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Preface

CRYPTO 2010, the 30th Annual International Cryptology Conference, was spon-
sored by the International Association for Cryptologic Research (IACR) in co-
operation with the IEEE Computer Society Technical Committee on Security
and Privacy and the Computer Science Department of the University of Cal-
ifornia at Santa Barbara. The conference was held in Santa Barbara, Califor-
nia, during August 15-19, 2010, in conjunction with CHES 2010 (Workshop on
Cryptographic Hardware and Embedded Systems). Zulfikar Ramzan served as
the General Chair.

The conference received 203 submissions. The quality of the submissions was
very high, and the selection process was a challenging one. The Program Com-
mittee, aided by a 159 external reviewers, reviewed the submissions and after an
intensive review period the committee accepted 41 of these submissions. Three
submissions were merged into a single paper and two papers were merged into
a single talk, yielding a total of 39 papers in the proceedings and 38 presenta-
tions at the conference. The revised versions of the 39 papers appearing in the
proceedings were not subject to editorial review and the authors bear full re-
sponsibility for their contents. The best-paper award was awarded to the paper
“Toward Basing Fully Homomorphic Encryption on Worst-Case Hardness” by
Craig Gentry.

The conference featured two invited presentations. This year we celebrated
25 years from the publication of the ground-breaking work of Shafi Goldwasser,
Silvio Micali and Charles Rackoff “The Knowledge Complexity of Interactive
Proof-Systems.” We had the privilege of having “GMR” give the first invited
talk of the conference. The second invited talk was in a joint session with CHES.
The topic was “Is Theoretical Cryptography Any Good in Practice?” and the
talk was jointly given by Ivan Damgéard and Markus Kuhn. The program also
included a Rump Session, chaired by Daniel J. Bernstein and Tanja Lange,
featuring short informal talks on new and in-progress results.

I am in debt to the many people who contributed to the success of the
conference, and I apologize to those I have forgotten. First and foremost I thank
the authors who submitted their papers; a conference is only as good as the
submissions that it receives. The Program Committee members made a great
effort contributing their time, knowledge, expertise and taste and for that I am
grateful. I also thank the large number of external reviewers who assisted in the
process. (The Program Committee and sub-reviewers are listed in the following
pages.) The submission and review process used the software that Shai Halevi
designed and I received a lot of help from him in running it.

And always, I want to thank my friends at IBM Research, Rosario Gennaro,
Craig Gentry, Shai Halevi, Charanjit Jutla, Hugo Krawczyk and Vinod Vaikun-
tanathan — being part of this group makes everything so much more worthwhile.

June 2010 Tal Rabin



CRYPTO 2010

The 30th International Cryptology Conference

August 15-19, 2010, Santa Barbara, California, USA

Sponsored by the

International Association for Cryptologic Research (IACR)

in cooperation with

IEEE Computer Society Technical Committee on Security and Privacy,
Computer Science Department, University of California, Santa Barbara

General Chair

Zulfikar Ramzan

Program Chair

Tal Rabin

Symantec

IBM Research

Program Committee

Michel Abdalla
Adi Akavia

Amos Beimel
Xavier Boyen
Christian Cachin
Serge Fehr

Johan Hastad
Carmit Hazay
Susan Hohenberger
Thomas Holenstein
Yael Tauman Kalai
John Kelsey

Eike Kiltz

Eyal Kushilevitz
Tanja Lange

Yehuda Lindell
Ilya Mironov
Tal Moran

ENS, France
Weizmann Institute, Israel
Ben-Gurion University, Israel
Université de Liege, Belgium
IBM Research, Zurich, Switzerland
CWI, The Netherlands
Royal Institute of Technology, Sweden
Weizmann Institute and IDC Herzelia, Israel
Johns Hopkins, USA
ETH, Switzerland
Microsoft Research - New England, USA
NIST, USA
CWI, The Netherlands
Technion, Israel
Technische Universiteit Eindhoven,
The Netherlands
Bar-Ilan University, Israel
Microsoft Research, USA
Harvard, USA



VIII Organization

Jesper Buus Nielsen
Eiji Okamoto
Pascal Paillier
Rafael Pass
Giuseppe Persiano
Thomas Peyrin
Leonid Reyzin

Matt Robshaw
Palash Sarkar

abhi shelat

Vinod Vaikuntanathan
Brent Waters
Hoeteck Wee
Andrew Yao

Advisory Members

University of Aarhus, Denmark
University of Tsukuba, Japan

Gemalto, France

Cornell University, USA

University of Salerno, Italy

Ingenico, France

Boston University, USA

Orange Labs, France

Indian Statistical Institute, India
University of Virginia, USA

IBM Research, USA

University of Texas, Austin, USA

Queens College, CUNY, USA
Tsinghua University, China

Shai Halevi (CRYPTO 2009 Program Chair) - IBM Research
Phil Rogaway (CRYPTO 2011 Program Chair) - University of California,

Dayvis

External Reviewers

Divesh Aggarwal
Shweta Agrawal
Jae Hyun Ahn
Joel Alwen

Benny Applebaum
Gilad Asharov
Aslan Askarov

Jean-Philippe Aumasson

Roberto M. Avanzi
Steve Babbage
Daniel J. Bernstein
Luk Bettale

Rishiraj Bhattacharyya
Sanjay Bhattacherjee
Niek Bouman

Elette Boyle

Zvika Brakerski

Eric Brier

Dan Brown

Jan Camenisch
Sbastien Canard
Ran Canetti

Anne Canteaut
Claude Carlet

David Cash

Nishanth Chandran
Donghoon Chang
Melissa Chase

Sanjit Chatterjee
Lily Chen

Victor Chen

Nathan Chenette
Cline Chevalier
Christophe Clavier
Jean-Sébastien Coron
Scott Coull

Giovanni Di Crescenzo
Dana Dachman-Soled
M. Prem Laxman Das
Blandine Debraize
Cécile Delerable
Yevgeniy Dodis
Chandan Dubey
Renaud Dubois

Maria Dubovitskaya
Leo Ducas

Dejan Dukaric
Orr Dunkeman
Sebastian Faust
Matthias Fitzi
Manuel Forster
Pierre-Alain Fouque
David Freeman
Georg Fuchsbauer
Thomas Fuhr
Benjamin Fuller
Steven Galbraith
Clemente Galdi
Sharon Goldberg
Prasant Gopal
Dov Gordon
Louis Goubin
Aline Gouget
Vipul Goyal
Matthew Green
Iftach Haitner



Mike Hamburg
Nadia Heninger
Javier Herranz
Martin Hirt
Dennis Hofheinz
Esther Hanggi
Vincenzo Iovino
Yuval Ishai
Abhishek Jain
Otto Johnston
Antoine Joux
Charanjit Jutla
Seny Kamara
Bhavana Kanukurthi
Alexandre Karlov
Dmitry Khovratovich
Hugo Krawczyk
Gunnar Kreitz
Robin Kiinzler
Allison Lewko
Huijia Rachel Lin
Carolin Lunemann
Vadim Lyubashevsky
Subhamoy Maitra
Willi Meier

Alfred Menezes
Daniele Micciancio
Steve Miller

Hart Montgomery
Jorge Nakahara
Mridul Nandi

Gregory Neven
Phong Nguyen
Mats Naslund
Adam O’Neill
Eran Omri
Claudio Orlandi
Ilan Orlov
Duong Hieu Phan
Omkant Pandey
Periklis
Papakonstantinou
Bryan Parno
Anat Paskin
Souradyuti Paul
Chris Peikert
Ray Perlner
Ludovic Perret
Christiane Peters
Krzysztof Pietrzak
David Pointcheval
Stefan Popoveniuc
Emmanuel Prouff
Elizabeth Quaglia
Somindu C. Ramanna
Dominik Raub
Christian Rechberger
Andrew Regenscheid
Matthieu Rivain
Yannis Rouselakis
Andrea Rock
Subhabrata Samajder

Organization

Gil Segev

Yannick Seurin
Igor Shparlinski
Francesco Sica
Martijn Stam

John Steinberger
Henning Stichtenoth
Kunal Talwar
Christophe Tartary
Bojrn Terelius
Stefano Tessaro
Emmanuel Thomé
Mehdi Tibouchi
Tomas Toft

Luca Trevisan

IX

Wei-lung (Dustin) Tseng

Meltem Turan
Dominique Unruh
Muthuramakrishnan

Venkitasubramaniam

Damien Vergnaud
Ivan Visconti
Bogdan Warinschi
Stephanie Wehner
Daniel Wichs
Douglas Wikstrom
Severin Winkler
Christopher Wolf
Bo-Yin Yang
Shona Yu

Hila Zarosim



Table of Contents

Leakage

Circular and Leakage Resilient Public-Key Encryption under Subgroup
Indistinguishability (or: Quadratic Residuosity Strikes Back) ..........
Zvika Brakerski and Shafi Goldwasser

[a—y

Leakage-Resilient Pseudorandom Functions and Side-Channel Attacks
on Feistel Networks . ... e 21
Yevgeniy Dodis and Krzysztof Pietrzak

Protecting Cryptographic Keys against Continual Leakage ............ 41
Ali Juma and Yevgeniy Vahlis

Securing Computation against Continuous Leakage ................... 59
Shafi Goldwasser and Guy N. Rothblum
Lattice

An Efficient and Parallel Gaussian Sampler for Lattices............... 80
Chris Peikert

Lattice Basis Delegation in Fixed Dimension and Shorter-Ciphertext
Hierarchical IBE .. ... ... .. . e 98
Shweta Agrawal, Dan Boneh, and Xavier Boyen

Homomorphic Encryption

Toward Basing Fully Homomorphic Encryption on Worst-Case
Hardness. . ... ..o 116
Craig Gentry

Additively Homomorphic Encryption with d-Operand Multiplications... 138
Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz

i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits . . . .. 155
Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan
Theory and Applications

Interactive Locking, Zero-Knowledge PCPs, and Unconditional
Cryptographiy . ... ..o 173
Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai



XII Table of Contents

Fully Secure Functional Encryption with General Relations from the
Decisional Linear Assumption ................ .. . 191
Tatsuaki Okamoto and Katsuyuki Takashima

Structure-Preserving Signatures and Commitments to Group

Elements. . ... ..o 209
Masayuki Abe, Georg Fuchsbauer, Jens Groth,
Kristiyan Haralambiev, and Miyako Ohkubo

Efficient Indifferentiable Hashing into Ordinary Elliptic Curves ........ 237
Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore,
Hugues Randriam, and Mehdi Tibouchi

Key Exchange, OAEP/RSA, CCA

Credential Authenticated Identification and Key Exchange ............ 255
Jan Camenisch, Nathalie Casati, Thomas Gross, and Victor Shoup

Password-Authenticated Session-Key Generation on the Internet in the
Plain Model . ... ... 277
Vipul Goyal, Abhishek Jain, and Rafail Ostrovsky

Instantiability of RSA-OAEP under Chosen-Plaintext Attack .......... 295
Eike Kiltz, Adam O’Neill, and Adam Smith

Efficient Chosen-Ciphertext Security via Extractable Hash Proofs ... ... 314
Hoeteck Wee

Attacks

Factorization of a 768-Bit RSA Modulus ............................ 333
Thorsten Kleinjung, Kazumaro Aoki, Jens Franke,
Arjen K. Lenstra, Emmanuel Thomé, Joppe W. Bos,
Pierrick Gaudry, Alexander Kruppa, Peter L. Montgomery,
Dag Arne Osvik, Herman te Riele, Andrey Timofeev, and
Paul Zimmermann

Correcting Errors in RSA Private Keys ........ ... ... o it 351
Wilko Henecka, Alexander May, and Alexander Meurer

Improved Differential Attacks for ECHO and Grgstl .................. 370
Thomas Peyrin

A Practical-Time Related-Key Attack on the KASUMI Cryptosystem
Used in GSM and 3G Telephony ......... .. ... o .. 393
Orr Dunkelman, Nathan Keller, and Adi Shamir



Table of Contents XIII

Composition

Universally Composable Incoercibility ............ .. ... .. .. .... 411
Dominque Unruh and Jérn Miller-Quade

Concurrent Non-Malleable Zero Knowledge Proofs ................... 429
Huijia Lin, Rafael Pass, Wei-Lung Dustin Tseng, and
Muthuramakrishnan Venkitasubramaniam

Equivalence of Uniform Key Agreement and Composition Insecurity .... 447
Chongwon Cho, Chen-Kuei Lee, and Rafail Ostrovsky

Computation Delegation and Obfuscation

Non-Interactive Verifiable Computing: Outsourcing Computation to
Untrusted Workers . .. ... 465
Rosario Gennaro, Craig Gentry, and Bryan Parno

Improved Delegation of Computation Using Fully Homomorphic
Encryption ... ... .. 483
Kai-Min Chung, Yael Kalai, and Salil Vadhan

Oblivious RAM Revisited ... ... ..o 502
Benny Pinkas and Tzachy Reinman

On Strong Simulation and Composable Point Obfuscation............. 520
Nir Bitansky and Ran Canetti

Multiparty Computation

Protocols for Multiparty Coin Toss with Dishonest Majority ........... 538
Amos Beimel, Eran Omri, and Ilan Orlov

Multiparty Computation for Dishonest Majority: From Passive to
Active Security at Low Cost...... ... i 558
Ivan Damgard and Claudio Orlandi

Secure Multiparty Computation with Minimal Interaction............. 77
Yuwval Ishai, Eyal Kushilevitz, and Anat Paskin-Cherniavsky

A Zero-One Law for Cryptographic Complexity with Respect to
Computational UC Security . .........cooiuiiiiii .. 595
Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek

Pseudorandomness

On Generalized Feistel Networks .. .......... ... 613
Viet Tung Hoang and Phillip Rogaway



XIV Table of Contents

Cryptographic Extraction and Key Derivation: The HKDF Scheme. . . .. 631
Hugo Krawczyk

Time Space Tradeoffs for Attacks against One-Way Functions and
PRGS oo 649
Anindya De, Luca Trevisan, and Madhur Tulsiani

Pseudorandom Functions and Permutations Provably Secure against
Related-Key Attacks ... 666
Mihir Bellare and David Cash

Quantum

Secure Two-Party Quantum Evaluation of Unitaries against Specious
AdVErSaries . ..ottt 685
Frédéric Dupuis, Jesper Buus Nielsen, and Louis Salvail

On the Efficiency of Classical and Quantum Oblivious Transfer
Reductions . . ..ot 707
Severin Winkler and Jirg Wullschleger

Sampling in a Quantum Population, and Applications ................ 724
Niek J. Bouman and Serge Fehr

Author Index . ... .. . . 743



Circular and Leakage Resilient
Public-Key Encryption
under Subgroup Indistinguishability
(or: Quadratic Residuosity Strikes Back)

Zvika Brakerski! and Shafi Goldwasser?

! Weizmann Institute of Science
zvika.brakerski@weizmann.ac.il
2 Weizmann Institute of Science and Massachusetts Institute of technology
shafi@theory.csail.mit.edu

Abstract. The main results of this work are new public-key encryp-
tion schemes that, under the quadratic residuosity (QR) assumption (or
Paillier’s decisional composite residuosity (DCR) assumption), achieve
key-dependent message security as well as high resilience to secret key
leakage and high resilience to the presence of auxiliary input information.

In particular, under what we call the subgroup indistinguishability as-
sumption, of which the QR and DCR are special cases, we can construct
a scheme that has:

— Key-dependent message (circular) security. Achieves security
even when encrypting affine functions of its own secret key (in fact,
w.r.t. affine “key-cycles” of predefined length). Our scheme also
meets the requirements for extending key-dependent message secu-
rity to broader classes of functions beyond affine functions using
previous techniques of Brakerski et al. or Barak et al.

— Leakage resiliency. Remains secure even if any adversarial low-
entropy (efficiently computable) function of the secret key is given to
the adversary. A proper selection of parameters allows for a “leakage
rate” of (1 — o(1)) of the length of the secret key.

— Auxiliary-input security. Remains secure even if any sufficiently
hard to invert (efficiently computable) function of the secret key is
given to the adversary.

Our scheme is the first to achieve key-dependent security and auxiliary-
input security based on the DCR and QR assumptions. Previous schemes
that achieved these properties relied either on the DDH or LWE assump-
tions. The proposed scheme is also the first to achieve leakage resiliency
for leakage rate (1—o(1)) of the secret key length, under the QR assump-
tion. We note that leakage resilient schemes under the DCR and the QR
assumptions, for the restricted case of composite modulus product of safe
primes, were implied by the work of Naor and Segev, using hash proof
systems. However, under the QR assumption, known constructions of
hash proof systems only yield a leakage rate of o(1) of the secret key
length.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 1-20] 2010.
© International Association for Cryptologic Research 2010
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1 Introduction

The “classical” definition of semantic secure public-key encryption by Gold-
wasser and Micali [16], requires that an efficient attacker with access to the
public encryption-key must not be able to find two messages such that it can
distinguish a random encryption of one from a random encryption of the other.
Numerous candidate public-key encryption schemes that meet this definition
have been presented over the years, both under specific hardness assumptions
(like the hardness of factoring) and under general assumptions (such as the ex-
istence of injective one-way trapdoor functions).

This notion of security, however (as well as other commonly accepted ones),
does not capture certain situations that may occur in the “real world”:

— Functions of the secret decryption-key can be encrypted and sent (note that
semantic security only guarantees security with respect to messages which
an efficient attacker can find).

— Information about the secret key may leak.

— The same secret key may be used in more than one application, or more
generally the attacker can somehow obtain the value of a hard-to-invert
function of the secret key.

In recent years, extensive research effort has been invested in providing encryp-
tion schemes which are provably secure even in the above settings. Such schemes
are said to achieve key-dependent message (KDM) security, leakage-resilience,
and auziliary-input security in correspondence to the above real world settings.
To date, we know of: (1) Candidate schemes which are KDM secure under the
decisional Diffie-Hellman (DDH) and under the learning with errors (LWE)
assumptions; (2) Candidate schemes that are resilient to key leakage of rate
(1 —o0(1)) (relative to the length of the secret key), under the LWE assumption
and under the DDH assumption. In addition, candidate scheme achieving some
leakage resilience under a general assumption: the existence of universal hash-
proof systems, with a leakage rate depending on the hash proof system being
used; (3) Candidate schemes that are auxiliary input secure under the DDH
assumption and under the LWE assumption.

In this work, we present an encryption scheme that achieves all of the above
security notions simultaneously and is based on a class of assumptions that
we call subgroup indistinguishability assumptions. Specifically, this class includes
the quadratic residuosity (QR) and the decisional composite residuosity (DCR)
assumptions, both of which are related to the problem of factoring large numbers.
In addition, our schemes have the following interesting property: the secret key
consists of a randomly chosen binary vector independent of the group at hand.
The instantiation of our scheme under QR enjoys the same useful properties
for protocol design as the original [I6] scheme, including re-randomization of
ciphertexts and support of the XOR homomorphic operation over the {0,1}
message space, with the added benefit of leakage resilience.

To best describe our results, we first, in Section[I.]] describe in detail the back-
ground for the new work, including the relevant security notions and previous
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results. Second, in Section [[.2] we describe in detail the new results and encryp-
tion schemes. Then, in Section[I.3] we describe the new techniques. Section[[.4ldis-
cusses some additional related works and Section contains the paper
organization.

1.1 Background

Key-dependent messages. The shortcoming of the standard security defi-
nition in the case where the plaintext to be encrypted depends on the secret
key was already noticed in [16]. It was later observed that this situation is not
so unlikely and may sometimes even be desirable [9/TI2T]. Black, Rogoway and
Shrimpton [5] formally defined KDM-security: the attacker can obtain encryp-
tions of (efficient) functions of its choosing, taken from some specified class of
functions F, applied to the secret key. The requirement is that the attacker can-
not tell if all of its queries are answered by encryptions of some constant symbol
0, instead of the requested values. This definition is extended to the case of many
(say m) users that can encrypt each others’ secret keys: the attacker’s queries
now contain a function to be applied to all secret keys, and an identity of the
user whose public key should be used to encrypt. This latter case is referred to
as KDM(”)—security while the single-user case is called KDM(I)—security.

Boneh, Halevi, Hamburg and Ostrovsky [6] constructed a public key encryp-
tion scheme that is KDM™ secure w.r.t. all affine functions under the deci-
sional Diffie-Hellman (DDH) assumption, for any polynomial n. This first result
was followed by the work of Applebaum, Cash, Peikert and Sahai [3] who proved
that a variation of Regev’s scheme [25] is also KDM secure w.r.t. all affine func-
tions, under the learning with errors (LWE) assumption.

More recent works by Brakerski, Goldwasser and Kalai [8] and by Barak, Hait-
ner, Hofheinz and Ishai [4] presented each general and different techniques to
extend KDM-security to richer classes of functions. In [§], the notion of entropy-
k KDM-security is introduced. A scheme is entropy-x KDM-secure if it remains
KDM-secure even if the secret key is sampled from a high-entropy distribution,
rather than a uniform one. They show that an entropy-x KDM-secure scheme im-
plies a scheme that is KDM-secure w.r.t. roughly any pre-defined set of functions
of polynomial cardinality. In [4], the notion of targeted public-key encryption is
introduced. A targeted encryption scheme can be thought of as a combination
of oblivious transfer and encryption: it is possible to encrypt in such a way that
the ciphertext is decryptable only if a certain bit of the secret key takes a prede-
fined value. They show that a targeted encryption scheme implies a KDM-secure
scheme w.r.t. all functions computable by circuits of some predefined (polyno-
mial) size. These two results achieve incomparable performance. While in the
former, the public key and ciphertext lengths depend on the size of the function
class (but not on its complexity) and are independent of the number of users
n, in the latter the public key size does not depend on the function class, but

! More precisely “affine in the exponent”: the secret key is a vector of group elements
g1, ---,ge and the scheme is secure w.r.t. functions of the form h - ] gf’
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the ciphertext length is linear in the product of n times the complexity of the
functions.

Leakage resiliency. The work on cold boot attacks by Halderman et al. [I7],
gave rise to the notion of public-key encryption resilient to (bounded) memory
leakage attacks, presented by Akavia, Goldwasser and Vaikuntanathan [2] and
further explored by Naor and Segev [22]. In their definition, security holds even if
the attacker gets some information of its choosing (depending on the value of the
public key) on the scheme’s secret key, so long as the total amount of information
leaked does not exceed an a-priori information theoretic bound. More formall
the attacker can request and receive f(sk) for a length-restricted function f
[2022] presented public-key encryption schemes that are resilient to leakage of
even a 1 — o(1) fraction of the secret key (we call this the “leakage rate”). In
particular, [2] showed how this can be achieved under the LWE assumption, while
[22] showed that this can be achieved under the DDH (or d-linear) assumption.
It is further shown in [22] that some leakage resilience can be achieved using any
universal hash proof system (defined in [10]), where the leakage rate depends on
the parameters of the hash proof system. This implies secure schemes under the
the QR and DCR assumptions as well. However, using the known hash proof
systems, the leakage rate achievable under the QR assumption was only o(1) —
much less than the desired 1 — o(1). Based on the DCR assumption, a leakage
rate of (1 — o(1)) was achievable [22TO/TT].

Auxiliary input. Dodis, Kalai and Lovett [I3] and Dodis, Goldwasser, Kalai,
Peikert and Vaikuntanathan [12] considered the case where the leakage is not re-
stricted information theoretically, but rather computationally. In the public key
setting, the attacker is allowed to access any information on the secret key, with
the following computational restriction: as long as recovering the secret key sk
from said information f(pk, sk), for f of the attackers choosing, is computation-
ally hard to a sufficient extent (see discussion of several formalizations in [12]).
This notion of security was termed security in the presence of auziliary input (or
auziliary-input security, for short). Public-key auxiliary-input secure encryption
schemes under the DDH and LWE assumptions were recently presented in [12].

1.2 New Results

Let us define a generalized class of assumptions called subgroup indistinguisha-
bility (SG) assumptions. A subgroup indistinguishability problem is defined by
a group Gy (“the universe group”) which is a direct product of two groups
Gy = Gy x Gp, (interpreted as “the group of messages” and “the language
group”) whose orders, denoted by M, L respectively, are relatively prime and
where Gjs is a cyclic group. Essentially, the subgroup indistinguishability as-
sumption is that a random element of the universe Gy is computationally in-
distinguishable from a random element in Gp,. In other words, the language G,

2 To be more precise, the requirement is that the min-entropy of the secret sk drops
by at most a bounded amount, given f(sk).
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is hard on average in the universe Gy . The precise definition is a little more
involved, see Section [3] for details.

Two special cases of the subgroup indistinguishability assumptions are the
quadratic residuosity (QR) assumption on Blum integers and Paillier’s decisional
composite residuosity (DCR) assumption. This is easily seen for QR as follows.
Let integer N = p - ¢, where p, ¢ are random primes of equal bit-length, Z} =
{z € Zy : ged(z, N) = 1}, Jv denote the group of Jacobi symbol (41) elements
of Z, and QR y = {22 : x € Z%} denote its subgroup of quadratic residues. The
quadratic residuosity (QR) assumption is then, that the uniform distributions
over Jy and QR y are computationally indistinguishable. Taking N to be a Blum
integer where p,q = 3 (mod4) (otherwise the orders of G, Gy we define next
will not be relatively prime) and setting Gy = Jn, G, = QRy (which is of odd
order), and Gps = {£1} (which is cyclic and has order 2), the QR assumption
falls immediately into the criteria of subgroup indistinguishability assumptions.

We are now ready to describe the new encryption scheme for a given subgroup
problem (Gy, Gy, Gr) where h is a generator for Gys. In general, we view the
plaintext message space as the elements h™ € Gjs (sometimes the exponent m
itself can be viewed as the message). For the case of QR, the plaintext message
space is Gy = {£1}.

A word on the choice of parameters is in order. All parameters are measured as
a function of the security parameter k. As customary, in the QR and DCR cases,
think of the security parameter as the size of the modulus N (i.e. k = [log N1).
We let ¢ denote a parameter whose value is polynomially related to k)1 selected
in accordance to the desired properties of the scheme (KDM security, amount of
leakage resilience etc.).

The Encryption Scheme for Subgroup Problem (Gy,Gu,Gr) with
Parameter ¢:

— Key generation. Set the secret key to a random binary vector s = (s1,. .., S¢)
of length ¢. Set the public key to be the tuple (g1,. .., gs, go) where g1,...,ge
are uniformly chosen elements of G, and go =[] g; **. (For the QR assump-
tion, the public key thus consists of ¢ random squares, followed by a product
of a random subset of them, selected by the secret key s).

— FEncryption. On input message h™ [ sample a uniform integer r from a large
enough domain and output the ciphertext (¢7,...,97,h™ - g3). (For the QR
assumption case, encryption is of single bits {£1}, and the ciphertext is the
tuple of squares in the public key, raised to a random power, where the last
one is multiplied by the plaintext message.)

— Decryption. On ciphertext (c1, ..., ¢, o), compute h™ = ¢o - [[ ¢i*. (For the
case of QR, m = ¢p - [[¢;*.) In general, recoverability of the exponent m
depends on whether taking discrete logs in base h of h™ is easy.

We remark that the basic structure of our construction is strikingly similar to
[6], where the public key also contains ¢ independent “random” elements and

3 More precisely, £ is a polynomial function £(k).
4 Recall that h is a generator of Gy, which is a part of the description of Gy .
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an additional element that is statistically close to uniform, but in fact is a com-
bination of the previous ones. The difference and challenge is in how to prove
security. This challenge is due to the fact that the subgroup indistinguishability
assumptions seem inherently different from the DDH assumption. In the latter,
for cyclic group G where DDH is assumed, the assumption implies that the dis-
tribution (g1, g2, g7, g5) is computationally indistinguishable from (g1, g2, 97, g5)
giving complete re-randomization (a similar property follows for LWE). Such re-
randomization does not follow nor is it necessarily true from subgroup indistin-
guishability. Rather, we will have to use the weaker guarantee that (g1, g2, 97, 95)
is indistinguishable from (g1, g2, h 91, h” - g%), giving only “masking” of the
message bits.

Similarly to the scheme of [6], our scheme is lacking in efficiency. This is most
noticeable in our QR-based scheme, where the encryption of one bit requires
a ciphertext containing ¢ 4+ 1 group elements, each of size roughly the security
parameter k. The situation is somewhat better when relying on DCR: there
each such ciphertext encrypts 2(k) bits. Improved efficiency can be achieved
by using the same values g¢1,...,gs with many vectors s, however this makes
KDM security hold only with respect to a less natural function class (this is
similar to the more efficient LWE based scheme of [3]) and significantly reduces
leakage resiliency. Coming up with more efficient KDM secure or leakage resilient
schemes remains an interesting open problem.

We prove the following properties for the new encryption scheme.

Property 1: KDM-Security. First, we prove that the scheme is KDMW-secure
w.r.t. affine functions of the secret key. To show this for QR case, we show that
for any affine function specified by ag, . .., ar, the encryption of (—1)%+X: ®isi jg
indistinguishable from the encryption of (—1)°. For the general case, it is more nat-
ural to view KDM™ with respect to the affine functions “in the exponent”: for any
ho,h1,...,he € Gpy where h; = h*, for the generator h, we show that an encryp-
tion of hg - [[ R]* = hoot2: aisi is indistinguishable from an encryption of h°.

Second, we prove that for any polynomial value of n, the above encryption
scheme satisfies KDM ™ security, if £ is larger than, roughly, nlog L. We note
thus that the public key size and ciphertext size grow with n to achieve provable
KDM™ security. Interestingly, in the works of [63], £ did not need to grow with
n. This seems difficult to achieve without the complete “re-randomization” prop-
erty discussed above which does follow from the DDH and LWE assumptions,
but not from ours.

Finally, we can also show that our scheme can be used to obtain KDM security
for larger classes of functions than affine function: The scheme is entropy-x KDM-
secure (for proper values of £), as required in [8] and therefore implies a scheme
that is secure w.r.t. functions of the form ag + >, a; fi(sk) for (roughly) any set
of polynomially-many efficiently computable functions { fi, ..., f¢}. Our scheme
also implies a targeted encryption scheme, as required in [4], and therefore implies
that for any polynomial bound p, there is a scheme that is secure w.r.t. all
functions computable by size-p circuits.
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Property 2: Improved Key-Leakage Resiliency. We prove that the new
scheme is resilient to any leakage of a (1 — o(1)) fraction of the bits of the se-
cret key. Stated differently, if one specifies in advance the amount of leakage A (a
polynomial in the security parameter) to be tolerated, we can choose ¢ to obtain
a scheme that is secure against a leakage of A bits. The growth of £ is additive in A
(i.e. £ = £y + A) and therefore we can select the value of £ to obtain schemes that
are resilient to leakage of a (1 — (¢9/¢)) = (1 — o(1)) fraction of the secret key.

We emphasize that while schemes with the above guarantees were known
under LWE [2] or DDH [22], and even (implicitly) under DCR [22I10], this
was not the case under QR. Previous results with regards to QR-based leakage
resiliency [22/T0] could only approach a leakage rate of 1/k = o(1) (recall that
k is the security parameter, or the bit-length of the modulus N), compared to
(I —o(1)) in our scheme.

In addition, previous constructions of QR and DCR based hash proof systems
required that the modulus used N = p-q is such that p, q are safe primes. We do
not impose this restriction. In the QR case we only require that p, ¢ = 3 (mod 4)
(i.e. N is a Blum integer) and in the DCR case we only require that p,q have
the same bit-length.

Property 3: Auxiliary Input Security. We prove that our schemes remain
secure when the attacker has access to additional information on the secret
key sk, in the form of fpr(sk), where fp is a polynomial time function (which
may depend on the public key) that is evaluated on the secret key sk. First,
we consider the case where f is such that the transition (fyr(sk),pk) — sk is
computationally hard. Namely, that retrieving the secret key sk given the public
key pk and the auxiliary information f,x(sk), is sufficiently hard. This notion was
termed weak auziliary-input security in [12]. In turn, [I2] show how to leverage
weak auxiliary-input security to achieve security when the requirement on f is
weaker: now, only the transition fpr(sk) — sk needs to be hard. The latter is
called auziliary-input security.

We conclude that for all § > 0, we can select the value of £ such that the
scheme is auxiliary-input secure relative to any function that is hard to invert (in
polynomial time) with probability 2= We note that the input to the function
is the secret key — a length ¢ binary string, and therefore we measure hardness
as a function of ¢ (and not of the security parameter k).

1.3 Our Techniques

The circular security, leakage resiliency and auxiliary-input security properties
of our scheme are proved using a new technical tool introduced in this work:
the interactive vector game. This proof technique can also provide an alternative
proof for the KDM(I)—security, leakage resiliency and auxiliary-input security of
(known) public-key encryption schemes based on DDH and LWE, thus providing
an alternative, more generic proof for some of the results of [6,3,22,12}

5 In this work, the interactive vector game is defined only for our subgroup indistin-
guishability assumptions, but it easily extends to other assumptions.
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This suggests an alternative explanation to the folklore belief that the three
notions are related: that it is the proof technique that is related in fact. Namely,
the proof techniques for each property can be generalized to interactive vector
games which, in turn, imply the other properties.

We proceed to overview the proofs of security for the various properties of
our scheme. Again, let us consider the groups Gy = Gy x G with h being a
generator for Gy, such that the subgroup indistinguishability assumption holds.

To best explain the ideas of the proof, let us consider, as a first step, a
simple semantically secure encryption scheme (which is a generalization of the
Goldwasser-Micali scheme [15]). An encryption of 0 is a random element g € G,
and an encryption of 1 is h-g (in the QR case, the encryption of (41) is a random
quadratic residue and the encryption of (—1) is a random quadratic non-residue).
The two distributions are clearly indistinguishable (consider the indistinguish-
able experiment where g is uniform in Gy). In order to decrypt, one needs some
“trapdoor information” that would enable to distinguish between elements in
G and Gy (such as the factorization of the modulus N in the QR (and DCR)
case).

The first modification of this simple idea was to fix g and put it in the public
key, and set the ciphertext for A" to A" - g" for r large enough. Note that the
sender does not know the order of Gy: Indeed, in the QR case, knowing the
order of the group Jy, which is “0(2N ), enables to factor V. For the QR case, this
modification still amounts to encrypting (+1) by a random square, and (—1) by
a random non-square.

The second modification does away with the need of the secret key owner
to distinguish between elements in G, and Gy (e.g. with the need to know the
factorization of N in the QR case), by replacing the “trapdoor information” with
a secret key that is a uniform binary vector s = (s1,..., s;). Holding the secret
key will not enable us to solve subgroup indistinguishability, but will enable us
to decrypt as in [6]. We take a set of random elements g1, ..., g € Gr, and define
go = [1g; ®. If ¢ is large enough, then the leftover hash lemma implies that go
is almost uniform. As the ciphertext is (¢7,..., 9}, h™ - g3), one can recover h™
using s. Recovering m itself is also possible if the discrete logarithm problem in
Gy is easy, as is the case in the QR scenario.

The crux of the idea in proving security is as following. First, we note that
the distribution of go is close to uniform in Gp, even given gi,...,g¢ (by the
leftover hash lemma). Recall that in a DDH-based proof, we could claim that
((g1,---,90,90),(9%,---,97,95)) is computationally indistinguishable from
((91,---,9¢,90), (g1, -, 95, 95)) (where g; are uniform). However, based on sub-
group indistinguishability, a different method is required: Consider replacing go
with gy = h - go, the distribution ((g1,...,9¢,90),(97---,9;,90)) is computa-
tionally indistinguishable from ((g1,...,9¢, h-g0),(g,--.,9;,h" - g5)) under the
subgroup indistinguishability assumption. The crucial observation now is that
since the orders of Gy and Gy, are relatively prime, then in fact gf = n 955
where 7’ is independent of r. Combined with the fact that Gps is cyclic, we
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get that ((g1,...,9¢,90), (97, ---,97,90)) is indistinguishable from ((g1,...,g¢,h-
90), (97 ---95, " - g3)), for a random h’ € Gjs. Semantic security now follows.

To address the issues of circular security, leakage resiliency and auxiliary-
input, we generalize the idea presented above, and prove that the distributions
((gla s agf)a (hal : g{» oo b gz‘)) and ((gla s agf)a (gi‘» ce 795)) are indistin-
guishable. We provide an interactive variant of this claim, which we call an
interactive £-vector game, where the values of aq,...,ay € Z are selected by the
distinguisher and can depend on (gi,...,9¢), and show that the above is hard
even in such case. The interactive vector game will be employed in the proofs of
all properties of the scheme.

For key-dependent message security, we consider the ciphertext (g5, g7,...,h-
g7,...,9;). This ciphertext will be decrypted to h** and in fact can be shown
(using an interactive vector game) to be computationally indistinguishable from
a legal encryption of h%. Key-dependent message security follows from this fact.

Proving KDM(”)—security for our scheme is more complex. To illustrate this,
we contrast it with the ideas in the proof of [6]. They used homomorphism and
re-randomization to achieve KDM(")—security: Their scheme is shown to have
homomorphic properties that enable to “shift” public keys and ciphertexts that
are relative to a certain secret key, into ones that are relative to another se-
cret key. In order to apply these “shifts”, one only needs to know the relation
between the original and final keys (and not the keys themselves). In addition,
their scheme is shown to have re-randomization properties that enable to take
a public key (or ciphertext) and produce an independent public key (or cipher-
text) that corresponds to the same secret key (and message, in the ciphertext
case). These two properties enable simulating the KDM(")—security game using
only one “real” secret key, fabricating the n required keys and ciphertexts using
homomorphism and re-randomization. In [3], similar ideas are employed, but
the re-randomization can be viewed as implicit in the assumption (the ability to
generate independently looking vectors that are in fact linearly related).

Our scheme can be shown to have such homomorphic properties, but it doesn’t
enjoy as strong re-randomizability as required to use the above techniques. As an
example, consider a public key pk = (g0, ¢1,- . -, g¢) corresponding to a secret key
sk = (s1,...,8¢), 1.e. go =[] g; *. Let j € [¢] and consider k= (Go, 41, - - -, 90)
defined as follows: for all ¢ ¢ {j,0}, set g, = g;; for j, set §; = gj_l; and finally
set o =g - go = f]j_(l_sj) . Hi# g; °'. We get that pk is a properly distributed
public key corresponding to the secret key sk = sk ® e;j (sk XORed with the j*
unit binary string). Namely, we were able to “shift” a public key to correspond
to another (related) secret key, without knowing the original key. However, the
joint distribution of pk, pAk is easily distinguishable from that of two indepen-
dent public keys. What we lack is the ability to re-randomize pk so that it is
distributed as a public key for sk which is independent of pk.

Intuitively, this shortcoming requires us to use more “real randomness”. Our
proof simulates the KDM(”)—security game using only one “real” secret key, as

in the idea presented above. This secret key is used to fabricate n secret and
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public keys. However, when we want to apply the leftover hash lemma to claim
that the go components of all n fabricated public keys are close to uniform, we
need the one real secret key to have sufficient entropy. This requires a secret
key whose size is linear in n. These ideas, combined with the ones used to prove
KDM™W security, give our final proof.

The property of entropy-x KDM-security requires that the scheme remains
secure even when the secret key is sampled from a high-entropy (but not nec-
essarily uniform) distribution. This is shown to hold using the leftover hash
lemma, since [] g;* is a 2-universal hash function. A targeted encryption scheme
is obtained similarly to the other constructions in [4], by using the fact that we
can “fabricate” ciphertexts that correspond to affine functions of the secret key
without knowing the secret key itself.

Leakage resiliency and auxiliary-input security are proven by an almost identi-
cal argument: consider a case where we replace the ciphertext (A™-gg, g7, - ., })
with a computationally indistinguishable one: (h~ 2 oisi pm gy, h°t g7, ..., hoC-
gy), where o; € Zp; are uniform. Computational indistinguishability (even for
a known secret key) follows from the interactive vector game mentioned above.
For leakage-resilience, the leftover hash lemma implies that so long as there is
sufficient entropy in s after the leakage, > 0;s; will be close to uniform and will
“mask” the value of m. For auxiliary input we use the generalized Goldreich-
Levin theorem of [12] to show that > o;s; is close to uniform in the presence of
a function of s that is hard to invert, even given the public key. Thus obtaining
weak auxiliary-input security. In the QR case, the inner product is over Zs and
therefore we can use the “standard” Goldreich-Levin theorem [14], which implies
better parameters. We use leveraging (as used in [I2]) to obtain the full result.

1.4 Other Related Work

Cramer and Shoup [I0] presented the notion of hash proof systems, which are sim-
ilar to subgroup indistinguishability assumptions. Their implementations from
QR and DCR also do not require the factorization of N in order to decrypt. How-
ever they use the discrete logarithm of (their analog to) the g;’s as a secret key
for the system. Our scheme can be seen as taking another step towards “strip-
ping” the secret key of all structure: in our scheme, it is just a uniform sequence
of bits (resulting in a weaker form of a hash proof system that is “universal on
average” ).

Hemenway and Ostrovsky [19] show how to construct lossy trapdoor functions
(see [24] for definition) from the QR and DCR assumptions (among other as-
sumptions). Similar ideas can be used in a straightforward manner to construct
lossy trapdoor functions from subgroup indistinguishability assumptions with
special properties.

1.5 Paper Organization

Due to space constraints, this extended abstract only discusses the construction
based on the QR assumption. In addition, some of the proofs are omitted. We
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refer the reader to the full version of this paper [7] for the complete presentation,
including all details.

Preliminaries and definitions are presented in Section 2l The definition of
subgroup indistinguishability assumptions and instantiations from QR and DCR
appear in Section [3

Our QR-based encryption scheme is presented in Section @l followed, in Sec-
tion [ by introduction of the interactive vector game: a central technical tool
to be used for the analysis throughout the paper. KDM-security is discussed in
Section[6] leakage-resilience in Section[fland auxiliary-input security in Section[8l

2 Preliminaries

We denote scalars in plain lowercase (x € {0,1}) and vectors in bold lowercase
(x € {0,1}™). The i*" coordinate of x is denoted z;.

For vectors g,h € G", where G is a multiplicative commutative group, we
denote by g” the vector whose ¢"" coordinate is g;. We denote by h-g the vector
whose ¢** coordinate is h; - g;. Note that this does not denote an inner product.
For a group element ¢ € G and a vector x € Z, we let g* denote the vector
whose i"" coordinate is g**.

Let X be a probability distribution over a domain S, we write x £ X to
indicate that x is sampled from the distribution X. The uniform distribution
over a set S is denoted U(S). We use 2 < S as abbreviation for & < U(S).
An ensemble X = { X }i is € = e(k)-uniform if for all k, X} is within statis-
tical distance (k) from the uniform distribution. Statistical and computational
indistinguishability are defined in the standard way. We write negl(k) to denote
an arbitrary negligible function, i.e. one that vanishes faster than the inverse of
any polynomial.

We use the following simple lemma.

Lemma 2.1. Let T,N € N and let 2 & [T], then z (modN) is (N/T)-uniform
m ZN.

We use the following lemma which is an immediate corollary of the leftover hash
lemma and explicitly appears in [0, Lemma 2].

Lemma 2.2. Let H be a 2-universal hash family from a set X to a set Y. Then

the distribution (h, h(z)) where h < H, x & X is 4‘&" ~uniform in H X Y.

The following lemma states the properties of a class of hash functions that we

use.

Lemma 2.3. Let G be any finite commutative group and let £ € N. Then the
set of functions H = {hg, g, : {0,1}* — G}, . gecc where hy, g, (x) =
Hie[g] gi", is 2-universal.

We use the standard definitions of KDM security, leakage resilience and auxiliary
input security as appear, e.g., in [6)22]T2], respectively.
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3 Subgroup Indistinguishability Assumptions

We present the class of subgroup indistinguishability assumptions in Section [3]
and then discuss instantiations under the QR and DCR assumptions in Sec-
tion

3.1 Definition of a Subgroup Indistinguishability (SG) Problem

Let Gy be a finite commutative multiplicative group, such that Gy is a direct
product of two groups: Gy = G X G, (interpreted as the “message group” and
the “language group”), where Gy is cyclic of order M, Gy, is of order L (and is
not necessarily cyclic) and Gy is of order M - L (we abuse notation and use M, L
to index the groups and to denote their orders). We require that ged(M, L) = 1.
Let h be a generator for Gj; such that h is efficiently computable from the
description of Gy. We require that there exists an efficient algorithm OPg,, to
perform group operations in Gy, and also that there exist efficient sampling
algorithms Sg,,, Sg, that sample a random element from Gps, G, respectively.
We further require that an upper bound 7' > M - L is known.

We stress that as always, all groups described above are in fact families of
groups, indexed by the security parameter k. To be more precise, there exists
a polynomial time randomized algorithm that given the security parameter 1¥,
outputs Ig, = (OPg,,Sc.y,5c,,h, T). We refer to Ig, as an instance of Gy.

For any adversary A we denote the subgroup distinguishing advantage of A
by

SCAdv[A] =| Pr [A(1% 2)]— Pr [A(1%, 2)]
2 Gy el

That is, the advantage A has in distinguishing between Gy and Gp,. The subgroup
indistinguishability (SG) assumption is that for any polynomial 4 it holds that
for a properly sampled instance Ig,,, we have SGAdv[A] = negl(k) (note that in
such case it must be that 1/L = negl(k)). In other words, thinking of G1, C Gy
as a language, the assumption is that this language is hard on average. We define
an additional flavor of the assumption by

SCG’Adv[A] =| Pr [A(1*,h-x)] — Pr [A(1% )]

&G, &G,

It follows immediately that for any adversary A there exists an adversary B such

that SG'Adv[A] < 2- SGAdv[B].

3.2 Instantiations

We instantiate the SG assumption based on the QR and DCR assumptions.
For both instantiations we consider a modulus N defined as follows. For se-
curity parameter k, we sample a random RSA number N € N: this is a number
of the form N = pg where p, ¢ are random k-bit odd primes.
We note that our instantiations work even when the modulus N is such that
QR is not cyclic.
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Instantiation Under the QR Assumption with Any Blum Integer. Con-
sider a modulus N as described above. We use J to denote the set of elements
in Z3; with Jacobi symbol 1, we use QR to denote the set of quadratic residues
(squares) modulo N. Slightly abusing notation Jy, QR also denote the respec-
tive groups with the multiplication operation modulo N. The groups Jy, QR
have orders “D(QN ), “D(iv ) respectively and we denote N’ = “D(iv ). We require that
N is a Blum integer, namely that p,q = 3 (mod4). In such case it holds that
ged(2, N') =1 and (—1) € Jx \ QRy.

The quadratic residuosity (QR) assumption is that for a properly generated
N, the distributions U (Jy) and U(QR ) are computationally indistinguishableﬁ
This leads to the immediate instantiation of the SG assumption by setting Gy =
In, Gy ={£1}, G =QRy, h=(-1), T=N >2N'.

Instantiation Under the DCR Assumption. The decisional composite resid-
wosity (DCR) assumption, introduced by Paillier [23], states that for a properly
generated RSA number N, it is hard to distinguish between a random element in
Z}y» and a random element in the subgroup of N**-residues {2 : x € Z}.}. The
group Z3,» can be written as a product of the group generated by 1 + N (which
has order N) and the group of N** residues (which has order ¢(NV)). This implies
that setting Gy = Zy., G = {2V 1 2 € Z},} and Gy = {(L + N)? : i € [N]}
provides an instantiation of the SG assumption, setting h = (1+N) and T = N2.
Tt is left to check that indeed ged(N, p(IN)) = 1. This follows since p, ¢ are odd
primes of equal length: assume w.l.o.g that p/2 < ¢ < p, then the largest prime
divisor of p(N) = (p — 1)(¢ — 1) has size at most (p — 1)/2 < p, g and the claim
follows

4 Description of the Encryption Scheme

We now present our QR-based scheme £[¢].

Parameters. The scheme is parameterized by ¢ € N which is polynomial in
the security parameter. The exact value of £ is determined based on the specific
properties we require from the scheme.

The message space of £[¢] is M = {0, 1}, i.e. this is a bit-by-bit encryption
scheme.
Key generation. The key generator first samples a Blum integer N. We note
that the same value of N can be used by all users. Furthermore we stress that
no entity needs to know the factorization of N. Therefore we often refer to N as
a public parameter of the scheme and assume that it is implicitly known to all
users.

5 The QR assumption usually refers to random RSA numbers, which are not necessar-
ily Blum integers. However, since Blum integers have constant density among RSA
numbers, the flavor we use is implied.

7 If greater efficiency is desired, we can use a generalized form of the assumption, pre-
sented in [11].
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The key generator also samples s & {0,1}¢ and sets sk = s. It then samples
g < QRY% and sets gy = (ILicg g;*)~1. The public key is set to be pk = (go, g)
(with N as an additional implicit public parameter).
Encryption. On inputs a public key pk = (go,g) and a message m € {0,1},
the encryption algorithm runs as follows: it samples r & [N 2]E and computes
c=g" and ¢y = (—1)™ - ¢g§. It outputs a ciphertext (co, c).
Decryption. On inputs a secret key sk = s and a ciphertext (co, ¢), the decryp-
tion algorithm computes (=1)™ = co - [;¢(g ¢;" and outputs m.

The completeness of the scheme follows immediately by definition.

5 The Interactive Vector Game

We define the interactive £-vector game played between a challenger and an
adversary. We only present the QR-based game and refer the reader to [7] for
full details.

Initialize. The challenger samples b & {0, 1} and also generates a Blum integer
N and a vector g < (@Rf\,. It sends N and g to the adversary.
Query. The adversary adaptively makes queries, where each query is a vector
a € {0,1}*. For each query a, the challenger samples r <~ [N?2] and returns
(-1)2.-g"ifb=0and g" if b= 1.
Finish. The adversary outputs a guess b’ € {0,1}.

The advantage of an adversary A in the game is defined to be

IV Adv[A] = [Pr[p) = 1]b=0] — Pr[t = 1|b = 1] .

Under the QR assumption, no poly(k)-time adversary (where k is the security
parameter) can obtain a non-negligible advantage in the game, as formally stated
below.

Lemma 5.1. Let A be an adversary for the interactive £-vector game that makes
at most t queries, then there exists an adversary B for QR such that

IV,Adv[A] < 4t0 - QRAdV[B] + 2t¢/N .

Proof. A standard hybrid argument implies the existence of A; which is an
adversary for a 1-round game (¢t = 1 in our notation) such that IV,Adv[A] <
t- IVgAdV[.Aﬂ.

We consider a series of hybrids (experiments). For each hybrid H;, we let
Pr[H;] denote the probability that the experiment “succeeds” (an event we define
below).

