine
whether or not the two parties have credentials that satisfy the policy, and in
the CAKE case, should generate a session key, which could then be used to
implement a secure communication session between the two parties. In any case,
neither party should learn anything else about the other party’s credentials,
other than whether or not they satisfied the policy.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 255–276, 2010.
c© International Association for Cryptologic Research 2010

256 J. Camenisch et al.

For example, Alice and Bob may agree on a policy that says that Alice should
hold an electronic ID card that says her age is at least 18, and that Bob should
hold a valid electronic library card. If Alice then inputs an appropriate ID card
and Bob inputs an appropriate library card, the protocol should succeed, and,
in the CAKE case, both parties should obtain a session key. However, if, say,
Alice tries to run the protocol without an appropriate ID card, the protocol
should fail; moreover, Alice should not learn anything at all about Bob’s input;
in particular, Alice should not even be able to tell whether Bob had a library
card or not.

As mentioned above, we may even consider policies that require that certain
relationships hold between the two credentials. For example, Alice and Bob may
agree upon a policy that says that they both should have national ID cards, and
that they should live in the same state.

Both of the two previous examples illustrate that the CAKE problem is closely
related to the “secret handshake” problem. In the latter problem, two parties
wish to determine if they belong to the same group, so that neither party’s status
as a group member is revealed to the other, unless both parties belong to the
same group. There are many papers on secret handshakes (see [12] for a recent
paper, and the references therein). The system setup assumptions and security
requirements vary significantly among the papers in the secret handshakes lit-
erature, and so we do not attempt a formal comparison of CAKE with secret
handshakes. Nevertheless, the two problems share a common motivation, and to
the extent that one can view owning a credential as belonging to a group, the
two problems are very similar.

We also observe that the CAKE problem essentially includes the PAKE
(password-authenticated key exchange) problem as a special case: the credentials
are just passwords, and the policy says that the two passwords must be equal.

Our Contributions. So that our results are as general as possible, we work
in the Universal Composability (UC) framework of Canetti [7]. We give natural
ideal functionalities for CAID and CAKE, and give efficient, modularly designed
protocols that realize these functionalities. If the underlying credential system is
practical and comes equipped with practical proof-of-ownership protocols (such
as the IDEMIX system, based on Camenisch and Lysyanskaya [5]), and if the
policies are not too complex, the resulting CAKE protocols are fairly practical.
In addition, if the credential system provides extra features such as traceability
or revocability, or other mechanisms that mitigate against unwanted “credential
sharing”, then our protocols inherit these features as well.

All of our protocols are proved UC-secure in the adaptive corruption model,
assuming parties can effectively erase internal data. Our protocols require a com-
mon reference string (CRS), but otherwise make use of standard cryptographic
assumptions, and do not rely on random oracles.

As mentioned above, CAKE includes PAKE, and we also obtain two new
practical PAKE protocols. The first is a practical PAKE protocol that is secure in
the adaptive corruption model (with erasures); this is not the first such protocol
(this was achieved recently by Abdalla, Chevalier, and Pointcheval [1], using

Credential Authenticated Identification and Key Exchange 257

completely different techniques). The second PAKE protocol is a simple variant
of the first, but provides security against server compromise: the protocol is an
asymmetric protocol run between a client, who knows the password, and a server,
who only stores a function of the password; if the server is compromised, it is still
hard to recover the password. Our new protocol is the first fairly practical PAKE
protocol (UC-secure or otherwise) that is secure against server compromise and
that does not rely on random oracles. Previous practical PAKE protocols that
provide security against server compromise (such as Gentry, MacKenzie, and
Ramzan [11]) all relied on random oracles (and also were analyzed only in the
static corruption model).

Outline of the paper. In §2, we provide some background on the UC frame-
work; in addition, we provide some recommendations for improving some of the
low-level mechanics of the UC framework, to address some minor problems with
the existing formulation in [7] that were uncovered in the course of this work. In
any case, our results can be understood independently of these recommendations.

In §3, we introduce ideal functionalities for strong CAID and CAKE. These
ideal functionalities are stronger than we want, as they can only be realized by
protocols that use authenticated channels. Nevertheless, they serve as a useful
building block. We also discuss there the types of policies that will be of interest
to us here, as we want to restrict our attention to policies that are useful and
that admit practical protocols.

In §4, we show how a protocol that realizes the strong CAID or CAKE func-
tionalities can be easily and efficiently transformed into a protocol that realizes
the CAID and CAKE functionality. The resulting protocol does not rely on au-
thenticated channels. To this end, we utilize the idea of “split functionalities”,
introduced in [2]. Although the idea of using split functionalities for nonstan-
dard authentication mechanisms was briefly mentioned in [2], it was not pursued
there, and no new types of authentication protocols were presented. In this sec-
tion, we review the basic notions introduced in [2], adjusting the definitions and
results slightly to better meet our needs. We also give some new constructions,
which are simpler and more efficient in the two-party setting.

In §5 we review definitions of UC zero knowledge (UCZK), and provide some
new definitions that will be useful to us. UCZK will be a critical building block
in the design of our CAID/CAKE protocols. In this section, we discuss a general
language of statements we will want to be able to prove, as well as practical
implementations of UCZK protocols for proving such statements. In a companion
paper, we plan on fleshing out the details of this general framework, but it should
be clear, based on these discussions, that there are, in fact, practical UCZK
protocols for all the statements we need to prove in our CAID/CAKE protocols.

In §6, we present practical strong CAID/CAKE protocols for some fairly gen-
eral policies of interest, and prove their security in the UC-framework, assuming
secure channels. Using the split functionalities ideal in §4, these protocols can be
transformed into practical CAID/CAKE protocols, which do not assume secure
channels.

258 J. Camenisch et al.

In §7, we present practical strong CAID/CAKE protocols for the equality
relation and an interesting relation related to discrete logarithms. The former
gives rise to our first new PAKE protocol, while the latter gives rise to our second
new PAKE protocol (which provides resilience against server compromise).

Due to space limitations, many details, and all proofs, are left to the full
paper [4].

2 Some UC Background

Our corruption model is always adaptive corruptions with erasures. We believe
that allowing adaptive corruptions is important — there are known examples of
protocols that are secure with respect to static corruptions, but trivially insecure
if adaptive corruptions are allowed. Allowing erasures is a bit of a compromise:
on the one hand, properly implementing secure erasures is difficult — but not
impossible; on the other hand, if erasures are not allowed, then it becomes very
difficult to obtain truly practical protocols, leading to results that are of theo-
retical interest only.

To streamline the descriptions of ideal functionalities, we assume the following
convention in any two-party ideal functionality: the adversary may at any time
tell the ideal functionality to abort the protocol for one of the parties — the
ideal functionality sends the special message abort to that party, and does not
communicate any further with that party.

In an actual protocol, an abort output would be generated when a “time out”
or “error” condition was detected; the aborting party will also erase all inter-
nal data, and all future incoming messages will be ignored. While not essential
for modeling security, it does allow us to distinguish between detectable and
undetectable unfairness in protocols.

We clarify here a number of issues regarding terminology and notation in
the UC framework. By a party we always mean an interactive Turing machine
(ITM). A party P is addressed by party ID (PID) and session ID (SID).
So if P has PID Ppid and SID Psid, then the PID/SID pair (Ppid, Psid) uniquely
identifies the party: no two parties in the system may have the same PID/SID
pair. The convention is that the participants of any single protocol instance share
the same SID, and conversely, if two parties share the same SID, then they are
regarded as participants in the same protocol.

In [7] there are no semantics associated with PIDs, other than their role to
distinguish participants in a protocol instance. Some authors (sometimes implic-
itly) tend to use the term “party” to refer to all ITMs that share a PID. We
shall not do this: a party is just a single ITM (but see §2.2 below).

In describing protocols and ideal functionalities, we generally omit SIDs in
messages — these can always be assumed to be implicitly defined.

2.1 Notions of Security

We recall some basic security notions from [7], with some extensions in [10] and
[2]. We will not be too formal here.

Credential Authenticated Identification and Key Exchange 259

We say that a protocol Π realizes a protocol Π∗, if for every adversary A,
there exists an adversary (i.e., simulator) A∗, such that for every environment
Z, Z cannot distinguish an attack of A on Π from an attack of A∗ on Π∗.
Here, Z is allowed to interact directly with the adversary and (via subroutine
input/output) with parties (running the code for Π or Π∗) that share the same
SID.

If we like, we can remove the restriction that parties must share the same
SID, which effectively allows Z to interact with multiple, concurrently running
instances of a single protocol in the above experiment. With this relaxation, we
say that Π multi-realizesΠ∗. If these multiple instances of Π access a common
instance of a setup functionality G, then we say that Π multi-realizes Π∗ with
joint access to G. In applications, G is typically a common reference string
(CRS).

The UC Theorem [7] implies that if Π realizes Π∗, then Π multi-realizes Π∗.
However, if Π makes use of a setup functionality G, then it does not necessarily
follow that Π multi-realizes Π∗ with joint access to G: one typically has to
analyze the multiple-instance experiment directly.

In the above definitions, if Π∗ is the ideal protocol associated with an ideal
functionality F , then we simply say that Π (multi-)realizes F (with joint access
to G). We also have some simple transitivity properties: if Π1 realizes Π2, and
Π2 realizes Π3, then Π1 realizes Π3; also, if Π1 multi-realizes Π2 with joint
access to G, and Π2 realizes Π3, then Π1 multi-realizes Π3 with joint access
to G.

A protocol Π may itself make use of an ideal functionality F ′ as a subroutine
(where an instance of Π may make use of multiple, independent instances of
F ′). In this case, we call Π an F ′-hybrid protocol. We may modify Π by
instantiating each instance of F ′ with an instance of a protocol Π ′, and we
denote the modified version of Π by Π [F ′/Π ′]. The UC Theorem implies that
if Π ′ realizes F ′, then Π [F ′/Π ′] realizes Π . Also, if Π ′ multi-realizes F ′ with
joint access to G, then Π [F ′/Π ′] multi-realizes Π with joint access to G.

This last statement is essentially a reformulation of a special case of the JUC
Theorem [10], but in a form that is more convenient to apply. The notion of multi-
realization (introduced, somewhat informally, in [2], and which can be easily
expressed in the Generalized UC (GUC) framework [8]) seems a more elegant
and direct way of modeling joint access to a CRS or similar setup functionality.

2.2 Conventions Regarding SIDs

We shall assume that an SID is structured as a pathname:
name0/name1/ · · · /namek. These pathnames reflect the subroutine call
stack: when an honest party invokes an instance of subprotocol as a separate
party, the new party has the same PID of the invoking party, and the SID
is extended on the right by one element. Furthermore, we shall assume for
two-party protocols, the rightmost element namek, called the basename, has
the form ext :Ppid :Qpid : data, where ext is a “local name” used to ensure
unique basenames, Ppid and Qpid are the PIDs of the participants P and Q,

260 J. Camenisch et al.

and data represents shared public parameters. The ordering of these PIDs can
be important in protocols where the two participants play different roles.

These conventions streamline and clarify a number of things. In application
of the UC Theorem, we will be interested exclusively in protocols that act as
subroutines: they are explicitly invoked by a single caller, who provides all inputs,
and who receives all outputs.

The main points here are: (i) a subroutine is explicitly invoked by the caller,
and (ii) the callee implicitly knows where to write its output. We can (and will)
design protocols that deviate from this simple subroutine structure, although
the UC Theorem will not directly apply in these cases.

With these restrictions, it also is convenient to make some restrictions on
ideal functionalities: we shall assume that an ideal functionality only delivers
an output to a party that has previously supplied the ideal functionality with an
input.

These conventions are simply self-imposed restrictions, and do not represent
a modification of the UC framework itself. However, in the full paper, we discuss
some modifications to the UC framework that strictly impose these restrictions,
along with a few other rules. Our rules guarantee that if P is a party with PID
pid and SID sid , and if P ′ is a party with PID pid and SID sid/basename,
then P ′ is a subroutine of P that was created by P , and moreover, so long as
P remains honest, then so does P ′. As discussed in the full paper, we believe
that without some type of restrictions such as these, there are some fundamental
problems with the UC framework itself.

2.3 System Parameters

A common reference string, or CRS, is sometimes very useful. Sometimes, how-
ever, a different, but related notion is useful: a system parameter. Like a CRS,
a system parameter is assumed to be generated by a trusted party, but unlike a
system parameter, a CRS is visible to all parties, including the environment. A
nice way to model this is using some elements of the GUC framework (although
we do not attempt to design any protocols that achieve full GUC security here).

In designing a protocol that realizes some ideal functionality, a system pa-
rameter is a much better type of setup functionality than a CRS, as the security
properties of protocols that use a CRS are not always so clear (e.g., “deniability”
— see discussion in [8]). These problems do not arise with system parameters.
Moreover, if a protocol Π realizes an ideal functionality F using a system pa-
rameter, then it is easy to see that Π multi-realizes F as well — there is no need
to separately analyze a multi-instance experiment. A system parameter can also
be used to parameterize an ideal functionality — a CRS cannot be used for this
purpose, as that would conflate specification and implementation.

We can distinguish between two types of system parameters: public coin and
private coin. In a public-coin system parameter, even the random bits used to
generate the system parameter are visible to the environment (but no one else).
In a private-coin system parameter, the random bits used to generate the system
parameter remain hidden from all parties.

Credential Authenticated Identification and Key Exchange 261

2.4 Authenticated Channels

We present here an ideal functionality for an authenticated channel. We have
tuned this functionality to adhere to our conventions. We call this ideal func-
tionality Fach.

For an SID is of the form sid := parent/ext :Ppid :Qpid : , where P is the sender
and Q is the receiver, and for an adversary A, the ideal functionality Fach runs
as follows:

1. Wait for both: (a) an input message (send, x) from P , then send (send, x)
to A; (b) an input message ready from Q, then send ready to A.

2. Wait for the message deliver from A, then send the output message
(deliver, x) to Q.

Corruption rule: If P is corrupted between Steps 1a and 2, then A is allowed
to change the value of x (at any time before Step 2).

NOTES: (i) Like the corresponding functionality in [7], this one allows delivery
of a single message per session. Multiple sessions should be used to send multiple
messages. Alternatively, one could also define a multi-message functionality. (ii)
Unlike the corresponding functionality in [7], the receiver here must explicitly
initialize the channel before receiving a message. This design conforms to our
conventions stated above, and is further discussed in the full paper.

2.5 Secure Channels

Secure channels provide both authentication and secrecy. We present a ideal
functionality that is tuned to adhere to our conventions, and to our adaptive
corruptions with erasures assumption.

One way to define secure channels is to modify Fach as follows: in Step 1,
send (send, len(x)) to A, and in the corruption rule, A is given x and allowed to
modify it x as well. Here, len(x) is the length of x. However, it turns out that a
different functionality can be implemented more efficiently:

1. Wait for both: (a) an input message (send, x) from P , then send the message
(send, len(x)) to A; (b) an input message (ready,maxlen) from Q, then
send the message (ready,maxlen) to A.

2. Wait for the message lock from A; verify that len(x) ≤ maxlen; if not, halt.
3. Wait for both: (a) a message done from A, then send the output message

done to P ; (b) a message deliver from A, then send the output message
(deliver, x) to Q.

Corruption rule: If P is corrupted between Steps 1a and 2, then A is given x
and is allowed to change the value of x (at any time before Step 2).

We call this ideal functionality Fsch. Here, the receiver specifies the maximum
length message he is prepared to accept. This functionality reflects the fact that
most of the time, the receiver knows the general “size and shape” of the message
it is expecting, and so no additional interaction is required. In the cases where
this information is not known in advance, the sender can transmit the length
information to the receiver ahead of time on an authenticated channel.

262 J. Camenisch et al.

3 Ideal Functionalities for Strong CAID and CAKE

In this section, we present ideal functionalities for strong CAID and CAKE.
These ideal functionalities are stronger than we want, as they can only be realized
by protocols that use authenticated channels. However, in the next section, we
discuss how to we can very easily modify such protocols to obtain protocols that
realize the desired CAID/CAKE functionalities (which will be defined in terms
of strong CAID/CAKE).

We start with strong CAID. At a high level, the ideal functionality for strong
CAID, denoted F∗

caid, works as follows. We have two parties, P and Q. P and
Q agree (somehow) on a binary relation R, which consists of a set of pairs (s, t).
Then P and Q submit values to the ideal functionality: P submits a value s and
Q a value t. The ideal functionality then checks if (s, t) ∈ R; if so, it sends P and
Q the value 1, and otherwise the value 0. The relation R represents the “policy”,
discussed in §1.

The above description is lacking in details: some essential, and others not. We
now describe some detailed variants of the above general idea. We assume that
party P has PID Ppid and SID Psid. Likewise, we assume that party Q has PID
Qpid and SID Qsid.

3.1 Ideal Functionality F∗
caid

We assume that the SIDs of the two parties are of the form
parent/ext :Ppid :Qpid : 〈R 〉, where 〈R 〉 is a description of the relation R. In
principle, any efficiently computable family of relations is allowable, but specific
realizations may implement only relations from some specific family of relations.
It will convenient to assume that the special symbol ⊥ has the following seman-
tics: for all s, t, neither (⊥, t) nor (s,⊥) are in R.

An instance of F∗
caid with SID parent/ext :Ppid :Qpid : 〈R 〉 runs as follows.

1. Wait for both: (a) an input message (left-input, s) from P , then send
left-input to A; (b) an input message (right-input, t) from Q, then
send right-input to A.

2. Wait for a message lock from A; set res to 1 if (s, t) ∈ R, and 0 otherwise.
3. Wait for both: (a) a message deliver-left from A, then send the output

message (return, res) to P ; (b) a message deliver-right from A, then
send the output message (return, res) to Q.

Corruption rules: (i) If P (resp., Q) is corrupted between Steps 1a (resp., 1b)
and 2, then A is given s (resp., t), and is allowed to change the value of s
(resp., t) at any time before Step 2. (ii) If P (resp., Q) is corrupted between
Steps 2 and Steps 3a (resp., 3b), then A is given s (resp., t).

Note that the inclusion of Ppid, Qpid in the SID serves to break symmetry, and
establish P as the “left” party and Q as the “right” party. The above ideal func-
tionality captures the inherent “unfairness” in any such protocol: if one party
is corrupt, they may learn that the relation holds, while the other may not.

Credential Authenticated Identification and Key Exchange 263

However, such unfairness is at least detectable: since we do not conflate abort
with a result of 0, if any party is being treated unfairly, this will at least be
detected by an abort message. One could consider a weaker notion of security,
in which 0 and abort were represented by the same value. While this may allow
for more efficient protocols, such protocols may allow “undetectable unfairness”.
With our present formulation, a result of abort may indicate an unfair run of
the protocol (or it may just indicate that there are network problems). The func-
tionality F∗

caid does not provide as much privacy as one might like; in particular,
if P and Q are honest, then A still learns the relation R. In the full version of
the paper, we discuss variations that prevent this.

3.2 From Authentication to Key Exchange

Functionality F∗
caid may be extended to provide key exchange in addition to

authentication modifying Step 2 as follows:

2. Wait for a message (lock,Kadv) from A; then set res to (1,K) if (s, t) ∈ R,
and 0 otherwise, where the key K is determined as follows: if either P or Q
are currently corrupted, set K := Kadv; otherwise, generate K at random
(according to some prescribed distribution).

Corruption rules are unchanged. We call this ideal functionality F∗
cake.

3.3 Some Relations of Interest

One type of relation that is of particular interest is a simple product relation,
where R = S × T . For example, we may have S = {s : (x, s) ∈ E}, for a given
x and a fixed relation E. Here, s might be an “anonymous credential” issued by
some authority whose public key is x; the relation E would assert that s is a
valid credential relative to x, possibly satisfying some other constraints as well.

A well-known example of an anonymous credential system of this type is the
IDEMIX system [5]. This system comes with efficient zero-knowledge protocols
for proofs of possession of credentials that we will be able to exploit. IDEMIX
may also be equipped with mechanisms for identity escrow, revocation, etc.,
which automatically enhances the functionality of any strong CAID/CAKE pro-
tocol.

Similarly, we may have T = {t : (y, t) ∈ F}, for a given y and fixed relation
F . In this case the description 〈R 〉 of R is the pair (x, y).

Two generalizations of potential interest are as follows. First, suppose we have
binary relations R1, . . . , Rk. We can define their vectored union as the binary
relation R = {((s1, . . . , sk), (t1, . . . , tk)) : (si, ti) ∈ Ri for some i = 1 . .k}. For
example, each relation Ri may represent a pair of “compatible” credentials,
and the protocol should succeed if the two parties hold one such pair between
them. Or more simply, the two parties may agree on a list of “clubs”, and then
determine if there is any one club to which they both belong.

Second, we might consider the intersection of a product relation with a par-
tial equality relation: {(s, t) : σ(s) = τ(t)}, where σ and τ are appropriate

264 J. Camenisch et al.

functions. Such relations can usefully model the “secret handshake” scenario,
where σ(s) and τ(t) perhaps represent “group names”. A special case of this,
of course, is the equality relation. A CAKE protocol for equality is essentially a
PAKE protocol — this is discussed in §7.

One might even combine the above, considering vectored unions of such in-
tersections. The reason for singling out these types of relations is that they are
of potential practical interest, and admit efficient protocols.

4 Bootstrapping an Authentication Protocol

We shall presently give efficient protocols that realize strong CAID/CAKE func-
tionalities for various relations of interest. All of these protocols work assuming
secure channels. Of course, this is not interesting by itself, since we really want to
use these protocols to establish secure channels in a setting without any existing
authentication mechanism.

Without at least authenticated channels, it is impossible to realize strong
CAID/CAKE. The solution is to weaken the notion of security, using the idea
of “split functionalities”, introduced in [2]. Our definitions of the CAID/CAKE
functionalities are simply the split versions of the strong CAID/CAKE function-
alities.

Although the idea of using split functionalities for nonstandard authentication
mechanisms was briefly mentioned in [2], it was not pursued there, and no new
types of authentication protocols were presented. In this section, we review the
basic notions introduced in [2], adjusting the definitions and results slightly to
better meet our needs, and give some new constructions, as well.

4.1 Details: Split Functionalities

We give a slight reformulation of the definitions and results in [2]: we focus on
the two-party case, and we also make a few small syntactic changes that will
allow us to apply the results in a more convenient way.

The basic idea is the same as in [2]. If F is a two-party ideal functionality
involving two parties, P and Q, then the split functionality sF works roughly as
follows. Before any computation begins, the adversary partitions the set {P,Q}
into authentication sets: in the two-party case, the authentication sets are
either {P} and {Q}, or the single authentication set {P,Q}. The parties within
an authentication set access a common instance of F , while parties in different
authentication sets access independent instances of F . This is achieved by “man-
gling” SIDs appropriately: each authentication set is assigned a unique “channel
ID” chid , which is used to “mangle” the SIDs of the instances of F . Thus, the
most damage an adversary can do is to make P and Q run two independent
instances of F .

As we shall see, one can transform any protocol Π that realizes F , where Π
relies on authenticated and/or secure channels, into a protocol sΠ that realizes
sF , where sΠ relies on neither authenticated nor secure channels. Moreover, sΠ

Credential Authenticated Identification and Key Exchange 265

is almost as efficient as Π . This result was first proved in [2]; however, we give a
more efficient transformation — based on Diffie-Hellman key exchange — that
is better suited to the two-party case.

Our CAID/CAKE functionalities are simply defined as the split versions of
the strong CAID/CAKE functionalities: sF∗

caid and sF∗
cake. Protocols for these

functionalities may be obtained by applying the split transformation to the pro-
tocols for the corresponding strong functionalities.

4.2 General Split Functionalities

Now we give the general split functionality in more detail. Let F be an ideal
functionality for a two party protocol. As in §2.2, we assume that the SID for
F is of the form parent/ext :Ppid :Qpid : data, and that F never generates an
output for a party before receiving an input from that party.

The split functionality sF has an SID s := parent/ext :Ppid :Qpid : data of
the same form as F , and for an adversary A runs as follows.

– Upon receiving a message init from a party X ∈ {P,Q}: record
(init, Xpid), send (init, Xpid) to A.

– Upon receiving a message (authorize, Xpid,H, chid) from A, such that
(1) Xpid is the PID of someX ∈ {P,Q}; (2) {Xpid} ⊆ H ⊆ {Ppid, Qpid};
(3) (init, Xpid) has been recorded; (4) no tuple (authorize, Xpid, . . .)
has been recorded; and (5) if a tuple (authorize, X ′

pid,H′, chid ′) has

been recorded, then either (a)H′ = H and chid ′ = chid or (b)H′∩H = ∅
and chid ′ �= chid

do the following:
(1) if no tuple of the form (authorize, ·,H, chid) has already been
recorded, then initialize a “virtual” instance of F with SID sidH :=
chid/sid ; we denote this instance FH and define chidH := chid ; in
addition, for each Y ∈ {P,Q}, if Ypid /∈ H or Y is corrupt, then no-
tify FH that the party with PID Ypid and SID sidH is corrupt, and
forward to A the response of FH to this notification; (2) record
the tuple (authorize, Xpid,H, chid); (3) send the output message
(authorize, chid) to X .

– Upon receiving a message (input, v) from X ∈ {P,Q}, such that a tuple
(authorize, Xpid,H, chid) has been recorded: send the message v to FH, as
if coming as an input from the party with PID Xpid and SID sidH.

– Upon receiving a message (input, Xpid,H, v) from A, such that
(1) Xpid is the PID of some X ∈ {P,Q}, (2) a (uniquely determined)
instance FH with Xpid ∈ H has been initialized; and, (3) Xpid /∈ H

send the message v to FH, as if coming as an input from the party with PID
Xpid and SID sidH.

– Whenever an instance FH delivers an output v to a party with PID Xpid,
where Xpid is the PID of some X ∈ {P,Q}, do the following: if Xpid ∈ H,
then send the output message (output, v) to X , else send the output message
(output, Xpid, v) to A.

266 J. Camenisch et al.

– Upon receiving notification that a party X ∈ {P,Q} is corrupted, such that
a (uniquely determined) instance FH with Xpid ∈ H has been initialized:
notify FH that the party with PID Xpid and SID sidH is corrupted, and
forward to A the response of FH to this notification.

We have a slightly different formulation of split functionalities than in [2], but
the differences are mainly syntactic — our method of mangling the SIDs fits
nicely in to our set of conventions on SIDs. In addition, in [2], a party is allowed
to send an input as long as its authentication set is defined, whereas we require
that a party wait for its explicit authorization notification before proceeding.
This seems to avoid some potential confusion.

4.3 A Multi-session Secure Channels Functionality

We need a “multi-session extension” of our ideal functionality for secure channels.
One approach would be to use the definition in [10]. However, a direct application
of that definition would be unworkable, for two reasons: first, it would require
that any implementation keep track of all subsession IDs that were ever used;
second, the multi-session extension applies to all possible parties, whereas, we
can really only deal with the same two parties in all subsessions. So for these
reasons, we present our own multi-session extension, which we denote Fmsc. Note
that in addition to secure channels (corresponding to the functionality Fsch), it
also provides for channels that only provide authentication (corresponding to the
functionality Fach). It is quite tedious, and not very enlightening. The details
are in the full paper.

4.4 Split Key Exchange

We now discuss a simple, low-level primitive: split key exchange. Let K be a
key set. The ideal functionality Fske (parameterized by K) has an SID of the
form parent/ext :Ppid :Qpid : , and for an adversary A, runs as follows:

– Upon receiving a message init from a party X ∈ {P,Q}: record
(init, Xpid), send (init, Xpid) to A.

– Upon receiving a message (authorize, Xpid,H, chid ,K) from A, such that

(1) Xpid is the PID of some X ∈ {P,Q}; (2) {Xpid} ⊆ H ⊆
{Ppid, Qpid}; (3) K ∈ K; (4) (init, Xpid) has been recorded; (5)
no tuple (authorize, Xpid, . . .) has been recorded; and, (6) if a tu-
ple (authorize, X ′

pid,H′, chid ′,K ′) has been recorded, then either (a)

H′ = H and chid ′ = chid or (b) H′ ∩H = ∅ and chid ′ �= chid

do the following:

(1) record the tuple (authorize, Xpid,H, chid ,K); (2) if KH is not yet
defined, then define it as follows: if H = {Xpid}, then KH ← K, else
KH ←R K; (3) send the output message (key, chid ,KH) to X .

Credential Authenticated Identification and Key Exchange 267

We now present a simple protocol, Πske, that realizes the functionality Fske,
under the decisional Diffie-Hellman (DDH) assumption. Assume a group G of
prime order q generated by g ∈ G where the DDH holds. The description of G,
q, and g is viewed here as a system parameter. We also assume a PRG that maps
a random w ∈ G to a pair of keys (K,Kauth) ∈ K ×Kauth, where Kauth is some
large set.

For two parties P and Q with SID sid := parent/ext :Ppid :Qpid : , protocol
Πske runs as follows. The roles played by P and Q are asymmetric. The protocol
for P runs as follows:

1. P waits for an input init; then it computes x←R Zq, u← gx, and sends u
to Q.

2. P waits for v ∈ G from Q; then it computes w ← vx, derives keys K,Kauth
from w using the PRG, sets chid ← 〈u, v 〉, sends the key Kauth to Q (after
erasing all internal state other than chid and K).

3. P waits for a continuation signal, and then outputs and outputs
(key, chid ,K) (after erasing all internal state).

Note that in the UC framework, a party is allowed to only send one message at a
time; therefore, P first sends a message to Q (via the adversary, of course), and
then waits for a continuation signal (provided by the adversary) before delivering
its own output.

The protocol for Q runs as follows:

1. Q waits for an input init; then it then does nothing, except to notify the
network (i.e., adversary) that it is ready.

2. Q waits for u ∈ G from P ; then it computes y ←R Zq, v ← gy, w ← uy,
derives keys K,Kauth from w, erases y, w, sets chid ← 〈u, v 〉, and sends v
to P .

3. Q waits for K ′
auth ∈ Kauth from P ; then it tests if Kauth = K ′

auth; if so, it
outputs (key, chid ,K) (after erasing all internal state).

Theorem 1. Assuming the DDH for G, an appropriate PRG, and assuming the
set Kauth is large, protocol Πske realizes the ideal functionality Fske.

4.5 Realizing Split Multi-session Secure Channels

Our goal now is to realize the split version sFmsc of the multi-session secure chan-
nels functionality Fmsc presented in §4.3. This will be done with an Fske-hybrid
protocol Πsmsc, where Fske is the split key exchange functionality discussed in
§4.4. At a high-level, protocol Πsmsc works as follows:

1. Wait for an input message init, then send the message init to Fske.
2. Wait for a message (key, chid ,K) from Fske; then do the following:

(a) derive subkeys required to implement bidirectional secure channels,
erasing the key K; these channels will be implemented using a variant
of Beaver and Haber’s technique [3] (see full paper). (b) generate the
output message (authorize, chid).

268 J. Camenisch et al.

3. Now use the keys derived in the previous step to process the secure channels
logic.

Theorem 2. The Fske-hybrid protocol Πsmsc realizes the ideal functionality
sFmsc, assuming a secure PRG and secure MAC.

4.6 Realizing General Split Functionalities

Let F be an arbitrary two-party ideal functionality. Let G be a setup functional-
ity, such as a CRS. Let Π be an (Fach,Fsch)-hybrid protocol that multi-realizes
F with joint access to G (where Fach is defined in §2.4 and Fsch is defined in
§2.5).

Our goal is to use Π to design an sFmsc-hybrid protocol sΠ that multi-
realizes sF with joint access to G. The point is, sΠ does not require secure
channels. Moreover, instantiating sFmsc with Πsmsc, we obtain the a protocol
sΠ [sFmsc/Πsmsc] that multi-realizes sF with joint access to G.

At a high level, protocol sΠ works as follows:

1. Wait for an input message init, then send the message init to sFmsc.
2. Wait for a message (authorze, chid) from sFmsc; then do the following: (a)

initialize a “virtual” instance of Π , assigning it a PID and SID that are
the same as that of this protocol instance, except that the SID pathname is
prefixed chid ; (b) generate the output message (authorize, chid).

3. Proceed as follows: (a) process input requests by passing them to the virtual
instance of Π ; (b) pass along outputs of the virtual instance of Π as outputs
of this protocol instance; (c) use sFmsc to implement the secure channels
used by the virtual instance of Π .

Theorem 3. If Π is an (Fach,Fsch)-hybrid protocol that multi-realizes F with
joint access to G, then sΠ is an sFmsc-hybrid protocol that multi-realizes sF with
joint access to G.
This is essentially the same as the main technical result (Lemma 4.1) of [2], but
there are some technical differences — see full paper for more discussion.

5 Practical UC Zero Knowledge

Before getting into strong CAID/CAKE protocols, we need to discuss an essen-
tial building block: practical protocols for UC ZK (zero knowledge). We will need
a slightly stronger version of ZK, which we call “enhanced ZK”. In the adaptive
corruptions with erasures model, this is no more difficult to realize than ordinary
ZK.

Let R be a binary relation, consisting of pairs (x,w): for such a pair, x is
called the “statement” and w is called the “witness”.

Let � : {0, 1}∗ → {0, 1}∗ be an “information leakage” function. The SID for
an enhanced ZK protocol is of the form parent/ext :Ppid :Qpid : , where P is the
prover andQ the verifier. For an adversaryA, an instance of ideal functionality
Fezk with SID sid := parent/ext :Ppid :Qpid : runs as follows:

Credential Authenticated Identification and Key Exchange 269

1. Wait for both: (a) an input message (send, x, w) from P such that (x,w) ∈ R,
then send the message (send, �(x)) to A; (b) an input message ready from
Q, then send ready to A.

2. Wait for the message lock from A.
3. Wait for both: (a) a message done from A, then send the output message

done to P ; (b) a message deliver from A, then send the output message
(deliver, x) to Q.

Corruption rule: If P is corrupted between Steps 1a and 2, then A is given
(x,w) and is allowed to change the value of (x,w) to any value (x′, w′) ∈ R
(at any time before Step 2).

Note the similarity with our secure channels functionality. Here, the functionality
is parameterized by the information leakage function �, which is used to model
the fact that some information about x may be leaked to an eavesdropping
adversary. Typically, this information will be some rough information about the
“size and shape” of x that ultimately determines the lengths of the ciphertexts
that must be sent in an implementation.

Parameterized relations. In the above discussion, the relation R was consid-
ered to be a fixed relation. However, for many applications, it is convenient to let
R be parameterized by a some system parameter (see §2.3). To realize the ZK
(or extended ZK) functionality, it may be necessary to assume that the system
parameter was generated in a certain way.

For example, a ZK protocol might require that the system parameter contains
an RSA modulus N that is the product of two primes. To realize the ZK ideal
functionality, it might not even be necessary that the factorization of N remain
hidden. In such a case, the system parameter might be profitably viewed as a
public-coin system parameter. This means that the environment may know the
factorization of N , which may be useful to model situations where the factoriza-
tion of N is used, say, to sign messages in higher-level protocols that use a ZK
protocol as a subprotocol.

5.1 Practical Protocols

Practical ZK protocols exist for the types of relations that we will be needed in
our strong CAID/CAKE protocols — indeed, our protocols were designed with
such protocols specifically in mind. In a companion paper, we give a detailed
account of the current state of the art for such protocols. Here, we give a very
brief sketch — see the full paper for more details.

We will be proving statements of the form

Kw1 ∈ D1, . . . , wn ∈ Dn : φ(w1, . . . , wn). (1)

Here, we use the symbol “ K” instead of “∃” to indicate that we are proving “knowl-
edge” of a witness, rather than just its existence. The Di’s are domains which are
finite intervals of integers centered around 0. φ is a predicate — we will presently

270 J. Camenisch et al.

place restrictions on the form of the domains and the predicate. A witness for a
statement of the form (1) is a tuple (w1, . . . , wn) of integers such that wi ∈ Di for
i = 1 . .n and φ(w1, . . . , wn). In cases where only the residue class of wi modulo
m is important, we may write the corresponding domain as Zm.

The predicate φ(w1, . . . , wn) is given by a formula that is built up from
“atoms” using arbitrary combinations of ANDs and ORs. An atom may express
several types of relations among the wi’s: (i) integer relations, such as F = 0,
F ≥ 0, F ≡ 0 (mod m), or gcd(F,m) = 1, where F is an integer polynomial
in the variables w1, . . . , wn, and m is a positive integer; (ii) group relations,
such as

∏k
j=1 g

Fj

j = 1, where the gj ’s are elements of an abelian group, and the
Fj ’s are integer polynomials in the variables w1, . . . , wn; the descriptions of the
groups appearing in such atoms will in general be given as system parameters
(see 2.3); the group order need not be known, but certain technical restrictions
apply.

It is known how to construct efficient protocols for these types of statements
that, under reasonable assumptions, multi-realize Fezk with joint access to a
CRS. (As discussed in the full paper, we actually allow corrupt provers to submit
witnesses lying in somewhat larger intervals; the ideal functionality has to be
modified to allow for this.) The computational complexity of these proof systems
can be easily related to the arithmetic circuit complexity of the polynomials that
appear in the description of φ: the number of exponentiations is proportional
to the sum of the circuit complexities; a more precise running time estimate
depends on the types of groups and domains.

In some cases, we will write statements that quantify over certain variables
using ∃ rather than K. Roughly speaking, witnesses quantified under ∃ are as-
serted just to exist, rather than to be explicitly “known” by the prover. Making
sense of this formally requires some effort; however, the effort pays off in that
the resulting ZK protocols may be substantially more efficient.

6 Strong CAID/CAKE Protocols

6.1 A Protocol for Vectored Unions of Product Relations

We present here a protocol Π0 for F∗
caid that works for a vectored union of

product relations (see §3.3).
We assume the relation is described by values x1, . . . , xk and y1, . . . , yk. Party

P has inputs s1 ∈ S∗
1 , . . . , sk ∈ S∗

k , and Q has inputs t1 ∈ T ∗
1 , . . . , tk ∈ T ∗

k . They
are trying to determine if

∨k
i=1

[
(xi, si) ∈ Ei ∧ (yi, ti) ∈ Fi

]
, for fixed relations

E1, . . . , Ek and F1, . . . , Fk.
We assume that as system parameters, we have a group G of prime order q,

and random generator g. We will need to assume that the computational Diffie-
Hellman (CDH) assumption holds in this group. This protocol also requires some
extra machinery, described below.

Credential Authenticated Identification and Key Exchange 271

1a. P computes hL ←R G and sends hL to Q over a secure channel.
1b. Q computes hR ←R G and sends hR to P over a secure channel.
2a. P waits for hR, and then computes:

for i = 1 . .k:

{
αi ←R Zq, α

′
i ←R Zq

if (xi, si) ∈ Ei then ei ← gαi else ei ← hR/g
α′

i

Using Fezk, P proves to Q:

K{si ∈ S∗
i , α

′
i ∈ Zq}ki=1 :

[k∧
i=1

(
(xi, si) ∈ Ei ∨ gα′

i = hR/ei

)]
.

Note that e1, . . . , ek are delivered to Q via the Fezk functionality after P
erases α′

1, . . . , α
′
k.

2b. Q waits for hL, and then computes:

for i = 1 . .k:

{
βi ←R Zq, β

′
i ←R Zq

if (yi, ti) ∈ Fi then fi ← gβi else fi ← hL/g
β′

i

Using Fezk, Q proves to P :

K{ti ∈ T ∗
i , β

′
i ∈ Zq}ki=1 :

[k∧
i=1

(
(yi, ti) ∈ Fi ∨ gβ′

i = hL/fi

)]
.

Note that f1, . . . , fk are delivered to P via the Fezk functionality after Q
erases β′

1, . . . , β
′
k.

3a. P computes: for i = 1 . . k: if (xi, si) ∈ Ei then ui ← fαi

i else ui ←R G

3b. Q computes: for i = 1 . .k: if (yi, ti) ∈ Fi then vi ← eβi

i else vi ←R G

4. P and Q run a strong CAID subprotocol to evaluate the predicate
∨k

i=1(ui =
vi), and output the result of this computation after erasing all local data.

NOTES: (i) We have reduced our original strong CAID problem to a simpler
strong CAID problem in Step 4. We discuss implementations of Step 4 below.
(ii) The intuition for the main idea of the protocol runs as follows. Suppose, for
example, that P is honest and Q is corrupt. In Step 2b, Q intuitively proves for
each i = 1 . .k, either that it knows ti such that (yi, ti) ∈ Ei or that it does not
know βi; in the latter case, Q will not be able to predict the value gαiβi when
it comes to Step 4. (iii) Assuming the Ei’s and Fi’s are relations based on an
anonymous credential system like IDEMIX, then all of the ZK protocols have
relatively efficient implementations (see §5.1).

6.2 Security Analysis

Our goal now is to show that protocol Π0 realizes F∗
caid. Note that Π0 is a

hybrid protocol that uses the following ideal functionalities as subroutines: secure
channels (i.e., Fsch), enhanced ZK (i.e., Fezk) for relations of the form appearing
in Steps 2a and 2b of the protocol, and F∗

caid for relations of the form appearing
in Step 4 of the protocol.

Theorem 4. Under the CDH assumption for G, protocol Π0 realizes F∗
caid.

272 J. Camenisch et al.

6.3 Implementing Step 4

In the case where k = 1, one can use the equality test protocol in §7. As an
alternative to protocol Π0, in the case where k = 1 one can use a different
protocol altogether, described in the full paper.

In the general case where k ≥ 1, we suggest the following method. Assume
we have a UC protocol for evaluating an arithmetic circuit mod N , where N is
a system parameter that is the product of two large primes. Then to evaluate
the boolean expression

∨k
i=1(ui = vi), P chooses a0 ∈ ZN at random, and for

i = 1 . .k, encodes ui as an element ai of ZN ; similarly, Q chooses b0 ∈ ZN at
random, and for i = 1 . .k, encodes vi as an element bi of ZN . Then P and Q
jointly evaluate in the expression

∏k
i=0(ai−bi) over ZN . If the boolean expression

is true, then the expression over ZN is zero; otherwise, the expression over ZN

evaluates to a random element of ZN .
Thus, we reduce the original strong CAID problem to a strong CAID problem

for a simpler predicate, namely, boolean expressions of the form
∨k

i=1(ui = vi),
and the latter is easily reduced to a simple circuit evaluation problem for expres-
sions of the form

∏k
i=0(ai − bi) over ZN . There are quite practical protocols for

circuit evaluation, which we discuss in detail in a companion paper. The basic
idea is to use known techniques for circuit evaluation based on homomorphic en-
cryption, making use of a semantically secure variant of Camenisch and Shoup’s
encryption scheme [6], which has the advantage that generating public keys is
very inexpensive (making security with adaptive corruptions and erasures more
practical) and proofs about plaintexts fit very nicely into the framework for ZK
proofs discussed in §5.1. These protocols (and hence the resulting strong CAID
protocols) require O(k) exponentiations, and O(log k) (the circuit depth) rounds
of communication, and O(k) total communication complexity.

6.4 Adding Key Exchange

Adding key exchange is simple, especially since we are already assuming secure
channels. We simply modify the protocol so that P generates a random key, and
sends it to Q over a secure channel at the beginning of the protocol. In addition,
whenever either party would output 1, it instead outputs (1,K). This is a generic
transformation that converts any F∗

caid protocol into an F∗
cake protocol. Some

other variations of protocol Π0, including one that deals with partial equality
relations, are discussed in the full paper.

6.5 From Strong CAID/CAKE to CAID/CAKE

We can instantiate protocol Π0 to get a practical Fsch-hybrid protocol Π ′
0 that

multi-realizes F∗
caid (or any of the variations discussed above) with joint access

to a CRS — the crucial building block is Fezk, discussed in §5. Then using
the split functionalities techniques in §4, we can turn Π ′

0 into a protocol sΠ ′
0

that multi-realizes sF∗
caid with joint access to a CRS. The resulting protocol is a

CAID/CAKE protocol that works without secure channels.

Credential Authenticated Identification and Key Exchange 273

Typically, the purpose of running a CAKE protocol is to use the session key
to implement a secure session. If, in fact, this is the goal, a more straightforward
way of achieving it is as follows. Simply design a Fsch-hybrid protocol that
works as follows: first, it runs a strong CAID protocol, and if that succeeds, the
parties continue to communicate, using the secure channels provided by the Fsch
functionality. Now apply the split functionalities techniques in §4 to this protocol,
obtaining a protocol that essentially provides a “credential authenticated secure
channel”.

7 A Protocol for Equality Testing and a Related Problem

Here is a simple protocol for equality testing, called protocol Πeq. We assume
that a group G of prime order q, along with a generator g ∈ G, are given as
system parameters. We will need to assume the DDH for G. We assume the
inputs to the two parties are encoded as elements of Zq. Again, we use Fezk as
a subprotocol. The protocol runs as follows, where P has input a ∈ Zq, and Q
has input b ∈ Zq:

1. P computes: h ←R G, x1, x2, r ←R Zq, c ← gx1hx2 , u1 ← gr, u2 ← hr,
e ← gacr, and using Fezk proves to Q: Ka ∈ Zq ∃ r ∈ Zq : gr = u1 ∧
hr = u2 ∧ gacr = e; note that h, c, u1, u2, e are delivered to Q via the Fezk
functionality after erasing r.

2. Q computes: s ←R Z∗
q , t ←R Zq, ũ1 ← us

1g
t, ũ2 ← us

2h
t, ẽ ← esg−bsct,

and using Fezk proves to P : Kb ∈ Zq ∃ s, t ∈ Zq : us
1g

t = ũ1 ∧ us
2h

t =
ũ2 ∧ esg−bsct = ẽ ∧ gcd(s, q) = 1; note that ũ1, ũ2, ẽ are delivered to P via
the Fezk functionality after erasing s, t.

3. P computes: z ←R Z∗
q , d ← ẽz(ũ1)−zx1(ũ2)−zx2 , and using Fezk proves to

Q: ∃x1, x2, z ∈ Zq : gx1hx2 = c ∧ ẽz(ũ1)−zx1(ũ2)−zx2 = d ∧ gcd(z, q) = 1;
here, d is delivered to Q via the Fezk functionality after erasing x1, x2, z.

4. After erasing all local data, both parties output 1 if d = 1, and output 0
otherwise.

NOTES: (i) We are using ∃ as well as Kquantifiers here. This allows for certain
optimizations, since values quantified under ∃ are never explicitly needed in
the simulator in the security proof below, other than to verify the that the
corresponding relation holds. (ii) In Step 1, (h, c) is the public key and (x1, x2)
the private key for “Cramer-Shoup Ultra-Lite” — the semantically secure version
of Cramer-Shoup encryption. (u1, u2, e) is an encryption of ga. We will exploit
the fact that this scheme is “receiver non-committing”, as was demonstrated by
Jarecki and Lysyanskaya [13]. This property will allow us to simulate adaptive
corruptions. (iii) In Step 2, assuming (u1, u2, e) encrypts ga, then (ũ1, ũ2, ẽ) is
a random encryption of gs(a−b). (iv) In Step 3, P is decrypting (ũ1, ũ2, ẽ), and
raising it to the power z, so that d = gzs(a−b) (v) All of the ZK protocols have
practical implementations, as discussed in §5.1.

Theorem 5. Assuming the DDH for G, protocol Πeq realizes functionality F∗
caid

for the equality relation.

274 J. Camenisch et al.

Applications. One application of protocol Πeq is in the implementation of
Step 4 of protocol Π0 (see §6.3). However, in this situation, a specialized protocol
in the full paper is more efficient.

Another application is to PAKE protocols. We can efficiently implement Fezk
for the necessary relations using secure channels and a common reference string,
and augment the protocol to share a random key over a secure channel. This
gives us a fairly efficient strong CAKE protocol for the equality relation that uses
secure channels. We then derive the split version of the protocol, using a simple
Diffie-Hellman key exchange as in §4, which realizes the CAKE functionality
(more precisely, it multi-realizes the CAKE functionality with joint access to
a CRS). As observed in [2], a protocol that realizes this functionality in fact
realizes the PAKE functionality (as defined in [9]). Our particular protocol is
probably a bit less efficient than the one in [9]; however, our protocol has the
advantage of being secure against adaptive corruptions (assuming erasures). A
very different PAKE protocol, with a structure similar to that in [9], that is
secure against adaptive corruptions was recently presented in [1].

7.1 A Variation

A variation on the above protocol gives a strong CAID protocol for the relation
DL := {(a, ga) : a ∈ Zq}. That is, it tests if ga = v, where a is the input to
P and v is the input to Q. The idea is to have Q “verifiably encrypt” v. The
protocol, which we call protocol Πdl, runs as follows:

1. P computes: h ←R G, x1, x2, r ←R Zq, c ← gx1hx2 , u1 ← gr, u2 ← hr,
e ← gacr, and using Fezk proves to Q: Ka ∈ Zq ∃ r ∈ Zq : gr = u1 ∧
hr = u2 ∧ gacr = e; note that h, c, u1, u2, e are delivered to Q via the Fezk
functionality after erasing r.

2. Q computes: s←R Z∗
q , t←R Zq, y ←R Zq, ṽ ← gyv, ũ1 ← us

1g
t, ũ2 ← us

2h
t,

ẽ ← esv−sct and using Fezk proves to P : Ky ∈ Zq ∃ s, t ∈ Zq : us
1g

t =
ũ1 ∧ us

2h
t = ũ2 ∧ esṽ−sgysct = ẽ ∧ gcd(s, q) = 1; note that ṽ, ũ1, ũ2, ẽ are

delivered to P via the Fezk functionality after erasing y, s, t.
3. P computes: z ←R Z∗

q , d ← ẽz(ũ1)−zx1(ũ2)−zx2 , and using Fezk proves to
Q: ∃x1, x2, z ∈ Zq : gx1hx2 = c ∧ ẽz(ũ1)−zx1(ũ2)−zx2 = d ∧ gcd(z, q) = 1;
here, d is delivered to Q via the Fezk functionality after erasing x1, x2, z.

4. Both parties output 1 if d = 1, and output 0 otherwise.

NOTES: (i) Step 1 is exactly the same as before. (ii) In Step 2, Q is generating
a random encryption of (ga/v)s. Moreover, by giving ṽ and y to Fezk, Q is
effectively giving v to Fezk. (iii) Step 3 is the same as before, but now d =
(ga/v)sz .

Theorem 6. Assuming the DDH for G, protocol Πdl realizes functionality F∗
caid

for the relation DL.

Applications. This protocol, when augmented with a key sharing step over a
secure channel, and “split” as in §4, gives us a practical PAKE protocol that is

Credential Authenticated Identification and Key Exchange 275

secure against adaptive corruptions and server compromise. That is, the client
stores the password a, while the server stores ga. If the password file on the
server is compromised, then it will not be easy to an attacker to login to the
server as the client.

Unlike previous protocols, such as in [11], our protocol does not rely on ran-
dom oracles. To be fair, the definition of security in [11] is so strong that it
probably cannot be achieved without random oracles: the security definition in
[11] requires that in the event of a server compromise, an attacker must carry
out an offline dictionary attack in order to guess the password. Also, note that
the protocol in [11] is proved secure only in the static corruption model.

In a complete PAKE protocol, one would likely set a :=
H(pw , clientID , serverID), where H is a cryptographic hash, pw is the
actual password, and clientID and serverID are the names of the client and
server, respectively. If H is entropy preserving, pw is a high-entropy password,
and the discrete logarithm problem in G is hard, then it will be infeasible to
login as the client, even if the server is compromised. Moreover, if H is modeled
as a random oracle, and the discrete logarithm problem in G is hard, then even
in the event of a server compromise, an attacker must still carry out an offline
dictionary attack in order to login as the client. Thus, our new protocol is the
first fairly practical PAKE protocol (UC-secure or otherwise) that is secure
against server compromise and does not rely on random oracles; as a bonus, it
is also secure against adaptive corruptions.

References

1. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for con-
ditionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 671–689. Springer, Heidelberg (2009)

2. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005), http://eprint.iacr.org/2007/464

3. Beaver, D., Haber, S.: Cryptographic protocols provably secure against dynamic
adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 307–
323. Springer, Heidelberg (1993)

4. Camenisch, J., Casati, N., Gross, T., Shoup, V.: Credential authenticated identifi-
cation and key exchange. Cryptology ePrint Archive, Report 2010/055 (2010),
http://eprint.iacr.org/

5. Camenisch, J., Lysyanskaya, L.: Efficient non-transferable anonymous multi-show
credential system with optional anonymity revocation. In: Crypto 2001, pp. 93–118
(2001)

6. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003), http://eprint.iacr.org/2002/161

7. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (December 14, 2005 ver-
sion) (2005), http://eprint.iacr.org

http://eprint.iacr.org/2007/464
http://eprint.iacr.org/
http://eprint.iacr.org/2002/161
http://eprint.iacr.org

276 J. Camenisch et al.

8. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with
global setup. In: Theory of Cryptography 2007, pp. 61–85 (2007), Full version at
http://eprint.iacr.org/2006/432

9. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

10. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003),
http://eprint.iacr.org/2002/047

11. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006)

12. Jarecki, S., Kim, J., Tsudik, G.: Beyond secret handshakes: affiliation-hiding au-
thenticated key agreement. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964,
pp. 352–369. Springer, Heidelberg (2008)

13. Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography: introduc-
ing concurrency, removing erasures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 221–242. Springer, Heidelberg (2000)

http://eprint.iacr.org/2006/432
http://eprint.iacr.org/2002/047

Password-Authenticated Session-Key Generation
on the Internet in the Plain Model

Vipul Goyal1, Abhishek Jain2,�, and Rafail Ostrovsky3,��

1 Microsoft Research, India
vipul@microsoft.com

2 UCLA
abhishek@cs.ucla.edu

3 UCLA
rafail@cs.ucla.edu

Abstract. The problem of password-authenticated key exchange
(PAKE) has been extensively studied for the last two decades. Despite
extensive studies, no construction was known for a PAKE protocol that
is secure in the plain model in the setting of concurrent self-composition,
where polynomially many protocol sessions with the same password may
be executed on the distributed network (such as the Internet) in an ar-
bitrarily interleaved manner, and where the adversary may corrupt any
number of participating parties.

In this paper, we resolve this long-standing open problem. In partic-
ular, we give the first construction of a PAKE protocol that is secure
(with respect to the standard definition of Goldreich and Lindell) in the
fully concurrent setting and without requiring any trusted setup assump-
tions. We stress that we allow polynomially-many concurrent sessions,
where polynomial is not fixed in advance and can be determined by an
adversary an an adaptive manner. Interestingly, our proof, among other
things, requires important ideas from Precise Zero Knowledge theory
recently developed by Micali and Pass in their STOC’06 paper.

1 Introduction

The problem of password authenticated key exchange (PAKE) has been studied
since early 1990’s. PAKE involves a pair of parties who wish to establish a high
entropy session key in an authenticated manner when their a priori shared secret
information only consists of a (possibly low entropy) password. More formally,
the problem of PAKE can be modeled as a two-party functionality F involving
a pair of parties P1 and P2; if the inputs (passwords) of the parties match, then
F outputs a uniformly distributed session key, else it outputs ⊥. Hence the goal
of PAKE is to design a protocol that securely realizes the functionality F . Un-
fortunately, positive results for secure multi-party computation (MPC) [1,2] do
not immediately translate to this setting; the reason being that known solutions
� Supported in Part by NSF grants 0830803, 0916574.

�� Supported in part by IBM Faculty Award, Xerox Innovation Group Award, the
Okawa Foundation Award, Intel, Lockheed Martin, Teradata, NSF grants 0716835,
0716389, 0830803, 0916574 and U.C. MICRO grant..

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 277–294, 2010.
c© International Association for Cryptologic Research 2010

278 V. Goyal, A. Jain, and R. Ostrovsky

for secure MPC require the existence of authenticated channels – which is in fact
the end goal of PAKE. Therefore, very informally speaking, secure multi-party
computation and PAKE can be viewed as complementary problems.

The problem of password authenticated key exchange was first studied by
Bellovin and Meritt [3]. This was followed by several additional works propos-
ing protocols with only heuristic security arguments (see [4] for a survey). Sub-
sequently, PAKE was formally studied in various models, including the random
oracle/ideal cipher model, common reference string (CRS) model, and the plain
model (which is the focus of this work). We briefly survey the state of the art on
this problem. The works of Bellare et al [5] and Boyko et al [6] deal with defining
and constructing PAKE protocols in the ideal cipher model and random oracle
model respectively. In the CRS model, Katz, Ostrovsky and Yung [7] gave the first
construction for PAKE without random oracles based on the DDH assumption.
Their result were subsequently improved by Gennaro and Lindell [8], and Genarro
[9]. Again in the CRS model, Canetti, Halevi, Katz, Lindell and MacKenzie [10]
proposed new definitions and constructions for a PAKE protocol in the frame-
work of Universal Composability [11]. They further proved the impossibility of a
Universally Composable PAKE construction in the plain model.

Goldreich and Lindell [12] formulated a new simulation-based definition for
PAKE and gave the first construction for a PAKE protocol in the plain model.
Their construction was further simplified (albeit at the cost of a weaker secu-
rity guarantee) by Nguyen and Vadhan [13]. Recently, Barak et al [14] gave a
very general construction for a PAKE protocol that is secure in the bounded-
concurrent setting (see below) in the plain model.

To date, [12,13] and [14] remain the only known solutions for PAKE in the
plain model. However, an important limitation of Goldreich and Lindell [12] (as
well as Nguyen and Vadhan [13]) is that their solution is only relevant to the stand-
alone setting where security holds only if a single protocol session is executed on
the network. A more natural and demanding setting is where several protocol ses-
sions may be executed concurrently (a typical example being protocols executed
over the Internet). In such a setting, an adversary who controls parties across dif-
ferent sessions may be able to mount a coordinated attack; as such, stand-alone
security does not immediately translate to concurrent security [15]. In the con-
text of PAKE, this problem was was fully resolved assuming CRS trusted setup
(see below) and only partially addressed in the plain model by Barak, Canetti,
Lindell, Pass and Rabin [14] who gave a construction that maintains security in
the setting of bounded-concurrency. In this setting, an a priori bound is known
over the number of sessions that may be executed concurrently at any time; this
bound is crucially used in the design of the protocol. It is natural to consider the
more general setting of full concurrent self-composition, where any polynomially
many protocol sessions (with no a priori bound) with the same password may be
executed in an arbitrary interleaved manner by an adversary who may corrupt
any number of parties. We stress that although the works of [7,16,8,10,4] solve
this problem (where [7,8] are secure under self-composition, and [16] also enjoy
forward secrecy, while [10] is secure under general-composition), they all require

Password-Authenticated Session-Key Generation on the Internet 279

a trusted setup in the form of a common reference string. Indeed, to date, no con-
structions are known for a PAKE protocol that is secure in the plain model in the
setting of concurrent self-composition.

Our Contribution. In this paper, we resolve this open problem. In particular, we
give the first construction of a PAKE protocol in the plain model that allows for
concurrent executions of the protocol between parties with the same password.
Our techniques rely on several previous works, most notably the works of Barak,
Prabhakaran and Sahai [17] and Micali and Pass [18].

Our construction is proven secure as per the definition of Goldreich and Lin-
dell [12] in the concurrent setting. We stress that Lindell’s impossibility re-
sult [19] for concurrent self-composition is not applicable here since (a) Goldreich
and Lindell used a specific definition that is different from the standard paradigm
for defining secure computation1, and (b) further, they only consider the sce-
nario where the honest parties hold fixed inputs (while Lindell’s impossibility
result crucially requires adaptive inputs).

In fact, our security definition is somewhat stronger than the one by Goldreich
and Lindell [12]. The definition in [12], for example, does not consider the case
where the adversary may have some a priori information on the password of the
honest parties in a protocol execution. We consider an improved simulation-based
security model similar to that proposed by [6]. More specifically, in our model, the
simulator in the ideal world is empowered to make a constant number of queries
per (real world) session to the ideal functionality (as opposed to just one). Our
security definition then requires computational indistinguishability of the out-
put distributions of real and ideal world executions in keeping with the standard
paradigm for secure computation. As noted in [20], this improved definition im-
plies the original definition of Goldreich and Lindell (see full version for a proof).

In our main construction, we consider the setting where the honest parties
across the (polynomially-many) concurrent executions hold the same password
or independently chosen passwords2. An example of the same password case is

1 Note that in the standard simulation paradigm, the output distributions of the
“real” and “ideal” worlds must be computationally indistinguishable; in contrast,
the definition of Goldreich and Lindell [12] allows these distributions to be O(1/|D|)
apart (where D is the password dictionary).

2 A more general question is to consider the settingwhere the passwords of honest parties
in different sessions might be correlated in any arbitrary way. Towards this end, we note
that our construction can be easily extended to this setting. However, in this case we re-
quire the ideal simulator to be able to query the ideal functionality an expected constant
number of times per session. Jumping ahead, in case the honest parties were using the
same password or fully independent passwords, the simulator is able to “trade” ideal
functionality calls in one session for another. Hence, the simulator is able to even out
the number of calls to a fixed constant in each session. This in turn means that for the
setting of correlated passwords, our construction will satisfy a security definition which
is slightly weaker (in that the number of ideal functionality calls are constant only in
expectation). Obtaining a construction for correlated (in an arbitrary way) passwords
where the number of calls are not just constant in expectation but always bounded by
a constant is left as an interesting open question.

280 V. Goyal, A. Jain, and R. Ostrovsky

when a server expects a specific password for authentication and several parties
are trying to authenticate simultaneously.

We note that our techniques and constructions are quite general. Our con-
struction can be instantiated with a basic semi-honest secure computation pro-
tocol for any PPT computable functionality. This would lead to a concurrently
secure protocol for that functionality as per the security definition where we
allow the simulator to make an expected constant number of calls to the ideal
function per (real world) session. The meaningfulness of such a definition is
shown in the case of password based key exchange which is the focus of this
work (more precisely, by comparing it with the definition of [20]). However we
anticipate that the above general construction with such security guarantees
might be acceptable in many other settings as well.

A related model is that of resettably secure computation proposed by Goyal
and Sahai [21]. In resettably secure computation, the ideal simulator is given the
power to reset and query the trusted party any (polynomial) number of times.
However there are important differences. Goyal and Sahai [21] consider only the
“fixed role” setting and only one of the parties can be thought of as accepting
concurrent sessions. This means that the key technical problems we face in the
current work (arising out of the possibility of mauling attacks in the concurrent
setting) do not arise in [21]. Secondly, [21] do not try to optimize (or even bound)
the number of queries the ideal simulator makes to the trusted party per session.

Overview of Main Ideas. Note that in the setting of concurrent self-composition,
an adversary may corrupt different parties across the various sessions. Consider
for instance two different sessions where one of the parties is corrupted in each
session. We can view one of these sessions as a “left” session and the other as a
“right session”, while the corrupted parties can be jointly viewed as an adversar-
ial man-in-the-middle. An immediate side-effect of this setting is that it allows
an adversary to possibly “maul” a “left” session in order to successfully estab-
lish a session key with an honest party (say) P in a “right” session without the
knowledge of P ’s secret password. Clearly, in order to provide any security guar-
antee in such a setting, it is imperative to achieve independence between various
protocol sessions executing on the network. Note that this is akin to guarantee-
ing non-malleability across various sessions in the concurrent setting. Then, as
a first step towards solving this problem, we borrow techniques from the con-
struction of concurrent non-malleable zero knowledge argument due to Barak,
Prabhakaran and Sahai [17] (BPS-CNMZK). In fact, at a first glance, it might
seem that compiling a semi-honest two-party computation protocol (that emu-
lates the PAKE functionality in the stand-alone setting) with the BPS-CNMZK
argument or some similar approach might fully resolve this problem. However,
such an approach fails on account of several reasons. We highlight some impor-
tant problems in such an approach.

We first note that the simulation of BPS-CNMZK is based on a rewinding
strategy. In a concurrent setting, the adversary is allowed to control the schedul-
ing of the messages of different sessions. Then for a given adversarial scheduling,
it is possible that the simulator of BPS-CNMZK may rewind past the beginning

Password-Authenticated Session-Key Generation on the Internet 281

of a session (say) s when “simulating” another session. Now, every time session
s is re-executed, an adversary may be able to change his input (i.e., make a new
password guess possibly based on the auxiliary information it has). In such a
case, the simulator would have to query the ideal functionality for that session
more than once; therefore, we need to allow the simulator to make extra (i.e.,
more than one) queries per session to ideal functionality. In order to satisfy our
definition, we would need to limit the number of queries to a constant per ses-
sion. However, the simulator for BPS-CNMZK, if used naively, may require large
polynomially many queries per session to the ideal functionality, and therefore,
fail to satisfy our definition.

In order to overcome this problem, we build on the techniques of precise sim-
ulation, introduced by Micali and Pass [18] in the context of (stand-alone) zero
knowledge and later extended to the setting of concurrent zero knowledge by
Pandey, Pass, Sahai, Tseng, and Venkitasubramaniam [22]. Specifically, Pandey
et. al. [22] use a time-oblivious rewinding schedule that (with a careful choice
of system parameters) ensures that the the time spent by the simulator in the
“look-ahead” threads3 is only within a constant factor of the time spent by the
simulator in the “main” thread. We remark that we do not require this precision
in simulation time; instead we require that the number of queries made by the
simulator in the look-ahead threads is only within a constant factor of the num-
ber of queries made in the main thread. For this purpose, we employ the precise
Zero-Knowedlge paradigm of Micali and Pass and consider an imaginary experi-
ment in which our adversary takes a disproportionately large amount of time in
generating the message after which the simulator has to query the trusted party.
Our rewinding strategy is determined by running the PPSTV [22] simulator us-
ing the next message generation timings of such an (imaginary) adversary (even
though our simulator is fully black-box and does not even measure the timings
for the real adversary) in order to bound the number of queries.

We further note that in the security proof of the above approach, the simu-
lator must be able to extract the inputs of the adversary in all the sessions in
order to simulate its view. However, the extractor of [17] is unsuitable for this
task since it can extract adversary’s inputs (in the setting of BPS-CNMZK) only
on a session-by-session basis. To further elaborate, let us first recall the setting
of BPS-CNMZK, where an adversary is interacting with some honest provers as
well as some honest verifiers. Now, in order to extract the input of an adversarial
prover in a particular session s, the extractor in [17] honestly runs all the un-
corrupted verifiers except the verifier in session s. We stress that the extractor
is able to run the honest verifiers by itself since they do not possess any secret
inputs; clearly, such an extraction technique would fail in our setting since the
simulator does not know the inputs of the honest parties.

3 Very roughly speaking, a “thread of execution” between the simulator and the ad-
versary is a simulation of a prefix of an actual execution. The simulator may run
multiple threads of execution, and finally output a single thread, called the main
thread. Any other thread is referred to as a look-ahead thread.

282 V. Goyal, A. Jain, and R. Ostrovsky

To address this problem, we require each party in our protocol to commit to its
input and randomness inside a separate preamble [22,23] that allows extraction
of the committed values in a concurrent setting. However, we note that such a
preamble requires a complicated rewinding strategy for extraction of committed
value, and so is the case for simulating the BPS-CNMZK argument. Indeed,
it seems that we might need to compose the (possibly conflicting) individual
rewinding strategies of BPS-CNMZK and the additional preamble into a new
uniform rewinding strategy. Fortunately, by ensuring that we use the same kind
of preamble (for committing to the input of a party) as the one used inside
BPS-CNMZK, we are able to avoid such a scenario, and crucially, we are able
to use the BPS-CNMZK strategy as a single coherent rewinding strategy. The
above idea also gives us a new construction of a concurrent non-malleable zero-
knowledge protocol where the extraction can be automatically done in-line along
with the simulation. We believe this implication to be of independent interest.

Finally, the construction in [17] is only analyzed for the setting where the
theorems to be proven by the honest parties are fixed in advance before any
session starts (in keeping with the impossibility results of Lindell [19]). Towards
that end, our protocol only makes use of BPS-CNMZK in the very beginning
of the protocol to prove a statement which could be generated by the honest
parties before the start of any session.

2 Definitions and Preliminaries

2.1 Our Model

We first summarize the main differences in our model with respect to [12]. We
first note that even in the stand-alone setting, if an adversary A controls the
communication link between two honest parties, then A can execute separate
“left” and “right” executions with the honest parties. Therefore, these executions
can be viewed as two concurrent executions where A is the common party. In
keeping with this observation, in our model, the adversary A is cast as a party
participating in the protocol instead of being a separate entity who controls the
communication link (as in [12], see full version for more details). We stress that
this modeling allows us to assume that the communication between protocol
participants takes place over authenticated channels. Furthermore, in contrast
to [12], we allow the adversary to have a-priori information on the password.
More details follow.

Description of F . We model the problem of password-authenticated key ex-
change as a two-party functionality F involving parties P1 and P2 (where either
party may be adversarial). If the inputs (password from a dictionary D) of P1
and P2 match, then F sends them a uniformly distributed session key (whose
length is determined by the security parameter), else it sends ⊥.

Further, in contrast to the stand-alone setting of [12] (where security holds
only if a single protocol session is executed on the network), we consider the
more general setting of concurrent self-composition, where polynomially many

Password-Authenticated Session-Key Generation on the Internet 283

(in the security parameter) protocols with the same password may be executed
on the network in an arbitrarily interleaved manner. In this setting, an adversary
A may corrupt several parties across all the different sessions.

To formalize the above requirements and define security, we extend the stan-
dard simulation paradigm for defining secure computation. In particular, we
allow the adversary in the ideal world to make a constant number of (output)
queries to the trusted party for each protocol session. In the definition below,
we focus only on the case where the honest parties hold the same password p.
However it can be extended to the case of arbitrarily correlated passwords (or,
in fact, general secure computation) in a natural way where the simulator in
the ideal world might make an expected constant number of calls to the ideal
functionality for every session in the real world.

We consider the static corruption model and probabilistic polynomial time
(PPT) adversaries only. We denote computational indistinguishability by

c≡, and
the security parameter by κ. Let D be the dictionary of passwords.

Ideal model. In the ideal model, there is a trusted party that computes the
password functionality F (described above) based on the inputs handed to it
by the players. Let there be n parties P1, . . . , Pn where different pairs of parties
are involved in one or more sessions, such that the total number of sessions
is polynomial in the security parameter κ. Let M ⊂ [n] denote the subset of
corrupted parties controlled by an adversary. An execution in the ideal model
with an adversary who controls the parties M proceeds as follows:

I. Inputs: The honest parties hold a fixed input which is a password p chosen
from a dictionary D. The input of a corrupted party is not fixed in advance.

II. Session initiation: If a party Pi wishes to initiate a session with another
party Pj , it sends a (start-session, i, j) message to the trusted party. On
receiving a message of the form (start-session,i, j), the trusted party sends
(new-session, i, j, k) to both Pi and Pj , where k is the index of the new session.

III. Honest parties send inputs to trusted party: Upon receiving (new-
session,i, j, k) from the trusted party, an honest party Pi sends its real input
along with the session identifier. More specifically, Pi sets its session k input
xi,k to be the password p and sends (k, xi,k) to the trusted party.

IV. Corrupted parties send inputs to trusted party: A corrupted party
Pi sends a message (k, xi,k) to the trusted party, for any xi,k ∈ D of its
choice.

V. Trusted party sends results to adversary: For a session k involving
parties Pi and Pj , when the trusted party has received messages (k, xi,k)
and (k, xj,k), it computes the output F(xi,k, xj,k). If at least one of the
parties is corrupted, then the trusted party sends (k,F(xi,k, xj,k)) to the ad-
versary4. On the other hand, if both Pi and Pj are honest, then the trusted
party sends the output message (k,F(xi,k, xj,k)) to them.

4 Note that here, the ideal functionality does not restrict the adversary to a fixed
constant number of queries per session. However, in our security definition, we will
require that the ideal adversary only makes a constant number of queries per session.

284 V. Goyal, A. Jain, and R. Ostrovsky

VI. Adversary instructs the trusted party to answer honest players: For
a session k involving parties Pi and Pj where exactly one party is honest, the
adversary, depending on its view up to this point, may send the (output, k)mes-
sage in which case the trusted party sends the most recently computed session
k output (k,F(xi,k, xj,k)) to the honest party. (Intuitively, for each session k
where exactly one party is honest, we allow the adversary to choose which one
of the λ output values would be received by the honest party.)

VII. Adversary makes more queries for a session: The corrupted party Pi,
depending upon its view up to this point, can send the message (new-query, k)
to the trusted party. In this case, execution of sessionk in the ideal world comes
back to stage IV. Pi can then choose its next input adaptively (i.e., based on
previous outputs).

VIII. Outputs: An honest party always outputs the value that it received
from the trusted party. The adversary outputs an arbitrary (PPT com-
putable) function of its entire view (including the view of all corrupted
parties) throughout the execution of the protocol.

Let S be a probabilistic polynomial-time ideal-model adversary that controls the
subset of corrupted parties M ⊂ [n]. Then the ideal execution of F (or the ideal
distribution) with security parameter κ, password p ∈ D and auxiliary input z
to S is defined as the output of the honest parties along with the output of the
adversary S resulting from the ideal process described above. It is denoted by
ideal

F
M,S(κ, p, z).

Real model. We now consider the real model in which a real two-partypassword-
based key exchange protocol is executed.

Let F , P1, . . . , Pn,M be as above. Let Σ be the password-based key exchange
protocol in question. Let A be probabilistic polynomial-time (ppt) machine such
that for every i ∈M , the adversary A controls the party Pi.

In the real model, a polynomial number (in the security parameter κ) of
sessions of Σ may be executed concurrently, where the scheduling of all messages
throughout the executions is controlled by the adversary. We do not assume that
all the sessions have a unique session index. We assume that the communication
between the parties takes place over authenticated channels5. An honest party
follows all instructions of the prescribed protocol, while an adversarial party may
behave arbitrarily. At the conclusion of the protocol, an honest party computes
its output as prescribed by the protocol. Without loss of generality, we assume
the adversary outputs exactly its entire view of the execution of the protocol.

The real concurrent execution of Σ (or the real distribution) with security
parameter κ, password p ∈ D and auxiliary input z to A is defined as the
output of all the honest parties along with the output of the adversary resulting
from the above process. It is denoted as real

Σ
M,A(κ, p, z).

We now give our definition of concurrently-secure password-authenticated key
exchange protocol.
5 As mentioned earlier, this is a reasonable assumption since in our model, the ad-

versary is a protocol participant instead of being a separate entity that controls the
communication links (as in [12]).

Password-Authenticated Session-Key Generation on the Internet 285

Definition 1. Let F and Σ be as above. Let D be the dictionary of passwords.
Then protocol Σ for computing F is a concurrently secure password authenticated
key exchange protocol if for every probabilistic polynomial-time adversary A in
the real model, there exists a probabilistic expected polynomial-time adversary S
such that S makes a constant number of queries to the ideal functionality per
session, and, for every z ∈ {0, 1}∗, p ∈ D, M ⊂ [n],{

ideal
F
M,S(κ, p, z)

}
κ∈N

c≡ {real
Σ
M,A(κ, p, z)

}
κ∈N

We note that our security definition implies the original definition of Goldreich
and Lindell [12] (adapted to the concurrent setting). We refer the reader to the
full version for a formal proof. We now state our main result.

Theorem 1. (Main Result) Assume the existence of 1-out-of-2 oblivious trans-
fer protocol secure against honest but curious adversaries6. Let F be the two-
party PAKE functionality as described above. Then, there exists a protocol Σ
that securely realizes F as per Definition 1.

We prove the above theorem by constructing such a protocol Σ in section 3. If
the underlying primitives are uniform (resp., non-uniform), then the protocol Σ
is uniform (resp., non-uniform) as well. A polynomial time adversary against Σ
translates to a polynomial time adversary against one of the underlying primitives.

2.2 Building Blocks

We now briefly mention some of the main cryptographic primitives that we use
in our construction. We refer the the reader to the full version of the paper for
more details.
Statistically Binding Commitments. In our protocol, we shall use the 2-round sta-
tistically binding commitment scheme of Naor [25] based on one-way functions.
Given a random string z from the receiver, let comz(·) denote the commitment
function of the scheme.
Preamble from PPSTV [22]. A PPSTV preamble is a protocol between a commit-
ter and a receiver that consists of two main phases, namely, (a) the commitment
phase, and (b) the challenge-response phase. Let k be a parameter that deter-
mines the round-complexity of the protocol. Then, in the commit phase, very
roughly speaking, the committer commits to a secret string σ and k2 pairs of its
2-out-of-2 secret shares. The challenge-response phase consists of k iterations,
where in each iteration, very roughly speaking, the committer “opens” k shares,
one each from k different pairs of secret shares as chosen by the receiver.

The goal of this protocol is to enable the simulator to be able to rewind and
extract the “preamble secret” σ with high probability. In the concurrent setting,
rewinding can be difficult since one may rewind past the start of some other
protocol [26]. However, as it has been demonstrated in [22] (see also [23,27])
6 Note that 1-out-of-2 oblivious transfer (OT) secure against honest but curious ad-

versaries implies 1-out-of-2 OT secure against malicious adversaries [24].

286 V. Goyal, A. Jain, and R. Ostrovsky

there is a “time-oblivious” rewinding strategy that the simulator can use to
extract the preamble secrets from every concurrent cheating committer, with
high probability. In the sequel, we will refer to the preamble simulator as CEC-
Sim. For our purpose, we will use PPSTV preambles with linear (in the security
parameter κ) number of rounds. Then, the simulation strategy in [22] guarantees
a linear precision in the running time of the simulator. Specifically, the running
time of the simulator is only a constant multiple of the running time of the
adversarial committer in the real execution.
Concurrent Non-Malleable Zero Knowledge Argument. We shall use a concur-
rent non-malleable zero knowledge (CNMZK) argument for every language in NP
with perfect completeness and negligible soundness error. In particular, we will use
a slightly modified version of the CNMZK protocol of Barak, Prabhakaran and Sa-
hai [17], henceforth referred to as mBPS-CNMZK. In the modified version, we re-
place thePRS [23]preambleused in theoriginal constructionwithaPPSTVpream-
ble with linear (in the security parameter) number of rounds. We will also require
that the non-malleable commitment scheme used in the protocol is public-coin [28].
Statistically Witness Indistinguishable Arguments. In our construction, we shall
use a statistically witness indistinguishable argument (sWI) for proving mem-
bership in any NP language with perfect completeness and negligible soundness
error. Such a scheme can be constructed by using ω(log n) copies of Blum’s
Hamiltonicity protocol [29] in parallel, with the modification that the prover’s
commitments in the Hamiltonicity protocol are made using a statistically hid-
ing commitment scheme. Statistically hiding commitments were constructed by
Naor, Ostrovsky, Venkatesan and Yung [30] in O(k/log(k)) rounds using a one
way permutation ([30] in turn builds on the interactive hashing technique intro-
duced in [31]). Constructions based on one way functions were given in [32,33].
Semi-Honest Two Party Computation. We will also use a semi-honest two party
computation protocol Πsh-pake that emulates the PAKE functionality F (as de-
scribed in section 2.1) in the stand-alone setting as per the standard definition of
secure computation. The existence of such a protocolΠsh-pake follows from [1,34].

3 Our Construction

In this section, we describe our two-party protocol Σ that securely realizes the
password functionality F in the setting of concurrent self-composition as per
Definition 1.
Notation. Let P1 and P2 be two parties with private inputs (password from dic-
tionary D) x1 and x2 respectively. Given a random string z (from the receiver),
let comz(·) denote the commitment function of Naor’s commitment scheme [25].
By mBPS-CNMZK, we will refer to the modified version of the CNMZK proto-
col of [17] described in section 2.2. Let Πmbps,Pi→Pj denote an instance of the
mBPS-CNMZK protocol where Pi and Pj play the roles of prover and verifier
respectively. Let Πsh-pake be any semi-honest two party computation protocol
that emulates the functionality F in the stand-alone setting. Let Uη denote the
uniform distribution over {0, 1}η, where η is a function of the security parameter.

Password-Authenticated Session-Key Generation on the Internet 287

The protocol Σ proceeds as follows.

I. Trapdoor Creation Phase

1. P1 ↔ P2 : P1 sends a random string z2 (of appropriate length) to P2 as the
first message of Naor’s commitment scheme. Similarly, P2 sends a random
string z1 to P1.

2. P1 → P2 : P1 creates a commitment com1 = comz1(0) to bit 0 and sends it
to P2. P1 and P2 now engage in the execution of a mBPS-CNMZK argument
Πmbps,P1→P2 where P1 proves that com1 is a commitment to 0.

3. P2 → P1 : P2 now acts symmetrically. Specifically, it creates a commitment
com2 = comz2(0) to bit 0 and sends it to P1. P2 and P1 now engage in the
execution of a mBPS-CNMZK argument Πmbps,P2→P1 where P2 proves that
com2 is a commitment to 0.

II. mPPSTV Preamble Phase. In this phase, each party Pi engages in the
execution of a modified PPSTV preamble (henceforth referred to as mPPSTV)
with Pj where it commits to its input and randomness. In our modified ver-
sion of the PPSTV preamble, for a given receiver challenge, the committer
does not “open” the commitments, but instead simply reveals the committed
value (without the randomness) and proves its correctness by using a sWI. Let
Πmppstv,Pi→Pj denote an instance of the mPPSTV protocol where Pi plays the
role of the committer. We now describe the steps in this phase.

1. P1 ↔ P2 : Generate a string r1
$← Uη and let β1 = {x1, r1}. Here r1 is the

randomness to be used (after coin-flipping with P2) by P1 in the execution
of the protocol Πsh-pake in Phase III. We assume that |r1| = η is sufficiently
long for that purpose. Now P1 and P2 engage in the execution of a mPPSTV
preamble Πmppstv,P1→P2 in the following manner.
Let k be a polynomial in the security parameter κ. P1 first prepares 2k2 secret
shares {α0

i,j}ki,j=1, {α1
i,j}ki,j=1 such that α0

i,j ⊕ α1
i,j = β1 (= {x1, r1}) for all

i, j. Using the commitment function comz1(·), P1 commits to β1 and all its
secret shares. Denote these commitments by B1, {A0

i,j}ki,j=1, {A1
i,j}ki,j=1. P1

now engages in the execution of a sWI with A in order to prove the following
statement: either
(a) theabove commitphase is“valid”, i.e., there existvalues β̂1,{α̂0

i,j, α̂
1
i,j}ki,j=1

such that (a) α̂0
i,j ⊕ α̂1

i,j = β̂1 for all i, j, and, (b) commitments B1,
{A0

i,j}ki,j=1, {A1
i,j}ki,j=1 can be decommitted to β̂1, {α̂0

i,j , α̂
1
i,j}ki,j=1, or,

(b) com1 in phase I is a commitment to bit 1.
It uses the witness corresponding to the first part of the statement. P1 and
P2 now execute a challenge-response phase. For j = 1, . . . , k:
(a) P2 → P1 : Send challenge bits z1,j , . . . , zk,j

$← {0, 1}k.
(b) P1 → P2 : Send α

z1,j

1,j , . . . , α
zk,j

k,j . Now, P1 and P2 engage in the execution
of a sWI, where P1 proves the following statement: either
(a) commitments Az1,j

1,j , . . . , A
zk,j

k,j can be decommitted to αz1,j

1,j , . . . , α
zk,j

k,j

respectively, or (b) com1 in Phase I is a commitment to bit 1. It uses the
witness corresponding to the first part of the statement.

288 V. Goyal, A. Jain, and R. Ostrovsky

2. P2 ↔ P1 : P2 now acts symmetrically.

III. Secure Computation Phase. In this phase, the parties run an execution
of the semi-honest two party protocol Πsh-pake “compiled” with sWI.

Coin Flipping. P1 and P2 first engage in a coin-flipping protocol. More specif-
ically, P1 (resp., P2) generates r′2

$← Uη (resp., r′1
$← Uη) and sends it to P2

(resp., P1). Define r′′1 = r1⊕ r′1 and r′′2 = r2⊕ r′2. Now r′′1 and r′′2 respectively are
the random coins that P1 and P2 will use in the execution of protocol Πsh-pake.

Protocol Πsh-pake. Let the protocol Πsh-pake have t rounds where one round is
defined to have a message from P1 to P2 followed by a reply from P2 to P1.
Let transcript T1,j (resp., T2,j) be defined to contain all the messages exchanged
between P1 and P2 before the point party P1 (resp., P2) is supposed to send a
message in round j. Now, each message sent by either party in protocol Πsh-pake

is compiled into a message block in Σ. For j = 1, . . . , t:

1. P1 → P2 : P1 sends the next message Δ1,j(= Πsh-pake(T1,j, x1, r
′′
1)) as per

protocol Πsh-pake. Now, P1 and P2 engage in the execution of a sWI where
P1 proves the following statement: either
(a) there exists a value β̂1 = {x̂1, r̂1} such that (a) the commitment B1

in phase II.1 can be decommitted to β̂1 = {x̂1, r̂1}, and (b) the sent
message Δ1,j is consistent with input x̂1 and randomness r̂1 ⊕ r′1 (i.e.,
Δ1,j(= Πsh-pake(T1,j , x̂1, r̂1 ⊕ r′1)), or

(b) com1 in Phase I is a commitment to bit 1.
It uses the witness corresponding to the first part of the statement.

2. P2 → P1 : P2 now acts symmetrically.

This completes the description of the protocol Σ. Note that Σ consists of several
instances of sWI where the proof statement in each instance consists of two parts.
Specifically, the second part of the statement states that prover committed to
bit 1 in the trapdoor creation phase. In the sequel, we will refer to the second
part of the proof statement as the trapdoor condition. Further, we will call the
witness corresponding to the first part of the statement as real witness and that
corresponding to the second part of the statement as the trapdoor witness.

4 Proof of Security

Theorem 2. The proposed protocol Σ is a concurrently secure PAKE protocol
as per Definition 1.

Let there be n parties in the system where different pairs of parties are involved in
one or more sessions ofΣ, such that the total number of sessionsm is polynomial in
the security parameter κ. LetA be an adversary who controls an arbitrary number
of parties. In order to prove theorem 2, we will first construct a simulator S that
will simulate the view ofA in the ideal world. We will then show that S makes only
a constant number of queries per session while simulating the view of A. Finally,

Password-Authenticated Session-Key Generation on the Internet 289

we will argue that the output distributions of the real and ideal world executions
are computationally indistinguishable. For simplicity of exposition, we will assume
that exactly one party is corrupted in each session.We note that if the realand ideal
distributions are indistinguishable for this case, then by using standard techniques
we can easily remove this assumption. Due to lack of space, in this version, we only
give the description of the simulator and bound its output queries. We refer the
reader to the full version of the paper for a complete proof.

Notation. In the sequel, for any session � ∈ [m], we will use the notation H to
denote the honest party and A to denote the corrupted party. Let Πmbps,H→A
(resp., Πmbps,A→H) denote an instance of mBPS-CNMZK where H (resp., A)
plays the role of the prover and A (resp., H) plays the verifier. Similarly, let
Πmppstv,H→A (resp., Πmppstv,A→H) denote an instance of mPPSTV where H
(resp., A) plays the role of the committer and A (resp., H) plays the receiver.
Wherever necessary, we shall augment our notations with a super-script that
denotes the session number.

Consider any session between H and A. Consider the last message from A
before H sends a message to A during the coin-flipping sub-phase in the secure
computation phase. Note that this message could either be the first message of
the coin-flipping phase or the last message of the mPPSTV phase, depending
upon whether A or H sends the first message in the coin-flipping phase. In the
sequel, we will refer to this message from A as the special message. Intuitively,
this message is important because our simulator will need to query the ideal
functionality every time it receives such a message from A. Looking ahead, in
order to bound the number of queries made by our simulator, we will be counting
the number of special messages sent by A during the simulation.

4.1 Description of Simulator S
The simulator S consists of two parts, Scec and Score. Informally speaking, Scec

is essentially the simulator CEC-Sim (see section 2.2) whose goal is to extract
the preamble secret in each instance of the PPSTV preamble where A acts as
the committer. These extracted values are passed on to Score, who uses them
crucially to simulate the view of A. We now give more details.

Description of Scec. Scec is essentially the main simulator in that it handles
all communication with A. However, for each session � ∈ [m], Scec by itself only
answers A’s messages in those instances of the PPSTV preamble where A plays
the role of the committer; Scec in turn communicates with the core simulator
Score to answer all other messages from A.

Specifically, recall that our protocol consists of two instances of the PPSTV
preamble where A plays the role of the committer. Consider any session � ∈ [m].
The first instance is inside the mBPS-CNMZK instance Π�

mbps,H→A in the trap-
door creation phase, while the second instance is in fact the mPPSTV preamble
Π�

mppstv,A→H in the second phase. Then, Scec is essentially the simulator CEC-
Sim that interacts with A in order to extract the preamble secret in each of the

290 V. Goyal, A. Jain, and R. Ostrovsky

above instances of the PPSTV preamble. Specifically, in order to perform these
extractions, Scec employs the time-oblivious rewinding strategy of CEC-Sim for
an imaginary adversary (see next paragraph). During the simulation, whenever
Scec receives a message from A in any of the above instance of the PPSTV
preamble, then it answers it on its own in the same manner as CEC-Sim does
(i.e., by sending a random challenge string). However, on receiving any other
message, it simply passes it to the core simulator Score (described below), and
transfers its response to A. Whenever Scec extracts a preamble secret from A
at any point during the simulation, it immediately passes it to Score. If Scec

fails to extract any of the preamble secrets from A, then it outputs the abort
symbol ⊥.
Message generation timings of A. We note that in order to employ the time-
oblivious rewinding strategy of CEC-Sim, Scec needs to know the amount of time
that A takes to send each message in the protocol (see [22]). We remark that we
do not seek precision in simulation time (guaranteed by the rewinding strategy of
CEC-Sim); instead we only require that the number of queries made by the sim-
ulator in the look-ahead threads is only within a constant factor of the number
of the number of sessions. To this end, we consider an imaginary experiment in
which A takes a disproportionately large amount of time in generating the mes-
sage after which our simulator has to query the trusted party. Then the rewinding
strategy of Scec is determined by running CEC-Sim using the next message gen-
eration timings of such an (imaginary) adversary, explained as follows.

Consider all the messages sent by A during a protocol execution. We will
assign q time units to the special message, where q is the round complexity
(linear in the security parameter) of our protocol; any other message from A is
simply assigned one time unit. Intuitively, by assigning more weight to the special
message, we ensure that if the running time of our simulator is only within a
constant factor of the running time of A in the real execution, then the number
of special messages sent by A during the simulation must be a constant as well.
Looking ahead, this in turn will allow us to prove that the number of queries
made by the simulator are only a constant.

Description of Score. We describe the strategy of Score in each phase of the
protocol, for each session � ∈ [m]. We stress that Score uses the same strategy in
the main-thread as well as all look-ahead threads (unless mentioned otherwise).
Trapdoor Creation Phase. Score first sends a commitment to bit 1, instead of
committing to bit 0. Now, recall that Scec interacts with A during the preamble
phase in Π�

mbps,H→A and extracts the preamble secret σ�
mbps,H→A from A at the

conclusion of the preamble. Then, on receiving σ�
mbps,H→A from Scec, Score sim-

ulates the post-preamble phase of Π�
mbps,H→A (see [17] for protocol description)

in a “straight-line” fashion, as described below.
Let y� be the proof statement in Π�

mbps,H→A. Then, in phase II of Π�
mbps,H→A,

Score creates a statistically hiding commitment (sCOM) to σ�
mbps,H→A (in-

stead of a string of all zeros) and follows it up with an honest execution of

Password-Authenticated Session-Key Generation on the Internet 291

statistical zero knowledge argument of knowledge (sZKAOK) to prove knowledge
of the decommitment. In phase IV of Π�

mbps,H→A, Score creates a non-malleable
commitment (NMCOM) to an all zeros string (instead of a valid witness to
y�). Finally, in phase V, Score proves the following statement using sZKAOK:
(a) the value committed to in phase IV is a valid witness to y�, or (b) the value
committed to in phase II is σ�

mbps,H→A. Here it uses the witness corresponding
to the second part of the statement.

Now, consider the mBPS-CNMZK instance Π�
mbps,A→H , where H plays the

role of the verifier. Here, Score simply uses the honest verifier strategy to interact
with A.
mPPSTV Preamble Phase. Consider the execution of the mPPSTV instance
Π�

mppstv,H→A. Here, Score commits to a random string and answers A’s chal-
lenges with random strings. Note that the trapdoor condition is true for each
instance of sWI in Π�

mppstv,H→A since Score committed to bit 1 (instead of 0) in
the trapdoor creation phase. Therefore, Score uses the trapdoor witness in order
to successfully simulate each instance of sWI in Π�

mppstv,H→A.
Now consider the mPPSTV instance Π�

mppstv,A→H . Note that in this pream-
ble, Scec interacts with A without the help of Score. As explained earlier, Scec

extracts the preamble secret (that contains the input and randomness of A in
session �) and passes it to Score.
Secure Computation Phase. Let SΠsh-pake

denote the simulator for the semi-honest
two-party protocol Πsh-pake used in our construction. Score internally runs the
simulator SΠsh-pake

on adversary’s input in session �. SΠsh-pake
starts executing,

and, at some point, it makes a call to the trusted party in the ideal world with
some input (say) x. Score uses the following strategy to manage queries to the
trusted party.
Score maintains a counter c to count the total number of queries (including

all sessions) made to the trusted party on the look-ahead threads so far in the
simulation (note that there will be exactly m queries on the main thread). Now,
when SΠsh-pake

makes a call to the trusted party, Score computes a session index s
in the following manner. If the query corresponds to the main thread, then Score

sets s = �, else it computes s = c mod m. Now, if Score has already queried
the trusted party at least once for session s, then it first sends the (new-query, s)
message to the trusted party. Otherwise, it simply sends the message (s, x) to the
trusted party.7,8 The response from the trusted party is passed on to SΠsh-pake

. If

7 We stress that the simulator is able to “trade” the ideal functionality calls in one
session for another since the inputs of the honest parties are the same across all the
sessions.

8 Note that by choosing the session index for the output query in the above fashion,
Score is able to equally distribute the queries across all the sessions. Looking ahead,
in the next subsection, we will argue that the total number of queries across all
the sessions are only within a constant factor of the number of sessions. Then, this
strategy of distributing the queries will ensure that the queries per session are also
a constant.

292 V. Goyal, A. Jain, and R. Ostrovsky

the query corresponds to the main thread, Score sends the message (output, s)
to the trusted party, indicating it to send the output to the honest party in
session s.9

Having received the trusted party’s response from Score, SΠsh-pake
runs further,

and finally halts and outputs a transcript Δ�
1,1, Δ

�
2,1, . . . , Δ

�
1,t, Δ

�
2,t of the execu-

tion of Πsh-pake, and an associated randomness r�A. Let r̂�A be the randomness
that S extracted from A in phase II. Now, Score computes a random string r̃�A
such that r�A = r̃�A ⊕ r̂�A.

Now, in order to force A to use randomness r�A during the execution of
Πsh-pake, Score sends r̃�A to A during the coin-flipping phase prior to the ex-
ecution of Πsh-pake. Finally, Score forces the transcript Δ�

1,1, Δ
�
2,1, . . . , Δ

�
1,t, Δ

�
2,t

onto A during the execution of Πsh-pake. This is done as follows. Without loss
of generality, let us assume that the honest party sends the first message in
this instance of Πsh-pake. Then, in round j, 1 ≤ j ≤ t, Score sends Δ�

1,j to A
(instead of sending a message as per the input and randomness committed to
in the preamble in Phase II). Score uses the trapdoor witness to complete the
associated sWI. If the reply of A is different from the (expected) message Δ�

2,j ,
then Score outputs the abort symbol ⊥.

This completes the description of our simulator S = {Scec, Score}.

4.2 Total Queries by S
Lemma 1. Let m be the total number of sessions of Σ being executed concur-
rently. Then, the total number of queries made by S to the trusted party is within
a constant factor of m.

Proof. Let T be the total running time of the adversary in the real execution, as
per the time assignment strategy described in section 4.1. Now, since S employs
the time-oblivious rewinding strategy of CEC-Sim (see section 2.2), it follows
that the total running time of S is within a constant factor of T . Let us now
assume that our claim is false, i.e., the total number of queries made by S is a
super-constant multiple of m. We will show that in this case, the running time
of S must be super-constant multiple of T , which is a contradiction. We now
give more details.

Let q be the round complexity of Σ. Then, as per the time assignment strat-
egy given in section 4.1, T = (q − 1 + q) ·m (recall that the special message is
assigned a weight of q time units, while each of the remaining q − 1 messages is
assigned one time unit). Now, let λ be a value that is super-constant in the secu-
rity parameter such that S makes λ ·m total queries during the simulation. Note

9 Note that s = � in this case. We stress that by setting s = � for a query on the main
thread, Score ensures that the honest party in session � receives the correct output.
(Note that an honest party does not receive any output for an output query on a
look-ahead thread.)

Password-Authenticated Session-Key Generation on the Internet 293

that each output query corresponds to a unique special message. Let T ′ be the
total running time of S. We calculate T ′ as follows:

T ′ ≥ q · (λ ·m) + (q − 1) ·m
> q · (λ ·m)

>
λ · q

(q − 1 + q)
· T

Since λ·q
(q−1+q) is a super-constant in the security parameter, we have that T ′ is a

super-constant multiple of T , which is a contradiction. Hence the claim follows.

The corollary below immediately follows from lemma 1 and the description of S
in section 4.1.

Corollary 1. Smakesaconstantnumberofqueriesper session to the trustedparty.

Acknowledgements

We thank Rafael Pass for pointing out that one of the arguments in an earlier
draft of this paper was insufficient. We also thank Omkant Pandey, Rafael Pass
and Akshay Wadia for useful discussions.

References

1. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS
(1986)

2. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
(1987)

3. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols se-
cure against dictionary attacks. In: IEEE Symposium on Security and Privacy (1992)

4. Katz, J., Ostrovsky, R., Yung, M.: Efficient and secure authenticated key exchange
using weak passwords. J. ACM 57(1) (2009)

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, p. 139. Springer, Heidelberg (2000)

6. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, p. 156. Springer, Heidelberg (2000)

7. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, p. 475. Springer, Heidelberg (2001)

8. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003)

9. Genarro, R.: Faster and shorter password-authenticated key exchange. In: ACM
Conference on Computer and Communications Security (2008)

10. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

294 V. Goyal, A. Jain, and R. Ostrovsky

11. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS (2001)

12. Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 408. Springer, Heidelberg (2001)

13. Nguyen, M.H., Vadhan, S.P.: Simpler session-key generation from short random
passwords. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 428–445. Springer,
Heidelberg (2004)

14. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005)

15. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC (1990)

16. Katz, J., Ostrovsky, R., Yung, M.: Forward secrecy in password-only key exchange
protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576,
pp. 29–44. Springer, Heidelberg (2003)

17. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge.
In: FOCS (2006)

18. Micali, S., Pass, R.: Local zero knowledge. In: STOC (2006)
19. Lindell, Y.: Lower bounds for concurrent self composition. In: Naor, M. (ed.) TCC

2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004)
20. Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. J.

Cryptology 19(3) (2006)
21. Goyal, V., Sahai, A.: Resettably secure computation. In: Joux, A. (ed.) EURO-

CRYPT 2009. LNCS, vol. 5479, pp. 54–71. Springer, Heidelberg (2010)
22. Pandey, O., Pass, R., Sahai, A., Tseng, W.L.D., Venkitasubramaniam, M.: Pre-

cise concurrent zero knowledge. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 397–414. Springer, Heidelberg (2008)

23. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: FOCS (2002)

24. Haitner, I.: Semi-honest to malicious oblivious transfer - the black-box way. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg
(2008)

25. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology (1991)
26. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: STOC (1998)
27. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-

loalgorithm rounds. In: STOC (2001)
28. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Com-

put. 30(2) (2000)
29. Blum, M.: How to prove a theorem so no one else can claim it. In: International

Congress of Mathematicians (1987)
30. Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge argu-

ments for np can be based on general complexity assumptions. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 196–214. Springer, Heidelberg (1993)

31. Ostrovsky, R., Venkatesan, R., Yung, M.: Fair games against an all-powerful ad-
versary. DIMACS workshop presentation (1990); Extended abstract, In: Capocelli,
R.M., De-Santis, A., Vaccaro, U. (eds.) Proceedings of Sequences II, Positano,
Italy. Springer, Heidelberg (June 1991); Journal version in AMS DIMACS Series
in Discrete Mathematics and Theoretical Computer Science 13 (1991)

32. Haitner, I., Nguyen, M.H., Ong, S.J., Reingold, O., Vadhan, S.P.: Statistically
hiding commitments and statistical zero-knowledge arguments from any one-way
function. SIAM J. Comput (2009)

33. Haitner, I.,Reingold,O.,Vadhan,S.P.,Wee,H.: Inaccessibleentropy.In:STOC(2009)
34. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC (1988)

Instantiability of RSA-OAEP under
Chosen-Plaintext Attack

Eike Kiltz1, Adam O’Neill2, and Adam Smith3

1 Centrum voor Wiskunde en Informatica, Amsterdam, Netherlands
kiltz@cwi.nl

2 Georgia Institute of Technology, Atlanta, GA, USA
amoneill@cc.gatech.edu

3 Pennsylvania State University, University Park, PA, USA
asmith@cse.psu.edu

Abstract. We show that the widely deployed RSA-OAEP encryption
scheme of Bellare and Rogaway (Eurocrypt 1994), which combines RSA
with two rounds of an underlying Feistel network whose hash (i.e., round)
functions are modeled as random oracles, meets indistinguishability un-
der chosen-plaintext attack (IND-CPA) in the standard model based on
simple, non-interactive, and non-interdependent assumptions on RSA
and the hash functions. To prove this, we first give a result on a more gen-
eral notion called “padding-based” encryption, saying that such a scheme
is IND-CPA if (1) its underlying padding transform satisfies a “fooling”
condition against small-range distinguishers on a class of high-entropy
input distributions, and (2) its trapdoor permutation is sufficiently lossy
as defined by Peikert and Waters (STOC 2008). We then show that the
first round of OAEP satifies condition (1) if its hash function is t-wise
independent for appopriate t and that RSA satisfies condition (2) under
the Φ-Hiding Assumption of Cachin et al. (Eurocrypt 1999).

This appears to be the first non-trivial positive result about the in-
stantiability of RSA-OAEP. In particular, it increases our confidence that
chosen-plaintext attacks are unlikely to be found against the scheme. In
contrast, RSA-OAEP’s predecessor in PKCS #1 v1.5 was shown to be
vulnerable to such attacks by Coron et al. (Eurocrypt 2000).

1 Introduction

The RSA-OAEP encryption scheme was designed by Bellare and Rogaway [5]
as a drop-in replacement for RSA PKCS #1 v1.5 [37] with provable security
guarantees. In particular, it follows the same paradigm as RSA PKCS #1 v1.5
in that it encrypts a message of less than k bits to a k-bit ciphertext (where k is
the modulus size) by first applying a fast, randomized, and invertible “padding
transform” to the message before applying RSA. In the case of RSA-OAEP,
the underlying padding transform (which is itself called ‘OAEP’1) embeds a

1 We often use the same terminology for ‘f -OAEP,’ which refers to OAEP using an
abstract TDP f , with the meaning hopefully clear from context.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 295–313, 2010.
c© International Association for Cryptologic Research 2010

296 E. Kiltz, A. O’Neill, and A. Smith

message m and random coins r as s‖(H(s)⊕ r) where ‘‖’ denotes concatenation,
s = (m‖0k1)⊕G(r) for some parameter k1, and G and H are hash functions (see
Figure 1 on p. 305). In contrast, PKCS #1 v1.5 essentially just concatenates m
with r.

RSA-OAEP was designed using the random oracle (RO) methodology [4].
This means that, for the security analysis, its hash functions are modeled as in-
dependent truly random functions, available as oracles to all parties. When the
scheme is implemented in practice, they are heuristically “instantiated” in cer-
tain ways using a cryptographic hash function like SHA1. A cryptographic hash
function is certainly not random (it has a short public description), but schemes
designed using this methodology are hoped to be secure. Unfortunately, a series
of works, starting with the seminal paper of Canetti et al. [16] showed that there
are schemes secure in the RO model that are insecure under every instantiation
of the oracle; such RO model schemes are called uninstantiable. Thus, to gain
confidence in an RO model scheme, we should show that it is not uninstantiable,
i.e., that it admits a secure instantiation by an efficiently computable function
under well-defined assumptions. Then, when we instantiate the scheme, we know
that our goal is at least plausible. This is especially important for a scheme such
as RSA-OAEP, which is by now widely standardized and deployed.

Yet, while RO model schemes continue to be proposed, few have been shown
to be instantiable. In particular, we are not aware of any result showing instan-
tiability of RSA-OAEP, even under a relatively modest security model. In fact,
the scheme has come under criticism lately due to several works (discussed in
Section 1.2) showing the impossibility of certain types of instantiations under
chosen-ciphertext attack (IND-CCA). Fortunately, we bring some good news: We
give reasonable assumptions under which RSA-OAEP is secure against chosen-
plaintext attack (IND-CPA). We believe this is an important step towards a
better understanding of the scheme’s security.

1.1 Our Contributions

Our result on the instantiability of RSA-OAEP is obtained via three steps or
other results. (These other results may also be of independent interest.) First,
we show a general result on the instantiability of “padding-based encryption,”
of which f -OAEP is a special case, under the assumption that the underlying
padding transform is what we call a fooling extractor and the trapdoor permu-
tation is sufficiently lossy [36]. We then show that OAEP and RSA satisfy the
respective conditions.

Padding-based encryption without ROs. Our first result is a general the-
orem about padding-based encryption (PBE), a notion formalized recently by
Kiltz and Pietrzak [29].2 PBE generalizes the design methology of PKCS #1 and
RSA-OAEP we already mentioned. Namely, we start with a k-bit to k-bit trap-
door permutation (TDP) that satisfies a weak security notion like one-wayness.
2 Such schemes were called “simple embedding schemes” by Bellare and Rogaway [5],

who discussed them only on an intuitive level.

Instantiability of RSA-OAEP under Chosen-Plaintext Attack 297

To “upgrade” the TDP to an encryption scheme satisfying a strong security no-
tion like IND-CPA, we design an invertible “padding transform” which embeds
a plaintext and random coins into a k-bit string, to which we then apply the
TDP. This methodology is quite natural and has long been prevalent in prac-
tice, motivating the design of OAEP and later schemes such as SAEP [9] and
PSS-E [20]. The latter were all designed and analyzed in the RO model.

We show that the RO model is unnecessary in the design and analysis of IND-
CPA secure PBE. To do so, we formulate an interesting connection between PBE
and a new notion we call “fooling extractor for small-range distinguishers” or just
“fooling extractor.” Intuitively, a fooling extractor transforms a high-entropy
source into something that “looks random” to any function (or distinguisher)
with a small range.3 Our result says that if the underlying padding transform of
a PBE scheme is a fooling extractor for all sources of the form (m,R) where m
is a plaintext and R is the random coins (which we call “encryption sources”)
and its TDP is lossy as defined by Peikert and Waters [36] then the PBE scheme
is IND-CPA. We call such padding transforms “encryption-compatible.”

OAEP fools small-range distinguishers. Our second result says that the
OAEP padding transform is encryption-compatible as we defined it above if the
hash function G is t-wise independent for appropriate t (essentially, proportional
to the allowed message length, where the latter is determined by how large
an output range of the distinguisher should be tolerated in the definition of
encryption-compatibility). Note that no restriction is put on hash function H ;
in particular, neither hash function is modeled as a RO.

The inspiration for our proof comes from the “Crooked” Leftover Hash Lemma
(LHL) of Dodis and Smith [22] (see [6] for a simpler proof of the latter). Qual-
itatively, the Crooked LHL says that K, f(Π(K,X)) looks like K, f(U) for any
small-range function f , pairwise-independent function Π keyed by K, and high-
entropy sourceX ; in our terminology, this says that a pairwise-independent func-
tion is a fooling extractor for such X . In our application, we might näıvely view
Π as the OAEP. There are two problems with this. First, OAEP is not pairwise
independent, even in the RO model. Second, showing that OAEP is encryption-
compatible entails showing it fools f on all encryption sources simultaneously,
whereas the lemma pertains to a fixed source. To solve the first problem, we
show that the lemma can be strengthened to say that K, f(X,Π(K,X)) looks
like K, f(X,U); i.e., that Π(K,X) looks random to f even given X . Then, we
view X as the random coins in OAEP and Π as the hash function G; we can
conclude that OAEP is a fooling extractor for a fixed encryption source (m,R)
(note that our analysis does not use any properties of H—the only fact we use
about the second Feistel round is that it is invertible). To solve the second prob-
lem, we extend an idea of Trevisan and Vadhan [42] to our setting and show
that if G is in fact t-wise independent for large enough t, the error probability
for a particular encryption source is so small that we can take a union bound
and conclude that OAEP is a fooling extractor on all of them, as required.

3 In the formal defintion there is also an “outer” distinguisher who gets the extractor
seed; see Section 3 for details.

298 E. Kiltz, A. O’Neill, and A. Smith

Lossiness of RSA. To instantiate RSA-OAEP, it remains to show lossiness
of RSA. Our final result is that RSA is indeed lossy under reasonable assump-
tions. Intuitively, lossiness [36] means that there is an alternative, “lossy” key
generation algorithm that outputs a public key indistinguishable from a nor-
mal one, but which induces a small-range (uninvertible) function. We first show
lossiness of RSA under the Φ-Hiding Assumption (ΦA) of Cachin, Micali, and
Stadler [13]. ΦA has been used as the basis for a number of efficient protocols,
e.g., [13, 12, 24, 25]. ΦA states roughly that given an RSA modulus N = pq, it
is hard to distinguish primes that divide φ(N) = (p− 1)(q − 1) from those that
do not. Normal RSA parameters (N, e) are such that gcd(e, φ(N) = 1. Under
ΦA, we may alternatively choose (N ′, e) such that e divides p− 1. The range of
the RSA function is then reduced by a factor 1/e. To resist known attacks, we
can take the bit-length of e up to almost 1/4 that of N , giving RSA lossiness of
almost k/4 bits, where k is the modulus length.4

We then observe that for small e lossiness may be amplified for a fixed modulus
length by considering multi-prime RSA where N = p1 · · · pm for m ≥ 2, and in
the lossy case choosing (N ′, e) such that e divides pi for all 1 ≤ i ≤ m − 1; the
range of the RSA function is then reduced by a factor 1/em−1. (The maximum
bit-length of e in this case to avoid known attacks is roughly k(1/m−2/m2) where
k is the modulus length, so for a fixed modulus size we gain in lossiness only for
small e.) If we assume such multi-prime RSA moduli are indistinguishable from
two-prime ones, we can achieve such lossiness in the case of standard (two-prime)
RSA as well.

Implications for RSA-OAEP. Combining the above implies that RSA-OAEP
is IND-CPA in the standard model under (rather surprisingly) simple, non-
interactive, and non-interdependent assumptions on RSA and the hash func-
tions. The parameters for RSA-OAEP supported by our proofs are discussed
in Section 6. While they are considerably worse than what is expected in practice,
we view the upshot of our results not as the concrete parameters they support,
but rather that they increase the theoretical backing for the scheme’s security at
a more qualitative level, showing it can be instantiated at least for larger param-
eters. In particular, our results give us greater confidence that chosen-plaintext
attacks are unlikely to be found against the scheme; such attacks are known
against the predecessor of RSA-OAEP in PKCS #1 v1.5 [19]. That said, we
strongly encourage further research to try to improve the concrete parameters.

Moreover, our analysis brings to light to some simple modifications that may
increase the scheme’s security. The first is to key the hash function G. Although
our results have some interpretation in the case that G is a fixed function (see
below), it may be preferable for G to have an explicit, randomly selected key. It
is in an interesting open question whether our proof can be extended to function
families that use shorter keys. The second possible modification is to increase
the length of the randomness versus that of the redundancy in the message

4 We remark that the recent attacks on ΦA [40] are for moduli of a special form that
does not include RSA.

Instantiability of RSA-OAEP under Chosen-Plaintext Attack 299

when encrypting short messages under RSA-OAEP. Of course, we suggest these
modifications only in cases where they do not impact efficiency too severely.

Using unkeyed hash functions. Formally, our results assume G is randomly
chosen from a large family (i.e., it is a keyed hash function). However, our
analysis actually shows that almost every function (i.e., all but a negligible
fraction) from the family yields a secure instantiation; we just do not know an
explicit member that works. In other words, it is not strictly necessary that G
be randomly chosen. When G is instantiated in practice using a cryptographic
hash function, it is plausible that the resulting instantiation is secure.

Chosen-ciphertext security. Any extension of our results to CCA security
must get around the recent negative results of Kiltz and Pietrzak [29] (which we
discuss in more detail below). We outline some possible approaches in the full
version [27].

1.2 Related Work

Security of OAEP in the RO model. In their original paper [5], Bellare
and Rogaway showed that OAEP is IND-CPA assuming the TDP is one-way.
They further showed it achieves a notion they called “plaintext awareness.”
Subsequently, Shoup [41] observed that the latter notion is too weak to imply
security against chosen-ciphertext attacks, and in fact there is no black-box proof
of IND-CCA security of OAEP based on one-wayness of the TDP. Fortunately,
Fujisaki et al. [23] proved that OAEP is nevertheless IND-CCA assuming so-
called “partial-domain” one-wayness, and that partial-domain one-wayness and
(standard) one-wayness of RSA are equivalent.

Security of OAEP without ROs. Results on instantiability of OAEP have
so far mainly been negative. Boldyreva and Fischlin [7] showed that (contrary to
a conjecture of Canetti [14]) one cannot securely instantiate even one of the two
hash functions (while still modeling the other as a RO) of OAEP under IND-
CCA by a “perfectly one-way” hash function [14, 17] if one assumes only that f is
partial-domain one-way. Brown [10] and Paillier and Villar [34] later showed that
there are no “key-preserving” black-box proofs of IND-CCA security of RSA-
OAEP based on one-wayness of RSA. Recently, Kiltz and Pietrzak [29] (building
on the earlier work of Dodis et al. [21] in the signature context) generalized these
results and showed that there is no black-box proof of IND-CCA (or even NM-
CPA) security of OAEP based on any property of the TDP satisfied by an ideal
(truly random) permutation.5 In fact, their result can be extended to rule out a
black-box proof of NM-CPA security of OAEP assuming the TDP is lossy [30],
so our results are in some sense optimal given our assumptions.

Instantiations of related schemes. A positive instantiation result about a
variant of OAEP called OAEP++ [26] (where part of the transform is output
5 Note, however, that their result does not rule out such a proof based on other

properties of the TDP, non-black-box assumptions on the hash functions, or in the
case of a specific TDP like RSA.

300 E. Kiltz, A. O’Neill, and A. Smith

in the clear) was obtained by Boldyreva and Fischlin in [8]. They showed an
instantiation that achieves (some weak form of) non-malleability under chosen-
plaintext attacks (NM-CPA) for random messages, assuming the existence of
non-malleable pseudorandom generators (NM-PRGs).6 We note that the ap-
proach of trying to obtain positive results for instantiations under security no-
tions weaker than IND-CCA originates from their work, and the authors explic-
itly ask whether OAEP can be shown IND-CPA in the standard model based
on reasonable assumptions on the TDP and hash functions.

Another line of work has looked at instantiating other RO model schemes
related at least in spirit to OAEP. Canetti [14] showed that the IND-CPA scheme
in [4] can be instantiated using (a strong form of) perfectly-one way probabilistic
hash functions. More recently, the works of Canetti and Dakdouk [15], Pandey et
al. [35], and Boldyreva et al. [11] obtained (partial) instantiations of the earlier
IND-CCA scheme of [4]. Hofheinz and Kiltz [28] recently showed an IND-CCA
secure instantiation of a variant the DHIES scheme of [1].

2 Preliminaries

Notation and conventions. For a probabilistic algorithm A, by y
$←A(x)

we mean that A is executed on input x and the output is assigned to y, whereas
if S is a finite set then by s

$← S we mean that s is assigned a uniformly random
element of S. We sometimes use y ← A(x; Coins) to make A’s random coins
explicit. We denote by Pr

[
A(x)⇒ y : . . .] the probability that A outputs y on

input x when x is sampled according to the elided experiment. Unless otherwise
specified, an algorithm may be probabilistic and its running-time includes that
of any overlying experiment. We denote by 1k the unary encoding of the security
parameter k. We sometimes surpress dependence on k for readability. For i ∈ N

we denote by {0, 1}i the set of all binary strings of length i. If s is a string then
|s| denotes its length in bits, whereas if S is a set then |S| denotes its cardinality.
By ‘‖’ we denote string concatenation. All logarithms are base 2.

Basic Definitions. Writing PX(x) for the probability that a random variable
X puts on x, the statistical distance between random variables X and Y with
the same range is given by Δ(X,Y) = 1

2

∑
x |PX(x) − PY (x)|. If Δ(X,Y) is at

most ε then we say X,Y are ε-close and write X ≈ε Y . The min-entropy of X
is H∞(X) = − log(maxx PX(x)). A random variable X over {0, 1}n is called a
(n, �)-source if H∞(X) ≥ �. Let f : A→ B be a function. We denote by R(f) the
range of f , i.e., {b ∈ B | ∃a ∈ A, f(a) = b}. We call |R(f)| the range-size of f .
We call f regular if each pre-image set is the same size, i.e., |{x ∈ D | f(x) = y}|
is the same for all y ∈ R.

Public-key encryption and its security. A public-key encryption scheme
with message-space MsgSp is a triple of algorithms AE = (K, E ,D). The
6 In particular, their security notion does not imply IND-CPA since they consider

random messages. We also point out that it remains an open question whether NM-
PRGs can be constructed.

Instantiability of RSA-OAEP under Chosen-Plaintext Attack 301

key-generation algorithm K returns a public key pk and matching secret key
sk. The encryption algorithm E takes pk and a plaintext m to return a cipher-
text. The deterministic decryption algorithm D takes sk and a ciphertext c to
return a plaintext. We require that for all messages m ∈ MsgSp

Pr
[
D(sk, E(pk,m)) �= m : (pk, sk) $←K

]
is negligible.

To an encryption scheme Π = (K, E ,D) and an adversary A = (A1, A2) we
associate a chosen-plaintext attack experiment,

Experiment Expind-cpa
Π,A (k)

b
$← {0, 1} ; (pk, sk) $←K(1k)

(m0,m1, state) $← A1(pk)
c

$←E(pk,mb)
d

$←B2(pk, c, state)
If d = b then return 1 else return 0

where we require A’s output to satisfy |m0| = |m1|. Define the ind-cpa advantage
of A against Π as

Advind-cpa
Π,A (k) = 2 · Pr

[
Expind-cpa

Π,A (k)⇒ 1
]
− 1 .

Lossy trapdoor permutations. A lossy trapdoor permutation (LTDP) gen-
erator [36]7 is a pair LTDP = (F ,F ′) of algorithms. Algorithm F is a usual
trapdoor permutation (TDP) generator, namely it outputs a pair (f, f−1) where
f is a (description of a) permutation on {0, 1}k and f−1 its inverse. Algorithm
F ′ outputs a (description of a) function f ′ on {0, 1}k. We call F the “injective
mode” and F ′ the “lossy mode” of LTDP respectively, and we call F “lossy” if
it is the first component of some lossy TDP. For a distinguisher D, define its
ltdp-advantage against LTDP as

Advltdp
LTDP,D(k) = Pr

[
D(f)⇒ 1 : (f, f−1) $←F

]
−Pr

[
D(f ′)⇒ 1 : f ′ $←F ′

]
.

We say LTDP has residual leakage s if for all f ′ output by F ′ we have |R(f ′)| ≤
2s. The lossiness of LTDP is � = k − s.

t-wise independent hashing. Let H : K×D → R be a hash function. We say
that H is t-wise independent if for all distinct x1, . . . , xt ∈ D and all y1, . . . , yt ∈
R

Pr
[
H(K,x1) = y1 ∧ . . . ∧ H(K,xt) = yt : K $←K] =

1
|R|t .

In other words, H(K,x1), . . . , H(K,xt) are all uniformly and independently
random.

7 We note that [36] actually defines lossy trapdoor functions, but the extension to
permutations is straightforward.

302 E. Kiltz, A. O’Neill, and A. Smith

3 Padding-Based Encryption from Lossy TDP + Fooling
Extractor

In this section, we show a general result on how to build IND-CPA secure
padding-based encryption (PBE) without using random oracles, by combining a
lossy TDP with a “fooling extractor” for small-range distinguishers.

3.1 Background and Tools

We first provide the definitions relevant to our result.

Padding-based encryption. The idea behindpadding-based encryption (PBE)
is as follows: We start with a k-bit to k-bit trapdoor permutation (e.g., RSA) and
wish to build a secure encryption scheme. As in [5], we are interested in encrypting
messages of less than k bits to ciphertexts of length k. It is well-known that we
cannot simply encrypt messages under the TDP directly to achieve strong security.
So, in a PBE scheme we “upgrade” the TDP by first applying a randomized and
invertible “padding transform” to a message prior to encryption.

Our definition of PBE largely follows the recent formalization in [29]. Let
k, μ, ρ be three integers such that μ+ρ ≤ k. A padding transform (π, π̂) consists
of two mappings π : {0, 1}μ+ρ → {0, 1}k and π̂ : {0, 1}k → {0, 1}μ ∪ {⊥} such
that π is injective and the following consistency requirement is fulfilled:

∀m ∈ {0, 1}μ, r ∈ {0, 1}ρ : π̂(π(m ‖ r)) = m .

A padding transform generator is an algorithm Π that on input 1k outputs a
(description of a) padding transform (π, π̂). Let F be a k-bit trapdoor permu-
tation generator and Π be a padding transform generator. Define the associ-
ated padding-based encryption scheme AEΠ [F] = (K, E ,D) with message-space
{0, 1}μ by

Alg K(1k)
(π, π̂) $←Π(1k)
π ← (π, π̂)
(f, f−1) $←F(1k)
Return ((π, f), (π, f−1))

Alg E((π, f),m)
r

$← {0, 1}ρ ; x← π(m‖r)
y ← f(x)
Return y

Alg D((π, f−1), y)
x← f−1(y)
m← π̂(x)
Return m

Padding-based encryption schemes have long been prevalent in practice, for ex-
ample PKCS #1 [37]. While OAEP [5] is the best-known, the notion also captures
later schemes such as SAEP [9] and PSS-E [20].

Fooling extractors. We define a new notion that we call “fooling extractor
for small-range distinguishers” or just “fooling extractor.” Intuitively, fooling
extractors are a type of randomness extractor that “fools” distinguishers with
small-range output. We give some more intuition after the formal definition.

Definition 1. Let FExt : {0, 1}c × {0, 1}n → {0, 1}k be a function and let X =
{X1, . . . , Xq} be a class of n-bit sources. We say that FExt fools range-2s

Instantiability of RSA-OAEP under Chosen-Plaintext Attack 303

distinguishers on X with probability 1 − ε (or is an (s, ε)-fooling extractor for
X) if for all functions f on {0, 1}k with range-size at most 2s and all 1 ≤ i ≤ q:

(K, f(FExt(K,Xi)) ≈ε (K, f(U)) ,

where K is uniform on {0, 1}c and U is uniform and independent on {0, 1}n.
(Here K is the key or seed of FExt.) For example, one is often interested in the
class Xn,� consisting of all (n, �)-sources X. As a strengthening of the above, we
say that FExt simultaneously fools range-2s distinguishers on X with probability
1 − ε (or is a simultaneous (s, ε)-fooling extractor for X) if for all functions f
on {0, 1}k with range-size at most 2s:

E
k

$← {0,1}c

[
max
1≤i≤q

Δ
(
f(FExt(k,Xi)) , f(U)

)]
≤ ε .

As a useful special case, we say that FExt fools regular range-2s distinguishers
on X with probability 1 − ε (or is a regular (s, ε)-fooling extractor for X) if we
quantify only over regular f in the definition. A simultaneous regular (s, ε)-
fooling extractor for X is defined analogously.

Intuitively, one can think of the definition of a fooling extractor as involving a
two-stage distinguisher. The first stage is represented by the function f , which
takes as input FExt(K,Xi). The second stage is represented only implicitly, and
takes as input f(FExt(K,Xi)) and K. While the intuition given prior to the
definition captures only the first stage, the second stage is crucial for the defini-
tion to be meaningful. Indeed, just asking that f(FExt(K,Xi)) be indistinguish-
able from f(U) for all small-range functions f is equivalent to asking only that
FExt(K,Xi) be indistinguishable from U . This latter requirement is trivial to
achieve–for example, by using K as a one-time pad.

We note that the concept of fooling extractors was implicit in the work of
Dodis and Smith [22] on error-correction without leaking partial information,
whose “Crooked” Leftover Hash Lemma establishes in our language that a
pairwise-independent function is a (s, ε)-fooling extractor for every singleton
(n, �)-source X where s ≤ �− 2 log(1/ε) + 2.

3.2 The Result

To state our result, we first formalize the concept of encryption-compatible
padding transforms.

Definition 2. Let Π be a padding transform generator whose coins are drawn
from Coins. Define the function hΠ : Coins×{0, 1}μ+ρ → {0, 1}k by h(c,m‖r) =
π(m‖r) for all c ∈ Coins,m ∈ {0, 1}μ, r ∈ {0, 1}ρ, where (π, π̂) ← Π(1k; Coins).
We say that Π is (s, ε)-encryption-compatible if hΠ as above is a simultaneous
(s, ε)-fooling extractor for the class XΠ of sources of the form (m,R), where
m ∈ {0, 1}μ is fixed and R ∈ {0, 1}ρ is uniformly random. (Note that the class
XΠ contains 2μ distinct (μ+ρ)-bit sources.) We call XΠ the class of encryption
sources associated to Π. A regular (s, ε)-encryption-compatible padding trans-
form generator is defined analogously.

304 E. Kiltz, A. O’Neill, and A. Smith

Theorem 1. Let LTDP = (F ,F ′) be an LTDP with residual leakage s, and let
Π be an (s, ε)-encryption-compatible padding transform generator. Then for any
IND-CPA adversary A against AEΠ [F] there is a adversary D against LTDP
such that for all k ∈ N

Advind-cpa
AE,A (k) ≤ Advltdp

LTDP,D(k) + ε .

Furthermore, the running-time of D is the time to run A.

Remark 1. The analogous result to the above holds for regular LTDPs and reg-
ular encryption-compatible padding transforms. That is, if the LTDP is regular
(meaning F ′ is) then it suffices to use a regular encryption-compatible padding
transform to obtain the same conclusion. The latter may be easier to design
or more efficient than in the general case; indeed, we get better parameters for
OAEP in the regular case in Section 4. Furthermore, known examples of LTDPs
(including RSA, as shown in Section 5) are regular, although some technical
issues make it difficult to exploit this for RSA-OAEP; cf. Section 6.

4 OAEP as a Fooling Extractor

In this section, we show that the OAEP padding transform of Bellare and Rog-
away [5] is encryption-compatible as defined in Section 3 if its initial hash func-
tion is t-wise independent for appropriate t.

4.1 OAEP

We recall the OAEP padding transform of Bellare and Rogaway [5], lifted to the
“instantiated” setting where hash functions may be keyed. LetG : KG×{0, 1}ρ→
{0, 1}μ andH : KH×{0, 1}μ→ {0, 1}ρ be hash functions. The associated padding
transform generator OAEP[G,H] on input 1k returns (πKG,KH , π̂KG,KG), where
KG

$←KG(1k) and KH
$←KH(1k), defined via

Algorithm πKG,KH (m‖r)
s← m⊕G(KG, r)
t← r ⊕H(KH , s)
x← s‖t
Return x

Algorithm π̂KG,KH (x)
s‖t← x
r ← t⊕H(KH , s)
m← s⊕G(KG, r)
Return m

See Figure 1 for a graphical illustration.

Remark 2. Since we mainly study IND-CPA security, for simplicity we define
above the “no-redundancy” version of the OAEP, i.e., corresponding to the “ba-
sic scheme” in [5]. However, our results also hold for the redundant version.
Additionally, as is typical in the literature we have defined OAEP to apply the
G-function to the least-significant bits of the input; in standards and implemen-
tations it is typically the most significant bits (where the order of m and r are
switched). Again, we stress that our results hold in either case.

Instantiability of RSA-OAEP under Chosen-Plaintext Attack 305

m ∈ {0, 1}μ r ∈ {0, 1}ρ

⊕ G

H ⊕

s t

m

⊕ G

H ⊕

s ∈ {0, 1}μ t ∈ {0, 1}ρ

Fig. 1. Algorithms πKG,KH (m, r) and π̂KG,KH (s, t) for OAEP[G, H]

4.2 Analysis

The following establishes that OAEP is encryption-compatible if the hash func-
tion G is t-wise independent for appropriate t. No restriction is put on the other
hash function H . Indeed, our result also applies to SAEP [9] (although the latter
is neither standardized nor known to provide CCA security in the RO model,
except in certain cases).

Theorem 2. Let G : KG×{0, 1}ρ → {0, 1}μ and H : KH ×{0, 1}μ → {0, 1}ρ be
hash functions, and suppose G is t-wise independent. Let OAEP = OAEP[G,H].
Then
(1) OAEP is (s, ε)-encryption-compatible where ε = 2−u for u = t

3t+2 (ρ − s −
log t+ 2)− 2(μ+s)

3t+2 − 1.

(2) OAEP is regular (s, ε)-encryption-compatible where ε=2−u for u= t
2t+2 (ρ−

s− log t+ 2)− μ+s+2
t+1 − 1.

(3) When t = 2, OAEP (s, ε)-encryption-compatible where ε = 2−u for u =
(ρ− s− 2μ)/4− 1.

Note that parts (2) and (3) capture special cases of (1) in which we get better
bounds. We give a high-level idea of the proof; details are deferred to the full
version [27].

The high-level idea for all three parts of the theorem is the same. Fix a lossy
function f with range-size at most 2s. We first show that for every fixed message
m ∈ {0, 1}μ, with high probability (say 1−δ) over the choice of the hash function
G, the statistical distance between (KG, f(OAEP(m,R))) and ((KG, f(U)) is
small (say ε̂). Namely, we first compute the expected statistical distance over
the choice of G and then apply tail bounds. This aspect of the proof changes
from part to part. For part (3) we use a strengthened version of the Crooked
Leftover Hash Lemma (LHL) of [22] and Markov’s inequality. For parts (1) and
(2) we adapt the techniques of [42] (see also [2]) developed in the context of
the standard LHL and use the tail inequality for t-wise independent random
variables due to Bellare and Rompel [3]. (For part (2) this is relatively easy,
but for part (1) we first apply a “balancing” lemma saying that for any non-
regular f we can find a “almost-regular” function g that agrees with f on a large
fraction of its domain.) In all three parts, we can then take a union bound to

306 E. Kiltz, A. O’Neill, and A. Smith

show that OAEP is good for all messages with probability at least 1− 2μδ. This
means that the statistical distance between the pair (KG, f(OAEP(m,R))) and
(KG, f(OAEP(U))) is at most ε = ε̂+ 2μδ. Finally, we express δ as a function of
ε̂, and select ε̂ to minimize this sum. Note that the entire argument works for
any choice of H .

In order to get a more qualitative “feel” for the bounds in the theorem, we
give the following simplification as a corollary:

Corollary 1. Let G : KG × {0, 1}ρ → {0, 1}μ and H : KH × {0, 1}μ → {0, 1}ρ
be hash functions and suppose that G is t-wise independent for t ≥ 3μ+s

ρ−s . Then
OAEP[G,H] is (s, ε)-encryption-compatible where ε = exp(−c(ρ− s− log t)) for
a constant c > 0.

In particular, c ≈ 1/2 for regular functions. For such a function, if ρ−s is at least
180 then ε is roughly 2−80 for t = 10 and message lengths μ ≤ 215 (which for
practical purposes does not restrict the message-space). Applying Theorem 1,
we see that if G is 10-wise independent and the number of random bits used in
OAEP is at least 180 bits larger than the residual lossiness of the TDP, then the
security of OAEP is tightly related to that of the lossy TDP.

Remark 3. To show security of OAEP against what we call key-independent
chosen-plaintext attack, it suffices to argue that OAEP[G,H] is a fooling extrac-
tor for any fixed encryption source X = (m,R) where m ∈ {0, 1}μ. The latter
holds for any ε > 0 and s ≤ ρ − 2 log(1/ε) + 2 assuming G is only pairwise-
independent (i.e., t = 2). See the full version [27] for details.

5 Lossiness of RSA

In this section, we show that the RSA trapdoor permutation is lossy under
reasonable assumptions. In particular, we show that, for large enough encryption
exponent e, RSA is considerably lossy under the Φ-Hiding Assumption of [13].
We then show that by generalizing this assumption to multi-prime RSA we can
get even more lossiness. Finally, we propose a “Two-Or-m-Primes” Assumption
that, when combined with the former, amplifies the lossiness of standard (two-
prime) RSA for small e.

5.1 Background on RSA and Notation

We denote by RSAk the set of all tuples (N, p, q) such that N = pq is the
product of two distinct k/2-bit primes. Such an N is called an RSA modulus. By
(N, p, q) $←RSAk we mean that (N, p, q) is sampled according to the uniform
distribution on RSAk. An RSA TDP generator [38] is an algorithm F that
returns (N, e), (N, d), where N is an RSA modulus and ed ≡ 1 (mod φ(N)).
(Here φ(·) denotes Euler’s totient function, so in particular φ(N) = (p−1)(q−1).)
The tuple (N, e) defines the permutation on Z

∗
N given by f(x) = xe mod N ,

Instantiability of RSA-OAEP under Chosen-Plaintext Attack 307

and similarly (N, d) defines its inverse. We say that a lossy TDP generator
LTDP = (F ,F ′) is an RSA LTDP if F is an RSA TDP generator.

To define the Φ-Hiding Assumption and later some extensions of it, the follow-
ing notation is also useful. For i ∈ N we denote by Pi the set of all i-bit primes.
Let R be a relation on p and q. By RSAk[R] we denote the subset of RSAk

for that the relation R holds on p and q. For example, let e be a prime. Then
RSAk[p = 1 mod e] is the set of all (N, p, q), where where N = pq is the product
of two distinct k/2-bit primes p, q and p = 1 mod e. That is, the relation R(p, q)
is true if p = 1 mod e and q is arbitrary. By (N, p, q) $←RSAk[R] we mean that
(N, p, q) is sampled according to the uniform distribution on RSAk[R].

5.2 RSA Lossy TDP from Φ-Hiding

Φ-Hiding Assumption (ΦA). We recall the Φ-Hiding Assumption of [13]. For
an RSA modulus N , we say that N φ-hides a prime e if e | φ(N). Intuitively,
the assumption is that, given RSA modulus N , it is hard to distinguish primes
which are φ-hidden by N from those that are not. Formally, let 0 < c < 1/2 be
a (public) constant determined later. Consider the following two distributions:

R1 = {(e,N) : e, e′
$←Pck ; (N, p, q) $←RSAk[p = 1 mod e′]}

L1 = {(e,N) : e
$←Pck ; (N, p, q) $←RSAk[p = 1 mod e])} .

To a distinguisher D we associate its ΦA advantage defined as

AdvΦA
c,D(k) = Pr [D(R1)⇒ 1]− Pr [D(L1)⇒ 1] .

As shown in [13], distributions R1,L1 can be sampled efficiently assuming the
widely-accepted Extended Riemann Hypothesis.8

RSA LTDP from ΦA. We construct an RSA LTDP based on ΦA. In injective
mode the public key is (N, e) where e is not φ-hidden by N , whereas in lossy
mode it is. Namely, define LTDP1 = (F1,F ′

1) as follows:

Algorithm F1

e, e′
$←Pck

(N, p, q) $←RSAk[p = 1 mod e′, p]
If gcd(e, φ(N)) �= 1 then return ⊥
d← e−1 mod φ(N)
Return ((N, e), (N, d))

Algorithm F ′
1

e
$←Pck

(N, p, q) $←RSAk[p = 1 mod e]
Return (N, e)

The fact that algorithm F1 has only a negligible probability of failure (returning
⊥) follows from the fact that φ(N) can have only a constant number of prime
factors of length ck and Bertrand’s Postulate.

8 This is done by choosing a uniform (1/2 − c)k-bit number x until p = xe + 1 is a
prime.

308 E. Kiltz, A. O’Neill, and A. Smith

Proposition 1. Suppose there is a distinguisher D against LTDP1. Then there
is a distinguisher D′ such that for all k ∈ N

Advltdp
LTDP1,D

(k) ≤ 2 ·AdvΦA
c,D′(k) .

Furthermore, the running-time of D′ is that of D. LTDP1 has lossiness ck.

Remark 4. From a practical perspective, a drawback of LTDP1 is that F1 chooses
N = pq in a non-standard way, so that it hides a prime of the same length as
e. Moreover, for small values of e it returns ⊥ with high probability. This is
done for consistency with how [13] formulated ΦA. But, to address this, we also
propose what we call the Enhanced ΦA (EΦA), which says that N generated
in the non-standard way (i.e., by F1) is indistinguishable from one chosen at
random subject to gcd(e, φ(N)) = 1.9 We conjecture that EΦA holds for all
values of c that ΦA does. Details are given in the full version [27]. An analogous
enhancement pertains to later extensions of ΦA.

Parameters for LTDP1. When e is too large, ΦA can be broken by using
Coppersmith’s method for finding small roots of a univariate modulo an unknown
divisor of N [18, 32]. (No other attack on ΦA here is known.) Namely, consider
the polynomial r(x) = ex+1 mod p. Coppersmith’s method allows us to find all
roots of r smaller than N1/4, and thus factor N , in lossy mode in polynomial
time if c ≥ 1/4. (This is essentially the “factoring with high bits known” attack.)
More specifically, applying [32, Theorem 1], N can be factored in time O(Nε) if
c = 1/4− ε (i.e., log e ≥ k(1/4− ε)). For example, with modulus size k = 2048,
for about 80-bit security in lossy mode we set ε = .04 (to enforce kε ≥ 80).
The lossiness of LTDP1 is then 432 bits according to Proposition 1. A similar
calculation shows that for a modulus of size 1024 (resp., 3072) the lossiness of
LTDP1 we get is 176 (resp., 688) bits.

5.3 RSA Lossy TDP from Multi-prime Φ-Hiding

Multi-prime RSA (according to [31] the earliest reference is [39]) is a generaliza-
tion of RSA to moduli N = p1 · · · pm of length k with m ≥ 2 prime factors of
equal bit-length. Multi-prime RSA is of interest to practitioners since it allows to
speed up decryption and is included in RSA PKCS #1 v2.1. We are interested
in it here because for it we can show greater lossiness and even with smaller
encryption exponent e.

Notation and terminology. Let m ≥ 2 be fixed. We denote by MRSAk

the set of all tuples (N, p1, . . . , pm), where N = p1 · · · pm is the product of
distinct k/m-bit primes. Such an N is called an m-prime RSA modulus. By
(N, p1, . . . , pm) $←MRSAk we mean that (N, p1, . . . , pm) is sampled according

9 Additionally, in practice the encryption exponent e is usually fixed. This can be
addressed by parameterizing EΦA by a fixed e instead of choosing it at random.
Note that for e = 3 one should make both e | p − 1 and e | q − 1 in the lossy case
(otherwise the assumption is false; cf. [13, Remark 2, p. 6]).

Instantiability of RSA-OAEP under Chosen-Plaintext Attack 309

to the uniform distribution onMRSAk. The rest of the notation and terminol-
ogy of Section 5 is extended to the multi-prime setting in the obvious way.

Multi Φ-hiding assumption. For an m-prime RSA modulus N , let us say
that N mφ-hides a prime e if e | pi − 1 for all 1 ≤ i ≤ m − 1.Intuitively, the
assumption is that, given such N , it is hard to distinguish primes which are mφ-
hidden by N from those that do not divide pi − 1 for any 1 ≤ i ≤ m. Formally,
let m = m(k) ≥ 2 be a polynomial and let c = c(k) be an inverse polynomial
determined later. Consider the following two distributions:

R2 = {(e,N) : e, e′
$←Pck ; (N, p1, . . . , pt)

$←MRSAk[pi≤m−1 = 1 mod e′]}
L2 = {(e,N) : e

$←Pck ; (N, p1, . . . , pt)
$←MRSAk[pi≤m−1 = 1 mod e]} .

Above and in what follows, by pi≤m−1 = 1 mod e we mean that pi = 1 mod e
for all 1 ≤ i ≤ m − 1. To a distinguisher D we associate its MΦA advantage
defined as

AdvMΦA
m,c,D(k) = Pr [D(R2)⇒ 1]− Pr [D(L2)⇒ 1] .

As before, distributions R2,L2 can be sampled efficiently assuming the widely-
accepted Extended Riemann Hypothesis.

Note that if we had required that in the lossy case N = p1 · · · pm is such that
e | pi for all 1 ≤ i ≤ m, then in this case we would always have N = 1 mod e.
But in the injective case N mod e is random, which would lead to a trivial
distinguishing algorithm. This explains why we do not impose e | pm in the lossy
case above.

Multi-prime RSA LTDP from MΦA. We construct a multi-prime RSA
LTDP based on MΦA having lossiness (m − 1) log e, where in lossy mode N
mφ-hides e. Namely, define LTDP2 = (F2,F ′

2) as follows:

Algorithm F2

e, e′
$←Pck

(N, p1, . . . , pm)
$←MRSAk[pi≤m−1 = 1 mod e′]

If gcd(e, φ(N)) �= 1 then Return ⊥
d← e−1 mod φ(N)
Else return (N, e), (N, d)

Algorithm F ′
2

e
$←Pck

(N, p1, . . . , pm)
$←MRSAk[pi≤m−1 = 1 mod e]

Return (N, e)

Proposition 2. Suppose there is a distinguisher D against LTDP2. Then there
is a distinguisher D′ such that for all k ∈ N

Advltdp
LTDP2,D

(k) ≤ 2 ·AdvMΦA
m,c,D′(k) .

Furthermore, the running-time of D′ is that of D. LTDP2 has lossiness (m−1)ck.

Parameters for LTDP2. As in the case of LTDP1, if e is too large then Copper-
smith’s method [18] can be used to factor N in the lossy case. But this time the
attack is more involved than “factoring with high bits known.” Let us first con-
sider m = 3. Consider the polynomial r(x′1, x

′
2) = (ex′1 + 1)(ex′2 + 1) mod p1p2.

310 E. Kiltz, A. O’Neill, and A. Smith

Substituting x1 = x′1x
′
2 and x2 = x′1 + x′2 gives r(x1, x2) = e2x1 + ex2 +

1 mod p1p2. Applying [33, Theorem 3] with β = 2/3 and γ = 2δ tells us that
we can find all roots smaller than N δ for δ = (2(1− 2/3)3/2)/3 ≈ .12 in polyno-
mial time, so we require c ≤ 1/3 − .12 ≈ .21 to prevent this attack. (Note that
is slightly smaller than what we would deduce from “factoring with high bits
known” [32], which gives c ≤ .22.) More specifically, for m = 3 we can factor N
in the lossy case in time O(Nε) if c ≥ 1/3− δ − ε (i.e., log e = k(1/3 − δ − ε))
with δ as above.

In the general case, we can apply [33, Theorem 4] to deduce we must require
c ≤ 1/m− δ where

δ =
2((1/m)(1/m)−1 − (1/m)m/(m−1))

m(m− 1)
≤ 2

m(m− 1)
.

Note that this is only smaller than the bound with δ = 1/m2 obtained from
“factoring with high bits known” for m ≥ 5, namely for m = 5 we have δ ≈ 0.06.
(The reason we also had a better attack for m = 3 is that we used a specialized
theorem.)

We note that this may not be the best attack possible based on Coppersmith’s
method (in particular the coefficients of the polynomial we use are highly cor-
related). It is an interesting open question whether there is a better attack. We
also remark that for a fixed modulus length, m cannot be too large since the
Elliptic Curve Method for factoring can compute a factor pi of N faster than
the Number Field Sieve one if pi is significantly smaller than N1/2 [31].

5.4 Small-Exponent RSA LTDP from 2-Or-m-Primes

For efficiency reasons, the public RSA exponent e is typically not chosen to be
too large in practice. (For example, researchers at UC San Diego [43] observed
that 99.5% of the certificates in the campus’s TLS corpus had e = 216 + 1.)
Therefore, we investigate the possibility of using an additional assumption to
amplify the lossiness of RSA for small e.

The high-level idea is to assume that it is hard to distinguish N = pq where
p, q are primes of length k/2 from N = p1 · · · pm for m > 2, where p1, . . . , pm
are primes of length k/m (which we call the “2-or-m Primes” Assumption).
Combined with the MΦA Assumption of Section 5.3, we obtain (m−1) log e bits
of lossiness from standard (two-prime) RSA. Due to space constraints, details
are deferred to the full version [27].

6 Instantiating RSA-OAEP

By combining the results of Section 3, Section 4, and Section 5, we obtain stan-
dard model instantiations of RSA-OAEP under chosen-plaintext attack.

Regularity. In particular, we would like to apply part (2) of Theorem 2 in
this case, as it is not hard to see that under all of the assumptions discussed in
Section 5, RSA is a regular lossy TDP on the domain Z

∗
N . Unfortunately, this

Instantiability of RSA-OAEP under Chosen-Plaintext Attack 311

domain is different from {0, 1}ρ+μ (identified as integers), the range of OAEP. In
RSA PKCS #1 v2.1, the mismatch is handled by selecting ρ+ μ = �logN� − 2,
and viewing OAEP’s output as an integer less than 2ρ+μ < N/4. The problem is
that in the lossy case RSA may not be regular on the subdomain {0, ..., 2ρ+μ−1}.

We can prove, in some cases, that in the lossy case RSA is approximately
regular on this subdomain, and in those cases we obtain the better parameters
given by part (2) of Theorem 2. However, here use just use the weaker parameters
given by part (1) of Theorem 2. We leave a detailed discussion of approximate
regularity to future work. In particular, understanding the regularity of RSA
on subintervals of the domain is a first step towards improving the concrete
parameters we obtain.

Concrete parameters. Since the results in Section 5 have several cases and
the parameter settings are rather involved, we avoid stating an explicit theorem
about RSA-OAEP. From part (1) of Theorem 2 one can see that for u = 80
bits security and assuming RSA has � bits of lossiness, messages of roughly
μ ≈ � − 3 · 80 bits can be encrypted (for sufficintly large t). For concreteness,
we give two example parameter settings. Using the Multi Φ-Hiding Assumption
with N = 1024 bits and 3 primes, we obtain � = k − s = 291 bits of lossiness
and hence can encrypt messages of length μ = 40 bits (for t ≈ 400); using the
Φ-Hiding Assumption with N = 2048, we obtain � = k−s = 430 bits of lossiness
and hence can encrypt messages of length μ = 160 bits (for t ≈ 150). We stress
that while we view our results as providing important theoretical backing for
the scheme at a more qualitative level, we strongly encourage further research
to try to improve the concrete parameters.

Acknowledgements

We thank Mihir Bellare, Alexandra Boldyreva, Dan Brown, Yevgeniy Dodis,
Jason Hinek, Arjen Lenstra, Alex May, Phil Rogaway, and the anonymous re-
viewers of Crypto 2010 for helpful comments. In particular, we thank Dan for
reminding us of [13, Remark 2, p. 6], Alex for pointing out the improved attack
in Section 5.3, and Phil for encouraging us to consider the case of small e more
closely. A.O. was supported in part by Alexandra Boldyreva’s NSF CAREER
award 0545659 and NSF Cyber Trust award 0831184 and thanks her for her
support. A.S. was supported in part by NSF awards #0747294, 0729171.

References

[1] Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
p. 143. Springer, Heidelberg (2001)

[2] Barak, B., Shaltiel, R., Tromer, E.: True Random Number Generators Secure in a
Changing Environment. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003.
LNCS, vol. 2779, pp. 166–180. Springer, Heidelberg (2003)

312 E. Kiltz, A. O’Neill, and A. Smith

[3] Bellare, M., Rompel, J.: Randomness-Efficient Oblivious Sampling. In: FOCS
1994. ACM, New York (1994)

[4] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: The Conference on Computer and Communications
Security. ACM, New York (1993)

[5] Bellare, M., Rogaway, P.: Optimal asymmetric encryption: How to encrypt with
RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111.
Springer, Heidelberg (1995)

[6] Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

[7] Boldyreva, A., Fischlin, M.: Analysis of random oracle instantiation scenarios for
OAEP and other practical schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 412–429. Springer, Heidelberg (2005)

[8] Boldyreva, A., Fischlin, M.: On the security of OAEP. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 210–225. Springer, Heidelberg (2006)

[9] Boneh, D.: Simplified OAEP for the RSA and Rabin functions. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, p. 275. Springer, Heidelberg (2001)

[10] Brown, D.: What hashes make RSA-OAEP secure? In: Cryptology ePrint Archive,
Report 2006/223 (2006)

[11] Boldyreva, A., Cash, C., Fischlin, M., Warinschi, B.: Efficient private bidding and
auctions with an oblivious third party. In: ASIACRYPT 2009 (2009)

[12] Cachin, C.: Efficient private bidding and auctions with an oblivious third party.
In: CCS 1999. ACM, New York (1999)

[13] Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, p. 402. Springer, Heidelberg (1999),
http://www.zurich.ibm.com/~cca/papers/cpir.pdf

[14] Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial
information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–
469. Springer, Heidelberg (1997)

[15] Canetti, R., Dakdouk, R.: Extractable Perfectly One-Way Functions. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 449–460. Springer, Heidelberg
(2008)

[16] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

[17] Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash
functions. In: STOC 1998. ACM, New York (1998)

[18] Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptology 10 (1997)

[19] Coron, J.-S., Joye, M., Naccache, D., Paillier, P.: New Attacks on PKCS #1 v1.5
Encryption. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, p. 369.
Springer, Heidelberg (2000)

[20] Coron, J.-S., Joye, M., Naccache, D., Paillier, P.: Universal Padding Schemes
for RSA. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 226. Springer,
Heidelberg (2002)

[21] Dodis, Y., Oliveira, R., Pietrzak, K.: On the Generic Insecurity of the Full Domain
Hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer,
Heidelberg (2005)

http://www.zurich.ibm.com/~cca/papers/cpir.pdf

Instantiability of RSA-OAEP under Chosen-Plaintext Attack 313

[22] Dodis, Y., Smith, A.: Correcting errors without leaking partial information. In:
STOC 2005. ACM Press, New York (2005)

[23] Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. J. Cryptology 17(2), 81–104 (2004)

[24] Gentry, C., Mackenzie, P., Ramzan, Z.: Password authenticated key exchange
using hidden smooth subgroups. In: CCS 2005. ACM, New York (2005)

[25] Hemenway, B., Ostrovsky, R.: Public-key locally-decodable codes. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 126–143. Springer, Heidelberg (2008)

[26] Kazukuni, K., Imai, H.: OAEP++: A Very Simple Way to Apply OAEP to De-
terministic OW-CPA Primitives. In: Cryptology ePrint Archive, Report 2002/130
(2002)

[27] Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under Chosen-
Plaintexts Attacks. Full version of this paper

[28] Kiltz, E., Pietrzak, K.: The Group of Signed Quadratic Residues and Applications.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Hei-
delberg (2009)

[29] Kiltz, E., Pietrzak, K.: On the security of padding-based encryption schemes (or:
Why we cannot prove OAEP secure in the standard model). In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 389–406. Springer, Heidelberg (2009)

[30] Kiltz, E., Pietrzak, K.: Personal Communication (2009)
[31] Lenstra, A.K.: Unbelievable security: Matching AES security using public key

systems. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 67. Springer,
Heidelberg (2001)

[32] May, A.: Using LLL-Reduction for Solving RSA and Factorization Problems: A
Survey. In: LLL+25 Conference in Honour of the 25th Birthday of the LLL Algo-
rithm (2007)

[33] Herrmann, M., May, A.: Solving Linear Equations Modulo Divisors: On Factoring
Given Any Bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
406–424. Springer, Heidelberg (2008)

[34] Paillier, P., Villar, J.: Trading one-wayness against chosen-ciphertext security in
factoring-based encryption. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 252–266. Springer, Heidelberg (2006)

[35] Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive One-Way Functions and Ap-
plications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74.
Springer, Heidelberg (2008)

[36] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC
2008. ACM, New York (2008)

[37] RSA Laboratories Public-Key Cryptography Standards,
http://www.rsa.com/rsalabs/pkcs/

[38] Rivest, R., Shamir, A., Adelman, L.: A method for obtaining public-key cryp-
tosystems and digital signatures. Technical Report MIT/LCS/TM-82 (1977)

[39] Rivest, R., Shamir, A., Adelman, L.: Cryptographic communications system and
method. U.S. Patent 4,405,829 (1983)

[40] Schridde, C., Freisleben, B.: On the validity of the Φ-Hiding Assumption in cryp-
tographic protocols. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350,
pp. 344–354. Springer, Heidelberg (2008)

[41] Shoup, V.: OAEP Reconsidered. J. Cryptology 15(4), 223–249 (2002)
[42] Trevisan, L., Vadhan, S.: Extracting Randomness from Samplable Distributions.

In: FOCS 2000. ACM, New York (2000)
[43] Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When Private Keys

are Public: Results from the 2008 Debian OpenSSL Debacle. In: IMC 2009 (2009)

http://www.rsa.com/rsalabs/pkcs/

Efficient Chosen-Ciphertext Security via
Extractable Hash Proofs

Hoeteck Wee�

Queens College, CUNY
hoeteck@cs.qc.cuny.edu

Abstract. We introduce the notion of an extractable hash proof system. Essen-
tially, this is a special kind of non-interactive zero-knowledge proof of knowledge
system where the secret keys may be generated in one of two modes to allow for
either simulation or extraction.

– We show how to derive efficient CCA-secure encryption schemes via
extractable hash proofs in a simple and modular fashion. Our construc-
tion clarifies and generalizes the recent factoring-based cryptosystem of
Hofheinz and Kiltz (Eurocrypt ’09), and is reminiscent of an approach
proposed by Rackoff and Simon (Crypto ’91). We show how to instantiate
extractable hash proof system for hard search problems, notably factoring
and computational Diffie-Hellman. Using our framework, we obtain the first
CCA-secure encryption scheme based on CDH where the public key is a
constant number of group elements and a more modular and conceptually
simpler variant of the Hofheinz-Kiltz cryptosystem (though less efficient).

– We introduce adaptive trapdoor relations, a relaxation of the adaptive
trapdoor functions considered by Kiltz, Mohassel and O’Neil (Eurocrypt
’10), but nonetheless imply CCA-secure encryption schemes. We show how
to construct such relations using extractable hash proofs, which in turn yields
realizations from hardness of factoring and CDH.

1 Introduction

The most basic security guarantee we require of a public key encryption scheme
(PKE) is that of semantic security against chosen-plaintext attacks (CPA) [21]: it
is infeasible to learn anything about the plaintext from the ciphertext. On the other
hand, there is a general consensus within the cryptographic research community that
in virtually every practical application, we require semantic security against adaptive
chosen-ciphertext attacks (CCA) [37, 15], wherein an adversary is given access to
decryptions of ciphertexts of her choice. So far, there have been two largely separate
lines of works addressing the construction of CCA-secure encryption schemes: the
first examines constructions from general assumptions starting with the beautiful
works of Dolev, Dwork, Naor and Yung [15, 34, 37, 39, 31, 18, 36, 38, 33, 29] and
related questions pertaining to minimal assumptions; the second examines practical and
efficient constructions from specific number-theoretic assumptions, starting from those

� Supported by NSF CAREER Award CNS-0953626 and PSC-CUNY Award # 6014939 40.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 314–332, 2010.
c© International Association for Cryptologic Research 2010

Efficient Chosen-Ciphertext Security via Extractable Hash Proofs 315

of Cramer and Shoup [11, 40, 12, 30, 2, 24, 9, 10, 25]. In recent years, two distinct
trends have surfaced in each of these lines of works.

Practical CCA from Search Problems. Until very recently, all of the practical
CCA-secure encryption schemes (namely the Cramer-Shoup encryption scheme and
all its variants) inherently relied on decisional assumptions, e.g., the Decisional Diffie-
Hellman (DDH) assumption or the quadratic residuosity assumption. In general,
decisional assumptions are a much stronger class of assumptions than computational
assumptions based on search problems, such as factoring, finding shortest vectors in
lattices, or even the Computational Diffie-Hellman (CDH) problem. Indeed, there are
groups, such as certain elliptic curve groups with bilinear pairing map, where the
DDH assumption does not hold, but the Computational Diffie-Hellman (CDH) problem
appears to be hard. As such, schemes based on search problems are generally preferred
to those based on decisional assumptions. However, such schemes seem to be very hard
to obtain.

Several years ago, Canetti, Halevi and Katz [9] proposed the first practical CCA-
secure PKE based on a computational assumption, namely the Bilinear DH assumption
in bilinear groups (BDH). Since then, a series of works have shown how to base CCA-
secure encryption schemes on CDH [10, 22, 23] and on hardness of factoring [25].
However, there seems to be no overarching framework explaining these schemes. Partial
progress towards a unifying approach was made recently by Cramer, Hofheinz and Kiltz
[13]; their approach remains unsatisfactory in two ways: first, it does not encompass
constructions from hardness of factoring (it does cover the RSA assumption, which
is possibly a stronger assumption), and second, the ensuing schemes even with suitable
algebraic optimizations, do not quite match the efficiencies obtained in preceding works
(for instance, the public key in the RSA-based scheme contains a linear number of group
elements, whereas that in the factoring-based scheme of Hofheinz and Kiltz [25] only
requires a constant number of group elements).

CCA from weaker general assumptions. Since the breakthrough work of Peikert and
Waters on lossy trapdoor functions [36], a series of works has identified successively
weaker general assumptions from which we may realize CCA-secure encryption
schemes [38, 29] (in a black-box way). The current state-of-the-art is the (tag-based)
adaptive trapdoor functions of Kiltz, Mohassel and O’Neil [29]; roughly speaking, these
are trapdoor functions that remain one-way even if the adversary is given access to a
restricted inversion oracle that inverts the function on “most” inputs. In spite of the
black-box separations indicating that adaptive trapdoor functions are strictly weaker
than its predecessors [29, 41], all of the concrete (standard) assumptions from which
we can realize adaptive trapdoor functions are not significantly different from those
known to imply lossy trapdoor functions. Most notably, we do not know how to base
adaptive trapdoor functions on hardness of factoring (or the standard RSA assumption,
and more generally, any hard search problem not related to lattices). On the other hand,
we do know how to derive CCA-secure encryption schemes from enhanced trapdoor
permutations, which may in turn be based on hardness of factoring [15, 16, 19].

316 H. Wee

1.1 Our Contributions

We introduce the notion of an extractable hash proof system, inspired in part by the
Cramer-Shoup universal hash proof systems [12]. Informally, extractable hash proofs
are like universal hash proofs in that they are a special kind of non-interactive zero-
knowledge proofs [4], except we replace the soundness requirement (corresponding to
smoothness) with a “proof of knowledge property” [37, 14]. That is, the secret keys may
be generated in one of two modes to allow for either simulation or extraction. Using
extractable hash proofs, we obtain new insights into the construction of CCA-secure
encryption schemes, and obtain new results for both lines of works described earlier.
Before we describe our results, we present an overview of extractable hash proofs.

Extractable Hash Proof Systems. Fix R to be a relation corresponding to some hard
search problem – namely, R is efficiently samplable, but given a random u, it is hard to
find an s such that (u, s) ∈ R. (For instance, s is the pre-image of u under a one-way
permutation.) We consider a family of hash functions {HPK} indexed by a public key
PK which maps an input u to some value. (We clarify that the name is somewhat of a
misnomer since the “hash function” will in fact be injective, and possibly even length-
increasing.) Moreover, we require that the hash function be efficiently computable given
PK and the coin tosses r used to sample (u, s) ∈ R. We denote this public evaluation
algorithm by Pub(PK, r) and the hash value by HPK(u).

Associated with this family of functions is a set-up algorithm that generates the
public key PK along with a secret key. The set-up algorithm operates in one of two
modes. In both modes, the algorithm generates exactly the same distribution of public
keys; however, the functionality afforded by the secret key depends on the mode:

– In the hashing mode, the secret key SK∗ allows us to compute the hash value
Pub(PK, u) without knowing either s or r. Specifically, there is a private evaluation
algorithm Priv such that for all (u, s) ∈ R, Priv(SK∗, u) = HPK(u).

– In the extraction mode, the secret key SK allows us to verify whether a hash value
is correctly computed and if so extract a witness s. More formally, there is an
extraction algorithm Ext, such that for all u, τ : Ext(SK, u, τ) outputs s satisfying
(u, s) ∈ R iff τ = HPK(u). This implies efficient verification of the hash value
(given SK) whenever R is efficiently computable.

Looking ahead, we will rely on the extraction mode for decryption in a CCA-secure
encryption scheme, and on the hashing mode for the proof of security. This is opposite
to the use of universal hash proofs in the Cramer-Shoup framework, where the hashing
mode is used for decryption and the smoothness property (corresponding to soundness
and thus extraction) is used to establish security. Moreover, unlike Cramer-Shoup hash
proofs, extractable hash proofs are designed in tandem with families of relations, and
are particularly well-suited for use with computationally hard search problems.

Practical CCA via Extractable Hash Proofs. We provide a generic construction
of CCA-secure encryption schemes from extractable hash proofs. We use as an

Efficient Chosen-Ciphertext Security via Extractable Hash Proofs 317

intermediate building block a somewhat richer cryptographic abstraction called all-but-
one extractable hash proofs (which can be constructed generically from extractable hash
proofs). The overall construction follows a variant of the Rackoff-Simon paradigm [37]
(as opposed to the Naor-Yung double-encryption paradigm [34], also used in [13]):
encrypt (or commit to) a one-time symmetric key (which is in turn used to encrypt
the message, following the hybrid encryption paradigm), and then provide a zero-
knowledge proof of knowledge of the key using an extractable hash proof. Indeed,
such an approach was used implicitly in the afore-mentioned cryptosystems based on
computational assumptions; however, the connection to the Rackoff-Simon paradigm
has never been made explicit. Our framework may be viewed as a clarification and uni-
fication of all these constructions. We present extractable hash proofs related to hardness
of factoring and CDH; in addition, we obtain the following new cryptosystems:

– a variant of the Hofheinz-Kiltz CCA-secure encryption scheme based on hardness
of factoring (Fig 3), which is more modular and both conceptually and mathemat-
ically simpler, albeit less efficient — there is a linear blow-up in both ciphertext
overhead and public key size over the previous scheme;

– a CCA-secure encryption scheme based on CDH where the public key comprises
a constant number of group elements (Fig 5) and a linear ciphertext overhead;
previous works all require a linear number of group elements [10, 22, 23] in
the public key. Our construction offers a trade-off between public key size and
ciphertext overhead when compared with the schemes in [22, 23]; such a trade-off
may be preferable when encrypting very long messages via the hybrid encryption
paradigm.