§ A more natural choice is to sample r <~ [|Jn/|], but since [Jy| = 2N’ = “a(év) is hard
to compute, we cannot sample from this distribution directly. However, since r is
used as an exponent of a group element, it is sufficient that (r mod 2N’) is uniform
in Zspn/, and this is achieved by sampling r from a much larger domain. We further

remark that for the QR case, it is in fact sufficient to use r < [(N — 3)/4].



Circular and Leakage Resilient Public-Key Encryption 15

Hybrid Ho. In this experiment, we flip a coin b < {0, 1} and also sample i < [/].
We simulate the 1-round game with .4; where the challenger answers a query a
with (gf,...,g0 1, (=1)>% - gF, (=1)%+* - g7 1,...,(—=1)% - g7). The experiment
succeeds if b’ = b.

A standard argument shows that

IV[AdV[.Al] 1
= |Pr|Hp| — .
2 tHol =,
Hybrid H;. In this hybrid we replace g; (which is a uniform square) with (—g;).
We get that there exists B such that |Pr[H;] — Pr[Ho]| < 2- QRAdv[B].
We note that in this hybrid the adversary’s query is answered with

(97, s 911, (1) (=ga) ", (1) gl (S1)™ - gp)

Hybrid Hs. In this hybrid the only change is that now r & Zone (recall that
N’ = (’D(iv)) rather than U ([N?]). By Lemma[21lit follows that |Pr[Hz] — Pr[H1]|
< 1/N. We note that while N’ is not explicitly known to any entity, this argu-
ment is statistical and there is no requirement that this hybrid is efficiently
simulated.

We denote 71 = (r mod 2) and ro = (r mod N’). Since N’ is odd, the Chinese
Remainder Theorem implies that r1, 79 are uniform in Zs,Zy respectively and
are independent. The answer to the query in this scenario is therefore

(971”7 R g;ﬁflv (_})b'ai : (T_gz)rv (_bl)éH—l : g;;‘Jrla RN} (‘_1)a€’r' g?) = ,
(9127 s 791‘31’ (_1) et gi27 (_1)a7,+1 ' gii]v R (_1)05 : gé2) .

However since 71 is a uniform bit, the answer is independent of b. It follows
that Pr[H,] = J. Thus IV,Adv[A;] < 4¢- QRAAV[B] + 2¢/N, and the result
follows. 0

6 KDM Security

In this section, we discuss the KDM-security related properties of our QR-based
scheme (for the general discussion and full details, see full version [7]). We prove
the KDMW-security of £[¢], for £ > log N + w(logk), in Section Then, in
Section B2 we state that for £ > n-log N +w(log k), £]€] is also KDM™ -secure.
Finally, extensions beyond affine functions are stated in Section

We define F, g to be the class of affine functions over Z,. Namely, all functions
of the form f,,.a(X) = ao+ > a;x;, where a;,x; € Zs.

We use KDMzAdv[A] to denote the advantage of an adversary A in distin-
guishing between a case where it gets legal encryptions of functions in F and
the case where it gets encryptions of the constant message 0.
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6.1 KDM(I)-Security

The intuition behind the KDM®-security of £[¢] is as follows. Consider a public
key (g0 = [19; **,g) that corresponds to a secret key s, and a function fg, a €
Fof- The encryption of fu, a(s) = (—1)o0tX aisi jg

(co,€) = ((=1) = gggh) = ((=1)* - [ (=) - g7) . g") -

We notice that if s, ap,a are known, then ¢y is completely determined by ¢ =
g". Therefore, if we replace g" with (—1)® - g" (an indistinguishable vector,
even given the public key, by an interactive vector game), we see that (cg,c) is
indistinguishable from (cf,c’) = ((=1)* - gi, (—=1)* - g"), even when the secret
key and the message are known. Applying the same argument again, taking
into account that gg is close to uniform, implies that (¢, ¢’) is computationally
indistinguishable from (g}, g"), which is an encryption of 0. A formal statement
and analysis follow.

Theorem 6.1. Let A be a KDM(}E)H—adversary for E] that makes at most t
a

queries, then there exists an adversary B such that
KDM§§>HAdV[A} < 4420+ 1) - QRAAV[B] + VN - 2-¢ + O(t/N) .
a

The theorem implies that taking ¢ = log N + w(logk) is sufficient to obtain
KDM(I)—security.
Proof. The proof proceeds by a series of hybrids. Let b’ denote A’s output.

Hybrid Hj. In this hybrid, the adversary gets the public key, queries functions
Jao,a € Fog and gets legal encryptions of the functions of the secret key.

Hybrid H;. In this hybrid, we change the way the challenger answers the ad-
versary’s queries. Recall that in hybrid Hp, the query f,,a € F,og was an-
swered by (co,c) = ((—1)%+X @i . gr o) Tn hybrid Hy, it will be answered by

(co, €) = ((=1)* - g5, (=1)* - g").
We prove that

Prlp’ = 1] - Pr[t/ = 1]| < IV,Adv[A'] < 4i€ - QRAAV[B1] + O(#¢/N) ,

for some A’, By, even when s is fixed and known.
To see this, we notice that in both hybrids co = (=1)* - J[;¢(y ((=1)* ety

and go =[], e 9i i, Therefore an adversary A’ for the interactive ¢-vector game
can simulate A, sampling s on its own and using g to generate gg and “translate”
the challenger answers. Applying Lemma 5.1l the result follows.

Hybrid Hs. In this hybrid, we change the distribution of gy, which will now
be sampled from U(QR ). By Lemma 23] combined with Lemma 22 (go, g) is

4 .
orvz < \/Qﬁrz -uniform. Thus

- 20+2

N
Pr[t/ =1] — Pr[t) = 1]’ <
Ho Hy
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Hybrid H;. In this hybrid, we again change the way the challenger answers
queries. Now instead of answering (co, c) = ((—1)%-gg, (—1)?-g")), the challenger
answers (cg,c) = (g4,&"). The difference between Hy and Hj is now a t-query
interactive (¢ + 1)-vector game and thus by Lemma [B.1]

Pr[y = 1] - Pr[y/ = 1}’ < 440+ 1) - QRAAV[B] + O(t¢/N) |,

for some Bs.

Hybrid H,. We now revert the distribution of gg back to the original Hie[f] g; 7.
Similarly to Hy, we have

N
20+2

Pr[t/ =1] — Pr[t) = 1]’ <
Hy Hs

However, hybrid H, is identical to answering all the queries of the adversary by
encryptions of 0. Summing the terms above, the result follows. O

6.2 KDM™-Security

A formal statement for the QR case follows.

Theorem 6.2. Let A be a KDMgf')ﬁ—adversary for E] that makes at most t
a

queries, then there exists an adversary B such that

KDM}?)&AdV[A} < 4nt(20 + 1) - QRAAv[B] + (N - 27™)"/2 4 O(ntt/N) .
a

Thus, taking ¢ = n -log N + w(log k) is sufficient for KDM™_security.

6.3 Beyond Affine Functions

Two building blocks have been suggested in [8/4] to obtain KDM-security w.r.t.
a larger class of functions. Our scheme has the properties required to apply both
constructions, yielding the following corollaries (that can be generalized to any
SG assumption, see full version [7]).

The first corollary is derived using [8, Theorem 1.1]. A set of functions H =
{h1,... he : hy : {0,1}" — {0,1}} is entropy preserving if the function f(z) =
(h1(z)]| - - - ||he(z)) is injective (the operator || represents string concatenation).

Corollary 6.1. Consider E[f] and let k be polynomial in the security parame-
ter such that k > log N + w(logk). Then for any entropy preserving set H =
{hi,...,he : h; € {0,1}* — {0,1}} of efficiently computable functions, with
polynomial cardinality (in the security parameter), there exists a KDMW -secure
scheme under the QR-assumption w.r.t. the class of functions

F = {f(X) =ap +Zaihi(x) : (ag,a) € Zy x Zg} .

The second corollary is derived using [4, Theorem 4.1].
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Corollary 6.2. Based on the QR assumption, for any polynomial p there exists
a KDM™M _secure encryption scheme w.r.t. all functions computable by circuits
of size p(k) (where k is the security parameter).

7 Leakage Resiliency

We prove that the scheme £[¢] (our QR based scheme) is resilient to a leakage
of up of A = £ —log N — w(logk) bits. This implies that taking ¢ = w(log N),
achieves (1 — o(1)) leakage rate.

Intuitively, to prove leakage resiliency, we consider the case where instead
of outputting the challenge ciphertext ((—1)™ - ¢3,8"), we output ((—1)™ -
(=1)X oisi . gr (=1)7 - g"), for a random vector o < Z4. The views of the ad-
versary in the two cases are indistinguishable (by an interactive vector game)ﬁ
Using the leftover hash lemma, so long as s has sufficient min-entropy, even
given go and the leakage, then > o0;s; is close to uniform. In other words, the
ciphertexts generated by our scheme are computationally indistinguishable from
ones that contain a strong extractor (whose seed is the aforementioned o), ap-
plied to the secret key. This guarantees leakage resiliency The result in the
QR case is formally stated below, where LeakyAdv|[.A] denotes the advantage of
an adversary A in breaking the security of the scheme using A bits of leakage.

Theorem 7.1. Let A be a A-leakage adversary for E[€]. Then there exists an
adversary B such that

LeakyAdv[A] < 8¢- QRAAV[B] + VN - 22~¢ + O(¢/N) .

8 Auxiliary-Input Resiliency

As in previous work, we start by stating weak auxiliary-input security in Lemma
B below and then derive general auxiliary-input security for sub-exponentially
hard functions in Corollary Rl

A function f is e-weakly uninvertible if for any efficient A, Pr[A(1%,pk,
fi(sk,pk)) = sk] < €(|sk]).

Lemma 8.1. Let ¢(¢) and f be such that € is negligible and f is e-weakly un-
invertible function (more precisely, family of functions). Then under the QR
assumption, the scheme E[l] is secure even with auxiliary input f(sk).

We note that the above may seem confusing since it appears to imply auxiliary-
input security, and thus also semantic security, regardless of the value of /.

9 Of course the latter ciphertext can only be generated using the secret key, but the
indistinguishability holds even when the secret key is known.

10 In the spirit of [22], we can say that our scheme defines a new hash proof system
that is universal with high probability over illegal ciphertexts, a property which is
sufficient for leakage resiliency.
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However, we recall that if ¢ is too small, then we may be able to retrieve s from
pk without the presence of any auxiliary input. Therefore the value of ¢ must be
large enough in order for f to be weakly uninvertible.

We can then derive the following corollary.

Corollary 8.1. Assuming that a subgroup indistinguishability assumption holds,
then for any constant § > 0 there is an encryption scheme that is resilient to
auziliary input f(sk) any function f is hard to invert with probability 9=
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Leakage-Resilient Pseudorandom Functions
and
Side-Channel Attacks on Feistel Networks

Yevgeniy Dodis and Krzysztof Pietrzak

New York University and CWI Amsterdam

Abstract. A cryptographic primitive is leakage-resilient, if it remains
secure even if an adversary can learn a bounded amount of arbitrary
information about the computation with every invocation. As a conse-
quence, the physical implementation of a leakage-resilient primitive is
secure against every side-channel as long as the amount of information
leaked per invocation is bounded.

In this paper we prove positive and negative results about the feasi-
bility of constructing leakage-resilient pseudorandom functions and per-
mutations (i.e. block-ciphers). Our results are three fold:

1. We construct (from any standard PRF) a PRF which satisfies a re-
laxed notion of leakage-resilience where (1) the leakage function is fixed
(and not adaptively chosen with each query.) and (2) the computation
is split into several steps which leak individually (a “step” will be the
invocation of the underlying PRF.)

2. We prove that a Feistel network with a super-logarithmic number
of rounds, each instantiated with a leakage-resilient PRF, is a leakage
resilient PRP. This reduction also holds for the non-adaptive notion just
discussed, we thus get a block-cipher which is leakage-resilient (against
non-adaptive leakage).

3. We propose generic side-channel attacks against Feistel networks. The
attacks are generic in the sense that they work for any round functions
(e.g. uniformly random functions) and only require some simple leakage
from the inputs to the round functions. For example we show how to
invert an 7 round Feistel network over 2n bits making 4-(n+1)""2 forward
queries, if with each query we are also given as leakage the Hamming
weight of the inputs to the r round functions. This complements the
result from the previous item showing that a super-constant number of
rounds is necessary.

1 Introduction

Traditional cryptographic security definitions only give the adversary black-box
access to the primitive at hand. For example, a function F : X% x Y™ — xn

(X «f {0,1}) is pseudorandom if no efficient adversary given oracle access to

a function O : XY™ — XY™ can tell whether the oracle is a uniformly random
function or instantiated with F(,.) for a random key K € X*.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 21-40] 2010.
© International Association for Cryptologic Research 2010
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Unfortunately, this model does not capture many attacks in the real-world
where adversaries can attack concrete implementations of cryptosystems which
potentially leak information about their internal secret state during computa-
tion. Attacks exploiting such leakage are called side-channel attacks. Popular
side-channels that have been exploited for cryptanalytic attacks include running-
time [28], electromagnetic radiation [39U20] or power consumption [30].

Countermeasures. Side-channel attacks are a very real threat for systems used
in practice. Not surprisingly, much research has concentrated on developing coun-
termeasures against such attacks. This research is mostly done by practitioners
(i.e., the cryptographic hardware community) who are also active in finding and
exploiting new side-channels, [37] gives an overview of this research. The coun-
termeasures proposed are usually ad-hoc, in the sense that they aim to protect
against some particular, known attack, and are backed up by heuristic security
arguments. This is fundamentally different from the provable security approach
taken by modern cryptography, where one requires that a scheme is proven se-
cure against a class of resource bounded (e.g. polynomial time) adversaries and
not only particular attacks. This situation is very unsatisfying; after all, what
is a provably secure cryptosystem good for, if ultimately its security hinges on
an ad-hoc side-channel countermeasure? Nonetheless, until recently there was
almost no input from the theory community on side-channel countermeasures
as it was believed that this is a practical problem, and theory can only be of
limited use in this context. Fortunately, recent results indicate that this view
was much too pessimistic. In an early influential paper, Micali and Reyzin [35]
propose the “physically observable cryptography” framework which adapts the
concept of cryptographic reductions to the context of side-channel attacks. Only
very recently direct constructions of cryptographic schemes were proposed which
are provably secure against general classes of side-channel attacks. We’ll discuss
several such modes below.

Leakage-Resilient PRFs. A cryptographic primitive is leakage-resilient if it
remains secure even if the adversary can — with each invocation — learn a bounded
amount of arbitrary information about the computation. This notion was intro-
duced in [I7], and is formally modelled by allowing the adversary to choose
(besides the regular input, if there is any) a leakage function g with bounded
range X for some leakage parameter A After the invocation the adversary gets
— besides the regual output — the leakage g(7) where 7 is all data accessed by the
primitive during this invocation (that is, the part of the secret state that was
accessed and — if the primitive is probabilistic — any random coins used). We will
take a more “fine-grained” view and split an invocation into ¢ > 1 sequential
steps, where the adversary is allowed to learn a bounded amount of information

! The basic idea to consider adversaries who can learn any (sufficiently compress-
ing) function g(.S) about the secret state S goes back to Maurer’s bounded storage
model [32I5/42]. The bounded retrieval model [I4J8] adapts this to the computa-
tional setting.
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91(11), ..., 9:(m¢) about every step. Here 7; denotes absolutely all information
that is accessed in the i-th step.

As a consequence, the physical implementation of a leakage-resilient cryp-
tosystem will remain secure in the presence of any side-channel attack, as long
as the information exploited by this attack can be modelled by adaptively cho-
sen leakage functions as just described. A sufficient (but not necessary) condition
on the side-channel is to require that (1) the amount of information leaked per
invocation (or, in the fine-grained approach, per step) is at most A bits and (2)
“only computation leaks information”, which means that parts of the memory
which are not accessed during an invocation (or step) will not leak.

Remark 1 (On “Only computation leaks information”). “Only computation leaks
information” is an assumption about the physical properties of cryptodevices,
and was originally put forward as one the “axioms” in the physically observable
cryptography framework of Micali and Reyzin [35]. As just mentioned, devices
adhering to this axiom are captured by the model of leakage resilience, but this is
only a sufficient condition and by no means necessary. For example, [38] explains
why the mathematical model of leakage-resilience also captures certain physical
attacks which explicitly violate this axiom, like “cold-boot attacks” [22] or when
considering memory that is subject to static leakage.

Limitations of Current Techniques. The only leakage-resilient primitives
that were constructed so far in the standard model are stream-ciphers [17/38] and
signature schemes [19]. A leakage-resilient public-key encryption scheme has been
constructed, but only in the idealised generic group model [27]. A central open
problem is this line of research is the construction of pseudorandom functions
(PRFs) and permutations (PRPs, or equivalently, block-ciphers). Block-ciphers
are the work horses of crypto. Not surprisingly, they are also a favourite target
of side-channel cryptanalysts.

In this work we consider the problem of constructing leakage-resilient PRF's
and PRPs. The techniques used in the construction of leakage-resilient stream-
ciphers and signature schemes crucially rely on key evolution. For example, in a
stream-cipher the key evolves naturally, while for signatures one can sample a
fresh public/secret key pair with each signature query and sign the new key with
an old key. Unfortunately it is not clear how to evolve the key of a PRF/PRP.
The same difficulty arises with public-key encryption, so the leakage-resilient
PKE scheme from [27] does not rely on evolution, but rather on sharing the
secret key. The sharing is rerandomized after each invocation. In order to decrypt
using the shares of the secret key without actually reconstructing it, one exploits
the homomorphic property of the group. Thus, even aside from the reliance
on idealised generic groups [27], this technique is not an option to construct
leakage-resilient PRFs/PRPs if we do not want to use inefficient techniques and
assumptions (like DDH) that are used in public-key cryptography.

Our PRF Results. As leakage-resilient PRFs seem out of reach with our cur-
rent techniques, we will consider a relaxed notion of leakage-resilience, where the
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leakage function is not adaptively chosen by the adversary before each invocation,
but is fixed. This notion still captures all side-channel attacks where the adversary
will always measure (almost) the same leakage if she performs exactly the same
computation. This for example captures timing and to some extent power-analysis
attackﬂ, but not probing attacks (where different wires can be probed on different
invocations on the same input.) We construct a PRF which is secure under this re-
laxed notion from any standard PRF. The construction, as illustrated on the left in
Figure[l] can be seen as a hybrid of the GGM construction [2I] (which constructs
a PRF from any PRG) and the leakage-resilient stream cipher from [38].

Related Work. The idea to only consider non-adaptive leakage functions and that
this could be useful in the context of the GGM construction goes back at least to
Micali and Reyzin [35]@ A similar point for a particular leakage function (power
analysis) was made by Kocher [29]. The idea to consider leakage-resilience but
to fix the leakage function is due to Standaert et al. [41]. They suggest that the
GGM construction is secure in this setting if the PRG is modelled as a uniformly
random function and the leakage function is fixed

Side-Channel Attacks on Feistel. A pseudorandom permutation (PRP) F :
Xk x X" — X7 is defined like a PRF, except that one requires that for every
key K € X* F(K,.) is a permutation. A super PRP (sPRP) satisfies a stronger
notion where the adversary can also make inverse queries. The additional struc-
tural properties of permutations are often useful as they allow for better efficiency
and/or security. Block-ciphers, which are strong PRPs, are the “work horses” of
cryptography and a favourite target of side-channel cryptanalysts.

PRPs seem to be much more complicated objects than PRFs, but in a classical
paper, Luby and Rackoff [31] prove that a simple 3 round Feistel network (cf. Def-
inition[6)) instantiated with PRF's, is a PRP. With one round more one even gets a
sPRP. More recently, [7] prove that a six round Feistel network instantiated with

2 If the power-analysis just leaks the number of wires set to 1, then this is captured, but
if the power-analysis leaks the number of wires that “switch” from 0 to 1, then this is
no longer possible.

From [35]: Our definitions allow for repeated computation to leak new information
each time. However, the case can be made (e.g., due to proper hardware design) that
some devices computing a given function f may leak the same information whenever
f is evaluated at the same input x. This is actually implied by making the leakage
function deterministic and independent of the adversary measurement. Fized-leakage
physically observable cryptography promises to be a very useful restriction of our gen-
eral model (e.g., because, for memory efficiency, crucial cryptographic quantities are
often reconstructed from small seeds, such as in the classical pseudorandom function
of 121]).

The model considered is basically the random oracle model, but it is conceptually
used in a different way. In the RO model, a uniformly random function is accessible
to all parties, and security proofs only exploit the fact that a random oracle allows to
efficiently access an exponential amount of true randomness. In contrast, in [4I] the
security proof exploits the fact that the adversarial leakage functions cannot query
the random oracle.

w
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random functions is indifferentiable [34] from a uniformly random permutation.
These results suggest that a Feistel network with some small constant number of
rounds instantiated with leakage-resilient PRFs, would yield a leakage-resilient
PRP.

Unfortunately, this is not true. We show very simple side-channel attacks against
Feistel networks where the round functions can be arbitrary, and the only leak-
age is some (simple) function ¢(.) of the inputs to the round functions. We iden-
tify a simple property of leakage-functions function g(.) — which we call “recon-
structible” (cf. Definition [7]) — that is sufficient for our attack to work. This prop-
erty is shared by many simple and natural leakage functions (like the Hamming
weight or the identity function with very high noise). Thus our attacks are quite
practical. We explain these attacks in detail in Section [B] (which is self contained
and can be read independently of the rest of this paper), here only giving the brief
summary. We show that getting leakage from any reconstructible leakage function
g(.) is sufficient to allow the side-channel attacker to invert the Feistel network on
any input using a number of forward queries which is exponential in the number of
rounds (and, thus, in polynomial time for any fixed constant number of rounds).
This breaks the security of any fixed-round Feistel network as a PRP.

For readers familiar with the notion of Indifferentiability [34J6], it might seem
that our attacks contradict the beautiful result of Coron et al. [7] showing that a
six round Feistel network with random functions is indifferentiable from a random
permutation. The reason this is not a contradiction is that the indifferentiability
simulator S is allowed to make arbitrary additional forward /backward queries to
the random permutation when trying to “fake” the six random round functions,
as opposed to the queries made by the distinguisher (which the simulator does not
even see). For example, for our attack making only forward queries, the simulator
will be “smart enough” to figure out the backward query we are “computing” using
our forward queries, and will make such a query in advance to avoid any inconsis-
tencies. Translated to the setting of leakage, the indifferentiability framework will
imply the following much weaker notion of security than the one we are aiming for:
after making q block-cipher queries and observing the leakage, all but specially cho-
sen poly(q) input/outputs of the block cipher will “look random”. In contrast, we
will ensure that every un-queried input/output pair will “look random”.

We also mention that [I2] defined a notion of “honest but curious indifferentia-
bility”. As observed by [12//7] this notion is incomparable to standard indifferentia-
bility. On one hand, it is stronger because the simulator S is not allowed to make
any queries to P or P~! (but only sees the queries made by the distinguisher). But
it is also weaker, as the distinguisher is not allowed to query intermediate round
functions, but only the entire Feistel network (or its simulation) together with
all the inputs/outputs of the internal round functions. This notion is much closer
to the setting of side-channel attacks, except with side-channels we allow a much
richer class of leakage functions (e.g., those that depend on the key). In fact, the
side-channel attacks we propose generalize (and strengthen) a lower bound from
[12] which basically corresponds to our attack for the special case where the leak-
age contains the entire inputs to the round functions.
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Leakage-Resilient PRPs. In light of the results discussed in the previous sec-
tion, the best we can hope for is that an r-round Feistel network ¥,., instantiated
with leakage-resilient PRFs, is secure against adversaries who make at most an
exponential (in ) number of queries. In Section F] we show (again using tech-
niques from [12]) that this is indeed the case: the r-round Feistel network is a
secure leakage-resilient super PRP as long as the number of queries is bounded
by ¢ < 1.387/21,

We notice that the leakage-resilient sPRP, as just described, is secure in an
attack scenario where the adversary with every query to ¥, gets to see all the
input to the r round functions and also leakage from every round function (as
computed by any leakage function for which the underlying leakage-resilient PRF
is secure). Also, the reductions works for other notions of leakage-resilience, in
particular for the original notion of leakage-resilience where the leakage-function
is chosen adaptively. Thus, although our current PRF constructions only give us
“non-adaptive-leakage” sPRPs, future advances in leakage-resilient PRF's would
immediately translate to stronger leakage-resilient sPRPs.

In contrast, when proposing attacks, we want to consider a setting where
the adversary is as limited as possible. As explained in the previous section,
the side-channel attacks we propose against Feistel require a very limited setting
where the only leakage the adversary gets is some simple function (e.g. Hamming
weight) of the inputs to the round functions. The attack works no matter what
the round functions are, they can be leakage-proof PRFs or even uniformly
random functions.

More Related Work. We shortly discuss some work on provable side-channel
security not already covered in the introduction. The more practical work on
this topic is too extensive to cover here, [37] gives an overview of this research.

Private Circuits. Ishai et al. [2524] consider a model where the adversary can
choose some wires in the circuit on which the cryptographic algorithm is run,
and then learns the values carried by those wires during the computation (This
can be seen as a generalisation of exposure resilient cryptography [13], where
the adversary was restricted to learn some bits of the input.) They were the first
to prove how to implement any algorithm secure against an interesting side-
channel, i.e. probing attacks. This work uses techniques from general multiparty
computation (MPC)E‘ Recently Faust et al. [I8] extended this result to signif-
icantly more general classes of leakage, in particular, they give a construction

5 The outputs of the round functions can be computed from the input: the output of
the ith round functions is the XOR of the inputs of rounds ¢ — 1 and i + 1.

5 Formally, Ishai et al. prove the following: let ¢ > 0 be some constant and let [X]
denote a (t+1) out of (¢+ 1) secret sharing of the value X. They construct a general
compiler, which turns every circuit G(.) into a circuit G¢(.) (of size O(t|G|)) such that
[G(X)] = G¢([X]) for all inputs X, and moreover one does not learn any information
on G(X) even when given the value carried by any ¢ wires in the circuit G¢(.) while
evaluating the input [X]. This transformation uses multiparty-computation, which
is quite different from all other approaches we discuss here.
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(also based on general MPC) which remains secure given leakage computed by
any function from a low complexity class like ACy. The main drawback of those
constructions is that the amount of leakage that can be tolerated is very small:
to tolerate t bits leakage, the circuits must be blown up by a factor of at least
t. Moreover the construction from [I8] requires (albeit very simple) completely
leakage proof components.

(Continuous) Memory Attacks. A cryptographic scheme is secure against mem-
ory attacks, if it remains secure even if a bounded amount of information about
the secret key is given to the adversary. In this model [IJ36/4] construct public-
key encryption schemes and [26]2] construct signature schemes, identification
schemes and key exchange protocolsE Unlike leakage-resilience, here the leakage
function gets the entire secret state as input, and not only what was accessed.
On the downside — unlike leakage-resilience or private circuits — memory at-
tacks are a “one-shot” game where the total amount of leakage cannot be larger
than the length of the secret key. Very recently [10J5] extended the model of
memory attacks to the continuous setting. In their model the secret key gets
periodically updated (using local randomness and without changing the public
key), and a bounded amount about of information about the secret key can
leak in-between every two updates. The update phases can also leak, but only
a logarithmic amount. In this model, [I0] construct identification, signature and
authenticated key agreement schemes, [B] construct signatures and PKE.

Auwgiliary Input. [I1] introduce the notion of security against auxiliary input,
where one requires the scheme to be secure even if the adversary is given some
leakage g(K) about the secret key as long as g(.) is uninvertible. That is, K
cannot be inverted given g(K) but with very small probability. In this model
private-key [I1] and public-key [9] encryption schemes have been constructed.

Notation & Basic Definitions

— Xt denotes {0,1}¢, i.c. all bitstring of length . £<t % Ui_, X" denotes all
bitstrings of length at most ¢, including the empty string e.
— [a, ] denotes the interval {a,a +1,...,b}, [b] is short for [1, ).

— Sequential composition of functions is denoted with g o f(z) oef g(f(x)).

— Concatenation of two strings z,y is denoted z||y, or, if no confusion is pos-
sible, simply xy.

— wg (x) denotes the number of 1’s (i.e. Hamming weight) in z.

— Ry,,n denotes a uniformly random function 2™ — X" P, a uniformly
random permutation over X".

— For X € Y™ we denote with X|; the i bit prefix of X.

" Let us mention that PRFs and PRPs (i.e. the primitives considered in this paper)
that are secure against memory attacks do not even exist. E.g. we can trivially
distinguish F'(K, X) (here K is the key and X is any fixed input to the PRF F(.,.))
from uniform with advantage 1 — 27> given as leakage the first A bits of F (K, X).
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— pre(X) = J;—, X|; denotes the set of all prefixes of X, including the empty
string ¢ = Xy and the entire X = X|,.

— We sometimes write X9 to denote a sequence Xy, ..., X, of values.

— For a set X, X < X denotes that X is assigned a value sampled uniformly
at random from X.

— We denote with 6°(X;Y) the advantage of a circuit D in distinguishing the
random variables X,Y, i.e.: 6°(X;Y) ¥ |Pr[D(X) = 1] — Pr[D(Y) = 1]|.

With 64(X;Y) we denote maxpd®(X;Y) where the maximum is over all

circuits D of size s.

E(j,YillYr) =

B - 1Y, C @ Y1) E(j — 1,Yr||X:)
s
B / : P
‘ ‘
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Fig.1. Left: Illustration of the NALR-secure PRF '™ . Z3k+n o yym _, ydkt2n
(here shown for m = 4 and input 1011 € X™) from any standard (weak) PRF F :
Xk x Zn — 24+ We consider adversaries who with each such query X can get
leakage A for every I € pre(X) which is defined as A &f g(Kr,Zr, 1), where g is any
function of bounded size s and range A. And moreover all the Z7,I € pre(X).

Right: Ilustration of the second Claim from the proof of Theorem

2 Leakage-Resilient PRF's

Figure [ (left) illustrates our construction of a PRF F : ¥% x Y™ — X" for
which we will show that it satisfies a relaxed notion of leakage-resilience where
the leakage function is a priori fixed (and not adaptively by the adversary with
every query). Recall the standard definitions of (weak) PRFs.

Definition 1 (PRF/weak PRF). F : X% x X™ — X" is an (€pf, Sprf, Gprf )-
secure pseudorandom function (PRF) if no adversary of size sy can distinguish
F (instantiated with a random key) from a uniformly random function, i.e. for
any A of size spi making qus oracle queries we have

li{r[AF(K") — 1] = Pr [AR=n() 1) < e

m,mn
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F as above is a (€pr, Sprf, Gprt )-Secure weak PREF if the above only holds for ran-
domly (and not adversarially) chosen inputs, i.e. for K & X5 and

fori=1,...qu: X;<X™  YieFK X)) R+ Ry.(X))

we have PrlA(X %Y%) = 1] — PrlA(X %", R%*) = 1] < €pf

Definition [ below specifies what we mean by a PRF F being leakage-resilient
w.r.t. to a class of leakage functions L. Informally, we consider an adversary
A with access to two oracles. Initially, we sample a key K < X*. The first
oracle then takes as input some X € XY™ and outputs the output of the PRF
Y « F(K,X) on this input and the leakage A «— ¢(K,X) (where g is any
function from the class £). The second oracle is either a uniformly random
function R, ,, or the PRF F(K,.) (using the same key as K the first oracle.).
We require that no efficient A4 can distinguish these two cases. Of course we
have to require that A never queries the two oracles on the same input X, as
otherwise distinguishing becomes trivial.

The practical implication of this definition is as follows. Consider an adversary
who can launch a side-channel attack against F(K,.), where for every query
F(K,X) made she can measure some leakage A(K, X). If F is £ resilient, and
the leakage A(K, X) can be modelled as A(K, X) = g(K,X) for some g € L,
then for all inputs X’ on which F(K,.) has not yet been queried, the output
F(K, X') will be indistinguishable from random.

Definition 2 (L-resilient PRF/PRP/sPRP). F : X" x XY™ — X" s q
(€prf, Sprf, Qpre )-Secure L-resilient pseudorandom function if for every adversary
A of size sp and every g € L

%r[AFg(K,-),F(K,~) —1] - Kgr [AFg(K,.),RnL,n(~) — 1] < epr (1)

Here A can make a total of ques queries (arbitrarily scheduled) to his two oracles,
but the queries to the first and second oracle must be disjoint. The first oracle
FI(K,.) takes as input X € X™ and outputs F(K, X), g(K, X).

L-resilient pseudorandom permutations (PRP) are defined similarly, except
that now for every K, F(K,.) has to be a permutation and the random function
R...n in eq.(d) is replaced with a random permutation P,,. A L-resilient super
PRP (sPRP) is defined the same way, except that now we additionally allow
the adversary to make inverse queries. Here A is also not allowed to make an
inverse (forward) query Y to one oracle, if Y has been received as output to a
forward (inverse) query from the other oracle.

Definition 3 (NARL security). We say that « PRFF (same for PRP,sPRP)
is non-adaptive leakage-resilient if the computation of F(K,X) can be split into
t > 1 steps, and F is L-resilient w.r.t. to a class L which can leak, for every of
the t steps, arbitrary A bits of information about all the data that is accessed in
this step.
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Below we define our construction I'™™ of a function as illustrated is Figure [I]
for which we will prove that it is NARL secure if instantiated with any standard
weak PRF F. This construction can be seen as a hybrid of the GGM construction
[21] and the leakage-resilient stream-cipher from [38].

Definition 4 (Construction I'F). For a functions F : X% x X — 34k+2n,
we denote with I'* a function X3+t x Xm — $4k+20 defined as follows (cf.
Figure[l). The secret key K consists of the four values Z. € X" K., Ko, K1 €
Xk, The output on input X € X™ is Yx «— F(Kx, Zx) where Z;, K1 for I €
pre(X) are recursively defined as

(Z10,Zn, K00, K101, K110, K111) < F(Kr1, Z1)

Figure [l illustrates this construction for m =4 on input X = 1011.

Theorem [ below states that I is NARL secure. Or more precisely, L-resilient,
where £ contains all functions that leak A bits of arbitrary information about
every invocation of F. How large A can be depends on the security of F. Roughly,
if F cannot be broken with advantage 2%, then we can leak A = w/6 bits with
each of the n invocations of F. (and thus nw/6 bits in total.)

NARL security requires that the leakage in each of the m + 1 steps (i.e.the
invocations of the underlying F) can depend on absolutely all data that is ac-
cessed during this step. For step ¢ (0 <4 < m) this means Z7, K, where I = X|;
is the i bit prefix of the input X, but also the last two bits of I itself, as this
bits specify which part of the statd] must be accessed in this step. We will even
give the entire I as input to the leakage function.

Theorem 1. If F is a weak PRF, I'™"™ is a NARL super-PRP, where each
invocation of the underlying F is considered a step as in Def. [ If the PRF
cannot be distinguished from random with advantage more than eys, then we
can tolerate leakage of A\ = log(ep_r%)/6 bits per step. The precise quantitative
statement is given below.

Assume F 2 XF x X — XARH20 s g (en, St n/exs) secure weak PRF (where

ot > 1273 andn > 20) and let \ = log(e;rfl)/ﬁ. Then I'Fm . 38k+n o ym
DART2N s 0 (€, Shess Apes) S€CUTE L x-Tesilient PRF for any gl and

1/12
St = Spriag /2P (N + k)P — s meqpe ene =8 g -m- €Pr/f
where the class L, contains all functions Ly indexed by a function g : Xk+tntm —
XX of size at most s defined as (with K1, Z1 as in Definition[f)

def
Lo(K, X)={A1,Z1 : Iepre(X)} A= g(KpZ1,1)

Recall that a random variable X has min-entropy k, denoted Hoo(X) = k, if
Pr[X = 2] < 27% for any « in the support. In the proof, we will extensively use

a computational version of this notion called HILL-pseudoentropy [23/3].

8 Let I; denote I where the last d bits deleted. Then before step I the state is
Z1021n1, Kr,00, K1,01, K1y10, K1511-
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Definition 5 (HILL-pseudoentropy[233]). We say X has HILL pseudoen-
tropy k, denoted by HE'SLL(X) > k, if there exists a distribution Y with min-
entropy Hoo (Y) = k where 05(X;Y) <e.

Proof (of Theorem[d]). Our construction I'™™ is inspired by the construction of
the leakage-resilient stream-cipher from [38], and also the proof is very similar.
We will use several technical results from [38[17] which for space reasons are
moved to Appendix [Al

It will be convenient to consider an adversary which is stronger than what is
actually required in the proof. We consider an adversary A who can adaptively
“explore” the tree structure underlying the I'™™ construction. This is modeled
by giving her access to two oracles O (.) and O%(.). These are initialised with
a random key K (as used in I'™™), a random bit b and a uniformly random
function R. The 0% oracle takes inputs from XY™ and outputs either random
outputs (if b = 1) or the output of I'™™ (if b = 0). The Ok oracle allows to
“explore” the tree structure of I'™,

Z[(),Zjl,/lj if T e xsm-1 b fb
Ox(l) = {YI,AI it [exm Ox D) = \R(1) if b=

We put the additional restriction on the order in which queries can be made: A
can only make a query I to O or OY%, if the |I| — 1 bit prefix of I has already
been queried (the first query can only be ). Wlog. we assume that A never
makes the same query twice. A can never make the same query I € XY™ to both
oracles (which would trivially allow to distinguish the cases b= 0 and b= 1.)

A ql’)rf—query adversary A’ who breaks the L ) security of '™ with advantage
€ can be turned into an adversary A of almost the same size who has advantage
€ in distinguishing the cases b = 0 and b = 1 in the experiment just described:
A query X to I'"™(X) can be simulated by making the queries pre(X) to Ox.
A query X to the second oracle can be simulated the same way, except that the
query X is forwarded to O%(.). This .A makes at most (m— 1)q;/)rf and ql’)rf queries
to the first and second oracle respectively. Thus it remains to upper bound

Pr[AOK(')’O%(') —~1— Pr [AOK(%@}AJ — 1]
K K.R

This means we must show that the outputs of the oracle O% : I — F(Ky, Z;)
are pseudorandom even given access to O, and thus cannot be distinguished
from the uniformly random outputs of O} : I — R(I). Let view; denote the
view of A after the ith query, the initial view is viewy = {Z.}. We say that
I € ¥<™ is a “potential query” if A did not yet make the query I but all the
its prefixes pre(I) \ I. The following facts hold (with high probability) after the
1th query and for any potential query I. (We ignore the precise bounds on HILL
pseudoentropy, writing only HH''t to denote HE'SLL for “small” € and “large” s.)

1. K7 and Z; are independent given the view view; of A.
2. HH"‘L(KI\viewi) =k —2\and HH"‘L(ZI\viewZ- \ ZI) =k -2\
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3. If Ky, Z; satisfy fact 1 & 2 then
(a) F(Ky,Zy) is pseudorandom given view;.
(b) HH”‘L(F(K[, Z[)‘AI,VieWi) =S |F(K[, Z[)‘ — 2.

Note that fact 3.(a) implies that a query I to O% will result in a pseudorandom
value F(K7p, Zr). As just described, this establishes the theorem. The lemmata
below are given in Appendix [Al

Fact 1 follows from Lemma [3 (originally from [16], also given as Lemma 5 in
[38]). The only reason we add Zj9Z to the output of Ok (I) (and not only the
leakage Aj) is so we can apply this lemma.

Fact 3.(a) follows from Fact 2 using Lemmata [ and [ which state that
the output F(K, Z) of a weak PRF is pseudorandom as long as K and Z are
independent and have sufficiently high pseudoentropy.

Fact 3.(b) follows from Fact 3.(a) and Theorem 2 from [I7] (or, independently
[40]), which states that a pseudorandom value like F(K, Z) has high pseudoen-
tropy, even if a bounded amount of information about the seed (in our case K, Z)
is leaked. The precise quantitative statement of Fact 3.(b) is given as Lemma
(which is Lemma 6 from [38]).

Finally, Fact 2 holds by induction over the queries that A makes using Fact
3.(b). To see this, note that Fact 2 holds initially for ¢ = 0 as Ko, K1, K., Z.
are independently and uniformly sampled. Now assume it holds after the ith
query, and A makes the query I (where |I| < m), then by Fact 3.(b) the newly
computed values Zrg, Zr1, Kroo, - - -, K111 «— F(Kr, Zr) will also satisfy Fact 2.

So far we have only established the qualitative statement that I'™™ is a NARL
secure PRP but said nothing about the exact security as claimed in the proof.
The HILL-pseudoentropy in the facts above must be quantified, e.g. in fact 2.
above HM' (K |view;) = k—2A can be expressed as H'M (K |[view;) = k—2) for
some ¢, s. One then has to do some bookkeeping bounding how this parameters
get worse (i.e. how s decreases and € increases) during the run of the experiment.
As this is not very instructive we omit this calculations. The bounds we get here
are exactly the same bounds that are proven for the leakage-resilient stream-
cipher in [38] (when using the same F and the number of invocations to the
underlying F is the same). In fact, minor adaptions of the proof from [38] give us
the claimed bounds. The only difference is that the advantage e;rf in this paper
is a factor q")rf larger, the reason is that our A can make q"wf “challenge queries”

to the OY oracle, whereas in [38] only one challenge query is considered. O

3 Side-Channel Attacks on Feistel

In this section we put forward generic side-channel attacks on Feistel networks.
As Feistel networks (and minor variations thereof) are the only generic con-
structions of PRPs from PRFs known, this indicates that constructing leakage-
resilient PRPs from leakage-resilient PRFs might be significantly harder than
constructing PRPs from PRFs in the normal (non-leakage) setting. Below we
first define the Feistel network.
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Definition 6 (Feistel, p). For a function f : X" — X™ we denote with

def

U[f] the permutation over X*" defined as ¥[f](rr,xr) = f(xr) ® rrl2r.

U(fi,..., fr] denotes U[f.]o...0oW[f1].
We define i as (Rg, ..., Rry1) def w(P[f1,..., fr], Ri||Ro) where fori > 1

R; def Ri—1 @ fi—1(Ri—1), so R; is the input to the ith round function on input

X = Ry||Ro.

In a classical paper, Luby and Rackoff prove that the advantage of any ¢-query
distinguisher in distinguishing 3 &y 1,- .-, f3] from a uniformly random per-
mutation over X" is upper bounded by%tqQ/Q” if the f; : ™ — XY™ are uniformly
random functions[™ This in particular implies that no adversary who can query
W3 in forward direction can invert W3 on a random Y € X2, unless she makes
q = O0(2"/?) queries.

We consider a setting where the adversary not only can make queries to some
Feistel network @, % U(f1,..., fr], but with each query X, besides the output
Y — ¥, (X), also gets some “leakage” about the intermediate values.

We will consider different leakage functions g : X — X*, our attack will work
for any functions which allow “reconstruction” as defined below

Definition 7 (reconstructible). A function g : X" — X* is (k,0) recon-
structible, if there exists an efficient algorithm By such that Pr[C’ = C] > § in
the experiment below:

1. Sample a random challenge C & X™.

2. By can adaptively make k queries Xi,..., Xy to an oracle which on input
X; outputs g(C & X;).

3. By outputs C'.

If g is probabilistic, then it is (k,d) reconstructible if there exits a single By such
that the expectation (over the randomness of g) of the probability E[Pr[C’ = C]]
1s at least . Two examples of reconstructible functions are given below.

Hamming-weight: The Hamming-weight function g : X" — XMogn1 g(X) oef

wy (X) is (n,1) reconstructible: For i € [n] let B ask for A4; = g(X @ ¢;),
where e; = 0°7110" %! for i = 1,...,n. Note that A; can only take two
values, wy (X) — 1 or wy(X) + 1, which is the case if the ith bit of X is 1
and 0 respectivelyl!

9 With one round more, the same result holds even if the distinguisher is allowed to
make inversion queries.

10 This then implies that ¥[f,..., f3] is a pseudorandom permutation if the f;’s are
pseudorandom functions. In fact, Luby-Rackoff proved this latter result directly, but
as advocated e.g. in [33], the detour via uniformly random objects is cleaner and
easier.

L 1f all A; are the same then X = 1" or 0™, which is the case can be deduced from A;
(which is n — 1 or 1 in those cases).
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Noise: For some v > 0 consider the probabilistic function g, : 2™ — X™ which
flips every bit of its input with probability 1/2—~ (and each bit of every input
is flipped independently.) For any k, g, is (k,1—n- 6*2"“'72) reconstructible:

By, uses any sequence Xi, ..., Xy of distinct inputs, and guesses that the

ith bit of C is 0 iff the majority of the ith bits in g, (C & X1), ..., g,(C B Xy)

is 0. By the Chernoff bound, the probability that the ith bit is guessed wrong
is at most 672"“'72, taking the union bound over all n bits we get the bound
as claimed.

Theorem 2. For some r > 3 and any f1,...,fr : X" — X", consider the r
round Feistel network W, = W[f1,..., fr] and some leakage function g : X" — X*
which is (k,d) reconstructible. Then there exists an attacker A which can invert
W, on any value Y with probability 5(’“+1)T_2, where A makes 4(k + 1)"~2 for-
ward queries to ¥,., and with each query X learns the output ¥,.(X) and leakage
g(R1),...,9(Rr-—1) about the inputs to the round functions (Rg,..., Ry41) <
w(¥,., X). The running time of A is O((k+1)"73|B,|) where |By| is the running
time of By as in Definition[7]

In the theorem we only consider the case r > 3, for r = 0,1 or 2 one can
trivially invert with probability 1 making 0,1 or 4 forward queries respectively.
This theorem generalizes Theorem 3.1 from [12], who consider the case where
the adversary gets all the R;’s. (or equivalently, where g is (1, 1) reconstructible.)

Remark 2. Note that we don’t have to leak g(R;) for ¢ € {0,1,r,r+ 1} as for
those i the entire R; is already contained in the input or output. The above
theorem can also be proven (with worse bounds: (k+1)" queries and probability
(5(’“+1)T) in a weaker setting where the adversary does not even get to see the
output ¥, (X) = Ry;||Rr41, but instead gets the leakage g(R;), g(Rr4+1)-

Remark 3. The success probability s+1? drops very fast in k and r. This
is not an issue for leakage functions where § = 1 like Hamming weight. But
this also is good enough for noisy leakage, where we get a success probability
of (1—n-e 2k )R+D"" > (1 — . e=2k7" . (k 4+ 1)72) which approaches 1
exponentially fast in k.

Proof (of Theorem[3). The proof by induction on the number of rounds r. For
J € [r]let¥; il @(f1,..., f;] denote the first j rounds of ¥,. For any j,1 < j <,
we let E(5,Y;) def W;l(Yj), that is, the input Z such that the intermediate value
after j rounds in the computation ¥,(Z) is Y;. It will be convenient to define
E/(ja }/j) = {Z7 WT(Z)ag(Rl)v s ag(RT)} where (R07 ey R?”-i-l) — ,Lt(!pr, Z) We
show that

Claim. E'(1,YL||YR) can be computed (with probability ¢) making k+1 forward
queries to .



Leakage-Resilient Pseudorandom Functions 35

Proof (of Claim). As Z «f E(1,YL||YR) is Yr|| f1(YRr)®YL, to get Z it is sufficient

to learn C' % f1(Yr). To get E'(1,YL||Yr) we then make one more ¥, query Z.
Let B, be as in Definition [Tl we will use it to reconstruct C' as follows: For every
query X; asked by B, we make the query Yr||X; to ¥,. The answer will contain
the leakage Ay = ¢g(C & X;), which is exactly what By expects as answer to his
query X;. Thus after k£ queries we learn C' with probability §. a

Claim. For j € [2,7 — 2], E'(j,YL||Yr) can be computed (with probability ¢)
making k + 1 queries to E'(j — 1,.).

Proof (of Claim). The proof of this claim is illustrated in Figure[Il The idea is
similar as in the previous claim; We will use B, to reconstruct C &ef fi(Yr) (as
explained below) and then we get E'(5, Y. ||Yr) = E'(j — 1, Yg||C ® Y1) with one
more E'(j — 1,.) query.

To reconstruct C' = f;(Yg), for every query X; made by B,, we ask for
E'(j — 1,Yg||X;) which includes the leakage 4,11 = g(C @& X;)) as expected by
By. Thus after k queries X1,..., Xy, B, outputs C = f;(Yz) with probability ¢.

Claim. For j € {r — 1,7}, E'(4,YL||Yr) can be computed making 2 queries to
E'(j—1,.).

Proof (of Claim). We ask for E'(j — 1,0™||Y%) = {Z,%,(Z),...}, here ¥, (Z)
contains f;(Y7) in the clear (it’s the left part of ¥,(Z) for j = r — 1 and right
part for j = r). Make one more E'(j — 1,.) query to get E'(4,Y.||Yr) = E'(j —
LYR|f;(Y2) & YL). O

Let us for now assume that § = 1 (i.e. B, always reconstructs correctly) and
let T}, denote the number of forward queries to ¥, one has to make in order to
compute E’(j,.). By the above claims

1. Th,=k+1
2. Ti,r = (ki + 1)Ti—1,r fori e [2, r— 2]
3. T =2-Tiy,fori=r—1lori=r.

For i <r — 2, the relations 1. and 2. are satisfied by
T;r < (k+1)
So Ty—a; = (k +1)"—2 with 3. this gives
T =4(k+1)"2

As claimed in the theorem. We just have to verify the success probability, the
error 6077 comes up as follows: by the first claim, we can compute E(1,.)
with probability §. For E(j,.) (1 < j < r — 1) we need k + 1 invocations of
E(j —1,.), thus the error exponentiates with k+ 1. For j =7 —1 and j = r no
extra error is introduced. O
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4 Leakage-Resilient PRPs

Theorem [B] below states that an r round Feistel network, instantiated with £-
resilient PRF's, is a £'-resilient super PRP. Here £’ contains all leakage functions
which for every round round i € [r] leak g;(K;, R;) where g; € £ is an admissi-
ble leakage function for the leakage-resilient PRF used in the round functions.
Moreover the round function inputs R; are leaked entirely. Thus, if the PRF is
NALR secure, so is the super PRP. The number of queries a distinguisher can
make is exponential in r, thus for super-logarithmic r we get security against
any polynomial distinguisher.

Theorem 3. An r round Feistel network instantiated with NARL secure PRFs
is a NARL secure super PRP for q-query distinguishers satisfying ¢ < 1.387/2~1,
More precisely, let F : Xk x X" — X" be a (€prf s Sprf, q)-secure L-resilient
PRF and W, = ¥[f1,..., fr] denote an r round Feistel network instantiated with
fi = F(K;,.). Then W, (whose key is K aef {Ki,...,K;})is a (e s,q) L -resilient
super-PRP for
6,.6 2
QI3 s [Flagor e= @b et 0+

Where L' contains, for every gi,...,gr € L, the function g’ defined as

g/(K,X) = {gl(Kla Rl), N ,gT(KT, Rr), Ro, ey Rr+1}
with (Ro, ..., Rry1) — w(@, X).