Our framework also encompasses a series of CCA-secure encryption schemes [9, 7, 27,
28] derived from the identity-based encryption schemes in [5, 8] whose security are
based on decisional assumptions.

CCA from Adaptive Trapdoor Relations. We also propose a relaxation of adaptive
trapdoor functions, which we call adaptive trapdoor relations. The relaxation here lies
in the functionality requirement for evaluation: we only require that there exists an
efficient sampling algorithm that generates a random input to the trapdoor function
along with its image; the function itself need not be efficiently computable. It follows
immediately from [29] (with essentially the same construction as that in [36, 38])
that adaptive trapdoor relations imply CCA-secure encryption schemes. Interestingly,
the ensuing construction unlike previous constructions, is not witness-recovering (that
is, the decryption algorithm does not completely recover the randomness used for
encryption, c.f. [36, Section 1.1]).

Next, we show how to derive adaptive trapdoor relations from hardness of factoring
and CDH. This partially answers an open problem posed in [29] on realizing adaptive
trapdoor functions from hard search problems not related to lattices. (A comparison
with previous works is shown in Fig 1.) Our construction relies on the use of extractable
hash proofs and is very similar to our CCA-secure encryption schemes. Moreover, our
adaptive trapdoor relations are fairly efficient and achieve parameters similar to the
state-of-the-art lossy trapdoor functions based on DCR and DDH respectively [17].

318 H. Wee

SEARCH DECISIONAL

factoring, RSA CDH lattices/LWE DDH DCR QRA

enhanced TDP

lossy TDF

correlation-secure TDF

adaptive TDF

adaptive TD relation

CCA-secure PKE

Fig. 1. Summary of CCA-secure PKEs from general assumptions, and how the latter relate to
(standard) specific assumptions [15, 16, 19, 36, 38, 35, 29, 32, 17]. Here, lossy TDF and adaptive
TDF refer to the respective all-but-one/tag-based variants. The bold lines denote our contributions
(the dotted lines denote those that are straight-forward or follow readily from previous work). All
of the constructions from general assumptions are black-box, except for the one marked with
dashed lines. (Following current conventions, we do not regard hash proof systems [12] as a
general assumption.)

2 Preliminaries and Definitions

2.1 Key Encapsulation Mechanisms

A key encapsulation mechanism (KEM) (Gen,Enc,Dec) with key-space {0, 1}k
consists three polynomial-time algorithms.Via (PK, SK) ← Gen(1k) the randomized
key-generation algorithm produces public/secret keys for security parameter 1k; via
(C,K) ← Enc(PK), the randomized encapsulation algorithm creates a uniformly
distributed symmetric key K ∈ {0, 1}k, together with a ciphertext C; via K ←
Dec(SK, C), the possessor of secret key SK decrypts ciphertext C to get back a key
K which is an element in {0, 1}k or a special reject symbol ⊥. For consistency, we
require that for all k and all (C,K) ← Enc(PK), we have Pr[Dec(SK, C) = K] = 1,
where the probability is taken over the choice (PK, SK)← Gen(1k) and the coins of all
the algorithms in the expression above.

Chosen-Ciphertext Security. The common requirement for a KEM is indistinguishabil-
ity against chosen-ciphertext attacks (IND-CCA) [12] where an adversary is allowed
to adaptively query a decapsulation oracle with ciphertexts to obtain the corresponding
session key. More formally, for an adversaryA, we define the advantage function

AdvCCAA
KEM(k) := Pr

⎡⎢⎢⎢⎣b = b′ :

(PK, SK)← Gen(1k);
(C,K0)← Enc(PK);K1 ←R {0, 1}k;
b←R {0, 1};
b′ ← ADec(SK,·)(PK,Kb, C)

⎤⎥⎥⎥⎦

Efficient Chosen-Ciphertext Security via Extractable Hash Proofs 319

with the restriction that A is only allowed to query Dec(SK, ·) on ciphertexts different
from the challenge ciphertext C. A KEM is said to be indistinguishable against
chosen ciphertext attacks (IND-CCA) if for all PTA adversaries A, the advantage
AdvCCAA

KEM(k) is a negligible function in k.
It was shown in [12] that an IND-CCA secure KEM with a CCA-secure symmetric

encryption scheme yields an IND-CCA secure hybrid encryption scheme.

2.2 Binary Relations for Search Problems

Fix a family of (binary) relations RPP indexed by a public parameter PP. We require that
PP be efficiently samplable given a security parameter 1k, and assume that all algorithms
are given PP as part of its input. We omit PP henceforth whenever the context is clear.
We will also require that RPP be efficiently verifiable (possibly given some trapdoor for
PP) and efficiently samplable, where the sampling algorithm is denoted by SampR.

Intuitively, the relation RPP corresponds to a hard search problem, that is, given a
random u, it is hard to find s such (u, s) ∈ RPP. More formally, we say that a binary
relation RPP is one-way if:

– with overwhelming probability over PP, for all u, there exists at most one s such
that (u, s) ∈ RPP; and

– there is an efficiently computable generator G such that GPP(s) is pseudorandom
even against an adversary that gets PP, u and oracle access to RPP, where (u, s)←R

SampR(PP). (We will also refer to G as extracting hard-core bits from s.)

For relations where computing s given u is hard on average, we may derive a generator
GPP with a one-bit output via the Goldreich-Levin hard-core bit GL(·) [20] (with the
randomness in PP). In many cases as we shall see shortly, we may derive a linear number
of hard-core bits by either iterating a one-way permutation or relying on decisional
assumptions. Next, we present one-way relations related to hardness of factoring and
the Diffie-Hellman assumption.

Iterated Squaring. Fix a Blum integer N = PQ for safe primes P,Q ≡ 3 (mod 4)
(such that P = 2p+ 1 and Q = 2q + 1 for primes p, q). Following [26], we work over
the cyclic group of signed quadratic residues, given by the quotient group QR

+
N :=

QRN/ ± 1. QR
+
N is a cyclic group of order pq and is efficiently recognizable (by

verifying that the Jacobi symbol is +1). In addition, the map x �→ x2 is a permutation
over QR

+
N . Furthermore, assuming that factoring Blum integers are hard on average and

that safe primes are dense, the family of permutations x �→ x2 (indexed by N) acting
on the groups QR

+
N is one-way.

In our constructions, the public parameter PP comprises (N, g), whereN is a random
2k-bit Blum integer and g is chosen uniformly from QR

+
N . We will henceforth assume

that g is a generator for QR
+
N , which happens with probability 1 − O(1/

√
N). We

consider the relation:

Risqr
PP =

{
(u, s) ∈ QR

+
N ×QR

+
N : u = s2

k
}

The associated sampling algorithm SampR picks a random r ∈ [(N − 1)/4]
and outputs (g2kr, gr). Note that the output distribution is statistically close to the

320 H. Wee

uniform distribution over QR
+
N whenever g is a generator. Using the Blum-Blum-Shub

(BBS) pseudorandom generator [3], we may extract k hard-core bits from s that are
pseudorandom even given u, that is:

Gbbs
PP (s) := (lsbN (s), lsbN (s2), . . . , lsbN (s2

k−1
))

Diffie-Hellman Relation. We consider a family of groups G of prime order q. The
public parameter PP is given by (g, gα) for a random g ←R G and a random α←R Zq .
We consider the Diffie-Hellman relation

Rdh
PP =

{
(u, s) ∈ G×G : s = uα

}
Note that Rdh

PP is efficiently verifiable in bilinear groups (by computing a pairing) or
if provided with α as a trapdoor. The associated sampling algorithm SampR picks a
r ←R Zq and outputs (gr, gαr). Next, we explain how to obtain hard-bit bits for Rdh

PP

under various assumptions.

– The Strong DH assumption assumption [1] asserts that computing gab given
(g, ga, gb) is hard on average, even given oracle access to R(g,ga)(·, ·) (note that
in bilinear groups, this is equivalent to CDH). Under Strong DH, we may extract a
single hard-core bit from s using GL(s).

– The Bilinear DDH (BDDH) assumption [6] asserts that e(g, g)abc is pseudorandom
given g, ga, gb, gc where g, ga, gb, gc are random elements of a bilinear group.
Under BDDH, we may extract a linear number of hard-core bits from s using:

Gbddh
PP (s) := e(s, gγ)

(
⇒ Gbddh

PP (gαr) = e(g, g)αγr
)

where PP is now given by (g, gα, gγ). In addition, we may improve efficiency by
pre-computing the pairing and setting PP to be (g, gα, e(g, gγ)) and computing
Gbddh

PP (gr) := e(g, gγ)r. This construction extends naturally to the Gap Hashed
DH assumption [28].

Following the twinning framework [10], we will also consider the twin Diffie-Hellman
relation given by:

R2dh
PP =

{
(u, (s0, s1)) ∈ G×G

2 : (s0, s1) = (uα, uβ)
}

where PP is given by (g, gα, gβ) for random α, β ←R Zq , and SampR picks r ←R Zq

and outputs (gr, (gαr, gβr)). As shown in [10, Theorem 9], GL(s0) is a hard-core bit
for the relation R2dh

PP under CDH.

2.3 Extractable Hash Proofs

We consider a family of hash functions {HPK} indexed by a public key PK. An
extractable hash proof system associated with a one-way relation RPP is a tuple of
algorithms (SetupExt, SetupHash,Pub,Ext,Priv) satisfying the following properties
with overwhelming probability over PP:

(PUBLIC EVALUATION.) For all (PK, SK) ← SetupExt(PP) and (u, s) = SampR(r):
Pub(PK, r) = HPK(u).

Efficient Chosen-Ciphertext Security via Extractable Hash Proofs 321

(EXTRACTION MODE.) For all (PK, SK)← SetupExt(PP) and all (u, τ):

τ = HPK(u) ⇐⇒ (u,Ext(SK, u, τ)) ∈ R

(HASHING MODE.) For all (PK, SK∗)← SetupHash(PP) and all (u, s) ∈ R,

Priv(SK∗, u) = HPK(u)

(INDISTINGUISHABILITY.) The first outputs (namely PK) of SetupHash(PP) and
SetupExt(PP) are statistically indistinguishable.

All-But-One Extractable Hash Proofs. For all of our applications, it is convenient
to work with a richer abstraction, where as before, we consider a family of hash
functions indexed by a public key PK, that takes a tag as an additional input. More
formally, an all-but-one (ABO) extractable hash proof system is a tuple of algorithms
(SetupExt, SetupABO,Pub,Ext,Ext∗,Priv) satisfying the following properties with
overwhelming probability over PP:

(PUBLIC EVALUATION.) For all PK, TAG and (u, s) = SampR(r): Pub(PK, TAG, r) =
HPK(TAG, u).

(EXTRACTION MODE.) For all (PK, SK)← SetupExt(PP) and all (TAG, u, τ):

τ = HPK(TAG, u) ⇐⇒ (u,Ext(SK, TAG, u, τ)) ∈ R

(ALL-BUT-ONE MODE.) For all TAG∗ and all (PK, SK∗) ← SetupABO(PP, TAG∗): for
all (u, s) ∈ R,

Priv(SK∗, TAG∗, u) = HPK(TAG∗, u)

In addition, for all TAG �= TAG∗ and all (u, τ):

τ = HPK(TAG, u) ⇐⇒ (u,Ext∗(SK∗, TAG, u, τ)) ∈ R

(INDISTINGUISHABILITY.) For all TAG∗, the first outputs (namely PK) of
SetupABO(PP, TAG∗) and SetupExt(PP) are statistically indistinguishable.

2.4 Trapdoor Functions

Informally, trapdoor functions are a family of functions {FFID} that are easy to sample,
compute and invert with trapdoor, and hard to invert without the trapdoor (in this work,
we always assume that the functions are injective). In the tag-based setting, the function
takes an additional input, namely the tag; also, the trapdoor is independent of the tag.
A family of adaptive trapdoor functions [29] is one that remains one-way even if the
adversary is given access to a inversion oracle, except the adversary cannot query the
oracle on the same tag as that in the challenge.

Adaptive Trapdoor Relations. In this work, we consider a relaxation of the func-
tionality guarantee for adaptive trapdoor functions, that is, instead of requiring that
FFID be efficiently computable, we only require that we can efficiently sample from the

322 H. Wee

distribution (s,FFID(TAG, s)) for a random s given FID, TAG. More precisely, a family
of (tag-based) adaptive trapdoor relations is given by a family of injective functions
{FFID} that satisfies the following properties:

(TRAPDOOR GENERATION.) There is an efficient randomized algorithm TDG that
outputs a random (FID, TID).

(PUBLIC SAMPLING.) There is an efficient randomized algorithm PSamp that on input
(FID, TAG), outputs (s,FFID(TAG, s)) for a random s.1

(TRAPDOOR INVERSION.) There is an efficient algorithm TdInv such that for all
(FID, TID)←TDG and for all TAG, y, computesTdInv(TID, TAG, y)=F−1

FID (TAG, y).2

(ADAPTIVE ONE-WAYNESS.) For all efficient stateful adversaries A, the following
quantity is negligible:

Pr

⎡⎢⎢⎢⎣s = s′ :

TAG∗ ← A(1k);
(FID, TID)←R TDG(1k);
(s, y)←R PSamp(FID, TAG∗);
s′ ← AF−1

FID (·,·)(FID, y)

⎤⎥⎥⎥⎦
where A is allowed to query F−1

FID (·, ·) on any tag different from TAG∗.

It follows immediately from [29, Theorem 2] that adaptive trapdoor relations imply
IND-CCA secure encryption.

3 Generic Constructions from Extractable Hash Proofs

In this section, we show that starting from an extractable hash proof, we may derive
(1) a IND-CPA secure encryption scheme (as a simple warm-up exercise); (2) an ABO-
extractable hash proof; (3) an ABO-extractable hash proof with multiple hard-core bits;
and finally, (4) a IND-CCA secure KEM.

3.1 CPA-Secure Encryption

Starting from an extractable hash proof (SetupExt, SetupHash,Pub,Ext,Ext∗,Priv)
for a one-way relation RPP with an associated generator GPP, we may derive a IND-CPA
secure bit encryption scheme as follows:

– Gen(PP): same as SetupExt(PP).
– Enc(PK, b): sample (u, s) := SampR(r) and output (u,Pub(PK, r),G(s)⊕ b).
– Dec(SK, (u, τ, c)): compute s := Ext(SK, u, τ) and return G(s)⊕ c.

1 This is essentially the only distinction from the adaptive trapdoor functions in [29]; there, they
require that FFID be efficiently computable.

2 Since FFID is not necessarily efficiently computable given FID, it is crucial here that we quantify
over all y and that TdInv outputs ⊥ if y does not have a pre-image under FFID(TAG, ·). In our
constructions, it will be the case FFID is efficiently computable given TID.

Efficient Chosen-Ciphertext Security via Extractable Hash Proofs 323

Observe that correctness of the encryption scheme follows readily from correctness
of the extraction mode. To establish IND-CPA security, we consider an intermediate
game where we generate (PK, SK∗) using SetupHash(PP) and computes HPK(u) in the
ciphertext using Priv(SK∗, u). Any adversary that can distinguish between encryptions
of 0 and 1 in this game yields a distinguisher that given PP, u distinguishes G(s) from
random.

3.2 From Extractable to ABO-Extractable

Starting from an extractable hash proof for a relation RPP, we may derive a ABO-
extractable hash proof (SetupExt′, SetupABO′,Pub′,Ext′,Ext′

∗
,Priv′) for the same

relation and tag space {0, 1}� via a construction analogous to those in [34, 15, 36, 38]:

– SetupExt′(PP): run SetupExt(PP) to obtain (PKi,0, SKi,0), (PKi,1, SKi,1), i =
1, . . . , �; output P̃K = (PKi,0, PKi,1)i∈[�] and S̃K = (SKi,0, SKi,1)i∈[�].

– Pub′(P̃K, TAG, r): parse TAG=(TAG1, . . . , TAG�) and output (Pub(PKi,TAGi , r))i∈[�].

– Ext′(S̃K, TAG, u, (τ1, . . . , τ�)): compute si := Ext(SKi,TAGi , u, τi) for i = 1, . . . , �,
and output s1 if all � values agree, and ⊥ otherwise.

– SetupABO′(PP, TAG∗): run SetupHash(PP) to generate (PKi,TAG∗
i
, SKi,TAG∗

i
) and

SetupExt(PP) to generate (PKi,1−TAG∗
i
, SKi,1−TAG∗

i
), for i = 1, . . . , �; output P̃K =

(PKi,0, PKi,1)i∈[�] and S̃K
∗ = (SKi,0, SKi,1)i∈[�].

– Priv′(P̃K, TAG, u): output (Priv(SKi,TAGi , u))i∈[�].

– Ext′
∗(S̃K

∗
, TAG, u, (τ1, . . . , τ�)): first, check that τi = Priv(SKi,TAGi , u) for all i

such that TAG∗
i = TAGi and if not, output⊥; next, compute si :=Ext(SKi,TAGi , u, τi)

for all i such that TAG∗
i �= TAGi; output the common value if all these values agree

and ⊥ otherwise.

3.3 Obtaining Multiple Hard-Core Bits

Starting from an ABO-extractable hash proof for a relation RPP, we may derive a ABO-
extractable hash proof (SetupExt′, SetupABO′,Pub′,Ext′,Ext′

∗
,Priv′) for the k-wise

direct product R⊗k
PP of RPP . This allows us to obtain more hard-core bits by using the

k-wise direct product G⊗k
PP of GPP. The construction is as follows:

– SampG′(r1, . . . , rk) = (SampG(r1), . . . , SampG(rk))

– SetupExt′ and SetupABO′ are the same as SetupExt and SetupABO respectively.

– Pub′(PK, TAG, (r1, . . . , rk)): output (Pub(P̃K, TAG, ri))i∈[k].

– Ext′(SK, TAG, (u1, . . . , uk), (τ1, . . . , τ�)): compute si := Ext(SK, ui, τi) for i =
1, . . . , �, and output (s1, . . . , sk).

– Priv′(P̃K, TAG, (u1, . . . , uk)): output (Priv(SK, ui))i∈[�].

– Ext′
∗(SK, TAG, (u1, . . . , uk), (τ1, . . . , τ�)): output (Ext(SK, ui, τi))i∈[k].

324 H. Wee

3.4 CCA-Secure Encryption

Starting from an ABO-extractable hash proof for a one-way relation RPP along with
a target collision-resistant hash function TCR, we may derive a IND-CCA KEM
(Gen,Enc,Dec) as follows:

– Gen(PP): same as SetupExt(PP).
– Enc(PK): sample (u, s) := SampR(r), compute TAG := TCR(u), τ :=

Pub(PK, TAG, r), and return (C,K) := ((u, τ),G(s)).
– Dec(SK, (u, τ)): compute TAG := TCR(u) and s := Ext(SK, TAG, u, τ); if (u, s) ∈

RPP, return G(s), else return ⊥.

We assume here that GPP has linear output length; if not, we first apply the transforma-
tion in Section 3.3.

Theorem 1. If RPP is a one-way relation, then the above KEM (Gen,Enc,Dec) is IND-
CCA secure.

Proof. Observe that correctness of the encryption scheme follows readily from cor-
rectness of the extraction mode. We proceed to establish IND-CCA security. In the
following, we write (u∗, s∗) = SampR(r), C∗ = (u∗, τ∗),K∗

0 ,K
∗
1 to denote the

challenge ciphertext and keys chosen by the IND-CCA experiment, and we set TAG∗ to
denote the tag TCR(u∗) used in computing C∗. We proceed via a sequence of games.
We start with Game 0, where the challenger proceeds like in the standard IND-CCA
game (i.e, K∗

0 is a real key and K∗
1 is a random key) and end up with a game where

both K∗
0 and K∗

1 are chosen uniformly at random. Then, we show that all games are
indistinguishable under the assumption that G(s) is pseudorandom even given u.

GAME 1: ELIMINATING COLLISIONS. We replace the decapsulation mechanism Dec
with Dec′ that outputs ⊥ on inputs (u, τ) such that TCR(u) = TAG∗ but
otherwise proceeds like Dec. We show that Games 0 and 1 are computationally
indistinguishable, by arguing that Dec and Dec′ essentially agree on all inputs
(u, τ). We consider three cases:

– case 1: TCR(u) �= TAG∗. Here, Dec and Dec′ agree by definition.

– case 2: u �= u∗ but TCR(u) = TCR(u∗) = TAG∗. This only occurs with
negligible probability, by target collision-resistance of TCR.

– case 3: u = u∗ but τ �= τ∗. This means τ �= HPK(TAG∗, u) and therefore Dec
returns⊥ and agrees with Dec′.

GAME 2: DECAPSULATION WITH SetupABO. We modify the IND-CCA experiment
from Game 1, we generate the keys (PK, SK∗) using SetupABO instead of SetupExt
and we answer decapsulation queries using SK∗ instead of SK. More precisely, the
IND-CCA experiment proceeds as follows:

Efficient Chosen-Ciphertext Security via Extractable Hash Proofs 325

(u∗, s∗)← SampR(r); TAG∗ := TCR(u∗);
(PK, SK∗)← SetupABO(PP, TAG∗);
C∗ := (u∗,Pub(PK, TAG∗, r));K∗

0 := G(s∗);K∗
1 ←R {0, 1}k;

b←R {0, 1};
b′ ← ADec∗(SK∗,·)(PK,K∗

b , C
∗)

and where we replace Dec′(SK, ·) from Game 1 with Dec∗(SK∗, ·) which is defined
as follows:

On input (u, τ): compute TAG = TCR(u);
– if TAG = TAG∗ return ⊥.
– if TAG �= TAG∗, compute s = Ext∗(SK∗, TAG, u, τ). If (u, s) ∈ RPP,

return G(s), else return ⊥.

We claim a stronger statement, namely that for all r, the outputs of Games 1 and 2
are statistically indistinguishable. First, indistinguishability of the two modes imply
that the view (PK,K∗

b , C
∗) in Games 1 and 2 are statistically indistinguishable. As

such, it suffices to show that for all PK, Dec′(SK, ·) and Dec∗(SK∗, ·) agree on all
inputs (u, τ). Let s denote the unique value such that (u, s) ∈ RPP (if no such s
exists, then both Dec′ and Dec∗ return ⊥) and let TAG = TCR(u). We consider
three cases:

– case 1: TAG = TAG∗. Both Dec′ and Dec∗ output⊥ by definition.

– case 2: TAG �= TAG∗. Here, Dec′ always agrees with Dec by definition. By cor-
rectness of the extraction mode, Ext(SK, TAG∗, τ) returns s iff τ = HPK(TAG, u).
Similarly, by correctness of the all-but-one mode, Ext∗(SK∗, TAG∗, τ) returns s
iff τ = HPK(TAG, u). It follows that both Dec (and thus Dec′) and Dec∗ return
G(s) if τ = HPK(TAG, u) and ⊥ otherwise.

GAME 3: ENCAPSULATION WITH Priv. We compute HPK(TAG∗, u∗) in C∗ using Priv
instead of Pub; that is, in the IND-CCA experiment from Game 2, we set

C∗ := (u∗,Priv(SK∗, TAG∗, u∗))

Games 2 and 3 are identically distributed by correctness of the all-but-one mode.

GAME 4: REPLACING G(s∗) WITH RANDOM. We generateK∗
0 at random from {0, 1}k

instead of using G(s∗) (recall here that (u∗, s∗) = SampR(r)). Observe that in Game
3, we never use knowledge of the witness s∗ or randomness r associated with u∗. It
follows from the pseudorandomness of G that Games 3 and 4 are computationally
indistinguishable. Specifically, we may transform any distinguisher for Games 3 and
4 into a distinguisherK∗

0 and G(s∗), given PP, u∗ and oracle access to RPP (the latter
to simulate Dec∗).

We conclude by observing that in Game 4, both K∗
0 and K∗

1 are identically distributed,
so the probability that b′ = b is exactly 1/2. �

326 H. Wee

4 Instantiations from Hardness of Factoring

We present a simple extractable hash proof for the iterated squaring relation from
Section 2.2, namely Risqr

PP :=
{
(u, s) ∈ QR

+
N × QR

+
N : u = s2

k}
where N is a Blum

integer. We also present an efficient ABO-extractable hash proof for iterated squaring
that avoids the linear blow-up incurred by the transformation in Section 3.2. Both
of these extractable hash proofs appear implicitly in the Hofheinz-Kiltz cryptosystem
[25, 26].

Applying the generic transformations in Section 3 to the first hash proof, we obtain (i)
a simple factoring-based IND-CPA encryption scheme shown in Fig 2 where decryption
does not require knowing the factorization of the modulus; and (ii) a simple factoring-
based IND-CCA encryption shown in Fig 3. Applying the transformation in Section 3.4
to the efficient ABO-extractable hash proof, we recover the original Hofheinz-Kiltz
cryptosystem.

4.1 A Simple Extractable Hash Proof

SYSTEM PARAMETERS. Here, PP = (N, g), PK ∈ QR
+
N . and SampR(r) := (g2kr, gr),

where r ∈ [(N − 1)/4]. We define

HPK(u) := (PK · g)r where u = g2kr.

PUBLIC EVALUATION / EXTRACTION.

– SetupExt: PK = g2k·SK, SK ←R [(N − 1)/4]
– Pub(PK, r) = (PK · g)r
– Ext(SK, u, τ): output τ · u−SK if u, τ ∈ QR

+
N and ⊥ otherwise

Correctness of the extraction mode follows from the following simple calculation:

τ = HPK(u) = s2
k·SK+1 = uSK · s ⇐⇒ τ · u−SK = s

HASHING MODE.

– SetupHash: PK = g2k·SK∗−1, SK∗ ←R [(N − 1)/4]
– Priv(SK∗, u) = uSK∗

Correctness of the hashing mode follows from the observation that 2k · SK∗ =
2k · SK + 1 (mod φ(N)/4) and thus

HPK(u) = (g2k·SK+1)r = (g2k·SK∗
)r = uSK∗

To establish indistinguishability, observe that the distributions of PK in both modes
are identical if we sample SK and SK∗ uniformly at random from Zφ(N)/4 instead
of [(N − 1)/4]; moreover, sampling SK and SK∗ this way only changes the
distributions by a negligible quantity.

Efficient Chosen-Ciphertext Security via Extractable Hash Proofs 327

Gen(PP), PP = (N, g):

PK := g2SK, SK←R [(N − 1)/4]
return (PK, SK)

Enc(PK, b):

r ←R [(N − 1)/4]
return (g2r, (PK · g)r, lsb(gr)⊕ b)

Dec(SK, C):

parse C as (u, τ, ψ)
return lsb(τ ·u−SK)·ψ

Fig. 2. An IND-CPA bit encryption scheme based on hardness of factoring

4.2 Efficient ABO-Extractable Hash Proof

SYSTEM PARAMETERS. As before, PP = (N, g) and PK ∈ QR
+
N . The tag space is Z2�

and SampR(r) := (g2k+�r, g2�r), where r ∈ [(N − 1)/4]. We define

HPK(TAG, u) := (PK · gTAG)r where u = g2k+�r.

PUBLIC EVALUATION / EXTRACTION.

– SetupExt: PK = g2k+�·SK, SK ←R [(N − 1)/4]
– Pub(PK, TAG, r) = (PK · gTAG)r

– Ext(SK, TAG, u, τ) : check that u, τ ∈ QR
+
N and that τ2�+k

= uTAG+2�+k·SK

and output⊥ otherwise. Compute a, b, c ∈ Z such that 2c = gcd(TAG, 2�+k) =
a · TAG + b2�+k and then output (τa · ub−a·SK)2

�−c

.

Correctness of the extraction mode follows from the calculations: write u = s2
k

and s = g2�·r. Then,

τ = HPK(TAG, s2
k

) = gr·(TAG+2k+�·SK) ⇐⇒ τ2�+k

= uTAG+2�+k·SK

Moreover, if this holds, we have that gr·TAG = τ · u−SK and together with u =
gr2�+k

, we may compute gr·gcd(TAG,2�+k) = gr2c

from which we may compute
s = gr2�

since gcd(TAG, 2�+k) ≤ 2�.

ABO-EXTRACTION MODE. We may write 2k+� · SK∗ = 2k+� · SK + TAG∗

– SetupABO: PK = g2k+�·SK∗−TAG∗
, SK∗ ←R [(N − 1)/4]

– Priv(SK∗, u) = uSK
∗

– Ext∗(SK∗, TAG, u, τ) :check that u, τ∈QR
+
N and that τ2�+k �=uTAG−TAG∗+2�+k·SK∗

and output ⊥ otherwise. Compute a, b, c ∈ Z such that 2c = gcd(TAG −
TAG∗, 2�+k) = a(TAG − TAG∗) + b2�+k and then output (τa · ub−a·SK∗

)2
�−c

.

Correctness of the ABO-extraction mode is similar to that for the extraction mode.

5 Instantiations from Diffie-Hellman Assumptions

We present an ABO-extractable hash proof for the Diffie-Hellman relation from
Section 2.2, namely Rdh

PP =
{
(u, s) ∈ G × G : s = uα

}
where G is a group of

order q and PP = (g, gα). The construction is implicit in [5] and also [7, 27, 28, 23].
Applying the transformation in Section 3.4 to this hash proof system and the generator
Gbddh

PP (·), we obtain a variant of the BDDH-based IND-CCA KEM in [7, 27] (see Fig 4).

328 H. Wee

Gen(PP), PP = (N, g):

for i = 1, . . . , k, for b = 0, 1:
SKi,b ←R [(N − 1)/4]
PKi,b := g2kSKi,b

PK := (PKi,0, PKi,1)i∈[k]

SK := (SKi,0, SKi,1)i∈[k]

return (PK, SK)

Enc(PK):

r ←R [(N − 1)/4]
u := g2kr, t := TCR(u)
for i = 1, . . . , k:

τi := (PKi,ti · g)r

C := (u, τ1, . . . , τk)
return (C, Gbbs

PP (gr))

Dec(SK, C):

parse C as (u, τ1, . . . , τk)
check u, τ1, . . . , τk ∈ QR

+
N

t := TCR(u)
for i = 1, . . . , k:
check τ 2k

i = u2k SKi,ti
+1

return Gbbs
PP (τ1 · u−SK1,t1)

Fig. 3. An IND-CCA KEM based on hardness of factoring

5.1 ABO-Extractable Hash Proof for the Diffie-Hellman Relation

SYSTEM PARAMETERS. Here, PP = (g, gα), SP = α; the tag space is Zq; SampR(r) :=
(gr, gαr) where r ∈ Zq . We define

HPK(u) := (gα·TAG · PK)r where u = gr.

PUBLIC EVALUATION / EXTRACTION.

– SetupExt: PK = gSK, SK ←R Zq

– Pub(PK, TAG, r) = (gα·TAG · PK)r

– Ext(SK, TAG, u, τ) = (τ · u−SK)TAG−1

Correctness of the extraction mode follows from the following simple calculation:

τ = HPK(TAG, u) = uα·TAG+SK ⇐⇒ (τ · u−SK)TAG−1
= uα

ABO-EXTRACTION MODE.

– SetupABO: PK = gSK∗ · (gα)−TAG∗
, SK∗ ←R Zq

– Priv(SK∗, u) = uSK∗

– Ext∗(SK∗, TAG, u, τ) = (τ · u−SK
∗
)(TAG−TAG

∗)−1

Correctness of the ABO-extraction mode follows from the fact that SK∗ = α ·
TAG∗ + SK and thus

τ = HPK(TAG, u) = uα(TAG−TAG∗) · uSK∗ ⇐⇒ (τ · u−SK∗
)(TAG−TAG∗)−1

= uα

5.2 Constructions for the Twin Diffie-Hellman Relation

The construction in the previous section extends naturally to yield an ABO-extractable
hash proof for the Twin Diffie-Hellman relation, by considering:

HPK0,PK1(u) := ((gα·TAG · PK0)r, (gβ·TAG · PK1)r) where u = gr.

We may then apply the transformations from Sections 3.3 and 3.4 to obtain a CDH-
based IND-CCA KEM, shown in Fig 5. The public key comprises 5 group elements
and the ciphertext comprises O(k) group elements.

Efficient Chosen-Ciphertext Security via Extractable Hash Proofs 329

Gen(PP), PP = (g, e(g, gγ)):

SK := (α, S̃K,)←R Z
2
q

(h, P̃K) := (gα, g S̃K)
PK := (h, P̃K)
return (PK, SK)

Enc(PK):

u := gr, r ←R Zq

t := TCR(u), τ := (P̃K · ht)r

C := (u, τ), K := e(g, gγ)r

return (C, K)

Dec(SK, C):

parse C as (u, τ)
t := TCR(u)
check τ = uαt+S̃K

return e(uα, gγ)

Fig. 4. An IND-CCA KEM based on BDDH (variant of [7, 27])

Gen(PP), PP = (g,R):

(α, β, SK0, SK1)←R Z
4
q

(h0, h1) := (gα, gβ)
(PK0, PK1) := (gSK0 , gSK1)
PK := (h0, h1, PK0, PK1)
SK := (α, β, SK0, SK1)
return (PK, SK)

Enc(PK):

for i = 1, . . . , k:
ui := gri , ri ←R Zq

t := TCR(u1, . . . , uk)
for i = 1, . . . , k, for b = 0, 1:

τ b
i := (PKb · ht

b)
ri

C := (ui, τ
0
i , τ 1

i)i∈[k]

K := (GLR(hri
0))i∈[k]

return (C, K)

Dec(SK, C):

parse C as (ui, τ
0
i , τ 1

i)i∈[k]

t := TCR(u1, . . . , uk)
for i = 1, . . . , k:

check τ 0
i = uαt+SK0

i

check τ 1
i = uβt+SK1

i

return (GLR(uα
i))i∈[k]

Fig. 5. An IND-CCA KEM based on CDH

6 Adaptive Trapdoor Relations

Starting from an extractable hash proof (SetupExt, SetupABO,Pub,Ext,Ext∗,Priv)
for a one-way relation RPP, we may derive an adaptive trapdoor relation as follows:

– FID is (PP, PK) and for all (u, s) ∈ RPP, FFID(TAG, s) := (u,HPK(TAG, u)).
– TDG(1k): computes (PK, SK)← SetupExt(PP) for a random PP and returns FID :=

(PP, PK) and TID := SK

– PSamp(FID, TAG; r): computes (u, s) := SampR(r), y := (u,Pub(PK, TAG, r))
and return (s, y).

– TdInv(TID, TAG, (u, τ)): computes s := Ext(SK, TAG, u) and returns s if (u, s) ∈
RPP and ⊥ otherwise.

From an adaptive trapdoor relation, we may derive a one-bit IND-CCA encryption
scheme following the construction in [29, Theorem 2], or a more efficient k-bit IND-
CCA scheme by using the construction with multiple hard-core bits from Section 3.3.

Theorem 2. If RPP is a one-way relation, then the above construction yields an adaptive
trapdoor relation.

Proof (sketch). Trapdoor generation, public sampling and trapdoor inversion are
straight-forward, so we only sketch the reduction for establishing adaptive one-wayness,
which is very similar to that for our IND-CCA KEM in Section 3.4. Given an adversary
A that breaks adaptive one-wayness with probability ε, we may construct an adversary
B given (PP, u) and oracle access to RPP, computes s with probability roughly ε:

330 H. Wee

TDG(PP), PP = (N, g):

TID←R [(N − 1)/4]
FID := g2k+�·TID

return (FID, TID)

PSamp(FID, TAG; r):

(s, u) := (g2�r, g2k+�r)
τ := (FID · gTAG)r

return (s, (u, τ))

TdInv(SK, TAG, (u, τ)):

check u, τ ∈ QR
+
N

check τ 2�+k

= uTAG+2�+k·SK

find a, b, c ∈ Z: 2c = a · TAG + b2�+k

return (τa · ub−a·SK)2
�−c

Fig. 6. An adaptive trapdoor relation based on factoring

TDG(PP), PP = (g):

TID := (α, S̃K)←R Z
2
q

FID := (h, P̃K) := (gα, g S̃K)
return (FID, TID)

PSamp(FID, TAG; r):

return (hr, (gr, (P̃K · hTAG)r))

TdInv(SK, TAG, (u, τ)):

if τ = uα·TAG+S̃K:
return uα, else ⊥

Fig. 7. An adaptive trapdoor relation based on Strong DH

– runsA(1k) to get a tag TAG∗;

– computes (PK, SK∗)←R SetupABO(PP, TAG∗);
– computes FID := (PP, PK) and τ := Priv(SK∗, TAG∗, u)
– computes and outputs s′ ← A(FID, (u, τ)), by simulating F−1

FID (·, ·) as follows:

on input (TAG, (u′, τ ′)) where TAG �= TAG∗, compute s′ :=Ext∗(SK∗, TAG, u′);
output s′ if (u′, s′) ∈ RPP and ⊥ otherwise.

It is easy to check that Pr[BRPP(·)(PP, u) = s : (u, s) ←R SampR(PP)] ≈ ε, which
contradicts the pseudorandomness of GPP. �

Instantiating this construction with the ABO-extractable hash proofs in Sections 4.2
and 5.1, we derive the adaptive trapdoor relations shown in Fig 6 and 7, whose security
are based on hardness of factoring and Strong DH respectively. By using the ABO-
extractable hash proof in Section 5.2, we may also obtain an adaptive trapdoor relation
based on CDH.

Acknowledgments. I thank the anonymous Crypto 2010 reviewers for pointing out
that our framework applies to the constructions in [7, 27, 28], for suggesting the name
“adaptive trapdoor relations”, and for many helpful comments. I also thank Payman
Mohassel for helpful discussions.

References

[1] Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an
analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158.
Springer, Heidelberg (2001)

[2] Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new framework for
hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer, Heidelberg (2005)

Efficient Chosen-Ciphertext Security via Extractable Hash Proofs 331

[3] Blum, L., Blum, M., Shub, M.: Comparison of two pseudo-random number generators. In:
CRYPTO, pp. 61–78 (1982)

[4] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In:
STOC, pp. 103–112 (1988)

[5] Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption without
random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

[6] Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM J.
Comput. 32(3), 586–615 (2003)

[7] Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based
techniques. In: ACM CCS, pp. 320–329 (2005)

[8] Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham,
E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)

[9] Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222.
Springer, Heidelberg (2004)

[10] Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman problem and applications. J.
Cryptology 22(4), 470–504 (2009)

[11] Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–
25. Springer, Heidelberg (1998)

[12] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

[13] Cramer, R., Hofheinz, D., Kiltz, E.: A twist on the Naor-Yung paradigm and its application
to efficient CCA-secure encryption from hard search problems. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 146–164. Springer, Heidelberg (2010)

[14] De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without interaction. In:
FOCS, pp. 427–436 (1992)

[15] Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–
437 (2000)

[16] Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under
general assumptions. SICOMP 29(1), 1–28 (1999)

[17] Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions of lossy
and correlation-secure trapdoor functions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC
2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010)

[18] Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and CCA security for
public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 434–455.
Springer, Heidelberg (2007)

[19] Goldreich, O.: Foundations of Cryptography: Volume II, Basic Applications. Cambridge
University Press, Cambridge (2004)

[20] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: STOC, pp.
25–32 (1989)

[21] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299
(1984)

[22] Hanaoka, G., Kurosawa, K.: Efficient chosen ciphertext secure public key encryption under
the computational Diffie-Hellman assumption. In: Pieprzyk, J. (ed.) ASIACRYPT 2008.
LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg (2008)

332 H. Wee

[23] Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and efficient public-key encryption
from computational Diffie-Hellman in the standard model. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 1–18. Springer, Heidelberg (2010)

[24] Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg
(2007)

[25] Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factoring. In:
Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer, Heidelberg
(2009)

[26] Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg (2009)

[27] Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T.
(eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)

[28] Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on gap hashed diffie-hellman.
In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282–297. Springer,
Heidelberg (2007)

[29] Kiltz, E., Mohassel, P., O’Neil, A.: Adaptive trapdoor functions and chosen ciphertext
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 673–692. Springer,
Heidelberg (2010)

[30] Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004)

[31] Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under general
assumptions. J. Cryptology 19(3), 359–377 (2006)

[32] Mol, P., Yilek, S.: Chosen-ciphertext security from slightly lossy trapdoor functions. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 296–311. Springer,
Heidelberg (2010)

[33] Myers, S., Shelat, A.: Bit encryption is complete. In: FOCS, pp. 607–616 (2009)
[34] Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext

attacks. In: STOC, pp. 427–437 (1990)
[35] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In:

STOC, pp. 333–342 (2009)
[36] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC, pp. 187–

196 (2008)
[37] Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen

ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444.
Springer, Heidelberg (1992)

[38] Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In: Reingold, O.
(ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)

[39] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. In: FOCS, pp. 543–553 (1999)

[40] Shoup, V.: Using hash functions as a hedge against chosen ciphertext attack. In: Preneel, B.
(ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer, Heidelberg (2000)

[41] Vahlis, Y.: Two is a crowd? a black-box separation of one-wayness and security under
correlated inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 165–182.
Springer, Heidelberg (2010)

Factorization of a 768-Bit RSA Modulus

Thorsten Kleinjung1, Kazumaro Aoki2, Jens Franke3, Arjen K. Lenstra1,
Emmanuel Thomé4, Joppe W. Bos1, Pierrick Gaudry4, Alexander Kruppa4,

Peter L. Montgomery5,6, Dag Arne Osvik1, Herman te Riele6,
Andrey Timofeev6, and Paul Zimmermann4

1 EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland
2 NTT, 3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan

3 University of Bonn, Dept. of Math., Beringstraße 1, D-53115 Bonn, Germany
4 INRIA CNRS LORIA, Équipe CARAMEL - bâtiment A,

615 rue du jardin botanique, F-54602 Villers-lès-Nancy Cedex, France
5 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

6 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract. This paper reports on the factorization of the 768-bit num-
ber RSA-768 by the number field sieve factoring method and discusses
some implications for RSA.

Keywords: RSA, number field sieve.

1 Introduction

On December 12, 2009, we factored the 768-bit, 232-digit number RSA-768 by
the number field sieve (NFS, [19]). RSA-768 is a representative 768-bit RSA
modulus [34], taken from the RSA Challenge list [35]. Our result is a new record
for factoring general integers. Factoring a 1024-bit RSA modulus would be about
a thousand times harder and a 512-bit one was several thousands times easier.
Because the factorization of a 512-bit RSA modulus [7] was first reported in 1999,
it is not unreasonable to expect that 1024-bit RSA moduli can be factored well
within the next decade by a similar academic effort. Thus, it would be prudent
to phase out usage of 1024-bit RSA within the next three to four years.

The previous NFS record was the May 9, 2005, factorization of the 663-bit,
200-digit number RSA-200 [4]. NFS records must not be confused with special
NFS (SNFS) records. The current SNSF record is the May 21, 2007, factorization
of the 1039-bit number 21039 − 1 [2]. Although much bigger than RSA-768, its
special form made 21039 − 1 an order of magnitude easier to factor.

The new NFS record required the following effort. We spent half a year on
80 processors on polynomial selection. This was about 3% of the main task, the
sieving, which took almost two years on many hundreds of machines. On a single
core 2.2 GHz AMD Opteron processor with 2 GB RAM, sieving would have taken
about fifteen hundred years. We did about twice the sieving strictly necessary, to
make the most cumbersome step, the matrix step, more manageable. Preparing
the sieving data for the matrix step took a couple of weeks on a few processors.
The final step after the matrix step took less than half a day of computing.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 333–350, 2010.
c© International Association for Cryptologic Research 2010

334 T. Kleinjung et al.

Sieving is a laid back process that, once running, does not require much
care beyond occasionally restarting a machine. The matrix step is more sub-
tle. A slight disturbance easily causes major trouble, in particular if the problem
stretches the available resources. Oversieving led to a matrix that could be han-
dled relatively smoothly. More importantly, the extra sieving data allow exper-
iments aimed at getting a better understanding of the relation between sieving
and matrix efforts and the effect on NFS feasibility and overall performance.
That work is in progress. All in all, the extra sieving time was well spent.

In [2] the block Wiedemann algorithm [9] was used, making it possible to pro-
cess the matrix on disjoint clusters. Larger problems (such as 1024-bit moduli)
require wider parallelization. Here we solve some of the challenges by dividing
the workload in a more flexible manner. As a result a matrix nine times harder
than in [2] was solved in less than four months, on clusters in three countries.
Larger matrices are within reach and there can be little doubt about the feasi-
bility by the year 2020 of the matrix for a 1024-bit modulus. We are studying if
our current matrix can be handled by block Lanczos [8] on a single cluster.

The steps taken to factor RSA-768 are described in Section 2. The factors
are given in Section 2.5. Implications for moduli larger than RSA-768 are briefly
discussed in Section 3. Appendix A presents the sieving approach that we used,
and Appendix B describes a new twist of the block Wiedemann algorithm that
makes it easier to share large calculations among different parties.

2 Factoring RSA-768

2.1 Factoring Using the Morrison-Brillhart Approach

The congruence of squares method factors a composite n by writing it as gcd(x−
y, n) · gcd(x + y, n) for integers x, y with x2 ≡ y2 mod n: for random such
pairs (x, y) the probability of success is at least 1

2 . We explain the Morrison-
Brillhart approach [25] to solve x2 ≡ y2 mod n and, roughly, how NFS works.

A non-zero integer u is b-smooth if the prime factors of |u| are at most b. Each
b-smooth integer u corresponds to the (π(b)+1)-dimensional integer vector v(u)
of exponents of the primes ≤ b in its factorization, where π(b) is the number of
primes ≤ b and the “+1” accounts for the sign. The factor base consists of the
primes at most equal to the smoothness bound.

Let n be a composite integer, b a smoothness bound, and t a positive integer.
Let V be a set of π(b) + 1 + t integers v for which the least absolute remainders
r(v) = v2 mod n are b-smooth. Because the (π(b)+1)-dimensional vectors v(r(v))
are linearly dependent, at least t independent subsets T ⊂ V can be found using
linear algebra such that

∑
v∈T v(r(v)) is an all-even vector. Thus, each T leads

to a solution x =
∏

v∈T v and y =
√∏

v∈T r(v) to x2 ≡ y2 mod n. Overall, this
combining of congruences results in t chances of at least 1

2 to factor n.
In Dixon’s random squares method [11] the set V is generated by randomly

selecting integers v until enough have been found for which r(v) is smooth.
The expected runtime can be proved rigorously. With quadratic residues r(v) of

Factorization of a 768-Bit RSA Modulus 335

order n, however, the method is not practical: earlier, Morrison and Brillhart [25]
had already shown how to use continued fractions to generate quadratic residues
of order n1/2. The much higher smoothness probabilities make their method
much faster than Dixon’s, despite the lack of a formal proof. Schroeppel with his
linear sieve was the first, in about 1976, to combine similarly high smoothness
probabilities with fast sieving-based smoothness detection [31, Section 6] and to
analyze the resulting heuristic expected runtime [17, Section 4.2.6]. A variation
led to Pomerance’s quadratic sieve [31,32]. Factoring methods of this sort that
rely on smoothness of residues of order nθ(1) have expected runtimes of the form

e(c+o(1))(lnn)1/2(ln lnn)1/2
(for n→∞)

for positive constants c. The number field sieve [19] was the first, and so far the
only, practical factoring method to break through the barrier of the lnn-exponent
of 1

2 . It uses more contrived congruences that involve smoothness of numbers of
order no(1), for n → ∞, that can, as usual, be combined into a congruence of
squares x2 ≡ y2 mod n. NFS factors a composite integer n in heuristic expected
time

e((64/9)
1/3+o(1))(lnn)1/3(ln lnn)2/3

(for n→∞).

It is currently the best algorithm to factor numbers without special properties,
such as RSA-768, a 768-bit, 232-digit RSA modulus taken from [35]:

123018668453011775513049495838496272077285356959533479219732245215172640050726
365751874520219978646938995647494277406384592519255732630345373154826850791702
6122142913461670429214311602221240479274737794080665351419597459856902143413.

Similar to Schroeppel’s linear sieve, the most important steps of NFS are sieving
and the matrix step. In the former relations are collected, congruences involv-
ing smooth values similar to the smooth r(v)-values above. In the latter linear
dependencies are found among the exponent vectors of the smooth values. NFS
requires two non-trivial additional steps: a pre-processing polynomial selection
step before the sieving can start, and a post-processing square root step to con-
vert the linear dependencies into congruences of squares. A rough operational
description of these steps as applied to RSA-768 is given below. For an explana-
tion why these steps work, we refer to the many expositions on NFS [19,20,33].

2.2 Polynomial Selection

With n the integer to be factored, let f1(X), f2(X) ∈ Z[X] be two irreducible
integer polynomials of degrees d1 and d2, respectively, with a common root m
modulo n, i.e., f1(m) ≡ f2(m) ≡ 0 mod n. For simplicity we assume that f1
and f2 are monic, even though the actual f1 and f2 are not. With vk(a, b) =
bdkfk(a/b) ∈ Z (k = 1, 2), relations are coprime pairs of integers (a, b) with b > 0
such that v1(a, b) and v2(a, b) are simultaneously smooth, v1(a, b) with respect
to some b1 and v2(a, b) with respect to some b2. Sufficiently many more than
π(b1)+π(b2)+2 relations lead to enough chances to factor n, as sketched below.

Let Q(αk) = Q[X]/(fk(X)) for k = 1, 2 be two algebraic number fields. The
elements a−bαk ∈ Z[αk] have norm vk(a, b) and belong to the first degree prime

336 T. Kleinjung et al.

ideals in Q(αk) of (prime) norms equal to the prime factors of vk(a, b). These
prime ideals in Q(αk) correspond bijectively to the pairs (p, r mod p) where p is
prime and fk(r) ≡ 0 mod p: excluding factors of fk’s discriminant, such a first
degree prime ideal has norm p and is generated by p and r − αk.

Because fk(m) ≡ 0 mod n, the two natural ring homomorphisms φk : Z[αk]→
Z/nZ for k = 1, 2 map

∑dk−1
i=0 aiα

i
k to

∑dk−1
i=0 aim

i mod n and φ1(a − bα1) ≡
φ2(a− bα2) mod n. Linear dependencies modulo 2 among the exponent-vectors
of the primes in the b1-smooth v1(a, b), b2-smooth v2(a, b) pairs lead to subsets T
such that

∏
(a,b)∈T (a−bαk) is a square σk in Q(αk), for k = 1, 2. With φ1(σ1) ≡

φ2(σ2) mod n it then remains to compute square roots τk =
√
σk ∈ Q(αk) for

k = 1, 2 to find a solution x = φ1(τ1) and y = φ2(τ2) to x2 ≡ y2 mod n.
It is easy to find f1 and f2 so that numbers of order no(1), for n→∞, must be

smooth. Let d1 ∈ N be of order (3 lnn
ln lnn)1/3, let d2 = 1, let m be an integer slightly

smaller than n1/d1 , and write n in radix m as n =
∑d1

i=0 nim
i with 0 ≤ ni < m.

Then f1(X) =
∑d1

i=0 niX
i and f2(X) = X −m have common root m modulo n,

the coefficients are no(1) for n→∞, and the values a, b that suffice to generate
enough relations are small enough to keep bd1f1(a/b) and bd2f2(a/b) of order
no(1) as well. Finally, if f1 is not irreducible, it can be used to directly factor n
or, if that fails, one of its factors can be used instead of f1. If d1 > 1 and d2 = 1
we refer to “k = 1” as the algebraic side and “k = 2” as the rational side. With
d2 = 1 the algebraic number field Q(α2) is simply Q, the first degree prime ideals
in Q are the regular primes and, with f2(X) = X −m, the element a − bα2 of
Z[α2] is a− bm = v2(a, b) ∈ Z with φ2(a− bα2) = a− bm mod n.

Although with these polynomials NFS achieves its asymptotic runtime, there
is a lot of freedom in the choices of m, f1, and f2. Exploiting this involves ex-
tensive searches, comparing choices based on smoothness probabilities, and thus
with respect to coefficient size, number of real roots and roots modulo small
primes, smoothness properties of leading coefficients, and sieving experiments.
How the search is best conducted is the subject of active research; current ap-
proaches are guided by experience, helped by luck, and profit from patience.

One method is known that produces two good polynomials of degrees greater
than one (namely, twice degree two [5]). Its results are not competitive with the
current best d1 > 1, d2 = 1 methods which are all based on refinements [15] of
the approach from [24,26] as summarized in [7, Section 3.1]. A search of three
months on a cluster of 80 Opteron cores (i.e., 3

12 ·80 = 20 core years), conducted
at BSI in 2005 already and thus not including the idea from [16], produced three
pairs of polynomials of comparable quality. We used

f1(X) = 265482057982680X6

+ 1276509360768321888X5

− 5006815697800138351796828X4

− 46477854471727854271772677450X3

+ 6525437261935989397109667371894785X2

− 18185779352088594356726018862434803054X

− 277565266791543881995216199713801103343120,

f2(X) = 34661003550492501851445829X − 1291187456580021223163547791574810881.

Factorization of a 768-Bit RSA Modulus 337

The leading coefficients factor as 23 · 32 · 5 · 72 · 11 · 17 · 23 · 31 · 112 877 and
13 · 37 · 79 · 97 · 103 · 331 · 601 · 619 · 769 · 907 · 1 063, respectively. The discriminant
of f1 equals 212 · 32 · 52 · 13 · 17 · 17 722 398 737 · c273, for a 273-digit composite
integer c273 that is most likely free of squares and of factors less than 1040. The
discriminant of f2 equals one. A renewed search at EPFL in the spring of 2007
(also not using the idea from [16]) produced a couple of candidates of similar
quality, again after spending about 20 core years.

Following [15], during the search, the leading coefficient of f2 allowed 11
(search at BSI) or 10 (search at EPFL) prime factors equal to 1 mod 6 and
at most one other factor < 215.5. The leading coefficient of f1 was a multiple
of 258 060 = 22 · 3 · 5 · 11 · 17 · 23. At least 2 · 1018 pairs (f1, f2) were considered.

2.3 Sieving

To be able to profit from near misses during the search for relations an inte-
ger x is defined to be (bk, b�)-smooth if with the exception of, say, four prime
factors between bk and b�, all remaining prime factors of |x| are at most bk. We
thus change the definition of a relation into a coprime pair of integers (a, b) with
b > 0 such that bd1f1(a/b) is (b1, b�)-smooth and bd2f2(a/b) is (b2, b�)-smooth. Al-
though large primes speed up the sieving, they make it harder to decide whether
enough relations have been found, as the criterion that more than π(b1)+π(b2)+2
are needed is no longer adequate. The decision requires duplicate and singleton
removal. It is briefly touched upon at the end of Section 2.3.

We used b1 = 11 · 108, b2 = 2 · 108 and b� = 240 on cores with at least 2 GB
RAM (the majority) and b1 = 4.5 · 108, b2 = 108 on others (preferably with at
least a GB RAM). Based on sieving experiments it was expected that it would
suffice to use as sieving region the subset S of Z×Z>0 of about 11 ·1018 coprime
pairs (a, b) with |a| ≤ 3 ·109 ·κ1/2 ≈ 6.3 ·1011 and 0 < b ≤ 3 ·109/κ1/2 ≈ 1.4 ·107.
Here κ = 44 000 approximates the skewness of f1. It is used to approximately
minimize the largest norm v1(a, b) encountered in the sieving region. Although
prime ideal norms up to 240 were accepted, the parameters were optimized for
norms up to 237. Most jobs attempted to factor after the sieving algebraic and
rational cofactors up to 2140 and 2110, respectively, only considering the most
promising candidates [14]. As far as we know, this was the first NFS factorization
allowing more than three algebraic large primes.

Disregarding factors of fk’s discriminant, a prime p dividing fk(r) is equivalent
to (r mod p) being a root of fk modulo p. Because d2 = 1, the polynomial f2
has one root modulo p for each prime p not dividing its leading coefficient, and
each such p divides f2(j) once every p consecutive j-values. For f1 there may be
between zero to d1 roots modulo p: some primes p do not divide f1(j) for any j,
whereas other p may divide f1(j) a total of d1 times for every p consecutive
j-values. The (p, r) pairs with p ≤ b1 for f1 and p ≤ b2 for f2 are precomputed.

Early implementations of NFS used line sieving: for some b-value and k, one
marks for each precomputed (p, r) pair for fk the a-values of the form rb + ip
for i ∈ Z with “p,” since for those a-values p divides bdkf(a/b) = vk(a, b). The
locations hit by many different p’s are remembered, and the process is repeated

338 T. Kleinjung et al.

for the other k. Relations may be found at locations that were hit twice. With
many lines (b-values) to be processed, line sieving can easily be parallelized.

For RSA-768 we did not use line sieving but a more efficient approach that has
gained popularity since the mid 1990s: the lattice sieve as described in [30]. For a
(prime,root) pair q = (q, s) define Lq as the lattice of integer linear combinations
of the 2-dimensional integer (row-)vectors (q, 0), (s, 1) ∈ Z2. Let Sq = S∩Lq. Fix
a (prime,root) pair q = (q, s) for, say, f1. The special prime q (as it was referred
to in [30]) is chosen smaller than b�, and it divides bd1f1(a/b) for (a, b) ∈ Sq.
Lattice sieving consists of marking, for each precomputed (prime,root) pair p
for f1, the points in the intersection Lp ∩ Sq. Locations that are hit often are
remembered, and the process is repeated for the precomputed (prime,root) pairs
for f2. Relations may be found at locations that were hit twice. For each relation
thus found, q divides v1(a, b). The process is repeated for other q until enough
relations have been found. Because relations may be found for each special prime
occurring in v1(a, b), duplicates will be found when lattice sieving.

In practice one fixes bounds I and J independent of q and defines Sq =
{iu + jv : i, j ∈ Z,−I/2 ≤ i < I/2, 0 < j < J}, where u, v form a basis for
Lq that minimizes the norms v1(a, b) for (a, b) ∈ Sq. Such a basis is found by
partially reducing the basis (q, 0), (s, 1) for Lq such that the first coordinate is
roughly κ times bigger than the second, cf. skewness of S. Sieving is carried out
over the set {(i, j) ∈ Z× Z>0 : −I/2 ≤ i < I/2, 0 < j < J}, interpreted as Sq.

We used I = 216 and J = 215, i.e., a lattice sieving area of size roughly
231 ≈ 2·109. With b1 = 11·108 and b2 = 2·108, the majority of the sieving-primes
can be expected to hit Sq only a few times. Thus, for any sieving-p, only a few of
the j-values (the lines) will be hit, unlike line sieving where each line will be hit
several times by each prime. Therefore, when lattice sieving, a more sophisticated
sieving method must be used that avoids looking at all lines 0 < j < J for
each p. This sieving by vectors [30] was first implemented in [13] and used for
many factorizations in the 1990s [10,7]. We used the implementation from [12],
described in Appendix A. Most of the about 0.48 billion (prime,root) pairs (q, s)
for special primes q between 0.45 and 11.1 billion (and some special primes
below 0.45 billion, with a smaller b1-value) were processed by eight contributing
parties (cf. Table 1) during the period August 2007 until April 2009. Scaled to
a 2.2 GHz Opteron core with 2 GB RAM, a single Lq was processed in less
than 100 seconds on average and produced about 134 relations, for an average
of about four relations every three seconds. This average rate varies by a factor
of about two between both ends of the special primes range that we used.

We collected 64 334 489 730 relations in total, each requiring about 150 bytes.
Compressed they occupied about 5 terabytes of disk space, backed up at various
locations. The 27.4% duplicates were removed using hashing. This was done
mostly during the sieving, overall taking less than 10 days on a 2.66 GHz Core2
processor with ten 1TB hard disks. After including 57 223 462 free relations [19],
we ended up with 47 762 243 404 relations involving 35 288 334 017 prime ideals.

Given the set of unique relations, those that involve a prime ideal that does
not occur in any other relation, the singletons, cannot be part of a dependency.

Factorization of a 768-Bit RSA Modulus 339

Table 1. Percentages contributed

contributor relations matrix stages, % of matrix effort
contribution 1 (60%) 2 (0%) 3 (40%) total

Bonn (University and BSI) 8.14%
CWI 3.44%
EPFL 29.78% 34.3% 100% 78.2% 51.9%
INRIA LORIA (ALADDIN-G5K) 37.97% 46.8% 17.3% 35.0%
NTT 15.01% 18.9% 4.5% 13.1%
Scott Contini (Australia) 0.43%
Paul Leyland (UK) 0.69%
Heinz Stockinger (Enabling Grids for E-sciencE) 4.54%

Singletons were removed using hashing. Doing this once reduced the set of re-
lations to 28 984 986 047 elements with 14 498 007 183 prime ideals. Removal of
singletons usually creates new singletons, and the process must be repeated until
no new singletons are created. After a few more singleton removals 24 615 168 385
relations involving at most 9 976 671 468 prime ideals were left.

Further singleton removal was combined with clique removal [6], i.e., search
of combinations with matching first degree prime ideals of norms larger than bk.
Ultimately, this led to 2 458 248 361 relations with 1 697 618 199 prime ideals, still
containing an almost insignificant number (604 423) of free relations. Since there
are more relations than prime ideals (so that dependencies exist), we had done
enough sieving and lots of flexibility to create a matrix. Singleton and clique
removal took less than 10 days on the same platform as above.

2.4 The Matrix Step

Current best methods to find dependencies among the rows of a sparse matrix
take time proportional to the product of the dimension and the weight (i.e.,
number of non-zero entries) of the matrix. Merging is a generic term for the set
of strategies developed to build a matrix for which close to optimal dependency
search can be expected. It is described in [6]. We ran about 10 separate merging
jobs, aiming for various optimizations (low dimension, low weight, best-of-both,
etc.), which each took a couple of days on a single core per node of a 37-node 2.66
GHz Core2 cluster with 16 GB RAM per node, and a not particularly fast inter-
connection network. The best alternative was a 192 796 550×192 795 550-matrix
of total weight 27 797 115 920 (on average 144 non-zeros per row), requiring about
105 GB. It was generated in 5-days on two to three cores on the 37-node cluster,
where the long duration was probably due to the large communication overhead.
When we started the project, we expected dimension about a quarter billion and
density per row of about 150, which would have been about 7

4 times harder.
To find dependencies we used block Wiedemann [9,38] as described in [2,

Section 5.1] . We give a high level description [18, Section 2.19]. Given a non-
singular d× d matrix M over the finite field F2 and b ∈ Fd

2, we wish to solve the
system Mx = b. The minimal polynomial F of M on the vector space spanned
by b, Mb, M2b, . . . has degree at most d, so that F (M)b =

∑d
i=0 FiM

ib = 0.
From F0 = 1 it follows that x =

∑d
i=1 FiM

i−1b, so it suffices to find the Fi’s.

340 T. Kleinjung et al.

Denoting by mi,j the jth coordinate of the vector M ib, it follows that for
each j with 1 ≤ j ≤ d the sequence (mi,j)∞i=0 satisfies a linear recurrence relation
of order at most d defined by the coefficients Fi: for any t ≥ 0 and 1 ≤ j ≤ d
we have that

∑d
i=0 Fimi+t,j = 0. Given 2d+ 1 consecutive terms of an order d

linear recurrence, its coefficients can be computed using the Berlekamp-Massey
method [22,38]. Each j may lead to a polynomial of smaller degree than F , but
taking, if necessary, the least common multiple of the polynomials found for a
few different indices j, the correct minimal polynomial will be found.

Summarizing the above, there are three major stages: a first iteration consist-
ing of 2d matrix×vector steps to generate 2d+ 1 terms of the linear recurrence,
the Berlekamp-Massey stage to calculate the Fi’s, and a second iteration consist-
ing of d matrix×vector steps to calculate the solution using the Fi’s. For large
matrices the first and the final stage are the most time consuming.

In practice it is common to use blocking, to take advantage of the fact that on
64-bit machines 64 different vectors b over F2 can be processed simultaneously,
at little or no extra cost compared to a single vector [9], while using the same
three main stages. If the vector b̄ is 64 bits wide and in the first stage the first
64 coordinates of each of the generated 64 bits wide vectors M ib̄ are kept, the
number of matrix (M) times vector (b̄) multiplications in both the first and the
final stage is reduced by a factor of 64 compared to the number of M times b
multiplications, while making the central Berlekamp-Massey stage a bit more
cumbersome. It is less common to take the blocking a step further and run both
iteration stages spread over a small number n′ of different sequences, possibly
run on disjoint clusters; in [2] this was done with n′ = 4 sequences run on three
clusters. If for each sequence one keeps the first 64 ·n′ coordinates of each of the
64 bits wide vectors they generate during the first stage, the number of steps to
be carried out (per sequence) is further reduced by a factor of n′, while allowing
independent and simultaneous execution on possibly n′ disjoint clusters. After
the first stage the data generated for the n′ sequences have to be gathered at a
central location where the Berlekamp-Massey stage will be carried out.

While keeping the first 64 · n′ coordinates per step for each sequence results
in a reduction of the number of steps per sequence by a factor of 64 ·n′, keeping
a different number of coordinates while using n′ sequences results in another
reduction in the number of steps for the first stage. Following [2, Section 5.1], if
the first 64 ·m′ coordinates are kept of the 64 bits wide vectors for n′ sequences,
the numbers of steps become d

64·m′ + d
64·n′ = (n′

m′ + 1) d
64·n′ and d

64·n′ for the first
and third stage, respectively and for each of the n′ sequences. The choices of
m′ and n′ should be weighed off against the cost of the Berlekamp-Massey step
with time and space complexities proportional to (m′+n′)3

n′ d1+o(1) and (m′+n′)2

n′ d,
respectively and for d→∞, and where the exponent “3” may be replaced by the
matrix multiplication exponent (our implementation uses “3”).

When running the first stage using n′ sequences, the effect of non-identical
resources used for different sequences quickly becomes apparent: some locations
finish their work faster than others (depicted in Fig. 1). To keep the fast con-
tributors busy and to reduce the work of the slower ones (thereby reducing the

Factorization of a 768-Bit RSA Modulus 341

wall-clock time), a quickly processed first stage sequence may continue for s

steps beyond (n′
m′ + 1) d

64·n′ while reducing the number of steps in another first
stage sequence by the same s. As described in Appendix B, this can be done
in a very flexible way, as long as the overall number of steps over all first stage
sequences adds up to n′ · (n′

m′ + 1) d
64·n′ . The termination points of the sequences

in the third stage need to be adapted accordingly. This is easily arranged for,
since the third stage allows much easier and much wider parallelization anyhow
(assuming checkpoints from the first stage are kept). Another way to keep all
parties busy is swapping jobs, thus requiring data exchanges, synchronization,
and more human interaction, making it a less attractive option altogether.

For our matrix with d ≈ 193 · 106 we used, as in [2], m′ = 2n′. But where
n′ = 4 was used in [2], we used n′ = 8. This quadrupled the Berlekamp-Massey
runtime and doubled its memory compared to the matrix from [2], on top of the
increased runtime and memory demands caused by the larger dimension of the
matrix. On the other hand, the compute intensive first and third stages could
be split up into twice as many independent jobs as before. For the first stage
on average (8

16 + 1)193·106

64·8 ≈ 565 000 steps needed to be taken per sequence (for
8 sequences), for the third stage the average was about 193·106

64·8 ≈ 380 000 steps.
The actual numbers of steps varied, approximately, between 490 000 and 650 000
for the first stage and between 300 000 and 430 000 for the third stage. The
calculation of these stages was carried out on a wide variety of clusters accessed
from three locations: a 56-node cluster of 2.2GHz dual hex-core AMD processors
with Infiniband at EPFL (installed while the first stage was in progress), a variety
of ALADDIN-G5K clusters in France accessed from INRIA LORIA, and a cluster
of 110 3.0GHz Pentium-D processors on a Gb Ethernet at NTT.

On 12 nodes of a 12-cores-per-node cluster of 2.2 GHz AMD processors with
16 GB RAM per node and an Infiniband network, one multiplication step (of
the matrix times a 64 bits wide vector) took between 4.3 and 4.5 seconds for
the first stage and about 4.8 seconds for the slightly more involved third stage.
Per-iteration timings for stage one on the Pentium cluster are 11.6 seconds per
iteration when two sequences are run in parallel (thus, effectively, 5.8 seconds
per sequence), and 6.4 seconds if one sequence is processed. For the third stage
it was 7.8 seconds per iteration, for a single sequence. For the ALADDIN-G5K
clusters the per-iteration timings for stages one and three varied between 2.3
and 4.1 seconds, and between 2.6 and 17.9 seconds, respectively. It follows that
doing the entire first and third stage would have taken 98 days on 48 nodes (576
cores) of the 56-node EPFL cluster.

The first stage was split up into eight independent jobs run in parallel on
those clusters, check-pointing once every 214 steps. Running a first (or third)
stage sequence required 180 GB RAM, a single 64 bits wide b̄ took 1.5 GB, and
a single mi matrix 8 KB, of which 565 000 were kept, on average, per first stage
sequence. Each partial sum during the third stage evaluation required 12 GB.

The central Berlekamp-Massey stage was done in 17 hours and 20 minutes on
the 56-node EPFL cluster (with 16 GB RAM per node), while using just 4 of the
12 available cores per node. Most of the time the available 896 GB RAM sufficed,

342 T. Kleinjung et al.

(a) First stage contributions. (b) Final shot of third stage bookkeeping.

Fig. 1. Contributions to sequences 0-7: blue=INRIA, orange=EPFL, pink=NTT

but during a central part of the calculation more memory was needed (up to
about 1 TB) and some swapping occurred. The third stage started right after
completion of the second stage, running as many jobs in parallel as possible. The
actual bookkeeping sheet used is pictured in Fig. 1b. Fig. 1a pictures the first
stage contributions apocryphally but accurately. Calendar time for the entire
block Wiedemann step was 119 days, finishing on December 8, 2009.

2.5 That’s a Bingo1

As expected the matrix step resulted in 512 = 64 · 8 linear dependencies mod-
ulo 2 among the exponent vectors, more than enough to include the quadratic
characters at this stage [1]. This reduced the solution space to 460 elements,
giving us that many independent chances of about 1

2 to factor RSA-768. In
the 52 = 512 − 460 difference, a dimension of 46 can be attributed to prime
ideals not included in the matrix that divide the leading coefficients or the
discriminant.

The square roots of the algebraic numbers were calculated by means of the
method from [23] (see also [29]), which uses the known factorization of the al-
gebraic numbers into small prime ideals of known norms. The implementation
based on [3] turned out to have a bug when computing the valuations for the
free relations of the prime ideals lying above the divisor 17 722 398 737 > 232

of the discriminant of f1. Along with a bug in the quadratic character calcu-
lation, this delayed completion of the square root step by a few (harrowing)
days.

Once the bugs were located and fixed, it took two hours using the hard disk
and one core on each of twelve dual hex-core 2.2GHz AMD processors to compute
the exponents of all prime ideals for eight solutions simultaneously. Computing
a square root using the implementation from [3] took one hour and forty minutes
on such a dual hex-core processor. The first one (and four of the other seven)
led to the factorization p · q, found at 20:16 GMT on December 12, 2009:

1 “Is that the way you say it? “That’s a bingo?” ”
“You just say “bingo”.” [37]

Factorization of a 768-Bit RSA Modulus 343

p = 3347807169895689878604416984821269081770479498371376856891

2431388982883793878002287614711652531743087737814467999489,

q = 3674604366679959042824463379962795263227915816434308764267

6032283815739666511279233373417143396810270092798736308917,

where p and q are 384-bit, 116-digit primes. With “pk” a k-digit prime, we found:

p− 1 = 28 · 112 · 13 · 7193 · 160378082551 · 7721565388263419219 ·
111103163449484882484711393053 · p47,

p + 1 = 2 · 3 · 5 · 31932122749553372262005491861630345183416467 · p71,

q − 1 = 22 · 359 · p113, q + 1 = 2 · 3 · 23 · 41 · 47 · 239875144072757917901 · p90.

3 Concluding Remarks

It is customary to conclude a paper reporting a new factoring record with a
preview of coming attractions. Our main conclusion was summarized in the
introduction and was already announced in [2, Section 7]: at this point factoring
a 1024-bit RSA modulus looks more than five times easier than a 768-bit RSA
modulus looked back in 1999, when we achieved the first public factorization of
a 512-bit RSA modulus. Nevertheless, a 1024-bit RSA modulus is still about a
thousand times harder to factor than a 768-bit one. It may be possible to factor
a 1024-bit RSA modulus within the next decade by means of an academic effort
on the same scale as the effort presented here. Recent standards recommend
phasing out such moduli by the end of the year 2010 [28]. See also [21].

Another conclusion from our work is that we can confidently say that if we
restrict ourselves to an open community, academic effort such as ours and unless
something dramatic happens in factoring, we will not be able to factor a 1024-bit
RSA modulus within the next five years [27]. After that, all bets are off.

The ratio between sieving and matrix time was almost 10. This is probably
not optimal if one wants to minimize the overall runtime. But the latter may not
be the most important criterion. Sieving is easy, and doing more of it may be a
good investment if that leads to an easier matrix step. The relations collected
for RSA-768 will give us a better insight in the trade-off between sieving and
matrix efforts, where also the choice of the large prime bound b� may play a role.
This is a subject for further study that may be expected to lead, ultimately, to
a recommendation for close to optimal parameter choices – depending on what
one wants to optimize – for NFS factorizations in the 700- to 800-bit range.

Our computation required more than 1020 operations. With the equivalent
of almost 2000 years of computing on a single core 2.2GHz AMD Opteron, on
the order of 267 instructions were carried out. The overall effort is sufficiently
low that even for short-term protection of data of little value, 768-bit RSA
moduli can no longer be recommended. This conclusion is the opposite of the
one on [36], which is based on a hypothetical factoring effort of six months on
100 000 workstations, i.e., about two orders of magnitude more than we spent.

344 T. Kleinjung et al.

Acknowledgements. This work was supported by the Swiss National Science
Foundation under grant numbers 200021-119776 and 206021-128727 and by the
Netherlands Organization for Scientific Research (NWO) as project 617.023.613.
Experiments presented in this paper were carried out using the Grid’5000 ex-
perimental testbed, being developed under the INRIA ALADDIN development
action with support from CNRS, RENATER and several universities as well
as other funding bodies (see https://www.grid5000.fr). Condor middleware
was used on EPFL’s Greedy network. We acknowledge the help of Cyril Bou-
vier during filtering and merging experiments. We gratefully acknowledge sieving
contributions by BSI, Scott Contini (using resources provided by AC3, the Aus-
tralian Centre for Advanced Computing and Communications), Paul Leyland
(using teaching lab machines at the Genetics Department of Cambridge Univer-
sity), and Heinz Stockinger (using EGEE, Enabling Grids for E-sciencE). Parts
of this paper were inspired by Col. Hans Landa.

References

1. Adleman, L.M.: Factoring numbers using singular integers. In: STOC, pp. 64–71.
ACM, New York (1991)

2. Aoki, K., Franke, J., Kleinjung, T., Lenstra, A.K., Osvik, D.A.: A kilobit special
number field sieve factorization. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 1–12. Springer, Heidelberg (2007)

3. Bahr, F.: Liniensieben und Quadratwurzelberechnung für das Zahlkörpersieb,
Diplomarbeit, University of Bonn (2005)

4. Bahr, F., Böhm, M., Franke, J., Kleinjung, T.: Factorization of RSA-200 (May
2005), http://www.loria.fr/~zimmerma/records/rsa200

5. Buhler, J., Montgomery, P., Robson, R., Ruby, R.: Implementing the number field
sieve. Technical report, Oregon State University (1994)

6. Cavallar, S.: Strategies in filtering in the number field sieve. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 209–232. Springer, Heidelberg (2000)

7. Cavallar, S., Dodson, B., Lenstra, A.K., Lioen, W.M., Montgomery, P.L., Mur-
phy, B., te Riele, H.J.J., Aardal, K., Gilchrist, J., Guillerm, G., Leyland, P.C.,
Marchand, J., Morain, F., Muffett, A., Putnam, C., Putnam, C., Zimmermann, P.:
Factorization of a 512-bit RSA modulus. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 1–18. Springer, Heidelberg (2000)

8. Coppersmith, D.: Solving linear equations over GF(2): block Lanczos algorithm.
Linear Algebra and its Applications 192, 33–60 (1993)

9. Coppersmith, D.: Solving homogeneous linear equations over GF(2) via block
Wiedemann algorithm. Math. Comput. 62(205), 333–350 (1994)

10. Cowie, J., Dodson, B., Elkenbracht-Huizing, R.M., Lenstra, A.K., Montgomery,
P.L., Zayer, J.: A world wide number field sieve factoring record: On to 512 bits.
In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp.
382–394. Springer, Heidelberg (1996)

11. Dixon, J.D.: Asymptotically fast factorization of integers. Math. Comp. 36, 255–
260 (1981)

12. Franke, J., Kleinjung, T.: Continued fractions and lattice sieving. In: Work-
shop record of SHARCS (2005), http://www.ruhr-uni-bochum.de/itsc/tanja/
SHARCS/talks/FrankeKleinjung.pdf

http://www.loria.fr/~zimmerma/records/rsa200
http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/talks/FrankeKleinjung.pdf
http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/talks/FrankeKleinjung.pdf

Factorization of a 768-Bit RSA Modulus 345

13. Golliver, R.A., Lenstra, A.K., McCurley, K.S.: Lattice sieving and trial division.
In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 18–27.
Springer, Heidelberg (1994)

14. Kleinjung, T.: Cofactorisation strategies for the number field sieve and an estimate
for the sieving step for factoring 1024 bit integers. In: Workshop record of SHARCS
(2005), http://www.hyperelliptic.org/tanja/SHARCS/talks06/thorsten.pdf

15. Kleinjung, T.: On polynomial selection for the general number field sieve. Math.
Comp. 75, 2037–2047 (2006)

16. Kleinjung, T.: Polynomial selection. Presented at the CADO Workshop on Integer
Factorization (2008),
http://cado.gforge.inria.fr/workshop/slides/kleinjung.pdf

17. Lenstra, A.K.: Computational methods in public key cryptology. In: Coding the-
ory and cryptology. Lecture Notes Series, pp. 175–238. Institute for Mathematical
Sciences, National University of Singapore (2002)

18. Lenstra, A.K., Lenstra Jr., H.W.: Algorithms in number theory. In: Handbook of
Theoretical Computer Science, Volume A: Algorithms and Complexity, pp. 673–
716. Elsevier, Amsterdam (1990)

19. Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve.
LNM, vol. 1554. Springer, Heidelberg (1993)

20. Lenstra, A.K., Lenstra Jr., H.W., Manasse, M.S., Pollard, J.M.: The factorization
of the ninth Fermat number. Math. of Comp. 61(203), 319–349 (1993)

21. Lenstra, A.K., Tromer, E., Shamir, A., Kortsmit, W., Dodson, B., Hughes, J.,
Leyland, P.C.: Factoring estimates for a 1024-bit RSA modulus. In: Laih, C.-S.
(ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 55–74. Springer, Heidelberg (2003)

22. Massey, J.: Shift-register synthesis and BCH decoding. IEEE Trans Information
Theory 15, 122–127 (1969)

23. Montgomery, P.: Square roots of products of algebraic numbers,
http://ftp.cwi.nl/pub/pmontgom/sqrt.ps.gz

24. Montgomery, P., Murphy, B.: Improved polynomial selection for the number field
sieve. Technical report, the Fields institute, Toronto, Ontario, Canada (June 1999)

25. Morrison, M.A., Brillhart, J.: A method of factoring and the factorization of F7.
Math. of Comp. 29(129), 183–205 (1975)

26. Murphy, B.: Modelling the yield of number field sieve polynominals. In: Buhler,
J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 137–150. Springer, Heidelberg (1998)

27. National Institute of Standards and Technology. Discussion paper: the transition-
ing of cryptographic algorithms and key sizes,
http://csrc.nist.gov/groups/ST/key_mgmt/documents/
Transitioning_CryptoAlgos_070209.pdf

28. National Institute of Standards and Technology. Special publication 800-57:
Recommendation for key management part 1: General (revised),
http://csrc.nist.gov/publications/nistpubs/800-57/
sp800-57-Part1-revised2_Mar08-2007.pdf

29. Nguyen, P.Q.: A Montgomery-like square root for the number field sieve. In: Buhler,
J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 151–168. Springer, Heidelberg (1998)

30. Pollard, J.M.: The lattice sieve. In: [19], pp. 43–49
31. Pomerance, C.: Analysis and comparison of some integer factoring algorithms. In:

Lenstra Jr., H.W., Tijdeman, R. (eds.) Computational Methods in Number Theory,
Math. Centrum Tract, Amsterdam, vol. 154, pp. 89–139 (1982)

32. Pomerance, C.: The quadratic sieve factoring algorithm. In: Beth, T., Cot, N.,
Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 169–182. Springer,
Heidelberg (1985)

http://www.hyperelliptic.org/tanja/SHARCS/talks06/thorsten.pdf
http://cado.gforge.inria.fr/workshop/slides/kleinjung.pdf
http://ftp.cwi.nl/pub/pmontgom/sqrt.ps.gz
http://csrc.nist.gov/groups/ST/key_mgmt/documents/Transitioning_CryptoAlgos_070209.pdf
http://csrc.nist.gov/groups/ST/key_mgmt/documents/Transitioning_CryptoAlgos_070209.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf

346 T. Kleinjung et al.

33. Pomerance, C.: A tale of two sieves (1996),
http://www.ams.org/notices/199612/pomerance.pdf

34. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public key cryptosystems. Communications of the ACM 21, 120–126 (1978)

35. RSA the security division of EMC. The RSA challenge numbers. formerly on
http://www.rsa.com/rsalabs/node.asp?id=2093, now on
http://en.wikipedia.org/wiki/RSA_numbers

36. RSA the security division of EMC. The RSA factoring challenge FAQ,
http://www.rsa.com/rsalabs/node.asp?id=2094

37. Tarantino, Q.: That’s a bingo! http://www.youtube.com/watch?v=WtHTc8wIo4Q,
http://www.imdb.com/title/tt0361748/quotes

38. Thomé, E.: Subquadratic computation of vector generating polynomials and im-
provement of the block Wiedemann algorithm. Journal of Symbolic Computa-
tion 33(5), 757–775 (2002)

A Sieving by Vectors

We briefly describe the lattice sieve implementation from [12] which was used
for most NFS factorization records of the last decade.

Let vk(a, b) = bdkfk(a/b). Lattice sieving, introduced by Pollard [30], increases
the smoothness probability of v1(a, b) by looking at (a, b)-pairs for which v1(a, b)
is divisible by a large special prime q. Let s mod q be a residue class such that this
is the case for a ≡ sb mod q. One constructs a reduced basis (u, v) of the lattice
of all (a, b) ∈ Z2 with a ≡ sb mod q. A scalar product adapted to the skewness
of the polynomial pair is used for this reduction. The problem is then to find all
coprime pairs (i, j), −I/2 ≤ i < I/2, 0 < j < J , such that v1(a, b)/q and v2(a, b)
are smooth, with (a, b) = iu + jv. We assume I to be even. As mentioned in
Section 2.3, for practical values of the parameters, I is much smaller than the
smoothness bounds b1 and b2, and it is non-trivial to efficiently sieve such regions.

Pollard proposed to do this by using, for each (prime,root) pair p with prime
p bounded by the relevant smoothness bound bk, a reduced base of the lattice
Γp of pairs (i, j) for which vk(a, b) for the corresponding (a, b)-pair is divisible
by p. In [13] that approach was used for p larger than a small multiple of I,
while avoiding storage of “even, even” sieve locations (and using line sieving for
the other primes). Our approach uses a truncated continued fraction expansion
to determine a basis B =

(
(α, β), (γ, δ)

)
of Γp with the following properties:

a The numbers β and δ are positive.
b We have −I < α ≤ 0 ≤ γ < I and γ − α ≥ I.

Let us assume that Γp consists of all (i, j) for which i ≡ ρj mod p, where 0 <
ρ < p. The case ρ = 0 and the case where Γp consists of all (i, j) for which p
divides j are not treated, because they produce just (0, 1) and (1, 0), respectively,
as only coprime pairs. We also assume p ≥ I, as smaller primes are better
treated by line sieving. To construct a basis with the above properties, one takes
(i0, j0) = (−p, 0), (i1, j1) = (ρ, 1) and puts (i�+1, j�+1) = (i�−1, j�−1) + r(i�, j�)
with r =

⌊− i�−1
i�

⌋
. Note that (−1)�+1i� ≥ 0, that r is positive and that the j� thus

http://www.ams.org/notices/199612/pomerance.pdf
http://www.rsa.com/rsalabs/node.asp?id=2093
http://en.wikipedia.org/wiki/RSA_numbers
http://www.rsa.com/rsalabs/node.asp?id=2094
http://www.youtube.com/watch?v=WtHTc8wIo4Q
http://www.imdb.com/title/tt0361748/quotes

Factorization of a 768-Bit RSA Modulus 347

form an increasing sequence of non-negative numbers. The process is stopped at
the first � with | i� |< I. If � is odd, we put (α, β) = (i�−1, j�−1) + r(i�, j�),
where r is the smallest integer for which α > −I. If � is even, we put (γ, δ) =
(i�−1, j�−1) + r(i�, j�), where r is the smallest integer such that γ < I. In both
cases, the element of B =

(
(α, β), (γ, δ)

)
not yet described is given by (i�, j�).

To explain how to efficiently sieve using a basis with these properties, let
(i, j) ∈ Γp such that −I/2 ≤ i < I/2. We want to find the (uniquely determined)
(i′, j′) ∈ Γp such that −I/2 ≤ i′ < I/2, j′ > j, and j′ is as small as possible. As
B is a basis of Γp, there are integers d and e with

(i′, j′)− (i, j) = d(α, β) + e(γ, δ).

If d · e < 0, then condition b on B would force the first component of the right
hand side to have absolute value ≥ I, whereas our constraints on i and i′ force it
to have absolute value < I. Since j′ − j, β, and δ are all positive, we have d ≥ 0
and e ≥ 0. It is now easy to see that the solution to our problem is:

(d, e) =

⎧⎪⎨⎪⎩
(0, 1) if i < I/2− γ

(1, 1) if I/2− γ ≤ i < −I/2− α

(1, 0) if i ≥ −I/2− α.

The minimality of j′ follows because d = 0 leads to a violation of i′ < I/2 unless
i < I/2−γ (i.e., save for the first of the above cases) and e = 0 leads to i′ < −I/2
unless i ≥ −I/2− α (i.e., save for the third of the above cases).

To implement this process on a modern CPU, it seems best to take I = 2ι

for some natural number ι. It is possible to identify pairs (i, j) of integers with
−I/2 ≤ i < I/2 with integers x by putting x = j ·I+i+I/2. If x′ = j′ ·I+i′+I/2
with (i′, j′) as above, then x′ = x + C, x′ = x + A + C and x′ = x + A in the
three cases above, with A = α+ I · β and C = γ + I · δ. The first component of
a pair (i, j), (α, β) or (γ, δ) is extracted from these numbers by using a bitwise
logical operation, and the selection of the appropriate one of the above three
cases is best done using conditional move instructions.

For cache efficiency, the sieving region Sq was split into areas At, 0 ≤ t <
T , of size equal to the L1-cache size. For primes p larger than that size (or
a small multiple thereof), sieving is not done directly. Instead, the numbers x
corresponding to elements of Sq∩Γp were calculated ahead of the sieving process,
and their offsets into the appropriate region At stored in the corresponding
element of an array S of T stacks. To implement the trial division sieve efficiently,
the corresponding factor base index was also stored. Of course, this approach
may also be used for line sieving, and in fact was used in [3]. A similar approach
has been described by T. Oliveira e Silva in connection with his implementation
of the Odlyzko-Lagarias-Lehmer-Meissel method.

Parallelization is possible in several different ways. A topology for splitting the
sieving region among several nodes connected by a network is described in [12].
If one wants to split the task among several cores sharing their main memory,
it seems best to distribute the regions At and also the large factor base primes
among them. Each core first calculates its part of S, for its assigned part of the

348 T. Kleinjung et al.

large factor base elements, and then uses the information generated by all cores
to treat its share of regions At. A lattice siever parallelized that way was used
for a small part of the RSA-576 sieving tasks, but the code fell out of use and
was not used for the current project. The approach may be more useful today,
with many cores per processor being a standard.

B Unbalanced Sequences in Block Wiedemann

Before describing the modification for unbalanced sequence lengths we give an
overview of Coppersmith’s block version of the Berlekamp-Massey algorithm. To
avoid a too technical description we simplify the presentation of Coppersmith’s
algorithm and refer to [9] for details. The modification was also be applied to
Thomé’s subquadratic algorithm [38]. Below m and n are as in [9], and the terms
“+O(1)” are constants depending on m and n. We assume that m and n, which
play the role of 64 ·m′ and 64 · n′ in Section 2.4, are much smaller than d.

Let M be a d × d matrix over F2, m ≥ n, xk ∈ Fd
2, 1 ≤ k ≤ m and yj ∈ Fd

2,
1 ≤ j ≤ n satisfying certain conditions. Set a(i)

j,k = xT
kM

iyj and

A =
∑
i

(a(i)
j,k)X i ∈Matn,m[X].

In the first step we calculate the coefficients of A up to degree d
m + d

n +O(1).
The goal of the Berlekamp-Massey step is to find polynomials of matrices

F ∈ Matn,n[X], G ∈ Matn,m[X] with deg(F) ≤ d
n + O(1), deg(G) ≤ d

n + O(1)
and

FA ≡ G (mod X
d
m + d

n +O(1)).

Intuitively, we want to produce at least d zero rows in the higher coefficients of
FA up to degree d

m + d
n + O(1). Writing F =

∑dF

i=0(f
(i)
j,k)X i, dF = deg(F) the

jth row of coefficient dF + b of G being zero corresponds to

(M bxh)T vj = 0 for 1 ≤ h ≤ m, 0 ≤ b <
d

m
+O(1) where

vj =
n∑

k=1

dF∑
i=0

f
(dF−i)
j,k ·M iyk.

Coppersmith’s algorithm produces a sequence of matrices (of m + n rows)
Ft ∈Matm+n,n[X] and Gt ∈Matm+n,m[X] for t = t0, . . . ,

d
m + d

n +O(1) (where
t0 = O(1)) such that

FtA ≡ Gt (mod Xt)

and the degrees of Ft and Gt are roughly m
m+n t. In a first step t0 and Ft0 are

chosen such that certain conditions are satisfied, in particular that deg(Ft0) =
O(1) and deg(Gt0) = O(1). To go from t to t + 1 a polynomial of degree 1
of matrices Pt ∈ Matm+n,m+n[X] is constructed and we set Ft+1 = PtFt and
Gt+1 = PtGt. This construction is done as follows. We have FtA ≡ Gt + EtX

t

Factorization of a 768-Bit RSA Modulus 349

(mod Xt+1) for some matrix Et. Respecting a restriction involving the degrees
of the rows of Gt (essentially we avoid destroying previously constructed zero
rows in the G’s) we perform a Gaussian elimination on Et, i.e., we obtain P̃t

such that
P̃tEt =

(
0

1m

)
.

Then we set
Pt =

(
1n 0
0 1mX

)
· P̃t.

In this way the degrees of at most m rows are increased when passing from Gt to
Gt+1 (due to the restriction mentioned above P̃t does not increase the degrees),
so the total number of zero rows in the coefficients is increased by n. Due to the
restriction mentioned above the degrees of the rows of Ft and of Gt grow almost
uniformly, i.e., they grow on average by m

m+n when going from t to t+ 1.
After t = d

m + d
n +O(1) steps the total number of zero rows in the coefficients

of Gt is m+n
m d + O(1) such that we can select m rows that produce at least d

zero rows in the coefficients. These m rows form F and G.
We now consider unbalanced sequence lengths. Let �j be the length of sequence

j, i.e., a(i)
j,k has been computed for all k and 0 ≤ i ≤ �j. Without loss of generality

we can assume �1 ≤ �2 ≤ · · · ≤ �n = �. The sum of the lengths of all sequences
has to satisfy again

∑
j �j ≥ d · (1 + n

m) + O(1). Moreover we can assume that
�1 ≥ d

m , otherwise we could drop sequence 1 completely, thus facilitating our
task. In this setting our goal is to achieve

FA ≡ G (mod X�+O(1))

with dF = deg(F) ≤ �− d
m , deg(G) ≤ �− d

m and

X�−�k | F·,k (this denotes the kth column of F).

The latter condition will compensate our ignorance of some rows of the higher
coefficients of A. Indeed, setting for simplicity dF = �− d

m , the vectors

vj =
n∑

k=1

�k− d
m∑

i=0

f
(dF−i)
j,k ·M iyk

satisfy for 1 ≤ h ≤ m, 0 ≤ b < d
m

(M bxh)T vj =
n∑

k=1

�k− d
m∑

i=0

f
(dF−i)
j,k a

(i+b)
k,h = g

(dF +b)
j,h = 0.

If i+b > �k (thus a(i+b)
k,h not being computed), we have dF−i < dF +b−�k ≤ �−�k,

so f
(dF−i)
j,k = 0 and the sum computes g(dF +b)

j,h .
Our new goal is achieved as before, but we will need � steps and the construc-

tion of Pt has to be modified as follows. In step t we have FtA ≡ Gt + EtX
t

(mod Xt+1). Let a ≤ n be maximal such that

350 T. Kleinjung et al.

a−1∑
i=1

(m+ i)(�n−i+1 − �n−i) ≤ mt

(a will increase during the computation). In the Gaussian elimination of Et we
do not use the first n−a rows for elimination. As a consequence, P̃t has the form

P̃t =
(

1n−a ∗
0 ∗

)
.

Then we set

Pt =

⎛⎝1n−aX 0 0
0 1a 0
0 0 1mX

⎞⎠ · P̃t.

Therefore the sum of the degrees of Ft will be increased by m + n − a and the
number of zero rows in Gt will be increased by a when passing from t to t+ 1.
For a fixed a, (m+a)(�n−a+1−�n−a)

m steps will increase the average degree of the
last m+ a rows from �− �n−a+1 to �− �n−a. At this point a will be increased.

To see why X�−�k | F·,k holds we have to describe the choice of Ft0 (and t0).
Let c be the number of maximal �j , i.e., �n−c < �n−c+1 = �n. Then Ft0 will be
of the form

Ft0 =
(

1n−cX
t0 0

0 ∗
)

.

The last m + c rows will be chosen such that they are of degree at most t0 −
1 and such that the conditions in Coppersmith’s algorithm are satisfied. This
construction will lead to a value of t0 near m

c instead of the lower value near m
n

in the original algorithm.
Let k be such that �k < �. As long as n − a ≥ k the kth column of Ft will

have the only non-zero entry at row k and this will be Xt. Since n−a ≥ k holds
for t ≤ �− �k this column will be divisible by X�−�k for all t ≥ �− �k.

For RSA-768 we used the algorithm as described above in the subquadratic
version of Thomé. The following variant might be useful in certain situations,
e.g., if one of the sequences is much longer than the others.

If �n−1 < �n, then for t < (m+1)(�n−�n−1)
m we have a = 1 and Pt is of the form

Pt =
(

1n−1X ∗
0 ∗

)
.

A product of several of these Pt will have a similar form, namely an (n−1)×(n−1)
unit matrix times a power of X in the upper left corner and zeros below it.

The basic operations in Thomé’s subquadratic version are building a binary
product tree of these Pt and doing truncated multiplications of intermediate
products with Ft0A or similar polynomials. If we split the computation into two
stages, first computing the product of all Pt for t < (m+1)(�n−�n−1)

m and then the
remaining product, the matrix multiplications in the first stage become easier
due to the special form of the Pt and its products.

Obviously this can be done in as many stages as there are different �j-values.

Correcting Errors in RSA Private Keys

Wilko Henecka, Alexander May�, and Alexander Meurer��

Horst Görtz Institute for IT-Security
Ruhr-University Bochum, Germany

Faculty of Mathematics
wilko.henecka@rub.de, alex.may@rub.de, alexander.meurer@rub.de

Abstract. Let pk = (N , e) be an RSA public key with correspond-
ing secret key sk = (p, q , d , dp , dq , q

−1
p). Assume that we obtain partial

error-free information of sk, e.g., assume that we obtain half of the most
significant bits of p. Then there are well-known algorithms to recover the
full secret key. As opposed to these algorithms that allow for correcting
erasures of the key sk, we present for the first time a heuristic proba-
bilistic algorithm that is capable of correcting errors in sk provided that
e is small. That is, on input of a full but error-prone secret key s̃k we
reconstruct the original sk by correcting the faults.

More precisely, consider an error rate of δ ∈ [0, 1
2
), where we flip

each bit in sk with probability δ resulting in an erroneous key s̃k. Our
Las-Vegas type algorithm allows to recover sk from s̃k in expected time
polynomial in log N with success probability close to 1, provided that
δ < 0.237. We also obtain a polynomial time Las-Vegas factorization al-
gorithm for recovering the factorization (p, q) from an erroneous version
with error rate δ < 0.084.

Keywords: RSA, error correction, statistical cryptanalysis.

1 Introduction

RSA is the most widely deployed cryptosystem and has successfully withstood
more than 30 years of cryptanalytic attacks [1]. An RSA modulus N = pq is a
product of two primes and the key-pair e, d ∈ Z

∗
φ(N) satisfies ed = 1 modφ(N).

Although theoretically, it would suffice to use (N , d) as the RSA private key
it is recommended in PKCS#1 standard [10] to use the highly redundant tuple
(N , e, d , p, q, dp , dq , q−1

p) in order to also allow for a fast Chinese Remainder type
decryption process. Here, the last three components of sk are defined as usual
by dp = d mod p − 1, dq = d mod q − 1 and qp = q−1 mod p.

In the present work, we look at error-prone RSA keys, where we assume that
the public information (N , e) is never affected by errors. Thus, we only look
� This research was supported by the German Research Foundation (DFG) as part

of the project MA 2536/3-1 and by the European Commission through the ICT
programme under contract ICT-2007-216676 ECRYPT II.

�� This work was supported by the Ruhr-University Research School funded by Ger-
manys Excellence Initiative [DFG GSC 98/1].

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 351–369, 2010.
c© International Association for Cryptologic Research 2010

352 W. Henecka, A. May, and A. Meurer

at erroneous tuples sk = (p, q, d , dp , dq , q−1
p). Our error-correction algorithm is

motivated by side-channel attacks that are capable of extracting the complete
private key but with some errors [5]. We assume that the errors are uniformly
spread over the whole secret key, i.e., each secret key bit is flipped with some
fixed error probability δ ∈ [0, 1

2). Notice that for δ = 1
2 we obtain a completely

random string that does not provide any information about sk.
Theoretically, our attack framework is modeled by oracle-assisted attacks on

RSA. Oracle-assisted attacks were first introduced by Rivest and Shamir [9] at
Eurocrypt 1985. Rivest and Shamir used an oracle that allowed for querying
bits of p in chosen positions. They showed that given such an oracle 3

5 log p
queries are sufficient to factor N in polynomial time. This was later improved
by Coppersmith [3] to only 1

2 log p queries. In 1992, Maurer [8] showed that
for stronger oracles, which allow for any type of oracle queries with YES/NO
answers, ε log p queries are sufficient for any ε > 0.

In this oracle-based line of research, the goal is to minimize both the power
of the oracle and the number of queries to the oracle. At Crypto 2009, Heninger
and Shacham [6] presented a polynomial time attack on RSA that works when-
ever a 0.27-fraction of the key bits of sk is given, provided that the given bits
are uniformly spread over the whole secret key. So as opposed to the oracle used
by Rivest, Shamir and Coppersmith, the attacker has no control about the po-
sitions in which he receives some of the bits but he knows the positions and on
expectation the erasure intervals between two known bits are never too large.

Notice that all these aforementioned attacks require a limited number of fault-
free information provided by the oracles, mostly in the form of secret key bits.
Since side-channel attacks are practical instantiations of oracles, in most scenar-
ios it is questionable to put a limit on the number of bits that one can obtain.
Why should an attacker stop at some point to extract bits? Why should he not
proceed until he has the full bit information? In a more realistic scenario an
attacker is capable of extracting the full sk bit string but subject to some er-
rors that were caused by the physical measurements of his side-channel attack.
This is the error-prone scenario that we address in our paper. Hence our work
might motivate to look for weaker forms of side-channel attacks that produce
only erroneous data.

Our result and related work. We present the first attack running in expected
polynomial time that recovers a secret key sk from a disturbed secret key s̃k,
where every bit is flipped with a fixed error rate of δ < 0.237. That is, we
allow for error correction of an RSA secret key, provided that the public RSA
exponent is small. We also give results where an attackers obtains an erroneous
version for a subset of the entries of sk = (p, q, d , dp , dq , q−1

p). E.g., we obtain
a polynomial time attack for erroneous versions of (p, q, d) with error rates
δ < 0.160. Moreover, we obtain a polynomial time factorization algorithm that
factors N given a faulty version of (p, q) with error rate δ < 0.084. In this case,
we do not need any restriction on the public exponent e.

Correcting Errors in RSA Private Keys 353

Our work builds on the erasure correction algorithm of Heninger-Shacham [6]
which allows for erasures of the secret key bits of sk with an erasure rate of
δ < 0.73. So as one might expect from coding theory, the correction of errors
seems to be a much harder problem than the correction of erasures.

As our work builds on the Heninger-Shacham algorithm, let us briefly recall
the idea of this construction. Heninger and Shacham recover the parameters
p, q, d , dp , dq bit by bit in a 2-adic fashion by growing a search tree. In their
algorithm, the information from q−1

p is ignored. The nodes in depth k of the
search tree correspond to partial solutions of p mod 2k , q mod 2k , . . . , dq mod 2k .

Since in the erasure correction scenario, one has fragmentary but correct key
material, one can easily prune partial solutions that do not coincide with the
known secret key bits. This process will never discard the correct solution, since
the correct solution will always fully agree with the incomplete key material.
Thus, such an algorithm will always succeed to recover sk.

The only remaining problem is to bound the algorithm’s running time. Intu-
itively, whenever one has sufficiently many key bits to falsify incorrect partial
solutions, one will obtain a bounded number of false partial solutions per itera-
tion and so the total number of nodes in the search tree will stay small. Heninger
and Shacham showed that with high probability the total number of partial so-
lutions is quadratic in log(N) whenever the erasure rate is smaller than 0.73,
i.e., we know at least a 0.27-fraction of the key bits. In order to show this result,
Heninger and Shacham had to make the heuristic assumption that once a key
candidate differs from the correct key, the subsequent candidate key bits are
distributed uniformly at random.

Clearly, the Heninger-Shacham comparison of key candidates with the given
key material cannot naively been transferred to the error correction scenario.
The reason is that a disagreement of a key candidate may originate from an
incorrect key candidate or from faulty bits of the key material. Thus, in our
construction we do no longer compare bit by bit but we compare larger blocks
of bits. More precisely, we grow subtrees of depth t for each key candidate. This
results in 2t new candidates which we all compare with our faulty key material.
If the bit agreement with our key material in these t bits is above some threshold
parameter C we keep the candidate, otherwise we discard it.

Clearly, we obtain a trade-off for the choice t of the depth of our subtrees. On
the one hand, t cannot be chosen too large since in each iteration wae grow our
search tree by at least 2t candidates. Thus, t must be bounded by O(log log N)
in order to guarantee a polynomial size of the search tree.

On the other hand, depending on the error rate t has to be chosen sufficiently
large to guarantee that the correct key candidate has large agreement with our
key material s̃k in each t successive bit positions, such that the correct candidate
will never be discarded during the execution of our algorithm. Moreover, t has to
be large enough such that the distribution corresponding to the correct candidate
and the distribution derived from an incorrect candidate are separable by some
threshold parameter C . If this property does not hold, we obtain too many faulty
candidates for the next iteration.

354 W. Henecka, A. May, and A. Meurer

We show that the above trade-off restrictions can be fulfilled whenever we
have an error rate δ < 0.237− ε for some fixed ε > 0. That is, if we choose t of
size polynomial in log log N and 1

ε , we are able to define a threshold parameter
C such that the following holds.

1. With probability close to 1 the correct key candidate will never be discarded
during the execution of the algorithm.

2. For fixed ε > 0, our algorithm will consider no more than an expected
total number of logO(1) N key candidates. E.g., our algorithm has expected
running time polynomial in the bit-size of N .

We would like to point out that our proper choice of t and C assumes that
we know a good upper bound for the error rate δ. In practical side-channel
attacks where δ might be unknown to an attacker, one can apply an additional
search step which successively increases the value of δ until a solution is found.
Alternatively, we provide a way to compute an equate upper bound for δ during
the initialization phase of the algorithm.

Our algorithm is a probabilistic algorithm of Las Vegas type, i.e., whenever it
outputs a solution the output is the correct secret key sk. Our error correction
algorithm is elementary. The main work that has to be done is to carefully
choose the subtree depth t and the threshold parameter C , such that all trade-
off restrictions hold. We achieve this goal by using a statistical analysis via
Hoeffding bounds. Our analysis relies on a similar heuristic assumption as in [6],
that is, as soon as a key candidate differs from the correct solution its subsequent
bits are distributed uniformly at random.

Furthermore, we would like to stress that analogous to [6], our algorithm
is restricted to the case of small public exponents e – except for the case of
correcting erroneous factorizations (p, q). Small public exponent RSA appears
to be the standard in practical applications [11].

We ran experiments to verify the predictions of our theoretical analysis and to
validate the heuristic assumption. In practice, we achieved to correct error rates
of up to δ = 0.2 for 1024-bit RSA private keys with good success probabilities
in a matter of seconds.

The paper is organized as follows. In Section 3, we briefly review the Heninger-
Shacham algorithm. Section 4 introduces our new block-based threshold algo-
rithm that grows subtrees of depth t . Section 5 is devoted to the theoretical
analysis of the subtree depth t and the choice of the threshold parameter for
pruning nodes that correspond to incorrect candidates. Experimental results are
given in Section 6.

2 Notation and Mathematical Background

For an n-bit string x = (xn−1, . . . , x0) ∈ {0, 1}n let x [i] = xi denote the i-th bit
of x (where x [0] is the least significant bit of x) and let x[i ..j] = (xi , xi−1, . . . , xj)
for i ≥ j . Throughout the paper we denote by ln(n) the natural logarithm of n
to base e and we denote by log(n) the binary logarithm of n to base 2.

Correcting Errors in RSA Private Keys 355

The main technical tool used in our analysis is Hoeffding’s bound [7], which
upper bounds the absolute error of sums of independent random variables from
their mean value.

Theorem 1. Let X1, . . . ,Xn be a sequence of independent Bernoulli trials with
identical success probability Pr[Xi = 1] = p for all i. Define X :=

∑n
i=1 Xi .

Then for every 0 < γ < 1 we have

i) Pr[X ≥ n(p + γ)] ≤ e−2nγ2
,

ii) Pr[X ≤ n(p − γ)] ≤ e−2nγ2
.

A slightly more general version of Hoeffding’s inequality allows for each random
variable Xi an individual expectation E[Xi] as well as a wider range, i.e. Xi ∈
[a, b] for a, b ∈ R. We define E[X] =

∑n
i=1 E[Xi] and the above statement

transforms to

Pr [X >< E[X]± nγ] ≤ e− 2nγ2

(b−a)2 . (1)

3 The Heninger-Shacham Algorithm

Let (N , e) be an RSA public key with corresponding PKCS#1 standard secret
key sk = (p, q, d , dp , dq , q−1

p), where

ed = 1 modφ(N), dp = d mod p − 1, dq = d mod q − 1 and q−1
p = q−1 mod p.

We will ignore the last parameter q−1
p as it is not used in the attack. Let N

be the product of two n
2 -bit primes, i.e., all the secret key parameters except d

can be represented by n
2 bits. The Heninger-Shacham algorithm recovers these

parameters bit by bit starting from the least significant bit until bit n
2 −1, where

the factorization is revealed. Although by a result of Coppersmith [3] an amount
of n

4 bits would suffice for factoring N in polynomial time, going up to bit n
2 − 1

instead does not significantly change the algorithm’s analysis.
It is not hard to see that all parameters p, q, d , dp , dq alone reveal the factor-

ization of N , see [4]. Thus, the secret key is a highly redundant representation
of the prime factorization. This redundancy in turn implies that the following
four RSA identities simultaneously hold

N = pq (2)
ed = 1 + kφ(N) (3)

edp = 1 + kp(p − 1) (4)
edq = 1 + kq(q − 1), (5)

for some parameters k , kp and kq that we are able to compute for small public
exponents e.

We have 0 < k < e d
φ(N) < e, so there are at most e−1 possible candidates for

k . Therefore, we can brute-force search over all candidate values for k . Following

356 W. Henecka, A. May, and A. Meurer

an argument of Boneh, Durfee and Frankel [2], for each candidate value k ′, we
define

d(k ′) =
⌊

1 + k ′(N + 1)
e

⌋
, (6)

which differs for the right choice k ′ = k from d by k(p+q)
e < p + q. Thus, for

the right candidate choice of k the values of d(k) and d agree roughly on half of
their most significant bits.

In the erasure correction scenario, Heninger and Shacham simply compare
each candidate d(k ′) with the given fragmentary version of d in order to deter-
mine k uniquely with overwhelming probability.

We proceed similarly in the error correction szenario. Assume that we obtain
some error-prone secret key

s̃k := (p̃, q̃, d̃ , d̃p , d̃q),

which is derived from sk by flipping each bit individually with some fixed prob-
ability δ ∈ [0, 1

2). Intuitively, if δ is significantly below 1
2 , then among all e − 1

candidates d(k ′), k ′ = 1, . . . , e − 1, the Hamming distance between the upper
half most significant bits of d(k ′) and d̃ should be minimal for the correct choice
k ′ = k . In Appendix A, we show that this is true with overwhelming probability
for the error rates δ that we allow.

This means that we can learn the unknown k in Eq. (3). Moreover, we can
immediately correct almost half of the most significant bits of d . Notice that
this information is not useful in the Heninger-Shacham algorithm as one stops
to recover the secret key bits when reaching bit n

2 − 1. However, we can use this
information to compute a good approximation δ̃ of the error rate δ. Therefore,
we simply compute the normalized Hamming distance of d(k) and d̃ by

δ̃ :=
2
n

n−1∑
i=n/2

d̃ [i]⊕ d(k)[i]. (7)

For n large enough and any fixed tolerance ε > 0, we have δ ≤ δ̃ + ε with
overwhelming probability. That is, in our asymptotic analysis it is reasonable
to assume that the algorithm knows an upper bound of the error rate δ. For
practical values of n, one can easily show that

Pr[δ < δ̃ + ε] ≥ 3
4

where ε = 0.037 for n = 1024, see App. B for more details.
Now that we are able to compute k , Heninger and Shacham show that this

directly allows us to compute candidates for (kp , kq). If e is prime then there
are only two candidate values. In general, for e with m different prime factors
there exist up to 2m candidates. So one has to run 2m copies of the Heninger-
Shacham algorithm in parallel. Since m = O(log e) and since we consider small

Correcting Errors in RSA Private Keys 357

public exponent RSA only, this factor can be neglected. We denote this whole
precomputation process by (k , kp , kq)← Init(N , e).

Now let us start to reconstruct a secret key in a bitwise manner. Since p, q are
odd primes, we have p[0] = q[0] = 1 and 2|p−1 as well as 2|q−1. Let τ(x) denote
the largest exponent such that 2τ(x) divides x , i.e. τ(x) := max{k ∈ N : 2k |x}.
From Eq. (4), we obtain

edp = 1 mod21+τ(kp).

Thus, we can immediately correct the least 1 + τ(kp) bits of dp from the knowl-
edge of e and kp . Analogously, we can compute from Eq. (5) the 1 + τ(kq) least
significant bits of dq and from Eq. (3) the 2 + τ(k) least significant bits of d .

Moreover, if we fix all bits p[i − 1..0] then changing bit p[i] will change bit
dp [i + τ(kp)]. For odd kp this means that changing the i-th bit on the right hand
side of Eq. (4) changes the corresponding i-th bit on the left hand side. Shifting
by τ(kp) on the right-hand side translates the change to position i + τ(kp) on
the left hand side.

Thus, Heninger and Shacham define for each bit index i a so-called i-th bit
slices, which we denote by

Slice(i) := (p[i], q[i], d [i + τ(k)], dp [i + τ(kp)], dq [i + τ(kq)]).

Let Slice(0)← Mount(e, k , kp , kq) be the computation of the initial first bit slice
consisting of the steps described above, i.e., we set

Slice(0)← (1, 1, d [τ(k)], dp [τ(kp)], dq [τ(kq)]),

where the last three entries can be easily computed once k , kp and kq are known.
The running time of Mount(·) can be neglected in our small public exponent
RSA scenario.

Lifting solutions. Assume that we have computed a partial solution sk′ =
(p′, q ′, d ′, d ′

p , d
′
q) up to Slice(i − 1). We would like to proceed by calculating

all candidate solutions (p, q, d , dp , dq) for the subsequent Slice(i). Heninger and
Shacham show that by applying a multivariate version of Hensel’s Lemma to
Eq. (2)-(5) one obtains the following identities

p[i] + q [i] = (N − p′q ′)[i] mod 2 (8)

d [i + τ (k)] + p[i] + q [i] = (k(N + 1) + 1− k(p′ + q ′)− ed ′)[i + τ (k)]mod 2 (9)

dp [i + τ (kp)] + p[i] = (kp(p′ − 1) + 1− ed ′
p)[i + τ (kp)]mod 2 (10)

dq [i + τ (kq)] + q [i] = (kq(q ′ − 1) + 1− ed ′
q)[i + τ (kq)]mod 2. (11)

This means we have four linearly independent equations in the five unknowns
p[i], q[i], d [i +τ(k)], dp [i +τ(kp)], dq [i +τ(kq)] of Slice(i). Therefore, each Hensel
lift yields exactly two candidate solutions. We denote this lifting process by
Expand(p′, q ′, d ′, d ′

p , d
′
q).

In the erasure correction scenario, Heninger and Shacham use their knowledge
of the correct secret key bits to prune incorrect candidates produced by the

358 W. Henecka, A. May, and A. Meurer

lifting process. The analysis in [6] mainly shows that the number of candidates
is sufficiently upper bounded as long as enough secret key bits are available.

Notice that in our error correction scenario, such a simple pruning is not
possible, since a disagreement of Slice(i) with the corresponding bits of s̃k might
be due to errors in our faulty secret key.

4 Blockwise Threshold-Based Vector Correction

4.1 Generic Description

In this section, we present our new algorithm for error correction. We would
like to point out that our construction is a generic, elementary algorithm for
reconstructing arbitrary unknown tuples of bit vectors x given only a corrupted
version x̃ and some public information on x, which does not directly allow for
extracting x. For example, x may be the prime factorization of some public N .

In coding theory language, our construction resembles a maximum likelihood
approach. In each iteration, we keep those vectors that are locally closest to x̃
in the Hamming distance. Hopefully, we are also able to discard many incorrect
partial solutions due to our public information.

Let x = (x1, . . . ,xm). In a nutshell, our algorithm tries to reconstruct x iter-
atively by calculating a block of t bits of each of x1, . . . ,xm in each iteration.
The algorithm proceeds in four phases, where the second and third phase are
iterated until the candidates have the same bitlength as x.

Initialization phase: Use the public information to compute some initial par-
tial solution to x. This initialization is optional and may result in the empty
string as the only partial solution.

Expansion phase: Each partial solution is lifted for the next t most significant
bits, i.e., we compute the next t bits of each of x1, . . . ,xm. Per partial solution
this will result in up to 2mt new partial solutions. By using our public informa-
tion, we may hope to obtain considerably less than 2mt candidates.

Pruning phase: For every new partial solution we count the number of matches
of the mt expanded bits with the corresponding bits of x̃. If this number is below
some threshold parameter C then we discard the partial solution.

Finalization phase: We test with the help of our public information whether
one of our candidate solutions is indeed equal to the desired x.

Obviously, the choice of the blocksize t is crucial for our algorithm. Since the
number of partial solutions in the expansion phase grows exponentially in t , we
cannot allow for large parameters t . On the other hand, we cannot choose t too
small, because we have to make sure that during the pruning phase the following
two properties hold.

Correcting Errors in RSA Private Keys 359

– The correct partial solution – the one that can be expanded to the desired
x – is pruned only with small probability.

– Sufficiently many incorrect solutions are pruned such that the total number
of candidates can be minimized.

4.2 Error Correction for RSA Keys

Let us now specialize the generic description from the previous section to our
RSA error correction scenario. We want to compute some unknown RSA secret
key sk = (p, q, d , dp , dq) from an erroneous version s̃k = (p̃, q̃ , d̃ , d̃p d̃q) with the
help of the public key (N , e). For describing our algorithm, we use the notion
introduced in Sect. 3.

Algorithm Error-Correction

INPUT: (N , e), erroneus s̃k = (p̃, q̃, d̃ , d̃p , d̃q) with error rate δ

Initialization phase:
• (k , kp , kq)← Init(N , e)
• Slice(0)← Mount(e, k , kp , kq)

For i = 1 to
⌈

n/2−1
t

⌉
Expansion phase: For every candidate (p′, q ′, d ′, d ′

p , d
′
q)

with slices 0 . . . (i−1)t expand the candidate t times with the
Expand(·) procedure of Heninger-Shacham. This results in
2t new candidates which differ in the slices (i−1)t +1, . . . , it .

Pruning phase: For every new candidate (p′, q ′, d ′, d ′
p , d

′
q)

count the number of bits in the expanded slices
(i − 1)t + 1, . . . , it that agree with the corresponding
bits of s̃k. If this number is below some threshold parameter
C , discard the solution.

Finalization phase: For every candidate sk′ = (p′, q ′, d ′, d ′
p , d

′
q)

check all RSA identities (2)–(5). If all equations hold, output sk′.

OUTPUT: sk = (p, q, d , dp , dq)

Notice that during the Expansion phase for every partial solution we only
obtain 2t new candidates for the 5t new bits instead of the naive 25t candi-
dates. This is due to the clever usage of our public information in the Expand(·)
procedure of Heninger and Shacham.

In the subsequent section, we will analyze the probability that our algorithm
succeeds in computing the secret key sk. We will show that a choice of t = θ(lnn

ε2)
will be sufficient for error rates δ < 0.237− ε. The threshold parameter C will be
chosen such that the correct partial solution will survive each pruning phase with

360 W. Henecka, A. May, and A. Meurer

probability close to 1 and such that we expect that the number of candidates
per iteration is bounded by 2t+1. For every fixed ε > 0, this leads to an expected
running time that is polynomial in n.

5 Choice of Parameters and Success / Runtime Analysis

We now give a detailed analysis for algorithm Error-Correction from the
previous section. Afterwards, we show that this analysis easily generalizes to
settings where an attacker obtains instead of a faulty version of all five parame-
ters in sk only faulty versions of e.g. (p, q, d) or (p, q).

5.1 Full Analysis for the RSA Case

Remember that in algorithm Error-Correction, we count the number of
matching bits between 5t -bit blocks of s̃k and every partial candidate solution.
Let us define a random variable Xc for the number of matching bits between s̃k
and a correct partial solution.

The distribution of Xc is clearly the binomial distribution with parameters 5t
and probability (1− δ), denoted by Xc ∼ Bin(5t , 1− δ). That is, we have

Pr[Xc = γ] =
(

5t
γ

)
(1 − δ)γδ5t−γ (12)

for γ = 0, . . . , 5t . The expected number of matches is thus E[Xc] = 5t(1− δ).
Assume that we expand some incorrect partial solution (p′, q ′, d ′, d ′

p , d
′
q) by 5t

bits to 2t new candidates. We let the random variable Xb represent the number
of matching bits of s̃k with the expanded 5t bits of these bad candidates.

In order to analyze the distribution of Xb , we make use of the following heuris-
tic assumption which follows directly from the heuristic assumption of Heninger-
Shacham [6] when applied to t -bit blocks.

Heuristic 2. Every solution generated by applying the expansion phase to an
incorrect partial solution is an ensemble of t randomly chosen bit slices.

That is under Heuristic 2, every expansion of an incorrect candidate in Error-

Correction results in an additional 5t uniformly random bits.
Heninger and Shacham verified the validity of this heuristic experimentally.

Under Heuristic 2 we see that

Pr[Xb = γ] =
(

5t
γ

)
2−5t . (13)

Now, we basically have to choose our threshold C such that the two distributions
are sufficiently separated.

The remainder of this section is devoted to proof our main result.

Correcting Errors in RSA Private Keys 361

Main Theorem 3. Under Heuristic 2 for every fixed ε > 0 the following holds.
Let (N , e) be an RSA public key with n-bit N and fixed e. We choose

t =
⌈

ln(n)
10ε2

⌉
, γ0 =

√
(1 + 1

t) · ln(2)
10 and C = 5t(1

2 + γ0).

Further, let s̃k = (p̃, q̃ , d̃ , d̃p , d̃q) be an RSA secret key with noise rate

δ ≤ 1
2
− γ0 − ε.

Then algorithm Error-Correction corrects s̃k in expected time O
(
n2+ ln(2)

5ε2

)
with success probability at least 1−

(
5ε2

ln(n) + 1
n

)
.

Remark. Notice that for sufficiently large n, t converges to infinity and thus γ0

converges to
√

ln(2)
10 ≈ 0.263. This means that Error-Correction asymptot-

ically allows for error rates 1
2 − γ0 − ε ≈ 0.237− ε and succeeds with probability

close to 1.

Proof. The proof of our main theorem is organized as follows. First, we upper
bound the expected number of bad solutions that arise in each iteration of the
algorithm. Second, we show that our correct solution survives all pruning steps
with probability close to 1. Third, we upper bound the total number of partial
solutions that arise during the execution of Error-Correction and conclude
that Error-Correction runs in polynomial time.

Let the random variables Yi represent the number of incorrect partial solu-
tions that pass the threshold comparison in the pruning phase of the i-th itera-
tion of Error-Correction. Further, let the random variable Y =

∑τ(n)
i=1 Yi de-

note the total number of incorrect solutions examined by Error-Correction,
where τ(n) :=

⌈
n/2−1

t

⌉
denotes the total number of iterations.

Lemma 4. The expected number of bad candidates that pass the i-th round’s
pruning phase is upper bounded by E[Yi] < 2t+1.

Proof. Define two random variables Zg and Zb as follows: Zg denotes the number
of bad candidates arising from the unique correct solution, Zb counts the number
of bad candidates generated from a single bad partial solution. It is not hard to
see that

E[Y1] = E[Zg] and E[Y2] = E[Zg] + E[Zb] · E[Y1] = E[Zg] · (1 + E[Zb]).

More generally, we obtain

E[Yi] = E[Zg] + E[Zb] · E[Yi−1] = E[Zg] + E[Zb] · (E[Zg] + E[Zb] · E[Yi−2)]

= . . . = E[Zg]
i−1∑
k=0

E[Zb]k = E[Zg]
1− E[Zb]i

1− E[Zb]
.

362 W. Henecka, A. May, and A. Meurer

Now, we aim at upper bounding E[Zb] < 1 in order to upper bound

E[Yi] = E[Zg]
1− E[Zb]i

1− E[Zb]
<

E[Zg]
1− E[Zb]

. (14)

Therefore, we define 2t random variables Z i
b for i = 1, . . . , 2t such that

Z i
b =

{
1 i-th bad candidate passes
0 otherwise

.

Write Zb =
∑2t

i=1 Z i
b . Since all the Z i

b are identically distributed, we simplify this
to E[Zb] = 2t E[Z i

b] and upper bound E[Z i
b] for some fixed i . Note, that Z i

b = 1
iff at least C bits match, i.e.,

E[Z i
b] = Pr[Z i

b = 1] = Pr[Xb ≥ C],

where Xb ∼ Bin(5t , 1
2) is defined as in (13). Applying Hoeffding’s bound (Theo-

rem 1) directly yields

Pr[Xb ≥ C] = Pr
[
Xb ≥ 5t

(
1
2

+ γ0

)]
≤ exp(−10tγ2

0) = 2−(1+ 1
t)t ≤ 2−(t+1).

This implies E[Zb] ≤ 1
2 < 1 and we can simplify equation (14) to

E[Yi] <
E[Zg]

1− E[Zb]
< 2t+1,

since we clearly have E[Zg] ≤ 2t − 1. �

Lemma 5. Error-Correction succeeds with probability at least 1−

(
5ε2

ln(n) + 1
n

)
.

Proof. The probability of pruning the correct solution at one single round is
given by Pr[Xc < C], where Xc ∼ Bin(5t , 1 − δ) as defined in (12). Using
1
2 + γ0 ≤ 1− δ − ε and applying Hoeffding’s bound (Theorem 1) yields

Pr[Xc < C] = Pr
[
Xc < 5t

(
1
2

+ γ0

)]
≤ Pr [Xc < 5t(1− δ − ε)]

≤ exp(−10tε2) ≤ 1
n

.

Since algorithm Error-Correction runs τ(n) ≤ n
2t + 1 rounds, the total

success probability is given by

Pr[success] = (1−Pr[Xc < C])τ(n) ≥
(

1− 1
n

)τ(n)

≥ 1− τ(n)
n

≥ 1−
(

1
2t

+
1
n

)
= 1−

(
5ε2

ln(n)
+

1
n

)
.

�

Correcting Errors in RSA Private Keys 363

Lemma 6. Error-Correction runs in expected time O
(
n2+ ln(2)

5ε2

)
.

Proof. The total expected runtime T of Error-Correction is given by

T = TInit +O(e) · (TMount + Tmain)

where TInit, TMount and Tmain represent the runtime of the procedures Init, Mount
and the main loop of Error-Correction, respectively. Recall that a factor of
O(e) arises from the fact that Init(·) possibly outputs up to e candidate tuples
(k , kp , kq). Since we assume e to be fixed, we can neglect TInit as well as TMount

and obtain T = O(Tmain).
In order to upper bound Tmain, we upper bound the runtime needed by the

expansion and pruning phase for one single partial solution:

– During the expanding phase, each partial solution implies the computation
of
∑t−1

i=0 2i < 2t equation systems given by the equations (8)-(11). The right
hand sides of equations (8)-(11) can be computed in time O(n) – when
storing the results of the previous iteration. This yields a total computation
time of O(n2t) for the expanding phase.

– The pruning phase can be realized in time O(t) for each of the fresh 2t

partial solutions, summing up to O(t2t).

We can upper bound t ≤ n, which results in an overall runtime ofO((n+t)·2t) =
O(n2t) per candidate.

An application of Lemma 4 yields an upper bound for the expected total
number of partial solutions examined during the whole execution which is given
by

E[Y] =
τ(n)∑
i=1

E[Yi] < τ(n) · 2t+1 ≤
(n

2t
+ 1
)
· 2t+1 = O (n2t

)
.

Putting both together finally yields

Tmain = O (n2t · n2t
)

= O (n222t) = O
(
n2+ ln(2)

5ε2

)
.

�

Combining Lemma 5 and 6 proves the Main Theorem. �

Although theoretically Lemma 6 gives us a polynomial running time for every
fixed ε > 0, our running time heavily depends on the parameter t and thus on
ε. So one might expect that in practice one cannot achieve error rates close to
the theoretical bound δ < 0.237 since the running time already explodes for
moderately small error terms ε.

However, we give in Appendix C a more refined analysis of the parameter t
for moderately small ε. This analysis shows that our choice of t in Theorem 3 is
quite conservative, since we insist on a success probability of Error Correc-

tion close to 1. We obtain more flexibility if we also allow for smaller success
rates. This in turn leads to a smaller choice of t , which allows to easily correct
error rates up to δ = 0.2 in practice. We will use this refined analysis in the
experimental section (Section 6).

364 W. Henecka, A. May, and A. Meurer

5.2 Generalization

We now formulate a slightly generalized version of our Main Theorem 3. There-
fore, we parametrize algorithm Error-Correction such that it allows for a
secret key with m components like in the generic description in Sect. 4.1.

So our RSA secret key sk = (p, q, d , dp , dq) resembles the parameter choice
m = 5. We can apply the same analysis as in Section 5.1. The distributions of
Xc and Xb are now given by Xc ∼ Bin(mt , 1− δ) and Xb ∼ Bin(mt , 1

2).

Main Theorem 7. Under Heuristic 2 for every fixed ε > 0 the following holds.
Let (N , e) be an RSA public key with n-bit N and fixed e. We choose

t =
⌈

ln(n)
2mε2

⌉
, γ0 =

√
(1 + 1

t) · ln(2)
2m and C = mt(1

2 + γ0).

Further, let s̃k = (s̃k1, . . . , s̃km) be a generic RSA secret key with noise rate

δ ≤ 1
2
− γ0 − ε.

Then algorithm Error-Correction corrects s̃k in expected time O
(
n2+ ln(2)

mε2

)
with success probability at least 1−

(
mε2

ln(n) + 1
n

)
.

As a consequence we obtain various results for scenarios where an attacker ob-
tains an erroneous subset of the parameters in sk = (p, q, d , dp , dq). The resulting
upper bounds for the error rates δ = 1

2 − γ0 are summarized in the following
table. In the column “Equations” we indicate which of the Eqs. (8)-(11) are used.

Table 1. Parameters for varied RSA scenarios

sk m Equations δ

(p, q) 2 (8) 0.084
(p, q , d) 3 (8),(9) 0.160
(p, q , d , dp) 4 (8)-(10) 0.206
(p, q , d , dq) 4 (8),(9),(11) 0.206
(p, q , d , dp , dq) 5 (8)-(11) 0.237

The case sk = (p, q, dp) can also be handled by our algorithm by using
Eqs. (8),(10) with parameter m = 3. The only problem is that we cannot derive
k and therefore compute kp as described in Sect. 3, since we do not have infor-
mation of d . Instead, we simply run e − 1 copies of the algorithm in parallel for
each possible choice of 1 ≤ k < e.

6 Implementation and Experiments

We implemented our algorithm in Java and tested it on an Intel Xeon Quad-
Core processor at 2.66 GHz with 8 GB of DDR2 SDRAM at 800 MHz. In all

Correcting Errors in RSA Private Keys 365

experiments we set the public exponent to e = 216 + 1. For the case sk =
(p, q, d , dp , dq) we ran a large number of experiments for a key size of 1024 bit
and error rates δ ∈ [0.05, 0.2]. We also carried out experiments for the scenarios
sk = (p, q) and sk = (p, q, d) where we made experiments for different error rates
up to the upper bounds presented in Table 1.

In each repetition, the RSA secret key was independently and randomly dis-
turbed with error rate δ. For simplicity, we omitted the mounting phase, i.e.,
the calculation of k as well as kq and kp . Thereby, we avoided to choose the
wrong assignment for kq and kp . Instead we just used the correct values for
these parameters.

The choice of our tree depth t roughly followed the refined analysis in Ap-
pendix C, where we made some manual adjustments for very small error rates
and for δ ≥ 0.18. The threshold parameter C was chosen as recommended in
Theorem 3 with some rounding. All manual adjustments were made in order
to obtain comparability of our experiments, i.e., we slightly tuned to achieve
success probabilities in an interval between 20% and 50%. We point out that
for small error rates it is easy to achieve much better success probabilities by a
small increase of the parameter t .

For each experiment we generated 100 different RSA secret keys and disturbed
each of these keys with 100 different error vectors resulting in a total sample size
of 10.000 runs per error rate δ.

The tables below summarize our results. We computed the success probability
by calculating the term Pr[Xc < C] as defined in Eq. (12) exactly for the given
parameters (row “Pr theoretical”). The experimental results perfectly match the
exact calculations. In the last row, we give the average running time of algorithm
Error-Correction in order to reconstruct a single key successfully.

Table 2. Experimental results for n = 1024 and sk = (p, q , d , dp , dq)

δ 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

t 3 4 5 6 7 9 9 10 10 11 12 12 13 16 16 20
C 12 16 20 24 28 36 36 39 39 42 46 45 48 59 59 74

Pr theoretical 0.39 0.48 0.51 0.49 0.44 0.50 0.27 0.49 0.28 0.44 0.28 0.35 0.43 0.47 0.26 0.23
experimental 0.40 0.48 0.52 0.50 0.45 0.51 0.27 0.50 0.28 0.45 0.28 0.35 0.44 0.50 0.24 0.21

time < 1s . . . < 1s 3.7s 23s 25s 3m

For error rates δ ≤ 0.15 we can easily achieve better success probabilities
by using a slightly larger t , e.g., for δ = 0.15 we experimentally achieved
Pr[success] ≈ 82% with a modified choice t = 15 and C = 56.

For each run, we also recorded the total number of partial solutions examined
by Error-Correction. The following boxplot diagram represents the statistics
of the total number of candidates. The thick horizontal line marks the median,
the gray boxes describe the region bounded by the lower quartile Q1 and the
upper quartile Q3, i.e., half of the candidate numbers fall in this intervall. The
dashed lines mark the sample minimum and maximum, respectively.

366 W. Henecka, A. May, and A. Meurer

δ

Y

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

Fig. 1. Box plot diagram for 1024 bit key size and sk = (p, q , d , dp , dq)

Table 3. Experimental results for n = 1024 and sk = (p, q , d)

δ 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

t 3 5 7 9 11 13 16 20 26 29
C 7 12 17 22 27 32 39 49 64 71

Pr theoretical 0.24 0.34 0.38 0.36 0.30 0.23 0.33 0.26 0.21 0.17
experimental 0.24 0.34 0.38 0.36 0.30 0.25 0.34 0.24 0.21 0.15

time < 1s . . . < 1s 1.7s 4.1s 32.2s 3m

Table 4. Experimental results for n = 1024 and sk = (p, q)

δ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

t 4 7 7 11 15 20 24 28
C 7 12 12 19 26 35 42 49

Pr theoretical 0.70 0.83 0.56 0.61 0.58 0.45 0.34 0.24
experimental 0.71 0.84 0.57 0.62 0.58 0.47 0.35 0.22

time < 1s . . . < 1s 2s 12.7s

In our experiments for error rates δ ≤ 0.15, we always examined around
300 candidates on the average and the maximum number of candidates never
exceeded 1000 candidates. We omit the box plot for error rates δ ≥ 0.18 since
the number of candidates increases rapidly beyond this bound. This is where
the exponential dependence of our running time O

(
n2+ ln(2)

5ε2

)
on the parameter

ε comes into play.

Acknowledgement. The authors thank the anonymous CRYPTO reviewers
for their comments, in particular for suggesting a way to approximate the error
rate δ.

Correcting Errors in RSA Private Keys 367

References

1. Boneh, D.: Twenty years of attacks on the rsa cryptosystem. Notices of the Amer-
ican Mathematical Society (AMS) 46(2), 203–213 (1999)

2. Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of the
private key bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514,
pp. 25–34. Springer, Heidelberg (1998)

3. Coppersmith, D.: Small solutions to polynomial equations, and low exponent rsa
vulnerabilities. J. Cryptology 10(4), 233–260 (1997)

4. Coron, J.-S., May, A.: Deterministic polynomial-time equivalence of computing the
rsa secret key and factoring. J. Cryptology 20(1), 39–50 (2007)

5. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot
attacks on encryption keys. In: van Oorschot, P.C. (ed.) USENIX Security Sym-
posium, pp. 45–60. USENIX Association (2008)

6. Heninger, N., Shacham, H.: Reconstructing rsa private keys from random key bits.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer, Heidelberg
(2009)

7. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301), 13–30 (1963)

8. Maurer, U.M.: Factoring with an oracle. In: Rueppel, R.A. (ed.) EUROCRYPT
1992. LNCS, vol. 658, pp. 429–436. Springer, Heidelberg (1993)

9. Rivest, R.L., Shamir, A.: Efficient factoring based on partial information. In: Pichler,
F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 31–34. Springer, Heidelberg (1986)

10. RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard (June 2002)
11. Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys

are public: Results from the 2008 Debian OpenSSL vulnerability. In: Feldmann,
A., Mathy, L. (eds.) Proceedings of IMC 2009, pp. 15–27. ACM Press, New York
(November 2009)

A Mounting the Attack

Recall that for generating the initial Slice(0) one has to determine the correct
k in (3). We proposed in Sect. 3 to compute the e − 1 candidates d(k ′) for
0 < k ′ < e as defined in (6) and chose the k whose corresponding d(k) has
minimal Hamming distance to the error prone d̃ .

We now give a formal justification for our claim that the Hamming distance
between the error prone key d̃ and one of the candidates d(k ′) is minimized
for the correct d(k) with probability close to 1. Therefore, we define random
variables X (k ′) counting the number of matching bits between d̃ and a fixed
d(k ′) on their α := �n/2� − 2 most significant bits. For every k ′ �= k let

D(k ′) := X (k)− X (k ′)

denote the gap of matching bits for the correct d(k) and a fixed d(k ′) in their
window of α most significant bits. We aim to derive a lower bound for Pr[D(k ′) >
0] for arbitrary k ′ �= k .

368 W. Henecka, A. May, and A. Meurer

The main observation is that for the correct k and balanced p and q, we have
0 ≤ d(k) < p +q < 3

√
N . This implies that d(k) agrees with the correct d on at

least α most significant bits. On the contrary, for k ′ �= k one obtains that d(k ′)
and d agree on at most log(e) most significant bits. Notice that one can consider
D(k ′) as a sum of α random variables D(k ′)n−i where i = 1, . . . , α, each taking
values in {−1, 0, 1} representing the following three cases.

1. D(k ′)n−i = 1 if d(k)[n−i] and d̃ [n−i] do match but d(k ′)[n−i] and d̃ [n−i]
do not match.

2. D(k ′)n−i = 0 if both d(k)[n − i] and d(k ′)[n − i] match with d̃ [n − i].
3. D(k ′)n−i = −1 if d(k)[n − i] and d̃ [n − i] do not match but d(k ′)[n − i] and

d̃ [n − i] do match.

Assuming that in the case k ′ �= k every bit of d(k ′) and d̃ except for the (n −
log(e))th most significant bits matches with probability 1

2 , we obtain

E[D(k ′)n−i] = (1− δ)
1
2
− δ

1
2

=
1
2
(1− 2δ)

for i = log(e) + 1, . . . , α. Summing over all i yields

E[D(k ′)] ≥ (α− log(e))(1 − 2δ)
2

.

An application of the generalized Hoeffding inequality from (1) yields

Pr[D(k ′) > 0] = 1−Pr[D(k ′) ≤ 0] ≥ 1− exp
(
− (α− log(e))2(1− 2δ)2

8α

)
for arbitrary k ′ �= k . Hence, we can lower bound the probability of the event that
D(k ′) > 0 for every k ′ �= k by taking this expression to the (e − 2)th power. For
fixed e and δ - 1

2 we asymptotically achieve probability 1 since the exponent
converges to −∞. We calculated the probability for our experimental parameters
n = 1024, e = 216 + 1} and the theoretical upper bound δ = 0.237. In this case
the probability is very close to 1.

B Estimating the Error Rate

Recall the definition of δ̃ := 2
n

∑n−1
i=n/2 d̃ [i] ⊕ d(k)[i] from (7). We estimate the

quality of δ̃ + ε as an upper bound for δ, when we allow for an arbitrary small
buffer ε > 0. This can easily be done by regarding δ̃ as a sum of n

2 random
variables

D [i] := d̃ [i]⊕ d(k)[i].

Notice that Pr[D [i] = 1] = δ since d(k) coincides with the correct secret key d
on its n

2 most significant bits. Applying Hoeffdings inequality yields

Pr[δ < δ̃ + ε] = 1−Pr[δ̃ ≤ δ − ε] ≥ 1− exp
(
−2ε2

n
2

)
= 1− exp(−nε2),

i.e., for arbitrary fixed ε > 0 and large enough n we can use δ̃+ ε as a reasonable
upper bound for δ.

Correcting Errors in RSA Private Keys 369

C Practical Choice of t

We give a slightly refined analysis of the parameter t in order to obtain some
flexibility in tuning the success probability p of Error-Correction. Therefore,
we define a scaling parameter α := −5/ ln(p) and modify the choice of t to

t :=
lnα+ lnn − ln lnn + 2 ln ε

10ε2
, (15)

while keeping C := 5t(1
2 + γ0) as proposed in Lemma 3. The following calcula-

tion which follows the proof of Lemma 5 derives a lower bound for the success
probability depending on the additional parameter α.

Pr[success] ≈ (1−Pr[Xc < C])n/2t ≥
(
1− e−10tε2

)n/2t
=
(

1− lnn
α · n · ε2

)n/2t

≈ e− 5 ln n
α(ln α+ln n−ln ln n+2 ln ε)

n→∞−−−−→ e−5/α = p

The above approximation should be taken with some care for very small ε. Notice
that our approximation gets tight for fixed ε and sufficiently large n. However,
when we use it with realistic RSA values of n ∈ [1024, .., 8192] the asymptotics
of the Hoeffding bound do not yet apply for very small ε.

 6

 7

 8

 9

 10

 11

 12

 13

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

t

!

t1024,0.1
t2048,0.02

Fig. 2. Choice of tn,p for different n and p according to Eq. (15)

As one can see, the denominator in the exponent of e yields a non-negativity
restriction lnn + lnα− ln lnn + 2 ln ε > 0. This restriction simplifies to

ε >

√
lnn
n · α,

e.g. for n = 1024 and p = 0.1 one obtains ε > 0.056. Concerning our experiments,
we modified our choice of t manually when δ ≥ 0.18, i.e., when ε fell below 0.06.

Improved Differential Attacks
for ECHO and Grøstl

Thomas Peyrin

Ingenico, France
thomas.peyrin@ingenico.com

Abstract. We present improved cryptanalysis of two second-round
SHA-3 candidates: the AES-based hash functions ECHO and Grøstl. We
explain methods for building better differential trails for ECHO by in-
creasing the granularity of the truncated differential paths previously
considered. In the case of Grøstl, we describe a new technique, the in-
ternal differential attack, which shows that when using parallel computa-
tions designers should also consider the differential security between the
parallel branches. Then, we exploit the recently introduced start-from-
the-middle or Super-Sbox attacks, that proved to be very efficient when
attacking AES-like permutations, to achieve a very efficient utilization of
the available freedom degrees. Finally, we obtain the best known attacks
so far for both ECHO and Grøstl. In particular, we are able to mount a
distinguishing attack for the full Grøstl-256 compression function.

Keywords: hash function, cryptanalysis, ECHO, Grøstl, AES, internal
differential attack.

1 Introduction

Cryptographic hash functions are very important tools in cryptography, used in
many applications such as digital signatures, authentication schemes or message
integrity. Informally, a hash function H is a function that takes an arbitrarily
long message as input and outputs a fixed-length hash value of size n bits. The
classical security requirements for such a function are collision resistance and
(second)-preimage resistance. Namely, it should be impossible for an adversary
to find a collision (two distinct messages that lead to the same hash value) in
less than 2n/2 hash computations, or a (second)-preimage (a message hashing to
a given challenge) in less than 2n hash computations. Moreover, those primitives
are traditionally used to simulate the behavior of a random oracle [2] and while
the community is divided on such a requirement, in the ideal case an attacker
should not be able to distinguish a hash function from a random oracle.

As many standardized hash functions [41, 31] have been broken a few years
ago [45, 44], the NIST launched in 2008 the SHA-3 competition [33] that will
lead to the future hash function standard. 14 candidates among 51 have been
selected for the second round and many of them (like ECHO [3], Grøstl [14] or
SHAvite-3 [5]) are actually using some parts of the standardized block cipher

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 370–392, 2010.
c© International Association for Cryptologic Research 2010

Improved Differential Attacks for ECHO and Grøstl 371

AES [32, 10] as internal primitives or mimicking the structure of this cipher. While
AES-256 can no more be considered as secure in the related-key model [7], the
cryptography community has made important progresses concerning the evalua-
tion of AES-based hash functions security [35, 19, 27, 25, 23, 26, 15]. Those attacks
make an extensive use of the freedom degrees that are available in a hash func-
tion and even provides the best known distinguishing attack against AES-128 [15]
in the known-key model [21, 30]. Much recent analysis of AES-based hash func-
tions has helped to identify the limits of current techniques, but as we show in
this paper, it is possible to improve the differential path building methods used
so far.

Our contributions. In this paper, we improve the best known cryptanalysis
results [1, 18, 27, 26, 15] on two second round SHA-3 candidates: the hash func-
tions ECHO [3] and Grøstl [14]. While we do not provide advances regarding
the freedom degrees optimization, we use the recently introduced Super-Sbox
techniques [15, 28] in order to find pairs of inputs verifying a given differential
path. We then exploit some specific properties of ECHO and Grøstl to derive
very good differential paths. More precisely, we improve the previously known
truncated differential paths for ECHO by reducing the size of the truncated words
considered. This allows us to broaden the differential trail search space, there-
fore increasing our probability to find a good path, but also augmenting the
search complexity. We circumvent this constraint by giving a heuristic method
to prune the potential candidates. Concerning Grøstl, we describe a novel yet
simple cryptanalysis technique: the internal differential attack. It may be applied
for functions using parallel branches that are not sufficiently made distinct. In
that case, the attacker can find input instances (where a classical differential
attack exhibits pairs of inputs) verifying non random properties on the output.

ECHO

H M

P 8
E

H’

Grøstl

P

Q

H

M

H’

As a result, we improve the complexity for distinguishing the internal per-
mutation of ECHO from a random 2048-bit permutation for a number of rounds
corresponding to the full 256-bit version. Because of the folding phase after the
permutation application at the end of the ECHO compression function, this at-
tack does not translate into a distinguishing attack for the full ECHO compression
function, nor the hash function itself. We provide also the first distinguishing at-
tack on the full internal permutations for the 256-bit version of Grøstl, which
can be directly derived into a distinguisher on the full Grøstl-256 compression
function. Structural distinguishers (independent of the number of rounds) were
already described in the original submission document [14]. For example, it was
already identified that one can find fixed points or build a distinguisher for the

372 T. Peyrin

Table 1. Summary of results for ECHO, ECHO-SP and Grøstl compression functions.
ECHO-256, ECHO-SP-256, ECHO-512 and ECHO-SP-512 compression functions have 8, 8, 10
and 10 rounds respectively, while Grøstl-256 and Grøstl-512 compression functions
have 10 and 14 rounds respectively. All details of these attacks are given in the extended
version of this article [36].

target rounds computational memory type sectioncomplexity requirements

ECHO-256
comp. function

3 264 264 semi-free-start collision1 this paper
4 264 264 distinguisher this paper

ECHO-512
comp. function

3 296 264 semi-free-start collision1 this paper
6 296 264 distinguisher this paper

ECHO-SP-256
comp. function

3 264 264 semi-free-start collision this paper
3 264 264 distinguisher this paper

ECHO-SP-512
comp. function

3 264 264 semi-free-start collision2 this paper
4 264 264 distinguisher this paper

7 256 distinguisher see [26]
Grøstl-256 8 2112 264 distinguisher see [15]

comp. function 9 280 264 distinguisher this paper
10 2192 264 distinguisher this paper

Grøstl-512 11 2640 264 distinguisher this papercomp. function

compression function with the generalized birthday paradox [43]. However, our
results also allow to distinguish the Grøstl compression function from the same
construction when assuming the two internal permutations P and Q as ideal.
This is not the case for the known structural distinguishers since they already
consider the two internal permutations as ideal. Our results are also interesting
because they exploit the specificities of P and Q which is essential in order to
really evaluate the security margin of this hash function in terms of number of
rounds. All the results and the corresponding computation/memory complexities
for ECHO, ECHO-SP (the simple-pipe version of ECHO) and Grøstl are summarized
in Table 1 and available in the extended version of this article [36]. Note that
none of the results described in this article seem to endanger the security of the
ECHO compression function or the Grøstl hash function.

2 Previous Cryptanalysis

In this section, we recall the recent advances regarding cryptanalysis of AES-
like permutations and their specificities. In the rest of the paper, we will use
the start-from-the-middle and Super-Sbox attacks as basic tool for finding input
pairs verifying a given differential path.
1 A semi-free-start collision can be found for the 4-round reduced ECHO-256 or ECHO-

512 compression functions with complexity 2224 computations and 264 memory, if
the salt value can be controlled by the attacker.

2 A semi-free-start collision can be found for the 4-round reduced ECHO-SP-512 com-
pression function with complexity 2224 computations and 264 memory, if the salt
value can be controlled by the attacker.

Improved Differential Attacks for ECHO and Grøstl 373

2.1 Building Differential Trails with Truncated Differences

Cryptanalysis of AES-based hash functions began with the hash family proposal
Grindahl [20] for which collision attacks have been found [35, 19]. This showed
that truncated differentials [22, 20] are very useful when cryptanalyzing a byte-
oriented primitive such as the AES. Namely, instead of looking at the actual
difference value of a byte, one only checks if a byte contains a difference (active
byte) or not (inactive byte). In particular, this allows the attacker to handle
the non-linear Sboxes quite nicely when building differential trails. On the other
hand, the differential transitions through the linear MixColumns layer will now
be verified probabilistically.

The matrix multiplication underlying the MixColumns transformation on a
r-byte column for AES or Grøstl presents the interesting property of being a
Maximum-Distance Separable (MDS) mapping: the number of active input and
output bytes is always greater or equal to r + 1 (unless there is no active in-
put and output byte at all). When picking random inputs, the probability of
success of a differential transition that meets the MDS constraints through a
MixColumns layer is determined by the number of active bytes in the output.
More precisely, if such a differential transition contains k active bytes in one
column of the output, its probability of success will approximatively be equal
to 2−8×(r−k). For example, a 4 �→ 1 transition for one column of the AES Mix-
Columns layer has success probability of approximatively 2−24. Note that the
same reasoning applies when dealing with the invert function of the MixColumns
layer as well.

2.2 Rebound Attacks

The rebound attack [27] is a new technique for using efficiently the available
freedom degrees. The authors utilize truncated differential paths in which most of
the cost lies in the middle rounds. Then, by using a local meet-in-the-middle-like
technique, the freedom degrees are consumed in the middle part of the differential
path, right where they can improve at best the overall complexity. More precisely,
some rounds in the middle (the controlled rounds) will be verified with only
a few operations on average, while the rest of the path both in forward and
backward direction (the uncontrolled rounds) is fulfilled probabilistically. This
cryptanalysis provides good results [25, 23] and can work without any special
constraint on the differential path. However, the controlled part is limited to
two rounds.

2.3 Start-from-the-Middle Attacks

In [26], the start-from-the-middle attack for AES-like permutations is introduced.
It can be seen as a generalization of the previous technique in the sense that

374 T. Peyrin

the idea is simply to use the freedom degrees for AES-like permutations in the
“most expensive” part of the differential trail, without setting any constraint
in the way this is handled. The “cheaper” parts are then covered in an inside-
out manner in both forward and backward directions. The authors describe
a freedom degrees use example that can control 3 rounds in the middle part,
without increasing the complexity (i.e. with only a few operations). However,
the depicted technique only works for specific differential paths, in which the
number of active bytes in the controlled rounds is not too important. We refer
to the original publication [26] for more details.

2.4 The Super-Sbox Cryptanalysis Technique

Finally, another example of start-from-the-middle attacks is the Super-Sbox
cryptanalysis ([15] and independently published in [28]). The idea is that one
can view two rounds of an AES-like permutation as the parallel application of a
layer of big Sboxes, named Super-Sboxes, preceded and followed by simple affine
transformations. This technique can control 3-rounds in the middle of the dif-
ferential trail with only a few operations on average, but works especially when
the number of active bytes in the controlled rounds is important (this allowed
to use longer differential paths which generally contain more active bytes). Be-
cause of some local precomputation steps, the drawback of this technique is its
memory requirement when the size of the internal state of the scheme is too big.
In the case of Grøstl this remains acceptable with a 264 memory requirement,
but in the case of ECHO as much as 2512 memory is required, making this tool
unsuitable for this hash proposal. We refer to the original article [15] for more
details.

3 Improved Differential Attack for ECHO

3.1 Description of ECHO

ECHO is a double-pipe hash function using HAIFA [4] as chaining iteration mode.
The message to hash is first padded and divided into fixed-length blocks Mi

which are used to update iteratively the chaining variable Hi (originally ini-
tialized with an initial vector H0 = IV) thanks to the compression function h:
Hi = h(Hi−1,Mi). Finally, the hash output is obtained by truncating the last
chaining variable. The compression function is built upon a 2048-bit AES-like
permutation PR

E composed of R rounds and its internal state can be viewed as
a 4× 4 matrix of 128-bit words (or cells). A cell will be denoted by Ci,j , where
i is its row position and j its column position in the matrix, starting the count-
ing from 0. One round of PR

E is composed of three layers: the “BIG SubBytes”
layer (big Sbox or B.SB), the “BIG ShiftRows” layer (B.ShR) and the “BIG
MixColumns” layer (B.MC).

Improved Differential Attacks for ECHO and Grøstl 375

The BIG SubBytes layer is a non-linear function defined by the application of
a big Sbox S on each 128-bit cell and this big Sbox is made of 2 AES rounds. The
classical AddRoundKey part from the AES is not present in PR

E and in order to
avoid trivial symmetric vulnerabilities that would occur, each big Sbox in ECHO
is distinct thanks to different subkey additions in each of the 2-round AES uses.
The first round subkey depends on the value of a 64-bit internal counter K that
is different at each use, while the second round subkey is set to the 128-bit salt
value and thus always remains the same during the whole ECHO computation.
So, for each cell Ci,j of the internal state, we compute

C′
i,j = S[Ci,j] = AESsalt(AES0||K(Ci,j)).

where AESsk denotes the application of one AES round with the subkey sk.
As for the AES, the BIG ShiftRows transformation permutes the position of
each cell in its own row: for each cell Ci,j of the internal state, we compute
C′

i,j = Ci,Subi(j) where Subi(j) = (j − i) mod 4. Finally, the BIG MixColumns
function is a linear function that mixes all the columns of the internal state
separately. More precisely, the 32-bit AES MixColumns function is reused: if Cb

i,j

denotes the b-th byte of the cell Ci,j , then we compute

(C′b
0,j, C

′b
1,j , C

′b
2,j , C

′b
3,j) = AESMixColumns(Cb

0,j, C
b
1,j , C

b
2,j , C

b
3,j)

for all 0 ≤ j ≤ 3 and 1 ≤ b ≤ 16. The round function on an internal state C can
thus be defined as:

MixColumns ◦ ShiftRows ◦ SubBytes(C).

In the case of the ECHO-256 compression function, 8 rounds of the permutation
are applied and a folding phase is processed after the final feedforward. Namely,
the folding phase (denoted fold256) xors all the four 512-bit columns together.
Finally, the compression function takes a 1536-bit message input M (12 words)
and a 512-bit chaining variable input H (4 words) and outputs a new 512-bit
chaining variable H ′ with

H ′ = fold256(P 8
E(H||M)⊕H||M)

H M

P 8
E

H’

In the case of the ECHO-512 compression function, 10 rounds of the permu-
tation are applied in order to turn a 1024-bit message input M (8 words) and
a 1024-bit chaining variable input H (8 words) onto a new 1024-bit chaining
variable H ′. A different folding phase is processed after the final feedforward.
Namely, the folding phase (denoted fold512) xors the two first and the two last
512-bit columns together.

376 T. Peyrin

H ′ = fold512(P 10
E (H||M)⊕H||M)

H M

P 10
E

H’

Since ECHO is a nested design of AES-like permutations, we will always use the
prefix “BIG” when referring to one of the three layers of the 2048-bit permu-
tation. When not using a prefix, we will refer to the layers of the 2-round AES
permutation in the big Sboxes of ECHO.

In the following, B.SBin
R (respectively B.SBout

R) will denote the whole internal
state just before (respectively just after) application of the BIG SubBytes layer
during round R (starting the counting from 0). Similarly, B.MCin

R and B.MCout
R

will stand for the input and output internal states of the BIG MixColumns layer
during round R. Of course, we have B.SBin

R = B.MCout
R−1. We refer to [3] for the

full specifications.

3.2 Generic Differential Paths

In order to fully use the power of recent freedom degrees optimization techniques,
the core of the differential path we use will not differ from the ones described
in [27, 26, 15]. The reason here is that this core characteristic is perfectly fit for
using the available freedom degrees in the middle: it is computationally very
costly in its middle part, but quite cheap on its side parts. This core truncated
differential path is 7 rounds long and is depicted in Figure 1. Of course, when
attacking a smaller number of rounds than 7, one can use this core to build a
further reduced path by cutting off some of the first and/or last rounds.

The second advantage of this core characteristic is that the relatively low
number of active cells in the controlled rounds makes it usable with the start-
from-the-middle technique, as it is described in [26]: one can find a pair of internal
states verifying the 128-bit truncated differential trail from the beginning of
round 2 (B.SBin

2) up to the end of round 4 (B.MCout
4) with only one operation

on average (and 264 memory). Note that another view of the attack is to say
that with one operation the attacker can find a pair of internal states such

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2 B.SB3

B.ShR3

B.MC3

B.SB4

B.ShR4

B.MC4 B.SB5

B.ShR5

B.MC5 B.SB6

B.ShR6

B.MC6

Fig. 1. Core of the truncated differential paths for 7-round reduced ECHO internal per-
mutation. Each cell represents a 128-bit word and a gray cell stands for an active
128-bit word. The controlled rounds are depicted with dashed lines.

Improved Differential Attacks for ECHO and Grøstl 377

that the difference on B.SBout
2 and on B.MCout

4 are chosen (no more truncated
differentials). Therefore, for ECHO we consider that the controlled rounds go from
B.SBout

2 up to B.MCout
4 .

One can easily check that the rest of the path (the uncontrolled rounds) is
fulfilled with probability one, except round 1. Indeed, in round 1, a 4 ⇒ 1
truncated differential transition is expected through the backward computation
of the BIG MixColumns layer B.MC1. When dealing with 128-bit truncated
differentials, this will happen with approximate probability 2−24×16 = 2−384 (i.e.
a 4 ⇒ 1 byte-wise truncated differential transition is expected through sixteen
parallel AESMixColumns functions) and this probability sets the overall 2384

complexity for finding a valid pair for the core path from Figure 1. We will see
in the next section that by looking at byte-wise truncated differentials (instead
of word-wise), one can sharpen the differential path and improve the success
probability of this BIG MixColumns layer. On the other side, in order to be able
to use the byte-wise truncated differentials at this stage and since he can control
the difference only in B.SBout

2 (and not in B.SBin
2), the attacker will have to

handle the backward computation of the BIG SubBytes layer of round 2 (B.SB2)
as well. He then hopes that controlling both B.SB2 and B.MC1 with byte-wise
truncated differentials will cost less than 2384 operations. Not controlling B.SB2
would lead us back to the 128-bit truncated differential cryptanalysis, as each
active 128-bit word of B.SBin

2 will very likely contain 16 active bytes (i.e. fully
active word) since full diffusion is achieved with only two AES rounds.

3.3 Differential Transitions for 2 AES Rounds

Now that we introduced the core of the differential path, we need to study the
word-wise differential transitions. That is, instead of looking for 128-bit trun-
cated differentials, we will look at byte-wise truncated differentials. Of course, we
still fully leverage the previous works on start-from-the-middle attacks [26]: the
attacker can find a valid candidate pair verifying the controlled rounds and fully
control the differences in B.SBout

2 and B.MCout
4 with one operation on average.

Sharpening the differential path will improve the results since our scope is now
wider, but it will also greatly increase the number of potential trails and compli-
cate the analysis. For that reason, we need to heuristically filter them so that we
place our search into a good subspace. First, we restrict ourselves to four types
of byte-wise truncated differential words F, C, D and 1, all depicted in Figure 2.
Due to symmetry and diffusion considerations, we believe that analyzing other
differentials would not provide better results, while it would greatly increase the
search space. Secondly, we add the constraint that all the active 128-bit words
in an internal state will present the same byte-wise truncated differential (all
words have the same truncated differential types F, C, D or 1). This seems a
sound constraint as the processing of the BIG MixColumns layer on one word
column of the internal state can be seen as the parallel application of sixteen
AESMixColumns functions (one for each byte position). Thus, for each word
column, instead of analyzing the behavior of sixteen parallel AESMixColumns

378 T. Peyrin

F C D 1

Fig. 2. Byte-wise truncated differential states for one word of ECHO. Each cell represents
a byte and a gray cell stands for an active byte.

functions one conceptually only handles a single function that will do for all the
16. Those two filters will really simplify the analysis.

Since the attacker will have to control the behavior of BIG SubBytes layer
B.SB2, we have to study the success probability for each possible transition for 2
AES rounds between the four bit-wise truncated differentials F, C, D and 1, espe-
cially in backward direction. First, we can compute the approximate probability
of success for a one-round transition between those four 128-bit differential states
and this is given in Table 2 for both forward and backward directions. Those
probabilities are simply obtained by studying the AESMixColumns transitions
for one AES round (since we are dealing with byte-wise truncated differentials, all
the probabilities comes only from the AESMixColumns transitions, see [35]).

When computing backward through B.SB2, the AESMixColumns function
from the second AES round is the first function to invert. But since this layer
is fully linear, one can verify the expected backward transitions by carefully
choosing the differences in B.SBout

2 beforehand. Since the start-from-the-middle
attack allows us such a liberty, the second AES round in B.SB2 comes for free
(one only has to check that the transition is not impossible, i.e. the probability in
Table 2 is not null). Finally, having set all the constraints and the cost evaluation,
we only have to pick the best backward differential transition through B.SB2 in
terms of probability and active byte weight: D ⇐ 1 ⇐ C. The transition D ⇐ 1
is free as showed by Table 2, while the 2−24 probability for the transition 1⇐ C
is not taken in account since we can avoid it by carefully choosing the byte-wise
truncated differences in B.SBout

2 beforehand. Therefore, controlling B.SB2 is now
completely free for the attacker.

Now that we controlled the differential behavior of B.SB2, what is the im-
provement obtained for the BIG MixColumns layer B.MC1 ? Since we only have
four active bytes in D, we can focus on controlling 4 parallel AESMixColumns
transitions instead of 16. We are looking for 4 ⇒ 1 transitions, each happen-
ing with probability 2−24. Thus, for the whole BIG MixColumns layer, we get
a probability of 2−24×4 = 2−96 and this has to be compared to the previous
2−24×16 = 2−384 probability.