We will prove this theorem using a combinatorial lemma from [12]. Consider
an adversary A making ¢ queries (forward or inverse) to ¥, = ¥[f1,..., fr].
Let RJi, j] denote the input to the jth round function on the ith query. We say
R[i,j + 1] (vesp. R[i,j — 1]) is “freshly generated” if the ith query is a forward
(resp. inverse) query where R]i, ] is fresh in the sense that R]i, j] # R[k, j] for all
k < j (and thus f; has not been invoked on R]i, j] before). We say that for this
sequence of queries the 5-XOR condition holds, if some freshly generated value
can be expressed as the bitwise XOR of 5 previously computed round function
inputs. In [I2] the following Lemma is proven

Lemma 1 (Lemma 4.1 from [12]). Let ¥, be any r round Feistel network.
For any s < r/2, if after making q < 1.38%/% forward /inverse queries to W, the
5-XOR condition does not hold, then there is no collision on the input to the jth
round function for any j € [s,r — s].

Next we show that it is hard to provoke the 5-XOR, condition in ¥,..

Lemma 2. Assume an adversary A of size s can satisfy the 5-XOR condi-
tion with probability e making q queries to ¥,.(K,.) as in Theorem[3 (with each
query X also getting the leakage g'(K, X) for some ¢' € L'.) Then F is not a

5.5

(Sprf» €prf 5 @) -secure L-resilient PRE where spf = s+|F|-q-1 and epef = qfr — o
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Proof. We define an adversary A’ (which will use A as a black-box) against the
L-resilience of F. As in Definition 2] A’ has access to FI(K,.) (Where g € £ and

FI(K,X) «f [F(K, X),g(K, X)].2 and O(.), and has to guess whether O(.) is
a random function or F(K,.).

A’ first guesses a random query 4 and round j (1 <i<g¢q,1<j <r). Then it
simulates an attack of A on ¥,., where for the first ¢ queries it uses its first oracle
FI(K,.) as the function for the jth round, and samples the round keys for the
other » — 1 rounds at random.

On the ith query, if the input to the jth round function is not fresh or the
5-XOR conditions already holds, A’ outputs 0 and stops. Otherwise it uses its
second oracle O(.) to compute the output, which gives a “freshly generated”
value R. If this value can be expressed as the XOR of 5 previous round values,
A’ outputs 1 and 0 otherwise.

Assume O(.) is a uniformly random function, then the probability that A’
outputs 1 is at most ¢°r°/(5!-2") as the output of O(.) is uniformly random, and
there are at most ¢°r®/5! possible values (i.e. each subset of 5 queries specifies
one possibility) which will trigger the 5-XOR, condition.

Now assume the other case, where O(.) is F(K,.). If A will provoke the 5-
XOR condition (which holds with prob. €), and A’ guessed which fresh query
will satisfy this condition for the first time (with happens with prob 1/(g - r)),
then A’ will output 1. Thus in this case A’ outputs 1 with prob. /(g - r).

By definition, the gap €/q-r — ¢°r%/(5! - 2") between those two probabilities
is A" advantage in breaking the L-resilience of F. O

Proof (of Theorem[3). Consider an adversary A of size s against the £'-resilience
of ¥, as specified in Definition 2] This 4 has access to two oracles, the first
being ¥¢ (K,.) : X — [¥,(K,X), ¢ (K, X)] and the second being either ¥, (K, .)
or a uniformly random permutation P, (.) (we call this the real and random
experiment). By Lemma[2] in the real experiment the inputs to the functions in

round w & |r/2]| and w+ 1 will be distinct with probability at least 1 — € where
€ = q-r-eur+¢57%/(5!-2"). Conditioned on this, the output of the right oracle in
the real experiment is pseudorandom and thus cannot be distinguished from the
output of the right oracle P, (.) in the random experiment but with probability
2 €prf + q*/2", here the 2€prs accounts for the output only being pseudorandom,
and the ¢2/2" accounts for the fact that even if those values were uniform, the
distribution would still be slightly off from what the oracle P,, in the random
experiment outputs (we omit the details here.) Thus, A cannot distinguish the
two experiments better than with probability € + 2 - €pf + g2 /2" O

12 The following reduction also works for the original notion of leakage-resilience where
the leakage-function can be adaptively chosen. For this one must consider the oracle

F£ (instead F9) defined as F4(K, X, g) & [F(K, X), g(K, X)] (where g € £). Thus,
although our current PRF constructions only give us “non-adaptive-leakage” sPRPs,
future advances in leakage-resilient PRFs would immediately translate to stronger

leakage-resilient sPRPs.
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A Technical Lemmata

Lemma 3 ([16]). Let Ao, By be independent and ¢1, @2, ... be any sequence of
functions. Let Ay, As, ..., B1,Ba,... and V1, Vs, ... be defined as

((Ait1,Vigr), Biv1) = (¢ir1(As, Vi, ..., Vi), By) if i is even
(Aiy1, Vigr, Biy1)) :== (A, ¢ip1(Bi, Vi, ..., Vi) otherwise

Then B; — {V1,...,Vi} = A; (and A; — {V1,...,V;} — B;) is a Markov chain
(or equivalently, A; and B; are independent given the Vi,...,V;)

Lemma 4 ([38]). For any a >0 and t € N: If F: {0,1}* x {0,1}" — {0,1}™
is a (€prf, Sprf, Gprf ) -secure wWPRE' (for uniform keys), then it is a (€}, Spes Qo) -
secure wPRF even if the keys are only sampled from a distribution with min-
entropy Kk — a with

q2f t . 6/2](
/ / / +1 pr pr
Qprf = Gprs ~ Sprf 2 Sprfct €prf < €prg /277 — on+l 2-exp | — 8

Lemma 5 ([38]). Let 8 > 0, then if F : {0,1}* x {0,1}" — {0,1}" is a
(€prfs Sprf, 1)-secure wPRE (for uniform inputs), it's also a (€, Sy, 1)-secure
wPRF if the input is chosen from a distribution with min-entropy m — (3, where
for anyt e N

2.t-¢€?
Sprf > s;,rf -2t €prf < e;,rf/QﬁH —2-exp (— 64 prf)

Lemma 6 ([38]). Let F : {0,1}" x {0,1}" — {0,1}™ be a (€pr, Sprf, 1/ €nrg) -
secure wPRF. Let K € {0,1}" and X € {0,1}" be independent where Hoo (K) =
K —2X\ and Hoo(X) = n — 2X and let f : {0,1}*+" — {0,1}* be any leakage

function, then for A < log(ep_rfl)/6

PrHEG(FOK X)X, F(K X)) 2 m = 2] > 1— 2724

with € = 2722%2 and 5" = 556 /223 (n + K)3.


http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://eprint.iacr.org/

Protecting Cryptographic Keys against
Continual Leakage

Ali Juma and Yevgeniy Vahlis*

Department of Computer Science, University of Toronto
{ajuma,evahlis}@cs.toronto.edu

Abstract. Side-channel attacks have often proven to have a devastating
effect on the security of cryptographic schemes. In this paper, we address
the problem of storing cryptographic keys and computing on them in a
manner that preserves security even when the adversary is able to obtain
information leakage during the computation on the key.

Using any fully homomorphic encryption with re-randomizable cipher-
texts, we show how to encapsulate a key and repeatedly evaluate arbi-
trary functions on it so that no adversary can gain any useful information
from a large class of side-channel attacks. We work in the model of Mi-
cali and Reyzin, assuming that only the active part of memory during
computation leaks information. Our construction makes use of a single
“leak-free” hardware token that samples from a distribution that does
not depend on the protected key or the function that is evaluated on it.

Our construction is the first general compiler to achieve resilience
against polytime leakage functions without performing any leak-free com-
putation on the protected key. Furthermore, the amount of computation
our construction must perform does not grow with the amount of leak-
age the adversary is able to obtain; instead, it suffices to make a stronger
assumption about the security of the fully homomorphic encryption.

1 Introduction

Leakage-resilient cryptographic constructions — constructions that remain secure
even when internal state information leaks to the adversary — have received much
recent interest. Traditionally, security models have treated such internal state
information as perfectly hidden from the adversary. However, the development
of various side-channel attacks has made it clear that this traditional view is
inconsistent with physical reality. In a side-channel attack, an adversary obtains
information about the internal state of a device by measuring such things as
power consumption, computation time, and emitted radiation.

Cryptographic primitives with long term keys, such as encryption and signa-
ture schemes, are often targeted by such attacks. An adversary observing infor-
mation leakage from computation on the key can potentially accumulate enough
data over time to compromise the security of the scheme. Consequently, storing
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keys and computing on them in adversarial environments has been an important
goal both in theory and practice. Indeed, many operating systems provide cryp-
tographic facilities that allow programs to access keys only through designated
functions, such as signing and encrypting. Smart cards provide a similar inter-
face in hardware. In both cases, the goal is to limit any adversary to interacting
with the scheme through designated channels. Nevertheless, information leakage
through physical side-channels is often sufficient to overcome such barriers and
break the scheme.

In this paper, we propose an approach for protecting cryptographic keys and
computing on them repeatedly in a manner that preserves the secrecy of the key
even when information about the state of the device continuously leaks to the
adversary. Towards this goal, we define a new primitive called a key prozry, which
encapsulates a key K and provides a structured way of evaluating arbitrary func-
tions on K. This allows, for example, the conversion of any pseudorandom func-
tion, signature scheme, or public-key encryption scheme into a leakage-resilient
variant of itself. Our construction withstands a bounded amount of leakage per
invocation (where an invocation occurs each time a function is evaluated on
K), but the total amount of leakage is unbounded. Previously, only stream ci-
phers, signature schemes, and identification scheme have been made resilient to
an unbounded total amount of leakage.

For our construction, we make use of the recently achieved fully homomorphic
encryption [12/4], and an additional “leak-free” component. We describe two
ways of instantiating this component, and in both cases the component samples
from a globally fixed distribution that does not depend on K.

Leakage-resilient cryptography. The problem of executing code in an adversar-
ial environment has always been on the minds of cryptographers. Still, most
cryptographic schemes are designed assuming that the hardware on which they
will be implemented is a black box device, and information is accessible to the
adversary only through external communication channels. Goldreich and Ostro-
vsky [13] consider the problem of protecting software from malicious users, and
define the concept of an oblivious RAM — a CPU that is capable of evaluat-
ing encrypted programs using a constant amount of leak-free memory and an
unbounded amount of memory that is fully visible to the adversary. The obliv-
ious RAM is initialized with a secret key, which is used to decrypt encrypted
instructions, execute them, and re-encrypt the output. The encrypted state of
the program is stored in the clear. Oblivious RAMs provide the strong security
guarantee that even if an adversary can keep track of the memory locations ac-
cessed by the computation, she is still unable to gain any additional information
about the program over what would normally be revealed through black box
access.

Since the work of Goldreich and Ostrovsky, the focus in leakage-resilient cryp-
tography has been steadily shifting towards allowing the adversary ever-growing
freedom in observing the computation of cryptographic primitives. Ishai, Sahai,
and Wagner [I7] introduce “private circuits” — a generic compiler that transforms
any circuit into one that is resilient to probing attacks. In a probing attack, the
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adversary selects a subset (of some fixed size) of the wires of the circuit and
obtains the values of these wires. Goldwasser, Kalai, and Rothblum [15] define
one-time programs — programs that come with small secure hardware tokens,
and can be executed a bounded number of times without revealing anything but
the output, even if the adversary observes the entire computation. The secure
tokens are the hardware equivalent of oblivious transfer — each token stores two
keys and reveals one of them upon request, while the second key is erased.

Micali and Reyzin [20] outline a framework for defining and analyzing cryp-
tographic security against adversaries that perform side channel attacks. They
introduce an axiom: only computation leaks information. That is, at any point
during the execution of an algorithm, only the part of memory that is actively
computed on may leak information. This allows for convenient modeling of leak-
age: an algorithm is described as a sequence of procedures and the set of variables
that is accessed by the procedure. The adversary may then obtain leakage sep-
arately from the contents of each set of variables as they are accessed during
the execution of the algorithm. The only-computation-leaks model (OCL) has
since been used to obtain stream ciphers [9J21] and signature schemes [10] that
remain secure even if the adversary obtains leakage from the active state each
time the primitive is used, and the total amount of leakage is unbounded. We
refer to such leakage as “continuous leakage” for the rest of the paper.

Faust et al [I1] propose an alternative restriction on side-channel adversaries:
restricting the computational power of the leakage function but allowing leakage
on the entire state. Faust et al describe a circuit transformation that immunizes
any circuit against leakage functions that can be described as AC° circuitd]. The
transformed circuit can leak information from the entire set of wires at each
invocation, and makes use of a polynomial number of leak-free components that
generate samples from a fixed distribution that does not depend on the compu-
tation of the circuit. We make use of a similar leak-free component, although the
distribution generated by our component is significantly more complex than the
one in [I1] due to the fact that we must defend against leakage functions that
are not restricted to circuits of small depth.

Very recently, specific leakage-resilient cryptographic primitives have been
constructed under even more general continuous leakage models. Dodis, Har-
alambiev, Lopez-Alt, and Wichs [7] have constructed several primitives, includ-
ing signature schemes and authenticated key agreement protocols, that remain
secure even if the entire state (and not just the active part) leaks information
continuously. The public key of the scheme remains fixed throughout the life-
time of the system. Brakerski, Kalai, Katz, and Vaikuntanathan [3] construct a
public-key encryption scheme that allows continuous leakage on the entire state,
and does not require a leak-free key update procedure. [3] also construct sig-
nature schemes and identity based encryption under slightly different leakage
models. As in our work, both above works provide protection against leakage
that can be described by arbitrary polynomial-time computable functions with
sufficiently short output.

1 ACY circuits have constant depth and unbounded fan-in.
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In addition to the recent work on cryptographic constructions that are re-
silient to continuous leakage, there has been significant progress [IJ2122/T9] on
obtaining resilience to “memory attacks” — side channel attacks where the ad-
versary obtains a bounded amount of information about the memory contents
of the device throughout its lifetime. Perhaps due to the bounded nature of this
type of leakage, constructions secure against memory attacks tend to be quite
efficient and do not require the algorithm to maintain a state.

Concurrent work of Goldwasser and Rothblum. In a concurrent paper [16], Gold-
wasser and Rothblum construct a general compiler that achieves resilience to
polynomial time leakage. Their construction relies on a linear number of leak-
free components, while ours relies on a single component. On the other hand,
they rely on the standard Decisional Diffie Hellman assumption, whereas we rely
on fully homomorphic encryption.

On testable leak-free components. When constructing leakage-resilient crypto-
graphic primitives, one has to take care in the nature and amount of components
that are assumed not to leak any information. It is preferable, but may not al-
ways be possible, to avoid such components altogether. For example, one can
protect any functionality against leakage given an arbitrary number of leak-free
gates that can decrypt a ciphertext, perform a logical operation on the plain-
text, and re-encrypt the result. Such a component can be used to evaluate the
circuit F' on K gate by gate, keeping all intermediate values encrypted, and
thereby rendering leakage useless. However, building such leak-free components
may be as difficult as constructing a leak-free computer and forgetting all about
side-channels. Consequently, the focus of research in this area has always been
to reduce the power and amount of computation that is assumed to be a-priori
insulated from side-channel attacks.

Our construction uses a leak-free component that produces random encryp-
tions of some fixed message (in our case — 0) under a given public key in the
fully homomorphic encryption scheme. More specifically, the leak-free compo-
nent we use is a randomized component that, given pub, produces two random
encryptions of 0. Consequently, the computation performed by this component
does not depend on any user or adversarially supplied inputs, and in particular
does not depend on the key K or the function F' that is evaluated on K. We call
such a component testable because it can be accurately simulated in a controlled
environment — all one has to do is feed the component random bits and randomly
generated public keys and observe its behavior. More generally, we say that a
component is testable if its inputs come from a globally fixed distribution that
is independent from other inputs to the system.

We propose testability as a rule of thumb for secure hardware components
in leakage resilient cryptography. All hardware components leak at least some
information such as timing (every computation takes time) and power consump-
tion. Therefore, the best we can hope for is that the information leaked by the
components that we assume to be leak-free is useless to the adversary. Testabil-
ity gives us the ability to observe the leakage from the secure component — as it
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will happen during actual usage — and estimate whether the component is safe
to use. We note that the components used by [II] and [16] are testable.

In contrast to previous general compilers that achieve leakage resilience, we
use only one leak-free component, regardless of the size of the circuit that is
evaluated on K, or the amount of information leakage per invocation. Thus, our
construction does not require the number of leak-free components to grow with
the amount of leakage.

Our contributions. We study the problem of computing on a cryptographic key
in an environment that leaks information each time a computation is performed.
We show that in the OCL model with a single leak-free randomized token, a
cryptographic key can be protected in a manner that allows repeated compu-
tation on it while making sure that the adversary gains no information from
side-channel information leakage.

More precisely, we propose a tool which we call a key prory — a stateful
cryptographic primitive that is initialized once with a key K, and then given
any circuit F' computes F(K). Any leakage obtained by an adversary from the
computation of the key proxy can be computed given just F' and F(K). Using
any fully homomorphic encryption (FHE) we construct a key proxy with the
following properties:

Resilience to adaptive polynomial time leakage. During each invocation of the
key proxy, we allow the adversary to adaptively select leakage functions that are
modeled as arbitrary circuits with a sufficiently short output. The exact amount
of round leakage that our construction can withstand depends on the level of
security of the underlying FHE. Assuming the most basic security for the FHE
(i.e. against polynomial time adversaries) permits security against O(logn) bits
of leakage each time a function is evaluated on K. More generally, given a 24(")-
secure FHE, our construction can withstand roughly I(n) bits of leakage per
invocation.

Independent complexity. The starting point of leakage-resilient cryptography
is that computation leaks information. It does not require a large leap of faith to
suspect that more computation leaks more information. In fact, to the best of
our knowledge, this is indeed the case for many side-channel attacks in practice.
The amount of computation performed by our key proxy construction does not
depend on the amount of leakage that the adversary obtains per invocation.
Instead, to get resilience to larger amounts of leakage, a stronger assumption
about the security of the underlying fully homomorphic encryption is used. This
allows us to avoid a circular dependency where, in order to obtain resilience to
larger amounts of leakage one must build a more complex device, which in turn
leaks more information.

One-time programs with efficient refresh. The one-time programs of [15] can
be implemented without leak-free one-time memory tokens by storing the con-
tents of the tokens in memory, and then accessing only the needed values dur-
ing computation. The one-time programs can then be refreshed occasionally
in a secure environment to allow continuous use. Currently, the refresh proce-
dure performs as much computation as the evaluation of the program that it
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protects. If one is willing to trade resilience against complete exposure of the
active memory (achieved by [I5]) for resilience length bounded leakage then by
pre-computing the outputs of the leak-free tokens in our construction and stor-
ing them in memory we obtain one-time programs with an update procedure of
fixed complexity that does not depend on the protected program.

Our approach. The underlying building block for our construction is fully ho-
momorphic encryption. An FHE is a public-key encryption scheme that allows
computation on encrypted data. That is, given a ciphertext with corresponding
plaintext M, the public key, and a circuit F', there is an efficient algorithm that
computes an encryption of F(M).

For our construction, we partition the state of the key proxy into two parts, A
and B (or equivalently two devices). Given a key K, the key proxy is initialized
as follows. An FHE key pair (pri, pub) is generated and is stored in memory
A. Then, a random encryption C of K under pub is computed and is stored in
memory B. To evaluate a function F' (described as a circuit) on K, the following
actions are performed. First, a new pair of keys (pri, pub’) is generated and
stored in memory A, and an encryption Cpr; = Enc,yy (pri) of the old private
key is written to a public channel. Then, computing on memory B and the public
channel, the following two ciphertexts are generated homomorphically from C'
and Cpy: an encryption Cres of F(K) and a fresh encryption Cle, of K. Note
that both Cres and Ciey are encryptions under the new public key pub’. The
ciphertext Cies is then sent back to memory A where it is decrypted, and F(K)
is returned as the output of the program. This basic approach is described in
Figure [

It is clear that without leakage, the above construction is secure. Of course,
the main difficulty is showing that leakage does not provide the adversary with
any useful information. Below we provide an informal description of two main
technical issues that arise.

Leakage on private keys and ciphertexts. 1t is easy to see that without refreshing
the encryption C' of K, a leakage adversary will eventually learn all of K by
gradually leaking all of C' and pri and then simply decrypting. Therefore, it is
clear that an update procedure is necessary. The algorithm described in Figure[]
performs such an update: After each invocation, memory A contains a freshly
generated private key and memory B contains an encryption of K under the
corresponding public key. However, we cannot directly claim that this refreshing
procedure provides the necessary level of security. The main difficulty stems
from the fact that the adversary obtains leakage on the private key in memory
A both before and after she obtains leakage on the encryption C' of K under the
corresponding public key. In particular, if the adversary could obtain the entire
ciphertext C', she would be able to hardcode it into the second leakage function
that is applied to the private key. The leakage function would then decrypt C'
and leak bits of information about K.

This requires us to make use of the fact that the adversary obtains only a
bounded amount of leakage on the ciphertext C, and never sees it completely.
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Memory A Memory B
. Contents of memory: C' = Encyus, (K)
f : ; . pubi ’
Contents of memory: pri, Input: circuit F
(priz 1, pub;y,) = KeyGen(1")
Encrypt Cpri = Encpus, , , (pri;)
Set memory to pri;

P“bi+1 »Cpri

_

Homomorphically compute using C, Cpy:
Chres = Encpubi+1 (F(K))
and Ckey = Encpup, ,, (K)
Set memory to Cley
Cres
Compute Y = Decpyi,, | (Cres)
Return Y

Fig. 1. Informal description of the construction

We argue that any leakage function that provides enough information about the
ciphertext in order to later learn something about the plaintext given the private
key, essentially acts as a distinguisher and can be used to break the semantic
security of the FHE.

Randomizable FHE. Ciphertexts produced by fully homomorphic encryption
schemes may carry information about the homomorphic computation that was
performed to obtain them. For instance, it is possible that the ciphertext Ces
is actually first decrypted to a string of the form (F(K), K) and then the de-
cryption algorithm ignores the second element in the pair. In this case, the
adversarial leakage function is clearly not forced to follow the honest decryption
algorithm and can make use of the intermediate values of the decryption process
to leak information about K. Similarly, the ciphertext Cie, may contain infor-
mation about the function F' that was evaluated on K. For some applications,
such as encryption where F' encodes in plain text the message to be encrypted,
this is undesirable since the adversary may use future leakage functions to gain
information about the message.

Fortunately, the homomorphic encryption schemes of Gentry [12] and of van
Dijk et al [4] have the following additional property: given any encryption C
of a message M and a random encryption C’ of M’ the ciphertext C + C’,
where the addition is performed over the appropriate group of ciphertexts, is
a random encryption of M + M’. Consequently, to address the issue described
above, we randomize both Cies and Cley by adding random encryptions of zero
to both ciphertexts. In order to make use of the property described above, the
encryptions of zero need to be generated without leakage; otherwise, the leaked
information maintains a correlation between the randomized ciphertext and the
history of the computation that was used to produce the original ciphertext.
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We note that in the FHE schemes of [12] and [4], C” has to be generated in a
special way in order to have enough noise to annihilate any dependence between
C + C’" and the computation history of C'. For simplicity of exposition we ignore
this distinction, and instead remark that the randomization procedures of both
FHE schemes satisfy the properties needed for our construction.

Function privacy in key proxies. In the above description of key proxies, we re-
quire that the leakage obtained by the adversary can be simulated given just F’
and F'(K). However, in some applications, such as private-key encryption, the
function F' itself also needs to be hidden. In the case of encryption, F' contains
the message M, so an adversary can break semantic security simply by leak-
ing information about F, ignoring K completely. This raises a subtle modeling
issue: the message M must exist somewhere as plaintext, and if the adversary
obtains leakage on that computation, she will trivially break semantic security.
Therefore, irrespective of the definition of leakage-resilient key proxies, seman-
tic security cannot be achieved when every invocation of every algorithm leaks
information.

There are several ways in which this issue can be addressed. One solution
is to weaken the definition of semantic security by requiring that the plain-
texts have high pseudo—entropy@ given the leakage obtained by the adversary.
We avoid this approach both because it leads to complex definitions, and be-
cause it does not seem to have a clear advantage over the following much cleaner
solution. Instead, we allow the adversary to obtain leakage both before and af-
ter the challenge ciphertext is generated, but not on the computation of the
challenge ciphertext itself. This essentially means that while leakage can com-
promise individual encryptions, the long-term key remains safe. Under this re-
striction, our definition of key proxies provides the needed level of security.
This approach is consistent with previous definitions of leakage-resilient seman-
tic security (see e.g. [922/816]), and allows us to avoid additional complexity
in our definition. This is desirable especially given the fact that for some ap-
plications of key proxies, such as signature schemes, function privacy is not
necessary.

We mention briefly that another option is to define a leakage model for private-
key encryption which allows the encryption algorithm to perform some leak-free
pre-processing that is independent of the key. Then, the encryptor can generate
an encrypted version of the circuit F', which can be safely given to the adversary
without compromising security.

Organization. In Section [3] we describe the computational and leakage models
that we use, and define a leakage-resilient key proxy. In Section Ml we provide
our main construction, and analyze its security. In Section [Bl we describe sev-
eral variants of our model and construction, and provide several applications of
leakage-resilient key proxies.

2 A distribution has pseudo-entropy > k if it is computationally indistinguishable from
some distribution with min-entropy > k.
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2 Preliminaries

Notation. We write PPT to denote Probabilistic Polynomial Time. When we
wish to fix the random bits of a PPT algorithm M to a particular value, we
write M (z;r) to denote running M on input = and randomness r. We write
time, (M) to denote the running time of algorithm M on security parameter n.
We use x € S to denote the fact that x is sampled according to a distribution
S. Similarly, when describing an algorithm we may write x <« S to denote the
action of sampling an element from S and storing it in a variable x.

It is common in cryptography to describe probabilistic experiments that test
the ability of an adversary to break a primitive. Given such an experiment Exp,
and an adversary A, we write A < Exp to denote the random variable repre-
senting outcome of Exp when run with the adversary A.

2.1 Fully Homomorphic Encryption

The main tool in our construction is a fully homomorphic public-key encryption
(FHE) system. Intuitively, such a system has the usual semantic security prop-
erties of a public-key encryption (PKE) scheme, but in addition, can perform
arbitrary computation on encrypted data. The outcome of this computation is
of course also encrypted. The first construction of FHE was given by Gentry in
[12], and is based on ideal lattices. Recently another construction was proposed
by van Dijk et al [4].

We do not go into the details of the FHE constructions, but rather present
the result with respect to an arbitrary FHE with an additional randomization
property, which is satisfied by both constructions.

Definition 1. Let FHE = (KeyGen, Enc, Dec, EncEval, Add, Subtract) be a tuple
of PPT algorithms, and let | : N — N. We say that HPKE is an [(n)-secure fully
homomorphic public key encryption scheme if the following conditions hold:

1. The triple (KeyGen, Enc, Dec) is a public-key encryption scheme. We assume
without loss of generality that the private key is always the random bits of
KeyGen.

2. The algorithm EncEval(pub, C, F'), where pub is a public key, C=(C1,...,Cy)
is a vector of ciphertexts with plaintexts (mq,...,my), and F is a circuit onn
inputs, outputs a string C' which is a valid encryption of F(mq,...,my).

3. The algorithms Add and Subtract have the following properties:

(a) For all pri, for pub = KeyGen(pri), for all messages My and Ma, for a
random encryption C1 of My under pub and for every encryption Cy of
My under pub, Add(pub, C1, Cs) is distributed identically to Encpy, (M +
M>), and Subtract(pub, C1, Cs) is distributed identically to Encpy,(My —
My).

(b) For all ciphertexts C1 and Ca, Add(pub, Subtract(pub, Ca, C1),Cy) = Cs.
That is, subtracting a ciphertext is the inverse of adding it.

4. For every probabilistic adversary A running in time at most l(n), the advan-
tage of A in breaking the semantic security of FHE is at most 1/l(n).



50 A. Juma and Y. Vahlis

Remark 1. The algorithms Add and Subtract may be implemented as addition
and subtraction over the space of ciphertexts, though we do not require this. In
some fully homomorphic encryption schemes, Add and Subtract may not achieve
the exact requirement of step Bl above. Specifically, Add and Subtract may pro-
duce an encryption that cannot be computed on homomorphically using EncEval.
We note that this is not a problem for our construction since we only use EncEval
on encryptions of pri, which are ephemeral and never the output of Add or
Subtract. We avoid formalizing this issue to improve exposition.

3 Models and Definitions

In this section, we present the definition of a leakage-resilient key proxy (LRKP).
We start with a syntactic description of the primitive, and then describe the
security experiment and the leakage model.

Stateful Algorithms. Due to the continuous nature of side-channel attacks, it is
necessary for an LRKP to maintain a state in order to achieve security. We model
stateful algorithms by considering algorithms with a special input and output
structure. A stateful randomized algorithm takes as input a triple (z; R, S) where
2 is the query to the algorithm, R is a random string, and S is a state (when R
is clear from context we omit it, and denote the input by (z;.5)). It then outputs
(y, Snew) Where y is the reply to the query, and Spey is the new state.

Definition 2. A key proxy is a pair KP = (KPInit, KPEval), where KPInit
is an algorithm, and KPEval is a stateful algorithm. For fized ¢ € N and for
all n € N, K € {0,1}", KPInit(1", K) outputs an initial state S. For every
circuit F 2 {0, 1}/Kl — {0,1}", and random coins R, the stateful algorithm
KPEval(1™, F'; R, S) outputs F(K).

We now describe the security experiment of LRKPs. This experiment is param-
eterized by the leakage structure on a single invocation of the KPEval algorithm.
However, for clarity we start with the description of the general experiment, and
then provide details on the leakage that occurs at each invocation. We model
the the leakage resilience of a key proxy by requiring the leaked information to
be simulatable. That is, we require the existence of a simulator Sim that, given
F and F(K), can simulate the leakage and messages obtained by the adversary
during the computation of KPEval(1™, F'; R, S). No efficient adversary should be
able to tell whether she is getting actual leakage and messages, or interacting
with a simulator. We now describe the real and ideal security experiments:

Let K P = (KPInit, KPEval) be a key proxy. Let A and Sim be PPT algorithms,
n € N, and consider the following two experiments:

ExpReal (Real Interaction). The interaction of the adversary with the key
proxy proceeds as follows:
1. A key K is chosen by the adversary, and KPInit(1", K) is used to generate
an initial state S.
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2. The adversary repeats the following steps an arbitrary number of times:
(a) The adversary submits a circuit F, which is evaluated on K by
KPEval. During the computation, the adversary acts as a single
invocation leakage adversary (described below in Definition B) for
KPEval.
(b) At the end of the computation of KPEval, the adversary is given
F(K).
3. After the adversary is done making queries, it outputs a bit b.
Expldeal (Ideal Interaction). The interaction of the adversary with simulated
leakage proceeds as follows:
1. The adversary submits a key K, which is not revealed to the simulator.
2. The adversary then repeats the following steps an arbitrary number of
times:

(a) The adversary submits a circuit F', and Sim is given F' and F(K).
The adversary then acts as a single invocation leakage adversary
according to Definition [l except that the leakage functions are sub-
mitted to the simulator, which returns simulated leakage values and
messages.

(b) Eventually the adversary stops submitting leakage functions, and is
given F(K).

3. After the adversary is done making queries, it outputs a bit b.

Definition 3. We say that KP is a Leakage-Resilient Key Proxy if for every
PPT A there exists a PPT S and a negligible function neg(-) such that

| Pr[(A < ExpReal) = 1] — Pr[(A < Expldeal) = 1]| < neg(n)

The above definition describes the security of an LRKP relative to some unspec-
ified procedure which allows the adversary to obtain leakage during each invoca-
tion of KPEval. The exact procedure for a single-invocation leakage depends on
the leakage model and on the structure of the implementation of KPEval. Below
we formalize the structure of our solution, and describe the leakage obtained by
the adversary during a single invocation of KPEval.

Our construction of KPEval is described as a protocol between two parties
EvalA and EvalB that leak information separately, and where the messages be-
tween EvalA and EvalB are public. In this format, our construction requires two
flows between the parties: one from EvalA to EvalB and one from EvalB to EvalA.
The following definition formalizes this structure.

Definition 4. A 2-round split state key proxy KP = (KPInit, KPEval) is a
key proxy such that the state S is represented as a pair S = (MemA, MemB) €
({o, 1}"d)2 for some fized d € N, and the algorithm KPEval is described as four
algorithms (LeakFree, EvalAy, EvalB, EvalAy), each running in time polynomial in
n, where

1. EvalA; takes as input MemA, OutLF 4, and randomness RandA, and outputs
an updated state MemA' € {0, 1}"d and a message M ap to EvalB.
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2. LeakFree takes as input message M ap and randomness RandLF, and outputs
string OutLF.

3. EvalB takes as input MemB, randomness RandB, OutLF, the message M sp,
and a circuit F : {0,115 — {0,1}" of arbitrary size. It then outputs an
updated state MemB' € {0, 1}”d and a message Mp4 to EvalA.

4. EvalAy takes as input MemA', the message Mpa and outputs an updated
state MemA" and the result F(K).

The output of KPEval is F(K), and the updated state is (MemA”, MemB’).

Recall that our construction requires a leak-free component. This leak-free com-
ponent is modeled by algorithm LeakFree above. A crucial point here is that
LeakFree receives only randomness and a public message as input, and, in par-
ticular, receives neither F' nor the saved state (MemA, MemB) as inputs; there-
fore, regardless of the actual construction, the above definition prevents LeakFree
from carrying out the evaluation of F' on K, which would make the construction
trivial.

We are now ready to describe the leakage structure on a single invocation of
a 2-round split state key proxy. The leakage model we use, commonly known as
“only computation leaks information” (OCL), lets the adversary obtain leakage
only on the active part of memory during each computation.

Definition 5. Let | : N — N and let KP be a 2-round split state key proxy. A
single invocation leakage adversary in the only-computation-leaks model chooses
a circuit fi, then sees fi(MemA RandA) and Map, chooses circuit fo, then
sees fo(MemB, OutLF, RandB) and Mpa, chooses a circuit f3, and finally sees
f3(MemA'). The adversary is l-bounded if for all n the range of fi, fa, f3 is
{0, 1},

Note that in the above definition, the leakage functions can compute any internal
values that appear during the computations of EvalA;, EvalB, and EvalAs. This
means, for example, that it is unnecessary to explicitly provide Map to f; or
Mpy to fa.

History freeness. In Definition [l we allow information about the functions F;
that are evaluated on K to leak to the adversary. In particular, it is possible that
during some invocation j the adversary can obtain, through leakage, information
about some previously queried function F;. In the introduction we mentioned
that leakage-resilient variants of some applications, such as private-key encryp-
tion, are defined to allow leakage both before and after the generation of the
challenge ciphertext, but not on the challenge itself. However, if the state of
LRKP keeps a history of some of the functions that were applied to K, then by
leaking on it after the challenge was computed, the adversary may be able to
break the semantic security of the encryption. We note that the above defini-
tion is sufficient to obtain security in the presence of what we call “lunch-time
leakage” attacks — where the adversary obtains leakage only before the challenge
ciphertext is generated, but not after.
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To address the above issue, and allow full leakage in applications such as
encryption, we introduce an additional information theoretic property that re-
quires that the state of the LRKP is distributed identically after all sequences of
functions that are evaluated on K. This property is satisfied by our construction,
and prevents the above mentioned “history attack”.

Definition 6. An LRKP (KPInit, KPEval) is called history free if for all n €
N and all K € {0,1}P°(™") there exists a distribution D over the states of
the LRKP such that for all j € N, all sequences of functions Fy,...,F; :
{0, 13Kl — {0,1}", and all sequences of random tapes Ry,...,R;_1, the ran-
dom variable {S;+1|S1,...,5;} over R; is distributed according to D, where S =
KPit(1™, K; Ro) and S; is the updated state after KPEval(1™, F;_1; R;, S;—1).

4 Leakage-Resilient Key Proxies from Homomorphic
Encryption

Given a fully homomorphic public-key encryption scheme FHE = (KeyGen, Enc,
Dec, EncEval, Add, Subtract) we construct a leakage-resilient 2-round split state
key proxy LRKP = (KPInit, KPEval).

KPInit(1™, K): The algorithm KPInit(1", K) first runs KeyGen(1™) to obtain a
public-private key pair (pub,, pri,) for the FHE. It then generates a cipher-
text Cikey = Encpup, (K) and assigns MemA «— pri; and MemB «— Cl¢,. The
output is an initial state that consists of two parts (MemA, MemB).

KPEval(1™, F'; (MemA, MemB)): The algorithm KPEval consists of four subrou-
tines: (LeakFree, EvalA;, EvalB, EvalA3) that are used as follows: on input
circuit F' first generate (OutLF 4, OutLFp) <5 LeakFree(1™). Then, follow
the protocol described in Figure 21 by computing

(Mg, MemA’) < EvalA;(MemA, OutLF 4);
(Mpa,MemB’) « EvalB(MemB, OutLF 5, MaR);
Y « EvalAy(MemA', Mp4)

The final state after one evaluation of KPEval is (MemA’, MemB'), and the
output is Y.

We now describe the subroutines (LeakFree, EvalA;, EvalB, EvalAz) of KPEval:

LeakFree(pub): Parse randomness as (rpr1,7Lr2), and compute

Cro = Encpup(0; 7L 1)
Cr1 = Encpup(0; 7L F2)
OutLF = (CRO, ORI)

and output OutLF.
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The subroutines EvalA;, EvalB, and EvalAy are described in Figure 2 as a two
round two party protocol where EvalA; and EvalA, specify the actions of party
A and EvalB specifies the actions of party B. In the definition of EvalB we use
subroutines Evaluate and Refresh that are defined as follows:

Evaluate(F, C, pri): Compute and output F(Dec,;(C))
Refresh(C, pri): Compute and output Dec,,;(C)

Party A Party B

Contents of MemB: Cj, ; = Encpu, (K)
Randomness: r31, rzs

Input: F;

Contents of MemA: pri,
Randomness: prii+1, 7p;

EvalAq:
pub; .y = KeyGen(pm’iJrl_)
;ri = Encpuz71‘+1 (pT'ZZ7 r;ri)
MemA «— pri;
pub;11,Chp

(CRo,i, CRr1,i) = LeakFree(pub, )

EvalB:

Cres,i = EncEvaI(pubiH,C’;ri,
Evaluate(F, Cley.i,-); TB1)

Chey,i+1 = EncEval(pub, ,, C’;Ti,
Refresh(Cley 4, )5 52)

Cres.i = Add(pubit1, Cro,i, Cres,i)

Cliey,H»l = Add(P“bi+1a Cra,i,
Ckey,i+l)

MemB — Cig, i1

res,i

EvalAs:
Y, = DeCprziJrl (C:es,i)
Output Y;

Fig. 2. The algorithm KPEval in its ¢th invocation

The correctness of this construction follows in a straightforward manner from
the correctness of the underlying FHE. We also note that our construction is
history free according to Definition [6l This is due to the fact that the values
assigned to MemA and MemB at the end of KPEval are independent from the
function F. In particular, MemA is simply a random private key, and MemB
contains an encryption of K which was obtained by a homomorphic evaluation
of Refresh on the previous contents of MemB and an encryption of the previous
private key, neither of which depends on F'.
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The bulk of the analysis is in showing that our construction is in fact leakage-
resilient according to Definition [3, where during each invocation the leakage
structure on the computation of KPEval is given in Definition Bl We now state
our main theorem.

Theorem 1. Let LRKP be the 2-round split state key proxy described in the
above construction, and let | : N — N. If FHE is a 2°00)) _secure fully homo-
morphic encryption then LRKP is leakage-resilient against all O(l(n))-bounded
adversaries in the OCL model.

The theorem follows as a corollary from the following lemma:

Lemma 1. Consider the experiment ExpReal instantiated using scheme LRK P.
Then, for every function e(n) > 0, every d > 0, everyl : N — N, and every l-
bounded PPT adversary Adv that makes n® queries and gets leakage according to
the only-computation-leaks model, there exists a PPT simulator S such that if

|Pr[(Adv = ExzpReal) = 1] — Pr[(Adv = S) = 1]] > e(n)
for infinitely many n, then for every function €' (n) > 0 there exists an adversary
Adv' that runs in time

93l(n)+7

9 (3l(n) + 4+ log 6’(171)

and breaks the semantic security of (KeyGen, Enc, Dec) with advantage

e(n)
3-221n) (nd +1)

> -timen (LRK P < Adv)
e'(n)

—2¢'(n)
for infinitely many n. Specifically, S runs in time time,(LRKP « Adv).

4.1 Proof Approach for Lemma [I]

Let Adv be a PPT adversary according to Definition [ that makes n¢ func-
tion evaluation queries and gets leakage according to the only-computation-leaks
model described in Definition Bl We define a sequence of experiments where the
initial experiment is the real security experiment ExpReal, and the final experi-
ment is such that the leakage obtained by the adversary for each KPEval query
F can be simulated given only (F, F(K)). Specifically, the final experiment in-
volves instantiating our construction with key 0 instead of K. We show that
if Adv can distinguish the initial experiment and the final experiment, we can
construct an adversary Adv’ that, roughly speaking, distinguishes variants of
these experiments that consist of only two rounds. We then show how pairs of
the leakage queries of Adv’ can be combined into a single query (of larger output
length) using a guess-and-check approach: when the adversary would normally
make the first of the pair of leakage queries, it instead guesses an output and ver-
ifies this guess when it makes the second leakage query; when the guess is wrong,
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the adversary outputs a randomly chosen bit. Repeatedly combining queries in
this manner yields an adversary that just makes a single leakage query and (es-
sentially) distinguishes encryptions of K and 0. To finish the proof, we use an
observation of Akavia et al [I] that every 20(£(n))_semantically-secure public-
key encryption scheme remains secure when the adversary gets O(¢(n)) bits of
leakage on KeyGen. We defer the details to the full version of this paper [I§].

5 Extensions and Applications

Below we describe some variants and applications of our scheme.

Resilience against simultaneous leakage. In Definition [ the adversary is
only allowed to see leakage from the part of memory where computation is occur-
ring. Our construction is also secure under an alternative leakage model where
the adversary is allowed to see independent leakage from both parts of memory
each time it makes a leakage query. The basic idea is to first show that our
construction is secure under a variant of Definition [5] where the adversary sees
an additional leakage f; on memory B. Under this variant of Definition Bl the
adversary’s leakage queries strictly alternate between memory A and memory
B. We then use an observation of Pietrzak [2I] that simultaneous but indepen-
dent leakage on two pieces of memory can be perfectly simulated by strictly
alternating leakage (of twice the output length) on these two pieces of memory.

Resilience against complete compromise. Our scheme can be viewed as
a protocol between two devices that communicate over a public channel. The
key remains hidden even if the memory contents of one of the devices are leaked
completely (for example, in a cold boot attack), provided that the compromise is
detected and no further computation is performed using the counterpart device.

One-time programs. Our construction can be modified to work without any
leak-free components by pre-computing a large number of tuples of the form
(pri, pub, C, C") where C and C’ are encryptions of 0 under pub, and storing the
tuples in memory. Then, at each invocation, one such tuple is used (first pri
and pub are used by EvalA;, and then C,C’ are used by EvalB). Assuming that
only computation leaks information, the remaining tuples remain hidden until
they are accessed. Therefore, security is obtained following essentially the same
argument as the proof of Theorem [II The number of invocations in this case is
bounded by the number of pre-computed tuples. This approach provides a weaker
security guarantee than the one time programs of [I5] (i.e. only security against
leakage), but has the advantage that the pre-computing phase is independent
from the functionality that is being protected.

Concurrent composition. We have shown that an adversary interacting with
a single instance of our construction gains no information about the underlying
key. However, for some applications, such as private-key encryption where several
parties compute on the same agreed upon key, this may not suffice. It is quite
possible that the adversary is performing side-channel attacks on several parties
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simultaneously, and is coordinating his leakage functions adaptively. In the full
version of this paper, we show that an adversary interacting concurrently with
several instances of our construction still gains no information through leakage.

Leakage-resilient private-key encryption. Extending the traditional no-
tions of semantically secure encryption to the leakage setting is non-trivial. In
particular, suppose that every invocation of the encryption algorithm leaks in-
formation. Then, since the plaintext of the adversary’s challenge message is an
input to the encryption algorithm, the adversary can trivially break semantic
security by leaking even a single bit about this message. To deal with this prob-
lem, several works [9I22/85] adopt the approach that the computation of the
encryption of the challenge is not allowed to leak. We follow this approach, and
show how to obtain semantically-secure private-key encryption in the leakage
setting using LRKPs. The details are deferred to the full version of this paper.

Leakage-resilient public-key encryption. Constructions of public-key en-
cryption schemes that are resilient to an a-priori bounded amount of leakage
were recently given by [22I2/5]. However, no constructions are known of PKEs
that remain secure under Chosen Ciphertext Attack (CCA), if the adversary can
obtain leakage during each decryption query. LRKPs provide a convenient way to
achieve such a construction. Specifically, given a CCA-PKE (KeyGen, Enc, Dec),
we construct a new PKE (KeyGen’, Enc, Dec’) where the encryption algorithm
stays the same; the key generation KeyGen’ runs KeyGen to obtain (pub, pri) and
then initializes an LRKP with pri. The public key is pub, and the private key is
the initial state state; of the LRKP. The decryption algorithm is stateful, and
to decrypt a ciphertext C, Dec’ generates a circuit H(z) that computes that
function Dec,(C), and then uses KPEval to evaluate it on the private key pri.

Acknowledgements. We thank Charles Rackoff for many hours of discussion.
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Abstract. We present a general method to compile any cryptographic
algorithm into one which resists side channel attacks of the only compu-
tation leaks information variety for an unbounded number of executions.
Our method uses as a building block a semantically secure subsidiary bit
encryption scheme with the following additional operations: key refresh-
ing, oblivious generation of cipher texts, leakage resilience re-generation,
and blinded homomorphic evaluation of one single complete gate (e.g.
NAND). Furthermore, the security properties of the subsidiary encryp-
tion scheme should withstand bounded leakage incurred while performing
each of the above operations.

We show how to implement such a subsidiary encryption scheme under
the DDH intractability assumption and the existence of a simple secure
hardware component. The hardware component is independent of the
encryption scheme secret key. The subsidiary encryption scheme resists
leakage attacks where the leakage is computable in polynomial time and
of length bounded by a constant fraction of the security parameter.

1 Introduction

Modern cryptographic algorithms are designed under the assumption that keys
are perfectly secret, and computations done within one’s computer are opaque
to the outside. Still, in practice, keys do get compromised at times, and compu-
tations are not fully opaque for a variety or reasons. A particularly disturbing
loss of secrecy is as a result of side channel attacks.

These attacks exploit the fact that every cryptographic algorithm is ultimately
implemented on a physical device and such implementations enable “observa-
tions” that can be made and measured on computations which use secret data
and secret keys, or on the secret keys and data directly. Such observations can
and have lead to complete breaks of systems which were proven secure, with-
out violating any of the underlying mathematical principles. (see [KJJ99, RCL]
for just two examples). Recently, a growing body of research on side-channel-
resilient cryptography aims to build general mathematical models of realistic side
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channel attacks, and to develop methods grounded in modern cryptography to
provably resist these attacks.

Modeling side channel attacks on a cryptographic algorithm so as to simul-
taneously capture real world attacks and achieve the right level of theoretical
abstraction, is an intriguing and generally controversial question. Indeed, the
number of answers seems to be nearly as high as the number of papers pub-
lished on the topic. Perhaps the only universally agreed on part of the modeling
is that each physical measurement should be modeled as the result of computing
an adversarially chosen but computationally bounded function ¢ (the so called
“leakage” function) on the “internal state of the computation”. We find the most
important modeling questions to be:

— How should we characterize which leakage functions £ can be measured?

— How many measurements occur and how often?

— Are all portions of the computation’s internal state subject to measurement
at the same time? Namely, what is the input to the leakage function £2

— Can we use secure hardware components, and if so which ones are reasonable
to assume as building blocks to achieve side channel security?

“Only computation leaks information” and the question of granularity. Micali
and Reyzin, in their pioneering work [MR04], set forth a model of physical se-
curity, which takes a particular approach at these modeling questions. One of
the axioms in their model was that any computation but only computation leaks
information (OC attack model). In other words, every time a computation step
of a cryptographic algorithm “touches” data which may contain portions of (but
not necessarily the entirety of): cryptographic secret keys, internally generated
randomness, and results of previous computations done on cryptographic keys,
a measurement on this data can be made by an adversary. However, data which
is not “touched” by a computation step of an algorithm, can not be measured
at this time (and thus does not leak). Stated in terms of leakage functions, this
means that a leakage function can be computed in each computation step, but
each such function is restricted to operate only on the data utilized in that
computation step. Within this model, various constructions of cryptographic
primitives [GKROS, [DP08| [Pie09, [FKPR0O9] such as stream ciphers and digital
signatures, have been proposed and proved secure for certain leakage function
classes and under various computational intractability assumptions.

This is the model of attacks which we focus on in this paper. Our main result
addresses how to run any cryptographic algorithm (i.e an algorithm which takes
as input secret keys and uses secret randomness) securely in this model for an
unbounded number of executions.

Implicit in using this model, is the view of program execution (or computation)
as preceding in discrete ‘sub-computation steps’ S1, Ss... Each sub-computation
S; computes on some data d; (which is a combination of secret and public data
and randomness). At each S;, the side-channel attack adversary can request to
receive the evaluation of a new leakage function ¢; on d;. The choice of ¢; to be
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evaluated at step S; may depend on the results of values attained by previous
ly,....,4;_1, but ¢; can only be evaluated on the d; used in step S;.

An important question in evaluating results in the OC attack model emerges:
what constitutes a sub-computation step S;, or more importantly what is the
input data d; to .S; available to ¢; in this sub-computation? Let us look for exam-
ple at the beautiful work of Dziembowski and Pietrzak [DP08| which construct
secure stream ciphers in the OC model. Initialized with a secret key, their stream
cipher can produce an unbounded number of output blocks. In [DP0S|, the i-th
sub-computation is naturally identified with the computation of the i-th block of
the stream cipher. The input d; to this sub-computation includes a pre-defined
function of the original input secret key. The class of tolerated leakage functions
¢; (each computed on d;) are (roughly) restricted to a length shrinking func-
tion whose output size is logarithmic in the size of the security parameter of
the stream ciphef]. Another example is in the work of Faust et al. [FKPRO9]
which construct secure randomized digital signature scheme which can generate
an unbounded number of signatures in the OC attack model. The i-th sub-
computation is identified with the computation of the ith signature, and d; is
(essentially) fresh randomness generated for the i-th sub-computation. Coupled
with one-time signatures of [KV09], the class of leakage functions ¢; tolerated
are length shrinking functions whose output size is a constant fraction of the
size of the security parameter of the signature scheme, under the intractability
of DDH and various lattice problems.