Overall the whole 7-round differential path is depicted in Figure 3 and a valid
candidate can be found with complexity 296 operations and 264 memory. Since
the internal permutation of ECHO is much bigger than its hash output size, it
should be easy to distinguish it from a random 2048-bit permutation. Note that
our solution pair has four active 128-bit words in the input and four active 128-
bit words in the output (the last BIG MixColumns call is not taken in account

Improved Differential Attacks for ECHO and Grøstl 379

Table 2. Byte-wise truncated differential transition approximated probabilities for
one round of AES. The left table shows forward transitions, while the right one gives
backward transitions.

Forward

in
out

F C D 1

F 1 0 2−96 0

C 1 0 0 0

D 0 1 0 2−24

1 0 1 0 0

Backward

in
out

F C D 1

F 1 2−96 0 0

C 0 0 1 2−24

D 1 0 0 0

1 0 0 1 0

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2 B.SB3

B.ShR3

B.MC3

B.SB4

B.ShR4

B.MC4 B.SB5

B.ShR5

B.MC5 B.SB6

B.ShR6

B.MC6

F
F

F
F

F
F
F
F F D

D
D
D
D

C
C

C
C

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F

F
F

F
F
F
F F F

F
F
F
F

F
F

F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

Fig. 3. 7-round differential path for the ECHO internal permutation. The controlled
rounds are depicted with dashed lines.

since it is fully linear). A naive analysis would conclude that for a random 2048-
bit permutation, finding such a pair with a birthday paradox technique should
require at least 2(2048−512)/2 = 2768 operations. However, since the input and
output amount of differences is low, the attacker can not fully leverage the
power of the birthday paradox. We conclude by reusing the concept of limited
birthday distinguishers [15] that for a random 2048-bit permutation, finding such
a pair should require at least 21024 operations.1 Finally, 7 rounds of the internal
permutation of ECHO can be distinguished from a random 2048-bit permutation
with 296 operations and 264 memory. The amount of freedom degrees available
during the attack is discussed in the Appendix A and a costly distinguisher for
8 rounds of the ECHO internal permutation is given in the extended version of
this article [36].

4 Internal Differential Attack: Application to Grøstl

4.1 Description of Grøstl

We give in this section the description of Grøstl and refer to the submission
document [14] for more details. Grøstl is a double-pipe hash function that
uses a chaining mode similar to the Merkle-Damg̊ard [29, 11] iteration. More
1 The generic attack complexity for mapping through a permutation a fixed difference

on i bits on the input and j bits on the output with i ≥ j is given by the formula
max{2j/2, 2i+j−t}, where t is the size of the permutation.

380 T. Peyrin

precisely, after having initialized the internal state H0 and padded the input
message string, the iteration i updates the 2n-bit chaining variable Hi with
the 2n-bit incoming message block Mi by applying the compression function h:
Hi = h(Hi−1,Mi). After having processed all the t message blocks, an output
function is applied to the last chaining variable to obtain the n-bit hash result:
hash = truncn(P (Ht) ⊕ Ht), where truncn is the truncation function of the
n first bits and P is an AES-based permutation. The double-pipe compression
function h is built upon two similar parallel AES-based permutations P and Q
(that only differ by the constants addition layers) to update chaining variable H
with message block M :

H ′ = P (H ⊕M)⊕Q(M)⊕H

P

Q

H

M

H’

In the case of Grøstl-256, the 512-bit internal state of both permutations can
be viewed as a 8×8 matrix of bytes. A byte for permutation P is denoted by CPi,j

(resp. CQi,j for permutation Q), where i is its row position and j its column
position in the matrix, starting the counting from 0. P and Q are both 10-round
long and each round is composed of 4 layers. The first layer (AddConstant or AC)
is a constant addition function. More precisely, for the round number i (starting
the counting from 0), in P the byte CP0,0 is xored with i and in Q the byte CQ7,0
is xored with i⊕0xff. Note that this layer is the only difference between
permutations P and Q. The second layer (SubBytes or SB) is a non-linear
function defined by the application of the AES Sbox S to each byte. The third
layer (ShiftRows or ShR) cyclically rotates to the left the position of each byte
in its own row with the following constants: (0, 1, 2, 3, 4, 5, 6, 7). Finally, the last
layer (MixColumns or MC) is a linear function that mixes all the columns of the
internal state separately. As for AESMixColumns, the matrix multiplication
underlying this transformation is a Maximum-Distance Separable mapping. In
order to avoid overweighting the notations, we used the same notations for the
ECHO and Grøstl subfunctions, but their meaning is implicit depending on which
scheme we are dealing with. The round function on an internal state C can thus
be defined as MixColumns ◦ ShiftRows ◦ SubBytes ◦AddConstant(C):

AddConstant

8 bytes

8 bytes

⊕

⊕
for P

for Q

SubBytes

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

ShiftRows MixColumns

Improved Differential Attacks for ECHO and Grøstl 381

4.2 The Internal Differential Attack

In this section, we will show that very good differential trails can be found
for Grøstl. Our new technique, the internal differential attack , may apply
when a function is built upon parallel computation branches that are not dis-
tinct enough. The trick is to devise a differential path representing the
differences between the branches and not between two inputs of the
function. Usually this is avoided by a forcing strong separation between the two
parallel branches. For example, for all steps of the hash function RIPEMD [39, 12],
very distinct constants are used in the left and right branches. However, in the
case of Grøstl, this separation is thin between permutations P and Q, and we
will describe in the next sections how to exploit this property in order to mount
for example a distinguishing attack against the full Grøstl-256 compression
function.

All the previous analysis of Grøstl studied the differential behavior of the
permutations in a classic way. That is, they derived differential trails by dealing
with two different inputs for each of the permutations P and Q (the two permu-
tations were attacked separately). Those permutations mimicking the AES block
cipher, the best usable differential paths naturally reached 8 rounds [15], but
we argue that much more interesting trails can be built. We do not analyze the
two permutations separately, but we build a differential path between them:
we keep track of the differences ongoing between branch P and branch Q (see
Figure 4). We compute two internal states A and B, such that A ⊕ B = ΔIN

and such that P (A) ⊕Q(B) = ΔOUT .
This idea comes naturally after having noticed that permutations P and Q

are really similar, since their only distinction is the constant addition phase.
Even in that step, the distinction is really thin: a different constant is added on
only two different bytes. Thus, we can hope that the amount of differences will
remain low when setting a differential trail.

Since using truncated differentials is very handy when attacking AES-like per-
mutations, we will only keep track of active and inactive bytes through the path.
Also, preparing for the utilization of Super-Sbox attacks, we aim for a differen-
tial path in which the costly part lies in the middle, and the cheap parts on the

Δ
I
N

Δ
O

U
T

attacked primitive

P

Q

H

M

H’

Fig. 4. The differential path keeps track of the differences between permutations P
and Q

382 T. Peyrin

SB0 ShR0 MC0

SB1 ShR1 MC1

SB2 ShR2 MC2

SB3 ShR3 MC3

SB4 ShR4 MC4

SB5 ShR5 MC5

SB6 ShR6 MC6

SB7 ShR7 MC7

SB8 ShR8 MC8

SB9 ShR9 MC9

AC0

AC1

AC2

AC3

AC4

AC5

AC6

AC7

AC8

AC9

Fig. 5. 10-round differential path between P and Q for Grøstl-256. Each cell represents
a byte and a gray cell stands for an active byte. The controlled rounds are depicted with
dashed lines. The matrices on the left represent the differences incorporated during the
AC layers.

Improved Differential Attacks for ECHO and Grøstl 383

sides. In Figure 5, we provide a differential path between the permutations P
and Q of the Grøstl-256 compression function for the 10-round version. Note
that only one difference is incorporated during AC0 since the constant added in
P is 0.

4.3 Deriving a Distinguisher for Grøstl

In the following, our goal is to distinguish the Grøstl compression function
from an ideal primitive on the same domain. As shown in Figure 4, once the
differential path settled, we find a valid pair of internal states (A,B) such that

A⊕B = ΔIN

P (A) ⊕Q(B) = ΔOUT

where ΔIN and ΔOUT are respectively the input and output truncated differ-
ences. We then set H = A⊕B and M = B and we obtain

h(H,M) = P (A) ⊕Q(B)⊕A⊕B = ΔIN ⊕ΔOUT .

We will show that ΔIN and ΔOUT are always maintained in a small subspace of
x and y elements respectively. As a consequence, ΔIN ⊕ΔOUT will also belong
to a small subspace of the full output domain. Said in other words, we will be
able to compute outputs of the 2n-bit compression function that always belong
to a predetermined set of at most k = x · y elements. In the ideal case, one such
input/output property should not be obtained with substantially less than 22n/k
compression function calls. Unlike the previously known distinguishers that find
partially colliding outputs for AES-like permutations, the one we describe here is
more “preimage” oriented.

One can go further and even try to distinguish the Grøstl compression func-
tion from its internal construction

h(H,M) = P (H ⊕M)⊕Q(M)⊕H = (P (A)⊕A)⊕ (Q(B)⊕B)

assuming P and Q as ideal permutations. We will compute pairs (H,M) such
that H belong to a small subspace of x elements and H ′ to a small subspace of
k = x · y elements. In the ideal case, one may think that the best attack can
obtain such a property this with

√
22n/k computations by performing a birthday

method with the two branches. However, this is not the case here because a strong
constraint on the input H exists (see the limited birthday distinguishers [15])
and the best known complexity to obtain the input/output property with ideal
permutations P and Q is 22n/(k ·x) computations. It is important to remark that
this type of distinguisher is new since the already known ones are structural, i.e.
they already consider P and Q as ideal permutations.

While formally defining a distinguisher for a keyless primitive is difficult [40],
we argue that the property we exhibit here works for any choice of Sbox, Mix-
Columns function or AddConstant positions for example. Note that such keyless
primitive distinguishers have already been utilized in [26, 15].

384 T. Peyrin

Let Grøstl(a) denote the Grøstl hash function for which the constant ad-
dition in Q is i ⊕ a instead of i ⊕ 0xff. Clearly, when choosing a > 0x1a, we
ensure that the constant values added in P and Q are always distinct and each
member of this family of Grøstl hash functions should have the same security
as Grøstl(0xff). Overall, for each member of the family, the attacker can ex-
hibit with good probability an output maintained in the set of k elements, while
the input H belongs to the subspace of x elements. Thus, if we are queried to
distinguish the Grøstl compression function instantiated with permutations cor-
responding to Grøstl(a) from the same construction with random permutations
P and Q, we have a very good probability to succeed. It shows a weakness in
the Grøstl design philosophy.

5 Results

In this section we present some of our results on the compression functions
of ECHO and Grøstl-256. For the complete results, and the differential paths
concerning the internal permutation of ECHO, the single-pipe version ECHO-SP,
or Grøstl-512 compression function, we refer to the extended version of this
article [36]. Moreover, we also provide in the Appendix A a study of the amount
of freedom degrees available during the attacks.

5.1 ECHO

Compression function distinguishers. We provide here the first distin-
guishers for reduced ECHO compression functions. In the case of ECHO-256, we
use the 4-round differential path from Figure 6 which is derived from the 7-
round core path. One can find a solution with 264 computations and memory
(239 valid candidates can be generated by the attacker and 2167 if the salt is
controlled as well). In the case of ECHO-512, we use the 6-round differential path
from Figure 7 for which a solution can be found with 296 computation and 264

memory (271 valid candidates can be generated by the attacker and 2199 if the
salt is controlled as well). In both cases, we obtain compression function outputs
colliding on 2 predetermined words (i.e. 256 bits) and this should require 2128

computations in the ideal case.

Collision attacks. We provide here the first collision attacks for reduced
ECHO compression functions. In the case of ECHO-256, we use a special 3-round
differential path depicted in Figure 8. In this trail, the start-from-the-middle
technique can still be used and the only part uncontrolled is the first AES round of
the very first BIG SubBytes layer. However, since we use the backward transition
D ⇐ 1 ⇐ C, this layer will behave as expected with probability 1. Then, the
feedforward is applied and only four 128-bit words will be active, each containing
4 active bytes at the exact same positions (truncated differential of type D).
Finally, since the four columns of 128-bit words are xored together to obtain the
output chaining variable, a collision can occur if the truncated differences are

Improved Differential Attacks for ECHO and Grøstl 385

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2 B.SB3

B.ShR3

B.MC3

feed forward

fold

F
F

D
D

D
D
D
D

C
C

C
C

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F

F
F

F
F
F
F

F F
F

F
F

Fig. 6. 4-round differential path for the ECHO-256 compression function distinguisher.
The controlled rounds are depicted with dashed lines.

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2 B.SB3

B.ShR3

B.MC3

B.SB4

B.ShR4

B.MC4 B.SB5

B.ShR5

B.MC5

feed forward

fold

F
F

F
F

F
F
F
F F D

D
D
D
D

C
C

C
C

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F

F
F

F
F
F
F F F

F
F
F
F

F
F

F
F

F
F
F
F

F
F
F
F

F

F

Fig. 7. 6-round differential path for the ECHO-512 compression function distinguisher.
The controlled rounds are depicted with dashed lines.

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2

feed forward

fold

D C

C
C
C
C

F
F

F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

D
D
D
D

D
D
D
D

D
D
D
D

D
D
D
D

DDDD DDDD

Fig. 8. 3-round differential path for the ECHO-256 compression function semi-free-start
collision attack. The controlled rounds are depicted with dashed lines.

erased on the 4 byte positions. Thus, in order to get a semi-free-start collision,
one should therefore test 232 candidates (we have enough freedom degrees since
one can generate 2143 valid candidates for the whole trail and 2271 if the salt is
chosen by the attacker). However, the minimum cost for using the start-from-
the-middle attack for ECHO is 264 memory and precomputation. Thus, the overall
cost is 264 computations and memory in order to find one single semi-free-start
collision for 3 rounds.

In the case of ECHO-512, we use the 4-round differential path from Figure 9 for
which a solution can be found with 296 computations and 264 memory (271 valid
candidates can be generated by the attacker and 2199 if the salt is controlled as
well). Then, before the feedforward is applied, one active 128-bit word remains

386 T. Peyrin

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2 B.SB3

B.ShR3

B.MC3

feed forward

fold

F D

D
D
D
D

C
C

C
C

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F

F
F

F
F
F
F

F

Fig. 9. 4-round differential path for the ECHO-512 compression function semi-free-start
collision attack. The controlled rounds are depicted with dashed lines.

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2

feed forward

fold

D C

C
C
C
C

F
F

F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

D
D
D
D

D
D
D
D

D
D
D
D

D
D
D
D

DDDD DDDD

Fig. 10. 3-round differential path for the ECHO-512 compression function semi-free-start
collision attack. The controlled rounds are depicted with dashed lines.

in the output of the permutation. In order to erase this difference and obtain
a semi-free-start collision, this should be repeated 2128 times and the total cost
of the attack is then 2224 computations and 264 memory. Thus, this attack is
valid only in the chosen-salt attacker model (otherwise the number of available
freedom degrees is not sufficient). Since the collision happens before the final
compression phase, this semi-free-start collision attack applies with the same
complexity to ECHO-256 compression function.

When the attacker can not control the salt value, the 3-round attack from Fig-
ure 10 applies. Namely the reasoning is exactly the same as for the 256-bit case
with Figure 8, except that we have 4 additional bytes to collide during the feed-
forward phase. Finally, finding a semi-free-start collision for the 3-round reduced
ECHO-512 compression function requires 296 computations and 264 memory.

5.2 Grøstl

We use the Super-Sbox technique to find two 512-bit internal states such that
the 10-round differential path from Figure 5 between permutations P and Q is
verified. Namely, one can find internal state values for P and Q verifying the
truncated differential trail from the output of SB3 up to the input of SB6 with
one computation on average. However, the two 8 �→ 1 MixColumns transitions
through MC2 and the 8 �→ 2 transition through MC6 during the uncontrolled

Improved Differential Attacks for ECHO and Grøstl 387

rounds happen with probability 2−2×56 = 2−112 and 2−48 respectively. Also, 2
byte differences must be erased during both AddConstant functions AC2 and AC7
which adds another 2−4×8 = 2−32 factor. Overall, one can find a valid candidate
for the whole path with only 2112+48+32 = 2192 computations (an amount of 264

memory is required by the utilization of the Super-Sbox technique).
The freedom degrees analysis from Appendix A shows that for the path from

Figure 5, one can expect to obtain one solution with good probability. Indeed,
when the success probability for a random input pair to verify the trail is 2−z,
we have 2z−1 freedom degrees available. We argue in the Appendix that it is
sufficient for the attack to be considered as valid.

The distinguisher for Grøstl. In order to mount the distinguisher for
Grøstl, one has to analyze the amount k of reachable output difference values.
In the differential path from Figure 5, we have 16 active bytes just before apply-
ing the very last MixColumns layer MC9. Since the MixColumns layer is fully
linear, the amounts of reachable difference values on its input and on its output
are equal. Thus, we can deduce that at most y = 216×8 = 2128 distinct output
differences can be reached on the output of the differential trail. Regarding the
input of the path, the same reasoning gives us that at most x = 28×8 = 264

distinct input differences can be reached. Note that the difference inserted dur-
ing AC0 can be ignored since it is the last layer when computing backward (the
difference value on that byte will always be equal to the constant added, i.e.
0xff). Also, it is easy to verify that the differences on the output of SB0 are
always the same (since MixColumns is linear). Thus, since the inverse of the AES
Sbox has the property that only 27 distinct output differences can be reached
when the input difference is fixed, we can conclude that ΔIN can go through a
maximum of x = 28×7 = 256 distinct values.

To summarize, the output chaining variable H ′ = h(H,M) = ΔIN ⊕ΔOUT is
limited to a set of at most k = 2128+56 = 2184 values, with H being limited to a
set of at most x = 256 values. For an ideal 512-bit compression function, reaching
any element of this set should require 2512−184 = 2328 operations. With 280 and
2192 computations respectively (and 264 memory), we finally conclude that our
attack can distinguish 9-round reduced or the full 10-round compression func-
tion of Grøstl-256 from a random 512-bit compression function. One can even
distinguish h from the compression function construction with P and Q assumed
ideal since the best known attack requires 2512−184−56 = 2272 computations.

Note that structural distinguishers (i.e. working for randomly chosen permu-
tations P and Q) already exist for Grøstl. For example, just like in the Davies-
Meyer construction, one can very easily find fixed points for the compression
function. Yet, as explained in Section 4.3, we believe that our distinguishers are
very interesting because they exploit the real differential properties of the inter-
nal permutations P and Q, which is essential in order to appropriately evaluate
the security margin in terms of number of rounds. Moreover, such structural
attacks can not distinguish h from the compression function construction with
P and Q assumed ideal.

388 T. Peyrin

6 Conclusion

In this article, based on recent advances on AES-like permutations studies, we
provided a new cryptanalysis of ECHO and Grøstl, two second-round SHA-3 can-
didates. In particular, in the case of Grøstl, we introduce a new cryptanalysis
technique: the internal differential attack. Overall, we obtain the best cryptanal-
ysis results known so far for both ECHO and Grøstl. We are able to derive a
distinguisher for the full (10 rounds) 256-bit version of the Grøstl compression
function. This work also shows that designers must be careful when building a
function with parallel branches computations as the internal differential paths
may lead to unexpected attacks.

Acknowledgments

The author would like to thank the Grøstl team, Henri Gilbert, Yannick Seurin
and the CRYPTO 2010 committee for their helpful comments. Also, many thanks
to Elmar Tischhauser, Jorge Nakahara and Kota Ideguchi for pointing me an
omission in the complexity computation for the full ECHO internal permutation
distinguisher.

References

1. Barreto, P.S.L.M.: An observation on Grøstl. Comment submitted to the
NIST hash function mailing list, hash-forum@nist.gov, http://www.larc.usp.br/
~pbarreto/Grizzly.pdf

2. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

3. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M.,
Seurin, Y.: SHA-3 Proposal: ECHO. Submission to NIST (2008), http://crypto.
rd.francetelecom.com/echo/

4. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions: HAIFA.
In: Second NIST Cryptographic Hash Workshop (2006)

5. Biham, E., Dunkelman, O.: The SHAvite-3 Hash Function. Submission to NIST
(2008)

6. Biryukov, A. (ed.): FSE 2007. LNCS, vol. 4593. Springer, Heidelberg (2007) (re-
vised selected papers)

7. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and Related-Key Attack
on the Full AES-256. In: Halevi (ed.) [16], pp. 231–249

8. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
9. Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg

(2005)
10. Daemen, J., Rijmen, V.: The Design of Rijndael. In: Information Security and

Cryptography. Springer, Heidelberg (2002), ISBN 3-540-42580-2
11. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard (ed.) [8], pp.

416–427

Improved Differential Attacks for ECHO and Grøstl 389

12. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A Strengthened Ver-
sion of RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82.
Springer, Heidelberg (1996)

13. Dunkelman, O. (ed.): FSE 2009. LNCS, vol. 5665. Springer, Heidelberg (2009)
14. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,

Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST
(2008), http://www.groestl.info

15. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-like
Permutations. In: FSE 2010. LNCS. Springer, Heidelberg (to appear 2010),
http://eprint.iacr.org/2009/531

16. Halevi, S. (ed.): CRYPTO 2009. LNCS, vol. 5677. Springer, Heidelberg (2009)
17. Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.): SAC 2009. LNCS, vol. 5867.

Springer, Heidelberg (2009)
18. Kelsey, J.: Some notes on Grøstl. Comment submitted to the NIST hash func-

tion mailing list, hash-forum@nist.gov, http://ehash.iaik.tugraz.at/uploads/
d/d0/Grostl-comment-april28.pdf

19. Khovratovich, D.: Cryptanalysis of Hash Functions with Structures. In: Jocobson
Jr., M.J., et al. (eds.) [17], pp. 108–125

20. Knudsen, L.R., Rechberger, C., Thomsen, S.S.: The Grindahl Hash Functions. In:
Biryukov (ed.) [6], pp. 39–57

21. Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)

22. Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.)
FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

23. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui
(ed.) [24], pp. 126–143

24. Matsui, M. (ed.): ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (2009)
25. Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound

Attack on the Full Lane Compression Function. In: Matsui (ed.) [24], pp. 106–125
26. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of

the Reduced Grøstl Compression Function, ECHO Permutation and AES Block
Cipher. In: Jocobson Jr., M.J., et al. (eds.) [17], pp. 16–35

27. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman (ed.) [13], pp.
260–276

28. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Rebound Attacks on the
Reduced Grøstl Hash Function. In: Pieprzyk (ed.) [37], pp. 350–365

29. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard (ed.) [8], pp. 428–
446

30. Minier, M., Phan, R.C.-W., Pousse, B.: Distinguishers for Ciphers and Known Key
Attack against Rijndael with Large Blocks. In: Preneel (ed.) [38], pp. 60–76

31. National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard
(April 1995), http://csrc.nist.gov

32. National Institute of Standards and Technology. FIPS PUB 197, Advanced En-
cryption Standard (AES). Federal Information Processing Standards Publication
197, U.S. Department of Commerce (November 2001)

390 T. Peyrin

33. National Institute of Standards and Technology. Announcing Request for Candidate
Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family.
Federal Register 27(212), 62212–62220 (November 2007), http://csrc.nist.gov/
groups/ST/hash/documents/FR_Notice_Nov07.pdf (2008/10/17)

34. Nguyên, P.Q. (ed.): VIETCRYPT 2006. LNCS, vol. 4341. Springer, Heidelberg
(2006)

35. Peyrin, T.: Cryptanalysis of Grindahl. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 551–567. Springer, Heidelberg (2007)

36. Peyrin, T.: Improved Differential Attacks for ECHO and Grostl. Cryptology ePrint
Archive, Report 2010/223 (2010), http://eprint.iacr.org/

37. Pieprzyk, J. (ed.): CT-RSA 2010. LNCS, vol. 5985. Springer, Heidelberg (2010)
38. Preneel, B. (ed.): AFRICACRYPT 2009. LNCS, vol. 5580. Springer, Heidelberg

(2009)
39. RIPE. Integrity Primitives for Secure Information Systems. In: Bosselaers, A., Pre-

neel, B. (eds.) RIPE 1992. LNCS, vol. 1007. Springer, Heidelberg (1995)
40. Rogaway, P.: Formalizing Human Ignorance. In: Nguyen (ed.) [34], pp. 211–228
41. Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992), http:

//www.ietf.org/rfc/rfc1321.txt

42. Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)
43. Wagner, D.: A Generalized Birthday Problem. In: Yung (ed.) [46], pp. 288–303
44. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup (ed.)

[42], pp. 17–36
45. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer (ed.)

[9], pp. 19–35
46. Yung, M. (ed.): CRYPTO 2002. LNCS, vol. 2442. Springer, Heidelberg (2002)

Appendix A: The Amount of Freedom Degrees

Once a differential path settled, a point has to be clarified: the amount of freedom
degrees available to the attacker. Indeed, one has to evaluate how much valid
pairs can be found for the whole differential trail. We want to ensure that enough
solutions for the controlled rounds exist so that we have a good probability that
at least one of them will fulfill the entire differential characteristic. Moreover,
when searching for semi-free-start collisions, we may even go further since we
may require an important amount of valid candidates for the entire differential
path.

Freedom Degrees for ECHO

We use the same counting reasoning than in [15], except that we have to precisely
evaluate what is the freedom degrees consumption for the various 2 AES-round
differential transitions as well (in [15] it was implicitly assumed that all the BIG
SubBytes transitions were F → F, thus happening with probability very close
to 1 and consuming no freedom degrees). For example, let us take the D → 1
transition through the BIG SubBytes in the forward direction: we require one
AES MixColumns transition 4 → 1 which happens with probability 2−24. Thus,
if we have k valid candidates on the input, we obtain k × 2−24 valid candidates

Improved Differential Attacks for ECHO and Grøstl 391

on the output of this layer and we consumed 224 freedom degrees. The amount
of freedom degrees consumed during a transition is the invert of the probability
of success of this transition. Thus, with Table 2, it is very easy to compute the
freedom degrees consumption for all the AES round transitions considered so far.

We illustrate the counting method by applying it to the example of the 7-
round path from Figure 3. First, note that the start-from-the-middle attack will
find all the possible internal states such that the controlled rounds are veri-
fied. We start from state B.MCin

3 (located between B.ShR3 and B.MC3). This
state is fully active which means that we can start with 22048×2−1 = 24095 dis-
tinct pairs. When going forward, the B.MC3 transition happens with probability
2−4×24×16 = 2−1536 and the transition through B.MC4 happens with probability
2−24×16 = 2−384. All the other layers are verified with probability one so the
forward computation consumes 21536+384 = 21920 freedom degrees. Then, during
the backward computation, the sixteen C ← F ← F transitions through B.SB3
happen with probability 2−16×96 = 2−1536 according to Table 2 (C ← F with
probability 2−96 and F ← F with probability 1). Also, the four D ← 1 ← C
transitions through B.SB2 happen with probability 2−4×24 = 2−96 (D ← 1 with
probability 1 and 1 ← C with probability 2−24). Then, the BIG MixColumns
transitions through B.MC2 are verified with probability 2−4×4×24 = 2−384 and
through B.MC1 with probability 2−4×24 = 2−96. All the other layers in the back-
ward direction are verified with probability one. Overall, the backward computa-
tion consumes 21536+384+96+96 = 22112 freedom degrees. We can finally conclude
that we started with 24095 pairs from which only a factor 2−1920−2112 = 2−4032

will be valid for the whole differential path. One can then generate 263 distinct
valid pairs for the 7-round path from Figure 3.

Note that the differential paths we use are just instances among a family
of good differential trails. For example, in the case of the 7-round path from
Figure 3, instead of placing the active word on the top left position of B.MCout

0
(between B.MC0 and B.SB1), one could place it in the 15 others locations. Those
new paths present the same properties than the original one and this reasoning
also applies to the active word located in B.MCout

4 (between B.MC4 and B.SB5).
As a consequence, the attacker manages 162 = 28 different core paths which
provides him 28 additional freedom degrees.

Finally, some additional freedom degrees can be obtained if one considers that
the salt value can be fully controlled by the attacker. While this scenario is not
very relevant in practice, it is interesting to see what the attacker is able to do
in such a situation. In the case of ECHO, the salt value is 128-bit long and it then
directly adds 2128 supplementary freedom degrees. To conclude, the attacker
can generate 271 distinct valid pairs for 7-round paths like the one depicted in
Figure 3, and 2199 if he controls the salt. The same method is used for all the
differential trails for ECHO considered in this article.

Freedom Degrees for Grøstl

The case of Grøstl is easier to analyze since we don’t have to handle word-wise
and byte-wise truncated differentials at the same time. Yet, the same counting

392 T. Peyrin

technique can be applied. Interestingly, for all the paths we provided concerning
Grøstl, an attacker can expect only one solution for the whole trail with good
probability. This explains why one can not really hope for a semi-free-start col-
lision attack on reduced versions of Grøstl (such as 7 or 8-round versions) with
the paths given. Or, said in other words, a semi-free-start collision attack may
be mounted, but will only work with a low probability.

As an example, we provide here the freedom degrees analysis for the 10-
round differential path from Figure 5. By starting from the fully active internal
state located at the output of MC4, we begin with about 2512×2−1 = 21023

distinct pairs of internal state values. When going forward, the first freedom
degrees consuming operation is the MC5 transition which happens with prob-
ability 2−7×56−48 = 2−440. Then, one byte is erased during AC6 while the
transition through MC6 happens with probability 2−48 and in total this round
consumes 28+48 = 256 freedom degrees. Finally, the last consuming operation
when computing forward is AC7 for which two bytes have to be erased (216).
When computing backward, the MixColumns functions MC3 and MC2 requires
248×8 = 2384 and 22×56 = 2112 freedom degrees respectively. Then, two bytes are
erased through AC2 and all the other differential transitions consume nothing
since they are deterministic. Finally, we started with 21023 freedom degrees from
which only a fraction 2440+8+48+16+384+112+16 = 21024 will verify the whole dif-
ferential path. Thus, since this reasoning is done on average, an attacker has a
good probability to obtain one single solution for the whole differential path.

Of course, one may argue that the attacker should have one more freedom
degree to perform the attack. Yet, note that until really performed, most hash
function attacks only have a certain success probability to actually find a solu-
tion. For example, in the case of SHA-1, even if very low, there is a probability
that the known collision attacks eventually provide no solution. Therefore, with
only a single freedom degree missing, we believe that the success probability
is far sufficiently high in order to consider the attack as valid. Finally, if one
really wants to increase this probability, additional freedom degrees could be
found by defining a small family of Grøstl compression functions as explained
in Section 4.3.

A Practical-Time Related-Key Attack on the
KASUMI Cryptosystem Used in GSM and 3G

Telephony

Orr Dunkelman, Nathan Keller�, and Adi Shamir

Faculty of Mathematics and Computer Science
Weizmann Institute of Science

P.O. Box 26, Rehovot 76100, Israel
{orr.dunkelman,nathan.keller,adi.shamir}@weizmann.ac.il

Abstract. The privacy of most GSM phone conversations is currently
protected by the 20+ years old A5/1 and A5/2 stream ciphers, which
were repeatedly shown to be cryptographically weak. They will soon be
replaced by the new A5/3 (and the soon to be announced A5/4) algo-
rithm based on the block cipher KASUMI, which is a modified version of
MISTY. In this paper we describe a new type of attack called a sandwich
attack, and use it to construct a simple distinguisher for 7 of the 8 rounds
of KASUMI with an amazingly high probability of 2−14. By using this
distinguisher and analyzing the single remaining round, we can derive
the complete 128 bit key of the full KASUMI by using only 4 related
keys, 226 data, 230 bytes of memory, and 232 time. These complexities
are so small that we have actually simulated the attack in less than two
hours on a single PC, and experimentally verified its correctness and
complexity. Interestingly, neither our technique nor any other published
attack can break MISTY in less than the 2128 complexity of exhaustive
search, which indicates that the changes made by ETSI’s SAGE group
in moving from MISTY to KASUMI resulted in a much weaker cipher.

1 Introduction

The privacy and security of GSM cellular telephony is protected by the A5 family
of cryptosystems. The first two members of this family, A5/1 (developed primar-
ily for European markets) and A5/2 (developed primarily for export markets)
were designed in the late 1980’s in an opaque process and were kept secret until
they were reverse engineered in 1999 from actual handsets [14]. Once published,
it became clear that A5/2 provided almost no security, and A5/1 could be at-
tacked with practical complexity by a variety of techniques (e.g., [2,12,16]). The
most recent attack was announced in December 2009, when a team of cryptog-
raphers led by Karsten Nohl [1] published a 2 terabyte rainbow table for A5/1,
which makes it easy to derive the session key of any particular conversation with
minimal hardware support.
� The second author was partially supported by the Koshland center for basic research.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 393–410, 2010.
c© International Association for Cryptologic Research 2010

394 O. Dunkelman, N. Keller, and A. Shamir

In response to these developments, the GSM Association had stated in [26]
that they might speed up their transition to a new cryptosystem called A5/3,
and they plan to discuss this matter in a meeting that was held in February 2010.
This algorithm was developed for GSM telephony in 2002, and its specifications
were published in 2003 [24]. It is already implemented in about 40% of the three
billion available handsets, but very few of the 800 mobile carriers in more than
200 countries which currently use GSM cellular telephony have switched so far
to the new standard. Once adopted, A5/3 will become one of the most widely
used cryptosystems in the world, and its security will become one of the most
important practical issues in cryptography.

The core of the A5/3 cryptosystem, as well as of the UAE1 cryptosystem
(which replaces A5/3 in the third generation telephony networks), is the KA-
SUMI block cipher, which is based on the MISTY block cipher which was pub-
lished at FSE 1997 by Matsui [22]. MISTY has 64-bit blocks, 128-bit keys, and a
complex recursive Feistel structure with 8 rounds, each one of which consists of
3 rounds, each one of which has 3 rounds of nonlinear SBox operations. MISTY
has provable security properties against various types of attacks, and no attack is
known on its full version. The best published attack can be applied to a 6-round
reduced variant of the 8-round MISTY, and has a completely impractical time
complexity of more than 2123 [15]. However, the designers of A5/3 decided to
make MISTY faster and more hardware-friendly by simplifying its key schedule
and modifying some of its components. In [25], the designers provide a ratio-
nale for each one of these changes, and in particular they analyze the resistance
of KASUMI against related-key attacks by stating that “removing all the FI
functions in the key scheduling part makes the hardware smaller and/or reduces
the key set-up time. We expect that related key attacks do not work for this
structure”. The best attack found by the designers and external evaluators of
KASUMI is described as follows:

“There are chosen plaintext and/or related-key attacks against KASUMI
reduced to 5 rounds. We believe that with further analysis it might be
possible to extend some attacks to 6 rounds, but not to the full 8 round
KASUMI.”

The existence of better related-key attacks on the full KASUMI was already
shown in [8,21]. Their attack had a data complexity of 254.6 and time complex-
ity of 276.1, which are impractical but better than exhaustive search. In this
paper we develop a new attack, which requires only 4 related keys, 226 data, 230

bytes of memory, and 232 time. Since these complexities are so low, we could
verify our attack experimentally, and our unoptimized implementation on a sin-
gle PC recovered about 96 key bits in a few minutes, and the complete 128 bit
key in less than two hours. Careful analysis of our attack technique indicates
that it can not be applied against the original MISTY, since it exploits a se-
quence of coincidences and lucky strikes which were created when MISTY was
changed to KASUMI by ETSI’s SAGE group. This calls into question both the
design of KASUMI and its security evaluation against related-key attacks. How-
ever, we would like to emphasize that even though our attack on the underlying

A Practical-Time Related-Key Attack on the KASUMI Cryptosystem 395

cryptosystem has a practical time complexity, we do not claim that we can prac-
tically apply such a related key attack to the way KASUMI is used in the f8 and
f9 modes of operation in cellular telephony.

We use a new type of attack which is an improved version of the boomerang
attack introduced in [27]. We call it a “sandwich attack”, since it uses a dis-
tinguisher which is divided into three parts: A thick slice (“bread”) at the top,
a thin slice (“meat”) in the middle, and a thick slice (“bread”) at the bottom.
The top and bottom parts are assumed to have high probability differential
characteristics, which can be combined into consistent quartet structures by
the standard boomerang technique. However, in our case they are separated by
the additional middle slice, which can significantly reduce the probability of the
resulting boomerang structure. Nevertheless, as we show in this paper, careful
analysis of the dependence between the top and bottom differentials allows us in
some cases to combine the two properties above and below the middle slice with
an enhanced probability. In particular, we show that in the case of KASUMI we
can use top and bottom 3-round differential characteristics with an extremely
high probability of 2−2 each, and combine them via a middle 1-round slice in
such a way that the “price in probability” of the combination is 2−6, instead
of the 2−32 we would expect from a naive analysis. This increases the proba-
bility of our 7-round distinguisher from 2−40 to 2−14, and has an even bigger
impact on the amount of data and the time complexity of the attack due to the
quadratic dependence of the number of cases we have to sample on the distin-
guishing probability. Such a three level structure was used in several previous
attacks such as [10,11] (where it was called the “Feistel switch” or the “middle
round S-box trick”), but to the best of our knowledge it was always used in the
past in simpler situations in which the transition probability through the mid-
dle layer (in at least one direction) was 1 due to the structural properties of a
single Feistel round, or due to the particular construction of a given SBox. Our
sandwich attack is the first nontrivial application of such a structure, and the
delicacy of the required probabilistic analysis is demonstrated by the fact that a
tiny change in the key schedule of KASUMI (which has no effect on the differ-
ential probabilities of the top and bottom layers) can change the probability of
the transition in the middle of the distinguisher from the surprisingly high value
of 2−6 to 0.

This paper is organized as follows: Section 2 describes the new sandwich
attack, and discusses the transition between the top and bottom parts of the
cipher through the middle slice of the sandwich. Section 3 describes the KASUMI
block cipher. Section 4 describes our new 7-round distinguisher for KASUMI
which has a probability of 2−14. In Section 5 we use the new distinguisher to
develop a practical-time key recovery attack on the full KASUMI cryptosystem.

2 Sandwich Attacks

In this section we describe the technique used in our attacks on KASUMI. We
start with a description of the basic (related-key) boomerang attack, and then

396 O. Dunkelman, N. Keller, and A. Shamir

we describe a new framework, which we call a (related-key) sandwich attack, that
exploits the dependence between the underlying differentials to obtain a more
accurate estimation of the probability of the distinguisher. We note that the idea
of using dependence between the differentials in order to improve the boomerang
distinguisher was implicitly proposed by Wagner [27], and was also used in some
simple scenarios in [10,11]. Therefore, our framework can be considered as a
formal treatment and generalization of the ideas proposed in [10,11,27].

2.1 The Basic Related-Key Boomerang Attack

The related-key boomerang attack was introduced by Kim et al. [20,18], and
independently by Biham et al. [7], as a combination of the boomerang attack [27]
and the related-key differential attack [19]. In this attack, the cipher is treated as
a cascade of two sub-ciphers E = E1 ◦E0, and related-key differentials of E0 and
E1 are combined into an adaptive chosen plaintext and ciphertext distinguisher
for E.

Let us assume that there exists a related-key differential α→ β for E0 under
key difference ΔKab with probability p. (i.e., Pr[E0(K)(P)⊕E0(K⊕Kab)(P⊕α) =
β] = p, where E0(K) denotes encryption through E0 under the key K). Similarly,
we assume that there exists a related-key differential γ → δ for E1 under key
difference ΔKac with probability q. The related-key boomerang distinguisher
requires encryption/decryption under the secret key Ka, and under the related-
keys Kb = Ka ⊕ΔKab, Kc = Ka ⊕ΔKac, and Kd = Kc ⊕ΔKab = Kb ⊕ΔKac.

A boomerang quartet is generated by picking a plaintext Pa at random, and
asking for its encryption under Ka, namely, Ca = EKa(Pa). Then, Pb = Pa⊕α is
encrypted under Kb to obtain Cb = EKb

(Pb). Two new ciphertexts are computed,
Cc = Ca ⊕ δ and Cd = Cb ⊕ δ. Then, Cc is decrypted under Kc, and Cd is
decrypted under Kd, i.e., Pc = E−1

Kc
(Cc) and Pd = E−1

Kd
(Cd). If Pc ⊕ Pd = α,

a right boomerang quartet is found. The left side of Figure 1 describes such a
right related-key boomerang quartet.

For a random permutation the probability that the last condition is satisfied
is 2−n, where n is the block size. For E, the probability that the pair (Pa, Pb)
is a right pair with respect to the first differential (i.e., the probability that
the intermediate difference after E0 equals β) is p. Assuming independence, the
probability that both pairs (Ca, Cc) and (Cb, Cd) are right pairs with respect to
the second differential is q2. If all these are right pairs, then E−1

1 (Cc)⊕E−1
1 (Cd) =

β = E0(Pc) ⊕ E0(Pd). Thus, with probability p, Pc ⊕ Pd = α. Hence, the total
probability of this quartet of plaintexts and ciphertexts to satisfy the condition
Pc ⊕ Pd = α is at least (pq)2. Therefore, if pq 2−n/2, the algorithm above
allows to distinguish E from a random permutation given O((pq)−2) adaptively
chosen plaintexts and ciphertexts.

The distinguisher can be improved by considering multiple differentials of the
form α → β′ and γ′ → δ (for the same α and δ). We omit this improvement
here since it is not used in our attack on KASUMI, and refer the reader to [7]. For

A Practical-Time Related-Key Attack on the KASUMI Cryptosystem 397

a rigorous treatment of the related-key boomerang attack, including a discussion
of the independence assumptions the attack relies upon, we refer the interested
reader to [21,23].

2.2 Related-Key Sandwich Attacks

In this framework we consider the cipher as a cascade of three sub-ciphers:
E = E1 ◦M ◦ E0. Our assumptions are the same as in the basic attack: We
assume that there exists a related-key differential α → β for E0 under key
difference ΔKab with probability p, and a related-key differential γ → δ for
E1 under key difference ΔKac with probability q. The attack algorithm is also
exactly the same as in the basic attack (ignoring the middle sub-cipher M).
However, the analysis is more delicate and requires great care in analyzing the
dependence between the various distributions.

The main idea behind the sandwich attack is the transition in the middle. In
the basic boomerang attack, if the pair (Pa, Pb) is a right pair with respect to
the first differential, and both pairs (Ca, Cc) and (Cb, Cd) are right pairs with
respect to the second differential, then we have

(Xa ⊕Xb = β) ∧ (Xa ⊕Xc = γ) ∧ (Xb ⊕Xd = γ), (1)

where Xi is the intermediate encryption value of Pi, and thus

Xc ⊕Xd = (Xc ⊕Xa)⊕ (Xa ⊕Xb)⊕ (Xb ⊕Xd) = β ⊕ γ ⊕ γ = β, (2)

resulting in Pc ⊕ Pd = α with probability p (see Figure 1).
In the new sandwich framework, instead of condition (1), we get

(Xa ⊕Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ). (3)

Therefore, the probability of the three-layer related-key boomerang distinguisher
is p2q2r, where

r = Pr
[
(Xc ⊕Xd = β)

∣∣∣(Xa ⊕Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ)
]
. (4)

Without further assumptions on M , r is expected to be very low (close to 2−n),
and thus the distinguisher is expected to fail. However, as observed in [10,11,27],
in some cases the differentials in E0 and E1 can be chosen such that the proba-
bility penalty r in going through the middle sub-cipher (in at least one direction)
is 1, which is much higher than expected.

An example of this phenomenon, introduced in [27] and described in [11]
under the name “Feistel switch”, is the following. Let E be a Feistel cipher,
decomposed as E = E1 ◦M ◦ E0, where M consists of one Feistel round (see
Figure 2). Assume that the differentials α→ β (for E0) and γ → δ (for E1) have
no key difference (i.e., ΔKab = ΔKac = 0), and satisfy βR = γL (i.e., the right
half of β equals the left half of γ). We would like to compute the value of r.

398 O. Dunkelman, N. Keller, and A. Shamir

Pa

Pb

Xa

Xb

Ya

Yb

Ca

Cb

Pc

Pd

Xc

Xd

Yc

Yd

Cc

Cd

α

β

α

β

γ

γ

δ

δ

E0

E1

M

E0

E1

M

Ka Kc

Kb Kd

A Related-Key Sandwich Quartet

Pa

Pb

Xa

Xb

Ca

Cb

Pc

Pd

Xc

Xd

Cc

Cd

α

β

α

β

γ

γ

δ

δ

E0

E1

E0

E1

Ka Kc

Kb Kd

A Related-Key Boomerang Quartet

Fig. 1. Related-Key Boomerang and Sandwich Quartets

F� � �

F ���

F� � �

O XR

Y R

XL

Y L

}M

Fig. 2. A Feistel construction. M is the second round

Assume that condition (3) holds. In this case, by the Feistel construction,
XR

i = Y L
i for all i, we have

XR
a ⊕XR

b = βR = γL = XR
a ⊕XR

c = XR
b ⊕XR

d , (5)

and thus,
(XR

a = XR
d) and (XR

b = XR
c). (6)

Therefore, the output values of the F-function in the Feistel round represented
by M , denoted by (Oa,Ob,Oc,Od), satisfy

(Oa = Od) and (Ob = Oc).

Since by the Feistel construction, XL
i = Y R

i ⊕Oi and by condition (3), Ya⊕Yb⊕
Yc ⊕ Yd = 0 , it follows that

Xa ⊕Xb ⊕Xc ⊕Xd = 0,

which by condition (3) implies Xc ⊕Xd = β. Thus, in this case we get

A Practical-Time Related-Key Attack on the KASUMI Cryptosystem 399

r = Pr
[
(Xc ⊕Xd = β)

∣∣∣(Xa ⊕Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ)
]

= 1,

independently of the choice of the F-function used.
Other examples of the same phenomenon are considered in [10] (under the

name “middle round S-box trick”), and in [11] (under the names “ladder switch”
and “S-box switch”). All these examples are methods for r = 1.

Our attack on KASUMI is the first non-trivial example of this phenomenon
in which a careful analysis shows that r is smaller than 1, but much larger than
its expected value under the standard independence assumptions. In our attack,
the cipher E (7-round KASUMI) is a Feistel construction, M consists of a single
round, and β = γ. However, the argument presented above cannot be applied
directly since there is a non-zero key difference in M , and thus a zero input
difference to the F-function does not imply zero output difference. Instead, we
analyze the F-function thoroughly and show that in this case, r = 2−6 (instead of
2−32, which is the expected value for a random Feistel round in a 64-bit cipher).

Remark 1. We note that our treatment of the sandwich distinguisher allows us to
specify the precise independence assumptions we rely upon. Since r is defined as
a conditional probability, the only independence assumptions we use are between
the differentials of E0 and E1, and thus the formula p2q2r relies on exactly the
same assumptions as the ordinary boomerang attack. Moreover, in our case the
assumptions seem more likely to hold since the insertion of M in the middle
decreases the potential dependencies between the differentials for E0 and the
differentials for E1. In [10,11,27], this situation was treated as a “trick” allowing
to increase the probability of the distinguisher, or in other words, as a failure of
the formula p2q2 in favor of the attacker. This approach is problematic since once
we claim that the entire formula does not hold due to dependencies, we cannot
rely on independence assumptions in other places where such dependencies were
not found yet.

3 The KASUMI Block Cipher

KASUMI [24] is a 64-bit block cipher with 128-bit keys. It has a recursive Feistel
structure, following its ancestor MISTY. The cipher has eight Feistel rounds,
where each round is composed of two functions: the FO function which is in
itself a 3-round 32-bit Feistel construction, and the FL function that mixes a
32-bit subkey with the data in a linear way. The order of the two functions
depends on the round number: in the even rounds the FO function is applied
first, and in the odd rounds the FL function is applied first.

The FO function also has a recursive structure: its F -function, called FI, is
a four-round Feistel construction. The FI function uses two non-linear S-boxes
S7 and S9 (where S7 is a 7-bit to 7-bit permutation and S9 is a 9-bit to 9-bit
permutation), and accepts an additional 16-bit subkey, which is mixed with the
data. In total, a 96-bit subkey enters FO in each round — 48 subkey bits are
used in the FI functions and 48 subkey bits are used in the key mixing stages.

400 O. Dunkelman, N. Keller, and A. Shamir

�

�

KASUMI

�FO8�FL8��
�

KL8 KO8, KI8

�

� FL7 � FO7 � �
�

KL7 KO7, KI7

�

�FO6�FL6��
�

KL6 KO6, KI6

�

� FL5 � FO5 � �
�

KL5 KO5, KI5

�

�FO4�FL4��
�

KL4 KO4, KI4

�

� FL3 � FO3 � �
�

KL3 KO3, KI3

�

�FO2�FL2��
�

KL2 KO2, KI2

�

� FL1 � FO1 � �
�

KL1 KO1, KI1

�

�

FL function

��<<< ∪� �
KLi,2

� �<<<∩ ��
KLi,1

�

�

FO function

�

�������

�������

�
�

�

FIi,3

�

�

� KIi,3

� KOi,3

�

�������

�������

�
�

�

FIi,2

�

�

� KIi,2

� KOi,2

�

�������

�������

�
�

�

FIi,1

�

�

� KIi,1

� KOi,1

� �

�

S9
���
�������

�������
�

S7
���

�
��KIi,j,2

�� KIi,j,1

�������

�������
�

S9
���
�������

�������
�

S7
���

�

FI function

∩
bitwise AND

∪
bitwise OR

<<<
rotate left by one bit

Fig. 3. Outline of KASUMI

Table 1. KASUMI’s Key Schedule Algorithm

Round KLi,1 KLi,2 KOi,1 KOi,2 KOi,3 KIi,1 KIi,2 KIi,3

1 K1 ≪ 1 K′
3 K2 ≪ 5 K6 ≪ 8 K7 ≪ 13 K′

5 K′
4 K′

8

2 K2 ≪ 1 K′
4 K3 ≪ 5 K7 ≪ 8 K8 ≪ 13 K′

6 K′
5 K′

1

3 K3 ≪ 1 K′
5 K4 ≪ 5 K8 ≪ 8 K1 ≪ 13 K′

7 K′
6 K′

2

4 K4 ≪ 1 K′
6 K5 ≪ 5 K1 ≪ 8 K2 ≪ 13 K′

8 K′
7 K′

3

5 K5 ≪ 1 K′
7 K6 ≪ 5 K2 ≪ 8 K3 ≪ 13 K′

1 K′
8 K′

4

6 K6 ≪ 1 K′
8 K7 ≪ 5 K3 ≪ 8 K4 ≪ 13 K′

2 K′
1 K′

5

7 K7 ≪ 1 K′
1 K8 ≪ 5 K4 ≪ 8 K5 ≪ 13 K′

3 K′
2 K′

6

8 K8 ≪ 1 K′
2 K1 ≪ 5 K5 ≪ 8 K6 ≪ 13 K′

4 K′
3 K′

7

(X ≪ i) — X rotated to the left by i bits.

The FL function accepts a 32-bit input and two 16-bit subkey words. One
subkey word affects the data using the OR operation, while the second one affects
the data using the AND operation. We outline the structure of KASUMI and
its parts in Fig. 3.

A Practical-Time Related-Key Attack on the KASUMI Cryptosystem 401

The key schedule of KASUMI is much simpler than the original key schedule
of MISTY, and the subkeys are linearly derived from the key. The 128-bit key K
is divided into eight 16-bit words: K1,K2, . . . ,K8. Each Ki is used to compute
K ′

i = Ki⊕Ci, where the Ci’s are fixed constants (we omit these from the paper,
and refer the intrigued reader to [24]). In each round, eight words are used as the
round subkey (up to some in-word rotations). Hence, each 128-bit round subkey
is a linearly modified version of the secret key. We summarize the details of the
key schedule of KASUMI in Table 1.

4 A Related-Key Sandwich Distinguisher for 7-Round
KASUMI

4.1 The New Distinguisher

In our distinguisher, we treat rounds 1–7 of KASUMI as a cascade E = E1 ◦M ◦
E0, where E0 consists of rounds 1–3, M consists of round 4, and E1 consists of
rounds 5–7. The related-key differential we use for E0 is a slight modification of
the differential characteristic presented in [13], in which

α = (0x, 0010 0000x)→ (0x, 0010 0000x) = β.

The corresponding key difference is ΔKab = (0, 0, 8000x, 0, 0, 0, 0, 0), i.e., only
the third key word has the single bit difference ΔK3 = 8000x. This related-key
differential is depicted in Figure 4. The related-key differential we use for E1 is
the same differential shifted by four rounds, in which the data difference is the
same, but the key difference is ΔKac = (0, 0, 0, 0, 0, 0, 8000x, 0) (to handle the
different subkeys used in these rounds).

As shown in [13], the probability of each one of of these 3-round differential
characteristics is 1/4. In order to find the probability of the related-key sandwich
distinguisher, we have to compute the probability

Pr
[
(Xc ⊕Xd = β)

∣∣∣(Xa ⊕Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ)
]
, (7)

where (Xa, Xb, Xc, Xd) and (Ya, Yb, Yc, Yd) are the intermediate values before
and after the middle slice of the sandwich during the encryption/decryption of
the quartet (Pa, Pb, Pc, Pd) (see the right side of Figure 1). This computation,
which is a bit complicated, spans the rest of this subsection.

Consider a quartet (Pa, Pb, Pc, Pd) for which the condition

(Xa ⊕Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ) (8)

is satisfied. As explained in Section 2, since M is a single Feistel round, this
implies that

(XR
a = XR

d) ∧ (XR
b = XR

c), (9)

where XR
i denotes the right half of Xi that enters the function FO4. Moreover,

as the right quarter of the differences β = γ is zero, we have

402 O. Dunkelman, N. Keller, and A. Shamir

�

�

� FL3 � FO3 � �
�

KL3 KO3, KI3

�

�FO2�FL2��
�

KL2 KO2, KI2

�

� FL1 � FO1 � �
�

KL1 KO1, KI1

�

0 0010 0000x

0
0

0010 0000x

0

0
0

0 0010 0000x

p = 1/2

p = 1

p = 1/2

Fig. 4. 3-Round Related-Key Differential Characteristic of KASUMI

XRR
a = XRR

b = XRR
c = XRR

d , (10)

where XRR
i denotes the right half (i.e., the 16 right bits) of XR

i .
Consider now the computation depicted in Figure 5. The function FO4 is a

3-round Feistel construction whose 32-bit values after round j are denoted by
(Xj

a, X
j
b , X

j
c , X

j
d), and the function FI is a 4-round Feistel construction whose

16-bit values after round j are denoted by (Ij
a, I

j
b , I

j
c , I

j
d). Note that the key

differences ΔKab and ΔKac affect in round 4 the subkeys KI4,3 and KI4,2,
respectively, and in particular, there is no key difference in the first round of
FO4. As a result, Equation (9) implies that

(X1
a = X1

d) ∧ (X1
b = X1

c). (11)

Furthermore, there is no key difference in the pairs corresponding to (Pa, Pb)
and (Pc, Pd) in the second round of FO4, and thus Equation (10) implies

(I2
a = I2

b) ∧ (I2
c = I2

d). (12)

Combining equations (11) and (12), as depicted in Figure 5, we get the following
relation in the right half of the intermediate values after round 3 of FO4:

X3R
a ⊕X3R

b ⊕X3R
c ⊕X3R

d = 0. (13)

In the F-function of round 3 of FO4 we consider the pairs corresponding to
(Pa, Pd) and (Pb, Pc). Since the key difference in these pairs (that equals Kab ⊕
Kac) affects only the subkey KI4,3,1, Equation (11) implies

I3R
a ⊕ I3R

b ⊕ I3R
c ⊕ I3R

d = 0 (14)

in the right hand side of the output. In the left hand side of the output, the XOR
of the four values is not necessarily equal to zero, due to the subkey difference
that affects the inputs to the second S7 in FI4,3. However, if these 7-bit inputs,
denoted by (Ja, Jb, Jc, Jd), satisfy one of the conditions:

((Ja = Jb) ∧ (Jc = Jd)) or ((Ja = Jc) ∧ (Jb = Jd)) , (15)

A Practical-Time Related-Key Attack on the KASUMI Cryptosystem 403

then Equation (14) implies

I3L
a ⊕ I3L

b ⊕ I3L
c ⊕ I3L

d = 0. (16)

Since we have Ja ⊕ Jd = Jb ⊕ Jc (both are equal to the subkey difference in
KI4,3,1), each one of the two conditions in Equation (15) is expected to hold1

with probability 2−7. Therefore, combining Equations (13), (14), and (16) we
get that the condition

X3
a ⊕X3

b ⊕X3
c ⊕X3

d = 0 (17)

holds with probability 2−6.
Finally, since the FL function is linear for a given key and there is no key

difference in FL4, we can conclude that whenever Equation (17) holds, the
outputs of the F-function in round 4 (denoted by (O4

a, O
4
b , O

4
c , O

4
d)) satisfy

O4
a ⊕O4

b ⊕O4
c ⊕O4

d = 0 (18)

with probability 2−6. Since by condition (8),

Y L
a ⊕ Y L

b ⊕ Y L
c ⊕ Y L

d = 0,

it follows that
XL

a ⊕XL
b ⊕XL

c ⊕XL
d = 0 (19)

also holds with probability 2−6. Combining it with Equation (9) yields

Pr
[
(Xc ⊕Xd = β)

∣∣∣(Xa ⊕Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ)
]

= 2−6.

(20)
Therefore, the overall probability of the related-key sandwich distinguisher is

(1/4)2 · (1/4)2 · 2−6 = 2−14, (21)

which is much higher than the probability of (1/4)2 · (1/4)2 · 2−32 = 2−40 which
is expected by the naive analysis of the sandwich structure.

4.2 Experimental Verification

To verify the properties of the new distinguisher, we used the official code avail-
able as an appendix in [24]. The verification experiment was set up as follows: In
each test we randomly chose a key quartet satisfying the required key differences.
We then generated 216 quartets by following the boomerang procedure described
above. We utilized a slight improvement of the first differential suggested in [13]
that increases its probability in the encryption direction by a factor of 2 by fixing
the value of two plaintext bits. Hence, we expect the number of right quartets
in each test to be distributed according to a Poisson distribution with a mean
value of 216 · 2−14 · 2 = 8. We repeated the test 100,000 times, and obtained
a distribution which is extremely close to the expected distribution. The full
results are summarized in Table 3.
1 This estimate is based on a randomness assumption that could be inaccurate in

our case due to dependence between the differential characteristics. However, the
experiments presented below verify that this probability is indeed as expected.

404 O. Dunkelman, N. Keller, and A. Shamir

L
KO4,1

FI4,1 KI4,1

L

L
KO4,2

FI4,2 KI4,2

L

L
KO4,3

FI4,3 KI4,3

L

B

B

B

B B

p = 2−6

p = 1

p = 1

FO4

S9

L

S7

L

L
KI4,3,2L
KI4,3,1

S9

L

S7

L

B

B
B

p = 2−6

FI4,3

Values marked by the same color and style are equal. Values marked by B are balanced
(i.e., the XOR of all four values is 0). The values in FI4,3 which are either smooth gray
or smooth black suggest one of two possible cases.

Fig. 5. The Development of Differences in FO4 and in FI4,3

5 Related-Key Sandwich Attack on the Full KASUMI

Our attack on the full KASUMI (depicted in Figure 6) applies the distinguisher
presented in Section 4 to rounds 1–7, and retrieves subkey material in round 8.
Let ΔKab = (0, 0, 8000x, 0, 0, 0, 0, 0) and ΔKac = (0, 0, 0, 0, 0, 0, 8000x, 0), and
let Ka, Kb = Ka ⊕ ΔKab, Kc = Ka ⊕ ΔKac, and Kd = Kc ⊕ ΔKab be the
unknown related keys we wish to retrieve.

The attack algorithm is as follows:

1. Data Collection Phase:
(a) Choose a structure of 224 ciphertexts of the form Ca = (Xa, A), where

A is fixed and Xa assumes 224 arbitrary different values. Ask for the
decryption of all the ciphertexts under the key Ka and denote the plain-
text corresponding to Ca by Pa. For each Pa, ask for the encryption of
Pb = Pa ⊕ (0x, 0010 0000x) under the key Kb and denote the resulting
ciphertext by Cb. Store the pairs (Ca, Cb) in a hash table indexed by the
32-bit value CR

b (i.e., the right half of Cb).
(b) Choose a structure of 224 ciphertexts of the formCc =(Yc, A⊕0010 0000x),

where A is the same constant as before, and Yc assumes 224 arbitrary dif-
ferent values. Ask for the decryption of the ciphertexts under the key Kc

and denote the plaintext corresponding to Cc by Pc. For each Pc, ask for
the encryption of Pd = Pc⊕(0x, 0010 0000x) under the keyKd and denote

A Practical-Time Related-Key Attack on the KASUMI Cryptosystem 405

the resulting ciphertext by Cd. Then, access the hash table in the entry
corresponding to the value CR

d ⊕ 0010 0000x, and for each pair (Ca, Cb)
found in this entry, apply Step 2 on the quartet (Ca, Cb, Cc, Cd).

In the first step described above, the (224)2 = 248 possible quartets are filtered
according to a condition on the 32 difference bits which are known (due to the
output difference δ of the distinguisher), which leaves about 216 quartets with
the required differences.

In Step 2 we can identify the right quartets instantly using an extremely lucky
property of the KASUMI structure. We note that a pair (Ca, Cc) can be a right
quartet if and only if

CL
a ⊕ FL8(FO8(CR

a)) = CL
c ⊕ FL8(FO8(CR

c)), (22)

since by the Feistel structure, this is the only case of which the difference af-
ter round 7 is the output difference of the sandwich distinguisher (i.e., δ =
(0x, 0010 0000x)). However, the values CR

a and CR
c are fixed for all the consid-

ered ciphertexts, and hence Equation (22) yields

CL
a ⊕ CL

c = FL8(FO8(A))⊕ FL8(FO8(A⊕ 0010 0000x)) = const. (23)

Thus, the value CL
a ⊕ CL

c is equal for all the right quartets. This allows us to
perform the following simple filtering:

2. Identifying the Right Quartets:
(a) Insert the approximately 216 remaining quartets (Ca, Cb, Cc, Cd) into a

hash table indexed by the 32-bit value CL
a ⊕CL

c , and apply Step 3 only
to bins which contain at least three quartets.

Since the probability of a 3-collision in a list of 216 random 32-bit values is
lower than

(216

3

) ·2−64 ≤ 2−18, with very high probability only the right quartets
remain after this filtering.

In the following step, we treat all the remaining quartets as right quartets.
Under this assumption, we know not only the actual inputs to round 8, but also
the differences in the outputs of round 8.

3. Analyzing Right Quartets:
(a) For each remaining quartet (Ca, Cb, Cc, Cd), guess the 32-bit value of

KO8,1 and KI8,1. For the two pairs (Ca, Cc) and (Cb, Cd) use the value
of the guessed key to compute the input and output differences of the
OR operation in the last round of both pairs. For each bit of this 16-
bit OR operation of FL8, the possible values of the corresponding bit
of KL8,2 are given in Table 2. On average (8/16)16 = 2−16 values of
KL8,2 are suggested by each quartet and guess of KO8,1 and KI8,1.2

Since all the right quartets suggest the same key, all the wrong keys are
discarded with overwhelming probability, and the attacker obtains the
correct value of (KO8,1,KI8,1,KL8,2).

2 The simple proof of this claim is given in Section 4.3 of [8].

406 O. Dunkelman, N. Keller, and A. Shamir

Table 2. Possible Values of KL8,2 and KL8,1

OR — KL8,2 AND — KL8,1

(X ′
bd, Y ′

bd) (X ′
bd, Y ′

bd)
(X ′

ac, Y
′

ac) (0,0) (0,1) (1,0) (1,1) (X ′
ac, Y

′
ac) (0,0) (0,1) (1,0) (1,1)

(0,0) {0,1} — 1 0 (0,0) {0,1} — 0 1
(0,1) — — — — (0,1) — — — —
(1,0) 1 — 1 — (1,0) 0 — 0 —
(1,1) 0 — — 0 (1,1) 1 — — 1

∗ The two bits of the differences are denoted by (input difference, output difference):
(X ′

1, Y
′
1) for one pair and (X ′

2, Y
′
2) for the other pair.

Table 3. The Number of Right Quartets in 100,000 Experiments

Right Quartets 0 1 2 3 4 5 6 7 8

Theory (Poi(8)) 34 268 1,073 2,863 5,725 9,160 12,214 13,959 13,959

Experiment 32 259 1,094 2,861 5,773 9,166 12,407 13,960 13,956

Right Quartets 9 10 11 12 13 14 15 16 17

Theory (Poi(8)) 12,408 9,926 7,219 4,813 2,962 1,692 903 451 212

Experiment 12,230 9,839 7,218 4,804 3,023 1,672 859 472 219

Right Quartets 18 19 20 21 22 23 24 25

Theory (Poi(8)) 94 40 16 6 2 0.8 0.26 0.082

Experiment 89 39 13 12 2 0 0 1

(b) Guess the 32-bit value of KO8,3 and KI8,3, and use this information
to compute the input and output differences of the AND operation in
both pairs of each quartet. For each bit of the 16-bit AND operation of
FL8, the possible values of the corresponding bit of KL8,1 are given in
Table 2. On average (8/16)16 = 2−16 values of KL8,1 are suggested by
each quartet and guess of KO8,3, KI8,3, and thus the attacker obtains
the correct value of (KO8,3,KI8,3,KL8,1).

4. Finding the Right Key: For each value of the 96 bits of (KO8,1, KI8,1,
KO8,3, KI8,3, KL8,1 ,KL8,2) suggested in Step 3, guess the remaining 32
bits of the key, and perform a trial encryption.

The data complexity of the attack is 225 chosen ciphertexts and 225 adaptively
chosen plaintexts encrypted/decrypted under one of four keys. The time com-
plexity is dominated by the trial encryptions performed in step 4 to find the last
32 bits of the key, and thus it is approximately equal to 232 encryptions. The
probability of success is approximately 76% (this is the probability of having at
least three right pairs in the data pool).

The memory complexity of the attack is also very moderate. We just need to
store 226 plaintext/ciphertext pairs, where each pair takes 16 bytes. Hence, the
total amount of memory used in the attack is 230 bytes, i.e., 1 GByte of memory.

A Practical-Time Related-Key Attack on the KASUMI Cryptosystem 407

Table 4. The Number of Identified Right Quartets in 1,000 tests

Right Quartets 0/1/2 3 4 5 6 7 8 9 10 11 12

Theory (Poi(4)) 238 195 195 156 104 60 30 13 5 2 0.6

Experiment 247 197 180 167 112 52 30 7 4 3 1

� FL7 � FO7 � �
�

KL7 KO7, KI7

�

�FO6�FL6��
�

KL6 KO6, KI6

�

� FL5 � FO5 � �
�

KL5 KO5, KI5

�

�FO4�FL4��
�

KL4 KO4, KI4

�

� FL3 � FO3 � �
�

KL3 KO3, KI3

�

�FO2�FL2��
�

KL2 KO2, KI2

�

� FL1 � FO1 � �
�

KL1 KO1, KI1

�

� �

0 0010 0000x

0
0

0010 0000x

0

0
0

0 0010 0000x

0 0010 0000x

0
0

0010 0000x

0

0
0

0 0010 0000x

Fig. 6. The 7-Round Related-Key Sandwich Distinguisher of KASUMI

5.1 Experimental Verification

We performed two types of experiments to verify our attack. In the first experi-
ment, we just generated the required data, and located the right quartets (thus
verifying the correctness of our randomness assumptions). The second experi-
ment was the application of the full attack (both with and without the final
exhaustive search over the remaining 32 key bits). All our experiments were car-
ried out on an Intel Core Duo 2 machine with a T7200 CPU (2 GHz, 4 MB L2
Cache, 2 GB RAM, Linux-2.6.27 kernel, with gcc 4.3.2 and standard optimiza-
tion flags (-O3, -fomit-frame-pointers, -funroll-loops), single core, single
thread).

The first experiment was conducted 1,000 times. In each test, we gener-
ated the data and found candidate quartets according to Steps 1 and 2 of the

408 O. Dunkelman, N. Keller, and A. Shamir

attack algorithm. Once these were found, we partially decrypted the quartets,
and checked how many quartets were right ones. Table 4 details the outcome of
these experiments, which follow the expected distribution.

The second experiment simulated the full attack. We repeated it 100 times,
and counted in each case how many times the final exhaustive search over 232

possible keys would have been evoked. In 78 out of these 100 experiments, the
key was found when 3 or more quartets were identified to be right ones (the
expected number was 76.1).

About 50% of the tests were able to identify the right key by invoking either 2
or 4 exhaustive searches. As the first part of the attack (which identifies candidate
quartets) takes about 8 minutes, and each exhaustive search (using the official
KASUMI source code) takes about 26 minutes, we could find the full 128 bit
key in about 50% of our tests in less than 112 minutes (using a single core). It
is important to note that by increasing the running time, one can increase the
success rate of the attack without increasing its data requirements.

6 Summary

In this paper we develop a new sandwich attack on iterated block ciphers, and use
it to reduce the time complexity of the best known attack on the full KASUMI
from an impractical 276 to the very practical 232. However, the new attack uses
both related keys and chosen messages, and thus it might not be applicable to
the specific way in which KASUMI is used as the A5/3 encryption algorithm
in third generation GSM telephony. Our main point was to show that contrary
to the assurances of its designers, the transition from MISTY to KASUMI led
to a much weaker cryptosystem, which should be avoided in any application in
which related-key attacks can be mounted.

References

1. A5/1 Security Project, Creating A5/1 Rainbow Tables (2009),
http://reflextor.com/trac/a51

2. Barkan, E., Biham, E.: Conditional Estimators: an Effective Attack on A5/1. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 1–19. Springer,
Heidelberg (2006)

3. Barkan, E., Biham, E., Keller, N.: Instant Ciphertext-Only Cryptanalysis of GSM
Encrypted Communication. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 600–616. Springer, Heidelberg (2003)

4. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of
Cryptology 7(4), 229–246 (1994)

5. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack — Rectangling the
Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001)

6. Biham, E., Dunkelman, O., Keller, N.: New Results on Boomerang and Rectangle
Attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16.
Springer, Heidelberg (2002)

http://reflextor.com/trac/a51

A Practical-Time Related-Key Attack on the KASUMI Cryptosystem 409

7. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

8. Biham, E., Dunkelman, O., Keller, N.: A Related-Key Rectangle Attack on the
Full KASUMI. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 443–461.
Springer, Heidelberg (2005)

9. Biryukov, A.: The Boomerang Attack on 5 and 6-Round Reduced AES. In: Dob-
bertin, H., Rijmen, V., Sowa, A. (eds.) AES 2005. LNCS, vol. 3373, pp. 11–15.
Springer, Heidelberg (2005)

10. Biryukov, A., De Cannière, C., Dellkrantz, G.: Cryptanalysis of SAFER++. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 195–211. Springer, Heidelberg
(2003)

11. Biryukov, A., Khovratovich, D.: Related-key Cryptanalysis of the Full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

12. Biryukov, A., Shamir, A., Wagner, D.: Real Time Cryptanalysis of A5/1 on a PC.
In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 1–18. Springer, Heidelberg
(2001)

13. Blunden, M., Escott, A.: Related Key Attacks on Reduced Round KASUMI. In:
Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 277–285. Springer, Heidelberg
(2002)

14. Briceno, M., Goldberg, I., Wagner, D.: A Pedagogical Implementation of the GSM
A5/1 and A5/2 “voice privacy” encryption algorithms (1999),
http://cryptome.org/gsm-a512.htm

15. Dunkelman, O., Keller, N.: An Improved Impossible Differential Attack on
MISTY1. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 441–454.
Springer, Heidelberg (2008)

16. Ekdahl, P., Johansson, T.: Another Attack on A5/1. IEEE Transactions on Infor-
mation Theory 49(1), 284–289 (2003)

17. Golic, J.D.: Cryptanalysis of Alleged A5 Stream Cipher. In: Fumy, W. (ed.) EU-
ROCRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

18. Hong, S., Kim, J., Kim, G., Lee, S., Preneel, B.: Related-Key Rectangle Attacks
on Reduced Versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H.
(eds.) FSE 2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)

19. Kelsey, J., Schneier, B., Wagner, D.: Key Schedule Cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

20. Kim, J., Kim, G., Hong, S., Hong, D.: The Related-Key Rectangle Attack — Appli-
cation to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004)

21. Kim, J., Hong, S., Preneel, B., Biham, E., Dunkelman, O., Keller, N.: Related-Key
Boomerang and Rectangle Attacks, IACR ePrint report 2010/019

22. Matsui, M.: Block encryption algorithm MISTY. In: FSE 1997. LNCS, vol. 1267,
pp. 64–74. Springer, Heidelberg (1997)

23. Murphy, S.: The Return of the Boomerang, technical report RHUL-MA-2009-20,
Department of Mathematics, Royal Holloway, University of London (2009),
http://www.rhul.ac.uk/mathematics/techreports

http://cryptome.org/gsm-a512.htm
http://www.rhul.ac.uk/mathematics/techreports

410 O. Dunkelman, N. Keller, and A. Shamir

24. 3rd Generation Partnership Project, Technical Specification Group Services and
System Aspects, 3G Security, Specification of the 3GPP Confidentiality and In-
tegrity Algorithms; Document 2: KASUMI Specification, V3.1.1 (2001)

25. 3rd Generation Partnership Project, Technical Specification Group Services and
System Aspects, 3G Security, Specification of the A5/3 Encryption Algorithms for
GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS; Document 4:
Design and evaluation report, V6.1.0 (2002)

26. TECHNEWSWORLD, Hackers Jimmy GSM Cellphone Encryption (published
29/12/2009), http://www.technewsworld.com/rsstory/68997.html

27. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

http://www.technewsworld.com/rsstory/68997.html

Universally Composable Incoercibility�

Dominique Unruh1 and Jörn Müller-Quade2

1 Saarland University
2 Karlsruhe Institute of Technology (KIT)

Abstract. We present the UC/c framework, a general definition for
secure and incoercible multi-party protocols. Our framework allows
to model arbitrary reactive protocol tasks (by specifying an ideal
functionality) and comes with a universal composition theorem. We
show that given natural setup assumptions, we can construct incoercible
two-party protocols realising arbitrary functionalities (with respect to
static adversaries).

Keywords: Incoercibility, universal composability, voting.

1 Introduction

Commonly, security of a cryptographic protocol encompasses (very roughly) two
aspects: The protocol should guarantee that the private data of the parties
stays secret (privacy), and it should ensure that all data transferred or com-
puted is correct (integrity). Most security definitions ensure one or both of these
requirements, and many protocols are known to satisfy these definitions (e.g.,
[16,1,11,8,9]).

There is, however, a requirement that does not fall into either category: co-
ercion resistance (first noted by [17,2]). To illustrate this property, we use the
example of a voting scheme. In a voting scheme, it might be possible for a voter to
acquire a receipt that he cast a specific vote. This does not violate the anonymity
of the voter since the voter is not required to reveal or even acquire such a receipt.
Thus privacy is maintained. And getting a receipt does not allow to falsify the
outcome of the election. Thus the integrity of the scheme is maintained. Yet the
mere possibility of acquiring a receipt may make a party coercible. A coercive
adversary may threaten certain reprisals if the party does not cast a specific vote
and proves this by delivering a receipt to the adversary. Thus such an election
protocol would not be coercion resistant (short: incoercible).

Incoercibility is an important property in any setting in which some malicious
agent has the power to harm and thus threaten other protocol participants.
Clearly, this is not restricted to the setting of voting but may be the case in
other settings, too (e.g., when financial transactions are involved). Unfortunately,
incoercibility turns out to be both difficult to define and to achieve.
� Partially funded by the Cluster of Excellence “Multimodal Computing and Interac-

tion”.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 411–428, 2010.
c© International Association for Cryptologic Research 2010

412 D. Unruh and J. Müller-Quade

Previous definitions of incoercibility are usually restricted to special domains
such as voting (e.g., [2,19,13]). An exception are the models by Canetti and Gen-
naro [4] and by Moran and Naor [20] which give general definitions of incoercible
multi-party computation. Their definitions are, however, restricted to the case
of secure function evaluation. That is, they only consider protocols in which
all parties need to first contribute their inputs, and then from these inputs the
outputs for the parties are computed. Reactive protocols, protocols that have
multiple phases and where the inputs in one phase can depend on the outputs
of an earlier phase, are excluded. For example, the security of a commitment
protocol could not be modelled in their settings.

Besides the problem of reactive protocols, the issue of composability arises.
When building a complex protocol, it is often necessary to abstract from certain
subprotocols in the analysis to make the analysis manageable. For example, one
might first analyse the protocol assuming a perfectly secure mechanism for per-
forming commitments (modelled by a trusted machine), and then later on prove
the security of the subprotocol that is actually used for the commitments. To
do so, and also to have a guarantee that the protocol does not become insecure
when executed together with other protocols or instances of itself, one needs a
security notion that comes with a composition theorem.

In the case of normal secure multi-party computation (i.e., without incoercibil-
ity) both the problem of modelling reactive protocols and of giving strong compo-
sitionality guarantees has been solved by Canetti’s UC model [6]. In this model,
we can define a protocol task by specifying a trusted machine, the ideal function-
ality, which by definition performs the required protocol task. Since this machine
can interact with its environment in arbitrary ways, the security of very general
reactive protocols can be modelled. Furthermore, the UC model guarantees that
if a protocol is secure when using (as opposed to realising) an ideal function-
ality, then the protocol stays secure when instead of the ideal functionality, a
subprotocol that securely realises the ideal functionality is used. The UC model,
however, does not guarantee incoercibility.

Our contribution. We define the Composable Incoercibility framework (UC/c)
which is an extension of the UC framework. Like UC, UC/c allows to model very
general reactive protocol tasks and gives strong compositionality guarantees (uni-
versal composition). Additionally, protocols secure with respect to UC/c are in-
coercible. To illustrate the model, we show that a voting scheme that is UC/c
secure is also incoercible with respect to a definition tailored specifically to vot-
ing. Finally, we show that in the restricted case of static coercions/deceptions
(all corruptions and coercions happen at the beginning of the protocol), arbi-
trary UC/c secure two-party computation is possible assuming the availability
of secure channels.

Organisation. In Section 1.1, we explain the intuition behind the UC/c frame-
work. In Section 2 we define the UC/c framework and present the universal
composition theorem. In Section 3 we illustrate our model by applying it to the
setting of voting protocols. In Section 4 we present general feasibility results for
two-party protocols. In Section 5 we give directions for further work.

Universally Composable Incoercibility 413

1.1 The Intuition Behind UC/c

To understand the UC/c model, we first need to get an intuition of how inco-
ercibility is achieved. The goal of an incoercible protocol is the following: When
an adversary tries to coerce a party into performing a certain action (such as
casting a particular vote v∗), the party should be able to perform the action it
originally intended to perform (casting a vote v) without the adversary noticing.
That is, the adversary should not be able to tell the difference between a party P
that follows the adversary’s instructions (a corrupted party, casting the vote v∗)
and a party P that only tries to make the adversary believe that it follows the
adversary’s instructions (a deceiving party, casting the vote v and giving fake
evidence to the adversary that it cast the vote v∗).

The most natural way to define incoercibility would be to require that the
adversary cannot distinguish between a coerced and a deceiving party. This,
however, usually cannot be achieved. For example, in a voting protocol the ad-
versary will eventually learn the tally. The distribution of the tally will, since
there are only polynomially many voters, slightly but noticeably change when
the vote of P changes from v to v∗. The adversary can hence distinguish coerced
and deceiving parties by observing the tally.

Thus, we have to weaken the requirement. The adversary should not be able
to distinguish a coerced and a deceiving party any better than he could do given
only information that is “legally” available to him (the tally in our example). In
general, however, it is not straightforward to define what information is “legally”
available to the adversary in any particular situation. Neither is it straightfor-
ward to determine how much distinguishing advantage the adversary would get
given only that information.

In order to circumvent this problem, we use a slightly different approach:
We first define an ideal model in which the adversary has, by definition, only
access to the “legally” available information. In the case of voting, such an ideal
model would consist of a trusted machine (the ideal voting functionality F) that
collects the votes from all parties and gives only the tally to the adversary. In the
ideal model, the distinguishing advantage between a coerced party (that gives
v∗ to F) and a deceiving party (that gives v to F) is, by definition, exactly
the advantage the adversary gets from the “legally” available information (the
tally).

To make this definition more formal, we introduce an additional entity, the
deceiver [14]. The task of the deceiver is to instruct a deceiving party what it
should do (i.e., how to deceive the adversary). More formally, a deceiving party
will not run any program of its own, but instead follow the instructions of the
deceiver. (In a sense, the deceiver models the party’s free will.) In particular,
the deceiver may instruct a party to cast a vote v and to send to the adversary
the fake notification that it cast vote v∗. (Since we are in the ideal model, no
cryptographic receipts or similar need to be faked.) A corrupted party, on the
other hand, will follow the adversaries instructions.

414 D. Unruh and J. Müller-Quade

The combination of adversary and deceiver in the ideal model now allows to
model any coercion situation that can occur in the ideal model. To define what
it means that the real protocol is incoercible (or more precisely, as incoercible
as the ideal model), we will use the concept of simulation that underlies many
cryptographic definitions such as multi-party computation and zero-knowledge:
We show that for any adversary in the real model that performs some coer-
cion attack, there is another adversary in the ideal model (called the adversary-
simulator) that performs a corresponding attack with as much success. In other
words, we require that for any deceiver (specifying what a party would ideally
want to do), and for any adversary in the real model (trying to coerce parties),
there is an adversary-simulator in the ideal model such that the real and the
ideal model are indistinguishable.

We are, however, missing one ingredient: We need to specify how the ideal
deceptions (specified in terms of inputs to the ideal functionalities) translate
into real deceptions (specified in terms of faked messages etc.). This is done by
introducing a deceiver in the real model, too, called the deceiver-simulator. We
then require that for any deceiver in the ideal model (representing a possible
deception) there is a deceiver-simulator in the real model (that performs the
corresponding real deceptions) such that for any adversary in the real model
there is a adversary-simulator in the ideal model such that the two models are
indistinguishable.

Finally, to model the indistinguishability of the two models, we follow the ideas
from the UC framework and introduce a further machine, the environment, that
either communicates with the machines in the real model or with the machines
in the ideal model and that has to guess which model it is in. (For details on
how this indistinguishability actually ensures that the adversary’s advantage in
distinguishing corrupted and deceiving parties carries over from the ideal to the
real model we refer to the example in Section 3.)

1.2 Related Work

We are aware of only two works that tackle the problem of defining incoercibility
or a similar property in a general fashion (i.e., not specialised to a particular
protocol task such as voting).

Incoercible secure function evaluation (Canetti-Gennaro, Moran-
Naor). Canetti and Gennaro [4] present a model for defining incoercible secure
function evaluation which was subsequently refined by Moran and Naor [20].
The model by Moran and Naor is based on the so-called stand-alone model
[5,15, Ch. 7]. In this model, one assumes that the inputs of all honest parties are
fixed before the beginning of the protocol. This has several implications: First,
reactive protocols where parties may decide on their inputs in later phases can-
not be modelled. Second, when actually deploying the protocol, one would have
to ensure very strong synchronisation: In order not to introduce possibilities for

Universally Composable Incoercibility 415

attacks not covered by the model, we have to ensure that no protocol message is
sent until all honest parties have decided on their input. Third, the stand-alone
model only guarantees sequential composability.1 That is, we have no guarantee
that the protocol stays secure when running concurrently with other protocols
(which usually happens in real-life networks).

Since the model by Moran and Naor is based on the stand-alone model, in this
model coerced parties only need to lie about their initial inputs. Because of this,
Moran and Naor do not need to introduce an explicit deceiver; any deception a
party might want to perform can be encoded by specifying a second input, the
so-called “fake input”. In contrast, the more complex deceptions that are possible
in our setting necessitate the introduction of an explicit machine, the deceiver,
to specify the deceptions.

Everything we said about the work by Moran and Naor also applies to the
earlier work by Canetti and Gennaro [4]. Furthermore, the model by Canetti and
Gennaro only models a very weak form of coercion-resistance; the adversary may
instruct a coerced party to use a different input, but he may not instruct that
party to deviate from the protocol. For a discussion of the difference between
the models by Moran and Naor and by Canetti and Gennaro, we refer to [20].

Externalized UC (deniability). Another approach to define properties similar
to incoercibility for general protocols is the Externalized UC (EUC) framework
proposed by Canetti, Dodis, Pass, and Walfish [7] (also known as Generalized UC,
UC with global setup, or, proposed independently by Hofheinz, Müller-Quade,
and Unruh [18], UC with catalysts).

This framework is, like ours, an extension of the UC framework and inherits
its support for reactive protocols and its universal composition theorem. The
EUC framework differs from the UC framework by allowing the environment to
directly access the ideal functionality used in the real protocol. As explained in
[7], security in the EUC framework implies a property called deniability. This
means that no (malicious) protocol party P can collect any information during
the protocol run that can later be used to prove to an outsider that some party
Q participated in the protocol. (An example for such incriminating information
would be a message signed by Q.) In other words, Q can plausibly claim that
the whole protocol did not take place. Obviously, such a claim is only realistic
with respect to an outsider who did not himself communicate with Q during the
protocol execution. In contrast, incoercibility as understood by this paper means
that a party can lie about its actions towards an insider (e.g., a party could lie
even towards another voter about the vote it has cast).

Thus the two models (EUC and UC/c) have very different aims. Technically
they are, however, related: In the full version [21] we show that under certain
conditions, EUC security implies UC/c security.

1 Note that it has not been shown that the variant of the stand-alone model presented
by Moran and Naor does compose sequentially. But it does not seem unlikely that
this could be shown.

416 D. Unruh and J. Müller-Quade

2 The Composable Incoercibility Framework (UC/c)

2.1 Review of the UC Framework

Our model is based on the Universal Composability (UC) framwork [6]. For self
containment and to fix notation, we give a short overview over the UC framework.
An interactive Turing machine (ITM) is a Turing machine that has additional
tapes for incoming and for outgoing communication. An ITM may be activated
by a message on an incoming communication tape. At the end of an activation,
the ITM may send a message on an outgoing communication tape to another
ITM. The recipient of a message is addressed by the unique identity of that ITM.
The actions of an ITM may depend on a global parameter k ∈ �, the so-called
security parameter.

A network is modeled as a (possibly infinite) set of ITMs.2 We call a network
S executable if it contains an ITM Z with distinguished input and output tape
and with the special identity env. An execution of S with input z ∈ {0, 1}∗ and
security parameter k ∈ � is the following random process: First, Z is activated
with the message z on its input tape. Whenever an ITM M1 ∈ S finishes an
activation with an outgoing message m addressed to another ITM M2 ∈ S on
its outgoing communication tape, the other ITM M2 is invoked with incoming
message m on its incoming communication tape (tagged with the identity of the
sender M1). If an ITM terminates its activation without an outgoing message
or sends a message to a non-existing ITM, the ITM Z is activated. When the
ITM Z sends a message on its output tape (not the communication tape!), the
execution of S terminates. The output of Z we denote by EXECS(k, z). An ITM
Z with identity env we call an environment and an ITM A with identity adv we
call an adversary. A protocol is a network that does not contain an environment
or an adversary.

We call networks S, S′ indistinguishable if there is a negligible function μ
such that for all k ∈ �, z ∈ {0, 1}∗, we have that |Pr[EXECS(k, z) = 1] −
Pr[EXECS′(k, z) = 1]| ≤ μ(k). We call S, S′ perfectly indistinguishable if μ = 0.

Using the above network model, security is defined by comparison. We first
define an ideal protocol ρ that specifies the intended protocol behaviour. Then
we define what it means that another protocol π (securely) emulates ρ:

Definition 1 (UC [6]). Let π and ρ be protocols. We say that π UC emulates ρ
if for any polynomial-time adversary A there exists a polynomial-time adversary
S (the adversary-simulator) such that for any polynomial-time environment Z
the networks π ∪ {A,Z} (called the real model) and ρ ∪ {S,Z} (called the ideal
model) are indistinguishable.

In the UC framework, one can model secure channels (that do not even leak the
length of the transmitted message) by direct communication between the ITMs;
insecure channels can be modelled by sending messages to the adversary; secure
2 In the case of infinite networks we require the network to be uniform in the sense that

given the identity of an ITM, we can compute the code of that ITM in deterministic
polynomial-time.

Universally Composable Incoercibility 417

channels that leak the length of the message, as well as authenticated channels
can be modelled as an ideal functionality.

Corruptions are modelled as follows: The environment Z can send special
corruption requests to protocol parties (which are ITMs in π). If a protocol party
receives such a request, it sends its current state to the adversary and from then
on is controlled by the adversary (i.e., it forwards all incoming communication
to the adversary and vice versa).

Usually, the ideal model will be described by a so-called ideal functionality.
Such an ideal functionality is an incorruptible ITM that can be seen as a trusted
third party accessible to the protocol parties. The ideal protocol corresponding
to F consists of F itself and a so-called dummy-party P̃ for each party P in
the real model. The dummy-party P̃ simply forwards all messages received from
the environment to F and vice versa. In slight abuse of notation, we write F
for the ideal protocol corresponding to F . Note that the dummy-parties can
be corrupted, hence the inputs and outputs to F from corrupted parties can be
influenced by the adversary-simulator. Using the concept of an ideal functionality,
we can express many protocol tasks by first specifying an ideal functionality F
that fulfils the protocol task by definition, and then requiring that the protocol
π UC emulates F .

We can also consider real protocols π which contain ideal functionalities F
(e.g., a functionality modelling a CRS). These functionalities can then be ac-
cessed by all parties. We then say that π is a protocol in the F -hybrid model.

For more details, we refer the reader to the full version of [6].

2.2 The Composable Incoercibility Framework (UC/c)

In our framework (UC/c) the possibility of coercions is modelled by the presence
of an additional adversarial entity, called the deceiver. Formally, a deceiver is an
ITM D with the special identity dec. We further refine the notion of a protocol:
A protocol is a network that does not contain an environment, adversary, or
deceiver.

A typical network would consist of a protocol π, an adversary A, a deceiver
D, and an environment Z (where the adversary and the deceiver may also be
called adversary-simulator and deceiver-simulator for clarity depending on their
role in the protocol). We put no restriction on the communication between ma-
chines, A,D,Z may all communicate with each other. Both the adversary and
the deceiver may control parties. The exact mechanism of this is the following:

Corruption model. A protocol party may be in one of three corruption states:
Uncontrolled , corrupted , and deceiving. We say a party is controlled if it is cor-
rupted or deceiving. Initially, all machines are uncontrolled. Uncontrolled parties
behave according to the protocol specification. If the environment Z sends a
corruption request to an uncontrolled party, the party becomes corrupted. If the
environment sends a deception request to an uncontrolled or a corrupted party,
the party becomes deceiving. When a party becomes corrupted or deceiving, it
sends its state to the adversary or the deceiver, respectively. From then on, it

418 D. Unruh and J. Müller-Quade

is controlled by the adversary or the deceiver, respectively (that is, it forwards
all incoming communication to the controlling machine and sends messages as
instructed by the controlling machine). The only exception is that if a corrupted
machine receives a deception request, it will not forward that request to the
adversary, because in that moment, it will become deceiving and hence be under
the control of the deceiver. We stress that if a party is deceiving, the adversary
cannot even observe that party’s communication (unless the party communicates
over an insecure channel or with a corrupted party).

We assume the existence of a globally readable register that contains the state
of each party (whether it is uncontrolled, corrupted, or deceiving). However,
when the adversary reads this register, the state of any deceiving machine will
be reported as corrupted. (This reflects the fact that the adversary should not
be able to know which machine is deceiving.) Protocol parties will not usually
read this register; in some cases, however, it might be useful if the behaviour of
an ideal functionality can depend on whether a machine is controlled or not.3

Security definition. We are now ready to specify the notion of UC/c security.
In this notion, we do not only require the adversary-simulator (in the ideal model)
to simulate the adversary’s actions (in the real model), but simultaneously re-
quire that the deceiver-simulator (in the real model) simulates the actions of the
deceiver (in the ideal model). The resulting notion is strictly stronger than UC.

Definition 2 (UC/c). Let π and ρ be protocols. We say that π UC/c emulates
ρ if for any polynomial-time deceiver D there exists a polynomial-time deceiver
DS (the deceiver-simulator) such that for any polynomial-time adversary A there
exists a polynomial-time adversary AS (the adversary-simulator) such that for
any polynomial-time environment Z the following networks are indistinguishable:
π ∪ {A,DS ,Z} and ρ ∪ {AS ,D,Z}.

Where is the deception strategy? The existence of a deception strategy that
honest parties can follow when being coerced is an essential part of any notion of
incoercibility. Such a deception strategy also exists in our model: if we consider
the deceiver D̃ that simply obeys any commands (such as “vote for Bob”) sent
to it by the environment (we call such a deceiver a dummy-deceiver D̃S , see
Section 2.4), then the corresponding deceiver-simulator describes how a coerced
party should behave in any situation. For an example of how to derive a special
purpose deception strategy from D̃S , see the proof of Theorem 10.

Why is the adversary not informed about deceiving parties? The reader
may notice an asymmetry in the definition: While the deceiver learns which party
is corrupted and which party is deceiving, the adversary will be told that a party
is corrupted even if it is deceiving. This is necessary because during a deception,
the goal is to cheat the adversary into thinking that one behaves as he instructs
3 A typical example is the key exchange functionality, which returns a random key

for both parties [6, full version]. If one of the parties is corrupted, the key is instead
chosen by the adversary. Thus the functionality needs to know which parties are
corrupted.

Universally Composable Incoercibility 419

(i.e., that one is corrupted). Therefore corrupted and deceiving parties should be
indistinguishable from the point of view of the adversary.

Why can deceiving party not become corrupted? Another asymmetry is
that a corrupted party can later become deceiving while the model does not
allow to corrupt parties that are deceiving. Although formally both directions
could be allowed, we have excluded the latter because we could not find an
interpretation for such a scenario. For an interpretation of the former direction
(bad-guy coercions), see the next section.

2.3 Corruption Schedules

The notion of UC/c (Theorem 2) allows the environment to corrupt or coerce
any party at any point of time. This leads to a very strict definition. To get a
definition that is more lenient but easier to fulfil, one can impose certain restric-
tions on the corruption and deception requests performed by the environment.
We call such a restriction a corruption schedule.

Bad-guy coercions. There are no restrictions on the environment (except that
the environment cannot corrupt a deceiving party, this is implicit in the mod-
elling of the corruption mechanism).

We call this notion bad-guy coercions because the environment may first cor-
rupt a party (make it a “bad-guy”) and then later coerce it. It is very difficult to
design protocols that are secure against bad-guy coercions because a corrupted
party may be instructed by the adversary to actively deviate from the protocol
to produce evidence against itself and thus thwart its own deniability. (In con-
trast, a deceiving party would, given the same instructions, only try to make the
adversary believe that it follows these instructions.)

For example, in some protocol the ability to deceive the adversary (and thus
the incoercibility of the protocol) might be based on the following fact: When
the adversary requests a private secret m of some party, that party may send a
different secret m′ instead which contains a trapdoor. This trapdoor then is later
essential for achieving incoercibility. In the setting of bad-guy coercions, a party
might first be corrupted and then reveal the true secret m to the adversary.
This secret m does not contain a trapdoor. Then later, if the party becomes
deceiving, it will be unable to follow its deception strategy because it does not
know any trapdoor for m. In a nutshell, while corrupted, a party may actively
try to prevent its own incoercibility. Thus we expect that UC/c security with
respect to bad-guy coercions is very hard to achieve.

In practise, bad-guy coercions are arguably a very rare event. A possible mo-
tivation for bad-guy coercions is the following thought experiment: A member
(say, Bob) of a criminal organisation is required by the rules of that organisation
to actively produce and deliver some evidence (e.g., certain keys) against himself
to that organisation. While Bob still works for the organisation, he will not try to
circumvent these rules and will deliver this evidence. But if Bob later decides to
leave the criminal organisation and to cooperate with the police (undercover), Bob

420 D. Unruh and J. Müller-Quade

may have to convincingly act as if he was still following the criminal organisation’s
instructions. This is exactly the case that is modelled by bad-guy coercions.

In most cases, however, UC/c with bad-guy coercions will be much to strong
a notion, and the notion of good-guy coercions (below) will be preferred.

Good-guy coercions. The environment may corrupt parties at any time and
may send deception requests to uncontrolled parties at any time. The environ-
ment may not send deception requests to corrupted parties.

Receipt-freeness. The environment may corrupt parties at any time, and may
send deception requests to uncontrolled parties after the end of the protocol (so
that the adversary gets their state). The environment may not send deception
requests to a corrupted party. Receipt-freeness implies that an honest party does
not learn any data during the protocol that could later be used to prove after the
protocol execution that the party performed a certain action. (Note that with
erasing parties, receipt-freeness is probably easy to achieve: an honest party
simply erases all intermediate protocol data.)

Static corruptions/deceptions. All corruption and deception requests must
be sent at the very beginning of the protocol execution. In particular, this im-
plies that the environment cannot choose which parties to corrupt depending on
messages it observes during the protocol execution.

Combinations. The above corruptions schedules may be combined by requiring
that the environment obeys a certain schedule with respect to some parties and
another with respect to other parties. For example, one might have protocols that
are UC/c secure with receipt-freeness for Alice and good-guy coercions for Bob.

2.4 Properties of UC/c Security

The proofs in this section are omitted for space reasons. They can be found in
the full version [21].

Dummy adversary and deceiver. A dummy-adversary is an adversary that
just follows the instructions of the environment. More precisely, it forwards all
messages it receives to the environment, and sends only the messages the en-
vironment instructs it to send. It was shown by Canetti [6] in the UC setting
that the dummy-adversary is complete, that is, without loss of generality we
can consider only the dummy-adversary. Therefore we only have to specify the
adversary-simulator for the dummy-adversary instead of having to specify the
adversary-simulator for every possible adversary. This simplifies proofs.

In the setting of UC/c, we can additionally consider the dummy-deceiver that
just follows the instructions of the environment. Below, we will show that both
the dummy-adversary and the dummy-deceiver are complete. Besides strongly
simplifying proofs, the completeness of the dummy-deceiver has an additional
conceptual advantage. The deceiver-simulator corresponding to the dummy-
deceiver encodes a universal deception strategy. That is, for any “ideal deception”,
it tells us how to perform this deception in the real protocol. The existence of

Universally Composable Incoercibility 421

such a universal deception strategy is very important in real life, protocol users
need to have an explicit strategy how to lie in which situation; it is not sufficient
that such a strategy exists for each situation.

Definition 3 (Dummy-adversary, dummy-deceiver). The dummy-
adversary Ã is an adversary that, when receiving a message (id ,m) from the
environment, sends m to the party with identity id , and that, when receiving m
from a party with identity id , sends (id ,m) to the environment. The dummy-
deceiver D̃ is defined analogously.

Lemma 4 (Completeness of dummy-adversary and dummy-deceiver).
Let π and ρ be protocols. Then π UC/c emulates ρ iff π UC/c emulates ρ with
respect to the dummy-adversary/deceiver (i.e., when only considering adversary
Ã and deceiver D̃ in Theorem 2).

Universal composition. One of the main advantages of the UC framework is
the universal composition theorem. This theorem guarantees that a UC secure
protocol π can be securely used as a subprotocol of arbitrary other protocols σ,
even when σ and polynomially many instances of π run concurrently. The same
compositionality result also holds for the UC/c security notion.

To formulate the composition theorem, we introduce some notation. Let π and
σ be protocols. Then let σπ denote the protocol where σ invokes a polynomial
number of instances of the subprotocol π. That is, machines in σ may give inputs
to machines in π, these inputs are treated by π as coming from the environment.
When the machines in π give output back to the environment, these are sent to
the invoking machines in σ. Thus, in a sense, in σπ , the protocol σ plays the role
of the environment for the instances of π. For example, if σF is a protocol using
a commitment functionality F (i.e., σF is a protocol in the F -hybrid model),
then σπ would be the protocol that uses the subprotocol π instead of using the
commitment functionality F . The following theorem guarantees that, if π UC/c
emulates some other protocol ρ (e.g., ρ = F), we do not loose security if we
replace subprotocol invocations of ρ by subprotocol invocations of π.

Theorem 5 (Universal composition). Let π, ρ, and σ be polynomial-time
protocols. Assume that π UC/c emulates ρ. Then σπ UC/c emulates σρ.

The most common use case of the composition theorem is given by the following
corollary:

Corollary 6. Let π and σ be polynomial-time protocols, and F and G be
polynomial-time functionalities. Assume that π UC/c emulates F and that σF

UC/c emulates G. Then σπ UC/c emulates G.

3 Voting Schemes

In this section we illustrate the UC/c security notion by applying it to the special
case of voting schemes. We give a definition of incoercibility that is tailored to
the specific case of voting protocols and show that this definition is implied by
the UC/c security notion.

422 D. Unruh and J. Müller-Quade

Definition 7 (Voting scheme). Fix sets V (the set of votes), T (the set of tal-
lies), P (the set of voters). A tally function is an efficiently computable function
tally : (V ∪ {⊥})P → T .

A voting scheme for tally is a two-stage protocol. We call the stages voting
phase and tallying phase. In such a protocol, each party Pi ∈ P gets an input
vi ∈ V ∪ {⊥} (the vote of Pi). vi = ⊥ means that the Pi does not participate in
the protocol (abstention). In the end of the tallying phase a distinguished party
T outputs a value t ∈ T .

Typically, V would be the set of all candidates. In more complex schemes, el-
ements of V might be, e.g., ordered lists of candidates in order of decreasing
precedence. The set of tallies T usually is the set of all functions V → �0. Al-
ternatively, in a voting scheme which only announces the winner, we would have
have T = V . The tally function tally(v1, . . . , vn) specifies what the correct tally
is for the votes vi ∈ V ∪ {⊥} where vi = ⊥ denotes abstention.

Note that we do not require that the parties Pi �= T are aware whether they
are in the tallying or the voting phase. Such a requirement might be difficult
to ensure in an asynchronous environment. In particular, votes cast during the
tallying phase (but before the tally is announced) might or might not be counted.

An ideal voting scheme is given by the following functionality:

Definition 8 (Voting functionality). The voting functionality Fvote = F tally
vote

expects (at most one) message vi ∈ V from each party Pi ∈ P. When receiving
tally from T , Fvote sets vi := ⊥ for all Pi ∈ P from which it did not receive
a message vi ∈ V yet. Then Fvote computes t := tally(vi, i ∈ P) (the tally) and
sends t to the adversary. Then, when Fvote receives deliver from the adversary,
it sends t to the party T .

This functionality models that the tally output by T is correctly computed using
the tally function (as long as T itself is not corrupted) and that the individual
votes are secret (even if T is corrupted).

Natural properties of voting schemes are, e.g., correctness (the tally is correct
even in the presence of an adversary) and anonymity (the adversary cannot tell
who voted for whom, except as deducible from the tally itself). We will not
formalise these properties here, but it is easy to see that a voting scheme that
UC emulates the voting functionality Fvote satisfies reasonable formalisations of
these properties. Since the UC/c security notion is stronger than UC, this implies
that these elementary properties are satisfied by UC/c secure voting scheme, too.

In our context, the most interesting property of a voting scheme is incoercibil-
ity. We will first formalise what incoercibility means for voting schemes (inde-
pendently of our framework). Then we will show that incoercibility of voting
schemes is implied by security in the UC/c framework. Assume some party P
that wants to cast a vote v. In an incoercible voting scheme, we expect that if
the adversary A forces a party P to deviate from the protocol, A should not be
able to tell the difference between P obeying the adversary A, or the party P
casting the vote v anyway (we say P deceives the adversary). Of course, since
the adversary learns the tally, this goal is unachievable – the tally always leaks a

Universally Composable Incoercibility 423

non-negligible amount of information about the vote of P (at least if the number
of voters is polynomial). We can only achieve the following: The adversary’s ad-
vantage in distinguishing between P obeying and P deceiving is not greater than
the advantage with which the adversary could distinguish these two cases given
only the tally. To formulate this definition, we first introduce some notation:

Fix a voter P ∈ P and a vote v ∈ V ∪ {⊥}. Fix a distribution B on (V ∪
{⊥})P\{P}. (B represents the distribution of the votes of the other voters.) Given
a vote v, let Bv denote the distribution over (V ∪ {⊥})P that chooses the votes
for all Pi ∈ P \ {P} according to B and uses the vote v for P . Accordingly,
tally(Bv) denotes the tally resulting from votes chosen according to Bv. Let
Advideal(B, v) := maxv∗ Δ(Bv,Bv∗) where v∗ ranges over V∪{⊥} and Δ denotes
the statistical distance. (Advideal describes how well an adversary can distinguish
between being obeyed and being deceived using only the tally.)

A voting adversary is an adversary that controls a party P (however, de-
pending on the setting, P may choose to ignore the instructions given by the
adversary) and that may decide when the tallying phase starts. We require that
a voting adversary eventually starts the tallying phase. Furthermore, when the
party T outputs the tally, the tally is given to the voting adversary. In the end,
the voting adversary outputs a bit b.

Given a voting adversaryA, let Probey(A,B) be the probability thatA outputs
1 in the case that the party P follows the instructions of the adversary (i.e., P is
corrupted) and all other parties honestly follow the protocol (with inputs chosen
according to B).

Given some program code d (the deception strategy for P), let
Prdeceive(A, d,B) denote the probability that the adversary A outputs 1 if P
follows the instructions in d and all other parties honestly follow the protocol
(with inputs chosen according to B). (Intuitively, d is a strategy that tells P how
to vote for v and simultaneously make the adversary believe that P obeys the
adversary.) We assume that d gets v and the identity of P as input. In the same
setting, let Tallydeceive(A, d,B) denote the tally output by T .

Definition 9 (Incoercible voting schemes). A voting scheme is incoercible
if there is a deception strategy d such that for every polynomial-time voting ad-
versary, every voter P ∈ P, every vote v ∈ V, and every efficiently sampleable
distribution B the following holds:
– The deception strategy casts the right vote: The random variables

Tallydeceive(A, d,B) and tally(Bv) are computationally indistinguishable.
– The adversary cannot distinguish between being obeyed and being de-

ceived: For some negligible function μ we have that
∣∣Probey(A,B) −

Prdeceive(A, d,B)
∣∣ ≤ Advideal(B, v) + μ.

Many variants of this definition are possible. For example, one could allow the
voting adversary to corrupt additional parties from P \ {P}. (In this case, one
would have to adapt the definition of Advideal .) For the sake of simplicity, we do
not strive to find the most general formulation of Theorem 9, especially in view
of the fact that the UC/c framework already provides us with a very general
definition of incoercibility.

424 D. Unruh and J. Müller-Quade

We will now show that incoercibility in the sense of Theorem 9 is already
implied by UC/c security. We find that the proof of the following theorem is very
instructive because it gives some intuition for the UC/c framework, and because
it illustrates how application-specific incoercibility definitions (not restricted to
the application of voting) can be proven to be implied by UC/c security.

Theorem 10. Let π be a voting scheme for the tally function tally. Assume
that π UC/c emulates F tally

vote with static corruption/deception. Then π is an
incoercible voting scheme.

Proof. Fix a voting adversary A. We define the UC/c adversary A′ to behave
like A, except that when A starts the tallying phase, A′ instead sends tally to
the environment. When A would give an output b, A′ sends b to the environment.

We define an environment Zobey := ZP,v,B
obey as follows: Initially, Zobey sends a

corruption request to the party P . Then Zobey chooses votes v1, . . . , vn according
to the distribution B and gives these votes as input to the parties Pi ∈ P \ {P}
(or, if vi = ⊥, sends no input to Pi). When the adversary sends tally to Zobey ,
Zobey sends tally to the party T . When the adversary sends b to Zobey , Zobey

terminates with output b.
Furthermore, we define Zdeceive := ZP,v,B

deceive as follows: Initially, Zdeceive sends
a deception request to the party P . Then Zdeceive chooses votes v1, . . . , vn accord-
ing to the distribution B and gives these votes as input to the parties Pi ∈ P\{P}
(or, if vi = ⊥, sends no input to Pi). Then it sends v to the deceiver. (This will
make the deceiver D defined below instruct P to cast vote v.) When the adver-
sary sends tally to Zdeceive, Zdeceive sends tally to the party T . When the
adversary sends b to Zdeceive, Zdeceive terminates with output b.

We define the deceiver D as follows: When receiving a state from party P , D
instructs P to send this state to the adversary. (This is necessary only for formal
reasons: since the adversary should believe that P is corrupted, he expects a state
from P . Since we are in the case of static corruptions/deceptions, the state is only
sent before the start of the protocol and is thus empty.) When D receives v from
the environment,D instructs P to send v to the functionalityFvote. (I.e., P should
cast the vote v.) Messages coming from the adversary are ignored. In particular,
when the adversary instructs P to cast some other vote, this is ignored.

Since π UC/c emulates Fvote := F tally
vote , there exist a polynomial-time

deceiver-simulator DS and a polynomial-time adversary-simulator A′
S such that

for all polynomial-time environments Z, the networks π ∪ {A′,DS ,Z} and
Fvote ∪ {A′

S ,D,Z} are indistinguishable. (We write Fvote for the protocol con-
taining Fvote and the dummy parties.)

By construction,

Probey(A,B) = Pr[EXECπ∪{A′,DS,Zobey} = 1]. (1)

(We omit the arguments k, z from EXEC for brevity.) Note that since no party
is deceiving, the deceiver-simulator DS does nothing.

We define the deception strategy d as follows: A party P following d and
wishing to cast the vote v internally simulates DS . Then P sends the empty

Universally Composable Incoercibility 425

state to DS . (This is done for formal reasons: in the UC/c framework, DS would
get such an empty state when P is deceiving from the start. Hence this message
informs DS that P is deceiving.) Then P sends v to the internally simulated
DS as coming from the environment. Then P follows the instructions that DS

gives to it. In the case that only P is deceiving, DS only sends instructions to
P . Thus it is not necessary that P simulates any other machines communicating
with DS .

Then, by construction,

Prdeceive(A, d,B) = Pr[EXECπ∪{A′,DS,Zdeceive} = 1]. (2)

Compare the networks Fvote ∪ {A′
S ,D,Zdeceive} and Fvote ∪ {A′

S ,D,Zobey}. In
the first network, Zdeceive instructs the dummy-party P̃ (via the deceiver D) to
send the vote v to Fvote. In the second network, A′

S instructs P̃ to send some
other vote v∗ to Fvote (where we write v∗ = ⊥ to indicate that A′

S does not
instruct P̃ to vote before A′

S sends tally to the environment). In the ideal
model, P̃ does not receive any incoming messages from other parties. Thus, in
both networks, A′

S does not get any messages from P̃ . Thus, A′
S can only use the

tally to distinguish the networks. The distribution of the tally in the network
Fvote ∪ {A′

S ,D,Zobey} is tally(Bv∗), and the distribution of the tally in the
network Fvote ∪ {A′

S,D,Zdeceive} is tally(Bv). Since Zobey and Zdeceive output
the bit b received from A′

S , it follows that∣∣Pr[EXECFvote∪{A′
S ,D,Zobey} = 1]− Pr[EXECFvote∪{A′

S ,D,Zdeceive} = 1]
∣∣

≤ max
v∗∈V∪{⊥}

Δ(Bv,Bv∗) = Advideal(B, v).

Since for all polynomial-time Z, the networks π ∪ {A′,DS ,Z} and Fvote ∪
{A′

S ,D,Z} are indistinguishable, it follows that∣∣Pr[EXECπ∪{A′,DS ,Zobey}=1]−Pr[EXECπ∪{A′,DS,Zdeceive}=1]
∣∣≤Advideal(B, v)+μ

for some negligible function μ. Then with (1) and (2) we get that∣∣Probey(A,B)− Prdeceive(A, d,B)
∣∣ ≤ Advideal (B, v) + μ.

This shows that the protocol π satisfies the second condition in Theorem 9. (No-
tice that the construction of the deception strategy d is independent of A and
B.)

We are left to show that Tallydeceive(A, d,B) and tally(Bv) are indistinguish-
able (first condition of Theorem 9).

Let t denote the message received by Zdeceive from the party T (t is the
tally). In the network Fvote ∪ {A′

S ,D,Zdeceive}, t is the output of Fvote. Thus
the distribution of t is tally(Bv): The party P is instructed by D to send the
vote v, all other parties cast votes chosen according to the distribution B.

In the network π∪{A′,DS ,Zdeceive}, by construction of Zdeceive and of d, the
distribution of t is Tallydeceive(A, d,B).

426 D. Unruh and J. Müller-Quade

For contradiction, assume that Tallydeceive(A, d,B) and tally(Bv) were not
computationally indistinguishable. Then there is an efficiently computable
function f : {0, 1}∗ → {0, 1} such that |Pr[f(Tallydeceive(A, d,B)) = 1] −
Pr[f(tally(Bv)) = 1]| is not negligible. Then we define Z∗

deceive like Zdeceive,
except that Z∗

deceive outputs f(t). Then |Pr[EXECπ∪{A′,DS,Z∗
deceive} = 1] −

Pr[EXECFvote∪{A′
S ,D,Z∗

deceive} = 1]| is not negligible. This is a contradiction to
the fact that for all polynomial-time Z, the networks π ∪ {A′,DS ,Z} and
Fvote∪{A′

S ,D,Z} are indistinguishable. Thus Tallydeceive(A, d,B) and tally(Bv)
are computationally indistinguishable and the first condition of Theorem 9 is
satisfied by π. �	
The design of voting protocols that are UC/c secure is, of course, an open prob-
lem. We believe designing UC/c secure remote voting schemes to be a challenging
problem that may involve novel cryptographic techniques. In the case of non-
remote voting (i.e., involving voting booths and other partially trusted setup
such as in, e.g., [10,12,20,3]), realising UC/c security might be much easier. We
therefore particularly propose UC/c as a security definition for that setting.

4 Incoercible Two-Party Protocols

In the previous section, we have seen that UC/c secure protocols are incoercible.
We have not, however, shown that such protocols exist at all. Fortunately, the
protocols that were presented in [18,7] for general multi-party computation in the
externalized UC (EUC) model are also secure in our UC/c model in the two-party
case and therefore enjoy incoercibility in addition to the properties guaranteed
by the EUC model. The proof that their protocols work in our setting is quite
technical; we defer it to the full version [21]. We only state the final result here.
The protocols from [18,7] can be based on one of the following functionalities:

The key registeration with knowledge (KRK) functionality Fkrk is a function-
ality where each party may register a public key/secret key pair and every party
may request the public keys of all parties and the secret key of itself. The aug-
mented CRS (ACRS) functionality Facrs chooses a public key and a correspond-
ing master secret key, and derives for each party a corresponding individual
secret key. The public key is given to all parties, the secret key of each party
is only given to that party. The signature card functionality Fsc with owner P
picks a signing/verification key pair and reveals the verification key to all parties.
The party P (the owner) may send arbitrary messages m to Fsc and receives
signatures of m back. The signing key is never revealed.

Theorem 11 (UC/c two-party computation). Let F ∈ {Fkrk,Facrs,Fsc}.
Let G be a well-formed silent 4 functionality. Then there is a protocol π in the
F-hybrid model such that π UC/c emulates G with static corruptions/deceptions.

4 A well-formed functionality is one whose behaviour does not depend on which parties
are corrupted or deceiving. We call G silent if it does not communicate with the
adversary or deceiver.

Universally Composable Incoercibility 427

5 Conclusions and Open Problems

We have presented the UC/c framework. This framework enables us to model
the incoercibility of general multi-party protocols. The UC/c framework comes
with a strong composition theorem (universal composition). We have shown that
with respect to static coercions/deceptions, arbitrary two-party protocol tasks
can be realised in the framework.

Directions for future work include:

– Good-guy/bad-guy coercions. Our feasibility results only hold for static
coercions/deceptions. We believe that feasibility results similar to those
presented in Section 4 can be shown for good-guy coercions. To achieve pro-
tocols that are secure with respect to bad-guy coercions, we believe that new
cryptographic techniques will have to be developed.

– Insecure channels. We assumed perfectly secure channels, i.e., channels where
the adversary does not even notice that a message is sent. Can the results
from Section 4 be generalised to a setting with weaker assumptions on the
channels?

– Multi-party protocols. Our feasibility results are restricted to two-party pro-
tocols. To capture important cases like voting protocols we need to extend
this to multi-party protocols.

– Impossibility results. Since incoercibility is a strong requirement, we also ex-
pect that many protocol tasks cannot be fulfilled. For example, is it possible
to realise a non-trivial protocol task using only a common reference string?

– Not knowing who is coerced/corrupted. In our setting, the deceiver-
simulator’s strategy may depend on who is corrupted/coerced. If we restrict
every party’s strategy to be independent of the other parties, can we still
construct UC/c secure protocols?

Acknowledgements. We thank Yevgeniy Dodis and Daniel Wichs for extensive
discussions. We also thank the anonymous reviewers for helpful comments.

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC 1988, pp. 1–10.
ACM, New York (1988)

2. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections (extended abstract).
In: STOC 1994, pp. 544–553. ACM, New York (1994)

3. Bohli, J.M., Müller-Quade, J., Röhrich, S.: Bingo voting: Secure and coercion-free
voting using a trusted random number generator. In: Alkassar, A., Volkamer, M.
(eds.) VOTE-ID 2007. LNCS, vol. 4896, pp. 111–124. Springer, Heidelberg (2007)

4. Canetti, R., Gennaro, R.: Incoercible multiparty computation. In: FOCS 1996, p.
504. IEEE, Los Alamitos (1996)

5. Canetti, R.: Security and composition of multi-party cryptographic protocols. Jour-
nal of Cryptology 3(1), 143–202 (2000)

428 D. Unruh and J. Müller-Quade

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145. IEEE, Los Alamitos (2001); Full version is
IACR ePrint 2000/067

7. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85.
Springer, Heidelberg (2007)

8. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party com-
putation. In: STOC 1995, pp. 639–648. ACM Press, New York (1995)

9. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC 2002, pp. 494–503. ACM,
New York (2002)

10. Chaum, D.: Secret-ballot receipts: True voter-verifiable elections. IEEE Security &
Privacy 2(1), 38–47 (2004)

11. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols.
In: STOC 1988, pp. 11–19. ACM Press, New York (1988)

12. Chaum, D., Ryan, P.Y.A., Schneider, S.A.: A practical voter-verifiable election
scheme. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS
2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005)

13. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17(4), 435–487 (2009)

14. Forsyth, F.: The Deceiver. Bantam Books (1991), http://tinyurl.com/ycvhuod
15. Goldreich, O.: Foundations of Cryptography (Basic Applications), vol. 2. Cam-

bridge University Press, Cambridge (2004)
16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-

pleteness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229
(1987)

17. Herzberg, A.: Rumpsession. Crypto 1991 (1991)
18. Hofheinz, D., Unruh, D., Müller-Quade, J.: Universally composable zero-knowledge

arguments and commitments from signature cards. In: Tatra. Mt. Math. Pub., pp.
93–103 (2007)

19. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
4nd ACM Workshop on Privacy in the Electronic Society (WPES), pp. 61–70. ACM
Press, New York (2005)

20. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006)

21. Unruh, D., Müller-Quade, J.: Universally composable incoercibility. IACR ePrint
2009/520 (October 2009)

http://tinyurl.com/ycvhuod

Concurrent Non-Malleable Zero Knowledge
Proofs

Huijia Lin�, Rafael Pass��, Wei-Lung Dustin Tseng� � �,
and Muthuramakrishnan Venkitasubramaniam

Cornell University
{huijia,rafael,wdtseng,vmuthu}@cs.cornell.edu

Abstract. Concurrent non-malleable zero-knowledge (NMZK) consid-
ers the concurrent execution of zero-knowledge protocols in a setting
where the attacker can simultaneously corrupt multiple provers and ver-
ifiers. Barak, Prabhakaran and Sahai (FOCS’06) recently provided the
first construction of a concurrent NMZK protocol without any set-up
assumptions. Their protocol, however, is only computationally sound
(a.k.a., a concurrent NMZK argument). In this work we present the first
construction of a concurrent NMZK proof without any set-up assump-
tions. Our protocol requires poly(n) rounds assuming one-way functions,
or Õ(log n) rounds assuming collision-resistant hash functions.

As an additional contribution, we improve the round complexity of
concurrent NMZK arguments based on one-way functions (from poly(n)
to Õ(log n)), and achieve a near linear (instead of cubic) security re-
ductions. Taken together, our results close the gap between concurrent
ZK protocols and concurrent NMZK protocols (in terms of feasibility,
round complexity, hardness assumptions, and tightness of the security
reduction).

1 Introduction

Zero-knowledge (ZK) interactive proofs [GMR89] are fundamental constructs
that allow the Prover to convince the Verifier of the validity of a mathematical
statement x ∈ L, while providing zero additional knowledge to the Verifier. Con-
current ZK, first introduced and achieved by Dwork, Naor and Sahai [DNS04],
considers the execution of zero-knowledge protocols in an asynchronous and con-
current setting. In this model, an adversary acts as verifiers in many concurrent
executions of the zero-knowledge protocol, and launches a coordinated attack
on multiple independent provers to gain knowledge. Non-malleable ZK, first in-
troduced and achieved by Dolev, Dwork and Naor [DDN00], also considers the
concurrent execution of zero-knowledge protocols, but in a different manner.
In this model, an adversary concurrently participates in only two executions,

� Supported in part by a Microsoft Research PhD Fellowship.
�� Supported in part by a Microsoft New Faculty Fellowship, NSF CAREER Award

CCF-0746990, AFOSR Award FA9550-08-1-0197 and BSF Grant 2006317.
� � � Supported in part by a NSF Graduate Research Fellowship.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 429–446, 2010.
c© International Association for Cryptologic Research 2010

430 H. Lin et al.

but plays different roles in the two executions; in the first execution (called the
left execution), it acts as a verifier, whereas in the second execution (called the
right execution) it acts as a prover. The notion of Concurrent Non-malleable ZK
(CNMZK) considers both of the above attacks; the adversary may participate
in an unbounded number of concurrent executions, playing the role of a prover
in some, and the role of a verifier in others. Despite the generality of such an
attacks scenario, this notion of security seems most appropriate for modeling the
execution of cryptographic protocols in open networks, such as the internet.

Barak, Prabhakaran and Sahai (BPS) [BPS06] recently constructed the first
CNMZK protocol for NP in the plain model (i.e., without any set-up assump-
tions).1 They provide a poly(n)-round construction based on one-way functions,
and a Õ(logn)-round construction based on collision-resistant hash-functions.
Their constructions, however, are only computationally sound; that is, they only
show the existence of CNMZK interactive arguments (as defined by [BCC88]).
In contrast, for both concurrent ZK and non-malleable ZK, interactive proofs
(as originally defined by [GMR89]) are known [RK99, KP01, PRS02, DDN00].

Main result. In this work, we provide the first construction of a CNMZK proof
in the plain model.2

Theorem 1. Assume the existence of one-way functions. Then there exists a
poly(n)-round concurrent non-malleable zero-knowledge proof (with a black-box
simulator) for all of NP. Furthermore, assuming the existence of collision-
resistant hash-functions, the round complexity is only Õ(logn).

Due to the Ω̃(log n)-round lower bound for black-box concurrentZK of [CKPR01],
the round complexity of our construction based on collision-resistant hash-func-
tions is essentially optimal (unless NP ⊆ BPP).

Efficiency improvements. As an additional contribution, we improve the round-
complexity of CNMZK arguments based on one-way functions (recall that the
BPS protocol requires poly(n) rounds).

Theorem 2. Assume the existence of one-way functions.Then there is a Õ(logn)-
round concurrent non-malleable zero-knowledge argument (with a black-box simu-
lator) for all of NP.

Combined with the black-box lower bounds of [CKPR01], this settles the round-
complexity of CNMZK arguments based on minimal assumptions.

Finally, whereas the “knowledge security” [GMW91] of the BPS reduction (i.e.,
the overhead of the simulator w.r.t. to the adversary) is cubic, our analysis (for
1 See also the more efficient construction of [OPV10].
2 We mention that there are several works constructing CNMZK proofs in the Com-

mon Reference String (CRS) model (see e.g., [SCO+01, DN02]). A potential ap-
proach for getting CNMZK proofs in the plain model would thus be to try to im-
plement the CRS in a way that prevents man-in-the-middle attacks. This task seems
harder than constructing CNMZK proofs from scratch, so we have not pursued this
approach.

Concurrent Non-Malleable Zero Knowledge Proofs 431

both proofs and arguments) achieves a near linear security reduction; in fact,
our protocols achieve the stronger notion of precise zero-knowledge [MP06] which
bounds the overhead of the simulator in an execution-by-execution fashion (as
opposed to only bounding the worst-case running time), and achieve the same
level of security as the best concurrent ZK protocols [PPS+08].

Techniques. Our protocol attempts to combine previous techniques in concurrent
and non-malleable ZK in a modular way. As a result, our CNMZK protocol
largely consists of sub-protocols, more precisely commitments, that are developed
in previous works.

To leverage existing techniques for concurrent ZK, we follow the abstraction
of concurrently extractable commitments (CECom) introduced by Micciancio,
Ong, Sahai, and Vadhan [MOSV06]. Informally, values committed by CECom
can be extracted by a rewinding simulator even in the concurrent setting. In
our protocol (as in most concurrent ZK protocols), the verifier commits to a
random trapdoor using CECom, so that our ZK simulator may extract this
trapdoor to complete the simulation. Correspondingly, to leverage existing tech-
niques for non-malleable ZK, we employ non-malleable commitments as defined
by Dolev, Dwork, and Naor [DDN00]. In our protocol (as in the work of [BPS06]),
the prover commits to a witness of the proof statement using a non-malleable
commitment, and next proves (using a stand-alone) ZK protocol that it either
committed to a valid witness, or a valid trapdoor.

The crux of the proof is then to show that even during simulation, when the
simulator commits to trapdoors (instead of real witnesses) in left interactions,
the adversary still cannot commit to a trapdoor in right interactions. Intuitively
this should follow from the security guarantees of the non-malleable commit-
ments. The problem, however, is that even if the non-malleable commitments
do not “leak” information about the simulator’s trapdoors, other parts of the
protocol, such as the zero-knowledge proof, might affect the values of the adver-
sary commitments. On a high-level, BPS overcame this problem by relying on
statistical zero-knowledge protocols for NP ; such protocols can only be compu-
tationally sound (unless the polynomial hierarchy collapses [AH91]), and known
constructions based on one-way functions require poly(n) rounds.

Instead, we overcome this obstacle by relying on the notion of robust non-
malleable commitments introduced by [LP09];3 informally, a robust non-malleable
commitment is non-malleable with respect to any protocol that has small round
complexity. As shown in [LP09], most known constructions of non-malleable com-
mitment schemes are already robust, or can be made robust easily. Roughly
speaking, by relying on this notion we can ensure that the witness used in the
ZK protocol does not affect the witness committed by the adversary (using ro-
bust non-malleable commitments) in other executions; in particular, this is used to
argue that the adversary essentially never commits to a trapdoor. The actual ap-
plication of this technique, however, is not direct and requires a subtle treatment—
in particular, for technical reasons, we require the prover to use two robust

3 Robustness was originally referred to as naturality.

432 H. Lin et al.

non-malleable commitments (the same technique is used in [LPV09] for construct-
ing another primitive called strong non-malleable WI proofs). Furthermore, to
make our simulation go through, we are unable to apply the original analysis of
CECom as presented in [PRS02, MOSV06], but instead rely on the recent analysis
of [PTV08]. Roughly speaking, the reason for this is that concurrently extractable
commitments are traditionally used and analyzed in so-called committed-verifier
protocols [MOSV06], where the verifier commits and fixes all of its messages at
the start of the protocol. Our protocol does not fall into this category.

Finally, to improve the efficiency of the simulation we have the prover commit
to its witness also using a CECom; doing this ensures that the concurrent non-
malleability simulator becomes as efficient as the extractor of CECom. Our final
result regarding precision is then obtained by relying on the precise ZK approach
from [PPS+08] to implement CECom.

Discussion and Perspectives. Our work closes the “gap” between known con-
structions of concurrent ZK and CNMZK for the plain model (without set-up);
that is, we have shown that all known results for concurrent ZK in the plain
model extend to CNMZK (under the same assumptions, the same round com-
plexity, and the same efficiency of security reductions). In essence, we reduce
that task of constructing CNMZK protocols to constructing concurrently ex-
tractable commitments, and thus, concurrent non-malleability come for free.
It seems promising that the same approach could be extended also to models
with set-up. For instance, in the Bare Public Key model of [CGGM00], O(1)-
round concurrent ZK with black-box simulation is known, whereas the only
O(1)-round protocol for CNMZK of [OPV08] requires non-black-box simula-
tion. Similar gaps exists for the Timing model [DNS04], and for the model of
quasi-polynomial time security [Pas03]. We believe that, by providing appropri-
ate implementations of concurrently extractable commitments (in line with the
work on concurrent ZK in these models), our technique extends to close these
gaps. We leave an exploration of these questions for future work.

Overview. Section 2 contains the basic notations and definitions of CNMZK
and other primitives. In Section 3, we present our main result, a Õ(log n)-round
CNMZK proof system for all of NP , from collision resistant hash functions,
and provide the proof of security in Section 4. We also modify the protocol to
obtain constructions of a poly(n)-round CNMZK proof, and a Õ(log n)-round
CNMZK argument system, from one-way functions at the end of Section 4. We
defer our result on Precise CNMZK to the full version.

2 Preliminaries

Let N denote the set of all positive integers. For any integer n ∈ N , let [n]
denote the set {1, 2, . . . , n}, and let {0, 1}n denote the set of n-bit strings.
We assume familiarity with interactive Turing machines, interactive protocols,
statistical/computational indistinguishability, zero-knowledge, (strong) witness-
indistinguishability (see [Gol01] for formal definitions).

Concurrent Non-Malleable Zero Knowledge Proofs 433

2.1 Concurrent Non-Malleable Zero-Knowledge

We recall the definition of concurrent non-malleable zero-knowledge from
[BPS06], which in turn closely follows the definition of simulation extractabil-
ity of [PR05]. Let 〈P, V 〉 be an interactive proof for a language L ∈ NP with
witness relation RL, and let n be the security parameter. Consider a man-in-
the-middle adversary A that participates in many left and right interactions
in which m = m(n) proofs take place. In the left interactions, the adversary
A verifies the validity of statements x1, . . . , xm by interacting with an hon-
est prover P , using identities id1, . . . , idm. In the right interactions, A proves
the validity of statements x̃1, . . . , x̃m to an honest verifier V , using identities
ĩd1, . . . , ĩdm. Prior to the interactions, both P and A receives as common input
the security parameter in unary 1n and the statements x1, . . . , xm. Additionally,
P receives as local input the witnesses w1, . . . , wm, wi ∈ RL(xi), while A re-
ceives as auxiliary input z ∈ {0, 1}∗, which in particular might contain a-priori
information about x1, . . . , xm and w1, . . . , wm. On the other hand, the state-
ments proved in the right interactions x̃1, . . . , x̃m and the identities in both the
left and right interactions, id1, . . . , idm and ĩd1, . . . , ĩdm, are chosen by A. Let
viewA(n, x1, . . . , xm, z) denote a random variable that describes the view of A
in the above experiment. Loosely speaking, an interactive proof is concurrent
non-malleable zero-knowledge (CNMZK) if for all man-in-the-middle adversary
A, there exists a probabilistic polynomial time machine (called the simulator-
extractor) that can simulate both the left and the right interactions for A, while
outputting a witness for every statement proved by the adversary in the right
interactions.

Definition 1. An interactive proof (P, V) for a language L with witness relation
RL is said to be concurrent non-malleable zero-knowledge if for every polynomial
m, and every probabilistic polynomial-time man-in-the-middle adversary A that
participates in at most m = m(n) concurrent executions, there exists a proba-
bilistic polynomial time machine S such that:

1. The following ensembles are computationally indistinguishable over n ∈ N
– {viewA(n, x1, . . . , xm, z)}n∈N,x1,...,xm∈L∩{0,1}n,z∈{0,1}∗

– {S1(1n, x1, . . . , xm, z)}n∈N,x1,...,xm∈L∩{0,1}n,z∈{0,1}∗

where S1(n, x1, . . . , xm, z) denotes the first output of S(1n, x1, . . . , xm, z).
2. Let x1, . . . , xm ∈ L ∩ {0, 1}n, z ∈ {0, 1}∗, and let (view,w) denote the out-

put of S(1n, x1, . . . , xm, z). Let x̃1, . . . , x̃m be the statements of the right-
interactions in view view, and let id1, . . . , idm and ĩd1, . . . , ĩdm be the identi-
ties of the left-interaction and right-interactions, respectively, in view view.
Then for every i ∈ [m], if the ith right-interaction is accepting and ĩdi �= idj

for all j ∈ [m], w contains a witness wi such that RL(x̃i, wi) = 1.

2.2 Non-Malleable Commitment Schemes

We recall the definition of non-malleability from [LPV08] (which builds upon the
definition of [DDN00, PR05]). Let 〈C,R〉 be a tag-based commitment scheme,

434 H. Lin et al.

and let n ∈ N be a security parameter. Consider a man-in-the-middle adversary
A that, on auxiliary inputs n and z, participates in one left and one right inter-
action simultaneously. In the left interaction, the man-in-the-middle adversary
A interacts with C, receiving a commitment to value v, using identity id of its
choice. In the right interaction A interacts with R attempting to commit to a
related value ṽ, again using identity ĩd of its choice. If the right commitment is
invalid, or undefined, its value is set to ⊥. Furthermore, if ĩd = id, ṽ is also set to
⊥—i.e., a commitment where the adversary copies the identity of the left inter-
action is considered invalid. Let nmcA〈C,R〉v1, . . . , vm, z denote a random variable
that describes the value ṽ and the view of A, in the above experiment.

Definition 2. A commitment scheme 〈C,R〉 is said to be non-malleable (with
respect to itself) if for every polynomial p(·), and every probabilistic polynomial-
time man-in-the-middle adversary A, the following ensembles are computation-
ally indistinguishable.{

nmcA〈C,R〉(v, z)
}

n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗{
nmcA〈C,R〉(v

′, z)
}

n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗

Remark 1. The main difference of this definition compared to previous ones
[PR03, DDN00] is that it considers not only the values the adversary commits
to, but also the view of the adversary. This is particularly important in our
analysis later. (See Hybrid H3 and H4 in case j = 2 in the proof of Lemma 7.)

Non-Malleable Commitment Robust w.r.t. k-round Protocols The no-
tion of non-malleability w.r.t. arbitrary k-round protocols is introduced in [LP09].
Unlike traditional definitions of non-malleability, which only consider man-in-the
middle adversaries that participate in two (or more) executions of the same pro-
tocol, non-malleability w.r.t. arbitrary protocols considers a class of adversaries
that can participate in a left interaction of any arbitrary protocol. Below we
recall the definition. Consider a one-many man-in-the-middle adversary A that
participates in one left interaction—communicating with a machine B—and one
right interaction—acting as a committer using the commitment scheme 〈C,R〉.
As in the standard definition of non-malleability, A can adaptively choose the
identity in the right interaction. We denote by nmcB,A

〈C,R〉(y, z) the random variable
consisting of the view of A(z) in a man-in-the-middle execution when commu-
nicating with B(y) on the left and an honest receiver on the right, combined
with the value A(z) commits to on the right. Intuitively, we say that 〈C,R〉 is
non-malleable w.r.t. B if nmcB,A

〈C,R〉(y1, z) and nmcB,A
〈C,R〉(y2, z) are indistinguish-

able, whenever interactions with B(y1) and B(y2) cannot be distinguished. More
formally, let viewA[〈B(y), A(z)〉] denote the view of A(z) in an interaction with
B(y).

Definition 3. Let 〈C,R〉 be a commitment scheme, and B a probabilistic poly-
nomial-time machine. We say the commitment scheme 〈C,R〉 is non-malleable

Concurrent Non-Malleable Zero Knowledge Proofs 435

w.r.t. B, if for every probabilistic polynomial-time man-in-the-middle adversary
A, and every two sequences {y1

n}n∈N and {y2
n}n∈N such that, for all probabilistic

polynomial-time machine Ã, it holds that{
〈B(y1

n), Ã(z)〉(1n)
}

n∈N,z∈{0,1}∗
≈
{
〈B(y2

n), Ã(z)〉(1n)
}

n∈N,z∈{0,1}∗

where 〈B(y), Ã(z)〉(1n) denotes the view of Ã in interaction with B on common
input 1n, and private inputs z and y respectively, then it holds that:{

nmcB,A
〈C,R〉(y

1
n, z)
}

n∈N,z∈{0,1}∗
≈
{

nmcB,A
〈C,R〉(y

2
n, z)
}

n∈N,z∈{0,1}∗

We say that 〈C,R〉 is non-malleable w.r.t. k-round protocols if 〈C,R〉 is non-
malleable w.r.t. any machine B that interacts with the man-in-the-middle adver-
sary in k rounds. Below, we focus on commitment schemes that are non-malleable
w.r.t. itself and arbitrary �(n)-round protocols, where l is a super-logarithmic
function. We say that such a commitment scheme is robust w.r.t. �(n)-round
protocols

Lemma 1. Let �(n) be a super-logarithmic function. Then there exists a O(�(n))-
round statistically binding commitment scheme that is robust w.r.t. �(n)-round pro-
tocols, assuming that one-way functions exist.

The protocol is essentially identical to the O(log n)-round protocol in [LPV08].
A formal proof of this lemma will appear in the full version.

2.3 Concurrently Extractable Commitment Schemes

Micciancio, Ong, Sahai and Vadhan introduce and construct concurrently ex-
tractable commitment schemes, CECom, in [MOSV06]. The commitment scheme
is an abstraction of the preamble stage of the concurrent zero-knowledge proto-
col of [PRS02]. Informally, values committed by CECom can be extracted by
a rewinding extractor (e.g., the zero-knowledge simulator of [KP01, PRS02,
PTV08]), even in the concurrent setting. In this work, we use the same con-
struction as in [PRS02, MOSV06], but are unable to employ their analysis.

3 A Concurrent Non-Malleable Zero-Knowledge Proof

In this section we construct a concurrent non-malleable zero-knowledge proof
based on collision-resistant hash-functions. Let �(n) be any super logarithmic
function. Our concurrent non-malleable zero-knowledge protocol, CNMZKProof,
employs several commitment protocols. Let Comsh be a 2-round statistically
hiding commitment (based on collision-resistant hash-functions), Comsb be a
2-round statistically binding commitment (based on one-way functions), and
NMCom be an O(�(n))-round statistically binding commitment scheme that is
robust w.r.t. �(n)-round protocols (based on one-way functions).

436 H. Lin et al.

Our protocol also employs �(n)-round, statistically hiding (respectively sta-
tistically binding) concurrently-extractable commitment schemes, CEComsh (re-
spectively CEComsb). These schemes are essentially instantiations of the PRS
preamble [PRS02], and can be constructed given Comsh and Comsb. We repeat
their definitions below.

To commit a n-bit string v under scheme CEComsh, the committer choses n×
�(n) pairs of random n-bit strings (α0

i,j , α
1
i,j), i ∈ [n], j ∈ [�(n)], such that α0

i,j ⊕
α1

i,j = v for every i and j. The sender then commits to v and each of the 2n�(n)
strings in parallel using Comsh. This is followed by �(n) rounds of interactions. In
the jth interaction, the receiver sends a random n-bit challenge bj = b1,j . . . bn,j ,
and the committer decommits the commitments of αb1,j

1,j , . . . , α
bn,j

n,j according to
the challenge.

A valid decommitment of CEComsh requires the committer to decommit all
initial commitments under scheme Comsh (i.e., reveal the randomness of the
commitments), and that the decommited values satisfy α0

i,j ⊕ α1
i,j = v for every

i and j.
CEComsb is defined analogously as CEComsh with the initial commitment

Comsh replaced by Comsb. Additionally, we say a transcript of CEComsb is valid if
there exists a valid decommitment. Formal definitions of CEComsh and CEComsb

are shown in Fig. 1.

sh sb

n v ∈ {0, 1}n

n�(n) n (α0
i,j , α

1
i,j) i ∈ [n], j ∈

[�(n)] i, j α0
i,j ⊕ α1

i,j = v v α0
i,j α1

i,j

i ∈ [n], j ∈ [�(n)] sh sb

i = 1 �(n)
n bj = b1,j . . . bn,j

α
b1,j

1,j , . . . , α
bn,j

n,j

n�(n) + 1
sh sb α0

i,j ⊕ α1
i,j = v i j

Fig. 1. Concurrently extractable commitments [MOSV06, PRS02]

We now describe CNMZKProof, our concurrent non-malleable zero-knowledge
protocol. Protocol CNMZKProof for a language L ∈ NP proceeds in six stages
given a security parameter n, a common input statement x ∈ {0, 1}n, an identity
id of the Prover, and a private input w ∈ RL(x) to the Prover.

Stage 1: The Verifier choses a random string r ∈ {0, 1}n and commits to r
using CEComsh; r is called the “fake witness”.

Concurrent Non-Malleable Zero Knowledge Proofs 437

Stage 2: The Prover commits to the witness w using CEComsb.
Stage 3: The Prover commits to the witness w using NMCom under identity

id.
Stage 4: The Prover commits to the witness w using NMCom under identity

id, again.
Stage 5: The Verifier decommits the Stage 1 commitment to value v.
Stage 6: The Prover, using a ω(1)-round ZK proof (e.g., [Blu86]) proves that

the commitments in Stages 2, 3 and 4 all commit to the same value w̃ (under
identity id), and that either w̃ ∈ RL(x), or w̃ = r.

Protocol CNMZKProof, in essence, is a modification of the Goldreich-Kahan
protocol [GK96]. The protocol is trivially complete, and below we intuitively
argue that the protocol is sound. To cheat in the protocol, because the Stage 2
commitment is statistically binding (and the Stage 6 protocol is a proof), the
Prover must know the value r committed by the Verifier in Stage 1, before the
conclusion of Stage 2 (i.e., before the Verifier decommits to r). This violates
that statistical hiding property of the commitment scheme CEComsh. A formal
description of protocol CNMZKProof is shown in Figure 2.

4 Proof of Security

The definition of CNMZK requires a simulator-extractor S that is able to simu-
late the view of a man-in-the-middle adversary A (including both left and right
interactions), while simultaneously extracting the witnesses to statements proved
in the right interactions. We describe the construction of our simulator in the
Sect. 4.1 and show its correctness in Sect. 4.2 and 4.3.

4.1 Our Simulator-Extractor

Our simulator-extractor, S, roughly follows this strategy:

Simulating the view of the right interactions. S simply follows the hon-
est verifier strategy.

Simulating the view of the left interactions. In each protocol execution,
S first extracts a “fake witness” r from the CEComsh committed by A in
Stage 1, then commits to r in Stage 2, 3, and 4, and finally simulates the
proof of knowledge using r as a witness in Stage 6.

Extracting the witnesses. In each right interaction that completes success-
fully, S extracts a witness w from CEComsb committed by A in Stage 2 of
the protocol.

Thus, the main task of S is to extract the values committed by A, using CECom,
in Stage 1 and 2 of the protocol. This is done by rewinding A during each
CECom. To that end, we employ the oblivious Killian-Petrank simulator [KP01]
We also rely on the analysis of [PTV08], which is in turn based on the analysis
of [PRS02].

438 H. Lin et al.

Protocol CNMZKProof

Common Input: an instance x of a language L with witness relation RL, an identifier
id, and a security parameter n.

Auxiliary Input for Prover: a witness w, such that (x,w) ∈ RL(x).
Stage 1:

V uniformly chooses r ∈ {0, 1}n (the “fake witness”).
V commits to r using protocol CEComsh. Let T1 be the commitment transcript.

Stage 2:
P commits to w using protocol CEComsb. Let T2 be the commitment transcript.

Stage 3:
P commits to w using protocol NMCom and identity id. Let T3 be the commitment

transcript.
Stage 4:

P commits to w using protocol NMCom and identity id. Let T4 be the commitment
transcript.

Stage 5:
V decommits T1 to value r; P aborts if no valid decommitment is given.

Stage 6:
P ↔ V: a ω(1)-round ZK proof [Blu86] of the statement: There exists w̃ such

that
– w̃ is a valid decommitment of T2,
– and w̃ is a valid decommitment of T3 and T4 under identity id,
– and w̃ ∈ RL(x) or w̃ = r.

Fig. 2. Concurrent Non-Malleable ZK argument for NP

On a very high-level, S attempts to simulate the view of A (with “fake wit-
nesses”) in one continuously straight-line manner (so as to not skew the output
distribution); this is aided by numerous auxiliary rewinds that allows S to ex-
tract the “fake witnesses” in time. As implied by our simulation strategy, the view
of A generated by S depends on the extracted “fake witnesses”, but is otherwise
independent of the interaction in auxiliary rewinds.

It is useful to know that S may abort in two manners. At the end of a CECom,
if S is unable to extract the committed value (the rewinds were unhelpful), S
outputs ⊥ext. Or, in Stage 5 of a left interaction, if A decommits its Stage 1
CEComsh to a value that is different from the extracted value, S outputs ⊥bind.
The following claim bounds the abort probability of S.

Claim 2. S outputs ⊥ext and ⊥bind with negligible probability.

Proof. This follows essentially from the analysis of [PTV08] in the setting of
concurrent ZK. We present the complete proof in the full version of the paper.

Concurrent Non-Malleable Zero Knowledge Proofs 439

4.2 The View Generated by the Simulator

We next show that the view generated by S is indistinguishable from the real
view of A.

Lemma 3. The following ensembles are computationally indistinguishable over
n ∈ N:

{S(1n, x1, . . . , xm, z)}n∈N,x1,...,xm∈{0,1}n∩L,z∈{0,1}∗

{viewA(1n, x1, . . . , xm, z)}n∈N,x1,...,xm∈{0,1}n∩L,z∈{0,1}∗

To show Lemma 3, we introduce a series of hybrid simulators; the same hybrid
simulators will also be helpful later in Sect. 4.3. Hybrids hybi, 0 ≤ i ≤ m + 1,
receive the witnesses of the statements proved in any left interactions (i.e., “real
witnesses”), and proceed in three steps. In the following description, we order
the left interactions by the order in which Stage 1 is completed.

Step 1: Run the simulator S with the adversary A in its entirety. Output ⊥ext

or ⊥bind if S outputs ⊥ext or ⊥bind. Otherwise, let V be the view of A
produced by S, and rj be the “fake witness” extracted by S from the jth left
interaction in V .

Step 2: Let Vi be the prefix of V up until the ith left interaction has completed
Stage 1 of the protocol. Simulate a new man-in-the-middle execution with A,
continuing from Vi, in a straight-line manner. In each of the following cases,
we need to make sure that the view Vi can be completed in a consistent way.
Note that we can continue any partial commitment or zero-knowledge proof
contained in Vi as long as we don’t change the committed value or proof
witness.4
– Continue of the simulation of right interactions by following the honest

verifier strategy (just like S).
– Continue the simulation of the first i left interactions in the same manner

as S: use the “fake witnesses” rj ’s for the commitments in Stage 2, 3 and
4, and the proof in Stage 6. This can be done in a straight line manner
since the first i extracted “fake witnesses” (rj , j ≤ i) are still useful; they
correspond to the Stage 1 commitments of the first i left interactions that
are present in Vi. Similar to S, if A decommits the Stage 1 CEComsh to
a value different from the extracted “fake witness” r, hybi outputs ⊥bind.

– Continue the simulation of the i + 1st and later left interactions by fol-
lowing the honest prover strategy using the given “real witnesses”. This
does not conflict with the partial view Vi, since Stage 2 of these left
interactions have not yet started.

Step 3: Output the newly completed view of A from step 2.
4 Recall that S follows the honest committer and prover strategy in each stage of

the protocol; it only cheats by using “fake witnesses”. Formally, we can continue any
partial commitment or zero-knowledge proof, for example, by requiring S to output
the state of every partial commitment and zero-knowledge proofs, for every prefix
of the view V.

440 H. Lin et al.

We also define hybrids hybi
+ that proceed identically as hybi except that in step

2, it simulates the ith left interaction following the honest prover strategy, using
the given “real witness” (all other interactions are handled identically as before).
Note that these hybrids are only concerned with producing a view of A, and do
not extract the witnesses of the right interactions.

We start with a claim bounding the abort probability of the hybrids.

Claim 4. For all i, hybi and hybi
+ output ⊥ with negligible probability.

Proof. hybi and hybi
+ abort when S aborts, or if they output ⊥bind during the

second pass of the simulation (while mimicking S). The first event is bounded by
Claim 2. The second event occurs with negligible probability due to the binding
property of CECom;

By Claim 4, the output of hyb0 is statistically close to the real view of A (they
only differ when hyb0 aborts, which occurs with negligible probability). The
output of hybm+1, on the other hand, is identical to the output of simulator S.
Therefore Lemma 3 directly follows from the next two claims:

Claim 5. The output of hybi and hybi
+ are computationally indistinguishable.

Proof. hybi and hybi
+ differs only in how the ith left interaction is simulated

(real or fake witness), which is done in a straight line fashion by both hybrids.
Therefore they are computationally indistinguishable by the computational hid-
ing property of the Stage 2, 3, and 4 commitments, and the strongly witness-
indistinguishable property (implied by the ZK property) of the Stage 6 proof.

Claim 6. The output of hybi
+ and hybi−1 are statistically close.

Proof. Ignoring the fact that hybi
+ and hybi−1 may abort, their outputs are

identical. This is because hybi
+ differs from hybi−1 only in that when generating

the output view, from the end of the i − 1st Stage 1 until the end of the ith

Stage 1 of the left interactions, hybi
+ employs rewinds. However, these rewinds

do not extract any new “fake witnesses” for use in the output view, and do not
skew the output distribution because the rewinding schedule (including which
rewind determines the output view) is oblivious. Since both machines abort at
most with negligible probability by Claim 4, their outputs are statistically close.

Remark 2. Note that Claim 4 is crucial to the analysis of the hybrids. The
analysis of [PRS02, MOSV06] can only realize Claim 4 for committed-verifier
protocols. Since CNMZKProof is not committed-verifier, we instead turn to the
analysis of [PTV08]. Alternatively, it seems we can also utilize the analysis of
[KP01], at the cost of O(log2 n) round complexity.

4.3 The Witnesses Output by the Simulator

We now show that the extracted witnesses are indeed the NP witnesses of the
statements proved in the right interactions; this is the main technical contribu-
tion of our work.

Concurrent Non-Malleable Zero Knowledge Proofs 441

Observe that if A commits to a valid witness using CEComsb in Stage 2 of a
right interaction, then by Claim 2, the simulator S would extract this witness
except with negligible probability. Therefore, the following lemma establishes
the correctness of the output witnesses:

Lemma 7. For every PPT adversary A, there exists a negligible function ν,
such that for every n ∈ N , x1, . . . , xm ∈ {0, 1}n ∩ L and z ∈ {0, 1}∗, the proba-
bility that A fails to commit to a valid witness in Stage 2 of a right interaction
that is accepting and uses a different identity from all left interactions, is less
than ν(n).

Proof. Assume for contradiction that there exists a man-in-the-middle adver-
sary A that participates in m = m(n) left and right interactions, and a polyno-
mial function p, such that for infinitely many n ∈ N , there exists x1, . . . , xm ∈
{0, 1}n ∩ L and z ∈ {0, 1}∗, such that A cheats in an outcome of S1(n, x1, . . . ,
xm(n), z) with probability 1/p(n); by cheating, we mean that A fails to commit
to a valid witness in Stage 2 of any right interaction that is accepting and uses
a different identity from all the left interactions. (Note that A is not considered
cheating if the simulator fails to output a view of A).

Consider the series of hybrids, hybi and hybi
+, defined in section 4.2. Since

hybm+1 is identical to S, by our hypothesis, the probability that A cheats in
hybm+1 is non-negligible. On the other hand, in hyb0, it follows from the sound-
ness of Stage 6 that, except with negligible probability, in every accepting right
interaction,A commits (successfully) to either a real or a “fake witness”; it further
follows from the statistically hiding property of Stage 1 and the (stand-alone) ex-
tractability of Stage 2 that, except with negligible probability, A never commits
to a “fake witness” in any accepting right interactions. Hence, by union bound,
except with negligible probability, A never cheats in hyb0. In addition, it follows
from Claim 6 that the probabilities of A cheating in hybi and hybi+1

+ differ by
at most a negligible amount. Therefore, for infinitely many n, there must exist
an i = i(n), such that, the probability of cheating differ by at least a polyno-
mial amount in hybi

+ and hybi. Since the total number of right interactions is
bounded by a polynomial, this implies that the probabilities that A cheats in
a randomly chosen right interaction in the two hybrids differ by a polynomial
amount.

Notice that the hybrids hybi
+ and hybi proceed identically up until the ith left

interaction has completed Stage 1 of the protocol—we call it the cutoff point.
After the cutoff point, the only difference between the two experiments lies in
how the ith left interaction are simulated (using either the real or fake witness.)
Recall that the adversary A controls the message scheduling in the network; it
can thus arrange messages in the ith left-proof and the randomly chosen right-
proof in one of the following three ways; see figure 3. Below we omit specifying
the ith left interaction and the randomly chosen right interaction, when it is
clear in the context.

442 H. Lin et al.

1.CECom

1.CECom

2.CECom

2.CECom

3.NMCom

4.NMCom

3.NMCom

4.NMCom

6. ZK 6. ZK

(v, d) (v′, d′)

τ

1.CECom

1.CECom2.CECom

2.CECom3.NMCom

4.NMCom 3.NMCom

4.NMCom
6. ZK

6. ZK

(v, d)

(v′, d′)

(i) Scheduling 1 (ii) Scheduling 2

1.CECom

1.CECom2.CECom

2.CECom3.NMCom

4.NMCom

3.NMCom

4.NMCom
6. ZK

6. ZK

(v, d)

(v′, d′)

(iii) Scheduling 3

Fig. 3. The three scheduling in a man-in-the-middle execution of A

Scheduling 1: A completes the Stage 2 commitment on the right before the
cutoff point.

Scheduling 2: A completes the Stage 2 commitment after the cutoff point, but
completes the Stage 3 commitment before the Stage 6 proof starts on the
left.

Scheduling 3: A completes the Stage 2 commitment after the cutoff point,
and completes the Stage 3 commitment after the Stage 6 proof starts on the
left.

Now consider a variant of hybi, hybi,j where j ∈ {1, 2, 3}, which proceeds iden-
tically to hybi, except that it outputs ⊥ if scheduling j does not occur in the
output view; define hybi,j

+ correspondingly for hybi
+. Since every man-in-the-

middle execution must follow one of the three scheduling above, it holds that,

Concurrent Non-Malleable Zero Knowledge Proofs 443

there exists a j ∈ {1, 2, 3}, such that for infinitely many n ∈ N , the probabilities
that A cheats in a randomly chosen right interaction in hybi,j

+ and hybi,j differ
by a polynomial amount,

Towards reaching a contradiction, let hybi,j(n, x1, . . . , xm, z) denote the com-
bined view of A and the value v it commits to in Stage 2 of a randomly cho-
sen right interaction in hybi,j ; v is replaced with ⊥ if any of the following
three events happens: the hybrid experiment fails, or the right interaction j
fails, or the right interaction copies the identity of one of the left interactions.
Define hybi,j

+ (n, x1, . . . , xm, z) correspondingly for hybi,j
+ . (For convenience, we

refer to v as the committed value of the right interaction.) Below we show
that, for every b, and every function i : N → N ,

{
hybi,j(n, x1, . . . , xm, z)

}
and{

hybi,j
+ (n, x1, . . . , xm, z)

}
are computationally indistinguishable, which implies

that the probabilities that A cheats in a randomly chosen right interaction dif-
fer by at most a negligible amount in the two hybrid experiments, which is a
contradiction. The lemma thus follows.

When j = 1, A completes the Stage 2 commitment on the right before the cut-
off point, in hybrids hybi,1 and hybi,1

+ . Since the two hybrid experiments
proceed identically before the cutoff point, the values A commits to in Stage
2 on the right are identical in the two experiments. It then follows using
essentially the same argument as in Lemma 3 (by relying on the hiding
property of Stage 2 to 4 and the strongly WI property of Stage 6) that
the view and the committed value on the right are indistinguishable, i.e.,

Claim 8. For every function i : N → N , the following ensembles are com-
putationally indistinguishable:
–
{
hybi(n),1(n, x1, . . . , xm, z)

}
n∈N,x1,...,xm∈(L∩{0,1}n)m,z∈{0,1}∗

–
{
hyb

i(n),1
+ (n, x1, . . . , xm, z)

}
n∈N,x1,...,xm∈(L∩{0,1}n)m,z∈{0,1}∗

When j = 2, Stage 3 to 6 of the right interaction are simulated completely after
the cutoff point in a straight line fashion, in hybi,2 and hybi,2

+ . It then follows
from the soundness of Stage 6 that, except from negligible probability, A al-
ways commits to the same value in Stage 2, 3 and 4 on the right, provided that
the right interaction is accepting. Hence to show the indistinguishability of the
view and the value A commits to on the right, it suffices to show the indistin-
guishability of the view V and the value v thatA commits to in Stage 3 (This is
because the committed value on the right can be efficiently reconstructed from
V and v, by replacing v with ⊥ appropriately according to V). Then consider
the following hybrids, H0 = hybi,2

+ to H5 = hybi,2.
Hybrid H1 proceeds identically to H0, except that, in H1, Stage 6 of the left

interaction is simulated using the simulator of the ZK protocol 〈P, V 〉.
Since in Scheduling 2, the Stage 3 commitment on the right completes
before the Stage 6 proof starts, the value A commits to in Stage 3 is inde-
pendent of the ZK proof. Therefore, the view and the value A commits to
in Stage 3 are indistinguishable in H0 and H1.

444 H. Lin et al.

Hybrid H2 proceeds identically to H1, except that the Stage 2 CEComsb of
the left interaction is now a commitment to the “fake witness” (whereas
in H1, it is a commitment to a valid witness). It then follows from the
non-malleability w.r.t. �(n)-round protocols of NMCom, (and the fact
that Stage 2 of the protocol consists of �(n) rounds) that, the view
and the value A commits to in Stage 3 are indistinguishable in H1 and
H2.

Hybrid H3 (and H4 resp.) proceeds identically to H2 (and H3 resp.), ex-
cept that, Stage 3 (and Stage 4 resp.) of the left interaction is now a
commitment to the “fake witness”. It follows using a similar argument as
in H2, but relying on the non-malleability w.r.t. itself of NMCom that
the view and the value A commits to in Stage 3 are indistinguishable in
H2 and H3 (and in H3 and H4 resp.).

Hybrid H5 proceeds identically toH4, except that Stage 6 of the left interac-
tion is simulated by proving that Stage 2, 3 and 4 are valid commitments
to the value revealed by A in Stage 5 on the left. Note that, by defintion,
H5 proceeds identically to the experiment hybi,2. Furthermore, it follows
using the same argument as inH1 that the view and the valuesA commits
to in Stage 3 are indistinguishable in H4 and H5.

Finally, it follows using a hybrid argument that the combined view and the
value A commits to in Stage 3 are indistinguishable in hybi,2 and hybi,2

+ .
Therefore,

Claim 9. For every function i : N → N , the following ensembles are com-
putationally indistinguishable:
–
{
hybi(n),2(n, x1, . . . , xm, z)

}
n∈N,x1,...,xm∈(L∩{0,1}n)m,z∈{0,1}∗

–
{
hyb

i(n),2
+ (n, x1, . . . , xm, z)

}
n∈N,x1,...,xm∈(L∩{0,1}n)m,z∈{0,1}∗

When j = 3, by the same argument as in the case when j = 2, A always com-
mits to the same value in Stage 2, 3 and 4 of every accepting right interac-
tion, and thus, it suffices to show that the view and the value A commits
to in Stage 4 are indistinguishable. In hybi,3 and hybi,3

+ , (as A completes
the Stage 3 commitment on the right after the Stage 6 proof starts on the
left), the Stage 4 commitment on the right starts completely after the Stage
6 proof on the left, which (by definition) consists of only ω(1) rounds. It
thus follows from the non-malleability with respect to ω(1)-round protocols
of NMCom (along with the strongly WI property of Stage 6) that, the view
and the value A commits to in Stage 4 are indistinguishable. Therefore,

Claim 10. For every function i : N → N , the following ensembles are com-
putationally indistinguishable:
–
{
hybi(n),3(n, x1, . . . , xm, z)

}
n∈N,x1,...,xm∈(L∩{0,1}n)m,z∈{0,1}∗

–
{
hyb

i(n),3
+ (n, x1, . . . , xm, z)

}
n∈N,x1,...,xm∈(L∩{0,1}n)m,z∈{0,1}∗

A formal proof of this claim will appear in the full version.

Concurrent Non-Malleable Zero Knowledge Proofs 445

Completing Theorem 1 and Theorem 2. Above we constructed a Õ(log n)-round
CNMZK proof based on collision-resistant hash-functions. We obtain a Õ(logn)-
round CNMZK argument from one-way functions, simply by replacing the Stage
1 CEComsh commitment with protocol CEComsb. Note that the resulting proto-
col is still sound since because the Stage 2 commitment by the prover (CEComsb)
is statistically binding and “extractable”.5

Furthermore, to obtain a poly(n)-round CNMZK proof based on one-way
functions, we use the same protocol CNMZKProof, except that we construct the
Stage 1 CEComsh using the public-coin statistically hiding commitment from
one-way functions by Haitner et. al. [HNO+09]. It follows using essentially the
same security proof as for CNMZKProof that this protocol is CNMZK; the
difference lies in how to bound the “binding failure” However, as in the main
proof, this can be bound using the analysis of [PTV08] since the commitment
of [HNO+09] is public-coin.

References

[AH91] Aiello, W., Håstad, J.: Statistical zero-knowledge languages can be recog-
nized in two rounds. J. Comput. Syst. Sci. 42(3), 327–345 (1991)

[BCC88] Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)

[Blu86] Blum, M.: How to prove a theorem so no one else can claim it. In: Proc. of
the International Congress of Mathematicians, pp. 1444–1451 (1986)

[BPS06] Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero
knowledge. In: FOCS, pp. 345–354 (2006)

[CGGM00] Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-
knowledge (extended abstract). In: STOC 2000, pp. 235–244 (2000)

[CKPR01] Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-
knowledge requires ω̃(log n) rounds. In: STOC 2001, pp. 570–579 (2001)

[DDN00] Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal
on Computing 30(2), 391–437 (2000)

[DN02] Damgård, I., Nielsen, J.B.: Perfect hiding and perfect binding universally
composable commitment schemes with constant expansion factor. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidel-
berg (2002)

[DNS04] Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM 51(6),
851–898 (2004)

[GK96] Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge
proof systems for NP. Journal of Cryptology 9(3), 167–190 (1996)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

[GMW91] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems. J.
ACM 38(3), 690–728 (1991)

5 Given a prover that breaks soundness, we may break the computationally hiding
property of the Stage 1 verifier CEComsb by rewinding the prover and extracting
the committed value of the Stage 2 prover CEComsb.

446 H. Lin et al.

[Gol01] Goldreich, O.: Foundations of Cryptography — Basic Tools. Cambridge
University Press, Cambridge (2001)

[HNO+09] Haitner, I., Nguyen, M.-H., Ong, S.J., Reingold, O., Vadhan, S.P.: Statis-
tically hiding commitments and statistical zero-knowledge arguments from
any one-way function. SIAM J. Comput. 39(3), 1153–1218 (2009)

[KP01] Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In: STOC 2001, pp. 560–569 (2001)

[LP09] Lin, H., Pass, R.: Non-malleability amplification. In: STOC 2009, pp. 189–
198 (2009)

[LPV08] Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable
commitments from any one-way function. In: Canetti, R. (ed.) TCC 2008.
LNCS, vol. 4948, pp. 571–588. Springer, Heidelberg (2008)

[LPV09] Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for con-
current security: universal composability from stand-alone non-malleability.
In: STOC 2009, pp. 179–188 (2009)

[MOSV06] Micciancio, D., Ong, S.J.J., Sahai, A., Vadhan, S.: Concurrent zero knowl-
edge without complexity assumptions. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 1–20. Springer, Heidelberg (2006)

[MP06] Micali, S., Pass, R.: Local zero knowledge. In: STOC 2006, pp. 306–315
(2006)

[OPV08] Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent
non-malleable zero knowledge in the bare public-key model. In: Aceto,
L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 548–559.
Springer, Heidelberg (2008)

[OPV10] Ostrovsky, R., Pandey, O., Visconti, I.: Efficiency preserving transforma-
tions for concurrent non-malleable zero knowledge. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 535–552. Springer, Heidelberg (2010)

[Pas03] Pass, R.: Simulation in quasi-polynomial time, and its application to proto-
col composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 160–176. Springer, Heidelberg (2003)

[PPS+08] Pandey, O., Pass, R., Sahai, A., Tseng, W.-L.D., Venkitasubramaniam, M.:
Precise concurrent zero knowledge. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 397–414. Springer, Heidelberg (2008)

[PR03] Pass, R., Rosen, A.: Bounded-concurrent secure two-party computation in
a constant number of rounds. In: FOCS, p. 404 (2003)

[PR05] Pass, R., Rosen, A.: New and improved constructions of non-malleable
cryptographic protocols. In: STOC 2005, pp. 533–542 (2005)

[PRS02] Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with
logarithmic round-complexity. In: FOCS 2002, pp. 366–375 (2002)

[PTV08] Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Concurrent zero
knowledge: Simplifications and generalizations (2008) (manuscript),
http://hdl.handle.net/1813/10772

[RK99] Richardson, R., Kilian, J.: On the concurrent composition of zero-
knowledge proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 415–432. Springer, Heidelberg (1999)

[SCO+01] De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.:
Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001)

http://hdl.handle.net/1813/10772

Equivalence of Uniform Key Agreement and
Composition Insecurity�

Chongwon Cho1,��, Chen-Kuei Lee1, and Rafail Ostrovsky2,� � �

1 Department of Computer Science, UCLA
2 Department of Computer Science and Mathematics, UCLA

{ccho,jcklee,rafail}@cs.ucla.edu

Abstract. We prove that achieving adaptive security from composing
two general non-adaptively secure pseudo-random functions is impossible
if and only if a uniform-transcript key agreement protocol exists.

It is well known that proving the security of a key agreement proto-
col (even in a special case where the protocol transcript looks random
to an outside observer) is at least as difficult as proving P �= NP . An-
other (seemingly unrelated) statement in cryptography is the existence
of two or more non-adaptively secure pseudo-random functions that do
not become adaptively secure under sequential or parallel composition.
In 2006, Pietrzak showed that at least one of these two seemingly unre-
lated statements is true. Pietrzak’s result was significant since it showed
a surprising connection between the worlds of public-key (i.e., “crypto-
mania”) and private-key cryptography (i.e., “minicrypt”). In this paper
we show that this duality is far stronger: we show that at least one of
these two statements must also be false. In other words, we show their
equivalence.

More specifically, Pietrzak’s paper shows that if sequential composi-
tion of two non-adaptively secure pseudo-random functions is not adap-
tively secure, then there exists a key agreement protocol. However,
Pietrzak’s construction implies a slightly stronger fact: If sequential com-
position does not imply adaptive security (in the above sense), then
a uniform-transcript key agreement protocol exists, where by uniform-
transcript we mean a key agreement protocol where the transcript of the
protocol execution is indistinguishable from uniform to eavesdroppers.
In this paper, we complete the picture, and show the reverse direction as
well as a strong equivalence between these two notions. More specifically,
as our main result, we show that if there exists any uniform-transcript
key agreement protocol, then composition does not imply adaptive secu-
rity. Our result holds for both parallel and sequential composition. Our
implication holds based on virtually all known key agreement protocols,
and can also be based on general complexity assumptions of the existence
of dense trapdoor permutations.

� Full version appeared on ECCC (Report No.: TR09-108, 31st October 2009).
�� Supported in part by grants 0716835, 0716389, 0830803, 0916574.

� � � Supported in part by IBM Faculty Award, Xerox Innovation Group Award,
the Okawa Foundation Research Award, Intel, Teradata, Lockheed-Martin, NSF
grants 0716835, 0716389, 0830803, 0916574, BSF grant, and U.C. MICRO grant.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 447–464, 2010.
c© International Association for Cryptologic Research 2010

448 C. Cho, C.-K. Lee, and R. Ostrovsky

1 Introduction

One of the central questions in cryptography is the question of composition,
which very broadly is the study of various ways to compose several basic primi-
tives in a way that amplifies the hardness of the composed object. Naturally, this
central question has received a lot of attention in various settings and we con-
tinue the study of this question here. More specifically, we investigate a question
of whether a composition of pseudo-random functions, to be defined shortly, con-
stitutes stronger security by utilizing the security of the component functions.
We consider two very natural types of conventional compositions: a parallel
composition with respect to Exclusive-Or (XOR) operation denoted by ⊕ and a
sequential composition. Briefly, on input x in the domain of F and G, the par-
allel XOR-composition of two functions F and G is defined as F(x) ⊕ G(x). The
sequential composition of F and G is defined as G(F(x)) (or F(G(x))).

Seemingly unrelated to the notion of security amplification via composition,
there is the question of designing Key Agreement protocol. Recall that Key
Agreement (KA) is a protocol that enables two parties to generate a secret string
(also called key) by communicating with each other over an insecure channel in
the presence of a eavesdropping adversary. Uniform-transcript key agreement
(UTKA) is a strengthened version of key agreement in which messages between
two parties are indistinguishable from uniform distribution by all probabilis-
tic polynomial-time (PPT) adversaries. The reason why key agreement seems
unrelated to the security of composition is that key agreement belongs to the
world of public-key cryptography (also known as “cryptomania”) whereas the
security of composed pseudo-random functions rather belongs to the world of
private-key cryptography (also known as “minicrypt”). For further discussion
on cryptomania and minicrypt, see [4].

Now, let us recall briefly recall the definition of Pseudo-Random Functions
(PRF) [2]. There are two notions of security of PRF: adaptive security and
non-adaptive security. Intuitively, a (pseudo-random) function is said to be non-
adaptively secure if the function is indistinguishable from a random function
against all PPT adversaries that evaluate the function on inputs chosen inde-
pendently of the function outputs, that is, chosen prior to PPT adversary learn-
ing any of the outputs. Adaptive security is a far stronger notion of security
than non-adaptive security: a PRF is said to be adaptively secure if the func-
tion remains indistinguishable from random function against all PPT adversaries
preparing the current query based on the outputs of the function on all previous
queries. Clearly, adaptive security implies non-adaptive security.

We show that the equivalence between the impossibility of achieving adaptive
security by composing general non-adaptively secure pseudo-random functions
and the existence of uniform transcript key-agreement protocol. We note that our
impossibility result holds not only for the case in which the non-adaptively-secure
component functions are drawn from the different function families (also known
as the general composition) but also for the case where the component functions
are drawn from the same function family (also known as self-composition).

Equivalence of Uniform Key Agreement and Composition Insecurity 449

1.1 Related Work

There has been extensive research on relationship between the security of compo-
nent functions and the security of their parallel or sequential composition. In the
information theoretic context, Vaudenay [11] proved that if F is a pseudo-random
permutation with security ε against any distinguisher making q (non-)adaptive
queries, then the sequential composition of k F’s has improved security 2k−1εk

against a (non-)adaptive distinguisher. F only needs to be a function instead of
a permutation for the same security in parallel composition. Luby and Rackoff
[5] show the similar security amplification result in the computational context.

In the information theoretic setting, Maurer and Pietrzak [6] proved that
composition of non-adaptive secure functions amplifies its security ε to security
2ε(1+ln(ε−1)) against an adaptive distinguisher. In 2007, Maurer et al. improved
this bound to 2ε [7].

Myers [8] showed that the existence of oracles relative to which there are
non-adaptively secure permutations, but where the composition of such permu-
tations fails to achieve adaptive security. Recently, Pietrzak [9] showed that the
composition of non-adaptively secure functions does not imply adaptive security
under the Decisional Diffie-Hellman (DDH) assumption. Pietrzak’s more recent
work [Pie06] showed that if sequential composition does not imply adaptive se-
curity, then there exists a key agreement protocol. Moreover, it turns out that
Pietrzak’s construction in [10] implies a slightly stronger result: that his key
agreement protocol satisfies the property of uniform-transcript. Thus, we can
restate the Pietrazak’s result as follows:

Theorem 1. [10] If sequential composition of pseudo-random functions is not
adaptively secure, then there exists a UTKA.

1.2 Our Results

Pietrzak’s work left open the question of establishing the precise connection be-
tween the impossibility of adaptively secure composition and key agreement. Our
main contribution is to establish sufficient and necessary conditions. In particu-
lar, we prove that the existence of UTKA implies the impossibility of obtaining
an adaptively secure function from composing general non-adaptively secure
functions. The main technique is the fully black-box construction of counter-
example functions from UTKA. Therefore, our result holds with respect to any
UTKA without relying on the actual code of the UTKA. We prove our result in
both parallel and sequential compositions.

Theorem 2. If there exists a UTKA, then parallel composition of non-adaptively
secure pseudo-random functions does not imply a pseudo-random function with
adaptive security.

Theorem 3. If there exists a UTKA, then sequential composition of non-
adaptively secure pseudo-random functions does not imply a pseudo-random func-
tion with adaptive security.

450 C. Cho, C.-K. Lee, and R. Ostrovsky

We also prove the analog of Pietrzak’s Theorem 1 for parallel composition:

Theorem 4. If a parallel composition of speudo-random functions is not adap-
tively secure, then there exists a UTKA.

Putting all our results together with Theorem 1, we conclude the equivalence
between the impossibility of adaptively secure composition and the existence of
a uniform transcript key-agreement (both for parallel and sequential composi-
tions). This is informally stated as follows.

Theorem 5. (MAIN) The composition of two non-adaptively secure pseudo-
random functions does not imply an adaptively secure pseudo-random function
if and only if a UTKA exists.

We emphasize that our main theorem holds regardless of whether PRFs being
composed are taken from a single function family (called self-composition) or
from two distinct function families (called general-composition). In particular,
we show that the impossibility of secure general-compositions further implies
the impossibility of secure self-compositions. The precise connection between
the impossibility of adaptively secure composition and a UTKA protocol were
not known prior to our work. We summarize these previously known results and
our contributions in Fig. 1.

DDH

Parallel Composition

Insecurity

Dense Trapdoor

permutation

Uniform Key

Agreement

Sequential

Composition Insecurity

Known

results

Our

contribution

Fig. 1. Relationship between composition insecurity and other assumptions

Organization of the rest of the paper

In Section 2, we review all basic cryptographic notions and definitions. To build
the intuition of our main construction, we first show in section 3 a high level
outline of somewhat weaker result. In particular, we outline the analogue of
Theorem 2 and Theorem 3 not assuming UTKA, but rather assuming the ex-
istence of a family of enhanced trapdoor permutations. We note that even this
weaker variant of our main result is a generalization from the result by [9],
which relies on a specific assumption (i.e., DDH assumption). In section 4 we
proceed to give the intuition of our main result assuming UTKA. In section 5,
we extend our main results to the one in the context of self-composition. We pro-
vide the complete constructions of our functions and full proofs of all theorems
in [1].

Equivalence of Uniform Key Agreement and Composition Insecurity 451

2 Preliminaries

We let n ∈ IN be a security parameter. An algorithm is considered efficient if
its computation can be carried out by a PPT machine whose running time is
expected polynomial in the input length. We use the notation x ←$ {0, 1}n
when string x is uniformly drawn from {0, 1}n. We omitted the rest of standard
notations and (well-known) formal definitions. For those definitions, we refer the
readers to [1].

3 Building Intuition: Composition Insecurity vs. Dense
Trapdoor Permutation

For gentle introduction to our main result, we first present a special case of our
main result as an example – The existence of dense trapdoor permutation (DTP)
implies the impossibility of achieving the adaptive security by composing (in a
black-box way) non-adaptively secure pseudo-random functions. The main idea
behind showing this, is that a family of DTPs is well-known to provide a 2-pass
(uniform-transcript) key agreement.

3.1 Parallel Composition Insecurity from Dense Trapdoor
Permutation

We construct two counter-example pseudo-random functions F and G which are
secure against any PPT adversary non-adaptively. Then, we prove that their
parallel composition is not secure against a particular sequence of four adaptive
queries.

Intuitions of Parallel Composition of F and G. We provide the high-level
overview and intuition of our construction of pseudo-random functions F and
G based on DTP, and show how to break the adaptive security of their par-
allel composition. The main technique of our constructions of counter-example
functions is to design the functions to detect the adaptive query throughout the
input and output behavior. In particular, F and G emulate a 2-pass key agree-
ment protocol via adaptive inputs and outputs. Once F and G internally obtain
a shared key, they generate outputs which hide a special relation with respect
to the shared key. As we input these specially generated outputs to the parallel
composition again, F and G retrieve the previously shared key and verify the
special relation with respect to the shared key. Hence, function F and G are con-
vinced that the queries must be indeed adaptively generated, and reveal their
private keys through their outputs, which break their security.

Our counter-example functions F and G are both defined over ({0, 1}n)2n+3.
F and G hide the secret keys kF and kG respectively. P denotes an adaptively
secure pseudo-random permutation. Let (Gen(·), f, f−1) be a family of DTPs.
rij and sij denote the ith pseudo-random string generated by F and G using
their secret keys on jth input respectively. In addition, Enck(x) is defined to be

452 C. Cho, C.-K. Lee, and R. Ostrovsky

a pseudo-random private-key encryption of x with respect to key k. Hence, we
have x = Deck(Enck(x)).

We first define F and G on the first fixed adaptive query Q1 = (0n, 0n, · · · , 0n):

– F generates 2n+3 pseudo-random strings r∗, r21, r31, · · · , r(2n+3)1 computed
by PkF

(Q1).
– G on input Q1 uses its secret key to first compute sufficiently long pseudo-

random string which is then used to compute DTP pair (k, tk): a pair of a
DTP key k and its private trapdoor tk by Gen(1n) of DTP. G generates 2n+
2 pseudo-random strings s21, s31, · · · , s(2n+3)1 by PkG

(Q1), then it outputs
(k, s21, · · · , s(2n+3)1).

We describe the outputs of F and G, and their parallel composition outputs
below:

Q1 →
[
F→ (r∗, r21, · · · , r(2n+3)1)
G→ (k, s21, · · · , s(2n+3)1)

]
→ (r∗⊕ k, r21⊕ s21, · · · , r(2n+3)1⊕ s(2n+3)1)

The second adaptive query is of the form Q2 = (u, 0n, 0n, · · · , 0n) where u =
r∗ ⊕ k. We define F and G on Q2 as follows.

– F first simulates the first-round of computation (by internally executing PkF

on the fixed query Q1) to obtain r∗, then computes u ⊕ r∗ which is equal
to k; Now, F computes 2n + 3 pseudo-random strings x1, x2, · · · , xn and
r(n+1)2, r(n+2)2, · · · , r(2n+3)2 by PkF

(Q2). F computes yi by fk(xi) for 1 ≤
i ≤ n, then outputs (y1, · · · , yn, r(n+1)2, · · · , r(2n+3)2).

– G generates fresh pseudo-random strings (s12, s22, · · · , s(2n+3)2) computed
by PkG

(Q2).

We describe what both F and G output individually and the output of their
parallel composition:

Q2 →
[

F→ (y1, · · · , yn, r(n+1)2, · · · , r(2n+3)2)
G→ (s12, · · · , sn2, s(n+1)2 · · · , s(2n+3)2)

]
→ (y1 ⊕ s12, · · · , yn ⊕ sn2, r(n+1)2 ⊕ s(n+1)2, · · · , r(2n+3)2 ⊕ s(2n+3)2)

We define the third adaptive query Q3 to consist of the selected coordinates
in the previous outputs such that Q3 = (y1 ⊕ s12, · · · , yn ⊕ sn2, r(n+1)2 ⊕
s(n+1)2, · · · , r(2n)2 ⊕ s(2n)2, k ⊕ r∗, 0n, 0n). On Q3, we defined F and G as fol-
lows.

– F regenerates all the pseudo-random strings in the second round, x1, · · · , xn,
r(n+1)2, · · · , r(2n+3)2 by PkF

(Q2). Notice that Q2 is (k⊕r∗, 0n, · · · , 0n) where
F can obtain k⊕r∗ fromQ3. F can compute bi =< xi, r(n+i)2 > for all 1 ≤ i ≤
n and retrieve a shared key sk by letting sk = b1b2 · · · bn. Now, F generates
pseudo-random strings r13, r23, · · · , r(2n+3)3 by PkF

(Q3) and encrypts r13
with the shared key as Encsk(r13). Finally, F outputs (Encsk(r13), r13, r23,
· · · , r(2n+2)3).

Equivalence of Uniform Key Agreement and Composition Insecurity 453

– G regenerates s12, s22, · · · ,s(2n)2 by PkG
(Q2). G can obtain y1, · · · ,yn, r(n+1)2,

· · · , r(2n)2 as it cancels s12, s22, · · · , s(2n)2 out of the first 2n coordinates in
Q3. By using the inverse permutation f−1

tk
with respect to the trapdoor

tk, G can obtain xi by computing f−1
tk

(yi) for all i. Hence, G can compute
bi =< xi, ri > for all i and retrieve the shared key sk by letting sk =
b1b2 · · · bn. Then, G generates pseudo-random strings s13, s23, · · · , s(2n+3)3 by
PkG

(Q3) and creates an encryption Encsk(s13). Finally, G outputs (Encsk(s13),
s13, s23, · · · , s(2n+2)3).

Below we depict the individual outputs of F and G and the output of their
parallel composition:

Q3 →
[
F→ (Encsk(r13), r13, r23, · · · , r(2n+2)3)
G→ (Encsk(s13), s13, s23, · · · , s(2n+2)3)

]
→ (Encsk(r13)⊕ Encsk(s13), r13 ⊕ s13, r23 ⊕ s23, · · · , r(2n+2)3 ⊕ s(2n+2)3)

Our fourth query Q4 is a selective collection of the outputs in the previous
round such that Q4 = (y1 ⊕ s12, · · · , yn ⊕ sn2, r(n+1)2 ⊕ s(n+1)2, · · · , r(2n)2 ⊕
s(2n)2, k ⊕ r∗,Encsk(r) ⊕ Encsk(s), r ⊕ s). Notice that F and G can simulate all
the computations of previous rounds uponQ4. Hence, F and G can retrieve shared
key sk. F computes Encsk(r13) and r13 by the simulation of computations on Q3.
Then, F checks to see if equality Decsk(Encsk(r13) ⊕ (Encsk(r13)⊕ Encsk(s13)))
= r13 ⊕ (r13 ⊕ s13) holds where (Encsk(r13) ⊕ Encsk(s13)) and (r13 ⊕ s13) are
obtained from Q4. Since the equality holds, F deduces that the input query is
indeed an adaptive query. Hence, F outputs (kF, 0n, 0n, · · · , 0n) containing its
secret key kF. G does the same and outputs (0n, kG, 0n, · · · , 0n). The individual
outputs of F and G and the output of the parallel composition are described
below.

Q4 →
[
F→ (kF, 0n, 0n, · · · , 0n)
G→ (0n, kG, 0n, · · · , 0n)

]
→ (kF, kG, 0n, · · · , 0n)

Now, it remains to prove that the above described functions are non-adaptively se-
cure and their parallel composition is adaptively insecure. We prove the following
claims that immediately substantiate Lemma 1. In this paper, a pseudo-random
function is said to be breakable by q adaptive queries if there is a PPT adversary
A such that A distinguishes the pseudo-random function from a uniform random
function by asking q adaptive queries to the pseudo-random function.

Claim. The function F and G described above are secure against any non-
adaptive PPT adversary.

Claim. The parallel composition function F ⊕ G is breakable by four adaptive
queries.

Lemma 6. Suppose that a dense trapdoor permutation exists. Then, there exist
non-adaptively secure pseudo-random functions F and G such that the parallel
composition over XOR of F and G is breakable by four adaptive queries.

454 C. Cho, C.-K. Lee, and R. Ostrovsky

3.2 Sequential Composition Insecurity from Dense Trapdoor
Permutation

We now present a somewhat more interesting construction: namely a sequential
composition of non-adaptively secure functions does not imply even minimal
adaptive security.That is, we show that there exist non-adaptively secure pseudo-
random functions F and G whose sequential composition is breakable by only two
adaptive queries and yet it remains only non-adaptively secure.

Intuitions of Sequential Composition of F and G. We provide the high-
level overview of their formal constructions of counter-example PRFs F and G.
The standard notions and specifications of the underlying primitives are identical
to the ones in the previous section. F (resp. G) contains two secret keys kF and
k

′
F (resp. kG and k

′
G).

We define the first adaptive query Q1 to be a fixed query, (0n, 0n, · · · , 0n).
Then, F and G are defined on Q1 as follows.

– F computes (k, tk) by Gen(1n), a pair of a public key defining a one-way
permutation and its corresponding trapdoor for the inverse permutation.
F also computes pseudo-random strings r21, r31, · · · , r(2n+3)1 by PkF

(Q1). F
outputs (k, r21, · · · , r(2n+3)1).

– On (k, r21, · · · , r(2n+3)1), function G is defined to generate 2n + 3 pseudo-
random strings x1, . . . , xn, s(n+1)1, · · · , s(2n+3)1 by PkG

(k, r21, · · · , r(2n+3)1)
and computes the shared key sk = b1b2 . . . bi, where bi =< xi, s(n+i)1 >
for all 1 ≤ i ≤ n. In addition, G creates an encryption of s(2n+1)1 with
respect to the shared key, denoted by Encsk(s(2n+1)1). Also, G encrypts one
of its own secrets k

′
G with respect to the shared key, resulting in Encsk(k

′
G).

Finally, G encrypts xis to yi by a one-way permutation defined by k (i.e., yi =
fk(xi) for all 1 ≤ i ≤ n). Hence, G outputs (y1, · · · , yn, s(n+1)1, · · · , s(2n)1,
Encsk(s(2n+1)1), s(2n+1)1, Encsk(k

′
G)).

The computation of the sequential composition of F and G on Q1 is described
below:

Q1
F−→ (k, r21, · · · , r(2n+3)1)
G−→ (y1, · · · , yn, s(n+1)1, · · · , s(2n)1,Encsk(s(2n+1)1), s(2n+1)1,Encsk(k

′
G))

We define our second adaptive query Q2 to be the output of the sequential com-
position on Q1 such that Q2 = (y1, · · · , yn, s(n+1)1, · · · , s(2n)1, Encsk(s(2n+1)1),
s(2n+1)1,Encsk(k

′
G)). On Q2, we define F and G as follows.

– F obtains all xis by inverting yis with its private trapdoor information tk as
f−1
tk

(yi) for all 1 ≤ i ≤ n. Now F can retrieve the shared key sk by letting sk =
b1b2 · · · bn where bi =< xi, s(n+i)1 > for all 1 ≤ i ≤ n. F takes Encsk(s(2n+1)1)
from Q2 and decrypts it to s(2n+1)1 by Decsk(Encsk(s(2n+1)1)). Finding the
decrypted string equivalent to the (2n+2)th coordinate in Q2 (i.e., s(2n+1)1),

Equivalence of Uniform Key Agreement and Composition Insecurity 455

F is convinced that Q2 is an adaptive query. Then, F inverts the final coor-
dinate of Q2 with the shared key sk, so F obtains k

′
G = Decsk(Encsk(k

′
G)).

Finally, F outputs a vector (k
′
G, kF, k

′
F, 0n, · · · , 0n) containing all the secrets

of F.
– Upon the input (k

′
G, kF, tk, 0n, · · · , 0n) from F, function G checks to see if

the first coordinate of the input vector equals its own secret k
′
G. Since the

equality holds, G reveals all the secret keys of F and G by outputting (kG,
k

′
G, kF, k

′
F, 0n, · · · , 0n).

All the individual outputs of F and G as a part of sequential composition is
described as follows.

Q2
F−→ (kG, kF, k

′
F, 0

n, · · · , 0n) G−→ (kG, k
k′
G , kF, k

′
F, 0

n, · · · , 0n)

We prove the following claims that constitute Lemma 7 below. Hence, by Lemma
6 and Lemma 7, we immediately obtain Theorem 8.

Claim. The functions F and G described above are secure against any non-
adaptive PPT adversary.

Claim. The sequential composition G(F(·)) is breakable by two adaptive queries.

Lemma 7. Suppose that a dense trapdoor permutation exists. Then, there exist
non-adaptively secure functions F and G whose sequential composition G(F(·)) is
breakable by two adaptive queries.

Theorem 8. If a dense trapdoor permutation exists, then the composition of
non-adaptively secure functions does not imply the adaptive security.

4 Composition Insecurity vs. Uniform Transcript Key
Agreement

In this section, we prove our main result: the existence of UTKA protocol implies
the impossibility of obtaining adaptive security by the general composition of
non-adaptively secure functions. Moreover, Pietrzak showed that the insecurity
of sequential composition implies the existence of key agreement protocol. In
fact, the key agreement protocol satisfies the property of uniform-transcript even
though Pietrzak did not mention it in [10]. For the whole equality between the
impossibility of general adaptively secure composition and UTKA, we prove that
the parallel composition insecurity also achieves a UTKA by employing a small
trick to the technique given in [10].

4.1 Parallel Composition Insecurity vs. Uniform Transcript Key
Agreement

Constructing UTKA from the Adaptive Insecurity of F⊕G. We present
the parallel version of the result by using the technique originally presented by

456 C. Cho, C.-K. Lee, and R. Ostrovsky

[10]. That is, if the parallel composition of two k− 1 adaptively secure functions
is not k-adaptively secure, then a (2k−1)-pass key agreement exists. For clarity,
we rather present a special case where k = 2. Following the technique of [10],
we construct a (2k − 1)-pass bit agreement with ε-correlation and δ-security
where ε is non-negligible and δ is overwhelming. It is known that n parallel
repetitions of bit agreement with ε-correlation and δ-security achieves a n-bit
key agreement without increasing the round complexity when ε is noticeable and
δ is overwhelming [3]. With non-negligible ε, a bit agreement still realizes a key
agreement which achieves correctness for (infinitely many) n such that for any
c, ε ≥ 1/nc.

We present the pictorial description of a (2k− 1)-pass UTKA from two adap-
tively pseudo-random functions whose parallel composition is not k-adaptively
secure when k = 2 in Protocol 1. The 3-pass uniform-transcript bit agreement
in Protocol 1 may be easily extended to the (2k − 1)-pass bit agreement for
arbitrary k.

Protocol Bit-Agreement(1n)
Alice Transcript Bob

bA ←$ {0, 1}
kA ← GenF(1n) kB ← GenG(1n)

x1 ← D(1n) x1 ← D(1n)
If bA = 0,

then z1 ← FkA
(x1)

else z1 ←$ {0, 1}n z1−→
y1←− y1 ← z1 ⊕ GkB

(x1)
x2 ← D(y1) x2 ← D(y1)

If bA = 0,
then z2 ← FkA

(x2)
else z2 ←$ {0, 1}n z2−→ y2 ← z2 ⊕ GkB

(x2)
bB ← D(y1, y2)

Protocol 1. 3-pass uniform-transcript bit agreement based on 2-adaptive distinguisher
D

Theorem 9. Let F and G be k-adaptively secure pseudo-random functions. If
the parallel composition F⊕G is NOT k-adaptively secure, then a (2k − 1)-pass
UTKA exists.

Insecurity of Parallel Composition from UTKA. A γ-round uniform-
transcript key agreement protocol (γ-UTKA), denoted by Φγ

u = (A,B), is a
uniform-transcript key agreement protocol consisting of two sub-protocols A and
B, in which Alice (using A) and Bob (using B) exchange 2γ messages to each
other (γ messages from each party) in order to share a secret key sk.

In this section, we use the parallel version of γ-UTKA to construct counter-
example functions. The parallel γ-UTKA is a γ-UTKA where Alice and Bob
are symmetric to each other in Protocol. In particular, Bob’s first message is

Equivalence of Uniform Key Agreement and Composition Insecurity 457

completely independent of Alice’s first message and is only dependent on his
own private randomness. That is, α1 ← A1(rA) while β1 ← B1(rB) where
rA and rB are independent randomness of Alice and Bob. For 2 ≤ i ≤ γ,
αi ← Ai(rA, β1, · · · , βi−1) and βi ← Bi(rB, α1, · · · , αi−1). Finally, sk ← Aγ+1(rA,
β1,· · · , βγ) and sk← Bγ+1(rB, α1, · · · , αγ) where sk is the shared key.1

Now, we provide a high-level overview of our pseudo-random functions F and G
from γ-UTKA and describe how to break the adaptive security of their parallel
composition. For underlying primitives, we have a black-box access to Φu =
(A, B), parallel γ-UTKA described above. αi and βi denote the ith message
computed by A and B respectively. We are given a pseudo-random private-key
encryption scheme (Enc,Dec) such that Deck(Enck(x)) = x. Finally, let P be any
given adaptively secure PRP.

Intuitively, F utilizes A as its subroutine as well as G utilizes B as its subroutine
in order for them to share a secret key via input and outputs. Then, F and G
create pseudo-random strings specially related with respect to the shared secret
key. As we input the specially related pseudo-random strings to the composition,
the functions retrieve the shared key, verify the special relation hidden in the
input query, and reveal their secret keys in their outputs. F and G internally
contain secret keys kF and kG. F and G are defined over ({0, 1}n)γ+2.

First, we define F and G upon the first adaptive (fixed) query Q1 =(0n, · · · , 0n)
as:

– F generates γ + 2 pseudo-random strings rF, r21, · · · , r(γ+2)1 by PkF
(Q1).

F creates Alice’s first message α1 by A1(rF) and then outputs (α1, r21, · · · ,
r(γ+2)1).

– G does the same as it generates sG, s21, · · · , s(γ+2)1 by PkF
(Q1), and then

computes Bob’s first message β1 by B1(sG), and outputs (β1, s21, · · · ,
s(γ+2)1).

Below we depict the individual outputs of F and G on Q1 and their parallel
composition:

Q1 →
[
F→ (α1, r21, · · · , r(γ+2)1)
G→ (β1, s21, · · · , s(γ+2)1)

]
→ (α1 ⊕ β1, r21 ⊕ s21, · · · , r(γ+2)1 ⊕ s(γ+2)1)

Inductively, for 2 ≤ i ≤ γ, we define F and G to process the i-th adaptive query
Qi = (α1 ⊕ β1, α2 ⊕ β2, · · · , αi−1 ⊕ βi−1, 0n, · · · , 0n) as follows.

1 We emphasize that we can construct the same counter-example functions to show
the same impossibility of adaptively secure composition by using a (sequential) γ −
UTKA in which Bob’s first message is dependent on Alice’s first message. However, it
requires more adaptive queries to break the parallel composition of such functions.
The main reason for using this parallel version of γ-UTKA is that it is simpler
to emulate the key agreement protocol in the context of parallel composition of
our proposed counter-example pseudo-random functions F and G. Also, it provides
us with a tighter bound on the number of adaptive queries required to break the
adaptive security of the parallel composition.

458 C. Cho, C.-K. Lee, and R. Ostrovsky

– F first regenerates rF and α1 by simulating the first-round computation. That
is, F first computes PkF

(Q1) to obtain rF and then executes A(rF). Then, F
processes the following chain of computations in the direction of left-to-right
and top-to-bottom with rF, α1 and Qi,

β1 ← (α1 ⊕ u1) α2 ← A2(rF, β1)
...

...
βi−1 ← (αi−1 ⊕ ui−1) αi ← Ai(rF, β1, β2, . . . , βi−1)

Finally, F outputs (αi, r2i, · · · , r(γ+2)i) where r2i, · · · , r(γ+2)i are fresh
pseudo-random strings generated by PkF

(Qi).
– G is symmetrically defined. Hence, G outputs (βi, s2i, · · · , s(γ+2)i) where
s2i, · · · , s(γ+2)i are pseudo-random strings generated by PkG

(Qi).

On Qi for 2 ≤ i ≤ γ, we demonstrate the individual outputs of F and G and
the output of their parallel composition below. Note that we obtain αγ ⊕ βγ

by feeding the parallel composition of F and G with Qγ to be (α1 ⊕ β1, α2 ⊕
β2, · · · , αγ−1 ⊕ βγ−1, 0n, 0n).

Qi →
[
F→ (αi, r2i, · · · , r(γ+2)i)
G→ (βi, s2i, · · · , s(γ+2)i)

]
→ (αi ⊕ βi, r2i ⊕ s2i, · · · , r(γ+2)i ⊕ s(γ+2)i)

The (γ+1)th adaptive query is defined to be Qγ+1 = (α1⊕β1, α2⊕β2, · · · , αγ⊕
βγ , 0n, 0n). Then, we define our functions F and G on Qγ+1 as follows.

– F first regenerates rF and α1 by simulating the first-round computation
as before. Then, F performs the chain of computations described above,
and so obtains β1, β2, · · · , βγ . Hence, F can generate a shared key sk by
Aγ+1(rF, β1, β2, . . . , βγ). F generates pseudo-random strings r1(γ+1), r2(γ+1),
· · · , r(γ+2)(γ+1) by PkF

(Qγ+1). F creates an (pseudo-random) encryption
Encsk(r1(γ+1)). F outputs (Encsk(r1(γ+1)), r1(γ+1), r3(γ+1), · · · , r(γ+2)(γ+1)).

– G is symmetrically defined. So, G outputs (Encsk(s1(γ+1)), s1(γ+1), s3(γ+1),
· · · , s(γ+2)(γ+1)).

The following describes the each output of F and G, and that of parallel compo-
sition on Qγ+1.

Qγ+1 →
[
F→ (Encsk(r1(γ+1)), r1(γ+1), r3(γ+1), · · · , r(γ+2)(γ+1))
G→ (Encsk(s1(γ+1)), s1(γ+1), s3(γ+1), · · · , s(γ+2)(γ+1))

]
→ (Encsk(r1(γ+1))⊕ Encsk(s1(γ+1)), r1(γ+1) ⊕ s1(γ+1),

r3(γ+1) ⊕ s3(γ+1), · · · , r(γ+2)(γ+1) ⊕ s(γ+2)(γ+1))

The final (γ + 2)th adaptive query is defined to be Qγ+2 = (α1 ⊕ β1, · · · , αγ ⊕
βγ ,Encsk(r1(γ+1)) ⊕ Encsk(s1(γ+1)), r1(γ+1) ⊕ s1(γ+1)) which is the combination
of all the outputs of the parallel composition on the previous adaptive queries.
Then, F and G are defined on Qγ+2 as follows.

Equivalence of Uniform Key Agreement and Composition Insecurity 459

– F executes the chain of computations to retrieve β1, β2, · · · , βγ , then com-
putes a shared key sk by Aγ+1(rF, β1, β2, . . . , βγ). Since Qγ+1 = (α1 ⊕
β1, α2 ⊕ β2, · · · , αγ ⊕ βγ , 0n, 0n), F can obtain Encsk(r1(γ+1)) and r1(γ+1)
generated by the internal simulation of F(Qγ+1). F checks to see if equal-
ity Decsk(Encsk(r1(γ+1)) ⊕ (Encsk(r1(γ+1)) ⊕ Encsk(s1(γ+1)))) = r1(γ+1) ⊕
(r1(γ+1)⊕s1(γ+1)) holds where (Encsk(r1(γ+1))⊕Encsk(s1(γ+1))) and (r1(γ+1)⊕
s1(γ+1)) are obtained from Qγ+2. As the equality holds, F is convinced that
Qγ+2 is indeed an adaptively generated query. Hence, F outputs (kF, 0n, 0n,
· · · , 0n).

– G is symmetrically defined. Hence, G similarly outputs (0n, kG, 0n, · · · , 0n).

Below we provide the overall picture of the individual computations of F and G
and the output of their parallel composition.

Qγ+2 →
[
F→ (kF, 0n, 0n, · · · , 0n)
G→ (0n, kG, 0n, · · · , 0n)

]
→ (kF, kG, 0n, · · · , 0n)

We prove the following claims that substantiate Theorem 10. Therefore, we im-
mediately obtains Theorem 11 by Theorem 9 and 10.

Claim. The functions F and G described above are secure against any non-
adaptive PPT adversary.

Claim. The parallel composition F⊕ G is breakable by γ+2 adaptive queries.

Theorem 10. If γ-UTKA Φu = (A,B) exists, then there exist non-adaptively
secure pseudo-random functions F and G such that their parallel composition
over XOR is (γ+2)-adaptive query breakable.

Theorem 11. The parallel composition of two pseudo-random functions does
not imply adaptive security if and only if the uniform-transcript key agreement
exists.

4.2 Sequential Composition Insecurity vs. Uniform Transcript Key
Agreement

We examine the equivalence between the insecurity of sequential composition and
the existence of UTKA protocol. Pietrzak already showed that a key agreement
protocol can be achieved from two functions whose sequential composition is not
adaptively secure. His key agreement protocol satisfies the property of uniform-
transcript. We prove this as a separate claim in [1] and formally restate Pietrzak’s
theorem below.

Theorem 12 ([10]). Let F and G be k-adaptively secure pseudo-random func-
tions. If the sequential composition G(F(·)) is NOT k-adaptively secure, then a
(2k-1)-pass UTKA exists.

460 C. Cho, C.-K. Lee, and R. Ostrovsky

Insecurity of Sequential Composition from UTKA. In this section, we
use the sequential version of γ-UTKA in which Bob’s first message is dependent
on Alice’s first message to construct the counter-example PRFs. That is, β1 ←
B1(rB, α1) where α1 ← A1(rA) for rA and rB, independent randomness of Alice
and Bob. For 2 ≤ i ≤ γ, αi ← Ai(rA, β1, · · · , βi−1) and βi ← Bi(rB, α1, · · · , αi).
Consequently, sk ← Aγ+1(rA, β1, · · · , βγ) and sk ← Bγ+1(rB, α1, · · · , αγ) where
sk is the shared key. Notice that in this scenario Bob must wait for the first
message α1 from Alice in order to compute his first message β1.

In the following, we present the high-level overview on our constructions of
counter-example functions F and G based on γ-UTKA described above. For the
building blocks, we are given a sequential version of γ-UTKA, Φu = (A,B) and
all the other primitives remain identical to the ones in Section 4.1. F (resp. G)
is defined over ({0, 1}n)γ+3 and internally possesses a secret key kF (resp. kG).

Our first adaptive query is an arbitrary vector in ({0, 1}n)γ+3 as Q1 = (u1, u2,
· · · , uγ+2, u

∗) for u1, u2, · · · , uγ+2, u
∗ ←$ {0, 1}n. On Q1, we define F and G as

follows.

– F computes a pseudo-random string rF by PkF
(u∗). Then, F generates the first

message α1 by executing A1(rF). F continues to compute r21, · · · , rγ1 by ex-
ecuting A2(rF, u1), · · · , Aγ(rF, u1, · · · , uγ−1). Notice that Q1 is an arbitrarily
chosen input so that running A (Alice) on Q1 produces only pseudo-random
strings except for the first message α1. F computes its first n-bit shared key
sk1

F from Aγ+1(rF, u1, · · · , uγ). F tests if Decsk1
F
(uγ+1) = uγ+2. The equality

is satisfied only negligible probability since uγ+1 and uγ+2 are arbitrary cho-
sen. Hence, with overwhelming probability, F concludes its computation by
outputting (α1, r21, r31, · · · ,Encsk1

F
(r(γ+1)1), r(γ+1)1, r(γ+3)1) where r(γ+1)1,

r(γ+2)1 and r(γ+3)1 are generated from PkF
(uγ+1, uγ+2, uγ+3).

– On F(Q1), G is defined to compute β1 by B1(sG, α1) where sG is generated
by PkG

(u1) and α1 is the first message validly generated by F. G continues to
compute s21, · · · , sγ1 by executing B2(sG, α1, r21), · · · , Bγ(sG, α1, r21, · · · ,
rγ1). Since r21, · · · , rγ1 are pseudo-random strings computed by F upon non-
adaptive query Q1, s21, · · · , sγ1 are pseudo-random strings. G computes sk1

G

from Bγ+1(rG, u1, · · · , uγ) and then tests if Decsk1
G
(uγ+1) = uγ+2 holds. This

equality holds with only negligible probability. G computes pseudo-random
strings s(γ+1)1, s(γ+2)1 and s(γ+3)1 from PkG

(πsk1
F
(r(γ+1)1), r(γ+1)1, r(γ+3)1).

G outputs (β1, s21, s31, · · · , Encsk1
G
(s(γ+1)1), s(γ+1)1, s(γ+3)1).

We describe the outputs of F and G in the computation of their sequential
composition on Q1:

Q1
F→ (α1, r21, r31, · · · ,Encsk1

F
(r(γ+1)1), r(γ+1)1, r(γ+3)1)

G→ (β1, s21, s31, · · · ,Encsk1
G
(s(γ+1)1), s(γ+1)1, s(γ+3)1).

Inductively, for 2 ≤ i ≤ γ − 1, the ith adaptive query Qi is in the form of
(β1, · · · , βi−1, si(i−1), · · · , sγ(i−1), Encski−1

G
(s(γ+1)(i−1)), s(γ+1)(i−1), u

∗) where
u∗ is the final coordinate of Q1 and the rest of coordinates are the first 2γ + 2

Equivalence of Uniform Key Agreement and Composition Insecurity 461

coordinates in the output of G(F(Qi−1)). Then, F computes all the messages α1 to
αγ and shared key ski

F based on Qi as described above. F tests
if Decski

F
(Encski−1

G
(s(γ+1)(i−1))) = s(γ+1)(i−1). Obviously, ski

F �= ski−1
G with over-

whelming probability since the keys are computed based on insufficient number of
valid messages. Hence, F outputs (α1, · · · , αi, r(i+1)i, · · · , r(γ)i, Encski

F
(r(γ+1)i),

r(γ+1)i, r(γ+3)i). Similarly, G undertakes the same course of computations: G
computes messages and shared key, tests the equality and finally outputs (β1,
· · · , βi, s(i+1)i, · · · , s(γ)i,Encski

G
(s(γ+1)i), s(γ+1)i, s(γ+3)i). The individual output

of F and the output of G in their sequential composition on Qi are described as
follows:

Qi
F→ (α1, · · · , αi, r(i+1)i, · · · , r(γ)i,Encski

F
(r(γ+1)i), r(γ+1)i, r(γ+3)i)

G→ (β1, · · · , βi, s(i+1)i, · · · , s(γ)i,Encski
G
(s(γ+1)i), s(γ+1)i, s(γ+3)i).

Hence, after the (γ − 1)th adaptive query, our γth adaptive query Qγ is (β1,
β2, · · · , βγ−1, sγ(γ−1), Encskγ−1

G
(s(γ+1)(γ−1)), s(γ+1)(γ−1), u∗). On Qγ , we define

F and G as follows.

– F computes rF from PkF
(u∗). Then, F internally regenerates all αi by Ai(rF, β1,

· · · , βi−1) for 1 ≤ i ≤ γ and shared key skγ
F by Ai(rF, β1, · · · , βi−1, sγ(γ−1)).

skγ
F is still a merely pseudo-random string since sγ(γ−1) is not a proper mes-

sage. F performs the equality test Decskγ
F
(Encskγ−1

G
(s(γ+1)(γ−1)))=s(γ+1)(γ−1)

which fails with overwhelming probability. Hence, F outputs (α1, · · · , αγ ,
Encskγ

F
(r(γ+1)γ), r(γ+1)γ , r(γ+3)γ) as (r(γ+1)γ , r(γ+2)γ , r(γ+3)γ) is generated by

PkF
(Encskγ−1

G
(s(γ+1)(γ−1)), s(γ+1)(γ−1), u∗).

– G obtains rG by PkG
(α1). Then, since G obtains its complete set of γ mes-

sages αi’s from F, function G correctly generates all the messages βi’s by
executing Bi(rG, α1, · · · , αi) for all 1 ≤ i ≤ γ. In addition, G computes
the shared key skγ

G from executing Bγ+1(rG, α1, · · · , αγ). Finally, G outputs
(β1, · · · , βγ ,Encskγ

G
(s(γ+1)γ), s(γ+1)γ , s(γ+3)γ) since Decskγ

G
(Encskγ

F
(r(γ+1)(γ)))

�= r(γ+1)(γ) with overwhelming probability, where (s(γ+1)γ , s(γ+2)γ , s(γ+3)γ)
is generated by PkG

(Encskγ
F
(r(γ+1)γ), r(γ+1)γ , r(γ+3)γ).

We describe the overall picture of F and G in their sequential composition on
input Qγ below:

Qγ
F→ (α1, · · · , αγ ,Encskγ

F
(r(γ+1)γ), r(γ+1)γ , r(γ+3)γ)

G→ (β1, · · · , βγ ,Encskγ
G
(s(γ+1)γ), s(γ+1)γ , s(γ+3)γ).

The (final) (γ + 1)th adaptive query Qγ+1 is defined to be (β1, · · · , βγ ,
Encskγ

G
(s(γ+1)γ), s(γ+1)γ , u

∗). On Qγ+1, we define functions F and G on Qγ+1 as:

– F now obtains all the messages βi’s from Qγ+1 so that it can compute
all the messages α1, · · · , αγ and the shared key skγ+1

F by executing

462 C. Cho, C.-K. Lee, and R. Ostrovsky

Aγ+1(rF, β1, · · · , βγ). F tests if the following equality is satisfied:
Decskγ+1

F
(Encskγ

G
(s(γ+1)(γ))) = s(γ+1)(γ). Notice that skγ+1

F = skγ
G since both

keys are computed on each complete set of messages. Hence, F verifies
that the equality holds and is convinced that Qγ+1 is adaptively generated.
Finally, F outputs (α1, · · · , αγ , πskγ+1

F
(r(γ+1)(γ+1)), r(γ+1)(γ+1), kF) where

r(γ+1)(γ+1), r(γ+2)(γ+1) and r(γ+3)(γ+1) are generated from
PkF

(Encskγ
G
(s(γ+1)γ), s(γ+1)γ , u

∗).
– On (α1, · · · , αγ , πskγ+1

F
(r(γ+1)(γ+1)), r(γ+1)(γ+1), kF), G also computes all of

the messages and shared key skγ+1
G . Clearly, skγ+1

F = skγ+1
G since both keys

are computed based on the same set of messages α1 · · ·αγ . Then G tests if
Decskγ+1

G
(Encskγ+1

F
(r(γ+1)(γ+1))) = r(γ+1)(γ+1). Since both skγ+1

F and skγ+1
G

are computed from the complete sets of messages, they must be equal. G
is convinced that the query from F is adaptively generated. Therefore, G
outputs (kG, kF, 0n, · · · , 0n) where kF can be obtained from the input (i.e.,
the final coordinate of the input vector).

The overall description of outputs of F and G on the final adaptive query is
provided below:

Qγ+1
F→ (α1, · · · , αγ ,Encskγ+1

F
(r(γ+1)(γ+1)), r(γ+1)(γ+1), kF) G→(kG, kF, 0n, · · · ,0n).

We prove the following claims which substantiate Theorem 13. Putting Theorem
12 and 13 together, we immediately obtains Theorem 14.

Claim. The functions F and G described above are secure against any non-
adaptive PPT adversary.

Claim. The sequential composition of functions F and G, defined by S(·) =
G(F(·)), is breakable by γ + 1 adaptive queries.

Theorem 13. If γ-UTKA Φu = (A,B) exists, then there exist non-adaptively
secure functions F and G such that the sequential composition G(F(·)) is (γ+1)-
adaptive query breakable.

Theorem 14. The sequential composition of two pseudo-random functions does
not imply adaptive security if and only if the uniform-transcript key agreement
exists.

5 Impossibility of Adaptively Secure Self-composition

Self-composition is a composition of two or more copies of a single function. For
instance, we call F(F(·)) the sequential self-composition of function F, and F⊕ F
the parallel self-composition of function F. Note that several copies of identical
F’s must contain independent secret seeds. That is, each copy of F’s must be
allowed to be independently drawn from its function family.

So far, we proved the equivalence relation between the insecurity of composi-
tion and UTKA protocols. In fact, when we mention the insecurity of composition

Equivalence of Uniform Key Agreement and Composition Insecurity 463

in previous sections, the main argument is rather that, given a non-adaptively se-
cure function, there might be another non-adaptively secure function such that
their composition is adaptively insecure. We call this type of composition general-
composition. Hence, we still have a lingering unanswered question of whether the
self-composition of a non-adaptively secure function implies the unconditional
adaptive security. We answered the question negatively as follows.

Suppose that we are given non-adaptively secure pseudo-random functions
Fk and Gk′ , without loss of generality, both defined over {0, 1}n such that their
parallel (general-)composition (F⊕G)(·) is adaptively insecure. Note that k and
k′ are independently chosen secret seeds for pseudo-random functions. That is,
there exists a PPT adversary A with an adaptive adversarial strategy which
succeeds in breaking the security of (F⊕G)(·) with non-negligible probability δ.
Now, we define a function family F(b,s) : {0, 1}n → {0, 1}n on input string u by

F(b,s)(u) =
{

Fs(u) if b = 0
Gs(u) if b = 1 (∗)

where b and s are private seeds.
It is easy to see that function F(·) is also non-adaptively secure due to the

non-adaptive security of functions F and G. This trivially leads to

AdvF
A ≤ AdvF

A + AdvG
A.

To break the adaptive security of (F ⊕ F)(·), it suffices to draw two copies of
functions from the family at random and then use the same adaptively adver-
sarial strategy of A as follows: the first bit of seeds of F and G differ in their
first bit with probability 1/2. Therefore, if we draw two independent F ’s, then
F ⊕ F is equivalent to F⊕ G with probability 1/4 which is adaptively insecure.

Informally, by the above construction of F from any two non-adaptively secure
functions F and G such that their parallel composition is not adaptively secure,
we actually show that the adaptive insecurity of the parallel general-composition
implies the adaptive insecurity of the parallel self-composition. We formally state
this as follows.

Theorem 15. Suppose there are two non-adaptively secure functions F and G
such that the parallel composition (F⊕ G)(·) is adaptively insecure. Then, there
exists a non-adaptively secure function F such that the parallel self-composition
is adaptively insecure.

Combining the above theorem with the previous results of this paper in Sections
3.1 and 4.1 related to parallel composition insecurity from DTP and γ-UTKA,
we obtain the following theorems.

Theorem 16. If a family of dense trapdoor permutations or a UTKA exists,
then the parallel self-composition of a non-adaptively secure function does not
imply adaptive security.

Furthermore, the above constructions of F defined in (∗) and its analysis of
adaptive security can be easily extended to the context of sequential composition.

464 C. Cho, C.-K. Lee, and R. Ostrovsky

In particular, F is also non-adaptively secure while F(F(·)) is equal to G(F(·))
with probability 1/4 when we draw two independent F ’s from its function family.
Thus, F(F(·)) is also adaptively insecure. Consequently, we obtain the following
theorem.

Theorem 17. Suppose there are two non-adaptively secure functions F and G
such that the sequential composition G(F(·)) is adaptively insecure. Then, there
exists a non-adaptively secure function F such that the self-composition is adap-
tively insecure.

Again, combining the above theorem with the previous results of this paper in
Sections 3.2 and 4.2 relevant to sequential composition insecurity from DTP and
γ-UTKA, we derive the following theorem.

Theorem 18. If a family of dense trapdoor permutations or a UTKA exists,
then the sequential self-composition of a non-adaptively secure function does not
imply adaptive security.

References

1. Cho, C., Lee, C.K., Ostrovsky, R.: Equivalence of uniform key agreement and com-
position insecurity. Electronic Colloquium on Computational Complexity (ECCC),
Report No. 108 (2009)

2. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

3. Holenstein, T.: Key agreement from weak bit agreement. In: STOC 2005: Proceed-
ings of the 37th Annual ACM Symposium on Theory of Computing, pp. 664–673.
ACM, New York (2005)

4. Impagliazzo, R.: A personal view of average-case complexity. In: SCT 1995: Pro-
ceedings of the 10th Annual Structure in Complexity Theory Conference, p. 134.
IEEE Computer Society, Washington (1995)

5. Luby, M., Rackoff, C.: Pseudo-random permutation generators and cryptographic
composition. In: STOC 1986: Proceedings of the 18th Annual ACM Symposium
on Theory of Computing, pp. 356–363. ACM, New York (1986)

6. Maurer, U., Pietrzak, K.: Composition of random systems: When two weak make
one strong. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 410–427. Springer,
Heidelberg (2004)

7. Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer, Heidel-
berg (2007)

8. Myers, S.: Black-box composition does not imply adaptive security. In: Cachin,
C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 189–206.
Springer, Heidelberg (2004)

9. Pietrzak, K.: Composition does not imply adaptive security. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 55–65. Springer, Heidelberg (2005)

10. Pietrzak, K.: Composition implies adaptive security in minicrypt. In: Vaudenay,
S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 328–338. Springer, Heidelberg
(2006)

11. Vaudenay, S.: Decorrelation: A theory for block cipher security. J. Cryptology 16(4),
249–286 (2003)

Non-interactive Verifiable Computing:
Outsourcing Computation to Untrusted Workers

Rosario Gennaro1, Craig Gentry1, and Bryan Parno2

1 IBM T.J.Watson Research Center
2 CyLab, Carnegie Mellon University

Abstract. We introduce and formalize the notion of Verifiable Computation,
which enables a computationally weak client to “outsource” the computation of a
function F on various dynamically-chosen inputs x1, ...,xk to one or more work-
ers. The workers return the result of the function evaluation, e.g., yi = F(xi), as
well as a proof that the computation of F was carried out correctly on the given
value xi. The primary constraint is that the verification of the proof should require
substantially less computational effort than computing F(xi) from scratch.

We present a protocol that allows the worker to return a computationally-
sound, non-interactive proof that can be verified in O(m ·poly(λ)) time, where m
is the bit-length of the output of F , and λ is a security parameter. The protocol re-
quires a one-time pre-processing stage by the client which takes O(|C| ·poly(λ))
time, where C is the smallest known Boolean circuit computing F . Unlike previ-
ous work in this area, our scheme also provides (at no additional cost) input and
output privacy for the client, meaning that the workers do not learn any informa-
tion about the xi or yi values.

1 Introduction

Several trends are contributing to a growing desire to “outsource” computing from a
(relatively) weak computational device to a more powerful computation service. For
years, a variety of projects, including SETI@Home [5], Folding@Home [2], and the
Mersenne prime search [4], have distributed computations to millions of Internet clients
to take advantage of their idle cycles. A perennial problem is dishonest clients: end users
who modify their client software to return plausible results without performing any
actual work [23]. Users commit such fraud even when the only incentive is to increase
their ranking on a website listing. Many projects cope with such fraud via redundancy:
the same work unit is sent to several clients and the results are compared for consistency.
Apart from wasting resources, this provides little defense against colluding users.

A related fear plagues cloud computing, where businesses buy computing time from
a service, rather than purchasing, provisioning, and maintaining their own computing
resources [1, 3]. Sometimes the applications outsourced to the cloud are so critical that
it is imperative to rule out accidental errors during the computation. Moreover, in such
arrangements, the business providing the computing services may have a strong finan-
cial incentive to return incorrect answers, if such answers require less work and are
unlikely to be detected by the client.

The proliferation of mobile devices, such as smart phones and netbooks, provides
yet another venue in which a computationally weak device would like to be able to
outsource a computation, e.g., a cryptographic operation or a photo manipulation, to a
third party and yet obtain a strong assurance that the result returned is correct.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 465–482, 2010.
c© International Association for Cryptologic Research 2010

466 R. Gennaro, C. Gentry, and B. Parno

In all of these scenarios, a key requirement is that the amount of work performed
by the client to generate and verify work instances must be substantially cheaper than
performing the computation on its own. It is also desirable to keep the work performed
by the workers as close as possible to the amount of work needed to compute the origi-
nal function. Otherwise, the worker may be unable to complete the task in a reasonable
amount of time, or the cost to the client may become prohibitive.

PRIOR WORK: In the security community, research has focused on solutions based on
audits and various forms of secure co-processors. Audit-based solutions [24,9] typically
require the client (or randomly selected workers) to recalculate some portion of the work
done by untrusted workers. This may be infeasible for resource-constrained clients and
often relies on some fraction of the workers to be honest, or at least non-colluding.

Secure co-processors [28, 33] provide isolated execution environments, but their
strong tamper-resistance typically makes them quite expensive (thousands of dollars
each) and sparsely deployed. The requirements of tamper-resistance also lead to the use
of weak CPUs to limit the amount of heat dissipation needed. The growing ubiquity of
Trusted Platform Modules (TPMs) [29] in commodity machines promises to improve
platform security, but TPMs have achieved widespread deployment in part due to re-
duced costs (one to five dollars) that result in little to no physical tamper resistance.

In the cryptographic community, there is a long history of outsourcing expensive
cryptographic operations to a semi-trusted device. Chaum and Pedersen define the no-
tion of wallets with observers [10], a piece of secure hardware installed by a third party,
e.g. a bank, on the client’s computer to “help” with expensive computations. The hard-
ware is not trusted by the client, who retains assurance that the hardware is performing
correctly by analyzing its communication with the bank. Hohenberger and Lysyanskaya
formalize this model [17], and present protocols for the computation of modular expo-
nentiations (arguably the most expensive step in public-key cryptography operations).
Their protocol requires the client to interact with two non-colluding servers. Other work
targets specific classes of functions, such as one-way function inversion [16].

The theoretical community has devoted considerable attention to the verifiable com-
putation of arbitrary functions. Interactive proofs [6, 15] are a way for a powerful (e.g.
super-polynomial) prover to (probabilistically) convince a weak (e.g. polynomial) veri-
fier of the truth of statements that the verifier could not compute on its own. As it is well
known, the work on interactive proofs lead to the concept of probabilistically checkable
proofs (PCPs), where a prover can prepare a proof that the verifier can check in only
very few places (in particular only a constant number of bits of the proofs needed for
NP languages). Notice, however, that the PCP proof might be very long, potentially too
long for the verifier to process. To avoid this complication, Kilian proposed the use of
efficient arguments1 [19, 20] in which the prover sends the verifier a short commitment
to the entire proof using a Merkle tree. The prover can then interactively open the bits
requested by the verifier (this requires the use of a collision-resistant hash function).
A non-interactive solution can be obtained using Micali’s CS Proofs [22], which re-
move interaction from the above argument by choosing the bits to open based on the

1 We follow the standard terminology: an argument is a computationally sound proof, i.e. a
protocol in which the prover is assumed to be computationally bounded. In an argument, an
infinitely powerful prover can convince the verifier of a false statement, as opposed to a proof
where this is information-theoretically impossible or extremely unlikely.

Non-interactive Verifiable Computing 467

application of a random oracle to the commitment string. In more recent work, which
still uses some PCP machinery, Goldwasser et al. [14] show how to build an interactive
proof to verify arbitrary polynomial-time computations in almost linear time. They also
extend the result to a non-interactive argument for a restricted class of functions.

Therefore, if we restrict our attention to non-interactive protocols, the state of the art
offers either Micali’s CS Proofs [22] which are arguments that can only be proven in the
random oracle model, or the arguments from [14] that can only be used for a restricted
class of functions. Our scheme overcomes these limitations, since it is non-interactive,
works for any function, and is provable in the standard model. It also provides the client
with input and output privacy, a property not considered in previous work.

OUR CONTRIBUTION. We slightly move away from the notions of proofs and ar-
guments, to define the notion of a Verifiable Computation Scheme: this is a protocol
between two polynomial-time parties, a client and a worker, to collaborate on the com-
putation of a function F : {0,1}n→{0,1}m. Our definition uses an amortized notion of
complexity for the client: he can perform some expensive pre-processing, but after this
stage, he is required to run very efficiently. Since the preprocessing stage happens only
once, it is important to stress that it can be performed in a trusted environment where
the weak client, who does not have the computational power to perform it, outsources
it to a trusted party (think of a military application in which the client loads the result
of the preprocessing stage performed inside the military base by a trusted server, and
then goes off into the field where outsourcing servers may not be trusted anymore – or
think of the preprocessing phase as being executed on the client’s home machine and
then used by his portable device in the field).

By introducing a one-time preprocessing stage (and the resulting amortized notion
of complexity), we can circumvent the result of Rothblum and Vadhan [26], which
indicated that efficient verifiable computation requires the use of PCP constructions. In
other words, unless a substantial improvement in the efficiency of PCP constructions is
achieved, our model potentially allows much simpler and more efficient constructions
than those possible in previous models.

More specifically, a verifiable computation scheme consists of three phases:

Preprocessing. A one-time stage in which the client computes some auxiliary (public
and private) information associated with F . This phase can take time comparable
to computing the function from scratch, but it is performed only once, and its cost
is amortized over all the future executions.

Input Preparation. When the client wants the worker to compute F(x), it prepares
some auxiliary (public and private) information about x. The public information is
sent to the worker.

Output Computation and Verification. Once the worker has the public information
associated with F and x, it computes a string πx which encodes the value F(x) and
returns it to the client. From the value πx, the client can compute the value F(x) and
verify its correctness.

Notice that this is a minimally interactive protocol: the client sends a single message to
the worker and vice versa. The crucial efficiency requirement is that Input Preparation
and Output Verification must take less time than computing F from scratch (ideally
linear time, O(n + m)). Also, the Output Computation stage should take roughly the
same amount of computation as F .

468 R. Gennaro, C. Gentry, and B. Parno

After formally defining the notion of verifiable computation, we present a verifi-
able computation scheme for any function. Assume that the function F is described by
a Boolean circuit C. Then the Preprocessing stage of our protocol takes time O(|C| ·
poly(λ)), i.e., time linear in the size of the circuit C that the client would have used to
compute the function on its own (and polynomial in the security parameter λ). Apart
from that, the client runs in linear time, as Input Preparation takes O(n · poly(λ))
time and Output Verification takes O(m ·poly(λ)) time. Finally the worker takes time
O(|C| ·poly(λ)) to compute the function for the client.

The computational assumptions underlying the security of our scheme are the secu-
rity of block ciphers (i.e., the existence of one-way functions) and the existence of a
secure fully homomorphic encryption scheme [13, 12, 27, 30] (more details below).

Dynamic and Adaptive Input Choice. We note that in this amortized model of com-
putation, Goldwasser et al.’s protocol [14] can be modified using Kalai and Raz’s trans-
formation [18] to achieve a non-interactive scheme (see [25]). However an important
feature of our scheme, that is not enjoyed by Goldwasser et al.’s protocol [14], is that
the inputs to the computation of F can be chosen in a dynamic and adaptive fashion
throughout the execution of the protocol (as opposed to [14] where they must be fixed
and known in advance).

Privacy. We also note that our construction has the added benefit of providing input
and output privacy for the client, meaning that the worker does not learn any information
about x or F(x) (details below). This privacy feature is bundled into the protocol and
comes at no additional cost. This is a critical feature for many real-life outsourcing
scenarios in which a function is computed over highly sensitive data (e.g., medical
records or trade secrets). Our work is the first to provide a weak client with the ability
to efficiently and verifiably offload computation to an untrusted server in such a way
that the input remains secret.

OUR SOLUTION IN A NUTSHELL. Our work is based on the crucial (and somewhat
surprising) observation that Yao’s Garbled Circuit Construction [31, 32], in addition to
providing secure two-party computation, also provides a “one-time” verifiable compu-
tation. In other words, we can adapt Yao’s construction to allow a client to outsource
the computation of a function on a single input. More specifically, in the preprocessing
stage the client garbles the circuit C according to Yao’s construction. Then in the “input
preparation” stage, the client reveals the random labels associated with the input bits of
x in the garbling. This allows the worker to compute the random labels associated with
the output bits, and from them the client will reconstruct F(x). If the output bit labels
are sufficiently long and random, the worker will not be able to guess the labels for an
incorrect output, and therefore the client is assured that F(x) is the correct output.

Unfortunately, reusing the circuit for a second input x′ is insecure, since once the
output labels of F(x) are revealed, nothing can stop the worker from presenting those
labels as correct for F(x′). Creating a new garbled circuit requires as much work as if
the client computed the function itself, so on its own, Yao’s Circuits do not provide an
efficient method for outsourcing computation.

The second crucial idea of the paper is to combine Yao’s Garbled Circuit with a
fully homomorphic encryption system2 (e.g., Gentry’s recent proposal [13]) to be able

2 While homomorphic encryption already solves the problem of computing over private data, it
does not address the main problem of this paper: to efficiently verify the result.

Non-interactive Verifiable Computing 469

to safely reuse the garbled circuit for multiple inputs. More specifically, instead of re-
vealing the labels associated with the bits of input x, the client will encrypt those labels
under the public key of a fully homomorphic scheme. A new public key is generated
for every input in order to prevent information from one execution from being useful
for later executions. The worker can then use the homomorphic property to compute an
encryption of the output labels and provide them to the client, who decrypts them and
reconstructs F(x).

While existing fully-homomorphic encryption schemes [13,12,27,30] are expensive
(leading to large constants in our protocol’s performance), we anticipate that any per-
formance improvements in future schemes will directly result in similar performance
gains for our protocol as well, since we use the fully-homomorphic encryption scheme
in a black-box fashion.

One pre-processing step for many workers. Note that the pre-processing stage is in-
dependent of the worker, since it simply produces a Yao-garbled version of the circuit
C. Therefore, in addition to being reused many times, this garbled circuit can also be
sent to many different workers, which is the usage scenario for applications like Fold-
ing@Home [2], which employ a multitude of workers across the Internet.

Handling malicious workers. In our scheme, if we assume that the worker learns
whether or not the client accepts the proof πx, then for every execution, a malicious
worker potentially learns a bit of information about the labels of the Yao-garbled cir-
cuit. For example, the worker could try to guess one of the labels, encrypt it with the
homomorphic encryption and see if the client accepts. In a sense, the output of the client
at the end of the execution can be seen as a very restricted “decryption oracle” for the
homomorphic encryption scheme (which is, by definition, not CCA secure). Because
of this one-bit leakage, we are unable to prove security in this case.

There are two ways to deal with this. One is to assume that the verification output
bit by the client remains private until all of the workers’ results have been returned.
The other is to repeat the pre-processing stage, i.e. the Yao garbling of the circuit, every
time a verification fails. In this case, in order to preserve a good amortized complexity,
we must assume that failures do not happen very often. This is indeed the case in the
previous scenario, where the same garbled circuit is used with several workers, under
the assumption that only a small fraction of workers will be malicious. See Section 5.

2 Background

YAO’S PROTOCOL FOR TWO-PARTY COMPUTATION. We summarize Yao’s protocol
for two-party private computation [31, 32]. For more details, we refer the interested
reader to Lindell and Pinkas’ excellent description [21].

We assume two parties, Alice and Bob, wish to compute a function F over their
private inputs a and b. For simplicity, we focus on polynomial-time deterministic func-
tions, but the generalization to stochastic functions is straightforward.

At a high-level, Alice converts F into a boolean circuit C. She prepares a garbled
version of the circuit, G(C), and sends it to Bob, along with a garbled version, G(a),
of her input. Alice and Bob then engage in a series of oblivious transfers so that Bob
obtains G(b) without Alice learning anything about b. Bob then applies the garbled
circuit to the two garbled outputs to derive a garbled version of the output: G(F(a,b)).

470 R. Gennaro, C. Gentry, and B. Parno

g
wa wb

wz

wa wb wz

0 0 g(0,0)

0 1 g(0,1)

1 0 g(1,0)

1 1 g(1,1)

wa wb wz

k0
a k0

b kg(0,0)
z

k0
a k1

b kg(0,1)
z

k1
a k0

b kg(1,0)
z

k1
a k1

b kg(1,1)
z

wa wb wz

k0
a k0

b Ek0
a
(Ek0

b
(kg(0,0)

z))

k0
a k1

b Ek0
a
(Ek1

b
(kg(0,1)

z))

k1
a k0

b Ek1
a
(Ek0

b
(kg(1,0)

z))

k1
a k1

b Ek1
a
(Ek1

b
(kg(1,1)

z))

(a) (b) (c) (d)

Fig. 1. Yao’s Garbled Circuits. The original binary gate (a) can be represented by a standard
truth table (b). We then replace the 0 and 1 values with the corresponding randomly chosen λ-bit
values (c). Finally, we use the values for wa and wb to encrypt the values for the output wire wz
(d). The random permutation of these ciphertexts is the garbled representation of gate g.

Alice can then translate this into the actual output and share the result with Bob. Note
that the privacy of this protocol assumes an honest-but-curious adversary model.

In more detail, Alice constructs the garbled version of the circuit as follows. For each

wire w in the circuit, Alice chooses two random values k0
w,k

1
w

R← {0,1}λ to represent
the bit values of 0 or 1 on that wire. Once she has chosen wire values for every wire in
the circuit, Alice constructs a garbled version of each gate g (see Figure 1). Let g be a
gate with input wires wa and wb, and output wire wz. Then the garbled version G(g) of
g is simply four ciphertexts:

γi j = Eki
a
(E

k j
b
(kg(i, j)

z)), where i ∈ {0,1}, j ∈ {0,1} (1)

where E is an secure symmetric encryption scheme with an “elusive range” (more de-
tails below). The order of the ciphertexts is randomly permuted to hide the structure of
the circuit (i.e., we shuffle the ciphertexts, so that the first ciphertext does not necessar-
ily encode the output for (0,0)).

In Yao’s protocol, Alice transfers all of the ciphertexts to Bob, along with the wire
values corresponding to the bit-level representation of her input. In other words, she
transfers either k0

a if her input bit is 0 or k1
a if her input bit is 1. Since these are randomly

chosen values, Bob learns nothing about Alice’s input. Alice and Bob then engage in
an oblivious transfer so that Bob can obtain the wire values corresponding to his inputs
(e.g., k0

b or k1
b). Bob learns exactly one value for each wire, and Alice learns nothing

about his input. Bob can then use the wire values to recursively decrypt the gate cipher-
texts, until he arrives at the final output wire values. When he transmits these to Alice,
she can map them back to 0 or 1 values and hence obtain the result of the function
computation.

HOMOMORPHIC ENCRYPTION. A fully-homomorphic encryption scheme E is de-
fined by four algorithms: the standard encryption functions KeyGenE , EncryptE , and
DecryptE , as well as a fourth function EvaluateE . EvaluateE takes in a circuit C and
a tuple of ciphertexts and outputs a ciphertext that decrypts to the result of applying C
to the plaintexts. A nontrivial scheme requires that EncryptE and DecryptE operate in
time independent of C [13,12,27,30]. More precisely, the time needed to generate a ci-
phertext for an input wire of C, or decrypt a ciphertext for an output wire, is polynomial

Non-interactive Verifiable Computing 471

in the security parameter of the scheme (independent of C). Note that this implies that
the length of the ciphertexts for the output wires is bounded by some polynomial in the
security parameter (independent of C).

Gentry recently proposed a scheme, based on ideal lattices, that satisfies these re-
quirements for arbitrary circuits [13, 12] (since Gentry’s proposal, additional integer-
based schemes have been proposed [27,30]). The complexity of KeyGenE in his initial
leveled fully homomorphic encryption scheme grows linearly with the depth of C. How-
ever, under the assumption that his encryption scheme is circular secure – i.e., roughly,
that it is “safe” to reveal an encryption of a secret key under its associated public key –
the complexity of KeyGenE is independent of C. See [13,12,8] for more discussion on
circular-security (and, more generally, key-dependent-message security) as it relates to
fully homomorphic encryption.

3 Problem Definition

At a high-level, a verifiable computation scheme is a two-party protocol in which a
client chooses a function and then provides an encoding of the function and inputs to
the function to a worker. The worker is expected to evaluate the function on the input
and respond with the output. The client then verifies that the output provided by the
worker is indeed the output of the function computed on the input provided.

3.1 Basic Requirements

A verifiable computation scheme V C = (KeyGen,ProbGen,Compute,Verify) con-
sists of the four algorithms defined below.

1. KeyGen(F,λ)→ (PK,SK): Based on the security parameter λ, the randomized key
generation algorithm generates a public key that encodes the target function F ,
which is used by the worker to compute F . It also computes a matching secret key,
which is kept private by the client.

2. ProbGenSK(x)→ (σx,τx): The problem generation algorithm uses the secret key
SK to encode the function input x as a public value σx which is given to the worker
to compute with, and a secret value τx which is kept private by the client.

3. ComputePK(σx)→ σy: Using the client’s public key and the encoded input, the
worker computes an encoded version of the function’s output y = F(x).

4. VerifySK(τx,σy)→ y ∪ ⊥: Using the secret key SK and the secret “decoding” τx,
the verification algorithm converts the worker’s encoded output into the output of
the function, e.g., y = F(x) or outputs ⊥ indicating that σy does not represent the
valid output of F on x.

A verifiable computation scheme should be both correct and secure. A scheme is cor-
rect if the problem generation algorithm produces values that allows an honest worker
to compute values that will verify successfully and correspond to the evaluation of F
on those inputs. More formally:

Definition 1 (Correctness). A verifiable computation scheme V C is correct if for any
function F, the key generation algorithm produces keys (PK,SK)←KeyGen(F,λ) such
that, ∀x ∈ Domain(F), if (σx,τx)← ProbGenSK(x) and σy ← ComputePK(σx) then
y = F(x)←VerifySK(τx,σy).

472 R. Gennaro, C. Gentry, and B. Parno

Intuitively, a verifiable computation scheme is secure if a malicious worker cannot per-
suade the verification algorithm to accept an incorrect output. In other words, for a
given function F and input x, a malicious worker should not be able to convince the
verification algorithm to output ŷ such that F(x) �= ŷ. Below, we formalize this intuition
with an experiment, where poly(·) is a polynomial.

Experiment ExpVeri f
A [V C ,F,λ]

(PK,SK) R←KeyGen(F,λ);
For i = 1, . . . , �= poly(λ);

xi← A(PK,x1,σ1, . . . ,xi−1,σi−1);
(σi,τi)← ProbGenSK(xi);

(i, σ̂y)← A(PK,x1,σ1, . . . ,x�,σ�);
ŷ← VerifySK(τi, σ̂y)
If ŷ �=⊥ and ŷ �= F(xi), output ‘1’, else ‘0’;

Essentially, the adversary is given oracle access to generate the encoding of multiple
problem instances. The adversary succeeds if it produces an output that convinces the
verification algorithm to accept on the wrong output value for a given input value. Note
that in this experiment, the adversary does not learn whether or not he succeeded; we
consider the implications of providing the adversary with this information in Section 5.
We can now define the security of the system based on the adversary’s success in the
above experiment.

Definition 2 (Security). For a verifiable computation scheme V C , we define the ad-
vantage of an adversary A in the experiment above as:

AdvVeri f
A (V C ,F,λ) = Prob[ExpVeri f

A [V C ,F,λ] = 1] (2)

A verifiable computation scheme V C is secure for a function F, if for any adversary A
running in probabilistic polynomial time,

AdvVeri f
A (V C ,F,λ)≤ negli(λ) (3)

where negli() is a negligible function of its input.

In the above definition, we could have also allowed the adversary to select the function
F . However, our protocol is a verifiable computation scheme that is secure for all F , so
the above definition suffices.

3.2 Input and Output Privacy

While the basic definition of a verifiable computation protects the integrity of the com-
putation, it is also desirable that the scheme protect the secrecy of the input given to the
worker(s). We define input privacy based on a typical indistinguishability argument that
guarantees that no information about the inputs is leaked.

Intuitively, a verifiable computation scheme is private when the public outputs of the
problem generation algorithm ProbGen over two different inputs are indistinguishable;
i.e., an adversary cannot decide which encoding is the correct one for a given input.
More formally consider the following experiment: the adversary is given the public key

Non-interactive Verifiable Computing 473

for the scheme and selects two inputs x0,x1. He is then given the encoding of a randomly
selected one of the two inputs and must guess which one was encoded. During this
process the adversary is allowed to request the encoding of any input he desires. The
experiment is described below. The oracle PubProbGenSK(x) calls ProbGenSK(x) to
obtain (σx,τx) and returns only the public part σx.

Experiment ExpPriv
A [V C ,F,λ]

(PK,SK) R←KeyGen(F,λ);
(x0,x1)← APubProbGenSK(·)(PK)
(σ0,τ0)← ProbGenSK(x0);
(σ1,τ1)← ProbGenSK(x1);
b

R← {0,1};
b̂← APubProbGenSK(·)(PK,x0,x1,σb)
If b̂ = b, output ‘1’, else ‘0’;

Definition 3 (Privacy). For a verifiable computation scheme V C , we define the advan-
tage of an adversary A in the experiment above as:

AdvPriv
A (V C ,F,λ) =

∣∣∣∣Prob[ExpPriv
A [V C ,F,λ] = 1]− 1

2

∣∣∣∣ (4)

A verifiable computation scheme V C is private for a function F, if for any adversary A
running in probabilistic polynomial time,

AdvPriv
A (V C ,F,λ)≤ negli(λ) (5)

where negli() is a negligible function of its input.

An immediate consequence of the above definition is that in a private scheme, the en-
coding of the input must be probabilistic (since the adversary can always query x0,x1 to
the PubProbGen oracle, and if the answer were deterministic, he could decide which
input is encoded in σb).

A similar definition can be made for output privacy.

3.3 Efficiency

The final condition we require from a verifiable computation scheme is that the time
to encode the input and verify the output must be smaller than the time to compute the
function from scratch.

Definition 4 (Outsourceable). A V C can be outsourced if it permits efficient genera-
tion and efficient verification. This implies that for any x and any σy, the time required
for ProbGenSK(x) plus the time required for Verify(σy) is o(T), where T is the fastest
known time required to compute F(x).

Notice that we are not including the time to compute the key generation algorithm
(i.e., the encoding of the function itself). Therefore, the above definition captures the
idea of an outsourceable verifiable computation scheme which is more efficient than
computing the function in an amortized sense, since the cost of encoding the function
can be amortized over many different input computations.

474 R. Gennaro, C. Gentry, and B. Parno

4 An Efficient Verifiable-Computation Scheme with Input and
Output Privacy

We are now ready to describe our scheme. Informally, our protocol works as follows.
The key generation algorithm consists of running Yao’s garbling procedure over a
Boolean circuit computing the function F : the public key is the collection of cipher-
texts representing the garbled circuit, and the secret key consists of all the random wire
labels. The input is encoded in two steps: first a fresh public/secret key pair for a homo-
morphic encryption scheme is generated, and then the labels of the correct input wires
are encrypted with it. These ciphertexts constitute the public encoding of the input,
while the secret key is kept private by the client. Using the homomorphic properties
of the encryption scheme, the worker performs the computation steps of Yao’s proto-
col, but working over ciphertexts (i.e., for every gate, given the encrypted labels for
the correct input wires, obtain an encryption of the correct output wire, by applying
the homomorphic encryption over the circuit that computes the “double decryption” in
Yao’s protocol). At the end, the worker will hold the encryption of the labels of the
correct output wires. He returns these ciphertexts to the client who decrypts them and
then computes the output from them. We give a detailed description below.

Protocol V C
1. KeyGen(F,λ)→ (PK,SK): Represent F as a circuit C. Following Yao’s Circuit

Construction (see Section 2), choose two values, w0
i ,w

1
i

R← {0,1}λ for each wire
wi. For each gate g, compute the four ciphertexts (γg

00,γ
g
01,γ

g
10,γ

g
11) described in

Equation 1. The public key PK will be the full set of ciphertexts, i.e., PK ←
∪g(γg

00,γ
g
01,γ

g
10,γ

g
11), while the secret key will be the wire values chosen: SK ←

∪i(w0
i ,w

1
i).

2. ProbGenSK(x)→ σx: Run the fully-homomorphic encryption scheme’s key gener-
ation algorithm to create a new key pair: (PKE ,SKE)←KeyGenE (λ). Let wi⊂ SK
be the wire values representing the binary expression of x. Set the public value
σx← (PKE ,EncryptE(PKE ,wi)) and the private value τx← SKE .

3. ComputePK(σx)→σy: Calculate EncryptE (PKE ,γi). Construct a circuit Δ that on
input w,w′,γ outputs Dw(Dw′(γ)), where D is the decryption algorithm correspond-
ing to the encryption E used in Yao’s garbling (therefore Δ computes the appropri-
ate decryption in Yao’s construction). Calculate EvaluateE(Δ, EncryptE (PKE ,wi),
EncryptE (PKE ,γi)) repeatedly, to decrypt your way through the ciphertexts, just
as in the evaluation of Yao’s garbled circuit. The result is σy←EncryptE(PKE , w̄i),
where w̄i are the wire values representing y = F(x) in binary.

4. VerifySK(σy)→ y ∪⊥: Use SKE to decrypt EncryptE (PKE , w̄i), obtaining w̄i. Use
SK to map the wire values to an output y. If the decryption or mapping fails, then
output⊥.

Remark: On verifying ciphertext ranges in an encrypted form. Recall that Yao’s scheme
requires the encryption scheme E to have an efficiently verifiable range [21]: Given
the key k, it is possible to decide efficiently if a given ciphertext falls into the range
of encryptions under k. In other words, there exists an efficient machine M such that
M(k,γ) = 1 iff γ ∈ Rangeλ(k). This is needed to “recognize” which ciphertext to pick
among the four ciphertexts associated with each gate.

Non-interactive Verifiable Computing 475

In our verifiable computation scheme V C , we need to perform this check using an
encrypted form of the key c = EncryptE(PKE ,k). When applying the homomorphic
properties of E to the range testing machine M, the worker obtains an encryption of 1
for the correct ciphertext, and an encryption of 0 for the others. Of course he is not able
to distinguish which one is the correct one.

The worker then proceeds as follows: for the four ciphertexts γ1,γ2,γ3,γ4 associated
with a gate g, he first computes ci = EncryptE (PKE ,M(k,γi)) using the homomorphic
properties of E over the circuit describing M. Note that only one of these ciphertexts
encrypts a 1, exactly the one corresponding to the correct γi. Then the worker com-
putes di = EncryptE (PKE ,Dk(γi)) using the homomorphic properties of E over the
decryption circuit Δ. Note that k′ = ΣiM(k,γi)Dk(γi) is the correct label for the out-
put wire. Therefore, the worker can use the homomorphic properties of E to compute
c = EncryptE (PKE ,k′) = EncryptE(PKE ,ΣiM(k,γi)Dk(γi)) from ci,di, as desired.

The main result of our paper is the following.

Theorem 1. Let E be a Yao-secure symmetric encryption scheme and E be a seman-
tically secure homomorphic encryption scheme. Then protocol V C is a secure, out-
sourceable and private verifiable computation scheme.

The proof of Theorem 1 requires two high-level steps. First, we show that Yao’s garbled
circuit scheme is a one-time secure verifiable computation scheme, i.e. a scheme that
can be used to compute F securely on one input. This is an almost immediate reduction
to the security of Yao’s protocol as a two-party computation scheme. Then, by using
the semantic security of the homomorphic encryption scheme, we reduce the security
of our scheme (with multiple executions) to the security of a single execution where we
expect the adversary to cheat. The proof appears in Appendix A.

INPUT AND OUTPUT PRIVACY. Note that for each oracle query the input and the output
are encrypted under the homomorphic encryption scheme E . It is not hard to see that
the proof of correctness above, easily implies the proof of input and output privacy. For
the one-time case, it obviously follows from the security of Yao’s two-party protocol.
For the general case, it follows from the semantic security of E , and the proof relies on
the same style of hybrid arguments described above.

5 How to Handle Cheating Workers

Our definition of security (Definition 2) assumes that the adversary does not see the
output of the Verify procedure run by the client on the value σ returned by the adversary.
Theorem 1 is proven under the same assumption. In practice this means that our protocol
V C is secure if the client keeps the result of the computation private.

In practice, there might be circumstances where this is not feasible, as the behavior
of the client will change depending on the result of the evaluation (e.g., the client might
refuse to pay the worker). Intuitively, and we prove this formally below, seeing the result
of Verify on proofs the adversary correctly Computes using the output of PubProbGen
does not help the adversary (since it already knows the result based on the inputs it
supplied to PubProbGen). But what if the worker returns a malformed response –
i.e., something for which Verify outputs ⊥. How does the client respond, if at all?
One option is for the client to ask the worker to perform the computation again. But

476 R. Gennaro, C. Gentry, and B. Parno

this repeated request informs the worker that its response was malformed, which is an
additional bit of information that a cheating worker might exploit in its effort to generate
forgeries. Is our scheme secure in this setting? In this section, we prove that our scheme
remains secure as long as the client terminates after detecting a malformed response.
We also consider the interesting question of whether our scheme is secure if the client
terminates only after detecting k> 1 malformed responses, but we are unable to provide
a proof of security in this modified setting.

Note that there is a real attack on the scheme in this setting if the client does not ter-
minate. Specifically, for concreteness, suppose that each ciphertext output by EncryptE
encrypts a single bit of a label for an input wire of the garbled circuit, and that the ad-
versary wants to determine the first bit wb1

11 of the first label (where that label stands
in for unknown input b1 ∈ {0,1}). To do this, the adversary runs Compute as before,
obtaining ciphertexts that encrypt the bits w̄i of a label for the output wire. Using the
homomorphism of the encryption scheme E , it XORs wb1

11 with the first bit of w̄i to
obtain w̄′i, and it sends (the encryption of) w̄′i as its response. If Verify outputs ⊥, then
wb1

11 must have been a 1; otherwise, it is a 0 with overwhelming probability. The adver-
sary can thereby learn the labels of the garbled circuit one bit at a time – in particular,
it can similarly learn the labels of the output wire, and thereafter generate a verifiable
response without actually performing the computation.

Intuitively, one might think that if the client terminates after detecting k malformed
responses, then the adversary should only be able to obtain about k bits of informa-
tion about the garbled circuit before the client terminates (using standard entropy ar-
guments), and therefore it should still be hard for the adversary to output the entire
“wrong” label for the output wire as long as λ is sufficiently larger than k. However,
we are unable to make this argument go through. In particular, the difficulty is with the
hybrid argument in the proof of Theorem 1, where we gradually transition to an exper-
iment in which the simulator is encrypting the same Yao input labels in every round.
This experiment must be indistinguishable from the real world experiment, which per-
mits different inputs in different rounds. When we don’t give the adversary informa-
tion about whether or not its response was well-formed or not, the hybrid argument is
straightforward – it simply depends on the semantic security of the FHE scheme.

However, if we do give the adversary that information, then the adversary can easily
distinguish rounds with the same input from rounds with random inputs. To do so, it
chooses some “random” predicate P over the input labels, such that P(w1

b1
,w2

b2
, . . .) =

P(w1
b′1
,w2

b′2
, . . .) with probability 1/2 if (b1,b2, . . .) �= (b′1,b

′
2, . . .). Given the encryptions

of w1
b1
,w2

b2
, . . ., the adversary runs Compute as in the scheme, obtaining ciphertexts

that encrypt the bits w̄i of a label for the output wire, XORs (using the homomorphism)
P(w1

b1
,w2

b2
, . . .) with the first bit of w̄i, and sends (an encryption of) the result w̄′i as its

response. If the client is making the same query in every round – i.e., the Yao input
labels are the same every time – then, the predicate always outputs the same bit, and
thus the adversary gets the same response (well-formed or malformed) in every round.
Otherwise, the responses will tend to vary.

One could try to make the adversary’s distinguishing attack more difficult by (for ex-
ample) trying to hide which ciphertexts encrypt the bits of which labels – i.e., via some
form of obfuscation. However, the adversary may define its predicate in such a way that
it “analyzes” this obfuscated circuit, determines whether two ostensibly different inputs

Non-interactive Verifiable Computing 477

in fact represent the same set of Yao input labels, and outputs the same bit if they do. (It
performs this analysis on the encrypted inputs, using the homomorphism.) We do not
know of any way to prevent this attack, and preventing it may be rather difficult in light
of Barak et al.’s result that there is no general obfuscator [7].

Security with Verification Access. We say that a verifiable computation scheme is secure
with verification access if the adversary is allowed to see the result of Verify over the
queries xi he has made to the ProbGen oracle in ExpVeri f

A (see Definition 2).

Let V C † be like V C , except that the client terminates if it receives a malformed
response from the worker. Below, we show that V C † is secure with verification access.
In other words, it is secure to provide the worker with verification access (indicating
whether a response was well-formed or not), until the worker gives a malformed re-

sponse. Let ExpVeri f †

A

[
V C †

,F,λ
]

denote the experiment described in Section 3.1, with

the obvious modifications.

Theorem 2. If V C is a secure outsourceable verifiable computation scheme, then V C †

is a secure outsourceable verifiable computation scheme with verification access. If V C
is private, so is V C †.

The proof appears in Appendix B.
In practice Theorem 2 implies that every time a malformed response is received, the

client must re-garble the circuit (or, as we said above, make sure that the results of the
verification procedure remain secret). Therefore the amortized efficiency of the client
holds only if we assume that malformed responses do not happen very frequently.

In some settings, it is not necessary to inform the worker that its response is mal-
formed, at least not immediately. For example, in the Folding@Home application [2],
suppose the client generates a new garbled circuit each morning for its many workers.
At the end of the day, the client stops accepting computations using this garbled circuit,
and it (optionally) gives the workers information about the well-formedness of their re-
sponses. Indeed, the client may reveal all of its secrets for that day. In this setting, our
previous proof clearly holds even if there are arbitrarily many malformed responses.

6 Conclusions and Future Directions

In this work, we introduced the notion of Verifiable Computation as a natural formula-
tion for the increasingly common phenomenon of outsourcing computational tasks to
untrusted workers. We describe a scheme that combines Yao’s Garbled Circuits with a
fully-homomorphic encryption scheme to provide extremely efficient outsourcing, even
in the presence of an adaptive adversary. As an additional benefit, our scheme maintains
the privacy of the client’s inputs and outputs.

Our work leaves open several interesting problems. It would be desirable to de-
vise a verifiable computation scheme that used a more efficient primitive than fully-
homomorphic encryption. Similarly, it seems plausible that a verifiable scheme might
sacrifice input privacy to increase its efficiency. Finally, while our scheme is resilient
against a single malformed response from the worker, ideally we would like a scheme
that tolerates k > 1 malformed responses.

478 R. Gennaro, C. Gentry, and B. Parno

Acknowledgements

The authors are grateful to Virgil Gligor for a number of useful discussions and to the
anonymous reviewers for their helpful suggestions.

This research was supported in part by the US Army Research Laboratory and the
UK Ministry of Defence under Agreement Number W911NF-06-3-0001, as well as
by the National Science Foundation (NSF), under award number CCF-0424422. Bryan
Parno was supported in part by an NSF Graduate Research Fellowship. The views and
conclusions contained in this document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or implied, of the US Army
Research Laboratory, U.S. Government, UK Ministry of Defense, UK Government, or
NSF. The US and UK Governments are authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation hereon.

References

1. Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2
2. The Folding@home project. Stanford University,

http://www.stanford.edu/group/pandegroup/cosm/
3. Sun Utility Computing, http://www.sun.com/service/sungrid/index.jsp
4. The Great Internet Mersenne Prime Search, http://www.mersenne.org/
5. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@Home: An ex-

periment in public-resource computing. Communications of the ACM 45(11), 56–61 (2002)
6. Babai, L.: Trading group theory for randomness. In: Proceedings of the ACM Symposium

on Theory of Computing (STOC), pp. 421–429. ACM, New York (1985)
7. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahay, A., Vadhan, S., Yang, K.:

On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

8. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message security. In:
Proceedings of EuroCrypt (June 2010)

9. Belenkiy, M., Chase, M., Erway, C.C., Jannotti, J., Küpçü, A., Lysyanskaya, A.: Incentiviz-
ing outsourced computation. In: Proceedings of the Workshop on Economics of Networked
Systems (NetEcon), pp. 85–90. ACM, New York (2008)

10. Chaum, D., Pedersen, T.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO
1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

11. Gennaro, R., Gentry, C., Parno, B.: Non-Interactive Verifiable Computing: Outsourcing
Computation to Untrusted Workers, http://eprint.iacr.org/2009/547

12. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford University (2009)
13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the ACM

Symposium on the Theory of Computing (STOC) (2009)
14. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for

muggles. In: Proceedings of the ACM Symposium on the Theory of Computing (2008)
15. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-

systems. SIAM Journal on Computing 18(1), 186–208 (1989)
16. Golle, P., Mironov, I.: Uncheatable distributed computations. In: Proceedings of the RSA

Conference (2001)
17. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic computations.

In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer, Heidelberg (2005)
18. Kalai, Y.T., Raz, R.: Probabilistically checkable arguments. In: Halevi, S. (ed.) CRYPTO

2009. LNCS, vol. 5677, pp. 143–159. Springer, Heidelberg (2009)

http://aws.amazon.com/ec2
http://www.stanford.edu/group/pandegroup/cosm/
http://www.sun.com/service/sungrid/index.jsp
http://www.mersenne.org/
http://eprint.iacr.org/2009/547

Non-interactive Verifiable Computing 479

19. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In:
Proceedings of the ACM Symposium on Theory of Computing (STOC) (1992)

20. Kilian, J.: Improved efficient arguments (preliminary version). In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 311–324. Springer, Heidelberg (1995)

21. Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation. Journal
of Cryptology 22(2), 161–188 (2009)

22. Micali, S.: CS proofs (extended abstract). In: Proceedings of the IEEE Symposium on Foun-
dations of Computer Science (1994)

23. Molnar, D.: The SETI@Home problem. ACM Crossroads, 7.1 (2000)
24. Monrose, F., Wyckoff, P., Rubin, A.: Distributed execution with remote audit. In: Proceedings

of ISOC Network and Distributed System Security Symposium (NDSS) (February 1999)
25. Rothblum, G.: Delegating Computation Reliably: Paradigms and Constructions. PhD thesis,

Massachusetts Institute of Technology (2009)
26. Rothblum, G., Vadhan, S.: Are PCPs inherent in efficient arguments? In: Proceedings of

Computational Complexity (CCC) (2009)
27. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and

ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
420–443. Springer, Heidelberg (2010)

28. Smith, S., Weingart, S.: Building a high-performance, programmable secure coprocessor.
Computer Networks (Special Issue on Computer Network Security) 31, 831–960 (1999)

29. Trusted Computing Group. Trusted platform module main specification. Version 1.2, Revi-
sion 103 (July 2007)

30. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over
the integers. In: Proceedings of EuroCrypt (June 2010)

31. Yao, A.: Protocols for secure computations. In: Proceedings of the IEEE Symposium on
Foundations of Computer Science (1982)

32. Yao, A.: How to generate and exchange secrets. In: Proceedings of the IEEE Symposium on
Foundations of Computer Science (1986)

33. Yee, B.S.: Using Secure Coprocessors. PhD thesis, Carnegie Mellon University (1994)

A Proof of Theorem 1

The proof of Theorem 1 proceeds in two steps. First, we show that Yao’s garbled circuit
scheme is a one-time secure verifiable computation scheme, in other words, a scheme
that can be used to compute F securely on one input. This is an almost immediate
reduction to the security of Yao’s protocol as a two-party computation scheme. Then,
by using the semantic security of the homomorphic encryption scheme, we reduce the
security of our scheme (with multiple executions) to the security of a single execution
in which we expect the adversary to cheat.

A.1 Proof Sketch of Yao’s Security for One Execution

Consider the verifiable computation scheme V CYao defined as follows:

Protocol V CYao.
1. KeyGen(F,λ)→ (PK,SK): Represent F as a circuit C. Following Yao’s Circuit

Construction (see Section 2), choose two values, w0
i ,w

1
i

R← {0,1}λ for each wire
wi. For each gate g, compute the four ciphertexts (γg

00,γ
g
01,γ

g
10,γ

g
11) from Equation 1.

The public key PK will be the full set of ciphertexts, i.e, PK←∪g(γg
00,γ

g
01,γ

g
10,γ

g
11),

while the secret key will be the wire values chosen: SK←∪i(w0
i ,w

1
i).

480 R. Gennaro, C. Gentry, and B. Parno

2. ProbGenSK(x)→ σx: Reveal the labels of the input wires associated with x. In
other words, let wi ⊂ SK be the wire values representing the binary expression of
x, and set σx← wi. τx is the empty string.

3. ComputePK(σx)→ σy: Compute the decryptions in Yao’s protocol to obtain the
labels of the correct output wires. Set σy to be these labels.

4. VerifySK(σy)→ y ∪ ⊥: Use SK to map the wire values in σy to the binary repre-
sentation of the output y. If the mapping fails, output⊥.

Theorem 3. V CYao is a correct verifiable computation scheme.

Proof of Theorem 3: The proof of correctness follows directly from the proof of
correctness for Yao’s garbled circuit construction [21]. Using C and x̃ produces a ỹ that
represents the correct evaluation of F(x).
In the full version of the paper [11], we prove that V CYao is a one-time secure ver-
ifiable computation scheme. The definition of one-time secure is the same as Defini-
tion 2 except that in experiment ExpVeri f

A , the adversary is allowed to query the oracle
ProbGenSK(·) only once (i.e., �= 1) and must cheat on that input.

Intuitively, an adversary who violates the security of this scheme must either guess
the “incorrect” random value k1−yi

w for one of the output bit values representing y, or
he must break the encryption scheme used to encode the “incorrect” wire values in the
circuit. The former happens with probability ≤ 1

2λ , i.e., negligible in λ. The latter vio-
lates our security assumptions about the encryption scheme. We formalize this intuition
using a hybrid argument similar to the one used in [21].

Theorem 4. Let E be a Yao-secure symmetric encryption scheme. Then V CYao is a
one-time secure verifiable computation scheme.

A.2 Completing the Proof of Theorem 1

The proof of Theorem 1 follows from Theorem 4 and the semantic security of the
homomorphic encryption scheme. More precisely, we show that if the homomorphic
encryption scheme is semantically secure, then we can transform (via a simulation)
a successful adversary against the full verifiable computation scheme V C into an at-
tacker for the one-time secure protocol V CYao. The intuition is that for each query, the
labels in the circuit are encrypted with a semantically-secure encryption scheme (the
homomorphic scheme), so multiple queries do not help the adversary to learn about the
labels, and hence if he cheats, he must be able to cheat in the one-time case as well.

Proof of Theorem 1: Let us assume for the sake of contradiction that there is an
adversary A such that AdvVeri f

A (V C ,F,λ) ≥ ε, where ε is non-negligible in λ. We use
A to build another adversary A′ which queries the ProbGen oracle only once, and for
which AdvVeri f

A′ (V CYao,F,λ)≥ ε′, where ε′ is close to ε. The details of A′ follow.
A′ receives as input the garbled circuit PK. It activates A with the same input. Let �

be an upper bound on the number of queries that A makes to its ProbGen oracle. The
adversary A′ chooses an index i at random between 1 and � and continues as follows. For
the jth query by A, with j �= i, A′ will respond by (i) choosing a random private/public
key pair for the homomorphic encryption scheme (PK j

E ,SK j
E) and (ii) encrypting ran-

dom λ-bit strings under PK j
E . For the ith query, x, the adversary A′ gives x to its own

Non-interactive Verifiable Computing 481

ProbGen oracle and receives σx, the collection of active input labels corresponding to
x. It then generates a random private/public key pair for the homomorphic encryption
scheme (PKi

E ,SKi
E), and it encrypts σx (label by label) under PKi

E .
Once we prove the Lemma 1 below, we have our contradiction and the proof of

Theorem 1 is complete.

Lemma 1. AdvVeri f
A′ (V CYao,F,λ)≥ ε′ where ε′ is non-negligible in λ.

Proof of Lemma 1: This proof also proceeds by defining, for any adversary A, a set
of hybrid experiments H k

A (V C ,F,λ) for k = 0, . . . , �− 1. We define the experiments
below. Let i be an index randomly selected between 1 and � as in the proof above.

Experiment H k
A (V C ,F,λ) = 1]: In this experiment, we change the way the oracle

ProbGen computes its answers. For the jth query:
– j ≤ k and j �= i: The oracle will respond by (i) choosing a random private/public

key pair for the homomorphic encryption scheme (PK j
E ,SK j

E) and (ii) encrypting

random λ-bit strings under PK j
E .

– j > k or j = i: The oracle will respond exactly as in V C , i.e. by (i) choosing a ran-
dom private/public key pair for the homomorphic encryption scheme (PK j

E ,SK j
E)

and (ii) encrypting the correct input labels in Yao’s garbled circuit under PK j
E .

In the end, the bit output by the experiment H k
A is 1 if A successfully cheats on the ith

input and otherwise is 0. We denote with Advk
A(V C ,F,λ) = Prob[H k

A (V C ,F,λ) = 1].
Note that

– H 0
A (V C ,F,λ) is identical to the experiment ExpVeri f

A [V C ,F,λ], except for the way
the bit is computed at the end. Since the index i is selected at random between 1
and �, we have that

Adv0
A(V C ,F,λ) =

AdvVeri f
A (V C ,F,λ)

�
≥ ε
�

– H �−1
A (V C ,F,λ) is equal to the simulation conducted by A′ above, so

Adv�−1
A (V C ,F,λ) = AdvVeri f

A′ (V CYao,F,λ)

If we prove for k = 0, . . . , �−1 that experiments H k
A (V C ,F,λ) and H k−1

A (V C ,F,λ) are
computationally indistinguishable, that is for every A

|Advk
A(V C ,F,λ)−Advk−1

A (V C ,F,λ)| ≤ negli(λ) (6)

we are done, since that implies that

AdvVeri f
A′ (V CYao,F,λ)≥ ε

�
− � ·negli(λ)

which is the desired non-negligible ε′.
But Eq. 6 easily follows from the semantic security of the homomorphic encryption

scheme. Indeed assume that we could distinguish between H k
A and H k−1

A , then we can
decide the following problem, which is easily reducible to the semantic security of E :

482 R. Gennaro, C. Gentry, and B. Parno

Security of E with respect to Yao Garbled Circuits: Given a Yao-garbled circuit
PKYao, an input x for it, a random public key PKE for the homomorphic encryption
scheme, a set of ciphertexts c1, . . . ,cn where n is the size of x, decide if for all i, ci =
EncryptE(PKE ,w

xi
i), where wi is the ith input wire and xi is the ith input bit of x, or ci

is the encryption of a random value.

Now run experiment H k−1
A with the following modification: at the kth query, instead of

choosing a fresh random key for E and encrypting random labels, answer with PKE and
the ciphertexts c1, . . . ,cn defined by the problem above. If ci is the encryption of a ran-
dom value, then we are still running experiment H k−1

A , but if ci = EncryptE(PKE ,w
xi
i),

then we are actually running experiment H k
A . Therefore we can decide the Security of

E with respect to Yao Garbled Circuits with the same advantage with which we can
distinguish between H k

A and H k−1
A .

The reduction of the Security of E with respect to Yao Garbled Circuits to the basic
semantic security of E is an easy exercise, and details will appear in the final version.

B Proof of Theorem 2

Proof of Theorem 2: Consider two games between a challenger and an adversary
A. In the real world game for V C †, Game 0, the interactions between the challenger
and A are exactly like those between the client and a worker in the real world – in
particular, if A’s response was well-formed, the challenger tells A so, but the challenger
immediately aborts if A’s response is malformed. Game 1 is identical to Game 0, except
that when A queries Verify, the challenger always answers with the correct y, whether
A’s response was well-formed or not, and the challenger never aborts. Let εi be A’s
success probability in Game i.

First, we show that if V C is secure, then ε1 must be negligible. The intuition is
simple: since the challenger always responds with the correct y, there is actually no in-
formation in these responses, since A could have computed y on its own. More formally,
there is an algorithm B that breaks V C with probability ε1 by using A as a sub-routine. B
simply forwards communications between the challenger (now a challenger for the V C
game) and A, except that B tells A the correct y w.r.t. all of A’s responses. B forwards
A’s forgery along to the challenger.

Now, we show that ε0 ≤ ε1, from which the result follows. Let Emal be the event that
A makes a malformed response, and let E f be the event that A successfully outputs a

forgery – i.e., where ExpVeri f †

A [V C †
,F,λ] outputs ‘1’. A’s success probability, in either

Game 0 or Game 1, is:

Prob[E f] = Prob[E f |Emal] ·Prob[Emal]+ Prob[E f |¬Emal] ·Prob[¬Emal] (7)

If A does not make a malformed response, then Games 0 and 1 are indistinguishable to
A; therefore, the second term above has the same value in Games 0 and 1. In Game 0,
Prob[E f |Emal] = 0, since the challenger aborts. Therefore, ε0 ≤ ε1.

Improved Delegation of Computation
Using Fully Homomorphic Encryption�

Kai-Min Chung1,��, Yael Kalai2, and Salil Vadhan1,� � �

1 School of Engineering & Applied Sciences, Harvard University,
Cambridge MA, USA

kmchung@fas.harvard.edu, salil@seas.harvard.edu
2 Microsoft Research New England, Cambridge MA, USA

yael@microsoft.com

Abstract. Following Gennaro, Gentry, and Parno (Cryptology ePrint
Archive 2009/547), we use fully homomorphic encryption to design im-
proved schemes for delegating computation. In such schemes, a delegator
outsources the computation of a function F on many, dynamically chosen
inputs xi to a worker in such a way that it is infeasible for the worker to
make the delegator accept a result other than F (xi). The “online stage”
of the Gennaro et al. scheme is very efficient: the parties exchange two
messages, the delegator runs in time poly(log T), and the worker runs in
time poly(T), where T is the time complexity of F . However, the “offline
stage” (which depends on the function F but not the inputs to be del-
egated) is inefficient: the delegator runs in time poly(T) and generates
a public key of length poly(T) that needs to be accessed by the worker
during the online stage.

Our first construction eliminates the large public key from the Gen-
naro et al. scheme. The delegator still invests poly(T) time in the offline
stage, but does not need to communicate or publish anything. Our sec-
ond construction reduces the work of the delegator in the offline stage
to poly(log T) at the price of a 4-message (offline) interaction with a
poly(T)-time worker (which need not be the same as the workers used
in the online stage). Finally, we describe a “pipelined” implementation
of the second construction that avoids the need to re-run the offline con-
struction after errors are detected (assuming errors are not too frequent).

Keywords: verifiable computation, outsourcing computation, worst-
case/average-case reductions, computationally sound proofs, universal
argument systems.

1 Introduction

The problem of delegating computation considers a scenario where one party,
the delegator, wishes to delegate the computation of a function f to another

� A full version of this paper can be found on [CKV10].
�� Supported by US-Israel BSF grant 2006060 and NSF grant CNS-0831289.

� � � Supported by NSF grant CNS-0831289.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 483–501, 2010.
c© International Association for Cryptologic Research 2010

484 K.-M. Chung, Y. Kalai, and S. Vadhan

party, the worker. The challenge is that the delegator may not trust the worker,
and thus it is desirable to have the worker “prove” that the computation was
done correctly. Obviously, we want verifying this proof to be easier than doing
the computation.

This concept of “outsourcing” computation is relevant in several real world
scenarios, as illustrated by the following three examples (taken from
[GGP09,GKR08]):

1. Volunteer computing.The idea ofvolunteer computing is for a server to split
large computations into small units, send these units to volunteers for process-
ing, and reassemble the results (via a much easier computation). The Berkeley
Open Infrastructure for Network Computing (BOINC) [And03,And04] is an
example of such a platform. Some famous projects using the BOINC platform
are SETI@home, and the Great Internet Mersenne Prime Search [Mer07]. We
refer the reader to [GKR08] for more details on these projects.

2. Cloud computing. In the setting of cloud computing, businesses buy com-
puting time from a service, rather than purchasing their own computing
resources.

3. Weak mobile devices. Mobile devices, such as cell-phones, security access-
cards, music players, and sensors, are typically very weak computationally,
and thus need the help of remote computers to run costly computations.

A natural question about such settings is: what if the workers are dishonest?
For example, in the volunteer computing setting, an adversarial volunteer may
introduce errors into the computation. In the cloud computing example, the
cloud (i.e., the business providing the computing services) may have a financial
incentive to return incorrect answers, if such answers require less work and are
unlikely to be detected by the client. Moreover, in some cases, the applications
outsourced to the cloud may be so critical that the delegator wishes to rule
out accidental errors during the computation. As for weak mobile devices, the
communication channel between the device and the remote computer may be
corrupted by an adversary.

In practice, many projects cope with such fraud by redundancy; the same work
unit is sent to several workers and the results are compared for consistency.
However, this requires the use of several workers and provides little defense
against colluding workers.

Instead, we would like the worker to prove to the delegator that the compu-
tation was performed correctly. Of course, it is essential that the time it takes
to verify the proof is significantly smaller than the time needed to actually run
the computation. At the same time, the running time of the worker carrying out
the proof should also be reasonable — comparable to the time it takes to do
the computation. For example, when delegating the computation of a function
f that takes time T and has inputs and outputs of length n, we would like the
delegator to run in time poly(n, logT) and the worker to run in time poly(T).

Improved Delegation of Computation Using Fully Homomorphic Encryption 485

1.1 Previous Work

The large body of work on probabilistic proof systems, starting with
[Bab85,GMR89], is very relevant to secure delegation. Indeed, after comput-
ing the delegated function f on input x and sending the result y, the worker can
use various types of proof systems to convince the delegator of the statement
“f(x) = y”.

Interactive Proofs. The IP=PSPACE Theorem [LFKN92,Sha92] yields interac-
tive proofs for any function f computable in polynomial space, with a verifier
(delegator) running in polynomial time. However, the complexity of the prover
(worker) is also only bounded by polynomial space (and hence exponential time).
This theorem was refined and scaled down in [FL93] to give verifier complex-
ity poly(n, s) and prover complexity 2poly(s) for functions f computable in time
T and space s, on inputs of length n. Note that the prover complexity is still
superpolynomial in T , even for computations that run in the smallest possi-
ble space, namely s = O(log T). However, the prover complexity was recently
improved by Goldwasser et al. [GKR08] to poly(T, 2s), which is poly(T) when
s = O(log T). More generally, Goldwasser et al. [GKR08] give interactive proofs
for computations of small depth d (i.e. parallel time). For these, they achieve
prover complexity poly(T) and verifier complexity poly(n, d, log T). (This im-
plies the result for space-bounded computation because an algorithm that runs
in time T and space s can be converted into one that runs in time poly(T, 2s)
and depth d = O(s2).) However, if we do not restrict to computations of small
space or depth, then we cannot use interactive proofs. Indeed, any language that
has an interactive proof with verifier running time (and hence communication)
TV can be decided in space poly(n, TV).

PCPs and MIPs. The MIP=NEXP Theorem [BFL91] and its scaled-down ver-
sion by Babai et al. [BFLS91] yield multiprover interactive proofs and proba-
bilistically checkable proofs for time T computations with a prover running in
time poly(T) and a verifier running in time poly(n, logT), exactly as we want.
However, using these for delegation require specialized communication models
— either 2 noncommunicating provers, or a mechanism for the prover to give
the verifier random access to a long PCP (of length poly(T)) that cannot be
changed by the prover during the verification.

Interactive Arguments. Instead of changing the communication model, interac-
tive arguments [BCC88] (aka computationally sound proofs [Mic94]) relax the
soundness condition to be computational. That is, instead of requiring that no
prover strategy whatsoever can convince the verifier of a false statement, we
instead require that no computationally feasible prover strategy can convince
the verifier of a false statement. In this model, Kilian [Kil92] and Micali [Mic94]
gave constant-round protocols with prover complexity poly(T, k) and verifier
complexity poly(n, k, logT) (where k is the security parameter), assuming the
existence of collision-resistant functions. Under a subexponential hardness as-
sumption, the security parameter can be taken as small as polylog(T); this also
holds for the schemes described below.

486 K.-M. Chung, Y. Kalai, and S. Vadhan

Towards Non-interactive Solutions. In this work, we are interested in getting
closer to non-interactive solutions (with computational soundness). Ideally, the
worker/prover should be able to send a proof to the delegator/verifier in the
same message that it sends the result of the computation.

This possibility of efficient non-interactive arguments was suggested by
Micali [Mic94], who showed that non-interactive arguments with prover com-
plexity poly(T, k) and verifier complexity poly(n, k, logT) are possible in the
Random Oracle Model (the oracle is used to eliminate interaction a la Fiat–
Shamir [FS86]). Heuristically, one might hope that by instantiating the ran-
dom oracle with an appropriate family of hash functions, we could obtain a
non-interactive solution to delegating computation: in an offline stage, the ver-
ifier/delegator (or a trusted third party) chooses and publishes a random hash
function from the family, and in the online stage, the proofs are completely
non-interactive (just one message from the prover to the verifier). However, the
Random Oracle Heuristic is known to be unsound in general [CGH04] and even
in the context of Fiat–Shamir [Bar01,GK03]. Thus, despite extensive effort, the
existence of efficient non-interactive arguments remains a significant open prob-
lem in complexity and cryptography.

There has been some recent progress in reducing the amount of interaction
needed. Using a transformation of Kalai and Raz [KR09], Goldwasser, Kalai, and
Rothblum [GKR08] showed how to convert their interactive proofs for small-depth
computations into non-interactive arguments in a “public key” model (assuming
the existence of single-server private-information retrieval (PIR) schemes): in an
offline stage, the verifier/delegator generates a public/secret key pair, publishes
the public key and stores the secret key. Then, in the online stage, the prover/
worker retrieves the public key and can construct a proof to send along with the
result of the computation. However, like the interactive proofs of [GKR08], this so-
lution applies only to small-depth computations, as the verifier’s complexity grows
linearly with the depth.

Very recently, Gennaro, Gentry, and Parno [GGP09] showed how to dele-
gate arbitrary computations by increasing the verifier’s offline complexity and
public-key size, and using a fully homomorphic encryption (FHE) scheme (as
recently constructed by Gentry [Gen09]). In their construction, the delegator
invests poly(T, k) work in the offline stage to construct a public key of size
poly(T, k) and a secret key of size poly(k) (for delegating a function f that is
computable in time T). In the online stage, the delegator’s running time is re-
duced to poly(n, k, logT) for an input of length n, and the worker’s complexity
is poly(T, k). Thus, the delegator’s large investment in the offline stage can be
amortized over many executions of the online stage to delegate the computation
of f on many inputs. Their online stage is not completely non-interactive, but
consists of two messages. However, in many applications, two messages will be
necessary anyway, as the delegator may need to communicate the input x to the
worker.

We remark that in the schemes where the delegator has a secret key (namely
[GKR08] and [GGP09], as well as two of our constructions below), soundness

Improved Delegation of Computation Using Fully Homomorphic Encryption 487

is only guaranteed as long as the adversarial worker does not learn that the
delegator has rejected a proof. Thus, either the accept/reject decision should
be kept secret, or the (possibly expensive) offline stage should be re-run after
rejection.

1.2 Our Results

In this work, we provide the following protocols that improve over the work of
Gennaro et al. [GGP09]:

– Our first protocol eliminates the large public key of the Gennaro et al.
scheme. That is, the delegator still performs poly(T, k) work in the of-
fline stage, but the result of this computation is just a secret key of length
poly(n, k, logT); there is no need for any interaction with the worker(s) in
advance of the online stage (not even to transmit a public key).

– Our second protocol reduces the work of the delegator in the offline stage to
poly(n, k, logT), at the price of a constant-round interaction with a worker
that runs in time poly(T, k). With this protocol, re-running the offline stage
after a rejected proof becomes more reasonable, and thus there is no reason
to keep the accept/reject decisions secret.

– Finally, we describe a “pipelined” implementation of our second protocol
that avoids the latency of re-running the offline stage, while maintaining
soundness even if the accept/reject decisions are revealed. This solution re-
quires both parties to maintain state, and completeness holds provided that
faults do not occur too often. Thus, this solution is most suitable for cases
where the delegator is using a single worker many times and there are ran-
dom faults (in communication or computation) that may cause the delegator
to reject occasionally.

Like [GGP09], all of our protocols require the use of a fully homomorphic en-
cryption scheme, and have a 2-message online stage. A full comparison of our
model and results with previous work is given in Table 1.

Organization. Brief preliminaries on fully homomorphic encryption schemes are
presented in Section 2. Then we present a formal definition of our model in
Section 3. In Section 4 – 8, we start with a simple scheme Del1 that achieves
rather weak properties, and strengthen it through a series of steps leading to our
main delegation schemes Del4 and Del5.

Due to space constraints, we skip all the proofs. Please refer to the full version
of this paper [CKV10] for details.

2 Preliminaries on Fully Homomorphic Encryption

Inspired by the recent work of Gennaro, Gentry, and Parno [GGP09] on secure
delegation, our constructions rely on the use of a fully homomorphic encryption
scheme.

488 K.-M. Chung, Y. Kalai, and S. Vadhan

T
a
b
le

1
.
R

es
ul

ts
on

D
el

eg
at

in
g

C
om

pu
ta

ti
on

.
D

=
de

le
ga

to
r/

ve
ri
fie

r,
W

=
w

or
ke

r/
pr

ov
er

,
P
K

=
D

’s
pu

bl
ic

ke
y,

S
K

=
D

’s
se

cr
et

ke
y,

k
=

se
cu

ri
ty

pa
ra

m
et

er
.P

ar
am

et
er

s
of

co
m

pu
ta

ti
on

f
be

in
g

de
le

ga
te

d:
n

=
in

pu
t

le
ng

th
,T

=
ti
m

e,
d

=
de

pt
h/

pa
ra

lle
l
ti
m

e
(w

e
as

su
m

e
n
≤

T
≤

2d
).

o
ffl

in
e

k
ey

s
o
n
li
n
e

R
ef

A
ss

u
m

p
ti
o
n

S
o
u
n
d
n
es

s
#

m
sg

s
D

co
m

p
le

x
it
y

|P
K
|

|S
K
|

#
m

sg
s

D
co

m
p
le

x
it
y

W
co

m
p
le

x
it
y

[G
K

R
0
8
]

n
o
n
e

st
a
t

0
0

0
0

p
o
ly

(d
,l

o
g

T
)

p
o
ly

(n
,d

,l
o
g

T
)

p
o
ly

(T
)

[B
F
L
9
1
,B

F
L
S
9
1
]

n
o
n
e

M
IP

/
P

C
P

0
0

0
0

1
p
o
ly

(n
,l

o
g

T
)

p
o
ly

(T
)

[K
il
9
2
,M

ic
0
0
]

C
R

H
co

m
p

0
0

0
0

4
p
o
ly

(k
,n

,l
o
g

T
)

p
o
ly

(k
,T

)

[K
il
9
2
,M

ic
0
0
]

R
O

-H
eu

r
co

m
p

1
p
o
ly

(k
)

p
o
ly

(k
)

0
1

p
o
ly

(k
,n

,l
o
g

T
)

p
o
ly

(k
,T

)

[G
K

R
0
8
,K

R
0
9
]

P
IR

co
m

p
1

p
o
ly

(k
)

p
o
ly

(k
,d

,l
o
g

T
)

p
o
ly

(k
,d

,l
o
g

T
)

1
p
o
ly

(k
,n

,d
,l

o
g

T
)

p
o
ly

(k
,T

)

[G
G

P
0
9
]

F
H

E
co

m
p

1
p
o
ly

(k
,T

)
p
o
ly

(k
,T

)
p
o
ly

(k
,n

)
2

p
o
ly

(k
,n

,l
o
g

T
)

p
o
ly

(k
,T

)

T
h
m

.
1

F
H

E
co

m
p

0
p
o
ly

(k
,T

)
0

p
o
ly

(k
,n

)
2

p
o
ly

(k
,n

,l
o
g

T
)

p
o
ly

(k
,T

)

T
h
m

.
3

F
H

E
co

m
p

4
p
o
ly

(k
,n

,l
o
g

T
)

0
p
o
ly

(k
,n

)
2

p
o
ly

(k
,n

,l
o
g

T
)

p
o
ly

(k
,T

)

Improved Delegation of Computation Using Fully Homomorphic Encryption 489

Fully Homomorphic Encryption. A public-key encryption scheme E =
(KeyGen,Enc,Dec) is said to be fully homomorphic if it is associated with an
additional polynomial-time algorithm Eval, that takes as input a public key pk,
a ciphertext x̂ = Enc(x) and a circuit C, and outputs, a new ciphertext c =
Evalpk(x̂, C), such that Decsk(c) = C(x), where sk is the secret key correspond-
ing to the public key pk. It is required that the size of c = Evalpk(Encpk(x), C)
depends polynomially on the security parameter and the length of C(x), but is
otherwise independent of the size of the circuit C. We also require that Eval is
deterministic, and the scheme has perfect correctness (i.e. it always holds that
Decsk(Encpk(x)) = x and that Decsk(Evalpk(Encpk(x), C)) = C(x)). For security,
we simply require that E is semantically secure.

In a recent breakthrough, Gentry [Gen09] proposed a fully homomorphic en-
cryption scheme based on ideal lattices. In his basic scheme, the complexity
of the algorithms (KeyGen,Enc,Dec) depends linearly on the depth of the cir-
cuit C, where d is an upper bound on the depth of the circuit C that are allowed
as inputs to Eval. However, under the additional assumption that his scheme is
circular secure (i.e., it remains secure even given an encryption of the secret key),
the complexity of these algorithms are independent of C. Furthermore, Gentry’s
construction satisfies the perfect correctness and the Eval of his scheme can be
made deterministic. We refer the reader to [Gen09] for details.

An interesting aspect of the [GGP09] construction is how they use the secrecy
property of fully homomorphic encryption schemes in order to achieve a sound-
ness property in their delegation scheme; this phenomenon also recurs several
times in our work.

3 The Model

In this section, we formally define a model that captures the delegating compu-
tation scenario we are interested in.

Definition 1 (Delegation Scheme). A delegation scheme is an interactive
protocol Del = 〈D,W〉 between a delegator D and a worker W with the following
structure:

1. The scheme Del consists of two stages: an offline/preprocessing stage and
an online stage. The offline stage is executed once before the online stage,
whereas the online stage can be executed many times.

2. In the offline stage, both the delegator D and the worker W receive a secu-
rity parameter k and a function F : {0, 1}n → {0, 1}m, represented by a
Turing machine M and a time bound T for M . At the end of the interac-
tion, the delegator D decides whether to accept or reject. If D accepts, then
D outputs a secret key σD and a public key σW. We will denote this by
(σD, σW) = 〈D,W〉(F, 1k). We will use the notation M , n, m, and T as the
Turing machine and parameters associated with F throughout the paper, and
we will often omit the security parameter from the notation.

3. In the online stage, both parties receive F , 1k, and an input x ∈ {0, 1}n, and
execute a one round communication protocol. Namely, D sends

490 K.-M. Chung, Y. Kalai, and S. Vadhan

q = D(F, x, σD) to W, and then W sends a = W(F, x, σW , q) to D. Then
the delegator D either accepts or rejects. If D accepts, then D also gener-
ates a private output y = D(F, x, σD, q, a) ∈ {0, 1}m, which is supposed to be
F (x). For simplicity, we will omit the function F and the security parameter
from the input of the online stage.

We also define the following properties of delegation schemes.

– A delegation scheme Del has an efficient delegator in the online (resp., of-
fline) stage if the computational complexity of D in the online (resp., offline)
stage is poly(k, n,m, |M |, logT).

– A delegation scheme Del has an efficient worker if the computational com-
plexity of W is poly(k, |M |, T).

– A delegation scheme Del has a non-interactive offline stage if D and W
do not interact at all during the offline stage, and only D does some com-
putation. Note that if Del has a non-interactive offline stage, then we can
assume w.l.o.g. that D always accepts in the offline stage.

For a delegation scheme to be meaningful, it needs to have completeness and sound-
ness properties. Informally, the completeness property says that the delegator D
always learns the desired value F (x), assuming both parties follow the prescribed
protocol. The soundness property says that the delegator D mistakenly accepts a
wrong value y �= F (x) from a malicious worker with only negligible probability.

Definition 2 (Completeness). A delegation scheme Del = 〈D,W〉 has perfect
completeness if for all parameters n,m, T, k, for every function F and every
x ∈ {0, 1}n, the following holds with probability 1: When D and W run the
offline stage protocol with input F , and then run the online stage protocol with
input x, the delegator D accepts in both the offline and the online stage, and
outputs y = F (x) in the online stage.

In order to define the soundness, we introduce the following security game.

Definition 3 (Security Game for Delegation Schemes). Let Del = 〈D,W〉
be a delegation scheme and k ∈ N be the security parameter. The security game
G(k) for Del is the following game played by a worker strategy W∗.

– The game starts with the offline stage of Del, and is followed by many rounds
of the online stage.

– W∗(1k) first chooses the delegation function F and then D and W∗ interact
in the offline stage of Del with input F .

– At the beginning of each round of the online stage (indexed by �), W∗ can
either terminate the game or choose an input x� ∈ {0, 1}n. If the game is
not terminated, D and W∗ interact in the online stage of Del on input x�.

– Whenever the delegator D rejects, the game terminates.

W∗ succeeds in the game G(k) if there exists a round � of the online stage such
that D accepts and outputs a wrong value y� �= F (x�), where x� is the delegated
input chosen by W∗.

Improved Delegation of Computation Using Fully Homomorphic Encryption 491

Definition 4 (Soundness). Let ε : N → [0, 1] and t : N → N be efficiently
computable functions. A delegation scheme Del = 〈D,W〉 has soundness error
ε for delegation functions with runtime at most t if for every worker strategy
W∗, which runs in time t(k) and chooses a delegation function with runtime at
most t(k),

Pr[W∗ succeeds in G(k)] ≤ ε(k),

for sufficiently large k, where G(k) is the corresponding security game for Del. We
say that Del is sound if Del has soundness error 1/kc for delegation functions
with runtime at most kc for every constant c.

Note that the above definition does not guarantee soundness for delegating func-
tions of complexity superpolynomial in k. However, we have soundness for func-
tions of complexity that is an arbitrarily large polynomial in k, whereas an
efficient delegator would run in time that is a fixed polynomial in k; so the dele-
gation is still quite useful. This quantitative relationship stems from the standard
asymptotic formulation of security as being with respect to polynomial-time ad-
versaries. If we use a fully homomorphic encryption scheme that is secure against
adversaries running time subexponential in k, then we would obtain soundness
for delegating functions of subexponential complexity (while the delegator still
runs in fixed polynomial time).

In terms of concrete security, the security parameter k should be chosen by the
delegator so that breaking the encryption scheme requires an infeasible amount
R of resources for the worker, and thus the delegator should only be delegating
functions that require significantly less resources than R.

Note that in the security game G, the delegator D rejects and terminates the
game, whenever he catches the worker cheating. Thus, the soundness is only
guaranteed until the worker cheats. In other words, once the worker cheats,
the delegator D can catch this mistake with overwhelming probability, but the
delegation scheme no longer guarantees soundness for the next delegated inputs.
Therefore, D should restart the delegation scheme from the offline stage to ensure
the soundness of future delegated inputs.

The model of [GGP09] takes a different approach. Rather than halting the
game after a rejection, they instead consider a game where the delegator’s ac-
cept/reject decisions are kept secret from the worker. Our protocols also satisfy
their definition; indeed, the two definitions are equivalent for schemes where the
delegator has no state (other than the secret key).

4 Del1 = 〈D1, W1〉: One-Time, Random-Input Delegation
Scheme

In this section, we present our first warmup delegation scheme Del1 = 〈D1,W1〉
for the following one-time and random-input scenario.
Scenario: Suppose the delegator D knows that at some point in the future, he will
receive a random input x ∈ {0, 1}n drawn from a certain (samplable) distribution
D and he will want to learn the value F (x) quickly. Thus, D decides to delegate the

492 K.-M. Chung, Y. Kalai, and S. Vadhan

computation of F (x) to an untrusted worker W (who does not know the random
x), and D wants to be able to verify the answer from W very efficiently.

The idea is simple and similar to the ideaunderlying reCAPTCHAs [vAMM+08]:
In the offline stage, the delegator D1 samples a random input r ← D and precom-
putesF (r). In the online stage, D1 sends both x and r to W1 in a random order, and
asks W1 to compute both F (x) andF (r). Upon receiving the answers from W1, the
delegator D1 checks the correctness of the returned value F (r); if it is correct then
he accepts the returned F (x), and otherwise he reject. Thus, a malicious worker
W∗ can convince D1 with a wrong answer iff W∗ can guess which input is the del-
egator’s real input. Since x and r are independent and identically distributed, no
malicious prover can guess the real input x and cheat successfully with probabil-
ity greater than 1/2. A formal description of our random-input delegation scheme
Del1 = 〈D1,W1〉 can be found in Figure 1. A formal analysis of Del1 can be found
in the full version of this paper [CKV10].

– Inputs. Security parameter 1k and function F : {0, 1}n → {0, 1}m, specified by a Turing
machine M , and a time bound T .

– Offline Stage. Both D1 and W1 receive input (F,D)
1. D1 samples a random input r ← D, computes w = F (r), and stores the pair (r, w) as his

secret state.
– Online Stage. D1 receives x ∈ {0, 1}n (where x is expected to distribute according to D),

and W1 does not receive any input.
1. D1 sets r0 = r and r1 = x. It then samples a random bit b ∈R {0, 1}, and sends (z0, z1) =

(rb, r1−b) to W1.
2. W1 computes and sends (y0, y1) = (F (z0), F (z1)) to D1.
3. D1 accepts and outputs the answer y1−b iff w = yb.

Fig. 1. Delegation Scheme Del1 = 〈D1, W1〉

5 Del2 = 〈D2, W2〉: One-Time, Arbitrary-Input Delegation
Scheme

Recall that in the random-input delegation scheme Del1 = 〈D1,W1〉, it was essen-
tial that the input x is hidden from the worker in the online stage to guarantee
the soundness. If the worker knew x, he could discriminate between r and x, and
cheat by answering correctly on r and incorrectly on x.

We eliminate this strong limitation by using a fully-homomorphic encryption
scheme to “computationally randomize” the input: Instead of sending x in the
clear, the delegator will encrypt the input x to obtain x̂def= Encpk(x). Then the del-
egator will ask the worker to compute the deterministic homomorphic evaluation
F̂ (x̂) def= Evalpk(x̂, F) of F on the encrypted value x̂, from which he can decrypt
to obtain the desired answer F (x).1 Notice that even if x is fixed, the distribu-
tion of x̂ = Encpk(x) is computationally indistinguishable from the distribution of

1 We note that in order to compute Evalpk(x̂, F), the Turing machine F needs to be
turned into a circuit. This can be done via a standard simulation of Turing machines
by circuits.

Improved Delegation of Computation Using Fully Homomorphic Encryption 493

Encpk(0̄), which is efficiently samplable and independent of x. Thus, the delegator
can precompute an encryption r̂ = Encpk(0̄) together with F̂ (r̂) = Evalpk(r̂, F),
and use the pair (r̂, F̂ (r̂)) to verify the worker’s answer as before.

We emphasize that the delegator checks the correctness of the ciphertext F̂ (r̂) =
Evalpk(r̂, F) obtained from homomorphic evaluation of F on r̂ = Encpk(0̄), as
opposed to the value f(0̄) underlying the ciphertext. Indeed, it is insufficient for
the delegator to only check the correctness of the value f(0̄), since an adversar-
ial worker W∗, who knows the input x, could easily cheat by applying Ĝ(r̂) =
Evalpk(r̂, G), where G(y) equals F (y) iff y �= x.

The above computational randomization technique extends the random-input
delegation schemeDel1 to a (standard)delegation schemeDel2 withone-timesound-
ness error 1/2. We formally describe the delegation scheme Del2 = 〈D2,W2〉 in
Figure 2 below.

– Inputs. Security parameter 1k and function F : {0, 1}n → {0, 1}m, specified by a Turing
machine M , and a time bound T .

– Offline Stage. Both D2 and W2 receive as input a function F .
1. D2 generates a pair of keys (pk, sk) ← KeyGen(1k), computes an encryption r̂ = Encpk(0̄)

and the (deterministic) homomorphic evaluation ŵ = F̂ (r̂) = Evalpk(r̂, F), and stores the
tuple (pk, sk, r̂, ŵ) as his secret key.

– Online Stage. Both D2 and W2 receive an input x ∈ {0, 1}n.
1. D2 computes an encryption x̂ = Encpk(x), sets r̂0 = r̂ and r̂1 = x̂, samples a random bit

b ∈R {0, 1}, and sends the public key pk and (ẑ0, ẑ1) = (r̂b, r̂1−b) to W2.
2. W2 computes ŷi = F̂ (ẑi) = Evalpk(ẑi, F) for i ∈ {0, 1}, and sends (ŷ0, ŷ1) =

(F̂ (ẑ0), F̂ (ẑ1)) to D2.
3. D2 accepts and outputs the answer Decsk(ŷ1−b) iff ŵ = ŷb.

Fig. 2. Delegation Scheme Del2 = 〈D2, W2〉

It is straightforward to check that if the fully homomorphic encryption scheme
has perfect correctness, then Del2 has the perfect completeness. To argue the
soundness of the scheme, we first give the definition of one-time soundness.

Definition 5 (One-time Soundness for Delegation Schemes). Let Del =
〈D,W〉 be a delegation scheme and k ∈ N be a security parameter. The one-time
security game G(k) for Del is the same as security game for Del defined in Defini-
tion 3 excepts that it only allows one round in the online stage. We say that Del has
one-time soundness error ε if for every PPT worker strategy W∗ who chooses a
polynomial time delegation function, and all sufficiently large k, Pr[W∗ succeeds in
G(k)] ≤ ε(k).

Lemma 1. Assume that the fully homomorphic encryption is semantically secure.
Then the delegation scheme Del2 has one-time soundness error 1/2 + ngl(k).

6 Del3 = 〈D3, W3〉: One-Time, Arbitrary-Input Delegation
Scheme with Negligible Soundness

In this section, we exploit the above computational randomization technique to
improve the soundness. The idea is the following: The delegator D asks the worker

494 K.-M. Chung, Y. Kalai, and S. Vadhan

to compute F̂ on multiple independent rerandomized inputs x̂i = Encpk(x) to-
gether with multiple r̂i’s (sent in a random order), as opposed to a single x̂ and
a single r̂. Upon receiving the worker’s answers, the delegator D checks whether
(i) the returned value for r̂i is equal to F̂ (r̂i) for every r̂i, and (ii) the decryp-
tion of the returned values for x̂i are consistent, and accepts the consistent value
if the worker’s answers pass these two tests. Observe that for a malicious worker
to cheat, he needs to simultaneously cheat on all the x̂i’s while providing correct
answers on all the r̂i’s. The formal description of the delegation scheme Del3 =
〈D3,W3〉 appears in Figure 3.

– Inputs. Security parameter 1k and function F : {0, 1}n → {0, 1}m, specified by a Turing
machine M and a time bound T , and an additional parameter t.

– Offline Stage. Both D3 and W3 receive as input a function F
1. D3 generates a pair of keys (pk, sk) ← KeyGen(1k), computes t independent encryptions

r̂i = Encpk(0̄) and the homomorphic evaluations ŵi = F̂ (r̂i) = Evalpk(r̂i, F) for i ∈ [t],
and stores pk, sk, and the pairs (r̂1, ŵ1), . . . , (r̂t, ŵt) as his secret key.

– Online Stage. Both D3 and W3 receive an input x ∈ {0, 1}n.
1. D3 computes t independent encryptions r̂i+t = Encpk(x) for i ∈ [t], samples a random

permutation π ∈R S2t, and sends the public key pk and (ẑπ(1), . . . , ẑπ(2t)) = (r̂1, . . . , r̂2t)
to W3.

2. W3 computes ŷi = F̂ (ẑi) = Evalpk(ẑi, F) for i ∈ [2t], and sends to D3 the tuple

(ŷ1, . . . , ŷ2t) = (F̂ (ẑ1), . . . , F̂ (ẑ2t)).

3. D3 checks two things. First, D3 checks if ŵi = ŷπ(i) for all i ∈ [t]. Second, D3 decrypts
ŷπ(i+t) for i ∈ [t], and checks if the decrypted values are the same. D3 accepts and
outputs the consistent decrypted value if the returned values pass the two tests.

Fig. 3. Delegation Scheme Del3 = 〈D3, W3〉

In the following lemma, we argue that since the x̂i’s and the r̂i’s are computa-
tionally indistinguishable, the probability of cheating is exponentially small in t
(which is the number of x̂i’s). Thus, by setting t = ω(log k), the protocol 〈D3,W3〉
achieves negligible soundness error.

Lemma 2. Assume that the fully homomorphic encryption is semantically secure.
Then the delegation scheme Del3 has one-time soundness error

(2t
t

)−1
+ ngl(k).

7 The First Main Delegation Schemes Del4

All the delegation schemes presented in Section 4 – 6 had only one-time sound-
ness. Namely, the delegator could delegate the computation of only one input x.
In this section, we present reusable delegation schemes, which satisfy the (stan-
dard) soundness property of Definition 4. To this end, we abstract the idea of
Gennaro, Gentry, and Parno [GGP09] and present a generic transformation that
converts any delegation scheme with one-time soundness to a reusable delegation
scheme (i.e., one which satisfies the soundness property of Definition 4). Apply-
ing the transformation to the previous delegation scheme Del3, we obtain our first
main delegation scheme Del4.

Improved Delegation of Computation Using Fully Homomorphic Encryption 495

For intuition, let us take a closer look at why the previous delegation scheme
Del3 = 〈D3,W3〉 is not reusable. Recall that in that scheme it is essential for the
worker to not know the r̂i’s: Once a malicious worker W∗ learns the values of the
r̂i’s, he can easily cheat by answering correctly only on those r̂i’s. Therefore, each
precomputed pair (r̂i, Ĉ(r̂i)) can be used only once. Phrased more abstractly, the
security of the protocol 〈D3,W3〉 relies on assumption that the secret key of the
delegator D3 (i.e., the pairs (r̂i, Ĉ(r̂i))), remains secret. However, in that protocol,
this secret key is revealed after delegating one input.

To make the protocol reusable, we use the idea of [GGP09], of running the pro-
tocol under a fully-homomorphic encryption scheme. Namely, our transformation
takes any delegation scheme Del = 〈D,W〉 which has only one-time soundness,
and converts it into a new delegation scheme D̃el = 〈D̃, W̃〉with (standard) sound-
ness, as follows: The delegator D̃, instead of sending the message of D in the clear
(which may reveal information about his secret key), will send a public key pk cor-
responding to a fully homomorphic encryption scheme, and will send the message
of D encrypted under the public key pk. The worker W̃ will then use the homomor-
phic property of the encryption scheme, to compute an encrypted reply of W. This
enables the delegator D̃ to hide its message (which contains the information about
the delegator’s secret key) from the worker W̃, while still allowing the worker to
do the computation for the delegator. A formal description of the transformation
can be found in Figure 4.

The transformation. Let Del = 〈D, W〉 be a one-time delegation scheme. We define a trans-
formed delegation scheme D̃el = 〈D̃, W̃〉 from Del as follows.

– Inputs. Security parameter 1k and function F : {0, 1}n → {0, 1}m, specified by a Turing
machine M and a time bound T .

– Offline Stage. D̃el has exactly the same offline stage as Del.
(Recall that in this stage both players receive a function F .)

– Online Stage. both D̃ and W̃ receive input x ∈ {0, 1}n.
1. D̃ generates a fresh pair of keys (pk, sk) ← KeyGen(1k) of a fully-homomorphic encryption

scheme, computes D’s message q = D(F,x, σD) and its encryption q̂ = Encpk(q), and sends
pk and q̂ to W̃.

2. W̃ homomorphically computes an encrypted version of W’s message â =
Eval(q̂, W(F, x, σW, ·)), and sends â to D̃.

3. D̃ decrypts â to obtain a = W(F, x, σW, q), and computes his decision and his output
according to D.

Fig. 4. Transforming one-time delegation scheme Del into a reusable delegation scheme
D̃el

We next analyze the properties of the resulting (reusable) delegation scheme
D̃el.

– If the one-time delegation scheme Del has a non-interactive off-line stage, then
so does D̃el, since the offline stage remains unchanged.

– If the one-time delegation scheme Del has an efficient worker W, then the re-
sulting (reusable) delegation scheme D̃el also has an efficient worker W̃, since
W̃ does the same computation as W, but in an encrypted manner.

496 K.-M. Chung, Y. Kalai, and S. Vadhan

– The fact that the complexity of the algorithms (KeyGen,Enc,Dec) are inde-
pendent of the runtime of F , implies that if the one-time delegation scheme
Del has an efficient delegator D then the delegator D̃ in the resulting (reusable)
delegation scheme D̃el is also efficient.

– The completeness of the fully homomorphic encryption scheme implies that if
the one-time delegation scheme Del is complete then the resulting (reusable)
delegation scheme D̃el is also complete.

Thus, it remains to analyze the soundness of the resulting delegation scheme D̃el.
Intuitively, by using a fully homomorphic encryption scheme, the information
about the delegator’s secret is not leaked, and so the delegator can reuse the secret
key to delegate the computation on multiple inputs. However, note that not only
the delegator’s message, but also the delegator’s decision bit can leak information
about the delegator’s secret key , since the delegator’s decision depends on his se-
cret key . Hence, in the security game (see Definition 3), the delegator terminates
the scheme once he rejects to ensure the delegator’s secret key is not leaked. (As
discussed in Section 3, an alternative option is to assume that the worker does not
learn the decision of the delegator, and our scheme is also sound in this model.)

Lemma 3. Assume that the fully homomorphic encryption is semantically secure.
Let Del = 〈D,W〉 be a delegation scheme with negligible one-time soundness error,
and let D̃el = 〈D̃, W̃〉 be the delegation scheme obtained by applying to Del the trans-
formation described in Figure 4. Then D̃el also has negligible soundness error.

Applying the above transformation to the previous delegation scheme Del3, we
obtain our main delegation scheme Del4. We summarize the properties of Del4 in
the following theorem.

Theorem 1. Assume that the fully homomorphic encryption scheme is semanti-
cally secure. Then the delegation scheme Del4 = 〈D4,W4〉 has the following proper-
ties, for delegating the computation of a functionF : {0, 1}n → {0, 1}m computable
by a Turing machine M that runs in time T ≥ max{n,m}, on security parameter
k:

– Perfect completeness and negligible soundness error.
– Non-interactive offline stage, with D4 running in time poly(T, |M |, k) and gen-

erating a secret key of length poly(n,m, k), but not creating any public key.
– 2-message online stage, with D4 running in time poly(n,m, k) and W4 running

in time poly(T, |M |, k). That is, both D4 and W4 are efficient in the online
stage.

8 The Second Main Delegation Scheme Del5

We note that in all the delegation schemes presented in Section 4 – 7, the delegator
needs to run heavy computations in the offline stage. For example, in the offline
stage of Del4, the delegator needs to compute pairs of the form (r̂i, F̂ (r̂i)), where
each r̂i ← Encpk(0̄), and therefore runs in time comparable to the runtime of F .

Improved Delegation of Computation Using Fully Homomorphic Encryption 497

In this section, we show how to make the offline stage efficient by delegating its
computation as well. However, since we do not know how to do non-interactive del-
egation (this is the problem we started with!), this will come at the price of making
the offline stage interactive. In particular, we will use universal arguments, a no-
tion developed by [Mic94,Kil92,BG02], and which yields a 4-message delegation
scheme. However, we cannot apply universal arguments directly, as they allow the
worker to learn the result of the computation, which in our case is supposed to be
the secret state of the delegator. To solve this problem, we use yet another layer
of fully homomorphic encryption, and use the universal argument to delegate an
encrypted form of the computation.

8.1 Universal Arguments

Consider the language

Luni � {(M,x, y, t) : M is a Turing machine that on input x outputs y after at most t steps}

Definition 6 (Universal Arguments [BG02]). A universal argument sys-
tem is a pair of interactive Turing machines, denoted by (P, V), that satisfy the
following properties.

– Efficient verification. There exists a polynomial p such that for any z =
(M,x, y, t) the total runtimeofV , oncommon inputz, is atmostp(|z|). Inpartic-
ular, all the messages exchanged in the protocol have length smaller than p(|z|).

– Completeness via a relatively-efficient prover. For every (M,x, y, t) ∈
Luni, Pr[(P, V)(M,x, y, t) = 1] = 1.

Furthermore, there exists a polynomial p such that for every (M,x, y, t) ∈ Luni,
the total runtime of P on input z = (M,x, y, t) is at most p(|M |, t).

– Computational soundness. For every polynomial-size circuit family P ∗ =
{P ∗

n}n∈N there exists a negligible function μ such that for every (M,x, y, t) ∈
{0, 1}n \ Luni, Pr[(P ∗

n , V)(M,x, y, t) = 1] ≤ μ(n).

Remark. We note that Barak and Goldreich [BG02] consider a more general lan-
guage L, where they allow the Turing machine M to be non-deterministic. More-
over, they require an additional proof-of-knowledge type property. In this work,
we are only interested in deterministic Turing machines, and only focus on the
properties that we need.

Theorem 2 ([Kil92,Mic94,BG02]). Assuming the existence of collision-
resistant hash functions, there exists a 4-message (2-round) universal argument
system.

We remark that the existence of fully homomorphic encryption schemes implies
the existence of collision-resistant hash functions [IKO05].

498 K.-M. Chung, Y. Kalai, and S. Vadhan

8.2 Our New Delegation Scheme Del5

We now show how to use a universal argument (P, V), together with a fully homo-
morphic encryption scheme E = (KeyGen,Enc,Dec), to convert any delegation
scheme Del = (D,W) with a non-interactive offline stage into a delegation scheme
D̃el = (D̃, W̃), such that the online stage remains unchanged, but the offline stage
of D̃el is now interactive (consists of 4 messages) and the delegator D̃ is efficient
in the offline stage.

Instead of having the delegator carry out its computations on its own in the
offline stage, it will use a worker to do it for him. However, as previously noted,
there is a subtle issue here: the result of the computation done by the delegator
in the offline stage should remain secret for soundness to hold. Therefore, we can-
not simply delegate this computation. Instead, will delegate this computation in
a secret manner; namely, we will do a universal argument over encrypted data, as
follows.

Suppose without loss of generality, that in the offline stage the delegator D
chooses some randomness r ∈ {0, 1}� for � = poly(k)2 computes a function g(r),
where g may depend on both the delegated function F and the security parameter
k. The delegator D can delegate this computation, in a secret manner, by giving
the worker an encryption of r (rather than r in the clear); i.e., giving the worker a
pair (pk,Encpk(r)), and delegating the computation of the function
Evalpk(Encpk(r), g) to the worker, by running a universal argument protocol. Then
all the delegator needs to do is to decrypt the message he gets from the worker. A
formal description of this transformation can be found in Figure 5.

The transformation. Let Del = 〈D, W〉 be a delegation scheme with a non-interactive offline
stage. We define a transformed delegation scheme D̃el = 〈D̃, W̃〉 from Del as follows.

– Inputs. Security parameter 1k and function F : {0, 1}n → {0, 1}m, specified by a Turing
machine M and a time bound T .

– Offline Stage. Both D̃ and W̃ receive as input the functin F .
Suppose that in the delegation scheme Del, the delegator D chooses a random r ← {0, 1}�

(where � = poly(k)) and computes σD = D(1k, F ; r). We denote by g(·) def= D(1k, F ; ·). The
offline stage of D̃el proceeds as follows.

1. The delegator D̃ chooses a random r ← {0, 1}�; chooses a random key pair (pk, sk) ←
KeyGen(1k); computes r̂ = Encpk(r); and sends the pair (pk, r̂) to the worker W̃.

2. The worker W̃ computes c = Evalpk(r̂, g) and sends c to the delegator.
3. Then the worker W̃ and the delegator D̃ engage in a universal argument, where the worker

proves to the delegator that indeed c = Evalpk(r̂, g).
4. If the delegator D̃ accepts the universal argument, then he decrypts the ciphertext c and

outputs σD ← Decsk(c).
– Online Stage. The online stage of D̃el is identical to the online stage of Del.

Fig. 5. Transforming delegation scheme Del with non-interactive but inefficient offline
stage into D̃el with an efficient but interactive offline stage

2 The randomness of D can always be reduced to poly(k) by use of a pseudorandom
generator if needed.

Improved Delegation of Computation Using Fully Homomorphic Encryption 499

Analysis of our transformation can be found in the full version of this paper
[CKV10]. By applying the transformation above to the delegation scheme Del4,
and relying on Theorem 1, we get the following theorem.

Theorem 3. Assume that there exists a fully homomorphic encryption scheme.
Then there is a secure delegation schemeDel = 〈D,W〉with the following properties,
for delegating the computation of a function F : {0, 1}n → {0, 1}m computable by
a Turing machine M that runs in time T ≥ max{n,m}, on security parameter k:

– Del has perfect completeness and negligible soundness error.
– The offline stage consists of 4 messages, with D running in time

poly(n,m, k, |M |, logT) and W running in time poly(T, |M |, k).
– The offline stage produces a secret key of length poly(n,m, k) for D, and no

public key.
– In the (2-message) online stage, D runs in time poly(n,m, k) and W runs in

time poly(T, |M |, k).
Thus, D and W are efficient in both stages.

8.3 Pipelined Implementation of Del5

As mentioned in the introduction, the soundness of our main schemes Del4 and
Del5 is only guaranteed as long as the adversarial worker does not learn that the
delegator has rejected a proof, as this may leak information about the delegator’s
secret key. Hence, the delegator needs to re-run the offline stage after rejection.

Our “pipelined” scheme avoids this issue by having the delegator keep c secret
keys (for a constant c) and continually refresh them during the online stage. Recall
that Del5 has an efficient but 4-message offline stage where the delegator delegates
the computation of his secret key to a worker. The idea is that, in each execution of
the 2-message online stage, the delegator and the worker shall simultaneously run
2c copies of offline stages in the background. These are run in a pipelined fashion
so that with each online stage, c copies of the offline stage are finished and can be
used to refresh secret keys that are expired. We consider a secret key to be expired
when it has been used in an online stage of Del5 in which the delegator has rejected.
Thus, the delegator will always have a fresh secret key available provided that for
every c online stages in which there is an error (i.e. rejection), there are at least 2
consecutive errorless stages. We note that this implementation requires the worker
and delegator to maintain state, and thus is most useful for settings in which the
delegator is interacting with a single worker for many executions and wishes to
avoid disruption from benign faults. (If the worker were truly cheating, then it
seems prudent to halt the interaction and restart with a different worker...)

Acknowledgments

We are grateful to Boaz Barak for collaboration at the start of this research, and
for sharing his insights with us.

500 K.-M. Chung, Y. Kalai, and S. Vadhan

References

[And03] Anderson, D.P.: Public computing: Reconnecting people to science. In:
Conference on Shared Knowledge and the Web (2003)

[And04] Anderson, D.P.: Boinc: A system for public-resource computing and stor-
age. In: GRID, pp. 4–20 (2004)

[Bab85] Babai, L.: Trading group theory for randomness. In: STOC, pp. 421–429
(1985)

[Bar01] Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS,
pp. 106–115 (2001)

[BCC88] Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of
knowledge. Journal of Computer and System Sciences 37(2), 156–189
(1988)

[BFL91] Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time
has two-prover interactive protocols. Computational Complexity 1, 3–40
(1991)

[BFLS91] Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations
in polylogarithmic time. In: STOC, pp. 21–31 (1991)

[BG02] Barak, B., Goldreich, O.: Universal arguments and their applications. In:
IEEE Conference on Computational Complexity, pp. 194–203 (2002)

[CGH04] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology,
revisited. Journal of the ACM 51(4), 557–594 (2004)

[CKV10] Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation
using fully homomorphic encryption. Cryptology ePrint Archive, Report
2010/241 (2010), http://eprint.iacr.org/

[FL93] Fortnow, L., Lund, C.: Interactive proof systems and alternating time-
space complexity. Theoretical Computer Science 113(1), 55–73 (1993)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178 (2009)

[GGP09] Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers. Cryptology ePrint
Archive, Report 2009/547 (2009), http://eprint.iacr.org/

[GK03] Goldwasser, S., Kalai, Y.T.: On the (in)security of the fiat-shamir
paradigm, pp. 102–113 (2003)

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation:
interactive proofs for muggles. In: STOC, pp. 113–122 (2008)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems. SIAM Journal on Computing 18(1), 186–208 (1989)

[IKO05] Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Sufficient conditions for collision-
resistant hashing. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp.
445–456. Springer, Heidelberg (2005)

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In: STOC, pp. 723–732 (1992)

[KR09] Kalai, Y.T., Raz, R.: Probabilistically checkable arguments. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 143–159. Springer, Heidelberg
(2009)

Improved Delegation of Computation Using Fully Homomorphic Encryption 501

[LFKN92] Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for
interactive proof systems. J. ACM 39(4), 859–868 (1992)

[Mer07] The great internet mersenne prime search, project webpag (2007),
http://www.mersenne.org/

[Mic94] Micali, S.: Cs proofs (extended abstracts). In: FOCS, pp. 436–453 (1994)
[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–

1298 (2000)
[Sha92] Shamir, A.: IP = PSPACE. Journal of the ACM 39(4), 869–877 (1992)
[vAMM+08] von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: re-

CAPTCHA: Human-Based Character Recognition via Web Security Mea-
sures. Science 321(5895), 1465–1468 (2008)

Oblivious RAM Revisited

Benny Pinkas1,� and Tzachy Reinman2

1 Dept. of Computer Science, University of Haifa, Mount Carmel, Haifa 31905, Israel
benny@pinkas.net

2 School of Computer Science and Engineering, The Hebrew University of Jerusalem,
Jerusalem 91904, Israel
reinman@cs.huji.ac.il

Abstract. We reinvestigate the oblivious RAM concept introduced by
Goldreich and Ostrovsky, which enables a client, that can store locally
only a constant amount of data, to store remotely n data items, and
access them while hiding the identities of the items which are being
accessed. Oblivious RAM is often cited as a powerful tool, but is also
commonly considered to be impractical due to its overhead, which is
asymptotically efficient but is quite high. We redesign the oblivious RAM
protocol using modern tools, namely Cuckoo hashing and a new obliv-
ious sorting algorithm. The resulting protocol uses only O(n) external
memory, and replaces each data request by only O(log2 n) requests.

Keywords: Secure two-party computation, oblivious RAM.

1 Introduction

The need to enhance the security of data storage systems and to encrypt the con-
tent they store is obvious. Various encryption algorithms are in common use for
many years, so content-encryption may be considered, for the most part, as an
already-solved issue. Apparently, encryption alone does not suffice. A server, which
maintains a data storage system, can gain information about its users’ habits and
interests, and violate their privacy, even without being able to decrypt the data
that they store. The server can monitor the queries made by the clients and per-
form different traffic analysis tasks. It can learn the usual pattern of accessing the
encrypted data, and try to relate it to other information it might have about the
clients. For example, if a sequence of queries q1, q2, q3 is always followed by a stock-
exchange action, a curious server can learn about the content of these queries, even
though they are encrypted, and predict the user action when the same (or simi-
lar) sequence of queries appears again. Moreover, it is possible to analyze the im-
portance of different areas in the database, e.g., by counting the frequency of the
client accessing the same data items. If the server is an adversary with significant
but limited power, it can concentrate its resources in trying to decrypt only data

� This research was supported by the European Research Council as part of the ERC
project SFEROT, and by the Israel Science Foundation (grant No. 860/06).

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 502–519, 2010.
c© International Association for Cryptologic Research 2010

Oblivious RAM Revisited 503

items which are often accessed by the target-user. Another ability of the server is
to draw conclusions about relations between queries, and so on.

In order to protect against this kind of privacy violation, one must hide the ac-
cess patterns of clients of the storage system. This problem is related to the classic
result of Pippenger and Fischer on oblivious simulation of Turing machines [18]. In
the context of RAM machines, this problem was investigated by Goldreich [8] and
Ostrovsky [14] as a software protection problem (the goal there was to hide the
pattern of access of a program to memory in order to prevent reverse engineering
of the software). The best results of Goldreich and Ostrovsky appear in [9].

Hiding the access pattern, or making it oblivious, means that any equal-length
sequence of clients’ data requests to the server are equivalent from the point of
view of the eavesdropper (who might be the server itself). The server must only
know the number of queries in the sequence.

The cost of the best protocol of Goldreich-Ostrovsky was efficient asymp-
totically but clearly unfeasible for any reasonable application: Storing n data
items was replaced with storing O(n logn) items; furthermore, each access to
a data item was replaced by O(log3 n) data requests to the stored data (this
O(log3 n) overhead comes with a very large constant factor; it can be replaced
with O(log4 n) with a reasonable constant).

Due to the overwhelming overhead of the oblivious RAM protocol, it was often
cited as a “theoretical” solution which could in principal solve many problems
(such as cache attacks, or search on encrypted data; see discussion below), but
is clearly impractical. Our goal was to design an improved protocol which will
be feasible in practice. We describe in this work a new construction with a
considerably improved overhead: it requires the client to store only O(n) items,
and replace each data request with O(log2 n) accesses to the stored data, where
the constants in the “O” notation are small. A detailed comparison with previous
schemes appears in Sect. 2.
Other applications of oblivious RAM. We mentioned above that oblivious
RAM can be used to hide access patterns to data stored on a remote and un-
trusted server, or to enable a CPU to operate securely with an untrusted memory.
Another application of oblivious RAM is for the symmetric encryption variant
of “search on encrypted data”, where a client stores data (e.g. mail messages)
remotely, and wishes to use the data while protecting its privacy (see, e.g. [19]).
Oblivious RAM can also be used for protecting against cache attacks, which are
software side-channel attacks run by monitoring the state of the CPU’s memory
cache. These attacks have been demonstrated to reveal AES keys in real sys-
tems [15]. As noted in [15], an oblivious RAM can hide these access patterns,
but at a cost which is definitely unacceptable for basic CPU operations.
The basic ideas behind our new construction. We base our solution on
the Goldreich-Ostrovsky hierarchical solution, which is described in [9] (and in
the full version of our paper). We improve its overhead by using the following
primitives instead of the original components of the construction.

– Cuckoo Hashing. In the Goldreich-Ostrovsky construction the client maps
data items into bins using a random hash function that is kept secret from

504 B. Pinkas and T. Reinman

the server. The number of items mapped into each bin must be hidden from
the server. It is well known that when n items are randomly mapped to n
bins then (with high probability) the most populated bin contains O(log n)
items. Therefore in the original construction the client sets each bin to have
sufficient room for O(log n) items, and stores in a bin fake items if less than
this number of items are mapped to it. This increases the overall storage
required by the construction to O(n log n).
In comparison, our construction uses Cuckoo hashing [16,17], which is a
hashing scheme mapping n items to 2(1 + ε)n bins with the guarantee that
at most a single item is mapped into a bin. Consequently, the construction
uses a total of only O(n) server storage.

– Pseudo-random permutation. The server observes where items are inserted to
the Cuckoo hash table, and might use this information to identify “dummy”
items (a discussion of the usage of dummy items is given in Sect. 4). In order
to prevent that, the client needs to apply a pseudo-random permutation to
the order of the items before inserting them to the hash table.

– Randomized Shell sort. The storage system is built of hierarchical levels. Pe-
riodically, the items of two adjacent levels are reshuffled. The reshuffling pro-
cess uses sorting, which is composed of many steps where the client retrieves
a pair of encrypted items from the server, decrypts them and compares the
results, and stores a re-encrypted version of the sorted pair. The sorting
must be oblivious in the sense that the indices of the pair of items that
are compared must not leak any information about the results of previous
comparisons. The original Goldreich-Ostrovsky construction uses a sorting
network for this purpose, but this solution has an overhead of O(n log2 n)
comparisons, with a very small constant, using Batcher’s network [5], or
O(n log n) comparisons, with a constant of about 6100, using the AKS net-
work [2]. We perform sorting using the new randomized Shell sort algorithm
of Goodrich [10]. This algorithm is oblivious, sorts with very high probabil-
ity, and works in O(n log n) comparisons; where the “O” notation hides only
a very small constant.

We stress that even given these improved primitive building blocks, a lot of care
had to be taken in order to compose them to a secure, and efficient, oblivious
RAM protocol. Additional effort was needed in order to reduce the constant
factors of the overhead.

1.1 Basics of Oblivious RAMs

The problem of hiding access patterns is modeled in the following way: The
setting includes a client which has a small secure memory, and a server with a
large insecure storage. The client can use the server’s storage to store and retrieve
its data. The client stores internally a secret key of a symmetric encryption
scheme, and uses it to encrypt the data before storing it, and decrypt it after
retrieving it.

We assume here and throughout the paper that encryption is done with a
semantically secure probabilistic encryption scheme and therefore two encrypted

Oblivious RAM Revisited 505

copies of the same data look different. The server cannot identify whether these
two copies correspond to the same data of the client.

The client has n data items denoted as (vi, xi), where i = 1, . . . , n is an index,
vi is the data identifier or location-index (e.g., a serial number), different for each
data item, and xi is the data payload. It is assumed that all xi values are of the
same length. To simplify the description we assume that the storage service of
the server has slots of a size which is equal to the size of an encryption of a data
item used by the client. Therefore each slot can be used to store a data item,
where the client can ask to store a specific data item in a specific slot location
j. All requests to the server are therefore of the form “GET j”, which provides
the client with the (encrypted) content of slot j, or “PUT data j”, which stores
at slot j the encrypted data provided by the client.