An interesting practical as well as theoretical question is what granularity
(i.e. size of sub-computations) is reasonable to consider for general cryptographic
computation. Certainly, the larger the granularity (and the sub-computations),
the better the security guarantee. For security, ideally we’d prefer to allow the
leakage to work on the entire memory space of the computation. However, the
assumption that physical leakage is “local” in time and space, and applies to
small sub-computations as they happen, still encapsulates a rich family of at-
tacks. Carried to the extreme, one might even model leakage as occurring on
every single gate of a physical computation with some small probability, and
even this model may be interesting.

In this work, we advocate the approach of allowing the programmer of a
cryptographic computation, the freedom to divide the computation into arbi-
trary sub-computations, and then analyzing security by assuming that leakage
is applied to each sub-computation’s input independently (i.e. only computa-
tion leaks information). In particular, this will mean that the total amount of
leakage from a computation can grow with the complexity of the computation
(as well as the number of executions), as it well should, since indeed in practice
the possibility of leakage increases with the complexity (length of time) of the
computation. General approach aside, our positive results are much stronger: we
work with granularity that is a polynomial in a security parameter.

! Alternatively stated, their construction of is based on an exponential hardness as-
sumption (where the assumption degrades as a function of the amount of leakage
tolerated).
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1.1 The Contributions of This Work

In this work we focus on general cryptographic computations in the OC attack
mode, and address the challenge of how to run any cryptographic algorithm
securely under this attack model, for any polynomial number of executions.

Our contributions are twofold. First, we show a reduction. Starting with a
subsidiary semantically secure bit encryption scheme E, which obeys certain
additional homomorphic and leakage-resilience properties (see below and Section
B), we build a compiler that takes any cryptographic algorithm in the form of a
Boolean circuit, and probabilistically transforms it into a functionally equivalent
probabilistic stateful algorithm. The produced algorithm can be run by a user
securely for an unbounded number of executions in the presence of continuous
OC side-channel attacks. Second, we show how to implement such a subsidiary
encryption scheme E under the DDH intractability assumption and using a
secure hardware component. The hardware component (see Section [[I]) samples
from fixed polynomial time computable distribution (it does not compute on any
secrets of the computation). The security assumed about the component is that
there is no leakage on the randomness it uses or on its inner workings.

The execution and adversary model: We start with a cryptographic algorithm
C and its secret key y (C' is a member of a family of poly(n)-size Boolean cir-
cuits {Cy,} and y € {0,1}"). In an initial off-line stage when no side-channel
attacks are possible, C(y, -) is converted via a probabilistic transformation to an
algorithm Fwvalc with state — which is updated each time Fuvalc is executed,
and is functionally equivalent to C, i.e Evalc(-) = C(y,-). After this initial
off-line stage, Fvalc is computed on an unbounded number of public inputs
1, X2,... which can be chosen by the adversary in the following manner. The
computation of Fvalc(z;) is divided into sub-computations C; 1, ..., C; ,, each of
which are evaluated on data d; 1, ..., d; , respectively. At this stage, for each sub-
computation Cj ;, the OC side-channel adversary is allowed to request the result
of evaluating leakage function ¢; ; on d; ;. The leakage functions we tolerate can
be chosen adaptively based on the result of previously evaluated leakage func-
tions, and belong to the class of polynomial time computable length shrinking
functions. We emphasize that after the initial off-line stages all computations of
Evale (including its state update) are subject to OC side-channel attacks.

The security guarantee: is that even under the OC side-channels and adversari-
ally chosen inputs, the adversary learns no more than the outputs of C(y,-) on
the chosen inputs (formally, there is a simulation guarantee). In particular, it
is important to distinguish between leakage incurred on the cryptographic algo-
rithm C(y, ) being protected, and the leakage on the subsidiary cryptographic
scheme. There is constantly leakage on the subsidiary scheme’s secret keys, and
the specific scheme we use can handle this. On the other hand, for the algorithm
C(y,-) there is no leakage at all on y. Only its black-box behavior it exposed.
For example, if we think of C as the decryption algorithm for any public-
key scheme, and y as its secret decryption key (which is completely unrelated
to the secret keys of the subsidiary cryptosystem we use as a tooll), then an
adversary who wants to decrypt a challenge ciphertext x1, and has OC leakage
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access to the evaluation of Evalc(y,z2) for decrypting another ciphertext o,
still cannot break the security of x; and in particular cannot decrypt it. This
is a qualitatively different security guarantee from the setting of memory-bound
leakage [AGV09] or even in the more recent work of Brakerski et al. [BKKV10)]
on public key encryption under continual leakage. In these works, no security
is guaranteed for a challenge ciphertext that is known to the adversary when it
chooses the leakage function.

The granularity of our sub-computations: We let a subsidiary security parameter
A govern the granularity of the computation steps as follows. The computation
of Evalg is divided into sub-computations each of which consist of performing
a basic cryptographic operations (e.g. encrypt, decrypt, key generate, etc.) of
a subsidiary encryption scheme E with security parameter \. Essentially, F is
used as a tool to emulate a secure executions of C, in such a way that a constant
number of cryptographic operations of E emulate the evaluation of each gate
of C. Thus the complexity of Evalc is O(poly(X) - |C|). In accordance with
the OC attack model, leakage functions are assumed to apply to each input of
the cryptographic operations of E separately. The main idea behind obtaining
the leakage resilience for any algorithm C| is that whereas how C' works is out
of our control (as it is a given), we can choose an E for which we are able
to continually refresh its keys. As each key will be utilized as input for only a
constant number of cryptographic operations, only a bounded number of leakage
functions (measurements) can be made on each key. Indeed, for an appropriately
chosen E, we can tolerate any polynomial time computable leakage functions,
whose output length is up to a constant fraction of the security parameter A.
Note that the security parameter X\ is chosen for the purposes of side-channel
security, and may be chosen to be different than the security parameter n of the
cryptographic algorithm C', by the implementer.

Leakage grows with the complexity of Fvalc: The total amount of leakage that
our method can tolerate per execution of Evalc is O(A - |C]) whereas and the
complexity of Evalc is O(poly(A) -|C|)). Thus, our method tolerates more mea-
surements and leakage as the computation time increases. This is in contrast with
previous general compilers (see Section [[L2]), where the size of the transformed
circuit grows as a function of the total amount of leakage tolerated.

Main tool: a subsidiary cryptosystem. The subsidiary cryptosystem uti-
lized by our compiler is a semantically secure bit encryption scheme with the
following special properties (even in the presence of OC side channel attacks).
See Section Bl for full definitions of these properties.

e Semantic Security under Multi-source Leakage. We require semantic
security to hold even against an adversary who can (measure) receive leakage
both from the secret key and the cipher-texts which we attempt to protect, and
are encrypted under this secret key. Note that we depart here from the [AGVQ9]
model in considering leakage also on the challenge ciphertexts, and not only on
the keys. A priori, this might seem impossible. The reason it is facilitated is
that due to the OC nature of our attacks an adversary can never apply a leakage
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function to the ciphertext and the secret-key at the same time (otherwise it could
decrypt); furthermore the leakage length bound ensures that the adversary will
not learn enough of the ciphertext to be useful for him at a later time when it
can apply an adaptively chosen leakage function to the secret key (otherwise,
again, it could decrypt the ciphertext).

e Key Refreshing. It should be possible to “refresh” secret keys in the scheme,
changing them into new keys, via a randomly generated correlation value. In
addition, we require that using the correlation value alone and without knowledge
of the secret key, one can also refresh old ciphertexts under the old secret key to
new ciphertext under the new secret key. Intuitively, this property is useful for
taking secret keys on which there has already been a large amount of leakage,
and transforming them into new keys on which there is less leakage (i.e. with
more entropy). The requirement that refreshing on ciphertexts must not use
the secret key, is due to the fact that otherwise a leakage function could be
evaluated on the ciphertext and key (which are computed on at the same time)
simultaneously and used to decrypt the ciphertext! The fact that the correlation
value alone can be used to refresh ciphertexts avoids attacks of this type.

e Oblivious Ciphertext Generation. It should be possible to generate fresh
encryptions of random bits. Even an OC adversary should not be able to tell
anything about the plaintexts in these new obliviously generated ciphertexts.
For example, the Goldwasser-Micali [GM84] cryptosystem naturally has this
property (by generating a random Jacobi symbol 1 element).

e Leakage Resilience Regeneration. It should be possible to “re-generate”
leakage resilience on ciphertexts and keys: i.e., to take a ciphertext and secret
key and repeatedly generate a new “random-looking” ciphertext and key pair,
encrypting the same value. The security requirement is that even after many
such regenerations (with accumulated ciphertext and key OC leakages), as long
as the amount of leakage between two successive regenerations is bounded, an
adversary cannot tell whether the original ciphertext was an encryption of 0 or
of 1. Intuitively, this property is useful for taking old ciphertexts and keys, on
which there has been previous leakage, and re-generating them into new ones
that are more secure (i.e. injecting new entropy).

¢ Blind Homomorphic NAND. It should be possible to take three cipher-
texts ¢, ¢, cg, encryptions of b;, b;, b, (respectively), and output a data string
he (a “homomorphic ciphertext”) which can later be decrypted (using the secret
key) to yield b = (b; NAND b;) @ b, 2 Moreover, we require a “blinding” prop-
erty: that the encrypted outcome hc contains no more information beyond the
plaintext outcome b, even w.r.t an adversary who can launch OC attacks on the
homomorphic evaluation, and who is later given OC access to the decryption
of he (which also computes on the secret key). In particular, such an adversary
should not be able to learn anything about the values of b;, b;, by, beyond b. Note
that we do not require that hc itself be a ciphertext or support any further
homomorphic operations: i.e. we require only “one-shot” homomorphism.

2 Actually, we require homomorphic evaluation of a slightly more complex functional-
ity that also takes some plain-text inputs, see Section Bl
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Instantiating the subsidiary cryptosystem. A slight modification of the
encryption scheme of Naor and Segev [NS09] and Boneh et al[BHHOOS|, ampli-
fied with a simple secure hardware device, satisfies all of these properties. Here
we highlight some of the novel challenges and ideas. See Section [3 for details.

We do not specify the scheme [NS09] in its full detail here, but only recall that
operates over a group G of order ¢ where the Decisional Diffie Hellman Problem
(DDH) is hard. The secret key is a vector s € GF[q]™ for some small m > 0
(for our parameters m = 10 suffices) and the public key is ¢g*, g for a generator
g. To encrypt b € GF]q], the scheme masks g® by multiplying it by a group
element whose distribution is indistinguishable (under DDH) from ¢{®™), where
r € GF[q]™ is uniformly random. We note further that the scheme supports
homomorphic addition (over GF[q]) and scalar multiplication.

Semantic security under multi-source leakage. We need to prove that semantic
security holds when an adversary can launch a “multi-source” leakage attack
separately on the secret key and the cipher-texts which we attempt to protect
(encrypted under this secret key), a (constant fraction) of leakage is computed
on each. The proof of security uses ideas from theory of two source extractors.
In particular a theorem of Chor and Goldreich [CG88], showing how to extract
statistically close to uniform bits from two independent min-entropy sources. We
argue (assuming DDH) that the adversary’s view is indistinguishable from an
attack in which the plaintext b is masked by g{*"), where r is a uniformly random
vector in GF[q]™. Given the adversary’s separate leakage functions from the key
s and the ciphertext 7, s and r will have sufficient entropy (because the amount
of leakage is bounded) and are independent random sources (because the leakage
operates separately on key and ciphertext). Using [CG88] we conclude that (s, ),
and also ¢{®™) | are statistically close to uniform. This is all in an attack where
r is uniformly random, but this attack is (under DDH) indistinguishable from
the real one, and so semantic security holds. No secure hardware is used here.

Key refresh. Key refresh is enabled by the homomorphic properties of the Naor-
Segev cryptosystem. In particular, choosing a correlation value 7 € GFq™, we
can add this value to the secret key and update the public key and any ciphertext
accordingly in a homomorphic manner, without accessing the secret key. No
secure hardware is used here.

Secure hardware. The secure hardware device CipherGen (see Section B.TI)
that is used in this work is simple. The device receives as input a public key
and mode of operation mode € {0, rand}. In mode mode = 0 it computes and
outputs a fresh encryption of 0, and in mode mode = rand it chooses a uniformly
random bit b € {0,1} and computes and outputs a fresh encryption of b. Le. it
only runs public key operations. We assume that when this device is invoked,
there is leakage on its input and output, but not on its internal workings or
randomness. It is interesting to compare this device to the device used by Faust et
al. [FRR09]. Their device samples a random string whose XOR is 0. This can be
viewed as a string “encrypting” the bit 0. The adversary, who is bounded to AC°
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bounded length leakage functions, cannot determine the XOR, or “decryption”,
of the string that was generated. We also note that in several works addressing
continual leakage for particular functionalities, it is assumed that during parts
of the computation either there is no leakage from the computation’s internal
randomness [DHLAWTO0], or that leakage from the internal randomness is very
limited [BKKVI0].

Oblivious Generation and Leakage-Resilience Regeneration. These two proper-
ties are satisfied almost immediately by the CipherGen secure hardware device.
Activating the device in mode rand generates opaquely a ciphertext encrypting a
random plaintext bit — giving immediately an oblivious generation procedure.
For ciphertext and key regeneration we first use key refreshing to regenerate
the secret key (injecting new entropy). We then use mode 0 of CipherGen to
generate a fresh encryption of 0, and add it to the ciphertext. This effectively
regenerates the randomness of the ciphertext, injecting new entropy.

Homomorphic blinded masked NAND. Perhaps the most challenging obstacle
in constructing the subsidiary cryptoscheme is coming up with a procedure for
computing blinded homomorphic masked NAND, i.e. given ciphertext ¢y, cs, c3
encrypting plaintexts by, b, b3 € {0,1}, computing a homomorphic blinded ci-
phertext containing (by NAND by) @ bs.

Suppose for a moment that b3 = 0 (i.e. we are computing the NAND of
b1 and b2). We could homomorphically add the three ciphertexts, obtaining
an encryption d of a plaintext «y, where « is either 0,1 or 2 (it is important
the homomorphic addition here is over GF[q] only). Here v = 2 means that
by = by = 1 and the NAND is 0, and 7 € {0,1} outcomes imply that the NAND
is 1. We note however that the exact value of v € {0, 1} leaks information about
the input b; and by, which we will need to “blind”.

There are two main ideas in blinding. The first is to use mode rand of
CipherGen to generate an encryption u of a random bit in u € {0,1}. We
can then homomorphically compute an encryption of v — p — 2, which will al-
ways be non-zero if the NAND is 1, and will be zero w.p. 1/2 (over the ciphertext
generated by CipherGen) if the NAND is 0. Similarly, for the case where b3 = 1
we can compute an encryption of v — g which will have the same distribution
depending on the value of the masked NAND. In conclusion, if we compute ho-
momorphically an encryption of by +bs —u—2-(1—b3) we obtain an encryption of
a non-zero value when the NAND is 1, or a zero value w.p. 1/2 when the NAND
is 0. Repeating this several times, for different u, all the homomorphic decryptor
needs to do is check whether any of these homomorphic computations resulted
in a zero plaintext (in which case the output is 0) or not (there is a negligible
error probability of incorrect decryption). We emphasize, that for each cipher-
text generated in the above procedure, being an encryption of a zero or non-zero
plaintext exposes no information about the inputs (beyond the output). This is
because even an OC leakage adversary cannot tell whether CipherGen gener-
ated an encryption of 0 or 1. In a different context and cryptosystem, similar
ideas for blinding were used by Sander, Young and Yung [SYY99].
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Still, another idea is necessary, as the specific non-zero plaintext value (e.g. 1
rather than 2) might leak information about the inputs. An initial observation is
that homomorphic multiplication by a random scalar e leaves zero ciphertexts as
encryptions of zero, but completely randomizes the plaintext values of non-zero
ciphertexts. This can blind the ciphertexts while maintaining (for correctness)
their plaintext being zero or non-zero (respectively). Unfortunately, in the pres-
ence of OC leakage there will be leakage on the value e, and this blinding will
not be secure. We handle the OC leakage using a more complicated blinding pro-
cedure, which essentially homomorphically multiplies the plaintext by an inner
product of two vectors e and f of random scalars. We use ciphertext regenera-
tion (mode 0 of CipherGen) in-between homomorphic sub-steps to ensure that
the leakage from each scalar is independent (or rather indistinguishable under
DDH from an experiment with independent leakage). In the end, even given the
leakage, the scalar (e, f) by which we multiply the ciphertext is indistinguishable
from uniform, even to an OC leakage adversary, and blinding is guaranteed.

Main result: the compiler. The main contribution of this paper is a compiler
which takes any cryptographic algorithm in the form of a Boolean circuit, and
transforms it into a functionally equivalent probabilistic stateful algorithm. In
this overview we assume an intuitive understanding of the subsidiary encryption
scheme E and its properties and letting (pk;, sk;) denote public and secret key
pairs of E. See Section M for details. We emphasize that in the description that
ensues there is a distinction between a user who is executing the evaluation
algorithm and an adversary whose view of this execution (which proceeds by a
sequence of sub-computations) is only through the results of leakage functions
applied on secret data as sub-computations are actually performed on this data.

The input to the compiler is a secret input y € {0,1}", and a public circuit C
of size poly(n) that is known to all (compiler and adversary alike). The circuit
takes as inputs y and also public input « € {0,1}" (which may have been chosen
by the adversary), and produces a single bit outputE Without loss of generality,
the circuit C is composed of NAND gates with fan-in and fan-out 2, which are
organized in layers. The inputs of layer ¢ arrive from the outputs of layer ¢ — 1.
The output of the compiler on C' and y is a probabilistic evaluation algorithm
Evalc with state (which will be updated during the run of Evalc) such that for
all z, C(y,z) = Evalc(x). The compiler is run once at the beginning of time and
is not subject to side-channels. See Section for a formal security definition.

The idea of the evaluation algorithm is that in its state it keeps the value v,
of each wire j of the original input circuit C(y, z) in the following secret-shared
form: v; = a; @ b;. The invariant for every wire is that the a; shares are public
and known to all whereas b; are secret and kept encrypted by the subsidiary
encryption algorithm E under a secret key sk; (i.e. there is a key-pair for every
wire). We emphasize that the OC side-channel adversary does not actually ever
see even the cipher-text of plain text b; — let alone b; itself — in their entirely,
but rather only the result of a leakage function on these cipher-texts at the time
when they are involved in a sub-computation.

3 We focus on single bit outputs, the case of multi-bit outputs also follows naturally.
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At the outset of computing Ewvalc, for all input wires corresponding to the
y-input, a; = 0; for all input wires corresponding to the x input, b; = 0; for all
the other wires b; are chosen uniformly at random independently of the input;
This generation of random ciphertexts containing the b; value is done using
the oblivious generation procedure of E. Finally, for the circuit’s output wire,
boutput = 0. As the user selects an input x to run Evalc on, he sets a; on the
input wires of the z-input by the value of the bits of z, and is now ready to start
updating the shares a; on the internal wires and compute aouput = C(y, ).

The crux of the idea is to show how the user can compute the public shares
corresponding to the internal wires of C(y,x). Here is where we use the fact
that encryption scheme E can support a blinded homomorphic evaluation of
a single NAND gate. Say, the user already computed the values of a; of all
wires j on layer s (starting from the input wires this will hold inductively).
Then, for each pair of wires i, j into a gate on layer s + 1 with output wire k,
the user will compute the public share of the output wire a; via a sequence
of sub-computations as follows: first, transform the cipher texts of b;,b; (using
the key-refresh property) to encryptions of the same plaintexts under the secret
key pky; second, homomorphically using a;,a; and the cipher texts of b;,b;, b
all under pky compute a (blinded) ciphertext hcp of ax under pkjp (note that
ar = ((a; @b;) NAND (a; Bb;)) @bkE and finally, decrypt the blinded hcy using
secret key ski to obtain ay. Note that this is one place the “only computation
leaks information” assumption is of essence. For example, if the leakage function
would have taken the inputs to the first sub-computation as well as to the third
sub-computation, it could have used ski to decrypt b; and discover in full the
value of v;, which of course would destroy the security of the entire construction
(since it is non black-box information about the computation being performed).
It is also important to note here that we will set the leakage parameter A\ to be
such that the adversary cannot even see enough of the ciphertexts corresponding
to secret shares b; under any key (and in particular under sky). Otherwise, the
adversary could “remember” these ciphertexts and then adaptively choose a
future leakage function applied on ski to decrypt it. Proceeding inductively,
finally the user will compute @oytpy: and since boypyr Was set initially to 0, the
user has obtained voutput = Goutput-

Finally, to prepare for another execution of Eval(z') for a new a’, all cipher-
texts and keys containing secret shares of the bits of the secret input y are
regenerated. This effectively “resets” the amount of leakage that has happened
on these ciphertexts and keys. In the next execution we again (from scratch)
choose a new oblivious encryption of a random b; for each internal wire j.

Summary: One of the main advantages of the above construction was that it let
us go from a procedure for blinded OC-secure homomorphic evaluation of a single
(NAND) gate, and obtain an evaluation mechanism for an arbitrary functionality
(using several other properties of the subsidiary cryptosystem). We note that if
the subsidiary cryptosystem supports more complex homomorphic computations,

4 Note that, in terms of leakage, this sub-computation may itself be separated into
smaller sub-computations.
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we may hope to use the same framework to obtain a more efficient construction,
operating at the level of larger computations rather than gate-by-gate (perhaps
with improved granularity). We also note that the above construction should be
viewed mainly as a proof-of-concept, we did not attempt here to make it practical
enough for implementation.

1.2 Related Work

Our work is inspired by many beautiful classical techniques in the field of cryp-
tography. For one, the central idea of our compiler may be thought of as a
cross between the garbled circuit method originated by Yao [Yao82] and the
pioneering idea of Goldreich, Micali, and Wigderson [GMWZ&7] of computing on
data by keeping it in a secret shared form and computing on the shares. Using
limited homomorphic properties of encryption schemes in order to perform re-
duced round oblivious circuit evaluation was proposed in the work of Sander,
Young, and Yung [SYY99]. Secure hardware was proposed in many prior works
in the context of achieving provable security, starting with work of Goldreich
and Ostrovsky [GO96] on software protection which assumes a universal secure
leak-free processor. Most importantly, our work should be compared to results
in other side channel attack models. We note that in the random oracle model
other works have appeared (we do not cover all these results here).

The pioneering work of Ishai, Sahai, and Wagner [[SW03] first considered
the questions of converting general cryptographic algorithms (or circuits) to
equivalent leakage resistant circuits. They treat leakage attacks which leak the
values of an a-priori fixed number of wires of the circuit, and produce leakage
resistent circuits which grow in size as a function of the total bound on number
of wires which are allowed to leak. The work applies to an unbounded number
of executions of the circuit, assuming leakage attacks only apply per execution.
Stated differently, the assumption is that the history of all past executions is
erased. This is closely inspired by the model of proactive security. In quantitative
terms, they place a global bound L on the number of wires whose values leak,
compile any circuit C into a new circuit of size roughly C - L? which is resilient
to leakage of up to L wire values (in our work the leakage bound grows with the
complexity of the transformed circuit).

Faust, Tromer, Rabin, Reyzin, and Vaikuntanathan [FRRT09] also address
converting general cryptographic algorithms (or circuits) to equivalent leakage
resistant circuits extending [ISW03] significantly. They allow a (measurement)
a side channel attack on an execution to receive the result of a leakage function
which takes as input the entire existing (non-erased) state of the computation
(rather than values of single wires), but in return restrict the leakage functions
¢; that can be handled to AC?. Quantitatively, as in [[SW03]|, they place a fixed
bound L on the amount of leakage, and blow up the computation size by a factor
of roughly L?. [FRR09] require a secure hardware component as well.

The bounded memory leakage model [AGVQ9] has received much attention.
Here one allows £ to be defined on the entire contents of memory including all
stored cryptographic secret keys, all previous computation done on the secret key
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results, and internally generated randomness. Obviously, in this strong setting,
if no erasures are incorporated in the system, one must bound the total amount
of information that measurements can yield on the original cryptographic keys,
or else they will eventually be fully leaked by the appropriate adversarial choice
of ¢. This is the model used in the works of [AGV09, [NS09]. In contrast, in
our work, we are interested in the continuous leakage question. Namely, the
cryptographic algorithm initialized with secret cryptographic keys is invoked
again and again for a (not specified in advance) polynomial (in the size of the
initial cryptographic keys) number of times; each time the side-channel adversary
continues to get some information on the secrets of the computation. Thus, the
total amount of information that the adversary gets over the life time of the
system will unbounded.

Coming back to the OC attack model, the ideas of Goldwasser, Kalai, and
Rothblum [GKROS] in the work on one-time programs provide another avenue
for transforming general cryptographic circuits to equivalent leakage resistant
algorithms. The resulting leakage resistant algorithm will be secure in the OC
attack model if it is executed once. To obtain an unbounded number of execu-
tions of the original circuit, one can resort to an off-line/on-line per-execution
model where every execution is preceded by an off line stage in which the circuit
conversion into a leakage resistent algorithm is performed a-new (obviously us-
ing new randomness). This is done prior to (and independently from) the choice
of input for the coming execution. Surprisingly, the produced circuits are secure
even if all data which is touched by the computation leaks. Namely, in presence
of any polynomial time leakage functions including the identity function itself!

A recent independent work published in this proceedings is by Juma and
Vahlis [JVI0]. They also work in the OC attack model and address the question
of how to run general computations in this model. They use as a tool a fully
homomorphic encryption scheme and a leakage free hardware component in-
dependent from the functionality being computed. In terms of granularity, they
divide each activation into two parts: one of which is large (a homomorphic com-
putation of the entire circuit), and the second of which is small (a decryption).
Quantitatively, To tolerate a leakage bound of L bits in total, they transform
the computation into one of size C' - exp(L). Under stronger assumptions (e.g.
sub-exponential security of the fully homomorphic encryption) the transformed
computation can be of size C - poly(L).

2 Security Definitions

2.1 Leakage Model

Leakage Attack. A leakage attack is launched on an algorithm or on a data string.
In the case of a data string z, an adversary can request to see any efficiently
computable function £(z) whose output length is bounded by A bits. In the case of
an algorithm, we divide the algorithm into disjoint sub-computations. We assume
that only computation leaks information, and so the adversary can request to
see a bounded-length function of each sub-computation’s input (separately).
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Definition 1 (Leakage Attack A[X: s|](x)). Let s be a source: either a data
string or a computation. We model a \-bit leakage attack of adversary A with
input x on the source s as follows.

If s is a computation (viewed as a boolean circuit with a fized input), it is
divided into m disjoint and ordered sub-computations subq, ..., sub,,, where the
mnput to sub-computation sub; should depend only on the output of earlier sub-
computations. A A-bit Leakage Attack on s is one in which A can adaptively
choose PPTM functions {1,... L, where {; takes as input the input to sub-
computation i, and has output length at most X bits. For each {; (in order), the
adversary receives the output of £; on sub-computation sub;’s input, and then
chooses £;11. The view of the adversary in the attack consists of the outputs to
all the leakage functions.

In the case that s is a data string, we treat it as a single subcomputation. A
A-bit leakage attack of A on s is one in which A adaptively chooses A single-bit
functions of the string in its entirety.

Multi-Source Leakage Attacks. A multi-source leakage attack is one in which
the adversary gets to launch concurrent leakage attacks on several sources. Each
source is an algorithm or a data string. The leakages from each of the sources
can be interleaved arbitrarily, but each leakage is computed as a function of a
single source only.

Definition 2 (Multi-Source Leakage Attack A[\:sy,...,s;](x)). Let
S1,..., 8k be k leakage sources (algorithms or data strings, as in Definition [1]).
We model a \-bit multi-source leakage attack on [s1,...,sk] as follows. The ad-
versary A with input x runs concurrently k separate A-bit leakage attacks, one
attack on each source. The attacks can be interleaved arbitrarily and adaptively.
The attacks on each of the sources separately form a A-bit leakage attack as in
Definition [ It is important that each leakage function is computed as a func-
tion of a single sub-computation in a single source (i.e. the leakages are never
a function of the internal state of multiple sources). It is also important that
the attacks launched by the adversary are concurrent and adaptive, and their
interleaving is controlled by the adversary.

Simulated Multi-Source Leakage Attacks. For security definitions, we will oc-
casionally want to replace the adversary’s access to one or more source in a
multi-source leakage attack with a view generated by a simulator. To facilitate
composition, we view some sources as fixed: these are outside of the simulator’s
control. Both the adversary and the simulator get leakage access to these fixed
sources (these are analogous to the environment in the UC framework [Can01]).
Access to all of the other sources is simulated by the simulator.

Definition 3 (Simulated Multi-Source Leakage Attack). Let sq,..., Sk
each be either a special symbol L or a leakage source (algorithm or data string, as
in Definition[d]). Denote by s', ..., s}, the subset of s1, ..., sk that are not L. A sim-
ulated \-bit multi-source leakage attack (A[X : s1,...,sg)(x), SN = s1,...,s](2"))
on [s1,...,sk| is defined as follows.
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A with input x runs concurrently k separate \-bit leakage attacks, one attack
on each of its k sources, as in Definition [2 The difference here is that the
sources which are L are all under the control of the simulator S. The simulator
S, which itself has an input ' and can launch a N -bit multi-source leakage attack
on [s},...,sy|, produces the answers to all of the adversary’s queries to all of the
sources (including the L sources).

As in Definition[3, the adversary’s (and the simulator’s) access to its sources
can be interleaved arbitrarily. The only difference is that the adversary’s leakage
queries to some of the sources are answered by the simulator. The simulator’s
answers may also be adaptive and depend on its prior view, which includes all
of the adversary’s past queries to simulated sources.

As discussed above, the motivation for including sources that are outside the
simulator’s control is to facilitate composition between different components that
are each (on their own) resilient to multi-source leakage attacks. Throughout this
work, it will be the case that X’ > A, and so it is “easy” for the simulator to
answer A’s queries to the “non-L sources” (by making the same query itself).
The challenge is answering A’s queries to the “1-sources”.

2.2 Continuous Side-Channel Secure Compiler

We divide a side-channel-secure compiler into two parts: the first part, the ini-
tialization occurs only once at the beginning of time. This procedure depends
only on the circuit C' being compiled and the private input y. We assume that
during this phase there are no side-channels. The second part is the evaluation.
This occurs whenever the user wants to evaluate the circuit C(-,y) on an input
2. In this part the user specifies an input z, the corresponding output C(z,y) is
computed, and side-channels are in effect.

Definition 4 (A(-)-Continuous Side-Channel Secure Compiler). for a
circuit family {Cy(z,y)}nen, where C, operates on two n-bit inputs, we will
say that a compiler (Initc, Evalc) offers A(+)-security under continuous side-
channels, if for every integer n > 0, every y € {0,1}", and every security pa-
rameter K, the following holds:

— Initialization: Initc (17, C,,y) runs in time poly(k,n) and outputs an initial
state stateg

— Ewaluation: for every integer t < poly(k), the evaluation procedure is run
on the previous state state,_1 and an input z; € {0,1}". We require that
for every x, € {0,1}", when we run: (output,, state;) «— Evalc(state;—1,x+),
with all but negligible probability over the coins of Initc and the t invocations
of Evalc, output, = Cyp(z4,y).

— A(k)-Continuous Leakage Security: for every PPTM (in k) leakage-adversary
A, there exists a PPTM simulator S s.t. the view of A when adaptively
choosing inputs (x1,xa, ... x7) while running a continuous leakage attack on
the evaluation procedure, is indistinguishable from the view generates by S
which only gets the inputs-output pairs ((x1,C(z1,y)),- .., (xr,C(xT,v))).
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Formally, the adversary repeatedly and adaptively, in iterationst «— 1,...,T,
chooses an input xy and launches a A(k)-bit leakage attack on
Evalc(state;—1, ;) (see Definition [Il). The view view . of the adversary
in iteration t includes the input x¢, the output output,, and the leakages.
The complete view of the adversary is viewa = (viewa,...,viewar), @
random wvariable over the coins of the adversary, of the Initc and of the
Evale procedure (in all of its iterations).

We note that modeling the leakage attacks requires dividing the FEvalc pro-
cedure into sub-computations. In our constructions the size of these sub-
computations will always be at most polynomial in the security parameter.
The simulator’s view is generated by running the adversary with simulated
leakage attacks. In each iteration t the simulator gets the input x; chosen
by the adversary and the circuit output C(x¢,y). It generates simulated side-
channel information as in Definition[3 It is important that the simulator sees
nothing of the internal workings of the evaluation procedure. We compute:

statesg — S(1%,Cy), x4 «— A(views 1, . .., views ¢t—1),

(states o, viewy,s) < S(1%, x¢, Cxy, y), views 1—1)

where views: s a random variable over the coins of the adversary when
choosing the next input and of the simulator. The complete view of the sim-
ulator is views = (views 1, . .., views ).

We require that views and view 4 are computationally indistinguishable.

3 Subsidiary Cryptosystem and Hardware

We now present the subsidiary cryptosystem and hardware device we will use to
instantiate our main construction. We also define the properties we need from
the subsidiary cryptosystem. We omit the full formal details of the instantiations
of these properties by the subsidiary cryptosystem for lack of space, but direct
the reader back to Section [[LT] for an overview of these properties and how they
are instantiated.

3.1 The Naor-Segev/BHHO Scheme and Secure Hardware

Security is based on the Decisional Diffie-Hellman (DDH) Assumption: Let Gen
be a probabilistic group generator, s.t. G < Gen(1*) is a group of order ¢ = ¢(k).
We will take G to be GF|q], i.e. the field of prime order ¢ (which also supports
addition operations). The DDH assumption for Gen is that the ensembles below
are computationally indistinguishable:

(Gvglvg%g;vg;) 1G— Gen(lﬁ)aglagQ €R G,’f’ €Rr G]F[q]

(G7917927g71017.g£2) : G — Gen(lﬁ)aglagQ €R G7 T1,72 €R G]F[q}

The cryptosystem has the following algorithms (we take m = 10, this choice is
arbitrary and effects the constant in the fraction of leakage we can tolerate):
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e KeyGen(17): choose g = (g1,--.,9m) €Er G™ and s = (s1,...,5m) €r GF[q]™.
Define: y = [[\~, ¢;*. Output pk = (g,y) and sk = s.

o Encrypt(pk,b € {0,1}): parse pk = (g,y) and choose r € GF[q].

Output: ¢ — (g7, .., 95, y" - 9})

e Decrypt(sk,c): parse sk = s and ¢ = (f1,..., fm,h). Compute b’ =], f".
Output 1 if h = g1 - ' and output L otherwise.

CipherGen Secure Hardware. This device will be used to realize additional
useful properties for the subsidiary cryptosystem. We assume that when this
device is invoked, there is leakage on its input and output, but not on its internal
workings or randomness. The device receives as input a public key and mode
of operation m € {0,rand}. In mode m = 0 it computes and outputs a fresh
encryption of 0, and in mode m = rand it chooses a uniformly random bit
b € {0,1} and outputs a fresh encryption of b.

3.2 Homomorphic and Leakage-Resilient Properties

Definition 5 (Semantic Security Under A(-)-Multi-Source Leakage). An
encryption scheme (KeyGen, Encrypt, Decrypt) is semantically secure under
multi-source leakage attacks if for every PPTM adversary A, when we run the game
below, the adversary’s advantage in winning (over 1/2) is negligible:

1. The game chooses a key pair (pk, sk) — KeyGen(1¥), chooses uniformly at
random a bit b €r {0, 1}, and generates a ciphertext ¢ — Encrypt(pk,b).

2. The adversary launches a multi-source leakage attack on sk and c, and out-
puts a guess b’ for the value of b:

b — A[AN(k) : sk, c](pk)
The adversary wins if b’ = b.

Lemma 1. The Naor-Segev cryptosystem, as defined in Section [, is seman-
tically secure under (A = mq/3)-multi-source leakage.

Definition 6 (Key Refreshing). Anencryption scheme supports key-refreshing
if it has additional algorithms with the following properties:

1. The key refresh procedure Refresh(1%) outputs a “correlation value” m every
time it is run.

2. The key correlation procedures output new secret and public keys pk! —
PKCor(pk,n) and sk’ «— SKCor(sk, ). Here pk’ is a public key correspond-
ing to sk’. We require that even for fized sk, the new sk’ (as a function of a
randomly chosen m) is uniformly random.

3. The ciphertext correlation procedure transforms an encryption from one key
to the other. Le. if ¢ <« CipherCor(pk,c,m), then Decrypt(sk,c) =
Decrypt(sk’, ).

4. The key linking procedure outputs a correlation value linking its two input
secret keys. Le. if m — KeyLink(sk, sk'), then sk’ = SKCor(sk,n).
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5. A correlation-inverter Corlnvert such that 7= « Corlnvert(m) satisfies
that if sk’ = SKCor(sk, ), then sk = SKCor(sk',n~1t). Also for the corre-
sponding public keys pk = PKCor(pk',7=1).

Definition 7 (A(-)-Leakage Oblivious Generation). An encryption scheme
(KeyGen, Encrypt, Decrypt) supports oblivious generation if there exists a ran-
domized procedure OblivGen such that:

1. OblivGen outputs the encryption of a random bit:

Vb e {0,1}: CHOblilzéen(pk)[Decrypt(sk, c)=0b=1/2
2. The security requirement is that there exists a Simulator S such that for
every bit by € {0,1} and every PPTM adversary A, when we run the game
below, the real and simulated views are indistinguishable:
(a) The game chooses a key pair (pk, sk) — KeyGen(17).
(b) In the real view, A launches a A(k)-bit multi-source leakage attack:

A[A(K) : sk, co < OblivGen(pk), co|(pk)

In the simulated view, the game encrypts bit bi: ¢; «— Encrypt(pk,by),
and we run A with a simulated A(k)-multi-source leakage attack:

(A[A(k) = sk, L, e1](pk), S[N (k) : sk, c1](pk))

Le., here the leakage attacks on the oblivious generation procedure are
simulated by S. We require that X (k) = O(A(k)) (the simulator may get
access to a little more leakage than the adversary).

Definition 8 (A(-)-Leakage Ciphertext Regeneration). An encryption
scheme (KeyGen, Encrypt, Decrypt) supports oblivious generation if it has a pro-
cedure Regen such that:

1. When we run (pk',sk’,c’) <« Regen(pk,sk,c), it is the case that
Decrypt(sk’,c") = Decrypt(sk, c).

2. The security requirement is that for every PPTM adversary A that runs for
T repeated regenerations, every bit b € {0,1} (determining whether the input
ciphertext is an encryption of 0 or 1), the view generated by the adversary
in the game below is indistinguishable.

(a) The game chooses a key pair (pko, sko) «— KeyGen(1%) and generates a
ciphertext co «— Encrypt(pk,b).

(b) The adversary A launches A(k)-bit multi-source leakage attack on T re-
peated regenerations:

A[X(k) : sko, co, (pk1, sk1,c1) — Regen(pko, sko, co),

ski, c1, (pko, copka, sk2, c2) < Regen(pki, sk1,c1),

ey

Skal ,CT1, (ka, SkT, CT) — Regen(ka,h SkT71, CT71)](pk0, [N ,ka)
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We further require that the input to each sub-computation in the Regen pro-
cedure depends either on the input secret key or the input ciphertext, but
never on both.

Homomorphic Masked NAND. A homomorphic masked NAND computation is
given three ciphertexts cy, ca, cs encrypted under the same key and with corre-
sponding plaintexts by, b, b3 € {0,1}, and two plain-text values a1,a2 € {0,1}.
It should compute homomorphically (without using the secret key) compute a
“blinded” (see below) ciphertext hc that can later be decrypted to retrieve the
value ((a1 @ b1) NAND (a2 @ b2)) @ bs.

Definition 9 (A(-)-Leakage Blinded Homomorphic NAND). An encryp-
tion scheme (KeyGen, Encrypt, Decrypt) supports blinded homomorphic masked
NAND:s if there exist procedures HomFEval and HomDecrypt such that:

1. When take hc — HomPEwval(pk,a1,as,c1,co,c3), for the secret key sk corre-
sponding to pk w.h.p. it holds that HomDecrypt(sk, hc) = ((a1 ®b1) NAND
(az b bz)) @ bs.

2. The result should be “blinded”. There exists a Simulator S such for every
PPTM adversary A, PPTM ciphertext generators G1,Ga, GSE and plaintext
values ay,a2 € {0,1}, the real and simulated views in the game below are
indistinguishable:

(a) The game chooses a key pair (pk,sk) — KeyGen(1*) and generates ci-
phertexts ¢1 «— G1(pk), ca «— Ga(pk), cs — Gs(pk) using random strings
r1,72,73 for G1,Ga, G3 respectively.

(b) In the real view, the adversary A launches a multi-source leakage attack
on the homomorphic evaluation and decryption:

A[XK) : sk, c5 — G3(r3),
he «— HomPEwal(pk, a1, az,c1,c2,c3),
as «— HomDecrypt(sk, he)|(pk, a1, az,71,72)
In the simulated view, the simulator does mot get any access to homo-
morphic evaluation or decryption, but rather gets only the output az of

the homomorphic decryption:

( A[X(k) : sk,c3 « G3(rs), L, L](pk,a1,a2,71,72),
S[A/(K) : Sk',Cg — G3(7"3)](pk',Cll,G/Q,Tl,Tg,a,g,))

We require that N (k) = O(A(k)).

5 In the security proof for our construction these generation procedures will be the
OblivGen or Regen procedure.
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4 A Continuous-Leakage Secure and Compiler

The compiler can be based on any subsidiary cryptosystem with the properties
of Section[3l We refer the reader to Section [Tl for the construction overview and
preliminaries, and to Section 2.2l for the security definition. The initialization and
evaluation procedures are presented below in Figure[ll The evaluation procedure
is separated into sub-computations (which may themselves be separated into sub-
computations of the cryptographic algorithms). For each such sub-computation
we explicitly note which data elements are computed on (“touched”) in the sub-
computation. We defer the proof of security to the full version.

Initialization Initc(1"%,C,y)

For every input wire ¢, corresponding to bit j of the input y, generate new keys: (pk;, ski) < KeyGen(17)
and compute an encryption ¢; = Encrypt(pki,y;). stateo — {(pki, ski,ci)}; . i is a y-input wire

Evaluation Evalc(statei—1,x¢)

1. Generate keys and ciphertexts for all wires of C' except the y-input wires.

For the = input wires, generate fresh keys and encryptions of 0.

Proceed layer-by-layer (from input to output). For each gate g with input wires ¢ and j and output

wire k: (repeat independently for gate g’s second output wire ¢)

(a) Generate a random correlation value 7; ; < Refresh(1"). Apply this value to wire i’s keys to get
a new key pair for wire k: pky, «— PKCor(pki, mi ), sk — SKCor(ski,m; ). Derive a correlation
value specifying the correlation between the keys of wires j and k: m;, «— KeyLink(skx, sk;).
Store the keys and correlation values. “Computed on” keys, correlation values

(b) Generate a ciphertext encrypting the share by for wire k: for internal wires, use the oblivious
generation procedure to generate an encryption of a random bit ¢ <« OblivGen(pky).

For the output wire o, generate an encryption ¢, < Encrypt(pks, 0).
Store the ciphertexts. “Computed on” ciphertexts
2. Compute the value of C(y,x+).

Proceed layer by layer (from input to output). For each gate g with output wire k and input wires

i, 7, the previous gate evaluations yield the shares a;,a; € {0, 1} of the gate’s input wires. Compute

an encryption of ax: (do the same independently for gate g’s second output wire ¢):

(a) First transform the ciphertexts c¢; and c¢; to be encryptions under pky: ¢
CipherCor(pki, ci, mi ) and ¢ «— CipherCor(pk;, c;, mj k). “Computed on” ciphertexts and cor-
relation values.

(b) Run the blinded homomorphic evaluation procedure: hcy «— HomEval(pky,ai,a;,c;, ¢}, ck).
“Computed on” ciphertexts.

(c) Compute ar «— HomDecrypt(ski, heg). “Computed on” hey, and the secret key.

Taking o to be the output wire, the output is output, < ao.

3. Generate the new state.
For each y-input wire ¢ regenerate wire ¢’s keys and ciphertext: (pki, ski, ci) < Regen(pki, ski, c;).

The new state is state; — {(i, pki, ski,ci)}; . j is a y-input wire:

Fig. 1. Initc, performed off-line without side channels, and Fvalc, performed on input
x¢ in the presence of side-channel attacks

Theorem 1. Let (KeyGen, Encrypt, Decrypt) be a subsidiary encryption scheme
with security parameter k and with the properties specified in Definitions[fl (key re-
freshing), [ (multi-source leakage resilience), 7 (oblivious generation), [8 (leakage
resilience regeneration), and [ (homomorphic masked NAND), all with
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A = Q(k)-leakage resilienced Then the (Initc, Evalc) compiler specified in Figure
[ offers £2(k)-leakage security under continuous side-channels as in Definition[{.
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An Efficient and Parallel
Gaussian Sampler for Lattices

Chris Peikert*

Georgia Institute of Technology

Abstract. At the heart of many recent lattice-based cryptographic
schemes is a polynomial-time algorithm that, given a ‘high-quality’ basis,
generates a lattice point according to a Gaussian-like distribution. Unlike
most other operations in lattice-based cryptography, however, the known
algorithm for this task (due to Gentry, Peikert, and Vaikuntanathan;
STOC 2008) is rather inefficient, and is inherently sequential.

We present a new Gaussian sampling algorithm for lattices that is
efficient and highly parallelizable. We also show that in most crypto-
graphic applications, the algorithm’s efficiency comes at almost no cost
in asymptotic security. At a high level, our algorithm resembles the “per-
turbation” heuristic proposed as part of NTRUSign (Hoffstein et al., CT-
RSA 2003), though the details are quite different. To our knowledge, this
is the first algorithm and rigorous analysis demonstrating the security of
a perturbation-like technique.

1 Introduction

In recent years, there has been rapid development in the use of lattices for con-
structing rich cryptographic schemes[] These include digital signatures (both
‘tree-based’ [13] and ‘hash-and-sign’ [8) [6]), identity-based encryption [§] and
hierarchical IBE [6], [I], noninteractive zero knowledge [19], and even a fully ho-
momorphic cryptosystem [7].

The cornerstone of many of these schemes (particularly, but not exclusive to,
those that ‘answer queries’) is the polynomial-time algorithm of [§] that samples
from a so-called discrete Gaussian probability distribution over a lattice A. More
precisely, for a vector ¢ € R™ and a “width” parameter s > 0, the distribution
D e assigns a probability proportional to exp(—n||v||?/s?) to each v e A+¢
(and probability zero elsewhere). Given c, a basis B of A, and a sufficiently large
s (related to the ‘quality’ of B), the GPV algorithm outputs a sample from a

* This material is based upon work supported by the National Science Foundation
under Grant CNS-0716786. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

A lattice A C R" is a periodic ‘grid’ of points, or more formally, a discrete subgroup
of R™ under addition. It is generated by a (not necessarily unique) basis B C R™** of
k linearly independent vectors, as A = {Bz : z € Zk}. In this paper we are concerned
only with full-rank lattices, i.e., where k = n.
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distribution statistically close to D st s. (Equivalently, by subtracting ¢ from
the output, it samples a lattice point from a Gaussian distribution centered
at —c.) Informally speaking, the sampling algorithm is ‘zero-knowledge’ in the
sense that it leaks no information about its input basis B (aside from a bound
on its quality), because D yc s is defined without reference to any particular
basis. This zero-knowledge property accounts for its broad utility in lattice-based
cryptography.

While the sampling algorithm of [8] has numerous applications in cryptogra-
phy and beyond, for both practical and theoretical purposes it also has some
drawbacks:

— First, it is rather inefficient: on an n-dimensional lattice, a straightforward
implementation requires exact arithmetic on an n X n matrix having 2(n)-
bit entries (even ignoring some additional logn factors). While approximate
arithmetic and other optimizations may be possible in certain cases, great
care would be needed to maintain the proper output distribution, and the
algorithm’s essential structure appears difficult to make truly practical.

— Second, it is inherently sequential: to generate a sample, the algorithm per-
forms n adaptive iterations, where the choices made in each iteration affect
the values used in the next. This stands in stark contrast to other ‘embarrass-
ingly parallelizable’ operations that are typical of lattice-based cryptography.

1.1 Contributions

We present a new algorithm that samples from a discrete Gaussian distribution
D g s over a lattice, given a ‘high-quality’ basis for A. The algorithm is espe-
cially well-suited to ‘g-ary’ integer lattices, i.e., sublattices of Z" that themselves
contain gZ" as a sublattice, for some known and typically small ¢ > 2. These in-
clude NTRU lattices [10] and the family of random lattices that enjoy ‘worst-case
hardness,’ as first demonstrated by Ajtai [3]. Most modern lattice-based crypto-
graphic schemes (including those that rely on Gaussian sampling) are designed
around g-ary lattices, so they are a natural target for optimization.

The key features of our algorithm, as specialized to n-dimensional g-ary lat-
tices, are as follows. It is:

— Offline / online: when the lattice basis is known in advance of the point ¢
(which is the norm in cryptographic applications), most of the work can be
performed as offline precomputation. In fact, the offline phase may be viewed
simply as an extension of the application’s key-generation algorithm.

— Simple and efficient: the online phase involves only O(n?) integer additions
and multiplications modulo ¢ or ¢?, where the O-notation hides a small
constant ~ 4.

— Pully parallelizable: for any P up to n?, the online phase can allocate O(n?/P)
of its operations to each of P processors.

— High-quality: for random bases that are commonly used in cryptographic
schemes, our algorithm can sample from a Gaussian of essentially the same
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‘quality’ as the prior GPV algorithm; this is important for the concrete se-
curity of applications. See Section below for a full discussion.

We emphasize that for a practical implementation, parallelized operations on
small integers represent a significant performance advantage. Most modern com-
puter processors have built-in support for “vector” instructions (also known as
“single instruction, multiple data”), which perform simple operations on entire
vectors of small data elements simultaneously. Our algorithm can exploit these
operations very naturally. For a detailed efficiency comparison between our al-
gorithm and that of [8], see Section [[2] below.