The client has a small amount of secure internal memory. It includes space for
O(1) data items, for O(1) secret keys for symmetric key cryptographic functions,
and for a constant number of counters which count up to n and therefore are of
length O(log n) bits.

We assume that the server does not tamper and modify the stored data,
because this issue can be easily solved by the client authenticating the stored
data using a message authentication code (MAC) and a secret key known only
to the client. However, the server does learn which location in its storage is being
accessed by the client in each operation.

By default, the client cannot hide the fact that it accesses a specific location
in the server’s storage. The server can examine the contents of its storage and of
the requests from the client, but the server obviously cannot learn the contents
of the stored data, since it is encrypted. The goal of the client is to hide its access
pattern to the stored data. This is expressed in the following definition.

Definition 1. The input y of the client is a sequence of data items, denoted
by y = ((v1, x1), . . . , (vn, xn)) and a corresponding sequence of operations, de-
noted by (op1, . . . , opm), where each operation is either a read operation, denoted
read(v), which retrieves the data of the item indexed by v, or a write operation,
denoted write(v, x), which sets the value of item v to be equal to x.

The access pattern A(y) is the sequence of accesses to the remote storage
system, which contain both the indices accessed in the system and the data items
read or written. An oblivious RAM system is considered secure if for any two
inputs y, y′ of the client, of equal length, the access patterns A(y) and A(y′) are
computationally indistinguishable for anyone but the client.

Hiding the access patterns, or “unifying” them, must have a cost – each access
is simulated by more than one access. First, we would like to make the different
types of accesses look the same. For example, if we want that read and write
would be indistinguishable, we would have each of them both implement read
and write, i.e., read the value in the accessed location, decrypt it and then rewrite
it with an encryption of the same value or a different one. Note that since we
use a semantically secure probabilistic encryption, the server cannot identify
whether the data was changed before it was written back. We note that this
element of making different types of data access look the same, by always using

506 B. Pinkas and T. Reinman

a read-and-then-write operation, is common for all the following solutions. From
here on, we treat all read, write, or other access-operation, as equal. Adding
a write operation to each read operation already multiplies the computational
overhead by a factor of two. In addition, we would like to prevent the adversary
from distinguishing between accesses to locations {v1, v2, v3} and {v2, v1, v2},
etc. A trivial solution is to read and rewrite the entire set of stored data for
each access. Applying this solution is usually infeasible, since it multiplies the
computational overhead by a factor equal to the number of stored items, which is
normally huge. On the other hand, it is easy to see that this is the best possible
deterministic scheme. A probabilistic scheme, where the operation of the client
depends on a random bits, can do much better.

2 Related Work

Most oblivious RAM constructions are based on the client having access to a
secret (pseudo-)random function, which is implemented using symmetric cryp-
tographic functionalities, such as encryption, and can therefore be constructed
assuming the existence of one-way functions. Very recent results of Ajtai [1] and
of Damg̊ard et al. [7] construct an oblivious RAM based on no cryptographic as-
sumption (but rather, letting the client use the oblivious RAM itself for storing
random coin tosses and accessing them obliviously). The client needs to store
remotely (for each of its data items) an equivalent to a poly-logarithmic amount
of items, rather than O(1) items in our scheme, and each data request is re-
placed with a poly-logarithmic number of requests to the server. It is not clear
how high is the exponent of this poly-logarithmic overhead. We therefore focus
our description of related work on cryptographic oblivious RAM schemes.

The investigation of oblivious RAM techniques was initiated by Goldreich
and Ostrovsky [9]. A major tool used in their constructions is a primitive which
performs an oblivious sorting of the stored data. That is, it sorts the stored
data items according to some index, while hiding from the server all informa-
tion about the permutation that orders the input set of data items. Specifically,
this primitive was implemented in [9] using a sorting network: either the sorting
network of Batcher [5] which performs O(n log2 n) read operations with a very
small constant (approximately 1/2), or the sorting network of AKS [2] which per-
forms only O(n log n) read operations, but whose complexity has a much larger
constant. (The actual overhead of the AKS sorting network is about 6100n logn
comparisons, and therefore it is clear that for any feasible input, the performance
of the Batcher network is preferable.)

Goldreich and Ostrovsky presented a basic “square-root” algorithm, whose
overhead is O(

√
n) read/write operations for each original access to a data item.

They also designed a more complex hierarchical solution, using a data struc-
ture composed of levels, where each level is twice the size of the former level,
and whose overhead is O(log4 n) (using Batcher sorting network). A detailed
description of these solutions can be found in [9] or in the full version of our
paper.

Oblivious RAM Revisited 507

Williams and Sion [20] modified the hierarchical solution of Goldreich and Os-
trovsky, assuming that the client can locally store O(

√
n) data items, rather than

O(1) items. This extended local storage enables to run an oblivious merge sort
and improve the run time overhead to O(log2 n). A solution based on Bloom fil-
ters [6] was presented in [21]. In that solution the client stores at the server, for
every level, an encrypted Bloom filter and uses it to check whether an item appears
in the level. The work in [21] claims to reduce the storage overhead at the server
to O(n), and to reduce the number of actual data requests per item requested by
the client to only O(log n log logn). That analysis is based on the assumption that
the size of the Bloom filter encoding m items is O(m). The overhead is actually
larger, since the size of the Bloom filter must also be a function of the number of
the hash functions used and of the allowed error probability (which in inevitable
when a Bloom filter is used). As a result, the overhead of the Bloom filter based
scheme is worse than that of our scheme for any reasonable choice of the number
of items n and of the error probability of the filter.

Table 1. A comparison of the different access hiding schemes. (For the scheme of [21],
we note that the original analysis is inaccurate. The second line is for an invocation us-
ing an optimal number of hash functions, with specific numbers for an error probability
of 2−64.)

computational overhead client memory server storage
(data items) (data items)

Goldreich-Ostrovsky [9]
√

n O(
√

n log n) O(1) O(n +
√

n)
Goldreich-Ostrovsky [9] Batcher O(log4 n) O(1) O(n log n)
Goldreich-Ostrovsky [9] AKS O(log3 n), const ≥ 6100 O(1) O(n log n)
Merge sort [20] O(log2 n) O(

√
n) O(n log n)

Bloom filter [21]
original analysis (inaccurate) O(log n log log n) O(

√
n) O(n)

optimal # of hash functions O(1.44c log n log log n) O(
√

n) O(n)
for c = 64: const > 92 +1.44cn bits

This paper O(log2 n) O(1) O(n)

Table 1 compares the performance of all schemes described in this section.1 The
performance comparison can be summarized as follows: (1) The constructions of
1 Note that for the Bloom filter based scheme [21] the first line of the table lists the per-

formance according to the original analysis in [21], which is inaccurate. The second
line lists the performance according to a more careful analysis (detailed in the full ver-
sion of our paper), assuming an allowed error probability of 2−c. The O(log n log log n)
overhead in the second line has a constant factor of at least 1.44c (greater than 92 for
c = 64), in addition to other constant factors which are similar to those incurred
by all schemes. Given this finer analysis, the performance of [21] is worse than the
performance of our scheme when log n < 1.44c log log n, which is clearly the case for
any reasonable choices of n and c. For example, for n < 280 this holds for any error
parameter c ≥ 9.

508 B. Pinkas and T. Reinman

Goldreich-Ostrovsky and of our work are the only ones using local storage of only
O(1) data items; (2) The computational overhead of our construction is better or
equal to that of all other constructions (except for the asymptotic overhead of the
Bloom filter construction for unreasonably high values of n); (3) The amount of
server storage in our construction is better than that of all other constructions
(except for the Bloom filer construction, which stores a comparable number of
data items and in addition 1.44cn bits, which are more than 92n bits for c = 64).

3 Building Blocks

3.1 Randomized Shell Sort (Oblivious Sorting Algorithm)

Goodrich’s recent randomized Shell sort algorithm [10] is an efficient sorting
algorithm, using only O(n logn) comparisons with a relatively small constant
factor. Equally important is the fact that this algorithm is also data oblivious.
This property means that if we assume that the operation of comparing two items
and reordering them according to their value is a black-box (i.e., the result of the
comparison is hidden from an external observer, which is the server in our case),
then the algorithm performs no operations which depend on the relative order
of the elements in the input array. In other words, an external observer who can
only observe the items which the algorithm compares, but not the results of the
comparisons, sees a list of pairs of items which are compared, where the choice
of items for these pairs is independent of the results of previous comparisons.

We note that other sorting algorithms are not known to be both oblivious
and efficient. For example, bubble sort is oblivious, but is not efficient; quick
sort is efficient (in the average case) but is not oblivious; sorting networks are
oblivious, but, as noted in Sect. 1, the only sorting network constructions of
size O(n log n) are not efficient in the practical sense, due to large constants.
See [2,10] for details.

We use randomized Shell sort in our scheme in order to reorder items in the
server database, according to a new permutation, in a way that prevents the
server from tracking the new ordering. The details of the randomized Shell sort
construction appear in [10] or in the full version of our paper.

3.2 Cuckoo Hashing

Cuckoo hashing [16,17] is a relatively new hashing algorithm, which in its basic
form maps each item to one of two potential entries of a hash table, while
ensuring constant lookup and deletion time in the worst case, and amortized
constant time for insertions.

The basic idea of Cuckoo hashing is to use two hash functions denoted h0 and
h1 (or multiple hash functions in the general case). The size of a hash table used
for storing n items must be slightly larger than 2n (to simplify the discussion, we
consider the size of the table to be exactly 2n). When a new item x is inserted to
the hash table, it is inserted to location h0(x). If this location is already occupied

Oblivious RAM Revisited 509

by another item y, then that item is “kicked out” of its current location and is
re-located to its other possible location. Namely, if hb(y) = hb(x) (for b ∈ {0, 1},
and initially b = 0) then item y is moved to location h1−b(y). If location h1−b(y)
is already occupied by another item z (i.e., h1−b(z) = h1−b(y)), this item (z)
is re-located to location hb(z), and so on. If this chain of relocations continues
for too long, then the table is rehashed using two new hash functions h′0, h

′
1. In

this case the insertion time is longer, but analysis shows that this event is rare,
and therefore the amortized insertion time is constant. Lookup and deletion are
natural – one just has to check the two possible locations of the given item.

Most recent works (e.g., [11,12,13,3,4]) present variants of Cuckoo hashing
with guaranteed constant worst-case performance for insertion (this is also re-
ferred to as de-amortizing the insertion time of Cuckoo hashing).

4 Our Scheme

We first describe the basic form of our oblivious RAM scheme, which has the
desired asymptotic overhead. Appendix A then describes how to improve the
constant factors of the overhead of the scheme.

The construction is based on combining a modified version of the hierarchical
solution of Goldreich and Ostrovsky with Cuckoo hashing and randomized Shell
sort. The server stores the data, which can potentially consist of n items, in a
hierarchical data structure of N = �log2 n� + 1 levels, each of which is twice
larger than its previous. Additional levels may be allocated, as necessary (when
a new level is allocated, its size is twice the size of the last allocated level).

In the original scheme of Goldreich-Ostrovsky, level i consists of 2i buckets,
where each bucket contains O(log n) entries. In our scheme level i consists of a
table of 4 · 2i single item entries, which will be used to store up to 2i data items
of the client. Storing the items is done in the following way: Along with the 2i

items of the client, up to 2i “dummy” items might be stored in the level, where
the client might access a dummy item in order to hide the fact that it does not
need to search for a real item in this level (since the real item was already found
in a previous level). All 2 · 2i items of the level are stored in a Cuckoo hashing
table of size 4 · 2i. (We note that according to this description the first level is
used to store only two items. Any actual implementation would probably set
the first level to be much larger, say, to contain 128 data items. To simplify the
analysis we assume, however, that the first level stores only two items.)

For each level we associate an epoch, which is defined for level i as 2i−1 requests
(the epoch ends when a reshuffle from level i−1 to level i occurs). For each level
i and its �th epoch, the client randomly chooses two hash functions whose ranges
are {1 . . .2i+2}: hi,�

k,0 and hi,�
k,1, where k is a secret key known to the client and

used to define these functions. At the end of every epoch each level is re-hashed
obliviously, using a new pair of hash functions. The following table summarizes
the properties of level i.

510 B. Pinkas and T. Reinman

real items dummy items size epoch-length “moved down”
level i 2i 2i 4 · 2i 2i−1 every 2i requests

Each data request includes both reading and writing to the data structure,
such that the server cannot distinguish which operation occurred. In addition, for
any request, the accessed item is re-encrypted by the client, using a probabilistic
encryption scheme.

Data requests. Initially, the data structure is empty. For each request (of
any type) of a location-index (virtual address) v, the following operations are
performed.2

1. Scan through the entire first level in a sequential order to find the item whose
location-index is v. This step includes reading all the items in the first level.
If the requested item is found, it is stored in the client’s secure memory, and
the process continues as usual.

2. Go through all other levels, and for each level i = 2 . . .N , do:
– If v has not been found yet, examine its two possible locations in the

Cuckoo hashing table of the current level (i): hi,�
k,0(v) and hi,�

k,1(v). If the
requested item is found in one of the two locations, it is stored in the
client’s secure memory, and the process continues as usual.

– If v has been found, examine two random locations hi,�
k,0(“dummy

′′ ◦ t)
and hi,�

k,1(“dummy
′′◦t), where t is a counter which is increased with every

data request. (These are locations allocated by the Cuckoo hashing for
two fresh dummy items which were not searched for before.)

3. Scan again through the entire first level in a sequential order, and write
back the updated (and re-encrypted) item of location-index v in the next
available location. If v is already in the first level, overwrite it. This step
includes reading and writing all items of the first level.

The first level functions as a cache, meaning that for any request, the updated
value is written to the first level. Since the capacity of the level is final, after a
certain number of requests it becomes full. In order to avoid this, the content of
the first level is “moved down” to the second level before the first level becomes
potentially exhausted. Now the second level may become full, so the same process
is repeated. When the content of the last level has to be “moved down”, a new
level with twice the number of entries is allocated.3 “Moving down” the content
of level i is done every 2i requests. This makes sure that no level is overflowed,
and that the first level is emptied and has enough available slots at the beginning
of each epoch of any of the levels (since the beginning of an epoch of level i is

2 We assume here, as was implicitly assumed by all previous constructions [9,20,21],
that the client does not perform a “read” operation for an item which does not exist
in the remote storage.

3 In fact, if we are willing to disclose an upper bound on the number of items that are
stored, there is no need to allocate a new level when the last level has to be “moved
down”. The system may instead re-order the entire database.

Oblivious RAM Revisited 511

also a beginning of an epoch of all the levels j < i). In fact, this process makes
sure that at any time level i contains no more than 2i items, as is stated in
Lemma 1 below. Whenever level i is moved down to level i + 1, the latter level
is reshuffled.

When the client moves the content of level i to level i + 1, it obliviously
hashes the content of both levels to level i + 1. This reshuffling must fulfill the
following requirements: (1) If there is a duplicate item (the same location-index,
and possibly different data content) in level i and level i + 1, the newer item
(from level i) must be kept, and the older one must be deleted; (2) The resulting
buffer, namely level i + 1 after the reshuffling, must be ordered independently
of any of the levels before the reshuffling; (3) Level i must be cleaned, i.e., its
content must be deleted. As we continue, we see that all these requirements are
fulfilled.

Before describing the reshuffle process, we state Fact 1, which trivially follows
from the reshuffling algorithm, and Lemma 1, which is proved in the full version
of the paper.

Fact 1. When a reshuffle from level i to level i + 1 occurs, all levels j ≤ i − 1
are empty. At the end of the reshuffle, all levels j ≤ i are empty.

Lemma 1. When a reshuffle from level i to level i+1 occurs, each of these two
levels contains at most 2i real items. At the end of the reshuffle, level i is empty
and level i+ 1 has at most 2i+1 real items.

4.1 Reshuffling Levels Using Cuckoo Hashing and Randomized
Shell Sort

The reshuffle of levels i and i+ 1 into level i+ 1 is a complex process, consisting
of the steps enumerated below and based on two basic primitives: (1) Scanning,
which is reading and (possibly) writing in a sequential order all the items in a
given buffer; (2) Oblivious Sorting (O-Sort), which is done by randomized Shell
sort (see Sect. 3.1). Note that whenever an item is written to a storage (whether
it is one of the levels or a temporary buffer), it is re-encrypted. The reshuffle
process is also depicted in Fig. 1.

1. Allocate a temporary buffer C, whose size is 2i+1. (Recall that jointly, both
levels contain at most 2i+1 real items).

2. O-sort each of the levels (level i and level i + 1): The sorting is according
to an order which locates real items before dummy and empty items. At the
end of this step, all the real items of level i (at most 2i) are in its first loca-
tions, and all the real items of level i+1 (at most 2i) are in its first locations.

In the following two steps (3–4), 2i+1 items that include all the real items of
the two levels are copied into the temporary buffer.

3. Move the first 2i items from level i to the left side of C. Mark each item
as “new”. At the end of this step, all the real items of level i (and possibly
additional items) are in C. (This step is depicted in Step I of Fig. 1.)

512 B. Pinkas and T. Reinman

A

B
C

D

Fig. 1. Reshuffle steps

Oblivious RAM Revisited 513

4. Move the first 2i items from level i+1 to the right side of C. Mark each item
as “old”. At the end of this step there are 2i+1 items in C, that include all
the real items of both levels and possibly additional items (if both levels to-
gether contained less than 2i+1 real items). (This step is depicted in Step II
of Fig. 1.)

The goal of the following two steps (5–6) is to erase duplications of items
with the same location-indices.

5. O-sort C according to these criterions (ordered): (a) smaller location-indices
(virtual addresses) first, (b) items tagged “new” before items tagged “old”.
(This step is depicted in Step III of Fig. 1).

6. Removing duplicates: Sequentially scan C and erase each old item preceded
by a new item with the same location-index (the marks “old” and “new”
of the remaining items can be ignored from now on). Replace each erased
item and each dummy item with a random item (an item with a special
location-index and random content). At the end of this step there are 2i+1

real and random items in C, without duplications. We will refer to all these
items in the sequel as “real”. (This step is depicted in Step IV of Fig. 1.)

7. Create 2i+1 dummy items with indices “dummy” ◦(t+j), where t is a counter
of the number of requests so far and j = 1 . . . 2i+1.4 Add these items to
C (this requires increasing the size of C from 2i+1 to 2i+2). (This step is
depicted in Step V of Fig. 1.)
The client then obliviously reorders the items in a pseudo-random order.
This is done by (1) choosing a new keyed pseudo-random function Fk and
using it to tag each of the 2i+2 items with a new value which is the result
of Fk() applied to their location-index, and then (2) obliviously sorting the
items by their tags using randomized Shell sort. The new order of the items
is independent of their original order. (This step is depicted in Step VI of
Fig. 1.)

8. Sequentially scan the buffer and use Cuckoo hashing with two new random
hash functions that are kept secret from the server: hi+1,�+1

0,k and hi+1,�+1
1,k ,

to map the 2i+2 items to the 4 · 2i+1 entries of level i + 1 (� is the index
of the current epoch). The hash functions are applied to the location-index.
At the end of this step there are 2i+2 real and dummy items in level i + 1,
located according to the Cuckoo hashing functions. (This step is depicted in
Step VII of Fig. 1.)

9. If the Cuckoo hashing fails (due to cycles, see [17]), choose new random
secret hash functions hi+1,�+1

0,k and hi+1,�+1
1,k and repeat the previous step.

After step 4, all the real content of levels i and i + 1 is in C (possibly with
additional items), Steps 5 and 6 handle possible duplications (of items with the
4 These dummies are necessary in order to hide whether a data request in level i + 1

in the next epoch searches for an item which was found in a level prior to level i+1.
If this event happens in the jth time slot of the epoch, then the client will look for
item “dummy′′ ◦ (t + j), which was inserted to the level in the reshuffle. As a result,
every search in this level will be to an item which is stored in the Cuckoo hashing
table and which was never searched before.

514 B. Pinkas and T. Reinman

same location-index in the two original buffers), Step 7 reorders the real and
dummy items (pseudo-) randomly, and Steps 8 and 9 insert the items to level
i+ 1, according to the random secret Cuckoo hashing functions.

4.2 Analysis and Implementation

Overhead. The construction uses logn levels, where level i contains 4 · 2i =
O(2i) items, yielding a server storage of O(n) data items. The overall amortized
computational overhead is O(log2 n) data requests for each original request of the
client: First, observe that accessing an item requires scanning through the first
level (which is of constant size), and then accessing two locations in each other
level. The reshuffling process uses randomized Shell sort that sorts � elements
in O(� log �) time, with a reasonable constant factor. Performing the oblivious
sorting is the main time-consuming element of the reshuffle process. The size
of the sorted array in level i is O(2i), giving a sorting time of O(2i log 2i) =
O(2i · i) for level i. Level i is sorted every 2i requests, giving an amortized cost
of O(2i·i)

2i = O(i). Summing this for all the levels gives
∑log n

i=1 O(i) = O(log2 n).
Examining the performance more carefully, we note that level i has room

for 4 · 2i items (Appendix A shows how to reduce the storage by about 50%).
The bulk of the computation overhead comes from the sorting operations. In
particular, Step 2 sorts level i + 1, which consists of 4 · 2i+1 items (the other
sorting operations are applied to smaller sets of items). However, we show in
Appendix A how the sort operations in Step 2 can be changed to sort half as
many items. This is estimated to reduce the overhead by 33%. Appendix A
discusses an additional optimization which reduces the constant factors of the
overhead of the construction by an additional 33%.

Security

Theorem 1. The oblivious RAM protocol described above is secure according to
Definition 1.

Proof. The security of the construction holds under the assumption of the ex-
istence of pseudo-random functions, or assuming that the client has access to
random functions (e.g., an internal random number generator which always pro-
vides the same output when given the same input). The PRF assumption is
probably more reasonable for most applications. A crucial ingredient of the pro-
tocol is that the hash functions h0 and h1, used to map items during the Cuckoo
hashing, are randomly chosen by the client and are kept secret from the server.
(When a PRF is used, these functions are defined by some function Fk() where
the key k is chosen by the client and is unknown to the server.)

We will show that for any input sequence y of the client, the access pattern
A(y) to the storage server is indistinguishable, by a polynomial-time server, from
an access pattern A′ which can be simulated without any knowledge of y, except
for the length of y.

Oblivious RAM Revisited 515

The contents of the requests in the access pattern are encrypted with a seman-
tically secure probabilistic encryption scheme, and therefore the server cannot
distinguish between the contents of the requests in A(y) and in A′. We therefore
only need to show that the locations accessed by the two access patterns in the
server’s memory are indistinguishable.

Consider the reshuffle operation from level i to level i + 1. The first steps of
the reshuffle perform an oblivious sorting or a serial scan of data items, and are
therefore independent of the actual data stored by the client and of the input
sequence y. As such they can be easily simulated. Namely, the simulated access
pattern A′ contains a serial scan in every step of the reshuffle where such a scan
in performed (namely, Steps 1, 3, 4 and 6). In addition, whenever the reshuffle
performs an oblivious sorting (in Steps 2, 5 and 7), A′ performs an oblivious
sorting assuming that the values to be sorted are 1, 2, 3,

Let M = 2i+1. In Step 7 of the protocol the client obliviously reorders in a
pseudo-random order M real values and M dummy values. Step 8 maps these
2M values to a Cuckoo hash table of size 4M , using two hash functions h0 and
h1 which are chosen at random by the client and are unknown to the server.
The client goes over the 2M items according to their new order, and attempts
to insert each of them to the table according to the Cuckoo hashing algorithm.
If x is a certain item in the list, then the client probes locations h0(x) and
h1(x) in the table and might perform some evictions of items to find a place
for x. In this process the server might learn the h0 and h1 values of each of the
2M items. However, since the server does not know the hash functions used,
these values are independent of the actual values of the items. Simulating this
process is performed in the following way: Define random functions h0, h1, and
apply the Cuckoo hashing algorithm to an arbitrary set of 2M values, say the
values 1 . . . 2M , using these functions. This process results in exactly the same
distribution, as in the real execution, for all the events observed by the server,
including the locations probed in the hash table and the occurrences of evictions
and cycles (which might cause a repeat of the Cuckoo hashing algorithm as
defined by Step 9). Note that our security analysis does not have to analyze
the exact probabilities with which evictions and cycles occur, but rather only
observe that these probabilities are independent of the data items being hashed.

At the end of the hashing process the server knows, for each of the 2M items, the
two locations to which this item is mapped by h0 and h1, and the exact location
in this pair to which this item was eventually mapped. Recall, however, that the
2M items were randomly reordered, and that half of them are dummy items. In
the epoch that follows, the server can observe which locations are probed in each
request of this level. Namely, it might see that the jth request probes locations
10 and 17 to which, say, the first of the 2M items is mapped. However, the server
does not know whether this is a real or a dummy item. Also, each item hashed
into this level is probed at most once during the epoch, since each dummy value
is probed at most once (due to the dummy counter being increased), and a real
value that is accessed is immediately moved to the top level and is not accessed
again in this level during the current epoch. Given these observations, the probes

516 B. Pinkas and T. Reinman

to the level in this epoch can be simulated in the following way: use the random
functions h0, h1 that were used in the simulation of the Cuckoo hashing into this
level; let (a1, . . . , a2M) be a random permutation of the numbers 1, . . . , 2M ; when
performing the jth data request from level i + 1 in the current epoch, probe the
locations to which item aj is mapped by h0 and h1.

We have described above how to simulate probes to a specific level during
data requests. The entire sequence of probes during data request can therefore
be simulated as follows: In Steps 1 and 3 the simulation scans the entire first
level. In Step 2 the simulation goes through all levels, starting with the second
one, and simulates a pair of probes to each level, as is described in the previous
paragraph. �	

Implementation. We implemented a basic prototype of our scheme, including
the hierarchical data structures, the randomized Shellsort algorithm and the
Cuckoo hashing algorithm. This allowed us to simulate the operation of the
oblivious RAM construction, and to measure and estimate its performance. We
chose Java as an initial platform and compiled using the Sun JDK 1.6.0 16.
The testing environment was a standard PC. In our measurements we ignored
network delays, and therefore we only provide measurements of the number of
operations per data request, rather than of the amount of time each request
takes.

We ran experiments on various databases, of sizes between n = 210 and n =
220. For a database of n = 2i potential items, we ran k = 2i − 10 requests, and
counted the number of read/write operations handled by the server. The results
appear in Table 2. The constant of the O(k log2 k) overhead seems to be about
160. We note that the two improvements described in Appendix A, (minimizing
the amount of sorted items – either by not sorting empty items, or by using
an advanced Cuckoo hashing algorithm; and reshuffling several levels together)

Table 2. Performance measurements

log2 n n k = n− 10 k log2 k #operations ops per const of
(# of req.) request O(k log2 k)

10 1024 1014 101113 15445582 15232 152
11 2048 2038 246281 38081523 18685 154
12 4096 4086 588038 91975576 22509 156
13 8192 8182 1382383 218482493 26702 158
14 16384 16374 3208900 511882978 31261 159
15 32768 32758 7370117 1185355399 36185 160
16 65536 65526 16774194 2717439532 41471 162
17 131072 131062 37876427 6175479249 47118 163
18 262144 262134 84930896 13926487414 53127 163
19 524288 524278 189263809 31192732955 59496 164
20 1048576 1048566 419425822 69442426048 66226 165

Oblivious RAM Revisited 517

which have not yet been implemented by us, are estimated to reduce the overhead
by about 33% each. Applying both optimizations is likely to reduce the overhead
by about 55%, and obtain a constant of about 72 in the “O” notation.

5 Open Questions

The efficiency analysis of our construction, as well as that of all other known
constructions of oblivious RAM, is amortized. A data request which is followed
by a reshuffle of level i has a larger overhead than a request which requires a
reshuffle of a level j < i, or one that does not require any reshuffling. A major
open goal is, therefore, to reduce the worst case performance of oblivious RAM.
Note that the recent result on deamortizing Cuckoo hash [3] does not help here,
since it can be applied to the Cuckoo hashing part of the the reshuffling process,
but not to the fact that the worst case overhead of reshuffling is high.

Acknowledgements

The authors wish to thank Yuriy Arbitman for informing us of the randomized
Shell sort result.

References

1. Ajtai, M.: Oblivious RAMs without cryptographic assumptions. In: STOC 2010
(2010)

2. Ajtai, M., Kolmós, J., Szemerédi, E.: An O(n log n) sorting network. In: STOC,
pp. 1–9 (1983)

3. Arbitman, Y., Naor, M., Segev, G.: De-amortized Cuckoo hashing: Provable worst-
case performance and experimental results. In: ICALP (1), pp. 107–118 (2009)

4. Arbitman, Y., Naor, M., Segev, G.: Backyard Cuckoo hashing: Constant worst-case
operations with a succinct representation (2010) (manuscript)

5. Batcher, K.: Sorting networks and their applications. In: AFIPS Spring Joint Com-
puting Conference, vol. 32, pp. 307–314 (1968)

6. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970)

7. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM without
random oracles. Cryptology ePrint Archive, Report 2010/108 (2010),
http://eprint.iacr.org/2010/108

8. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: STOC, pp. 182–194. ACM, New York (1987)

9. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. Journal of the ACM 43(3), 431–473 (1996)

10. Goodrich, M.T.: Randomized Shellsort: A simple oblivious sorting algorithm. In:
Proceedings 21st ACM-SIAM Symposium on Discrete Algorithms, SODA (2010)

11. Kirsch, A., Mitzenmacher, M.: Using a queue to de-amortize Cuckoo hashing in
hardware. In: Proceedings of the 45th Annual Allerton Conference on Communi-
cation, Control, and Computing, pp. 751–758 (2007)

12. Kirsch, A., Mitzenmacher, M.: Simple summaries for hashing with choices.
IEEE/ACM Trans. Netw. 16(1), 218–231 (2008)

http://eprint.iacr.org/2010/108

518 B. Pinkas and T. Reinman

13. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: Cuckoo hashing
with a stash. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193,
pp. 611–622. Springer, Heidelberg (2008)

14. Ostrovsky, R.: Efficient computation on oblivious RAMs. In: STOC 1990, pp. 514–
523. ACM Press, New York (1990)

15. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

16. Pagh, R., Rodler, F.F.: Cuckoo hashing. In: Meyer auf der Heide, F. (ed.) ESA
2001. LNCS, vol. 2161, pp. 121–133. Springer, Heidelberg (2001)

17. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
18. Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM 26(2),

361–381 (1979)
19. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted

data. In: Proceedings of 2000 IEEE Symposium on Security and Privacy, S&P
2000, pp. 44–55 (2000)

20. Williams, P., Sion, R.: Usable PIR. In: NDSS (2008)
21. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: Practical access

pattern privacy and correctness on untrusted storage. In: ACM Conference on
Computer and Communications Security, pp. 139–148 (2008)

A Optimizing the Construction

We present here several optimizations to the basic oblivious RAM construc-
tion presented in Sect. 4. The optimizations improve the constant factors of the
overhead, but not its asymptotic performance. Still, they are beneficial for any
implementation of the construction.
Not storing empty items. Recall that each level i contains up to 2i real
items and 2i dummy items which must be indistinguishable, from the server’s
point of view, from the real items. The remaining 2i+1 locations in this level are
empty, and are needed for the Cuckoo hashing to succeed. The construction can
be optimized by not storing in these locations encrypted “empty” data items,
but rather using a flag signaling that the entry is empty. Since we can safely
assume that a data item is much larger than this flag, this optimization saves
about 50% of the storage required by the levels.

As for security, note that this change enables the server to identify empty
locations, but it does not enable it to distinguish between real items and dummy
items. Namely, this corresponds to revealing to the server the empty locations
in a Cuckoo hashing table, but since the hash functions used are kept secret, no
information is revealed about the items in the table.
Implication to sorting. Step 2 of the reshuffle algorithm sorts levels i and
i + 1, whose lengths are 4 · 2i and 8 · 2i, respectively. These sorting operations
are done in order to move the real items to the beginning of these buffers. If
empty items are flagged, as suggested above, then there is no need to sort the
corresponding entries in the level. Namely, the data to be sorted is half as long
as in the basic protocol, and the overhead of sorting is reduced by more than
50%.

Oblivious RAM Revisited 519

Let us therefore estimate how much is saved by this optimization. Note that
Steps 5 and 7 sort 2 · 2i and 4 · 2i items, respectively. Assume that the overhead
of sorting is linear (this is roughly the case when comparing the overhead of
sorting adjacent levels, which are of similar sizes). Before the optimization, the
algorithm sorts buffers of sizes 4 · 2i, 8 · 2i, 2 · 2i and 4 · 2i, which are of total
length 18 ·2i. After the optimization, it sorts buffers of sizes 2 ·2i, 4 ·2i, 2 ·2i and
4 · 2i, which are of total length 12 · 2i. The overhead of sorting, which is the bulk
of the overhead of the entire construction, is therefore reduced by about 33%.

Using an advanced Cuckoo hashing scheme. The basic Cuckoo hashing
scheme used in our construction utilizes approximately only 50% of its storage
to store real and dummy items, while the remaining storage is empty. The new
Backyard Cuckoo hashing [4] algorithm has a much better space utilization –
in order to store n items, it requires only (1 + ε)n storage. Using this scheme
has therefore the same effect as the optimization suggested above, of not storing
empty entries in the hash table: it saves about 50% of the storage required
by each level in the hierarchical structure. In addition, the overhead of each
sorting operation is reduced by more than 50%, and the overhead of the entire
construction is reduced by about 33%.

Reshuffling several levels together. In time t, where t mod 2i = 0, and
t mod 2i+1 �= 0, the basic construction performs subsequent reshuffles of levels
1, 2, . . . , i. These reshuffles include many redundant steps. (For example, the first
reshuffle inserts dummy items into the second level. Then, the reshuffle of the
second level begins by (possibly) removing these items. Furthermore, the first
reshuffle fills the second level, while the second reshuffle empties it.) Instead, it
is possible to reshuffle together in a single step the contents of all these levels
into level i+1. According to our estimates this optimization saves an additional
33% of the total overhead.

On Strong Simulation and Composable Point
Obfuscation

Nir Bitansky and Ran Canetti

School of Computer Science, Tel Aviv University
{nirbitan,canetti}@tau.ac.il

Abstract. The Virtual Black Box (VBB) property for program obfus-
cators provides a strong guarantee: Anything computable by an efficient
adversary given the obfuscated program can also be computed by an effi-
cient simulator with only oracle access to the program. However, we know
how to achieve this notion only for very restricted classes of programs.

This work studies a simple relaxation of VBB: Allow the simulator un-
bounded computation time, while still allowing only polynomially many
queries to the oracle. We then demonstrate the viability of this relaxed
notion, which we call Virtual Grey Box (VGB), in the context of fully
composable obfuscators for point programs: It is known that, w.r.t. VBB,
if such obfuscators exist then there exist multi-bit point obfuscators (aka
“digital lockers”) and subsequently also very strong variants of encryp-
tion that are resilient to various attacks, such as key leakage and key-
dependent-messages. However, no composable VBB-obfuscators for point
programs have been shown. We show fully composable VGB-obfuscators
for point programs under a strong variant of the Decision Diffie Hellman
assumption. We show they suffice for the above applications and even
for extensions to the public key setting as well as for encryption schemes
with resistance to certain related key attacks (RKA).

1 Introduction

Informally, an obfuscator is an algorithm which gets as input a program (e.g.
a Turing machine or circuit) and outputs a new program which has the same
functionality as the original one, but is otherwise “unintelligible”. The rigorous
study of obfuscation was initiated in the work of [3], who introduced the concept
of virtual black box security (VBB in short). This concept requires the obfuscated
program to behave like a “black box”, in the sense that it should not leak any
information about the program except its input-output behavior. More precisely,
any efficient adversary with access to an obfuscated program can be simulated
by an efficient simulator with only oracle access to the program. The same work
presented the impossibility of “universal VBB obfuscation”, showing a family of
programs which can not be VBB obfuscated.

In light of this negative result, subsequent work has included several research
directions. One line of work extends the result of [3], ruling out obfuscation in
various settings [16, 26]. Another line of work is aimed at constructing obfuscators

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 520–537, 2010.
c© International Association for Cryptologic Research 2010

On Strong Simulation and Composable Point Obfuscation 521

for specific program families, which are not ruled out by the universal impossibility
result. Here, if we stick to VBB obfuscators, our knowledge is limited essentially
to obfuscating point programs and their extensions [8, 11, 23, 14, 26, 9, 13, 12].
A point program Pv : Dn → {0, 1} holds a value v ∈ Dn in its code, and accepts
its input x iff x = v. We only know how to obfuscate point programs in which the
point v is explicitly obtainable from the code. Moreover, the known constructions
depend on rather strong hardness assumptions, and somewhat inherently so [26].

A third line of work focuses on relaxations of VBB. In this context, [3] sug-
gested the notion of indistinguishability obfuscators (INDO) , according to which
obfuscations of two related size programs implementing the same functionality
should be indistinguishable to any efficient adversary. Another relaxation, called
best possible obfuscation (BPO) [17], requires that any information which the
obfuscation leaks is efficiently learnable from any other program with the same
functionality and related size (hence “best possible”). These two notions turn
out to be equivalent, when restricted to efficient obfuscators.

Both notions are easier to satisfy than VBB. However, the security guarantee
they provide is less clear. Unlike VBB, both seem to lose their meaning for a
relatively wide range of program classes which are natural candidates for obfus-
cation. For instance, these notions become meaningless if we allow the obfuscator
to work only when the program is given in some “canonical” representation in
which case, no two programs have the same functionality. Another relaxation
requires the obfuscation to be secure only when the program is sampled from
some adequate distribution (rather than requiring security for any program in
the family). This was done in the context of perfect one-way hashing [11] , point
proximity testing [14], re-encryption [22] and more [1, 21, 18]. However, in some
scenarios such a relaxation does not capture the security properties we would
expect from an obfuscation.

A natural goal is thus to come up with a notion of secure obfuscation that is
both meaningful and achievable. Here there is room to consider notions which
might be meaningful only for certain program families but not for all.

1.1 This Work

We study a new relaxation of VBB security notion for obfuscators. The require-
ment is that an obfuscation leaks no information about the program, rather than
what can also be learned by an all-powerful learner that witnesses only a limited
number of input-output pairs (at his choice).

More formally, any efficient adversary with access to an obfuscated program
can be simulated by an all-powerful simulator with poly many oracle queries to
the program (in contrast to poly-time simulation which VBB requires). For lack
of better name, we call this notion virtual grey box (or VGB in short). The
extra power given to the simulator is intended to allow it to “reverse engineer”
the adversary while avoiding technical difficulties that might be irrelevant to the
overall goal. In certain cases (such as ”highly unlearnable” programs), this could
be done without losing too much of the meaningfulness of the guarantee.

522 N. Bitansky and R. Canetti

Relationship with existing notions. VGB obfuscation is clearly weaker than VBB
obfuscation. In particular, a VGB obfuscation is allowed to leak information
which a VBB obfuscation can not. Formally, we show that VGB is strictly weaker,
demonstrating a family of programs which can not be VBB obfuscated but is
(trivially) VGB obfuscatable. On the other hand, we show that VGB is stronger
than the INDO and BPO notions mentioned above. To do so, we observe that
even if we further weaken the VGB security requirement by allowing the simu-
lator an unlimited number of oracle queries, it still implies INDO.

For Turing machine obfuscators, the impossibility result of [3] extends to
rule out “universal VGB obfuscation”. However, we could not rule out universal
VGB circuit obfuscators (see more details within regarding this difference). We
note that [17] show impossibility of strong universal BPO obfuscation that can
handle even circuits that use random oracle gates. This impossibility applies to
the stronger VGB notion.

A setting where VGB is both meaningful and achievable. Like INDO and BPO,
VGB is not strong enough for some desirable obfuscation tasks. For example, its
weakness might be revealed whenever the obfuscated program computes some
kind of cryptographic functionality; indeed, in such cases an all-powerful simula-
tor, even with limited oracle access to the program has a clear advantage over a
bounded simulator. In general, it seems that VGB is mostly meaningful for pro-
gram classes which are unlearnable with only poly many queries even for learners
with unbounded computation time. We demonstrate concrete obfuscation tasks
where VGB obfuscation is both meaningful and achievable (under appropriate
hardness assumptions) while VBB is not known to be achievable. We hope that
this notion will prove instrumental in other obfuscation settings as well.

The main task we consider is that of composable obfuscation of point programs.
A point program obfuscator is t-composable if having access to t obfuscated point
programs, where the values hidden in the programs are related to each other in
arbitrary ways, has the “expected effect”. In other words, any adversary that
has access to the obfuscated programs can be simulated given only oracle access
to the programs. Ideally, t could be any polynomial.

In the context of VBB obfuscation, composable point obfuscators were shown
to suffice for obfuscating multi-bit point programs (MBPP). A MBPP has two
hidden values k,m in its code. It returns m on input k, and ⊥ on any other input.
MBPP obfuscators (MBPO’s) were in turn shown to imply strong symmetric
encryption schemes that are simultaneously secure against weakly random keys
(i.e., keys with any super-log entropy) and key dependent messages (KDM) [10].
However, as natural and fruitful as the composability property may seem, none
of the known point program obfuscators were shown to be composable (w.r.t.
VBB). In particular, existing MBPO’s were only shown to be secure for the
restricted case that the message m is independent of the key k [9, 10].

We show that, with respect to VGB obfuscation, composable point obfus-
cators do exist, under appropriate hardness assumptions. Specifically, we show
that the point program obfuscator from [8] is VGB-composable for any polyno-
mial number of instances. This is done under a strong variant of the Decision

On Strong Simulation and Composable Point Obfuscation 523

Diffie Hellman assumption, which naturally extends the assumption used in [8]
to demonstrate that this construction yields a VBB point obfuscator.

We then show that VGB composable point obfuscators suffice for construct-
ing MBPO’s which are VGB composable on their own. This yields very strong
encryption schemes which are resilient to a variety of attacks. This includes the
aforementioned KDM and weak keys resilience as well as resistance to certain re-
lated key attacks (RKA) [2]. The encryption schemes can also be extended to the
public key setting (given an extra re-randomiztion property that the [8] obfus-
cator has). We remark that the result for KDM encryption should be contrasted
with the fact that fully KDM-secure encryption schemes can not be proven se-
cure using fully black box reductions to standard cryptographic game [19]. Our
proof of security does not fit this characterization.

1.2 Our Techniques

Proving composability for point obfuscators encounters several difficulties. We
sketch these difficulties as well as the ideas and techniques we use to overcome
them. We also exhibit how the VGB relaxation comes to our aid.

Simulation and distributional indistinguishability. Ideally, we might try to re-
quire that for fixed sequence of points, the resulting obfuscated point programs
would appear to an efficient adversary as a sequence of obfuscated random
point programs (similarly to the semantic security requirement for encryption
schemes). This would allow simple simulation, by running the adversary on ob-
fuscations of random hidden values. However, in the context of obfuscation such
a requirement is unachievable, since the adversary is able to run the program
and verify any guesses it might have; in particular it can have some hardwired
values which it can always recognize. Instead, we consider a weaker requirement
which we call Distributional Indistinguishability (DI in short). We show that:
(a) DI is necessary and sufficient for constructing VGB simulators, and (b) It is
achievable under appropriate hardness assumptions.

DI is an extension of a notion used in [8] in the context of plain point ob-
fuscators. The requirement refers to a specific type of distributions over tu-
ples of points which we call coordinatewise well spread (CWS in short). X ={
(X(1)

n . . .X
(t)
n)
}

is a CWS distribution ensemble on {Dt
n} if for any a ∈ Dn and

i ∈ [t], Xi �= a except with negligible probability.
Essentially, O is a t-DI obfuscator if for any CWS distribution, X , over t-

tuples of elements in Dn, no efficient adversary can distinguish obfuscations of t
uniform values from obfuscations of a tuple of values sampled from X . We show:

Theorem 1.1 (informal). IfO is a t-DI point obfuscator then it is a t-composable
VGB point obfuscator. Moreover, ifO is t-DI for any polynomial t, then it is a com-
posable VGB obfuscator for any polynomial number of point programs.

The main technical difficulty in this work is in proving Theorem 1.1. We sketch the
ideas used in the proof. Our starting point is a result of [8] showing that for point

524 N. Bitansky and R. Canetti

obfuscators (i.e. t = 1) the notions of DI and VBB obfuscation are equivalent and
that DI obfuscation is achievable under certain number theoretic assumptions.

First we ask whether t-DI obfuscators imply t-composable VBB obfuscators
for t > 1. We show that this is the case as long as t = O(1). However, when
t = ω(1), major (and seemingly inherent) difficulties rise. Specifically, recall that
when constructing a simulator, we should deal with the fact that the adversary
can run the obfuscated programs and might have some hardwired values which
it can always recognize. When the adversary has access only to a single obfus-
cated point program, [8, 26, 10] show that in fact it cannot do much more than
have a polynomial number of such hardwired test elements. We call these the
distinguishing elements. This allows the simulator to check its oracle only on the
polynomially many distinguishing elements.

However, in the case of multiple obfuscated points, this plan does not go
through. The main difficulty is adaptivity. More specifically, while in the case of
a single hidden point there is only a single secret, in the case of composable point
obfuscators the adversary might first discover only some of the points, and then
use this partial information to make his next choices. Fortunately, we can show
that for any partial information already learnt there is a corresponding poly set
of distinguishing elements. However, there still remains the question of how to
compute these elements ahead of time.

We show that the total number of potentially queried elements is nΘ(t). Here
VGB comes to our aid when t = ω(1). That is, having limited oracle access to
the point programs and sufficient power to compute the distinguishing elements
allows performing the required simulation.

We remark that a converse statement is also true. That is, DI is necessary for
VGB composable obfuscation (and thus also for the stronger VBB notion).

A t-DI point obfuscator. Finally, we reconsider the point program obfuscator
constructed in [8]. Under a strong Decision Diffie Hellman (DDH) assumption,
we show that this obfuscator is t-DI for any polynomial t and hence is a t-
composable VGB obfuscator. As evidence of plausibility, we show that our as-
sumption holds in the Generic Group Model [25], where algorithms are only
allowed to perform generic group operations and can not exploit the represen-
tation of group elements. We note that there exist well studied group ensembles
(e.g. Quadratic Residues modulo a prime, and Elliptic Curves groups) where the
best cryptanalytic techniques are in fact generic ones [6].

In addition to the above construction, Theorem 1.1 enables construction of
composable point obfuscators, based on other hardness assumptions. One natu-
ral candidate is the decisional learning with errors assumption (LWE) [24] when
considered with weak (non uniform) secrets. Indeed, under appropriate parame-
ter settings, LWE with weak secrets can be reduced to LWE with uniform secrets
[15]. This implies point obfuscators which are secure as long as the secret point
is taken from a distribution with some poly-logarithmic entropy.

Organization. Section 2 is devoted to the definition and discussion of VGB obfus-
cation and its relations with the VBB notion and previous relaxations. Section 3

On Strong Simulation and Composable Point Obfuscation 525

shows how to construct composable VGB obfuscators for point programs. Sec-
tion 4 discusses the nature and plausibility of our hardness assumption. Section 5
demonstrates the applications of composable point obfuscators to multi-bit point
programs, to set programs, and to strong encryption schemes. Most proofs and
some of the secondary results appear in the full version [4].

2 Definitions

We formalize the notion of virtual black box obfuscation with strong simulators,
and explore its relation to existing notions. In all following definitions, we con-
sider the task of obfuscating an ensemble C = {Cn}, where each Cn is a collection
of circuits with input length n and poly(n) size.

2.1 VBB, IND and BP Obfuscation

We first recall the virtual black box definition and two of its previous relaxations.
Definition 2.1 (obfuscator [3]). A PPT O is a VBB obfuscator for C, if it
satisfies:

– (Functionality) For any n ∈ N, C ∈ Cn, O(C) is a circuit which computes
the same function as C.

– (Polynomial Slowdown) There is a polynomial q such that for any n ∈ N,
C ∈ Cn, |O(C) ≤ q(|C|).

– (Virtual Black Box)1 For any PPT adversary A and polynomial p there is
a PPT simulator S such that for all sufficiently large n ∈ N and C ∈ Cn:∣∣∣∣ Pr

A,O
[A(O(C)) = 1]− Pr

S
[SC(1|C|) = 1]

∣∣∣∣ ≤ 1/p(n)

Definition 2.2 (Indistinguishability Obfuscation [3]). O is said to be an
indistinguishability obfuscator (INDO in short) for C, if it satisfies the function-
ality and polynomial slowdown and for any ensemble of circuit pairs C(1)×C(2) =
{(C(1)

n , C
(2)
n) ∈ Cn×Cn}, where the two circuits in each pair are of the same size

and functionality, it holds that: O(C(1)) ≈c O(C(2)).

Another relaxation of VBB is Best Possible Obfuscation (BPO in short) [17].
Here the requirement is that any information which the obfuscation leaks is effi-
ciently learnable from any other circuit with the same functionality and related
size (hence it is “best possible”). The two definitions are equivalent when the
obfuscator is required to be a PPT [17].

Before presenting our definition we make the following preliminary observation
regarding the nature of the above relaxations. The INDO (BPO) definition is
1 As noted by [3] the above can be replaced with the equivalent requirement that∣∣∣Pr[A(O(C) = π(C)]− Pr[SC(1|C|) = π(C)]

∣∣∣ ≤ 1
p(n)

for any predicate π : Cn →
{0, 1}. Also the size of the simulator can depend on p(n), namely the required sim-
ulation quality.

526 N. Bitansky and R. Canetti

in fact equivalent to a weak black-box definition, which allows an unbounded
simulator with unlimited number of oracle queries (proof in [4]).

Proposition 2.1. O is an indistinguishability obfuscator for an ensemble of
circuits C = {Cn} iff for any efficient distinguisher A and polynomial p, there is
a (possibly inefficient) simulator S, such that for all large enough n and C ∈ Cn:∣∣∣∣ Pr

A,O
[A(O(C)) = 1]− Pr

S
[SC(1|C|) = 1]

∣∣∣∣ ≤ 1/p(n)

2.2 VGB Obfuscation

The new definition relaxes the VBB security requirement by allowing the simu-
lator to have more computational power. However, we still restrict the number of
oracle queries it is allowed to make. The functionality and polynomial slowdown
requirements should be satisfied as in Definition 2.1. The VBB requirement is
replaced by the following. Denote by C[q] an oracle to the circuit (function) C
which allows at most q queries.

Definition 2.3 (Virtual Grey Box - obfuscation with a strong simula-
tor). A PPT O has the VGB property if for any PPT adversary A and polyno-
mial p there is a (possibly inefficient) simulator S and a polynomial q such that
for all sufficiently large n ∈ N and any C ∈ Cn:∣∣∣∣ Pr

A,O
[A(O(C)) = 1]− Pr

S
[SC[q(n)](1|C|) = 1]

∣∣∣∣ ≤ 1/p(n)

Remark 2.1. The definitions above concern obfuscators for circuits. That is, both
the input program and the output of the obfuscator are given by circuits. One can
naturally adjust these definitions to fit the case of Turing Machine obfuscators
(both input and output are given by a description of a TM). In this work we
shall focus on circuit obfuscators (see[4] for corresponding TM definition).

When Is VGB Meaningful? Like INDO and BPO, VGB obfuscation does not
seem strong enough for some desirable obfuscation tasks. Examples include:
transforming private key encryption schemes to public ones and constructing
homomorphic encryption schemes2. Informally, the problem in these scenarios
is that the obfuscated program computes some kind of cryptographic function-
ality, which does not remain secure in the presence of unbounded simulators.
In general, it seems that VGB is mostly meaningful for program classes which
are unlearnable with only poly many queries even for learners with unbounded
computation time. For families of programs that are not efficiently learnable,
but are learnable for unbounded algorithms with only polynomially many oracle
queries, VGB might not guarantee the required security .

2 See the section on applications in [3] for more details.

On Strong Simulation and Composable Point Obfuscation 527

2.3 VGB vs. VBB and INDO

VGB is strictly weaker than VBB. The VGB definition is clearly implied by the
VBB definition. We show that in fact it is strictly weaker. That is, we show
a family which can not be obfuscated according to the VBB definition but is
(trivially) obfuscatable under the weaker VGB definition. To do so, we use a
slight variation of the family constructed in the [3] impossibility result.

Proposition 2.2. Assuming the existence of one-way permutations, there exist
a family of programs which is not VBB obfuscatable but is VGB obfuscatable.

To prove the above we use the notion of TM obfuscation (in contrast to circuit
obfuscation used in most of this work). The corresponding definitions and proof
are given in in [4].

VGB implies INDO (BPO). The relation between VGB obfuscation and the
INDO (BPO) follows from Proposition 2.1. That is, even when VGB is further
weakened by allowing the (unbounded) simulator unlimited oracle access, it still
implies INDO and (for efficient obfuscators) BPO.

2.4 Impossibility Results

We consider the possibility of “universal VGB obfuscation”. That is, could there
exist a VGB obfuscator for the class of all programs? We observe that for TM’s
obfuscators the impossibility result of [3] extends and also applies for VGB ob-
fuscation. However, for circuits obfuscators the [3] separation no longer holds.
Essentially, the reason for this difference is that the VBB unobfuscatable circuit
family constructed by [3] include cryptographic functionalities (such as encryp-
tion schemes and pseudo random functions) which fail to remain secure in the
presence of unbounded simulators (even with limited oracle access). We could
not rule out universal VGB obfuscation in the circuit case.

We note that [17] show impossibility of universal BPO obfuscation for circuits
which are allowed to use random oracle gates. Their result also applies for the
stronger VGB notion; however, the meaning of an impossibility result in such
setup is somewhat less clear.

3 Composable Point Obfuscators

In this section we define and construct composable VGB point obfuscators. In
next sections we show that such obfuscators suffice for meaningful applications.

3.1 Composition of Obfuscators

One central question in the context of obfuscation is the question of composition,
which asks when and whether is it secure to obfuscate a sequence of programs by
obfuscating each program on its own and combining the obfuscated programs.
There are several forms of composition one could consider, in this work we con-
sider one specific form, namely composition by concatenation [23].

528 N. Bitansky and R. Canetti

Definition 3.1 (t-composable obfuscation [23]). APPTO is a t-composable
obfuscator for a circuit ensemble C = {Cn} if it satisfies the functionality and poly
slow-downas in Definition 2.1 and for anyPPT binary adversaryA and polynomial
p, there is a simulator S, such that for any sequence of circuits C1, . . . , Ct ∈ Cn
(where t = poly(n)) and any sufficiently large n:∣∣∣Pr[A(O(C1), . . . ,O(Ct)) = 1]− Pr[SC1,...,Ct

(1|C
1|, . . . , 1|C

t|) = 1]
∣∣∣ ≤ 1/p(n)

Where C1, . . . , Ct gets as input (x, i) and returns Ci(x).

Originally [23] naturally refer to VBB obfuscation, i.e. the simulator S is a
polynomially bounded. We consider the definition also for VGB obfuscators, i.e.
we allow the simulator to be unbounded with poly many oracle queries.

3.2 Point Obfuscators

Point circuits. For a security parameter n ∈ N and a domain Dn, a point circuit
Cx : Dn → {0, 1} returns 1 on input x and 0 on all other inputs. The point
circuits we discuss are given in some “canonical” form where the point x is
explicit. As the size of the canonical circuits is determined by the parameter
n, we simplify our notation by letting the simulator take input 1n (instead of
the circuit size). The natural choice for the domain is Dn = {0, 1}n. However, to
avoid confusion when discussing tuples of points in Dt

n, we shall stick to the more
general notation. We refer to obfuscators for point circuits as point obfuscators.

Is any point obfuscator composable? Point obfuscators have been constructed,
both in the plain model and in the random oracle model. A natural question is
whether any VBB secure point obfuscator is also guaranteed to be composable
(as in Definition 3.1). [23] conjectured that the answer is negative. To support
their conjecture they give a point obfuscator in the Random Oracle model which
is not even 2-composable. In the standard model, it can be shown that if point
obfuscators exist, then there are also point obfuscators which are not Ω(n)-
composable [9]. In general, none of the constructions of point obfuscators were
known to be composable.

3.3 Distributional Indistinguishability and Composable Point
Obfuscation

To overcome the difficulties in achieving composable point obfuscators, we ex-
plore in this section an additional property of point obfuscators, called Distri-
butional Indistinguishability (or DI in short)3. We will show that this additional
property is necessary for composable obfuscation even under the weaker VGB
notion. More importantly, we will show that in fact it suffices for VGB obfusca-
tion. The definition we present generalizes the DI definition presented in [8].
3 DI should not be confused with Indistinguishability Obfuscators of [3] which were

presented in Definition 2.2

On Strong Simulation and Composable Point Obfuscation 529

Definition 3.2 (Coordinatewise Well Spread). Let X = {Xn} be an en-
semble, where each Xn is a distribution on D

t(n)
n for a domain ensemble {Dn}.

We say that X is CWS if: max
a∈Dn

Prx̄←Xn [∃i ∈ [t] : xi = a] = n−ω(1).

That is any element has only a negligible chance of being picked within a vector
sampled from the distribution. Equivalently, in a CWS ensemble the distribu-
tions X(i)

n all have super-log min-entropy, i.e. mini∈[t] H∞(X(i)
n) = ω(logn).

Definition 3.3 (Distributional Indistinguishability). O is t-DI if for any
CWS distribution ensemble, X = {Xn = 〈X(1)

n , . . . , X
(t)
n 〉}, it holds that:

O(CX (1)), . . . ,O(CX (t)) ≈c O(CU(1)), . . . ,O(CU(t))

Where each O(CX (i)) is an ensemble of distributions on point obfuscations, and
the hidden point is drawn from X (i) and U (1), . . . ,U (t) are ensembles of indepen-
dent uniform distributions over {Dn}.
We note that for the case t = 1 Definition 3.3 is equivalent to the DI definition
in [8], where it is shown that for t = 1, DI and VBB are in fact equivalent. The
proof there does not follow through for larger t. Nevertheless, we show:

Theorem 3.1. Any t-DI point obfuscator is a t-composable VGB obfuscator.
Moreover, for t = O(1) it is VBB composable. Conversely, any t-composable
VGB point obfuscator is t-DI.

The proof of the second part of Theorem 3.1 (namely the necessity of DI for
composable VGB obfuscation) is rather simple and brought in [4]. We focus on
the first part of the theorem that is more involved. A high-level discussion of the
proof, techniques and main ideas is given in the introduction. The proof itself is
divided to several lemmas. We start with preliminary notations.

Notations. Given a vector of t points x̄ = 〈x1, . . . , xt〉 we abuse notation and
denote by Cx̄ the vector of point circuits 〈Cx1 , . . . , Cxt〉. We also denote by
O(Cx̄) the composition O(Cx1), . . . ,O(Cxt). Speaking of vectors, we shall often
be interested in the (unordered) set of their elements. Whenever we use set
operators such as ∈,∩,∪ on vectors, it should be interpreted as operating on the
corresponding sets. For integers s ≤ t we denote by

([t]
s

)
the family of subsets of

[t] of size s. For vectors x̄, z̄ of dimensions s and t−s, and a set of indices I ⊆ [t]
of size |I| = s, we denote by cmbI(x̄, z̄) the t-vector with the elements of x̄ in
coordinates I and those of z̄ in coordinates [t]− I (the mapping is according to
ascending order of indices)4.

As explained in the introduction, we show that for any partial information the
adversary learns, there is a relevant polynomial set of distinguishing elements.
The first lemma deals with the case that no partial information is learnt, and
can be viewed as a generalization of a similar claim in [8] to multiple points.

4 For example cmb{2,5}((a, b), (c, d, e)) = (c, a, d, e, b).

530 N. Bitansky and R. Canetti

Lemma 3.1. Assume O is t-DI, then for any binary PPT A and p = poly(n)
there is a poly-size family L = {Ln ⊆ Dn} such that any vector x̄ ∈ Dt

n which
does not intersect Ln (i.e. x̄ ⊆ Dn \ Ln) satisfies:∣∣∣∣∣ Pr

A,O
[A(O(Cx̄)) = 1]− Pr

A,O,ū
U←Dt

n

[A(O(Cū)) = 1]

∣∣∣∣∣ ≤ 1/p(n) (1)

Proof. Consider a binary PPT A and a polynomial p. We describe the corre-
sponding family L. Let Xn be the set of all vectors which do not satisfy Equa-
tion (1). That is, Xn = X+

n ∪X−
n , where:

X+
n =

{
x̄ ∈ D

t
n : Pr[A(O(Cx̄)) = 1]− Pr[A(O(Cū)) = 1] ≥ 1/p(n)

}
X−

n =
{
x̄ ∈ D

t
n : Pr[A(O(Cū)) = 1]− Pr[A(O(Cx̄)) = 1] ≥ 1/p(n)

}
First reduce X+

n to a subset of vectors Y +
n ⊆ X+

n in which any element a ∈ Dn

which appears in some vector x̄ ∈ X+
n appears in exactly one vector ȳ ∈ Y +

n .
Similarly reduce X−

n to Y −
n . Let Yn = Y +

n ∪ Y −
n and define Ln = ∪

ȳ∈Yn

ȳ =

{a ∈ Dn : ∃ȳ ∈ Yn, a ∈ ȳ}. By the construction of Ln, any x̄ ⊆ Dn \ Ln satisfies
Equation (1). It remains to show that |Ln| = poly(n). As |Ln| ≤ t|Yn|, it suffices
to show that |Yn| = poly(n). Assume towards contradiction that the latter does
not hold. We shall construct a CWS distribution ensemble Z = {Zn} over Dt

n,
such that A distinguishes O(CZ) from O(CU(Dt)) with advantage 1/p contra-
dicting the DI property. By the assumption on the size of |Ln| there exist a
function �(n) = nω(1) such that for infinitely many n’s either |Y +

n | ≥ �(n) or
|Y −

n | ≥ �(n). We assume WLOG the first case holds (the proof is similar for the
second). For any n ∈ N such that |Ln| ≥ �(n), set Zn to be uniform on the set
Y +
n . For other n let Zn be uniform on some arbitrary set of size �(n) in which

any element appears in at most one vector (we can take � = o(|Dn|) to assure
such a choice is possible). The resulting ensemble Z is CWS since any single
vector is drawn with probability at most 1/�, and any single element appears in
at most one vector. Moreover, for any n such that Zn � U(Y +

n), it holds that:

Pr
z̄←Zn

[A(O(Cz̄)) = 1] − Pr
ū←U(Dt

n)
[A(O(Cū)) = 1] ≥

min
ȳ∈Y +

n

Pr[A(O(Cȳ)) = 1] − Pr
ū←U(Dt

n)
[A(O(Cū)) = 1] ≥ 1/p(n) �	

While in [8] the above lemma suffices for constructing a simulator, in our setup
it does not, since it does not cover the possibility that the adversary successfully
learns only some of the points. The next lemma shows that for any partial
information learnt by the adversary there is still a corresponding polynomial
distinguishing set.

Lemma 3.2. Assume O is t-DI. Let s = s(n) be any length function such that
s ≤ t and let T =

{
(x̄n, In) ∈ D

s
n ×
([t]

s

)}
n∈N

be a family of vectors and index

On Strong Simulation and Composable Point Obfuscation 531

sets5. Then for any binary PPT A and p = poly(n) there exists a poly-size family
LT = {Ln} such that for any ȳ ∈ Dt−s

n that does not intersect Ln:

|Pr[A(cmbIn(O(Cx̄n),O(Cȳ))=1]− Pr[A(cmbIn(O(Cx̄n),O(Cū)))=1]| ≤ 1
p(n)

Where ū U← Dt−s
n and the probabilities are over the coins of A,O and ū.

To prove the lemma, we shall need the following intuitively correct claim.

Claim. If O is t-DI then it is also s-DI for any s ≤ t. (proof in [4]).

Proof (of Lemma 3.2). Consider the function r = t− s, then by Claim 3.3 O is
r-DI. Consider an adversaryA′ (for r-compositions) which has T hardwired, and
on input w̄ (here w̄ = O(Cȳ) for some y1 . . . yr), runs A on the valid obfuscation
cmbIn(O(Cx̄n),O(Cȳ)) . By Lemma 3.2 this A′ has a family LT which satisfies
the required property with respect to the original adversary A. �	
The next lemma shows there is a uniform polynomial bound on the size of
all distinguishing sets (corresponding to any partial information), and hence
there exists a distinguishing function family, which given any partial informa-
tion outputs a poly-size set of all distinguishing elements (with respect to this
information).

Lemma 3.3. Let O be a t-DI obfuscator. Then for any binary PPT A and
p = poly(n), there exists a family of functions F = {Fn} and a q = poly(n) such
that Fn :

⋃
s≤t

(
D

s
n ×
([t]

s

)) −→ ⋃
s≤q

(
Dn

s

)
and satisfies for any (x̄, I) ∈ D

|I|
n ×

([t]
|I|
)

and any ȳ ∈ D
t−|I|
n which does not intersect the set Fn(x̄, I):

|Pr[A(cmbIn(O(Cx̄),O(Cȳ))) = 1]− Pr[A(cmbIn(O(Cx̄),O(Cū))) = 1]| ≤ 1
p(n)

Where ū U← D
t−|I|
n and the probabilities are over the coins of A,O and ū.

Remark 3.1. The function Fn is defined for any “partial information”. In par-
ticular the set of indices I is allowed to be the empty set corresponding to no
partial information as in Lemma 3.1.

Proof. For any (x̄, I) ∈ D
|I|
n ×

([t]
|I|
)
, let Fn(x̄, I) ⊆ Dn be the minimal set which

satisfies the above condition (note that such a set always exists as Dn trivially
satisfies the requirement). We show that, there exists a q = poly(n), such that
|Fn| ≤ q(n) (i.e. q is a uniform bound on all images). Let (x̄∗n, I∗n) be the pair
which maximizes Fn(x̄, I), i.e. |Fn(x̄∗n, I

∗
n)| = max

I⊆[t],x̄∈D
|I|
n

|Fn(x̄, I)|. By Lemma 3.2

there exists a q = poly(n) for which |Fn(x̄∗n, I
∗
n)| ≤ q(n) (just by considering the

family {(x̄∗n, I∗n)}n∈N). The result follows. �	
5 Any pair (x̄, I) should be thought of as partial information on a tuple of size t with

the elements of x̄ in the indices I .

532 N. Bitansky and R. Canetti

To complete the proof of the theorem, we construct a simulator using the family
of distinguishing functions F . However, as it might not be computable by a
poly-size simulator, the result holds only for strong simulators as in the VGB
definition.

Proof (Any t-DI point obfuscator is also VGB t-composable (sketch)). Let A be
a binary PPT adversary and p a polynomial. Let F be the corresponding family
of functions given by Lemma 3.3 and let q be the polynomial bound on the images
of F . We construct an unbounded simulator S which performs at most q · t ora-
cle queries. Given oracle access to a tuple of circuits Cx̄ = Cx1 , . . . , Cxt , for some
x̄ ∈ Dt

n. S first runs Fn (on the empty set), retrieves a set L(0) of all distinguish-
ing elements with respect to no partial information, and queries its oracle on all
the elements in L(0). In case it did not reveal any elements (i.e. x̄ ∩ L(0) = ∅), it
chooses a uniform vector ū U← Dt

n, computes obfuscations of the points in ū and
runsA on their composition. Otherwise, it revealed some elements given by a pair
(z̄(0), I(0)). It then computes L(1) = Fn(z̄(0), I(0)), and as in the first step, queries
all the values in L(1). In case it did not reveal any new values, it chooses a uniform
vector ū U← D

t−|I(0)|
n and runs A on an obfuscation cmbI(0)(O(Cz̄(0)),O(Cū))).

Otherwise it has updated partial information given by a pair (z̄(1), I(1)). It con-
tinues on in this manner. If at any point it revealed all the points in x̄ it just runs
A on a random composed obfuscation of the points in x̄ performing a perfect sim-
ulation. Otherwise, it stops after at most t iterations, performing a simulation of
1/p accuracy. This completes the main part of the proof of Theorem 3.1. �	
A more careful analysis shows that we can somewhat “compress” the distinguish-
ing function F to a set of distinguishing elements. This yields the following.

Proposition 3.1. If O is a t-DI obfuscator, then any binary adversary given
a sequence of t obfuscations can be simulated by a simulator of size nO(t) and
polynomially many queries. In particular, for t = O(1) this yields a polynomially
bounded simulator (VBB). (proof in [4])

On the possibility of bounded simulation (VBB). We note that our result does
not rule out the possibility of bounded simulation for any t = poly(n). It might
be that there always exists a function family F such as the one required in
Theorem 3.1 which is also efficiently computable, or even a “compressed” poly
set of distinguishing elements as in Proposition 3.1. Alternatively, there might
be other techniques which allow efficient simulation. In this context, we show an
example of an adversary whose distinguishing function can not be compressed
to a poly set. We also show that if bounded simulation exists then so does an
efficiently computable function family F (i.e. simulation can be proven using the
same technique we use above). The details are given in [4].

Remark 3.2. We note that the applications in Section 5.2 can be shown to hold
using the DI obfuscation definition, the equivalence given by Theorem 3.1 allows
considering a ”simulation” definition that holds for any input, and provides a
security guarantee even with keys (hidden points) from an arbitrary distribution.

On Strong Simulation and Composable Point Obfuscation 533

3.4 A Composable Point Obfuscator

After establishing the proper framework in the previous, this section is devoted to
a concrete construction for composable VGB point obfuscators. We consider the
point obfuscator constructed in [8] and analyze its security under composition.

Construction 3.2 (The r, rx Point Obfuscator [8]). Let G = {Gn}n∈N be
a group ensemble, where each Gn is a group of prime order pn ∈ (2n−1, 2n). We
define an obfuscator, O, for points in the domain Z∗

pn
as follows: Cx

O�−→ C(r, rx)

Where r
U← G∗

n is a random generator of Gn, and C(r, rx) is a circuit which on
input z, checks whether rx = rz.

In [8] Construction 3.2 is shown to be secure under a strong variant of the
Decision Diffie-Hellman assumption. We now present our assumption which is a
generalization of the [8] assumption to tuples of points.

Assumption 3.3 (t-Strong Vector Decision Diffie Hellman). Let t =
poly(n). There exist group ensemble G = {Gn : |Gn| = pn is prime} with effi-
cient representation and operations, such that for any CWS distribution ensem-
ble X = {Xn} over vectors in (Z∗

pn
)t the following holds:⎧⎪⎨⎪⎩

g1, g
a1
1

...
gt, g

at
t

:
ḡ

U← (G∗
n)t

ā
Xn← (Z∗

pn
)t

⎫⎪⎬⎪⎭
n∈N

≈c

⎧⎪⎨⎪⎩
g1, g

u1
1

...
gt, g

ut
t

:
ḡ

U← (G∗
n)t

ū
U← (Z∗

pn
)t

⎫⎪⎬⎪⎭
n∈N

We observe that Assumption 3.3 implies that the r, rx point obfuscator is t-DI
with respect to the corresponding group ensemble G, given by the construction.
Hence, Theorem 3.1 yields:

Theorem 3.4. Under Assumption 3.3, the r, rx point obfuscator is a t-composable
VGB point obfuscator (w.r.t the group ensemble G given by the assumption). As-
suming the existence of a “universal” group ensemble which satisfy Assumption 3.3
for any t = poly(n) implies fully composable VGB obfuscators (i.e. t-composable
for any t = poly(n)).

4 On the Assumption

In this section we discuss Assumption 3.3 and its relation to previous Decision
Diffie Hellman variants. We also show that it holds in the Generic Group Model.

Relation to Previous DDH Assumptions. We start by presenting another strong
variant of DDH for tuples of points, which is in a sense a natural generalization
to the standard and strong DDH assumptions [6, 8].

Assumption 4.1 (t-Strong Vector Decision Diffie Hellman II). Let t =
poly(n). There exist group ensemble G = {Gn : |Gn| = pn is prime} with

534 N. Bitansky and R. Canetti

efficient representation and operations, such that for any CWS distribution en-
semble X = {Xn} over vectors in (Z∗

pn
)t the following holds:⎧⎪⎨⎪⎩

g1, g
a1
1 , gb1

1 , gc1
1

...
gt, g

at
t , gbt

t , g
ct
t

:
ḡ

U← (G∗
n)t

ā
Xn← (Z∗

pn
)t

b̄, c̄
U← (Z∗

pn
)t

⎫⎪⎬⎪⎭
n∈N

≈c

⎧⎪⎨⎪⎩
g1, g

a1
1 , gb1

1 , ga1b1
1

...
gt, g

at
t , gbt

t , g
atbt
t

:
ḡ

U← (G∗
n)t

ā
Xn← (Z∗

pn
)t

b̄
U← (Z∗

pn
)t

⎫⎪⎬⎪⎭
n∈N

Restricting the assumption to t = 1 results in the strong DDH (SDDH) assump-
tion in [8]. If in addition we restrict X to be the uniform distribution ensemble,
we get the standard DDH assumption. Assumption 4.1 appears as a more famil-
iar and natural generalization of SDDH and DDH than Assumption 3.3 does.
However, 3.3 is somewhat simpler and is clearly weaker (the distributions in-
duced by the last two elements of each foursome in 4.1 are identical to those in
3.3). It turns out that the assumptions are in fact equivalent (proof in [4]).

A natural question is whether assumptions 3.3 and 4.1 for t = 1 imply the
corresponding assumptions for general polynomial t (or even just larger constant
t). For the case that the distribution ensemble X is the uniform distribution this
is true (corresponds to showing DDH for any poly number of foursomes from
DDH for a single foursome by an hybrid argument). However, when allowing
any CWS distribution, such an argument fails to work for two main reasons: (a)
dependence among coordinates. (b) the distribution ensemble might not even be
efficiently samplable. In general we do not know whether SDDH implies SVDDH.

SVDDH Holds in the Generic Group Model. We show that Assumption 3.3 holds
for any t = poly(n) in the generic group model [25] where algorithms can not
exploit the representation of the group elements, other than the fact that each
element has a unique representation (formal model description and proof in [4]).

5 Applications

In this section, we show how composable VGB point obfuscators, can be used to
construct composable VGB obfuscators for MBPC’s. Then we discuss how these
can be used to obtain strong encryption schemes that are simultaneously resilient
to key dependent messages (KDM), leakage and related key attacks (RKA).

5.1 Obfuscation of Point Circuits with Multi-bit Output

A multibit point circuit (or MBPC in short), Cx→y : Dn → {0, 1}m, returns y on
input x and ⊥ on all other inputs (once again we assume Cx→y is given in some
canonical form where x, y are explicit). MBPC obfuscators were constructed by
[9] assuming the existence of a composable VBB point obfuscators. However, as
explained earlier no known obfuscator has been shown to be composable. We
show that applying the [9] construction to composable VGB point obfuscators
results in a strong VBB MBPC obfuscator which is also VGB composable. We
remark that existing MBPO’s were only shown to be secure for the restricted case
that the message m is independent of the key k [9, 10]. Moreover, they were not

On Strong Simulation and Composable Point Obfuscation 535

shown to be composable. Both properties are essential for the encryption schemes
discussed in the next subsection, in order to get resilience to key-dependent-
messages and related key attacks.

Construction 5.1 (Multibit-bit Output Point Obfuscator [9]). Let O be
a point obfuscator. Define a PPT O(m) for point circuits with m-bit output as
follows. For a point x ∈ Dn and output y = y1y2 . . . ym ∈ {0, 1}m, choose a
random s ∈ Dn−{x} and define ā = 〈a0, a1, . . . , am〉 as follows. a0 = x, and for
any i ∈ [m] ai = x if yi = 1 and ai = s otherwise. The output of the obfuscator is:
O(m)(Cx→y) = C(O(Ca0), . . . ,O(Cam)). Where C is a circuit which performs as
follows. On input z, it first checks whether a0 = z (using the first point circuit).
If it does not, it returns ⊥. Otherwise, it finds all other coordinates such that
ai = z and outputs y1 . . . ym, where yi = 1 if ai = z and 0 otherwise.

Proposition 5.1. if O is an (m + 1)-composable VGB point obfuscator then
O(m) (given by Construction 5.1) is a VBB obfuscator for m-bit point circuits.
Moreover, for any decomposition m + 1 = t × (m′ + 1) O(m′) is a VGB t-
composable MBPC obfuscator (proof in [4]).

5.2 Strong Encryption Schemes

As noted in [9], obfuscation of MBPC’s implies a very strong type of symmetric
encryption (which they call a digital locker). This usage was further explored
lately by [10] who showed tight relations between MBPC (VBB) obfuscation
and the notions of weak key encryption and key dependent messages encryp-
tion. Informally, they show that the existence of MBPC VBB obfuscators imply
the existence of strong symmetric encryption schemes which are secure for key
dependent messages even with weak random keys. We extend their results by
showing that using composable VGB MBPC obfuscators (as the ones described
above), similar implications still hold, even for the scenario of multiple messages
and keys which are correlated (KDM, RKA). We note that the implications
of composable MBPC obfuscation to RKA encryption was not discussed prior
to this work. We start by presenting the basic natural transformation between
MBPC obfuscators and symmetric encryption schemes.

Construction 5.2 (MBPCO to Symmetric Encryption). Let O be an
MBPC obfuscator, define (probabilistic) encryption and decryption algorithms:
EO

k (m) � O(Ck→m) and DO
k (C) = C(k), where C is interpreted as an MBPC

and k is a key taken from a domain of keys Dn (key sampling is addressed below).

There are several definitions regarding KDM, RKA and leakage [5, 20, 7, 2]. We
use a variant of the definition in [10] extended to the setup of multiple related
keys. In this definition, t keys are generated from a distribution X = {Xn} on
key vectors in Dt

n and the adversary witnesses t encryptions of predetermined
functions of the keys. Any message might depend on any key, and the keys
themselves might also be dependent, according to the joint distribution Xn.
The definition considers the case where the distributions Xn are not necessarily
uniform but only have certain entropy guarantee.

536 N. Bitansky and R. Canetti

Definition 5.1 (encryption with multi keys-messages dependence). An
encryption scheme (E,D) is (m, t)-MKM secure if for any CWS distribution
ensemble X = {Xn} on key vectors in Dt

n, any PPT A, and (predetermined)
functions f1, . . . , ft : Dt

n → {0, 1}m and all large enough n, the following differ-
ence is negligible.∣∣∣∣∣∣∣ Pr

k̄←Xn
E,A

[A(Ek1 (f1(k̄)), . . . , Ekt(ft(k̄))) = 1]− Pr
k̄

U←D
t
n

E,A

[A(Ek1 (0̄), . . . , Ekt(0̄)) = 1]

∣∣∣∣∣∣∣
Where m(n), t(n) are polynomially bounded length functions and 0̄ = 0m.

Theorem 5.3. Let O be a t-composable VGB obfuscator for m-bit point circuits,
then the encryption scheme (EO, DO) is (m, t)-MKM secure (proof in [4]).

Extension to asymmetric encryption. In case the underlying point obfuscator
used in Constructions 5.1,5.2 can be re-randomized, we can in fact get a CPA-
secure public key encryption scheme6 with essentially the same strong proper-
ties described above. In particular, one can consider a CPA adaptive definition
instead of the one given above. We note that the point obfuscator given by
Construction 3.2 is indeed re-randomizable as required.

Other extensions and remarks. We note that the RKA resilience described above
does not deal in general with adversaries which adaptively choose the key depen-
dence. However, considering the instantiation of the scheme with the Construc-
tion 3.2 obfuscator, one gets RKA security for the family of affine functions of the
key even against adaptive adversaries (this follows simply because the construc-
tion allows affine homomorphisms of the key). Another remark is that the KDM
resilience the scheme is also restricted to a non-adaptive model in which the adver-
sary has to choose in advance the functions of the key which it is interested in, this
can be equivalently formulated as an adaptive definition where the family of corre-
lation functions is polynomially bounded, nevertheless this is a meaningful setting
which captures common KDM resilience such as the classical circular dependence.

References

[1] Adida, B., Wikström, D.: How to shuffle in public. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 555–574. Springer, Heidelberg (2007)

[2] Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks
and applications (2010) (manusript)

[3] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

[4] Bitansky, N., Canetti, R.: On strong simulation and composable point obfuscation
(2010), http://eprint.iacr.org

6 Given a secret key k ∈ Dn the public key is an obfuscation O(Ck) and encryption is
done as in constructions 5.1,5.2 using the re-randomization properties.

http://eprint.iacr.org

On Strong Simulation and Composable Point Obfuscation 537

[5] Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003)

[6] Boneh, D.: The decision diffie-hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

[7] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryp-
tion from decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 108–125. Springer, Heidelberg (2008)

[8] Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial
information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–
469. Springer, Heidelberg (1997)

[9] Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer,
Heidelberg (2008)

[10] Canetti, R., Kalai, Y.T., Varia, M., Wichs, D.: On symmetric encryption and
point obfuscation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 52–
71. Springer, Heidelberg (2010)

[11] Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash
functions (preliminary version). In: STOC, pp. 131–140 (1998)

[12] Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership.
In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer, Heidel-
berg (2010)

[13] Canetti, R., Varia, M.: Non-malleable obfuscation. In: Reingold, O. (ed.) TCC
2009. LNCS, vol. 5444, pp. 73–90. Springer, Heidelberg (2009)

[14] Dodis, Y., Smith, A.: Correcting errors without leaking partial information. In:
STOC, pp. 654–663 (2005)

[15] Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: ICS (2010)

[16] Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: FOCS, pp. 553–562 (2005)

[17] Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007)

[18] Hada, S.: Secure obfuscation for encrypted signatures. In: Gilbert, H. (ed.) EU-
ROCRYPT 2010. LNCS, vol. 6110, pp. 92–112. Springer, Heidelberg (2010)

[19] Haitner, I., Holenstein, T.: On the (im)possibility of key dependent encryption. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 202–219. Springer, Heidelberg
(2009)

[20] Halevi, S., Krawczyk, H.: Security under key-dependent inputs. In: ACM Confer-
ence on Computer and Communications Security, pp. 466–475 (2007)

[21] Hofheinz, D., Malone-Lee, J., Stam, M.: Obfuscation for cryptographic purposes.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 214–232. Springer, Hei-
delberg (2007)

[22] Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely ob-
fuscating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
233–252. Springer, Heidelberg (2007)

[23] Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfusca-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 20–39. Springer, Heidelberg (2004)

[24] Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93 (2005)

[25] Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

[26] Wee, H.: On obfuscating point functions. In: STOC, pp. 523–532 (2005)

Protocols for Multiparty Coin Toss with
Dishonest Majority

Amos Beimel1,�, Eran Omri2,��, and Ilan Orlov1,� � �

1 Dept. of Computer Science, Ben Gurion University, Be’er Sheva, Israel
2 Dept. of Computer Science, Bar Ilan University, Ramat Gan, Israel

Abstract. Coin-tossing protocols are protocols that generate a random
bit with uniform distribution. These protocols are used as a building
block in many cryptographic protocols. Cleve [STOC 1986] has shown
that if at least half of the parties can be malicious, then, in any r-round
coin-tossing protocol, the malicious parties can cause a bias of Ω(1/r)
to the bit that the honest parties output. However, for more than two
decades the best known protocols had bias t√

r
, where t is the number

of corrupted parties. Recently, in a surprising result, Moran, Naor, and
Segev [TCC 2009] have shown that there is an r-round two-party coin-
tossing protocol with the optimal bias of O(1/r). We extend Moran et
al. results to the multiparty model when less than 2/3 of the parties are
malicious. The bias of our protocol is proportional to 1/r and depends
on the gap between the number of malicious parties and the number
of honest parties in the protocol. Specifically, for a constant number of
parties or when the number of malicious parties is somewhat larger than
half, we present an r-round m-party coin-tossing protocol with optimal
bias of O(1/r).

1 Introduction

Secure multiparty computation in the malicious model allows distrustful parties
to compute a function securely. Designing such secure protocols is a delicate
task with a lot of subtleties. An interesting and basic functionality for secure
computation is coin tossing – generating a random bit with uniform distribution.
This is a simple task where the parties have no inputs. However, already this
task raises questions of fairness and how malicious parties can bias the output.
Understanding what can be achieved for coin tossing in various settings can be
considered as a step towards understanding general secure and fair multiparty
computation. Indeed, some of the early works on secure computation were on
coin tossing, e.g., [3, 4, 6]. Furthermore, coin tossing is used as a basic tool
in constructing many protocols that are secure in the malicious model. Secure

� Supported by ISF grant 938/09.
�� This research was generously supported by the European Research Council as

part of the ERC project “LAST”. Part of the research was done while the author
was a post-doctoral fellow at BGU supported by the ISF grant 860/06.

� � � Supported by ISF grant 938/09 and by the Frankel Center for Computer Science.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 538–557, 2010.
c© International Association for Cryptologic Research 2010

Protocols for Multiparty Coin Toss with Dishonest Majority 539

protocols for coin tossing are a digital analogue of physical coin tossing, which
have been used throughout history to resolve disputes.

The main problem in designing coin-tossing protocols is the prevention of a
bias of the output. The bias of a coin-tossing protocol measures the maximum
influence of the adversary controlling a subset of malicious parties on the output
of the honest parties, where the bias is 0 if the output is always uniformly
distributed and the bias is 1/2 if the adversary can force the output to be always
(say) 1. To demonstrate the problems of designing a coin-tossing protocol, we
describe Blum’s two-party coin-tossing protocol [3].

Example 1 (Blum’s coin-tossing protocol [3]). To toss a coin, Alice and Bob
execute the following protocol.

– Alice chooses a random bit a and sends a commitment c = commit(a) to
Bob.

– Bob chooses a random bit b and sends it to Alice.
– Alice sends the bit a to Bob together with de-commit(c).
– If Bob does not abort during the protocol, Alice outputs a⊕ b, otherwise she

outputs a random bit.
– If Alice does not abort during the protocol and c is a commitment to a, then

Bob outputs a⊕ b, otherwise he outputs a random bit.

If Alice is malicious, then she can bias the output toward (say) 1. If a⊕b = 1, she
opens the commitment and Bob outputs 1. However, if a⊕ b = 0, Alice aborts,
and Bob outputs 1 with probability 1/2. All together, the probability that the
honest Bob outputs 1 is 3/4. It can be proved that this is the best that Alice
can do in this protocol, and hence, the bias of the protocol is 1/4. This protocol
demonstrates the problems caused by parties aborting the protocol and the need
to define how the output of the other parties is computed after such aborts.

While the above protocol is a significant improvement over naive protocols whose
bias is 1/2, the protocol still has a constant bias. If more than half of the parties
are honest, then, using general secure multiparty protocols there are constant-
round protocols with negligible bias (assuming a broadcast channel), e.g., the
protocol of [14]. Cleve [6] proved that when at least half of the parties can be
malicious, the bias of every protocol with r rounds is Ω(1/r). In particular,
this proves that without honest majority no protocol with polynomial number
of rounds (in the security parameter) can have negligible bias. On the positive
side, it was shown in [2, 6] that there is a two-party protocol with bias O(1/

√
r).

This can be generalized to an m-party protocol that tolerates any number of
malicious parties and has bias O(t/

√
r). Cleve and Impagliazzo [7] have shown

that, in a model where commitments are available only as black-box (and no
other assumptions are made), the bias of every coin-tossing protocol is Ω(1/

√
r).1

The protocols of [3, 2, 6] are in this model.

1 The lowerbound of [7] holds in a stronger model which we will not discuss in this
paper.

540 A. Beimel, E. Omri, and I. Orlov

The question if there is a coin-tossing protocol without an honest majority that
has bias O(1/r) was open for many years. Recently, in a surprising and elegant
result, Moran, Naor, and Segev [12] have shown that there is an r-round two-party
coin-tossing protocol with bias O(1/r). Moran et al. ask the following question:

“An interesting problem is to identify the optimal trade-off between the
number of parties, the round complexity, and the bias. Unfortunately, it
seems that several natural variations of our approach fail to extend to
the case of more than two parties. Informally, the main reason is that a
coalition of malicious parties can guess the threshold round with a pretty
good probability by simulating the protocol among themselves for any
possible subset.”

1.1 Our Results

Our main contribution is a multi-party coin-tossing protocol that has small bias
when less than 2/3 of the parties are malicious.

Theorem 1 (Informal). Let m, t, and r be integers such that m/2 ≤ t < 2m/3.
There exists an r-round m-party coin-tossing protocol tolerating t malicious par-
ties that has bias O(22k+1

/r′), where k = 2t−m and r′ = r −O(k + 1).

The above protocol nearly has the desired dependency on r, i.e., the dependency
implied by the lower bound of Cleve [6]. However, its dependency on k has, in
general, a prohibitive cost. Nevertheless, there are interesting cases where the
bias is O(1/r).

Corollary 1 (Informal). Let m, t be constants such that m/2 ≤ t < 2m/3 and
r be an integer. There exists an r-round m-party coin-tossing protocol tolerating
t malicious parties that has bias O(1/r).

For example, we construct an r-round 5-party coin-tossing protocol tolerating
3 malicious parties that has bias 8/(r − O(1)) (this follows from our general
construction in Sections 4–6).

Notice that the protocol of Theorem 2 depends on k and not on the number
of malicious parties t. Thus, it is efficient when k is small.

Corollary 2 (Informal). Let m, r be integers and t = m/2+O(1). There exists
an r-round m-party coin-tossing protocol tolerating t malicious parties that has
bias O(1/r).

For example, for any even m we construct an r-round m-party coin-tossing pro-
tocol tolerating m/2 malicious parties that has bias 1/(2r−O(1)). Furthermore,
even when t = 0.5m+0.5 log logm−1, the bias of our protocol is small, namely,
O(m/(r −O(log logm))).

We also reduce the bias compared to previous protocols when more than 2/3
of the parties are malicious. The bias of the m-party protocol of [2, 6] is O(t/

√
r).

We present a protocol whose bias is O(1/
√
r) when t/m is constant, that is, when

the fraction of malicious parties is constant we get rid of the factor t in the bias.

Protocols for Multiparty Coin Toss with Dishonest Majority 541

Communication Model. We consider a communication model where all par-
ties can only communicate through an authenticated broadcast channel. On one
hand, if a party broadcasts a message, then all other parties see the same mes-
sage. This ensures some consistency between the information the parties have.
On the other hand, there are no private channels and all parties see all messages.
We assume a synchronous model, however, the adversary is rushing.2

We note that our results can be translated to a model with authenticated
point-to-point channels with a PKI infrastructure (in an m-party protocol, the
translation will increase the number of rounds by a multiplicative factor of
O(m)). Thus, our results hold in the two most common models for secure mul-
tiparty computation.

The Idea of Our Protocol. We generalize the two-party protocol of Moran et
al. [12] to the multi-party setting. In the protocol of [12] in each round Alice and
Bob get bits that are their output if the other party aborts: If a party aborts in
round i, then the other party outputs the bit it got in round i− 1. Furthermore,
there is a special round i∗; prior to round i∗ the bits given to Alice and Bob are
random independent bits and from round i∗ onward the bits given to Alice and
Bob are the same fixed bit. The adversary can bias the output only if it guesses
i∗. In our protocol, in each round there are many bits. We define a collection of
subsets of the parties and each subset gets a bit. The bits are chosen similarly
to [12]: prior to i∗ they are independent and from i∗ onward they are fixed.
In our case we cannot give the bits themselves to the parties. We rather use a
few layers of secret-sharing schemes to store these bits. For every subset in the
collection, we use the first secret-sharing scheme to share the bit of the subset
among the parties of the subset. We use an additional secret-sharing scheme to
share the shares of the first secret-sharing scheme. The threshold in the latter
secret sharing scheme is chosen such that the protocol can proceed until enough
parties aborted. In the round when the number of aborted parties ensures that
there is an honest majority, an appropriate subset in the collection is chosen,
its bit is reconstructed, and this bit is the output of the honest parties. The
description of how to implement these ideas appears in Sections 4–6.

The construction of Moran et al. [12] is presented in two phases. In the first
phase they present a protocol with a trusted dealer, for which an adversary can
only inflict bias O(1/r). Then, they show how to implement this protocol in
the real-world, using a constant round secure-with-abort multiparty protocol,
as well as secret sharing and authentication schemes. This can be seen as a
general transformation from any two-party coin-tossing protocol with a trusted
dealer, into a real world two-party coin-tossing protocol. We observe that the
transformation of Moran et al. to a real-world protocol requires some further
care trying to generalize it for the multiparty case. We show how this can be
achieved by adopting the definition of secure multiparty computation of [1],
which requires the protocol to detect a cheating party, that is, at the end of

2 If there is synchronous broadcast without a rushing adversary then coin tossing is
trivial.

542 A. Beimel, E. Omri, and I. Orlov

the protocol either the honest parties hold a correct output or all honest parties
agree on a party that cheated during the protocol.

2 Preliminaries

A multi-party coin-tossing protocol with m parties is defined using m probabilis-
tic polynomial-time Turing machines p1, . . . , pm having the security parameter
1n as their only input. The coin-tossing computation proceeds in rounds, in each
round, the parties broadcast and receive messages on a broadcast channel. The
number of rounds in the protocol is typically expressed as some polynomially-
bounded function r in the security parameter. At the end of protocol, the (hon-
est) parties should hold a common bit w. We denote by CoinToss() the ideal
functionality that gives the honest parties the same uniformly distributed bit w,
that is, Pr[w = 0] = Pr[w = 1] = 1/2. In our protocol, the output bit w will
have some bias.

In this work we consider a malicious static computationally-bounded (i.e.,
non-uniform probabilistic polynomial-time) adversary that is allowed to corrupt
some subset of parties. That is, before the beginning of the protocol, the ad-
versary corrupts a subset of the players that may deviate arbitrarily from the
protocol, and thereafter the adversary controls the messages sent by the cor-
rupted parties. The honest parties follow the instructions of the protocol.

The parties communicate in a synchronous network, using only a broadcast
channel. The adversary is rushing, that is, in each round the adversary hears the
messages sent by the honest parties before broadcasting the messages of the cor-
rupted parties for this round (thus, the messages broadcast by corrupted parties
can depend on the messages of the honest parties broadcast in this round).

The security of multiparty computation protocols is defined using the real
vs. ideal paradigm. In this paradigm, we consider the real-world model, in which
protocols are executed. We then formulate an ideal model for executing the
task at hand. This ideal model involves a trusted party whose functionality
captures the security requirements from the task. Finally, we show that the real-
world protocol “emulates” the ideal-world protocol: For any real-life adversaryA
there should exist an ideal-model adversary S (also called simulator) such that
the global output of an execution of the protocol with A in the real-world model
is distributed similarly to the global output of running S in the ideal model.

1/p-Secure Computation. As explained in the introduction, the ideal func-
tionality CoinToss() cannot be implemented when there is no honest majority.
We use 1/p-secure computation, defined by [9, 10], to capture the divergence
from the ideal worlds. This notion applies to general secure computation. We
start with some notation.

Definition 1 (1/p-indistinguishability). A function μ(·) is negligible if for
every positive polynomial q(·) and all sufficiently large n it holds that μ(n) <
1/q(n). A distribution ensemble X = {Xn}n∈N

is an infinite sequence of random
variables indexed by n ∈ N . For a fixed function p, two distribution ensembles
X = {Xn}n∈N and Y = {Yn}n∈N are computationally 1/p-indistinguishable,

Protocols for Multiparty Coin Toss with Dishonest Majority 543

denoted X
1/p≈ Y , if for every non-uniform polynomial-time algorithm D there

exists a negligible function μ(·) such that for every n,

|Pr[D(Xn) = 1]− Pr[D(Yn)) = 1]| ≤ 1
p(n)

+ μ(·).

We next define the notion of 1/p-secure computation [9, 10]. The definition uses
the standard real/ideal paradigm [8, 5], except that we consider a completely
fair ideal model (as typically considered in the setting of honest majority), and
require only 1/p-indistinguishability rather than indistinguishability. In the coin-
tossing protocol, the parties do not have inputs. Thus, to simplify the definitions,
we define secure computation without inputs (except for the security parame-
ters).

Definition 2 (1/p-secure computation [9, 10]). Let p = p(n) be a function.
An m-party protocol Π is said to 1/p-securely compute a functionality F if for
every non-uniform probabilistic polynomial-time adversary A in the real model,
there exists a non-uniform probabilistic polynomial-time adversary S in the ideal
model such that the following two distribution ensembles are computationally
1/p-indistinguishable

{
IDEALF ,S(aux)(1n)

}
n∈N

1/p≈ {
REALΠ,A(aux)(1n)

}
n∈N

,

where REALΠ,A(aux)(1n) is a random variable consisting of the view of the ad-
versary (i.e., its random input and the messages it got) and the output of the
honest parties following an execution of Π, and IDEALF ,S(aux)(1n) is a random
variable consisting of the output of the adversary S in the ideal world execution
and the output of the honest parties in that execution.

Definition 3. We say that a protocol is a coin-tossing protocol with bias 1/p if
it is a 1/p-secure protocol for the functionality CoinToss().

2.1 The Two-Party Protocol of Moran et al.

Moran, Naor, and Segev [12] present a two-party coin-tossing protocol with
optimal bias with respect to round complexity (i.e., meeting the lowerbound
of Cleve [6]). We next briefly review their protocol, which later serves as the
basis for our construction. Following the presentation of [12], we first describe
a construction that uses an on-line trusted party acting as a dealer. Later, we
describe how the trusted party can be eliminated.

The main underlying idea is that the dealer chooses a special round during
which the parties actually unknowingly learn the output of the protocol. If the
adversary guesses this round, it can bias the output by aborting. If the adversary
aborts (or behaves maliciously) in any other time, then there is no bias. However,
this special round is uniformly selected (out of r possible rounds) and then
concealed such that the adversary is unable to guess it with probability exceeding
1/r. Therefore, the overall bias achievable by any adversary is O(1/r).

More specifically, for two parties Alice and Bob to jointly toss a random
coin, the protocol proceeds as follows. In a preprocessing phase, the trusted

544 A. Beimel, E. Omri, and I. Orlov

party selects a special round number i∗ ∈ {1, . . . , r}, uniformly at random, and
selects bits a1, . . . , ai∗−1, b1, . . . , bi∗−1, independently, uniformly at random. It
then uniformly selects a bit w ∈ {0, 1} and sets ai = bi = w for all i∗ ≤ i ≤ r.
Thereafter, the protocol proceeds in rounds: In round i, the dealer gives Alice
the bit ai and Bob the bit bi. If none of the parties abort, then at the end of the
protocol both output ar = br = w. If a party prematurely aborts in some round
i, the honest party outputs the bit it received in the previous round (i.e., ai−1
or bi−1 respectively). If one party aborts before the other party received its first
bit (i.e., a1 or b1), then the other party outputs a random bit.

The security of the protocol follows from the fact that, unless the adversary
aborts in round i∗, it cannot bias the output of the protocol. The view of any
of the parties up to round i ≤ i∗ is independent of the value of i∗, hence, any
adversary corrupting a single party can guess i∗ with probability at most 1/r.

To eliminate the trusted party, Moran et al. first turn the trusted party from
an on-line dealer into an off-line dealer, i.e., one that computes some values in
a preprocessing phase, deals them to the parties, and halts. To achieve this,
they use a 2-out-of-2 secret-sharing scheme and an authentication scheme. The
trusted party selects i∗, bits a1, . . . , ai∗−1, b1, . . . , bi∗−1, and a bit w ∈ {0, 1} as
before. It then selects random shares for ai and bi for each i ∈ {1, . . . , r}. That is,
it computes shares a(A)

i ⊕a(B)
i = ai and b

(A)
i ⊕ b(B)

i = bi. At the beginning of the
protocol, the trusted party sends to Alice her shares of the ai’s, that is a(A)

i , and
the shares b(A)

i together with an authentication of the b
(A)
i (i.e., authenticated

shares of the bi’s), and sends to Bob his shares of the bi’s and authenticated
shares of the ai’s. The protocol now proceeds in rounds. In each round i Bob
sends to Alice his authenticated share of ai, so Alice can reconstruct the bit ai.
Alice then sends to Bob her authenticated share of bi. An adversary cannot forge
an authentication, and is, thus, essentially limited to aborting in deviating from
the prescribed protocol.

The off-line dealer is then replaced by a (constant round) secure-with-abort
two-party protocol [11] for computing the preprocessing functionality. That is, at
the end of the initialization protocol, the parties get the authenticated shares of
the ai’s and the bi’s, while the underlying i∗ and authentication keys stay secret.
The security of the 2-party preprocessing protocol guarantees that a bounded
adversary is essentially as powerful as in a computation with an off-line dealer.

3 Coin Tossing with Dishonest Majority – A Warm-Up

In this section we present two warm-up constructions for multiparty coin-tossing
with bias O(1/r) where r is the number of rounds in the protocol. The first
construction considers the case that at most half of the parties are malicious
(however, there is no majority of honest parties). The second construction solves
the problem of coin tossing with 5 parties, where at most 3 are malicious. These
two protocols demonstrate the main difficulties in constructing multiparty coin-
tossing protocols with dishonest majority, alongside the techniques we use to
overcome these difficulties. In Sections 4–6, we present a construction for the

Protocols for Multiparty Coin Toss with Dishonest Majority 545

general case that combines ideas from the two constructions presented in this
section.

The main issue of any coin-tossing protocol is how to deal with premature
aborts. The protocol must instruct any large enough subset of parties (i.e., at
least as large as the set of honest parties) how to jointly reconstruct a bit if all
other parties abort the protocol. Since there is no honest majority, an adversary
controlling some set of parties can compute the output of this set assuming that
the other parties abort. The problem in designing a protocol is how to ensure
that this information does not enable the adversary to bias the output.

3.1 Multiparty Coin Tossing When Half of the Parties Can Be
Malicious

In this section we present a protocol with optimal (up to a small constant) bias
with respect to round complexity, when up to half the parties may be corrupt.
We next give an informal description of the protocol with an on-line trusted
party who acts as a dealer.

To construct a protocol for multiparty coin tossing for the case that up to
half the parties may be malicious, the parties simulate the 2-party protocol of
[12]. That is, we partition the parties into two sets A and B, one will simulate
Alice and the other will simulate Bob. The main difficulty is that the adversary
is not restricted to corrupting parties only in one of these sets. To overcome this
problem, in our partition A contains a single party p1, and the set B consists
of the parties p2, . . . , pm. If the adversary corrupts p1, it gains full access to the
view of Alice in the 2-party protocol; however, in this case a strict majority of
the parties simulating Bob is honest, and the adversary will gain no information
about the bits of Bob, i.e., the bi’s.

We next describe the protocol. In a preprocessing phase, the dealer uni-
formly selects i∗ ∈ {1, . . . , r} and then uniformly and independently selects
a1, . . . , ai∗−1, b1, . . . , bi∗−1. Finally, it uniformly selects w ∈ {0, 1} and sets ai =
bi = w for all i∗ ≤ i ≤ r. In each round i, the dealer sends ai to A, selects
random shares of bi in Shamir’s m/2-out-of-(m− 1) secret-sharing scheme, and
sends each share to the appropriate party in B. We stress that formally (to model
a rushing adversary), the dealer first sends the malicious parties their messages,
allows them to abort, and proceeds as described below.

During the execution some parties might abort; we say that a party is active
if it has not aborted. If a party pj prematurely aborts, then the trusted party
notifies all currently active parties that pj has aborted. We next describe the
actions when a party aborts:

– If p1 aborts in round i, then the parties in B reconstruct bi−1, output it, and
halt. In this case, since p1 is corrupt, at least m/2 honest parties exist in B
and, thus, they will be able to reconstruct the output.

– If in round i parties from B abort such that less than m/2 active parties
remain in B, then p1 broadcasts ai−1 to the remaining m/2− 1 parties in B
and all (honest) parties output ai−1 and halt. In this case p1 must be honest
and hence can be trusted to broadcast ai−1.

546 A. Beimel, E. Omri, and I. Orlov

– While there are still at least m/2 active parties in B (i.e., at most m/2− 1
of them abort) and p1 is active, the protocol proceeds without a change.

To prevent cheating, the dealer needs to sign the messages given to the parties.
We omit these details in this section.

Recall that at most m/2 out of the m parties are malicious. Thus, if p1 is
corrupted, then at most (m/2)− 1 parties in B are corrupted, and they cannot
reconstruct bi. To see that the above protocol is O(1/r)-secure is now straight-
forward. An adversary wishing to bias the protocol must cause premature termi-
nation. To do so, it must either corrupt p1 (and gain no information on the bi’s)
or otherwise corrupt m/2 parties in B (hence, leaving p1 uncorrupted). Thus, for
any adversary in the multi-party protocol there is an adversary corrupting Alice
or Bob in the on-line setting of the two party protocol of [12] that is essentially
as powerful. An important feature that we exploit in our protocol is the fact
that in the two-party protocol Bob does not need its bit bi−1 if Alice does not
abort. Thus, in our protocol the parties in B do not reconstruct bi−1 unless p1
aborts in round i.

More work is required in order to eliminate the trusted dealer, however,
the arguments justifying such a move are a special case of those described in
Section 6.

3.2 A 5-Party Protocol That Tolerates up to 3 Malicious Parties

In this section we consider the case wherem = 5 and t = 3, i.e., a 5-party protocol
where up to 3 of the parties may be malicious. As in previous protocols, we first
sketch our construction assuming there is a special on-line trusted dealer. This
dealer interacts with the parties in rounds, sharing bits to subsets of parties, and
proceeds with the normal execution as long as at least 4 of the parties are still
active.

Denote the trusted dealer by T and the parties by p1, . . . , p5. Let S1, . . . , S10 be
all possible triplets of parties, i.e., Sj ⊂ {p1, . . . , p5} such that |Sj | = 3. Denote
by σi

Sj
a bit to be recovered by Sj if the protocol terminates in round i + 1. In

a preprocessing phase, the dealer T selects uniformly at random i∗ ∈ {1, . . . , r},
indicating the special round in this five-party protocol. Then, for every 0 ≤ i < i∗

it selects σi
Sj

independently and uniformly at random for each j ∈ {1, . . . , 10}.
Finally, it independently and uniformly selects a random bit w and sets σi

Sj
= w,

for every i ∈ {i∗, . . . , r} and for every j ∈ {1, . . . , 10}.
The dealer T interacts with p1, . . . , p5 in rounds, where round i, for 1 ≤ i ≤ r

consists of three phases:

First phase. The dealer sends to the adversary all the bits σi
Sj

such that there
is a majority of corrupted parties in Sj , i.e., at least 2 parties in Sj are
controlled by the adversary.

Second phase. The adversary sends to T a list of parties that abort in the
current round. If there are less than 4 active parties (i.e., there are either 2

Protocols for Multiparty Coin Toss with Dishonest Majority 547

or 3 active parties),3 T sends σi−1
Sj

to the active parties, where Sj is the lex-
icographically first triplet that contains all of the active parties. The honest
parties output this bit and halt.

Third phase. If at least 4 parties are active, T notifies the active parties that
the protocol proceeds normally.

If after r rounds, there are at least 4 active parties, T simply sends w to all
active parties and the honest parties output this bit.

As an example of a possible execution of the protocol, assume that p1 aborts
in round 4 and p3 and p4 abort in round 26. In this case, T sends σ25

{p1,p2,p5} to
p2 and p5, which output this bit.

Recall that the adversary obtains the bit Sj if at least two parties in Sj are
malicious. If the adversary causes the dealer to halt, then, either there are two
active parties, both of them must be honest, or there are three active parties
and at most one of them is malicious. In either case, the adversary does not
know σi−1

Sj
in advance. Furthermore, the dealer reveals the appropriate bit σi−1

Sj

to the active parties. Jumping ahead, these properties are later preserved in a
real world protocol by using a 2-out-of-3 secret-sharing scheme.

We next argue that any adversary can bias the output of the above protocol
by at most O(1/r). As in the protocol of Moran et al., the adversary can only
bias the output by causing the protocol to terminate in round i∗. In contrast to
the protocol of [12], in our protocol if in some round there are two bits σi

S and
σi
S′ that the adversary can obtain such that σi

S �= σi
S′ , then the adversary can

deduce that i �= i∗. However, there are at most 7 bits that the adversary can
obtain in each round (i.e., the bits of sets S containing at least two malicious
parties). For a round i such that i < i∗, the probability that all these bits are
equal to (say) 0 is (1/2)7. Such rounds are indistinguishable to the adversary
from round i∗. Intuitively, the best an adversary can do is guess one of these
rounds, and therefore cannot succeed guessing with probability better than 1/27.
Thus, the bias the adversary can cause is 27/r.

Eliminating the Dealer of the 5-Party Protocol. We eliminate the trusted
on-line dealer in a few steps using a few layers of secret-sharing schemes. First,
we change the on-line dealer, so that in each round i it shares the bit σi

S of
each subset S among the parties of S using a 2-out-of-3 secret-sharing scheme
– called inner secret-sharing scheme. The same requirement on σi

S as in the
above protocol are preserved using this inner secret-sharing scheme. That is, the
adversary is able to obtain information on σi

S only if it controls at least two of
the parties in S. On the other hand, if the adversary does not control at least
two parties in S (i.e., there is an honest majority in S), then, in round i, the
honest parties can reconstruct σi−1

S (if so instructed by the protocol).
Next we turn the on-line dealer into an off-line dealer. That is, we show that

it is possible for the dealer to only interact with the parties once, sending each
3 The reason for requiring that the dealer does not continue when at least two parties

abort will become clear when we transform the protocol to a protocol with an off-line
dealer.

548 A. Beimel, E. Omri, and I. Orlov

party some input, so that thereafter, the parties interact in rounds (without the
dealer) and in each round i each party learns its shares in the ith inner secret-
sharing scheme. That is, in each round i, each party p learns a share of σi

S in
a 2-out-of-3 secret-sharing scheme, for every triplet S such that p ∈ S. For this
purpose, the dealer computes, in a preprocessing phase, the appropriate shares
for the inner secret-sharing scheme. The shares of each round for each party p
are then shared in a 2-out-of-2 secret-sharing scheme, where p gets one of the
two shares (this serves as a mask, allowing only p to later reconstruct its shares
of the appropriate σi

S ’s). All parties get shares in a 4-out-of-5 Shamir secret-
sharing scheme of the other share of the 2-out-of-2 secret sharing. We call the
resulting secret-sharing scheme the outer scheme.

The use of the 4-out-of-5 secret-sharing scheme plays a crucial role in elim-
inating the on-line dealer. On the one hand, it guarantees that an adversary,
corrupting at most three parties, cannot reconstruct the shares of round i before
round i. On the other hand, at least two parties must not reveal their shares
in order to prevent a reconstruction of the outer scheme (this is why we cannot
proceed after 2 parties aborted). Hence, the protocol proceed normally as long
as at least 4 parties are active. If, indeed, at least two parties abort (in round i),
then the remaining parties use their shares of the inner scheme to reconstruct
the bit σi−1

S for the appropriate triplet S.
To prevent malicious parties from cheating, by say, sending false shares and

causing reconstruction of wrong secrets, every message that a party should send
during the execution of the protocol is signed in the preprocessing phase (to-
gether with the appropriate round number and with the party’s index). In ad-
dition, the dealer sends a verification key to each of the parties. To conclude,
the off-line dealer gives each party the signed shares for the outer secret sharing
scheme together with the verification key.

The protocol with the off-line dealer proceeds in rounds. In round i of the pro-
tocol all parties broadcast their (signed) shares in the outer (4-out-of-5) secret-
sharing scheme. Thereafter, each party can unmask the message it receives (with
its share in the appropriate 2-out-of-2 secret-sharing scheme) to obtain its shares
in the 2-out-of-3 sharing of the bits σi

S (for the appropriate sets S’s to which the
party belongs). If a party stops broadcasting messages or broadcasts improperly
signs messages, then all other parties consider it as aborted. If two or more par-
ties abort, the remaining parties reconstruct the bit of the lexicographically first
triplet that contains all of them, as described above. In the special case of prema-
ture termination already in the first round, the remaining parties engage in a fully
secure protocol (with honest majority) to toss a completely random coin.

Finally, we replace the off-line dealer by using a secure with abort protocol
with cheat detection computing the functionality computed by the dealer. The
details of this final step are given in Section 6.

The above construction can be generalized in a straightforward manner to any
number m of parties and any number t of malicious parties such that t < 2m/3.
However, in the protocol described in Section 4 the bias on the output is substan-
tially smaller; this is done using a better way for distributing bits to subsets.

Protocols for Multiparty Coin Toss with Dishonest Majority 549

4 Coin-Tossing with Dishonest Majority – Our Main
Construction

In Sections 4–6 we present our main result – a coin-tossing protocol that has
nearly optimal bias and can tolerate up to 2/3 fraction of malicious parties. More
specifically, we prove the following theorem:

Theorem 2. If enhanced trap-door permutations exist, then for any m, t, and r
such that t < 2m/3, there is an r-round m-party coin-tossing protocol tolerating
up to t malicious parties and has bias O

(
22k+1

/r′
)
, where k = 2t − m and

r′ = r −O(k + 1).

In the above theorem k is the difference between the number of malicious parties
and the number of honest parties, i.e., k = t− (m− t) = 2t−m.

Following [12], we describe our protocol in two steps. In Section 5, we describe
Protocol CoinTossWithDealerr that uses an online trusted party. In Section 6, we
get rid of the on-line dealer. This simplifies the description and understanding of
our protocols. More importantly, we can prove the security of our main protocol
in a modular way. We first prove

Theorem 3. Protocol CoinTossWithDealerr is an r-round m-party coin-tossing
protocol with an on-line dealer tolerating up to t malicious parties that has bias
O
(
22k+1

/r
)
.

We then consider the on-line dealer of Protocol CoinTossWithDealerr as an ideal
functionality. In this protocol, the honest parties do not send any messages and
in each round the dealer sends messages to the parties; we consider an interactive
functionality sending the messages that the dealer sends. We prove

Theorem 4. Let t < 2m/3. If enhanced trap-door permutations exist, the pro-
tocol presented in Section 6 is a computationally-secure implementation with
r′+O(k+1) rounds of the dealer functionality in Protocol CoinTossWithDealerr′ .

The above theorem is proved using the hybrid model techniques of Canetti [5].
Theorem 2 follows from Theorem 3 and Theorem 4 by a composition argument.

We stress that constructing fair coin-tossing protocols assuming a trusted
dealer is an easy task, e.g., the trusted party can choose a random bit and send
it to each party. However, when considering a rushing adversary one cannot elim-
inate the trusted party in this protocol. The coin-tossing protocol we describe,
Protocol CoinTossWithDealerr, is designed such that it is possible to transform
it to a protocol with no trusted party.

5 Coin-Tossing with Dishonest Majority and an On-Line
Dealer

In this section we describe a protocol with a special trusted party T who acts
as an on-line dealer interacting with the parties in rounds. In the protocol we

550 A. Beimel, E. Omri, and I. Orlov

describe, in every round the trusted party T chooses bits for some subsets of
parties (the collection of subsets that receive a bit is part of the design of the
protocol). Since, in the real world, the adversary can be rushing, the interaction
between the parties and T in each round has three phases. In the first phase, for
each set S that contains enough malicious parties, the trusted party sends the bit
of the set to the malicious parties in the subset S. In the second phase, malicious
parties may abort the computation (and by that prevent later reconstruction of
some of the information). To do so, these parties send to T an “abort” message.
Finally, in the third phase, the actual (ideal) secret sharing takes place.

Protocol CoinTossWithDealerr

Inputs: The input of each party pi is the security parameter 1n, a polynomial
r = r(n) specifying the number of rounds in the protocol, and an upper
bound t on the number of corrupted parties.

Underlying Subsets: Let Pj ={pj} for 1≤j≤k+1 and Pk+2 ={pk+2, . . . , pm}.
Define QJ = ∪j∈JPj for each J ⊂ {1, . . . , k + 2}.
For each subset Pj define a reconstruction threshold value oj : For 1 ≤ j ≤
k + 1 define oj = 1 and define ok+2 = m− t. Finally, oJ =

∑
j∈J oj for each

J ⊂ {1, . . . , k + 2}.
Instructions for the (trusted) dealer:

The preprocessing phase: Select a bit σi
J for every subset QJ and every

round i as follows:
1. Select i∗ ∈ {1, . . . , r} and w ∈ {0, 1} independently with uniform

distribution.
2. For each J ⊂ {1, . . . , k + 2}, select σ0

J , . . . , σ
i∗−1
J independently with

uniform distribution.
3. For each J ⊂ {1, . . . , k + 2}, set σi∗

J = . . . = σr
J = w for i∗ ≤ i ≤ r.

Interaction rounds: In each round 1 ≤ i ≤ r of the protocol, interact with
the parties in three phases:
– The peeking phase: For each J ⊂ {1, . . . , k + 2}, if QJ contains

at least oJ malicious parties, send the bit σi
J to all malicious parties

in QJ .
– The abort phase: Upon receiving an abortj message from party pj ,

remove party pj from the list of active parties and notify all parties
that party pj is inactive. (Ignore all other types of messages.)
If at least m− t parties have aborted so far, move to the premature
termination process.

– The main phase: Send “proceed” to all parties.
Premature termination process: This round consists of two phases, af-

ter which the protocol terminates and all honest parties hold the same
output.
– The abort phase: Upon receiving an abortj message from party
pj , remove party pj from the list of active parties.

– The default output phase: Let D be the set of indices of parties
that aborted the protocol thus far, i.e., D = {j | pj has aborted}.

Protocols for Multiparty Coin Toss with Dishonest Majority 551

• If |D ∩ {k + 2, . . . ,m}| ≥ m− t then J = {1, . . . , k + 1} \D.
• If |D ∩ {k + 2, . . . ,m}| < m− t then J = ({1, . . . , k + 1} \D) ∪
{k + 2}.
• Send w′ = σi−1

J to all parties.
Normal termination: This phase is executed if the last round of the pro-

tocol is completed.
Send w to all parties.

Instructions for honest parties: Upon receiving output y from the dealer,
output y. (Honest parties do not send any message throughout the protocol.)

We next informally explain why the protocol has small bias, that is, we give a
sketch of the proof of Theorem 3. First, we claim that the adversary can bias
the output only if the premature termination occurs in round i∗:

1. If the premature termination round occurs after round i∗ (or does not occur
at all), then the output is already fixed.

2. If the premature termination round occurs before round i∗, then the adver-
sary does not know the random bit σi−1

J that the honest parties output:
(a) If |D ∩ {k + 2, . . . ,m}| ≥ m− t, then J = {1, . . . , k + 1} \D and oJ =
|J |. There are at most t corrupt parties and at least m− t of them are in
Q{k+2}, thus, at most t− (m− t) = k in {p1, . . . , pk+1}. In other words,
there is at least one honest (and therefore active) party in QJ , and the
trusted party does not send the bit σi−1

J to the parties in QJ .
(b) If |D ∩ {k + 2, . . . ,m}| < m− t, then J = ({1, . . . , k + 1}\D)∪{k + 2}.

Let α = |D ∩ {1, . . . , k + 1}|. In this case, oJ = k+1−α+m−t= t+1−α.
The setQJ contains at most t−α < oJ corrupt parties, thus, these parties
do not get the bit σi−1

J from the trusted party.

Thus, the adversary can bias the output only if it guesses i∗. If σi
J �= σi

J′ for
two bits that the adversary gets from the trusted party, then it can learn that
i < i∗. It can be shown that the adversary can get at most 2k+1 such bits (out
of the 2k+2 bits). With probability 1/22k+1

all these bits are all equal in a round
prior to i∗ and the adversary cannot distinguish such round from i∗. By Lemma
2 in [9], this implies that the adversary can guess i∗ with probability at most
22k+1

/r. Therefore, the bias is O(22k+1
/r).

Roughly speaking, transforming the above informal arguments into a formal
proof, which uses the real vs. ideal paradigm, works as follows. We define a
simulator S that for an adversary A, first uses the ideal CoinToss() functionality
to toss a completely fair coin wS (this coin is the output of the honest parties in
the simulated execution). Then, in order to simulate the view of A, the simulator
S runs A internally and interacts withA playing the role of T (with w = wS); the
only difference is that in the a premature termination, it always sends the parties
wS . The arguments of the above proof sketch show that view of A together with
the output of the honest parties are identically distributed whenever premature
termination does not occur in the special round i∗. The above bound on the
ability of any adversary to correctly guess i∗ finalizes the proof. The formal
proof will appear in the full version of this paper.

552 A. Beimel, E. Omri, and I. Orlov

6 Omitting the On-Line Dealer

In this section we show how Protocol CoinTossWithDealerr, presented in Sec-
tion 5, can be transformed into a real-world protocol. That is, we present a
fully secure m-party protocol implementing the ideal functionality described
in Protocol CoinTossWithDealerr. The resulting protocol has r′ rounds, where
r′ = r + c(k + 1), for some constant c, and is executed in a network where the
parties communicate via an authenticated broadcast channel. Before formally
describing our construction, we outline its main components.

The inner secret-sharing scheme. To implement the ideal secret sharing func-
tionality of the trusted party T in the CoinTossWithDealerr protocol to share
the bits σi

J , we use an oJ -out-of-|QJ | Shamir secret-sharing scheme. That is,
in each round i, each party pj ∈ QJ obtains a share Si,J

j in a oJ -out-of-|QJ |
secret-sharing of σi

J . The same requirement on σi
J as in the ideal protocol are

preserved using this inner secret-sharing scheme. That is, the adversary is able
to obtain information on σi

J only if it controls at least oJ of the parties in QJ .
On the other hand, if, in a premature termination in round i, at least oJ parties
in QJ work together, then they can reconstruct σi−1

J .
The outer secret-sharing scheme. In the ideal protocol, the adversary never

learns anything about the bits σi
J before round i begins. To achieve this property

in the real-world protocol, the shares of the inner secret-sharing schemes of all
rounds are shared, in a preprocessing step, using a (t+1)-out-of-m secret-sharing
scheme. The t+1 threshold guarantees that the adversary cannot see the shares
of the inner secret-sharing scheme for a given round i without the help of honest
parties, which will not be given before round i.

In each round i the parties send messages so that each party can reconstruct
its shares in the inner secret-sharing schemes of round i. Since all messages are
broadcast and all parties can see them, the shares that party pj receives in round
i are masked by using yet another layer of secret-sharing. Specifically, a share
Si,J

j to be reconstructed by pj in round i is signed and shared (already in the
preprocessing phase) in a 2-out-of-2 secret sharing scheme, such that one share is
given to pj and the other is shared among all parties in a (t+1)-out-of-m secret-
sharing scheme. We refer to the combination of these two layers of secret-sharing
as the outer secret-sharing scheme.

Premature Termination. The t+1 threshold of the outer secret sharing scheme
allows a successful reconstruction (of the shares of the inner scheme) as long as
at least t+1 parties participate in the reconstruction. This allows the real-world
protocol to proceed with normal interaction rounds as long as less than m− t
parties have aborted (as does the ideal-world protocol). This property is crucial
to the success of the real world protocol, since in the complementary event
that during round i the number of parties that have aborted is at least m− t,
then an honest majority is guaranteed (since t < 2m/3). Thus, in a premature
termination in round i, the active parties can engage in a fully secure multiparty
computation of the appropriate functionality, i.e., the CoinToss functionality in
the special case that i = 1 and a reconstruction functionality otherwise.

Protocols for Multiparty Coin Toss with Dishonest Majority 553

Signatures. In order to confine adversarial strategies to premature aborts, the
messages that the parties send are signed (together with the appropriate round
number and the index of the sending party), and a verification key is given to
all parties. Furthermore, all shares in the inner secret-sharing scheme are signed
(as they are used as messages if reconstruction is required). Any message failing
to comply with the prescribed protocol is considered an abort message. Since all
messages are publicly broadcast, all parties can keep record of all aborts.

The preliminary phase. The goal of the preliminary phase is to compute the
MultiShareGenr functionality, which computes the bits for the underlying sets
and the signed shares for the inner and outer secret-sharing schemes. As an
honest majority is not guaranteed, it is not possible to implement this function-
ality by a secure protocol with fairness. That is, we cannot implement an ideal
functionality where a trusted party computes the MultiShareGenr functionality
and sends the appropriate output to each party. However, since the outputs of
the MultiShareGenr functionality do not reveal any information regarding the
output of the protocol to any subset of size at most t, fairness is not essential for
this part of the computation. We use a protocol with cheat detection, that is, if
the protocols fails at least one corrupt party is identified by all honest parties.
The computation is then repeated without the detected malicious parties.

More formally, we compute the MultiShareGenr functionality using a multi-
party computation protocol that is secure-with-abort with cheat-detection. In-
formally, this means that we use a protocol that implements the following ideal
model: the trusted party computes the MultiShareGenr functionality and gives
the outputs of the corrupted parties to the adversary; the adversary either sends
“proceed”, in which case, the trusted party sends the appropriate output to
each honest party; otherwise, the adversary sends “abortj” (where, pj is in the
set of corrupted parties) to the trusted party, which in turn notifies the hon-
est parties that pj is malicious. Using methods from Pass [13], one can obtain
a constant-round multiparty protocol secure-with-abort with cheat-detection.
Since this protocol is repeated at most k + 1 times before an honest majority is
guaranteed, the round complexity of the preliminary phase is O(k).

We first present the initialization functionality of the protocol,

Functionality MultiShareGenr

Computing default bits
1. Choose w ∈ {0, 1} and i∗ ∈ {1, . . . , r} uniformly at random.
2. For each i ∈ {1, . . . , r} and for each J ⊂ {1, . . . , k + 2},

(a) if i ∈ {1, . . . , i∗ − 1}, then choose independently and uniformly at ran-
dom σi

J ∈ {0, 1}.
(b) if i ∈ {i∗, . . . , r}, then set σi

J = w.
Computing signed shares of the inner secret sharing scheme
3. Compute (Ksign,Kver)← Gen(1n).
4. For each i ∈ {1, . . . , r} and for each J ⊂ {1, . . . , k + 2}

(a) Choose random secret shares of σi
J in an oJ -out-of-|QJ | Shamir’s secret

sharing scheme for the parties in QJ .
For each party pj ∈ QJ , let Si,J

j be its share of σi
J .

554 A. Beimel, E. Omri, and I. Orlov

(b) For each share Si,J
j , add the corresponding set index and the round

number and sign:
Ri,J

j ← (Si,J
j , J, i,Sign((Si,J

j , J, i),Ksign).
Computing shares of the outer secret sharing scheme
5. For each i ∈ {1, . . . , r}, for each J ⊂ {1, . . . , k + 2}, and for each pj ∈ QJ ,

share pj ’s signed share Ri,J
j using a 2-out-of-2 secret sharing scheme; one

share is given to pj (a private mask only pj obtains) and the other share is
shared among all parties in a (t+ 1)-out-of-m secret-sharing scheme.

Signing the messages of all parties
6. Compute the message m(q,i) that pq ∈ P broadcasts in round i by con-

catenating (1) pq’s identity, (2) the round number i, and (3) the shares of
Ri,J

j (for all J and for all j such that pj ∈ QJ) produced in Step 5 for pq
(excluding pq’s private masks).

7. Compute M(q,i) ← (m(q,i), Sign(m(q,i),Ksign)).
Outputs: Each party pj receives

– The verification key Kver.
– The messages M(j,1), . . . ,M(j,r) that pj broadcasts during the protocol.
– pj ’s private masks which were produced in Step 6 for each J⊂{1, . . . , k+2}

such that pj ∈ QJ .

Next, we formally define the m-party coin-tossing protocol tolerating t < 2m/3
malicious parties without any dealer.

Protocol MultiPartyCoinTossr

Joint input: Security parameter 1n.
Preliminary phase:
– The parties execute a secure with abort protocol with cheat detection com-

puting Functionality MultiShareGenr.
– If a party aborts, then this phase is repeated without the parties that were

identified as cheaters so far.
– If the first phase was repeated k + 1 times (thus, an honest majority is

guaranteed), the parties use a multiparty secure protocol (with fairness) to
toss a fair coin, output this resulting bit, and halt.

– Denote the set of indices of inactive parties (i.e., parties that cheated or
aborted so far) by D.

In each round i = 1, . . . , r do:
– Each party pj ∈ P broadcasts M(j,i) (containing its shares in the outer

secret-sharing scheme).
– If Ver(M(j,i),Kver) = 0 or if pj broadcasts an invalid or no message, then all

parties mark pj as inactive, i.e., set D ← D ∪ {j}. If |D| ≥ m− t, then the
premature termination step is executed.

Premature termination step
– If i = 1, then the active parties use a multiparty secure protocol (with

fairness) to toss a fair coin, output this resulting bit, and halt.
– Otherwise,

Protocols for Multiparty Coin Toss with Dishonest Majority 555

1. Each party pj reconstructs Ri−1,J
j , the signed share of the “inner secret

sharing scheme” produced in Step (4) of Functionality MultiShareGenr,
for every J ⊂ {1, . . . , k + 2} such that pj ∈ QJ .

2. The active parties execute a secure multiparty protocol with an honest
majority to compute Functionality Reconstruction, where the input of
each party pj is Ri−1,J

j for every J ⊂ {1, . . . , k + 2} such that pj ∈ QJ .
3. The active parties output the output of this protocol, and halt.

At the end of round r:
– Each active party pj broadcasts the signed shares Rr,J

j for each J such that
pj ∈ QJ .

– Each active party reconstructs the bit σr
J for the lexicographically first set J

such that at least oJ parties broadcast properly signed shares Rr,J
j , outputs

σr
J , and halts.

Functionality Reconstruction
Joint Input: The indices of inactive parties, D, and the verification key, Kver.
Private Input of pj: A set of signed shares Ri−1,J

j for each J ⊂ {1, . . . , k + 2}
such that pj ∈ QJ .

Computation:
1. For each pj , if pj sends a message that is not appropriately signed or

malformed, then D ← D ∪ {j}.
2. Define the set J :

– If |D ∩ {k + 2, . . . ,m}| ≥ m− t then J = {1, . . . , k + 1} \D.
– If |D ∩ {k + 2, . . . ,m}| < m− t then J = ({1, . . . , k + 1} \ D) ∪
{k + 2}.

3. Reconstruct σi−1
J from the shares of the active parties in QJ .

Outputs: Each honest party pj output the value σi−1
J .

We next claim that Functionality Reconstruction is well-defined, that is, if the
functionality is computed (after premature termination in round i > 1), then,
indeed, σi−1

J can be reconstructed. To see this, observe that the number of parties
in the appropriate set QJ that participate in the computation (i.e., not in D) is
at least the reconstruction threshold oJ : If |D ∩ {k + 2, . . . ,m}| ≥ m− t, then
QJ contains only active parties and |QJ | = oJ . Notice that we already proved
that in this case |QJ | ≥ 1. If |D ∩ {k + 2, . . . ,m}| ≤ m− t − 1, then oJ =
|J |−1+m− t and |QJ \ {pj : j ∈ D}| = |J |−1+ |{k + 2, . . . ,m} \D|. To prove
that |QJ \ {pj : j ∈ D}| ≥ oJ , it suffices to show that |{k + 2, . . . ,m} \D| ≥
(m− k − 1)− (m− t− 1) = t− k = t− (2t−m) = m− t.

7 Coin-Tossing Protocol for Any Constant Fraction of
Corrupted Parties

In this section we describe an r-round m-party coin-tossing protocol that toler-
ates up to t dishonest parties, where t is some constant fraction of m, that is,
t = (1−ε)m, for some (constant) 0 < ε. The bias of our protocol is O

(
ε/
√
r − t

)
.

556 A. Beimel, E. Omri, and I. Orlov

Before our work, the best known protocol for this scenario is an extension of
Blum’s two-party coin-tossing protocol [3] to an r-round m-party protocol that
has bias O

(
t/
√
r − t

)
[2, 6]. In this protocol, in each round i of the protocol, the

parties jointly select a random bit σi in two phases. In the first phase, each party
commits to a “private” random bit, and in the second phase the private bits are
all revealed and the output bit σi is taken to be the XOR of all private bits. The
output of the whole protocol is taken to be the value of the majority of the σi’s.
When there is a premature abort in round i, the remaining parties repeat the
computation of round i and continue with the prescribed computation.

Intuitively, the best strategy for a rushing adversary to bias the output of the
protocol, say toward 0, is in each round i to instruct a corrupted party to abort
before the completion of the revealing phase if σi = 1. This is possible, since
the rushing adversary learns σi before the completion of round i, specifically,
a corrupted party can delay its message until all honest parties reveal their
bit. This can go on at most t times, adding a total bias of O (t/

√
r), whenever

r = Ω(t2).
We use the notion of cheat detection to limit the adversary to abort in a con-

stant number of rounds. Roughly speaking, we follow the general structure of the
above protocol in computing the σi’s and taking the majority over them. How-
ever, we compute each σi using a secure with abort with cheat-detection protocol,
such that either the computation is completed or at least a constant fraction of
the malicious parties abort (specifically, m− t malicious parties abort). Next,
we briefly describe the computation of each σi in our protocol. That is, we show
how to obtain a constant round secure-with-abort with cheat detection protocol
to compute a random bit that identifies at least m− t cheating parties. Let mi

be the number of active parties at the beginning of round i and ti be a bound
on the number of active corrupted parties at the beginning of round i (that is,
if t′ parties have aborted in rounds 1, . . . , i− 1, then ti = t− t′). We assume the
existence of a constant round secure-with-abort with cheat detection protocol.

In the first phase, a preprocessing phase, active parties execute a constant
round secure-with-abort with cheat detection protocol to compute a (ti + 1)-
out-of-mi secret sharing of a random bit σi. That is, at the end of this phase,
each party holds a share in a (ti + 1)-out-of-mi Shamir secret sharing scheme of
σi. To confine adversarial strategies to aborts, the share that each party receives
is signed and a verification key is given to all parties. In a second phase, a
revealing phase, all parties reveal their shares and reconstruct σi. Broadcasting
anything other than a signed share is treated as abort. To see that the above
protocol achieves the required properties, observe that after the first phase the
adversary cannot reconstruct σi. Thus, by aborting the preprocessing round,
malicious parties cannot bias the output. We stress that they are able to cause
the preprocessing phase to fail, at the cost of at least one malicious party being
detected by all honest parties. in such a case, the preprocessing stage is repeated
without the detected party. This, however, can only happen at most t times in
total, throughout the whole protocol. In the revealing phase, a rushing adversary
is already able to learn σi before the corrupted parties broadcast their messages

Protocols for Multiparty Coin Toss with Dishonest Majority 557

and thus can bias the output by not broadcasting these messages. However, by
the properties of the secret sharing scheme, at least m− t parties will have to not
broadcast their message, and hence, effectively abort the computation. Hence,
the adversary can do this at most 1−2ε

ε times throughout the protocol, before an
honest majority among active parties is guaranteed. Thus, the majority function
is applied to Ω(r− t) random bits, of which the adversary can bias 1−2ε

ε . Thus,

the total bias of the protocol is O
(

1
ε
√

r−t

)
.

Acknowledgments. We are grateful to Yehuda Lindell for many helpful discus-
sions and great advice. We thank Oded Goldreich and Gil Segev for suggesting
this problem and for useful conversations.

References

[1] Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols
for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
137–156. Springer, Heidelberg (2007)

[2] Averbuch, B., Blum, M., Chor, B., Goldwasser, S., Micali, S.: How to im-
plement Bracha’s O(log n) Byzantine agreement algorithm (1985) (unpublished
manuscript)

[3] Blum, M.: Coin flipping by telephone a protocol for solving impossible problems.
SIGACT News 15(1), 23–27 (1983)

[4] Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. on Computing 13, 850–864 (1984)

[5] Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
of Cryptology 13(1), 143–202 (2000)

[6] Cleve, R.: Limits on the security of coin flips when half the processors are faulty.
In: Proc. of the 18th STOC, pp. 364–369 (1986)

[7] Cleve, R., Impagliazzo, R.: Martingales, collective coin flipping and discrete con-
trol processes (1993) (manuscript)

[8] Goldreich, O.: Foundations of Cryptography, Voume II Basic Applications. Cam-
bridge University Press, Cambridge (2004)

[9] Gordon, D., Katz, J.: Partial fairness in secure two-party computation. Cryptology
ePrint Archive, Report 2008/206 (2008), http://eprint.iacr.org/

[10] Katz, J.: On achieving the “best of both worlds” in secure multiparty computation.
In: Proc. of the 39th STOC, pp. 11–20. ACM Press, New York (2007)

[11] Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computa-
tion. J. of Cryptology 16(3), 143–184 (2003)

[12] Moran, T., Naor, M., Segev, G.: An optimally fair coin toss. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 1–18. Springer, Heidelberg (2009)

[13] Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. In: Proc. of the 36th STOC, pp. 232–241 (2004)

[14] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: Proc. of the 21st STOC, pp. 73–85 (1989)

http://eprint.iacr.org/

Multiparty Computation for Dishonest Majority:
From Passive to Active Security at Low Cost

Ivan Damg̊ard and Claudio Orlandi

Department of Computer Science, Aarhus University
{ivan,claudio}@cs.au.dk

Abstract. Multiparty computation protocols have been known for more
than twenty years now, but due to their lack of efficiency their use is still
limited in real-world applications: the goal of this paper is the design
of efficient two and multi party computation protocols aimed to fill the
gap between theory and practice. We propose a new protocol to securely
evaluate reactive arithmetic circuits, that offers security against an active
adversary in the universally composable security framework. Instead of
the “do-and-compile” approach (where the parties use zero-knowledge
proofs to show that they are following the protocol) our key ingredient
is an efficient version of the “cut-and-choose” technique, that allow us to
achieve active security for just a (small) constant amount of work more
than for passive security.

1 Introduction

In multi party computation (MPC) a set of parties (P1, P2, . . . , Pn) owns some
private inputs (x1, x2, . . . , xn) and wants to compute some function f of these
inputs in such a way that the output z = f(x1, x2, . . . , xn) is correct and even if
n− 1 parties are corrupted and cooperate, they cannot learn more information
about the honest party’s input than what they can learn from their inputs and
the output of the computation.

The first solutions for this problem were given by Yao [Yao82] for the two
party case and by Goldreich, Micali and Wigderson [GMW87] for the multi
party case. Those solutions provide computational security: if we are willing to
assume that a majority of the parties are honest, information-theoretical secure
solutions were introduced by Ben-Or, Goldwasser and Widgerson [BGW88] and
Chaum, Crepeau and Damg̊ard: [CCD88]. An unexpected advantage of the lat-
ter kind of protocols with respect to the former, is that information-theoretical
secure protocols are more efficient than the computational secure one, and there-
fore have been implemented and successfully used to solve real-world problems
[BCD+09], while protocols that are secure against a dishonest majority – and
therefore consider a more realistic threat model, and in particular can be used
in the crucial two-party setting – are still too cumbersome to be used in real life.

The goal of this paper is to fill this gap and design an efficient protocol for
arithmetic MPC secure against a dishonest majority.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 558–576, 2010.
c© International Association for Cryptologic Research 2010

Multiparty Computation for Dishonest Majority 559

Another advantage of the protocols in [BGW88, CCD88] over the ones in
[Yao82, GMW87], is to provide security also in concurrent settings: when we
run an MPC protocol over an Internet-like network, we need to be sure that the
protocol remains secure also when other protocols are running over the network:
in particular, the adversary might use the information that he gets running
one protocol in order to break the security of the other one. The universally
composable (UC) security framework of [Can01] provides a strong definition
of security, and if a protocol is UC secure then we know that it’s going to
be secure also when arbitrarily composed with itself or other protocols. The
protocols of [BGW88, CCD88] are secure also in the UC sense, while the security
of [Yao82, GMW87] does not hold in the concurrent case.

We achieve the best of both worlds and present a truly efficient protocol that
can be implemented and used in real life, and that guarantees static UC security
against any dishonest majority. An earlier version of this protocol, described in
[Orl09], has already been implmenented and tested by Jakobsen, Makkes and
Nielsen in [JMN10], where timings for different level of security and circuit sizes
can be found.

The price to pay when designing protocols secure against any dishonest major-
ity is high. First of all, it is clearly impossible to guarantee termination, meaning
that even if one single party leaves the protocol, the protocol is going to abort.
Also, it is not possible to guarantee fairness for general MPC [Cle86], meaning
that the adversary can see the output and then decide whether to let the honest
parties receive their output or not.

Our protocol requires a (small) constant amount of public key operations per
gate of the circuit. The protocol has a preprocessing flavor with a first (heavier)
preprocessing phase and a (lighter) on-line phase of actual computation. The
preprocessing phase is independent of the function to be computed and the
inputs.

Informal Theorem 1. Assuming semi-honest multiplication protocols and ho-
momorphic trapdoor commitment schemes, there exist a protocol for arithmetic
multi party computation that is UC secure against any dishonest majority.

– If n parties want to preprocess M multiplication gates with security 1− 2−s,
every party calls the multiplication protocol n(5M + 18s) times.

– In the on-line phase, 3 commitments are computed for each multiplication
gate.

State of the art: The first solution for MPC with dishonest majority in the UC
framework was given by Canetti, Lindell, Ostrovsky and Sahai [CLOS02]: while
their construction is an important feasibility result, the protocol is completely
impractical due to the use of generic zero-knowledge proofs.

Efficient solutions for MPC over Boolean circuits have been extensively in-
vestigated in the past years [LP07, LPS08, NO09, PSSW09]. For the case of
arithmetic computation, a step towards efficient solutions has been taken by
Cramer, Damg̊ard and Nielsen in [CDN01, DN03], based on threshold homomor-
phic encryption: however efficient protocols for the distributed key generation

560 I. Damg̊ard and C. Orlandi

phase are still lacking and the use of homomorphic encryption during the on-line
computation makes these protocol impractical.

In a recent work Ishai, Prabhakaran and Sahai [IPS09], following the “MPC
in the head” approach of [IPS08], present a protocol for arithmetic computa-
tion with characteristics similar to ours, but where the constants involved are
significantly bigger. On the other hand, the focus of [IPS09] is on optimizing
the amortized asymptotic complexity, ignoring multiplicative constants and low-
order additive terms, whereas our goal is to optimize practical efficiency.

1.1 Main Ideas

Secret representation: We call a shared commitment a secret-shared value in
Zp between the parties: the sharing of a value a is represented by an additive
secret sharing of the value a and some randomness r, together with a public
homomorphic trapdoor commitment to Comm(a; r).

MPC with a trusted dealer: Suppose there exists a trusted dealer that pro-
vides the parties with random triplets of multiplicative shared commitments
Comm(a),Comm(b),Comm(c), with c = a · b, and additive sharings of the open-
ings. We will call these commitments to random multiplications together with
the sharing of their openings multiplicative triplets or triplets from now on.

Given access to this trusted dealer, the parties can efficiently compute any
arithmetic circuit over the field: given that shared commitments are linear (the
commitments are homomorphic and the openings additively shared), it is possi-
ble to evaluate additions without any interaction. Using circuit derandomization
from [Bea91], it is possible to evaluate a multiplication in the circuit using one
of the preprocessed triplets.

The resulting protocol is extremely efficient as the interaction is limited to
the opening of a triplets of commitments for every multiplication gate in the
circuit, and some local computation. As for security, n − 1 corrupted parties
have no information about the honest party’s inputs, and cannot force the com-
putation to output the wrong value without breaking the binding property of
the commitment scheme.

Implementing the trusted dealer: The main challenge of this paper is to im-
plement the trusted dealer i.e., to generate the triplets in an efficient way. We
start from any two party multiplication protocol that satisfies strong semi-honest
security. This could be done using homomorphic encryption, OT, or other cryp-
tographic assumptions, see for instance [IPS09]. Intuitively, a protocol is strongly
secure against a semi-honest adversary if 1) the security is guaranteed for any
choice of the corrupted parties’ randomness and 2) the view of the protocol com-
mits the adversary to his randomness and given the view and the randomness it
is possible to verify whether any party deviated from the protocol.1

1 Most “natural” multiplication protocols satisfy these requirement. If not, they can
be easily modified to do that.

Multiparty Computation for Dishonest Majority 561

The main challenge now is to turn this semi-honest protocol into a protocol
with security against a malicious adversary in the UC setting. In order to do so,
we will employ a kind of cut-and-choose technique reminiscent of the one from
[NO09], that works as follow:

1. First, many random triplets are created.
2. Then, a fraction (say half) of the triplets are checked to detect cheating

attempts. The parties randomly select a subset of the generated triplets and
disclose the randomness that they used during the multiplication protocol.
If any cheating is detected the protocol aborts, otherwise the parties proceed
to the next step.

3. If the test goes through, we know that with high probability the adversary
didn’t cheat in most of the executions of the multiplication protocol. Given
that any triplet is checked with probability 1/2, if the adversary cheats in the
generation of s triplets the cheating will be detected during the test except
with probability 2−s. So the honest parties can reasonably assume that if the
test goes through there are no more than, say 80, triplets that were generated
maliciously among the untested ones. For this informal description let’s call
a triplet good if it was honestly generated, and bad if it was maliciously
generated. Given that the protocol to generate the triplets is semi-honest
secure, a good triplet will satisfy correctness (c = a · b) and privacy (a, b are
uniformly random in the view of the adversary), while a bad triplet might
nor be correct nor private.

4. The triplets are checked for correctness: they are paired two-by-two, and a
sanity-check is performed. If any bad triplet is found, the protocol aborts,
otherwise we know that all the triplets are correct i.e. for every triplets it
holds that c = a · b. Every check “burns” one of the two triplets.

5. At this point we know that the triplets are correct, but still the adversary
might have some extra knowledge about some of the honest parties’ shares:
So we combine the remaining triplets in such a way that we can “distill” M
fully private triplets from a set of O(M + s) triplets, where s of them might
not be private. The way the triplets are combined can be seen as a new and
unexpected application of packed Shamir’s secret sharing [FY92].

6. The last step to achieve UC security is, informally, to ask every party to
prove knowledge of their shares — thus ensuring input independence. To
do that, the parties generate some random homomorphic UC commitments,
and open the differences of the triplets and those commitments. Opening the
differences between those commitments can be seen as a very simple proof
of knowledge.

UC commitments: For the last step of the protocol sketched above, we need some
UC commitments that are compatible with the homomorphic commitments used
during the MPC protocol.

A really easy way to construct UC commitments is to ask a party to pro-
vide a commitment Comm(a; r) together with an encryption of its opening. The
encryption is relative to a public key in the common reference string (CRS).

562 I. Damg̊ard and C. Orlandi

Therefore, the simulator (by choosing the CRS) can “extract” the commitment
by decrypting the ciphertext. Clearly a malicious committer can encrypt some-
thing different than the opening of the commitment. To force honest behavior,
we use again a cut-and-choose technique. This protocol also has a preprocessing
flavor, with a heavier preprocessing phase and a light on-line phase.

Informal Theorem 2. Assuming semantic secure encryption and trapdoor ho-
momorphic commitment schemes, it is possible to implement UC commitments
in the CRS model.

– The protocol generates M secure UC commitments with probability 1 − 2−s

using 4M + 4s invocations of both primitives.
– The actual commit phase uses no cryptographic primitives and in the open

phase 1 trapdoor commitment is verified.

Higher level operations: Our protocols are designed to be compatible with higher
level protocols to perform complex operation such as exponentiation, bit decom-
position and comparison in an efficient way — as in [DFK+06] and related work

2 Preliminaries

Homomorphic commitment schemes: A double-trapdoor homomorphic commit-
ment scheme is defined by four efficient algorithms (Gen,Comm,TOpen,�),
where (ck, τ1, τ2) ← Gen(1κ, p) generates a commitment key together with two
trapdoors, C = Commck(x; r) takes a message x ∈ Zp and randomness r in the
commitment randomness space RC and produces a commitment C. Using one
of the trapdoors it is possible to trapdoor open a commitment C to any message
x′ �= x. Finally the plain-text space defined by the commitment key ck is the
field Zp of prime order p, with |p| > κ, and the commitments are homomorphic
meaning that Comm(x; r) � Comm(y; s) = Comm(x+ y mod p; r + s).2

Definition 1. We call a tuple of algorithms (Gen,Comm,TOpen,�) a double-
trapdoor homomorphic commitment scheme if: let (ck, τ1, τ2)← Gen(1κ, p), then
the following properties hold:

Trapdoor Security: There is no PPT A s.t. τ3−i ← A(1κ, ck, τi).
Computational Binding: There is an efficient PPTE s.t. τ←E(ck, x, r, x′, r′)

if Commck(x; r) = Commck(x′; r′), x �= x′, with τ ∈ {τ1, τ2}.
Statistical Hiding: ∀x, x′∈Zp and randomness r, let r′i =TOpen(C, x, r, x′, τi)

with i = 1, 2 then Commck(x; r) = Commck(x′; r′i); moreover r′1, r
′
2’s distri-

butions are statistically close.

Intuitively we need the commitments to have two trapdoors because we need
to argue that even after the simulator opens some commitments towards the

2 To ease the notation, we will write RC as an additive group.

Multiparty Computation for Dishonest Majority 563

adversary using one of the trapdoor, the adversary still cannot break the binding
property of the commitment scheme.

In [CD98] it has been shown that trapdoor homomorphic commitment schemes
can be instantiated using any q-one-way group homomorphism : this primitive can
be built from the discrete logarithm assumption, RSA, and other standard as-
sumptions.

Semi-honest multiplication protocol: The building block of our protocol is any
strong-semi-honest multiplication protocol (c1, c2) ← πmul(a, b) where a, b ∈ Zp

are respectively the first and the second party’s inputs, c1 is random in Zp and
c2 = a · b− c1 mod p.

The two party multiplication protocol can be instantiated using a variety of as-
sumption, like homomorphic encryption, OT, and more. The exact requirements
for the multiplication protocol are slightly stronger than the standard defini-
tion of semi-honest security. Most “natural” semi-honest multiplication protocol
would satisfy this stronger requirement, or can be easily modified in order to do
so. Intuitively we need the protocol to be 1) secure also if the adversary chooses
maliciously the randomness for the corrupted parties and 2) the adversary can-
not cheat during the protocol and then pretend that he behaved honestly, if that
instance of the protocol is checked during the cut-and-choose.

More in detail, consider any two party semi-honest secure protocol view ←
π(r1, r2) where ri is the randomness used by Pi. Without loss of generality
assume that P1 is honest and fix his randomness r1.

Definition 2. A protocol π is strongly secure against a semi-honest adversary if
π is 1) secure for any adversary that follows the protocol but chooses its random
r2 maliciously and 2) if P ∗

2 deviates from the protocol π it holds that either a)
P ∗

2 does not break the security of π or b) for all PPT P ∗
2 : r∗2 ← P ∗

2 (view, r2)
then view �= π(r1, r∗2) with all but negligible probability.

3 MPC Protocol

In Figure 1 the ideal functionality FAMPC is presented. This ideal functionality
allows n parties to input values in Zp, manipulate them (via additions and
multiplications) and output the result to a given party.

In this description of the protocol3 we assume that the parties already have
secure and authenticated point to point channels, and a functionality for broad-
cast. Also, following the modular spirit of the UC framework we will implement
the protocol in the presence of a “trusted dealer” that gives to the party a pub-
lic key for the commitment scheme, together with random shared commitments.
The ideal functionality describing the behavior of this trusted dealer is detailed
in Figure 2.

3 In the full version of this paper [DO10] an actual instantiation of the protocol, for a
specific choice of trapdoor commitments and multiplication protocol is presented.

564 I. Damg̊ard and C. Orlandi

The functionality FAMPC has the following commands:

Initialize: On input (init, p) from all parties, activate and store the modulo p.
Rand: On input (rand, Pi, varid) from all parties Pi, with varid a fresh identifier,

pick r ← Zp and store (varid, r).
Input: On input (input, Pi, varid, x) from Pi and (input, Pi, varid, ?) from all

other parties, with varid a fresh identifier, store (varid, x).
Add: On command (add, varid1, varid2, varid3) from all parties (if

varid1, varid2 are present in memory and varid3 is not), retrieve (varid1, x),
(varid2, y) and store (varid3, x + y mod p).

Multiply: On input (multiply, varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), retrieve (varid1, x),
(varid2, y) and store (varid3, x · y mod p).

Output: On input (output, Pi, varid) from all parties (if varid is present in mem-
ory), retrieve (varid, x) and output it to Pi.

Fig. 1. The ideal functionality for arithmetic MPC

The functionality Frand has the following commands.

Initialize: On input (init, p) from all parties, activate, generate a key for a
double-trapdoor homomorphic commitment scheme ck ← Gen(1κ, p) with
plain-text space Zp and send ck to the parties.

Req. Share: On input (share, sid, ai, ri, Pi), with sid a fresh identifier, create
and output a shared commitment Commck(a, r) with a =

∑
ai, r =

∑
ri.

Fig. 2. The ideal functionality that models Frand

3.1 Notation and Library

We will call a shared commitment of x (and write [x]) the following configuration:
Pi, i = 1, . . . , n owns xi ∈ Zp, ri in the commitment scheme’s randomness space
RC and Commck(x; r), where it holds that x =

∑n
i=1 xi mod p and r =

∑n
i=1 ri.

For convenience we define a library of commands that the parties can perform
on shared commitments. Call H, C respectively the sets of honest parties and the
set of corrupted parties. H ∩ C = ∅ and H ∪ C = {1, . . . , n}. Finally |H| ≥ 1. In
Figure 3 some basic commands are introduced and in Figure 4 some advanced
commands are defined.

3.2 On-Line Phase

As mentioned our protocol has two phases: the preprocessing phase described in
Figure 7 produces many random triplets, and in the on-line phase the triplets are
used to implement the ideal functionality FAMPC: the on-line protocol, detailed
in Figure 5, is quite simple. Parties provide inputs and compute multiplications
by opening differences between random commitments generated during the pre-
processing and the actual values of the computation. The security of the protocol

Multiparty Computation for Dishonest Majority 565

Share Secret: To share an element x ∈ Zp, choose random x1, . . . , xn−1 ∈R Zp,
define xn = x −

∑n−1
i=1 xi mod p. Choose random ρx,1, . . . , ρx,n ∈ RC, define

ρx =
∑n

i=1 ρx,i and Cx = Commck(x, ρx). Send [x]i = (xi, ρx,i, Cx) to party Pi.
We denote this operation by [x] = Share(Pi, x, ρx).

Open Secret: every party Pi broadcasts a share pair (x′
i, ρ

′
x,i). The parties com-

pute the sums x′, ρ′x and check Commck(x
′, ρ′x)

?
= Cx. If yes, output x = x′,

else output x =⊥. We denote this operation by x = Open([x]). If just a party
Pi should learn the output, we modify the above protocol in the sense that all
parties send their shares to Pi, that verifies the correctness and outputs the
result in the same way. We denote this operation by x = OpenTo(Pi, [x]).

Random Share: To generate a share of a random element r ∈R Zp, party Pi

chooses at random (ri, ρr,i) ∈R Zp ×RC and broadcast Ci
r = Commck(ri, ρr,i).

Every party computes Cr =
∏n

i=1 C
i
r = Commck(r, ρr), where r =∑n

i=1 ri, ρr =
∑n

i=1 ρr,i. Party Pi sets [r]i = (ri, ρr,i, Cr). We denote this oper-
ation by [r] = Rand().

Addition: We denote by [z] = [x]+[y] the following: each Pi computes [z]i = [x]i+
[y]i = (xi+yi mod p, ρx,i+ρy,i, Cx�Cy). From now on we will write commands
like [z] = 3[x]− [y] + 2 with the obvious semantic. Any additive constant c can
be interpreted as [c]1 = (c, 0,Commck(c, 0)), and [c]i = (0, 0,Commck(c, 0)) for
i �= 1.
Note that no communication is involved in this command.

Fig. 3. Basic commands on shared commitments

Shift: Assume the parties have a shared commitment [r]. Then we denote by [x] =
Shift(Pi, x, [r]) the following protocol:
1. r = OpenTo(Pi, [r]);
2. Pi broadcast Δ = r − x mod p;
3. [x] = [r]−Δ;

Multiplication: Assume the parties have a triplet of shared commitments
([a], [b], [c]). Then we define the following command [z] = Mul([x], [y], [a], [b], [c])
(the output z is equal to x · y if c = a · b). The command is implemented as:
1. d = Open([x]− [a]); e = Open([y]− [b]);
2. [z] = e[x] + d[y]− de+ [c];

Fig. 4. Advanced commands for shared commitments

intuitively follows from the fact that the random preprocessing material is used to
mask the actual values of the computation. Also, when a value is opened, the pres-
ence of the commitment prevents cheating parties to force a wrong output value.

3.3 Preprocessing

The main contribution of this paper is in the way the random triplets are gen-
erated. The task is to start from a strong semi-honest multiplication protocol as
defined in Definition 2 and a dealer that provides random shared commitments as

566 I. Damg̊ard and C. Orlandi

The protocol implements FAMPC’s commands in the following way:

Initialize: The parties invoke Frand(init, p) and store ck. Run the preprocessing
as in Figure 7 to produce a big enough set of triplets.

Rand: The parties invoke Frand(share, varid) and store the commitment [a].
Input: The parties invoke Frand(share, varid) and store the commitment [a], then

perform [x] = Shift(Pi, x, [a]).
Add: To add [x], [y] with identifiers varid1, varid2 the parties perform [z] = [x]+[y]

and assign [z] the identifier varid3.
Multiply: To multiply [x], [y] with identifiers varid1, varid2 the parties take

a triplet ([a], [b], [c]) from the set of the available ones, perform [z] =
Mul([x], [y], [a], [b], [c]) and assign [z] the identifier varid3 and remove
([a], [b], [c]) from the set of the available triplets.

Output: To output [x] with identifier varid to Pi perform x = OpenTo(Pi, [x]).

Fig. 5. The on-line protocol ΠAMPC

Every party Pi does the following:

1. Choose random shares ai, bi ∈ Zp.
2. For all j �= i, run (dij , eji) ← πmul(ai, bj) as party 1.
3. For all j �= i, run (dji, eij) ← πmul(aj , bi) as party 2.
4. Set ci = ai · bi +

∑
j dij +

∑
j eij mod p.

5. Choose ri, si, ti ∈ RC, compute Ai = Commck(ai, ri),Bi = Commck(bi, si),
Ci = Commck(ci, ti), and broadcast Ai, Bi, Ci.

6. Everyone computes A = �iAi, B = �iBi, C = �iCi

Fig. 6. The protocol to generate one triplet Πtri

described in Figure 2, and finish with a fully secure protocol that outputs triplets
of multiplicative shared commitments. The main technical tool is a somewhat
new and surprising application of packed Shamir’s secret sharing [FY92].

We start with a protocol to generate one triplets: the parties use πmul to
compute cross products of their shares and broadcast commitments to their
shares (details are given in Figure 6). This protocol is not secure against a
malicious adversary (that could cheat in πmul or commit to inconsistent values):
Intuitively to achieve full security we need the following: 1) the triplets are
correct i.e. c = a · b, 2) the triplets are private i.e. a, b are uniformly random in
the view of the adversary and 3) the adversary knows his shares of the shared
commitments. The protocol, presented in Figure 7 will proceed in steps and
ensure one property after the other.

Note that in the protocol of Figure 7 every “distilled” triplets is the product
of every produced triplets. This give a quadratic blow-up in local computation.
A solution that might be more efficient in practice is to change the step Privacy
as follows: instead of creating just one big polynomial, randomly partition the

Multiparty Computation for Dishonest Majority 567

Start by running (1 + λ)(4M + 4B − 2) times the protocol Πtri. Call M =
{([ai], [bi], [ci])}i=1,...,(1+λ)(4M+4B−2) the set of produced triplets.

Test: Using Frand sample a string t that determines a subset T ⊂ M of size
λ(4M + 4B − 2). For every triplet in T , the parties reveal all the randomness
used during Πtri, πmul. If any cheating is detected the protocol aborts.

Proof of Knowledge: for each of the untested triplets ([a], [b], [c]), sample three
random shared commitments [r], [s], [u] using Frand and perform Open([r −
a]),Open([s− b]),Open([u− c]).

Correctness: For every pair of triplets left ([a], [b], [c]) and ([x], [y], [z]) do: using
Frand sample a random r ∈ Zp. Compute [c′] = Mul([a], [b], r[x], r[y], r2[z]).
Then if Open([c − c′]) �= 0 abort the protocol, otherwise store [a], [b], [c] for
future use and drop [x], [y], [z].

Privacy: We are now left with 2M + 2B − 1 triplets. Let d = M +B − 1.
1. The parties have a set of 2d+ 1 triplets ([ai], [bi], [ci]), i = 1, . . . , 2d+ 1
2. The parties generate d+ 1 random commitments [f1], . . . , [fd+1]
3. The parties generate d+ 1 random commitments [g1], . . . , [gd+1]
4. Those commitments define two random shared polynomials [F (x)], [G(x)]

of degree d, where [F (x)] :=
∑d+1

i=1 δ
(d)
i (x)[fi], [G(x)] :=

∑d+1
i=1 δ

(d)
i (x)[gi],

where:

δdi (x) =

d+1∏

i �=j=1

x− j

i− j

5. The parties locally evaluate [F (d + 2)], . . . , [F (2d + 1)] and [G(d +
2)], . . . , [G(2d+ 1)]

6. For all i = 1, . . . , 2d+1, the parties compute [hi] := [F (i) ·G(i)] using one
of the triplets ([ai], [bi], [ci])

7. These new shared commitments [hi], i = 1, . . . , 2d+ 1 define a new shared

polynomial [H(x)] :=
∑2d+1

i=1 δ
(2d)
i (x)[hi] of degree 2d.

8. The parties locally compute M new triplets [a′
i], [b

′
i], [c

′
i] where [a′

i] =
[F (−i)], [b′i] = [G(−i)], [c′i] = [H(−i)], with i = 1, . . . ,M .

Fig. 7. The preprocessing protocol Πpre

remaining triplets in subset of smaller size and use many polynomials of smaller
degree. The analysis of this kind of approach can be found in [NO09].

Theorem 1. Let πmul be a strong semi-honest secure two-party multiplication
protocol and Comm a double trapdoor homomorphic commitment scheme, then
the protocol ΠAMPC (κ,B log2(1+λ))-securely implements FAMPC in the Frand-
hybrid model against any static, active adversary that corrupts any number of
parties.

Remark: The statistical security of the protocol depends on both parameters B
and λ. In practice one can set λ = 1/4 and B = 3.6s, so to get a protocol that
is secure except with probability 2−3.6 log2(5/4)s < 2−s, where the total number
of invocation to Πtri is now less than 5M + 18s.

568 I. Damg̊ard and C. Orlandi

Proof (sketch): The simulator SAMPC simulates every call to Frand and keeps
a copy of what the internal state of the corrupted parties should look like if
they had followed the protocol. The simulator can do so as this state is uniquely
determined by the output of Frand and the protocol execution. A description of
the simulator is provided in Figure 8.

The simulator SAMPC maintains at any point a copy of the shares of all parties
(honest and corrupted).

Initialize: The simulator runs (ck, τ1, τ2) ← Gen(1κ), gives ck to the parties, flips a
coin b and stores τ = τ1+b, and discards τ2−b. Call init on the ideal functionality
FAMPC. The simulator simulates the preprocessing by following the protocol in
Figure 7 as an honest party would do, except that it reads the corrupted parties
shares from Frand.

Rand: Simulate the call to Frand by reading the corrupted parties shares and
choose random ai, ri for the honest parties. Call rand on the ideal functionality
FAMPC, and store internally the shares for all parties.

Output: To simulate an output of [x] to Pi where i ∈ H, the simulator receives
(x′

i, r
′
i) from all corrupted parties Pi, i ∈ C. Let (xi, ri) be the internal shares of

the simulator corresponding to Pi. If
∑

i∈C xi =
∑

i∈C x
′
i and

∑
i∈C ri =

∑
i∈C r

′
i

call output on the ideal functionality, otherwise abort the protocol.
To simulate an output of [x] to Pi where i ∈ C, the simulator receives x′

from the ideal functionality, and the sum of the internal shares xi, ri is x, r,
the opening of Cx. The simulator picks the smallest j ∈ H, executes r′j =
TOpen(xj , rj , xj + (x− x′), τ) and sends (xj + (x− x′), r′j), and (xi, ri) for all
i ∈ H, i �= j to the adversary.

Input: To simulate the call for Pi, with i ∈ C simulate the call to Frand as described
above, and perform [x] = Shift(Pi, x, [a]) as the honest parties would do (check
for the abort condition in Open as described before). Internally update all the
parties shares. Given Δ and a, compute x′ = Δ+ a mod p and input it in the
ideal functionality FAMPC.
To simulate the call for Pi, with i ∈ H simulate the call to Frand as described
above, and perform [x] = Shift(Pi, 0, [a]) (check for the abort condition in Open
as described before). Internally update all the parties shares.

Add: Run the protocol honestly and update all the internal shares and call add
on the ideal functionality FAMPC.

Multiply: Run the protocol honestly, updating all the internal shares (check for
the abort condition in Open as described before). Call multiply on the ideal
functionality FAMPC.

Fig. 8. The simulator SAMPC

On-line security: Define an hybrid game where the adversary is restricted to
following the protocol during the preprocessing phase Πpre, and then behaves
arbitrarily during the on-line phase. The view of the protocol (excluding the
preprocessing) contains statistically no information about the actual values of
the computation: every value that is opened in Input, Multiply is masked with
fresh randomness, and the commitments are statistically hiding.

Multiparty Computation for Dishonest Majority 569

Then the only way that the environment can distinguish between the real and
the ideal execution is by forcing an output towards an honest party (or an input
of a dishonest party) to be incorrect.

To do that, the adversary needs to send a set of shares (x′i, r
′
i) with i ∈ C with∑

xi �=
∑

x′i and such that Comm(
∑

xi;
∑

ri) = Comm(
∑

x′i;
∑

r′i), where
(xi, ri) are the simulator’s internal shares for the corrupted parties. Using E in
Definition 1 we can extract a trapdoor τb∗ from these values. Given that the
view of the simulated protocol is statistically independent of the trapdoor used
by the simulator τb, then Pr[b = b∗] = 1/2 and we can turn an adversary that
distinguish the the real and the ideal world with probability 1/2 + q, q non
negligible, into an adversary that break the security of the commitment scheme
with non-negligible probability q/2, and we reach a contradiction.

Preprocessing security: For the sake of simplicity, let’s assume n = 2, P1 honest
and P2 corrupted4. The UC simulator runs the preprocessing protocol as the
honest party would. If the corrupted party send values that would make a honest
party abort, the simulator inputs abort to FAMPC on behalf of the corrupted
party. If the simulator does not input abort to FAMPC, the simulator stores the
corrupted party’s shares of [a], [b], [c], namely (a2, r2, b2, s2, c2, t2) that he learns
during Proof of Knowledge (by simulating Frand) and proceed to the on-line
phase. The simulation of the preprocessing phase is perfect, as the simulator
behaves exactly as an honest party. What remains to argue is that if the protocol
did not abort at the end of the preprocessing phase, then the triplets are correct
and the honest parties’ shares are uniformly random in the adversary’s view,
even if the adversary is corrupted.

Note that Πtri securely produces random multiplicative triplets against a
strong semi-honest adversary. In fact: c =

∑
i ci =

∑
i aibi

∑
i�=j dij +

∑
i�=j eij =∑

i aibi +
∑

i�=j aibj = ab mod p. If A can cheat during Πtri and then pretend
he didn’t during Test it can be used to break either the strong semi-honest
security of πmul or the binding property of Comm.

The step Test doesn’t leak any information as it can be simulated as detailed
in Lemma 2. We can use Lemma 1 to define a good triplet to be one where the
adversary could open the triplet during Test and make an honest party accept,
and a bad triplet otherwise. Note that the lemma uses rewinding techniques:
this is fine, as we do not use the lemma to extract the adversary shares — we
do this in Proof of Knowledge — but to prove that the simulation is correct.
From the properties of πmul we know that for a good triplet c = a · b and a, b
are random in the adversary’s view except with negligible probability. Therefore
after Test we know that (except with negligible probability) the number of bad
triplets is bounded by some constant B except with probability (1 + λ)−B.

After the Correctness step, if the protocol doesn’t abort the triplets are
correct except with probability 1/p: let z = x · y+Δz mod p and c = a · b+Δc,

4 If more malicious parties are present, one can just think of all of them as a new party
whose shares are the sum of their shares. Clearly introducing more honest parties
will not help the adversary.

570 I. Damg̊ard and C. Orlandi

then c′− c = r2Δz −Δc that is �= 0 if (Δc, Δz) �= (0, 0) with probability 1− 1/p
over the choice of r. Then if the adversary doesn’t break the binding property
of Comm and c′ − c �= 0 for any pair of triplets the protocol aborts.

In Privacy after the triplets are randomly partitioned, we know that the
probability that there are more than B bad triplets left is less than (1 + λ)−B .
Therefore the adversary knows less than B points on the polynomials F,G of
degree d, so from Lagrange interpolation theory those polynomials have still M+
1 degrees of freedom in the adversary’s view. So the adversary gains statistically
no information about the newly generated M triplets [a′], [b′], [c′] and, even after
M − 1 of those will be opened during the protocol, the last unopened triplet is
still random in his view. �

4 UC Commitment Scheme

In this section we show how to implement Frand. For the sake of simplicity,
we present a two party protocol for UC commitments5. In order to produce a
random commitment between n parties as required by Frand it will suffice to
let every party publish a commitment and, using the homomorphic properties
of the commitment, sum them up.

The protocol generates many commitments at once in a preprocessing flavor
and it is efficient in the sense that to constructM UC commitments with security
s, one needs O(M + s) call to the primitives — the efficiency of the protocol is
roughly the efficiency of the primitives used.

Protocol idea: To let a semi-honest party UC commit to a message m one can use
the following protocol: the committer sends the pair Comm(m, r),Enc(m||r, s) to
the receiver, where the encryption and the commitments are relative two public
keys in the CRS. To open, the committer sends m, r. The commitment scheme
is UC secure as, intuitively, the simulator can choose the CRS together with
the secret key for Enc and the trapdoor for Comm. So if the sender is corrupted
the simulator can extract the message from Enc and if the receiver is corrupted
the simulator can open Comm to any value using the trapdoor. Clearly if the
committer is corrupted by an active adversary, he can send an inconsistent pair
and break the security of the protocol. We solve this by using the cut-and-choose
approach to force honest behavior.

First the committer selects at random two polynomials f and g of degree
d = 2M + s−1 over Zp. Then the committer sends to the receiver commitments
to 2M + 2s points on both polynomials using the semi-honest protocol. Now a
random challenge is coin-flipped, in order to determine a subset of M + s com-
mitments to be checked. The committer reveals the points and the randomness
used in the semi-honest protocol to the receiver, who aborts if any opening is in-
consistent. If the protocol doesn’t abort we know that, with probability 1− 2−s,
at least M out of the M + s unopened commitments are well-formed. Therefore
the simulator learns the required 2M + s points that uniquely determine f : the
5 We refer to [CF01] for the definition of the ideal functionality Fmcomm.

Multiparty Computation for Dishonest Majority 571

first M + s are disclosed during the cut-and-choose, while the last M are ex-
tracted from the unopened (but well-formed) commitments. Also note that any
M out of the M + s unopened points are still uniformly random in the view of
the receiver.

In order for this to work, we need to ensure that f is of the right degree
d (or the simulator will not have enough points to determine f): to do so the
receiver will send a random challenge w ∈ Zp and the committer will reveal
h(i) = w · f(i) + g(i) for all i’s. Thanks to the homomorphic properties of
the commitment Comm the receiver can verify that the committer is not lying
about these points, and he can check that h has degree most d. This implies,
with probability 1 − 1/p, that f and g have degree at most d. In the test g is
used to mask f , so that the points on f are still random to the receiver.

The protocol actually implements a random commitment functionality. If one
wants to commit to specific messages it is always possible to derandomize the
commitments (the committer simply sends the difference between the random
committed value and the actual messages).

4.1 UC Commitments with Preprocessing

In Figure 9 the protocol for UC commitments with preprocessing is presented.
We write (Gen,Enc,Dec) for a semantically secure encryption scheme where

(ek, dk) ← Gen(1κ) is the key generation algorithm, C = Encek(x, r) is an en-
cryption of x using randomness r and given the decryption key dk is possible to
recover the message x = Decdk(C). Security is defined in the standard way.

Theorem 2. The protocolΠcomm securely (κ, s)-implementsFmcomm in theFCRS-
hybrid model.

Proof (sketch): To simulate against a corrupted receiver, just run the protocol
honestly but simulate the test as in Lemma 2 i.e. commit to random values. In
Degree check choose a random polynomial h consistent with the revealed values
and trapdoor open the remaining commitments. In Commit: send random Δj ’s.
When opening, use the trapdoor to open the commitment to the value Δj +mj

where mj is the message that the simulator receives from the ideal functionality.
If the environment can distinguish, then it can be turned into an adversary that
breaks semantic security of Enc using standard techniques.

In the more interesting case where the committer is corrupted, the proof
follows the one of Theorem 1: we use Lemma 1 to define which pairs are good and
which bad. After Cut-and-Choose the number of openings that the simulator
cannot extract is bounded by s with probability 2−s. Therefore the simulator can
reconstruct the unique polynomial f ′(x) defined by the M + s point seen during
Cut-and-Choose and the M points it can extract from the consistent pairs.
Once the simulator knows f ′ it can compute the aj’s for all j’s. Therefore it can
extract the committed messages in Commit by just computing m′

j = aj −Δj

mod p. The only way for the environment can distinguish the real game from
the simulated one is by forcing an opening to a message mj different from the

572 I. Damg̊ard and C. Orlandi

Parse the common reference string CRS as (ek, ck).

Generation:
1. Pr chooses two random polynomials f, g of degree at most d = 2M + s− 1;
2. For i = 1, . . . , 2(M + s), Pc computes and sends

Fi = Commck(f(i); ri), Ui = Encek(f(i)||ri;ui),
Gi = Commck(g(i); ti), Vi = Encek(g(i)||ti; vi);

Cut-and-Choose:
1. Pc computes and send Ec = Commck(ec, rc);
2. Pr sends a challenge er;
3. Pc opens Ec;
4. Let e = ec⊕er define a random subset T ⊂ {1, . . . , 2(M+s)} of size M+s;
5. For i ∈ T the committer Pc sends (f(i), ri, ui) and (g(i), ti, vi). The receiver

Pr checks for consistency and abort otherwise;
Degree Check:

1. Pr sends a random challenge w;
2. For i ∈ {1, . . . , 2(M + s)} \ T the committer Pc sends h(i) = w · f(i)+ g(i)

and ti = w · ri + si;
3. The receiver Pr checks that (h(i), ti) is a valid opening of Fw

i ·Gi, and that
h is a polynomial of degree at most d. If not abort;

4. We renumber sequentially the unopened commitments: Let Cj denote the
j-th unopened commitment Fi, and (aj , zj) its opening. The committer
outputs (Cj , aj , zj) and the sender outputs Cj for all j = 1, . . . ,M .

Commit: To commit to the j-th message mj , Pc sends Δj = aj −mj mod p.
Open: To open a commitment Cj , Pc sends (mj , zi) to Pr that accepts if Cj =

Comm(mj +Δj , zj).

Fig. 9. The Πcomm protocol

one extracted by the simulator m′
j . Such an environment can be turned into one

that break the binding property of Comm using standard techniques. �

Multi-party case: It is possible to extend the protocol to the case of multi re-
ceivers by replacing the random choices of the receiver with a coin flip protocol.
If one wants to allow multiple parties to play as committer, several modification
to the protocol can be considered:

– Use a longer CRS that contains n key pairs (ck1, ek1,. . .,ckn, ekn), and every
party commits using his own keys.

– If one wants to keep the CRS short, 1) Comm needs to be a double-trapdoor
commitment scheme and 2) either one uses semantic secure encryption scheme,
and require the preprocessing to run sequentially (at any given point just one
party is acting as Pc before Commit) or one can replace Enc with a CCA se-
cure encryption – in this case different parties can all encrypt using the same
public key and non-malleability is still guaranteed. The proof for the multi
party protocol is essentially the same as the two-party case.

Multiparty Computation for Dishonest Majority 573

5 Cut-and-Choose Toolkit

In both the protocols presented in this paper we achieve security against a ma-
licious adversary by using a kind of cut-and-choose reminiscent of the one first
used in [NO09]. To make this paper self contained, we restate two useful lem-
mas: Let’s just define a component to be the output of a one-way function
f : X → Y: an image is good if the sender knows the preimage and bad if he
doesn’t. The structure of a cut-and-choose is shown in Figure 10: we will argue
the cut-and-choose can be efficiently simulated and if the adversary passes the
test then most of the images are good. The first observation is that if the test
goes through then there are at most B bad images between the unchecked ones,
except with probability (1 + λ)−B .

Test: Let M = {1, . . . , (1 + λ)M}.
1. P1 computes yi = f(xi) for i ∈ M for random xi and sends them to P2;
2. P2 sends P1 a random challenge r that defines a random T ⊂ M of size

λM ;
3. P1 sends {xi}i∈T to P2;
4. P2 accepts if yi = f(xi) for all i ∈ T ;

Fig. 10. A simple cut-and-choose

Lemma 1 (Extraction). There exist a knowledge extractor E s.t. for any P ∗
1 in

Figure 10 the following holds: consider an augmented execution of Figure 10 where
if P2 accepts we run E on P ∗

1 . Then: 1) The augmented execution terminates in
expected poly-time and 2) The probability that we start the extractor E, and the
extractor outputs less than (1 + λ)M −B preimages xi is negligible in B.

Proof: Let accept be the event of P2 accepting the test. Assume μ=Pr[accept]≥
2(1 + λ)−B for some constant B. Then B, the set of bad components for which
P ∗

1 doesn’t know an opening is small.
Formally let ri = 1 if i ∈ T and ri = 0 otherwise. Then B = {i|Pr[accept|ri =

1] < μ/2}, then |B| ≤ B. If not:

μ = Pr[∃i ∈ B : ri = 1] Pr[accept|∃i ∈ B : ri = 1] +
Pr[∀i ∈ B : ri = 0] Pr[accept|∀i ∈ B : ri = 0]

< 1 · μ/2 + (1 + λ)−|B| · 1
But then μ/2 < (1 + λ)−|B| and we have a contradiction.

Now consider the following extractor E that sets W = ∅ and while |W| <
(1 + λ)M − B, runs the test with P ∗

1 and stores the new preimages he gets,
W = W ∪ {(i, xi)}i∈T . The extractor keeps also a counter j of the number of
runs and if it didn’t stop before it stops when j > S = (1 + λ)B poly(s). When
it stops it outputs W .

574 I. Damg̊ard and C. Orlandi

For any i ∈ M \ B, consider the probability ν that (i, xi) /∈ W when E
terminates. Formally ν = Pr[(i, xi) /∈ W ← EP∗

1 (1s)|i /∈ B]. Remember that
the challenges are uniformly random and independent. Then assuming μ/2 ≥
(1 + λ)−B :

ν =
∏
j

(
1− Pr[r(j)i = 1 ∧ accept(j)]

)
≤
(

1− μ

2
λ

1 + λ

)S

< e−
λ

1+λ poly(s)

The expected running time is given by the probability that we start rewinding
μ times the time that we spend doing the extraction. If μ < 2(1 + λ)−B , then
the running time is bounded by μ · S = poly(s). If μ ≥ 2(1 + λ)−B, then the
extractor stops with success after expected time S′ = 1+λ

λ
2
μM , and therefore

the total expected running is μ · S′ = O(M). �

Lemma 2 (Simulation). For any honest P2 there exist an expected poly-time
simulator S for the test in Figure 10 s.t. the view of P2 when interacting with
an honest P1 and the output of S are indistinguishable.

Proof: Consider the S that is given as input a set B of up to λM random
images yi. S chooses a random challenge r and orders the yi’s in such a way that
T ∩ B = ∅. Then S fills M with M random fresh images yi = f(xi) for random
xi. The produced view is distributed exactly as in the protocol. �

Remarks: It is possible to simulate against malicious P ∗
2 , by replacing step 2 in

Figure 10 with a coin flip protocol, and in particular an UC coin flip protocol
leads to a UC simulator for the test. This means that running the test doesn’t
give P ∗

2 any advantage when he tries to invert the one way function on yi, i /∈ T .

Acknowledgments. The authors would like to thank Jesper Buus Nielsen for
the essential suggestions in the protocol design, and Yuval Ishai, Yehuda Lindell
for valuable comments.

References

[BCD+09] Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen,
T., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J.,
Schwartzbach, M., Toft, T.: Secure multiparty computation goes live. In:
Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343.
Springer, Heidelberg (2009)

[Bea91] Beaver, D.: Efficient multiparty protocols using circuit randomization.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432.
Springer, Heidelberg (1992)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended ab-
stract). In: STOC, pp. 1–10 (1988)

Multiparty Computation for Dishonest Majority 575

[Can01] Canetti, R.: Universally composable security: A new paradigm for crypto-
graphic protocols. In: FOCS, pp. 136–145 (2001)

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols. In: Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing, pp. 11–19 (1988)

[CD98] Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic
or: Can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 424–441. Springer, Heidelberg (1998)

[CDN01] Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from
threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT
2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)

[CF01] Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg
(2001)

[Cle86] Cleve, R.: Limits on the security of coin flips when half the processors are
faulty (extended abstract). In: STOC, pp. 364–369 (1986)

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: STOC, pp. 494–503
(2002)

[DFK+06] Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally
secure constant-rounds multi-party computation for equality, comparison,
bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

[DN03] Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty
computation from threshold homomorphic encryption. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

[DO10] Damg̊ard, I., Orlandi, C.: Multiparty computation for dishonest majority:
from passive to active security at low cost (full version) (2010),
http://eprint.iacr.org/2010/318

[FY92] Franklin, M.K., Yung, M.: Communication complexity of secure computa-
tion (extended abstract). In: STOC, pp. 699–710 (1992)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: STOC, pp.
218–229 (1987)

[IPS08] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer - efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 572–591. Springer, Heidelberg (2008)

[IPS09] Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with
no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
294–314. Springer, Heidelberg (2009)

[JMN10] Jakobsen, T.P., Makkes, M.X., Nielsen, J.D.: Efficient implementation of
the Orlandi protocol. In: ACNS, pp. 255–272 (2010)

[LP07] Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party compu-
tation in the presence of malicious adversaries. In: Naor, M. (ed.) EURO-
CRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

http://eprint.iacr.org/2010/318

576 I. Damg̊ard and C. Orlandi

[LPS08] Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation
efficiently with security against malicious adversaries. In: Ostrovsky, R.,
De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20.
Springer, Heidelberg (2008)

[NO09] Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer,
Heidelberg (2009)

[Orl09] Orlandi, C.: LEGO and other cryptographic constructions. Technical re-
port, Aarhus University (2009)

[PSSW09] Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party
computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 250–267. Springer, Heidelberg (2009)

[Yao82] Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd
Annual IEEE Symposium on Foundations of Computer Science, pp. 160–
164 (1982)

Secure Multiparty Computation with
Minimal Interaction

Yuval Ishai1,�, Eyal Kushilevitz2,��, and Anat Paskin-Cherniavsky2

1 Computer Science Department, Technion and UCLA
yuvali@cs.technion.ac.il

2 Computer Science Department, Technion
{eyalk,anatp}@cs.technion.ac.il

Abstract. We revisit the question of secure multiparty computation (MPC) with
two rounds of interaction. It was previously shown by Gennaro et al. (Crypto
2002) that 3 or more communication rounds are necessary for general MPC proto-
cols with guaranteed output delivery, assuming that there may be t ≥ 2 corrupted
parties. This negative result holds regardless of the total number of parties, even
if broadcast is allowed in each round, and even if only fairness is required. We
complement this negative result by presenting matching positive results.

Our first main result is that if only one party may be corrupted, then n ≥ 5
parties can securely compute any function of their inputs using only two rounds
of interaction over secure point-to-point channels (without broadcast or any addi-
tional setup). The protocol makes a black-box use of a pseudorandom generator,
or alternatively can offer unconditional security for functionalities in NC1.

We also prove a similar result in a client-server setting, where there are m ≥ 2
clients who hold inputs and should receive outputs, and n additional servers with
no inputs and outputs. For this setting, we obtain a general MPC protocol which
requires a single message from each client to each server, followed by a single
message from each server to each client. The protocol is secure against a single
corrupted client and against coalitions of t < n/3 corrupted servers.

The above protocols guarantee output delivery and fairness. Our second main
result shows that under a relaxed notion of security, allowing the adversary to se-
lectively decide (after learning its own outputs) which honest parties will receive
their (correct) output, there is a general 2-round MPC protocol which tolerates
t < n/3 corrupted parties. This protocol relies on the existence of a pseudoran-
dom generator in NC1 (which is implied by standard cryptographic assumptions),
or alternatively can offer unconditional security for functionalities in NC1.

Keywords: Secure multiparty computation, round complexity.

1 Introduction

This work continues the study of the round complexity of secure multiparty compu-
tation (MPC) [53,29,9,13]. Consider the following motivating scenario. Two or more
� Supported in part by ISF grant 1310/06, BSF grant 2008411 and NSF grants 0830803,

0716835, 0627781.
�� Work done in part while visiting UCLA. Supported in part by ISF grant 1310/06 and BSF

grant 2008411.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 577–594, 2010.
c© International Association for Cryptologic Research 2010

578 Y. Ishai, E. Kushilevitz, and A. Paskin-Cherniavsky

employees wish to take a vote on some sensitive issue and let their manager only learn
whether a majority of the employees voted “yes”. Given an external trusted server, we
have the following minimalist protocol: each employee sends her vote to the server,
who computes the result and sends it to the manager.

When no single server can be completely trusted, one can employ an MPC protocol
involving the employees, the manager, and (possibly) additional servers. A practical
disadvantage of MPC protocols from the literature that offer security against malicious
parties is that they involve a substantial amount of interaction. This interaction includes
3 or more communication rounds, of which at least one requires broadcast messages.

The question we consider is whether it is possible to obtain protocols with only two
rounds of interaction, which resemble the minimal interaction pattern of the centralized
trusted server solution described above. That is, we would like to employ several un-
trusted servers instead of a single trusted server, but still require each employee to only
send a single message to each server and each server to only send a single message
to the manager. (All messages are sent over secure point-to-point channels, without
relying on a broadcast channel or any further setup assumptions.)

In a more standard MPC setting, where there are n parties who may contribute inputs
and expect to receive outputs, the corresponding goal is to obtain MPC protocols which
involve only two rounds of point-to-point communication between the parties.

The above goal may seem too ambitious. In particular:

– Broadcast is a special case of general MPC, and implementing broadcast over se-
cure point-to-point channels generally requires more than two rounds [23].

– Even if a free use of broadcast messages is allowed in each round, it is known
that three or more communication rounds are necessary for general MPC protocols
which tolerate t ≥ 2 corrupted parties and guarantee output delivery, regardless of
the total number of parties [26].

However, neither of the above limitations rules out the possibility of realizing our
goal in the case of a single corrupted party, even when the protocols should guarantee
output delivery (and in particular fairness). This gives rise to the following question:

Question 1. Are there general MPC protocols (i.e., ones that apply to general function-
alities with n inputs and n outputs) that resist a single malicious party, guarantee output
delivery, and require only two rounds of communication over point-to-point channels?

The above question may be highly relevant to real world situations where the number
of parties is small and the existence of two or more corrupted parties is unlikely.

Another possibility left open by the above negative results is to tolerate t > 1 ma-
licious parties by settling for a weaker notion of security against malicious parties.
A common relaxation is to allow the adversary who controls the malicious parties to
abort the protocol. There are several flavors of “security with abort.” The standard no-
tion from the literature (cf. [28]) allows the adversary to first learn the output, and then
decide whether to (1) have the correct outputs delivered to the uncorrupted parties, or
(2) abort the protocol and have all uncorrupted parties output a special abort symbol
“⊥”.

Unfortunately, the latter notion of security is not liberal enough to get around the first
negative result. But it turns out that a further relaxation of this notion, which we refer to

Secure Multiparty Computation with Minimal Interaction 579

as security with selective abort, is not ruled out by either of the above negative results.
This notion, introduced in [30], differs from the standard notion of security with abort
in that it allows the adversary (after learning its own outputs) to individually decide for
each uncorrupted party whether this party will obtain its correct output or will output
“⊥”.1 Indeed, it was shown in [30] that two rounds of communication over point-to-
point channels are sufficient to realize broadcast under this notion, with an arbitrary
number of corrupted parties. This gives rise to the following question:

Question 2. Are there general MPC protocols that require only two rounds of commu-
nication over point-to-point channels and provide security with selective abort against
t > 1 malicious parties?

We note that both of the above questions are open even if broadcast messages are al-
lowed in each of the two rounds.

1.1 Our Results

We answer both questions affirmatively, complementing the negative results in this area
with matching positive results.

– Our first main result answers the first question by showing that if only one party can
be corrupted, then n ≥ 5 parties can securely compute any function of their inputs
with guaranteed output delivery by using only two rounds of interaction over secure
point-to-point channels (without broadcast or any additional setup). The protocol
can provide computational security for general functionalities (assuming one-way
functions exist) or statistical security for functionalities in NC1.

– We also prove a similar result in the client-server setting (described in the initial
motivating example), where there are m ≥ 2 clients who hold inputs and/or should
receive outputs, and n additional servers with no inputs and outputs. For this setting,
we obtain a general MPC protocol which requires a single message from each client
to each server, followed by a single message from each server to each client. The
protocol is secure against a single corrupted client and against coalitions of t < n/3
corrupted servers,2 and guarantees output delivery to the clients. We note that the
proofs of the negative results from [26] apply to this setting as well, ruling out
protocols that resist a coalition of a client and a server.

As is typically the case for protocols in the setting of an honest majority, the above
protocols are in fact UC-secure [12,43]. Moreover, similarly to the constant-round pro-
tocols from [21,46] (and in contrast to the protocol from [7]), the general version of the
above protocols can provide computational security while making only a black-box use

1 Our notions of “security with abort” and “security with selective abort” correspond to the
notions of “security with unanimous abort and no fairness” and “security with abort and no
fairness” from [30]. We note that the negative result from [26] can be extended to rule out the
possibility of achieving fairness in our setting with t > 1.

2 Achieving the latter threshold requires the complexity of the protocol to grow exponentially
in the number of servers n. When t = O(n1/2 log n), the complexity of the protocol can be
made polynomial in n.

580 Y. Ishai, E. Kushilevitz, and A. Paskin-Cherniavsky

of a pseudorandom generator (PRG). This suggests that the protocols may be suitable
for practical implementations.

Our second main result answers the second question, showing that by settling for
security with selective abort, one can tolerate a constant fraction of corrupted parties:

– There is a general 2-round MPC protocol over secure point-to-point channels which
is secure with selective abort against t < n/3 malicious parties. The protocol can
provide computational security for general functionalities (assuming there is a PRG
in NC1, which is implied by most standard cryptographic assumptions [2]) or sta-
tistical security for functionalities in NC1.

We note that the bound t < n/3 matches the security threshold of the best known
2-round protocols in the semi-honest model [9,7,33]. Thus, the above result provides
security against malicious parties without any loss in round complexity or resilience. In
the case of security against malicious parties, previous constant-round MPC protocols
(e.g., the ones from [7,25,39]) require at least 3 rounds using broadcast, or at least 4
rounds over point-to-point channels using a 2-round implementation of broadcast with
selective abort [30].

Our results are motivated not only by the quantitative goal of minimizing the amount
of interaction, but also by several qualitative advantages of 2-round protocols over pro-
tocols with three or more rounds. In a client-server setting, a 2-round protocol does not
require servers to communicate with each other or even to know which other servers are
employed. The minimal interaction pattern also allows to break the secure computation
process into two non-interactive stages of input contribution and output delivery. These
stages can be performed independently of each other in an asynchronous manner, al-
lowing clients to go online only when their inputs change, and continue to (passively)
receive periodic outputs while inputs of other parties may change. Finally, their mini-
mal interaction pattern allows for a simpler and more direct security analysis than that
of comparable protocols from the literature with security against malicious parties.

1.2 Related Work

The round complexity of secure computation has been the subject of intense study. In
the 2-party setting, 2-round protocols (in different security models and under various
setup assumptions) were given in [53,52,10,31,15]. Constant-round 2-party protocols
with security against malicious parties were given in [45,41,46,37,35]. In [41] it was
shown that the optimal round complexity for secure 2-party computation without setup
is 5 (where the negative result is restricted to protocols with black-box simulation).

More relevant to our work is previous work on the round complexity of MPC with an
honest majority and guaranteed output delivery. In this setting, constant-round protocols
were given in [4,7,6,5,33,25,17,34,19,21,39,40,16]. In particular, it was shown in [25]
that 3 rounds are sufficient for general secure computation with t = Ω(n) malicious
parties, where one of the rounds requires broadcast. Since broadcast in the presence of
a single malicious party can be easily done in two rounds, this yields 4-round protocols
in our setting. The question of minimizing the exact round complexity of MPC over
point-to-point networks was explicitly considered in [39,40]. In contrast to the present
work, the focus of these works is on obtaining nearly optimal resilience.

Secure Multiparty Computation with Minimal Interaction 581

Two-round protocols with guaranteed output delivery were given in [26] for spe-
cific functionalities, and for general functionalities in [19,16]. However, the protocols
from [19,16] rely on broadcast as well as setup in the form of correlated randomness.

The round complexity of verifiable secret sharing (VSS) was studied in [25,24,40,50].
Most relevant to the present work is the existence of a 1-round VSS protocol which
tolerates a single corrupted party [25]. However, it is not clear how to use this VSS
protocol for the construction of two-round MPC protocols. The recent work on the round
complexity of statistical VSS [50] is also of relevance to our work. In the case where
n = 4 and t = 1, this work gives a VSS protocol in which both the sharing phase and
the reconstruction phase require two rounds. Assuming that two rounds of reconstruction
are indeed necessary (which is left open by [50]), the number of parties in the statistical
variant of our first main result is optimal. (Indeed, 4-party VSS with a single round of
reconstruction reduces to 4-party MPC of a linear function, which is in NC1.)

Finally, a non-interactive model for secure computation, referred to as the private
simultaneous messages (PSM) model, was suggested in [22] and further studied in [32].
In this model, two or more parties hold inputs as well as a shared secret random string.
The parties privately communicate to an external referee some predetermined function
of their inputs by simultaneously sending messages to the referee. Protocols for the
PSM model serve as central building blocks in our constructions. However, the model
of [22] falls short of our goal in that it requires setup in the form of shared private
randomness, it cannot deliver outputs to some of the parties, and does not guarantee
output delivery in the presence of malicious parties.

Organization. Following some preliminaries (Section 2), Section 3 presents a 2-round
protocol in the client-server model. Our first main result (a fully secure protocol for
t = 1 and n ≥ 5) is presented in Section 4 and our second main result (security with
selective abort for t < n/3) in Section 5. For lack of space, some of the definitions and
protocols, as well as most of the proofs, are deferred to the full version.

2 Preliminaries

2.1 Secure Computation

We consider n-party protocols that involve two rounds of synchronous communication
over secure point-to-point channels. All of our protocols are secure against rushing,
adaptive adversaries, who may corrupt at most t parties for some specified security
threshold t. See [11,12,28] and the full version for more complete definitions.

In addition to the standard simulation-based notions of full security (with guaranteed
output delivery) and security with abort, we consider several other relaxed notions of
security. Security in the semi-honest model is defined similarly to the standard defini-
tion, except that the adversary cannot modify the behavior of corrupted parties (only
observe their secrets). Privacy is also the same as in the standard definition, except that
the environment can only obtain outputs from the adversary (or simulator) and not from
the uncorrupted parties. Intuitively, this only ensures that the adversary does not learn
anything about the inputs of uncorrupted parties beyond what it could have learned by
submitting to the ideal functionality some (distribution over) valid inputs. Privacy, how-
ever, does not guarantee any form of correctness. Privacy with knowledge of outputs is

582 Y. Ishai, E. Kushilevitz, and A. Paskin-Cherniavsky

similar to privacy except that the adversary is also required to “know” the (possibly
incorrect) outputs of the honest parties. This notion is defined similarly to full security
(in particular, the environment receives outputs from both the simulator and the honest
parties), with the difference that the ideal functionality first delivers the corrupted par-
ties’ output to the simulator, and then receives from the simulator an output to deliver
to each of the uncorrupted parties. Finally, security with selective abort is defined sim-
ilarly to security with abort, except that the simulator can decide for each uncorrupted
party whether this party will receive its output or ⊥.

2.2 The PSM Model

A private simultaneous messages (PSM) protocol [22] is a non-interactive protocol in-
volving m parties Pi, who share a common random string r, and an external referee
who has no access to r. In such a protocol, each party sends a single message to the
referee based on its input xi and r. These m messages should allow the referee to com-
pute some function of the inputs without revealing any additional information about
the inputs. Formally, a PSM protocol for a function f : {0, 1}�×m → {0, 1}∗ is de-
fined by a randomness length parameter R(�), m message algorithms A1, ..., Am and a
reconstruction algorithm Rec, such that the following requirements hold.

– Correctness: for every input length �, allx1, ..., xm ∈ {0, 1}�, and all r ∈ {0, 1}R(�),
we have Rec(A1(x1, r), ..., Am(xm, r)) = f(x1, ..., xm).

– Privacy: there is a simulator S such that, for all x1, ..., xm of length �, the distribu-
tion S(1�, f(x1, ..., xm)) is indistinguishable from (A1(x1, r), ..., Am(xm, r)).

We consider either perfect or computational privacy, depending on the notion of indis-
tinguishability. (For simplicity, we use the input length � also as security parameter, as
in [28]; this is without loss of generality, by padding inputs to the required length.)

A robust PSM protocol should additionally guarantee that even if a subset of the m
parties is malicious, the protocol still satisfies a notion of “security with abort.” That is,
the effect of the messages sent by corrupted parties on the output can be simulated by
either inputting to f a valid set of inputs (independently of the honest parties’ inputs)
or by making the referee abort. This is formalized as follows.

– Statistical robustness: For any subset T ⊂ [m], there is an efficient (black-box)
simulator S which, given access to the common r and to the messages sent by
(possibly malicious) parties P ∗

i , i ∈ T , can generate a distribution x∗T over xi, i ∈
T , such that the output of Rec on inputs AT (x∗T , r), AT̄ (xT̄ , r) is statistically close
to the “real-world” output of Rec when receiving messages from the m parties on a
randomly chosen r. The latter real-world output is defined by picking r at random,
letting party Pi pick a message according to Ai, if i �∈ T , and according to P ∗

i

for i ∈ T , and applying Rec to the m messages. In this definition, we allow S to
produce a special symbol ⊥ (indicating “abort”) on behalf of some party P ∗

i , in
which case Rec outputs⊥ as well.

The following theorem summarizes some known facts about PSM protocols that are
relevant to our work.

Secure Multiparty Computation with Minimal Interaction 583

Theorem 1. [22] (i) For any f ∈ NC1, there is a polynomial-time, perfectly private
and statistically robust PSM protocol. (ii) For any polynomial-time computable f , there
is a polynomial-time, computationally private and statistically robust PSM protocol
which uses any pseudorandom generator as a black box.

For self-containment, the full version contains a full description and proof of the robust
variants, which are only sketched in [22, Appendix C].

2.3 Secret Sharing

An (n, t)-threshold secret sharing scheme, also referred to as a t-private secret sharing
scheme, is an n-party secret sharing scheme in which every t parties learn nothing
about the secret, and every t+ 1 parties can jointly reconstruct it. In this work, we rely
on variants of several standard secret sharing schemes, such as Shamir’s scheme [49], a
bivariate version of Shamir’s scheme [9], and the CNF scheme [36].

Recall that in Shamir’s scheme over a finite field� (where |�| > n), a secret s ∈ � is
shared by picking a random polynomial p of degree (at most) t over� such that p(0) =
s, and distributing to each party Pi the value of p on a distinct field element associated
with this party. In the bivariate version of Shamir’s scheme, Pi receives the i’th row and
column (from an n×nmatrix of evaluations) of a random bivariate polynomial p(x, y)
of degree at most t in each variable such that p(0, 0) = s. In the CNF scheme over an
Abelian groupG, a secret s ∈ G is shared by first additively breaking it into

(
n
t

)
shares,

a share per size-t subset of [n], and then distributing to Pi all shares corresponding those
subsets T such that i /∈ T .

We will refer to a few abstract properties of secret sharing schemes which will be
useful for our protocols. In a d-multiplicative secret sharing scheme over �, each party
should be able to apply a local computation (denoted MULT) on its shares of d secrets,
such that the outcomes of the n local computations always add up to the product of the
d secrets (where addition and multiplication are in �). The standard notion of multi-
plicative secret sharing from [20] corresponds to the case d = 2. The three concrete
schemes, mentioned above, are d-multiplicative when n > dt.

Another property we will rely on is pairwise verifiability. This property has been im-
plicitly used in the context of verifiable secret sharing [9,20,25]. In a pairwise verifiable
scheme, checking that the shares are globally consistent (with some sharing of some
secret) reduces to pairwise equality tests between values that are locally computed by
pairs of parties. More concretely, each pair i, j defines an equality test between a value
computed from the share of Pi and a value computed from the share of Pj . These

(
n
2

)
equality tests should have the property that for any subset T of two or more parties, if
all
(|T |

2

)
tests involving parties in T pass then the shares given to T are consistent with

some valid sharing of a secret. The CNF and bivariate Shamir schemes are pairwise
verifiable. For instance, in the CNF scheme, each pair of parties compares the

(
n−2

t

)
additive shares they should have in common. See the full version for more details, in-
cluding a construction of an efficient secret sharing scheme over the binary field �2
which is both d-multiplicative and pairwise verifiable.

One last property we will need is efficient extendability. A secret sharing scheme
is efficiently extendable, if for any subset T ⊆ [n], it is possible to efficiently check

584 Y. Ishai, E. Kushilevitz, and A. Paskin-Cherniavsky

whether the (purported) shares to T are consistent with a valid sharing of some secret
s. Additionally, in case the shares are consistent, it is possible to efficiently sample a
(full) sharing of some secret which is consistent with that partial sharing. This property
is satisfied, in particular, by the schemes mentioned above, as well as any so-called
“linear” secret sharing scheme.

3 A Protocol in the Client-Server Model

In this section, we present a two-round protocol which operates in a setting where the
parties consist of m clients and n servers. The clients provide the inputs to the protocol
(in its first round) and receive its output (in its second round) but the “computation”
itself is performed by the servers alone. Our construction provides security against any
adversary that corrupts either a single client or at most t servers. We refer to this kind of
security as (1, t)-security3. The protocol in this setting illustrates some of the techniques
we use throughout the paper, and it can be viewed as a warmup towards our main re-
sults; hence, we do not present here the strongest statement (e.g., in terms of resilience)
and defer various improvements to the full version. Specifically, for any functionality
f ∈ POLY, we present a 2-round (1, t)-secure MPC protocols (with guaranteed output
delivery) for m ≥ 2 clients and n = Θ(t3) servers. The protocol makes a black-box
use of a PRG, or alternatively can provide unconditional security for f ∈ NC1.

Tools. Our protocol relies on the following building blocks:

1. An (n, t)-secret sharing scheme for which it is possible to check in NC1 whether a
set of more than t shares is consistent with some valid secret. For instance, Shamir’s
scheme satisfies this requirement. Unlike the typical use of secret sharing in the
context of MPC, our constructions do not rely on linearity or multiplication prop-
erty of the secret sharing scheme.

2. A set system T ⊆ 2[n] of size � such that (a) T is t-resilient, meaning that every
B ⊆ [n] of size t avoids at least �/2 + 1 sets; and (b) T is (t + 1)-pairwise inter-
secting, meaning that for all T1, T2 ⊆ T we have |T1 ∩ T2| ≥ t + 1. See the full
version for a construction with n = Θ(t3), � = poly(n).

3. A PSM protocol, with the best possible privacy (according to Theorem 1, either
perfect or computational) for some functions f ′ depending on f (see below).

Perfect security with certified randomness. We start with a protocol for m ≥ 2 clients
and n = Θ(t3) servers, denoted ΠR, that works in a scenario where each set of servers
T ∈ T , shares a common random string rT (obtained in a trusted setup phase). We
explain how to get rid of this assumption later.

– Round 1: Each Client i secret-shares its input xi among the n servers using the
t-private secret sharing scheme.

3 Recall that the impossibility results of [26] imply that general 2-round protocols in this setting
tolerating a coalition of a client and a server are impossible.

Secure Multiparty Computation with Minimal Interaction 585

– Round 2: For each T ∈ T and i ∈ [m], the set T runs a PSM protocol with the
shares s received from the clients in Round 1 as inputs, rT as the common random-
ness, and Client i as the referee (i.e., one message is sent from each server in T to
Client i). This PSM protocol computes the following functionality f ′

i :
- If all shares are consistent with some input value x, then f ′

i(s) = f(x).
- Else, if the shares of a single Client i are inconsistent, let f ′

i(s) = ⊥.
- Otherwise, let j be the smallest such that the shares of Client j are inconsistent.
Then, f ′

i(s) is an “accusation” of Client j; i.e., a pair (j, f(x′)), where x′ is ob-
tained from x by replacing xj with 0.

– Reconstruction: Each Client i computes its output as follows: If all sets T blame
some Client j, then output the (necessarily unanimous) “backup” output f(x′)
given by the PSM protocols. Otherwise, output the majority of the outputs reported
by non-blaming sets T .

Proof idea. If the adversary corrupts at most t servers (and no client), then privacy
follows from the use of a secret sharing scheme (with threshold t). By the t-resilience
of the set system, a majority of the sets T ∈ T contain no corrupted server and thus
will not blame any client and will output the correct value f(x).

If the adversary corrupts Client j, then all servers are honest. Every set T ∈ T either
does not blame any client or blames Client j. Consider two possible cases: (a) Client j
makes all sets T observe inconsistency: in such a case, Client j receives ⊥ from all
T and hence does not learn any information; moreover, all honest clients will output
the same backup output f(x′). (b) Client j makes some subsets T observe consistent
shares: since the intersection of every two subsets in T is of size at least t + 1 then,
using the (t+ 1) reconstruction threshold of the secret sharing scheme, every two non-
blaming sets must agree on the same input x. This means that Client j only learns f(x).
Moreover, all other (honest) clients will receive the actual output f(x) from at least
one non-blaming set T and, as discussed above, all outputs from non-blaming sets must
agree.

Observe that the fact that a set T uses the same random string rT in all m PSM
instances it participates in does not compromise privacy. This is because in each of
them the output goes to a different client and only a single client may be corrupted.4

Lemma 1. ΠR is a 2-round, (1, t)-secure MPC protocol for m > 1 clients and n =
Θ(t3) servers, assuming that the servers in each set T ∈ T have access to a common
random string rT (unknown to the clients). The security can be made perfect for f ∈
NC1, and computational for f ∈ POLY by making a black-box use of a PRG.

Note that the claim about f ∈ NC1 holds since the functions f ′ evaluated by the PSM
sub-protocols are in NC1 whenever f is.

Removing the certified randomness assumption. If we have at least 4 clients, we can let
each Client i generate its own candidate PSM randomness riT and send it to all servers
in T . Each PSM protocol, corresponding to some set T , is executed using each of these

4 Alternatively, rT can be made sufficiently long so that the set T can use a distinct portion of
rT in each invocation of a PSM sub-protocol.

586 Y. Ishai, E. Kushilevitz, and A. Paskin-Cherniavsky

strings, where in the i-th invocation (using randomness riT) Client i receives no message
(otherwise, the privacy of the protocol could be compromised). The other clients receive
the original messages as prescribed by the PSM protocol. Upon reconstruction, Client i
lets the PSM output for a set T be the majority over the m− 1 PSM outputs it sees. We
observe that this approach preserves perfect security. If statistical (or computational)
security suffices, we can rely on 2 or 3 clients as well. Here, the high level idea is to
use a transformation as described for the case m ≥ 4, and let Client i authenticate
the consistency of the randomness rjT used in the j’th PSM protocol executed by set
T , using a random string it sent in Round 1. Upon reconstruction, each client only
considers the PSM executions which passed the authentication. Combining the above
discussion with Theorem 1, we obtain the following theorem.

Theorem 2. There exists a statistically (1, t)-secure 2-round general MPC protocol in
the client-server setting for m ≥ 2 clients and n = Θ(t3) servers. For f ∈ NC1, the
protocol is perfectly secure if m ≥ 4, and statistically secure otherwise. The protocol is
computationally secure for f ∈ POLY.

4 Full Security for t = 1

In this section, we return to the standard model where all parties may contribute inputs
and receive outputs. We present a 2-round protocol in this model for n ≥ 5 parties and
t = 1. This protocol uses some similar ideas to our basic client-server protocol above,
but it is different in the types of secret sharing scheme and set system that it employs.
Specifically, we use the following ingredients:

1. A 1-private pairwise verifiable secret sharing scheme (see Section 2.3). For sim-
plicity, we use here the CNF scheme, though one could use the bivariate version of
Shamir’s scheme for better efficiency. Recall that in the 1-private CNF scheme the
secret s is shared by first randomly breaking it into n additive parts s = s1+. . .+sn,
and then distributing each si to all parties except for party i. Here we can view a
secret as an element of �m

2 .
2. A robust (n − 2)-party PSM protocol (see Section 2.2). In particular, such a PSM

protocol ensures that the effect of any single malicious party on the output can be
simulated in the ideal model (allowing the simulator to send “abort” to the func-
tionality).

3. A simple set system, consisting of the
(
n
2

)
sets Ti,j = [n] \ {i, j}. (Note that, for

n ≥ 5, we have |Ti,j| ≥ 3.)

Again, we assume for simplicity that members of each set Ti,j share common ran-
domness ri,j . Similarly to the client-server setting, this assumption can be eliminated
by letting 3 of the parties in Ti,j pick their candidate for ri,j and distributing it to the
parties in the set (in Round 1 of our protocol), and then letting Ti,j execute the PSM
sub-protocol (in Round 2) using each of the 3 candidates and sending the outputs to
Pi, Pj (which are not in the set); the final PSM output will be the majority of these
three outputs. Finally, for a graph G, let VC(G) denote the size of the minimal vertex
cover in G.

Secure Multiparty Computation with Minimal Interaction 587

Our protocol proceeds as follows:

– Round 1: Each partyPk shares its inputxk among all other parties using a 1-private,
(n − 1)-party CNF scheme (i.e., each party gets n − 2 out of the n − 1 additive
shares of xk). In addition, to set up the consistency checks, each pair Pi, Pj (i < j)
generates a shared random pad si,j by having Pi pick such a pad and send it to Pj .

– Round 2: For each “dealer” Pk, each pair Pi, Pj send the n − 3 additive shares
from Pk they should have in common, masked with the pad si,j , to all parties.5

Following this stage, each party Pi has an inconsistency graph Gi,k corresponding
to each dealer Pk (k �= i), with node set [n] \ {k} and edge (j, l) if Pj , Pl report
inconsistent shares from Pk.
In addition, each set Ti,j invokes a robust PSM protocol whose inputs are all the
shares received (in Round 1) by the n− 2 parties in this set, and whose outputs to
Pi, Pj (which are not in Ti,j) are as follows:
- If all input shares are consistent with some input x, then both Pi, Pj receive v =
f(x).
- Else, if shares originating from exactly one Pk are inconsistent, then Pk gets ⊥
(in case k ∈ {i, j}) and the other party(s) get an “accusation” of Pk; namely, a pair
(k, x∗) where x∗ = (x1, . . . , xk−1, x

′
k, xk+1, . . . , xn). Here, each xj (for j �= k) is

the protocol input recovered from the (consistent) shares and x′k = xk if the shares
of any n − 3 out of the n − 2 parties in Ti,j are consistent with each other and
x′k = 0 (a default value) otherwise.
- Else, if shares originating from more than one party are inconsistent, output⊥.

– Reconstruction: Each party Pi uses the n − 1 inconsistency graphs Gi,k (k �= i),
and the PSM outputs that it received, to compute its final output:
(a) If some inconsistency graph Gi,k has VC(Gi,k) ≥ 2 then the PSM output of
Ti,k is of the form (k, x∗); substitute x∗k by 0, to obtain x′, and output f(x′).
Else, (b) if some inconsistency graph Gi,k has a vertex cover {j} and at least 2
edges, consider the PSM outputs of Ti,j , Ti,k (assume that i �= j; if i = j it is
enough to consider the output of Ti,k). If any of them outputs v of the form f(x)
then output v; otherwise, if the output is of the form (k, x∗), output f(x∗).
Else, (c) if some inconsistency graph Gi,k contains exactly one edge (j, j′), con-
sider the outputs of Ti,j , Ti,j′ (again, assume i /∈ {j, j′}), and use any of them
which is non-⊥ to extract the output (either directly, if the output is of the form
f(x), or f(x∗) from an output (k, x∗)).
Finally, (d) if all Gi,k’s are empty, find some Ti,j that outputs f(x) (with no accu-
sation), and output this value.

Intuitively, a dishonest party Pd may deviate from the protocol in very limited ways:
it may distribute inconsistent shares (in Round 1) which will be checked (in Round 2)
and will either be caught (if the inconsistency graph has VC larger than 1) or will be
“corrected” (either to a default value or to its original input, if the VC is of size at
most 1). Pd may report false masked shares, for the input of some parties, but this will
result in very simple inconsistency graphs (with vertex cover of size 1) that can be

5 This is similar to Round 2 of the 2-round VSS protocol of [25], except that we use point-to-
point communication instead of broadcast; note that, in our case, if the dealer is dishonest, then
all other parties are honest.

588 Y. Ishai, E. Kushilevitz, and A. Paskin-Cherniavsky

detected and fixed. And, finally, Pd may misbehave in the robust PSM sub-protocols (in
which it participates) but this has very limited influence on their output (recall that, for
sets in which Pd participates, it does not receive the output). A detailed analysis appears
in the full version. This proves:

Theorem 3. There exists a general, 2-round MPC protocol for n ≥ 5 parties which is
fully secure (with guaranteed output delivery) against a single malicious party. The pro-
tocol provides statistical security for functionalities in NC1 and computational security
for general functionalities by making a black-box use of a pseudorandom generator.

5 Security with Selective Abort

This section describes our second main result; namely, a 2-round protocol which achieves
security with selective abort against t < n/3 corruptions. This means that the adversary,
after learning its own outputs, can selectively decide which honest parties will receive
their (correct) output and which will output “⊥”. More precisely, we prove the following
theorem:

Theorem 4. There exists a general 2-round MPC protocol for n > 3t parties which
is t-secure, with selective abort. The protocol provides statistical security for function-
alities in NC1 and computational security for functionalities in POLY, assuming the
existence of a pseudorandom generator in NC1.

Our high-level approach is to apply a sequence of reductions, where the end protocol
we need to construct only satisfies the relaxed notion of “privacy with knowledge of
outputs”, described in Section 2, and only applies to vectors of degree-3 polynomials.
In particular,

1. We concentrate, without loss of generality, on functionalities which are determin-
istic with a public output.

2. We reduce (using unconditional one-time MACs) the secure evaluation of a func-
tion f ∈ POLY to a private evaluation, with knowledge of outputs, of a related
functionality f ′ ∈ POLY. The reduction is statistical, and if f ∈ NC1 then so is f ′.

3. We reduce the private evaluation with knowledge of outputs of a function f ′ ∈
POLY to a private evaluation with knowledge of outputs of a related functionality
f ′′, where f ′′ is a vector of degree-3 polynomials. The reduction (using [34]) is per-
fect for functions in NC1, and only computationally secure (using [2]) for general
functionalities in POLY.

4. We present a 2-round protocol that allows dt + 1 parties to evaluate a vector of
degree-d polynomials, for all d ≥ 1, and provides privacy with knowledge of out-
puts. In particular, for d = 3 the protocol requires n = 3t+ 1 parties.

In the following subsections, we describe steps 2–4 in detail.

5.1 A Private Protocol with Knowledge of Outputs

In this section, we present a 2-round protocol for degree-d polynomials which is private
with knowledge of outputs. Let p(x1, . . . , xm) be a multivariate polynomial over a finite

Secure Multiparty Computation with Minimal Interaction 589

field �, of total degree d. Assume, without loss of generality, that the degree of each
monomial in p is exactly d.6 Hence, p can be written as p =

∑
g1≤...≤gd

αg

∏d
l=1 xgl

.
We start by describing a protocol for evaluating p with security in the semi-honest
model. (This protocol is similar to previous protocols from [9,33].) The protocol can
rely on any d-multiplicative secret sharing scheme over�. Recall that, in such a scheme,
each party should be able to apply a local computation MULT to the shares it holds of
some d secrets, to obtain an additive share of their product.

– Round 1: Each party Pi, i ∈ [n], shares every input xh it holds by computing
shares (sh1 , . . . , shn), using the d-multiplicative scheme, and distributes them among
the parties. Pi also distributes random additive shares of 0; i.e., it sends to each Pj a
field element zj

i such that zj
1, . . . , z

j
n are random subject to the restriction that they

sum up to 0.
– Round 2: Each party Pi, i ∈ [n], computes yi = pi(s1i , . . . , s

m
i)+

∑n
j=1 z

j
i , where

pi(s1i , . . . , s
m
i)

�
=
∑

g1≤...≤gd
αgMULT(i, sg1

i , . . . , sgd

i). It sends yi to all parties.

– Outputs: Each party computes and outputs
∑n

i=1 yi which is equal top(s1, . . . , sm),
as required.

We will refer to the above protocol as the “basic protocol”. The proof of correctness and
privacy in the semi-honest case are standard, and are omitted. Interestingly, this basic
protocol happens to be private with knowledge of outputs (but not secure) against ma-
licious parties for d ≤ 2, when using Shamir’s scheme as its underlying secret sharing
scheme. However, the following simple example demonstrates that the basic protocol is
not private against malicious parties already for d = 3.7

Example 1. Consider 4 parties where only P1 is corrupted and the parties want to
compute the degree-3 polynomial x1x2x3 (party P4 has no input). We argue that,
when x3 = 0, party P1 can compute x2, contradicting the privacy requirement. Let
q2(z) = r2z + x2 and q3(z) = r3z be the polynomials used by P2, P3 (respectively)
to share their inputs. Their product is q(z) = r2r3z

2 + x2r3z. Note that the messages
sent by P1 to the other 3 parties in Round 1 can make P1 learn (in Round 2) an arbitrary
linear combination of the values of q(z) at 3 distinct points. Since the degree of p is at
most 2, this means that P1 can also learn an arbitrary linear combination of the coeffi-
cients of q. In particular, it can learn x2r3. This alone suffices to violate the privacy of
x2, because it can be used to distinguish with high probability between, say, the case
where x2 = 0 and the case x2 = 1.

To prevent badly-formed shares from compromising privacy, we use the following vari-
ant of conditional disclosure of secrets (CDS) [27] as a building block. This primitive
will allow an honest player to reveal a secret s subject to the condition that two secret
values a, b held by other two honest players are equal.

6 Otherwise, replace each monomial m(x) of degree d′ < d by m(x) · xd−d′
0 , where x0 is a

dummy variable whose value is set to 1 (by using some fixed valid n-tuple of shares).
7 Note that degree-3 polynomials are “complete”, in the sense that they can be used to represent

every function, whereas degree-2 polynomials are not [33].

590 Y. Ishai, E. Kushilevitz, and A. Paskin-Cherniavsky

Definition 1. An MCDS (multiparty CDS) protocol is a protocol for n parties, which
include three distinct special parties S,A,B. The sender S holds a secret s, and parties
A,B hold inputs a, b (respectively). The protocol should satisfy the following properties
(as usual, the adversary is rushing).

1. If a = b, and A,B, S are honest, then all honest parties output s.
2. If a = b, and A,B are honest, then the adversary’s view is independent of a, even

conditioned on s.
3. If a �= b, and A,B, S are honest, then the adversary’s view is independent of s,

even conditioned on a, b.

Note that there is no requirement when a �= b and some of the special parties are
corrupted (e.g., a corrupted A may still learn s). To be useful for our purposes, an
MCDS protocol needs to have only two rounds, and also needs to satisfy the technical
requirement that the message sent by A and B in the first round do not depend on the
values a and b.

A simple MCDS protocol with the above properties may proceed as follows (see the
full version for a proof): In Round 1, party A picks random independent values r, z ∈ �
and sends them toB, and partyS sends s toA. In Round 2,A sends to each of the parties
mA = a · r − z + s and B sends mB = z − b · r. Each party outputs mA +mB .

An MCDS protocol as above will be used to compile the basic protocol for n =
dt + 1 semi-honest parties into a protocol Πpriv which is private against malicious
parties. For this, we instantiate the basic protocol with a d-multiplicative secret sharing
scheme which is also pairwise-verifiable and efficiently extendable (see Section 2.3).
More precisely, the parties run the basic protocol, and each party Pi masks its Round 2
message with a sum of random independent masks si,j,k,h, corresponding to a shared
input xh and a pair of parties Pj , Pk (not holding xh). In parallel, the MCDS protocol is
executed for revealing each pad si,j,k,h under the condition that the shares of xh given to
Pj andPk are consistent, as required by the pairwise verifiable scheme (where a, b in the
MCDS are values locally computed by Pj , Pk that should be equal by the corresponding
local check). Intuitively, this addresses the problem in Example 1 by ensuring that,
if a party sends inconsistent shares of one of its inputs to the honest parties, some
consistency check would fail (by pairwise-verifiability), and thus at least one random
mask is not “disclosed” to the adversary, and so the adversary learns nothing.

The resulting protocol Πpriv proceeds as follows:

– Round 1:
• Each party Pi, i ∈ [n] shares every input xh it holds by computing shares

(sh1 , . . . , s
h
n) and distributing them among the parties. Each Pi also sends to

each Pj a share zi
j where zi

1, . . . , z
i
n form a random additive sharing of 0.

• Each triple of distinct parties Pi, Pj , Pk such that j < k runs, for each h ∈ [m]
such that xh is not held by {Pi, Pj , Pk}, Round 1 of the MCDS protocol (play-
ing the roles of S,A,B respectively, where all n parties receive the MCDS
output), with secret s = si,j,k,h, selected independently at random by Pi.

– Round 2:
• Each party Pi, i ∈ [n], computes yi = pi(s1i , . . . , s

m
i) +

∑n
j=1 z

j
i , where

pi(s1i , . . . , s
m
i)

�
=
∑

g1≤...≤gd∈[m] αgMULT(i, sg1
i , . . . , sgd

i). It sends y′i
�
= yi+∑

j,k,h si,j,k,h to all parties.

Secure Multiparty Computation with Minimal Interaction 591

• Each triple of parties Pi, Pj , Pk runs Round 2 of their MCDS protocols for
each (relevant) xh, where a, b are the outputs of the relevant local computations
applied to shares of xh held byPj , Pk which should be equal. Denote by sui,j,k,h
the output of Pu in this MCDS protocol.

– Outputs: Each party Pu computes
∑n

i=1 y
′
i −
∑

i,j,k,h s
u
i,j,k,h.

See the full version, for a proof of the following lemma.

Lemma 2. Suppose n = dt + 1. Then the protocol Πpriv , described above, computes
the degree-d polynomial p and satisfies statistical t-privacy with knowledge of outputs.

Remark 1. The above protocol can be easily generalized to support a larger number of
parties n > dt+1. This can be done by letting all parties share their inputs among only
the first dt + 1 parties in the first round, and letting only these dt + 1 parties reply to
all parties in the second round. A similar generalization applies to the other protocols
in this section.

Our protocols were described as if we need to evaluate a single polynomial. To evaluate
a vector of polynomials (which is actually required for our application), we make the
following observation. Both the basic semi-honest protocol and Πpriv can be directly
generalized to this case by running one copy of Round 1, except for the additive shares
od 0 that are distributed for each output, and then executing Round 2 separately for
each polynomial (using the corresponding additive shares). The analysis of the extended
protocols is essentially the same. Combining Πpriv , instantiated with bivariate Shamir,
with the above discussion, we get the following lemma:

Lemma 3. For any d ≥ 1 and t ≥ 1, there exists a 2-round protocol for n = dt + 1
parties which evaluates a vector of polynomials of total degree d over a finite field � of
size |�| ≥ n, such that the protocol is statistically t-private with knowledge of outputs.

The transition from degree-3 polynomials to general functions f ∈ POLY is essentially
done by adapting known representations of general functions by degree-3 polynomi-
als [34,2]. That is, securely evaluating f(x1, . . . , xm) : {0, 1}m → {0, 1}∗ is reduced
to securely evaluating a vector of randomized polynomials p(x1, . . . , xm, r1, . . . , rl) of
degree d = 3, over (any) finite field �p. However, the reduction is not guaranteed to
work if the adversary shares a value of xi’s which is not in {0, 1}. If the secret domain
of the underlying secret sharing is �2, then the adversary is unable to share non-binary
values, and there is no problem. This is the case with the CNF scheme over �2, but
using (3t + 1, t)-CNF would result in exponential (in n) complexity for the protocol.
An alternative approach is to rely on (say) bivariate Shamir, but using a variant of the
above reduction from [14], applied to a function f ′ over �m (rather than {0, 1}m) re-
lated to f , which is always consistent with f(x), for some x ∈ {0, 1}m. In particular,
f ′ ∈ NC1 if f ∈ NC1 and f ′ ∈ POLY if f ∈ POLY . Another solution is to devise
an efficient 3-multiplicative, pairwise-verifiable (3t+1)-party scheme over�2. See the
full version, for more details on both solutions. We obtain the following:

Lemma 4. Suppose there exists a PRG in NC1. Then, for any n-party functionality f ,
there exists a 2-round MPC protocol which is (computationally) t-private with knowl-
edge of outputs, assuming that n > 3t. Alternatively, the protocol can provide statistical
(and unconditional) privacy with knowledge of outputs for f ∈ NC1.

592 Y. Ishai, E. Kushilevitz, and A. Paskin-Cherniavsky

5.2 From Privacy with Knowledge of Outputs to Security with Selective Abort

The final step in our construction is a reduction from secure evaluation of functions with
selective abort to private evaluation with knowledge of outputs. For this, we make use
of unconditional MACs. Our transformation starts with a protocol Π ′ for evaluating
a single output function f , which is private with knowledge of outputs. We then use
Π ′ to evaluate an augmented (single output) functionality f ′, which computes f along
with n MACs on the output of f , where the i-th MAC uses a private key chosen by
party Pi at random. That is, f ′ takes an input x, and ki ∈ K from each party Pi, and
returns y = f(x) along with MAC(y, k1), . . . , MAC(y, kn). The protocol Π is obtained
by running Π ′ on f ′ and having each party Pi locally verify that the output y it gets is
consistent with the corresponding MAC. If so, then Pi outputs y; otherwise, it outputs
⊥. Intuitively, this is enough for getting security with selective abort since to make
an uncorrupted party output an inconsistent value, the adversary would have to find y′

with MAC(y′, k) = MAC(y, k) for a random unknown k and a known y, which can only
be done with negligible probability. A formal construction and a proof of Theorem 4
appear in the full version.

Acknowledgements. We thank the anonymous CRYPTO 2010 referees for helpful com-
ments and suggestions. We also would like the thank the third author’s husband, Beni,
for a lot of help on technical issues and for proofreading the paper.

References

1. Alon, N., Merritt, M., Reingold, O., Taubenfeld, G., Wright, R.N.: Tight bounds for shared
memory systems accessed by Byzantine processes. Journal of Distributed Computing 18(2),
99–109 (2005)

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials
and their applications. Computational Complexity 15(2), 115–162 (2006)

3. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize exactly
those languages in NC1. In: Proc. 18th STOC, pp. 150–164 (1986)

4. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in a constant number of
rounds. In: Proc. 8th ACM PODC, pp. 201–209 (1989)

5. Beaver, D.: Minimal-Latency Secure Function Evaluation. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 335–350. Springer, Heidelberg (2000)

6. Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Security with low communication over-
head (extended abstract). In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 62–76. Springer, Heidelberg (1991)

7. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended
abstract). In: Proc. 22nd STOC, pp. 503–513 (1990)

8. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Phd. thesis. Dept. of
Computer Science (1996)

9. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Noncryptographic
Fault-Tolerant Distributed Computations. In: Proc. 20th STOC 1988, pp. 1–10 (1988)

10. Cachin, C., Camenisch, J., Kilian, J., Muller, J.: One-round secure computation and secure
autonomous mobile agents. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000.
LNCS, vol. 1853, p. 512. Springer, Heidelberg (2000)

11. Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryp-
tology 13(1), 143–202 (2000)

Secure Multiparty Computation with Minimal Interaction 593

12. Canetti, R.: Universally composable security: A new paradigm for cryptographic proto-
cols.cfik03. In: FOCS, pp. 136–145 (2001)

13. Chaum, D., Crepeau, C., Damgard, I.: Multiparty Unconditionally Secure Protocols. In: Proc.
20th STOC 1988, pp. 11–19 (1988)

14. Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient Multi-party Computation over Rings.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 596–613. Springer, Heidelberg
(2003)

15. Choi, S.G., Elbaz, A., Juels, A., Malkin, T., Yung, M.: Two-Party Computing with Encrypted
Data. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 298–314. Springer,
Heidelberg (2007)

16. Choi, S.G., Elbaz, A., Malkin, T., Yung, M.: Secure Multi-party Computation Minimizing
Online Rounds. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 268–286.
Springer, Heidelberg (2009)

17. Cramer, R., Damgård, I.: Secure distributed linear algebra in a constant number of rounds.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 119. Springer, Heidelberg (2001)

18. Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multiparty compu-
tations with dishonest minority. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
311–326. Springer, Heidelberg (1999)

19. Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing and appli-
cations to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362.
Springer, Heidelberg (2005)

20. Cramer, R., Damgård, I., Maurer, U.M.: General Secure Multi-party Computation from any
Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807,
pp. 316–334. Springer, Heidelberg (2000)

21. Damgård, I., Ishai, Y.: Secure multiparty computation using a black-box pseudorandom gen-
erator. In: Proc. CRYPTO 2005 (2005)

22. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation. In: Proc. 26th
STOC, pp. 554–563 (1994)

23. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive consistency.
Information Processing Letters 14(4), 183–186 (1982)

24. Fitzi, M., Garay, J.A., Gollakota, S., Rangan, C.P., Srinathan, K.: Round-Optimal and Effi-
cient Verifiable Secret Sharing. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 329–342. Springer, Heidelberg (2006)

25. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The Round Complexity of Verifiable Secret
Sharing and Secure Multicast. In: Proc. 33th STOC (2001)

26. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-Round Secure Multiparty Computa-
tion. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193. Springer, Heidelberg
(2002)

27. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting Data Privacy in Private Informa-
tion Retrieval Schemes. In: STOC 1998, pp. 151–160 (1998)

28. Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge University
Press, Cambridge (2004)

29. Goldreich, O., Micali, S., Wigderson, A.: How to Play Any Mental Game. In: Proc. 19th
STOC, pp. 218–229 (1987)

30. Goldwasser, S., Lindell, Y.: Secure Multi-Party Computation without Agreement. J. Cryptol-
ogy 18(3), 247–287 (2005)

31. Horvitz, O., Katz, J.: Universally-Composable Two-Party Computation in Two Rounds. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129. Springer, Heidelberg
(2007)

32. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applications. In:
ISTCS 1997, pp. 174–184 (1997)

594 Y. Ishai, E. Kushilevitz, and A. Paskin-Cherniavsky

33. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with applications
to round-efficient secure computation. In: Proc. 41st FOCS (2000)

34. Ishai, Y., Kushilevitz, E.: Perfect Constant-Round Secure Computation via Perfect Random-
izing Polynomials. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S.,
Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, p. 244. Springer, Heidelberg (2002)

35. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer - Ef-
ficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer,
Heidelberg (2008)

36. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access structure.
Electronics and Communications in Japan, Part III: Fundamental Electronic Science 72(9),
56–64

37. Jarecki, S., Shmatikov, V.: Efficient Two-Party Secure. Computation on Committed Inputs.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114. Springer, Heidelberg
(2007)

38. Karchmer, M., Wigderson, A.: On Span Programs. In: Proceedings of the 8th Structures in
Complexity conference, pp. 102–111 (1993)

39. Katz, J., Koo, C.-Y.: Round-Efficient Secure Computation in Point-to-Point Networks. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 311–328. Springer, Heidelberg
(2007)

40. Katz, J., Koo, C.-Y., Kumaresan, R.: Improving the Round Complexity of VSS in
Point-to-Point Networks. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 499–510.
Springer, Heidelberg (2008)

41. Katz, J., Ostrovsky, R.: Round-Optimal Secure Two-Party Computation. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004)

42. Katz, J., Ostrovsky, R., Smith, A.: Round Efficiency of Multi-party Computation with a Dis-
honest Majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 578–595.
Springer, Heidelberg (2003)

43. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols and security
under composition. In: STOC 2006, pp. 109–118 (2006), Full version: Cryptology ePrint
Archive, Report 2009/630 (2009)

44. Lamport, L., Shostack, R.E., Pease, M.: The Byzantine generals problem. ACM Trans. Prog.
Lang. and Systems 4(3), 382–401 (1982)

45. Lindell, Y.: Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 171–189. Springer, Heidelberg (2001)

46. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–
78. Springer, Heidelberg (2007)

47. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
48. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest majority. In:

Proc. STOC 2004, pp. 232–241 (2004)
49. Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613
50. Patra, A., Choudhary, A., Rabin, T., Rangan, C.P.: The Round Complexity of Verifiable Se-

cret Sharing Revisited. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 487–504.
Springer, Heidelberg (2009)

51. Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with Honest Ma-
jority. In: Proc. 21st STOC, pp. 73–85 (1989)

52. Sander, T., Young, A., Yung, M.: Non-Interactive CryptoComputing For NC1. In: Proc. 40th
FOCS, pp. 554–567. IEEE, Los Alamitos (1999)

53. Yao, A.C.-C.: How to Generate and Exchange Secrets. In: Proc. 27th FOCS, pp. 162–167.
IEEE, Los Alamitos (1986)

A Zero-One Law for Cryptographic Complexity
with Respect to Computational UC Security�

Hemanta K. Maji1, Manoj Prabhakaran1, and Mike Rosulek2

1 Department of Computer Science, University of Illinois, Urbana-Champaign
{hmaji2,mmp}@uiuc.edu

2 Department of Computer Science, University of Montana
mikero@cs.umt.edu

Abstract. It is well-known that most cryptographic tasks do not have
universally composable (UC) secure protocols, if no trusted setup is avail-
able in the framework. On the other hand, if a task like fair coin-tossing
is available as a trusted setup, then all cryptographic tasks have UC-
secure protocols. What other trusted setups allow UC-secure protocols
for all tasks? More generally, given a particular setup, what tasks have
UC-secure protocols?

We show that, surprisingly, every trusted setup is either useless
(equivalent to having no trusted setup) or all-powerful (allows UC-secure
protocols for all tasks). There are no “intermediate” trusted setups in
the UC framework. We prove this zero-one law under a natural in-
tractability assumption, and consider the class of deterministic, finite,
2-party functionalities as candidate trusted setups.

One important technical contribution in this work is to initiate the
comprehensive study of the cryptographic properties of reactive function-
alities. We model these functionalities as finite automata and develop
an automata-theoretic methodology for classifying and studying their
cryptographic properties. Consequently, we completely characterize the
reactive behaviors that lead to cryptographic non-triviality. Another con-
tribution of independent interest is to optimize the hardness assumption
used by Canetti et al. (STOC 2002) in showing that the common ran-
dom string functionality is complete (a result independently obtained by
Damg̊ard et al. (TCC 2010)).

1 Introduction

Cryptographic tasks provide a fascinating arena to study the interplay of infor-
mation, interaction and computation. Each cryptographic task has a fundamen-
tal “information-control fingerprint” that specifies how various parties involved
in the task can learn and/or influence all the pieces of information in the system.
This work forms part of a study that aims to systematically understand abstract
cryptographic tasks, classifying them by how “cryptographically complex” their
fingerprints are.
� Work supported by NSF grants CNS 07-16626 and CNS 07-47027.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 595–612, 2010.
c© International Association for Cryptologic Research 2010

596 H.K. Maji, M. Prabhakaran, and M. Rosulek

A crisp way to capture the information-control fingerprint of a cryptographic
task is by modeling it as a program carried out by a third party. This program is
simply called a functionality. Modeling tasks this way conveniently separates
the security definition from the information-control fingerprint.1 Understanding
and classifying such functionalities has been the subject, implicitly or explicitly,
of a wealth of literature in theoretical computer science.

In this work, we continue the study of cryptographic complexity of functional-
ities from [30,25,26], which explicitly define cryptographic complexity classes us-
ing various notions of reductions among functionalities. Our focus in this work is
on cryptographic complexity defined using security in the universal composition
(UC) framework.2 We show that under standard computational intractability
assumptions, the universe of functionalities collapse to just two distinct levels of
cryptographic complexity.

For simplicity, first we describe our result in terms of standard UC security
terminology, and then summarize its implications for the theory of cryptographic
complexity developed in [30,25,26].

Main Result. The standard UC framework defines security in a plain model in
which protocols are allowed access only to communication channels. However, the
framework also allows protocols to use access to a trusted setup functionality, in
what is called a hybrid model. It is known that in the plain model, very few tasks
admit UC-secure protocols [6,30]. On the other hand, in certain hybrid models
(say, those corresponding to oblivious transfer or fair coin-tossing functionalities
being used as a trusted setup) all tasks admit UC-secure protocols [7,17].

In this work we classify the strength of a functionality in terms of how useful
it is as a trusted setup in a UC hybrid model. We prove the following surprisingly
simple classification that was conjectured in [30] — under a natural intractability
assumption, every deterministic, finite, 2-party functionality is either:

Trivial: These functionalities already have secure protocols in the plain model.
As such, they are useless as trusted setups; they admit no more tasks to have
UC-secure protocols than in the plain model. Or,

Complete: When any of these functionalities is used as a trusted setup, all
tasks have UC-secure protocols.3

1 For instance, the commitment functionality is specified the same way for various
security settings, independently of considerations in defining security; in contrast,
traditional specification of commitment cannot be divorced from how binding and
hiding are defined, and results in different notions (like statistically binding commit-
ment, or statistically hiding commitment) which are not formally captured as the
same functionality.

2 While using UC security provides a fine resolution picture of cryptographic com-
plexity, weaker security notions also yield meaningful complexity classes. For the
computationally unbounded setting, semi-honest and standalone (as well as UC)
security notions were considered in [25]. For the computationally bounded setting,
results analogous to ours for these weaker security notions follow from the classical
results in [33] and [12]. See related work.

3 Onlywell-formed functionalities are considered here,without any fairness requirement.

A Zero-One Law for Cryptographic Complexity 597

We call this classification our zero-one law. In other words, every such function-
ality is at the extremes of usefulness: either trivial or complete. If a functionality
is unrealizable in the plain model, then it is all-powerful if used as a trusted
setup.

We considerUCsecurity against probabilistic,polynomial-timeadversarieswho
corrupt parties statically (non-adaptively). In sharp contrast, when considering
the computationally unbounded setting, [25] shows that there are infinitely many
setups that allow realization of infinitely many distinct classes of functionalities.

The intractability assumption we use is the existence of a protocol for oblivi-
ous transfer secure against standalone semi-honest PPT adversaries (sh-OT as-
sumption). Interestingly, this intractability assumption is both necessary and
sufficient. Then, our main result is formally stated as:

Main Theorem: The sh-OT assumption is true if and only if every
deterministic, finite, 2-party functionality is either trivial or complete.

The class of deterministic, finite, 2-party functionalities is defined formally in
Section 3. Most notably, this class includes reactive functionalities, which receive
inputs, give outputs, and keep internal state over many rounds of interaction with
the parties. An important contribution in this work is to initiate an “automata-
theoretic” study of reactive functionalities. Previous works on multi-party com-
putation are almost exclusively restricted to SFE functionalities, except for the
positive (i.e., triviality) results like in [12], which give secure realization of re-
active functionalities.4 In contrast, we develop techniques to use an arbitrary
reactive functionality in a cryptographic protocol.

Cryptographic Complexity and Intractability. As alluded to above, one way to
think about our main result is by taking a complexity-theoretic view of secure
multi-party computation. Say that a functionality F reduces to another function-
ality G (written F �ppt G) if there is a UC-secure protocol for F in the G-hybrid
model. This reduction is reflexive and transitive (for standard notions of secure
reductions), and is a natural complexity-theoretic reduction to compare the rela-
tive “cryptographic complexities” of cryptographic tasks. Throughout this work,
we use this convenient �ppt notation.

Under this interpretation, “completeness” (as defined above) indeed refers to
�ppt-completeness in the complexity-theory sense. The zero-one law shows that
there are only two degrees of the �ppt reduction.5

While we show that the sh-OT assumption is both necessary and sufficient
for the entire zero-one law, the sh-OT assumption may not be necessary for
all individual reductions of the form F �ppt G. In a companion paper [26], we
also classify which intractability assumptions are necessary for reductions of the
form F �ppt G. Every reduction of the form F �ppt G that we classify turns
4 An important exception is [30] which gives a characterization of trivial functionalities

which is applicable to reactive functionalities as well; however, [30] does not offer an
explicit combinatorial or automata theoretic interpretation of their characterization.

5 The degree of G under reduction � is the set {F | F � G}.

598 H.K. Maji, M. Prabhakaran, and M. Rosulek

out to be unconditionally true or false, or else exactly equivalent to a well-known
computational assumption (the sh-OT assumption or the existence of one-way
functions). This suggests the possibility of defining intractability assumptions in
terms of reductions of the form F �ppt G. Such assumptions are of a fundamental
nature for secure multi-party computation, since they are derived directly from
the definitions of functionalities themselves.

Our results in this work imply that the sh-OT assumption is the maximal
assumption that can emerge in this framework; we conjecture that the existence
of one-way functions is the minimal assumption. A more intriguing question is
whether there are other intermediate assumptions. Put differently, one likely
outcome of this line of investigation is to discover new cryptographically inter-
esting worlds in “Impagliazzo’s multiverse” [15] between Cryptomania (which we
interpret as a world where the sh-OT assumption is true) and Minicrypt (where
only one-way functions exist), or to show there are none.

Related Work. There is a large body of work on complexity of 2-party func-
tionalities in the computationally unbounded setting [18,8,24,2,19,20,21,23,25].
In the computationally bounded setting, the classical results of [33,12] imply
that all functionalities are trivial (i.e., realizable without relying on any other
functionality) for the semi-honest and standalone security notions respectively,
under the sh-OT assumption. Our work could be considered a refinement of these
early results, but for the UC security notion.

Beimel et al. [3], who showed (in the probabilistic polynomial-time setting, and
for the special case of SFE functionalities in which only one party receives the
output) that the sh-OT assumption is implied by the existence of a semi-honest
secure protocol for any functionality that is not unconditionally trivial. [13]
partially extends this result beyond finite functionalities, but is still restricted
to the case of one-sided output. (In the full version, we show that, as in [13],
there is a gap between triviality and completeness when our results are extended
to unbounded-memory functionalities.)

The above results do not apply in a security setting with an arbitrary envi-
ronment. Since Canetti introduced the Universal Composition (UC) framework
[4], there have been several works on cryptographic complexity of functionalities
in this setting. In particular, [5,6,30] characterize trivial functionalities. (For fi-
nite functionalities this class remains the same in computationally bounded and
unbounded settings.)

Less was known about which functionalities were complete under UC-secure
reductions. Results in [18,22,17] establish the completeness of oblivious trans-
fer and many other non-reactive functionalities, for computationally unbounded
adversaries. In the polynomial-time setting, the well-known CLOS construction
[7] demonstrates the completness of the “coin-tossing” functionality, assuming
enhanced trapdoor permutations and dense cryptosystems. Our result improves
this by using the minimal sh-OT assumption, but more significantly by show-
ing the completeness of every non-trivial deterministic functionality. (However,
[7] proves completeness against adversaries which corrupt parties adaptively,
whereas we consider only static security.) Independently of our work, Damg̊ard

A Zero-One Law for Cryptographic Complexity 599

et al. [9] also show the completeness of the coin-tossing functionality under the
minimal sh-OT assumption, as we do. Their construction is similar in spirit to
our protocol for the same task, though more complicated due to the use of an in-
termediate “public-key infrastructure” functionality. Our current protocol is the
result of a simplification to a protocol in an earlier draft of this work, motivated
by their recent result.

2 Overview of Our Techniques

In proving our main result, the more interesting direction is to show that sh-OT
assumption implies the zero-one law. That is, we must construct secure protocols
which demonstrate the completeness of every non-trivial functionality, proving
security using only the sh-OT assumption. We do this in a series of steps, outlined
in Figure 1.

Nontrivial
function-
alities

Nontrivial
SFE func-
tionalities

Fcc

Fot

Fxor

Fextcom Fcom

any F
[k88,ips08]

Theorem 3

OWF

Theorem 2

sh-OT

Theorem 3

OWF

[gmw87,clos02] sh-OT

Theorem 4

Theorem 1

Fig. 1. Overview of protocol constructions. An arrow from functionality G to F denotes
a secure protocol for F using ideal access to G (that is, F � G). Arrows not labeled by
a computational assumption indicate unconditionally secure protocols.

Approach: Behavioral Components of Functionalities. Our approach of prov-
ing the zero-one law centers around identifying four distinct behaviors of func-
tionalities that lead to non-triviality. For each behavior we associate a familiar
“canonical” functionality which is non-trivial for only that reason:
– Allowing simultaneous exchange of information, exemplified by the boolean

xor functionality Fxor. In this functionality, one party’s output completely
determines the other’s input. Thus its cryptographic non-triviality stems not
from hiding information, but ensuring that both party’s inputs are chosen
independent of the other’s.

– Selectively hiding one party’s inputs from the other, exemplified by a simple
SFE functionality we introduce called simple cut-and-choose (Fcc). In this

600 H.K. Maji, M. Prabhakaran, and M. Rosulek

functionality, Alice gives a bit as input, and Bob gives an input indicating
whether he wants to learn Alice’s bit or not. Furthermore, Alice is told
whether Bob learned her bit. Thus Fcc embodies selective hiding of Alice’s
input alone.

– Selectively hiding both party’s inputs simultaneously, exemplified by the(2
1

)
-oblivious transfer functionality Fot. Recall that Fot hides meaningful

information about both parties from the other.
– Holding meaningful information hidden in internal memory between rounds,

exemplified by the commitment functionality Fcom. This functionality holds
the sender’s data in memory between the commit phase and reveal phase.
This component can appear only in a reactive functionality.

To show the zero-one law, we do the following: First, we formally define what
it means for a functionality to exhibit each of these four fundamental behav-
iors. Next, we show that these four behaviors are in fact an exhaustive char-
acterization of non-triviality: in Theorems 1 and 4, we show that a reactive
functionality G is non-trivial if and only if F � G unconditionally for some
F ∈ {Fxor,Fcc,Fot,Fcom}.6 In other words, every non-trivial functionality must
exhibit at least one of the above four behaviors. Finally, we show that each of
the four canonical functionalities (Fxor, Fcc, Fot, Fcom) is complete under the
sh-OT assumption.

Since our definitions of these four component behaviors are all combinatorial,
we are able to give the first complete combinatorial characterization of non-
triviality (and consequently completeness) for reactive functionalities. Further,
this characterization holds even with respect to computationally unbounded
adversaries.

Non-Reactive Behaviors (Section 4). Of the four behaviors enumerated above,
only the Fcom behavior is exclusive to reactive functionalities. For the other three,
which can apply to non-reactive functionalities, we give formal combinatorial
definitions in terms of the input/output function table. Then it suffices to show
that any non-reactive functionality not meeting one of these three criteria is in
fact trivial (Theorem 1).

Next, we show that Fxor, Fcc, and Fot are each complete. It is well-known
that Fot is (unconditionally) complete, even under the strong notion of reduc-
tion that we consider [18,17]. For the other two cases, we use the fact that
the commitment functionality Fcom is complete in the UC framework under the
sh-OT assumption. This follows directly from the well-known CLOS construction
[7]. Thus, to complete our claim, it suffices to show that the sh-OT assumption
implies Fcom �ppt Fxor and Fcom �ppt Fcc.

We give new commitment protocols in the Fxor- and Fcc-hybrid models (The-
orems 2 and 3), secure under the sh-OT and OWF assumptions, respectively. We
6 Indeed just Fxor and Fcc by themselves are an exhaustive characterization of non-

triviality, as they can both be unconditionally obtained from Fot and Fcom. However,
we include all four functionalities in our list of fundamental behavioral components
because we prove the complete of each one differently.

A Zero-One Law for Cryptographic Complexity 601

note that [7] shows (implicitly) that Fxor is complete;7 however, their protocol
focuses on achieving adaptive security and, as such, depends on a hardness as-
sumption that is not known to be implied by sh-OT assumption. Our new pro-
tocol achieves static security using a new protocol and under the minimal sh-OT
assumption.

Reactive Behaviors (Section 5). To complete the classification of reactive func-
tionalities, we show that every reactive functionality is either trivial, contains
a non-reactive behavioral component (Fxor, Fcc, Fot), or else can be used
for a commitment (Fcom) protocol (Theorem 4). As mentioned above, Fcom is
complete under the sh-OT assumption, thus we establish the exhaustiveness of
the four behavioral components, as well as the completeness of their respective
canonical functionalities.

The bulk of our technical contributions for reactive functionalities involves
formally defining this fourth behavioral component; namely, defining when an
arbitrary functionality keeps meaningful information about a party’s input hid-
den in memory between rounds. We model reactive functionalities as finite-state
automata, and initiate an automata-theoretic analysis of their input/output be-
havior. This classification involves identifying states and transitions of an au-
tomaton which have specific cryptographic consequences, and then showing how
such features can be leveraged to give a protocol for Fcom.

3 Preliminaries

Model and Security Definition. Our security definitions are grounded in the
framework of Universal Composable (UC) security [4], with which we assume
the reader has slight familiarity. For concreteness we consider the model used in
[30], which in turn is based on that in [29]. However, we emphasize that very few
specifics of the model (including ideal functionalities, an interactive environment
and simulation based security) are important for the results.

The UC model allows a large class of MPC functionalities, not all of which
are “natural.” For instance, a functionality that announces the identities of the
corrupt parties is not natural; a reactive functionality which introduces a race
condition depending on the order in which it receives inputs from parties is
also not natural. Following the convention in all previous works (to the best
of our knowledge), we do not consider such functionalities. We note that the
functionalities we consider do not offer a guarantee of output fairness; that is,
they allow the adversary to control the delivery of outputs.

We write F � G if there is a protocol that securely realizes F in the “G-
hybrid model;” see [4] or [29] for a formal definition. In the G-hybrid model,
the parties in the protocol can interact with any number of (asynchronous)
copies of G, and can access G in any “role”. This second convention is crucial
to our results (see Section 7). We consider only efficient protocols, but make
7 They show that the coin-tossing functionality, for which there is an elementary pro-

tocol using Fxor, is complete.

602 H.K. Maji, M. Prabhakaran, and M. Rosulek

a notational distinction between unconditionally (statistically) secure protocols
(denoted by �stat) and protocols whose security depends on a computational
assumption (denoted by �ppt). As is standard, we require security against active
(i.e., malicious) adversaries. However, as we point out in Section 7, our results
extend to a stronger definition where security is required against both active and
semi-honest adversaries.8

By default, we also allow protocols access to a communication channel. Fol-
lowing [30], we consider the natural model of a private communication channel,
in which parties can send fixed-length messages (with the adversary controlling
delivery). The choice of public vs. private channel is not crucial to our results
(see Section 7).

All results in this work are restricted to static corruption (where the adversary
has to corrupt any parties before the protocol begins). In fact, we leave open the
possibility that our main theorem breaks down in the case of adaptive corruption.

Classes of functionalities. In this work we restrict our attention to finite, de-
terministic, 2-party, reactive functionalities. We formally model such func-
tionalities as finite automata. Each state transition is labeled by a tuple in
X × Y × Z × Z, where X , Y , and Z are finite sets. A transition from q to
q′ with label (x, y, s, t) means that upon receiving input x from Alice and y from
Bob in state q, the functionality will deliver output s to Alice and t to Bob, and
change to state q′. We require the automaton to be deterministic; that is, for
every state q and every (x, y) ∈ X × Y , there is at most one transition leaving
q whose label begins with (x, y). We consider an asynchronous network setting
in which the adversary has control over the timing of input/output delivery. In
Figure 2 we give an example of how the (reactive) commitment functionality
Fcom can be expressed in such a way.

We say that a functionality is a secure function evaluation (SFE; or non-
reactive) functionality if it engages only one round of interaction; that is, all
transitions leading from the start state lead to a dead state with no transitions.

q0start

q1

q2

q3

(“commit 0”,⊥,⊥,committed)

(“commit 1”,⊥,⊥,committed)

(reveal,⊥,⊥, “reveal 0”)

(reveal,⊥,⊥, “reveal 1”)

Fig. 2. Commitment functionality Fcom modeled as a deterministic finite functionality

8 Note that when considering security against semi-honest adversaries, the simulator
must also be semi-honest.

A Zero-One Law for Cryptographic Complexity 603

Alternatively, an SFE functionality is completely specified by a pair of functions
(fA, fB), where Alice’s output is fA(x, y) and Bob’s output is fB(x, y).

The sh-OT assumption. The primary intractability assumption we consider is
the existence of a protocol for Fot secure against semi-honest, PPT adversaries
(sh-OT assumption, for short). It is possible to express this assumption using
the definition of UC security restricted to semi-honest adversaries (in both the
real and the ideal executions). However, we point out that the traditional (stan-
dalone) security definition is equivalent to the UC security definition, since the
simulation required by semi-honest security does not, and need not, extract the
inputs of the corrupt players; it simply uses the input given by the environment.

Some of our protocol constructions additionally rely on statistically binding
(standalone secure) commitment schemes, pseudorandom generators, (standalone
secure) witness-indistinguishable proofs or zero-knowledge proofs of knowledge
for NP. All of these primitives have well-known constructions assuming the exis-
tence of one-way functions [27,14,10]. One-way functions are in turn implied by
the sh-OT assumption [16].

4 Zero-One Law for Non-reactive Functionalities

Three “Canonical” Non-Reactive Functionalities. The following three SFE func-
tionalities exemplify the three different behaviors that lead to cryptographic
non-triviality for non-reactive functionalities:

Fxor (exclusive-or): Alice gives input x ∈ {0, 1} and Bob gives input y ∈ {0, 1}.
Both parties receive output x⊕ y.

Fcc (simple cut-and-choose): Alice gives input x ∈ {0, 1} and Bob gives input
y ∈ {0, 1}. If y = 0, then both parties receive output x. If y = 1, then
both parties receive output 2. Thus, Bob decides whether to learn Alice’s
bit, while Alice always learns Bob’s choice.

Fot (oblivious transfer): Alice gives inputs x0, x1 ∈ {0, 1} and Bob gives input
y ∈ {0, 1}. Bob receives output xy and Alice receives output ⊥.

We show that these three fundamental behaviors completely characterize non-
triviality (for non-reactive functionalities), as follows:

Theorem 1. Let F be an SFE functionality. Then F is non-trivial if and only
if Fxor �stat F or Fcc �stat F or Fot �stat F .

Proof (Sketch). (⇐) Each of Fxor, Fcc, and Fot is unconditionally non-trivial,
from the characterization of trivial SFE functionalities in [30].

(⇒) Kraschewski and Müller-Quade [22] identify a 2 × 2 minor within the
function table of an SFE, which generalizes the (symmetric-output) boolean or

functionality 0 1
1 1 that is known to be complete. They show that an SFE F can

be used to construct an unconditionally UC-secure protocol for Fot if and only
if F contains such a minor.

604 H.K. Maji, M. Prabhakaran, and M. Rosulek

Similarly, we also identify another important 2×2 minor called a generalized-
cc minor. A minor a generalized-cc if, when restricted to the minor, one party
can choose whether to learn the other’s input, and this choice is revealed to the
other party in the function’s output. We show that if F has such a minor, then
the protocol in which the parties simply restrict their inputs to that minor while
accessing F is a UC-secure protocol for Fcc.9

Finally, it is easy to see that if F does not have either kind of 2 × 2 minor
mentioned above, then F must simply be (equivalent to) a function that takes
inputs x ∈ X from Alice and y ∈ Y from Bob, then outputs (x, y) to both
parties. If max{|X |, |Y |} ≥ 2, then there is an elementary UC-secure protocol
for Fxor in the F -hybrid model. Otherwise, F is trivial: the protocol in which
one party simply sends their input to the other party is a UC-secure protocol
for F (without any set-up).

Completeness of the Three Canonical Non-Reactive Functionalities. Since Fot is
unconditionally complete (even with respect to UC secure protocols) [18,17], and
the commitment functionality Fcom is complete under the sh-OT assumption [7],
it suffices to prove the following two theorems:

Theorem 2. If the sh-OT assumption is true, then Fcom �ppt Fxor.

Proof (Sketch). We first observe that the coin-tossing functionality Fcoin

10 has
an elementary, unconditionally secure protocol in the Fxor-hybrid model. Thus
it suffices to show that Fcom �ppt Fcoin. The well-known CLOS construction [7]
proves exactly this; however, their focus was on achieving adaptive security, and
their protocol relied on a stronger computational assumption than the sh-OT
assumption. Thus we must use an entirely different approach for achieving Fcom

(with static security) from Fcoin. We sketch an overview of our protocol below:
Suppose ψsh is the semi-honest protocol for Fot guaranteed by the sh-OT

assumption. We suppose that the sender in ψsh provides two bits (x0, x1), the
receiver provides a bit y, and the receiver learns xy .

Our commitment protocol is as follows, when Alice is committing to b ∈ {0, 1}.
First, both parties use Fcoin to generate a sequence of random coins σ. The
sender Alice and receiver Bob interact in an instance of ψsh, with Alice using
inputs (x0 = 0, x1 = b), and Bob using input y = 0. To ensure that both parties
provide inputs of the required form, we “compile” the ψsh subprotocol using
a variant of the standard GMW compiler [12]. Unlike the GMW compiler, at
each step we make the parties give a witness-indistinguishable proof that either
they are following the protocol honestly with the appropriate inputs, or the
public coins σ are from a pseudorandom distribution. In the reveal phase, Alice

9 Note that, in general, restricting inputs to a minor of F does not give a secure
protocol (against malicious adversaries) for the SFE corresponding to that minor,
since a malicious adversary may send inputs to F outside of the prescribed minor.

10 Fcoin is a functionality which, upon activation, samples an unbiased coin b← {0, 1}
and outputs it to both parties. It does not fall in our class of deterministic finite
functionalities, but we use it as an intermediate step in our protocol construction.

A Zero-One Law for Cryptographic Complexity 605

gives a witness-indistinguishable proof that either σ was from a pseudorandom
distribution, or all her messages in the ψsh subprotocol were consistent with her
having input x1 = b.

In the real interaction, σ is generated honestly using Fcoin and is therefore in
the pseudorandom distribution with negligible probability. Thus the GMW-style
compilation ensures that both parties are executing the ψsh subprotocol honestly
as stated. Then applying the semi-honest security of ψsh, we see that Bob learns
nothing about b in the commit phase, and Alice can only open the commitment
to the value of b that she used in the commit phase.

However, when the simulator is corrupt it can choose σ from a pseudorandom
distribution. If Alice is corrupt, the simulator can play the role of Bob using
input y = 1 to the ψsh subprotocol, while still giving convincing GMW proofs.
By the correctness of the ψsh protocol, the simulated Bob obtains x1 = b from
ψsh (i.e., the simulator extracts b), and by the security of ψsh, the simulation is
indistinguishable from the real interaction.

If Bob is corrupt, the simulator can give a commitment to 0 in the commit
phase, but open it to any value in the reveal phase (using the clause in the
witness-indistinguishable proof related to σ). Thus the simulator can successfully
equivocate to a corrupt Bob.

To show that both of these simulations are sound, we must apply the semi-
honest security of ψsh, which is the most delicate part of the proof, since the
simulator exists in the UC setting. We construct a sequence of hybrid interactions
between the real and ideal UC (straight-line) interactions, and show that if
any adversary can distinguish between certain hybrids, then we can construct
a corresponding adversary (possibly using rewinding) which violates the semi-
honest security properties of ψsh. For technical reasons in this part, we require
the interactive proofs to be proofs of knowledge.

Theorem 3. If one-way functions exist, then Fcom �ppt Fcc.

Proof (Sketch). The simulator for a UC-secure commitment protocol has two
main tasks: (1) to extract the committed value from a corrupt sender during the
commit phase, and (2) to give an equivocal commitment to a corrupt receiver
that can then be convincingly opened to any value during the reveal phase.
Our construction of a UC-secure commitment protocol is broken into two ma-
jor conceptual steps, which tackle these two properties in a somewhat modular
fashion.

We first define an intermediate “extractable commitment” functionality called
F

extcom
. The complete formulation of F

extcom
is highly non-trivial, and is def-

ered to the full version. F
extcom

succinctly expresses the requirements of a sta-
tistically binding, computationally hiding commitment scheme (in the traditional
standalone-secure sense) which also admits a straight-line extracting simulator.
We believe that this method of expressing a combination of standalone and uni-
versally composable security properties may be of independent interest. Using a
technique similar in spirit to the

(2
1

)
-commitments of Nguyen and Vadhan [28],

we show that if one-way functions exist, then Fcom �ppt Fextcom
.

606 H.K. Maji, M. Prabhakaran, and M. Rosulek

Thus it suffices to construct a commitment protocol which has a UC extrac-
tion property, but only a standalone-secure hiding property. This commitment
protocol is as follows. To commit to a bit b, Alice first chooses a random bitstring
s and then applies a good linear error-correcting code to obtain a codeword t.
She commits to t using a statistically binding (standalone-secure) commitment
protocol. For each bit ti of t, Alice gives ti as input to Fcc, and Bob chooses
to learn it with some probability. Recall that in Fcc, Alice learns whether Bob
choses to see her input. Alice ensures that Bob only learned sufficiently few bits
of t so that some uncertainty about s remains. This remaining uncertainty can
be deterministically extracted (as a linear function of s), and Alice uses it as a
one-time pad to mask b. She sends the masked b to Bob to complete the com-
mitment phase. In the reveal phase, Alice opens the commitment to t, and Bob
checks for consistency with the bits that he learned in the commit phase.

Intuitively, the protocol is computationally hiding and statistically binding
because the deterministic extraction of the mask is perfect (using a simple linear
function). The only information about the mask is given in a statistically-binding
standalone-secure commitment to t.

However, the simulator provides the interface for Fcc to a corrupt Alice. Con-
sequently, the simulator can see all of Alice’s inputs to Fcc, which are the (pur-
ported) bits of t. Because Bob has a certain probability of revealing each one of the
bits of t and he verifies them against Alice’s statistically binding commitment to
t, we argue that Alice could not supply too many incorrect values to Fcc. In par-
ticular, Alice cannot give more incorrect bits than can be corrected by the error
correcting code, except with negligible probability. Thus the simulator can per-
form a noisy decoding to obtain s and then easily extract b.

5 Classifying Reactive Functionalities

We show that a reactive functionality can be non-trivial only for two simple
reasons: (1) behaving like a non-trivial SFE functionality during a single round,
or (2) using its internal memory in a non-trivial way. Formally defining condition
(2) requires a careful new automata-theoretic analysis of reactive behaviors.
Intuitively, memory is used in a non-trivial way when some part of the memory
is both hidden (has not yet affected its external behavior) and meaningful (may
eventually influence its future external behavior). Such usage of internal memory
is exemplified by the commitment functionality Fcom (between the commit and
reveal phases).

Automata-theoretic Characterization. We develop three new important proper-
ties of reactive functionalities, all defined combinatorially.

Say that an input x̂ dominates another input x if Alice can use x̂ as her
input to F in the first round of interaction, but then convince any environment
that she had really used x. In other words, any behavior that can be induced
by sending x to F in the first round can also be induced by instead sending x̂
and thereafter engaging in some local “translation” protocol. We emphasize that

A Zero-One Law for Cryptographic Complexity 607

Alice must perform this translation online, without knowledge of the inputs that
the environment will provide in future rounds. When x̂ dominates x, Alice can
use x̂ in place of x in the first round without loss of generality. The condition of
x̂ dominating x can be defined directly in terms of the UC security condition.

The input-output behavior of each state in the functionality naturally defines
a corresponding SFE. Take any SFE and say that x ∼ x′ if Alice inputs x and
x′ always induce the same output for Bob. In an SFE, Bob’s output may reveal
information about Alice’s output, but up to ∼-equivalence at most. However,
in a trivial SFE, Bob’s output always reveals exactly the ∼-equivalence class of
Alice’s input. We say that the start state of F is simple if: (1) its associated SFE
is a trivial SFE, and (2) each equivalence class of ∼ (for Alice inputs and Bob
inputs) contains some input that dominates all other inputs in its class.

To understand this definition, suppose the start state of F is simple. Then just
by looking at his own output from the first round, Bob can exactly determine
the ∼-class of the input Alice used. There is some input, say, x̂, which dominates
all Alice inputs in this ∼-class. No matter how the environment instructs Alice
to behave in the future, she could have achieved the same effect if she had used
input x̂ in the first round. Thus, Bob can assume without loss of generality that
Alice in fact used x̂. The same is true for Alice; she can determine, given her
output, an input ŷ for Bob, and assume without loss of generality that Bob
supplied ŷ in the first round.

Thus we can assume without loss of generality that Alice and Bob only use
inputs x̂ and ŷ of this special kind (they dominate their respective ∼-equivalence
classes). We call the transition from the start state on such inputs (x̂, ŷ) a safe
transition. Intuitively, only safe transitions are relevant; furthermore, after a
safe transition, neither party has uncertainty about the functionality’s resulting
state.

We can now state our main automata-theoretic characterization:

Theorem 4. Let F be a deterministic, finite (reactive) functionality. Then the
following are equivalent:
1. F is non-trivial.
2. Fcom �stat F or G �stat F for some non-trivial SFE functionality G.
3. There is a non-simple state in F that is reachable from the start state via a

sequence of safe transitions.

The automata-theoretic properties defined above, and subsequently condition (3)
of this theorem, can be expressed completely combinatorially, giving the first
combinatorial characterization of triviality (and thus completeness) for any class
of arbitrary reactive functionalities.

Proof (Sketch). 2⇒ 1 follows from the non-triviality of Fcom.
(1 ⇒ 3) Consider all the states of F reachable via a sequence of safe tran-

sitions; intuitively, these are the only states that matter. If all such states are
simple, then F has the following trivial protocol: repeatedly evaluate the (triv-
ial) SFE corresponding to F ’s current state, using that SFE’s trivial protocol.
Without loss of generality we can assume a safe transition was taken; thus, each

608 H.K. Maji, M. Prabhakaran, and M. Rosulek

party’s output in the round determines the next state of F , and the protocol
can be repeated for each round.

(3 ⇒ 2) Assume that one of the safely reachable states of F is non-simple;
without loss of generality, we can take the start state to be non-simple. The
definition of a simple state requires two conditions, so we consider two cases:
(1) If the start state is non-simple because of its input-output behavior, then
there is an elementary protocol which securely realizes that associated SFE in
the F -hybrid model (simply interact with F for one round only). (2) Otherwise,
the start state is non-simple because there exist two inputs for (by symmetry)
Alice, say x0 and x1, for which x0 ∼ x1 (that is, these inputs always induce the
same output for Bob in the first round), but no Alice input dominates both of
{x0, x1}. In other words, Alice’s first-round input “binds” her to the behaviors
consistent with x0 or to those consistent with x1, but not both.

We formalize this natural connection to commitment by constructing a pro-
tocol for Fcom, as follows. Alice commits to b by sending xb to F in the first
round. The commitment is perfectly hiding since x0 ∼ x1. To reveal, Alice must
convince Bob that in the first round she used an input that dominates xb, since
no input can dominate both x0 and x1.

Suppose x does not dominate x′. Then for every strategy for Alice which uses
input x in the first round, there is some environment that can distinguish between
Alice’s strategy and one which uses input x′ in the first round and thereafter runs
the dummy protocol. Using an automata-theoretic characterization, we show
that these quantifiers can be exchanged: there is a fixed environment such that
for every x not dominating x′ and every Alice strategy that uses input x in the
first round, the environment has a constant probability of “catching” Alice.11

Our commitment protocol instructs Bob to play the role of such an environment
in the reveal phase, sending a sequence inputs to F himself and a sequence of
“challenge” inputs to Alice. Just like in the definition of domination, Alice must
report back to Bob her own purported responses from F , in an online manner. If
Alice’s first-round input did not dominate xb, she is guaranteed to be caught with
constant probability. By repeating this basic protocol in parallel an appropriate
number of times, Bob can be assured of catching an equivocating Alice with
overwhelming probability.

6 Necessity of the sh-OT Assumption

Finally, we show that the sh-OT assumption is not only sufficient but also nec-
essary for the zero-one law to hold.

Theorem 5. If the zero-one law is true, then the sh-OT assumption is true.

11 This environment results in a protocol for Fcom whose worst-case O(k) efficiency
hides very large constants. However, it is usually possible to tailor such a distin-
guishing environment for a particular F to achieve much better efficiency bounds,
resulting in a very practical commitment protocol.

A Zero-One Law for Cryptographic Complexity 609

Proof. If the zero-one law holds, then Fxor is complete, since it is uncondition-
ally non-trivial. Thus Fot �ppt Fxor. Fot has the property that any protocol
that securely realizes Fot (against active adversaries) is also secure against semi-
honest adversaries (see [30] for more details). Hence the given Fot protocol is
secure against semi-honest adversaries, in the Fxor-hybrid model. Since Fxor

has an elementary plain protocol unconditionally secure against semi-honest ad-
versaries, we can compose these two protocols to obtain a plain protocol that
securely realizes Fot against semi-honest adversaries.

More generally, ifF has an unconditionally secure protocol against semi-honest
adversaries, then the �ppt-completeness of F implies the sh-OT assumption.

7 Extensions, Limitations, and Open Problems

We discuss several natural extensions of our main theorem, discussed in greater
detail in the full version:

Strengthening the Reduction. As the definition of a reduction is strengthened,
fewer functionalities reduce to one another. In the extreme, the reduction could
be made so restrictive that no functionality reduces to another. On the other
hand, it is relatively easy to see that the zero-one law still applies as stated in
this work if protocols are given only public channels instead of private channels,
or if security is simultaneously required against both active and semi-honest
adversaries.

If the reduction requires security against computationally unbounded adver-
saries, then the zero-one law breaks down. In fact, there exist infinitely many
distinct intermediate (between trivial and complete) complexities with respect
to this stronger reduction [25].

If the reduction requires parties to use the given ideal functionality with only
fixed roles (i.e., Alice can access F only in the role of Alice), then Fcom �� Fcc

(note that the behavior of Fcc is not symmetric with respect to the two parties),
so the zero-one law does not hold under this strong reduction. This impossibility
highlights the fact that Fcc indeed has rather low complexity, and justifies our
somewhat complicated protocol used to realize Fcom using Fcc.

We leave open the question of whether the zero-one law holds if the reduction
is strengthened to require security against adaptive corruption.

Larger Classes of Functionalities. We restricted our attention to a class of deter-
ministic functionalities with finite memory and inputs. In fact, the zero-one law
does not extend if we relax the restriction on finiteness. Let F be a channel which
accepts an arbitrary-length string x from Alice and sends f(x) to Bob for a fixed
function f . Assuming one-way functions exist, one can construct an f so that
the resulting functionality is neither trivial nor complete.12 The construction

12 Of course, if one-way functions do not exist, then the sh-OT assumption, and subse-
quently the zero-one law, is again false.

610 H.K. Maji, M. Prabhakaran, and M. Rosulek

of this intermediate F is admittedly contrived, and we leave open the impor-
tant problem of identifying the largest “natural” class of unbounded-memory
functionalities that still satisfies the zero-one complexity law.

The other natural way to extend the scope of our results is to consider ran-
domized functionalities. However, very little is known about randomized func-
tionalities, even in the simplest case of SFE functionalities and considering
perfect security against computationally unbounded, semi-honest adversaries;
for comparison, the corresponding characterization for deterministic SFE has
been known for 20 years [24,2].

Optimizing Hardness Assumptions. While our main theorem relies on the min-
imal sh-OT assumption, our use of the assumption itself is non-black-box. In
Theorems 2 and 3 we use interactive proofs of statements regarding various
cryptographic primitives (ultimately derived from the sh-OT assumption). We
do not know whether such non-black-box usage of the assumption is necessary,
although it seems that a fundamentally different approach is required to avoid
the use of interactive proofs.

Acknowledgments

We acknowledge helpful discussions with Ran Canetti, Yuval Ishai, Yehuda Lin-
dell and Amit Sahai, as well as helpful suggestions from anonymous conference
referees. The protocol in Theorem 2 was simplified from its original form in an
earlier manuscript, partly motivated by the recent results of [9].

References

1. Proc. 30th FOCS. IEEE, Los Alamitos (1989)
2. Beaver, D.: Perfect privacy for two-party protocols. In: Feigenbaum, J., Merritt,

M. (eds.) Proceedings of DIMACS Workshop on Distributed Computing and Cryp-
tography, vol. 2, pp. 65–77. American Mathematical Society, Providence (1989)

3. Beimel, A., Malkin, T., Micali, S.: The all-or-nothing nature of two-party secure
computation. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 80–97.
Springer, Heidelberg (1999)

4. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Electronic Colloquium on Computational Complexity (ECCC) TR01-
016, 2001. Previous version. A unified framework for analyzing security of proto-
cols” availabe at the ECCC archive TR01-016. Extended abstract in FOCS (2001)

5. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, p. 19. Springer, Heidelberg (2001)

6. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. In: Biham, E. (ed.)
EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg (2003)

A Zero-One Law for Cryptographic Complexity 611

7. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable twoparty
computation. In: Proc. 34th STOC, pp. 494–503. ACM, New York (2002)

8. Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy (extended abstract).
In: STOC, pp. 62–72. ACM, New York (1989)

9. Damg̊ard, I., Nielsen, J.B., Orlandi, C.: On the necessary and sufficient assumptions
for UC computation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 109–
127. Springer, Heidelberg (2010)

10. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press, Cambridge (2001), Earlier version available on,
http://www.wisdom.weizmann.ac.il/~{}oded/frag.html

11. Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge Uni-
versity Press, Cambridge (2004)

12. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: ACM
(ed.) Proc. 19th STOC, pp. 218–229. ACM, New York (1987), See 11, Chap. 7 for
more details

13. Harnik, D., Naor, M., Reingold, O., Rosen, A.: Completeness in two-party secure
computation: A computational view. J. Cryptology 19(4), 521–552 (2006)

14. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999); Preliminary
versions appeared in STOC 1989 and STOC 1990

15. Impagliazzo, R.: A personal view of average-case complexity. In: Structure in Com-
plexity Theory Conference, pp. 134–147 (1995)

16. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography (extended abstract). In: Proc. 30th FOCS [1], pp. 230–235

17. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Wagner (ed.) [32], pp. 572–591

18. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31.
ACM, New York (1988)

19. Kilian, J.: A general completeness theorem for two-party games. In: STOC, pp.
553–560. ACM, New York (1991)

20. Kilian, J.: More general completeness theorems for secure two-party computation.
In: Proc. 32th STOC, pp. 316–324. ACM, New York (2000)

21. Kilian, J., Kushilevitz, E., Micali, S., Ostrovsky, R.: Reducibility and completeness
in private computations. SIAM J. Comput. 29(4), 1189–1208 (2000)

22. Kraschewski, D., Müller-Quade, J.: Completeness theorems with constructive
proofs for symmetric, asymmetric and general 2-party-functions, 2008 (2008) (Un-
published Manuscript), http://iks.ira.uka.de/eiss/completeness

23. Künzler, R., Müller-Quade, J., Raub, D.: Secure computability of functions in the
it setting with dishonest majority and applications to long-term security (2009)

24. Kushilevitz, E.: Privacy and communication complexity. In: FOCS [1], pp. 416–421
25. Maji, H.K., Prabhakaran, M., Rosulek, M.: Complexity of multi-party computation

problems: The case of 2-party symmetric secure function evaluation. In: Reingold
(ed.) [31], pp. 256–273

26. Maji, H.K., Prabhakaran, M., Rosulek, M.: Cryptographic complexity classes and
computational intractability assumptions. In: Yao, A.C.-C. (ed.) Innovations in
Computer Science, pp. 266–289. Tsinghua University Press, Beijing (2010)

27. Naor, M.: Bit commitment using pseudorandomness 4(2), 151–158 (1991), Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, Heidelberg
(1990)

28. Nguyen, M.-H., Vadhan, S.P.: Zero knowledge with efficient provers. In: STOC,
pp. 287–295. ACM, New York (2006)

http://www.wisdom.weizmann.ac.il/~{}oded/frag.html
http://iks.ira.uka.de/eiss/completeness

612 H.K. Maji, M. Prabhakaran, and M. Rosulek

29. Prabhakaran, M.: New Notions of Security. PhD thesis, Department of Computer
Science, Princeton University (2005)

30. Prabhakaran, M., Rosulek, M.: Cryptographic complexity of multi-party com-
putation problems: Classifications and separations. In: Wagner (ed.) [32],
pp. 262–279

31. Reingold, O. (ed.): TCC 2009. LNCS, vol. 5444. Springer, Heidelberg (2009)
32. Wagner, D. (ed.): CRYPTO 2008. LNCS, vol. 5157. Springer, Heidelberg (2008)
33. Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th FOCS, pp. 162–

167. IEEE, Los Alamitos (1986)

On Generalized Feistel Networks

Viet Tung Hoang and Phillip Rogaway

Dept. of Computer Science, University of California, Davis, USA

Abstract. We prove beyond-birthday-bound security for most of the
well-known types of generalized Feistel networks: (1) unbalanced Feistel
networks, where the n-bit to m-bit round functions may have n �= m;
(2) alternating Feistel networks, where the round functions alternate be-
tween contracting and expanding; (3) type-1, type-2, and type-3 Feistel
networks, where n-bit to n-bit round functions are used to encipher kn-
bit strings for some k ≥ 2; and (4) numeric variants of any of the above,
where one enciphers numbers in some given range rather than strings of
some given size. Using a unified analytic framework, we show that, in
any of these settings, for any ε > 0, with enough rounds, the subject
scheme can tolerate CCA attacks of up to q ∼ N1−ε adversarial queries,
where N is the size of the round functions’ domain (the larger domain for
alternating Feistel). Prior analyses for most generalized Feistel networks
established security to only q ∼ N0.5 queries.

Keywords: Block ciphers, coupling, Feistel networks, generalized Feistel
networks, modes of operation, provable security, symmetric techniques.

1 Introduction

Background. Feistel-like ciphers come in several flavors beyond the “clas-
sical” one used in DES [31,7]. In speaking of generalized Feistel networks we
mean to encompass most all of them; see Fig. 1. In particular, we include: un-
balanced Feistel networks with either expanding or contracting round functions,
as described by Schneier and Kelsey [30]; alternating Feistel networks, where
the rounds alternate between contracting and expanding steps, as described by
Anderson and Biham [1] and by Lucks [11]; type-1, type-2, and type-3 Feistel
networks, as described by Zheng, Matsumoto, and Imai [35], each of which uses
an n-bit to n-bit round function to create a kn-bit blockcipher for some k ≥ 2;
and numeric variants of any of the above, where one enciphers numbers in ZN ,
for some N ∈ N, instead of enciphering binary strings. Well-known blockciphers
that use generalized Feistel networks include Skipjack (an unbalanced Feistel
network), BEAR/LION (alternating), CAST-256 (type-1), RC6 (type-2), and
MARS (type-3).

The provable-security analysis of Feistel networks begins with the seminal work
of Luby and Rackoff [10]. The � round functions used are assumed to be selected
uniformly and independently at random (� = 3 or � = 4 in [10]). One then con-
siders how close to a random permutation the constructed cipher is. Subsequent

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 613–630, 2010.
c© International Association for Cryptologic Research 2010

614 V.T. Hoang and P. Rogaway

A B
m n

AB

F

mn

A B
m n

B

F

BA’

A’

F’

’
m n

a b

ZM

F

ZN

+

b

N ⋅

+ a

ZM

’
ZN

’

Unbalanced Feistel
Feistel [m, n]

Unbalanced Numeric Feistel
Feistel [M, N]

Alternating Feistel
FeIsTeL [m, n]

A B
n n

AB ’

Classical Feistel
FEISTEL [n]

Type-l Feistel
Feistel1 [k, n]

B1 B2 B3 B4

F

F

Type-2 Feistel
Feistel2 [k, n]

B2 B3 B1B4’

B1 B2 B3 B4

F1

B2 B3 B1B4’

F2

’

Type-3 Feistel
Feistel3 [k, n]

B1 B2 B3 B4

B2 B3 B1B4’ ’

a b

b

F

ba’

a’

F’

’

Alternating Numeric Feistel
FeIsTeL [M, N]

ZM ZN

+

ZM ZN

+

r r

r r

r

rrr

M ⋅

N ⋅

N ⋅

’

F1 F3F2

n n n n n n n n n n n n

n n n n n n n n n n n n

n n

#

#

Fig. 1. Generalized Feistel networks. The superscript � is the number of rounds.
The illustrations show a single round � = 1 except for the alternating schemes, where
� = 2 rounds are shown. Scheme FEISTEL is the classical balanced-Feistel scheme; all
remaining schemes are generalizations of it. Schemes Feistel� and FeIsTeL� are numeric
variants of Feistel (unbalanced Feistel) and FeIsTeL (alternating Feistel); they encipher
a number x = aN + b ∈ ZMN (a ∈ ZM , b ∈ ZN) instead of a string X ∈ {0, 1}m+n.
Schemes Feistel1, Feistel2, and Feistel3 are the so-called type-1, type-2, and type-3
Feistel networks. They are used in modern blockciphers like CAST-256, RC6, and
MARS, respectively. Variable k refers to the number of n-bit input blocks B1, . . . , Bk.
The illustrations are for k = 4.

On Generalized Feistel Networks 615

scheme E = Advcca
E (q) ≤ where � =

classical FEISTEL� [n] 2q
r+1

(
4q / 2n

)r 6r − 1

unbalanced Feistel� [m, n]

with n > m 2q
r+1

(
(3
n/m�+ 3)q / 2n

)r
r(4
n/m�+ 4)

with n ≤ m 2q
r+1

(
4
m/n�q / 2n

)r
r(2
m/n�+ 4)

unbalanced� Feistel�� [M, N]

with N > M
2q

r+1

(
(9
logM N�+ 5)q / N

)r
r(6
logM N�+ 4)

with N ≤ M
2q

r+1

(
(7
logN M�+ 7)q / N

)r
r(2
logN M�+ 6)

alternating FeIsTeL� [m, n] 2q
r+1

(
(6
n/m�+ 3)q / 2n

)r
r (12
n/m�+ 8)

alternating� FeIsTeL�� [M, N] 2q
r+1

(
(6
logM N�+ 3)q / N

)r
r (12
logM N�+ 8)

type-1 Feistel1� [k, n] 2q
r+1

(
2k(k − 1)q / 2n

)r
r(4k − 2)

type-2 Feistel2� [k, n] 2q
r+1

(
2k(k − 1)q / 2n

)r
r(2k + 2)

type-3 Feistel3� [k, n] 2q
r+1

(
4(k − 1)2q / 2n

)r
r(2k + 2)

Fig. 2. Summary of CCA bounds in this paper. The rows correspond to the
generalized Feistel networks pictured in Fig. 1. Unbalanced schemes are distinguished
by their using contracting (n > m) or expanding (n ≤ m) round functions. Parameters
k, m, n, M, N describe the scheme and r ≥ 1 determines the number of rounds � . The
specified results appear as Theorems 6–10.

work in this information-theoretic framework (still analyzing the classical Feistel
construction) includes Maurer [12], Naor and Reingold [19], Vaudenay [33], Mau-
rer and Pietrzak [13], and a sequence of papers by Patarin [26,21,23,24,22]. The
last culminates with the claim that six rounds of (classical) Feistel on a 2n-bit
string is enough to defeat (meaning the advantage goes to 0 as n→∞) adaptive
chosen-ciphertext attacks of 2n(1−ε) queries, for any ε > 0.

Information-theoretic analysis of generalized Feistel schemes is less mature.
We postpone describing the known results except to say that they are either ab-
sent (alternating Feistel with highly-imbalanced round functions), quantitatively
weak (birthday bounds that generalize Luby and Rackoff’s 25-year-old work),
or highly specialized (unbalanced Feistel networks with maximally unbalanced
contracting round functions).

Contributions. Our CCA-security bounds for generalized Feistel networks
are described in Fig. 2. Proofs omitted due to lack of space appear in the full
version of this paper [8]. Let us briefly describe each result and how it compares
with prior work.

For the classical Feistel network on 2n bits, our results are comparable to
those of Maurer and Pietrzak (henceforth “MP”) [13]. As with that work, the
bounds get better as one increases the number of rounds � . Asymptotically,
for any ε > 0, there is a corresponding number of rounds � (about 6/ε) such

616 V.T. Hoang and P. Rogaway

that any CCA-adversary has vanishing advantage if it asks at most q = 2n(1−ε)

forwards or backwards queries. Our actual results are concrete, and are a little
sharper than MP’s bounds; see Fig. 3 for a graphical comparison. Our proof
is much simpler than those of MP or Patarin. One reason for this is just that
we employ the lovely result of Maurer, Pietrzak, and Renner for passing from
NCPA-security to CCA-security [14]. The more important reason stems from
our use of coupling, a well-known technique from the theory of Markov chains.

Next we look at unbalanced Feistel networks; the round functions are maps
Fi : {0, 1}n → {0, 1}m. For the contracting case (n>m) we prove CCA-security
to 2n(1−ε) queries. Earlier work by Naor and Reingold provided bounds that
topped out at 2n/2 adversarial queries. Interpreting our result, if one holds fixed
the block length � = m + n, bounds improve with increasing imbalance, the
best bounds at m = 1, the setting earlier studied by Morris, Rogaway, and
Stegers (“MRS”) [17]. In effect, we “connect up” MP’s bounds on balanced
Feistel with MRS’s bounds on maximally unbalanced Feistel, demonstrating a
smooth increase in security with increasing imbalance. This behavior is not an
artifact of the analysis; corresponding information-theoretic attacks exist [22,27].

For unbalanced Feistel networks with expanding random round functions our
concrete-security results (again see Fig. 2) can similarly be interpreted asymp-
totically to show CCA security to 2n(1−ε) queries. But note that as imbalance
increases in an expanding round functions the value of n goes down, so provable
security is effectively vanishing. Again this is no artifact; there are corresponding
information-theoretic attacks [22,28].

We next treat unbalanced Feistel networks that acts on numbers instead of
strings, the blockcipher we denote Feistel�" [M,N]. This situation is seen in the
card-shuffling technique of Thorp [32] (where M = 2) and is defined explicitly in
the work of Bellare et al. [4]. While one might expect unbalanced Feistel schemes
to behave similarly in the number-based and string-based settings, being able
to show this is something else: the number-based setting is considerably more
complex. We note that MRS only managed to deal with the case M = 2 and
N = 2n, leaving the generalization open. We show security to q ∼ N1−ε queries.

Unbalanced Feistel networks are unpleasant in requiring a “repartitioning”
of each round’s output before it can be treated as the next round’s input. An
alternative is suggested by the “ladder” way of drawing DES (the way that
avoids wire-crossings, as in our illustration of FeIsTeL). Information-theoretic
security bounds for alternating Feistel networks [1,3,4,11] were weak in two ways:
quantitatively, they top out at the birthday-bound; qualitatively, they depend
on the domain size of the round function with smaller domain, leading to a non-
result for the highly imbalanced setting. We overcome both issues. Our results
cover the numeric as well as the string-based settings.

Finally, we consider type-1, type-2, and type-3 Feistel networks [35], as used in
several modern blockciphers. We prove information-theoretically optimal bounds
(as the number of rounds becomes large). The proofs here are straightforward
compared to those for unbalanced and alternating Feistel, highlighting a strength
of the coupling-based approach.

On Generalized Feistel Networks 617

Unmentioned in all of the above is that our string-based results also work
when the alphabet is non-binary. This turns out to be useful; for example, one
could encipher a 16-digit credit card number (CCN) (the ciphertext again being
a 16-digit number) using a scheme FEISTEL�10[8] just like FEISTEL� [8] but over
the decimal alphabet instead of the binary one [2] (re-interpret the xor operator
as, say, modular addition). Our security bounds for schemes with non-binary
alphabets are as given in Fig. 2 but with 2n replaced by dn, where d is the radix
of the alphabet.

In general, finding a unified framework with which to analyze Feistel-like
schemes—one that gives concrete, asymptotically optimal, humanly-verifiable
bounds—is a contribution we see as being at least as important as all the im-
proved bounds.

Additional related work. In work just subsequent to our own, Patarin pro-
vides a concrete security bound for the classical Feistel construction FEISTEL6[n]
[25]. He goes on to claim beyond-birthday-bound security for the unbalanced
scheme Feistel8[n, 2n]. Earlier versions of our paper confessed an inability to
extract concrete security bounds from Patarin’s body of work.

Nachef attacks a Feistel variant that she calls an alternating unbalanced Feistel
scheme [18], but the scheme is different from the more classical one that we study
here. The specific rotation operation used in Nachef’s scheme makes this Feistel
variant highly insecure.

The first use of a coupling argument in cryptography that we know is due
to Mirinov, who used the technique to gave a lovely (even if slightly heuristic)
analysis of RC4 [15]. As mentioned earlier, Morris, Rogaway, and Stegers go on
to use coupling to analyze the security of a maximally-unbalanced (contract-
ing round function) Feistel network. Our work builds on theirs, but our use of
coupling becomes considerably more complex.

Beyond their use in making conventional blockciphers, generalized Feistel
networks have been proposed as blockcipher modes-of-operation for format-
preserving encryption (FPE) [5,3,4]. Here one usually aims to encipher points
within some arbitrary string-valued domain Σn, or within some arbitrary nu-
meric domain ZN . Commercial interest in doing this has been spurred by PCI
regulations [29] that require vendors to encipher CCNs they store; an architec-
turally clean way to do this is to encipher a column in a database without making
any modification to the database’s schema. There is now a NIST proposal for
an FPE-providing mode of operation, FFX [2], that employs an unbalanced or
alternating Feistel network over a possibly non-binary alphabet.

2 Preliminaries

Notation. For finite nonempty sets A and B, let Func(A,B) be the set of all
functions from A to B and let Perm(A) be the set of all permutations on A. For
numbers a, b ≥ 1, let Func(a, b) be the set of all functions from {0, 1}a to {0, 1}b.

618 V.T. Hoang and P. Rogaway

Blockciphers. Let E : K ×M → M be a blockcipher, meaning that each
EK(·) = E(K, ·) is a permutation on the finite nonempty setM. We emphasize
thatM (and also K) need not consist of binary strings of some particular length,
as is often assumed to be the case. For any blockcipher E, we let E−1 be its
inverse blockcipher. For blockcipher E : K×M→M and adversaryA the advan-
tage of A in carrying out an (adaptive) chosen-ciphertext attack (CCA) on E is
Advcca

E (A)=Pr[K $←K:AEK(·),E−1
K (·) ⇒ 1]−Pr[π $← Perm(M):Aπ(·),π−1(·) ⇒ 1].

We say that A carries out an (adaptive) chosen-plaintext attack (CPA) if it
asks no queries to its second oracle. Adversary A is non-adaptive if it asks the
same queries on every run. Let Advcca

E (q) be the maximum advantage of any
(adaptive) CCA adversary against E subject to the adversary asking at most q
total oracle queries. Similarly define Advncpa

E (q) for nonadaptive CPA attacks
(NCPA).

For blockciphers F,G : K × M → M let F ◦ G denote their cascade, with
F ’s output fed into G’s input; formally, F ◦ G : K2 ×M → M is defined by
(F ◦G)(K,K′) = GK′(FK(X)). To be consistent with this left-to-right convention
for composing blockciphers we define composition of permutations by (f◦g)(x) =
g(f(x)). (This won’t be used often and should not cause confusion for those used
to the opposite convention.)

Coupling arguments. The high-level idea for a coupling argument can be
explained like this. We have a Markov chain Xt that we want to analyze. For
example, the Markov chain may consist of the image of the distinct, fixed strings
(x1, . . . , xq) ∈ ({0, 1}2n)q as each point is enciphered for t rounds according to
the classical Feistel network on 2n bits. We would like to show that, after t = �

rounds, the tuple of points Xt is pretty close to being uniformly distributed. For
this purpose, we introduce a second Markov chain Ut that, after any number of
rounds t, is indisputably uniform. We arrange so that Xt and Ut can be viewed
as co-evolving on a common probability space; formally, we create a joint dis-
tribution that yields the correct marginal distributions. We try to arrange our
joint distribution so that, usually, Xt and Ut quickly couple: for most random
choices, it does not take long until Xt = Ut. After Xt and Ut come together, they
should remain so. The basic observation underlying coupling is that the statisti-
cal distance between the distributions associated to Xt and Ut is upperbounded
by the probability that Xt �= Ut.

More formally, let μ and ν be probability distributions on a finite event
space Ω. The total variation distance between distributions μ and ν is defined
as ‖μ− ν‖ = 1

2

∑
x∈Ω | μ(x) − ν(x) | = maxS⊂Ω{μ(S)− ν(S)}. A coupling of μ

and ν is a pair of random variables X,Y : Ω → R (the set R is arbitrary) such
that X ∼ μ and Y ∼ ν, that is, variables X and Y have marginal distributions μ
and ν, respectively. The coupling lemma we will use is as follows.

Lemma 1 (Coupling lemma). Let μ and ν be probability distributions on a
finite event space Ω and let (X,Y) be a coupling of μ and ν. Then ‖μ − ν‖ ≤
Pr[X �= Y].

On Generalized Feistel Networks 619

From coupling to ncpa-security. Suppose that an adversary asks some
non-adaptive distinct queries. The adversary’s NCPA advantage cannot exceed
the total variation distance between the distribution of the outputs from her
queries and the uniform distribution. The uniform distribution itself can be
viewed as the distribution of outputs from a uniformly random choice of distinct
queries. Think of a coupling argument as a computer program that accepts as
its input either the actual adversarial queries or a pool of uniformly random,
distinct queries. On each input, the program implements a Feistel network and
gives a random output. The program tries to produce the same output on its two
possible inputs. Hence the total variation distance between the distributions of
the program’s outputs is upperbounded by the program’s probability of failure
(that is, its failure to produce the same output in the two cases).

To ease the design of such a program, a hybrid argument is employed and a
chain of inputs is created—the first being the adversarial queries and the last
being the pool of uniformly random, distinct ones. The purpose of this hybrid
argument is to reduce the difference between any pair of adjacent inputs in the
chain. Given an arbitrary pair of adjacent inputs, our goal now is to design
a coupling program that produces identical output on those two inputs with
high probability. The program runs both inputs, one after another. When the
program starts running the second input, it has finished the operations on the
first input and now knows all the random choices of the first Feistel network.
It then uses this knowledge in implementing the second Feistel network. For
example, if at some step the second network needs a uniformly random string
then the program may reuse the corresponding string from the first network.
The random choices in the second network are geared toward the first output,
but they are subject to the restriction that the round functions in the second
network must be independent and uniformly random.

From ncpa to cca-security. We bound the CCA-security of a Feistel net-
work from its NCPA-security by using the following result of Maurer, Pietrzak,
and Renner [14, Corollary 5]. It is key to our approach, effectively letting us as-
sume that our adversaries are of the simple, NCPA breed. Recall that in writing
F ◦G, the blockciphers are, in effect, independently keyed.

Lemma 2 (Maurer-Pietrzak-Renner). If F and G are blockciphers on the
same message space then, for any q, Advcca

F◦G−1(q) ≤ Advncpa
F (q)+Advncpa

G (q).

3 Classical Feistel

This section provides a strong, concrete security bound for conventional, balanced
Feistel networks. It also serves as a pedagogical example for proving security of a
Feistel network using coupling; some later examples get much more complex.

Defining the scheme. Fix n ≥ 1 and let F : {0, 1}n → {0, 1}n be a
function. Define from F the permutation ΨF : {0, 1}2n → {0, 1}2n by way of

620 V.T. Hoang and P. Rogaway

ΨF (A,B) = (B,A⊕F (B)) where |A| = |B| = n, and ⊕ denotes xor. Blockcipher
FEISTEL� [n] : K × {0, 1}2n → {0, 1}2n has key space K = (Func(n, n))� and a
key (F1, . . . , F�) ∈ K names the permutation ΨF1 ◦ · · · ◦ ΨF� on {0, 1}2n. Each
Fi is called the round function at round i. For an illustration, see Fig. 1.

Initial notation. Given a query X to E = FEISTEL� [n], define its round-0
output to be X itself, while the round-t output is (ΨF1 ◦ · · · ◦ ΨFt)(X). The coin
of the query X at round t is the string A⊕F (B), where F is the round function
at round t and (A,B) is the round-(t − 1) output, with |A| = |B| = n. Two
queries collide at time t if their round-t outputs have the same final n bits.

NCPA-security. We will now prove the NCPA-security of E by way of cou-
pling, afterwards lifting this to show CCA-security using the result of [14] from
Lemma 2. The lemma below will help us bound the probability that we fail to
couple.

Lemma 3. For the blockcipher E = FEISTEL� [n], the chance that two distinct
non-adaptive queries collide at time t ≥ 1 is at most 2−n.

Proof. Suppose that the Feistel network receives distinct nonadaptive queries
X1 and X2. For each i ∈ {1, 2}, let (Ai, Bi) be the output at round t− 1 of Xi,
where |Ai| = |Bi| = n. The queries X1 and X2 collide at time t if and only if
A1 ⊕ F (B1) = A2 ⊕ F (B2), with F being the round function at round t. This
occurs with probability 2−n if B1 and B2 differ, because F is uniformly random.
If B1 = B2 then so are A1 and A2, which contradicts the hypothesis that X1
and X2 are distinct. �	
Theorem 4. Let E = FEISTEL� [n], � = 3r. Then Advncpa

E (q)≤ q
r+1 (4q/2n)r.

Proof. Suppose that E receives non-adaptive distinct queries X1, . . . , Xq. For
each � ≤ q, consider a vector of queries (Z1, . . . , Zq) such that Zi is Xi if i ≤ �
and Zi is chosen uniformly from {0, 1}2n\{Z1, . . . , Zi−1} otherwise. Let μ� be
the distribution of the vector of q outputs when E receives queries Z1, . . . , Zq.
We will show in a moment that the total variation distance between μ� and μ�+1
is at most (4� / 2n)r for every � ≤ q − 1. Assuming this, we have, by hybrid
argument,

Advncpa
E (q) ≤

q−1∑
�=0

‖μ� − μ�+1‖ ≤
q−1∑
�=0

(4� / 2n)r ≤ 2r(2−n)
∫ q

0
xrdx,

which is q
r+1 (4q / 2n)r. Now we show the claim. Fix a value � ≤ q − 1. We

must bound the total variation distance between μ� and μ�+1, each of them is a
distribution of a vector of q outputs. However, only the first � + 1 components
of the vector matter, because of the uniform sampling of the other. Consider a
3r-round balanced Feistel network on n bits that receives queries X1, . . . , X�+1.
Let Xi(t) be the output at round t from the query Xi.

On Generalized Feistel Networks 621

The coupling. We construct another 3r-round balanced Feistel network on n
bits with its non-adaptive distinct queries U1, . . . , U�+1. Let Ui(t) be the output
at round t of the new Feistel network on input Ui. The construction of the new
Feistel network will satisfy the following conditions:

• Query Uj equals to Xj for every j ≤ �, and U�+1 is uniformly chosen over
{0, 1}2n\{U1, . . . , U�}.
• If for all i ≤ �+ 1, the outputs at round t of Xi and Ui are identical then so

are their outputs in any subsequent round.

Let T be the smallest round for which Xi and Ui have identical outputs for every
i ≤ �+ 1. From the second condition above and from Lemma 1, we have that

‖μ� − μ�+1‖ ≤ Pr[Xi(3r) �= Ui(3r) for some i ≤ �+ 1] = Pr[T > 3r] .

The first condition above describes how to initialize U1(0), . . . , U�+1(0). As the
coin of Ui at round t+ 1 dictates how to update Ui(t+ 1) from Ui(t), it suffices
to show how to construct just that coin.

• If Ui collides with some previous query Uj at time t then the coin at round
t+ 1 of Ui is defined so as to ensure consistency with the earlier query.
• Suppose that, in the new Feistel network, Ui does not collide with any previ-

ous query at time t. If the query Xi collides with some previous query Xj at
time t then we choose a string uniformly from {0, 1}n to be the coin of Ui at
round t+1. Otherwise, the coin of Xi at round t+1 is uniformly distributed
over {0, 1}n and Ui will use exactly the same coin at round t+ 1.

Note that Ui and Xi always have the same output at round t, for every i ≤ � and
every t. Consider the event Coll that in either Feistel networks, the (�+1)-th query
collides with some previous query at some time t ∈ {1, 2}. From Corollary 3,
each such collision occurs with probability at most 2−n. Summing over the two
Feistel networks, two rounds, and � previous queries shows that the probability
Coll occurs is at most 4� / 2n. Unless Coll occurs, U�+1 and X�+1 will share the
coins at the second and third rounds, and then have identical outputs at the
third round. Hence Pr[T > 3] ≤ Pr[Coll], which is at most 4� / 2n.

Now imagine that we run a sequence of trials. In each trial, we observe the out-
puts of X�+1 and U�+1 for an additional three rounds. The probability that X�+1
and U�+1 have different outputs after the first trial is at most 4� / 2n. Since the
round functions of both Feistel networks in each trial are independent with those
in previous trials, the conditional probability that X�+1 and U�+1 have different
outputs after the r-th trial, given that their outputs remain different after the
first r − 1 trials, is again at most 4� / 2n. Hence Pr[T > 3r] ≤ (4� / 2n)r. �	
CCA-security. Let Rev denote the permutation on {0, 1}2n where Rev(A,B) =
(B,A), for |A| = |B| = n. The following observation is standard; see [13] for
proof.

622 V.T. Hoang and P. Rogaway

 0

 0.25

 0.5

 0.75

 1

 15 18 21 24 27 30

n = 32

 0

 0.25

 0.5

 0.75

 1

 35 40 45 50 55 60

n = 64

Fig. 3. Proven CCA-security for the classical Feistel network: our own
bounds and MP’s. The x-axis gives the log base-2 of the number of adversarial
queries and the y-axis gives upper bounds on an adversary’s CCA advantage. In the
left-hand plot (64-bit inputs), the dashed lines depict MP’s bounds for FEISTEL24[32]
(left) and FEISTEL96[32] (right); the solid lines depict our own bounds. In the right-hand
plot (128-bit inputs), the dashed lines likewise depict MP’s bounds for FEISTEL24[64]
(left) and FEISTEL96[64] (right); the solid lines depict our own bounds.

Lemma 5. If F and G are the blockcipher FEISTEL� [n] then F ◦G−1 ◦ Rev is
the blockcipher FEISTEL2�−1[n]. �	
Employing Lemma 2 we conclude the following.

Theorem 6. Let E=FEISTEL� [n], �=6r−1. Then Advcca
E (q)≤ 2q

r+1 (4q/2n)r.

Asymptotic interpretation. For an asymptotic interpretation of Theo-
rem 6, fix r > 0. Suppose that q = 2n(1−1/r). Let En be the blockcipher
FEISTEL6r−1[n]. Then

Advcca
En

(q) ≤ 2q
r + 1

(4q / 2n)r =
22r+1

r + 1
/ 2n/r,

which goes to 0 as n→∞. Translating into English, CCA security is guaranteed
to about q = 2n(1−ε) adversarial queries as long as one employs � ≥ 6/ε − 1
rounds. At a higher level still, ignoring the 1− ε multiplier in the exponent, an
appropriate number of rounds lets one tolerate nearly q = 2n adversarial queries.

Comparisons. Maurer and Pietrzak’s earlier work proves a security bound of
Advcca

E (q) ≤ 4q2 / 22n + 2q (8q / 2n)r for E = FEISTEL6r−1[n]. Our own bound
is always tighter than this; see Fig. 3 for a comparison of Theorem 6 and MP’s
bound. Earlier versions of our paper explained that we were unable to plot
Patarin’s latest bounds [26] due to the absence of a concrete security statement.
In very recent work [25] (subsequent to our own), Patarin bounds the security of
E = FEISTEL6[n] by Advcca

E (q) ≤ 8q / 2n+q2 / 22n+1 (assuming q ≤ 2n / 128n).

4 Unbalanced Feistel

Defining the scheme. Fix n,m ≥ 1 and let F : {0, 1}n → {0, 1}m be a
function. Define from F the permutation ΨF : {0, 1}m+n → {0, 1}m+n by way

On Generalized Feistel Networks 623

of ΨF (A,B) = (B,A ⊕ F (B)) where |A| = m and |B| = n, and ⊕ denotes xor.
We call ΨF a Feistel (m,n)-permutation and F its round function. Blockcipher
Feistel� [m,n] : K × {0, 1}m+n → {0, 1}m+n has key space K = (Func(m,n))�

and a key (F1, . . . , F�) ∈ K names the permutation ΨF1 ◦· · ·◦ΨF� on {0, 1}m+n.
For an illustration, see Fig. 1.

Security of unbalanced feistel schemes. The theorem below shows the
CCA-security of Feistel� [m,n]. The proof can be found in Appendix A. Inter-
preted asymptotically, the result says that, with an adequate number of rounds,
CCA security is guaranteed to about 2n adversarial queries. Note that for ex-
panding round functions this guarantee eventually becomes meaningless. This
is as it should be; expanding round functions with small domains give rise to
information-theoretically insecure schemes.

Theorem 7. Fix integers m,n, r ≥ 1.

1) Let E = Feistel� [m,n] where n > m and � = r(4�n/m�+ 4).
Then Advcca

E (q) ≤ 2q
r+1

(
(3 �n/m�+ 3)q/ 2n

)r.
2) Let E = Feistel� [m,n] where n ≤ m and � = r(2�m/n�+ 4).

Then Advcca
E (q) ≤ 2q

r+1

(
4�m/n�q / 2n

)r.
Non-binary alphabets. We can replace the binary alphabet {0, 1} in an
unbalanced Feistel scheme with an arbitrary alphabet Σ where d = |Σ| ≥ 2.
Regard the characters as numbers {0, 1, . . . , d − 1} and reinterpret ⊕ either as
integer addition modulo dm or as characterwise addition modulo d. The analysis
associated to Theorem 7 is trivially lifted to this setting; for example, if E =
Feistel�d [m,n], the radix of the alphabet indicated by the subscript, with n > m
and � = r(4�n/m� + 4), then Advcca

E (q) ≤ 2q
r+1

(
(3�n/m� + 3)q / dn

)r. We
comment that our proof for part (1) of Theorem 7 works for any group operator
on Σm, but our proof for part (2) does not.

Graphical illustration. Fig. 4 illustrates our CCA-security bounds for
Feistel� [32, 96] versus Feistel� [64, 64]. Given an adequate number of rounds,
imbalance provably helps.

Unbalanced numeric feistel. We now go on to show security for the numeric
variant of the unbalanced Feistel scheme. We begin by defining this. Let M ≥ 2
and N ≥ 2 be numbers and let F have signature F : ZN → ZM . Let � : ZM ×
ZM → ZM represent addition modulo M , that is, a�b = (a+b) mod M . Consider
the permutation ΨF : ZMN → ZMN that maps Na + b to Mb + (a � F (b)) for
every (a, b) ∈ ZM×ZN . We call ΨF a numeric Feistel (M,N)-permutation and F
its round function. Blockcipher Feistel�" [M,N] : K×ZMN → ZMN has key space
(Func(ZN , ZM))� . A key (F1, . . . , F�) ∈ K names the permutation ΨF1◦· · ·◦ΨF�

on ZMN , permutations composing from the left. For an illustration, see Fig. 1.

Security of numeric feistel schemes. The following theorem establishes
CCA-security for Feistel". Interpreted asymptotically, the result implies that,

624 V.T. Hoang and P. Rogaway

 0

 0.25

 0.5

 0.75

 1

 35 40 45 50 55 60 65 70 75 80 85 90

Fig. 4. Unbalanced Feistel versus classical Feistel on a 128-bit string. Proven
CCA-security of Feistel� [32, 96] (bold lines) versus Feistel� [64, 64] = FEISTEL� [64]
(dashed lines) when � is 18, 36, 72, and 144 (the curves from left to right). The x-axis
gives the log base-2 of the number of queries; the y-axis gives an upper bound on an
adversary’s CCA advantage by Theorems 6 and 7.

with an adequate number of rounds, unbalanced numeric Feistel with a ZN →
ZM round function withstands a chosen-ciphertext attack to nearly N queries.

Theorem 8. Fix M,N ≥ 2, r ≥ 1.

1) Let E = Feistel�" [M,N] where N > M and � = r(6 �logM N�+ 4).
Then Advcca

E (q) ≤ 2q
r+1

(
(9 �logM N�+ 5)q / N

)r.
2) Let E = Feistel�" [M,N] where N ≤M and � = r(2 �logN M�+ 6).

Then Advcca
E (q) ≤ 2q

r+1

(
(7 �logN M�+ 7)q / N

)r.
Proof ideas. Let us briefly give an overview of the proof; see the full version
of this paper [8, Appendix B] for the complete proof. We begin by extending
the concepts of coin and collision of Section 3. The coupling method in Sec-
tion 3 requires that every pair of queries share coins at each round, if possible.
But this does not work here because if M and N are relatively prime, we may
find two deterministic queries that never yield the same output under such a
coupling strategy. Instead, think of coupling as a computer program trying to
produce the same output for two different inputs by manipulating the coins.
The program first creates a rule for coin-renaming. For example, suppose that
each Feistel network is programmed to create a sequence of uniformly random,
independent coins. The rule will map each possible value of the random sequence
in the first network to a unique value of the corresponding sequence in the sec-
ond network. The program then runs the first input. Now, knowing the exact
value of the sequence of coins in the first network, it runs the second input and
uses the rule above to specify how the coins of the second network are created.
The uniqueness property is to ensure that the round functions in the second
network are independent and uniformly random.

On Generalized Feistel Networks 625

5 Alternating Feistel

Defining the schemes. Let m and n be positive integers such that m ≤ n. The
blockcipher FeIsTeL� [m,n] : K× {0, 1}m+n → {0, 1}m+n consists of � rounds in
which the odd rounds are Feistel (m,n)-permutations (contracting) and the even
rounds are Feistel (n,m)-permutations (expanding). For simplicity, we assume
that � is even. The key space of FeIsTeL� [m,n] is then K = (Func(n,m) ×
Func(m,n))�/2. Given integers M and N such that 2 ≤ M ≤ N , we define the
blockcipher FeIsTeL�" [M,N] : K × ZMN → ZMN , with numeric Feistel (M,N)
permutations at odd rounds and numeric Feistel (N,M) permutations at even
rounds. See Fig. 1 for illustration. We comment that it does not much matter
whether one starts with a contracting or expanding round because a security
bound with respect to one notion implies the same security bound with respect
to the other after one additional round.

Security of alternating feistel. The information-theoretic security of
blockciphers FeIsTeL and FeIsTeL" are established by the following results. Inter-
preted asymptotically, the result says that, with an adequate number of rounds,
alternating Feistel can withstand a chosen-ciphertext attack to nearly N adver-
sarial queries.

Theorem 9. Fix r > 0, 1 ≤ m ≤ n, and 2 ≤M ≤ N .

1) Let E = FeIsTeL� [m,n] where � = r (12 �n/m�+ 8).
Then Advcca

E (q) ≤ 2q
r+1

(
(6 �n/m�+ 3)q / 2n

)r.
2) Let E = FeIsTeL�" [M,N] where � = r (12 �logM N�+ 8).

Then Advcca
E (q) ≤ 2q

r+1

(
(6 �logM N�+ 3)q / N

)r.
Proof ideas. We give an overview; see the full version of this paper for all
details [8, Appendix C]. We consider the generalization of FeIsTeL" in which the
operator � is replaced by any two group operators on ZM and ZN , regarding
FeIsTeL as a special case. While we still follow the framework of Section 3,
extending the concepts of coin and collision is tricky. Following the birthday-
bound proof of Black and Rogaway [3] and using the simple coupling method
for classical Feistel, one may be tempted to define two types of coins, one for
odd rounds and one for even rounds; and, likewise, two types of collisions. This
will indeed give rise to a bound, which however falls off with min(N,M) queries
instead of max(N,M) queries; that is, the approach is only good in the nearly-
balanced setting. Instead, we define coins only at odd rounds, and collisions only
at even rounds.

We are left with the task of coupling two pools of queries. Coins alone cannot
completely determine the outputs, because they dictate only the randomness at
odd rounds. However, if we require that the two pools use the same expand-
ing round functions (that control the randomness at even rounds), it suffices to
specify how coins evolve. While some specific choice of expanding round func-
tions may give us a poor chance of coupling, the expected value of the success
probability is good when those functions are uniformly chosen.

626 V.T. Hoang and P. Rogaway

6 Type-1, Type-2, and Type-3 Feistel

Defining the schemes. For illustrations, refer again to Fig. 1.

1) Fix k ≥ 2 and n ≥ 1, and let F : {0, 1}n → {0, 1}n name a permuta-
tion ΨF : {0, 1}kn → {0, 1}kn by way of setting ΨF

(
B1, · · · , Bk) = (B2 ⊕

F (B1), B3, . . . , Bk, B1
)
, where |Bi| = n. Then Feistel1� [k, n] : K×{0, 1}kn →

{0, 1}kn is the blockcipher obtained by the �-fold composition of ΨF permu-
tations, the key space being K = (Func(n, n))� .

2) Assume k ≥ 2 is even, n ≥ 1, and fi : {0, 1}n → {0, 1}n for every i ≤ k/2.
Let F = (f1, . . . , fk/2) name a permutation ΨF : {0, 1}kn → {0, 1}kn by
ΨF (B1, . . . , Bk)=

(
B2⊕f1(B1), B3, B4⊕f2(B3), B5, . . . , Bk⊕fk/2(Bk−1), B1

)
where |Bi| = n. Then the blockcipher Feistel2� [k, n] : K×{0, 1}kn → {0, 1}kn
is obtained by the � -fold composition of ΨF permutations, the key space
being K = (Func(n, n))k�/2.

3) Finally, with k ≥ 2 and n ≥ 1, consider fi : {0, 1}n → {0, 1}n for every i ≤
k − 1. Let F = (f1, . . . , fk−1) name a permutation ΨF : {0, 1}kn → {0, 1}kn
by ΨF (B1, · · · , Bk) =

(
B2⊕ f1(B1), B3⊕ f2(B2), . . . , Bk⊕ fk−1(Bk−1), B1

)
,

where |Bi| = n. Then Feistel3� [k, n] : K×{0, 1}kn → {0, 1}kn is the blockci-
pher obtained by the �-fold composition of ΨF permutations, the key space
being K = (Func(n, n))(k−1)� .

Security results. The following results show CCA-security of type-1, type-2,
type-3 Feistel variants to 2n(1−ε) queries. Of course this may be a disappointing
bound when n is small—and the type-i Feistel variants are in part motivated by
a desire to keep n small despite a long block length. But the bound is the best
possible, up to the asymptotic behavior, and substantially improves the prior
bound in the literature [35].

Theorem 10. Fix k, r ≥ 1. Then:

1) E=Feistel1� [k, n], �=r(4k − 2) ⇒ Advcca
E (q) ≤ 2q

r+1

(
2k(k − 1)q/2n

)r
.

2) E=Feistel2� [k, n], �=r(2k + 2) ⇒ Advcca
E (q)≤ 2q

r+1

(
2k(k − 1)q/2n

)r
.

3) E=Feistel3� [k, n], �=r(2k + 2) ⇒ Advcca
E (q) ≤ 2q

r+1

(
4(k − 1)2q/2n

)r
.

The proofs for the results above can be found in the full version of this paper [8,
Appendix D].

Acknowledgments

The authors gratefully acknowledge the support of NSF grant 0904380. Thanks
particuarly to program directors Richard Beigel and Lenore Zuck.

On Generalized Feistel Networks 627

References

1. Anderson, R., Biham, E.: Two practical and provably secure block ciphers: BEAR
and LION. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 113–120.
Springer, Heidelberg (1996)

2. Bellare, M., Rogaway, P., Spies, T.: The FFX mode of operation for format-
preserving encryption (draft 1.1). NIST submission (February 2010),
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html

3. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002)

4. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryp-
tion. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 295–312. Springer, Heidelberg (2009)

5. Brightwell, M., Smith, H.: Using datatype-preserving encryption to enhance data
warehouse security. In: 20th NISSC Proceedings, pp. 141–149 (1997),
http://csrc.nist.gov/nissc/1997

6. Coppersmith, D.: Luby-Rackoff: four rounds is not enough. Technical Report RC
20674, IBM (December 1996)

7. Feistel, H., Notz, W., Smith, J.: Some cryptographic techniques for machine-to-
machine data communications. Proc. of the IEEE 63, 1545–1554 (1975)

8. Hoang, V., Rogaway, P.: On generalized Feistel networks. Full version of this paper.
Cryptology ePrint report 2010/301, May26 (2010)

9. Jutla, C.: Generalized birthday attacks on unbalanced Feistel networks. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 186–199. Springer, Hei-
delberg (1998)

10. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM Journal on Computing 17(2), 373–386 (1988); Earlier
version in CRYPTO 1985

11. Lucks, S.: Faster Luby-Rackoff ciphers. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 189–203. Springer, Heidelberg (1996)

12. Maurer, U.: A simplified and generalized treatment of Luby-Rackoff pseudoran-
dom permutation generator. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS,
vol. 658, pp. 239–255. Springer, Heidelberg (1993)

13. Maurer, U., Pietrzak, K.: The security of many-round Luby-Rackoff pseudo-random
permutations. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 544–
561. Springer, Heidelberg (2003)

14. Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer, Heidel-
berg (2007)

15. Mirinov, I. (Not so) random shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002)

16. Moriai, S., Vaudenay, S.: On the pseudorandomness of top-level schemes of block
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 289–302.
Springer, Heidelberg (2000)

17. Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small domain:
deterministic encryption and the Thorp shuffle. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 286–302. Springer, Heidelberg (2009)

18. Nachef, V.: Generic attacks on alternating unbalanced Feistel schemes. Cryptology
ePrint report 2009/287, June 16 (2009)

http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://csrc.nist.gov/nissc/1997

628 V.T. Hoang and P. Rogaway

19. Naor, M., Reingold, O.: On the construction of pseudo-random permutations:
Luby-Rackoff revisited. Journal of Cryptology 12(1), 29–66 (1997)

20. Nyberg, K.: Generalized Feistel networks. In: Kim, K.-c., Matsumoto, T. (eds.)
ASIACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996)

21. Patarin, J.: About Feistel schemes with six (or more) rounds. In: Vaudenay, S.
(ed.) FSE 1998. LNCS, vol. 1372, pp. 103–121. Springer, Heidelberg (1998)

22. Patarin, J.: Generic attacks on Feistel schemes. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 222–238. Springer, Heidelberg (2001)

23. Patarin, J.: Luby-Rackoff: 7 Rounds are enough for 2n−ε security. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 513–529. Springer, Heidelberg (2003)

24. Patarin, J.: New results on pseudorandom permutation generators based on the
DES scheme. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 301–
312. Springer, Heidelberg (1992)

25. Patarin, J.: Security of balanced and unbalanced Feistel schemes with linear non
equalities. Cryptology ePrint report 2010/293. May 17 (2010)

26. Patarin, J.: Security of random Feistel schemes with 5 or more rounds. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg (2004)

27. Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced Feistel schemes
with contracting functions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 396–411. Springer, Heidelberg (2006)

28. Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced Feistel schemes
with expanding functions. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 325–341. Springer, Heidelberg (2007)

29. PCI Security Standards Council. Payment Card Industry (PCI) Data Security
Standard: Requirements and Security Assessment Procedures, version 1.2.1 (July
2009), www.pcisecuritystandards.org

30. Schneier, B., Kelsey, J.: Unbalanced Feistel networks and block cipher design. In:
Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 121–144. Springer, Heidelberg
(1996)

31. Smith, J.: The design of Lucifer: a cryptographic device for data communications.
IBM Research Report RC 3326. IBM T.J. Watson Research Center, Yorktown
Heights, New York, USA (April 15, 1971)

32. Thorp, E.: Nonrandom shuffling with applications to the game of Faro. Journal of
the American Statistical Association 68, 842–847 (1973)

33. Vaudenay, S.: Provable security for block ciphers by decorrelation. In: Meinel, C.,
Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 249–275. Springer, Heidelberg
(1998)

34. Yun, A., Park, J., Lee, J.: On Lai-Massey and quasi-Feistel ciphers. In: Designs,
Codes and Cryptography, Online First (2010)

35. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-
ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)

A Proof for Unbalanced Feistel — Theorem 7

Given a query X to Feistel� [m,n], its coin at round t is the string A ⊕ F (B),
where F is the round function at round t and (A,B) is the round-(t−1) output,
with |A| = m and |B| = n. We say that two queries collide at time t if their
outputs at round t have the same last n bits. We begin with the following.

www.pcisecuritystandards.org

On Generalized Feistel Networks 629

Lemma 11. In the blockcipher Feistel� [m,n], the chance that two distinct non-
adaptive queries have the same coin at round t ≥ 1 is at most 2−m.

Proof. Suppose that the Feistel network receives distinct non-adaptive queries
X1 and X2. For each i ∈ {1, 2}, let (Ai, Bi) be the output at round t− 1 of Xi,
where |Ai| = m and |Bi| = n. The queries X1 and X2 collide at time t if and
only if A1 ⊕ F (B1) = A2 ⊕ F (B2), with F being the round function at round t.
This occurs with probability 2−m if B1 and B2 differ, because F is uniformly
random. If B1 = B2 then so are A1 and A2, which contradicts the hypothesis
that the two queries are distinct. �	

Contracting round functions. We first consider the security of the block-
cipher Feistel� [m,n] with n > m (that is, the round functions are contracting).
Later we show how to deal with expanding round functions.

Lemma 12. In the blockcipher Feistel� [m,n] with n > m, the chance that two
distinct non-adaptive queries collide at time t > �n/m� is at most 3/2n+1.

Proof. Suppose that the Feistel network receives distinct non-adaptive queries
X1 and X2. We shall prove by induction on b that for any b ≤ n, the probability
that outputs at round t > �b/m� of the two queries have the same last b bits is
at most 3/2b+1. The claim of this lemma corresponds to the special case b = n.

First consider the base case b < m. For each i ∈ {1, 2}, let (Ai, Bi) be the
output at round t − 1 of Xi, where |Ai| = m and |Bi| = n. The last m-bit
substring of the round-t output of Xi is Ai ⊕ F (Bi), with F being the round
function at round t. If B1 and B2 differ then the probability that outputs at
round t of the two queries have the same last b bits is at most 2−b, because F
is uniformly random. If B1 = B2 then the two queries have the same coin at
round t − 1, which by Lemma 11 occurs with probability at most 2−m. Hence,
by union bound, the chance that the two queries have the same last b bits is at
most 2−b + 2−m ≤ 3/2b+1.

Next consider b ≥ m and assume that the chance round-(t − 1) outputs of
the two queries have the same last b−m bits is at most 3/2b−m+1. The outputs
at round t of the two queries have the same last b bits if and only if (i) they
have the same coin at round t, which by Lemma 11 occurs with probability at
most 2−m, and (ii) their output at round t − 1 have the same lat b − m bits,
which occurs with probability at most 3/2b−m+1 by induction hypothesis. As
the round functions in the network are independent, the chance that both (i)
and (ii) occur is at most 2−m · 3 / 2b−m+1 = 3/2b+1. �	
We now prove NCPA-security of Feistelr(2
n/m�+2)[m,n]. Employing Lemma 2
then yields the desired result. Let b = �n/m� + 1. Suppose that the network
receives nonadaptive distinct queries X1, . . . , Xq. We shall use a similar strategy
as in the proof of Theorem 4. Fix an integer � ≤ q − 1. For every i ≤ �, let
Ui = Xi and let U�+1 be chosen uniformly from {0, 1}n+m \{U1, . . . , U�

}
. We

shall construct another Feistel2rb[m,n] for the queries U1, . . . , U�. Let Xi(t) and
Ui(t) be the outputs at round t of Xi and Ui respectively. It suffices to define

630 V.T. Hoang and P. Rogaway

the coupling in the first 2b rounds, and then show that the probability that
Xi(2b) �= Ui(2b) for some i ≤ �+ 1 is at most 3b� / 2n.

The coupling. In the first b rounds, for every i ≤ �, we use the same coin to
update Xi(t) and Ui(t), and couple X�+1(t) and U�+1(t) in an arbitrary way. In
the next b rounds, we couple as follows.