At a very high level, our algorithm resembles the “perturbation” heuristic pro-
posed for the NTRUSign signature scheme [9], but the details differ significantly;
see Section [[J for a comparison. To our knowledge, this is the first algorithm
and analysis to demonstrate the theoretical soundness of a perturbation-like
technique. Finally, the analysis of our algorithm relies on some new general facts
about ‘convolutions’ of discrete Gaussians, which we expect will be applicable
elsewhere. For example, these facts allow for the use of a clean discrete Gaus-
sian error distribution (rather than a ‘rounded’ Gaussian) in the “learning with
errors” problem [20], which may be useful in certain applications.

1.2 Comparison with the GPV Algorithm

Here we give a detailed comparison of our new sampling algorithm to the previous
one of [8]. The two main points of comparison are the width (‘quality’) of the
sampled Gaussian, and the algorithmic efficiency.

Gaussian Width. One of the important properties of a discrete Gaussian
sampling algorithm is the width s of the distribution it generates, as a function
of the input basis. In cryptographic applications, the width is the main quantity
governing the concrete security and, if applicable, the approximation factor of the
underlying worst-case lattice problems. This is because in order for the scheme
to be secure, it must hard for an adversary to find a lattice point within the
likely radius s/n of the Gaussian (i.e., after truncating its negligibly likely tail).
The wider the distribution, the more leeway the adversary has in an attack, and
the larger the scheme’s parameters must be to compensate. On the other hand,
a more efficient sampling algorithm can potentially allow for the use of larger
parameters without sacrificing performance.

The prior sampling algorithm of [§], given a lattice basis B = {by,...,b,},
can sample from a discrete Gaussian having width as small as || B|| = max; ||bg]|,
where B denotes the Gram-Schmidt orthogonalization of B[ (Actually, the
width also includes a small w(y/logn) factor, which is also present in our new
algorithm, so for simplicity we ignore it in this summary.) As a point of compar-
ison, || B|| is always at most max;||b;||, and in some cases it can be substantially
smaller.

2 In the Gram-Schmidt orthogonalization B of B, the vector b; is the projection of
b; orthogonally to span(bi,...,b;—1).
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In contrast, our new algorithm works for a width s as small as the largest
singular value s1(B) of the basis B, or equivalently, the square root of the largest
eigenvalue of the Gram matrix BB?. It is easy to show that s;(B) is always at
least max;||b;||, so our new algorithm cannot sample from a narrower Gaussian
than the GPV algorithm can. At the same time, any basis B can always be
efficiently processed (without increasing ||B||) to guarantee that s1(B) < n-||B]|,
so our algorithm is at worst an n factor looser than that of [g].

While a factor of n gap between the two algorithms may seem rather large,
in cryptographic applications this worst-case ratio is actually immaterial; what
matters is the relative performance on the random bases that are used as secret
keys. Here the situation is much more favorable. First, we consider the basis-
generation algorithms of [4] (following [2]) for ‘worst-case-hard’ g-ary lattices,
which are used in most theoretically sound cryptographic applications. We show
that with a minor modification, one of the algorithms from [4] outputs (with
overwhelming probability) a basis B for which s;(B) is only an O(y/log q) factor
larger than || B|| (which itself is asymptotically optimal, as shown in [4]). Because
q is typically a small polynomial in n, this amounts to a cost of only an O(y/logn)
factor in the width of the Gaussian. Similarly, when the vectors of B are them-
selves drawn from a discrete Gaussian, as in the basis-delegation technique of [6],
we can show that s1(B) is only a w(y/logn) factor larger than ||BJ| (with over-
whelming probability). Therefore, in cryptographic applications the performance
improvements of our algorithm can come at almost no asymptotic cost in secu-
rity. Of course, a concrete evaluation of the performance/security trade-off for
real-world parameters would require careful analysis and experiments, which we
leave for later work.

Efficiency. We now compare the efficiency of the two known sampling algo-
rithms. We focus on the most common case of ¢g-ary n-dimensional integer lat-
tices, where a ‘good’ lattice basis (whose vectors having length much less than
q) is initially given in an offline phase, followed by an online phase in which a
desired center c € Z" is given. This scenario allows for certain optimizations in
both algorithms, which we include for a fair comparison.

The sampling algorithm from [8] can use the offline phase to compute the
Gram-Schmidt orthogonalization of its given basis; this requires £2(n* log? q) bit
operations and §2(n?) bits of intermediate storage. The online phase performs
n sequential iterations, each of which computes an inner product between a
Gram-Schmidt vector having {2(n)-bit entries, and an integer vector whose en-
tries have magnitude at most ¢. In total, these operations require £2(n®logq) bit
operations. In addition, each iteration performs a certain randomized-rounding
operation, which, while asymptotically poly(logn)-time, is not especially prac-
tical (nor precomputable) because it uses rejection sampling on a value that is
not known until the online phase. Lastly, while the work within each iteration
may be parallelized, the iterations themselves must be performed sequentially.

Our algorithm is more efficient and practical in the running time of both
phases, and in the amount of intermediate storage between phases. The offline
phase first computes a matrix inverse modulo ¢2, and a ‘square root’ of a matrix
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whose entries have magnitude at most ¢; these can be computed in O(n? log? q)
bit operations. Next, it generates and stores one or more short integer ‘perturba-
tion’ vectors (one per future call to the online phase), and optionally discards the
matrix square root. The intermediate storage is therefore as small as O(n? log q)
bits for the matrix inverse, plus O(nlogq) bits per perturbation vector. Option-
ally, the offline phase can also precompute the randomized-rounding operations,
due to the small number of possibilities that can occur online. The online phase
simply computes about 4n? integer additions and multiplications (2n? of each)
modulo ¢ or ¢2, which can be fully parallelized among up to n? processors.
Lastly, we mention that our sampling algorithm translates very naturally to
the setting of compact g-ary lattices and bases over certain rings R that are
larger than Z, where security is based on the worst-case hardness of ideal lattices
in R (see, e.g., [16}, 21 [14]). In contrast to GPV, our algorithm can directly take
advantage of the ring structure for further efficiency, yielding a savings of an

2(n) factor in the computation times and intermediate storage.

1.3 Overview of the Algorithm

The GPV sampling algorithm [§] is based closely on Babai’s “nearest-plane”
decoding algorithm for lattices [5]. Babai’s algorithm takes a point ¢ € R™ and
a lattice basis B = {by,...,b,}, and for ¢ = n,...,1 computes a coefficient
z; € Z for b; by iteratively projecting (‘rounding’) ¢ orthogonally to the nearest
hyperplane of the form z;b;+span(by,...,b;_1). The output is the lattice vector
>, zibi, whose distance from the original ¢ can be bounded by the quality of B.
The GPV algorithm, whose goal is instead to sample from a discrete Gaussian
centered at c, uses randomized rounding in each iteration to select a ‘nearby’
plane, under a carefully defined probability distribution. (This technique is also
related to another randomized-rounding algorithm of Klein [I1] for a different
decoding problem.)

In addition to his nearest-plane algorithm, Babai also proposed a simpler (but
somewhat looser) lattice decoding algorithm, which we call “simple rounding.”
In this algorithm, a given point ¢ € R™ is rounded to the lattice point B|B~'c],
where each coordinate of B~'c € R” is independently rounded to its nearest
integer. With precomputation of B™!, this algorithm can be quite practical
— especially on g¢-ary lattices, where several more optimizations are possible.
Moreover, it is trivially parallelized among up to n? processors. Unfortunately, its
deterministic form it turns out to be completely insecure for ‘answering queries’
(e.g., digital signatures), as demonstrated by Nguyen and Regev [18].

A natural question, given the approach of [8], is whether a randomized vari-
ant of Babai’s simple-rounding algorithm is secure. Specifically, the natural way
of randomizing the algorithm is to round each coordinate of B~!c to a nearby
integer (under a discrete Gaussian distribution over Z, which can be sampled
efficiently), then left-multiply by B as before. Unlike with the randomized nearest-
plane algorithm, though, the resulting probability distribution here is unfortu-
nately not spherical, nor does it leak zero knowledge. Instead, it is a ‘skewed’
(elliptical) Gaussian, where the skew mirrors the ‘geometry’ of the basis. More
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precisely, the covariance matrix Ex[(x — ¢)(x —c)?] of the distribution (about its
center c) is approximately BB?, which captures the entire geometry of the basis
B, up to rigid rotation. Because covariance can be measured efficiently from only
a small number of samples, the randomized simple-rounding algorithm leaks this
geometryﬁ

Our solution prevents such leakage, in a manner inspired by the following
facts. Recall that if X and Y are two independent random variables, the prob-
ability distribution of their sum X + Y is the convolution of their individual
distributions. In addition, for continuous (not necessarily spherical) Gaussians,
covariance matrices are additive under convolution. In particular, if Xy and Xs
are covariance matrices such that X + Xy = s2I, then the convolution of two
Gaussians with covariance matrices X1, Xo (respectively) is a spherical Gaussian
with standard deviation s.

The above facts give the basic idea for our algorithm, which is to convolve
the output of the randomized simple-rounding algorithm with a suitable non-
spherical (continuous) Gaussian, yielding a spherically distributed output. How-
ever, note that we want the algorithm to generate a discrete distribution —
i.e., it must output a lattice point — so we should not alter the output of the
randomized-rounding step. Instead, we first perturb the desired center ¢ by a
suitable non-spherical Gaussian, then apply randomized rounding to the result-
ing perturbed point. Strictly speaking this is not a true convolution, because
the rounding step depends on the output of the perturbation step, but we can
reduce the analysis to a true convolution using bounds related to the “smoothing
parameter” of the lattice [I7].

The main remaining question is: for a given covariance matrix ¥; = BB?
(corresponding to the rounding step), for what values of s is there an efficiently
sampleable Gaussian having covariance matrix Xy = s2I — X;? The covariance
matrix of any (non-degenerate) Gaussian is symmetric positive definite, i.e., all
its eigenvalues are positive. Conversely, every positive definite matrix is the co-
variance of some Gaussian, which can sampled efficiently by computing a ‘square
root’ of the covariance matrix. Since any eigenvector of X; (with eigenvalue
02 > 0) is also an eigenvector of s2I (with eigenvalue s?), it must be an eigenvec-
tor of Xy (with eigenvalue s? — 0?) as well. Therefore, a necessary and sufficient
condition is that all the eigenvalues of X be less than s2. Equivalently, the algo-
rithm works for any s that exceeds the largest singular value of the given basis
B. More generally, it can sample any (possibly non-spherical) discrete Gaussian
with covariance matrix X > ¥4 (i.e., ¥ — X is positive definite).

3 Given the above, one might still wonder whether the covariance BB* could be sim-
ulated efficiently (without any privileged knowledge about the lattice) when B is
itself drawn from a ‘nice’ distribution, such as a discrete Gaussian. Indeed, if the
vectors of B were drawn independently from a continuous Gaussian, the matrix BB?
would have the so-called Wishart distribution, which can be generated ‘obliviously’
(without knowledge of B itself) using the Bartlett decomposition. (See, e.g., [12] and
references therein). Unfortunately, these facts do not quite seem to carry over to
discrete Gaussians, though they may be useful in another cryptographic context.
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In retrospect, the high-level structure of our algorithm resembles the “per-
turbation” heuristic proposed for NTRUSign [9], though the details are quite
different. First, the perturbation and rounding steps in NTRUSign are both de-
terministic with respect to two or more bases, and there is evidence that this is
insecure [15], at least for a large polynomial number of signatures. Interestingly,
randomization also allows for improved efficiency, since our perturbations can
be chosen with offline precomputation (as opposed to the deterministic method
of [@], which is inherently online). Second, the signing and perturbation bases
used in NTRUSign are chosen independently, whereas our perturbations are
carefully chosen to conceal the statistics that would otherwise be leaked by ran-
domized rounding.

2 Preliminaries

2.1 Notation

For a countable set X and a real-valued function f, we write f(X) to de-
note Y .y f(x). A nonnegative function f: N — R is called negligible, written
f(n) = negl(n), if it vanishes faster than any inverse polynomial, i.e., f(n) =
o(n~¢) for every constant ¢ > 0. A function g: N — [0,1] is called overwhelm-
ing if it is 1 — negl(n). The statistical distance between two distributions X
and Y (or two random variables have those distributions, respectively) is de-
fined as A(X,Y) = sup4cp|X(A) — Y (A)|. When D is a countable set, we have
AXY) = § SgeplX (@) - Y (d).

We use bold lower-case letters (e.g., x) to denote vectors in R™, for an undeter-
mined positive integer dimension n that remains the same throughout the paper.
We use bold upper-case letters (e.g., B) for ordered sets of vectors, and iden-
tify the set with the matrix having the vectors as its columns. We frequently use
upper-case Greek letters such as X' to denote (symmetric) positive (semi)definite
matrices, defined below. In contexts where a matrix is expected, we sometimes
use a scalar s € R to denote s - I, where I is the identity matrix of appropriate
dimension. We let ||B|| = max;||b;||, where |-|| denotes the Euclidean norm.

2.2 Linear Algebra

A symmetric matrix X € R™*" is positive definite, written X > 0, if x!Xx > 0
for all nonzero x € R™. Equivalently, its spectral decomposition is

»-QD*Q! - QD*Q,

where Q € R™*" is an orthogonal matrix (i.e., one for which Q'Q = QQ? =1)
whose columns are eigenvectors of X', and D is the real diagonal matrix of the
square roots of the corresponding eigenvalues, all of which are positive. We have
X > 0 if and only if ¥~! > 0. We say that X is positive semidefinite, written
X >0, if xtXx > 0 for all x € R™; such a matrix may not be invertible. Positive
(semi)definiteness defines a partial ordering on symmetric matrices: we say that
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X1 > Xy if (X — X3) > 0, and likewise for Xy > Xo. It is the case that
Xy > XYy > 0if and only if Z{l > Efl > 0, and likewise for the analogous
strict inequalities.

For any nonsingular matrix B € R"*", the symmetric matrix ¥ = BB! is
positive definite, because

x'Ix = (B'x, B'x) = | B'x||? > 0

for nonzero x € R”. We say that B is a square root of ¥ > 0, written B = v/ %,
if BB = X. Every X > 0 has a square root B = QD, where X = QD?Q! is the
spectral decomposition of X as above. Moreover, the square root is unique up to
right-multiplication by an orthogonal matrix, i.e., B’ = /X if and only if B’ =
BP for some orthogonal matrix P. A square root of particular interest is given
by the Cholesky decomposition X = LL!, where L is a (unique) lower-triangular
matrix. Given Y| its Cholesky decomposition can be computed efficiently in fewer
than n® multiplication and addition operations (on real numbers of sufficient
precision).

For a nonsingular matrix B, a singular value decomposition is B = QDP?,
where Q, P € R™*"™ are orthogonal matrices, and D is a diagonal matrix with
positive entries s; > 0 (called the singular values) on the diagonal, in non-
increasing order. Under this convention, D is uniquely determined, and s;(B) =
maxy,||Bu|| = max,||B’u||, where the maximum is taken over all unit vectors
u € R™. Note that

Y = BB! = QDP!PD!Q! = QD2Q¢,

so the eigenvalues of X' are the squares of the singular values of B.

2.3 Gaussians

The n-dimensional Gaussian function p : R™ — (0, 1] is defined as

p(x) = exp(— - |x]|?) = exp(—7 - (x,x)).

Applying a linear transformation given by a nonsingular matrix B yields the
Gaussian function

pB(x) = p(B7'x) = exp (-7 (B7'x,B7'x)) =exp (-7 - x' X7 'x),

where X = BB? > 0. Because pg is distinguished only up to X, we usually refer
to it as p /5.

Normalizing p /. by its total measure [, p /5 (x)dx = Vdet X over R, we
obtain the probability distribution function of the (continuous) Gaussian distri-
bution D /5. It is easy to check that a random variable x having distribution
D /5 can be written as V'Y - z, where z has spherical Gaussian distribution D;.
Therefore, the random variable x has covariance

E [x-x]=vV¥ B [z-2] VX = V. Uoys'= 2
me\/E z~ Dy 2 2T
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by linearity of expectation. (The 217r covariance of z ~ D; arises from the inde-
pendence of its entries, which are each distributed as D; in one dimension, and
have variance 217r .) For convenience, in this paper we implicitly scale all covariance
matrices by a 27 factor, and refer to X as the covariance matriz of D /5.

The following standard fact, which will be central to the analysis of our sam-

pling algorithms, characterizes the product of two Gaussian functions.

Fact 1. Let X1, X5 > 0 be positive definite matrices, let Xy = X1+ X9 > 0 and
23_1 = 21—1 + 22_1 > 0, let x,c1,co € R™ be arbitrary, and let c3 € R™ be such
that X3 cs = X 'er + Xy ey, Then

pys, (X —c1) pys,(x—c2) = pyg,(c1 —c2) pys,(x —c3).

2.4 Gaussians on Lattices

A lattice Ais adiscrete additive subgroup of R™. In this work we are only concerned
with full-rank lattices, which are generated by some nonsingular basis B € R™*",
astheset A =B -Z" = {Bz:z € Z"}. When n > 2, every lattice has infinitely
many bases, which are related by unimodular transformations: B’ and B generate
the same lattice if and only if B’ = BU for some unimodular U € Z"*". The dual
lattice of A is defined as A* = {w € R : (x,w) € Z ¥V x € A}. (We only need this
notion for defining the smoothing parameter of a lattice; see below.)

Let A C R"™ be a lattice, let ¢ € R™, and let X > 0 be a positive definite matrix.
The discrete Gaussian distribution D v 18 simply the Gaussian distribution

A+c,
restricted so that its support is the coset A + c. That is, for all x € A + ¢,
s (%)
D (x) = X P 5 (X).
A+C,\/2 p\/z (A + C) \/2

We recall the definition of the smoothing parameter from [17].

Definition 1. For a lattice A and positive real € > 0, the smoothing parameter
ne(A) is the smallest real s > 0 such that py,,(A*\{0}) <e.

Observe that if A; is a sublattice of a lattice Ay, then n.(A1) > n.(Ap) for any
€ > 0, because Aj C A} and hence p;/,(A5 \ {0}) < p1/5(A7 \ {0}) by positivity

of P1/s-
Note that the smoothing parameter as defined above is a scalar; in this work
we need to extend the notion to positive definite matrices.

Definition 2. Let X > 0 be any positive definite matriz. We say that VX >
776(/1) Zfp\/zjfl(A*\{O}) = p(\/E : A*\{O}) <, e, ifne(\/zil ’ A) <1l

Lemma 1 (Corollary of [17, Lemma 4.4]). Let A be any n-dimensional
lattice. For any e € (0,1), ¥ > 0 such that VX > n.(A), and any c € R",

pys(A+e) e 176 1] - pyx(A).

Proof. Follows directly by applying v/ X1 as a linear transform to A, and by
ne(VE-1.4) <1
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Lemma 2 (Special case of [17, Lemma 3.3]). For any € > 0,

ne(Z™) < /In(2n(1 + 1/€)) /7.

In particular, for any w(y/logn) function, there is a negligible ¢ = e(n) such that
ne(Z") < w(y/logn).

3 Analysis of ‘Convolved’ Discrete Gaussians

In this section we prove some general facts about ‘convolutions’ of (possibly
non-spherical) discrete Gaussian distributions, which are important for the con-
ception and analysis of our sampling algorithm; we expect these facts to have
other applications as well. (Strictly speaking, the probabilistic experiments that
we analyze are not true convolutions, because we are adding random variables
that are not formally independent. However, the spirit of the experiment and its
outcome are entirely ‘convolution-like.’)

Because the proof of the theorem is rather technical, the reader who is inter-
ested in applications may wish to skip ahead to the next section after under-
standing the theorem statement.

Theorem 1. Let X1, X5 > 0 be positive definite matrices, with X = X1+X5 > 0
and 23_1 = El_l + 22_2 > 0. Let Ay, Ay be lattices such that /X1 > (A1) and
VX3 > n(Ag) for some positive ¢ < 1/2, and let c1,co € R™ be arbitrary.
Consider the following probabilistic experiment:

Choose x3 «— Dy, 1, /5, then choose X1 «— X2 + Dy 4o s, /5-

The marginal distribution of x1 is within statistical distance 8¢ of Dy ey vs:
In addition, for any X1 € Ay + c1, the conditional distribution of x2 € As + ¢
gwen x1 = X1 is within statistical distance 2€ of ¢z + Dy, o) c, /5, Where
Yiley = X1%y.

If x5 is instead chosen from the continuous Gaussian distribution D/, over
R™, the marginal distribution of x1 is as above, and the conditional distribution of
Xy € R™ given x1 = X1 € Ay + ¢1 is within statistical distance 2¢ of c3 + Dy, .
(In this setting, the lattice Ay and the hypothesis /X3 > n.(As) are unneeded.)

Proof. We start by analyzing the joint distribution of x; € A; + ¢; and x5 €
As+co. Let X1 € A1 +c¢1 and X3 € Ay +co be arbitrary, and let 23_103 = 21_15(1.
Then we have
PI‘[Xl = )_(1 N X = )_(2]
=Dy yey—sovs (X1 —%X2) - Dy vo v (X2) (1)
_ Pys, (X2 —X1) - pys, (X2)
pys, (A1 +e1 —X2) - p 5, (A2 + c2)
N pys(X1) - pys, (X2 — c3)
pys, (A1 +e1—%2)
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Equation () is by construction; Equation (2) is by definition of D44 and by
symmetry of p /5 ; Equation (@) is by Fact[Il (The p /5, (A2 + c2) term in the
denominator of (2]) is the same for all X1, X2, so we can treat it as a constant of
proportionality.)

We now analyze the marginal distribution of x;. For any X3 € A; + ¢y, let
Yiles = ¥7'%; as above; then we have

PI‘[Xl = )_(1]

= Z Pr[x; = X1 A X2 = Xo] (by construction)
X2€A2+c2
_ P35y (X2 —c3) .
x pe(X1) - _ (Equation (@)
V¥ )‘c2€§;+c2 Py (A1 tei— X2)
_ o Pys,(A2+c2—c3)
€ pys(®1)- (1,17 “ZSM s (V1 > (A1), Lemmal)
1
c Py (%1) - [176 1+€] ) p\/Z‘g(A2) (\/23 > 1.(As), Lemma [I)
=/ yx Lrer el o (Ay) =

x pys(X1) - (15517

It follows that

_ _ pys(X1) _
Pr [Xl = Xl] € [( i+z)27 (1J_ri)2] px/g\gjl + Cl) c [1_166’ 1+16€]'DA1+C1,\/Z(X1)7
because € < 1/2. The claim on the marginal distribution of x; follows by defini-
tion of statistical distance.

When x; is chosen from the continuous Gaussian D /5, , the analysis is almost
identical: we simply replace the summation over X5 € Ay + co with integration
over Xo € R™. Because fiQ Pys, (X2 —c3)dxe = V/det X5 is independent of cs,
there is no need to invoke Lemma [Il a second time.

The analysis of the conditional distribution of xo € A5+ co proceeds similarly;
due to space restrictions, we omit here it an refer the reader to the full version.

4 Discrete Gaussian Sampling Algorithms

In this section we define and analyze some new discrete Gaussian sampling al-
gorithms. We start in Section 1] by defining and analyzing some important
randomized-rounding subroutines. In Section we describe a general-purpose
(but unoptimized) sampling algorithm, then in Section we describe a highly
optimized sampling algorithm for g-ary lattices.

4.1 Randomized Rounding

We first need to define and analyze some simple ‘randomized-rounding’ opera-
tions from the reals to lattices, which are an important component of our sam-
pling algorithms.
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We start with a basic rounding operation from R to the integers Z, denoted
|v], for v € R and some positive real ‘rounding parameter’ r > 0. The output
of this operation is a random variable over Z having distribution v + Dyg_, .
Observe that for any integer z € Z, the random variables | z + v], and z+|v], are
identically distributed; therefore, we sometimes assume that v € [0,1) without
loss of generality. We extend the rounding operation coordinate-wise to vectors
v € R", where each entry is rounded independently. It follows that for any
veR" and z € Z7,

Pr{lv], =2 o [ po(2 —vi) = expl—lz - v|*/1*) = pr(z — V).

i€[n]

That is, |v], has distribution v + Dzn_y ., because the standard basis for Z" is
orthonormal.

The next lemma characterizes the distribution obtained by randomized round-
ing to an arbitrary lattice, using an arbitrary (possibly non-orthonormal) basis.

Lemma 3. Let B be a basis of a lattice A = L(B), let X = r? - BB! for some
real v > 0, and let t € R"™ be arbitrary. The random variable x =t — B|B71t],
has distribution D 4, ¢ /5.
Proof. Let v = B~'t. The support of |v], is Z", so the support of x is t—B-Z" =
A+ t. Now for any X = t — Bz where Z € Z", we have x = X if and only if
|v], = z. As desired, this event occurs with probability proportional to

pr(z—v) = p,(B7H(t —x) = B7't) = p.(-B7'x) = p,n(X) = Py (X).

Efficient rounding. In [8] it is shown how to sample from Dz_,, , for any v € R
and r > 0, by rejection sampling. While the algorithm requires only poly(logn)
iterations before terminating, its concrete running time and randomness com-
plexity are not entirely suitable for practical implementations.

In this work, we can sample from v+Dz_, , more efficiently because r is always
fixed, known in advance, and relatively small (about y/log n). Specifically, given r
and v € R we can (pre)compute a compact table of the approximate cumulative
distribution function of |v],, i.e., the probabilities

pz :=Prjv+ Dg_, , <Z]

for each z € Z in an interval [v — r - w(y/logn),v + 1 - w(y/logn)]. (Outside of
that interval are the tails of the distribution, which carry negligible probability
mass.) Then we can sample directly from v 4+ Dz_, , by choosing a uniformly
random x € [0,1) and performing a binary search through the table for the
Z € Z such that = € [p;_1,pz). Moreover, the bits of  may be chosen ‘lazily,’
from most- to least-significant, until Z is determined uniquely. To sample within
a negl(n) statistical distance of the desired distribution, these operations can all
be implemented in time poly(logn).
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4.2 Generic Sampling Algorithm

Here we apply Theorem [l to sample from a discrete Gaussian of any sufficiently
large covariance, given a good enough basis of the lattice. This procedure, de-
scribed in Algorithm [I] serves mainly as a ‘proof of concept’ and a warm-up for
our main algorithm on g¢-ary lattices. As such, it is not optimized for runtime
efficiency (because it uses arbitrary-precision real operations), though it is still
fully parallelizable and offline/online.

Algorithm 1. Generic algorithm SampleD(B1, 7, X, ¢) for sampling from a dis-
crete Gaussian distribution.
Input:
Offline phase: Basis B of a lattice A = £(B1), rounding parameter r = w(y/logn),
and positive definite covariance matrix X > Xy = r? -B;B!.
Online phase: a vector ¢ € R™.
Output: A vector x € A+ ¢ drawn from a distribution within negl(n) statistical
distance of Dyievs:
Offline phase:
1: Let ¥y = ¥ — ¥, > 0, and compute some Bz = v/Xs.
2: Before each call to the online phase, choose a fresh xo «— D\/E,z, as Xg «— Bao - D;.
Online phase:
3: return x <+ c— B LBfl(c —x2)]r-

Theorem 2. Algorithm [ is correct, and for any P € [1,n?], its online phase
can be executed in parallel by P processors that each perform O(n?/P) operations
on real numbers (of sufficiently high precision).

Proof. We first show correctness. Let X, X1, 35 be as in Algorithm[Il The output
x is distributed as

X =Xz + (c —x2) — By LBII(C —x2)]|

r b
where x2 has distribution D /5, . By Lemma [3 with t = (¢ — x2), we see that x
has distribution x2 + Dy, ., /5, Now because A = L(B;) = By -Z", we have
VX1 =rB1 > n.(A) for some negligible ¢ = €(n), by Definition 2 and Lemma 2
Therefore, by the second part of Theorem [I x has distribution within negl(n)
statistical distance of D, . /5.

To parallelize the algorithm, simply observe that B1_1 can be precomputed in
the offline phase, and that the matrix-vector products and randomized rounding
can all be executed in parallel on P processors in the natural way.

4.3 Efficient Sampling Algorithm for g-ary Lattices

Algorithm @] is an optimized sampling algorithm for g-ary (integral) lattices A,
i.e., lattices for which ¢Z™ C A C Z™ for some positive integer gq. These include
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Algorithm 2. Efficient algorithm SampleD(Bq,r, X, ¢) for sampling a discrete
Gaussian over a g-ary lattice.
Input:
Offline phase: Basis B1 of a g-ary integer lattice A = £(B1), rounding parameter
r = w(y/logn), and positive definite covariance matrix X > r2 . (4B1B! +1).
Online phase: a vector ¢ € Z".
Output: A vector x € A+ ¢ drawn from a distribution within negl(n) statistical
distance of D 4, . /x-
Offline phase:
1: Compute Z = ¢-Bj' € z"*".
2: Let X1 = 22 - B1B!, let ¥y = ¥ — X1 > r?. (2B;B} 4+ I), and compute some
B2 = \/22 — 7"2.
3: Before each call to the online phase, choose a fresh x2 from Dyn /5, by letting
X2 — I_BQ . D1—|T.
Online phase:

4: return x «—c— B; {Z(C;M)w )

NTRU lattices [10], as well as the family of lattices for which Ajtai [3] first
demonstrated worst-case hardness.

Note that Algorithm [ samples from the coset A + ¢ for a given integral
vector ¢ € Z"; as we shall see, this allows for certain optimizations. Fortunately,
all known cryptographic applications of Gaussian sampling over g-ary lattices
use an integral c. Also note that the algorithm will typically be used to sample
from a spherical discrete Gaussian, i.e., one for which the covariance matrix
XY = s?I for some real s > 0. As long as s slightly exceeds the largest singular
value of By, i.e., s > r - (251(B1) + 1) for some r = w(y/logn), then we have
X >7r? . (4B1B} +1) as required by the algorithm.

Theorem 3. Algorithm [@ is correct, and for any P € [1,n?], its online phase
can be implemented in parallel by P processors that each perform at most [n/P]

randomized-rounding operations on rational numbers from the set 2, (11, ceey q;1 1,
and O(n?/P) integer operations.

When the width of the desired Gaussian distribution is much less than ¢, which
is the case in all known cryptographic applications of the sampling algorithm,
all the integer operations in the online phase may be performed modulo either
q or ¢2; see the discussion following the proof for details.

Proof. First observe that because A = £(B1) is ¢g-ary, i.e., gZ™ C A, there exists
an integral matrix Z € Z™*"™ such that B1Z = ¢-1. Therefore, Z = q~Bf1 S/
as stated in Step[Ilof the algorithm. We also need to verify that x3 « [Ba - D1],
has distribution Dy, /5, in Step Bl Let w € R" have distribution By - Dy =
D 52" Then x5 has distribution

LW.IT =W+ (_W + LW.IT) =W+ DZ’wa,ra
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by Lemma [ (using the standard basis for Z™). Then because r > 7.(Z"™) for
some negligible € = ¢(n) and ByBS + 72 = X5, by Theorem [[l we conclude that
xo has distribution Dy, /5, as desired.

We now analyze the online phase, and show correctness. Because Bfl =7Z/q,
the algorithm’s output x is distributed as

X3+ (c —x3) — By LB;I(C —x2)]

We would like to apply Lemma [ (with t = ¢ — x2) and Theorem [l (with
Ay = A, Ay = 7™, ¢1 = ¢, and co = 0) to conclude that x has distribution
within negl(n) statistical distance of DA+C,\/2' To do so, we merely need to
check that the hypotheses of Theorem [ are satisfied, namely, that /X1 > n.(A)
and /X3 > n.(Z") for some negligible € = e(n), where X3 ' = 71 + ;1.

For the first hypothesis, we have /X = 2r-B; > 1.(A) because A = B - Z",
and by Definition 2] and Lemma 2l For the second hypothesis, we have

st = x4 <2 (2°BBY) T = (B BY)

Therefore, /X3 > n.(A) > n.(Z"), as desired. This completes the proof of
correctness.

For the parallelism claim, observe that computing Z(c — x2) and the final
multiplication by By can be done in parallel using P processors that each perform
O(n?/ P) integer operations. (See below for a discussion of the sizes of the integers
involved in these operations.) Moreover, the fractional parts of the n-dimensional
vector 2(°7*2) are all in the set {2, R qgl }, and rounding these n entries may
be done independently in parallel.

Implementation notes. For a practical implementation, Algorithm 2] admits sev-
eral additional optimizations, which we discuss briefly here.

In all cryptographic applications of Gaussian sampling on g¢-ary lattices, the
length of the sampled vector is significantly shorter than g, i.e., its entries lie
within a narrow interval around 0. Therefore, it suffices for the sampling algo-
rithm to compute its output modulo ¢, using the integers {—[1],..., nglj} as
the set of canonical representatives. For this purpose, the final multiplication by
the input basis By need only be performed modulo ¢. Similarly, Z and Z(c —x2)
need only be computed modulo ¢?, because we are only concerned with the value

Z(c—x%2)
of modulo gq.

Because all the randomized-rounding steps are performed on rationals whose
fractional parts are in {2, ceey q;1 }, if g is reasonably small it may be worthwhile

(for faster rounding) to precompute the tables of the cumulative distribution
functions for all ¢ possibilities. Alternatively (or in addition), during the offline
phase the algorithm could precompute and cache a few rounded samples for each
of the ¢ possibilities, consuming them as needed in the online phase.
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5 Singular Value Bounds

In this section we give bounds on the largest singular value of a basis B and
relate them to other geometric quantities that are relevant to the prior sampling
algorithm of [g].

5.1 General Bounds

The Gram-Schmidt orthogonalization of a nonsingular matrix B is B = QG,
where @Q is an orthogonal matrix and G is right-triangular, with positive diagonal
entries g;; > 0 (without loss of generality). The Gram-Schmidt vectors for B
are E)VZ = gi;i - 9;. That is, i)vl = by, and li is the component of b; orthogonal
to the linear span of by, ..., b;_1. The Gram-Schmidt orthogonalization can be
computed efficiently in a corresponding iterative manner.

Let B = QG be the Gram-Schmidt orthogonalization of B. Without loss of
generality we can assume that B is size-reduced, i.e., that |g; ;| < g;;/2 for every
i < j. This condition can be achieved efficiently by the following process: for
each j =1,...,n, and for each ¢ = j—1,..., 1, replace b; by b; — [ g;;/gi,i| - bi.
Note that the size reduction process leaves the lattice £(B) and Gram-Schmidt
vectors lgz = ¢;,; - @; unchanged. Note also that ||g;|| < /n - max; g;;, by the
Pythagorean theorem.

Lemma 4. Let B € R™*" be a size-reduced nonsingular matriz. We have

siB) < V- [ b2 <n-|BJ.

i€[n]

The lemma is tight up to a constant factor, which may be seen by considering
the right-triangular matrix with 1s on the diagonal and 1/2 in every entry above
the diagonal.

Proof. Let B have Gram-Schmidt orthogonalization B = QG. We have

51(B) = max||B'x|| = max||G'x|| <[> (Vn-gii)* =n- [ a2

1€[n]

where the maxima are taken over all unit vectors x € R", the second equality
uses the fact that Q is orthogonal, and the first inequality is by Cauchy-Schwarz.

5.2 Bases for Cryptographic Lattices

Ajtai [2] gave a procedure for generating a uniformly random g-ary lattice from
a certain family of ‘worst-case-hard’ cryptographic lattices, together with a rel-
atively short basis B. Alwen and Peikert [4] recently improved and extended
the construction to yield asymptotically optimal bounds on ||B|| = max;||b;||
and ||B|| = max;||b;|. Here we show that with a small modification, one of the
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constructions of [4] yields (with overwhelming probability) a basis whose largest
singular value is within an O(y/log q) factor of ||BJ|. It follows that our efficient
Gaussian sampling algorithm is essentially as tight as the GPV algorithm on
such bases. Due to space restrictions, we state the main result here; the proof
may be found in the full version.

Lemma 5. The (slightly modified) construction of [4, Section 3.2] outputs a
basis B such that s1(B) = O(v/logq) - |B|| with overwhelming probability.

5.3 Gaussian-Distributed Bases

Here we show that for a lattice basis generated by choosing its vectors from a dis-
crete Gaussian distribution over the lattice (following by some post-processing),
the largest singular value s1(B) of the resulting basis is essentially the same as
the maximal Gram-Schmidt length ||B|| (with high probability). Such a bound
is important because applications that use ‘basis delegation,’ such as the hierar-
chical ID-based encryption schemes of [0} [I], generate random bases in exactly
the manner just described.

Due to space restrictions, we state the main theorem here; the proof may be
found in the full version.

Theorem 4. With overwhe&ning probability, the RandBasis algorithm of [6] out-
puts a basis T such that | T|| > s- 2(y/n), and for any w(y/logn) function,
51(T) < s-O(y/n) - w(/logn). In particular, s1(T)/||T| = w(v/logn).

Acknowledgments. The author thanks Phong Nguyen and the anonymous
CRYPTO’10 reviewers for helpful comments.
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Abstract. We present a technique for delegating a short lattice basis
that has the advantage of keeping the lattice dimension unchanged upon
delegation. Building on this result, we construct two new hierarchical
identity-based encryption (HIBE) schemes, with and without random
oracles. The resulting systems are very different from earlier lattice-based
HIBEs and in some cases result in shorter ciphertexts and private keys.
We prove security from classic lattice hardness assumptions.

1 Introduction

Hierarchical identity based encryption (HIBE) is a public key encryption scheme
where entities are arranged in a directed tree [HLO2, [GS02]. Each entity in the
tree is provided with a secret key from its parent and can delegate this secret
key to its children so that a child entity can decrypt messages intended for it, or
for its children, but cannot decrypt messages intended for any other nodes in the
tree. This delegation process is one-way: a child node cannot use its secret key
to recover the key of its parent or its siblings. We define HIBE more precisely in
the next section.

The first HIBE constructions, with and without random oracles, were based
on bilinear maps [GS02, [BB04, BW06, BBG05, [GHO9, Wat09]. More recent
constructions are based on hard problems on lattices [CHKP10, [ABB10] where
the secret key is a “short” basis B of a certain integer lattice L. To delegate the
key to a child the parent creates a new lattice L’ derived from L and uses B to
generate a random short basis for this lattice L’. In all previous constructions
the dimension of the child lattice L’ is larger than the dimension of the parent
lattice L. As a result, private keys and ciphertexts become longer and longer as
one descends into the hierarchy.

Our results. We first propose a new delegation mechanism that operates “in
place”, i.e., without increasing the dimension of the lattices involved. We then
use this delegation mechanism to construct two HIBE systems where the lattices
used have the same dimension for all nodes in the hierarchy. Consequently, pri-
vate keys and ciphertexts are the same length for all nodes in the hierarchy. Our

* Supported by NSF and the Packard Foundation.
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first construction, in Section [ provides an efficient HIBE system in the random
oracle model. Our second construction, in Section B provides selective security in
the standard model, namely without random oracles. We prove security of both
constructions using the classic learning with errors (LWE) problem [Reg09).

To briefly explain our delegation technique, let L be a lattice in Z™ and let
B = {b1,...,by} be a short basis of L. Let R be a public non-singular matrix
in Z™*™. Observe that the set B’ := {Rbsy,...,Rby} is a basis of the lattice
L' :== RL. If all entries of the matrix R are “small” scalars then the norm of the
vectors in B’ is not much larger than the norm of vectors in B. Moreover, using
standard tools we can “randomize” the basis without increasing the norm of the
vectors by much. The end result is a random short basis of L’. This idea suggests
that by associating a public “low norm” matrix R to each child, the parent node
can delegate its short basis B to a child by multiplying the vectors in B by the
matrix R and randomizing the resulting basis. Note that since the dimension of
L'’ is the same as the dimension of L this delegation does not increase dimensions.

The question is whether delegation is one way: can a child L’ recover a short
basis of the parent L? More precisely, given a “low norm” matrix R and a random
short basis of L, can one construct short vectors in R~!L’? The key ingredient
in proving security is an algorithm called SampleRwithBasis that given a lattice
L (for which no short basis is given) outputs a “low norm” matrix R along
with a short basis for the lattice L’ = RL. In other words, if we are allowed to
choose a low norm R then we can build a delegated lattice L' = RL for which
a short basis is known even though no short basis is given for L. Algorithm
SampleRwithBasis shows that if it were possible to use a random short basis of
L' to generate short vectors in L then it would be possible to solve SVP in
any lattice L — generate an L’ = RL with a known short basis and use that
basis to generate short vectors in L. More importantly, the algorithm enables us
to publish matrices R so that during the HIBE simulation certain private keys
are known to the simulator while others are not. The key technical challenge is
showing that these simulated matrices R are distributed as in the real system.

Comparison to other lattice-based HIBE. Table [Tl shows how the HIBE
systems derived from our basis delegation mechanism compare to existing lattice-
based HIBE systems. In the random oracle model the construction compares
favorably to other lattice-based HIBE in terms of ciphertext and private key
size. In terms of computation time, the encryptor in our system computes an
{-wise matrix product when encrypting to an identity at depth ¢, which is not
necessary in [CHKP10]. However, this product is not message dependent and
need only be computed once per identity.

Our construction in the standard model treats identities at each level as k-bit
binary strings. Table [[l shows that the construction is only competitive with ex-
isting HIBEs [CHKP10l, [ABBI0] in applications where k& < ¢ (such as [CHKOQT7]
where k = 1). When k > ¢ the construction is not competitive due to the k? term
in the ciphertext length (compared to k¢ in [CHKP10] and ¢ in [ABB10]). Nev-
ertheless, this HIBE is very different from the existing HIBEs and the techniques
of [ABBI0] can potentially be applied to improve its performance.
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Table 1. A comparison of lattice-based HIBE schemes

selective secure  ciphertext secret key pub. params. lattice security
HIBE length length length dimension n/a
[CHKPI0] with RO O(fnd®) O(f*n?d*)  O(nd?) O(tdn)  O(d?n®/?)
Sec. @ with RO O(nd?)  O(tn*d®>)  O(nd?) O(dn)  O((dn)2%)

[CHKPI0 no RO O(kfnd?) O(K*¢*n*d®) O(kn?d®)  O(ktdn) O(d*(kn)/?)

[ABBI0] no RO O(tnd*)  O(Pnd*)  O(n*d®) O(tdn)  O(d?n?/?)
Sec. Blno RO O(K*nd?) O(k3n2d*) O(K*n%d®)  O(kdn) O((kdn)F+2)
The table compares the lengths of the ciphertext, private key, and lattice dimension.
We let n be the security parameter, d be the maximum hierarchy depth (determined
at setup time), and ¢ be the depth of the identity in question. When appropriate we
let k be the number of bits in each component of the identity. The last column shows
the SVP approximation factor that needs to be hard in the worst-case for the systems
to be secure (the smaller the better). We focus on selectively secure HIBE since for all
known adaptive lattice HIBE security degrades exponentially in the hierarchy depth.

Relation to bilinear map constructions. The recent lattice-based IBE
and HIBE systems are closely related to their bilinear map counterparts and
there may exist an abstraction that unifies these constructions. While the me-
chanics are quite different the high level structure is similar. The construction
and proof of security in [CHKP1(] resembles the tree construction of Canetti
et al. [CHKOQT]. The construction and proof of security in [ABBT0] resembles
the constructions of Boneh and Boyen [BB04] and Waters [Wat05]. The con-
structions in this paper have some relation to the HIBE of Boneh, Boyen, and
Goh [BBGO5|, although the relation is not as direct. Waters [Wat09] recently
proposed dual-encryption as a method to build fully secure HIBE systems from
bilinear maps. It is a beautiful open problem to construct a lattice analog
of that result using either the basis delegation in this paper or the method
from [CHKPI0]. It is quite possible that two lattice-based dual-encryption HIBE
systems will emerge.

2 Preliminaries

Notation. Throughout the paper we say that a function € : R>g — Rxq is
negligible if €(n) is smaller than all polynomial fractions for sufficiently large n.
We say that an event happens with overwhelming probability if it happens with
probability at least 1 — e¢(n) for some negligible function e. We say that inte-
ger vectors vy, ...,v, € Z™ are Zg-linearly independent for prime g if they are
linearly independent when reduced modulo q.
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2.1 Hierarchical IBE

Recall that an Identity-Based Encryption system (IBE) consists of four algo-
rithms [Sha85, [BEOI]: Setup, Extract, Encrypt, Decrypt. The Setup algorithm
generates system parameters, denoted by PP, and a master key MK. The Extract
algorithm uses the master key to extract a private key corresponding to a given
identity. The encryption algorithm encrypts messages for a given identity and
the decryption algorithm decrypts ciphertexts using the private key.

In a Hierarchical IBE [HLO02, [GS02], identities are vectors, and there is a fifth
algorithm called Derive. Algorithm Derive takes an identity id = (idy, . ..,idg) at
depth k and a private key SKy|, of a parent identity id|, = (idy, . .., id,) for some
¢ < k. It outputs the private key SK,, for the identity id which is distributed the
same as the output of Extract for id.

Selective and Adaptive ID Security. The standard IBE security model
of [BE(I] allows an attacker to adaptively choose the identity it wishes to attack.
A weaker notion of IBE called selective security [CHKOQT] forces the adversary
to announce ahead of time the public key it will target. We use both notions,
but restrict the adversary to chosen-plaintext attacks.

Security Game. We define HIBE security using a game that captures a strong
privacy property called indistinguishable from random which means that the
challenge ciphertext is indistinguishable from a random element in the ciphertext
space. This property implies both semantic security and recipient anonymity, and
also implies that the ciphertext hides the public parameters (PP) used to create
it. For a security parameter A\, we let M) denote the message space and let
Cy denote the ciphertext space. The selective security game, for a hierarchy of
maximum depth d, proceeds as follows.

Init: The adversary is given the maximum depth of the hierarchy d and
outputs a target identity id* = (If,..., 1),k < d.

Setup: The challenger runs Setup(1*,1¢) (where d = 1 for IBE) and gives
the adversary the resulting system parameters PP.

Phase 1: The adversary adaptively issues queries on identities idq,ids, . ..
where no query is for a prefix of id*. For each query the challenger runs
algorithm Extract to obtain a private key d; for the public key id; and
sends d; to the adversary.

Challenge: Once the adversary decides that Phase 1 is over it outputs a
plaintext M € M, on which it wishes to be challenged. The challenger
chooses a random bit € {0,1} and a random ciphertext C' € Cy. If
r = 0 it sets the challenge ciphertext to C* := Encrypt(PP,id*, M). If
r = 1 it sets the challenge ciphertext to C* := C'. It sends C* as the
challenge to the adversary.

Phase 2: The adversary issues additional adaptive private key queries as in
phase 1 and the challenger responds as before.

Guess: Finally, the adversary outputs a guess 7’ € {0,1} and wins if r = 1.
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We refer to such an adversary A as an INDr—sID-CPA adversary and define its
advantage in attacking € as  Advg a.4(A) = |Prlr = 1] — 1/2].

Definition 1. A depth d HIBE system £ is selective-identity, indistinguish-
able from random if for all INDr—sID-CPA PPT adversaries A the function
Adve, a,a(N) is negligible. We say that € is INDr—sID-CPA secure for depth d.

We define the adaptive-identity counterparts to the above notions by removing
the Init phase from the attack game, and allowing the adversary to wait until the
Challenge phase to announce the identity id* it wishes to attack. The adversary
is allowed to make arbitrary private-key queries in Phase 1 and then choose an
arbitrary target id* as long as he did not issue a private-key query for a prefix of
id* in phase 1. The resulting security notion is defined using the modified game
as in Definition [Tl and is denoted INDr—ID-CPA.

2.2 Statistical Distance

Let X and Y be two random variables taking values in some finite set {2. Define
the statistical distance, denoted A(X;Y), as

A(X;Y) = ; > | Pr(X = 5] — Pr[Y = 5|
seN

We say that X is d-uniform over 2 if A(X;Up) < § where Uy is a uniform
random variable over {2. Two ensembles of random variables X () and Y (\) are
statistically close if d(\) := A(X(N\); Y (X)) is a negligible function of .

2.3 Integer Lattices

Definition 2. Let B = [ b1 | ’ bim ] € R™*™ be an m X m matriz whose
columns are linearly independent vectors by, ..., b, € R™. The m-dimensional
full-rank lattice A generated by B is the set,

A:[,(B):{yeRm st. dseZ™, y:Bs:Zsibi }
i=1
Here, we are interested in integer lattices, i.e, when L is contained in Z™. We
let det(A) denote the determinant of A.
Definition 3. For q prime, A € Zy*™ and u € Zy, define:
Ag(A):={eeZ™ st Isecl} where ATs=e (modgq) }

A;—(A)::{eeZm s.t. Ae=0 (modq)}
A;‘(A)::{eeZm s.t. Ae=wu (modq)}

Observe that if t € A%(A) then A%(A) = A (A) +t and hence AY(A) is a shift
of A (A) .
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2.4 The Gram-Schmidt Norm of a Basis

Let S be a set of vectors S = {s1,...,s;} in R™. We use the following standard
notation:

— |IS|| denotes the Ly length of the longest vector in S, i.e. maxi<;<g |/Sil|-
— S:={51,...,8:} C R™ denotes the Gram-Schmidt orthogonalization of the
vectors si, ..., Sk taken in that order.

We refer to ||S]| as the Gram-Schmidt norm of S.

Micciancio and Goldwassser [MG02] showed that a full-rank set S in a lattice A
can be converted into a basis T" for A with an equally low Gram-Schmidt norm.

Lemma 1 ([MGO02, Lemma 7.1]). Let A be an m-dimensional lattice. There
s a deterministic polynomial-time algorithm that, given an arbitrary basis of A
and a full-rank set S = {s1,...,8m} in A, returns a basis T of A satisfying

ITI < IS and ||IT|| < |ISIIVm/2

Ajtai [Ajt99] and later Alwen and Peikert [AP(09] show how to sample an es-
sentially uniform matrix A € Z*™ with an associated basis S4 of A, (A) with
low Gram-Schmidt norm. The following follows from Theorem 3.2 of [AP09] tak-
ing 0 := 1/3. The theorem produces a matrix A statistically close to uniform in
Zy*™ along with a short basis. Since m is so much larger than n, the matrix A
is rank n with overwhelming probability and we can state the theorem as saying
that A is statistically close to a uniform rank n matrix in Zg*™.