• If Ui collides with some previous query Uj at time t then the coin at round
t+ 1 of Ui is defined so as to ensure consistency with the earlier query.
• Suppose that, in the new Feistel network, Ui does not collide with any pre-

vious query at time t. If the query Xi collides with some previous query
Xj at time t then we choose a string uniformly from {0, 1}n+m to be the
coin of Ui at round t + 1. Otherwise, the coin of Xi at round t + 1 is uni-
formly distributed over {0, 1}n+m and Ui will use exactly the same coin at
round t+ 1.

Note that Ui and Xi always have the same output at round t, for every i ≤ �
and every t. Consider the event Coll that in either Feistel networks, the (�+1)-th
query collides with some previous query at some time t ∈ {b, . . . , 2b− 1}. From
Lemma 12, each such collision occurs with probability at most 3/2n+1. Summing
over the two Feistel networks, b rounds, and � previous queries shows that the
probability Coll occurs is at most 3b� / 2n. Unless Coll occurs, U�+1 and X�+1
will share the coins at the rounds b+ 1, . . . , 2b, and then have identical outputs
at the round 2b. Hence the chance that we fail to couple at round 2b cannot
exceed 3b� / 2n.

Expanding round functions. We follow the same proof as before, but
Lemma 12 is replaced by the following result.

Lemma 13. In the blockcipher Feistel� [m,n] with n ≤ m, the chance that two
distinct non-adaptive queries collide at time t ≥ �m/n� is at most �m/n� / 2n.

Proof. Suppose that the Feistel network receives distinct non-adaptive queries
X1 and X2. For each i ∈ {1, 2}, let (Ai, Bi) be the output at round t− 1 of Xi,
where |Ai| = m and |Bi| = n. The queries X1 and X2 collide at time t if and
only if the two strings A1 ⊕ F (B1) and A2 ⊕ F (B2) have the same last n bits,
with F being the round function at round t. This occurs with probability 2−n if
B1 and B2 differ, because F is uniformly random. If B1 = B2 then A1 and A2
must have the same last n bits. In other words, the round-(t− 1) outputs of the
two queries must agree at the last 2n bits. Repeating this argument leads us to
examine the case that for every j < �m/n� the round-(t− j) outputs of the two
queries must agree at the last (j + 1)n bits. When this chain of reasoning stops
at round t − �m/n�+ 1, the outputs at that round must have the same last m
bits. In other words, the queries have the same coin at that round, which by
Lemma 11 occurs with probability at most 2−m ≤ 2−n. Hence by union bound,
the chance that the two queries collide at time t is at most �m/n� / 2n. �	

Cryptographic Extraction and Key Derivation:
The HKDF Scheme

Hugo Krawczyk

IBM T.J. Watson Research Center, Hawthorne, New York
hugo@ee.technion.ac.il

http://eprint.iacr.org/2010/264

Abstract. In spite of the central role of key derivation functions (KDF)
in applied cryptography, there has been little formal work addressing the
design and analysis of general multi-purpose KDFs. In practice, most
KDFs (including those widely standardized) follow ad-hoc approaches
that treat cryptographic hash functions as perfectly random functions.
In this paper we close some gaps between theory and practice by con-
tributing to the study and engineering of KDFs in several ways. We
provide detailed rationale for the design of KDFs based on the extract-
then-expand approach; we present the first general and rigorous definition
of KDFs and their security that we base on the notion of computational
extractors; we specify a concrete fully practical KDF based on the HMAC
construction; and we provide an analysis of this construction based on the
extraction and pseudorandom properties of HMAC. The resultant KDF
design can support a large variety of KDF applications under suitable
assumptions on the underlying hash function; particular attention and
effort is devoted to minimizing these assumptions as much as possible
for each usage scenario.

Beyond the theoretical interest in modeling KDFs, this work is in-
tended to address two important and timely needs of cryptographic ap-
plications: (i) providing a single hash-based KDF design that can be
standardized for use in multiple and diverse applications, and (ii) pro-
viding a conservative, yet efficient, design that exercises much care in the
way it utilizes a cryptographic hash function.
(The HMAC-based scheme presented here, named HKDF, is being stan-
dardized by the IETF.)

1 Introduction

A Key derivation function (KDF) is a basic and essential component of crypto-
graphic systems: Its goal is to take a source of initial keying material, usually
containing some good amount of randomness, but not distributed uniformly or
for which an attacker has some partial knowledge, and derive from it one or more
cryptographically strong secret keys. We associate the notion of “cryptograph-
ically strong” keys with that of pseudorandom keys, namely, indistinguishable
by feasible computation from a random uniform string of the same length. In
particular, knowledge of part of the bits, or keys, output by the KDF should

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 631–648, 2010.
c© International Association for Cryptologic Research 2010

632 H. Krawczyk

not leak information on the other generated bits. Examples of initial keying ma-
terial include the output of an imperfect physical random number generator, a
bit sequence obtained by a statistical sampler (such as sampling system events
or user keystrokes), system PRNGs that use renewable sources of randomness,
and the less obvious case of a Diffie-Hellman value computed in a key exchange
protocol.

The main difficulty in designing a KDF relates to the form of the initial keying
material (which we refer to as source keying material). When this key material is
given as a uniformly random or pseudorandom key K then one can use K to seed
a pseudorandom function (PRF) or pseudorandom generator (PRG) to produce
additional cryptographic keys. However, when the source keying material is not
uniformly random or pseudorandom then the KDF needs to first “extract” from
this “imperfect” source a first pseudorandom key from which further keys can
be derived using a PRF. Thus, one identifies two logical modules in a KDF: a
first module that takes the source keying material and extracts from it a fixed-
length pseudorandom key K, and a second module that expands K into several
additional pseudorandom cryptographic keys.1

The expansion module is standard in cryptography and can be implemented
on the basis of any secure PRF. The extraction functionality, in turn, is well
modeled by the notion of randomness extractors [31,30] as studied in complex-
ity theory and related areas (informally, an extractor maps input probability
distributions with sufficient entropy into output distributions that are statisti-
cally close to uniform). However, in many cases the well-established extractors
(e.g., via universal hashing) fall short of providing the security and/or func-
tionality required in practice in the KDF context. Here we study randomness
extraction from the cryptographic perspective and specifically in the context of
KDFs (building upon and extending prior work [26,14,6,5]). A main objective
is to develop a basis for designing and analyzing secure key derivation functions
following the above natural extract-then-expand approach. We are interested in
the engineering of practical designs that can serve a variety of applications and
usage scenarios and hence can be standardized for wide use. In particular, we
need to be able to design extractors that will be well-suited for a large variety
of sources of keying material (see detailed examples in [28]) and work in liberal
as well as constrained environments. For this we resort to the use of crypto-
graphic functions, especially cryptographic hash functions, as the basis for such
multi-purpose extraction.

We identify computational extractors, namely randomness extractors where
the output is only required to be pseudorandom rather than statistically close
to uniform, as the main component for extraction in cryptographic applications,
and build the notion of a KDF and its implementations on the basis of such ex-
tractors. Computational extractors are well-suited for the crypto setting where

1 KDF is sometimes used only with the meaning of expanding a given strong key into
several additional keys (e.g., [33]); this ignores the extract functionality which is
central to a general multi-purpose KDF.

Cryptographic Extraction and Key Derivation: The HKDF Scheme 633

attackers are computationally bounded and source entropy may only exist in
a computational sense. In particular, one can build such extractors in more
efficient and practical ways through the use of cryptographic functions under
suitable assumptions. Advantages of such cryptographic extractors range from
purely practical considerations, such as better performance and the operational
advantage of re-using functions (e.g., cryptographic hash functions) that are
already available in cryptographic applications, to their more essential use for
bypassing some of the inherent limitations of statistical extractors. We use the
ability of cryptographic hash functions to be keyed as a way to include a salt
value (i.e., a random but non-secret key) which is essential to obtain generic
extractors and KDFs that can extract randomness from arbitrary sources with
sufficiently high entropy.

We then study the requirements from computational extractors in the cryp-
tographic setting, ranging from applications where the source key material has
large entropy (and a good source of public randomness is also available) to the
much more constrained scenarios encountered in practice where these resources
(entropy and randomness) are much more limited. On this basis, we offer a KDF
design that accommodates these different scenarios under suitable assumptions
from the underlying cryptographic functions. In some cases, well-defined com-
binatorial assumptions from the hash functions will suffice while in others one
has to resort to idealized modeling and “random oracle” abstractions. Our goal
is to minimize such assumptions as much as possible for each usage scenario,
but for this we need to first develop a good understanding of the properties one
can expect from cryptographic hash functions as well as an understanding of the
extraction functionality and the intrinsic limitations of unconditional statistical
extractors in practical settings. We provide a detailed account of these issues
throughout the paper.

Based on the notion of computational extractors (and on a better understand-
ing of the complexities and subtleties of the use of KDFs in practice), we present
a formal definition of the key derivation functionality suitable for capturing mul-
tiple uses of KDFs and a basis for judging the quality of general KDF designs
such as those considered here. Somewhat surprisingly, in spite of being one of
the most central and widely used cryptographic functionalities (in particular,
specified in numerous standards), there appears to be little formal work on the
specific subject of multi-purpose key derivation functions. Ours seems to be the
first general definition of the KDF functionality in the literature. Our definitions
include a formalization of what is meant by a “source of keying material” and
they spell the security requirements from the KDF taking into account realistic
adversarial capabilities such as the possession by the attacker of side informa-
tion on the input to the KDF. In our formulation, KDFs accept four inputs: a
sample from the source of keying material from which the KDF needs to ex-
tract cryptographic keys, a parameter defining the number of key bits to be
output, an (optional) randomizing salt value as mentioned before, and a fourth
“contextual information” field. The latter is an important parameter for the
KDF intended to include key-related information that needs to be uniquely and

634 H. Krawczyk

cryptographically bound to the produced key material (e.g., a protocol identifier,
identities of principals, timestamps, etc.).

We then use the above theoretical background, including results from [14,12],
to describe and analyze a concrete practical design of a multi-purpose KDF
based on cryptographic hash functions. The scheme (denoted HKDF), that uses
HMAC as the underlying mode of operation, supports multiple KDF scenar-
ios and strives to minimize the required assumptions from the underlying hash
function for each such scenario. For example, in some applications, assuming
that the underlying hash function has simple combinatorial properties, e.g., uni-
versal hashing, will suffice while in the most constrained scenarios we will need
to model the hash function as a random oracle. The important point is that we
will be able to use the same KDF scheme in all these cases as required for a
standardized multi-purpose KDF.2

We end by observing that most of today’s standardized KDFs (e.g., [3,4,32,23])
do not differentiate between the extract and expand phases but rather combine the
two in ad-hoc ways under a single cryptographic hash function (refer to [28] for a
description and discussion of these KDF schemes and their shortcomings). This
results in ad-hoc designs that are hard to justify with formal analysis and which
tend to “abuse” the hash function, requiring it to behave in an “ideally random”
way even when this is not strictly necessary in most KDF applications (these defi-
ciencies are present even in the simple case where the source of keying material is
fully random). In contrast, we formulate and analyze a fully practical KDF scheme
based on current theoretical research as well as on sound engineering principles.
The end result is a well-defined hash-based KDF scheme applicable to a wide vari-
ety of scenarios and which exercises much care in the way it utilizes cryptographic
hash functions. Our view is that given the current (healthy) skepticism about the
strength of our hash functions we must strive to design schemes that use the hash
function as prudently as possible. Our work is intended to fulfill this principle in
the context of key derivation functions (especially at a time that new standards
based on hash functions are being developed, e.g., [33]).

Related Work. As already mentioned, in spite of their importance and wide
use, there is little formal work on the specific subject of multi-purpose key deriva-
tion functions. The first work to analyze KDFs in the context of cryptographic
hash functions and randomness extractors appears to be [14], which was followed-
up in the context of random oracles by [12]. The former work laid the formal
foundations for the HMAC-based KDF scheme presented here. This scheme,
in turn, is based on the KDF originally designed by this author for the IKE
protocols [19,24] and which put forth the extract-then-expand paradigm in the
context of practical KDFs. A variant of the expansion stage of HKDF has also
been adopted elsewhere, e.g. into TLS [13] (however, TLS does not use the ex-
tract approach; for example, keys from a DH exchange are used directly as PRF
keys without any extraction operation). The extract-then-expand approach has
subsequently been taken in [5] in the context of designing “system random num-
ber generators”; that work shares many elements with ours although the papers
2 The proposed HKDF scheme is being standardized by the IETF as RFC 5869 [27].

Cryptographic Extraction and Key Derivation: The HKDF Scheme 635

differ significantly in emphasis and scope. Another related work is [6] which pro-
poses the use of statistical extractors in the design of physical random-number
generators and points out to the potential practicality of these extractors in this
specific setting. Both [5,6] offer interesting perspectives on the use of random-
ness extractors in practice that complement our work; our HKDF design is well
suited for use also in the settings studied by these works. A good discussion of
extraction issues in the context of KDFs in the Diffie-Hellman setting can be
found in [11] where a dedicated deterministic extractor for specific DH groups is
presented. Another such extractor (very different in techniques and applicability)
is presented in [16]. See more on related work in [28].

Full version. Due to space limitations we have omitted some important ma-
terial that complements this presentation. Please refer to the full version [28]
for expanded rationale, a treatment of the role of random oracles in the KDF
setting, comparison with the most commonly used KDFs in practice, discussion
of additional KDF applications, and more.

2 Statistical and Computational Extractors

This section is intended to introduce the basic notions behind the abstract ran-
domness extraction functionality; in particular we define “computational extrac-
tors” that are central in our treatment.

The goal of the extract part of a KDF scheme is to transform the input source
(seen as a probability distribution) into a close-to-uniform output. This corre-
sponds to the functionality of randomness extractors which have been extensively
studied in complexity theory and related areas [31]. Informally, a randomness
extractor is a family of functions indexed by a public, i.e., non-secret, parameter
(which we refer to as “salt”) with the property that on any input distribution
with sufficiently large entropy, if one chooses a salt value at random (and inde-
pendently of the source distribution) the output of the extractor is statistically
close to uniform (see below for a formal definition). Moreover, this statistical
closeness holds even if conditioned on the salt value. Extractors with the latter
property are called strong randomness extractors but since we only consider this
type we often omit both the “strong” and “randomness” qualifiers. On the other
hand, we often add the qualifier “statistical” to differentiate these extractors
from computational ones (defined below) that are an essential part of our work.

Before presenting a formal definition of statistical extractors, we recall the
notion of entropy considered in this context, called min-entropy, that captures
a “worst case” notion of entropy different than the traditional average notion of
Shannon’s entropy (it is not hard to see that Shannon’s notion is insufficient in
the context of randomness extraction).

Background definitions and notation. Refer to Appendix A for some back-
ground definitions and notation used throughout the paper (e.g., the notion of
δ-close).

636 H. Krawczyk

Definition 1. A probability distribution X has min-entropy (at least) m if for
all a in the support of X and for random variable X drawn according to X ,
Prob(X = a) ≤ 2−m.

Definition 2. Let X be a probability distribution over {0, 1}n. A function ext :
{0, 1}t × {0, 1}n→{0, 1}m′

is called a δ-statistical extractor with respect to X if
the distribution of pairs (r, y), where r is chosen with uniform probability over
{0, 1}t and y = extr(x) for x chosen according to distribution X , is δ-close to
the distribution of pairs (r, z) where z is chosen with uniform probability from
{0, 1}m′

. If ext is a δ-statistical extractor with respect to all distributions over
{0, 1}n with min-entropy m, then we say that ext is a (m, δ)-statistical extractor.

This notion was first defined in [31]; see [30,38] for surveys.
Randomization of the extractor function via the parameter r (the salt) is

mandatory if the same extractor function is to be able to extract randomness
from any high min-entropy distribution. Indeed, for any deterministic function
one can construct a high min-entropy source on which the function will produce
very non-uniform outputs. On the other hand, one may consider randomness
extractors that are suited for a specific source (or family of sources). In the latter
case, one can consider deterministic extractors. Examples of such source-specific
extractors in the cryptographic setting include the well-known hard-core schemes
for RSA [2,15] and for discrete-log based functions [21,34], and the recent elegant
extraction functions specific to some Diffie-Hellman groups in [11,16]. For most of
our study we focus on generic extractors, i.e., those that can extract randomness
from any source with sufficient min-entropy, and hence require some non-secret
salt.

A natural (and practical) question is whether common KDF applications may
have a randomness source from which to obtain salt. After all, the whole purpose
of extractors is to generate randomness, so if one already has such a random salt
why not use it directly as a PRF key? The answer is that this randomness needs
not be secret while in KDF applications we want the output of the extractor
to be secret. Obtaining public randomness is much easier than producing secret
bits, especially since in most applications the extractor key (or salt) can be used
repeatedly with many (independent) samples from the same source (hence it
can be chosen in an out-of-band or setup stage and be repeatedly used later).
For example, a random number generator (RNG) that requires an extractor to
“purify” its possibly imperfect output can simply have a random, non-secret,
extractor key built-in; the same extractor key is used to purify each output from
the RNG [6]. In other cases, such as key-exchange protocols, extraction keys can
be generated as part of the protocol (e.g., by using random nonces exchanged in
the clear [19,24]). See [28] for further elaboration on the issue of randomization in
extractors, in particular as a means to enforce independence between the source
distribution and the extractor.

Efficient constructions of generic (hence randomized) statistical extractors ex-
ist such as those built on the basis of universal hash functions [10]. However, in
spite of their simplicity, combinatorial and algebraic constructions present signif-
icant limitations for their practical use in generic KDF applications. For example,

Cryptographic Extraction and Key Derivation: The HKDF Scheme 637

statistical extractors require a significant difference (called the gap) between the
min-entropy m of the source and the required number m′ of extracted bits (in
particular, no statistical extractor can achieve a statistical distance, on arbitrary
sources, better than 2−

m−m′
2 [35,38]). That is, one can use statistical extractors

(with its provable properties) only when the min-entropy of the source is sig-
nificantly higher than the length of output. These conditions are met by some
applications, e.g., when sampling a physical random number generator or when
gathering entropy from sources such as system events or human typing (where
higher min-entropy can be achieved by repeated sampling). In other cases, very
notably when extracting randomness from computational schemes such as the
Diffie-Hellman key exchange, the available gap may not be sufficient (for ex-
ample, when extracting 160 bits from a DH over a 192-bit group). In addition,
depending on the implementation, statistical extractors may require from several
hundred bits of randomness (or salt) to as many bits of salt as the number of
input bits.

To obtain more practical instantiations of extractors we relax their require-
ments in several ways. Most significantly, we will not require that the output of
the extractor be statistically close to uniform but just “computationally close”,
i.e., pseudorandom. The following notion is implicit in [17,14].

Definition 3. A (t, ε)-computational extractor with respect to a probability dis-
tribution X is defined as in Definition 2 except that the requirement for statis-
tical closeness between the distributions (r, y) and (r, z) is replaced with (t, ε)-
computational indistinguishability3. An extractor that is (t, ε)-computational with
respect to all distributions with min-entropy m is called (m, t, ε)-computational.

This relaxed notion will allow for more practical instantiations of extractors,
particularly well-suited for the key derivation setting. Computational extractors
fit the cryptographic settings where attackers are assumed to be computation-
ally bounded, and they allow for constructions based on cryptographic hash
functions. In addition, computational extraction is natural in settings such as
the Diffie-Hellman protocol where the input gxy to the extractor is taken from
a source that has zero statistical entropy (since an attacker that knows gx, gy

has full information to compute gxy), yet may contain a significant amount of
“computational min-entropy” [20] as defined next.

Definition 4. A probability distribution X has (t, ε)-computational min-entropy
m if there exists a distribution Y with min-entropy m such that X and Y are
(t, ε)-computationally indistinguishable.

Note: In our application of extraction to the KDF setting, where an attacker
often has some a-priori information about the source (e.g., it knows the public
DH values gx, gy from which the source key material gxy is derived), we use a
notion of min-entropy (statistical or computational) that is conditioned on such
a-priori information (see following section).

3 See Appendix A for the definition of computational indistinguishability.

638 H. Krawczyk

3 Formalizing Key Derivation Functions

We present a formal definition of (secure) key derivation functions and a for-
malization of what is meant by a “source of keying material”. To the best of
our knowledge, no such general definitions have been given in the literature.4

We start with a definition of KDF in terms of its inputs and outputs (consistent
with the KDF description in Section 4). Later, after introducing the notion of
sources of keying material, we define what it means for a KDF to be secure.

Definition 5. A key derivation function (KDF) accepts as input four arguments:
a value σ sampled from a source of keying material (Def. 6), a length value �,
and two additional arguments, a salt value r defined over a set of possible salt
values and a context variable c, both of which are optional, i.e., can be set to the
null string or to a constant. The KDF output is a string of � bits.5

The security and quality of a KDF depends on the properties of the “source of
keying material”, defined next, from which the input σ is chosen (see [28] for
more examples of such sources.)

Definition 6. A source of keying material (or simply source) Σ is a two-valued
probability distribution (σ, α) generated by an efficient probabilistic algorithm.
(We will refer to both the probability distribution as well as the generating
algorithm by Σ.)

This definition does not specify the input to the Σ algorithm (but see below for
a discussion related to potential adversary-chosen inputs to such an algorithm).
It does specify the form of the output: a pair (σ, α) where σ (the “sample”)
represents the (secret) source key material to be input to a KDF, while α rep-
resents some auxiliary knowledge about σ (or its distribution) that is available
to the attacker. For example, in a Diffie-Hellman application the value σ will
consist of a value gxy while α could represent a quintuple (p, q, g, gx, gy). In a
different application, say a random number generator that works by hashing
samples of system events in a computer system, the value α may include some
of the sampled events used to generate σ. The importance of α in our formal
treatment is that we will require a KDF to be secure on inputs σ even when the
knowledge value α is given to the attacker. The restriction to sources that can
be generated efficiently represents our interest in sources that can arise (and be
used/sampled) in practice.

Next, we define the security of a KDF with respect to a specific source Σ. See
Definition 9 for the generic case.

Definition 7. A key derivation function KDF is said to be (t, q, ε)-secure with
respect to a source of key material Σ if no attacker A running in time t and making
4 Yao and Yin [40] provide a formal definition of KDFs specific to the password setting

which is different from and inapplicable to the general setting treated here (see [28]).
5 The values σ, �, r, c correspond to the values SKM, L, XTS, CTXinfo in the descrip-

tion of Section 4.

Cryptographic Extraction and Key Derivation: The HKDF Scheme 639

at most q queries can win the following distinguishing game with probability larger
than 1/2 + ε:

1. The algorithm Σ is invoked to produce a pair σ, α.
2. A salt value r is chosen at random from the set of possible salt values defined

by KDF (r may be set to a constant or a null value if so defined by KDF).
3. The attacker A is provided with α and r.
4. For i = 1, . . . , q′ ≤ q: A chooses arbitrary values ci, �i and receives the value

KDF(σ, r, ci, �i) (queries by A are adaptive, i.e., each query may depend on
the responses to previous ones).

5. A chooses values c and � such that c /∈ {c1, . . . , cq′}.
6. A bit b ∈R {0, 1} is chosen at random. If b = 0, A is provided with the output

of KDF(σ, r, c, �), else A is given a random string of � bits.
7. Step 4 is repeated for up to q − q′ queries (subject to the restriction ci �= c).
8. A outputs a bit b′ ∈ {0, 1}. It wins if b′ = b.

It is imperative for the applicability of this definition that the attacker is given
access to both α and r. This models the requirement that the KDF needs to
remain secure even when the side-information α and salt r are known to the
attacker (in particular, note that the choice of the c’s and �’s by the attacker
may depend on α and r). Allowing for multiple values of ci to be chosen by the
attacker under the same input σ to KDF ensures that even if an attacker can force
the use of the same input σ to the KDF in two different contexts (represented by
c), the outputs from the KDF in these cases are computationally independent
(i.e., leak no useful information on each other).

The following definition extends the min-entropy definitions from Section 2
to the setting of keying material sources (for a detailed treatment of conditional
(computational) entropy as used in the next definition see [36,37,22]).

Definition 8. We say that Σ is a statisticalm-entropy source if for all s and a in
the support of the distribution Σ, the conditional probability Prob (σ = s | α = a)
induced by Σ is at most 2−m.
We say that Σ is a computational m-entropy source (or simply an m-entropy
source) if there is a statistical m-entropy source Σ′ that is computationally in-
distinguishable from Σ.

We note that in the above definition we can relax the “for all a” to “all but a
negligible fraction of a”. That is, we can define α = a to be “bad” (for a given
value m) if there is s such that Prob (σ = s | α = a) > 2−m and require that the
joint probability induced by Σ on bad a’s be negligible.

Definition 9. A KDF function is called (t, q, ε) m-entropy secure if it is (t, q, ε)-
secure with respect to all (computational) m-entropy sources.

We note that for the most part of this paper the (implicit) notion of security
of a KDF corresponds to this last definition, namely, we think of KDFs mainly
as a generic function that can deal with different sources as long as the source
has enough computational min-entropy. We stress that this notion of security

640 H. Krawczyk

can only be achieved for randomized KDFs where the salt value r is chosen at
random from a large enough set. Yet, this work also touches on deterministic
KDFs (see more in [28]) that may be good for specific applications and sources
and whose security is formalized in Definition 7.

On adversarially-chosen inputs to Σ. Please refer to [28] for a discussion
on extending the above definitions to incorporate possiblly adversarial inputs to
the generation of the source Σ.

4 Extract-Then-Expand KDF and an HMAC-Based
Instantiation

In this section we first describe an abstract KDF that implements the extract-
then-expand approach discussed throughout this paper, and then specify an in-
stantiation solely based on HMAC [7].

An extract-then-expand key derivation function KDF comprises two modules: a
randomness extractor XTR and a variable-length output pseudorandom function
PRF∗ (the latter is usually built on the basis of a regular PRF with output
extension via counter mode, feedback mode, etc.). The extractor XTR is assumed
to produce “close-to-random”, in the statistical or computational sense, outputs
on inputs sampled from the source key material distribution (this should be the
case also when the SKM value includes auxiliary knowledge α, per Definition 6,
that is provided to the distinguisher). XTR may be deterministic or keyed via an
optional “salt value” (i.e., a non-secret random value) that we denote by XTS (for
extractor salt). The key to PRF∗ is denoted by PRK (pseudorandom key) and in
our scheme it is the output from XTR; thus, we are assuming that XTR produces
outputs of the same length as the key to PRF∗. The function PRF∗ also gets a
length parameter indicating the number of bits to be output by the function. In
all, KDF receives four inputs: the source key material SKM, the extractor salt
XTS (which may be null or constant), the number L of key bits to be produced
by KDF, and a “context information” string CTXinfo (which may be null). The
latter string should include key-related information that needs to be uniquely
(and cryptographically) bound to the produced key material. It may include,
for example, information about the application or protocol calling the KDF,
session-specific information (session identifiers, nonces, time, etc.), algorithm
identifiers, parties identities, etc. The computation of the extract-then-expand
KDF proceeds in two steps; the L-bit output is denoted KM (for “key material”):

1. PRK = XTR (XTS, SKM)
2. KM = PRF∗(PRK, CTXinfo, L)

The following theorem establishes the security of a KDF built using this
extract-then-expand approach. The proof, presented in [28], follows from the
definition of computational extractors (Definition 3), the security definition of
variable-length-output pseudorandom functions (Definition 14 in Appendix A),
and the definition of KDF security (Definition 7).

Cryptographic Extraction and Key Derivation: The HKDF Scheme 641

Theorem 1. Let XTR be a (tX , εX)-computational extractor w.r.t. a source Σ
and PRF∗ a (tP , qP , εP)-secure variable-length-output pseudorandom function
family, then the above extract-then-expand KDF scheme is
(min{tX , tP }, qP , εX + εP)-secure w.r.t. source Σ.

An HMAC-based instantiation. For the sake of implementation in real
applications we propose to instantiate the above general scheme with HMAC
serving as the PRF underlying PRF∗ as well as the XTR function. We denote
the resultant scheme by HKDF.

We use the following notational conventions: (i) the variable k denotes the
output (and key) length of the hash function used with HMAC; (ii) we represent
HMAC as a two-argument function where the first argument always represents
the HMAC key; (iii) the symbol ‖ denotes string concatenation. Thus, when
writing HMAC(a, b ‖ c) we mean the HMAC function (using a given hash
function) keyed with the value a and applied to the concatenation of the strings
b and c.
The scheme HKDF is specified as:

HKDF(XTS, SKM, CTXinfo, L) = K(1) ‖ K(2) ‖ . . . ‖ K(t)

where the values K(i) are defined as follows:

PRK = HMAC(XTS, SKM)
K(1) = HMAC(PRK,CTXinfo ‖ 0),

K(i+ 1) = HMAC(PRK, K(i) ‖ CTXinfo ‖ i), 1 ≤ i < t,

where t = �L/k� and the value K(t) is truncated to its first d = L mod k bits;
the counter i is non-wrapping and of a given fixed size, e.g., a single byte. Note
that the length of the HMAC output is the same as its key length and therefore
the scheme is well defined.
When the extractor salt XTS is not provided (i.e., the extraction is deterministic)
we set XTS = 0.
Example: Let HMAC-SHA256 be used to implement KDF. The salt XTS will
either be a provided 256-bit random (but not necessarily secret) value or, if not
provided, XTS will be set to 0. If the required key material consists of one AES
key (128 bits) and one HMAC-SHA1 key (160 bits), then we have L = 288,
k = 256, t = 2, d = 32 (i.e., we will apply HMAC-SHA256 with key PRK twice
to produce 512 bits but only 288 are output by truncating the second output
from HMAC to its first 32 bits). Note that the values K(i) do not necessarily
correspond to individual keys but they are concatenated to produce as many key
bits as required.
Practical Notes. Please refer to [28] for several notes on the use of the HKDF in
practice, including some variants such as replacing HMAC with a block-cipher
based construct or with other “multi-property preserving” hash schemes, and
using hybrid schemes where the extract and expand modules are implemented
with separate components. [28] also contains a discussion on the use of feedback
mode in the expansion stage of HKDF.

642 H. Krawczyk

5 The Security of HKDF

Theorem 1 from Section 4 allows us to argue the security of HKDF on the basis
of the properties of the HMAC scheme both as extractor and PRF. In this
section we review results concerning these properties of HMAC and use them
to prove the security of HKDF. These results demonstrate that the structure of
HMAC works well in achieving the basic functionalities that underline HKDF
including PRF, extraction, and random-oracle domain extension. In particular,
they exploit the versatility of HMAC that supports working with a secret key, a
random non-secret key (salt), or deterministically (i.e., with a fixed-value key).
We also note that the security analysis of HKDF uses in an essential way the
structure of HMAC and would not hold if one simply replaces HMAC with a
plain (Merkle-Damgard) hash function.

Notation. We use H to denote a Merkle-Damgard hash function and h the un-
derlying compression function. We also consider these as keyed families, where hκ

and Hκ denote, respectively, the compression function and the Merkle-Damgard
hash with their respective IVs set to κ; the key and output lengths of these
functions is denoted by k. We will abuse notation and talk about “the family
hκ” instead of the more correct {hκ}κ∈{0,1}k ; same for Hκ. When we say that
“the family hκ is random”, we mean that each of the functions hκ is chosen
at random (with the corresponding input/output lengths). When we talk about
HMAC (or NMAC), we assume underlying functions h and H (or their keyed
versions).

The properties of HMAC as a pseudorandom function family are well estab-
lished [8,9] and are based on the assumed pseudorandomness of the underlying
compression function family hκ.6 It is not hard to see that the use of HMAC in
“feedback mode” in HKDF (for realizing PRF∗) results in a secure variable-length-
output pseudorandom function family. Indeed, the latter is a generic transforma-
tion from fixed-length output PRF into a variable-length output PRF∗ (see more
on this transformation and the rationale for the use of feedback mode in [28]).

The suitability of HMAC as a computational extractor is more complex and
is treated in detail below. These results show the extraction properties of HMAC
for a wide variety of scenarios under suitable assumptions on the underlying hash
function, ranging from purely combinatorial properties, such as universality, to
the idealized modeling of compression functions as random oracles.

We first state the following general theorem.

Theorem 2. (informal) Let H be a Merkle-Damgard hash function built on
a family of pseudorandom compression functions {hκ}κ. Let S be a collection
of probability distributions acting as sources of keying material. Assume that the
instantiation of HMAC with the family {hκ}κ is a secure computational extractor
w.r.t. sources in S, then HKDF is a secure KDF w.r.t. sources in S.
6 Although the security of HMAC as PRF degrades quadratically with the number of

queries, such attack would require the computation of the PRF (by the owner of the
key) over inputs totalizing 2k/2 blocks. This is not a concern in typical KDF applica-
tions where the number of applications of the PRF is relatively small.

Cryptographic Extraction and Key Derivation: The HKDF Scheme 643

The theorem follows from Theorem 1 applied to the collection of sources S
and the fact, discussed above, that HMAC is a secure PRF when instantiated
with a pseudorandom family of compression functions hκ. Each of the lemmas
presented below provides a condition on HMAC extraction that can be plugged
into this theorem to obtain a proof of security for HKDF for the appropriate
sources of key material in a well-defined and quantifiable way.

The results below involve the notion of “almost universal (AU)” hash func-
tions [10,39]: A family hκ is δ-AU if for any inputs x �= y and for random κ,
Prob(hκ(x) = hκ(y)) ≤ δ. This is a natural (combinatorial) property of hash
functions and also one that any (even mildly) collision resistant hash family
must have and then a suitable assumption for cryptographic hash functions.
Specifically, if the hash family hκ is δ-collision-resistant against linear-size cir-
cuits (i.e., such an attacker finds collisions in hκ with probability at most δ)
then hκ is δ-AU [14]. For results that apply to the most constrained scenarios
(as those discussed in the Random Oracles section of [28]) we need to resort to
stronger, idealized assumptions, in which we model functions as random oracles
(RO), namely, random functions which the attacker can only query on a limited
number, q, of queries.

NMAC as extractor. The following lemmas are adapted from [14] and apply
directly to the NMAC scheme underlying HMAC (recall that NMACκ1,κ2(x) =
Hκ2(Hκ1(x)), where Hκ2 is called the “outer function” and Hκ1 the “inner func-
tion”). The results extend to HMAC as explained below. They show that HMAC
has a structure that supports its use as a generic extractor and, in particular, it
offers a much better design for extraction than the plain hash function H used
in many of the existing KDFs.

Lemma 1. If the outer function is modeled as a RO and the inner function is
δ-AU then NMAC applied to an m-entropy source produces an output that is√
q(2−m + δ)-close to uniform where q is a bound on the number of RO queries.

The above modeling of the outer function as a random oracle applies to the
case where the outer function is a single (fixed) random function (in which case
the source distribution needs to be independent of this function) or when it is
represented as a keyed family of random functions (in which case only the key,
or salt, needs to be chosen independently of the source distribution).

One natural question is whether one can ensure good extraction properties
for NMAC based on the extraction properties of the underlying compression
functions and without idealized assumptions. The following result from [14] pro-
vides an affirmative answer for m-blockwise sources, namely, where each k-bit
input block has min-entropy m when conditioned on other blocks. Denote by ĥκ

a family identical to the compression function family hκ but where the roles of
key and input are swapped relative to the definition of hκ.

Lemma 2. If hκ is a (m, δ)-statistical extractor and ĥκ is a (t, q, ε)-
pseudorandom family for q = 1, then NMAC is a (t, nδ + ε)-computational
extractor for m-blockwise sources with n input blocks.

644 H. Krawczyk

An example of a practical application where this non-idealized result can be used
is the IKE protocol [19,24] where all the defined “mod p” DH groups have the
required block-wise (computational) min-entropy. In particular, the output from
HKDF is guaranteed to be pseudorandom in this case without having to model
h as a random oracle.

Truncated NMAC. Stronger results can be achieved if one truncates the
output of NMAC by c bits to obtain k′ = k−c bits of output (e.g., one computes
NMAC with SHA-512 but only outputs 256 bits). In this case one can show
that NMAC is a good statistical extractor (not just computational) under the
following sets of assumptions:

Lemma 3. If hκ is a family of random compression functions (with k bits of
output) then NMAC truncated by c bits is a (k,

√
(n + 2)2−c)-statistical extractor

where n is the number of input blocks.

Lemma 4. If the inner function is δ1-AU and the outer is (2−k′
+ δ2)-AU

then truncated NMAC (with k′ bits of output) is a (m,
√

2k′(2−m + δ1 + δ2))-
statistical extractor.

The latter lemma is particularly interesting as its guarantee is “unconditional”:
it does not depend on hardness assumptions or idealized assumptions, and it
ensures statistical extraction. Moreover, it fits perfectly the HKDF setting if one
implements the extract phase with, say, SHA2-512 (with output truncated to
256 bits) and the PRF part with SHA2-256 (as discussed in the practical notes
section of [28]).

In particular, we have the following significant case:

Corollary 1. If the family of compression functions hκ is strongly universal
(or pairwise independent) and the family Hκ is generically collision resistant
against linear-size circuits, then NMAC truncated by c bits is a (k, (n+2)2−c/2)-
statistical extractor on n-block inputs.

Indeed, the assumption that the family hκ is strongly universal means δ2 = 0;
and it is not hard to see that if there is no trivial (linear size) algorithm to find
collisions in the family Hκ better than guessing then δ1 ≤ n2−k. Putting these
values and m = k into Lemma 4 the corollary follows.

Applying the corollary to the above example of SHA2-512 truncated to 256
bits we get a statistical distance of (n + 2)2−128. And there is plenty room to
get good security even if the δ values deviate from the above numbers; e.g., for
δ1 = δ2 = 21002−k we would get a statistical closeness of (n + 2)2−78. Finally,
we note that a min-entropy of m = k is a condition satisfied by many common
distributions such as statistical samplers and Diffie-Hellman groups modulo safe
primes.

From NMAC to HMAC. To use the above results with HMAC one needs to
assume the computational independence of the values h(κ⊕opad) and h(κ⊕ipad)
for random κ (i.e., each of these values is indistinguishable from uniform even if

Cryptographic Extraction and Key Derivation: The HKDF Scheme 645

the other is given). In the cases where h is modeled as a random function this
requires no additional assumption.

HMAC as a random oracle. In [28] (Random Oracles section) we point out
to various scenarios that require the modeling of the extraction functionality
through random oracles. This may be due to the stringent requirements of an
application (e.g., when all of the min-entropy of the source is to be extracted),
when extraction can be solely based on cryptographic hardness without assuming
additional min-entropy (the “hard core” case), or when the application itself
assumes the KDF to be a random oracle (as in certain key exchange protocols). In
all these cases we are interested to model the extract part of HKDF as a random
oracle. Fortunately, as shown in [12] (using the framework of indifferentiability
from [29]), the HMAC structure preserves randomness in the sense that if the
underlying compression function (computed on fixed length inputs) is modeled
as a random oracle so is HMAC on variable length inputs ([12] claims the result
for a variant of HMAC but it applies to HMAC itself).7 This result together
with the random-oracle-extraction lemma from [28] implies:

Lemma 5. If the compression function h is modeled as a RO, then the applica-
tion of HMAC to an m-entropy source produces an output that is q2−m-close to
uniform where q is a bound on the number of RO queries.

As explained in [28], the above holds for source distributions that are (suffi-
ciently) independent from the function h. To obtain a generic extractor one
needs to randomize the scheme by keying HMAC with a salt value.

Finally, we point out that using random-oracle-hardcore lemma from [28], one
obtains that if hκ is a RO family then HMAC over the family Hκ is a generic
hard-core family. This is needed when extraction is to be based on cryptographic
hardness (or unpredictability) only without assuming additional min-entropy
(e.g., in a Diffie-Hellman exchange where only CDH is assumed – see more in
[28]).

References

1. Adams, C., Kramer, G., Mister, S., Zuccherato, R.: On The Security of Key Deriva-
tion Functions. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp.
134–145. Springer, Heidelberg (2004)

2. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.-P.: RSA and Rabin Functions:
Certain Parts are as Hard as the Whole. SIAM J. Comput. 17(2), 194–209 (1988)

3. ANSI X9.42-2001: Public Key Cryptography For The Financial Services Industry:
Agreement of Symmetric Keys Using Discrete Logarithm Cryptography

7 This “RO preserving” property does not hold for the plain Merkle-Damgard hash
which is susceptible to extension attacks. Moreover, even if one considers fixed-
length inputs (to avoid extension attacks), the Merkle-Damgard family Hκ built on
random compression functions is not a good statistical extractor (e.g., [14] show that
the output of such family on any distribution for which the last block of input is
fixed is statistically far from uniform).

646 H. Krawczyk

4. ANSI X9.63-2002: Public Key Cryptography for the Financial Services Industry:
Key Agreement and Key Transport

5. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation with
applications to /dev/random. In: ACM Conference on Computer and Communi-
cations Security (2005)

6. Barak, B., Shaltiel, R., Tromer, E.: True random number generators secure in a
changing environment. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003.
LNCS, vol. 2779, pp. 166–180. Springer, Heidelberg (2003)

7. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

8. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom Functions Revisited: The
Cascade Construction and Its Concrete Security. In: Proc. 37th FOCS, pp. 514–
523. IEEE, Los Alamitos (1996)

9. Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-
Resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

10. Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. JCSS 18(2) (1979)
11. Chevassut, O., Fouque, P.-A., Gaudry, P., Pointcheval, D.: The twist-aUgmented

technique for key exchange. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G.
(eds.) PKC 2006. LNCS, vol. 3958, pp. 410–426. Springer, Heidelberg (2006)

12. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgard Revisited: How
to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

13. Dierks, T., Allen, C. (eds.): The TLS Protocol – Version 1. Request for Comments
2246 (1999)

14. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness Extrac-
tion and Key Derivation Using the CBC, Cascade and HMAC Modes. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004)

15. Fischlin, R., Schnorr, C.-P.: Stronger Security Proofs for RSA and Rabin Bits.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 267–279. Springer,
Heidelberg (1997)

16. Fouque, P.-A., Pointcheval, D., Stern, J., Zimmer, S.: Hardness of Distinguishing
the MSB or LSB of Secret Keys in Diffie-Hellman Schemes. In: Bugliesi, M., Pre-
neel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 240–251.
Springer, Heidelberg (2006)

17. Gennaro, R., Krawczyk, H., Rabin, T.: Secure Hashed Diffie-Hellman over Non-
DDH Groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 361–381. Springer, Heidelberg (2004)

18. Goldwasser, S., Micali, S.: Probabilistic Encryption. JCSS 28(2), 270–299 (1984)
19. Harkins, D., Carrel, D. (eds.): The Internet Key Exchange (IKE). RFC 2409

(November 1998)
20. Hastad, J., Impagliazzo, R., Levin, L., Luby, M.: Construction of a Pseudorandom

Generator from any One-way Function. SIAM. J. Computing 28(4), 1364–1396
(1999)

21. Hastad, J., Schrift, A., Shamir, A.: The Discrete Logarithm Modulo a Composite
Hides O(n) Bits. J. Comput. Syst. Sci. 47(3), 376–404 (1993)

22. Hsiao, C.-Y., Lu, C.-J., Reyzin, L.: Conditional Computational Entropy, or Toward
Separating Pseudoentropy from Compressibility. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 169–186. Springer, Heidelberg (2007)

Cryptographic Extraction and Key Derivation: The HKDF Scheme 647

23. IEEE P1363A: Standard Specifications for Public Key Cryptography: Additional
Techniques, Institute of Electrical and Electronics Engineers

24. Kaufman, C. (ed.): Internet Key Exchange (IKEv2) Protocol. RFC 4306 (December
2005)

25. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Au-
thentication. RFC 2104 (February 1997)

26. Krawczyk, H.: SIGMA: The ‘SiGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE Protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003)

27. Krawczyk, H., Eronen, P.: HMAC-based Extract-and-Expand Key Derivation
Function (HKDF), RFC 5869 (to appear)

28. Krawczyk, H.: Cryptographic Extraction and Key Derivation: The HKDF Scheme
(full version of this paper), http://eprint.iacr.org/2010/264

29. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results
on Reductions, and Applications to the Random Oracle Methodology. In: Naor,
M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

30. Nisan, N., Ta-Shma, A.: Extracting Randomness: A Survey and New Construc-
tions. JCSS 58, 148–173 (1999)

31. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst.
Sci. 52(1), 43–52 (1996)

32. NIST Special Publication (SP) 800-56A, Recommendation for Pair-Wise Key Es-
tablishment Schemes Using Discrete Logarithm Cryptography (March 2006)

33. NIST Special Publication (SP) 800-108, Recommendation for Key Derivation Using
Pseudorandom Functions (October 2009)

34. Patel, S., Sundaram, G.: An Efficient Discrete Log Pseudo Random Generator.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 304–317. Springer,
Heidelberg (1998)

35. Radhakrishnan, J., Ta-Shma, A.: Tight bounds for depth-two superconcentrators.
SIAM J. Discrete Math. 13(1), 2–24 (2000)

36. Renner, R., Wolf, S.: Smooth Renyi entropy and applications. In: Proceedings of
IEEE International Symposium on Information Theory (2004)

37. Renner, R., Wolf, S.: Simple and tight bounds for information reconciliation and
privacy amplification. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
199–216. Springer, Heidelberg (2005)

38. Shaltiel, R.: Recent developments in Extractors. Bulletin of the European Associ-
ation for Theoretical Computer Science 77, 67–95 (2002),
http://www.wisdom.weizmann.ac.il/~ronens/papers/survey.ps

39. Douglas, R.: Stinson: Universal Hashing and Authentication Codes. Des. Codes
Cryptography 4(4), 369–380 (1994)

40. Yao, F.F., Yin, Y.L.: Design and Analysis of Password-Based Key Derivation Func-
tions. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 245–261. Springer,
Heidelberg (2005)

A Background Definitions

In this section we recall basic formal definitions for some of the notions used
throughout this work.
Notation. In the sequel X and Y denote two (arbitrary) probability distribu-
tions over a common support set A; X and Y denote random variables drawn
from X and Y, respectively.

http://eprint.iacr.org/2010/264
http://www.wisdom.weizmann.ac.il/~ronens/papers/survey.ps

648 H. Krawczyk

Definition 10. We say that probability distributions X and Y have statistical
distance δ (or are δ-close) if

∑
a∈A |Prob(X = a)− Prob(Y = a)| ≤ δ.

Definition 11. An algorithm D is an ε-distinguisher between distributions X
and Y if |Prob(D(X) = 1)− Prob(D(Y) = 1| < ε.

We note that two distributions X and Y are δ-close iff there is no ε-distinguisher
between X and Y for ε > δ.

By restricting the computational power of the distinguisher in the above def-
inition one obtains the following well-known definition of “computational indis-
tinguishability” [18] (we formulate definitions using the “concrete security” (t, ε)
approach as a non-asymptotic alternative to the classical polynomial-time treat-
ment; we also take the liberty of omitting the (t, ε) notation when appropriate).

Definition 12. Two probability distributions X , Y are (t, ε)-computationally in-
distinguishable if there is no ε-distinguisher between X and Y that runs in time t.

Definition 13. A probability distribution X over the set {0, 1}n is called (t, ε)-
pseudorandom if it is (t, ε)-computationally indistinguishable from the uniform
distribution over {0, 1}n.
Next we recall the definition of security for a variable-length output pseudoran-
dom function family. Such a family consists of a collection of keyed functions
which on input a key κ, an input c and a length parameter �, outputs � bits.

Definition 14. A variable-length output pseudorandom function family PRF∗ is
(t, q, ε)-secure if no attacker A running in time t and making at most q queries
can win the following distinguishing game with probability larger than 1/2 + ε:

1. For i = 1, . . . , q′ ≤ q: A chooses arbitrary values ci, �i and receives the value
PRF∗(κ, ci, �i) (queries by A are adaptive, i.e., each query may depend on
the responses to previous ones).

2. A chooses values c and � such that c /∈ {c1, . . . , cq}.
3. A bit b ∈R {0, 1} is chosen at random. If b = 0, A is provided with the output

of PRF∗(κ, c, �), else A is given a random string of � bits.
4. Step 4 is repeated for up to q − q′ queries.
5. A outputs a bit b′ ∈ {0, 1}. It wins if b′ = b.

Time Space Tradeoffs for Attacks against
One-Way Functions and PRGs

Anindya De1,�, Luca Trevisan2,��, and Madhur Tulsiani3,� � �

1 University of California at Berkeley
anindya@cs.berkeley.edu

2 University of California at Berkeley and Stanford University
luca@cs.berkeley.edu

3 Institute for Advanced Study, Princeton
madhurt@math.ias.edu

Abstract. We study time space tradeoffs in the complexity of attacks
against one-way functions and pseudorandom generators.

Fiat and Naor [7] show that for every function f : [N] → [N], there
is an algorithm that inverts f everywhere using (ignoring lower order
factors) time, space and advice at most N3/4.

We show that an algorithm using time, space and advice at most

max{ε 5
4 N

3
4 ,
√

εN}
exists that inverts f on at least an ε fraction of inputs. A lower bound of

Ω̃(
√

εN) also holds, making our result tight in the “low end” of ε ≤ 3
√

1
N

.
(Both the results of Fiat and Naor and ours are formulated as more

general trade-offs between the time and the space and advice length of
the algorithm. The results quoted above correspond to the interesting
special case in which time equals space and advice length.)

We also show that for every length-increasing generator G : [N] →
[2N] there is a algorithm that achieves distinguishing probability ε be-
tween the output of G and the uniform distribution and that can be
implemented in polynomial (in log N) time and with advice and space
O(ε2 · N log N). We prove a lower bound of S · T ≥ Ω(ε2N) where T
is the time used by the algorithm and S is the amount of advice. This
lower bound applies even when the distinguisher has oracle access to G.

We prove stronger lower bounds in the common random string model,
for families of one-way permutations and of pseudorandom generators.

Keywords: One-way functions, pseudorandom generators, random per-
mutations, time-space tradeoffs.

� Supported by the “Berkeley fellowship for Graduate Study” and by the BSF under
grant 2006060.

�� This material is based upon work supported by the National Science Foundation
under grant No. CCF-0729137 and by the BSF under grant 2006060.

� � � This material is based upon work supported by the National Science Foundation
under grant No. CCF-0832797 and IAS Sub-contract no. 00001583. Work done
partly when the author was a graduate student at UC Berkeley.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 649–665, 2010.
c© International Association for Cryptologic Research 2010

650 A. De, L. Trevisan, and M. Tulsiani

1 Introduction

In the applied cryptography literature, a cryptographic primitive with a key of
length k is typically considered “broken” if the key can be recovered in time
less than 2k, that is, faster than via an exhaustive brute force search. Implicit
in this attitude is the belief in the existence of primitives for which a brute
force attack is optimal. A time t brute force attack against a one-way function
f : {0, 1}n → {0, 1}n, consisting in trying about t random guesses for the inverse,
only succeeds with probability about t/2n, and a brute force attack that attempts
to distinguish a length increasing generator G : {0, 1}n−1 → {0, 1}n from the
uniform distribution by attempting to guess the seed achieves distinguishing
probability about t/2n. Is it plausible that such trade-offs are optimal? Would
it be plausible to assume that AES with 128 key bit cannot be distinguished
from a random permutation with distinguishing probability more than 2−40 by
adversaries running in time 260?1

If we apply a non-uniform measure of complexity, that is, if we restrict our-
selves to a fixed finite one-way function or pseudorandom generator, and allow
our adversary to use precomputed information as advice, then it turns out that
the above “brute force” bounds can always be improved upon.

In 1980, Hellman [12] proved that for every one-way permutation f : [N]→ [N]
(for this discussion, it will be convenient to set N = 2n and identify {0, 1}n with
[N]) and for every parameters S, T satisfying S ·T ≥ N , there is a data structure
of size Õ(S) and an algorithm that, with the help of the data structure, given
f(x) is always able to find x in time Õ(T). The notation Õ(·) hides lower order
factors that are polynomial in logN ; we will ignore such factors from now on in
the interest of readability. We shall refer to S, the size of the pre-computed data
structure used by the algorithm, as the space used by the algorithm.

In particular, every one-way permutation can be inverted in time
√
N using√

N bits of advice.2

Hellman’s algorithm only requires oracle access to the permutation. Yao [18]
proves that, in this oracle setting, Hellman’s trade-off is tight for random per-
mutations. (See also [10].)

1 The answer to the last question is no. It follows from our results that there is a distin-
guisher that makes two queries, then performs a computation realizable as a circuit
of size 256, assuming a complete basis of fan-in two gates, and achieves distinguishing
probability≥ 2−40 between AES128 and a random permutation {0, 1}128 → {0, 1}128.
Otherwise, after the two oracle queries, the distinguisher can be implemented in a
64-bit architecture with two table look-ups and three unit-cost RAM operations,
given access to a precomputed table of 249 entries.

2 This doesn’t mean that there is a circuit of size Õ(
√

N); the running time of Õ(
√

N)
is in the RAM model. The relationship between non-uniform time/space complexity
measures and circuit complexity is the following: a circuit of size C can be simulated
using time at most Õ(C) given a pre-computed data structure of size Õ(C); and
an algorithm that uses time T and a pre-computed data structure of size S can be
simulated by a circuit of size Õ((S + T)2).

Time Space Tradeoffs for Attacks against One-Way Functions and PRGs 651

Hellman also considers the problem of inverting a random function f : [N]→
[N] given oracle access to f . He provides a heuristic argument suggesting that
for every S, T satisfying TS2 ≥ N2, and with high probability over the choice
or a random function f : [N] → [N], there is a data structure of size S and an
algorithm of complexity T that inverts f everywhere using the data structure
and given oracle access f . This trade-off yields the interesting special case S =
T = N2/3.

Fiat and Naor [7] prove Hellman’s result rigorously, and are able to handle
arbitrary functions, not just random functions. If the given function f : [N] →
[N] has collision probability3 λ, then the algorithm of Fiat and Naor requires
the trade-off TS2 ≥ λ ·N3. Note that with high probability a random function
has collision probability about 1/N (recall that we ignore (logN)O(1) terms),
and so one recovers Hellman’s tradeoff. For general functions, Fiat and Naor are
able to prove the trade-off TS3 ≥ N3, which has the special case S = T = N3/4.

Barkan, Biham, and Shamir [4] prove that the TS2 = N2 trade-off of Fiat
and Naor for random functions is optimal under certain assumptions on what is
stored in the data structure and on the behavior of the algorithm.

The result of Fiat and Naor can also be applied to the task of distinguishing a
given pseudorandom generator from the uniform distribution (and hence a given
pseudorandom permutation from a random permutation or a given pseudoran-
dom function from a random function) by recovering the seed. We are not aware
of previous work that focused specifically on the complexity of distinguishers for
pseudorandom generators. Two related results, however, should be mentioned.
It has been known for a long time (going back to, as far we know, [2]) that
every distribution that has constant statistical distance from the uniform distri-
bution, and, in particular, the output of any length increasing generator, can be
distinguished from the uniform distribution over n bits using a parity function
(of linear circuit complexity), and with distinguishing probability Ω(2−

n
2). The

other result is due to Andreev, Clementi and Rolim [3], who prove that for ev-
ery boolean predicate P : {0, 1}n → {0, 1} and every ε there is a circuit of size
O(ε22n) that computes P on at least a 1/2 + ε fraction of inputs. This implies
that for every pseudorandom generator of the form x → f(x)P (x), where f is
a permutation and P is a hard-core predicate for f , and every ε > 0, there is a
circuit of size O(ε22n) that achieves distinguishing probability ε.

Our Results

Upper Bounds for Inverting One-Way Functions. We introduce a new
way to analyze the Fiat-Naor construction. Instead of being limited by the colli-
sion probability, it is limited by the “irregularity” of the function. In particular,
if f is a regular function, then our bound is as good as that for a random func-
tion. While this approach yields no improvement for the worst-case complexity
of inverting a function everywhere, it improves the complexity if we only seek

3 Here by the collision probability of a function we mean the probability that after
sampling two independent random inputs x, y we have f(x) = f(y).

652 A. De, L. Trevisan, and M. Tulsiani

to invert on an ε fraction of the inputs. In particular, we show that there is an
algorithm such that for every f : [N]→ [N] and every ε, the algorithm inverts f
on an ε fraction of inputs and its time complexity, space complexity and advice
length are bounded by

Õ
(
max

{√
εN , ε

5
4N

3
4

})
Here the Õ hides factors of 2poly log log. It follows from known results, and we

present a proof in the full version, that, in an oracle setting, it is not possible to
do better than Ω(

√
εN), so our result is best possible when ε < N−1/3.

Indeed, we establish the following more general trade-off: for every T < 1/ε
and S satisfying the trade-off ST = εN we can construct an algorithm that has
time T and uses a data structure of size S (up to lower order factors); for every
T > 1/ε, we can use time T and space S provided TS3 = ε5N3. As we discuss
below, a straight-forward application of the analysis of Fiat and Naor would have
given a trade-off TS3 = ε3N3, or a time and space complexity Õ(ε

3
4N

3
4) in the

T = S case. For comparison, when ε = N−1/3, we can achieve (optimal) time
and space N1/3; the straight-forward use of the Fiat-Naor analysis would have
given time and space

√
N . Given an upper bound λ on the collision probability,

we can achieve the optimal trade-off TS = εN if S ≥ ε2N2λ, and the trade-
off TS = ε2N2λ otherwise. For example, if we have a function with collision
probability close to 1/N , and we want to achieve inversion probability ε = N−1/4,
then we can do so, using the latter construction, employing time, space and
advice at most N5/12 = N .416...; using our generic construction (which applies
to functions of arbitrary collision probability) would have given a complexity of
N7/16 = N .4375. We note however that all our tradeoffs (as well as the previous
ones that we state) apply only for S = Ω̃(

√
εN). The difference between our

analysis and the one in [7] is explained in Section 2.

Upper Bounds for Breaking pseudorandom Generators. We also give
non-uniform attacks to distinguish between distributions with significant statisti-
cal difference. For the sake of simplicity, in this version, we only consider the case
of distinguishing the output of a pseudorandom generator from the uniform dis-
tribution. Given an arbitrary length-increasing generator G : {0, 1}n → {0, 1}m,
m > n, we show that, for every ε, there is a distinguisher that runs in poly-
nomial time, uses a data structure of size O(ε22n), and achieves distinguishing
probability ε. The distinguisher can also be implemented as a circuit of size
O(ε22n). Notably, the distinguisher need not have oracle access to G, and so our
result applies to generators constructed for applications in derandomization, in
which the generator may have complexity 2O(n), or even higher. In this setting,
in which the complexity of the generator is not bounded, it is easy to see that
advice Ω(ε22n) is necessary. We also present a simpler construction that achieves
the slightly worse circuit size O(ε2n2n).

Lower Bounds. We prove lower bounds for non-uniform attacks on one-way
permutations and pseudorandom generators. Our lower bound for permutations

Time Space Tradeoffs for Attacks against One-Way Functions and PRGs 653

is proven in the following model : Given any permutation f , the algorithm (call
it A) is allowed to store a data structure of size S which can be arbitrarily
dependent on f . Further, on any input x, A is allowed to make T queries to f
along with any other computation it may perform. We say that there is a lower
bound on time space tradeoff of time T and space S for inverting permutations
on ε fraction of the inputs, if for any such algorithm A, there exists a permutation
f such that to invert f on ε fraction of the inputs, if A stores a data structure
of size S, then it must make T queries on some of its inputs. In this model,
we prove that S · T = Ω̃(εN). This in particular implies that the technique to
invert a permutation described previously is optimal. While such lower bounds
had previously been proven by Yao [18], Gennaro and Trevisan [8] and Wee [17],
they were only applicable till T = O(

√
εN) while our proof shows the lower

bound for the full range of T . Also, arguably our proof is simpler than the
previous proofs.

Another problem we consider is that of showing lower bounds on time space
tradeoffs for attacks on pseudorandom generators. The model is the same as
that of permutations except that the algorithm is given access to the stretching
function G and it is required to distinguish between the output of the pseudo-
random generator from the uniform by at least ε. In this model, we get a lower
bound of S · T = Ω̃(ε2N). From the previous discussion, this is tight even when
restricted to distinguishers with no oracle access. To the best of our knowledge,
this question has not been considered previously. Interestingly, the family G that
we use to prove the lower bound is a random permutation f : [N]→ [N] followed
by a random predicate P : [N]→ {0, 1} i.e. G(x) = f(x) ◦ P (x).

Common Random String Model. Finally, we prove time space lower bounds
for the problem of inverting a function (or breaking a pseudorandom generator)
sampled from a family of functions (or a family of pseudorandom generators).
This is the case when a common source of randomness is available to all the
parties and this randomness is used to sample the one-way permutation or the
pseudorandom generator as the case may be. We prove stronger lower bounds
in this model. In particular, we show that if there is an algorithm which inverts
any family of permutation f : [N]× [K] → [N] (where K denotes the common
randomness), then for large K, the brute force attack in the best possible. Simi-
larly, if there is an algorithm which for any family of pseudorandom generators,
G : [N] × [K] → [N] × {0, 1} distinguishes the output of G from uniform by
more than ε, then S · T = Ω̃(ε2KN) provided K is large enough. Here S and T
have their usual meanings. We specify the exact trade-offs with K in the next
section.

Open Questions

It remains open to either improve the Fiat-Naor construction or to prove a
stronger lower bound for the problem of inverting a random function or an
arbitrary function everywhere. It is plausible that the optimal trade-off ST = N ,
while achievable for permutations, is impossible to achieve for general functions,

654 A. De, L. Trevisan, and M. Tulsiani

maybe even impossible for random functions. Such a separation between the
complexity of dealing with general or random functions versus permutations
would be extremely interesting.

If one wants to invert a random permutation or function uniformly (that is,
given no advice), then the lower bound T ≥ N (ignoring lower-order factors)
holds. A quantum computer, however, can achieve T =

√
N [11], which is opti-

mal [5]. What is the complexity of inverting a random permutation, a random
function, or an arbitrary function with a quantum computation that takes ad-
vice? It was pointed out to us by Scott Aaronson that extension of the techniques
in [1] can prove that any pointer-jumping arguments (as the one in Hellman’s
scheme) cannot beat the

√
N bound even with access to quantum advice. Hence,

if at all quantum computation can beat the classical
√
N bound, it will have to

use significantly new techniques.
We do not have matching upper and lower bounds for the problem of con-

structing distinguishers for pseudorandom generators, except in the extremal
case T = O(1), S = ε2N . Is T = ε2N , S = O(1) achievable? More generally, for
what range of parameters is it possible to achieve distinguishability even though
inversion of one-way permutations or functions is impossible?

2 Inverting One-Way Functions

How can one invert one-way functions, in general, faster than by brute force?

2.1 An Overview of the Ideas of Hellman and of Fiat and Naor

If we are given a one-way permutation f : [N]→ [N], then it is easy to construct
an inverter for f() that uses time and space Õ(

√
N). Suppose for simplicity that

f() is a cyclic permutation and that N = s2 is a perfect square: then pick
√
N

“equally spaced” points x1, . . . , xs, such that xi+1 = f (s)(xi), and create a data
structure to store the pairs (xi, xi+1). Then given y, we compute f(y), f(f(y)),
and so on, until, for some j, we reach a point f (j)(x) which is one of the special
points in the data structure. Then we can read from the data structure the value
f (j−s)(y), and then by repeatedly computing f again we will eventually reach
f (−1)(y). Note that this takes O(s) evaluations of f and table look-ups, so both
the time and space complexity are approximately s =

√
N . If f() is not cyclic,

we do a similar construction for each cycle of length less than s, and if N is not
a perfect square we can round s to �√N�.

Abstractly, this construction works for the following reason. Consider the
graph Gf = ([N], E) that has [N] as set of vertices and that for every x has the
directed edge (x, f(x)). Then, if f is a permutation, it is possible to cover Gf

using
√
N edge-disjoint paths, each of length

√
N or, more generally, S edge-

disjoint paths of length T , provided ST ≥ N . Furthermore, if f is a function
such that Gf can be covered using S edge-disjoint paths, each of length at most
T , then we have an algorithm to invert f using space S and time T .

The problem is that, in general, no good collection of paths may exist. Sup-
pose, for example, that Gf looks like the graph on the left in Figure 1: a directed

Time Space Tradeoffs for Attacks against One-Way Functions and PRGs 655

path of length 1
3N with a length-2 path joining in at each point. Then we see

that there is a set S (the vertices of indegree zero in the picture) of size N/3
such that no path can contain more than one vertex of S, and so no collection
of o(N) paths can cover the entire graph.

Hellman [12] considers the case in which f() is a random function. Then, even
though it’s not clear how many edge-disjoint paths of what length can cover Gf

it is not hard to see that one can find N
1
3 paths of length N

1
3 having very few

“collisions.” This gives a construction that uses time and space N
1
3 and that

inverts f() at N
2
3 points. Hellman then suggests to modify f() by composing

it with a fixed permutation of the input bits, and to reason heuristically as if
the new function behaved as an independently chosen new random function.
Then one can repeat the construction, and have a new algorithm of time and
space complexity N

1
3 that inverts f() at N

2
3 points, which are assumed to be an

independent random subset of size N
2
3 . After iterating this process N

1
3 times

one has N
1
3 candidate algorithms, each of time and space complexity N

1
3 , such

that, for every x, f(x) is inverted by at least one of the algorithms. Overall, one
gets an algorithm of complexity N

2
3 that inverts f everywhere.

Fiat and Naor [7] make Hellman’s argument rigorous. The idea of Fiat and
Naor is to pick a good random hash function g, and then work with the new
function h(x) := g(f(x)). (See Figure 1 for an example of the effect of this ran-
domization.) If g were a truly random function, and f where a function such that
every output has few pre-images, then one can repeat Hellman’s calculation that
N

1
3 nearly disjoint paths of length N

1
3 exist. Picking N

1
3 random functions gi

then would give a rigorous version of the full argument, except for the depen-
dency on several random oracles. For a more general trade-off, it is possible to
pick m nearly disjoint paths of length t provided that m·t2 < N , and then iterate
the construction r times, where r = N/mt. Thus one gets a data structure of
size r ·m, plus the space needed to store the descriptions of the hash functions,
and an inversion procedure whose complexity is dominated by the complexity
of evaluating the r random hash functions at t points each. Fiat and Naor then
show that each gi only needs to be k-wise independent where k is approximately
t, the length of the paths. While one evaluation of a t-wise independent hash
function would take time t, Fiat and Naor show that the overall time for the rt
evaluations can be made t2 + rt via a careful evaluation process and amortized
analysis. The different gi, in turn, only need to be pair-wise independent with
respect to each other. Overall, the r hash functions can be represented using only
about t bits, so that the space complexity is of the order of r ·m+ t. Choosing
the parameters r,m, t optimally shows that the time-space tradeoff TS2 = N2

is achievable.
For general functions, the above ideas continue to work if the collision prob-

ability λ of the distribution f(U[N]) is small. In particular, one can have an
algorithm of space S = m ·r+ t and time T = t2 + t ·r provided that m · t2 ≤ 1/λ
and m · t · r ≥ N . This optimizes to the time-space tradeoff TS2 = λ ·N3.

For functions having large collision probability, the idea is to create an addi-
tional look-up table L (we also refer to it as a list), containing, for each of the �

656 A. De, L. Trevisan, and M. Tulsiani

0

1

2

5

8

3

4

11

6

7

14

9

10

17

12

13

20

15

16

23

18

19

26

21

22

29

24

25

32

27

28

35

30

31

38

33

34

41

36

37

44

39

40

47

42

43

50

45

46

53

48

49

56

51

52

59

54

55 57

58

0

20

131

44

59

2

29

4

3

28

53

14

5

11

26

6

40

52

7

56

31

8

41

9

58

10

17

50

12

15

22

16

18

19

43

37

21

34

23

24

46 27

38

30

49

32

33

35

47

36

39

55

42

45

4851 5457

Fig. 1. A graph Gf that cannot be partitioned into few edge-disjoint paths and the
graph Gf◦g where g is a random permutation

elements y such that f (−1)(y) is largest, the pair (x, y) where x is an arbitrary
pre-image of y. Then, given f(x) ∈ L we can immediately find an inverse by
searching L, and the problem of inverting f reduces to the problem of inverting
the restriction of f to {0, 1}n − f (−1)(L), which, intuitively, is the problem of
inverting a function of low collision probability. More precisely, if we define the
“effective” collision probability of f relative to L as the probability that, picking
x, x′ uniformly at random we have f(x) = f(x′) conditioned on f(x) �∈ L, then
the effective collision probability is at most 1/�. The TS2 = λN3 trade-off can
be extended to the case in which λ is the effective collision probability, although
at the additional cost of � in the space. The optimal choice ends up being � = S,
and so the trade-off becomes TS3 = N3. One additional difficulty that comes
up in the analysis is that we need hash functions gi with the property that
gi(f(x)) �∈ f (−1)(L) if f(x) �∈ L. This is achieved by realizing gi by starting from
a sequence of functions g1

i , . . . , g
k
i , and then defining gi(y) to be hj

i (y) for the
first j such that hj

i (y) �∈ f (−1)(L).

2.2 Scaling Down the Fiat-Naor Construction

Consider now the issue of scaling down this construction in order to invert only
εN points.

If we fix parameters r,m, t, � such that r · m · t = εN and m · t2 ≤ �, then
we have an algorithm that inverts the function at εN points and whose time
complexity is t2 +rt and whose space complexity is �+rm+ t. Some calculations
show that this gives a time-space trade-off of TS3 = (εN)3.

Time Space Tradeoffs for Attacks against One-Way Functions and PRGs 657

Parameters

� := Size of list L
t := Length of each walk
r := Number of independent functions g ∈ F used
m := Number of walks according to each function gi

F := Family of k = 2t · (log N)2-wise independent functions.

Construction of Data Structure

1. Consider the � elements in the range of f with highest value of I(y). For each
such element y, store an entry (y, x) in the list for some x ∈ f−1(y).

2. Choose functions g1, . . . , gr ∈ F pairwise independently at random. For each
function gi, define the partial function g∗

i : [N]→ [N] as

g∗
i (x) =

⎧⎨⎩
gi(x, u) if u is the least index such that f(gi(x, u)) /∈ L

undefined if ∀u ∈ [(log N)2]. f(gi(x, u)) ∈ L

For each i, define the partial function hi = g∗
i ◦ f .

3. For each i ∈ [r] and j ∈ [m], construct a walk Wij of length t; by starting
at a random point xij and computing the sequence xij , hi(xij), . . . , ht

i(xij).
Discard the walk if
– for some t1 ≤ t, ht1

i (xij) is undefined.
– the walk cycles i.e. for t1, t2 ≤ t, ht1

i (xij) = ht2
i (xij).

For walks Wij that are not discarded, store the pairs (xij , h
t
i(xij)).

Fig. 2. Description of data structure for inverting f

A first improvement comes by considering that if |f (−1)(L)| ≥ εN , then just by
constructing L we are done. This means that we may assume that the elements
not in L have each at most εN/� pre-images, and there are (1 − ε)N > N/2
elements not in f (−1)(L), meaning that the collision probability of f restricted
to {0, 1}n− f (−1)(L) is at most ε/�. This is a stronger bound than the “effective
collision probability” bound 1/� in the Fiat-Naor analysis. This means that we
can set the parameters so that rmt = εN , mt2 ≤ �/ε, and have S = � + rm + t
and T = t2 + rt. This leads to the improved trade-off TS3 = ε4N3, provided
εN > T > ε−2.

A second improvement comes by using new constructions of k-wise indepen-
dent hash functions (with k = Õ(t)) that can be evaluated in time negligible in
t. We present such a construction in the full version of the paper. Using such
a construction, the running time of the algorithm becomes just rt, rather than
t2 + rt. In the original Fiat-Naor construction, the two bounds are of the same
order, because optimizing the parameters always leads to r > t. In the scaled-
down construction we described above, however, r > t is optimal only as long
as T > ε−2, which is why we added such a constraint above. Hence, we require
a family of hash functions with two properties:

658 A. De, L. Trevisan, and M. Tulsiani

Invert(y)

1. If (x, y) ∈ L for some L, return x.
2. For each i ∈ [r]

(a) Construct the sequence (g∗
i (y), hi(g∗

i (y)), . . . , ht−1
i (g∗

i (y))).
(b) If there are indices j0 ∈ [m] and t0 ≤ t − 1 such that ht0

i (g∗
i (y)) =

ht
i(xij0), then compute ht−t0−1

i (xij0). In case there are multiple choices
for j0, pick the smallest one.

(c) If f(ht−t0−1
i (xij0)) = y, output ht−t0−1

i (xij0) else output fail.

Fig. 3. Procedure for inverting a given element y

– Small size: it is sufficient for our purposes that each function be representable
with Θ(t) +No(1) bits;

– Efficient evaluation: given the description of a function in the family and a
point in the domain, we would like the evaluation of the function at that
point to take time to(1) ·No(1)

We note that most known constructions with small size do not satisfy the
efficient computation requirement. The construction that we use in this paper
is based on an observation by Siegel [15] coupled with the lossless expander
construction by Capalbo et al. [6]. The only other construction to us, which
satisfies both the properties is the construction by Ostlin and Pagh [14] but
their construction can differ from being uniform on a set of size t by an inverse
polynomial in t which is too large an error for us. Using these hash functions
would lead to the same trade-off TS3 = ε4N3, but for the wider range of param-
eters εN > T > ε−1.

2.3 The Main New Idea

Our main improvement over the techniques of Fiat and Naor comes from the
use of a more precise counting of the number of inputs x such that f(x) can be
inverted using a given data structure.

We note that if we have the endpoints of a path of length t in our data
structure, then we are able to invert f not just at t inputs, but rather at as
many inputs as the sum of the indegrees (in Gf) of the vertices of the path.4

If, for example, the function f is k-regular (meaning that, for every x, f(x) has
exactly k pre-images), then a special case of the analysis that we provide shows
that we can invert everywhere with trade-off TS2 = N2/k2, while the Fiat-Naor
analysis would give a trade-off TS2 = N2 ·k. They are the same when k = Õ(1),
but for larger k the analysis of Fiat and Naor provides worse bounds, because
the collision probability increases, while our analysis provides better bounds.
4 Said differently, Fiat and Naor count the number of y which are inverted, while one

should count the number of x such that f(x) is inverted.

Time Space Tradeoffs for Attacks against One-Way Functions and PRGs 659

For functions that are not regular, providing a good bound on the number of
elements that are inverted by the data structure is more challenging.

If the function has collision probability λ (or “effective” collision probability
λ after discounting the elements in the high-indegree table), and we construct r
data structures, each having m paths of length t, then the average sum of the
indegrees of the vertices in the data structure is m ·t ·r ·λ ·N , which is potentially
much more than mtr if the collision probability is large. It seems, then, that we
could fix parameters m, t, r such that

m · t2 ≤ λ−1

m · t · r · λN ≥ εN
(1)

and be able to invert εN elements using time rt and space rm+t. This would op-
timize, in the interesting case in which space and time are equal, to having space
and time max{√εN, εN2/3}, which would be great. In particular, it would im-
prove the Fiat-Naor construction even when ε = 1. Unfortunately, while mrtλN
is the expectation of the sum of the indegrees of the vertices in all the paths of
the data structure, it is not the expectation of the number of x such that f(x) is
inverted: the problem is that, if the collision probability is very high, there might
be elements y with many pre-images that occur in multiple data structures, and
which would then be counted multiple times.

We then proceed by considering three cases. If the collision probability is
small, that is, less than ε2/S, where S is the amount of space we plan to use,
then we find parameters m, t, r such that

mt2 ≤ S/ε2

mtr ≥ εN

that is, we take advantage of the bound on collision probability but we do not
attempt to improve the Fiat-Naor count on the number of inverted elements.
This allows us to invert an ε fraction of elements using time and space at most
max{√εN, ε5/4N3/4}.

If the collision probability is more than ε2/S, then we consider how much
mrtλN is overcounting the real number of inverted elements. The overcounting
is dominated by the elements x such that, for a given choice of r,m, t, f(x)
has probability Ω(1), say, probability ≥ 1/100, of belonging to one of the data
structures. Call such a y = f(x) a heavy image to invert.

If the number of pre-images of heavy elements is at least 100εN , then we are
done, because we expect to be able to invert at least a 1/100 fraction of heavy
elements.

The remaining case, then, is when the collision probability is more than ε2/S,
but the total number of pre-images of heavy elements is less than 100εN . This
information, together with the fact that (thanks to the size-S high-indegree
table) we are only trying to invert elements with at most εN/S pre-images,
allows us to bound the total number of occurrences of heavy elements in the
data structure, and to conclude that the total number of pre-images of non-
heavy elements (which are inverted) is at least Ω(mrtλN). This means that a

660 A. De, L. Trevisan, and M. Tulsiani

choice of m, r, t satisfying (1) leads us to invert an ε fraction of inputs, and to
do so with time and space at most max{√εN, εN2/3}.

Applying these ideas to get full time-space trade-offs give us that, if ε <
1/N1/3 we can have the optimal trade-off TS = εN ; otherwise we achieve the
trade-off TS3 = ε5N3. We now formally state the main theorem.

Theorem 1. There is an oracle algorithm Invert such that given any f :
{0, 1}n → {0, 1}n, there is a data structure DS with parameters �, m, t and
r such that

Pr
x∈[N]

[
Invertf,DS(f(x)) ∈ f−1(f(x))

]
≥ ε

where the total space required for DS is Õ(� + mr + t), space required by Invert
is Õ(t) and the total time required by Invert is Õ(tr). Hence, assuming that
(� + mr + t) = O(S) and tr = T , there is an algorithm (in the RAM model)
which uses space Õ(S) and time Õ(T) and inverts f on an ε fraction of inputs.
Here Õ hides factors of 2poly log log N .

Remark 1. For most of the allowed range of the parameters we have r < t, and
that in the “low-end” range ε < N−1/3 for which our result is optimal we have
r = 1. For this reason there is a notable improvement in using our efficient hash
functions instead of the amortized hash function evaluation of Fiat and Naor.

As described above, the algorithm by Hellman, Fiat and Naor, as well as ours
involve a significant amount of search and hence it is interesting to ask if this
search can be parallelized. There have been results in this direction by van
Oorschot and Wiener [16] and more recently by Joux and Lucks [13]. Some of
these results can be helpful in parallelizing even in the regime when ε is small
(as in our case).

3 Attacks on Pseudorandom Generators

The starting point of our result for pseudorandom generators is the fact [2] that
if two random variables ranging over {0, 1}m have constant statistical distance,
then there is a linear function (of O(m) circuit complexity) that distinguishes
the two random variables with advantage at least 2−m/2.

Suppose that we are given a length-increasing pseudorandom generator G :
{0, 1}n−1 → {0, 1}n and that we want to construct a distinguisher achieving
distinguishing probability ε.

Our idea is to partition {0, 1}n into ε22n sets each of size ε−2, for example
based on the value of the first n − 2 log 1/ε bits, and then apply within each
block the linear function that provides, within that block, the best distinguishing
probability. Overall, this defines a function of circuit complexity O(ε2 · n · 2n).
Then, intuitively, within each block we achieve distinguishing probability at least
ε, because each block is a set of size ε−2, and the distinguishing probability is at
least the square root of the inverse of the block size.

The straightforward implementation of this intuition would be to use, in each
block, the linear function that best distinguishes the uniform distribution within

Time Space Tradeoffs for Attacks against One-Way Functions and PRGs 661

the block from the conditional distribution of the output of the generator con-
ditioned on landing in the block. Unfortunately this approach would not work
because the overall distinguishing probability is not a convex combination of the
conditional distinguishing probabilities.5

Instead, in each block, we choose the linear function that most contributes to
the overall distinguishing probability. In order to quantify this contribution we
need a slight generalization of the result of [2].

We then present a more efficient distinguisher of circuit complexity O(ε2 · 2n)
which employs a hash function sampled from a 4-wise independent family, and
whose analysis employs a more involved fourth-moment argument, inspired by
[3]. As noted before, all our ideas apply to the case when we want to distin-
guish between two arbitrary distributions D1 and D2. In particular, given two
distributions D1 and D2 with statistical distance δ, we can construct a circuit of
size O(ε22n) which distinguishes between D1 and D2 with probability εδ. More,
formally, we have the following result.

Theorem 2. Given any two distributions D1 and D2 over {0, 1}n such that
their statistical distance is δ and ε ≤ 2n/2, there is a circuit C of size O(ε2 · 2n)
such that

P[C(D1) = 1]−P[C(D2) = 1] ≥ 2εδ

4 Lower Bounds

Using techniques of Yao [18], Gennaro and Trevisan [8], and Wee [17], it is
possible to show that, in the generic oracle setting that we consider in this
paper, there are permutations for which the amount of advice S and the oracle
query complexity T must satisfy

S · T ≥ Ω̃(εN)

for any algorithm that inverts an ε fraction of inputs. More precisely, we prove
the following theorem.

Theorem 3. If A is an oracle algorithm that runs in time at most T and such
that for every permutation f : [N] → [N] there is a data structure adv of size
≤ S such that

Px[Af
adv(f(x)) = x] ≥ ε

Then
S · T = Ω̃(εN)

5 This is a subtle issue related to the fact that the condition of landing in a given
block might have different probabilities in the uniform distribution versus the output
of the generator. If so, then the respective conditional probabilities are normalized
differently, and the use of a distinguisher for the conditional distributions in a block
does not necessarily contribute to the task of distinguishing the original distributions.

662 A. De, L. Trevisan, and M. Tulsiani

Such lower bound proofs are based on the idea that an algorithm with better
performance could be used to encode every permutation f : [N] → [N] using
strictly less than logN ! bits, which is impossible. Here, we simplify such proofs
by using randomized encodings. (Even a randomized encodings cannot represent
every permutation using less than logN !, and showing that such an encoding
would be possible if the lower bound were wrong is easier by using randomiza-
tion.) In fact, while previous proofs gave a lower bound on the trade-off only
when T = Õ(

√
εN), our lower bound works for the full range of parameters.

We then consider the question of the security of pseudorandom generators
in the oracle setting. By using the aforementioned results for permutations and
applying efficient hard-core predicates [9], it is possible to show the existence of
generators for which S · T ≥ ε7N . By instead applying the ideas of randomized
encodings to a pair f, p where f is a random permutation (modeling a one-way
permutation) and p is a random predicate (modeling a “hard-core predicate”
for p), we prove the existence of length-increasing generators such that for every
distinguisher that makes T oracle queries to the generator, and which has advice
S and distinguishing probability ε, we have

S · T ≥ Ω̃(ε2N)

where N is the number of seeds. Formally, we have the following theorem.

Theorem 4. Suppose that A is an oracle algorithm that makes T queries, uses
a S-bit advice string, and is such that for every length-increasing function G :
[N]→ [N]× {0, 1} there is an advice string adv such that

|P[AG
adv(G(x)) = 1]−P[AG

adv(y) = 1]| ≥ ε

Then S · T ≥ Ω̃(ε2N)

A key intermediate result used here is a lower bound on the following kind
of computation. Given any predicate P : {0, 1}n → {0, 1} we are required to
compute P (x) by querying the oracle P on any point but x. For this kind of
computation, Yao [18] had established an (optimal) lower bound on the trade-
off between length of advice and the number of queries to the oracle P when one
is required to compute P correctly at all places. We extend this to the case when
we are only required to compute P correctly at 1/2+ ε fraction of the places, to
get the following result.

Theorem 5. Suppose that A is an oracle algorithm that makes T queries while
never querying its input, uses a S bit advice string, and is such that for every
predicate P : [N]→ {0, 1}, there is an advice string adv such that

P[AP
adv(x) = P (x)] ≥ 1

2
+ ε

Then S · T ≥ Ω(ε2N).

We note that the optimal lower bound in this case seems to be S · T ≥ Ω(εN)
and we do not how to close this gap. This gap is reflected in the gap between our

Time Space Tradeoffs for Attacks against One-Way Functions and PRGs 663

lower bound for pseudorandom generators of the form x→ f(x)p(x) where f is
a permutation, and known constructions of distinguishers for such generators.
In particular, the best known algorithm is one of the following (depending on ε,
S, T) : Use the algorithm for inverting functions which can be at best S · T ≤
Ω̃(εN) or use the circuit which we described in the previous subsection. That in
particular uses S = Ω̃(ε2N) and T = Ω̃(1).

Finally, we look at the common random string model, in which all parties
share a common random string k, which they can use to select a permuta-
tion fk(·) from a family of permutations, or a generator Gk(·) from a family of
generators. In such a setting, the trivial brute force attack that achieves invert-
ing (and distinguishing) probability ε = T/N with no advice remains possible.
Alternatively, one can think of a family of permutations as a single permu-
tation (k, x) → (k, fk(x)). We show that, for families of permutations, either
the trivial uniform algorithm or Hellman’s construction applied to the mapping
(k, x) → (k, fk(x)) are best possible, depending on whether the available ad-
vice is shorter or longer than the number of keys. More precisely, we prove the
following theorem.

Theorem 6. Suppose that A is an oracle algorithm that makes T queries, uses
an S-bit advice string, and is such that for every family of permutations f :
[K]× [N]→ [N] there is an advice string adv such that

Pk∈[K], x∈[N][A
f
adv(k, f(k, x)) = x] ≥ ε

Then S · T ≥ Ω̃(εKN)− Õ(KT)

We also prove strong lower bounds for distinguishers for pseudorandom gen-
erators in the common random string model. We show the following theorem.

Theorem 7. Suppose that A is an oracle algorithm that makes T queries, uses
an S-bit advice string, and is such that for every family of length-increasing
functions G : [K]× [N]→ [N]× {0, 1} there is an advice string adv such that

|Px∈[N][AG
adv(k,G(k, x)) = 1]−Py∈[2N][AG

adv(k, y) = 1]| ≥ ε

Then S · T ≥ Ω̃(ε2KN)− Õ(KT).

This translates to saying that for generators in the common random string model,
either T ≥ Ω̃(ε2N) or ST ≥ Ω̃(ε2KN), where K is the number of keys.

5 Model of Computation

Positive Results. In the time/space trade-offs of Hellman, of Fiat and Naor,
and of this paper, an algorithm uses “time T ” and “space S” if it runs in time
at most T (in a RAM model), uses at most S bits of space, and works correctly
upon receiving S bits of advice, in the form of an S-bit data structure that
dominates the space requirement of the algorithm.

664 A. De, L. Trevisan, and M. Tulsiani

The “advice,” in turn, can be computed in uniform time Õ(N). In the work of
Hellman and of Fiat and Naor, one cannot hope, in general, to have processing
time significantly smaller than N in order to generate the data structure used
by the algorithm. Otherwise, one would have a uniform algorithm that inverts
an arbitrary one-way permutation (or function) in time noticeable smaller than
N , which is impossible relative to a random permutation (or function) oracle.

In our paper, the data structure we use is also easily pre-computable in time
Õ(N). Pre-processing time significantly smaller than εN should not be expected,
because then we would have a uniform algorithm to invert a random function on
an ε fraction of inputs in time significantly smaller than εN . With some care, our
data structure can indeed be pre-computed using optimal uniform time Õ(εN).
We, however, do not describe it here for the sake of simplicity.

Negative Results. When we show that a particular combination of space S
and time T is not achievable, our result rules out non-uniform algorithms that
make at most T oracle queries to the function (or generator) oracle, and which
receive at most S bits of advice. The actual space used by the algorithm, as well
as the complexity of the computations performed between oracle queries, can be
unbounded. Likewise, the non-uniform advice can have arbitrary complexity.

Acknowledgements

We would like to thank Daniel Wichs for suggesting the study of the common
random string model, and Scott Aaronson, Cynthia Dwork, Omer Reingold,
Udi Wieder and Hoeteck Wee for pointers to the literature. We also thank the
anonymous reviewers for helpful comments and pointing us to [16,13].

References

1. Aaronson, S.: Lower bounds for local search by quantum arguments. SIAM Journal
of Computing 35(4), 804–824 (2006)

2. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple constructions of almost
k-wise independent random variables. Random Structures and Algorithms 3(3),
289–304 (1992)

3. Andreev, A.E., Clementi, A.E.F., Rolim, J.D.P.: Optimal bounds for the approx-
imation of boolean functions and some applications. Theoretical Computer Sci-
ence 180, 243–268 (1997)

4. Barkan, E., Biham, E., Shamir, A.: Rigorous bounds on cryptanalytic
time/memory tradeoffs. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
1–21. Springer, Heidelberg (2006)

5. Bennett, C., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses
of quantum computing. SIAM Journal on Computing 26(5), 1510–1523 (1997)

6. Capalbo, M.R., Reingold, O., Vadhan, S.P., Wigderson, A.: Randomness conduc-
tors and constant-degree lossless expanders. In: Proceedings of the 34th ACM Sym-
posium on Theory of Computing, pp. 659–668 (2002)

7. Fiat, A., Naor, M.: Rigorous time/space trade-offs for inverting functions. SIAM
Journal on Computing 29(3), 790–803 (1999)

Time Space Tradeoffs for Attacks against One-Way Functions and PRGs 665

8. Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic
constructions. In: Proceedings of the 41st IEEE Symposium on Foundations of
Computer Science, pp. 305–313 (2000)

9. Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: Pro-
ceedings of the 21st ACM Symposium on Theory of Computing, pp. 25–32 (1989)

10. Golynski, A.: Cell probe lower bounds for succinct data structures. In: Proceedings
of the 20th ACM-SIAM Symposium on Discrete Algorithms, pp. 625–634 (2009)

11. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceed-
ings of the 28th ACM Symposium on Theory of Computing, pp. 212–219 (1996)

12. Hellman, M.: A cryptanalytic time-memory trade-off. IEEE Transactions on Infor-
mation Theory 26(4), 401–406 (1980)

13. Joux, A., Lucks, S.: Improved generic algorithms for 3-collisions. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 347–363. Springer, Heidelberg
(2009)

14. Ostlin, A., Pagh, R.: Uniform hashing in constant time and linear space. In: Pro-
ceedings of the 35th ACM Symposium on Theory of Computing, pp. 622–628 (2003)

15. Siegel, A.: On universal classes of extremely random constant-time hash functions.
SIAM Journal of Computing 33(3), 505–543 (2004)

16. van Oorschot, P.C., Wiener, M.J.: Parallel Collision Search with Cryptanalytic
Applications. Journal of Cryptology 12, 1–28 (1999)

17. Wee, H.: On obfuscating point functions. In: Proceedings of the 37th ACM Sym-
posium on Theory of Computing, pp. 523–532 (2005)

18. Yao, A.: Coherent functions and program checkers. In: Proceedings of the 22nd
ACM Symposium on Theory of Computing, pp. 84–94 (1990)

Pseudorandom Functions and Permutations
Provably Secure against Related-Key Attacks

Mihir Bellare and David Cash

Dept. of Computer Science & Engineering, University of California San Diego, USA
{mihir,cdcash}@cs.ucsd.edu

http://www.cs.ucsd.edu/users/{mihir,cdcash}

Abstract. This paper fills an important foundational gap with the first
proofs, under standard assumptions and in the standard model, of the
existence of PRFs and PRPs resisting rich and relevant forms of related-
key attack (RKA). An RKA allows the adversary to query the func-
tion not only under the target key but under other keys derived from
it in adversary-specified ways. Based on the Naor-Reingold PRF we
obtain an RKA-PRF whose keyspace is a group and that is proven,
under DDH, to resist attacks in which the key may be operated on
by arbitrary adversary-specified group elements. Our framework yields
other RKA-PRFs including a DLIN-based one derived from the Lewko-
Waters PRF. We show how to turn these PRFs into PRPs (blockciphers)
while retaining security against RKAs. Over the last 17 years cryptana-
lysts and blockcipher designers have routinely and consistenly targeted
RKA-security; it is important for abuse-resistant cryptography; and it
helps protect against fault-injection sidechannel attacks. Yet ours are the
first significant proofs of existence of secure constructs. We warn that
our constructs are proofs-of-concept in the foundational style and not
practical.

1 Introduction

Alarmed by the number of successful related-key attacks (RKAs) against real
blockciphers [15,17,16,38,42,19,9,10,12,11,49,54,29,36,13,39,34], theoreticians
have stepped back to ask to what extent the underlying goal of RKA-secure PRFs
and PRPs is achievable at all. The question is made challenging by the unusual
nature of the attack model which allows the adversary to manipulate the key. Pre-
vious works providing RKA-secure PRFs and PRPs have bypassed rather than
overcome the core technical difficulties by using the ideal cipher or random oracle
models, making non-standard assumptions themselves “related-key” in nature, or
limiting attackers to weak classes of RKAs for which the problem disappears [5,46].
We provide a new technical approach based on which we obtain the first designs of
PRFs and PRPs secure againstnon-trivial and application-relevant forms of RKAs
under standard assumptions (DDH) and in the standard model. Our constructions
arenot practical,providing, instead, in-principle proofs of achievability of the goals
in the classical foundational style.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 666–684, 2010.
c© International Association for Cryptologic Research 2010

PRFs and PRPs Provably-Secure against RKAs 667

The model. RKAs were introduced by Biham and Knudsen [7,8,40] and formal-
ized by Bellare and Kohno (BK) [5]. Referring to any φ: K → K as a related-key
deriving (RKD) function, the latter define what it means for a family of functions
F : K×D → R to be a Φ-RKA-PRF, where Φ is a class (set) of RKD functions.
The game begins by picking a random challenge bit b, a random target key
K ∈ K and, for each L ∈ K, a random function GL: D → R. The adversary is
allowed multiple queries to an oracle that, given a pair (φ, x) ∈ Φ × D, returns
Fφ(K)(x) if b = 1 and Gφ(K)(x) if b = 0, and its advantage is 2 Pr[b = b′] − 1,
where b′ is the bit it outputs. The definition of a family of permutations (block-
cipher) F : K ×D → D being a Φ-RKA-PRP is analogous, the difference being
that each GL is a random permutation on D rather than a random function.
Note that when Φ consists of just the identity function, we recover the standard
PRF [33] and PRP [45] notions.

Group-induced classes. We must beware of inherent limitations. It is ob-
served in [5] that some Φ are “impossible” in the sense that no F can be a
Φ-RKA-PRF or a Φ-RKA-PRP. Indeed, any Φ that contains a constant function
φ(·) = C, for some attacker-known constant C ∈ K, is impossible. (For some x,
just query the RK-oracle with (φ, x) and return 1 if the response is FC(x).) The
class of all RKD functions is impossible, and so is the class of all permutations.
The basic foundational question, then, is to identify specific classes Φ, as rich,
interesting and relevant as possible, for which we can prove “possibility,” mean-
ing existence of Φ-RKA-PRFs and Φ-RKA-PRPs. But which classes are good
candidates?

BK [5] showed the (standard model) possibility of any class Φ whose member
RKDs modify only the second half of the given key, and Lucks [46] gave, for
the same class, an alternative construction with better concrete security. But if
part of the key is unmodified, we can just use it as the “actual” key and put
the rest in the input, meaning RKA-security here is for “trivial” reasons. For
the proof-of-concept results in which we are interested, we seek candidate classes
where the core technical difficulties cannot be bypassed in this way.

Luckily, Lucks [46] has already pinpointed a worthy target. His group-induced
classes are elegant, appealing, non-trivial and application-relevant. If (K, ∗) is a
group under an operation “∗”, the associated group-induced class is rkd[K, ∗] =
{ φ∗

Δ : Δ ∈ K } where φ∗
Δ(K) = K ∗ Δ for all K ∈ K. These classes are rich

because all group actions are included. They also have what in [32] is called the
completeness property and viewed as important to non-triviality of the class,
namely that for any K,K ′ ∈ K there is a φ ∈ rkd[K, ∗] such that φ(K) =
K ′. Security relative to these classes suffices for applications and cannot be
established by tricks such as the above. The quest that emerges is to find (non-
trivial) groups (K, ∗) for which we can show the possibility of rkd[K, ∗], meaning
exhibit rkd[K, ∗]-RKA-PRFs and rkd[K, ∗]-RKA PRPs F : K × D → R whose
keyspace is K.

Previous work. Results of [5] imply that ideal ciphers achieve rkd[K, ∗]-RKA-
PRP security for any large enough group (K, ∗). Also, one can easily strengthen a
given PRF or PRP to be a rkd[K, ∗]-RKA one by hashing the key with a random

668 M. Bellare and D. Cash

oracle before use [46]. However, it is unclear how to instantiate the ideal primitives
here to get “real” constructions for even a single group [25,18]. For certain compos-
ite numbersM , Lucks [46] provides rkd[ZM ,+]-RKA-PRFs for the group (ZM ,+),
where + is addition moduloM , but the assumptions on which he bases security are
not only interactive and novel but also themselves “related-key” in nature and un-
comfortably close to just assuming the construct itself is secure, making the value
of the proofs debatable from the point of view of security assurance. Existing PRFs
such as the DDH-based one of Naor and Reingold [47] or the DLIN-based one of
Lewko and Waters [43] are subject to simple attacks showing they provide noRKA-
security. (Nonetheless they will be a starting point for our constructs.) Research
has expanded to consider RKA-security of other primitives while leaving the goal
unachieved for the more basic PRF, PRP and PRG ones [1,32].

The salient fact that emerges from this previous work is that we do not have
even a single example of a group (K, ∗) for which we can prove the existence
of a rkd[K, ∗]-RKA-PRF or rkd[K, ∗]-RKA-PRP under standard assumptions in
the standard model. The reason for the lack of progress is technical obstacles.
The attack models underlying standard definitions of standard primitives do
not allow any key-manipulation by the adversary. This makes it unclear how
one can do any reductions, which seem to require applying RKD functions to
an unknown key. This difficulty is appreciated, with Goldenberg and Liskov [32,
Section 4] saying “The major open problem in related-secret security is whether
or not related-key secure blockciphers exist ... related-secret pseudorandom bits
cannot be constructed using traditional techniques. This leaves a significant open
problem ... can fundamentally new techniques be found to create related-secret
pseudorandom bits?”

New RKA-PRFs. We fill the above gap, providing the first constructions, un-
der the standard DDH assumption and in the standard model, of Φ-RKA-PRFs
where Φ is group-induced. We obtain and analyze our designs via a general frame-
work using two new primitives which may be of independent interest, namely
key-malleable PRFs and key fingerprints. However, (surprisingly) at least one
of our constructions, that we call the multiplicative DDH based RKA-PRF,
is compact enough to state here. Let NR: (Z∗

p)
n+1 × {0, 1}n → G denote the

Naor-Reingold PRF [47] that given key a = (a[0], . . . , a[n]) ∈ (Z∗
p)

n+1 and input
x = x[1] . . .x[n] ∈ {0, 1}n returns

NR(a, x) = ga[0]
∏n

i=1 a[i]x[i]
, (1)

where G = 〈g〉 is a group of prime order p. The keyspace K = (Z∗
p)n+1 is a group

under the operation ∗ of componentwise multiplication modulo p, but simple
attacks [5] show that NR is not itself a rkd[K, ∗]-RKA-PRF. Let h be a collision-
resistant hash function with domain {0, 1}n×Gn+1 and range {0, 1}n−2. Given
key a and input x, our construct F : (Z∗

p)
n+1 × {0, 1}n → G returns

F (a, x) = NR(a, 11‖h(x, (ga[0], ga[0]a[1], . . . , ga[0]a[n]))) ,

where “‖” denotes concatenation. Theorem 3 says that F is a rkd[(Z∗
p)

n+1, ∗]-
RKA-PRF under the DDH assumption. The difficulty such a proof had to

PRFs and PRPs Provably-Secure against RKAs 669

overcome was how the “simulator,” given d, can answer queries for F on keys of
the form a∗d without itself knowing a and without contradicting RKA security
by enabling an attack.

This and other results are obtained via a general framework hinging on two
new primitives. We call a PRF M : K × D → R key-malleable relative to a
class Φ of RKD functions on K if there is an efficient algorithm that given
(φ, x) ∈ Φ × D and oracle access to MK returns Mφ(K)(x). That this could
be useful for building a Φ-RKA-PRF is, on the one, hand, intuitive, because it
allows us to simulate an oracle for M(φ(K), ·) via an oracle for M(K, ·). But it
is, on the other hand, counter-intuitive, because the same property immediately
gives rise to an attack showing that M is not a Φ-RKA-PRF! Something else is
necessary. This turns out to be the new concept of a key fingerprint, a vector w
overD that uniquely identifies a key in the sense that for all (φ, φ′,K) ∈ Φ×Φ×K
we have Mφ(K)(w) �= Mφ′(K)(w) whenever φ �= φ′, where we have extended M
to vector second arguments on which it operates componentwise. Given M,w
and a collision-resistant hash function, our general construction shows how to
build F : K ×D → R that we can show is a Φ-RKA-PRF (cf. Theorem 1). The
multiplicative DDH based RKA-PRF noted above is obtained by showing that
NR is a key-malleable PRF relative to rkd[(Z∗

p)n+1, ∗] and then finding a key
fingerprint for it. It is interesting that we turn malleability [28], typically viewed
as a “bad” property, into a “good” property that we can exploit.

Two more constructs emanate from this framework. There are groups where
DDH is easy but the Decision Linear (DLIN) problem of [22] still seems hard.
Lewko and Waters [43] provide a DLIN-based analogue of the Naor-Reingold
PRF, commenting that they know of no “closed-form” rendition of it akin to
the above Equation (1) for NR. Using matrices, we provide in Equation (21)
such a closed-form, and then, restricting attention to invertible matrices and
slightly modifying the function, we obtain in Equation (22) a PRF that we can
show is key-malleable and admits a key fingerprint. Our framework then yields
a DLIN-based RKA-PRF [4].

The group (Z∗
p)

n+1 underlying our multiplicative DDH-based RKA-PRF is, as
the name indicates, multiplicative. Providing a DDH-based rkd[Zn+1, ∗]-RKA-
PRF where ∗ is componentwise addition modulo p is more difficult. We provide
in [4] a solution that involves first modifying the Naor-Reingold PRF and then
applying our framework. However, the running time of our reduction is expo-
nential in the input size. Theoretically, this means we must assume hardness of
DDH against exponential-time algorithms. In practice, one can get security by
using larger groups. This situation parallels that for the BB IBE scheme [20].

From RKA-PRFs to RKA-PRPs. Practical interest centers on RKA-secure
blockciphers, meaning PRPs, and the constructions above are RKA-PRFs. It is
not clear how one might modify the constructions to get RKA-PRPs. We use
a different approach. Using deterministic extractors [24,30,26], we convert our
Φ-RKA-PRFs into Φ-RKA-PRGs with bitstring outputs. When these are used
as key-derivation functions to key an ordinary (not RKA) PRP, we obtain a
Φ-RKA-PRP. (This second, composition step extends similar ones from [46,32]).

670 M. Bellare and D. Cash

For each class Φ for which we have a Φ-RKA-PRF, this not only yields a CPA-
secure Φ-RKA-PRP but even a CCA-secure one.

Related work and techniques. Based on the Boneh-Boyen short signature
scheme [21], Dodis and Yampolskiy [27] define a PRF BBDY: Zp × S → G via
BBDY(k, x) = e(g, g)1/(k+x), where e: 〈g〉 × 〈g〉 → G is a bilinear map and
S ⊆ Zp. This had seemed to us promising towards building a rkd[Zp,+]-RKA-
PRF, but (disappointingly) did not lead there. To begin with, BBDY is easily
shown by attack to not itself be a rkd[Zp,+]-RKA-PRF. (Adding 1 to k or to
x yields the same outcome.) By exploiting the symmetry between k and x and
using the composition paradigm, it turns out one can show how to construct a
rkd[Zp,+]-RKA-PRF if BBDY was a (plain) PRF, but only if the input domain
S was equal to Zp. The problem is that the q-DBDHI-based proof of [27,21]
requires S to be “small” and in particular delivers nothing at all when S = Zp.
We comment that there is no attack showing BBDY is not a PRF when S = Zp

and one might prove this in the generic model, but there seems little reason to
pursue a generic group model solution when we already have a standard model,
DDH-based solution. (In fact, since DDH is hard in the generic group model [53],
our results already imply a generic model solution anyway.)

RKA-security is much easier for randomized primitives than deterministic
ones. From the ElGamal scheme over a group of prime order p, one can easily
get a (randomized) rkd[Zp,+]-RKA-CPA-secure DDH-based symmetric encryp-
tion scheme. Applebaum [1] presents a more efficient rkd[{0, 1}n,⊕]-RKA-CPA-
secure (still randomized) symmetric encryption scheme assuming hardness of
the LPN problem. There seems to be no simple way, from these techniques, to
get the full-fledged group-induced RKA-PRFs that we target, where the com-
putation is deterministic. That the deterministic case is more difficult than the
randomized one is not surprising or unusual. In analogy, DDH based injective
trapdoor functions [48] were discovered much later than DDH-based public-key
encryption schemes.

Goldenberg and Liskov [32] broaden the scope to consider related-secret secu-
rity. As with Lucks [46] they can, via composition, reduce the design of Φ-RKA-
PRFs to the design of Φ-RKA-PRGs, but provide no new constructions of the
latter and hence of the former. They have negative results indicating the diffi-
culty of getting these for non-trivial classes Φ, and comment [32, Section 1] that
“This leads us to the conclusion that if related-secret pseudorandomness (includ-
ing related-key blockciphers) are possible, they must be proven either based on
other related-secret pseudorandomness assumptions, or a dramatically new way
of creating pseudorandomness from hardness must be developed.” Our results are
answers to these questions, showing that one can in fact obtain related-key pseu-
dorandomness under standard assumptions. (Our RKA-PRFs of course directly
yield RKA-PRGs.) Their negative results are in a limited model of computation
and do not apply in our context.

Context. Conceived with the goal of studying the strength of blockcipher key-
schedules [7,8,40], RKAs quickly became mainstream. RKA-security is viewed as
necessary for the collision-resistance of blockcipher-based compression

PRFs and PRPs Provably-Secure against RKAs 671

functions [50]. (But one should note that this view has no formal justification.)
RKA-resistance was a stated design goal of AES and remains so for other mod-
ern ciphers. A successful RKA is universally viewed by cryptanalysts as a break
of the cipher. The recent attention-grabbing attacks on AES-192 and AES-256
[17,16,15] were RKAs, and far from unique in this regard: a look at the litera-
ture shows that RKAs abound [38,42,19,9,10,12,11,49,54,29,36,13,39,34]. Several
higher-level cryptographic constructs, including HMAC [3,2], the 3GPP confi-
dentiality and integrity algorithms f8,f9 [35], and RMAC [37,41], use related
keys and thus rely for their (standard, not RKA) security on RKA-security of
the underlying compression function or blockcipher.

The most direct use of RKA-security is for very cheap, simple and natural ways
to rekey or tweak block ciphers. Subkeys of K for use with modes of operation
of a blockcipher E might be derived in standard usage via EK(Δ1), EK(Δ2), . . .
where Δ1, Δ2, . . . are constants. If E is a RKA-PRP one can just use instead
K ∗ Δ1,K ∗ Δ2, . . ., where ∗ is a group operation, saving many blockcipher
operations. On the other hand if E is a rkd[K, ∗]-RKA-PRP, then FT

K(x) =
EK∗T (x) is shown in [5] to be a tweakable blockcipher, a primitive that has
proven to be of great importance both conceptually and in applications [44,51].

More designs would probably use related keys if it were possible to do so safely.
Non-expert (in practice, most!) designers do it anyway, making RKA-security,
in the words of Biryukov, Dunkelman, Keller, Khovratovich and Shamir [15],
central to abuse-resistant cryptography.

Beyond this, RKA-security provides resistance to fault injection attacks [23,14]
where the attacker can inject faults that change bits of a hardware-stored key
and observe the outputs of the cryptographic primitive under the modified key,
putting RKAs under the umbrella of sidechannel attacks. This sidechannel con-
nection is captured by the tamper-proof security model of Gennaro, Lysyan-
skaya, Malkin, Micali and Rabin [31]. (They were apparently not aware of the
prior model of [5] and the cryptanalytic literature on RKAs. We hope our current
paper helps connect these two lines of work.)

Overall, the motivation for the theoretical study of RKA-security is not just
powerful but unusual in coming from so many different parts of cryptography,
namely foundations, cryptanalysis, protocol design and resistance to sidechannel
attacks.

2 Basic Definitions

A family of functions F : K × D → R takes a key K ∈ K and input x ∈
D and returns an output FK(x) = F (K,x) ∈ R. Let FF(K,D,R) be the set
of all families of functions F : K × D → R. For sets X,Y let Fun(X,Y) be
the set of all functions mapping X to Y . If S is a (finite) set then s

$← S
denotes the operation of picking s from S at random and |S| is the size of S.
We denote by y $← A(x1, x2, . . .) the operation of running randomized algorithm
A on inputs x1, x2, . . . and fresh coins and letting y denote the output. If v is

672 M. Bellare and D. Cash

a vector then |v| denotes the number of its coordinates and v[i] denotes its i-
th coordinate, meaning v = (v[1], . . . ,v[|v|]). A (binary) string x is identified
with a vector over {0, 1} so that |x| is its length and x[i] is its i-th bit. If
F : K × D → R is a family of functions and x is a vector over D then F (K,x)
denotes the vector (F (K,x[1]), . . . , F (K,x[|x|])). Read the term “efficient” as
meaning “polynomial-time” in the natural asymptotic extension of our concrete
framework.

Games. Some of our definitions and proofs are expressed via code-based games [6].
Recall that such a game —see Fig. 1 for an example— consists of an (optional)
Initialize procedure and procedures to respond to adversary oracle queries. A
game G is executed with an adversary A as follows. First, Initialize (if present)
executes. ThenA executes, its oracle queries being answered by the corresponding
procedures ofG. When A terminates, its output, denotedGA, is called the output
of the game, and we let “GA ⇒ 1” denote the event that this game output takes
value 1. Boolean flags are assumed initialized to false. The running time of an
adversary by convention is the worst case time for the execution of the adversary
with any of the games defining its security, so that the time of the called game
procedures is included. When (as often) we describe a game in text and say the
game “begins” by doing something, we are describing how Initialize works.

PRFs. The advantage of an adversary A in attacking the (standard) prf security
of a family of functions F : K ×D → R is defined via

Advprf
F (A) = Pr

[
PRFRealAF ⇒ 1

]
− Pr

[
PRFRandA

F ⇒ 1
]

. (2)

Game PRFRealF begins by picking K $← K and responds to oracle query Fn(x)
via F (K,x). Game PRFRandF begins by picking f

$← Fun(D,R) and responds
to oracle query Fn(x) via f(x).

RKA-PRFs. We recall definitions from [5]. Let F : K × D → R be a family of
functions and Φ ⊆ Fun(K,K). The members of Φ are called RKD (related-key
deriving) functions. An adversary is said to be Φ-restricted if its oracle queries
(φ, x) satisfy φ ∈ Φ. The advantage of a Φ-restricted adversary A in attacking
the prf-rka security of F is defined via

Advprf-rka
Φ,F (A) = Pr

[
RKPRFRealAF ⇒ 1

]
− Pr

[
RKPRFRandA

F ⇒ 1
]

. (3)

Game RKPRFRealF begins by picking K
$← K and responds to oracle query

RKFn(φ, x) via F (φ(K), x). Game RKPRFRandF begins by picking K
$← K

andG $← FF(K,D,R), and responds to oracle query RKFn(φ, x) via G(φ(K), x).

CR hash functions.The advantage ofC in attacking the cr (collision-resistance)
security of H : D → R is

Advcr
H(C) = Pr [x �= x′ and H(x) = H(x′)]

where the probability is over (x, x′) $← C. For simplicity and to better reflect
practice, we view hash functions as unkeyed. This means there always exists an

PRFs and PRPs Provably-Secure against RKAs 673

efficient C whose cr-advantage is 1, but that does not mean we can find it, and
our results remain meaningful because the proofs give explicit constructions of
cr-adversaries from other adversaries [52]. We could extend our treatment to let
hash functions be families, which would be more rigorous. We can’t make the
hash key part of the PRF key because then it would be subject to the RKA, but
since its secrecy is not needed for security, we can make it a public parameter.
Thus, keyed hash functions require an extended syntax for function families in
which functions in the family depended on a public parameter, and we have
chosen to avoid this.

3 Constructions of RKA-PRFs and RKA-PRPs

In this section we describe and analyze our RKA-PRF constructions. We begin
by defining the key-malleability and key fingerprint notions on which the general
construction is based. Theorem 1 states the general construction and proves its
security. Then we show how to instantiate the general construction to obtain
DDH based RKA-PRFs for group-induced classes as well as other RKA-PRFs.

Key-Malleability. Suppose M : K × D → R is a family of functions and
Φ ⊆ Fun(K,K) is a set of RKD functions. Suppose T is a deterministic algorithm
that given an oracle f : D → R and inputs (φ, x) ∈ Φ × D returns a point
Tf(φ, x) ∈ R. We say that T is a key-transformer for (M,Φ) if it satisfies two
conditions. The first, called correctness, asks that M(φ(K), x) = TM(K,·)(φ, x)
for every (φ,K, x) ∈ Φ × K × D. This is a relatively straightforward condition
saying that one can compute M(φ(K), x) from φ, x if one has an oracle for
M(K, ·). The second condition, called uniformity, is more subtle. Roughly, it says
that if the oracle provided to T is random then the outputs of T on any input
sequence (φ1, x1), . . . , (φq, xq) are uniformly and independently distributed as
long as x1, . . . , xq are distinct. Formally, game KTRealT begins by picking f

$←
Fun(D,R) and responds to oracle query KTFn(φ, x) via Tf(φ, x) while game
KTRandT makes no initializations and responds to oracle query KTFn(φ, x) by
picking and returning a random point in R. Let us say a Φ-restricted adversary
is unique input if, in its oracle queries (φ1, x1), . . . , (φq, xq), the points x1, . . . , xq

are always distinct, where by “always” we mean with probability one regardless
of how oracle queries are answered and what are the coins of the adversary. The
uniformity requirement is that

Pr
[
KTRealUT ⇒ 1

]
= Pr

[
KTRandU

T ⇒ 1
]

(4)

for every unique-input Φ-restricted adversary U against the uniformity of T. We
say M is Φ-key-malleable if there exists an efficient key transformer for (M,Φ).

That key-malleability might be useful to obtain RKA-PRFs is, on the one
hand, intuitive, because the correctness property clearly allows us to simulate
queries to M(φ(K), ·) via queries to M(K, ·). It is, on the other hand, counter-
intuitive, because the same correctness property immediately yields an attack
showing that M is not a Φ-RKA-PRF as long as Φ contains the identity function

674 M. Bellare and D. Cash

id and a function φ satisfying φ(K) �= K for all K ∈ K, conditions met by any
group-induced Φ. Indeed, consider Φ-restricted adversaryA that, for some x ∈ D,
makes query y ← RKFn(φ, x). Then it runs T on inputs φ, x to get an output
z, answering any oracle query w made in this computation by RKFn(id, w). It
returns 1 if y = z and 0 otherwise. Correctness says that A always returns 1 in
game RKPRFRealM . But the assumption on φ implies that A returns 1 with
probability at most 1/|R| in game RKPRFRandM . So Advprf-rka

M,Φ (A) is almost 1.
Although a key-malleable M is not a Φ-RKA-PRF, one can show that it is an

RKA-PRF versus unique-input adversaries. (The adversary of the above attack
need not be unique-input.) This leaves two questions. The first is how to bridge
the gap to arbitrary adversaries, which we do via the concept of key fingerprints
discussed below. The second is how to obtain key-malleable PRFs, which we will
do later via the Naor-Reingold [47] and Lewko-Waters [43] constructs.

Key fingerprints. Suppose M : K × D → R is a family of functions and
Φ ⊆ Fun(K,K) is a set of RKD functions. Let w be vector over D and let
m = |w|. We say that w is a key fingerprint for (M,Φ) if

(M(φ(K),w[1]), . . . ,M(φ(K),w[m]))

�= (M(φ′(K),w[1]), . . . ,M(φ′(K),w[m])) (5)

for all K ∈ K and all distinct φ, φ′ ∈ Φ.
Let’s call a class Φ ⊆ Fun(K,K) of RKD functions claw-free if φ(K) �= φ′(K)

for every key K ∈ K and every distinct φ, φ′ ∈ Φ [46,5]. We note that if (M,Φ)
has a key fingerprint then it follows automatically that Φ is claw-free. Indeed, if
there is a K and φ, φ′ such that φ(K) = φ′(K) then there can be no w for which
Equation (5) is true. We will use this frequently below.

We say that w is a strong key fingerprint for (M,Φ) if

(M(K,w[1]), . . . ,M(K,w[m])) �= (M(K ′,w[1]), . . . ,M(K ′,w[m])) (6)

for all distinct K,K ′ ∈ K. If Φ is claw-free then a strong key fingerprint for
(M,Φ) is also a key fingerprint for (M,Φ), which we will use in analyzing our
constructs. If Φ is complete —recall this means that for every K,K ′ ∈ K there
is a φ ∈ Φ such that φ(K) = K ′— then any key fingerprint for (M,Φ) is also
a strong key fingerprint for (M,Φ). In general, however, the existence of a key
fingerprint may not imply the existence of a strong key fingerprint.

Construction. Let M : K×D → R be a key-malleable family of functions and
T a key transformer for (M,Φ). Let w ∈ Dm be a key-fingerprint for (M,Φ).
We say that a point w ∈ D is a possible oracle query for T relative to (M,Φ,w)
if there exists (f, φ, i) ∈ Fun(D,R)× Φ× {1, . . . ,m} such that the computation
Tf(φ,w[i]) makes oracle query w. We let Qrs(T,M, Φ,w) be the set of all possible
oracle queries w for T relative to (M,Φ,w). Let D = D ×Rm. A hash function
H with domain D is said to be compatible with (T,M, Φ,w) if its range is
D\Qrs(T,M, Φ,w). That is, possible oracle queries of T relative to (M,Φ,w) are
not allowed to be outputs of H . With this, we can say what are the ingredients
of our construction of a Φ-RKA-PRF: (1) a Φ-key-malleable PRF, meaning a

PRFs and PRPs Provably-Secure against RKAs 675

family of functions M : K × D → R such that, on the one hand, M is a PRF
and, on the other hand, there exists a key transformer T for (M,Φ); (2) a key
fingerprint w for (M,Φ); and (3) a collision-resistant hash function H : D →
D \ Qrs(T,M, Φ,w) that is compatible with (T,M, Φ,w). We combine them to
build F : K×D → R that on input K,x computes w←M(K,w) —recall that,
as per our notational conventions, M(K,w) is the vector whose i-th component
is M(K,w[i]) for 1 ≤ i ≤ m— and then returns M(K,H(x,w)). The following
theorem says that F is a Φ-RKA-PRF assuming M is a PRF and H is collision-
resistant. No assumptions are made on Φ beyond those implied by the conditions
stated here.

Theorem 1. Let M : K × D → R be a family of functions and Φ ⊆ Fun(K,K)
a class of RKD functions. Let T be a key-transformer for (M,Φ) making QT

oracle queries, and let w ∈ Dm be a key fingerprint for (M,Φ). Let D = D×Rm

and let H : D → S be a hash function that is compatible with (T,M, Φ,w), so
that S = D \ Qrs(T,M, Φ,w). Define F : K ×D → R by

F (K,x) = M(K,H(x,M(K,w))) (7)

for all K ∈ K and x ∈ D. Let A be a Φ-restricted adversary against the prf-
rka security of F that makes QA ≤ |S| oracle queries. Then we can construct
an adversary B against the prf-security of M and an adversary C against the
cr-security of H such that

Advprf-rka
Φ,F (A) ≤ Advprf

M (B) + Advcr
H(C) . (8)

Adversary B makes (m+ 1) ·QTQA oracle queries, and B and C have the same
running time as A.

Proof (Theorem 1). We use the game sequence of Fig. 1, in the analysis below
abbreviating by Wi the event “GA

i ⇒ 1”. We assume (wlog) that A never re-
peats an oracle query. Game G0 simply instantiates game RKPRFRealF of the
definition of Section 2 with our construction F , so

Pr
[
RKPRFRealAF ⇒ 1

]
= Pr[W0] . (9)

Game G1, which does not include the boxed code, introduces some book-keeping,
keeping track of hash values in a set D and setting a flag bad to true if it ever
sees a repeat. The book-keeping does not affect the values returned by RKFn

so

Pr[W1] = Pr[W0] . (10)

Game G2 adds the boxed code which “corrects” a hash value repetition by
picking instead a value that, being drawn from S\D, will not repeat any previous
one. The addition of this “artificial” step, leading to a game different from the
“real” one, is to ensure that the values of h on which Tf(φ, h) is later called (lines
37,47,57) are distinct, putting us in a position to exploit the uniformity of T and
replace the outputs by random values. This, however, is some distance away. For
the moment we observe that games G1, G2 are identical until bad —differ only

676 M. Bellare and D. Cash

proc Initialize // G0

01 K
$← K

proc RKFn(φ, x) // G0

02 For i = 1, . . . , |w| do
03 w[i] ← M(φ(K),w[i])
04 h ← H(x,w)
05 y ← M(φ(K), h)
06 Return y

proc Initialize // G1, G2

11 K
$← K ; D ← ∅

proc RKFn(φ, x) // G1, G2

12 For i = 1, . . . , |w| do
13 w[i] ← M(φ(K),w[i])
14 h ← H(x,w)
15 If h ∈ D then

16 bad ← true ; h
$← S \ D

17 D ← D ∪ {h}
18 y ← M(φ(K), h)
19 Return y

proc Initialize // G3

31 D ← ∅
proc RKFn(φ, x) // G3

32 For i = 1, . . . , |w| do
33 w[i] ← TM(K,·)(φ,w[i])
34 h ← H(x,w)

35 If h ∈ D then h
$← S \ D

36 D ← D ∪ {h}
37 y ← TM(K,·)(φ, h)
38 Return y

proc Initialize // G4

41 D ← ∅ ; f
$← Fun(D,R)

proc RKFn(φ, x) // G4

42 For i = 1, . . . , |w| do
43 w[i] ← Tf (φ,w[i])
44 h ← H(x,w)

45 If h ∈ D then h
$← S \ D

46 D ← D ∪ {h}
47 y ← Tf (φ, h)
48 Return y

proc Initialize // G5

51 D ← ∅ ; f, g
$← Fun(D,R)

proc RKFn(φ, x) // G5

52 For i = 1, . . . , |w| do
53 w[i] ← Tg(φ,w[i])
54 h ← H(x,w)

55 If h ∈ D then h
$← S \ D

56 D ← D ∪ {h}
57 y ← Tf (φ, h)
58 Return y

proc RKFn(φ, x) // G6

61 y
$← R

62 Return y

proc Initialize // G7

71 K
$← K

72 G
$← FF(K,D,R)

proc RKFn(φ, x) // G7

73 y ← G(φ(K), x)
74 Return y

Fig. 1. Games for the proof of Theorem 1. Game G2 includes the boxed code and game
G1 does not.

in code following the setting of bad to true— and hence the fundamental lemma
of game playing [6] implies that

Pr[W1] ≤ Pr[W2] + Pr[B1] (11)

where B1 denotes the event that the execution of A with game G1 sets the flag
bad to true. Making crucial use of the assumption that w is a key fingerprint for
(M,Φ), we design adversary C attacking the cr-security of H such that

Pr[B1] ≤ Advcr
H(C) . (12)

Adversary C begins by picking K $← K and initializing a counter j ← 0. It then
runs A. When the latter makes a RKFn-query (φ, x), adversary C responds via

For i = 1, . . . , |w| do w[i]←M(φ(K),w[i])
j ← j + 1 ; φj ← φ ; xj ← x ; wj ← w ; hj ← H(x,w) ; y ←M(φ(K), h)
Return y

When A halts, C searches for a, b satisfying 1 ≤ a < b ≤ j such that ha = hb

and, if it finds them, outputs (xa,wa), (xb,wb) and halts. Towards justifying
Equation (12) the main question is, why are (xa,wa), (xb,wb) distinct? The
assumption that A never repeats an oracle query means that (φa, xa) �= (φb, xb).
Now consider two cases. First, if φa = φb then we must have xa �= xb whence
of course (xa,wa) �= (xb,wb). Second, if φa �= φb then the assumption that w is
a key fingerprint for (M,Φ) means, by Equation (5), that wa �= wb and again
(xa,wa) �= (xb,wb).

PRFs and PRPs Provably-Secure against RKAs 677

In game G3, we use the key transformer T, given by the assumed Φ-key-
malleability of M , to compute M(φ(K), ·) via oracle calls to M(K, ·), both at
line 33 and at line 37. The correctness property of the key transformer implies

Pr[W2] = Pr[W3] . (13)

Game G4 replaces the oracle given to T by a random function. We design ad-
versary B attacking the prf-security of M such that

Pr[W3]− Pr[W4] ≤ Advprf
M (B) . (14)

This is possible because the games make only oracle access to M(K, ·) and f ,
respectively. In detail, adversary B runs A. When the latter makes a RKFn-
query (φ, x), adversary B responds via

For i = 1, . . . , |w| do w[i]← TFn(φ,w[i]) ; h← H(x,w) ; y ← TFn(φ, h)
Return y

where Fn is B’s own oracle. When A halts, B halts with the same output. Then

Pr
[
PRFRealBM ⇒ 1

]
= Pr[W3] and Pr

[
PRFRandB

M ⇒ 1
]

= Pr[W4]

so Equation (14) follows from Equation (2).
Rather than return y = Tf(φ, h) as at lines 47,48, we would like to pick and

return a random y, as at lines 61,62 of game G6, saying this makes no difference
by the uniformity of T. But we have to be careful, because line 47 is not the
only place f is used in G4. Oracle f is also being queried in the computation
Tf(φ,w[i]) at line 43, and if a f -query made here equals an input h at line 47,
then it is unclear we can argue randomness of the line 47 output y based on the
uniformity of T. The assumed compatiblity of H with (T,M, Φ,w) comes to the
rescue. It says the queries to f in the computation Tf(φ,w[i]) at line 43, which
fall within the set Qrs(T,M, Φ,w), are not in the set S that is the range of H .
Thus, the calls to f at lines 43 and 47 can be answered with different, independent
random functions without affecting the distribution of the procedure output. In
other words, considering game G5, which switches f to g at line 53 but not at
line 57, the compatibility of H with (T,M, Φ,w) implies that

Pr[W4] = Pr[W5] . (15)

We will now exploit the uniformity of T to show that

Pr[W5] = Pr[W6] . (16)

To do this we design unique-input Φ-restricted adversary U against the unifor-
mity of T such that

Pr
[
KTRealUM ⇒ 1

]
= Pr[W5] and Pr

[
KTRandU

M ⇒ 1
]

= Pr[W6] . (17)

Equation (16) follows from Equation (4). Adversary U begins by initializing set
D ← ∅ and picking g

$← Fun(D,R). (Adversary U of the uniformity condition
is not required to be efficient so picking g like this is okay but in any case we
could make U efficient if we liked by simulating g via lazy sampling rather than

678 M. Bellare and D. Cash

picking it upfront.) It then runs A. When the latter makes a RKFn-query (φ, x),
adversary U responds via

For i = 1, . . . , |w| do w[i]← Tg(φ,w[i])
j ← j + 1 ; φj ← φ ; hj ← H(x,w) ; If hj ∈ D then hj

$← S \D
y ← KTFn(φj , hj) ; Return y

where KTFn is U ’s own oracle. The delicate question is, why is U unique-input?
The boxed code introduced at line 16, carried through to line 55, and reflected
by the “If” statement in the code for U above, ensures that h1, . . . , hj are all
distinct at the end of U ’s computation as long as QA ≤ |S|, which the theorem
assumed. Equation (17) follows.

The claw-freeness ofΦ—recall this follows from the assumption that (M,Φ) has
a key fingerprint— implies that if (φ, x) �= (φ′, x′) then (φ(K), x) �= (φ′(K), x′).
This together with the assumption that A does not repeat an oracle query imply

Pr[W6] = Pr[W7] = Pr
[
RKPRFRandA

F ⇒ 1
]

. (18)

Equation (8) follows from Equations (9), (10), (11), (12), (13), (14), (15), (16),
(18), (3).

Our multiplicative DDH-based RKA-PRF. We instantiate our general
construction to get a DDH-based Φ-RKA-PRF where Φ is group induced. Let G

be a (multiplicatively written) group of prime order p, and let g ∈ G be an arbi-
trary generator of G. The classic Naor-Reingold [47] PRF NR: Zn+1

p ×{0, 1}n →
G is defined via

NR(a, x) = ga[0]
∏n

i=1 a[i]x[i]
(19)

for all a ∈ Zn+1
p and x ∈ {0, 1}n. Recall the advantage of an adversary B against

the DDH problem in G is

Advddh
G (B) = Pr

[
B(ga, gb, gab)⇒ 1

]− Pr
[
B(ga, gb, gc)⇒ 1

]
,

where the probabilities are over a, b, c $← Z∗
p. The following result of [47] says

that NR is a PRF if DDH is hard in G.

Lemma 2. [47] Let G = 〈g〉 be a group of prime order p and NR: Zn+1
p ×

{0, 1}n → G the family of functions defined via Equation (19). Let A an adver-
sary against the prf-security of NR that makes Q oracle queries. Then we can
construct an adversary B against the DDH problem in G such that

Advprf
NR(A) ≤ n ·Advddh

G (B) . (20)

The running time of B is that of A plus the time required for O(Q) exponentia-
tions in G.

Group-induced class: Define operation ∗ by a∗d = (a[0]d[0], . . . , a[n]d[n]) where
operations on components are multiplications modulo p. Then the set K =
(Z∗

p)
n+1 is a group under ∗. Let φ∗

d: K → K be defined by φ∗
d(a) = a ∗ d

PRFs and PRPs Provably-Secure against RKAs 679

for all a,d ∈ K. Let Φ = rkd[(Z∗
p)

n+1, ∗] be the class of all φ∗
d as d ranges over

K. This class is group-induced, the group being (K, ∗).
Key malleability: We claim that NR is Φ-key-malleable. The key-transformer

T, given oracle f : {0, 1}n → G and inputs φ∗
d, x, returns f(x)d[0]

∏n
i=1 d[i]x[i]

.
Correctness holds because

TNR(a,·)(φ∗
d, x) = NR(a, x)d[0]

∏n
i=1 d[i]x[i]

= NR(a ∗ d, x) .

In game KTRealNR, the responses received by unique-input, Φ-restricted adver-
sary U to KTFn-queries (φ∗

d1
, x1), . . . , (φ∗

dq
, xq) are f(x1)d1[0]

∏n
i=1 d1[i]x[i]

, . . . ,

f(xq)dq [0]
∏n

i=1 dq [i]x[i]
where f $← Fun({0, 1}n,G) was chosen by the game. Since

x1, . . . , xq are distinct and the exponents are non-zero, these responses are ran-
domly and independently distributed over G. We have verified the uniformity
condition.

Key fingerprint: For i = 1, . . . , n let w[i] = 0i−1 ‖ 1 ‖ 0n−i be the string that is
all zeros except at position i, where it has a one. Let w[0] = 0n. We claim
that w is a strong key fingerprint for (NR, Φ). To see this, first note that
(NR(a,w[0]),NR(a,w[1]) . . . ,NR(a,w[n])) = (ga[0], ga[0]a[1], . . . , ga[0]a[n]). Now
if a,a′ ∈ K are distinct keys and a[0] �= a′[0] then ga[0] �= ga

′[0]. On the other
hand if a[0] = a′[0] and a[i] �= a′[i] for some i > 0, then ga[0]a[i] �= ga

′[0]a′[i].
The claim follows from the definition of Equation (6) with M = NR. Since Φ is
claw-free, w is also a key fingerprint for (NR, Φ), satisfying Equation (5) with
M = NR.

Compatible hash function: The set of possible oracle queries of T relative to
(NR, Φ,w) is Qrs(T,NR, Φ,w) = { w[i] : 0 ≤ i ≤ n } because on inputs φ, x
the only oracle query made by T is x itself. Let D = {0, 1}n×Gn+1. If h: D →
{0, 1}n−2 is collision resistant, then H : D → {0, 1}n \ Qrs(T,NR, Φ,w) defined
by H(x, z) = 11 ‖h(x, z) is collision resistant and compatible with (T,NR, Φ,w)
because all members of Qrs(T,NR, Φ,w) have Hamming weight at most 1 while
outputs of H have Hamming weight at least 2.

We have all the ingredients. The following theorem combines the above with
Theorem 1 and Lemma 2 to present our DDH-based Φ-RKA-PRF for group-
induced Φ and specify its security.

Theorem 3. Let G = 〈g〉 be a group of prime order p and NR: Zn+1
p ×{0, 1}n →

G the family of functions defined via Equation (19). Let D = {0, 1}n×G
n+1 and

let h: D → {0, 1}n−2 be a hash function. Define F : (Z∗
p)

n+1 × {0, 1}n → G by

F (a, x) = NR(a, 11 ‖h(x, (ga[0], ga[0]a[1], . . . , ga[0]a[n])))

for all a ∈ (Z∗
p)n+1 and x ∈ {0, 1}n. Let Φ = rkd[(Z∗

p)n+1, ∗] where ∗ is the
operation of component-wise multiplication modulo p. Let A be a Φ-restricted
adversary against the prf-rka security of F that makes QA ≤ 2n−2 oracle queries.
Then we can construct an adversary B against the DDH problem in G and an
adversary C against the cr-security of h such that

Advprf-rka
Φ,F (A) ≤ n ·Advddh

G (B) + Advcr
h (C) .

680 M. Bellare and D. Cash

The running time of B is that of A plus the time required for O(nQ) exponen-
tiations in G. C has the same running time as A.

A DLIN-based RKA-PRF. There are groups where DDH is easy but the DLIN
problem [22] still seems hard, which motivated Lewko and Waters [43] to find a
DLIN-based PRF. In the same vein, we seek a DLIN-based RKA-PRF.

Let G = 〈g〉 be a group of prime order p. Lewko and Waters [43] describe their
DLIN-based PRF as having key a randomly chosen tuple (y0, z0, y1, z1, w1, v1,
. . . , yn, zn, wn, vn) ∈ Z4n+2

p and then on input x ∈ {0, 1}n computing its output
as follows. Set a ← y0 ; b ← z0 and then for i = 1, . . . , n execute “If x[i] = 1
then a ← ayi + bzi ; b← awi + bvi.” Finally, return ga. Lewko and Waters [43,
Section 1] comment that “the additional complexity required to accomodate the
weaker assumptions means that our functions can no longer be described by
closed-form formulas like . . . ,” referring, in the “. . . ,” to the formula for NR
that we have given as Equation (19). We provide such a closed-form formula
based on matrices. (This will put us in a position, via a slight modification of
the construction, to apply Theorem 1 and obtain a RKA-PRF.) Let AL2(p)
denote the set of all 2 by 2 matrices over Zp. If M ∈ AL2(p) and b ∈ {0, 1}
then Mb is the identity matrix if b = 0 and is of course just M if b = 1. If
u = (u[1],u[2]) is a 2-vector over Zp then u ·M denotes the 2-vector obtained
by the vector-matrix product in which u is viewed as a 1 by 2 matrix. We define
LW: AL2(p)n+1 × {0, 1}n → G via

LW(A, x) = gy[1] where y = (1, 0) ·A[0]
∏n

i=1A[i]x[i] (21)

for all A ∈ AL2(p)n+1 and x ∈ {0, 1}n. Here the key is an (n + 1)-vector A =
(A[0], . . . ,A[n]) of 2 by 2 matrices over Zp. The formula left-multiplies the ma-
trix product by the 2-vector (1, 0) to get a 2-vector y whose first component y[1]
becomes the exponent to which g is raised to get the function output. We claim
LW is exactly the function described by the code above. (To verify this it helps
to recall that matrix multiplication is associative. Strictly speaking the LW key is
longer, being 4n+4 elements of Zp, but the second row of A[0] is effectively unused
due to the product with (1, 0) so the effective key is 4n+ 2 points in Zp, as in the
original construct.) Comparing with Equation (19), the closed-form formulation
of Equation (21) makes clearer how LW is an analogue of NR.

To obtain a key-malleable PRF admitting a key fingerprint, we need two
modifications. (The modifications are in fact to get the key fingerprint, not the
key malleability.) First, we restrict the keyspace, drawing the matrices from
GL2(p) ⊂ AL2(p) rather than AL2(p), where GL2(p) is the set of invertible
matrices in AL2(p), usually referred to as the general linear group. Second, if
y[1] = 0, we use y[2], which we will be able to guarantee is not 0 in this case, in
its place. In detail, define LW∗: GL2(p)n+1 × {0, 1}n → G via

LW∗(A, x) =
{
gy[1] if y[1] �= 0
gy[2] otherwise

where y = (1, 0) ·A[0]
∏n

i=1A[i]x[i] (22)

for all A ∈ GL2(p)n+1 and x ∈ {0, 1}n. In [4] we show how to apply our framework
of Theorem 1 with LW∗ in the role of M , obtaining our DLIN-based RKA-PRF.

PRFs and PRPs Provably-Secure against RKAs 681

An additive DDH-based RKA-PRF. The group (Z∗
p)

n+1 of our multiplica-
tive DDH-based RKA-PRF is multiplicative. Our final construct is a rkd[Zn

p ,+]-
RKA-PRF, still DDH-based, where + is componentwise addition, so that the
group is additive. This takes more work than the multiplicative construct. We
were not able to work with NR itself but had to slightly modify it. The key
transformer and proof of uniformity are more complex. The materiel is in [4].

From RKA-PRFs to RKA-PRPs. Cryptanalytic interest has mostly been
in RKA-secure blockciphers, meaning, families of permutations. It is not clear
how one might directly modify the constructions of Section 3, which are fam-
ilies of functions, to make them families of permutations. We use, instead, a
simple but powerful composition approach that produces a Φ-RKA-PRP from
a given Φ-RKA-PRG and an ordinary PRP. We obtain appropriate Φ-RKA-
PRGs by combining our Φ-RKA-PRFs with deterministic extractors [26,30,24].
This approach not only yields RKA-secure PRPs under chosen-plaintext attack
(CPA) but even under chosen-ciphertext attack (CCA). In [4] we provide for-
mal definitions for PRPs, RKA-PRPs and RKA-PRGs and state and prove the
composition results.

Acknowledgments

We thank Xavier Boyen and Damien Vergnaud for explaining that the q-BDHI-
based proof of PRF-security of BBDY from [27,21] only works when the domain
of the function is small, rendering abortive our attempts to obtain RKA-security
via this function. We thank Mira Belenkiy for suggesting that BBDY might help
for RKA-security in the first place. We thank Mira and Tolga Acar for discussions
on the practical relevance of RKAs that rekindled the first author’s interest in
this area.

References

1. Applebaum, B.: Fast cryptographic primitives based on the hardness of decoding
random linear code. Technical Report TR-845-08, Princeton University (2008)

2. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

4. Bellare, M., Cash, D.: Pseudorandom functions and permutations provablysecure
against related key attacks. Cryptology ePrint Archive (2010) (full version of this
abstract)

5. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003)

6. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

682 M. Bellare and D. Cash

7. Biham, E.: New types of cryptoanalytic attacks using related keys (extended ab-
stract). In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409.
Springer, Heidelberg (1994)

8. Biham, E.: New types of cryptanalytic attacks using related keys. Journal of Cryp-
tology 7(4), 229–246 (1994)

9. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle at-
tacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

10. Biham, E., Dunkelman, O., Keller, N.: A related-key rectangle attack on the full
KASUMI. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 443–461.
Springer, Heidelberg (2005)

11. Biham, E., Dunkelman, O., Keller, N.: Related-key impossible differential attacks
on 8-round AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp.
21–33. Springer, Heidelberg (2006)

12. Biham, E., Dunkelman, O., Keller, N.: A simple related-key attack on the full
SHACAL-1. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 20–30. Springer,
Heidelberg (2006)

13. Biham, E., Dunkelman, O., Keller, N.: A unified approach to related-key attacks.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 73–96. Springer, Heidelberg
(2008)

14. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

15. Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., Shamir, A.: Key re-
covery attacks of practical complexity on AES variants with up to 10 rounds. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 299–319. Springer,
Heidelberg (2010)

16. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and
AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

17. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and related-key attack
on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)

18. Black, J.: The ideal-cipher model, revisited: An uninstantiable blockcipher-based
hash function. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 328–340.
Springer, Heidelberg (2006)

19. Blunden, M., Escott, A.: Related key attacks on reduced round KASUMI. In:
Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 277–285. Springer, Heidelberg
(2002)

20. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

21. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

22. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

23. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults (extended abstract). In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

PRFs and PRPs Provably-Secure against RKAs 683

24. Canetti, R., Friedlander, J.B., Konyagin, S.V., Larsen, M., Lieman, D., Shparlinski,
I.: On the statistical properties of Diffie-Hellman distributions. Israel J. Math. 120,
23–46 (2000)

25. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press, New York
(May 1998)

26. Chevalier, C., Fouque, P.-A., Pointcheval, D., Zimmer, S.: Optimal randomness
extraction from a Diffie-Hellman element. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 572–589. Springer, Heidelberg (2010)

27. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005)

28. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on
Computing 30(2), 391–437 (2000)

29. Dunkelman, O., Keller, N., Kim, J.: Related-key rectangle attack on the full
SHACAL-1. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp.
28–44. Springer, Heidelberg (2007)

30. Fouque, P.-A., Pointcheval, D., Stern, J., Zimmer, S.: Hardness of distinguishing the
MSB or LSB of secret keys in Diffie-Hellman schemes. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 240–251.
Springer, Heidelberg (2006)

31. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004)

32. Goldenberg, D., Liskov, M.: On related-secret pseudorandomness. In: Micciancio,
D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 255–272. Springer, Heidelberg (2010)

33. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Jour-
nal of the ACM 33, 792–807 (1986)

34. Hong, S., Kim, J., Lee, S., Preneel, B.: Related-key rectangle attacks on reduced
versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)

35. Iwata, T., Kohno, T.: New security proofs for the 3GPP confidentiality and in-
tegrity algorithms. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
427–445. Springer, Heidelberg (2004)

36. Jakimoski, G., Desmedt, Y.: Related-key differential cryptanalysis of 192-bit key
AES variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 208–221. Springer, Heidelberg (2004)

37. Jaulmes, É., Joux, A., Valette, F.: On the security of randomized CBC-MAC be-
yond the birthday paradox limit: A new construction. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 237–251. Springer, Heidelberg (2002)

38. Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Okamoto, T., Qing,
S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

39. Kim, J., Hong, S., Preneel, B.: Related-key rectangle attacks on reduced AES-192
and AES-256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 225–241.
Springer, Heidelberg (2007)

40. Knudsen, L.R.: Cryptanalysis of LOKI91. In: Zheng, Y., Seberry, J. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)

41. Knudsen, L.R., Kohno, T.: Analysis of RMAC. In: Johansson, T. (ed.) FSE 2003.
LNCS, vol. 2887, pp. 182–191. Springer, Heidelberg (2003)

684 M. Bellare and D. Cash

42. Ko, Y., Hong, S., Lee, W., Lee, S., Kang, J.-S.: Related key differential attacks on
27 rounds of XTEA and full-round GOST. In: Roy, B., Meier, W. (eds.) FSE 2004.
LNCS, vol. 3017, pp. 299–316. Springer, Heidelberg (2004)

43. Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the decisional
linear assumption and weaker variants. In: Al-Shaer, E., Jha, S., Keromytis, A.D.
(eds.) ACM CCS 2009, pp. 112–120. ACM Press, New York (November 2009)

44. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

45. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM Journal on Computing 17(2) (1988)

46. Lucks, S.: Ciphers secure against related-key attacks. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 359–370. Springer, Heidelberg (2004)

47. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. Journal of the ACM 51(2), 231–262 (2004)

48. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 187–196. ACM Press, New York
(2008)

49. Phan, R.C.-W.: Related-key attacks on triple-DES and DESX variants. In:
Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 15–24. Springer, Heidelberg
(2004)

50. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

51. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

52. Rogaway, P.: Formalizing human ignorance. In: Nguyên, P.Q. (ed.) VIETCRYPT
2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006)

53. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

54. Zhang, W., Wu, W., Zhang, L., Feng, D.: Improved related-key impossible differ-
ential attacks on reduced-round AES-192. In: Biham, E., Youssef, A.M. (eds.) SAC
2006. LNCS, vol. 4356, pp. 15–27. Springer, Heidelberg (2007)

Secure Two-Party Quantum Evaluation of
Unitaries against Specious Adversaries

Frédéric Dupuis1,�, Jesper Buus Nielsen2, and Louis Salvail3,��

1 Institute for Theoretical Physics, ETH Zurich, Switzerland
dupuis@phys.ethz.ch

2 DAIMI, Aarhus University, Denmark
jbn@cs.au.dk

3 Université de Montréal (DIRO), QC, Canada
salvail@iro.umontreal.ca

Abstract. We describe how any two-party quantum computation, spec-
ified by a unitary which simultaneously acts on the registers of both par-
ties, can be privately implemented against a quantum version of classical
semi-honest adversaries that we call specious. Our construction requires
two ideal functionalities to garantee privacy: a private SWAP between
registers held by the two parties and a classical private AND-box equiva-
lent to oblivious transfer. If the unitary to be evaluated is in the Clifford
group then only one call to SWAP is required for privacy. On the other
hand, any unitary not in the Clifford requires one call to an AND-box
per R-gate in the circuit. Since SWAP is itself in the Clifford group, this
functionality is universal for the private evaluation of any unitary in that
group. SWAP can be built from a classical bit commitment scheme or
an AND-box but an AND-box cannot be constructed from SWAP. It
follows that unitaries in the Clifford group are to some extent the easy
ones. We also show that SWAP cannot be implemented privately in the
bare model.

1 Introduction

In this paper, we address the problem of privately evaluating some unitary trans-
form U upon a joint quantum input state held by two parties. Since unitaries
model what quantum algorithms are implementing, we can see this problem as
a natural extension of secure two-party evaluation of functions to the quantum
realm. Suppose that a state |φin〉 ∈ A⊗B is the initial shared state where Alice
holds register A and Bob holds register B. Let U ∈ U(A ⊗ B) be some unitary
transform acting upon A and B. What cryptographic assumptions are needed
for a private evaluation of |φout〉 = U |φin〉 where private means that each player
learns no more than in the ideal situation depicted in Fig. 1? Of course, answers
to this question depend upon the adversary we are willing to tolerate.
� Supported by Canada’s NSERC Postdoctoral Fellowship Program.

�� Supported by Canada’s NSERC discovery grant, MITACS, and the QuantumWorks
networks(NSERC).

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 685–706, 2010.
c© International Association for Cryptologic Research 2010

686 F. Dupuis, J.B. Nielsen, and L. Salvail

|φin〉

{
A

U
A

}
|φout〉B B

Fig. 1. Ideal Functionality
for unitary U

In [17], it was shown that unitaries cannot be
used to implement classical cryptographic prim-
itives. Any non-trivial primitive implemented by
unitaries will necessarily leak information toward
one party. Moreover, this leakage is available to a
weak class of adversaries that can be interpreted as
the quantum version of classical semi-honest adversaries. It follows that quan-
tum two-party computation of unitaries cannot be used to implement classical
cryptographic primitives. This opens the possibility that the cryptographic as-
sumptions needed for private evaluations of unitaries are weaker than for their
classical counterpart. So, what classical cryptographic assumptions, if any, are
required to achieve privacy in our setting? Are there unitaries more difficult to
evaluate privately than others?

In this work, we answer these questions against a class of weak quantum
adversaries, called specious, related to classical semi-honest adversaries. We say
that a quantum adversary is specious if at any step during the execution of a
protocol, it can provide a judge with some state that, when joined with the state
held by the honest player, will be indistinguishable from a honest interaction.
In other words, an adversary is specious if it can pass an audit with success at
any step. Most known impossibility proofs in quantum cryptography apply when
the adversary is restricted to be specious. Definitions similar to ours have been
proposed for the quantum setting and usually named semi-honest. However,
translating our definition to the classical setting produces a strictly stronger
class of adversaries than semi-honest1 which justifies not adopting the term
semi-honest. We propose the name specious as the core of the definition is that
the adversary must appear to act honestly.

Contributions. First, we define two-party protocols for the evaluation of uni-
taries having access to oracle calls. This allows us to consider protocols with
security relying on some ideal functionalities in order to be private. We then say
that a protocol is in the bare model if it does not involve any call to an ideal
functionality. We then formally define what we mean by specious adversaries.
Privacy is then defined via simulation. We say that a protocol for the two-party
evaluation of unitary U is private against specious adversaries if, for any joint
input state and at any step of the protocol, there exists a simulator that can
reproduce the adversary’s view having only access to its own part of the joint
input state. Quantum simulation must rely on a family of simulators for the
view of the adversary rather than one because quantum information does not
accumulate but can vanish as the protocol evolves. For instance, consider the
1 As an example, assume there exist public key cryptosystems where you can sample

a public key without learning the secret key. Then this is a semi-honest oblivious
transform: The receiver, with choice bit c, samples pkc in the normal way and learns
its corresponding secret key and samples pk1−c without learning its secret key. He
sends (pk0, pk1). Then the sender sends (Epk0(m0), Epk1(m1)) and the receiver de-
crypts Epkc(mc). This is not secure against a specious adversary who can sample
pk1−c along with its secret key sk1−c and then delete sk1−c before the audit.

Secure Two-Party Quantum Evaluation 687

trivial protocol that let Alice send her input register to Bob so that he can apply
locally |φout〉 = U |φin〉 before returning her register. The final state of such a
protocol is certainly private, as Bob cannot clone Alice’s input and keep a copy,
yet at some point Bob had access to Alice’s input thus violating privacy. No
simulator can possibly reproduce Bob’s state after he received Alice’s register
without having access to her input state.

Second, we show that no protocol can be shown statistically private against
specious adversaries in the bare model for a very simple unitary: the swap gate.
As the name suggests, the swap gate simply permutes Alice’s and Bob’s input
states. Intuitively, the reason why this gate is impossible is that at some point
during the execution of such protocol, one party that still has almost all its
own input state receives a non-negligible amount of information (in the quan-
tum sense) about the other party’s input state. At this point, no simulator can
possibly re-produce the complete state held by the receiving party since a call
to the ideal functionality only provides access to the other party’s state while
no call to the ideal functionality only provides information about that party’s
own input. Therefore, any simulator cannot re-produce a state that contains in-
formation about the input states of both parties. It follows that cryptographic
assumptions are needed for the private evaluation of unitaries against specious
adversaries. On the other hand, a classical bit commitment is sufficient to im-
plement the swap privately in our model.

Finally, we give a very simple protocol for the private evaluation of any unitary
based on ideas introduced by [7,6] in the context of fault tolerant quantum
computation. Our construction is similar to Yao’s original construction in the
classical world[22,9]. We represent any unitary U by a quantum circuit made out
of gates taken from the universal set UG = {X,Y, Z,CNOT,H,P,R} [13]. The
protocol evaluates each gate of the circuit upon shared encrypted input where
the encryption uses the Pauli operators {X,Y, Z} together with the identity. In
addition to the Pauli gates X,Y , and Z, gates CNOT, H, and P can easily be
performed over encrypted states without losing the ability to decrypt. Gates of
that kind belong to what is called the Clifford group. The CNOT gate is the
only gate in UG acting upon more than one qubit while the R-gate is the only
one that does not belong to the Clifford group. In order to evaluate it over an
encrypted state while preserving the ability to decrypt, we need to rely upon a
classical ideal functionality computing securely an additive sharing for the AND
of Alice’s and Bob’s input bits. We call this ideal functionality an AND-box.
Upon input x ∈ {0, 1} for Alice and y ∈ {0, 1} for Bob, it produces a ∈R {0, 1}
and b ∈ {0, 1} to Alice and Bob respectively such that a⊕ b = x ∧ y. An AND-
box can be obtained from any flavor of oblivious transfer and is defined the
same way than an NL-box[14,15] without the property that its output can be
obtained before the input of the other player has been provided to the box (i.e.,
NL-boxes are non-signaling). The equivalence between AND-boxes, NL-boxes,
and oblivious transfer is discussed in [21]. At the end of the protocol, each part
of the shared key allowing to decrypt the output must be exchanged in a fair
way. For this task, Alice and Bob rely upon an ideal swap functionality called

688 F. Dupuis, J.B. Nielsen, and L. Salvail

SWAP. The result is that any U can be evaluated privately upon any input
provided Alice and Bob have access to one AND-box per R-gate and one call
to the an ideal swap. If the circuit happens to have only gates in the Clifford
group then only one call to an ideal swap is required for privacy. In other words,
SWAP is universal for the private evaluation of circuits in the Clifford group
(i.e., those circuits having no R-gate) and itself belongs to that group (SWAP
is not a classical primitive). To some extent, circuits in the Clifford group are
the easy ones. Privacy for circuits containing R-gates however needs a classical
cryptographic primitive to be evaluated privately by our protocol. It means that
AND-boxes are universal for the private evaluation of any circuit against specious
adversaries. We don’t know whether there exist some unitary transforms that are
universal for the private evaluation of any unitary against specious adversaries.

Previous works. All impossibility results in quantum cryptography we are aware
of apply to classical primitives. In fact, the impossibility proofs usually rely upon
the fact that an adversary with a seemingly honest behavior can force the im-
plementation of classical primitives to behave quantumly. The result being that
implemented that way, the primitive must leak information to the adversary.
This is the spirit behind the impossibility of implementing oblivious transfer
securely using quantum communication[10]. In that same paper the impossi-
bility of any one-sided private evaluation of non-trivial primitives was shown.
All these results can be seen as generalizations of the impossibility of bit com-
mitment schemes based on quantum communication[11,12]. The most general
impossibility result we are aware of applies to any non-trivial two-party classi-
cal function[17]. It states that it suffices for the adversary to purify its actions
in order for the quantum primitive to leak information. An adversary purify-
ing its actions is specious as defined above. None of these impossibility proofs
apply to quantum primitives characterized by some unitary transform applied
to joint quantum inputs. Blind quantum computation is a primitive that shows
similarities to ours. In [4], a protocol allowing a client to get its input to a quan-
tum circuit evaluated blindly has been proposed. The security of their scheme
is unconditional while in our setting almost no unitary allows for unconditional
privacy.

An unpublished work of Smith[19] shows how one can devise a private pro-
tocol for the evaluation of any unitary that seems to remain private against all
quantum adversaries. However, the techniques used require strong cryptographic
assumptions like homomorphic encryption schemes, zero-knowledge and witness
indistinguishable proof systems. The construction is in the spirit of protocols for
multiparty quantum computation[3,5] and fault tolerant quantum circuits[18,1].
Although our protocol only guarantees privacy against specious adversaries, it
is obtained using much weaker cryptographic assumptions.

2 Preliminaries

The N -dimensional complex Euclidean space (i.e., Hilbert space) will be denoted
byHN . We denote quantum registers using calligraphic typesetA. As usual,A⊗B

Secure Two-Party Quantum Evaluation 689

denotes the space of two such quantum registers. We write A ≈ B when A and B
are such that dim (A) = dim (B). A register A can undergo transformations as a
function of time; we denote byAi the state of spaceA at time i. When a quantum
computation is viewed as a circuit accepting input inA, we denote all wires in the
circuit by w ∈ A. If the circuit accepts input in A ⊗ B then the set of all wires is
denoted w ∈ A ∪ B.

The set of all linear mappings from A to B is denoted by L(A,B) while L(A)
stands for L(A,A). To simplify notation, for ρ ∈ L(A) and M ∈ L(A,B) we
write M · ρ for MρM †. We denote by Pos(A) the set of positive semi-definite
operators in A. The set of positive semi-definite operators with trace 1 acting
on A is denoted D(A); D(A) is the set of all possible quantum states for register
A. An operator A ∈ L(A,B) is called a linear isometry if A†A = 11A. The set of
unitary operators (i.e., linear isometries with B = A) acting in A is denoted by
U(A). The identity operator in A is denoted 11A and the completely mixed state
in D(A) is denoted by IA. For any positive integer N > 0, 11N and IN denote
the identity operator respectively the completely mixed state in HN . When the
context requires, a pure state |ψ〉 ∈ AB will be written |ψ〉AB to make explicit
the registers in which it is stored.

A linear mapping Φ : L(A) �→ L(B) is called a super-operator since it belongs
to L(L(A),L(B)). Φ is said to be positive if Φ(A) ∈ Pos(B) for all A ∈ Pos(A).
The super-operator Φ is said to be completely positive if Φ ⊗ 11L(Z) is positive
for every choice of the Hilbert space Z. A super-operator Φ can be physically
realized or is admissible if it is completely positive and preserves the trace:
tr(Φ(A)) = tr(A) for all A ∈ L(A). We call such a super-operator a quantum
operation. Another way to represent any quantum operation is through a linear
isometry W ∈ L(A,B ⊗ Z) such that Φ(ρ) = trZ(W · ρ), for some extra space
Z. Any such isometry W can be implemented by a physical process as long as
the resource to implement Z is available. This is just a unitary transform in
U(A⊗Z) where the system in Z is initially in known state |0Z〉.

For two states ρ0, ρ1 ∈ D(A), we denote by Δ(ρ0, ρ1) the trace norm distance
between ρ0 and ρ1: Δ(ρ0, ρ1) := 1

2‖ρ0 − ρ1‖. If Δ(ρ0, ρ1) ≤ ε then any quantum
process applied to ρ0 behaves exactly as for ρ1 except with probability at most
ε [16].

Let X ,Y , and Z be the three non-trivial one-qubit Pauli operators. The Bell
measurement is a complete orthogonal measurement on two qubits made out
of the measurement operators {|Ψx,y〉〈Ψx,y|}x,y∈{0,1} where |Ψx,y〉 := 1√

2
(|0, x〉+

(−1)y|1, x〉). We say that the outcome of a Bell measurement is (x, y) ∈ {0, 1}2 if
|Ψx,y〉〈Ψx,y| has been observed. The quantum one-time-pad is a perfectly secure
encryption of quantum states[2]. It encrypts a qubit |ψ〉 as XxZz|ψ〉, where the
key is two classical bits, (x, z) ∈ {0, 1}2 and X0Z0 = 11, X0Z1 = Z, X1Z0 = X
and X1Z1 = Y are the Pauli operators.

2.1 Modeling Two-Party Strategies

Consider an interactive two-party strategy ΠO between parties A and B and
oracle calls O. ΠO can be modeled by a sequence of quantum operations for

690 F. Dupuis, J.B. Nielsen, and L. Salvail

each player together with some oracle calls also modeled by quantum operations.
Each quantum operation in the sequence corresponds to the action of one party
at a certain step of the strategy. The following definition is a straightforward
adaptation of n-turn interactive quantum strategies as described in [8]. The
main difference is that here, we provide a joint input state to both parties and
that quantum transmissions taking place during the execution is modeled by a
quantum operation; one that is moving a state on one party’s side to the other
party.

Definition 2.1. A n–step two party strategy with oracle calls denoted ΠO =
(A ,B,O, n) consists of:

1. input spaces A0 and B0 for parties A and B respectively,
2. memory spaces A1, . . . ,An and B1, . . . ,Bn for A and B respectively,
3. an n-tuple of quantum operations (A1, . . . ,An) for A , Ai : L(Ai−1) �→

L(Ai), (1 ≤ i ≤ n),
4. an n-tuple of quantum operations (B1, . . . ,Bn) for B, Bi : L(Bi−1) �→

L(Bi), (1 ≤ i ≤ n),
5. memory spaces A1, . . . ,An and B1, . . . ,Bn can be written as Ai = AO

i ⊗A′
i

and Bi = BO
i ⊗ B′

i, (1 ≤ i ≤ n), and O = (O1,O2, . . . ,On) is an n-tuple of
quantum operations: Oi : L(AO

i ⊗ BO
i) �→ L(AO

i ⊗ BO
i), (1 ≤ i ≤ n).

If Π = (A ,B, n) is a n-turn two-party protocol then the final state of the inter-
action upon input state ρin ∈ D(A0⊗B0⊗R), where R is a system of dimension
dimR = dimA0 dimB0, is:

[A � B](ρin) :=(11L(A′
n⊗B′

n⊗R) ⊗ On)(An ⊗Bn ⊗ 11R)

. . . (11L(A′
1⊗B′

1⊗R) ⊗ O1)(A1 ⊗B1 ⊗ 11R)(ρin) .

Step i of the strategy corresponds to the actions of Ai and Bi followed by the
oracle call Oi.

Note that we consider input states defined on the input systems together with
a reference system R; this allows us to show the correctness and privacy of the
protocol not only for pure inputs, but also for inputs that are entangled with a
third party. This is the most general case allowed by quantum mechanics.

A two-party strategy is therefore defined by quantum operation tuples
(A1, . . . ,An), (B1, . . . ,Bn), and (O1, . . . ,On). These operations also define
working spaces A0, . . . ,An,B0, . . . ,Bn together with the input-output spaces
to the oracle calls AO

i and BO
i for 1 ≤ i ≤ n.

A communication oracle from Alice to Bob is modeled by having AO
i ≈ BO

i

and letting Oi move the state in AO
i to BO

i and erase AO
i . Similarly for commu-

nication in the other direction. We define a bare model protocol to be one which
only uses communication oracles.

Secure Two-Party Quantum Evaluation 691

3 Specious Quantum Adversaries

3.1 Protocols for Two-Party Evaluation

Let us consider two-party protocols for the quantum evaluation of unitary trans-
form U ∈ U(A0 ⊗ B0) between parties A and B upon joint input state ρin ∈
D(A0 ⊗ B0 ⊗R):

Definition 3.1. A two-party protocol ΠO
U = (A ,B,O, n) for U ∈ U(A0 ⊗ B0)

is an n–step two-party strategy with oracle calls, where An ≈ A0 and Bn ≈ B0.
It is said to be ε–correct if

Δ ([A � B](ρin), (U ⊗ 11R) · ρin) ≤ ε for all ρin ∈ D(A0 ⊗ B0 ⊗R) .

We denote by ΠU a two-party protocol in the bare model where, without loss of
generality, we assume that O2i+1 (0 ≤ i ≤ &n2 ') implements a communication
channel from A to B and O2i (1 ≤ i ≤ &n2 ') implements a communication
channel from B to A . Communication oracles are said to be trivial.

In other words, a two-party protocol ΠO
U for unitary U is a two-party interac-

tive strategy where, at the end, the output of the computation is stored in the
memory of the players. ΠO

U is correct if, when restricted to the output registers
(and R), the final quantum state shared by A and B is (U ⊗ 11R) · ρin.

As it will become clear when we discuss privacy in Sect. 3.3, we need to
consider the joint state at any step during the evolution of the protocol:

ρ1(ρin) := (11L(A′
1⊗B′

1⊗R) ⊗ O1)(A1 ⊗B1 ⊗ 11L(R))(ρin),

ρi+1(ρin) := (11L(B′
i+1⊗A′

i+1⊗R) ⊗ Oi+1)(Ai+1 ⊗Bi+1 ⊗ 11L(R))(ρi(ρin)) , (1)

for 1 ≤ i < n. We also write the final state of ΠO
U upon input state ρin as

ρn(ρin) = [A � B](ρin).

3.2 Modeling Specious Adversaries

Intuitively, a specious adversary acts in any way apparently indistinguishable
from the honest behavior, in the sense that no audit can distinguish the behavior
of the adversary from the honest one.

More formally, a specious adversary in ΠO
U = (A ,B,O, n) may use an ar-

bitrary large quantum memory space. However, at any step 1 ≤ i ≤ n, the
adversary can transform its own current state to one that is indistinguishable
from the honest joint state. These transforms are modeled by quantum opera-
tions, one for each step of the adversary in ΠO

U , and are part of the adversary’s
specification. We denote by (T1, . . . ,Tn) these quantum operations where Ti

produces a valid transcript at the end of the i–th step.
Let Ã and B̃ be adversaries in ΠO

U . We denote by ΠO
U (Ã) = (Ã ,B,O, n) and

ΠO
U (B̃) = (A , B̃,O, n) the resulting n–step two-party strategies. We denote by

ρ̃i(Ã , ρin) the state defined in (1) for protocolΠO
U (Ã) and similarly by ρ̃i(B̃, ρin)

that state for protocol ΠO
U (B̃).

692 F. Dupuis, J.B. Nielsen, and L. Salvail

Adding the possibility for the adversary to be ε-close to honest, we get the
following definition:

Definition 3.2. Let ΠO
U = (A ,B,O, n) be an n–step two-party protocol with

oracle calls for U ∈ U(A0 ⊗ B0). We say that:

– Ã is ε–specious if ΠO
U (Ã) = (Ã ,B,O, n) is an n–step two-party strategy

with Ã0 = A0 and there exists a sequence of quantum operations (T1, . . . ,Tn)
such that:
1. for every 1 ≤ i ≤ n, Ti : L(Ãi) �→ L(Ai),
2. for every input state ρin ∈ D(A0 ⊗ B0 ⊗R), and for all 1 ≤ i ≤ n,

Δ
(
(Ti ⊗ 11L(Bi⊗R))

(
ρ̃i(Ã , ρin)

)
, ρi(ρin)

)
≤ ε .

– B̃ is ε–specious if ΠO
U (B̃) = (A , B̃,O, n) is a n–step two-party strategy

with B̃0 = B0 and there exists a sequence of quantum operations (T1, . . . ,Tn)
defined as before with Bi, B̃i, and ρ̃i(B̃, ρin) replacing Ai, Ãi, and ρ̃i(Ã , ρin)
respectively.

If a party is ε(m)–specious with ε(m) negligible for m a security parameter then
we say that this party is statistically specious.

3.3 Privacy

Privacy for ΠO
U is defined as the ability for a simulator, having only access to

the adversary’s input and the ideal functionality U , to reproduce the state of
the adversary at any step in the execution of ΠO

U . Our definition is similar to
the one introduced in [20] for statistical zero-knowledge proof systems.

A simulator for an adversary in ΠO
U is represented by a sequence of quantum

operations (Si)ni=1, where Si re-produces the view of the adversary after step i.
Si initially receives the adversary’s input and has access to the ideal functional-
ity for U evaluated upon the joint input of the adversary and the honest player.
Because of no-cloning, a simulator calling U loses its input, and the input might
be required to simulate e.g. early steps in the protocol, so we have to allow that
Si does not call U . For this purpose we introduce a bit qi ∈ {0, 1}. When qi = 0,
Si does not call U and when qi = 1, Si must first call the ideal functionality U
before performing some post-processing. More precisely,

Definition 3.3. Let ΠO
U = (A ,B,O, n) be an n–step two-party protocol for

U ∈ D(A0 ⊗ B0). Then,

– S (Ã) = 〈(S1, . . . ,Sn), q〉 is a simulator for adversary Ã in ΠO
U if it consists

of:
1. a sequence of quantum operations (S1, . . . ,Sn) where for 1 ≤ i ≤ n,

Si : L(A0) �→ L(Ãi),
2. a sequence of bits q ∈ {0, 1}n determining if the simulator calls the ideal

functionality at step i: qi = 1 iff the simulator calls the ideal functionality.

Secure Two-Party Quantum Evaluation 693

– Similarly, S (B̃) = 〈(S1, . . . ,Sn), q′〉 is a simulator for adversary B̃ in
ΠO

U if it satisfies conditions 1 and 2 above with q′,B0,Bi, and B̃i replacing
q,A0,Ai, and Ãi respectively.

Given an input state ρin ∈ D(A0 ⊗B0 ⊗R), we define the Ã ’s respectively B̃’s
simulated views as:

νi(Ã , ρin) := trB0

(
(Si ⊗ 11L(B0⊗R)) ((U qi ⊗ 11R) · ρin)

)
,

νi(B̃, ρin) := trA0

(
(11L(A0⊗R) ⊗Si)

(
(U q′i ⊗ 11R) · ρin

))
.

We say that protocol ΠO
U is private against specious adversaries if there exits a

simulator for the view at any step of any such adversary. In more details,

Definition 3.4. Let ΠO
U = (A ,B,O, n) be a protocol for U ∈ U(A0 ⊗ B0) and

let 0 ≤ δ ≤ 1. We say that ΠO
U is δ–private against ε–specious Ã if there ex-

ists a simulator S (Ã) such that for all input states ρin ∈ D(A0 ⊗ B0 ⊗ R)
and for all 1 ≤ i ≤ n, Δ

(
νi(Ã , ρin), trBi(ρ̃i(Ã , ρin))

)
≤ δ. Similarly, we say

that ΠU is δ–private against ε–specious B̃ if there exists a simulator S (B̃)
such that for all input states ρin ∈ D(A0 ⊗ B0 ⊗ R) and for all 1 ≤ i ≤
n, Δ

(
νi(B̃, ρin), trAi(ρ̃i(B̃, ρin))

)
≤ δ. Protocol ΠO

U is δ–private against ε–

specious adversaries if it is δ–private against both Ã and B̃. For γ > 0, if
ΠO

U is 2−γm–private for m ∈ N+ a security parameter then we say that ΠO
U is

statistically private.

We show next that for some unitary, statistical privacy cannot be satisfied by
any protocol in the bare model.

4 Unitaries with No Private Protocols

In this section, we show that no statistically private protocol for the swap gate
exists in the bare model. The swap gate, denoted SWAP, is the following unitary
transform:

SWAP : |φA〉A0 |φB〉B0 �→ |φB〉A0 |φA〉B0 ,

for any one qubit states |φA〉 ∈ A0 and |φB〉 ∈ B0 (i.e., dim (A0) = dim (B0) = 2).
Notice that SWAP is in the Clifford group since it can be implemented with three
CNOT gates. It means that universality is not required (gates in the Clifford
groups are not universal for quantum computation) for a unitary to be impossible
to evaluate privately. The impossibility of SWAP essentially follows from no
cloning.

Theorem 4.1 (Impossibility of swapping). There is no correct and statis-
tically private two-party protocol ΠSWAP = (A ,B,O, n(m)) in the bare model.

694 F. Dupuis, J.B. Nielsen, and L. Salvail

Proof. Suppose that there exists an ε-correct, ε-private protocol in the bare
model for SWAP for sufficiently small ε; we will show that this implies that one
of the two players must lose information upon receiving a message, which is
clearly impossible.

We will consider the following particular pure input state: |ϕ〉 := |Ψ0,0〉A0RA⊗
|Ψ0,0〉B0RB , a maximally entangled state between A0 ⊗ B0 and the reference
system RA ⊗ RB that is broken down into two subsystems for convenience.
Furthermore, we will consider the “purified” versions of the honest players for
this protocol; in other words, we will assume that the super-operators A1, . . . ,An

and B1, . . . ,Bn are in fact linear isometries and that therefore the players never
discard any information unless they have to send it to the other party. The global
state ρi(ϕ) after step i is therefore a pure state on Ai ⊗ Bi ⊗RA ⊗RB.

After step i of the protocol (i.e., after the ith message has been sent), Alice’s
state must either depend only on her own original input (if qi = 0 for her
simulator), or on Bob’s original input (if qi = 1). More precisely, by the definition
of privacy (Definition 3.4), we have that

Δ (νi(A , ϕ), trBi [ρi(ϕ)]) ≤ ε ,

where νi(A , ϕ) is A ’s simulated view after step i and ρi(ϕ) is the global state
in the real protocol after step i. Now, suppose that qi = 0, and let |ξ〉 ∈ Ai ⊗
RA ⊗R′

B ⊗Z be a purification of νi(A , ϕ) with Z being the purifying system,
and RB renamed for upcoming technical reasons. The pure state |ξ〉⊗|Ψ0,0〉RBB0

has the same reduced density matrix as νi(A , ϕ) on Ai ⊗RA ⊗RB. Hence, by
Uhlmann’s theorem, there exists a linear isometry V : Bi → B0 ⊗ Z ⊗R′

B such
that

V νi(A , ϕ)V † = |ξ〉〈ξ| ⊗ |Ψ0,0〉〈Ψ0,0|B0RB

and hence
Δ
(
V ρi(ϕ)V †, |ξ〉〈ξ| ⊗ |Ψ0,0〉〈Ψ0,0|B0RB

)
≤ √2ε .

This means that if qi = 0, then Bob is still capable of reconstructing his own
input state after step i by applying V to his working register. Clearly, this means
that q′i = 0 (i.e., Bob’s simulator must also not call SWAP), and therefore, by
the same argument, Alice must also be able to reconstruct her own input with
an isometry VA : Ai → B0 ⊗ Z ⊗R′

A. The same argument also holds if qi = 1:
we then conclude that q′i = 1 and that Alice and Bob must have each other’s
inputs; no intermediate situation is possible. We conclude that, at every step i
of the protocol, qi = q′i.

Now, before the protocol starts, Alice must have her input, and Bob must have
his, hence, q0 = q′0 = 0. At the end, the two inputs must have been swapped,
which means that qn = q′n = 1; there must therefore be a step k in the protocol
after which the two inputs are swapped but not before, meaning that qk = 1 and
qk−1 = 0. But at each step, only one player receives information, which means
that at this step k, the player who received the message must lose the ability to
reconstruct his own input, which is clearly impossible. �	

Secure Two-Party Quantum Evaluation 695

Using this line of reasoning, Theorem 4.1 can be extended to apply to any
protocol for almost any unitary preventing both parties to recover their input
states from its output.

Sufficient Assumptions for Private SWAP. A private protocol for SWAP
in the bare model would exist if the players could rely on special relativity and
a lower bound on their separation in space: they simply send their messages
simultaneously. The fact that messages cannot travel faster than the speed of
light ensures that the messages are independent of each other. It is also straight-
forward to devise a private protocol for SWAP based on commitment schemes.
A sends one half EPR-pair to B while keeping the other half. A then teleports
(without announcing the outcome of the measurement) her register and commits
on the outcome of the Bell measurement. B sends his register to A before she
opens her commitment.

5 The Protocol

We now describe a private protocol for the two-party evaluation of any unitary
U ∈ U(A0 ⊗ B0) denoted by PO

U = (A ∗,B∗,O, nU + 1) where U is represented
by a circuit CU with u gates in UG. We slightly abuse the notation with respect
to the parameter nU + 1. Given circuit CU , we let nU be the number of oracle
calls (including calls to communication oracles). Setting the last parameter to
nU + 1 instead of nU comes from the fact that in our protocol, A ∗ and B∗

have to perform a last operation each in order to get their outcome. These
last operations do not involve a call to any oracle. Let Gj be the j-th gate in
CU = GuGu−1 . . .G1. The protocol is obtained by composing sub-protocols for
each gate similarly to well-known classical constructions[22,9]. Notice that PO

U

will not be presented in the form of Definition 3.1. A ∗ is not necessarily sending
the first and the last messages. This can be done without consequences since
we provide a simulation for each step where a message from the honest party is
received or the output of a call to an ideal functionality is available. Putting PO

U

in the standard form of Definition 3.1 is straightforward and changes nothing to
the proof of privacy.

The evaluation of each gate is performed over shared encrypted states. Each
wire in CU will be updated from initially holding the input ρin ∈ D(A0⊗B0⊗R)
to finally holding the output (U ⊗11R) ·ρin ∈ D(A0⊗B0⊗R). The state of wires
w ∈ A0 ∪ B0 after the evaluation of Gj are stored at A ∗’s or B∗’s according if
w ∈ A0 or w ∈ B0. The shared encryption keys for wire w ∈ A0 ∪ B0 updated
after the evaluation of Gj are denoted by Kj

A ∗(w) = (Xj
A ∗(w), Zj

A ∗(w)) ∈ {0, 1}2
and Kj

B∗(w) = (Xj
B∗(w), Zj

B∗(w)) ∈ {0, 1}2 for A ∗ and B∗ respectively and are
held privately in internal registers of each party.

The final phase of the protocol is where a call to an ideal functionality is
required. A ∗ and B∗ exchange their own part of each encryption key for the
other party’s wires. In order to do this, the key-releasing phase invokes an ideal
SWAP-gate as functionality: OnU : L(AO

nU
⊗ BO

nU
) �→ L(AO

nU
⊗ BO

nU
), where

696 F. Dupuis, J.B. Nielsen, and L. Salvail

OnU (ρ) := SWAP · ρ. Upon joint input state ρin ∈ D(A0 ⊗ B0 ⊗ R), protocol
P

O(U)
U runs the following phases:

Initialization: We assume that A ∗ and B∗ have agreed upon a description of
U by a circuit CU made out of u gates (G1, . . . , Gu) in UG. For all wires
w ∈ A0 ∪ B0, A ∗ and B∗ set their initial encryption keys as K0

A ∗(w) =
(X0

A ∗(w), Z0
A ∗(w)) := (0, 0) and K0

B∗(w) = (X0
B∗(w), Z0

B∗(w)) := (0, 0)
respectively.

Evaluation: For each gate number 1 ≤ j ≤ u, A ∗ and B∗ evaluate Gj as
described in details below. This evaluation results in shared encryption un-
der keys Kj

A ∗(w) = (Xj
A ∗(w), Zj

A ∗(w)) and Kj
B∗(w) = (Xj

B∗(w), Zj
B∗(w)) for

all wires w ∈ A0 ∪ B0, which at that point hold a shared encryption of
((GjGj−1 . . .G1) ⊗ 11R) · ρin. Only the evaluation of the R-gate requires a
call to an ideal functionality (i.e., an and-box).

Key-Releasing: Let AO
nU

and BO
nU

be the set of registers holding respectively
Ku

A ∗(w) = (Xu
A ∗(w), Zu

A ∗(w)) for w ∈ B0 and Ku
B∗(w) = (Xu

B∗(w), Zu
B∗(w))

for w ∈ A0. We assume w.l.g that dimensions of both sets of registers are
identical2:
1. A ∗ and B∗ run the ideal functionality for the SWAP-gate upon registers
AO

nU
and BO

nU
.

2. A ∗ applies the decryption operator KA ∗(w) = (Xu
A ∗(w) ⊕

Xu
B∗(w), Zu

A ∗(w)⊕ Zu
B∗(w)) to each of her wires w ∈ A0.

3. B∗ applies the decryption operator for key KB∗(w) = (Xu
A ∗(w) ⊕

Xu
B∗(w),

Zu
A ∗(w)⊕ Zu

B∗(w)) to each of his wires w ∈ B0.

Swapping for Key-Releasing. Notice that the key-releasing phase only uses
the SWAP-gate with classical input states. The reader might therefore wonder
why this functionality is defined quantumly when a classical swap would work
equally well. The reason is that, perhaps somewhat surprisingly, a classical swap
is a potentially stronger primitive than a quantum swap. From a classical swap
one can build a quantum swap by encrypting the quantum states with classical
keys, exchange the encrypted states using quantum communication, and then
using the classical swap to exchange the keys. Obtaining a classical swap from
a quantum one, however, is not obvious. Suppose that registers A and B should
be swapped classically while holding quantum states beforehand. These registers
could be entangled with some purification registers before being swapped. Using
a quantum swap between A and B will always leave these registers entangled
with the purification registers until they become measured while a classical swap
will ensure that A and B become unentangled with the purification registers after
its invocation. In other words, a classical swap could prevent an adversary from
exploiting entanglement in his attack.

2 Otherwise, add enough registers initially in state |0〉 to the smaller set.

Secure Two-Party Quantum Evaluation 697

The Ideal AND-Box Functionality. As we are going to see next, a call to an
ideal AND-box is required during the evaluation of the R-gate. Unlike the ideal
SWAP used for key-releasing, the AND-box will be modeled by a purely classical
primitive denoted and-box. This is required for privacy of our protocol since
any implementation of it by some unitary will necessarily leak[17]. The quantum
operation implementing it will first measure the two one-qubit input registers in
the computational basis in order to get classical inputs x, y ∈ {0, 1} for A ∗ and
B∗ respectively. The classical output bits are then set to a ∈R {0, 1} for A ∗ and
b = a⊕ xy for B∗.

5.1 Computing over Encrypted States

Before the execution of Gj+1 in CU , A ∗ and B∗ share an encryption of ρj =
((Gj ·Gj−1 · . . . ·G1)⊗ 11R) · ρin in registers3 holding wires w ∈ A0 ∪ B0. Each
wire w ∈ A0 ∪ B0 is encrypted by a shared quantum one-time pad as((⊗

w∈A0∪B0

XXj
A∗(w)⊕Xj

B∗ (w)ZZj
A∗ (w)⊕Zj

B∗(w)

)
⊗ 11R

)
· ρj , (2)

where Kj
A ∗(w) := (Xj

A ∗(w), Zj
A ∗(w)) ∈ {0, 1}2 and Kj

B∗(w) :=
(Xj

B∗(w), Zj
B∗(w)) ∈ {0, 1}2 are two bits of secret keys for A ∗ and B∗ re-

spectively. In other words, wires w ∈ A0 ∪ B0 are encrypted by XxZz where
x = Xj

A ∗(w) ⊕Xj
B∗(w) and z = Zj

A ∗(w) ⊕ Zj
B∗(w) are additive sharings for the

encryption of w. Then, evaluating Gj+1 upon state (2) will produce a new shar-
ing Kj+1

A (w) := (Xj+1
A (w), Zj+1

A (w)) and Kj+1
B (w) := (Xj+1

B (w), Zj+1
B (w)) for the

encryption of state ρj+1 = (Gj+1⊗11R) ·ρj . In the following, we describe how to
update the keys for the wires involved in the current gate to be evaluated—all
other wires retain their previous values.

5.2 Evaluation of Gates in the Pauli and Clifford Groups

Non-trivial Pauli gates (i.e., X,Y, and Z) can easily be computed on en-
crypted quantum states since they commute or anti-commute pairwise. Let
Gj+1 ∈ {X,Y, Z} be the Pauli gate to be executed on wire w. It means that up
to an irrelevant phase factor, it suffices for the owner of w to apply Gj+1 without
the need for neither party to update their shared keys, i.e., Kj+1

A ∗ (w) := Kj
A ∗(w)

and Kj+1
B∗ (w) := Kj

B∗(w).
Now, suppose that Gj+1 ∈ {H,P}. Each of these one-qubit gates applied

upon wire w will be computed by simply letting the party owning w apply Gj+1.
Encryption keys are updated locally as:

H : Kj+1
A ∗ = (Xj+1

A ∗ (w), Zj+1
A ∗ (w)) := (Zi

A ∗(w), Xj
A ∗(w)) ,

Kj+1
B∗ = (Xj+1

B∗ (w), Zj+1
B∗ (w)) := (Zj

B∗(w), Xj
B∗(w)) ,

3 To ease the notation in the following, we assume ρj ∈ D(A0 ⊗ B0) rather than in
D(A0 ⊗ B0 ⊗R). It is easy to see that this can be done without loss of generality.

698 F. Dupuis, J.B. Nielsen, and L. Salvail

P : Kj+1
A ∗ = (Xj+1

A ∗ (w), Zj+1
A ∗ (w)) := (Xj

A ∗(w), Xj
A ∗(w)⊕ Zj

A ∗(w)) ,

Kj+1
B∗ = (Xj+1

B∗ (w), Zj+1
B∗ (w)) := (Xj

B∗(w), Xj
B∗(w)⊕ Zj

B∗(w)) .

Any one-qubit gate in the Clifford group can be implemented the same way using
their own commutation relations with the Pauli operators used for encryption. A
CNOT-gate on local wires can be evaluated in a similar way. That is, whenever
both wires w and w′ feeding the CNOT belong to the same party. Assume that
w is the control wire while w′ is the target and that A ∗ holds them both. Then,
A ∗ simply applies CNOT on wires w and w′. Encryption keys are updated as:

CNOT : Kj+1
A ∗ (w) = (Xj+1

A ∗ (w), Zj+1
A ∗ (w)) := (Xj

A ∗(w), Zj
A ∗(w)⊕ Zj

A ∗(w′)) ,

Kj+1
A ∗ (w′) = (Xj+1

A ∗ (w′), Zj+1
A ∗ (w′)) := (Xj

A ∗(w′)⊕Xj
A ∗(w), Zj

A ∗(w′)) ,

Kj+1
B∗ (w) := Kj

B∗(w) and Kj+1
B∗ (w′) := Kj

B∗(w′) .

When B∗ holds both wires, the procedure is simply performed with the roles of
A ∗ and B∗ reversed.

Nonlocal CNOT. We now look at the case where Gj+1 = CNOT upon wires w
and w′, one of which is owned by A ∗ while the other is owned by B∗. In this
case, interaction is unavoidable for the evaluation of the gate. Let us assume
w.l.g that A ∗ holds the control wire w while B∗ holds the target wire w′ (i.e.,
w ∈ A0 and w′ ∈ B0). We start from a construction introduced in [7] in the
context of fault tolerant quantum computation.

w
Bell

ax
•

|Ψ0,0〉

{ az
•

• Z X Z

|Ψ0,0〉

{
�������	 X X Z

Bell

bx
•

w′
bz

•

� � � � ��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� � � � �

Fig. 2. Evaluation of CNOT

The idea behind the sub-protocol is de-
picted in Fig. 2. The effect of the Bell mea-
surement is to teleport the input state of wires
w and w′ through the CNOT-gate[7]. The input
to the CNOT appearing in the circuit of Fig. 2
is independent of both input wires w and w′

(they are just two half epr-pairs).
The sub-protocol for the evaluation of

CNOT simply consists in executing the circuit
of Fig. 2 without the decryption part (i.e., the
part inside the dotted rectangle). The state
|ξ〉 := (11A ⊗ CNOT ⊗ 11B)|Ψ0,0〉|Ψ0,0〉 can be prepared by one party. We let the
holder of the control wire (i.e., A ∗ in Fig. 2) prepare |ξ〉 before sending its two
rightmost registers to the other party. The decryption in the dotted-rectangle
is used to update the encryption keys according to the measurement outcomes
(ax, az, bx, bz):

CNOT : Kj+1
A ∗ (w) := (Xj

A ∗(w)⊕ ax, Z
j
A ∗(w)⊕ az) ,

Kj+1
B∗ (w) := (X i

B∗(w), Zj
B∗(w)⊕ bz) ,

Kj+1
A ∗ (w′) := (Xj

A ∗(w′)⊕ ax, Z
j
A ∗(w′)) ,

Kj+1
B∗ (w′) := (Xj

B∗(w′)⊕ bx, Z
j
B∗(w′)⊕ bz) .

As for all previous gates, the key updating phase is performed locally without
the need for communication.

Secure Two-Party Quantum Evaluation 699

5.3 Evaluation of the R-Gate

The only gate left in UG is Gj+1 := R. We assume without loss of generality
that A ∗ owns wire w upon which R is applied (i.e., w ∈ A0). The subprotocol
needs a call to an ideal and-box in order to guarantee privacy during the key
updating process. Observe first that the R-gate commutes with Pauli encryption
operator Z. It means that applying the R-gate upon a state encrypted with Z
produces the correct output state still encrypted with Z. However, the equality
R ·X = e−iπ/4Y P ·R tells us that a P-gate should be applied for the decryption of
the output when the input has been encrypted using X . This breaks the invariant
that wires after each gate are all encrypted by Pauli operators. We remove the
P-gate by converting it into a sequence of Pauli operators.

Ignoring an irrelevant global phase, the result of applying R on wire w is

RZZj
A∗ (w)⊕Zi

B∗ (w)XXj
A∗ (w)⊕Xj

B∗ (w) =

ZZj
A∗ (w)⊕Zj

B∗ (w)⊕Xj
A∗ (w)⊕Xj

B∗(w)XXj
A∗ (w)⊕Xj

B∗ (w)PXj
A∗ (w)⊕Xj

B∗ (w)R ,
(3)

Xj
A∗ (w) r r′

w R P X Z

P X Z

Xj
B∗ (w) s s′

Fig. 3. Implementation of the R-gate

To remove the P-gate, we let
each party remove his part of
PXj

A∗ (w)⊕Xj
B∗ (w) in a private in-

teractive process. To do this,
A ∗ picks random bits r and
r′, and B∗ picks random bits s
and s′. A ∗ applies the operator
XrZr′

PXi
A∗ (w) and sends the re-

sulting quantum state to B∗. B∗

applies the operator XsZs′PXj
B∗ (w) and sends the result back to A ∗. The result-

ing protocol is shown in Fig. 3. It starts with A ∗ applying R upon the encrypted
state before the one-round interactive process described above starts.

After A ∗’s application of R, the resulting state is as described on the right-
hand side of (3). At the end of the process (i.e., circuit of Fig. 3), the encryption
becomes:

Zs′XsPXj
B∗ (w)Zr′

XrPXj
A∗ (w)

ZZj
A∗(w)⊕Zj

B∗ (w)⊕Xj
A∗ (w)⊕Xj

B∗ (w)XXj
A∗ (w)⊕Xj

B∗ (w)PXj
A∗ (w)⊕Xj

B∗ (w) .
(4)

Now, we use the fact that Z commutes with P and P ·X = XZ · P. In addition,
since for a, b ∈ {0, 1}, Pa+b = ZabPa⊕b we re-write (4) as

Zs′⊕r′⊕Xj
A∗ (w)⊕Xj

B∗(w)⊕Zj
A∗ (w)⊕Zj

B∗ (w)⊕(r⊕Xj
A∗ (w))·Xj

B∗ (w)

Xs⊕r⊕Xj
A∗ (w)⊕Xj

B∗ (w) .
(5)

Encryption (5) is not a proper additive sharing since the Z-operator de-
pends on (r ⊕ Xj

A ∗(w)) · Xj
B∗(w); the logical and between a value known

only by A ∗ (i.e., r ⊕ Xj
A ∗(w)) and a value known only by B∗ (i.e., Xj

B∗(w)).

700 F. Dupuis, J.B. Nielsen, and L. Salvail

r ⊕ Xj
A∗ (w) ��

and-box

�� α
Xj

B∗ (w) �� �� β

Fig. 4. α ⊕ β = (r ⊕ Xj
A ∗(w)) ·

Xj
B∗(w) from an and-box.

To get back to an additive sharing, A ∗ and
B∗ can simply call the and-box once with
inputs r ⊕ Xj

A ∗(w) and Xj
B∗(w) respectively

as depicted in Fig. 4. After this, A ∗ and
B∗ share a proper encryption of the result-
ing state. The new encryption key for A ∗’s
wire w becomes:

R : Kj+1
A ∗ (w) := (r ⊕Xj

A ∗(w), r′ ⊕ α⊕ Zj
A ∗(w)⊕Xj

A ∗(w)) ,

Kj+1
B∗ (w) := (s⊕Xj

B∗(w), s′ ⊕ β ⊕ Zj
B∗(w)⊕Xj

B∗(w)) .

5.4 On the Necessity of Swapping Privately

One may ask whether relying upon SWAP is necessary for the protocol to be pri-
vate against specious adversaries. For instance, what would happen if one party
announces the encryption keys before the other party? We now show that as soon
as one party gets the other party’s decryption key before having announced its
own, a specious adversary can break privacy.

Consider the protocol for a quantum circuit made out of one single CNOT-
gate. Suppose that A ∗ holds the control wire w while B∗ holds the target wire w′.
Suppose also the key-releasing phase first asks B∗ to announce the encryption
keys KB∗(w) before A ∗ announces KA ∗(w′). Suppose Ã ’s input state is |0〉.

The adversary Ã can now act as follows. Ã runs the protocol for CNOT
without performing the Bell measurement until she receives the encryption key
bz from B∗. Clearly, Ã ’s behavior is specious up to that point since she could
re-produce the honest state by just applying the Bell measurement on her input
state . However, given bz she could also in principle compute the CNOT upon
any input state of her choice. This means that the state she holds after bz has
been announced and before applying her Bell measurement contains information
about B∗’s input. On the one hand, when Ã ’s input state is |0〉 no information
whatsoever on B∗’s input state should be available to her (i.e., in this case
CNOT behaves like the identity). On the other hand, had her input state been
|−〉, information about B∗’s state would have become available since the control
and target wires exchange their roles when the input states are in the Hadamard
basis. However, when Ã ’s input state is |0〉, any simulation of her view can only
call the ideal functionality with input state |0〉. It follows that no simulator can
reproduce Ã ’s state right after the announcement of bz.

6 Proof of Privacy

Privacy of the Evaluation Phase. We start by showing privacy of protocol
PO

U = (A ∗,B∗, nU + 1) at all steps 1 ≤ i ≤ nU − 1 occurring during the
evaluation phase of quantum circuit CU implementing U with u gates in UG.
The last step of the evaluation phase is nU − 1 since only one oracle call is left
to complete the execution. This phase is the easy part of the simulation since

Secure Two-Party Quantum Evaluation 701

all transmissions are independent of the joint input state ρin ∈ D(A0 ⊗B0⊗R).
The lemma below can easily be proven and provides a perfect simulation of any
adversary’s view generated during the evaluation of any gate in CU . No call to
the ideal functionality for U is required.

Lemma 6.1. PO
U = (A ∗,B∗, nU +1) admits a simulator S (Ã) for any adver-

sary Ã (not necessarily specious) that does not call the ideal functionality for
U ∈ U(A0⊗B0) such that for any joint input state ρin ∈ D(A0⊗B0⊗R), every
1 ≤ i ≤ nU − 1:

Δ
(
νi(Ã , ρin), trBi

(
ρ̃i(Ã , ρin)

))
= 0 .

The same holds against any adversary B̃.

Privacy of the Key-Releasing Phase. Before proving privacy of the key-
releasing phase, we need the following lemma establishing that at the end of the
protocol, specious adversaries must leave their extra working registers (used to
implement the attack) independent of the joint input state. In other words, no
extra information is available to the adversary at the very end of any correct
protocol. Hence, if the adversary can break the privacy of a protocol, then he
must “rush” to do so before the last step.

Lemma 6.2 (Rushing Lemma). Let ΠO
U = (A ,B, n) be a correct protocol

for the two party evaluation of U . Let Ã be any ε–specious adversary in ΠO
U .

Then, there exists an isometry T : Ãn → An ⊗ Â and a mixed state "̃ ∈ D(Â)
such that for all joint input states ρin ∈ D(A0 ⊗ B0 ⊗R),

Δ
(
(T ⊗ 11Bn⊗R) ·

(
[Ã � B](ρin)

)
, "̃⊗ (U ⊗ 11R) · ρin

)
≤ 12

√
2ε .

The same also applies to any ε–specious adversary B̃.

Proof. We shall only prove the statement for an ε–specious Ã ; the statement for
an ε–specious B̃ is identical. Furthermore, by convexity, it is sufficient to prove
the theorem for pure ρin.

Consider any pair of pure input states |ψ1〉 and |ψ2〉 in A0 ⊗ B0 ⊗R. Now, let
R′ := R ⊗ R2, where R2 = span{|1〉, |2〉} represents a single qubit, and define
the state |ψ〉 := 1√

2
(|ψ1〉|1〉+ |ψ2〉|2〉) ∈ A0 ⊗ B0 ⊗R′. Note that trR2(|ψ〉〈ψ|) =

1
2 |ψ1〉〈ψ1|+ 1

2 |ψ2〉〈ψ2|. Due to the correctness of the protocol and to the specious-
ness of Ã , there exists a quantum operation Tn : L(Ãn)→ L(An) such that

Δ
(
(Tn ⊗ 11L(Bn⊗R′))([Ã � B](|ψ〉〈ψ|)), (U ⊗ 11R′) · |ψ〉〈ψ|

)
≤ 2ε .

Now, consider any isometry T : Ãn → An ⊗ Â such that Tn(σ) = trÂ(TσT †)
for every σ ∈ L(Ãn) — in other words, any operation that implements Tn while
keeping any information that would otherwise be destroyed in Â. By Uhlmann’s
theorem, there must exist a state "̃ ∈ D(Â) such that

Δ
(
(T ⊗ 11Bn⊗R′) ·

(
[Ã � B](|ψ〉〈ψ|)

)
, "̃⊗ ((U ⊗ 11R′) · |ψ〉〈ψ|)

)
≤ 2
√

2ε .

702 F. Dupuis, J.B. Nielsen, and L. Salvail

Now, the trace distance is monotonous under completely positive, trace non-
increasing maps. In particular, we can apply the projector P1 = 11L(An⊗Bn⊗R)⊗
|1〉〈1| to both states in the above trace distance and the inequality will still hold.
In other words, we project both states onto |1〉 on R2, thereby turning |ψ〉〈ψ|
into 1

2 |ψ1〉〈ψ1|. Factoring out the 1
2 , we get that

Δ
(
(T ⊗ 11Bn⊗R) ·

(
[Ã � B](|ψ1〉〈ψ1|)

)
, "̃⊗ ((U ⊗ 11R) · |ψ1〉〈ψ1|)

)
≤ 4
√

2ε .

Likewise, projecting onto |2〉 yields

Δ
(
(T ⊗ 11Bn⊗R) ·

(
[Ã � B](|ψ2〉〈ψ2|)

)
, "̃⊗ ((U ⊗ 11R) · |ψ2〉〈ψ2|)

)
≤ 4
√

2ε .

Our only problem at this point is that "̃ in principle depends on |ψ1〉 and |ψ2〉.
However, repeating the above argument with |ψ1〉 and |ψ3〉 for any |ψ3〉 will yield
a "̃′ with

Δ
(
(T ⊗ 11Bn⊗R) ·

(
[Ã � B](|ψ1〉〈ψ1|)

)
, "̃′ ⊗ ((U ⊗ 11R) · |ψ1〉〈ψ1|)

)
≤ 4
√

2ε

and hence, by the triangle inequality, Δ("̃, "̃′) ≤ 8
√

2ε. Therefore, for any state
|ϕ〉 ∈ A0 ⊗ B0 ⊗R, there exists a state ρ̃ ∈ Â with Δ(ρ̃, "̃) ≤ 8

√
2ε such that

Δ
(
(T ⊗ 11Bn⊗R) ·

(
[Ã � B](|ϕ〉〈ϕ|)

)
, ρ̃⊗ ((U ⊗ 11R) · |ϕ〉〈ϕ|)

)
≤ 4
√

2ε .

The lemma then follows by the triangle inequality:

Δ
(
(T ⊗ 11Bn⊗R) ·

(
[Ã � B](|ϕ〉〈ϕ|

)
, "̃⊗ ((U ⊗ 11R) · |ϕ〉〈ϕ|)

)
≤ Δ

(
(T ⊗ 11Bn⊗R) ·

(
[Ã � B](|ϕ〉〈ϕ|)

)
, ρ̃⊗ ((U ⊗ 11R) · |ϕ〉〈ϕ|)

)
+Δ(ρ̃, "̃)

≤ 4
√

2ε+ 8
√

2ε = 12
√

2ε . �	
In order to conclude the privacy of PO

U , families S (Ã) and S (B̃) need one
more simulator each: SnU ∈ S (Ã) and S ′

nU
∈ S (B̃) corresponding to the

simulation of the key-releasing phase. This time, these simulators need to query
the ideal functionality for U and also need the adversary to be specious. We
show that privacy of the key-releasing phase follows from the “Rushing Lemma”
(Lemma 6.2). This is the role of the ideal SWAP to make sure that before the
adversary gets the output of the computation, the information needed by the
honest player to recover its own output has been given away by the adversary.

It should be mentioned that we’re not explicitly simulating the final state of
the adversary since simulating the SWAP allows also to get Ã ’s final state by
simply adding Ã ’s last quantum operation to the simulated view. We therefore
set step nU in PO

U to be the step reached after the call to SWAP. This abuses
the notation a bit since after SWAP, Ã and B∗ must each apply a final quan-
tum operation with no more oracle call. We’ll denote by ÃnU+1 and B∗

nU +1
these last operations allowing to reconstruct the output of the computation (no
comunication).

Secure Two-Party Quantum Evaluation 703

Lemma 6.3. For any ε-specious quantum adversary Ã against PO
U =

(A ∗,B∗, nU + 1), there exist simulators SnU ∈ S (Ã) such that for all
ρin ∈ D(A0 ⊗ B0 ⊗R),

Δ
(
νnU (Ã , ρin), trBnU

(
ρ̃nU (Ã , ρin)

))
≤ 24

√
2ε .

Simulator SnU calls the ideal functionality for U and can be used directly to
simulate step nU + 1 as well. The same holds for adversary B̃.

Proof (sketch). We only prove privacy against adversary Ã , privacy against
B̃ follows directly since the key-releasing phase is symmetric. The idea behind
the proof is to run Ã and B∗ upon a dummy joint input state until the end
of the protocol. Since the adversary is specious, it can re-produce the honest
state at the end. The Rushing Lemma tells us that at this point, the output
of the computation is essentially in tensor product with all the other registers.
Moreover, the state of all other registers is independent of the input state upon
which the protocol is executed. The dummy output can then be replaced by the
output of the ideal functionality for U before Ã goes back to the stage reached
just after SWAP.

More formally, we define a simulator SnU ∈ S (Ã) producing Ã ’s view just
after the call to SWAP. Let ÃSWAP ∈ L(A0, ÃnU) and B∗

SWAP ∈ L(B0, B̃nU)
be the quantum operations run by Ã and B∗ respectively until after SWAP
is executed. Notice that at this point, Ã ’s and B∗’s registers do not have any
further oracle registers since no more communication or oracle call will take
place. Let ÃnU ∈ L(ÃnU , ÃnU+1 ⊗ Z) be the isometry implementing Ã ’s last
quantum operation taking place after the call to SWAP (and producing her final
state) and let BnU ∈ L(BnU ,BnU+1 ⊗W) be the isometry implementing B∗’s
last quantum operation. Finally, let T ∈ L(ÃnU+1,AnU+1 ⊗ Â) be the isometry
implementing TnU+1 as defined in Lemma 6.2 (i.e., the transcript produced at
the very end of the protocol). As usual, let ρin ∈ D(A0 ⊗ B0 ⊗R) be the joint
input state. The simulator SnU performs the following operations:

1. SnU generates the quantum state σ(φ∗) = [ÃSWAP � B∗
SWAP](|φ∗〉〈φ∗|) ∈

D(ÃnU ⊗BnU) implementing Ã interacting with B∗ until SWAP is applied.
The execution is performed upon a predetermined (dummy) arbitrary input
state |φ∗〉 ∈ A0 ⊗ B0.

2. SnU sets σ′(φ∗) = (T ÃnU ⊗BnU) ·σ(φ∗) ∈ D(AnU +1⊗BnU+1⊗Z⊗Â⊗W).
3. SnU replaces register AnU+1 ≈ A0 by A ∗’s output of the ideal functionality

for U evaluated upon ρin. That is, SnU generates the state σ′(ρin) = (U ⊗
11R) · ρin ⊗ trAnU +1BnU+1(σ′(φ∗)) ∈ D(AnU +1 ⊗BnU+1 ⊗R⊗Z ⊗ Â ⊗W).

4. SnU finally sets νnU (Ã , ρin) = trBnU+1W((T ÃnU ⊗ 11BnU+1R)† · σ′(ρin)) ∈
D(ÃnU ⊗R).

Notice that execution of the ideal SWAP ensures that the keys swapped are
independent of each other and of the joint input state ρin. This is because for
any input state, all these keys are uniformly distributed bits if they are outcomes

704 F. Dupuis, J.B. Nielsen, and L. Salvail

of Bell measurements and otherwise are set to 0. By Lemma 6.2 and the fact
that Ã is ε–specious, we have:

Δ
(
trZÂW (σ′(φ∗)) , "̃⊗ U · |φ∗〉〈φ∗|) ≤ 12

√
2ε and

Δ
(
(TnU+1 ⊗ 11L(BnU+1))

(
[Ã � B∗](ρin)

)
, "̃⊗ U · ρin

)
≤ 12

√
2ε .

It follows using the triangle inequality that,

Δ
(
(TnU+1 ⊗ 11L(BnU+1))

(
[Ã � B∗](ρin)

)
, trZÂW (σ′(ρin))

)
≤ 24

√
2ε . (6)

Using the fact that isometries cannot increase the trace-norm distance and that
(T ÃnU)† allows Ã to go back from the end of the protocol to the step reached
after SWAP, we get from (6) that

Δ
(
νnU (Ã , ρin), trBnU

(
ρ̃nU (Ã , ρin)

))
=

Δ
(
(TnU+1 ⊗ 11L(BnU+1))

(
[Ã � B∗](ρin)

)
, trZÂW (σ′(ρin))

)
≤ 24

√
2ε .

The proof of the statement follows. �	

7 Main Result and Open Questions

Putting Lemma 6.1 and Lemma 6.3 together gives the desired result:

Theorem 7.1 (Main Result). Protocol PO
U is statistically private against any

statistically specious quantum adversary and for any U ∈ U(A0⊗B0). If U is in
the Clifford group then the only non-trivial oracle call in O is one call to an ideal
SWAP. If U is not in the Clifford group then O contains an additional oracle
call to and-box for each R-gate in the circuit for U .

It should be mentioned that it is not too difficult to modify our protocol in order
to privately evaluate quantum operations rather than only unitary transforms.
Classical two party computation together with the fact that quantum operations
can be viewed as unitaries acting in larger spaces can be used to achieve this
extra functionality. Privacy can be preserved by keeping these extra registers
encrypted after the execution of the protocol. We leave this discussion to the
full version of the paper.

A few interesting questions remain open:

– It would be interesting to know whether there exists a unitary transform that
can act as a universal primitive for private two-party evaluation of unitaries.
This would allow to determine whether classical cryptographic assumptions
are required for this task.

– Finally, is there a way to compile quantum protocols secure against specious
adversaries into protocols secure against arbitrary quantum adversaries? An
affirmative answer would allow to simplify greatly the design of quantum
protocols. Are extra assumptions needed to preserve privacy against any
adversary?

Secure Two-Party Quantum Evaluation 705

Acknowledgements

The authors would like to thank the referees for their comments and suggestions.
We would also like to thank Thomas Pedersen for numerous helpful discussions
in the early stage of this work.

References

1. Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation with constant
error. In: 29th Annual ACM Symposium on Theory of Computing (STOC), pp.
176–188 (1997)

2. Ambainis, A., Mosca, M., Tapp, A., de Wolf, R.: Private quantum channels. In:
41st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp.
547–553 (2000)

3. Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure mul-
tiparty quantum computation with (only) a strict honest majority. In: 47th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 249–260
(2006)

4. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation
(December 2009), http://arxiv.org/abs/0807.4154

5. Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation.
In: 34th Annual ACM Symposium on Theory of Computing (STOC), pp. 643–652
(2002)

6. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum
computation using teleportation and single-qubit operations. Nature 402, 390–393
(1999)

7. Gottesman, D., Chuang, I.L.: Quantum teleportation is a universal computational
primitive (August 1999), http://arxiv.org/abs/quant-ph/9908010

8. Gutoski, G., Watrous, J.: Quantum interactive proofs with competing provers.
In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 605–616.
Springer, Heidelberg (2005)

9. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th Annual ACM
Symposium on Theory of Computing (STOC), pp. 20–31 (1988)

10. Lo, H.-K.: Insecurity of quantum secure computations. Physical Review A 56(2),
1154–1162 (1997)

11. Lo, H.-K., Chau, H.F.: Is quantum bit commitment really possible? Physical Re-
view Letters 78, 3410–3413 (1997)

12. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys-
ical Review Letters 78, 3414–3417 (1997)

13. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

14. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Foundations of
Physics 24(3), 379–385 (1994)

15. Popescu, S., Rohrlich, D.: Causality and nonlocality as axioms for quantum me-
chanics. In: Symposium on Causality and Locality in Modern Physics and Astron-
omy: Open Questions and Possible Solutions (1997),
http://arxiv.org/abs/quant-ph/9709026

16. Renner, R., König, R.: Universally composable privacy amplification against quan-
tum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425.
Springer, Heidelberg (2005)

http://arxiv.org/abs/0807.4154
http://arxiv.org/abs/quant-ph/9908010
http://arxiv.org/abs/quant-ph/9709026

706 F. Dupuis, J.B. Nielsen, and L. Salvail

17. Salvail, L., Sotáková, M., Schaffner, C.: On the power of two-party quantum cryp-
tography. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 70–87.
Springer, Heidelberg (2009)

18. Shor, P.W.: Fault-tolerant quantum computation. In: 37th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pp. 56–65 (1996)

19. Smith, A.: Techniques for secure distributed computing with quantum data. Pre-
sented at the Field’s institute Quantum Cryptography and Computing Workshop
(October 2006)

20. Watrous, J.: Limits on the power of quantum statistical zero-knowledge. In: 43rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 459–
468 (2002)

21. Wolf, S., Wullschleger, J.: Oblivious transfer and quantum non-locality. In: Inter-
national Symposium on Information Theory (ISIT 2005), pp. 1745–1748 (2005)

22. Yao, A.: How to generate and exchange secrets. In: 27th Annual IEEE Symposium
on Foundations of Computer Science (FOCS) (1986)

On the Efficiency of Classical and Quantum
Oblivious Transfer Reductions

Severin Winkler1 and Jürg Wullschleger2

1 ETH Zurich, Switzerland
swinkler@ethz.ch

2 University of Bristol, United Kingdom
j.wullschleger@bristol.ac.uk

Abstract. Due to its universality oblivious transfer (OT) is a primitive
of great importance in secure multi-party computation. OT is impos-
sible to implement from scratch in an unconditionally secure way, but
there are many reductions of OT to other variants of OT, as well as
other primitives such as noisy channels. It is important to know how
efficient such unconditionally secure reductions can be in principle, i.e.,
how many instances of a given primitive are at least needed to imple-
ment OT. For perfect (error-free) implementations good lower bounds
are known, e.g. the bounds by Beaver (STOC ’96) or by Dodis and Mi-
cali (EUROCRYPT ’99). However, in practice one is usually willing to
tolerate a small probability of error and it is known that these statisti-
cal reductions can in general be much more efficient. Thus, the known
bounds have only limited application. In the first part of this work we
provide bounds on the efficiency of secure (one-sided) two-party compu-
tation of arbitrary finite functions from distributed randomness in the
statistical case. From these results we derive bounds on the efficiency
of protocols that use (different variants of) OT as a black-box. When
applied to implementations of OT, our bounds generalize known results
to the statistical case. Our results hold in particular for transformations
between a finite number of primitives and for any error. Furthermore, we
provide bounds on the efficiency of protocols implementing Rabin OT.

In the second part we study the efficiency of quantum protocols imple-
menting OT. Recently, Salvail, Schaffner and Sotakova (ASIACRYPT ’09)
showed that most classical lower bounds for perfectly secure reductions of
OT to distributed randomness still hold in a quantum setting. We present
a statistically secure protocol that violates these bounds by an arbitrarily
large factor. We then present a weaker lower bound that does hold in the
statistical quantum setting. We use this bound to show that even quan-
tum protocols cannot extend OT. Finally, we present two lower bounds
for reductions of OT to commitments and a protocol based on string com-
mitments that is optimal with respect to both of these bounds.

Keywords: Unconditional Security, Oblivious Transfer, Lower Bounds,
Quantum Cryptography, Two-Party Computation.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 707–723, 2010.
c© International Association for Cryptologic Research 2010

708 S. Winkler and J. Wullschleger

1 Introduction

Secure multi-party computation allows two or more distrustful players to jointly
compute a function of their inputs in a secure way [48]. Security here means that
the players compute the value of the function correctly without learning more
than what they can derive from their own input and output.

A primitive of central importance in secure multi-party computation is obliv-
ious transfer (OT), as it is sufficient to execute any multi-party computation
securely [25,27]. The original form of OT ((1

2)-RabinOT1) has been introduced
by Rabin in [35]. It allows a sender to send a bit x, which the receiver will get with
probability 1

2 . Another variant of OT, called one-out-of-two bit-OT (
(2
1

)
-OT1)

was defined in [23] (see also [39]). Here, the sender has two input bits x0 and x1.
The receiver gives as input a choice bit c and receives xc without learning x1−c.
The sender gets no information about the choice bit c. Other important variants
of OT are

(
n
t

)
-OTk where the inputs are strings of k bits and the receiver can

choose t < n out of n secrets and (p)-RabinOTk where the inputs are strings of
k bits and the erasure probability is p ∈ [0, 1].

If the players have access to noiseless (classical or quantum) communica-
tion only, it is impossible to implement unconditionally secure OT, i.e. secure
against an adversary with unlimited computing power. It has been shown in
[13] that (p)-RabinOTk and

(2
1

)
-OT1 are equally powerful, i.e., one can be im-

plemented from the other. Numerous reductions between different variants of(
n
1

)
-OTk are known as well:

(2
1

)
-OTk can be implemented from

(2
1

)
-OT1 [5,15,9,8],

and
(
n
1

)
-OTk can be implemented from

(2
1

)
-OTk′

[7,9,21,44]. There has also been
a lot of interest in reductions of OT to weaker primitives. It is known that OT
can be realized from noisy channels [12,14,18,47], noisy correlations [42,33], or
weak variants of OT [12,10,20,8,19,46].

In the quantum world, it has been shown in [6,49,17,38] that OT can be
implemented from black-box commitments, something that is impossible in the
classical setting.

Given these positive results it is natural to ask how efficient such reductions
can be in principle, i.e., how many instances of a given primitive are needed to
implement OT.

1.1 Previous Results

In the classical setting, several lower bounds for OT reductions are known. The
first impossibility result for unconditionally secure reductions of OT has been
presented in [2]. There it has been shown that the number of

(2
1

)
-OT1 cannot be

extended1, i.e., there does not exist a protocol using n instances of
(2
1

)
-OT1 that

perfectly implements m > n instances. Lower bounds for the number of instances
of OT needed to perfectly implement other variants of OT have been presented
in [21] (see also [31]) and generalized in [44,43]. These bounds apply to both
the semi-honest (where dishonest players follow the protocol) and the malicious
1 Note that in the computational setting, OT can be extended, see [2,26].

On the Efficiency of Classical and Quantum Oblivious Transfer Reductions 709

(where dishonest players behave arbitrarily) model. If we restrict ourselves to
the malicious model these bounds can be improved, as shown in [28]. Lower
bounds on the number of ANDs needed to implement general functions have
been presented in [4].

All these results only consider perfect protocols and do not give much insight
into the case of statistical implementations. As pointed out in [28], their result
only applies to the perfect case, because there is a statistical protocol that is
more efficient [16]. The bounds for perfect and statistical protocols can in fact
be very far apart, as shown in [4]: The amount of OTs needed to compute the
equality function is exponentially bigger in the perfect case than in the statistical
case. Therefore, it is not true in general that a bound in the perfect case implies
a similar bound in the statistical case.

So far very little is known in the statistical case. In [1] a proof sketch of
a lower bound for statistical implementations of

(2
1

)
-OTk has been presented.

However, this result only holds in the asymptotic case, where the number n of
resource primitives goes to infinity and the error goes to zero as n goes to infinity.
In [4] a non-asymptotic lower bound on the number of ANDs needed for one-
sided secure computation of arbitrary functions with boolean output has been
shown. This result directly implies lower bounds for protocols that use

(
n
t

)
-OTk

as a black-box. However, besides being restricted to boolean-valued functions
this result is not strong enough to show optimality of several known reductions
and it does not provide bounds for reductions to randomized primitives such as
(1
2)-RabinOT1.
In the quantum setting almost all negative results known show that a certain

primitive is impossible to implement from scratch. Commitment has been shown
to be impossible in the quantum setting in [32,30]. Using a similar proof, it
has been shown in [29] that general one-sided two-party computation and in
particular oblivious transfer are also impossible to implement securely in the
quantum setting.

To our knowledge, the only lower bounds for quantum protocols where the
players have access to resource primitives (such as different variants of OT) have
been presented in [36] where Theorem 4.7 shows that important lower bounds
for classical protocols also apply to perfectly secure quantum reductions.

1.2 Contribution

Classical Reductions. In Section 2 we consider statistically secure protocols in
the semi-honest model that compute a function between two parties from trusted
randomness distributed to the players. We provide two bounds on the efficiency of
such reductions that allow in particular to derive bounds on the minimal number
of
(
n
t

)
-OTk or (p)-RabinOTk needed to compute any given function securely.

Our bounds do not involve any asymptotics, i.e., we consider a finite number of
resource primitives and our results hold for any error.

In Section 2.3 we provide an additional bound for the special case of statistical
implementations of

(
n
1

)
-OTk. Note that for implementations of OT bounds in the

710 S. Winkler and J. Wullschleger

semi-honest model imply similar bounds in the malicious model2. The bounds
for implementations of

(
n
1

)
-OTk (Theorem 3) imply the following corollary that

gives a general bound on the conversion rate between different variants of OT.

Corollary 1. For any reduction that implements M instances of
(
N
1

)
-OTK from

m instances of
(
n
1

)
-OTk in the semi-honest model with an error of at most ε, we

have

m

M
≥ max

(
(N − 1)K
(n− 1)k

,
K

k
,
logN
logn

)
− 7NK · (ε + h(ε)) .

Corollary 1 generalizes the lower bounds from [21,44,43] to the statistical case
and is strictly stronger than the impossibility bounds from [1]. If we let M =
m + 1, N = n = 2 and K = k = 1, we obtain a stronger version of Theorem 3
from [2] which states that OT cannot be extended.

In the full version of this paper [40], we also derive new bounds in the statisti-
cal case for protocols implementing (p)-RabinOTk, and show that our bounds im-
ply bounds for implementations of oblivious linear function evaluation (OLFE).

Our lower bounds show that the following protocols are (close to) optimal in
the sense that they use the minimal number of instances of the given primitive.

– The protocol in [9,21] which uses N−1
n−1 instances of

(
n
1

)
-OTk to implement(

N
1

)
-OTk is optimal.

– The protocol in [44] which uses t instances of
(
n
1

)
-OTknt−1

to implement(
nt

1

)
-OTk is optimal.

– In the semi-honest model, the trivial protocol that implements
(2
1

)
-OTk from

k instances of
(2
1

)
-OT1 is optimal. In the malicious case, the protocol in [16]

uses asymptotically (as k goes to infinity) the same amount of instances and
is therefore asymptotically optimal.

– The protocol in [37] that implements
(2
1

)
-OTk from (1

2)-RabinOT1 in the
malicious model is asymptotically optimal.

Quantum Reductions. While previous result show that quantum protocols show
similar limits as classical protocols for reductions between different variants of
oblivious transfer, we present in Section 3.1 a statistically secure protocol that
violates the classical bounds and the bound for perfectly secure quantum proto-
cols by an arbitrarily large factor. More precisely, we prove that, in the quantum
setting, string oblivious transfer can be reversed much more efficiently than by
any classical protocol.

Theorem 4. There exists a protocol that implements
(2
1

)
-OTk′

with an error
ε from κ = O(log 1/ε) instances of

(2
1

)
-OTk in the opposite direction where

k′ = Ω(k) if k = Ω(κ).
2 For implementations of OT (and any other so-called deviation revealing functional-

ity) security in the malicious model implies security in the semi-honest model [34].
In [40] we show this implication for

(
n
1

)
-OTk and (p)-RabinOTk with explicit bounds

on the simulation errors.

On the Efficiency of Classical and Quantum Oblivious Transfer Reductions 711

For classical and perfect quantum protocols k′ is essentially upper bounded by
κ. In Theorem 5 we show that a weaker lower bound for quantum reductions
holds also for quantum protocols in the statistical setting. Theorem 5 implies
that quantum protocols cannot extend oblivious transfer, i.e., we show that there
exists a constant c > 0 such that any quantum reduction of m+ 1 instances of(2
1

)
-OT1 to m instances of

(2
1

)
-OT1 must have an error of at least c

m .
Furthermore, Theorem 5 implies a lower bound for reductions between differ-

ent variants of OT.

Corollary 2. For any quantum reduction that implements
(2
1

)
-OTK from m

instances of
(
n
1

)
-OTk with an error smaller than ε, we have

m ≥ K

2nk + 2 logn
− 3K

√
ε− 13h(

√
ε) .

Finally, we also derive a lower bound on the number of commitments (Theorem 7)
and on the total number of bits the players need to commit to (Theorem 6) in
any ε-secure implementation of

(2
1

)
-OTk from commitments.

Corollary 3. A protocol that implements
(2
1

)
-OTk, using commitments only,

with an error of at most ε must use at least log(1/ε)−6 commitments and needs
to commit to at least k/2− 12k

√
ε− 7h(

√
ε) bits in total.

Corollary 3 implies that bit commitments cannot be extended. More precisely,
there exists a constant c > 0 such that any protocol that implements m + 1
bit commitments out of m bit commitments must have an error of at least c

m .
Finally, in Section 8 we show that there exists a protocol that is essentially
optimal with respect to Corollary 3. We use the protocol from [6,17], but let
the receiver commit to blocks of measurements at once, to prove the following
theorem.

Theorem 8. There exists a quantum protocol that implements
(2
1

)
-OTk with

an error of at most ε, using κ = O(log 1/ε) commitments to strings of size b,
where κb = O(k + log 1/ε).

All proofs are in the full version of this work [40].

1.3 Notation

We use calligraphic letters to denote sets. We denote the distribution of a random
variable X over X by PX . A conditional distribution PX|Y (x, y) over X × Y
defines for every y ∈ Y a distribution PX|Y =y. PX|Y can be seen as a randomized
function that has input y and output x. The conditional Shannon entropy of X
given Y is defined as3

H(X | Y) := −
∑
x,y

PXY (x, y) logPX|Y (x, y) ,

3 All logarithms are binary, and we use the convention that 0 · log 0 = 0.

712 S. Winkler and J. Wullschleger

and the mutual information of X and Y as I(X ;Y) = H(X)−H(X | Y). We use
the notation h(p) = −p log p− (1− p) log(1− p) for the binary entropy function.
Furthermore, we write [k] to denote the set {1, . . . , k}. If x = (x1, . . . , xn) and
T := {i1, . . . , ik} ⊆ [n], then x|T denotes the substring (xi1 , xi2 , . . . , xik) of x. If
x, y ∈ {0, 1}n, then x⊕ y denotes the bitwise XOR of x and y.

1.4 Primitives and Randomized Primitives

In the following we consider two-party primitives that take inputs x from Alice
and y from Bob and outputs x̄ to Alice and ȳ to Bob, where (x̄, ȳ) are distributed
according to PX̄Ȳ |XY . For simplicity, we identify such a primitive with PX̄Ȳ |XY .
If the primitive has no input and outputs values (u, v) distributed according
to PUV , we may simply write PUV . If the primitive is deterministic and only
Bob gets an output, i.e., if there exists a function f : X × Y → Z such that
PX̄Ȳ |X=x,Y =y(⊥, f(x, y)) = 1 for all x, y, then we identify the primitive with the
function f .

Examples of such primitives are
(
n
t

)
-OTk, (p)-RabinOTk, EQn and IPn.

–
(
n
t

)
-OTk is the primitive where Alice has an input x = (x0, . . . , xn−1) ∈

{0, 1}k·n, and Bob has an input c ⊆ {0, . . . , n− 1} with |c| = t. Bob receives
y = x|c ∈ {0, 1}tk.

– (p)-RabinOTk is the primitive where Alice has an input x ∈ {0, 1}k. Bob
receives y which is equal to x with probability p and Δ otherwise.

– The equality function EQn : {0, 1}n × {0, 1}n → {0, 1} is defined as
EQn(x, y) = 1 if x = y and EQn(x, y) = 0 otherwise.

– The inner product modulo two function IPn : {0, 1}n × {0, 1}n → {0, 1}n is
defined as IPn(x, y) = ⊕n

i=1xiyi.

We often allow a protocol to use a primitive PUV that does not have any
input. This is enough to model reductions to

(
n
t

)
-OTk and (p)-RabinOTk, since

these primitives are equivalent to distributed randomness PUV , i.e., there exist
two protocols that are secure in the semi-honest model: one that generates the
distributed randomness using one instance of the primitive, and one that imple-
ments one instance of the primitive using the distributed randomness as input to
the two parties. The fact that

(2
1

)
-OT1 is equivalent to distributed randomness

has been presented in [6,3]. The generalization to
(
n
t

)
-OTk is straightforward.

The randomized primitives are obtained by simply choosing all inputs uniformly
at random. For (p)-RabinOTk the implementation is straightforward. Hence, any
protocol that uses some instances of

(
n
t

)
-OTk or (p)-RabinOTk can be converted

into a protocol that only uses a primitive PUV without any input.

2 Lower Bounds for Classical Two-Party Computation

2.1 Protocols and Security in the Semi-honest Model

We will consider the semi-honest model, where both players behave honestly,
but may save all the information they get during the protocol to obtain extra

On the Efficiency of Classical and Quantum Oblivious Transfer Reductions 713

information about the other player’s input or output. A protocol securely im-
plements PX̄Ȳ |XY with an error of ε, if the entire view of each player can be
simulated4 with an error of at most ε in an ideal setting, where the players only
have black-box access to the primitive PX̄Ȳ |XY . Note that this simulation is not
allowed to change neither the input nor the output. (See the full version [40]
for a formal definition.) This definition of security follows Definition 7.2.1 from
[24], but is adapted to the case of computationally unbounded adversaries and
statistical indistinguishability.

2.2 Lower Bounds for Secure Function Evaluation

We will now give lower bounds for ε-secure implementations of functions f :
X × Y → Z from a primitive PUV in the semi-honest model. A function f has
no redundant inputs for Alice if

∀x �= x′ ∈ X ∃y ∈ Y : f(x, y) �= f(x′, y) . (2.1)

Clearly, a function f can be computed from a primitive PUV with an error ε in
the semi-honest model if and only if the function f ′ obtained by combining all
redundant inputs for Alice can be computed with the same error.

Let Alice’s and Bob’s inputs X and Y be independent and uniformly dis-
tributed and let M be the whole communication in the protocol. Loosely speak-
ing, Alice must enter (almost) all the information about X into the protocol
as follows: If Bob’s input is y, then he must be able to compute f(X, y). But,
as Alice must not learn y, she has to enter all information about f(X, y) into
the protocol independent of Bob’s input. Thus, Alice must input all information
about f(X, y) into the protocol for all y. If f satisfies (2.1), then {f(x, y) : y ∈ Y}
allows to compute x. Thus, Alice must enter all information about X into the
protocol. More precisely, it can be shown that

H(X | UM,Y = y) ≤ (3|Y| − 2)(ε log |Z|+ h(ε)) .

Since the protocol is secure against Bob, one can prove that for all y

H(X | VM, Y = y) ≥ H(X | f(X, y))− ε log |X | − h(ε) .

The following theorem that gives a lower bound on the conditional entropy of
PUV can then be obtained from these two inequalities.

Theorem 1. Let f : X ×Y → Z be a function that satisfies (2.1). Let a protocol
having access to PUV be an ε-secure implementation of f in the semi-honest
model. Then

H(U | V) ≥ max
y

H(X | f(X, y))− 3|Y|(ε log |Z|+ h(ε))− ε log |X | .

4 The simulation is not required to be efficient.

714 S. Winkler and J. Wullschleger

Note that for some functions the bound of Theorem 1 can be improved by
maximizing over all restrictions of the function f , i.e., over all functions f ′(x, y) :
X ′ × Y ′ → Z ′ where X ′ ⊂ X , Y ′ ⊂ Y and Z ′ ⊂ Z with f ′(x, y) = f(x, y) that
still satisfy condition (2.1).

Any lower bound for f ′ implies a lower bound for f . The following corollaries
follow immediately from Theorem 1.

Corollary 4. Let a protocol having access to PUV be an ε-secure implementation
of
(
n
t

)
-OTk in the semi-honest model. Then

H(U | V) ≥ (n− t)k − 3�n/t�(εtk + h(ε))− εnk .

Corollary 5. Let a protocol having access to PUV be an ε-secure implementation
of EQn in the semi-honest model. Then

H(U |V) ≥ max
0<k≤n

((1 − ε)k − 3 · 2k(ε + h(ε))− 1 .

There exists a secure reduction of EQn to EQk [4]: Alice and Bob compare k
inner products of their inputs with random strings using EQk. This protocol
is secure in the semi-honest model with an error5 of at most 2−κ. Since there
exists a circuit to implement EQk with k XOR and k AND gates, it follows from
[25] that EQk can be securely implemented using k instances to

(4
1

)
-OT1 or 3k

instances of
(2
1

)
-OT1 in the semi-honest model. Since m instances of

(2
1

)
-OT1

are equivalent to a primitive PUV with H(U |V) = m, the bound of Corollary 5
is optimal up to a factor of 3. This implies that the term |Y| in the statement
of the bound given in Theorem 1 cannot be reduced significantly, i.e., it is not
possible to replace |Y| with log |Y| for example.

Corollary 6. Let a protocol having access to a primitive PUV be an ε-secure
implementation of the inner product function IPn in the semi-honest model. Then
H(U |V) ≥ n− 1− 4n(ε+ h(ε)).

If ε + h(ε) ≤ 1/8, then it immediately follows from Corollary 6 that we need
at least n/2 − 1 calls to

(2
1

)
-OT1 to compute IPn with an error of at most ε.

From the protocol presented in [4] we know that there exists a perfectly secure
protocol that computes IPn from n instances of

(2
1

)
-OT1. Therefore, the bound

is optimal up to a factor of 2.
For our next lower-bound, the function f : X × Y → Z must satisfy the

following property. There exist y1 ∈ Y such that

∀x �= x′ ∈ X : f(x, y1) �= f(x′, y1) , (2.2)

and y2 ∈ Y such that

∀x, x′ ∈ X : f(x, y2) = f(x′, y2) . (2.3)

5 Note that our security definition is different from the one used in [4].

On the Efficiency of Classical and Quantum Oblivious Transfer Reductions 715

Let Alice’s input X be uniformly distributed. Loosely speaking, the security
of the protocol implies that the communication gives (almost) no information
about Alice’s input X if Bob’s input is y2. But the communication must be
(almost) independent of Bob’s input, otherwise Alice could learn Bob’s input.
Thus, Alice’s input X is uniform with respect to the whole communication even
when Bob’s input is y1. Let now Bob’s input be fixed to y1 and let M be the
whole communication. Then the following lower bound can be proved using the
given intuition.

H(f(X, y1) |M) ≥ log |X | − 6ε log |X | − 6h(ε) .

As Bob must be able to compute the correct output, one can show that

H(f(X, y1) | VM) ≤ ε log |X |+ h(ε) .

The following lower bound on the mutual information of PUV can be obtained
from these two inequalities.

Theorem 2. Let f : X × Y → Z be a function that satisfies (2.2) and (2.3).
Then for any protocol that implements f from a primitive PUV with an error of
at most ε in the semi-honest model

I(U ;V) ≥ log |X | − 7ε log |X | − 7h(ε) .

Since properties (2.2) and (2.3) can be satisfied by restricting Alice’s input in(
n
t

)
-OTk, we obtain the following corollary.

Corollary 7. Let a protocol having access to PUV be an ε-secure implementation
of
(
n
t

)
-OTk in the semi-honest model where t ≤ &n/2'. Then

I(U ;V) ≥ tk − 7εtk − 7h(ε) .

We further generalize Theorem 2 to arbitrary functions f : X × Y → Z in [40].
In the case of perfect implementations the bound H(U) = H(U |V) + I(U ;V) ≥
log |X | follows from Theorem 1 and the generalization of Theorem 2. From this
bound we get that any perfectly secure protocol needs at least log |X | instances
of
(2
1

)
-OT1 to implement a function f : X ×Y → Z, which implies Theorem 4.11

from [4].

2.3 Lower Bounds for Protocols Implementing OT(2
1

)
-OT1 can be implemented from one instance of

(2
1

)
-OT1 in the opposite direc-

tion [45]. Therefore, it follows immediately from Corollary 4 that for any ε-secure
reduction of

(2
1

)
-OT1 to PUV , we must also have

H(V | U) ≥ 1− 5(ε+ h(ε)) ,

716 S. Winkler and J. Wullschleger

since any violation of this bound could be used to construct a violation of the
bound from Corollary 4. This bound can be generalized to n > 0. Together with
the bounds from Theorem 1 and 2 we get the following theorem.

Theorem 3. Let a protocol having access to PUV be an ε-secure implementation
of m instances of

(
n
1

)
-OTk in the semi-honest model. Then

H(U | V) ≥ m(n− 1)k − 4n(εmk + h(ε)),
H(V | U) ≥ m logn−m(4 logn+ 7)(ε+ h(ε)),

I(U ;V) ≥ mk − 7εmk − 7h(ε) .

The statement of Corollary 1 follows from the fact that m instances of
(
n
1

)
-OTk

are equivalent to a primitive PUV with H(U | V) = m(n − 1)k, I(U ;V) = mk
and H(V | U) = m logn.

In the full version of this paper [40], we show that the bounds of Theorem
1-3 can be generalized to the monotones from [43]. Furthermore, we derive new
bounds for protocols implementing (p)-RabinOTk, and show that our bounds im-
ply bounds for implementations of oblivious linear function evaluation (OLFE).

3 Quantum Reductions

3.1 Reversing String OT Efficiently

As the bounds of the last section generalize the known bounds for perfect im-
plementations of OT from [2,21,44,43] to the statistical case, it is natural to
ask whether similar bounds also hold for quantum protocols, i.e., if the bounds
presented in [36] can be generalized to the statistical case. We give a negative
answer to this question by presenting a statistically secure quantum protocol
that violates these bounds.(2

1

)
-OTk can be implemented from m = O(k + κ) bit commitments with an

error of 2−Ω(κ) [6,49,17]. In the protocol, Alice sends m BB84-states to Bob who
measures them either in the computational or in the diagonal basis. To ensure
that he really measures Bob has to commit to the basis he has measured in and
the measurement outcome for every qubit received. Alice then asks Bob to open
a small subset T of size αm of these pairs of commitments. OT can then be im-
plemented using further classical processing. (See [17] for a complete description
of the protocol.) This protocol implements oblivious transfer that is statistically
secure in the quantum universal composability model [38]. Obviously the m in-
stances of bit commitments can be replaced by a single functionality, denoted by
FA→B,m
MCOM , which allows one player to commit to a bit string of length m and later

open an arbitrary substring. The following protocol implements FA→B,k
MCOM from

the oblivious transfer functionality FA→B,k
OT (see [38] for a definition of FA→B,k

OT).

On the Efficiency of Classical and Quantum Oblivious Transfer Reductions 717

Inputs: Alice has an input b = (b1, . . . , bk) ∈ {0, 1}k in Commit. Bob has an
input T ⊆ [k] in Open.
Commit(b):
For all 1 ≤ i ≤ κ:

1. Alice and Bob invoke FA→B,k
OT with random inputs xi

0, x
i
1 ∈ {0, 1}k and

ci ∈R {0, 1}k.
2. Bob receives yi = xi

ci from FA→B,k
OT .

3. Alice sends mk := xi
0 ⊕ xi

1 ⊕ b to Bob.

Open(T):

1. Alice sends b|T , T and xi
0|T , xi

1|T for all 1 ≤ i ≤ κ to Bob.
2. If mi|T = xi

0|T ⊕ xi
1|T ⊕ bi|T and yi|T = xi

c|T for all 1 ≤ i ≤ κ, Bob
accepts and outputs bT , otherwise he rejects.

Lemma 1. There exists a protocol that is statistically secure and universally
composable that realizes FA→B,k

MCOM with an error of 2−κ/2 using κ instances of
FA→B,k
OT .

Since any protocol that is also statistically secure in the classical universal com-
posability model [11] is also secure in the quantum universal composability model
[38], we get, together with the proofs from [17,38], the following theorem.

Theorem 4. There exists a protocol that implements
(2
1

)
-OTk′

with an error
ε from κ = O(log 1/ε) instances of

(2
1

)
-OTk in the opposite direction where

k′ = Ω(k) if k = Ω(κ).

Since we can choose k (κ, this immediately implies that the bound of Corollary
4 does not hold for quantum protocols. Similar violations can be shown for the
other two lower bounds given in Theorem 7. For example, statistically secure
and universally composable6 commitments can be implemented from shared
randomness PUV that is distributed according to (p)-RabinOT at a rate of
H(U | V) = 1 − p [41]. Using Theorem 8, one can implement FB→A,k

OT with
k ∈ Ω(n(1 − p)) from n copies of PUV . Since I(U ;V) = p, quantum protocols
can also violate the bound of Corollary 7.

It has been an open question whether noiseless quantum communication can
increase the commitment capacity [41]. Our example implies a positive answer
to this question.

3.2 Lower Bounds

The protocols presented in the previous section prove that the known impossi-
bility results for perfectly secure oblivious transfer reductions from [36] do not
6 Stand-alone statistically secure commitments based on stateless two-party primitives

are universally composable [22].

718 S. Winkler and J. Wullschleger

hold for statistically secure quantum protocols. Thus, it is natural to ask whether
quantum protocols can even extend oblivious transfer or, more generally, how
efficient statistically secure quantum protocols can be. In this section we prove
an impossibility result that holds for statistically secure quantum protocols and
that implies in particular that also quantum protocols cannot extend OT. Since,
in contrast to the classical case, security against semi-honest adversaries can be
trivially achieved in the quantum setting, we consider in the following proto-
cols that are secure against malicious adversaries in the stand-alone model. A
protocol is an ε-secure implementation of OT if for any adversary attacking the
protocol (real setting), there exists a simulator using the ideal OT (ideal setting)
such that for all inputs of the honest players the real and the ideal setting can
be distinguished with an advantage of at most ε.

In the following we will give two lower bounds for quantum protocols that im-
plement

(2
1

)
-OTk using a trusted resource such as trusted randomness distributed

to the players or a bit commitment functionality. Our proofs use similar tech-
niques as the impossibility results in [32,30,29]. First, the protocol is replaced
by a purified version of the protocol that is equivalent in a certain sense. In
particular the purified version has the same security properties as the original
protocol and the impossibility of the former implies the impossibility of the lat-
ter. In this protocol the players defer all of their measurements to the very end
of the protocol. See [32,30,29] for details.

We use the notation ρAB for a state in the Hilbert space HA ⊗ HB, and
ρA := trB(ρAB). The conditional von Neumann entropy is defined as H(A |
B)ρ := H(ρAB)−H(ρB), where H(ρ) := tr(−ρ log(ρ)).

We first consider protocols where the players have access to a primitive that
generates a pure state |ψ〉ABE , distributes registers A and B to Alice and Bob
respectively and keeps the purification in its register E.

Let Alice choose her inputs X0 and X1 uniformly at random and let Bob’s
input be c. When Alice and Bob execute the purified protocol honestly the final
state just before the honest players perform their measurements is a pure state
|ρ〉ABE

c , where A and B are the registers of Alice and Bob and E is the register
of the trusted resource.

Loosely speaking, security for Alice guarantees that Bob has (almost) no
information about X0 if c = 1, i.e., the entropy H(X0 | B)ρ1 is almost maximal.
On the other hand, Alice must not be able to learn Bob’s choice bit. Therefore,
we have ρA

0 ≈ ρA
1 . As shown in [32,30,29], this implies that there exists a unitary

on system BE that transforms |ρ〉ABE
1 into a state close to |ρ〉ABE

0 . Since Bob
can learn X0 if c = 0, this implies that H(X0 | BE)ρ1 is small. Using these two
facts, one can then prove the following lower bound on the entropy of E.

Theorem 5. To implement one instance of
(2
1

)
-OTk over strings of size k with

an error of at most ε from a primitive |ψ〉ABE with a quantum protocol we need

2H(E)ψ ≥ (1− 21ε− 2
√
ε) · k − 11h(ε)− 2h(

√
ε) .

On the Efficiency of Classical and Quantum Oblivious Transfer Reductions 719

A classical primitive PUV can be modeled by the quantum primitive

|ψ〉ABE =
∑
u,v

√
PUV (u, v) · |u, v〉AB ⊗ |u, v〉E

that distributes the values u and v and keeps the purification in its register E.
Therefore, we get the following corollary from Theorem 5.

Corollary 8. To implement one instance of
(2
1

)
-OTk with an error of at most

ε from PUV with a quantum protocol, we need

2H(UV) ≥ (1− 21ε− 2
√
ε) · k − 11h(ε)− 2h(

√
ε) .

Since m instances of
(2
1

)
-OTk can be implemented from shared randomness with

H(UV) = 2k + 1 we get the following corollary.

Corollary 9. To implement one instance of
(2
1

)
-OTk with an error of at most

ε from n instances of
(2
1

)
-OTk′

in either direction with a quantum protocol, we
need

2n(2k′ + 1) ≥ (1 − 21ε− 2
√
ε) · k − 11h(ε)− 2h(

√
ε) .

Next, we present a bound for implementations of
(2
1

)
-OTk from commitments.

We can model black-box commitments by a trusted functionality that receives
bits over a classical channel and stores them in a register E. When the committer
sends the open command, the functionality sends the bits to the receiver. We
can replace the two classical channels with a quantum channel where the players
measure the qubits when sending and after receiving them. These measurements
can then be purified by the players. The following bound can be obtained by
adapting the proof of Theorem 5 to this scenario.

Theorem 6. To implement a
(2
1

)
-OTk with an error of at most ε we need to

commit to at least (1− 21ε− 2
√
ε)k/2− 6h(ε)− h(

√
ε) bits in total.

From Corollary 9 and Theorem 6 follows that OTs and commitments cannot be
extended by quantum protocols.

Corollary 10. Any quantum protocol that implement m+1 instances of
(2
1

)
-OT1

from m instances of
(2
1

)
-OT1 must have an error of at least 5·10−6

m for any m > 0.

Corollary 11. Any quantum protocol that implements m+ 1 bit commitments
out of m commitments must have an error of at least 10−9

m for any m > 0.

Next, we give an additional lower bound for reductions of OT to commitments
that shows that the number of commitments (of arbitrary size) used in any
ε-secure protocol must be at least Ω(log(1/ε)). We model the commitments
as before, but store the commitments of Alice and Bob separately in EA and
EB. The proof idea is the following: We let the adversary guess a subset T of
commitments that he will be required to open during the protocol. He honestly
executes all commitments in T , but cheats in all others. If the adversary guesses
T right, he is able to cheat in the same way as in any protocol that does not use
any commitments.

720 S. Winkler and J. Wullschleger

Theorem 7. Any quantum protocol that implements
(2
1

)
-OTk using κ commit-

ments (of arbitrary length) must have an error of at least 2−κ/36.

3.3 Reduction of OT to String-Commitments

The protocol we described in Section 3.1 uses m = O(k + κ) commitments to
2 bits to implement

(2
1

)
-OTk with an error of 2−Ω(κ). If k = ω(κ) this it is

not optimal with respect to Theorem 7. We will now show how to construct a
protocol that is optimal with respect to the lower bounds of both Theorem 6
and Theorem 7. We modify the protocol by grouping the m pairs into κ blocks
of size b := m/κ. We let Bob commit to the blocks of b pairs of values at once.
The subset T is now of size ακ, and defines the blocks to be opened by Bob. If
Bob is able to open all commitments in T correctly, then with high probability,
he must have correctly measured almost all qubits. We only need to estimate the
error probability of the sampling strategy that corresponds to the new checking
procedure which Alice applies and apply the proof of [17] to get the following
theorem.

Theorem 8. There exists a quantum protocol that implements
(2
1

)
-OTk with an

error of at most ε out of κ = O(log 1/ε) commitments of size b, where κb =
O(k + log 1/ε).

Using Theorem 8, it can be shown that string-commitments cannot be extended.

Corollary 12. Let m > 0. If there exists a (quantum) protocol that implements
string commitments of length m′ +1 out of string commitments of length m′ for
all m′ > m with an error of at most ε, then there exists a constant c > 0 such
that ε ≥ c

m .

4 Conclusions

The main contribution of this work are impossibility proofs for statistical obliv-
ious transfer reductions. In the classical case we have generalized several known
lower bounds for perfect reductions to statistical security. In the quantum case
we have shown that the known bound for perfect reductions does not apply to
statistical reductions, and have presented a new bound that does hold in the
statistical quantum setting. Our bounds imply several important impossibility
results, for example, that OT cannot be extended, neither in the classical nor in
the quantum setting.

There are many interesting open questions. For example, it is not known
whether more than two instances of

(2
1

)
-OT1 can be implemented (in the classical

or the quantum setting) from two instances of
(2
1

)
-OT�, one in each direction.

On the Efficiency of Classical and Quantum Oblivious Transfer Reductions 721

Acknowledgments

We thank Esther Hänggi, Thomas Holenstein and Stephanie Wehner for helpful
discussions, and the referees for their useful comments. This work was funded
by the Swiss National Science Foundation (SNSF) and the U.K. EPSRC, grant
EP/E04297X/1. Part of this work was done while JW was visiting McGill
University.

References

1. Ahlswede, R., Csiszar, I.: On oblivious transfer capacity. In: IEEE Information
Theory Workshop on Networking and Information Theory, ITW 2009, December
10, pp. 1–3 (2009)

2. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: STOC 1996: Proceedings of the 28th Annual ACM Symposium on Theory
of Computing, pp. 479–488. ACM Press, New York (1996)

3. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)

4. Beimel, A., Malkin, T.: A quantitative approach to reductions in secure compu-
tation. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 238–257. Springer,
Heidelberg (2004)

5. Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public discus-
sion. SIAM Journal on Computing 17(2), 210–229 (1988)

6. Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.H.: Practical quantum
oblivious transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
351–366. Springer, Heidelberg (1992)

7. Brassard, G., Crépeau, C., Robert, J.M.: Information theoretic reductions among
disclosure problems. In: Proceedings of the 27th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS 1986), pp. 168–173 (1986)

8. Brassard, G., Crépeau, C., Wolf, S.: Oblivious transfers and privacy amplification.
Journal of Cryptology 16(4), 219–237 (2003)

9. Brassard, G., Crépeau, C., Santha, M.: Oblivious transfers and intersecting codes.
IEEE Transactions on Information Theory 42(6), 1769–1780 (1996)

10. Cachin, C.: On the foundations of oblivious transfer. In: Nyberg, K. (ed.) EURO-
CRYPT 1998. LNCS, vol. 1403, pp. 361–374. Springer, Heidelberg (1998)

11. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145 (2001)

12. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security as-
sumptions (extended abstract). In: Proceedings of the 29th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS 1988), pp. 42–52 (1988)

13. Crépeau, C.: Equivalence between two flavours of oblivious transfers. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 350–354. Springer, Heidelberg
(1988)

14. Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer from
almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS,
vol. 3352, pp. 47–59. Springer, Heidelberg (2005)

15. Crépeau, C., Santha, M.: On the reversibility of oblivious transfer. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 106–113. Springer, Heidelberg
(1991)

722 S. Winkler and J. Wullschleger

16. Crépeau, C., Savvides, G.: Optimal reductions between oblivious transfers using
interactive hashing. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 201–221. Springer, Heidelberg (2006)

17. Damg̊ard, I., Fehr, S., Lunemann, C., Salvail, L., Schaffner, C.: Improving the
security of quantum protocols via commit-and-open. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 408–427. Springer, Heidelberg (2009)

18. Damg̊ard, I., Fehr, S., Morozov, K., Salvail, L.: Unfair noisy channels and oblivious
transfer. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 355–373. Springer,
Heidelberg (2004)

19. Damg̊ard, I., Fehr, S., Salvail, L., Schaffner, C.: Oblivious transfer and linear func-
tions. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 427–444. Springer,
Heidelberg (2006)

20. Damg̊ard, I., Kilian, J., Salvail, L.: On the (im)possibility of basing oblivious trans-
fer and bit commitment on weakened security assumptions. In: Stern, J. (ed.) EU-
ROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999)

21. Dodis, Y., Micali, S.: Lower bounds for oblivious transfer reductions. In: Stern, J.
(ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 42–55. Springer, Heidelberg (1999)

22. Dowsley, R., van de Graaf, J., Müller-Quade, J., Nascimento, A.C.A.: On the com-
posability of statistically secure bit commitments. Cryptology ePrint Archive, Re-
port 2008/457 (2008)

23. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

24. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. II. Cambridge
University Press, Cambridge (2004)

25. Goldreich, O., Vainish, R.: How to solve any protocol problem - an efficiency im-
provement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–86.
Springer, Heidelberg (1988)

26. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

27. Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the
20th Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 20–31.
ACM Press, New York (1988)

28. Kurosawa, K., Kishimoto, W., Koshiba, T.: A combinatorial approach to deriving
lower bounds for perfectly secure oblivious transfer reductions. IEEE Transactions
on Information Theory 54(6), 2566–2571 (2008)

29. Lo, H.K.: Insecurity of quantum secure computations. Physical Review A 56, 1154
(1997)

30. Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Physical Review
Letters 78, 3410–3413 (1997)

31. Maurer, U.: Information-theoretic cryptography. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 47–64. Springer, Heidelberg (1999)

32. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys-
ical Review Letters 78, 3414–3417 (1997)

33. Nascimento, A., Winter, A.: On the oblivious transfer capacity of noisy correlations.
In: Proceedings of the IEEE International Symposium on Information Theory, ISIT
2006 (2006)

34. Prabhakaran, M., Rosulek, M.: Cryptographic complexity of multi-party compu-
tation problems: Classifications and separations. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 262–279. Springer, Heidelberg (2008)

On the Efficiency of Classical and Quantum Oblivious Transfer Reductions 723

35. Rabin, M.O.: How to exchange secrets by oblivious transfer. Tech. Rep. TR-81,
Harvard Aiken Computation Laboratory (1981)

36. Salvail, L., Schaffner, C., Sotáková, M.: On the power ofTwo-party quantum cryp-
tography. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 70–87.
Springer, Heidelberg (2009)

37. Savvides, G.: Interactive Hashing and reductions between Oblivious Transfer vari-
ants. Ph.D. thesis, McGill University, Montréal (2007)

38. Unruh, D.: Universally composable quantum multi-party computation. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg
(2010)

39. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983)
40. Winkler, S., Wullschleger, J.: On the efficiency of classical and quantum oblivious

transfer reductions. Cryptology ePrint Archive, Report 2009/508 (2009)
41. Winter, A., Nascimento, A.C.A., Imai, H.: Commitment capacity of discrete mem-

oryless channels. In: IMA Int. Conf., pp. 35–51 (2003)
42. Wolf, S., Wullschleger, J.: Zero-error information and applications in cryptography.

In: Proceedings of 2004 IEEE Information Theory Workshop, ITW 2004 (2004)
43. Wolf, S., Wullschleger, J.: New monotones and lower bounds in unconditional two-

party computation. IEEE Transactions on Information Theory 54(6), 2792–2797
(2008)

44. Wolf, S., Wullschleger, J.: New monotones and lower bounds in unconditional two-
party computation. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 467–
477. Springer, Heidelberg (2005)

45. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006)

46. Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 555–572. Springer, Heidelberg (2007)

47. Wullschleger, J.: Oblivious transfer from weak noisy channels. In: Reingold, O.
(ed.) TCC 2009. LNCS, vol. 5444, pp. 332–349. Springer, Heidelberg (2009)

48. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS 1982), pp. 160–164
(1982)

49. Yao, A.C.C.: Security of quantum protocols against coherent measurements. In:
STOC 1995: Proceedings of the 27th Annual ACM Symposium on Theory of Com-
puting, pp. 67–75. ACM Press, New York (1995)

Sampling in a Quantum Population, and
Applications

Niek J. Bouman and Serge Fehr

Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
{n.j.bouman,s.fehr}@cwi.nl

Abstract. We propose a framework for analyzing classical sampling
strategies for estimating the Hamming weight of a large string from a few
sample positions, when applied to a multi-qubit quantum system instead.
The framework shows how to interpret the result of such a strategy and
how to define its accuracy when applied to a quantum system. Further-
more, we show how the accuracy of any strategy relates to its accuracy in
its classical usage, which is well understood for the important examples.
We show the usefulness of our framework by using it to obtain new and
simple security proofs for the following quantum-cryptographic schemes:
BB84 quantum-key-distribution, and quantum oblivious-transfer from
bit-commitment.

1 Introduction

Sampling allows to learn some information on a large population by merely
looking at a comparably small number of individuals. For instance it is possible
to predict the outcome of an election with very good accuracy by analyzing a
relatively small subset of all the votes. In this work, we study sampling in a
quantum population: we want to learn information about a large quantum state
by measuring only a small part. Specifically, we investigate the quantum version
of the following classical sampling problem (and of variants thereof). Given a
bit-string q = (q1, . . . , qn) ∈ {0, 1}n of length n, the task is to estimate the
Hamming weight of q by sampling and looking at only a few positions within q.
This classical sampling problem is well understood. For instance, the following
particular sampling strategy works well: sample (with or without replacement)
a linear number of positions uniformly at random, and compute an estimate
for the Hamming weight of q by scaling the Hamming weight of the sample
accordingly; Hoeffding’s bounds guarantee that the estimate is close to the real
Hamming weight except with small probability. In particular, one can use a
sampling strategy to test whether q is close to the all-zero string (0, . . . , 0) by
looking only at a relatively small number of positions, where the test is accepted
if and only if all the sample positions are zero, i.e., the estimated Hamming
weight vanishes.

In the quantum version of the sampling problem from above, the string q is
replaced by a n-qubit quantum system A. Obviously, a sampling strategy from
the classical can be applied to the quantum setting as well: pick a sample of

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 724–741, 2010.
c© International Association for Cryptologic Research 2010

Sampling in a Quantum Population, and Applications 725

qubit positions within A, measure (in the computational basis) these sample
positions, and compute the estimate as dictated by the sampling strategy from
the observed values (i.e., typically, scale the Hamming weight of the measured
sample appropriately). However, due to the special nature of quantum states, it
is not clear and to the best of our knowledge so far not well understood, how to
formally interpret the computed estimate. Simply extending the classical results
in a straightforward way to the quantum setting does not work due to several
reasons (e.g., one reason being that it is not clear what the Hamming weight of
a quantum state should be).

In this work, we present a framework that addresses the above and fully
characterizes the behavior of a classical sampling strategy when applied to a
quantum population, i.e., to a n-qubit system or, more general, to n copies of an
arbitrary “atomic” system. Our framework incorporates the following. First, we
specify an abstract property on the state of A (after the measurements done by
the sampling strategy), with the intended meaning that this is the property one
should conclude from the outcome of the sampling strategy when applied to A.
We also demonstrate that this property has useful consequences: specifically,
that a suitable measurement will lead to a high-entropy outcome; this is handy
in particular for quantum-cryptographic purposes. Then, we define a meaningful
measure, sort of a “quantum error probability” (although technically speaking
it is not a probability), that tells how reliable it is to conclude the specified
property from the outcome of the sampling strategy. Finally, we show that for
any sampling strategy, the quantum error probability of the strategy, as we
define it, is bounded by the square-root of its classical error probability. This
means that in order to understand how well a sampling strategy performs in
the quantum setting, it suffices to analyze it in the classical setting, which is
typically much simpler. Furthermore, for typical sampling strategies, like when
picking the sample uniformly at random, there are well-known good bounds on
the classical error probability.

We demonstrate the usefulness of our framework by means of two applications.
Our applications do not constitute actual new results, but they provide new and
simple(r) proofs for known results, both in the area of quantum cryptography.
We take this as strong indication for the usefulness of the framework, and that
the framework is likely to prove valuable in other applications as well.

The first application is to quantum key-distribution (QKD). We show how
our framework for analyzing sampling strategies in the quantum setting leads to
a conceptually very simple and easy-to-understand security proof for the BB84
QKD scheme.1 The main idea behind the proof is that the checking phase of
the BB84 scheme can be viewed as executing a specific sampling strategy. From
the framework, it then follows that the raw key has high min-entropy from the
adversary’s point of view, and the proof is concluded by applying the privacy
amplification theorem.

1 Actually, we prove security for an entanglement-based version of BB84 that implies
security for the original BB84 scheme.

726 N.J. Bouman and S. Fehr

QKD schemes initially came without securityproofs, and provingQKD schemes
rigorously secure turned out to be an extremely challenging and subtle task. Nowa-
days, though, the security of QKD schemes is better understood, and we know of
different ways of proving, say, BB84 secure, ranging from Shor and Preskill’s proof
based on quantum error-correcting codes [9] to Renner’s approach using a quan-
tum De Finetti theorem which allows to reduce security against general attacks to
security against the much weaker class of so-called collective attacks [7]. Nonethe-
less, we think that our proof is interesting because of the following reasons. It pro-
vides an explicit expression for the security of the scheme, given in terms of an
easy-to-compute function of the observed error-rate, the parameters of the code
used to do error correction, and the number of extracted key-bits (and the parame-
ters of the scheme). This is in contrast to most proofs in the literature which merely
provide an asymptotic analysis. Furthermore, the proof is technically very accessi-
ble (e.g. compared to quantum-De-Finetti-based proofs) and as such for instance
particularly well-suited for teaching. Finally, it does not require any “symmetriza-
tion of the qubits” (e.g. by applying a random permutation) from the protocol,
and it gives a direct security proof, rather than a reduction to the security against
collective attacks.

The second application is to quantum oblivious transfer (QOT). It is well known
that QOT is not possible from scratch, but one can build a secure QOT scheme
whengivenabit-commitment (BC)primitive“for free”.Also for this cryptographic
primitive, our framework allows for a simple andeasy-to-understand securityproof.
Due to space restriction, this second application is only given in the full version [2]
of this paper. The security of QOT (when given bit commitments) has also recently
been rigorouslyproven in [4]. Although at the technical level similar ideas are used,
our work distinguishes from [4] in that we introduce and rigorously study the con-
cept of a general sampling strategy.This not only gives anice framework and makes
the security of QOT easier to understand, but it also opens the door for other ap-
plications (as we demonstrate).

We find it particularly interesting that with our framework, the protocols for
QKD and QOT can be prover secure by means of very similar techniques, even
though they implement fundamentally different cryptographic primitives, and
are intuitively secure due to different reasons.

2 Notation, Terminology, and Some Tools

Strings and Hamming Weight. Throughout the paper, A denotes some fixed
finite alphabet with 0 ∈ A. It is safe to think of A as {0, 1}, but our claims also
hold for larger alphabets. For a string q = (q1, . . . , qn) ∈ An of arbitrary length
n ≥ 0, the Hamming weight of q is defined as: wt(q) :=

∣∣{i ∈ [n] : qi �= 0}∣∣,
where [n] is a short hand for {1, . . . , n}. The relative Hamming weight of q is
defined as ω(q) := wt(q)/n. By convention, the relative Hamming weight of the
empty string ⊥ is set to ω(⊥) := 0. For a subset J ⊂ [n], we write qJ := (qi)i∈J

for the restriction of q to the positions i ∈ J .

Sampling in a Quantum Population, and Applications 727

Quantum Systems and States. We assume the reader to be familiar with the basic
concepts of quantum information theory; we merely fix some specific terminology
and notation here.

By default, we writeHA for the state space of system A, and ρA for the density
matrix and |ϕA〉 for the state vector (in case of a pure state) describing the
state of A. To simplify language we are sometimes a bit sloppy in distinguishing
between a quantum system, its state, and the state vector or density matrix
describing the state. A qubit is a quantum system A with state space HA =
C2. The computational basis {|0〉, |1〉} (for a qubit) is given by |0〉 =

(1
0

)
and

|1〉 =
(0
1

)
, and the Hadamard basis by H{|0〉, |1〉} = {H |0〉, H |1〉}, where H

denotes the 2-dimensional Hadamard matrix H = 2−1/2
(

1 1
1 −1
)
. The state space

of an n-qubit system A = A1 · · ·An is given by HA = (C2)⊗n = C2 ⊗ · · · ⊗ C2.
For x = (x1, . . . , xn) and θ = (θ1, . . . , θn) in {0, 1}n, we write |x〉 for |x〉 =
|x1〉 · · · |xn〉 and Hθ for Hθ = Hθ1 ⊗ · · · ⊗ Hθn , and thus Hθ|x〉 for Hθ|x〉 =
Hθ1 |x1〉 · · ·Hθn |xn〉. Finally, we write {|0〉, |1〉}⊗n = {|x〉 : x ∈ {0, 1}n} for the
computational basis on an n-qubit system, and Hθ{|0〉, |1〉}⊗n = {Hθ|x〉 : x ∈
{0, 1}n} = Hθ1{|0〉, |1〉}⊗ · · ·⊗Hθn{|0〉, |1〉} for the basis that is made up of the
computational basis on the subsystems Ai with θi = 0 and of the Hadamard basis
on the subsystems Ai with θi = 1. To simplify notation, we will sometimes abuse
terminology and speak of the basis θ when we actually mean Hθ{|0〉, |1〉}⊗n.

Measuring a system A in basis {|i〉}i∈I , where {|i〉}i∈I is an orthonormal basis
of HA, means applying the measurement described by the projectors {|i〉〈i|}i∈I ,
such that outcome i ∈ I is observed with probability pi = tr(|i〉〈i|ρA) (respec-
tively pi = |〈i|ϕA〉|2 in case of a pure state). If A is a subsystem of a bipartite
system AB, then it means applying the measurement described by the projectors
{|i〉〈i| ⊗ IB}i∈I , where IB is the identity operator on HB .

We measure closeness of two states ρ and σ by their trace distance: Δ(ρ, σ) :=
1
2 tr|ρ−σ|, where for any square matrix M , |M | denotes the positive-semi-definite
square-root of M †M . For pure states |ϕ〉 and |ψ〉, the trace distance of the
corresponding density matrices coincides with Δ(|ϕ〉〈ϕ|, |ψ〉〈ψ|) =

√
1− |〈ϕ|ψ〉|2.

If the states of two systems A and B are ε-close, i.e. Δ(ρA, ρB) ≤ ε, then A and
B cannot be distinguished with advantage greater than ε; in other words, A
behaves exactly like B, except with probability ε.

Classical and Hybrid Systems (and States). Subsystem X of a bipartite quantum
system XE is called classical, if the state of XE is given by a density matrix of
the form ρXE =

∑
x∈X PX(x)|x〉〈x| ⊗ ρx

E , where X is a finite set of cardinality
|X | = dim(HX), PX : X → [0, 1] is a probability distribution, {|x〉}x∈X is some
fixed orthonormal basis ofHX , and ρx

E is a density matrix onHE for every x ∈ X .
Such a state, called hybrid or cq (for classical-quantum) state, can equivalently
be understood as consisting of a random variable X with distribution PX , taking
on values in X , and a system E that is in state ρx

E exactly when X takes on the
value x. This formalism naturally extends to two (or more) classical systems X ,
Y etc.

If the state of XE satisfies ρXE = ρX ⊗ ρE , where ρX = trE(ρXE) =∑
x PX(x)|x〉〈x| and ρE = trX(ρXE) =

∑
x PX(x)ρx

E , then X is independent

728 N.J. Bouman and S. Fehr

of E, and thus no information on X can be obtained from system E. More-
over, if ρXE = 1

|X |IX ⊗ ρE , where IX denotes the identity on HX , then X is
random-and-independent of E. This is what is aimed for in quantum cryptog-
raphy, when X represents a classical cryptographic key and E the adversary’s
potential quantum information on X .

It is not too hard to see that for two hybrid states ρXE and ρXE′ with the
same (distribution of) X , the trace distance between ρXE and ρXE′ can be
computed as Δ(ρXE , ρXE′) =

∑
x PX(x)Δ(ρx

E , ρ
x
E′).

Min-Entropy and Privacy Amplification. We make use of Renner’s notion of the
conditional min-entropy Hmin(ρXE |E) of a system X conditioned on another
system E [7]. Although the notion makes sense for arbitrary states, we restrict
to hybrid states ρXE with classical X . If the hybrid state ρXE is clear from the
context, we may write Hmin(X |E) instead of Hmin(ρXE |E). The formal definition
is not very relevant to us, we merely rely on some elementary properties. For in-
stance, the chain rule guarantees that Hmin(X |Y E) ≥ Hmin(XY |E)− log(|Y|) ≥
Hmin(X |E) − log(|Y|) for classical X and Y with respective ranges X and Y.
Note that throughout this paper, log denotes the binary logarithm (we write ln
for the natural logarithm). Furthermore, it holds that if E′ is obtained from E
by measuring (part of) E, then Hmin(X |E′) ≥ Hmin(X |E).

Finally, we make use of Renner’s privacy amplification theorem [8,7], as given
below. Recall that a function g : R × X → {0, 1}� is called a universal (hash)
function, if for the random variable R, uniformly distributed over R, and for any
distinct x, y ∈ X : Pr[g(R, x)=g(R, y)] ≤ 2−�.

Theorem 1 (Privacy amplification). Let ρXE be a hybrid state with classical
X. Let g : R×X → {0, 1}� be a universal hash function, and let R be uniformly
distributed over R, independent of X and E. Then K = g(R,X) satisfies

Δ
(
ρKRE ,

1
|K|IK ⊗ ρRE

) ≤ 1
2
· 2− 1

2 (Hmin(X|E)−�) .

Informally, Theorem 1 states that if X contains sufficiently more than � bits
of entropy when given E, then � nearly random-and-independent bits can be
extracted from X .

3 Sampling in a Classical Population

As a warm-up, and in order to study some useful examples and introduce some
convenient notation, we start with the classical sampling problem, which is rather
well-understood.

3.1 Sampling Strategies

Let q = (q1, . . . , qn) ∈ An be a string of given length n. We consider the problem
of estimating the relative Hamming weight ω(q) by only looking at a substring

Sampling in a Quantum Population, and Applications 729

qt of q, for a small subset t ⊂ [n].2 Actually, we are interested in the equivalent
problem of estimating the relative Hamming weight ω(qt̄) of the remaining string
qt̄, where t̄ is the complement t̄ = [n]\t of t.3 A canonical way to do so would be to
sample a uniformly random subset (say, of a certain small size) of positions, and
compute the relative Hamming weight of the sample as estimate. Very generally,
we allow any strategy that picks a subset t ⊂ [n] according to some probability
distribution and computes the estimate for ω(qt̄) as some (possibly randomized)
function of t and qt, i.e., as f(t, qt, s) for a seed s that is sampled according to
some probability distribution from a finite set S. This motivates the following
formal definition.

Definition 1 (Sampling strategy). A sampling strategy Ψ consists of a triple
(PT , PS , f), where PT is a distribution over the subsets of [n], PS is a (indepen-
dent) distribution over a finite set S, and f is a function

f :
{
(t, v) : t ⊂ [n],v ∈ A|t|}× S → R.

We stress that a sampling strategy Ψ , as defined here, specifies how to choose the
sample subset as well as how to compute the estimate from the sample (thus a
more appropriate but lengthy name would be a “sample-and-estimate strategy”).

Remark 1. By definition, the choice of the seed s is specified to be independent
of t, i.e., PTS = PTPS . Sometimes, however, it is convenient to allow s to depend
on t. We can actually do so without contradicting Definition 1. Namely, to comply
with the independence requirement, we would simply choose a (typically huge)
“container” seed that contains a seed for every possible choice of t, each one
chosen with the corresponding distribution, and it is then part of f ’s task, when
given t, to select the seed that is actually needed out of the container seed.4

A sampling strategy Ψ can obviously also be used to test if q (or actually qt̄) is
close to the all-zero string 0 · · · 0: compute the estimate for ω(qt̄) as dictated by
Ψ , and accept if the estimate vanishes and else reject.

We briefly discuss a few example sampling strategies (two more examples,
including random sampling with replacement, can be found in the full version [2].

Example 1 (Random sampling without replacement). In random sampling with-
out replacement, k distinct indices i1, . . . , ik within [n] are chosen uniformly
at random, where k is some parameter, and the relative Hamming weight of
q{i1,...,ik} is used as estimate for ω(qt̄). Formally, this sampling strategy is given

2 More generally, we may consider the problem of estimating the Hamming distance
of q to some arbitrary reference string q◦; but this can obviously be done simply by
estimating the Hamming weight of q′ = q − q◦ .

3 In our applications, the sampled positions within q will be discarded, and thus we
will be interested merely in the remaining positions.

4 Alternatively, we could simply drop the independence requirement in Definition 1;
however, we feel it is conceptually easier to think of the seed as being independently
chosen.

730 N.J. Bouman and S. Fehr

by Ψ = (PT , PS , f) where PT (t) = 1/
(
n
k

)
if |t| = k and else PT (t) = 0, S = {⊥}

and thus PS(⊥) = 1, and f(t, qt,⊥) = f(t, qt) = ω(qt).)

Example 2 (Uniformly random subset sampling). The sample set t is chosen as
a uniformly random subset of [n], and the estimate is computed as the relative
Hamming weight of the sample qt: PT (t) = 1/2n for any t ⊆ [n], and S = {⊥}
and f(t, qt,⊥) = f(t, qt) = ω(qt).)

The next example is a somewhat unnatural and in some sense non-optimal sam-
pling strategy, but it will be of use for the QKD proof in Section 5.

Example 3 (Pairwise one-out-of-two sampling, using only part of the sample).
For this example, it is convenient to consider the index set from which the subset
t is chosen, to be of the form [n]×{0, 1}. Namely, we consider the string q ∈ A2n

to be indexed by pairs of indices, q = (qij), where i ∈ [n] and j ∈ {0, 1}; in other
words, we consider q to consist of n pairs (qi0, qi1). The subset t ⊂ [n]× {0, 1}
is chosen as t = {(1, j1), . . . , (n, jn)} where every jk is picked independently at
random in {0, 1}. In other words, t selects one element from each pair (qi0, qi1).
Furthermore, the estimate for ω(qt̄) is computed from qt as f(t, qt, s) = ω(qs)
where the seed s is a random subset s ⊂ t of size k.)

3.2 The Error Probability

We formally define a measure that captures for a given sampling strategy how
well it performs, i.e., with what probability the estimate, f(t, qt, s), is how close
to the real value, ω(qt̄). For the definition and for later purposes, it will be
convenient to introduce the following notation. For a given sampling strategy
Ψ = (PT , PS , f), consider arbitrary but fixed choices for the subset t ⊂ [n] and
the seed s ∈ S with PT (t) > 0 and PS(s) > 0. Furthermore, fix an arbitrary
δ > 0. Define Bδ

t,s(Ψ) ⊆ An as

Bδ
t,s(Ψ) := {b ∈ An : |ω(bt̄)− f(t, bt, s)| < δ} ,

i.e., as the set of all strings q for which the estimate is δ-close to the real value,
assuming that subset t and seed s have been used. To simplify notation, if Ψ is
clear from the context, we simply write Bδ

t,s instead of Bδ
t,s(Ψ). By replacing the

specific values t and s by the corresponding (independent) random variables T
and S, with distributions PT and PS , respectively, we obtain the random variable
Bδ

T,S , whose range consists of subsets of An. By means of this random variable,
we now define the error probability of a sampling strategy as follows.

Definition 2 (Error probability). The (classical) error probability of a sam-
pling strategy Ψ = (PT , PS , f) is defined as the following value, parametrized by
0 < δ < 1:

εδclass(Ψ) := max
q∈An

Pr
[
q /∈ Bδ

T,S(Ψ)
]
.

Sampling in a Quantum Population, and Applications 731

By definition of the error probability, it is guaranteed that for any string q ∈
An, the estimated value is δ-close to the real value except with probability at
most εδclass(Ψ). When used as a sampling strategy to test closeness to the all-
zero string, εδclass(Ψ) determines the probability of accepting even though qt̄ is
“not close” to the all-zero string, in the sense that its relative Hamming weight
exceeds δ. Whenever Ψ is clear from the context, we will write εδclass instead of
εδclass(Ψ).

Below, we analyze the error probability of the sampling strategy discussed in
Example 3, because this sampling strategy is used in our QKD security proof
(Section 5). The error probabilities of the other examples can be found in the
full version of this paper [2]. To bound the error probability, we use Hoeffding’s
inequality [5]. The following theorem summarizes this inequality, tailored to our
needs.

Theorem 2 (Hoeffding). Let b ∈ {0, 1}n be a bit string with relative Ham-
ming weight μ = ω(b). Let the random variables X1, X2, . . . , Xk be obtained by
sampling k random entries from b with replacement, i.e., the Xi’s are indepen-
dent and PXi (1) = μ. Furthermore, let the random variables Y1, Y2, . . . , Yk be
obtained by sampling k random entries from b without replacement. Then, for
any δ > 0, the random variables X̄ := 1

k

∑
iXi and Ȳ := 1

k

∑
i Yi satisfy

Pr
[|Ȳ − μ| ≥ δ

] ≤ Pr
[|X̄ − μ| ≥ δ

] ≤ 2 exp(−2δ2k) .

Error Probability of Example 3. For A = {0, 1}, a bound on the error probability
εδclass is obtained as follows. Let q be arbitrary, indexed as discussed earlier. First,
we show that ω(qT̄) is likely to be close to ω(qT). For this, consider the pairs
(qi0, qi1) for which qi0 �= qi1. Let there be � such pairs (where obviously � ≤ n.)
We denote the restrictions of qT and qT̄ to these indices i with qi0 �= qi1 by q̃T

and q̃T̄ , respectively. It is easy to see that wt(q̃T) + wt(q̃T̄) = �. It follows that
for any ε > 0 we have

Pr
[|ω(qT̄)−ω(qT)| ≥ ε

]
= Pr

[|wt(qT)− wt(qT̄)| ≥ nε
]

= Pr
[|wt(q̃T)− wt(q̃T̄)| ≥ nε

]
= Pr

[|2wt(q̃T)− �| ≥ nε
]

≤ 2 exp
(
−2
(
nε
2�

)2
�
)

= 2 exp
(
−nε2

2 · n�
)
≤ 2 exp

(− 1
2ε

2n
)
,

where the third equality follows from replacing wt(q̃T̄) by � − wt(q̃T), and the
first inequality follows from Hoeffding’s inequality (as each entry of wt(q̃T) is 0
with independent probability 1

2).
Furthermore, for any γ > 0 we have the following relation involving qS :

Pr
[|ω(qT)− ω(qS)| ≥ γ

] ≤ 2 exp
(−2kγ2) ,

which follows from directly applying Hoeffding’s inequality. Applying the union
bound and letting δ = ε+ γ, we obtain

εδclass = Pr
[|ω(qT̄)− ω(qS)| ≥ δ

]
< 2 min

ε∈(0,δ)

[
exp
(− 1

2ε
2n
)

+ exp
(−2k(δ − ε)2

)]
≤ 4 exp

(
− 2knδ2

(2
√

k+
√

n)2

)
≤ 4 exp

(− 1
3δ

2k
)
,

732 N.J. Bouman and S. Fehr

where the last line follows from choosing ε such that the two exponents coincide,
and from doing some simplifications while assuming k ≤ n/2.

4 Sampling in a Quantum Population

We now want to study the behavior of a sampling strategy when applied to
a quantum population. More specifically, let A = A1 · · ·An be an n-partite
quantum system, where the state space of each system Ai equals HAi = Cd with
d = |A|, and let {|a〉}a∈A be a fixed orthonormal basis of Cd. We allow A to
be entangled with some additional system E with arbitrary finite-dimensional
state-space HE . We may assume the joint state of AE to be pure, and as such
be given by a state vector |ϕAE〉 ∈ HA ⊗HE ; if not, then it can be purified by
increasing the dimension of HE .

Similar to the classical sampling problem of testing closeness to the all-zero
string, we can consider here the problem of testing if the state of A is close to the
all-zero reference state |ϕ◦

A〉 = |0〉 · · · |0〉 by looking at, which here means mea-
suring, only a few of the subsystems of A. More generally, we will be interested
in the sampling problem of estimating the “Hamming weight of the state of A”,
although it is not clear at the moment what this should mean. Actually, like
in the classical case, we are interested in testing closeness to the all-zero state,
respectively estimating the Hamming weight, of the remaining subsystems of A.

It is obvious that a sampling strategy Ψ = (PT , PS , f) can be applied in a
straightforward way to the setting at hand: sample t according to PT , measure
the subsystems Ai with i ∈ t in basis {|a〉}a∈A to observe qt ∈ A|t|, and com-
pute the estimate as f(t, qt, s) for s chosen according to PS (respectively, for
testing closeness to the all-zero state, accept or reject depending on the value
of the estimate). However, it is a-priori not clear, how to interpret the outcome.
Measuring a random subset of the subsystems of A and observing 0 all the time
indeed seems to suggest that the original state of A, and thus the remaining
subsystems, must be in some sense close to the all-zero state; but in what formal
sense is this true? And what can we conclude about the remaining state in case
of a general sampling strategy for estimating the (relative) Hamming weight?

We give in this section a rigorous analysis of sampling strategies when ap-
plied to a n-partite quantum system A. Our analysis completely answers above
questions. Later in the paper, we demonstrate the usefulness of our analysis of
sampling strategies for studying and analyzing quantum-cryptographic schemes.

4.1 Analyzing Sampling Strategies in the Quantum Setting

We start by suggesting the property on the remaining subsystems of A that one
should expect to be able to conclude from the outcome of a sampling strategy.
A somewhat natural approach is as follows.

Definition 3. For system AE, and similarly for any subsystem of A, we say
that the state |ϕAE〉 of AE has relative Hamming weight β within A if it is of
the form |ϕAE〉 = |b〉|ϕE〉 with b ∈ An and ω(b) = β.

Sampling in a Quantum Population, and Applications 733

Now, given the outcome f(t, qt, s) of a sampling strategy when applied to A, we
want to be able to conclude that, up to a small error, the state of the remaining
subsystem At̄E is a superposition of states with relative Hamming weight close to
f(t, qt, s) within At̄. To analyze this, we extend some of the notions introduced in
the classical setting. Recall the definition of Bδ

t,s, consisting of all strings b ∈ An

with |ω(bt̄)− f(t, bt, s)| < δ. By slightly abusing notation, we extend this notion
to the quantum setting and write

span
(
Bδ

t,s

)
:= span

({|b〉 : b ∈ Bδ
t,s}
)

= span
({|b〉 : |ω(bt̄)− f(t, bt, s)| < δ}) .

Note that if the state |ϕAE〉 of AE happens to be in span(Bδ
t,s) ⊗HE for some

t and s, and if exactly these t and s are chosen when applying the sampling
strategy to A, then with certainty the state of At̄E (after the measurement) is
in a superposition of states with relative Hamming weight δ-close to f(t, qt, s)
within At̄, regardless of the measurement outcome qt.

Next, we want to extend the notion of error probability (Definition 2) to the
quantum setting. For this, we consider the hybrid system TSAE, consisting of the
classical random variables T and S with distribution PTS = PTPS , describing
the choices of t and s, respectively, and of the actual quantum systems A and
E. The state of TSAE is given by

ρTSAE =
∑
t,s

PTS(t, s)|t, s〉〈t, s| ⊗ |ϕAE〉〈ϕAE | .

Note that TS is independent of AE: ρTSAE = ρTS ⊗ ρAE; indeed, in a sampling
strategy t and s are chosen independently of the state of AE. We compare this
real state of TSAE with an ideal state which is of the form

ρ̃TSAE =
∑
t,s

PTS(t, s)|t, s〉〈t, s| ⊗ |ϕ̃ts
AE〉〈ϕ̃ts

AE | with

|ϕ̃ts
AE〉 ∈ span(Bδ

t,s)⊗HE ∀ t, s
(1)

for some given δ > 0. Thus, T and S have the same distribution as in the real
state, but here we allow AE to depend on T and S, and for each particular
choice t and s for T and S, respectively, we require the state of AE to be in
span(Bδ

t,s)⊗HE . Thus, in an “ideal world” where the state of the hybrid system
TSAE is given by ρ̃TSAE , it holds with certainty that the state |ψAt̄E〉 of At̄E,
after having measured At and having observed qt, is in a superposition of states
with relative Hamming weight δ-close to β := f(t, qt, s) within At̄. We now
define the quantum error probability of a sampling strategy by looking at how
far away the closest ideal state ρ̃TSAE is from the real state ρTSAE .

Definition 4 (Quantum error probability). The quantum error probabil-
ity of a sampling strategy Ψ = (PT , PS , f) is defined as the following value,
parametrized by 0 < δ < 1:

εδquant(Ψ) = max
HE

max
|ϕAE〉

min
ρ̃T SAE

Δ(ρTSAE , ρ̃TSAE) ,

734 N.J. Bouman and S. Fehr

where the first max is over all finite-dimensional state spaces HE , the second
max is over all state vectors |ϕAE〉 ∈ HA ⊗ HE , and the min is over all ideal
states ρ̃TSAE as in (1).5

As with Bδ
t,s and εδclass, we simply write εδquant when Ψ is clear from the context.

We stress the meaningfulness of the definition: it guarantees that on average
over the choice of t and s, the state of At̄E is εδquant-close to a superposition
of states with Hamming weight δ-close to f(t, qt, s) within At̄, and as such it
behaves like a superposition of such states, except with probability εδquant. We
will argue below and demonstrate in the subsequent sections that being (close
to) a superposition of states with given approximate (relative) Hamming weight
has some useful consequences.

Remark 2. Similarly to footnote 2, also here the results of the section immedi-
ately generalize from the all-zero reference state |0〉 · · · |0〉 to an arbitrary refer-
ence state |ϕ◦

A〉 of the form |ϕ◦
A〉 = U1|0〉 ⊗ · · · ⊗ Un|0〉 for unitary operators Ui

acting on Cd. Indeed, the generalization follows simply by a suitable change of
basis, defined by the Ui’s. Or, in the special case where A = {0, 1} and

|ϕ◦
A〉 = H θ̂|x̂〉 = H θ̂1 |x̂1〉 ⊗ · · · ⊗H θ̂n |x̂n〉

for a fixed reference basis θ̂ ∈ {0, 1}n and a fixed reference string x̂ ∈ {0, 1}n,
we can, alternatively, replace in the definitions and results the computational
by the Hadamard basis whenever θ̂i = 1, and speak of the (relative) Hamming
distance to x̂ rather than of the (relative) Hamming weight.

4.2 The Quantum vs. the Classical Error Probability

It remains to discuss how difficult it is to actually compute the quantum error
probability for given sampling strategies, and how the quantum error probability
εδquant relates to the corresponding classical error probability εδclass. To this end,
we show the following simple relationship between εδquant and εδclass.

Theorem 3. For any sampling strategy Ψ and for any δ > 0:

εδquant(Ψ) ≤
√
εδclass(Ψ).

As a consequence of this theorem, it suffices to analyze a sampling strategy in the
classical setting, which is much easier, in order to understand how it behaves
in the quantum setting. In particular, sampling strategies that are known to
behave well in the classical setting, like Example 1 to 3, are also automatically
guaranteed to behave well in the quantum setting. We will use this for our
applications.

Our bound on εδquant is in general tight. Indeed, in [2] we show tightness
for an explicit class of sampling strategies, which e.g. includes Example 1 and
Example 3. Here, we just mention the tightness result.
5 It is not too hard to see, in particular after having gained some more insight via the

proof of Theorem 3 below, that these min and max exist.

Sampling in a Quantum Population, and Applications 735

Proposition 1. There exist natural sampling strategies for which the inequality
in Theorem 3 is an equality.

Proof (of Theorem 3). We need to show that for any |ϕAE〉 ∈ HA ⊗ HE , with
arbitraryHE , there exists a suitable ideal state ρ̃TSAE with Δ(ρTSAE , ρ̃TSAE) ≤
(εδclass)

1/2. We construct ρ̃TSAE as in (1), where the |ϕ̃ts
AE〉’s are defined by the

following decomposition.

|ϕAE〉 = 〈ϕ̃ts
AE |ϕAE〉|ϕ̃ts

AE〉+ 〈ϕ̃ts⊥
AE |ϕAE〉|ϕ̃ts⊥

AE 〉,
with |ϕ̃ts

AE〉 ∈ span(Bδ
t,s)⊗HE , |ϕ̃ts⊥

AE 〉 ∈ span(Bδ
t,s)⊥⊗HE and |〈ϕ̃ts

AE |ϕAE〉|2 +
|〈ϕ̃ts⊥

AE |ϕAE〉|2 = 1. In other words, |ϕ̃ts
AE〉 is obtained as the re-normalized pro-

jection of |ϕAE〉 into span(Bδ
t,s)⊗HE . Note that |〈ϕ̃ts⊥

AE |ϕAE〉|2 equals the prob-
ability Pr

[
Q /∈ Bδ

t,s

]
, where the random variable Q is obtained by measuring

subsystem A of |ϕAE〉 in basis {|a〉}⊗n
a∈A. Furthermore,∑

t,s

PTS(t, s) |〈ϕ̃ts⊥
AE |ϕAE〉|2 =

∑
t,s

PTS(t, s) Pr
[
Q /∈Bδ

t,s

]
= Pr

[
Q /∈Bδ

T,S

]
=
∑

q

PQ(q) Pr
[
q /∈Bδ

T,S

]
,

where by definition of εδclass, the latter is upper bounded by εδclass. From elemen-
tary properties of the trace distance, and using Jensen’s inequality, we can now
conclude that

Δ
(
ρTSAE , ρ̃TSAE

)
=
∑
t,s

PTS(t, s)Δ
(|ϕAE〉〈ϕAE |, |ϕ̃ts

AE〉〈ϕ̃ts
AE |
)

=
∑
t,s

PTS(t, s)
√

1− |〈ϕ̃ts
AE |ϕAE〉|2 =

∑
t,s

PTS(t, s)|〈ϕ̃ts⊥
AE |ϕAE〉|

≤
√∑

t,s

PTS(t, s)|〈ϕ̃ts⊥
AE |ϕAE〉|2 ≤

√
εδclass,

which was to be shown. �	
As a side remark, we point out that the particular ideal state ρ̃TSAE constructed
in the proof minimizes the distance to ρTSAE ; this follows from the so-called
Hilbert projection theorem.

4.3 Superpositions with a Small Number of Terms

We give here some argument why being (close to) a superposition of states with
a given approximate Hamming weight may be a useful property in the analyses
of quantum-cryptographic schemes. For simplicity, and since this will be the
case in our applications, we now restrict to the binary case where A = {0, 1}.
Our argument is based on the following lemma, which follows immediately from
Lemma 3.1.13 in [7]; we give a direct proof of Lemma 1 in the full version [2].

736 N.J. Bouman and S. Fehr

Informally, it states that measuring (part of) a superposition of a small number
of orthogonal states produces a similar amount of uncertainty as when measuring
the mixture of these orthogonal states.

Lemma 1. LetA andE be arbitrary quantum systems, let {|i〉}i∈I and {|w〉}w∈W
be orthonormal bases of HA, and let |ϕAE〉 and ρmix

AE be of the form

|ϕAE〉 =
∑
i∈J

αi|i〉|ϕi
E〉 ∈ HA ⊗HE and ρmix

AE =
∑
i∈J

|αi|2|i〉〈i| ⊗ |ϕi
E〉〈ϕi

E |

for some subset J ⊆ I. Let ρWE and ρmix
WE describe the hybrid systems obtained

by measuring subsystem A of |ϕAE〉 and ρmix
AE , respectively, in basis {|w〉}w∈W

to observe outcome W . Then, Hmin(ρWE |E) ≥ Hmin
(
ρmix
WE |E

)− log |J |.
We apply Lemma 1 to an n-qubit system A where |ϕAE〉 is a superposition of
states with relative Hamming weight δ-close to β within A:6

|ϕAE〉 =
∑

b∈{0,1}n

|ω(b)−β|≤δ

|b〉|ϕb
E〉 .

It is well known that
∣∣{b ∈ {0, 1}n : |ω(b) − β| ≤ δ}∣∣ ≤ 2h(β+δ)n for β + δ ≤ 1

2 ,
where h(p) := −(p log(p)+(1−p) log(1−p)) denotes the binary entropy function.

Since measuring qubits within a state |b〉 in the Hadamard basis produces
uniformly random bits, we can conclude the following.

Corollary 1. Let A be an n-qubit system, let the state |ϕAE〉 of AE be a su-
perposition of states with relative Hamming weight δ-close to β within A, where
δ + β ≤ 1

2 , and let the random variable X be obtained by measuring A in basis
Hθ{|0〉, |1〉}⊗n for θ ∈ {0, 1}n. Then

Hmin(X|E) ≥ wt(θ)− h(β + δ)n .

Consider now the following quantum-cryptographic setting. Bob prepares and
hands over to Alice an n-qubit quantum system A, which ought to be in state
|ϕ◦

A〉 = |0〉 · · · |0〉. However, since Bob might be dishonest, the state of A could
be anything, even entangled with some system E controlled by Bob. Our results
now imply the following: Alice can apply a suitable sampling strategy to con-
vince herself that the joint state of the remaining subsystem of A and of E is
(close to) a superposition of states with bounded relative Hamming weight. From
Corollary 1, we can then conclude that with respect to the min-entropy of the
measurement outcome, the state of A behaves similarly to the case where Bob
honestly prepares A to be in state |ϕ◦

A〉. By Remark 2, i.e., by doing a suitable
change of basis, the same holds if |ϕ◦

A〉 = H θ̂|x̂〉 for arbitrary fixed θ̂, x̂ ∈ {0, 1}n,
where wt(θ) is replaced by the Hamming distance between θ and θ̂. We will make
use of this in the application in the upcoming section.
6 System A considered here corresponds to the subsystem At̄ in the previous section,

after having measured At of the ideal state.

Sampling in a Quantum Population, and Applications 737

5 Application: Quantum Key Distribution (QKD)

In quantum key distribution (QKD), Alice and Bob want to agree on a secret
key in the presence of an adversary Eve. Alice and Bob are assumed to be able
to communicate over a quantum channel and over an authenticated classical
channel. Eve may eavesdrop the classical channel (but not insert or modify
messages), and she has full control over the quantum channel. The first and
still most prominent QKD scheme is the famous BB84 QKD scheme due to
Bennett and Brassard [1].

In this section, we show how our sampling-strategy framework leads to a sim-
ple security proof for the BB84 QKD scheme. Proving QKD schemes rigorously
secure is a highly non-trivial task, and as such our new proof nicely demonstrates
the power of the sampling-strategy framework. Furthermore, our new proof has
some nice features. For instance, it allows us to explicitly state (a bound on) the
error probability of the QKD scheme for any given choices of the parameters.
Additionally, our proof does not seem to take unnecessary detours or to make use
of “loose bounds”, and therefore we feel that the bound on the error probability
we obtain is rather tight (although we have no formal argument to support this).
Our proof strategy can also be applied to other QKD schemes that are based
on the BB84 encoding. For example, Lo et al.’s QKD scheme7 [6] can be proven
secure by following exactly our proof, except that one needs to analyze a slightly
different sampling strategy. On the other hand, it is yet unknown whether our
framework can be used to prove e.g. the six-state QKD protocol [3] secure.

As a matter of fact, the QKD scheme we analyze is an entanglement-based
version of the BB84 scheme. However, it is very well known and not too hard
to show that security of the entanglement-based version implies security of the
original BB84 QKD scheme.

The entanglement-based QKD scheme, QKD, is parametrized by the total num-
ber n of qubits sent in the protocol and the number k of qubits used to estimate
the error rate of the quantum channel (where we require k ≤ n/2). Additional
parameters, which are determined during the course of the protocol, are the
observed error rate β and the number � ∈ N ∪ {0} of extracted key bits. QKD
makes use of a universal hash function g : R × {0, 1}n−k → {0, 1}� and a lin-
ear binary error correcting code of length n − k that allows to correct up to a
β′-fraction of errors (except maybe with negligible probability) for some β′ > β.
The choice of how much β′ exceeds β is a trade-off between keeping the prob-
ability that Alice and Bob end up with different keys small and increasing the
size of the extractable key. We will write m for the bit size of the syndrome of
this error-correcting code. Protocol QKD can be found below.

It is not hard to see that k = k̂ except with negligible probability (in n).
Furthermore, if no Eve interacts with the quantum communication in the qubit
distribution phase then x = y in case of a noise-free quantum channel, or more
generally, ω(x − y) ≈ φ in case the quantum channel is noisy and introduces

7 In this scheme, Alice and Bob bias the choice of the bases so that they measure a
bigger fraction of the qubits in the same basis.

738 N.J. Bouman and S. Fehr

Protocol QKD

1. (Qubit distribution) Alice prepares n EPR pairs of the form (|0〉|0〉 + |1〉|1〉)/√2,
and sends one qubit of each pair to Bob, who confirms the receipt of the qubits.
Then, Alice picks random θ ∈ {0, 1}n and sends it to Bob, and Alice and Bob
measure their respective qubits in basis θ to obtain x on Alice’s side and y on
Bob’s side.

2. (Error estimation) Alice chooses a random subset s ⊂ [n] of size k and sends it to
Bob. Then, Alice and Bob exchange xs and ys and compute β := ω(xs ⊕ ys).

3. (Error correction) Alice sends the syndrome syn of xs̄ to Bob with respect to a
suitable linear error correcting code (as described above). Bob uses syn to correct
the errors in y s̄ and obtains x̂s̄. Let m be the bit-size of syn.

4. (Key distillation) Alice chooses a random seed r for a universal hash function g
with range {0, 1}�, where � satisfies � < (1−h(β))n− k −m (or � = 0 if the right-
hand side is not positive), and sends it to Bob. Then, Alice and Bob compute
k := g(r,xs̄) and k̂ := g(r, x̂s̄), respectively.

an error probability 0 ≤ φ < 1
2 . It follows that β ≈ φ, so that using an error

correcting code that approaches the Shannon bound, Alice and Bob can extract
close to (1 − 2h(φ))(n − k) bits of secret key, which is positive for φ smaller
than approximately 11%. The difficult part is to prove security against an active
adversary Eve. We first state the formal security claim.

Note that we cannot expect that Eve has (nearly) no information on K, i.e.
that Δ

(
ρKE ,

1
|K|IK ⊗ ρE

)
is small, since the bit-length � of K is not fixed but

depends on the course of the protocol, and Eve can influence and thus obtain
information on � (and thus on K). Theorem 4 though guarantees that the bit-
length � is the only information Eve learns on K, in other words, K is essentially
random-and-independent of E when given �.

Theorem 4 (Security of QKD). Consider an execution of QKD in the presence
of an adversary Eve. Let K be the key obtained by Alice, and let E be Eve’s
quantum system at the end of the protocol. Let K̃ be chosen uniformly at random
of the same bit-length as K. Then, for any δ with β + δ ≤ 1

2 :

Δ
(
ρKE , ρK̃E

) ≤ 1
2
· 2− 1

2

((
1−h(β+δ)

)
n−k−m−�

)
+ 2 exp

(− 1
6δ

2k
)
.

From an application point of view, the following question is of interest. Given the
parameters n and k, and given a course of the protocol with observed error rate
β and where an error-correcting code with syndrome length m was used, what
is the maximal size � of the extractable key K if we want Δ(ρKE , ρK̃E) ≤ ε for
a given ε? From the bound in Theorem 4, it follows that for every choice of δ
(with β+ δ ≤ 1

2), one can easily compute a possible value for � simply by solving
for �. In order to compute the optimal value, one needs to maximize � over the
choice of δ.

The formal proof of Theorem 4 is given below. Informally, the argument goes
as follows. The error estimation phase can be understood as applying a sampling
strategy. From this, we can conclude that the state from which the raw key,

Sampling in a Quantum Population, and Applications 739

xs̄, is obtained, is a superposition of states with bounded Hamming weight, so
that Corollary 1 guarantees a certain amount of min-entropy within xs̄. Privacy
amplification then finishes the proof.

To indeed be able to model the error estimation procedure as a sampling
strategy, we will need to consider a modified but equivalent way for Alice and
Bob to jointly obtain xs and ys from the initial joint state, which will allow
them to obtain the xor-sum xs ⊕ ys, and thus to compute β, before they mea-
sure the remaining part of the state, whose outcome then determines xs̄. This
modification is based on the so-called cnot operation, Ucnot, acting on C2⊗C2,
and its properties that

Ucnot(|b〉|c〉) = |b〉|b ⊕ c〉 and Ucnot(H |b〉H |c〉) = H |b⊕ c〉H |c〉 , (2)

where the first holds by definition of Ucnot, and the second is trivial to verify.

Proof. Throughout the proof, we use capital letters, Θ, X etc. for the random
variables representing the corresponding choices of θ, x etc. in protocol QKD. Let
the state, shared by Alice, Bob and Eve right after the quantum communication
in the qubit distribution phase, be denoted by |ψABE◦〉;8 without loss of gen-
erality, we may indeed assume the shared state to be pure. For every i ∈ [n],
Alice and Bob then measure the respective qubits Ai and Bi from |ψABE◦〉 in
basis Θi, obtaining Xi and Yi. This results in the hybrid state ρΘXY E◦ . For
the proof, it will be convenient to introduce the additional random variables
W = (W1, . . . ,Wn) and Z = (Z1, . . . , Zn), defined by

Wi :=
{
Xi if Θi = 0
Yi if Θi = 1 and Zi := Xi ⊕ Yi . (3)

Note that, when given Θ, the random variables W and Z are uniquely deter-
mined by X and Y and vice versa, and thus we may equivalently analyze the
hybrid state ρΘW ZE◦ .

For the analysis, we will consider a slightly different experiment for Alice
and Bob to obtain the very same state ρΘW ZE◦ ; the advantage of the modified
experiment is that it can be understood as a sampling strategy. The modified
experiment is as follows. First, the cnot transformation is applied to every
qubit pair AiBi within |ψABE◦〉 for i ∈ [n], such that the state |ϕABE◦〉 =
(U⊗n

cnot
⊗IE◦)|ψABE◦〉 is obtained. Next, Θ is chosen at random as in the original

scheme, and for every i ∈ [n] the qubit pair AiBi of the transformed state is
measured as in the original scheme depending on Θi; however, if Θi = 0 then the
resulting bits are denoted by Wi and Zi, respectively, and if Θi = 1 then they
are denoted by Zi and Wi, respectively, such that which bit is assigned to which
variable depends on Θi. This is illustrated in Figure 1 (left and middle), where
light and dark colored ovals represent measurements in the computational and
Hadamard basis, respectively. It now follows immediately from the properties (2)
8 E◦ represents Eve’s quantum state just after the quantum communication stage,

whereas E represents Eve’s entire state at the end of the protocol (i.e., her quantum
information and all classical information gathered during execution of QKD).

740 N.J. Bouman and S. Fehr

...
...

|ψABE〉

E

Y2
Y3

Y1

Yn

X1
X2

Xn

X3

0
1
1

0

...

Θ

...
...

|ϕABE〉

E

X1 = W1
W2 = Y2
W3 = Y3

Xn = Wn

Z1 = X1⊕Y1
X2⊕Y2 = Z2
X3⊕Y3 = Z3

Zn = Xn⊕Yn

...
...

|ϕABE〉

E

Z1 = X1⊕Y1

Zn = Xn⊕Yn

X2⊕Y2 = Z2
X3⊕Y3 = Z3

Fig. 1. Original and modified experiments for obtaining the same state ρΘW ZE◦

of the CNOT transformation and from the relation (3) between X,Y and W ,Z
that the state ρΘW ZE◦ (or, equivalently, ρΘXY E◦) obtained in this modified
experiment is exactly the same as in the original.

An additional modification we may do without influencing the final state is
to delay some of the measurements: we assume that first the qubits are mea-
sured that lead to the Zi’s, and only at some later point, namely after the error
estimation phase, the qubits leading to the Wi’s are measured (as illustrated in
Figure 1, right). This can be done since the relative Hamming weight of XS⊕YS

for a random subset S ⊂ [n] (of size k) can be computed given Z alone.
The crucial observation is now that this modified experiment can be viewed

as a particular sampling strategy Ψ , as a matter of fact as the sampling strategy
discussed in Example 3, being applied to systems A and B of the state |ϕABE◦〉.
Indeed: first, a subset of the 2n qubit positions is selected according to some
probability distribution, namely of each pairAiBi one qubit is selected at random
(determined by Θi). Then, the selected qubits are measured to obtain the bit
string Z = (Z1, . . . , Zn). And, finally, a value β is computed as a (randomized)
function of Z: β = ω(ZS) for a random S ⊂ [n] of size k. We point out that here
the reference basis (as explained in Remark 2) is not the computational basis
for all qubits, but is the Hadamard basis on the qubits in system A and the
computational basis in system B; however, as discussed in Remark 2, we may
still apply the results from Section 4 (appropriately adapted).

It thus follows that for any fixed δ > 0, the remaining state, from which W is
then obtained, is (on average over Θ and S) εδquant-close to a state which is (for
any possible values for Θ, Z and S) a superposition of states with relative Ham-
ming weight in a δ-neighborhood of β. Note that the latter has to be understood
with respect to the fixed reference basis (i.e., the Hadamard basis on A and the
computational basis on B). In the following, we assume that the remaining state
equals such a superposition, but we remember the error

εδquant ≤
√
εδclass ≤ 2 exp

(− 1
6δ

2k
)
.

where the bound on εδclass was derived in Section 3.2.
Recall that W is now obtained by measuring the remaining qubits; however,

the basis used is opposite to the reference basis, namely the computational basis
on the qubits Ai and the Hadamard basis on the qubits Bi. Hence, by Corollary 1
(and the subsequent discussion) we get a lower bound on the min-entropy of W :

Sampling in a Quantum Population, and Applications 741

Hmin(W |ΘZSE◦) ≥ (1− h(β + δ))n .

Since W is uniquely determined by X (and vice versa) when given Θ and Z, the
same lower bound also holds for Hmin(X|ΘZSE◦). Note that in QKD, the k qubit-
pairs that are used for estimating β are not used anymore in the key distillation
phase, so we are actually interested in the min-entropy of XS̄ . Additionally, we
should take into account that Alice sends an m-bit syndrome SYN during the
error correction phase. Hence, by using the chain rule, we obtain

Hmin(XS̄ |ΘZXSSYNE◦) ≥ (1− h(β + δ))n− k −m.9

Finally, we apply privacy amplification (Theorem 1) to conclude the proof. �	

References

1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and
coin tossing. In: Proceedings of IEEE International Conference on Computers, Sys-
tems, and Signal Processing, pp. 175–179 (1984)

2. Bouman, N.J., Fehr, S.: Sampling in a quantum population, and applications (2009),
http://arxiv.org/abs/0907.4246

3. Bruss, D.: Optimal eavesdropping in quantum cryptography with six states. Physical
Review Letters 81, 3018 (1998), http://arxiv.org/abs/quant-ph/9805019

4. Damg̊ard, I., Fehr, S., Lunemann, C., Salvail, L., Schaffner, C.: Improving the secu-
rity of quantum protocols via commit-and-open. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 408–427. Springer, Heidelberg (2009)

5. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Jour-
nal of the American Statistical Association 58(301), 13–30 (1963)

6. Lo, H.K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and
a proof of its unconditional security. J. Cryptol. 18(2), 133–165 (2005)

7. Renner, R.: Security of Quantum Key Distribution. Ph.D. thesis, ETH Zürich
(Switzerland) (September 2005), http://arxiv.org/abs/quant-ph/0512258

8. Renner, R.S., König, R.: Universally composable privacy amplification against quan-
tum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425.
Springer, Heidelberg (2005)

9. Shor, P.W., Preskill, J.: Simple Proof of Security of the BB84 Quantum Key Dis-
tribution Protocol. Phys. Rev. Lett. 85, 441–444 (2000)

9 Probably, it is possible to prove the lower bound: (1 − h(β + δ))(n − k) −m using
a different sampling strategy. However, for that case the error probability of the
related classical sampling strategy becomes harder to analyze. We have chosen for
the current proof strategy and bound for the sake of simplicity.

http://arxiv.org/abs/0907.4246
http://arxiv.org/abs/quant-ph/9805019
http://arxiv.org/abs/quant-ph/0512258

Author Index

Abe, Masayuki 209
Agrawal, Shweta 98
Aguilar Melchor, Carlos 138
Aoki, Kazumaro 333

Beimel, Amos 538
Bellare, Mihir 666
Bitansky, Nir 520
Boneh, Dan 98
Bos, Joppe W. 333
Bouman, Niek J. 724
Boyen, Xavier 98
Brakerski, Zvika 1
Brier, Eric 237

Camenisch, Jan 255
Canetti, Ran 520
Casati, Nathalie 255
Cash, David 666
Cho, Chongwon 447
Chung, Kai-Min 483
Coron, Jean-Sébastien 237

Damg̊ard, Ivan 558
De, Anindya 649
Dodis, Yevgeniy 21
Dunkelman, Orr 393
Dupuis, Frédéric 685

Fehr, Serge 724
Franke, Jens 333
Fuchsbauer, Georg 209

Gaborit, Philippe 138
Gaudry, Pierrick 333
Gennaro, Rosario 465
Gentry, Craig 116, 155, 465
Goldwasser, Shafi 1, 59
Goyal, Vipul 173, 277
Gross, Thomas 255
Groth, Jens 209

Halevi, Shai 155
Haralambiev, Kristiyan 209
Henecka, Wilko 351
Herranz, Javier 138
Hoang, Viet Tung 613

Icart, Thomas 237
Ishai, Yuval 173, 577

Jain, Abhishek 277
Juma, Ali 41

Kalai, Yael 483
Keller, Nathan 393
Kiltz, Eike 295
Kleinjung, Thorsten 333
Krawczyk, Hugo 631
Kruppa, Alexander 333
Kushilevitz, Eyal 577

Lee, Chen-Kuei 447
Lenstra, Arjen K. 333
Lin, Huijia 429

Madore, David 237
Mahmoody, Mohammad 173
Maji, Hemanta K. 595
May, Alexander 351
Meurer, Alexander 351
Montgomery, Peter L. 333
Müller-Quade, Jörn 411

Nielsen, Jesper Buus 685

Ohkubo, Miyako 209
Okamoto, Tatsuaki 191
Omri, Eran 538
O’Neill, Adam 295
Orlandi, Claudio 558
Orlov, Ilan 538
Ostrovsky, Rafail 277, 447
Osvik, Dag Arne 333

Parno, Bryan 465
Paskin-Cherniavsky, Anat 577
Pass, Rafael 429
Peikert, Chris 80
Peyrin, Thomas 370
Pietrzak, Krzysztof 21
Pinkas, Benny 502
Prabhakaran, Manoj 595

744 Author Index

Randriam, Hugues 237
Reinman, Tzachy 502
Rogaway, Phillip 613
Rosulek, Mike 595
Rothblum, Guy N. 59

Sahai, Amit 173
Salvail, Louis 685
Shamir, Adi 393
Shoup, Victor 255
Smith, Adam 295

Takashima, Katsuyuki 191
te Riele, Herman 333
Thomé, Emmanuel 333
Tibouchi, Mehdi 237
Timofeev, Andrey 333

Trevisan, Luca 649
Tseng, Wei-Lung Dustin 429
Tulsiani, Madhur 649

Unruh, Dominque 411

Vadhan, Salil 483
Vahlis, Yevgeniy 41
Vaikuntanathan, Vinod 155
Venkitasubramaniam,

Muthuramakrishnan 429

Wee, Hoeteck 314
Winkler, Severin 707
Wullschleger, Jürg 707

Zimmermann, Paul 333

	Title
	Preface
	Table of Contents
	Leakage
	Circular and Leakage Resilient Public-Key Encryption under Subgroup Indistinguishability (or: Quadratic Residuosity Strikes Back)
	Introduction
	Background
	New Results
	Our Techniques
	Other Related Work
	Paper Organization

	Preliminaries
	Subgroup Indistinguishability Assumptions
	Definition of a Subgroup Indistinguishability (SG) Problem
	Instantiations

	Description of the Encryption Scheme
	The Interactive Vector Game
	KDM Security
	KDM(1)-Security
	KDM(n)-Security
	Beyond Affine Functions

	Leakage Resiliency
	Auxiliary-Input Resiliency
	References

	Leakage-Resilient Pseudorandom Functions and Side-Channel Attacks on Feistel Networks
	Introduction
	Leakage-Resilient PRFs
	Side-Channel Attacks on Feistel
	Leakage-Resilient PRPs
	References
	Technical Lemmata

	Protecting Cryptographic Keys against Continual Leakage
	Introduction
	Preliminaries
	Fully Homomorphic Encryption

	Models and Definitions
	Leakage-Resilient Key Proxies from Homomorphic Encryption
	Proof Approach for Lemma

	Extensions and Applications
	References

	Securing Computation against Continuous Leakage
	Introduction
	The Contributions of This Work
	Related Work

	Security Definitions
	Leakage Model
	Continuous Side-Channel Secure Compiler

	Subsidiary Cryptosystem and Hardware
	The Naor-Segev/BHHO Scheme and Secure Hardware
	Homomorphic and Leakage-Resilient Properties

	A Continuous-Leakage Secure and Compiler
	References

	Lattice
	An Efficient and Parallel Gaussian Sampler for Lattices
	Introduction
	Contributions
	Comparison with the GPV Algorithm
	Overview of the Algorithm

	Preliminaries
	Notation
	Linear Algebra
	Gaussians
	Gaussians on Lattices

	Analysis of ‘Convolved’ Discrete Gaussians
	Discrete Gaussian Sampling Algorithms
	Randomized Rounding
	Generic Sampling Algorithm
	Efficient Sampling Algorithm for q-ary Lattices

	Singular Value Bounds
	General Bounds
	Bases for Cryptographic Lattices
	Gaussian-Distributed Bases

	References

	Lattice Basis Delegation in Fixed Dimension and Shorter-Ciphertext Hierarchical IBE
	Introduction
	Preliminaries
	Hierarchical IBE
	Statistical Distance
	Integer Lattices
	The Gram-Schmidt Norm of a Basis
	Discrete Gaussians
	Hardness Assumption

	Basis Delegation without Dimension Increase
	Basis Delegation: Algorithm BasisDel(A, R, TA, σ)
	The Main Simulation Tool: Algorithm SampleRwithBasis(A)

	An HIBE in the Random-Oracle Model
	Construction
	Parameters and Correctness
	Security

	Selectively Secure HIBE in the Standard Model
	Conclusions
	References

	Homomorphic Encryption
	Toward Basing Fully Homomorphic Encryption on Worst-Case Hardness
	Introduction
	Related Work
	Our Worst-Case / Average-Case Self-reduction
	How to Generate an Average Ideal Lattice, and Other Results

	Preliminaries
	Ideal Lattices
	Gaussian Distributions and Other Preliminaries

	Random Self-reduction of Ideal Lattice Problems
	Our Average-Case Distribution and Hard Problem
	Statement of the Reduction
	The RandomizeIdeal Algorithm
	Proof of the Reduction

	KeyGen According to the Average-Case Distribution
	Our Approach at a High Level
	IdealGen: The Details
	The TempIdeal Algorithm

	Basing Gentry’s Somewhat Homomorphic Scheme on SIVP over Ideal Lattices
	Conclusions and Open Problems
	References

	Additively Homomorphic Encryption with d-Operand Multiplications
	Introduction
	BasicIdea
	Chaining Encryption Schemes
	(n, t)-Chainable Schemes
	Chaining Schemes

	Computing with Chained Schemes
	Product and Polynomial Evaluation
	Higher Moduli

	Specific Realizations
	A Scheme Based on uSVP
	Other Schemes

	References

	i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits
	Introduction
	Homomorphic Encryption vs. Secure Function Evaluation
	Multi-hop Homomorphic Encryption
	Homomorphic Encryption from Yao Circuits
	Summary of Our Results

	Definitions of Homomorphic Encryption
	From1-Hoptoi-Hop Homomorphic Encryption
	Compact and Function-Private Homomorphic Encryption

	Extendable and Re-randomizable Secure Computation
	Extendable and Re-randomizable SFE from DDH
	Our Construction
	Re-randomizing Garbled Circuits

	References

	Theory and Applications
	Interactive Locking, Zero-Knowledge PCPs,and Unconditional Cryptography
	Introduction
	Statistically Zero-Knowledge IPCP for NP
	Interactive Locking Schemes
	On Oblivious Transfer from Stateless Hardware Tokens
	References

	Fully Secure Functional Encryption with General Relations from the Decisional Linear Assumption
	Introduction
	Background
	Our Result
	Notations

	Dual Pairing Vector Spaces by Direct Product of Symmetric Pairing Groups
	Functional Encryption with General Relations
	Span Programs and Non-monotone Access Structures
	Key-Policy Functional Encryption with General Relations

	Assumption
	Proposed KP-FE Scheme
	Security
	Theorem
	Lemmas
	Proof of Theorem

	References

	Structure-Preserving Signatures and Commitments to Group Elements
	Introduction
	Our Contribution
	Related Work
	Merging Our Results

	Preliminaries
	Bilinear Groups
	Assumptions
	Digital Signatures
	SXDH Groth-Sahai Proofs for Pairing-Product Equations

	Commitments
	Automorphic Signatures
	Instantiation
	Automorphic Blind Signatures
	Automorphic Signatures on Message Vectors

	Signatures on Vectors of Group Elements
	Randomization Techniques
	Basic Signature Scheme
	Variations and Extensions
	Simulatable Signatures

	Applications of Signatures on Group Elements
	UC-Secure Blind Signatures
	Group Signatures
	Anonymous Proxy Signatures

	References

	Efficient Indifferentiable Hashing into Ordinary Elliptic Curves
	Introduction
	Preliminaries
	Icart’s Function
	Indifferentiability

	Admissible Encodings and Indifferentiability
	Our Main Construction
	A More General Construction
	Discussion

	Extensions
	Extension to a Prime Order Subgroup
	Extension to Random Oracles into Strings

	A Simpler Variant of the SWU Algorithm
	Hashing in Characteristic 3
	Algorithm for Δ ∈ Q
	Algorithm for Δ$ /∈$ Q
	Algorithm for Any Δ

	References
	 Proof of Proposition
	Geometric Interpretation of Icart’s Function
	The Square Correspondence

	Analysis of the Algorithm from Section

	Key Exchange, OAEP/RSA, CCA
	Credential Authenticated Identification and Key Exchange
	Introduction
	Some UC Background
	Notions of Security
	Conventions Regarding SIDs
	System Parameters
	Authenticated Channels
	Secure Channels

	Ideal Functionalities for Strong CAID and CAKE
	Ideal Functionality F^∗$_caid$
	From Authentication to Key Exchange
	Some Relations of Interest

	Bootstrapping an Authentication Protocol
	Details: Split Functionalities
	General Split Functionalities
	A Multi-session Secure Channels Functionality
	Split Key Exchange
	Realizing Split Multi-session Secure Channels
	Realizing General Split Functionalities

	Practical UC Zero Knowledge
	Practical Protocols

	Strong CAID/CAKE Protocols
	A Protocol for Vectored Unions of Product Relations
	Security Analysis
	Implementing Step 4
	Adding Key Exchange
	From Strong CAID/CAKE to CAID/CAKE

	A Protocol for Equality Testing and a Related Problem
	A Variation

	References

	Password-Authenticated Session-Key Generation on the Internet in the Plain Model
	Introduction
	Definitions and Preliminaries
	Our Model
	Building Blocks

	Our Construction
	Proof of Security
	Description of Simulator S
	Total Queries by S

	References

	Instantiability of RSA-OAEP under Chosen-Plaintext Attack
	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Padding-Based Encryption from Lossy TDP + Fooling Extractor
	Background and Tools
	The Result

	OAEP as a Fooling Extractor
	OAEP
	Analysis

	Lossiness of RSA
	Background on RSA and Notation
	RSA Lossy TDP from Φ-Hiding
	RSA Lossy TDP from Multi-prime Φ-Hiding
	Small-Exponent RSA LTDP from 2-Or-m-Primes

	Instantiating RSA-OAEP
	References

	Efficient Chosen-Ciphertext Security via Extractable Hash Proofs
	Introduction
	Our Contributions

	Preliminaries and Definitions
	Key Encapsulation Mechanisms
	Binary Relations for Search Problems
	Extractable Hash Proofs
	Trapdoor Functions

	Generic Constructions from Extractable Hash Proofs
	CPA-Secure Encryption
	From Extractable to ABO-Extractable
	Obtaining Multiple Hard-Core Bits
	CCA-Secure Encryption

	Instantiations from Hardness of Factoring
	A Simple Extractable Hash Proof
	Efficient ABO-Extractable Hash Proof

	Instantiations from Diffie-Hellman Assumptions
	ABO-Extractable Hash Proof for the Diffie-Hellman Relation
	Constructions for the Twin Diffie-Hellman Relation

	Adaptive Trapdoor Relations
	References

	Attacks
	Factorization of a 768-Bit RSA Modulus
	Introduction
	Factoring RSA-768
	Factoring Using the Morrison-Brillhart Approach
	Polynomial Selection
	Sieving
	The Matrix Step
	That’s a Bingo

	Concluding Remarks
	References
	Sieving by Vectors
	Unbalanced Sequences in Block Wiedemann

	Correcting Errors in RSA Private Keys
	Introduction
	Notation and Mathematical Background
	The Heninger-Shacham Algorithm
	Blockwise Threshold-Based Vector Correction
	Generic Description
	Error Correction for RSA Keys

	Choice of Parameters and Success / Runtime Analysis
	Full Analysis for the RSA Case
	Generalization

	Implementation and Experiments
	References
	 Mounting the Attack
	Estimating the Error Rate
	Practical Choice of t

	Improved Differential Attacks for ECHO and Grøstl
	Introduction
	Previous Cryptanalysis
	Building Differential Trails with Truncated Differences
	Rebound Attacks
	Start-from-the-Middle Attacks
	The Super-Sbox Cryptanalysis Technique

	Improved Differential Attack for ECHO
	Description of ECHO
	Generic Differential Paths
	Differential Transitions for 2 AES Rounds

	Internal Differential Attack: Application to Grøstl
	Description of Grøstl
	The Internal Differential Attack
	Deriving a Distinguisher for Grøstl

	Results
	ECHO
	Grøstl

	Conclusion
	References
	The Amount of Freedom Degrees

	A Practical-Time Related-Key Attack on the KASUMI Cryptosystem Used in GSM and 3GTelephony
	Introduction
	Sandwich Attacks
	The Basic Related-Key Boomerang Attack
	Related-Key Sandwich Attacks

	The KASUMI Block Cipher
	A Related-Key Sandwich Distinguisher for 7-Round KASUMI
	The New Distinguisher
	Experimental Verification

	Related-Key Sandwich Attack on the Full KASUMI
	Experimental Verification

	Summary
	References

	Composition
	Universally Composable Incoercibility
	Introduction
	The Intuition Behind UC/c
	Related Work

	The Composable Incoercibility Framework (UC/c)
	Review of the UC Framework
	The Composable Incoercibility Framework (UC/c)
	Corruption Schedules
	Properties of UC/c Security

	Voting Schemes
	Incoercible Two-Party Protocols
	Conclusions and Open Problems
	References

	Concurrent Non-Malleable Zero Knowledge Proofs
	Introduction
	Preliminaries
	Concurrent Non-Malleable Zero-Knowledge
	Non-Malleable Commitment Schemes
	Concurrently Extractable Commitment Schemes

	A Concurrent Non-Malleable Zero-Knowledge Proof
	Proof of Security
	Our Simulator-Extractor
	The View Generated by the Simulator
	The Witnesses Output by the Simulator

	References

	Equivalence of Uniform Key Agreement and Composition Insecurity
	Introduction
	Related Work
	Our Results

	Preliminaries
	Building Intuition: Composition Insecurity vs. Dense Trapdoor Permutation
	Parallel Composition Insecurity from Dense Trapdoor Permutation
	Sequential Composition Insecurity from Dense Trapdoor Permutation

	Composition Insecurity vs. Uniform Transcript Key Agreement
	Parallel Composition Insecurity vs. Uniform Transcript Key Agreement
	Sequential Composition Insecurity vs. Uniform Transcript Key Agreement

	Impossibility of Adaptively Secure Self-composition
	References

	Computation Delegation and Obfuscation
	Non-interactive Verifiable Computing:Outsourcing Computation to Untrusted Workers
	Introduction
	Background
	Problem Definition
	Basic Requirements
	Input and Output Privacy
	Efficiency

	An Efficient Verifiable-Computation Scheme with Input and Output Privacy
	How to Handle Cheating Workers
	Conclusions and Future Directions
	References
	Proof of Theorem
	Proof Sketch of Yao’s Security for One Execution
	Completing the Proof of Theorem

	Proof of Theorem

	Improved Delegation of Computation Using Fully Homomorphic Encryption
	Introduction
	Previous Work
	Our Results

	Preliminaries on Fully Homomorphic Encryption
	The Model
	Del1 = \langleD1,W1\rangle: One-Time, Random-Input DelegationScheme
	Del2 = \langleD2,W2\rangle: One-Time, Arbitrary-Input Delegation Scheme
	Del3 = \langleD3,W3\rangle: One-Time, Arbitrary-Input Delegation Scheme with Negligible Soundness
	The FirstMain Delegation Schemes Del4
	The Second Main Delegation Scheme Del5
	Universal Arguments
	Our New Delegation Scheme Del5
	Pipelined Implementation of Del5

	References

	Oblivious RAM Revisited
	Introduction
	Basics of Oblivious RAMs

	Related Work
	Building Blocks
	Randomized Shell Sort (Oblivious Sorting Algorithm)
	Cuckoo Hashing

	Our Scheme
	Reshuffling Levels Using Cuckoo Hashing and Randomized Shell Sort
	Analysis and Implementation

	Open Questions
	References
	Optimizing the Construction

	On Strong Simulation and Composable Point Obfuscation
	Introduction
	This Work
	Our Techniques

	Definitions
	VBB, IND and BP Obfuscation
	VGB Obfuscation
	VGB vs. VBB and INDO
	Impossibility Results

	Composable Point Obfuscators
	Composition of Obfuscators
	Point Obfuscators
	Distributional Indistinguishability and Composable Point Obfuscation
	A Composable Point Obfuscator

	On the Assumption
	Applications
	Obfuscation of Point Circuits with Multi-bit Output
	Strong Encryption Schemes

	References

	Multiparty Computation
	Protocols for Multiparty Coin Toss with Dishonest Majority
	Introduction
	Our Results

	Preliminaries
	The Two-Party Protocol of Moran et al.

	Coin Tossing with Dishonest Majority – A Warm-Up
	Multiparty Coin Tossing When Half of the Parties Can Be Malicious
	A 5-Party Protocol That Tolerates up to 3 Malicious Parties

	Coin-Tossing with Dishonest Majority – Our Main Construction
	Coin-Tossing with Dishonest Majority and an On-Line Dealer
	Omitting the On-Line Dealer
	Coin-Tossing Protocol for Any Constant Fraction of Corrupted Parties
	References

	Multiparty Computation for Dishonest Majority:From Passive to Active Security at Low Cost
	Introduction
	Main Ideas

	Preliminaries
	MPC Protocol
	Notation and Library
	On-Line Phase
	Preprocessing

	UC Commitment Scheme
	UC Commitments with Preprocessing

	Cut-and-Choose Toolkit
	References

	Secure Multiparty Computation with Minimal Interaction
	Introduction
	Our Results
	RelatedWork

	Preliminaries
	Secure Computation
	The PSM Model
	Secret Sharing

	A Protocol in the Client-Server Model
	Full Security for t = 1
	Security with Selective Abort
	A Private Protocol with Knowledge of Outputs
	From Privacy with Knowledge of Outputs to Security with Selective Abort

	References

	A Zero-One Law for Cryptographic Complexity with Respect to Computational UC Security
	Introduction
	Overview of Our Techniques
	Preliminaries
	Zero-One Law for Non-reactive Functionalities
	Classifying Reactive Functionalities
	Necessity of the sh-OT Assumption
	Extensions, Limitations, and Open Problems
	References

	Pseudorandomness
	On Generalized Feistel Networks
	Introduction
	Preliminaries
	Classical Feistel
	Unbalanced Feistel
	Alternating Feistel
	Type-1, Type-2, and Type-3 Feistel
	References
	Proof for Unbalanced Feistel — Theorem

	Cryptographic Extraction and Key Derivation:The HKDF Scheme
	Introduction
	Statistical and Computational Extractors
	Formalizing Key Derivation Functions
	Extract-Then-Expand KDF and an HMAC-Based Instantiation
	The Security of HKDF
	References
	Background Definitions

	Time Space Tradeoffs for Attacks against One-Way Functions and PRGs
	Introduction
	Inverting One-Way Functions
	An Overview of the Ideas of Hellman and of Fiat and Naor
	Scaling Down the Fiat-Naor Construction
	The Main New Idea

	Attacks on Pseudorandom Generators
	Lower Bounds
	Model of Computation
	References

	Pseudorandom Functions and Permutations Provably Secure against Related-Key Attacks
	Introduction
	Basic Definitions
	Constructions of RKA-PRFs and RKA-PRPs
	References

	Quantum
	Secure Two-Party Quantum Evaluation of Unitaries against Specious Adversaries
	Introduction
	Preliminaries
	Modeling Two-Party Strategies

	Specious Quantum Adversaries
	Protocols for Two-Party Evaluation
	Modeling Specious Adversaries
	Privacy

	Unitaries with No Private Protocols
	The Protocol
	Computing over Encrypted States
	Evaluation of Gates in the Pauli and Clifford Groups
	Evaluation of the R-Gate
	On the Necessity of Swapping Privately

	Proof of Privacy
	Main Result and Open Questions
	References

	On the Efficiency of Classical and Quantum Oblivious Transfer Reductions
	Introduction
	Previous Results
	Contribution
	Notation
	Primitives and Randomized Primitives

	Lower Bounds for Classical Two-Party Computation
	Protocols and Security in the Semi-honest Model
	Lower Bounds for Secure Function Evaluation
	Lower Bounds for Protocols Implementing OT

	Quantum Reductions
	Reversing String OT Efficiently
	Lower Bounds
	Reduction of OT to String-Commitments

	Conclusions
	References

	Sampling in a Quantum Population, and Applications
	Introduction
	Notation, Terminology, and Some Tools
	Sampling in a Classical Population
	Sampling Strategies
	The Error Probability

	Sampling in a Quantum Population
	Analyzing Sampling Strategies in the Quantum Setting
	The Quantum vs. the Classical Error Probability
	Superpositions with a Small Number of Terms

	Application: Quantum Key Distribution (QKD)
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