Theorem 1. Let ¢ > 3 be odd and m := [6nlogq|. There is a probabilistic
polynomial-time algorithm TrapGen(q,n) that outputs a pair (A € Zy*™, S €
Zm*m) such that A is statistically close to a uniform rank n matriz in Z7*™

and S 1is a basis for /qu(A) satisfying
IS < O(v/nlogg) and |[|S|| < O(nlogq)
with all but negligible probability in n.
Notation: We let L. := O(y/nlogq) denote the maximum (w.h.p) Gram-
Schmidt norm of a basis produced by TrapGen(q,n).
2.5 Discrete Gaussians

Definition 4. Let L be a subset of Z™. For any vector ¢ € R™ and any positive
parameter o € Rsq, define:

xr—cC 2
prot) =esp (<a1" ") and 1) = 3 et

xEL
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The discrete Gaussian distribution over L with center ¢ and parameter o is

Poc(Y)
Vy e L R DL’ cy) = ’
W)= D)
For notational convenience, p, o and Dy, , o are abbreviated as p, and Dy, .
When o = 1 we write p to denote p;. O

The distribution Dy . will most often be defined over the lattice L = A (A)
for a matrix A € Z2*™ or over a coset L =t + AT (A) where t € Z™.

Properties. The following lemma from [Pei] captures standard properties of
these distributions. The first property follows from Lemma 4.4 of [MRO7]. The
last two properties are algorithms from [GPV0S].

Lemma 2. Let ¢ > 2 and let A be a matrix in ngm with m > n. Let T4 be a
basis for A} (A) and o > | Tal| w(vlogm ). Then for ¢ € R™ and u € Zy:

1. Prlz ~Dps(ay,e |zl > vmao | < negl(n).

2. There is a PPT algorithm SampleGaussian(A, T4, o, ¢) that returns x € AqL(A)
drawn from a distribution statistically close to Dy g c.

3. There is a PPT algorithm SamplePre(A,Ta,u,o) that returns v € Ay(A)
sampled from a distribution statistically close to DAg(A)VJ, whenever Ay (A)is
not empty.

Randomizing a basis: Cash et al. [CHKP10] show how to randomize a lattice
basis (see also [GNOS|, Sec. 2.1]).
RandBasis(S, 0):
On input a basis S of an m-dimensional lattice /1qL (A) and a gaussian parameter
o> ||§H -w(v/logn), outputs a new basis S of A;(A) such that
— with overwhelming probability ||S’|| < ov/m, and
— up to a statistical distance, the distribution of S’ does not depend on S. That
is, the random variable RandBasis(S, o) is statistically close to RandBasis(T', o)
for any other basis T' of Aj(A) satisfying ||T|| < o/w(y/logn).
We briefly recall how RandBasis works:
1. Fori=1,...,m, let v « SampleGaussian(4, S, c,0) and

if v is independent of {v1,...,v;—1}, set v; < v, if not, repeat.
2. Convert the set of vectors vy, . .., vy, to a basis S” using Lemma[I] (and using
some canonical basis of A (A)).
3. Output S’.

The analysis of RandBasis in [CHKP10] uses [Reg09, Corollary 3.16] which shows
that a linearly independent set is produced in Step (1) w.h.p. after m? samples
from SampleGaussian(A, S, 0,0). It is not difficult to show that only 2m samples
are needed in expectation.
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2.6 Hardness Assumption

Security of all our constructions reduces to the LWE (learning with errors) prob-
lem, a classic hard problem on lattices defined by Regev [Reg09].

Definition 5. Consider a prime q, a positive integer n, and a distribution x
over Zq, all public. An (Zq,n, x)-LWE problem instance consists of access to an
unspecified challenge oracle O, being, either, a noisy pseudo-random sampler Oy
carrying some constant random secret key s € Zy, or, a truly random sampler
Og, whose behaviors are respectively as follows:

Os: outputs samples of the form (u;,v;) = (ui, u; s—i—azi) € Ly X Lq, where, s €
Ly s a uniformly distributed persistent value invariant across invocations,
x; € Zq s a fresh sample from x, and u; is uniform in Z; .

Og: outputs truly uniform random samples from Zy X Zq.

The (Zq4,n, x)-LWE problem allows repeated queries to the challenge oracle O.
We say that an algorithm A decides the (Zq,n, x)-LWE problem if

LWE-adyA] := | Pr[A®" = 1] — Pr[A%s = 1]
is non-negligible for a random s € Zy .

Regev [Reg09] shows that for certain noise distributions x, denoted ¥, the
LWE problem is as hard as the worst-case SIVP and GapSVP under a quantum
reduction (see also [Pei09]). Recall that for © € R the symbol |x] denotes the
closest integer to x.

Definition 6. For an o € (0,1) and a prime q let ¥, denote the distribution
over Zq of the random variable |¢ X| mod q where X is a normal random vari-
able with mean 0 and standard deviation a/\/2 .

Theorem 2 ([Reg09]). If there exists an efficient, possibly quantum, algorithm
for deciding the (Zy,n,¥o)-LWE problem for ¢ > 2v/n/a then there exists an
efficient quantum algorithm for approximating the SIVP and GapSVP problems,
to within O(n/a) factors in the ly norm, in the worst case.

The following lemma about the distribution ¥, will be needed to show that
decryption works correctly. The proof is implicit in [GPV0S, Lemma 8.2].

Lemma 3. Let e be some vector in Z™ and let y < y'/:: Then the quantity
leTy| treated as an integer in [0,q — 1] satisfies

leTy| < el gaw(+/logm ) + [le||v/m)/2
with all but negligible probability in m.

As a special case, Lemma 3] shows that if 2 <~ W@, is treated as an integer in
[0,g— 1] then |z| < gaw(+/logm) + 1/2 with all but negligible probability in m.
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3 Basis Delegation without Dimension Increase

Let A be a matrix in Z?*™ and let T4 be a “short” basis of A, (A), both given.
We wish to “delegate” the basis T4 in the following sense: we want to determin-
istically generate a matrix B from A and a random basis T for A;(B) such
that from A, B and T'p it is difficult to recover any short basis for A(JI-(A). Basis
delegation mechanisms were proposed by Cash et al [CHKPI0] and Agrawal et
al. [ABBI10] where the dimension of the matrix B was larger than the dimension
of the given A. In the resulting HIBE systems ciphertext and private key sizes
increase as the hierarchy deepens.

Here we consider a simple delegation mechanism that does not increase the
dimension. To do so we use a public matrix R in Z™*™ where the columns of R
have “low” norm. We require that R be invertible mod ¢. Now, define B := AR™!
in Zy*™ and observe that B has the same dimension as A. We show how to build
a “short” basis of Ay (B) from which it is difficult to recover a short basis of A.
In the next section we use this to build new HIBE systems.

We begin by defining distributions on matrices whose columns are low norm
vectors. We then define the basis delegation mechanism.

Distributions on low norm matrices. We say that a matrix R in Z™*™ is
Zq-invertible if R mod ¢ is invertible as a matrix in Z;**™. Our construction
makes use of Zg-invertible matrices R in Z™*"™ where all the columns of R are
“low norm”.

Definition 7. Define oy := Ly w(yv/logm) = v/nlogq - w(y/logm).

We let Dy, xm denote the distribution on matrices in Z™>*™ defined as

(DZmVJR)m conditioned on the resulting matriz being Zq-invertible

Algorithm SampleR(1™). The following simple algorithm samples matrices
in Z™>™ from a distribution that is statistically close to Dy, xm-

1. Let T be the canonical basis of the lattice Z™.
2. Fori=1,...,m dor; & SampleGaussian(Z™, T, oy, 0).
3. If R is Z4-invertible, output R; otherwise repeat step 2.

In the full version we show that step 2 will need to be repeated fewer than two
times in expectation for prime q.

3.1 Basis Delegation: Algorithm BasisDel(A, R, T4, o)

We now describe a simple basis delegation algorithm that does not increase the
dimension of the underlying matrices.

Inputs: ) )
a rank n matrix A in

a Zg-invertible matrix R in Z™*™ sampled from Dy, xm

(or a product of such), (1)
a basis T of Ay (A),
and a parameter 0 € Ryg.

nxm
Zy=™,
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Output: Let B := AR~ in Z2*™. The algorithm outputs a basis T of A (B).
Algorithm BasisDel(A, R, T4, o)works as follows:

1. Let Ta = {a1,...,am} C Z™. Calculate T := {Raq, ..., Ran} C Z™.
Observe that T is a set of independent vectors in Ay (B).

2. Use Lemma I to convert T into a basis T of Ay (B). The algorithm in the
lemma takes as input T and an arbitrary basis of A(JZ-(B) and outputs a

basis Ty whose Gram-Schmidt norm is no more than that of T;.
3. Call RandBasis(T,0) and output the resulting basis T of A, (B).

The following theorem shows that BasisDel produces a random basis of /1qL (B)

whose Gram-Schmidt norm is bounded as a function of ||ﬁ|| The proof is given
in the full version.

Theorem 3. Using the notation in {d), suppose R is sampled from Dpxm and
o satisfies .
o> |Tall - orv/mw(log®?m) .

Let T be the basis of A(JI-(AR*I) output by BasisDel.

Then T is distributed statistically close to the distribution RandBasis(T, o) where
T is an arbitrary basis of Ay (AR™') satisfying |T|| < o/w(v/logm). If R is a
product of £ matrices sampled from Dy, xm then the bound on o degrades to o >

~ ¢
|ITall - (ony/mw(log?m))" - w(logm) .

When R is a product for £ matrices sampled from D, «,, then for the smallest
possible o in Theorem [3] we obtain that w.h.p

T3] / 1Tall < (mw(logm))® Vmw(logm) .

This quantity is the minimum degradation in basis quality as we delegate across
{ levels of the HIBE hierarchy.

3.2 The Main Simulation Tool: Algorithm SampleRwithBasis(A)

All our proofs of security make heavy use of an algorithm SampleRwithBasis that
given a random rank n matrix A in Zy*™ as input generates a “low-norm” matrix
R (i.e., a matrix sampled from D, ,,) along with a short basis for A;-(AR™1).

Algorithm SampleRwithBasis(A). Let a,...,a, € Zy be the m columns of
the matrix A € ngm.

1. Run TrapGen(g,n) to generate a random rank n matrix B € Zy*™ and a
basis T of A}-(B) such that |75 < Lre = on/w(v/logm).
2. fori=1,...,m do:
(2a) sample r; € Z™ as the output of SamplePre(B,Tg, a;, or),
then Br; = a; mod g and r; is sampled from a distribution
statistically close to D ja: (g 5. -
(2b) repeat step (2a) until r; is Z, linearly independent of 71,...,7r;_1.
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3. Let R € Z™*™ be the matrix whose columns are ri,...,7,.
Then R has rank m over Z,. Output R and T’p.

By construction BR = A mod ¢ and therefore B = AR™! mod ¢q. Hence, the
basis T'p is a short basis of A;- (AR™1Y). It remains to show that R is sampled
from a distribution close to Dy, xm.-

n

Theorem 4. Let m > 2nlogq and q > 2 a prime. For all but at most a q~
fraction of rank n matrices A in Zy*™ algorithm SampleRwithBasis(A) outputs
a matriz R in Z™*™ sampled from a distribution statistically close t0 Dy -
The generated basis T of Ay (AR™') satisfies Hrf];H < or/w(yv/logm) with over-
whelming probability.

The bound on ||1,“73H is from Theorem[Il The difficult part of the proof is arguing
that R is sampled from a distribution statistically close to D, xm. The proof is
based on a detailed analysis of the distribution from which R is chosen and is
given in the full version of the paper.

4 An HIBE in the Random-Oracle Model

Our first construction is a depth d HIBE secure in the random oracle model. In
the next section we describe an HIBE selectively secure in the standard model.

To encrypt a message m for identity id, the encryptor builds a matrix Fiy
and encrypts m using the dual Regev public key system (described in [GPVO0S,
sec. 7]) using Fi4 as the public key. The matrix Fjq is built by multiplying a fixed
matrix A, specified in the public parameters, by ¢ “low norm” square matrices
generated by a random oracle H described in () below.

At level £, let id = (idy,ida, . . . ,ids) € ({0,1}*)¢, where £ € [d]. We assume the
availability of a hash function H that outputs matrices in Z™*"™:

H : ({0,139 — z»™ . id — H(id) ~ Dimxm (2)

where the requirement is that, over the choice of the random oracle H, the output
H(id) is distributed as Dy, xm (as in Definition [7]). In practice, the hash function
H can be built from a “standard” random function h : ({0,1}*)=¢ — {0,1}* by
using h as a coin generator for the sampling process in Algorithm SampleR(1™).
This method however is not indefferentiable in the sense of [CDMPO05] and the
analysis requires that H itself be a random oracle.

4.1 Construction

The system uses a number of parameters that will be set in Section The
parameters n, m and q are fixed across the levels of the hierarchy. In addition,
we have two level-dependent parameters: a guassian parameter 6 = (01,...,04)
and a noise parameter @ = (a1, ..., aq).

For an identity id = (idy,...,id¢) and 1 < k < £ we use id|;, to denote the
vector (idy, . ..,id). Now, for a hierarchy of maximum depth d the scheme works
as follows:
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Setup(1™,19) On input a security parameter n and maximum depth d:

1. Invoke TrapGen(g,n) to generate a uniformly random matrix A € Zy*™
and a short basis Ty = [a1| . |am] € Z™*™ for A;-(A).

2. Generate a uniformly random vector ug € Zj.

3. Output the public parameters PP and master key MK given by,

PPz(A,uo) MK:(TA)

Derive(PP, SKiq|¢,id): On input public parameters PP, a secret key SKiqj, cor-
responding to a “parent” identity id|, = (id1,...,ids), and a “child” identity
id = (id1,...,ids,...idg) where k < d do:
1. Let Riqp = H(id)p) --- H(id)2) H(id|;) € Z™*™ and
Figje = ARiEﬁe in Zy*™. Then SKiq), is a short basis for Aj(Fid‘g).
2. Compute R = H(id) -+ H(id|g41) € Z™*™ and set Fiq = Fqp R~
3. Evaluate S’ « BasisDel(Fig|¢, R, SKiqj¢, 0%) to obtain a short random
basis for Aj(Fid).
4. Output the delegated private key SKiq = S".
Algorithm Extract(MK; id) works the same way by running Derive(PP, MK id)
where Figjo = A and SKjqo = MK.
Encrypt(PP,id,b): On input public parameters PP, a recipient identity id of
depth |id| = ¢, and a message bit b € {0,1}:
1. Compute Rid — H(Idw) cee H(Id‘g) H(Id|1) in Zmxm,
2. Compute the encryption matrix Fig <« ARIE1 in Zy=m.
3. Now encrypt the message using Regev’s dual public key encryption (as
defined in [GPV08| sec. 7]) using Fi4 as the public key. To do so,

(a) Pick a uniformly random vector s < Zy.
(b) Choose noise vectors x il Zy and y € Zy. (¥, is as in def. [)
(¢) Output the ciphertext,

CT = ( cozugs—i—x—i—bLgJ, cleide—i—y) € Zg x Ly

Decrypt(PP, SKi4, CT): On input public parameters PP, a private key SKjq for
an identity id of length |id| = ¢, and a ciphertext CT:
1. Let 7 = op/m w(y/logm) (> ISKigl| w(v/logm) ).
Construct the matrix Fig € Zy*™ as in step (2) of Encrypt.
Set dig < SamplePre(Fiq, SKid, uo, 7¢). Note that Fig dig = uo in Zy-
Compute w = co — diyc1 € Zy.
Compare w and | ] treating them as integers in [¢] C Z:

O N

if they are close, i.e., if ‘w— 2] ‘ < [ 9] in Z, output 1; otherwise output 0.
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4.2 Parameters and Correctness

When the cryptosystem is operated as specified, during decryption of a cipher-
text encrypted to an identity at level £ we have,

q
w =co—dyer :bLQJ +§—dgg
erro?’term

Since ||dia]| < Te/m = 0¢ m w(y/logm ) w.h.p, we have by Lemma [ that the
norm of the error term is bounded w.h.p by

|z — diyy| < qauoem w(logm) + opm®? w(y/logm) (3)

In addition, by properties of RandBasis(+, o¢) the Gram-Schmidt norm of a secret
key SK; at level £ satisfies w.h.p. ||SK¢|| < o¢y/m. Therefore, with og = Ly, for
the system to work correctly we need that:

- TrapGen can operate (i.e. m > 6nlogq),

- the error term in (@) is less than ¢/5 w.h.p
(ie. ar < [opmw(logm)]~! and ¢ > oy m® ?w(y/logm) ),

- BasisDel used in Derive can operate (i.c. o7 > [|SKe_1|| on v/m w(log®? m)
which follows from oy > o4y m*? w(log?m) ), and
- Regev’s reduction applies (i.e. ¢ > 2y/n/ay for all £).

To satisfy these requirements we set the parameters (¢, m,, @) as follows tak-
ing n to be the security parameter (and letting ¢ = 1,...,d):

d+2 _w( 2d+1n)

m = 6n'*° = O(dnlogn) , q= m? log

(4)

op=m3tts -w(log® n) , ag = [og m w(logn)]~?

and round up m to the nearest larger integer and ¢ to the nearest larger prime.
Here we assume that ¢ is such that n® > [logq] = O(dlogn).

Observe that since oy is increasing with ¢ algorithm Extract generates the
same distribution on private keys as algorithm Derive for all identities at depth
greater than one, as required from our definition of HIBE.

Overall, the ciphertext size for all identities is O(d?n). Security depends on
the assumption that worst-case SVP cannot be solved to within a factor gi/n =

O((dn)1'5d).

4.3 Security

We state the system’s security against both a selective and an adaptive adversary.
Selective security implies adaptive security in the random oracle model via a
simple generic transformation from [BB04]. However, proving adaptive security
directly gives a slightly simpler system. Recall that selective security in the
random oracle model means that the attacker must commit to the target identity
before issuing any type of query.
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Theorem 5. Let A be a PPT adversary that attacks the scheme of Section [{.]
when H is modeled as a random oracle. Let Qg is the number of H queries made
by A and d be the maz hierarchy depth. Then there is a PPT algorithm B that
decides LWE such that

1. If A is a selective adversary (INDr-sID-CPA) with advantage €
then e < LWE-adv|B].

2. If A is an adaptive adversary (INDr—ID-CPA) with advantage €
then € < LWE-adV(B] - (dQ%,) + negl(n).

where LWE-adv[B] is with respect to the parameters (Zq,n,¥ ) from Section[{.3

Proof. We prove part (2) of the theorem. The proof of part (1) is similar and
a little simpler. Recall that LWE is about recognizing an oracle O defined
in Section We use A to construct an LWE algorithm B with advantage
about €/dQ%;.

Instance. B requests from O and receives, for each i = 0,...,m, a fresh pair
(’LLZ‘,’UZ‘) S ZZ X Zq.

As the number of oracle calls is known a priori, the samples can be supplied
non-interactively at the beginning, e.g., here in the form of an instance with
(m+1) (n+1) elements of Z,.

Setup. B prepares a simulated attack environment for A as follows.

1. Select d uniform random integer Q7, ..., Q) € [Qwu]. where Qg is the maxi-
mum number of queries to H that A can make.

2. Sample d random matrices R}, . .., R~ Dy by running R} < SampleR(1™)
fori=1,...,d.

3. Assemble the random matrix Ag € Zy*™ from m of the given LWE samples,
by letting the i-th column of Ay be the n-vector u; for all i =1,...,m.

4. Choose arandom w € [d] and set A «— AgR}, - - - R}. The matrix A is uniform
in Zy*™ since all the R} are invertible mod g and A is uniform in Zj>™.

5. Publish the public parameters PP = (A, uo).

Random-oracle hash queries. A may query the random oracle H on any
identity id = (idy,...,id;) of its choice, adaptively, and at any time. B answers
the @-th such query as follows. (We assume w.l.o.g. that the queries are unique;
otherwise the simulator simply returns the same output on the same input with-
out incrementing the query counter Q.)

Let ¢ = |id| be the depth of id. If this is query number Q7 (i.e. Q@ = Q7), define
H(id) < R} and return H(id).
Otherwise, if Q # Q:
1. Compute A; = A- (R;_, --- R} Rf)f1 € Zy*™ (where Ay = A).
2. Run SampleRwithBasis(4;) to obtain a random R ~ Dy, and a short
basis T for B = A; R~! mod q.
3. Save the tuple (4,id, R, B, Tg) for future use, and return H(id) « R.
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Secret key queries. A makes interactive key-extraction queries on arbitrary
identities id, chosen adaptively. B answers a query on id = (idy,ids, . ..,idg) of
length |id| = k € [d] as follows.

1. Let j € [k] be the shallowest level at which H(id;) # R;. In the unlikely
event that H(id|;) = R} for all j = 1,..., k the simulator aborts and fails.

2. Retrieve the saved tuple (j,id|;, R, B, Ts) from the hash oracle query history.
This tuple was created when responding to a query for H(id|;) (w.l.o.g., we
can assume that an extraction query on id is preceded by a hash query on
all prefixes of id). By construction

B=A-(R)™*- (R;f_l)_1 . H(id|j)_1 mod ¢

and T is a short basis for Ay (B).
Notice that B is exactly the encryption matrix Fig (as defined in the En-
crypt algorithm) for the ancestor identity id|; = (idy,idz, ...,id;) and there-
fore T is a trapdoor for Ay (Fg,,).

3. Run Derive(PP,Ts,id) to generate a secret key for id from the private key
Tp for the identity id|;. Send the resulting secret key to the adversary.

Challenge. A announces to B the identity id* on which it wishes to be challenged
and a message b* € {0,1} to be encrypted. We require that id* not be equal to,
or a descendant of, any identity id for which a private key has been or will be
requested in any preceding and subsequent key extraction query.

Let ¢ = [id"|. If there is an i € [{] such that H(id};) # R}, then the simulator
must abort. (Indeed, when this is the case, B is able extract a private key for id*
and thus answer by itself the challenge that it intended to ask.)

Recall that A = AoR;, --- Rj. If w # £ then the simulator aborts and fails.

Now, suppose w = £ and id" is such that H(id;) = R; for all i € [(]. Then by
definition

Fg-=A(R})™ - (R)) " =A4Ay ez*™
and B proceeds as follows: "
1. Retrieve vo, ..., vy € Zy from the LWE instance and set v* = | | € Z".

2. Blind the message bit by letting cf = vo + b* [ 1] € Zj. Um

3. Set cf =v* € Z".
4. Set CT" = (¢, ¢;) and send it to the adversary.

When O is a pseudo-random LWE oracle then co = ugs 4+ x + b[ 3] and ¢; =
Fj-s +y for some random s € Zy and noise values x and y. In this case (co, c1)
is a valid encryption of b for id*.

When O is a random oracle then (vg,v*) are uniform in (Z, x Z}") and there-

fore (co, c1) is uniform in (Z, x Zg").

Now, A makes more secret key queries, answered by B in the same manner as
before. Finally, A guesses whether CT* was an encryption of b* for id*. B outputs
A’s guess and ends the simulation.
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The distribution of the public parameters is identical to its distribution in the
real system as are responses to private key queries. By Theorem [B] responses to
H oracle queries are as in the real system. Finally, if B does not abort then the
challenge ciphertext is distributed either as in the real system or is independently
random in (Z,,Zy"). Hence, if B does not abort then its advantage in solving
LWE is the same as A’s advantage in attacking the system.

Since A is PPT it only finds collisions on H with negligible probability. A
standard argument shows that the simulator can proceed without aborting with
probability Pr[-abort] > Qp‘/d — negl(n) > Q5"/d — negl(n) for some constant
¢ > 0. Then if A has advantage € > 0, B has advantage at least [¢/(dQ%)] —
negl(n) in deciding the LWE problem instance.

5 Selectively Secure HIBE in the Standard Model

We briefly describe an HIBE of depth d that is selectively secure without random
oracles. The details are in the full version of the paper. The construction is a
binary tree encryption (BTE) which means that identities at each level are binary
(i.e. 0 or 1). To build an HIBE with k-bit identities at each level we assign k
levels of the BTE hierarchy to each level of the HIBE. The parameters used by
this system are shown in Table [I1

Setup: For a BTE of depth d the setup algorithm runs TrapGen(g, n) to generate
a random n X m matrix A € Z*™ with a short basis Ty € Z™*™ for A, (A)
and samples 2d matrices R; o, R11, ..., Rd,0, Ra,1 € Z™*™ from the distribution
Dynxm using SampleR(1™). With ug random in Zj the public params and master
key are

PP = (A, wy, Rio,Ri1, Roo,Ro1, ..., Rip,Ra1) . MK = (Ty)

Extract: the secret key for an identity id = (id, ...,id;) € {0,1}*<? is a short
random basis for the lattice A (Fiq) where

Fa = A (Rija,) " (Rajg,) "+ (Reja,) " € Z%™ (5)
Encryption and decryption are as in the system of Section L] using the matrix

Fy from (B) in a dual-Regev encryption.

Security. The simulator is given an identity id = (ids, ..., id¢) € {0, 1}* where the
attacker will be challenged. To simplify the description assume id is at maximum
depth, namely ¢ = d. The case ¢ < d is just as easy, but complicates the notation.

The simulator first constructs a matrix A9 € Zy*™ from the given LWE
challenge. It then samples random matrices

X
Rydays Rajidys - - Rejg, € 27

from the distribution Dy,x.m and sets A = Ao Ryjia, -+ R2,id, R1ja, € Zg™™.
Now, consider the d matrices

F,=A (Rl,idl)_l ce (Ri’idi)_l fori=0,...,d—1.
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For each matrix F; the simulator invokes SampleRwithBasis(F;) to obtain a ma-
trix R;1-ig; € Z™*™ and a short basis T} for Aj(Fi - (Rij—ig;)""). Finally, it
sends to the adversary the public parameters

PP = (Aa ug , Rio,Ri1, Roo,Ro1, .., Rd,o,Rd,l)

where g is a random vector in Zg from the LWE challenge.

It is not difficult to see that the simulator can use T11,...,T; to generate
private keys for every node in the hierarchy except for the challenge identity id.
Moreover, for the challenge identity it can generate a ciphertext that will help
it solve the given LWE challenge as in Section [£.3] as required.

6 Conclusions

We presented a new lattice basis delegation mechanism and used it to construct
two HIBE systems, one secure in the random oracle model and one secure without
random oracles. The random oracle construction provides a lattice HIBE with
short ciphertexts and private keys. The standard model system is not as short.

This work raises a number of interesting open problems. First, our standard
model system processes bits of the identity one at a time. It would be interesting
to apply the techniques of [ABB10, Boyl0] to obtain a selective HIBE that
processes many bits at a time so that the encryption matrix Fiy is a product of
only ¢ low-norm matrices for identities at depth /.

Another interesting problem is an adaptively secure HIBE in the standard
model where performance does not degrade exponentially in the hierarchy depth.
Using the lattice basis delegation method from this paper or from [CHKPI0] in
Waters’ dual encryption system [Wat09] is a promising direction.

Acknowledgments. We thank David Freeman, Daniele Micciancio and Brent
Waters for helpful comments about this work.
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Abstract. Gentry proposed a fully homomorphic public key encryption
scheme that uses ideal lattices. He based the security of his scheme on the
hardness of two problems: an average-case decision problem over ideal
lattices, and the sparse (or “low-weight”) subset sum problem (SSSP).

We provide a key generation algorithm for Gentry’s scheme that gener-
ates ideal lattices according to a “nice” average-case distribution. Then,
we prove a worst-case / average-case connection that bases Gentry’s
scheme (in part) on the quantum hardness of the shortest independent
vector problem (SIVP) over ideal lattices in the worst-case. (We can-
not remove the need to assume that the SSSP is hard.) Our worst-case
/ average-case connection is the first where the average-case lattice is
an ideal lattice, which seems to be necessary to support the security of
Gentry’s scheme.

1 Introduction

Recently, Gentry [I0] presented a somewhat homomorphic encryption scheme
that uses ideal lattices, and proved its security based on an average-case decision
problem. In this paper, we focus on this somewhat homomorphic scheme and its
security. Our main results are:

— Algorithms for his scheme — most importantly, a KeyGen algorithm for gen-
erating secret and public bases of an ideal lattice — that permit the scheme’s
semantic security to be based on a search problem over ideal lattices having
a mice average-case distribution.

— A quantum worst-case / average-case reduction, which ultimately bases the
security of Gentry’s somewhat homomorphic scheme on the worst-case quan-
tum hardness of the shortest independent vector problem (SIVP) over ideal
lattices.

Gentry also showed that his somewhat homomorphic scheme, after some mod-
ifications, becomes “bootstrappable” and therefore can be used to construct a
fully homomorphic encryption (FHE) scheme [31/10]. He proved that the FHE
scheme is semantically secure if the original somewhat homomorphic scheme is
semantically secure and the sparse (or “low-weight”) subset sum problem (SSSP)
[11125] is hard. Those results are generic enough to work with our instantiation
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of KeyGen and the other algorithms. That is, we immediately obtain a FHE
scheme whose security is based on two problems: the SSSP and worst-case quan-
tum SIVP over ideal lattices[] Since the SSSP is an average-case problem, it
remains an open problem to base FHE entirely on worst-case hardness. How-
ever, the more “troubling” of Gentry’s two assumptions (in our opinion) is that
the average-case decision problem over ideal lattices is hard. At least we can
replace this assumption with one involving worst-case hardness.

1.1 Related Work

In 1996, Ajtai [I] found a surprising reduction of worst-case lattice problems to
average-case ones. Unlike the random self-reduction of Diffie-Hellman, where the
worst-case and average-case instances are over the same group G, Ajtai’s worst-
case problem is a completely general problem (over lattices) that is unconstrained
by any parameters in the average-case problem. The average-case lattices in
Ajtai’s reduction are of a certain type: those generated by random parity-check
matrices modulo an integer q.

Following Ajtai, improved worst-case / average-case connections were de-
scribed in [RI2212328/24126120]. Also, various primitives have been based on
worst-case hardness, including collision-resistant hash functions [TI8I22/T724127],
public-key encryption [3I29030/T2|26/19], signatures [I8[12], and (hierarchical)
identity-based encryption [I2/9/7]. Ajtai [2] showed how to generate his average-
case lattices together with a short secret basis for the lattice that can be used as
a decryption key in an encryption scheme [I2]; Alwen and Peikert [4] tightened
this result.

However, as far as we know, previous worst-case / average-case reductions
cannot be used to base Gentry’s somewhat homomorphic scheme on worst-case
hardness. The essential problem is that Gentry’s scheme [10] uses ideal lattices
and relies heavily on the structure of these lattices as algebraic ideals in a ring
to obtain homomorphism. However, in none of the previous reductions is the
average-case lattice an ideal lattice.

Some previous work describes worst-case / average-case reductions where
the worst-case lattice is an ideal lattice, and the average-case instances are de-
rived from ideal lattices, in a fashion somewhat similar to how Ajtai’s average-
case lattices are derived from a worst-case instance. For example, for the ring
R = Z[z]/(z™ — 1) and fixed ai,...,a, € R™, Micciancio [22I23] considered
the lattice formed by solutions vi,..., v, € R™ to ), a; x v; = 0, and showed
that solving the bounded distance decoding problem (BDDP) or SIVP for such
“quasi-cyclic” lattices in the average-case allows one to solve the BDDP or SIVP
for “cyclic lattices” (ideal lattices in R) in the worst-case. While Micciancio’s
worst-case lattices are ideal lattices, the average-case lattices are not; they cor-
respond to modules, rather than ideals. Peikert and Rosen [28] demonstrated a

! Technically, both in [I0] and here, a “circular-security” assumption is also needed to
obtain an FHE scheme whose public key size is independent of the circuit depth of
the functions being homomorphically evaluated.
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very tight worst-case / average-case reduction where the worst-case lattices are
ideal lattices, and where the average-case lattices are derived from ideal lattices
in a way similar to that used by Micciancio. Some other results in this line of
work include [27T720].

However, again, previous work does not provide a worst-case / average-case
“random self-reduction” where both average-case and worst-case lattices are
ideal lattices of the same dimension in the same ring, which seems to be nec-
essary to preserve the algebraic structure used by Gentry’s scheme, and thus
necessary to support the security of Gentry’s somewhat homomorphic scheme.
This suggests that we need an approach fundamentally different from Ajtai’s and
other previous work. We also need a KeyGen algorithm for Gentry’s scheme that
generates an ideal lattice, together with a secret basis of the lattice, according
to the appropriate average-case distribution.

1.2 Our Worst-Case / Average-Case Self-reduction

We provide the first worst-case / average-case self-reduction where the average-
case lattice is an ideal lattice. We focus on the reduction for BDDP over ideal
lattices, but this reduction can be extended to other ideal lattice problems.
Combining with other results presented here and in prior work, this reduction
bases the security of Gentry’s somewhat homomorphic scheme on worst-case
hardness.

Our reduction makes heavy use of the algebraic properties of ideals. Interest-
ingly, and quite unlike other worst-case / average-case reductions, our reduction
uses an integer factoring oracle to factor ideals in the ring. This integer factoring
oracle can be instantiated efficiently with quantum computation [32], and hence
we get an efficient quantum reduction. The reduction is also meaningful in the
classical setting, since there are known sub-exponential factoring algorithms for
factoring (e.g., the number field sieve). If solving average-case problems over ideal
lattices is easy, our reduction implies that there are surprising sub-exponential
algorithms for solving worst-case problems over ideal lattices.

Since our worst-case and average-case instances involve ideal lattices of the
same dimension within the same ring R, one may prefer to think of our reduction
as a “random self-reduction”. It is an “imperfect” self-reduction in that the
approximation factor is larger in the worst-case problem than in the average-
case problem by a poly(n) factor (for the rings R that we use). However, as far
as we know, the BDDP is hard even for sub-exponential approximation factors
— i.e., for factors much larger than our reduction’s poly(n) lossiness.

Roughly speaking, the reduction works as follows. We are given the basis
B, of a worst-case ideal lattice M that corresponds to an ideal in the ring R,
together with a vector t € R™ that is close to some vector u € M; the BDDP is
to output u. To generate an average-case instance, we first sample a “random”
vector v from the inverse ideal M ~! according to a particular distribution. We
multiply (in the ring R) each of the basis elements of By by v to obtain a basis
By, of the lattice for the ideal L = M - (v), and set u’ < v x u. L will be an
ideal in R that is not divisible by M, since v.€ M~! and thus “cancels” M.
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However, due to v’s distribution, L’s geometry will be very closely related to M;
in particular, solving BDDP for (L, u’) will help solve BDDP for (M, u). Toward
solving BDDP for (L,u’), we use our factoring oracle to find a “suitable” ideal
J that divides L (restarting if no suitable one exists), and output the instance
(J,u’) to our average-case BDDP solver. Note that L is a subset of J. As long
as L is not an overly sparse subset, and for suitable parameters, the closest
vector in J to u’ will also be in L. Hence, a BDDP solution to average-case
instance (J,u’) leads to a BDDP solution to the worst-case instance (M, u).
We show that J comes from our desired average-case distribution — i.e., that
it is uniformly random among regular prime ideals in R whose norms are in a
prescribed interval. Of course, the target vector u”’s distribution is not random
— i.e., is not independent of the worst-case instance — but we also show how to
randomize the target vector’s distribution. See Section [3] for details and proofs.

1.3 How to Generate an Average Ideal Lattice, and Other Results

In [I0], Gentry mentions some ad hoc ways of generating an ideal lattice, together
with a secret basis for it. Here, we show how to generate ideal lattices (together
with a secret basis) according to the average-case distribution used in our worst-
case / average-case connection. Generating an ideal lattice according to this
distribution is easy, but generating it together with a “good” secret basis is
surprisingly difficult. Our solution to this problem is provided in Section [l

Although the worst-case / average-case connection for BDDP over ideal lat-
tices (Section B]) and the key generation algorithm (Section M) are our main
results, several other reductions are necessary to base our version of Gentry’s
somewhat homomorphic scheme on worst-case SIVP over ideal lattices. We sum-
marize these reductions in Section [l

2 Preliminaries

2.1 Ideal Lattices

By an ideal lattice, we mean an ideal in the ring of integers R = Op, where f(x)
is a monic, irreducible polynomial of degree n, and F is the field Q[z]/(f(x)). A
good example to keep in mind is f(z) = 2™ + 1, where n is a power of 2. Then,
the ring of integers is simply Z[z]/(f(x)), integer polynomials modulo f(x). In
the full version, we address the general case Z[z]/(f(z)) C R C Op.

Each element of R is associated to a coefficient vector in Q™ (in Z™ in our
example). Since an ideal I C R is additively closed, the coefficient vectors asso-
ciated to elements of I form a lattice. The term “ideal lattice” emphasizes this
object’s dual nature as an algebraic ideal and a lattice

Ideals have additive structure as lattices, but they also have multiplicative
structure. The product of two ideals I and Jis IJ ={>_ vxw:vel,we J},
where ‘X’ is ring multiplication. Let F' = Q[z]/(f(z)) be the field containing R.

2 Alternative representations of an ideal lattice are possible — e.g., see [28120].
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The inverse of aideal Iis 7! = {w € F : Vv € I,v xw € R}. For example, the
inverse of (2) is (1/2) = {r/2 : r € R}. (The inverse of any principal ideal (v)
is given by (v~1), where the inverse v—! is taken in F, but for a non-principal
ideal the inverse is not always so simple.) We say that ideal I divides ideal J if
JI7' C R. I is a prime ideal if I dividing A - B implies I divides A or B. The
ideal =1 or JI~! is sometimes called a fractional ideal, particularly when it is
not a subset of R.

Ideals in R have many of the nice properties of integers, especially when R is
the ring of integers. For example, in this case, ideals in R factor uniquely as a
product of prime ideals. Also, all ideals in R are invertible — i.e., I - "' = R.
Furthermore, one can define the norm of a fractional ideal Nm(7I) as the index
[R : I], and this map is multiplicative: Nm(7.JJ) = Nm(I) - Nm(.J).

Just as the prime number theorem states that the number of primes less than
x is approximately z/Inx, we have Landau’s prime ideal theorem [I5]:

Theorem 1 (Theorem 8.7.2 from [5]). Let F be an algebraic number field
of degree n. Let wp(x) denote the number of prime ideals in O whose norm is
< x. Let \(z) = (Inz)*/°(Inlnz)~'/>. There is a ¢ > 0 (depending on F) such
that

mr(z) = z/Inz + O(ze”N)

With the Generalized Riemann Hypothesis, one can make a stronger statement.

Theorem 2 (Theorem 8.7.4 from [5]). Assume GRH. Let F be an algebraic
number field of degree n and discriminant Ap. For x > 2, we have

|Tr(z) —2/Inz| = O(Vz(nlnz + In|Ar)))
The constant implied by the “O” symbol is absolute.

Regarding Theorem 2] A is upper-bounded by A(f), the discriminant of the
polynomial f. Since A(f) is the determinant of the Sylvester matrix formed by
f(z) and its derivative f'(x), it is upper bounded by n"|| f||*", where ||| is the
Euclidean length of the coefficient vector of f(x) [33]. As in [I0], we will always
use f(z) such that || f|| = poly(n), which implies that In |Ag| = poly(n).

We let ¢ denote the minimal value such that ||u x v|| < ¢ - [Jul| - ||v| for all
u,v € Q[z]/(f(x)). For the values of irreducible f(z) recommended in [I0], we
have vy = poly(n). A nice property of ideal lattices in such rings is that they
are never too “oblong.” In particular, trivially, A, (I)/A1(I) < ~¢, where Ag (1)
is the k-th minimum of the ideal lattice I.

Again, a good choice for f(x) is ™ +1, where n is a power of 2. This polynomial
has the virtues of being irreducible, satisfying R = O = Z[z]/(f(z)), and having
small values of A(f), ||f|l, and ~;.

2.2 Gaussian Distributions and Other Preliminaries

For any real s > 0, define the Gaussian function on R™ centered at ¢ with
parameter s as psc(x) = exp(—7||x — c||?/s?) for all x € R™. The associated
discrete Gaussian distribution over lattice L is
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_ PS,C(X)
pS,C(L) ’

where p, ¢(A) for set A denotes ) 4 ps.c(X). In other words, the probability
Dy s .c(x) is simply proportional to psc(x), the denominator being a normaliza-
tion factor.

As in [24], for lattice L and real e > 0, we define the smoothing parameter
ne(L) to be the smallest s such that p,,,(L* \ {0}) < e. We say that s “exceeds
the smoothing parameter” of L if s > n.(L) for negligible e. In particular, this
is true when s > \,, (L) - w(y/logn). Some useful lemmas are the following.

Vx¢& L, DL,&C(X)

Lemma 1 (Lemma 4.4 of [24]). For any n-dimensional lattice L, vector ¢ €
R™, and reals 0 < e <1, s > n(L), we have

1
Pr {x—c|>syvn}< . .2
X«—LUL s,c ]. — €

Lemma 2. Let I,J be ideal lattices in R. Then for any e € (0,1/2), and s >
max{n.(I),ne(J)}, and any ¢ € R™, ps c(I)/ps.c(J) equals Nm(J)/Nm(I), up to
a multiplicative factor of between (1 +€)?/(1 — €) and its inverse.

Proof. See full version.

We use e; to refer to the vector (0,...,0,1,0,...,0) with ‘1’ in the ith position.
We say that an equality a = b holds “up to negligible error” if a = (1 +¢) - b for
some negligible e.

3 Random Self-reduction of Ideal Lattice Problems

In this section, we present our worst-case / average-case “random self-reduction”
for problems over ideal lattices, focusing on the bounded distance decoding prob-
lem (BDDP) [19I30]. We describe our average-case distribution, and specify our
average-case and worst-case versions of BDDP. Then we show how to “random-
ize” worst-case ideal lattices into ideal lattices from our average-case distribu-
tion. In Section Ml we establish that the average-case distribution is suitable for
KeyGen — i.e., we can efficiently (classically) sample an ideal lattice and a good
basis for it according to this distribution.

3.1 Owur Average-Case Distribution and Hard Problem

Our average-case distribution is simple: uniform over prime (non-fractional) ide-
als in R that have norms in some specified interval [a, b].
Our average-case problem is really a “hybrid” of worst-case and average-case.

Definition 1 (Hybrid Bounded Distance Decoding Problem (HBDDP)).
Fiz ring R and algorithm ldealGen that samples ideals in R, outputting the Her-
mite normal form basis of the sampled ideal lattice. Fix a positive real
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susppp- The challenger sets B & IdealGen(R). The challenger sets x subject
to the constraint that ||x|| < susppp and sets t «— x mod B ;. The problem is:
given (By,t) (and the fized values), output x.

The ideal lattice is generated according to an average-case distribution induced
by an algorithm IdealGen. However, the vector t is “worst-case”, in that t is only
required to be within a certain distance of the lattice; it need not be chosen
according to any known (or even samplable) distribution.

The worst-case BDDP (WBDDP) is identical, except the ideal lattice is not
necessarily chosen from an efficiently samplable distribution. For both of the
BDDPs, we assume that the s parameter is chosen so that the solution is unique.

We base the security of our version of Gentry’s scheme on HBDDP in the full
version (and sketch this result in Section [l). As part of this result, we reduce
HBDDP to a “purely” average-case BDDP where t is sampled according to a
Gaussian distribution. In the full version, we also provide more reductions that
(quantumly) reduce worst-case SIVP to WBDDP. We choose to focus on our
techniques for randomizing the lattice since they are more interesting.

3.2 Statement of the Reduction

Our reduction is stated in the following theorem. It uses parameters that must
satisfy certain conditions that we will specify momentarily.

Theorem 3. Let R be the ring of integers for field F = Q(z)/(f(x)). Let M,
N, sweppp; t, a, and b satisfy the conditions. Suppose that there is an algorithm
A that solves sugppp-HBDDP with overwhelming probability (over the random
coins chosen by A) for a € fraction of prime ideals J of R having norm in [a,b].
Then, there is an algorithm B, which given access to a factoring oracle, solves
with overwhelming probability the sweppp-WBDDP for any (worst-case) ideal
M of R with norm in [N,2N] when 2t - sweppp < Sueppp- Regarding running
times, time(B) = time(A) - poly(n)/e.

The conditions are as follows (s refers to sweppp):

— log N and logb are only polynomial in the lattice dimension n

— s = w(y/logn),

— s =5 (b/N)"/" - w(/logn),

—t>ApentSs,

— |Zab|/b is non-negligible, where Z, ; is the set of prime ideals with norm in
[a,b],

— a/b is non-negligible,

— a® > 2N - et? where e is Euler’s constant and tg =t + s - \/n.

Remark 1. Asymptotically, the requirement that |Z, ;|/b be non-negligible will
be satisfied if (b — a)/b is non-negligible. See Theorems [Il and [2

To make the conditions more comprehensible, let us consider a concrete choice
of parameters. Set N = b = 2a. Then, for any g(n) = w(y/logn), we can set
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s =f-g(n) and t = v - n’® - g(n). The condition a® = N?/4 > 2N - et? is
met when N/8 > etl ~ et™ = e - v¢2" - n®" . g(n)". This is a very mild lower
bound for N, considering that N is related to the norm of M. In particular, the
condition a? > 2N - et? can be met even when A\, (M) is small — e.g., polynomial
in n.

A “deficiency” of the reduction is that, according to the conditions, the norm
of the output average-case ideal is lower-bounded in terms of the norm of the
worst-case ideal. It would be preferable to remove this constraint. In a reduction
described in the full version, we show that ideals with “small” norms are the
“hard case” when one is given access to a factoring oracle, and therefore our
reductions ultimately apply even to average-case ideals with fairly small norms.

3.3 The Randomizeldeal Algorithm

Toward proving Theorem [ we present an algorithm Randomizeldeal that, assum-
ing the conditions are met, “randomizes” a worst-case lattice into our average-
case distribution. In Section [34] we show that one can solve WBDDP by using
Randomizeldeal in combination with a HBDDP-solver.

Randomizeldeal(R, M, N, s, t,a,b):

1. Outputs L if the parameters do not satisfy the conditions.

2. Generates a vector v per the distribution Dys-1 4 1.6, sets L < M - (v).

3. Uses a factoring oracle to compute lattice bases of the prime ideal divisors

4. Sets J to be an ideal in {p;} with norm in [a, b]; if none exists, it aborts.

5. With probability Nm(.J)/b, outputs a basis B of .J, along with the vector
v; otherwise, it aborts.

Regarding Step B one can sample from Dj/-1 4 4., by using the GPV algo-
rithm [12] with the independent set {e;} in M 1.
Regarding Step B let R’ = Z[z]/(f(x)) and consider the following theorem.

Theorem 4 (Kummer-Dedekind, as given in [33]). Consider the factor-
ization f(x) = [[, 9i(x)® mod p for prime integer p. The prime ideals p; €
Zix]/(f(z)) of R' whose norms are powers of p are precisely

pi = (p,9i(x))

There are polynomial time algorithms for factoring polynomials in Z,[z] — e.g.,
by Kaltofen and Shoup [I4]. Therefore, in R’, if we have an integer factoring
algorithm to factor Nm(L), we can efficiently discover all of the prime ideals that
divide L. See [33] for details on how to extend this approach to rings R O R'.
Note that since R = Op, the factorization in Step [ is unique.

Regarding Step @ there will be at most one ideal in {p;} with norm in [a, b].
If there were two such ideals p;,p;, the norm of their product would be at least
a? > 2N - et?, where we will show the latter term exceeds the norm of L, a
contradiction.
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Before proving the reduction, we must establish that Randomizeldeal outputs
J according to our desired average-case distribution. We prove this in Lemma
[6l Lemmas 3] @ and [l establish some preliminary facts.

Lemma 3. Suppose the conditions are met. The probability that the ideal L has
a divisor in L p is non-negligible.

Proof. See full version.

Lemma 4. Supposev = ej+u for |u| < 1/(2v). Then, e=27 714l < Nm((v))
< em el Iy particular, when v € t - ey + B(sy/n), Nm((v)) < e-t.

Proof. (LemmaH]) See full version.

Lemma 5. Suppose the conditions are met. Randomizeldeal(R, M, N, s, t,a,b)
aborts with non-overwhelming probability.

Proof. (Lemma ) For Step [B] the probability of aborting is non-overwhelming,
since a/b is non-negligible and Nm(J) > a. Regarding Step Ml we use Lemma
[Bl which establishes that, for our choice of parameters, there is a non-negligible
probability that M - (v) has a prime ideal divisor with norm in [a,b] when v is
sampled according to the above distribution. a

Lemma 6. Suppose the conditions are met. Then, Randomizeldeal samples J as
a statistically uniform prime ideal (independent of M) subject to the constraint
that Nm(J) € [a, b].

Proof. (Lemmalf]) Consider the probability that a particular prime ideal Jy with
norm in [a,b] is chosen as the ideal J in Step M in a single trial if there is no
abort. (By Lemma [} the probability of abort is non-overwhelming.) Assuming
v €t-er+ B(s-+/n) (which is indeed the case with overwhelming probability
by Lemma [Il), we claim that Jg is chosen iff v € JoM .

For the ‘if’ direction of our claim, if v € JoM !, then Jy divides (is a super-
lattice of) L « M - (v). Since Nm((v)) < et} when v € t-e; + B(s-+/n) by
LemmaM] we have that Nm(L) = Nm(M)-Nm((v)) < 2N -et? < a? < Nm(Jy)?.
Consequently, besides Jy, L cannot have any other prime ideal divisors with norm
in [a,b], and Jy is chosen. For the ‘only if’ direction, that Jy is chosen implies
that Jy divides (is a super-lattice of) L = M - (v). But then JoM ~! is a super-
lattice of M~1M -(v) = (v). Therefore, (v) is contained in JoM ~!; in particular,
Vv E J()Mil.

Given our claim, for fixed M, the probability that Jy is chosen in Step [ is:

Yovesom—1 PIV]  pope (JoM™Y)

Pr|Jo| = =
tl o ZVEM—l Pr[v] Pste (M)

(The approximate equality holds up to negligible error, since it relies on v €

t-e;+ B(s-y/n).)
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We claim that s exceeds the smoothing parameters of JoM ~! and M ~!. As-
suming this claim, Lemma [2] implies that

Ps,t-ey (JOM_l)

P (M-1) Nm(M ™) /Nm(JoM ™) = 1/Nm(Jo)

up to negligible error. Step [l uses rejection to adjust this probability from
1/Nm(Jy) to 1/b, making the distribution statistically uniform (and statistically
independent of M) over all prime ideals with norms in [a, b].

It remains to prove our claim that s exceeds the smoothing parameters of
JoM~1! and M~'. This is clearly true for M !, which contains Z" as a sub-
lattice. Regarding JoM ~!, we have

s =75 (b/N)Y™ - w(y/logn)
> 5 - Nm(Jo)V/™ /Nm(M)" - w(/logn)
> 5 - Nm(Jo)V/™ - Nm(M~1)Y" . w(/logn)
7'yf~Nm(J0M ) w \/logn
>7f~)\1 Jo \/logn
> An( \/logn

and the claim follows. O

3.4 Proof of the Reduction

Finally, we prove Theorem [3] showing how to use the procedure Randomizeldeal
to reduce WBDDP to HBDDP.

Intuitively, Randomizeldeal samples a vector v that is “nearly parallel” to e;
(since ¢ > s), so that multiplying the basis vectors in By by v is similar (from a
geometric perspective) to multiplying by ¢. Thus, L is geometrically similar to a
simple scaling of M, and it is easy to see how a solution to a lattice problem over
L (e.g., to BDDP or SIVP) yields a solution to a lattice problem over M. As long
as L is not an overly sparse subset of J — e.g., suppose that (Nm(L)/Nm(.J))'/"
is poly(n) — then A(J) will be only poly(n) less than A(L), and the BDDP
solution to (L, u’) will be the same as to (J,u’) as long as u’ is sufficiently close
to L.

Proof. (Theorem [B) B wants to solve the WBDDP instance (M, u). It does the
following:

1. Runs (B, v) & Randomizeldeal(R, M, N, s, t,a,b).

2. Sets u’ < (u x v) mod Bj.

3. Runs A on the instance (J, 1), receiving back a vector y such that u’—y € J.
(If A does not solve this instance, restart.)

4. Outputs x <« y/v.
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First, we verify that (J,u’) is a valid HBDDP instance that should be solvable
by A. By Lemma [6] Randomizeldeal outputs the basis of an ideal J that is
statistically uniform among invertible prime ideals with norm in [a, b].

Now let us check that u’ is also valid. By assumption, there exist m € M and
z with ||z]| < sweppp such that u = m+z. So, u' = m’'+ 7z, where m’ € M - (v)
and 2’ = z X v. Assuming v € ¢-e1 + B(s-+/n), which occurs with overwhelming
probability, we have

2’| = [lz x v|| < t-|lz]| + ;-5 vn-|z]| < 2t-sweppp < sHeDDP

Since M - (v) is a sub-lattice of J, we have that u’ = j 4 2’ for some j € J.

By the analysis above, A should solve the instance (J,u’) with probability at
least €. If A solves this instance —i.e., B receives from A the unique vector y with
ll¥|l < sueppp such that u' —y € J. It must be that y = z’. Thus x = z’/v = z,
and B solves its WBDDP instance.

The probability that Randomizeldeal does not abort and A succeeds is at
least €/poly(n). These probabilities are independent over trials, and the claimed
running time of B follows. g

4 KeyGen According to the Average-Case Distribution

4.1 Owur Approach at a High Level

For KeyGen, we want an algorithm IdealGen that generates a random ideal J
together with a short vector in w € J~! to be used as the secret key. Recall
how decryption works in Gentry’s somewhat homomorphic scheme, and suppose
that R = Z[z]/(f(x)) in this subsection for simplicity. A ciphertext is an integer
vector of the form ¢ = j+ e, where j € J and e is a short noise vector containing
the message. Decryption involves computing the fractional part [w x c], which
equals [w x e] since w X j is in R and thus an integer vector. If w and e are
short enough — in particular, if we have the guarantee that all of the coefficients
of w x e have magnitude less than 1/2 — then [w X €] equals w x e exactly. From
w X e, the decrypter can recover e and the message.

How short should w be? Since \,(J ') is at least Nm(J)~!/", we cannot
expect w to be much shorter than this. (Recall that we choose R such that
An(I)/A1(I) is polynomial in n.) So, we will consider w to be a “good” secret key
with respect to ideal J if || w| < g(n)-Nm(J)~'/™ for some small polynomial g(n).
Now, how do we generate a random ideal J together with a “good” w € J~1?

Our first step is to generate a “small” random ideal K — “small” in the sense
that its norm is in [n°", 2n°"] for some small constant ¢, which guarantees that
A (K) = poly(n). Since the norm of K is so small, e; € K1 is trivially a
good secret key for K according to our definition. K is not useful as the ideal in
Gentry’s scheme, since even very small errors e make ciphertexts indecipherable.

But suppose, as a thought experiment, that we simply set J = K - (v) where
v =T - e for some large integer T'. That is, J is simply a scaling of K. Then,
w « e1/T is a vector in J~! that satisfies our definition of a good secret key.
And J is “large” enough to handle larger error vectors.
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However, the simple scaling approach is obviously unsatisfactory for a few
reasons. First, it does not generate J according to our desired average-case dis-
tribution. Also, it may not even be secure: all of the coefficients of J’s vectors are
divisible by T, and thus a ciphertext c leaks the value of e mod 7. Obviously,
we want to avoid these deficiencies.

Instead, as our second step, we sample v «— Dy -1 g 1.e, where T'/S = poly(n).
Then, as before, we set J = K - (v), and w « e1/v. That is, we do the same
thing as in the simple scaling approach, except that we sample v from K !
rather than from R, and we choose it to be very close to T - e; rather than
being exactly equal. It turns out that, if v is very close to T - €1, then 1/v is
very close to e;/T'. In particular, w will be a good secret key for J. Fortunately,
this approach avoids the deficiencies of simple scaling. We can prove that, by
including a couple of rejection steps — to output J only if it is prime, to fine-tune
the output distribution, etc. — the J sampled using this approach has the correct
average-case distribution.

Intuitively, why does this approach induce a random distribution on J? At a
very high level, we can ask: is J random geometrically (e.g., when one considers
the “shape” of the parallelepiped formed by J’s shortest independent set), and
is J random algebraically (e.g., when one considers J’s norm)? Geometrically, J
inherits K’s shape, since (up to some perturbation in the sampling of v) it is a
simple scaling of K. We choose K from a large enough space so that its shape,
and hence J’s shape, is quite “random”. Algebraically, the fact that v is sampled
from K~ “randomizes” J algebraically — in particular, J is not divisible by K.
But these are only intuitions. Before providing a more precise explanation, we
need to describe our IdealGen algorithm in more detail.

4.2 IdealGen: The Details

IdealGen uses parameters s = w(y/logn), ¢ such that ¢t > 42y - s-n'5 and
t>8-yp-s-n'S | f]|* and a > 1;let S =s-aand T =t - a. It invokes an
algorithm Templdeal(R, i, j), described in Section 3] that outputs a uniformly
random ideal K with norm in [z, j] (but not a nontrivial “good” key for K).

IdealGen ultimately outputs a uniformly random prime ideal J with norm in
[2,3] - 2T,

IdealGen:

Runs By & Templdeal(R, t27, 4¢°™).

Samples v & Dg-1 5 7.6, and sets w « 1/v; aborts if v ¢ T-e; +B(25y/n).
Sets J « K - (v); aborts if J is not prime or Nm(J) ¢ [2,3] - t?nT™.
Continues to Step [Bl with probability Nm(K)/4t2"; otherwise, aborts.

Continues to Step B with probability 8- “¥/7>:0/T et (w), where 3 will be

ps,T-e; (V)

Gt b=

defined later; otherwise, aborts.
6. With probability 2¢>*T"/Nm(J), outputs w and the Hermite normal form
of .J; otherwise, aborts.
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Remark 2. ldealGen is precisely what we outlined above, aside from the prob-
ability of aborting in Steps Bl We will show that the probability of aborting
is non-overwhelming, and that these steps fine-tune the distribution so that J
is a uniformly random prime ideal with norm in the prescribed interval. The
algorithm can be re-run until it completes successfully.

Remark 3. In Step[2 one can sample from the distribution Dy -1 g 7.e, by using
the GPV algorithm [12] with the independent set {e;} in K 1.

Remark 4. By Lemma [I], the vector v is in T - e; + B(Sy/n) with overwhelming
probability. Note that we only abort in Step 2lif v ¢ T -e; +B(25v/n). We use a
ball of radius 25+/n instead of S+/n in Step 2l for technical reasons — specifically,
Corollary 2l below and its use in the proof of Theorem [7l

Remark 5. Regarding Step [l we must ensure that the “probability” is a number
in [0,1]. We show that pg/72 (1/1).e, (W)/ps,1.e, (V) € [676”\/1/”,66”\/1/”]. (See
Lemma [[0l) Therefore, we can take § « e=6mV/1/n

To begin analyzing our IdealGen algorithm, we state some useful lemmas about
the vector v sampled in Step 2l Omitted proofs can be found in the full version.
The theme of these lemmas is that since v is very close to T - ey, it behaves in
many respects like T - e;.

Lemma 7. Ifv e T e + B(25y/n), then Nm((v)) € [T"/1.1,1.1-T™].

Lemma 8. Ifv € T-e; +B(25/n), then it is the only vector in (v) inside that
ball.

Lemma 9. If |ul| < 1/v¢, then

v ull?
e;/(eg—u)=e; +u+x for ||x|| <
1/(e1—u)=e; 1]l 1=y -
Corollary 1. Ifve T ey + B(2Sy/n), then w € e1/T + B(4S+/n/T?).
Corollary 2. If w € e1/T + B(S\/n/T?), then v € T - e; + B(2S/n).

Lemma 10. Ifv e T ey + B(25y/n), then

ps,T-e1(V)/Ps/r2,(1)1)-61 (W) € [em6mV/1/n (by/1/m]

Our main results about ldealGen are captured in Theorems[E] [0 and [1— namely,
that it outputs a good secret key for J, it does not abort very often (and therefore
can be efficiently re-run until it outputs a result), and it outputs J according to
the desired average-case distribution.

Theorem 5. The vector w output by ldealGen is a “good” key for J. Specifically,
|w| < 6t%- Nm(J)~ /.
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Proof. (Theorem[H) By Corollary[l w € e1/T+B(4S5+/n/T?). So, clearly, |[w|| <
2/T. On the other hand, Nm(J)_l/" > 1/(31/”t2T). The result follows. O

Theorem 6. The probability of aborting in Steps[28 is non-overwhelming.

Proof. (Theorem [6]) For Steps Ml and [ the claim is clearly true. For Step [ it
follows from Lemma [I1

For Step Bl we invoke Lemma [0} which implies we can set 8 « e=6mV1/ " and
the algorithm will continue to Step [@ with at least (non-negligible) probability
6—1271-\/1/71.

For Step Bl an abort occurs if J is not prime or Nm(J) ¢ [2,3] - t2"T™.
Asymptotically, Theorems [[l and 2] imply that, for an interval [cx, x] with con-
stant ¢ < 1, prime ideals are a O(1/ log z) fraction of ideals. Given that Nm(J) =
Nm(K) - Nm((v)) and Nm((v)) € [T"/1.1,1.1-T"] (by Lemma [7), Nm(J) falls
outside the interval only if Nm(K) falls outside of [2 - 1.1,3/1.1] - t*". By the
distribution of ideals (see Theorems [Il and Bl) and the claimed distribution of
Templdeal, this occurs only with only constant probability, in which case the
probability of aborting in Step [2is a constant. O

Before getting to the last theorem, we state one more lemma.

Lemma 11. Let J be an ideal such that Nm(J) € [2,3] - t>"T". Then S/T?
exceeds the smoothing parameter of J~*.

Proof. (Lemma [I1]) We have

S S S Yf 5.y o )
T2 T = 2Yn2T = Nm(J)Y/n = seyp- M) Z s A(JT)

Since s = w(y/logn), the result follows. O

Theorem 7. For any o > 1, ldealGen with parameter « efficiently outputs a
prime ideal J that is statistically uniform subject to the constraint that Nm(J) €
[2,3] - t3"a™

Proof. (Theorem [7) Let K be the sets of ideals with norms in [1,4] - 2", and let
J be the sets of prime ideals with norms in [2,3] - t*"T". For convenience, we
define some sets of ideals associated to J € J. Let

S;j={KeK:Ivst. J=K-(v)and v eT -e; +B(2Sv/n)}
Vy={w:J-(w)eKand 1/we T e +B(2Sv/n)}
Wy={w:J-(w)eKand we (1/T) e, +B(Svn/T?)}
Define & identically to S, except they include only those K for which there is
ezactly one such v. Lemma B implies that S; = &.

Consider the probability Pr[Jy] that a particular ideal Jy is chosen as J in
Step 3. We have

PriJo] = Y PrlJoAK]=c1- Y PrlJo|K]=c1- Y Pr[Jo|K],

KGSJO KESJO KES'
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for some universal constant ¢1, where the second inequality follows from the fact
that K is chosen uniformly by Templdeal.
For a particular candidate pair (Ko, Jo) with Ko € 57, , let vo be the unique

vector in JoKy ' N (T - ey + B(2Sy/n)). We claim that, at Step B

Pr[Jo|Ko] = ps,1.e:(V0)/ps,e: (K ')

This follows because the latter quantity is Pr[vo|Kp], and from the fact that Jp
and vg determine each other once Ky is fixed.

Now, consider the denominator pgs r.e, (Ko_l); we claim that, for fixed (5,7,
this sum is proportional to Nm(Kj), up to negligible error. This follows from
Lemma 2] and the fact that S exceeds the smoothing parameter of K ! (since
Z™ is a sub-lattice of Ko_l). So, after Step Bl we have

Pr[Jo|Ko] = c2 - ps,1-e, (Vo) /Nm(Ko)

up to negligible error for some universal constant cp. After Steps M and B we
have

Pr[Jo|Ko] = €3 - ps/r2,(1/T)-e, (Wo)

up to negligible error for some universal constant cs, where wo = 1/v and thus

PrlJo] =ci+ D ps/r2,(1/7) e (Wo)
KOESZ]D

We claim that

Z ps e Z ps ei(wo)=ps e (Jgh)=cs5-Nm(Jp) (1)

T2 T T2° T T2 T
KoES wo€Vy,

up to negligible error for some universal constant c¢5. This claim lets us complete
the proof. The abort in Step [0l adjusts this probability so that it becomes c5 -
2t27T" | independent of Jy, and thus makes Pr[Jy] statistically uniform across
all Jo € J.

In Equation [ the second sum is just a syntactic rewriting of the first sum.

To prove the second equality in Equation[I] first note that W;, C V;, C Jo_l.
The first inclusion follows from the fact that, by Lemma [2 for every wg €
(1/T) - e + B(S\/n/T?), it is the case that 1/wo € T - e; + B(2Sy/n). The
second inclusion follow from the fact that each wq satisfies (wg) = J1K for
some K € K; in particular, wg € Jo_l. Now, we claim that

Z P s el Wo —pSel(Jo)

T2 T 720 T
WoEWJO

up to negligible error, which would establish the second equality (up to negligi-
ble error). This equality holds because W;, contains all of the wo’s in Jj; ! that
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contribute substantially to the sum. Specifically, since S/T? exceeds the smooth-
ing parameter of J; 1 (by Lemma [I]), the sum p s @ (Jy 1) is only negligibly
o

affected when restricted to the set J; ' N ((1/T) - ey + B(Sy/n/T?)) (Lemmal[).
However, this set is contained in Wy, since if we set Ky « Jo - (wo), then K
is indeed in K, since Nm(Ky) = Nm(Jy) - Nm((wy)), which is in the interval
2/1.1,3-1.1] - 2" C [1,4] - 2",

The third equality in Equation [ follows from Lemma [[1] and Lemma@l 0O

One aspect of the proof may seem a bit mysterious. Why did we use Step [B] to
convert Pr[Jy] from a sum of p(v)’s to a sum of p(1/v)’s? Note that v € JoK ~*
for some K, and w =1/v € ngK. Summing over p(w)’s is more natural, since
all of the points are in a single ideal — namely, J; ! In contrast, summing over
vectors in JoK ~! for different K’s is not a sum we know how to evaluate.

4.3 The Templdeal Algorithm

Here, we construct an efficient algorithm Templdeal(R, i, j) that outputs a uni-
formly random ideal K C R with norm in [i, j]. Templdeal only needs to output
some basis of K, not necessarily a “good” basis. Let us begin at a high level by
considering some possible approaches.

Suppose we sample random v from R, and set K « (v), re-sampling if
Nm(K) ¢ [i,j]. Then, K is a principal ideal, and unfortunately the probability
that a “random” ideal from R is principal is typically negligible in n. (More
accurately, the field ' = Q(z)/(f(x)) has an associated class group, where each
member of the group consists of an equivalence class of ideals. The set of princi-
pal ideals is only one class, whereas the class group size is typically exponential
in n.) Clearly, this approach does not sample a “random” ideal.

A more promising approach is to use Kummer-Dedekind (Theorem M), which
can actually be used to sample a uniformly random prime ideal, as follows.
Sample a uniform prime power p¢ € [i,j], and use Kaltofen and Shoup [14]
to (efficiently) compute the factorization f(x) = []; ¢i(z)* mod p. Kummer-
Dedekind tells us that all prime ideals of Z[z]/(f(z)) having norm p° are of
the form (p, g;(z)), where g;(z) is an irreducible degree-e factor of f(x) modulo
p. There can be at most n ideals of norm p¢. If there are » < m such factors
gi(x), restart with probability 1 — r/n. Otherwise, sample one of these g;(x)’s
uniformly and output K « (p,gi(z)). (It it is straightforward to extend this
method recover all prime ideals with norm p¢ in rings Z[z]/(f(z)) C R C OF
[33].) This works, but unfortunately we require Templdeal to sample K from all
ideals with norm in [z, j], not just from prime ideals.

Consider the following modification to the above approach: sample a uniform
(possibly composite) integer N € [i,j], and compute the factorization f(x) =
[L; 9i(x)% mod N, etc. But computing this factorization is hard in general when
N is composite. In fact, we do not see a way to generate a random ideal K
without knowing the factorization of its norm.

These considerations lead us to construct an algorithm for generating a ran-
dom factored ideal whose norm is in the prescribed interval, even though, in
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principle, we do not need the factorization. For this task, a good place to start
is to look at existing algorithms for generating a random factored integer — es-
pecially Kalai’s elegantly simple algorithm [I3].

Kalai’s Algorithm for Generating a Random Factored Number:

Input: Integer b > 0.
Output: A uniformly random number 1 < N < b, with its factorization.

1. Generate a sequence b > s1 > s > -+ > sy = 1 by uniformly choosing
siv1 €{1,...,8; — 1}. (Use b as sg.) Put all prime s;’s in a list L.

2. For each s; € L, put s; into L at least k additional times with probability
1/sk.

3. Let N be the product of the numbers in L (with repetition).

4. If N > b, restart.

5. Output N and the prime s;’s with probability N/b; otherwise, restart.

Remark 6. Kalai presents his algorithm somewhat differently.

As Kalai highlights, the reason this algorithm works is because a prime p < b is
in the sequence independently with probability exactly 1/p, since it occurs iff it
is chosen before any number in {1,...,p—1}. That is, we could replace the first
step of Kalai’s algorithm with this alternative step without affecting the output
distribution:

1. For each prime number s; € [1,b], put s; in a list L with probability 1/s;.

Of course, the algorithm with this alternative step is grossly inefficient; Kalai’s
main insight is a way to obtain the same output efficiently. After this insight, the
remainder of the analysis is relatively straightforward. The prime p appears at
least e times in L independently with probability 1/p® through Step 2, and thus
the probability that a b-smooth number N is selected in Step 3 is proportional
to 1/N. The final two rejection steps ensure uniformity across numbers in [1, b].
By Mertens’ theorem, the algorithm will not restart in Step 4 with probability
0(1/logbd). See Kalai’s one page paper for more details.

Our Templdeal algorithm is a modification of Kalai’s algorithm that accounts
for the fact that there could be up to n prime ideals that are “tied” with the
same norm. To each integer s, we associate n ideals {I; ;}. Specifically, if there
are r < n distinct prime ideals of norm s, we let I, 1,..., I, be these ideals,
and set [y, = =1Is, =1

Templdeal(R, a, b):

1. Generate a sequence b > s1 > s > -+ > sy = 1 by uniformly choosing
Sit1,; €{1,...,s;—1}forallj € {1,...,n} and setting s;41 < max;{s;+1,;}-
(Use b as sg.) Put each s; that is a norm of a prime ideal in a list L.

2. For each s; € L, do the following. First, generate j € [1, n] uniformly and put
the ideal I, ; into multiset M. Then, for each j, insert at least k additional
instances of Iy, ; into M with probability 1/sF.
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. Remove those ideals in M that are equal to 1.

. Let K be the product of the ideals remaining in M (with repetition).
. If Nm(K) ¢ [a,b], restart.

. Output a basis for K with probability Nm(K')/b; otherwise, restart.

S U W

Remark 7. Obviously, in Step 2, we could have avoided putting any ideals that
equal 1 in to M in the first place, since we remove them in Step 3. But we leave
this in, since it will make the analysis a bit simpler.

Theorem 8. Templdeal uniformly samples an ideal K C R with norm in |[a, b].
The algorithm takes time b/(a — b) - poly(n,logb).

To simplify the proof of Theorem [, we define a “slow” version of the above
algorithm — SlowTempldeal — which is analogous to the “slow” version of Kalai’s
algorithm with the alternative first step.

SlowTempldeal(R, a, b):

1. For each s; € [1,b] that is the norm of a prime ideal, for each j € [1,n], put
at least k instances of I, ; into multiset M’ with probability 1/s¥. If there
is some ideal I, ; in M’, put s; into L.

2. Run Steps 2-6 of Templdeal(R, a, b).

Now, Theorem [ follows from Lemmas 12 [[4] and

Lemma 12. The distribution of L is the same in Templdeal and SlowTempldeal,
and hence the two algorithms have the same output distribution.

Proof. (Lemmal[l2) Consider the probability that a fixed s is in L. For Templdeal,
this equals the probability that s is in the sequence. If s; > s, the probability
that s;y1 € [1,s] is s™/(s; — 1)™, whereas the probability that s;y1 € [1,s — 1]
is (s — 1)™/(s; — 1)™. Thus, when sampling s;, the probability that s;1 is in
[1,s — 1] given that it is in [1,s] is (s — 1)"/s™. Consequently, since s;41 must
eventually be in [1, s] for some i, the probability that s is in the sequence is
1 — (s —1)™/s™. This probability is independent of whether or not other values
s’ are in L. For SlowTempldeal, the probability that none of the n ideals I, ; is
in M’ is (s—1)"/s". So, the probability that some ideal I; ; is in M’, and hence
s € L, is the same as in Templdeal: 1 — (s — 1)™/s™. O

Lemma 13. Through Step 4 of SlowTempldeal, the probability that a fized ideal
Ky with prime ideal factors in [1,b] is selected is

1 Nm(p) — 1
) H (p)

Nun(Ko) L N(p)

where the product is over prime ideals.
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Proof. (LemmalI3)) It is clear that the multisets M and M’ have exactly the same
distribution conditioned on the list L. That is, if s; ¢ L, neither multiset contains
an ideal I, ;. If s, € L, then both M and M’ contain a random non-empty
multiset S with elements from {Is, 1,..., s, n}, where Pr[S] is proportional to

1/ SLS‘. Therefore, we could have used M’ instead of M beginning in Step 3 of
SlowTempldeal without affecting the output distribution.

Remove the primes that equal 1 from M’. A (nontrivial) ideal I, ; is in M’ at
least k times independently with probability 1/s¥ = 1/Nm(Z;, ;)*, and therefore
exactly k times independently with probability (Nm(Zs, ;) —1)/Nm(Z;, ;)**1. By
the independence of these probabilities, and by multiplicativity of the norm map
over ideals, the result follows. a

Lemma 14. SlowTempldeal uniformly samples an ideal K C R with norm in

[a, b].

Proof. (Lemma [[4)) Given Lemma [[3] - i.e., the fact that through Step 4 the
probability that some K is chosen equals 1/Nm(Kj) times some universal con-
stant that is independent of Ky — it is clear that the final two rejection sampling
steps ensure that K is uniform among ideals with norm in [a, b]. a

Lemma 15. Templdeal takes time b/(a — b) - poly(n,logb).

Proof. (Lemma [IH]) Let us consider the probability that a restart occurs.
Regarding Step 5, by Merten’s theorem for number fields, we have

e 7 1 1

I[I -1/Nm@p)= ax logh +O(10g2b

Nm(p)<b

where ag is the residue of (x(s), the Dedekind zeta-function, at s = 1, and ~
denotes Euler’s constant 0.577.... Denote the above term by «. By Lemma [[3]
the probability that some K with norm at most b is selected in Step 4 is

a- Y 1/Nm(K)

Nm(x)<b

There are 0(b) ideals of norm at most b (this follows from Theorems [l and [2)),
and thus the above sum is £2(1/log(b)).

Regarding Step 6, among K’s with norm at most b, approximately a (b—a)/b
fraction of them have norm at least a. (Again this follows from Theorems [I] and
) The result follows. O

5 Basing Gentry’s Somewhat Homomorphic Scheme on
SIVP over Ideal Lattices

We showed how to reduce WBDDP to HBDDP for our average-case distribution.
It remains to base our variant of Gentry’s scheme on HBDDP, and to reduce
SIVP to WBDDP. We sketch these results here. Details are in the full version.
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First, we specify some details of our variant. As in [I0], the public key includes
ideals I and J, and a short independent set By of I —e.g., where ||B;|| = poly(n).
J is output by our new IdealGen algorithm. The cosets of I form the plaintext
space. Regarding I, we have a new requirement: that Nm(/) is prime and very
small —i.e., poly(n). To find such an I, we can either construct f(z) to ensure that
the associated ring of integers has an ideal of small prime norm, or we can apply
Kummer-Dedekind (Theorem M) to primes of size poly(n). By Theorem 8.7.7.
of [5], for appropriate values of f(x) and assuming GRH, applying Kummer-
Dedeking will eventually give us the basis a prime ideal p in R having poly(n)-
norm. From this basis, we can compute an independent set of p of length at most
Nm(p). We set I «— p and By to be this independent set. We sample ciphertexts
per a Gaussian distribution: ¢ «— ¢’ mod B where ¢’ «— Dy, 11,0 for some s.

To reduce HBDDP to the semantic security of this scheme, we first reduce HB-
DDP to a decision problem that we call the inner ideal membership problem

(IIMP): (roughly) given (Bs,t) where B & IdealGen(R) and t «— x mod B
for some x € R with ||x|| < symp, decide whether or not x € I. Essentially, a
HBBDP-solver can use a IIMP-solver to find out which coset of I that x is in.
(For this search to be efficient, Nm(I) must be poly(n).) Using “Hensel lifting”,
the HBDDP-solver can recover x modulo I* for large k — large enough that x be-
comes the shortest vector in x+I* by such a large margin that is efficient to recover
x using Babai’s nearest plane algorithm. To reduce the IIMP to the semantic se-
curity of the scheme, we sample a uniform coset of I, set u € R to be a short vector
in that coset, and set the challenge ciphertext as follows: ¢* « ¢’ mod B where
¢ — mp+txu+ Diso Whenx € I, ¢ € mp + I, and the ciphertext has
the correct distribution. (This is not quite true: but we can smooth out the dis-
crepancy by choosing s large enough — in particular, so that s/symp = poly(n)/e.)
When x ¢ I, ¢ is in a random coset of I that conveys no information about my.
Overall, for some polynomial g(n), if there is an algorithm .4 that breaks the se-
mantic security of the scheme in time t with probability e for parameter s, then
there is an algorithm that, for a O(e) fraction of bases output by IdealGen, solves
HBDDP for parameter sugppp < $-€/g(n) with overwhelming probability in time
O(t - Nm(I)/e€). This reduction is entirely classical (non-quantum).

To reduce SIVP to WBDDP (quantumly), the heavy lifting has already been
done by Regev [30]. He provided a quantum reduction of SIVP over the dual
lattice L* to BDDP over the lattice L. A bit more work is necessary to turn
his result into a quantum reduction of SIVP over an inverse ideal lattice 1~! to
BDDP over the ideal lattice I (the inverse of an ideal lattice is not the same as
its dual), and then to extend this result to SIVP over (non-inverse) ideals of R.

6 Conclusions and Open Problems

We showed that ideal lattice problems within some fixed rings are, in a sense,
random self-reducible. However, the reduction uses a factoring oracle. One open
problem is to find a random self-reduction that is efficient in the classical setting
— in particular, to find a reduction that does not use factorization.
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We presented a KeyGen algorithm that generates ideals according to our
average-case distribution, together with a secret key. However, this algorithm
is rather complicated, and one wonders whether there is a simpler approach.

While we are able to base Gentry’s somewhat homomorphic encryption scheme
on worst-case hardness, his FHE scheme requires an additional computational
assumption — namely, that the (average-case) SSSP is hard. Currently, we do
not have a worst-case / average-case reduction for the SSSP that would allow
his FHE scheme to be based entirely on worst-case hardness.
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Abstract. The search for encryption schemes that allow to evaluate
functions (or circuits) over encrypted data has attracted a lot of attention
since the seminal work on this subject by Rivest, Adleman and Dertouzos
in 1978.

In this work we define a theoretical object, chained encryption schemes,
which allow an efficient evaluation of polynomials of degree d over en-
crypted data. Chained encryption schemes are generically constructed by
concatenating cryptosystems with the appropriate homomorphic proper-
ties; such schemes are common in lattice-based cryptography. As a par-
ticular instantiation we propose a chained encryption scheme whose IND-
CPA security is based on a worst-case/average-case reduction from uSVP.

Keywords: homomorphic encryption, secure function evaluation, lat-
tices.

1 Introduction

Secure function evaluation (SFE) is an essential ingredient to design protocols
where different users interact in order to obtain some information from the oth-
ers, at the same time that each user keeps private some of his information. In
(a simplified version of) SFE, a user Alice has a function f and a user Bob has
some data z. Depending on the setting, one of the two users, or both of them,
must obtain f(z) without learning each other’s input.

One solution for this problem uses the concept of garbled circuit, introduced
by Yao in [36]. Alice receives from Bob a garbled version of z, and sends back
a garbled version of f as well as some cryptographic material allowing Bob to
evaluate this function on x. After the end of the protocol, Bob learns f(x) and
nothing else about f, and Alice learns nothing about x. This solution is based
on the usage of encrypted truth tables for the garbled function and oblivious
transfer for the garbled data. The main drawback is that the size of the evaluated
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ciphertext is at least linear in | f|. Alternative solutions were therefore proposed,
following a different paradigm (denoted as computing over encrypted data), to
get size sublinear in |f|. Here Bob sends to Alice some information related to x
(e.g. an encryption of x), Alice combines f and the data received from Bob, and
sends a reply to Bob. From this reply, Bob is able to learn f(x) and Alice learns
nothing about x (not even f(z)). If moreover, Bob does not learn anything about
f (besides f(x)) we say the protocol provides function privacy.

The garbled circuit approach provides generic protocols that work for virtually
any function f, which may not be the case in the computing over encrypted data
setting. On the other hand, the computing over encrypted data setting (on which
this paper is focused) can lead to protocols with a much lower communication
cost. Indeed, in the garbled circuit approach the communication includes an
encrypted description of f and an encrypted description of z. In the computing
over encrypted data setting only an encrypted description of x is sent and the
reply sent to Bob by Alice can be very compact, perhaps independent of the size
of f. More precisely, we will say that a secure evaluation is efficient for a family
of functions F if for f € F the size of the information exchanged by Alice and
Bob is at most sublinear in the function size (and thus less than the size of the
information exchanged in the garbled circuit approach).

A family of functions that are specially interesting is the one of multivari-
ate polynomials with m monomials and degree d; that is P(Xy,...,X,) =
Z;"Zl Py(X1,...,X,), where P;(Xq,...,X,) are monomials of degree at most d.
Many applications such as private information retrieval [21], or private searching
on streaming data [25] are based on the secure evaluation of low-degree multi-
variate polynomials with a large number of monomials (varying in real world
scenarios from thousands to billions and above). The only approach to obtain
efficient (and secure) evaluations of multivariate polynomials has been until now
the usage of homomorphic encryption schemes.

In order to provide such evaluations for degree d polynomials, these encryp-
tion schemes must allow to compute products of d plaintexts over encrypted data
(possibly with a large expansion factor), and to sum a very large number m of
these encrypted products with a small expansion factor (sublinear or logarithmic
in m). In this paper we propose a generic construction to obtain such properties
and we instantiate this construction with a well-known lattice-based cryptosys-
tem. The security of this particular instance is based on a worst-case/average-
case reduction from uSVP (see [24] for more details on hard problems related
to lattices), which has been proved as hard as other standard problems like
GapSVP or the Bounded Distance Decoding (BDD) problem in [22]. Other in-
stantiations can be found in [I5] and [2], using respectively a cryptosystem with
security based in the worst-case hardness of LWE, and a cryptosytem with se-
curity based in the average-case hardness of particular instances of BDD [I].

Related Work. Since the introduction of the concept of homomorphic en-
cryption, by Rivest, Adleman and Dertouzos in [30], many schemes with homo-
morphic properties have been proposed. Most of them allow only to compute
over encrypted data one of the operations, either the product (RSA [31], El
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Gamal [I1]) or the sum of the plaintexts (Goldwasser-Micali [I7] modulo 2 and
Paillier [26] modulo a hard-to-factor composite integer).

These schemes lead to an efficient evaluation of multivariate monomials of
any degree or multivariate polynomials of degree 1, but obtaining a scheme that
provides efficient evaluation of multivariate polynomials of arbitrary degree is
a much more complex problem. In order to evaluate a larger span of functions,
some protocols have tried to use the homomorphic encryption schemes that allow
to compute just one operation (sum or product) in a less direct way than just
using the provided plaintext-ciphertext map. In particular, Sander, Young and
Yung proposed a solution in [32], which allows to evaluate any constant fan-in
boolean circuit in NC'. The major drawback of their approach is that commu-
nication complexity is exponential in the depth of the circuit, which restricts
their protocol to circuits of logarithmic depth. Ishai and Paskin show in [19]
how to evaluate any branching program P through ciphertexts whose size de-
pends polynomially on the length of P. Such branching programs include, by a
result of Barrington [4], the circuits in NC*. Unfortunately, in order to evaluate
a multivariate polynomial with m monomials, we need an NC'! circuit of depth
in O(logm) or a branching program of length in O(m) (see [23]). Thus, neither
of these protocols are able to provide efficient evaluation of polynomials.

Finding an encryption scheme allowing an efficient direct computation over
encrypted data of degree d multivariate polynomials for d > 1 has been an open
issue for a long term. The first attempts that tried to provide a fully homomor-
phic encryption scheme (i.e. a scheme allowing to compute over encrypted data
both sums and multiplications arbitrarily), failed to resist to the research commu-
nity attacks: Fellows and Koblitz proposed Polly Cracker [12] which was broken
n [34], Grigoriev and Ponomarenko proposed another public-key scheme [I§]
which was broken in [7]. For the case of symmetric cryptography, Domingo-
Ferrer proposed two schemes [9JI0] which were broken in [6/35]. Fortunately, as
we already noted, in order to have efficient evaluations of degree d multivari-
ate polynomials we just need the encryption scheme to compute products of d
plaintexts over encrypted data (possibly with a large expansion factor), and to
sum a very large number m of these encrypted products with a small expan-
sion factor (sublinear or logarithmic in m). We will say that such a scheme is
d-multiplicative fully homomorphic. If for any d a d-multiplicative fully homo-
morphic instance of the scheme can be produced (possibly with an exponential
cost in d), we will say that the scheme is constant-bounded fully homomorphic.
If moreover the computational costs of the different functions of the encryption
scheme are at most polynomial in d, we will say it is leveled fully homomorphic.

Finding a non-trivial (i.e. for d > 1) d-multiplicative fully homomorphic en-
cryption scheme has also been a long standing open problem. The first step for-
ward was given in 2005, by Boneh, Goh and Nissim, who proposed [5] the first
efficient 2-multiplicative fully homomorphic encryption scheme. Their scheme al-
lows the SFE of polynomials of degree d = 2, as long as the output P(as,...,a:) is
a small number (the computational cost of decryption is polynomial on this num-
ber). The size of the ciphertexts is independent of the number m of monomials
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in the polynomial, and the secure function evaluation protocol provides function
privacy. In 2008, the authors proposed, in a preliminary version of this paper [2], a
way to obtain efficient constant-bounded fully homomorphic encryption schemes
(without function privacy).

In STOC 2009, Gentry proposed an elegant solution [13] for the (efficient)
leveled fully homomorphic encryption problem, in two steps. First, he proposed
an efficient constant-bounded fully homomorphic encryption scheme based on
the hardness of a new problem, the Ideal Coset Problem, which is close to a
decisional Closest Vector Problem (which is in turn an instance of the Bounded
Distance Decoding problem, see [24]). Second, he proposed an efficient leveled
fully homomorphic variant of this scheme, based on the Ideal Coset Problem and
a second new problem, the SplitKey Distinguishing Problem which seems to be
related to the Sparse Subset Sum Problem (in fact the scheme can be modified
to be fully homomorphic if circular security is assumed, see [13] for details). In
lattice-based encryption schemes the randomness distribution usually evolves as
homomorphic operations are done until the ciphertext becomes impossible to
decrypt, which places a limit on the number of operations that can be done. The
groundbreaking idea of Gentry is the proposal of a scheme that can “refresh”
this randomness to its initial state (more exactly close to the initial state), by
the homomorphic evaluation of its own decryption circuit, without revealing the
plaintext. In his PhD dissertation [14], Gentry recently presented a quantum re-
duction from the security of his leveled fully homomorphic scheme to the worst
case of the Shortest Independent Vector Problem (SIVP, see [24]) on ideal lat-
tices in a given ring R. Improvements and variations of Gentry’s schemes have
appeared very recently [338].

Finally, in [I5], Gentry, Halevi and Vaikuntanathan have proposed a new
efficient 2-multiplicative encryption scheme (GHV for short) which improves the
proposal of Boneh, Goh, and Nissim in various ways. First, it is based on a worst-
case/average-case classical reduction from LWE (again, see [24]). Moreover, it
does not have restrictions in the size of the output. And finally, it can also be used
with our construction to obtain a constant-bounded homomorphic encryption
scheme.

Our Contribution. This paper is a major write up of [2]. With respect to
the related work as a whole, our main contribution is to provide a generic con-
struction of efficient constant-bounded fully homomorphic encryption schemes.
This construction can be instantiated using different encryption schemes as a
base. In particular, the encryption schemes of the fruitful field of lattice-based
cryptography seem specially well adapted, but other fields such as code-based
cryptography are promising too. The recent instantiation with GHV (proposed
n [I5]), highlights the generic aspect of our contribution.

With respect to the proposal of Gentry [13], the main contribution comes
from the fact that the construction relies on the same security assumptions as
encryption schemes with simple-to-achieve homomorphic properties. Thus,
we benefit from the strong reductions available in simple lattice-based en-
cryption schemes, instead of the assumptions needed to get (somewhat) fully
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homomorphic encryption schemes. In particular, this leads to assumptions on the
classical (by opposition to quantum) worst-case hardness of standard problems,
which moreover are done over pretty general lattices, namely integer lattices,
instead of ideal lattices over a given ring.

Finally, with respect to the generic proposals of Yao [36] and Sander et al. [32],
considering the secure evaluation of polynomials, the main advantage comes
from the bandwidth efficiency for low-degree polynomials with a large number
of monomials. Indeed, our construction can be used for the secure evaluation of a
polynomial with v variables, M monomials and degree d. In Table [T, we compare
the bandwidth required by these generic proposals with different instantiations
of our construction. The number of monomials is supposed to be bounded by a
polynomial in the security parameter /2 for a given r, and poly(k) generically
denotes a polynomial function of the security parameter .

Table 1. Comparison of the bandwidth requirements of different solutions

Approach Required Bandwidth
Yao’s garbled circuits [36] M -d - poly(k)
Sander-Young-Yung [32] (M -d)?* - poly(k)
O(k"**")-uSVP instantiation O(M*/™) . poly(r)?
O(K>°3")-LWE instantiation [I5] poly(log M)?® - poly(k)?
Optimal bound (for our construction) log M - poly(k)?

Note that in the uSVP instantiation r can be chosen arbitrarily large to reduce
the bandwidth usage, but at the cost of a stronger security assumption. In the
LWE instantiation, this is pointless as bandwidth usage does not depend on r
and it is enough to set r such that x™/2 = O(M).

Last row of Table [[l would be ideally achieved by combining our construction
with an additively homomorphic encryption scheme, supporting M additions,
where the expansion factor between plaintexts and ciphertexts does not depend
on M. The scheme by Gentry [13] could be a candidate for such an encryption
scheme but, to the best of the authors knowledge, there is no such scheme with
a classical reduction (nor based on integer lattices).

For a given degree d and a growing number of monomials our construction
beats asymptotically the other approaches. For variable d, the comparison de-
pends on whether the polynomials are sparse or not, and on the number v of
variables. If the polynomials are very sparse, our solution will not be efficient.
On the other hand if the polynomials are dense (i.e. we have M =~ v?), our con-
struction will beat the other approaches if and only if the number of variables is
larger than the number of bits in a ciphertext of the encryption scheme used to
instantiate our construction. Classical applications of secure polynomial evalua-
tion, such as private information retrieval [21] or private searching on streaming
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data [25], result in dense polynomials with a large number of variables and should
thus benefit from this construction.

As opposed to the other solutions in this table, the construction that we intro-
duce in this work does not provide function privacy. An alternative construction
providing such a property is possible, but due to space restrictions it is left to
the long version of this paper. Some details about this alternative construction
are provided in Section

2 Basic Idea

Let PKC = (KeyGen, Enc, Dec) be an encryption scheme such that the addition
of ciphertexts over the integers maps to an addition on the plaintext space and
such that 0 decrypts to 0. Let a,b € {0,1} and a € Enc(pk,a), 8 € Enc(pk,b),
with (aM,...,a®) the bit-representation of o. We define the reconstruction
function R((a,...,a®)) =3, 2""1al) = q.

The basic idea is to build the compound ciphertext a® 3 def (@M, ..., a®p)
which encrypts redundantly a and b. Consider the following decryption algo-
rithm: first, decrypt each coordinate with Dec; then reconstruct the inner ci-
phertext with R, and decrypt it again with Dec.

What is interesting is that each coordinate of the compound ciphertext is
either 0 (which decrypts to 0) or 8. If b = 0, all the coordinates will decrypt to 0
and the resulting null-vector will also decrypt to ab =0 (as b = 0) whatever the
value of a is. On the other hand, if b = 1 all the coordinates in which we have
6 will decrypt to 1, and we will thus get back (a(!), ..., o) which decrypts to
ab=a (asb=1).

Toy Example

a=110 =101 v=a® § = (101,101, 000)
If 8 € Enc(pk,0)

1% decryption

lecryy (0’ 0’ 0) recorﬂction 000

2" decryption
—

If 8 € Enc(pk, 1)

1% decryption 2" decryption
- ( —

1’ 1’ 0) reconstj}ction 110

Thus, these compound ciphertexts encrypt a product, but not very efficiently
(the data is redundant). However, as PKC provides an homomorphic operation,
we can add many of these compound ciphertexts, and the result will decrypt to
the sum of the products. This allows us to evaluate degree 2 polynomials over
encrypted data using a single vector of ¢ coordinates, which will save bandwidth
if the number of added monomials is over .
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Finally, we can note that this construction can be easily generalized if « is a
vector of integers (we split each integer in bits and reconstruct them separately
on the decryption phase), which allows us to iterate the construction and evaluate
polynomials of degree d, at the price of an expansion factor for the length of the
ciphertexts which is exponential in d.

3 Chaining Encryption Schemes

3.1 (n,t)-Chainable Schemes

In this subsection we provide a definition of chainable encryption schemes. This
definition allows us to present the properties needed to chain schemes (or to
compute with them) as well as to have a short naming convention that highlights
a given scheme’s performance parameters. For integer values a < b, we denote
as [a,b] the set {a,a+1,...,0—1,b}.

Definition 1. A scheme PKC = (KeyGen, Enc, Dec) is said (n, t)-chainable if the
key generation algorithm KeyGen takes as input a security parameter Kk and a
positive integer m, and for any value of these parameters, there are two positive
integers n,t (which may be functions of k and m), such that for any keypair
(pk, sk) € KeyGen (1%, m) the following holds:

— The plaintext space P is a subset of Z, and includes [0, m];

— The ciphertext space C is a subset of Z" and includes 0™, moreover 0™ is in
the support of the output of Enc(pk,0);

— Bounded size: for any plaintext x € P and any ciphertext ¢ € Enc(pk, x), all
the entries of ¢ are smaller than 2" (i.e., Enc(pk,z) C [0,2" — 1]");

— m-limited homomorphism via integer addition: for any £ < m, a1,...,ay €
{0,1} and any cy,...,ce with ¢; € Enc(pk,a;), the integer vector ¢ = ) . ¢;
is decrypted via Dec to the integer a =, a; (which is in [0,m]).

Lattice-based schemes with homomorphic properties are usually suitable (some-
times with a small transformation) for this definition. Note, however, that we
do not set any constraint on the ciphertext size n x t or its relation to m and
thus, that not all the schemes that fit into this definition will be able to provide
efficient (sub-linear in m) evaluations of polynomials. These issues will be dealt
with in Sections @ and Bl

3.2 Chaining Schemes

In this subsection we present an algorithm that chains two encryption schemes
PKC;, PKCy that are respectively (nq,t1)-chainable and (ns, t3)-chainable, into
a scheme PKC = chain(PKCy, PKC,), that is (nanity, t2)-chainable. This scheme
has a worse ciphertext/plaintext expansion ratio than the two chained schemes,
but is interesting because given « € Ency(pki,a1) and 8 € Enca(pks, az) we are
able to generate an element of Enc(pk, a1az2) (see Section [).
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Chaining Algorithm: PKC = chain(PKCy, PKCy)

Input:
- An (nq,t1)-chainable scheme PKC; = (KeyGeny, Ency, Decy)
- An (no, te)-chainable scheme PKC, = (KeyGeny, Ency, Decy)

Output:
- An (niting, ta)-chainable scheme PKC = (KeyGen, Enc, Dec)

Consider the intermediate encryption scheme PKC]:

KeyGen (1%, m):
1 Return (pki, ski) < KeyGen, (1%, m)
Enc) (pky,a) :

1 Sample a = (a!

)....,a™)) from Ency(pki,a)
1

2 Return o = (/M. .. o/ /=Dt g /(nta)
~ ~ -~ ~ ~ .
bits of a(1) bits of a/(”1)

Dec’ (sk1,a’):
1 Compute a = Ri(a) aef (221:1 201/ 221:1 271/ ((m—Dt1+7))
2 Return a < Dec; (sk1, @)

Return a description of the final encryption scheme PKC:

KeyGen(1%, m):

1 Set (pk1, sk1) < KeyGen, (1%, m), (pkz, sk2) — KeyGen, (1%, m)
2 Return ((pk1,pksa), (sk1, skz))

Enc((pk1, pk2),a) :

1 Set o = (/M ... /(")) « Enc)(pki,a)

2 For each j € [1,n1t1] set 3; «— Enca(pkz,a’9))

3 Return Y= (517 te 7ﬁn1t1)

Dec((sk1, sk2),7):

1 For each j € [1,n1t1], set a’U) « Decy(sky, 7))

2 Return a « Ded| (sky, (/M) ... o/(mt)))

Proposition 1. PKC is (nit1ne, te)-chainable. Moreover, if the instance of PKCyq
associated to (pki,ski) and the instance of PKCy associated to (pke, sk2) are m-
limited homomorphisms, the instance of PKC associated to ((pki,pks), (sk1, ska))
s also an m-limited homomorphism.

Proof. Clearly, R; is linear and therefore the instance of PKC] associated to
(pk1, sk1) is an m-limited homomorphism via integer addition, as the instance
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of PKC; associated to the same keypair. For i € [1,m], let a; € {0,1} and
~i < Enc((pk1,pks2), a;). We have

m m m
- (zﬂzﬁ)
=1 =1 =1

with §; ; < Ency (pkg,oz;(j)) and o, « Enc}(pk1,a;). Since the used instance of

PKC; is an m-limited homomorphism via integer addition and each ag(j ) is in

{0, 1}, applying Decs to each coordinate, with secret key sko, we obtain

(f: a;(l)’ o ia;(nltl)> _ zm:a;
i=1

i=1 i=1

As the instance of PKC] associated to (pki,ski) is also an m-limited homo-
morphism via integer addition, decrypting this vector with Dec] and the se-
cret key ski we obtain Z;Zl a;, and thus the instance of PKC associated to
((pk1,pka), (sk1, ske)) is an m-limited homomorphism via integer addition.
Finally, as (0,...,0) € Enc((pk1,pks2),0), and the ciphertexts are clearly vec-
tors of nj -t1-ng scalars of 5 bits each, we therefore have that PKC is (n1tine, ta)-
chainable. O

Let us prove now that the chained scheme PKC resulting from PKC; and PKC,
is IND-CPA secure if either of PKC;, PKCy is IND-CPA secure. We recall first
the standard notion of indistinguishability under chosen-plaintext attacks (IND-
CPA security), for an encryption scheme PKC = (KeyGen, Enc, Dec). We use the
following game that an attacker A plays against a challenger:

(pk, sk) «— KeyGen(1"*)
(St, a9, a1) < A(find, pk)
b« {0,1} at random

¢* — Enc(pk, ap)

b — A(guess, c*, St).

The advantage of such an adversary A is defined as
|

Adv(A) = [Prfp' = 8] = |.

A public key encryption scheme enjoys IND-CPA security if Adv(.A) is a negli-
gible function of the security parameter x, for any attacker A running in poly-
nomial time (in k).

Proposition 2 (IND-CPA Security). PKC = chain(PKCy,PKCy) is IND-
CPA secure if either of PKCy, PKCy is IND-CPA secure.

Proof (Sketch.). Let us assume that there exists a CPA attacker A against PKC
and let us prove, then, that neither of PKC;, PKCs can be IND-CPA. Specifically,
we can construct CPA attackers Aj, Ay against the schemes PKC; and PKCs.
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For PKCy, the attacker A; is trivial as a random keypair of PKC; can be
transformed in a random keypair of PKC by adding a random keypair of PKCj.
Moreover, the choice of the two plaintexts by A is maintained by A;, and the
challenges from Enc; can be transformed into challenges following the distri-
bution of Enc by splitting them into bits and encrypting them through Enc,.
Finally, as the plaintexts are the same, Attacker A; will output the same guess
as A will, and the success probability of both attackers will be exactly the
same.

For PKC,, the idea is similar, but we proceed in two steps. First, we de-
fine an attacker Af able to distinguish between the distributions associated to
nit; plaintexts. Namely, if A chooses two plaintexts ag, a1, A5 chooses two sets
of plaintexts (a(()l), .. .,a(()nltl)), (agl), .. ,agmtl)), for g < Ency(pk1,ap) and
ay — Ency(pki, a1) which ensures that A, and therefore A}, is able to distin-
guish the challenges with an non-negligible advantage. Then, we use a standard
hybrid argument to derive from Aj an attacker Ay against PKCs.

]

The output of the chaining algorithm being itself chainable we can iteratively con-
struct a chain of d encryption schemes PKCy, ..., PKCy, if for any i € [1,d] PKC; is
(n;, t;)-chainable, and obtain an (ng4 H;l;ll n;t;,tq4)-chainable encryption scheme
PKC, with (pki,...,pkq) and (ski,..., skq) as public and secret keys. Note that
PKCy,...,PKC4 need not to be different schemes and that we can chain d times an
(n, t)-chainable scheme PKC to itself. In this case we get an (n(nt)?~!, t)-chainable
scheme, which has the same public/secret keypair (pk, sk) as PKC.

4 Computing with Chained Schemes

4.1 Product and Polynomial Evaluation

Chained schemes being themselves chainable they provide a limited homomor-
phism via integer addition (by Definition [[J). Thus, in order to compute sums
of plaintexts over encrypted data with them we just need to add up the cor-
responding ciphertexts. Computing products of plaintexts over encrypted data
is not as straightforward and requires to use ciphertexts of the multiplication
operands under the encryption schemes that form the chain. The following al-
gorithm shows how to proceed.

Product Computation Algorithm: v = product(a, 3)

Input:
- a € Ency(pki,aq) for a; € {0,1} and PKC; (n1,t1)-chainable
- B € Enca(pke, as) for as € {0,1} and PKCq (ne, t2)-chainable
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Output:
- v € Enc((pk1, pk2), a1az) for PKC = (KeyGen, Enc, Dec) = chain(PKCy, PKCy)

1 Split « into the bit vector o/ = (/M) ... /(M1)€ Enc, (pk1,a1)
2 Multiply each one-bit scalar of this vector by 8 and output the result.

Proposition 3. The output of the above-described protocol product belongs to
Enc((pk1,pk2), a1a2).

Proof. We have product(a, ) = (o/V3,...,a/(m*)3). We want to prove that

there is v € Enc((pki, pka), a1az) such that for all j € [1,n1t1] we have o'W g =
~@). By the construction of a chained scheme, this is equivalent to: there is

o 5 € Enc)(pk1, a1az) such that o '0g e Ean(plcz,cu1 2) for all j € [1,n1t4].

If ay = 1 set ) , = o’ € Enc(pk1,a1) = Enc|(pk1, aiaz). For each j € [1,n1t1]
Sif /0) =1,
o/ 3 = § € Enca(pks, az) = Enca(pks, /) = o/Y) 3 € Enca(pks, a)%)
-if ') =0,
o'W 3=(0,...,0) € Ency(pks,0) = Ency(pks, a’9)) = /W3 € Encz(pkg,oz1 2))
= if az = 1 the output of the algorithm is in Enc((pki, pka), a1az2).
If ay =0, set o 5, = (0,...,0) € Enc (pk1,a1az). For each j € [1,nit1]
Sif 0 =1,
o/ B = B € Enca(pka, az) = Enca(pka, 0) = o/9) 3 € Ency(pka, a}'3)
- if /W) =0,
o’9D3=(0,...,0) € Enca(pks,0) = o'V € Ean(pkg,all%))

= if ag = 0 the output of the algorithm is also in Enc((pk1, pk2),a1az).
O

This algorithm can be used iteratively to obtain encrypted products of d plain-
texts. As these products are ciphertexts of a chained (and thus chainable) en-
cryption scheme, we can add them and the result will decrypt to the evaluation
of a degree d binary polynomial (if the homomorphic parameter m of the scheme
is larger than the number of monomials M). The following algorithms provide a
complete protocol for degree d polynomial evaluation over encrypted data. We
want to stress that the algorithms can be easily modified (to get more efficient
and simple), in case the input polynomial P has a more compact representation,
eg. P=(X;+1)%
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Polynomial Evaluation Algorithms: P = sz\i1 Xy .. Xo, € Zo]Xy,.. ., XU]

Setup KeyGenp (1%, M):

Input:

- A security parameter 1”

- A maximum number of monomials M

Output: A keypair (pk, sk) € KeyGen(1%, M) for PKC = (KeyGen, Enc, Dec) an
(n,t)-chainable scheme PKC

Encryption Encp(pk, (a1,...,a,)):

Input:

- A public key pk of the afore-mentioned (n,t)-chainable scheme PKC

- A point (ai,...,a,) in {0,1}" in which the polynomial should be evaluated
Output: A set of ciphertexts a; € Enc(pk, a;) for ¢ € [1,v]

1 Set a; — Enc(pk,a;) for i € [1,7]

2 Return aq,...,qa,
Evaluation Evalp((a1,...,ay), P):
Input:

- An encryption (aq,...,ay) of a point in {0, 1}?, through PKC

- The description of a polynomial P = Zé\il Xy o Xo, €22 X1,..., X0

Output: A sum of ciphertexts, «, that decrypts to P(ay,...,ay)
Foré=1,...,M

def
Qp1 = Qg

1

2

3 Forj=2,...,d
4 ayg,; = product(ay, j—1,0u;)
5 Return o = Zé\il Qd

Decryption Decp(sk, @)

Input:

- A secret key sk of the afore-mentioned (n,t)-chainable scheme PKC
- The output, «, of the evaluation algorithm

Output: P(ay,...,ay)

1 PKCy,2 = chain(PKC, PKC)

2 FOI‘j :3,...,d2 PKCL]‘ :chain(PKCLj_l,PKC)

4 Return (amod 2) for a <« Dec; 4(sk, c)

Note that if the polynomial has a monomial of degree d’ < d it is enough to add
the following computation: For j € [d',d — 1]: oy, j+1 = product(ay ;, ), where
ag € Enc(pk,1). This step ensures that the protocol processes the polynomial
correctly.

! Note that we do not use a standard indexing such as Zé\il Xiy -+ Xig, and rather
implicitly associate to each £ € [1, M] a tuple (f1,...,4s) € [1,v] to reduce index
notations.
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Proposition 4. The Polynomial Evaluation Algorithm is correct, produces an
output of (nt)%logm bits and if PKC is IND-CPA, the choice of the evaluation
point is private.

Proof (Sketch.). The correctness of the Product Algorithm guarantees that cy ; €
Ency j(pk,ae, - -ag;) for any j € [1,d] and any £ € [1, M] (denoting PKC; ; =
PKC). Indeed, by induction, for j = 1 we have ay1 € Ency 1(pk, ar,). Suppose
that we have oy ; € Ency j(pk,ag, - - - ag;). By the product algorithm correctness

we know that oy j11 = product(ay ;, e, ., ) is an encryption of ap, - - ag, , using

j+1
the encryption scheme chain(PKC, ;, PKC) &f PKCi j+1. In other words, oy j+1 €

Enci ji1(pk, ae, - - - ag,,, ), which completes the induction proof.

As each monomial computed in the main loop of the evaluation algorithm
is a ciphertext of PKCy 4, and PKCy 4 is (n(nt)?~!,t)-chainable, the result of
the final step has (nt)?logm bits. Moreover, as the instance of PKC; 4 associ-
ated to (pk, sk) is an M-limited homomorphism the result decrypts (mod 2) to

J+1

P(ay,...,ay).
If PKC is IND-CPA, the indistinguishability of the evaluation points is straight-
forward using a standard hybrid argument. a

In order to have an efficient evaluation of a polynomial through chained schemes,
(nt)?1log m must be sub-linear in m. As nt is the ciphertext size of PKC, we must
use an encryption scheme such that ciphertext size grows as o((m/logm)'/?).
Such instantiations are presented in the next section.

4.2 Higher Moduli

The definitions, algorithms, and propositions, in this and the previous section
need only to be slightly changed in order to produce chained schemes that allow
to compute sums, products, and more generally evaluate polynomials, over Z,
for r > 2. Namely,

— In Definition [ the homomorphic property must hold Vay, ..., an € [0,7r—1]

— In the product algorithm the output is a sum of up to r ciphertexts;

— In the algorithm Evalp for the evaluation of a polynomial, we need an extra
final step in each monomial computation in which the associated ciphertext
is added to itself a given number of times (the coefficient in front of the
monormial).

In order to remain correct, the product algorithm and the polynomial Evalp
algorithm, require respectively m > r and m > Mr% (M being the number
of monomials of the polynomial). The rest of the definitions, algorithms and
propositions remain unchanged, but the proofs get harder to read, and we have
thus preferred to provide them only in the long version of this paper.

5 Specific Realizations

In this section we describe some encryption schemes that satisfy the conditions
given in Definition [[l These schemes are all based on lattices, and can be used
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at any point of a chainf On the other hand, it is obvious that the last encryp-
tion scheme in a chain does not need to have a ciphertext space which is an
additive group. Therefore, we can use for the last scheme PKC; other homo-
morphic encryption schemes, not necessarily based on lattices, as long as their
plaintext spaces are additive groups. This includes schemes like Paillier’s [26]
or Boneh-Goh-Nissim’s [5] (BGN for short). The advantage of using the BGN
scheme is that it provides an additional level of multiplications for free. That is,
if we have a d-chained encryption scheme where PKCy is the BGN cryptosys-
tem, then we could use the global scheme to evaluate multivariate polynomials
of degree up to d + 1 (as long as the result of the evaluation is relatively small,
which is the drawback of BGN). Such a hybrid lattice-based and number-theory
encryption scheme allowing an efficient evaluation of degree d > 2 polynomials
over encrypted data is a surprising consequence of our approach.

5.1 A Scheme Based on uSVP

In [20], Kawachi, Tanaka and Xagawa propose a set of lattice-based encryption
schemes, derived from [T628/29/3], that present some homomorphic properties.
In particular, we are interested in the variant of [28], whose IND-CPA security is
based on a worst-case/average-case reduction from O(k'>") — uSV P for given
security parameters k,r (related to the underlying lattice). In this scheme, the
plaintext space is (Zyp, +), for an arbitrary parameter p, and the ciphertext space
is (Zy,+), with N = 287" As it is proved in [20], the scheme is an m-limited
additive homomorphism via addition modulo N, when m-p < k". As Zy is a Z-
module, adding up the ciphertext as integers, and applying the mod IV operation
just before the decryption gives the same result, and thus we have an m-limited
additive homomorphism via integer addition. Moreover, for any keypair 0 is an
encryption of 0 and thus, as long as m < p, the scheme is (1, ¢)-chainable, with
t =log N = 8k2.

The output of the secure evaluation of a degree d polynomial with this scheme
has a size t?logm = 8?k2%logm. Using m < p and m - p < k" we get that the
output of the evaluation has roughly a size of 8¢m*®/" log m bits, and therefore we
must have r > 4d in order to have an efficient evaluation. In terms of security, this
implies that this instantiation relies on the worst case hardness of 0(/{1'5+4d) —
uSV P.

5.2 Other Schemes

As noted in the related work section, GHV [I5] is another lattice-based en-
cryption scheme which can be used with our construction. The security of their
scheme is based on the worst-case hardness of LWE (for a given approximation
factor), which is equivalent to the worst-case hardness of several standard lattice
problems (see [27]).

2 Code-based schemes seem also an interesting alternative to be explored.



152 C. Aguilar Melchor, P. Gaborit, and J. Herranz

Gentry et al. note that their scheme has the same “multiplication-for-free”
property (described at the beginning of this section) as the cryptosystem of
Boneh et al. [B], allowing thus the evaluation of degree d + 1 polynomials with
a chain of just d schemes. In fact, it is possible to do much better, as even after
the multiplication for free GHV’s ciphertexts can undergo m additive operations,
and thus it is possible to alternate. First, we do a multiplication for free with
their scheme and then a multiplication with our construction. As the result
of our multiplication is a set of GHV’s ciphertexts, they can again undergo a
multiplication for free, and so on. With this improvement it is possible to evaluate
polynomials of degree 2d with just a chain of d schemes.

A second advantage of GHV is that ciphertext size grows only logarithmically
in m (whereas with the uSVP instantiation we present, it grows polynomially).
In order to use the full potential of this fact we must change our construction
and split the ciphertexts in groups of bits, instead of bits, just as it is presented
in [2] for the instantiation of our construction with the lattice-based scheme
of [I]. With such a construction it is possible to get a very small expansion
factor at each iteration of the chain, asymptotically close to 1, tweaking slightly
GHV. This is a major step forward, as it allows us to obtain an expansion
factor linear, instead of exponential, in d. Indeed, by chaining instances with
shrinking expansion factors, (2,3/2,...,(d —1)/(d — 2),d/(d — 1)), the product
of the expansion factors of d chained schemes with the alternative construction
is d. Moreover, using the scheme’s blinding properties the instantiation also
ensures formula privacy. The full details of this alternative construction and its
instantiation with GHV are left to the long version of this paper.
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Abstract. Homomorphic encryption (HE) schemes enable computing
functions on encrypted data, by means of a public Eval procedure that
can be applied to ciphertexts. But the evaluated ciphertexts so generated
may differ from freshly encrypted ones. This brings up the question of
whether one can keep computing on evaluated ciphertexts. An i-hop
homomorphic encryption scheme is one where Eval can be called on its
own output up to ¢ times, while still being able to decrypt the result. A
multi-hop homomorphic encryption is a scheme which is i-hop for all i.
In this work we study i-hop and multi-hop schemes in conjunction with
the properties of function-privacy (i.e., Eval’s output hides the function)
and compactness (i.e., the output of Eval is short). We provide formal
definitions and describe several constructions.

First, we observe that “bootstrapping” techniques can be used to con-
vert any (1-hop) homomorphic encryption scheme into an i-hop scheme
for any ¢, and the result inherits the function-privacy and/or compact-
ness of the underlying scheme. However, if the underlying scheme is not
compact (such as schemes derived from Yao circuits) then the complexity
of the resulting i-hop scheme can be as high as P,

We then describe a specific DDH-based multi-hop homomorphic en-
cryption scheme that does not suffer from this exponential blowup. Al-
though not compact, this scheme has complexity linear in the size of
the composed function, independently of the number of hops. The main
technical ingredient in this solution is a re-randomizable variant of the
Yao circuits. Namely, given a garbled circuit, anyone can re-garble it in
such a way that even the party that generated the original garbled circuit
cannot recognize it. This construction may be of independent interest.

1 Introduction

Computing on encrypted data epitomizes the conflict between privacy and func-
tionality, and has been receiving a great deal of attention lately. In the canonical
setting of this problem there are two parties — a client that holds an input z, and
a server that holds a function f. The client wishes to learn f(x) using minimal
interaction with the server and without giving away information about its input.
Similarly, the server may want to hide information about the function f from the
client (except, of course, the value f(z)). This problem arises in a wide variety
of practical applications such as secure cloud computing, searching encrypted
e-mail and so on.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 155 2010.
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One way to achieve this goal is via the paradigm of “computing with encrypted
data” [I5]: namely, the client encrypts its input = and sends the ciphertext to the
server, and the server “evaluates the function f on the encrypted input”. The
server returns the evaluated ciphertext to the client, who decrypts it and recovers
the result. An encryption scheme that supports computation on encrypted data
is called a homomorphic encryption (HE) scheme. Namely, in addition to the
usual encryption and decryption procedure, it has an evaluation procedure, that
takes a ciphertext and a function and returns an “evaluated ciphertext”, which
can then be decrypted to obtain the value f(x). Over the years there were many
proposals for encryption schemes that support computations of some functions
on encrypted data. In this work, however, we are only interested in schemes that
allow computation of any function on encrypted data.

A trivial implementation of the evaluation procedure is for the evaluated
ciphertext to include both the original ciphertext and the function f, and for the
client to decrypt the original ciphertext and then evaluate f on the result. The
problem with this trivial solution is that it does not hide the server’s function
from the client, and that it does not offload any of the client’s work to the server.
We are therefore interested also in the properties of function privacy (meaning
that the evaluated ciphertext hides the function) and compactness (meaning
roughly that the work involved in decrypting the evaluated ciphertext is less
than in computing the function “from scratch”).

1.1 Homomorphic Encryption vs. Secure Function Evaluation

Cachin, Camenisch, Kilian, and Miiller [5] observed that the paradigm of “com-
puting with encrypted data” with function privacy can be instantiated using
any two-message protocol for two-party secure function evaluation (SFE). In-
deed, the specifications of these two primitives are very similar: we can think of
the first message in a 2-message SFE protocol as “encrypting” the first party’s
input, and the second message is the evaluation of a function held by the second
party on that encryption.

Following the observation of Cachin et al., there is a simple folklore construc-
tion of public-key homomorphic encryption scheme from any two-message SFE
protocol and an auxiliary CPA-secure public key encryption (e.g., [I0J3], see
also Section [[3] below). In particular, this construction can be used to convert
a protocol based on Yao’s garbled circuits [19] into a public-key homomorphic
encryption scheme. The resulting scheme is function private but not compact:
the client complexity is linear in the circuit size of the evaluated function f.

Many other schemes for “computing with encrypted data” can be found in the
literature, with client complexity that depends in various forms on the complex-
ity of the evaluated function f (e.g., its truth-table size [11], circuit depth [I6],
branching-program length [10], polynomial degree [I], etc.) The new scheme of
Gentry [7] and its variants [I8[I7] are the first schemes where the client com-
plexity is independent of the complexity of f.

A REMARK ABOUT “FULLY HOMOMORPHIC” ENCRYPTION. We note that the
schemes in [7/I8I17] are unique in that evaluated ciphertexts can be made
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statistically close to freshly encrypted ones. We refer to schemes with this prop-
erty as “fully homomorphic” (as opposed to just “homomorphic” for schemes
without this property). It is easy to see that fully homomorphic schemes are
both compact and function private. Also, all the issues with multi-hop evalu-
ation that we consider in this work are trivialized for such schemes. For that
reason, fully homomorphic schemes are not the focus of the current work.

1.2 Multi-hop Homomorphic Encryption

Beyond the simple client-server setting from above, computing with encrypted
data is useful also in settings where several functions are computed on the same
encrypted data. For example, consider an email message encrypted under the
public-key of Alice, which is sent to alice@yahoo.com and promptly forwarded
to alice@gmail.com. Both Yahoo and Google have their own spam-tagging
algorithms that they want to apply to incoming emails, hence we may want to use
a homomorphic encryption scheme so that they can apply these algorithms to the
encrypted email. In this example, Yahoo can apply its spam-tagging algorithm
to the encrypted email and produce an (encrypted and) tagged email, and then
Google needs to apply its own spam-tagging algorithm to the result.

Another application with similar requirements is the setting of “autonomous
mobile agents” that was considered by Cachin et al. [5]. In this application, a
software agent is originated in some node in the network, and includes within
it an encryption of data from that node. The agent then roams the network,
visiting one node after another, and at each visited node it computes a func-
tion that depends on its current state and on the data from the visited node.
Finally, the agent returns to its originator, and the originator learns the result
of the composed function from all the visited nodes, as applied to the original
data.

What we need in these applications is a multi-hop homomorphic encryption
scheme, where the homomorphic function evaluation can be applied not only to
a fresh ciphertext, but also a ciphertext that was already subjected to another
homomorphic evaluation. We stress that evaluated ciphertexts may be very dif-
ferent from fresh ciphertexts, and it is not clear that the evaluation procedure
of the scheme can process this modified form. (Indeed, homomorphic encryption
schemes that are derived from generic secure computation protocols tend to have
this problem; see below.) Cachin et al. [5] described a solution to the multi-hop
setting based on Yao circuits, and our second construction in this work is an
extension of that solution.

The multi-hop setting implies a new function-privacy requirement, namely
multi-hop function privacy. For example, in the mail-forwarding example above,
Google may worry that Yahoo! will try to collude with the sender and receiver of
the email, in order to learn something about Google’s spam-tagging techniques.
Indeed, the solution of Cachin et al., which is described in Section [[L3 below,
suffers from exactly this problem. Ensuring multi-hop function privacy is the
main focus of our work.
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1.3 Homomorphic Encryption from Yao Circuits

For the sake of concreteness, we now describe the folklore construction of (1-hop)
homomorphic encryption from any two-message SFE protocol, and the extension
of Cachin et al. to the multi-hop setting based on Yao circuits. Consider the
structure of a two-message SFE protocol where a client holds an input z, a
server holds a function f, and the client wishes to receive f(x).

e The client sends to the server a message that “encodes” its input x, and
yet does not reveal x to a computationally bounded server. In other words, the
client’s message acts as an encryption of x.

e The server’s response encodes the result of the computation (namely f(x)),
and yet, reveals no more information to the client about the function f. In
other words, the server essentially performs a function-private evaluation of the
function f on an encrypted input.

e The client recovers the result f(z) from the server’s message, using her secret
randomness. This is the decryption procedure.

The above is still not quite a public-key encryption scheme: in particular,
there is no public key involved, and the same party (the client) is doing both
the encryption and the decryption. In contrast, a public key homomorphic en-
cryption should be thought of as a three-player game: first a recipient publishes
a public key, then a sender (client) encrypts the data z under that public key,
next an evaluator (server) computes a function f on the encrypted data, and
finally the recipient decrypts the result and recovers f(z).

Fortunately, we can get a public key HE scheme from a two-message SFE
protocol by using an auxiliary standard public-key encryption scheme: The re-
cipient chooses a public/secret key pair for some semantically secure encryption
scheme, the sender sends the first-message SFE message and in addition also
the encryption of the SFE randomness under the public key, and the evaluator
forwards the encrypted randomness to the recipient together with the second-
message SFE message. The recipient uses its secret key to decrypt and recover
the SFE randomness, and then uses the SFE procedure with this randomness to
recover f(x).

EXTENDING TO MORE THAN ONE HOP. Consider next the setting where there
is a sender who holds an input x, two evaluators F; and E5 who hold functions
f1 and fs respectively, and the recipient wishes to receive fo(f1(x)). To achieve
this, the client would like to compute an encryption of x and send it to the
first evaluator, who computes an encryption of fi(x) and passes it to the second
evaluator. The question we ask is: Can Es now compute on the output of ;7
For generic 1-hop homomorphic encryption (such as the construction above from
a generic 2-message SFE protocol), we only offer a partial answer to this ques-
tion: In Theorem [Tl we show that “bootstrapping” techniques [7] can be used to
transform a 1-hop HE scheme into an i-Hop scheme for any 4, but the size of the
ciphertext could grow by a polynomial factor for every hop (and hence we can
only carry out this procedure for a constant number of hops).
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On the other hand, a scheme based on Yao’s garbled circuits [19] is easy to
extend to many hops without the exponential blowup in complexity. Recall that
in Yao’s garbled circuit construction, the server (who has a function) chooses two
random labels for every wire in the circuit that computes that function, and for
every gate it computes a “gate gadget” that allows the client to learn one of the
output labels if it knows one label on each input wire. The collection of all these
gate gadgets is called the “garbled circuit.” The server sends the garbled circuit
to the client, and engages in an oblivious transfer protocol where it reveals to the
client exactly one of the two labels on every input wire (without learning which
was revealed). The client uses the gadgets to learn one label on each wire, all the
way to the output wires of the circuit. The server also provides the client with
a mapping between the output labels and zero/one, hence allowing the client to
learn the output.

Cachin et al. [5] noted that this construction is extendable to more than one
hop: the second evaluator F, receives the garbled circuit from the first evalua-
tor E1, and it can now just use E1’s output labels for its own input labels, thus
“connecting” these two circuits and proceeding with the protocol. Moreover this
extension offers a weak form of function privacy: if only the client is corrupted,
then the composed garbled circuit looks as if it was generated “from scratch” on
the compositions of the two circuits, and thus it hides them from the recipient.

However, privacy breaks down completely when E; colludes with the recipient.
Now, E; knows both the labels for each input wire of the garbled circuit that
FE5 prepares. Thus, from the point of view of F1, the output of Es is not garbled
at all, in fact E; can completely recover fs.

Our main technical contribution is a re-randomizable variant of Yao circuits,
allowing Eo to re-randomize the labels of E1’s garbled circuit, thus obtaining
privacy even against a collusion of E1 and the recipient.

1.4 Summary of Our Results

DEFINITION OF MULTI-HOP HOMOMORPHIC ENCRYPTION. Informally, in an i-
hop HE scheme, a sequence of i functions fi,..., f; can be homomorphically
evaluated one by one on a ciphertext ¢ produced by encrypting a message x.
This is pictorially depicted as follows. (Here Eq,..., F; denote the ¢ players —
evaluators — that hold the functions fi,..., f;).

co=FEnc

Encryptor(x) Ene(=) Bi(fi,c0) S ... — E;(fj,cj—1) 005 Decryptor

A multi-hop HE scheme is simply an ¢-hop scheme that works for any (polyno-
mial) 4.

The definition of multi-hop function privacy requires that for every j € [d],
even if all the evaluators except £; combine their information, they still learn no
information about f; (other than its input and output). The formal definition
is simulation-based, extending the (1-hop) definition of Ishai and Paskin [10]. In
this work we only deal with the honest-but-curious setting, and only consider
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the case where all but one of the evaluators are corrupted (as opposed to an
arbitrary subset of them). Treatment of the more general cases is left for future
work.

CONSTRUCTION I: 1-HOP — 4-HOP. In Section Bl we show how to convert a
1-hop HE scheme into an i-hop HE scheme for any i. This construction uses
a bootstrapping technique, similar to [7]: given a function f and an evaluated

ciphertext ¢ that decrypts to some value x, we can express the value f(z) as a

function of the secret key, Fy .(SK) def f(Dec(sk,c)) = f(x). If we add to the

public key a fresh encryption of the secret key, we can then use the evaluation
procedure of the scheme to evaluate Fy . on this fresh encryption, thus obtaining
a ciphertext that decrypts to f(x). As described, this construction relies on
circular security of the underlying scheme (since we publish an encryption of
the secret key). Just as in [7], we can avoid relying on circular security and still
support up to ¢ hops, by having ¢ public/secret key pairs and encrypting the j’th
secret key under the j + 1’st public key.

We note, however, that for non-compact HE schemes, the size of the evaluated
ciphertext can be polynomially larger than the size of the evaluated function.
Hence the ciphertext in the resulting i-hop scheme could grow by a factor of up
to k90 after i hops, where k is the security parameter. Thus, this construction
is viable only for a constant number of hops. Since by the folklore construction
(described in section [[3)), the existence of 1-hop HE schemes is equivalent to
the existence of two-message SFE protocols, we get:

Theorem 1 (Informal). If two-message secure function evaluation protocols
exist, then for any constant i there is a public key encryption scheme H") which
s i-hop homomorphic and i-hop function-private. There is a fized polynomial
q(k) in the security parameter k such that on evaluating functions f1,..., f; on
a fresh ciphertext of H) | the resulting evaluated ciphertext has size at most

(251 1f51) - alk)".

We also note that if the underlying 1-hop HE scheme is compact, then the
construction above can be carried out without the exponential blowup, hence
we can extend it to an i-hop scheme for any polynomial ¢. Moreover, similar
bootstrapping techniques can be used to combine two 1-hop HE schemes — one
compact but not private and the other private but not compact — into a single 1-
hop scheme which is both private and compact. Using the construction above we
can then extend it to a compact and private i-hop scheme for any polynomial i.

Theorem 2 (Informal). Assume that there exist a 1-hop compact HE scheme,
and a (possibly different) 1-hop function-private HE scheme. Then, for every
polynomial p(k) there is an encryption scheme HP), which is p(k)-hop homo-
morphic and p(k)-hop private. There is a fized polynomial q(k) such that on
evaluating functions f1,..., fpk) on a fresh ciphertext of HP), the resulting ci-
phertext has size q(k) (independent of the size of the functions f;).

CONSTRUCTION II: RE-RANDOMIZABLE YAO — MULTI-HOP. In Section Bl we
describe a scheme that can handle any polynomial number of hops, and is
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semantically secure and function private under the decisional Diffie Hellman
assumption. The size of the ciphertext in this scheme grows linearly with the
size of the functions that are evaluated on the ciphertext, but independently of
the number of hops.

This encryption scheme essentially amends the Yao-garbled-circuit construc-
tion from the previous section, which only offered a weak form of function pri-
vacy. The problem there was that the garbled circuit produced by the second
evaluator Es contains (as a sub-circuit) the garbled circuit produced by Ej; this
reveals non-trivial information about the function f5 to the first evaluator. The
solution to this problem is to come up with a way to re-randomize Yao garbled
circuits. Roughly speaking, this is a procedure that takes a garbled circuit and
constructs a random garbled circuit for the same function.

We describe a variant of the garbled circuit construction that allows such
re-randomization. For the construction, we rely on the encryption scheme of
Boneh-Halevi-Hamburg-Ostrovsky [4], and on the oblivious-transfer protocol of
Naor-Pinkas and Aiello-Ishai-Reingold [I3I2] (both of which are based on the
decisional Diffie-Hellman assumption, and have “nice” additive homomorphic
properties).

Theorem 3 (Informal). Under the decisional Diffie- Hellman assumption, there
1s a public-key multi-hop homomorphic encryption scheme H* which is function-
private for any number of hops. Moreover, there is a fized polynomial q(k) in the
security parameter such that on evaluatindq functions f1,..., fq on a fresh cipher-
text, the resulting ciphertext has size (Zi:l |f2\) -q(k).

2 Definitions of Homomorphic Encryption

Nearly all our definitions rely on a security parameter, which is usually implicit.
By x «— X and = € S we denote drawing from a distribution and choosing
uniformly from a set. We call a procedure efficient if it runs in time polynomial
in the length of its input. We say that two distributions are computationally
indistinguishable if any efficient distinguisher has only a negligible advantage in
distinguishing them. Throughout the writeup, adversarial algorithms are always
nonuniform.

A homomorphic encryption scheme consists of four procedures, £ = (KeyGen,
Enc, Dec, Eval). KeyGen takes as input the security parameter and outputs a
public/secret key-pair, Enc takes the public key and a plaintext and outputs a
ciphertext, and Dec takes the secret key and a ciphertext and outputs a plaintext.
The Eval procedure takes a description of a function, the public key, and a
ciphertext, and outputs another ciphertext.

MULTI-HOP EVALUATION. We extend the Eval procedure from a single function
to a sequence of functions in the natural way. Below we say that an ordered
sequence of functions f = (fi,..., fi) is compatible if the output length of f; is
the same as the input length of f;1 for all j. If f is a compatible sequence of ¢
functions, we denote its j" prefix by f; = (f1,..., f;). The composed function

fe(- f2(f1(4)) -+ ) is denoted (fro---o f1).
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We define an extended procedure Eval® that takes as input the public key, a
compatible sequence f = (f1,..., ft), and a ciphertext ¢o. For ¢ = 1,2,...,¢ it
sets ¢; « Eval(PK, f;, ci—1), outputting the last ciphertext c;.

Definition 1 (i-Hop Homomorphic Encryption). Leti = i(k) be a function
of the security parameter. A scheme £ = (KeyGen, Enc, Dec, Eval) is an i-hop ho-
momorphic encryption scheme if for every compatible sequence f = (f1,..., ft)
with t <14 functions, every input x to f1, every (PK, SK) in the support of KeyGen,
and every c in the support of Enc(PK;x),

Dec(sK, Eval*(PK, f,c)) = (fio---o fi)(z)

We say that € is a multi-hop homomorphic encryption scheme if it is i-hop for
any polynomial 7.

We note that 1-hop homomorphic encryption is just the usual notion of homo-
morphic encryption, as formalized, e.g., in [10, Def 5].

FUNCTION PRIVACY AND COMPACTNESS. Semantic security [9] is defined exactly
as for regular public-key encryption schemes (without regard to Eval). We omit
this definition due to space limitations.

To define function privacy, we view the operation of Eval® as a multi-party
protocol with one party per function, and formalize function-privacy as the usual
input-privacy property for these parties: roughly speaking, we require that even
if the recipient who holds the secret key colludes with all the parties but one,
the function of that one party still remains hidden, except perhaps (its size and)
the value that this function assumes on a single input.

Definition 2 (function privacy - honest-but-curious). An i-hop homo-
morphic encryption scheme £ = (KeyGen, Enc, Dec, Eval) is function-private if
there exists an efficient simulator Sim such that for every compatible sequence
of functions f = (f1,..., fr) witht <1, every j <t, every input x for f1, every
(PK, SK) in the support of KeyGen, and every ciphertext c;_1 in the support of
Eval* (PK, fji—1, Enc(PK; 1’)), the following two distributions are indistinguishable
(even given x, f; and SK):

Eval(PK, f;,¢j—1) and Sim(PK, cj_1, 150, (fio - o f;)(2))

We remark that Definition 2] can be extended in several different ways. An obvi-
ous extension would be to consider the malicious case (with or without assuming
that the public key and the initial ciphertext were created honestly). A second
possible extension is to consider a more general adversarial structure, where
the attacker can corrupt an arbitrary subset of the players (the encryptor, the
evaluators, and the decryptor), and we still want to ensure the privacy of the
non-corrupted ones. Yet another extension to Definitions [I] and Bl is to consider
an arbitrary network of functions (and not just a single chain). Finally, one could
strengthen the privacy guarantee, requiring that Eval® hides not only the func-
tions that the nodes compute but also the structure of the network itself (e.g.,
the number of functions in the chain). We leave all of these extensions to future
work.
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Definition 3 (Compactness). A scheme & = (KeyGen, Enc, Dec, Eval) is i-hop
compact homomorphic if there exists a polynomial p(-) in (only) the security
parameter k, such that decryption of any ciphertext (even one that is the output
of Eval®) w.r.t. the security parameter k can be implemented by a circuit of size
at most p(k).

Namely, for every value of k, there exists a circuit Dec®) of size at most p(k),
such that the i-Hop property from Definition [l holds for that decryption circuit.

The name “compactness” is justified by the fact that the length of the evaluated
ciphertexts cannot grow beyond p(k) (regardless of f), if they are to be decrypted
by a p(k)-size circuit. We comment that compactness and function privacy to-
gether are still formally weaker than the Ishai-Paskin notion of “privacy with
size hiding” [10] Def 8].

3 From 1-Hop to :-Hop Homomorphic Encryption

Below we show how to transform a 1-hop HE scheme to an i-hop scheme for any
constant ¢ > 0. The price that we pay, however, is that the complexity of the
i-hop scheme (and in particular, the length of the evaluated ciphertexts) may
grow as large as k9% (for security parameter k).

The idea is that each evaluator (with function f) in the chain, upon receiving

the “evaluated ciphertext” ¢ from its predecessor, applies again the evaluation
procedure, but not to its original function f. Rather, it applies the evaluation
procedure to the concatenation of f with the decryption function, namely to
the function FY .(SK) def f(Dec(sK, ¢)). This technique, which is reminiscent of
Gentry’s “bootstrapping” technique [7], works because (by induction) applying
Dec(sk, ¢) on the previous evaluated ciphertext outputs the value (fj_10---o0
f)(@).
THE CONSTRUCTION. Let H = (KeyGen, Enc, Eval, Dec) be a function-private
homomorphic 1-hop encryption scheme (that need not be compact). Let i be a
constant parameter of the system (that represents the number of hops that we
are shooting for). We construct a function-private i-hop homomorphic encryption
scheme H() = (KeyGen(i), Enc®, Eval®, Dec(i)) as follows.

KeyGen(i): Run KeyGen for ¢ 4+ 1 times, to get for j =0,1,...,4:

(PKj,SK;) < KeyGen, and for j < i also: «a; « Enc(PKjH; SK; )
~ ~ 4 N~
key ptxt

Defining «; =L, the public key is the set PK() = {(PKj,;) : 5 =0,1,...,i},
and the secret key is SK(®) = (sKq, SK1, . .., SK;).

Enc® (Pk®; 2): Set ¢y < Enc(PKo; z) and output [level-0, co].

Eval(i)(PK(i),é, fj+1): Parse the ciphertext as é = [Ievel—j, cj]. Compute the de-

scription of the function Fy, , ., (s) def fi+1(Dec(s; ¢;)), and set cjy1 «—
Eval(PKj11; Fy, ;s ;). Output [level-(j 4+ 1), ¢j41].
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Dec(i)(SK(i); ¢): Parse the ciphertext as ¢ = [Ievel—j7 cj]. Compute and output
y «— Dec(sk;; ¢j).

Theorem 4. The scheme HY above is an i-hop function private homomorphic
encryption scheme.

Proof. (sketch) Correctness is easy to establish by induction. The correctness
of the underlying 1-hop homomorphic encryption scheme H implies that for all
j <1 we have

Dec(SKj, cj) = Dec(SKj, Eval(PKy; Fy; c; 1, @j-1))

@ e (5551) 2 fi(Dec(siy1,e51) 2 (fio..0 fi)(@),

—~
~

where f; is the function that was used in the j’th hop, Equality (a) holds by
correctness of the underlying 1-hop scheme, Equality (b) holds by definition of
Fy; ¢;_,, and Equality (c) holds by the induction hypothesis.

Semantic security of H(?) follows trivially from that of the underlying (1-hop)
encryption scheme. Similarly, i-hop function privacy follows easily from the 1-
hop privacy of the underlying scheme (and the fact that the size of Fy, ., , that
the H simulator needs can be computed easily from the size of f; and the size
of ¢;_1 both of which the simulator for H® knows).

COMPLEXITY. For “generic” 1-hop encryption schemes (such as the one that we
can obtain from two-message SFE using the folklore construction described in
Section [[3)), the size of the ciphertext resulting from Eval(f,c) is larger than
the input length |c| + |f| by some factor K which is polynomial in the security
parameter k. Hence the size of the circuit for Fy, ., , in our construction is at
least

J J
K (o K (ol + L+ al) )+l = leol I3 IR = (30 131) 499

t=1 t=1

which means that after ¢ hops the ciphertext grows as k9.

3.1 Compact and Function-Private Homomorphic Encryption

Recall that the exponential blowup in the construction above is due to the fact
that the ciphertext that results from Eval is larger than the function size (by
a multiplicative factor). On the other hand, if the underlying 1-hop scheme
is compact (and function-private), then the construction above would yield a
compact (and function-private) i-hop scheme.

Below we show that given a 1-hop scheme which is compact but not private,
and another 1-hop scheme which is private but not compact, we can combine
them to get a 1-hop scheme which is both compact and private (and thus also
i-hop compact and private scheme for all ¢, by the observation above).
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The idea is to iterate the two schemes at every hop. First we apply the private
scheme to the function f that we want to evaluate, thus getting a “private
ciphertext” which is large but does not reveal information about f. Then we
apply the compact scheme to the decryption function of the private scheme,
in essence “compressing” the large ciphertext into a compact one which is still
decrypted to the same value. The result is clearly compact (since it outputs the
“compact ciphertext”). It is also function-private since the only dependence of
the compact ciphertext on the function f is via the value of the intermediate
“private ciphertext”, and even if we were to give the adversary the “private
ciphertext” itself, it would still not violate the function-privacy of f

We note that when using this technique, we again get a “hard-wired” pa-
rameter ¢ that limits the number of hops that we can handle: to get an i-hop
scheme, the public key must have size linear in ¢. Thus, the resulting scheme is
not multi-hop, according to Definition [l This limitation can be circumvented
by relying on the circular security of the resulting 1-hop schemes; the details are
deferred to the full version.

4 Extendable and Re-randomizable Secure Computation

Below we define the tool of “extendable and re-randomizable SFE”, and show
how it is used for multi-hop homomorphic encryption. In the next section we
show that this tool can be implemented under the decisional Diffie-Hellman
assumption. We begin with definitions (which are similar to Ishai et al. [I0]).

We fix a particular “universal circuit evaluator” U(:,-), taking as input a
description of a function f and an argument z, and returning f(z). Using U
we can view every bit-string f as describing a function (where f(z) is just a
shorthand for U(f, z)).

A two-message protocol for secure two-party computation to be run by Al-
ice (the client) and Bob (the server), is implemented by three polynomial-time
procedures II = (SFE1,SFE2, SFE-Out), where:

1. The procedure SFE1(z) is run by the client with input # and randomness
r1 to get the “first message” mj. my is then sent to the server and r; is kept
for later. We assume that r; includes in particular all the randomness that the
client uses.

2. The procedure SFE2(f,mq) is run by the server with input a function f and
randomness 5. The output of this procedure ms is then sent to the client.

3. Finally, the client runs the procedure SFE-Out(r1,m2) to recover an output
y. Correctness of the SFE protocol demands that the value y is equal to f(z).

By SFE1l(x) (resp. SFE2(mq, f)), we mean the distribution generated by the
respective algorithms (over the choice of their randomness). We also say that

! We comment that iterating the two systems in the opposite order also works: we
can apply the compact scheme to the function f and the private scheme to the
decryption of the compact one.
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(mq,71) € SFE1(x) (resp. (ma,r2) € SFE2(mq, f)) to denote a particular element
in the support of the distribution (together with the randomness involved).

Definition 4 (Client and (honest-but-curious) Server privacy). A pro-
tocol IT = (SFE1,SFE2,SFE-Out) is said to be:

— Client-private, if for any two inputs x,x’ of the same length, the distributions
SFE1(z) and SFE1(x’) are indistinguishable (even given x,z’).

— Server-private in the honest-but-curious model, if there exists a polynomial
time simulator Sim such that for every input x and function f, and every
(m1,m1) € SFE1(x), the distributions SFE2(f,m1) and Sim(mq, 11, f(x))
are indistinguishable (even given f,x,mi and rq).

We now define the notion of an extendable SFE protocol.

Definition 5 (Extendable SFE, honest-but-curious). A two-message SFE
protocol I = (SFE1,SFE2,SFE-Out) is extendable, if there exists an efficient
procedure Extend such that for any two compatible functions f and f', any input x
to f, and for every (my,r1) € SFE1(x), the distributions Extend(SFE2(my, f), f')
and SFE2(my, f' o f) are indistinguishable (even given x, f, f',m1 and ry).

EXTENDABLE SFE FROM YAO CIRCUITS. The construction of Cachin et al. [5
Sec. 5] can be cast in our language as describing an extendable SFE protocol
based on Yao’s garbled circuit construction [I9]. As described in the introduction,
the idea is that since the garbled circuit for f includes both the 0-label and the
1-label on any output wire, it can be extended by treating these labels as the
input labels for f’.

We comment that garbling the gates hides only the type of these gates and
not the topology of a circuit. To hide the function we must also use some form of
canonicalization of circuits, so that all circuits of a given size will have the same
topology. Moreover, to meet our definition of extendibility, it must be the case
that canonicalizing f, then extending it with f’/ and canonicalizing the whole
thing yields the same topology as canonicalizing the composed function f’ o f.

We note that such canonicalization is possible, and the size of the canonical-
ized circuits does not grow much. For example, a circuit of maximum width w
can be canonicalized to a leveled circuit with width w at every level, and a big
“multiplexer gate” between every two successive levels that determines what
output from the lower level goes to what input in the upper one. To get the
additional property that we need (where the order of canonicalization does not
matter) we would also have w output wires in the circuit, where the redundant
output wires have both labels set to 0. (We may also need to supply some dummy
gates that take as input the input wires and have both output labels set to 0, to
be able to pad the circuit if the maximum width of f’ is larger than that of f.)

FrROM EXTENDABLE TO RE-RANDOMIZABLE. Note that extendable SFE by itself
already yields multi-hop homomorphic encryption with a weak form of function-
privacy: to a recipient that does not know the intermediate values (namely, the
output of SFE2(my, f)), the output of Extend looks just as if it was generated
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“from scratch” by running SFE2 with input f’o f, so Extend hides the function if
SFE2 does. This means that when the protocol IT is used for many hops, then as
long as all the intermediate hops are “trusted” not to reveal their intermediate
results (and only the sender and the recipient are honest-but-curious), using
Extend would maintain the privacy of everyone’s functions.

However, this solution still falls short of our function-privacy goal, since a col-
lusion between the recipient and the node that computed SFE2(my, f) can reveal
the function f’. In other words, the output of Extend may not be distributed like
SFE2(my, f' o f) given also the intermediate results from SFE2(my, f). To over-
come this problem, we introduce the notion of a re-randomizable SFE: In a
nutshell, we want to transform the second message mg < SFE2(mq, f) into m}
such that even if the recipient and the party that computed ms, they cannot
distinguish m/, from random. Then, a node can re-randomize the message from
its predecessor, thus rendering the intermediate results held by the predecessor
irrelevant.

Definition 6 (Re-randomizable SFE, honest-but-curious). 4 two-message
SE'E protocol IT is re-randomizable if there exists an efficient procedure reRand such
that for every input x and function f and every (my,r1) € SFE1(z) and (ma,r2) €
SFE2(my, f), the distributions reRand(m1, ms) and SFE2(my, f) are indistinguish-
able, even given x, f,my,7r1, Mo, 2.

FrOM EXTENDABLE AND RE-RANDOMIZABLE SFE TO MUuLTI-HOP HE. Let
IT = (SFE1,SFE2, SFE-Out) be an extendable and re-randomizable two message
SFE protocol with client and server privacy, and let £ = (KeyGen, Enc, Dec) be a
semantically secure public-key encryption scheme. We now describe the construc-
tion of the multi-hop homomorphic scheme H* = (KeyGen™, Enc*, Dec*, Eval®).
The key generation KeyGen™ is the same as KeyGen for the underlying en-
cryption. The encryption procedure Enc*(PK;x) first runs (mq,71) « SFE1(z),
then encrypts m using & to get ¢ « Enc(PK;r1), and finally, computes mo «—
SFE2(m1, frp) (where frp is the identity function). The ciphertext is (¢, m1, ma).
To evaluate a function f; on an H*-ciphertext c;_1, first parse ¢j_; as a tuple
(c, ml,méj_l)), then set m/, «— Extend(méj_l),fj) and mgj) — reRand(my, m}).
The evaluated ciphertext is (c,ml,mgj)). Decrypting ¢; = (c,ml,mgj)) con-
sists of using the decryption of £ to get r1 « Dec(SK,¢), then outputting

Y — SFE—Out(rl,mgj)).

Theorem 5 (Extendable+Re-randomizable = Multi-hop). Assume that
the encryption scheme £ is semantically secure, the SFE protocol I is extendable
and re-randomizable with client and server privacy, and in addition that the size
of any function f can be efficiently determined from the output of SFE2(my, f).
Then the scheme H* above is a multi-hop function-private homomorphic en-
cryption scheme. Moreover, the size of an evaluated ciphertext in H* does not
depend on the number of hops, but only on the size of the composed function.

Proof. (sketch) Correctness of H* follows from the the correctness of I7, and
its extendability and re-randomizability: we know that SFE-Out would recover
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the right y when given the second message from SFE2, and by extendability
the output of Extend is the same as that of SFE2, no matter how many hops
were used. Semantic security follows from semantic security of the underlying
encryption and from the client-privacy of I1.

To show function privacy, we need to describe a simulator Sims« that on input

cj—l = (Ca mi, m(jil))

. 1fil, and y; = (fi o+ o f;)(x), generates a distribution
indistinguishable from ¢; = (¢, m1, mgj)). The simulator recovers from méj_l) the
size | fio---of;_1| and adds it to | f;| to get v = | f10- - -0 f;|. Then Simy uses the
simulator for IT to get méj) — Sim(ma,7,y;) and outputs ¢; = (c,ml,méj)).
By the server-privacy of II, the distribution of méj ) so generated is indistin-
guishable from SFE2(mq, f1 o --- o f;). On the other hand, by the extendability
and re-randomizability properties of II, the distribution of m;j ) in H* is also
indistinguishable from the same SFE2(m, f1 0 --- o f;). Hence these two distri-

butions are indistinguishable from each other. O

5 Extendable and Re-randomizable SFE from DDH

Given Theorem [B] we now focus on building an extendable and re-randomizable
SFE protocol. Our starting point is Yao’s garbled circuit construction [I9], which
is extendable, but not re-randomizable. We seek a re-randomizable implemen-
tation of this scheme by using building blocks that are “sufficiently homomor-
phic” to support the randomization that we need. Specifically, we rely on the
oblivious-transfer protocol of Naor-Pinkas/Aiello-Ishai-Reingold [I3/2], and on
the encryption scheme of Boneh-Halevi-Hamburg-Ostrovsky [4], the security of
both of which is equivalent to the decisional Diffie-Hellman assumption. Below
we briefly summarize some properties of these building blocks; a slightly longer
description (and the definitions of OT) can be found in the full version of this
paper [8].
RE-RANDOMIZABLE OBLIVIOUS TRANSFER. The protocol in [I3l2] is a two-
message protocol. The receiver that has a choice bit o € {0,1} sends the first
message m1 < OT'1(o), the sender that has two bits 79,71 € {0, 1} replies with
mg «— OT2(m,7v0,71), and the receiver can recover the bit 7, from ms and
the state that it keeps. Receiver security means that OT'1(0), OT'1(1) are indis-
tinguishable, and sender security means that OT'2(m1,79,7v1) can be simulated
knowing only m; and 7,. We note that if the sender has two strings ~¢, 1,
(rather than just two bits) then it can use the same m; from the receiver and
send many ms’s in reply, one for every bit position in the input vectors.
Another property we use is that the protocol from [1312] is re-randomizable:
given mq,mso, anyone can re-randomize the reply, computing another random
mb from the distribution OT2(m1,~o,71) (even without knowing 7o, v1).
KEY AND PLAINTEXT ADDITIVELY HOMOMORPHIC ENCRYPTION. The BHHO

scheme [4] is a semantically secure public key encryption scheme where the se-
cret key is a string s € {0,1}¢ and the plaintext is also a string € {0,1}".
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(In our application we use n = 2¢.) The public key and ciphertexts are vectors
of elements over a group of some prime order q.

The BHHO scheme has the following “additively homomorphic” property: Let
T, T' be two known affine transformations on vectors over Z, that map 0-1 vectors
to 0-1 vectors of the same length. Then, given a public key PK corresponding
to some secret key s and a ciphertext ¢ € Enc(PK;x), anyone can generate a
random public key PK’ corresponding to T'(s) and a random ciphertext ¢/ €
Enc(pk’; T'(x)). In particular, this means that anyone can XOR known strings
A, A’ into s and x, and also anyone can permute the bits in either s or x (or
both) according to known permutations.

5.1 Our Construction

Our construction closely follows Yao’s original garbled circuit construction [19].
The client (Alice) on input ® = (z1,...,z,), sends n first messages of the OT
protocol from above, using her input bit x; as the choice bit for the i’th message,
my[i] — OT1(z;).

The server (Bob) has a boolean circuit with fan-in-2 gates. Bob’s circuit has
n input ports, some number of output ports, and some number of internal gates.
Each wire in the circuit is therefore either an input wire (connecting an input port
to some internal gates and/or output ports), or a gate-output wire (connecting
the output of one internal gate to some other internal gates and/or output ports).
We stress that we allow the same wire to be used as input to several internal
gates or output portsE

Bob receives from Alice the n OT first messages, m1[1],...,m1[n]. He begins
by choosing at random two ¢-bit labels Ly, o, Ly,1 for every wire w, each having
exactly [¢/2] 1’s. (Here ¢ is the length of the BHHO secret key.) For each input
wire w;, corresponding to Alice’s first message m;[i], Bob computes the OT
second message for the two labels on the corresponding input wire, mo[i] «—
OT2(m1[i]; Lwi,o, Lwi,1)~

Then, for an internal fan-in-2 gate (computing the binary operation ), Bob
computes four pairs of ciphertexts as follows: Let wy, wg be the two input wires
for this gate and ws be the output wire. Bob chooses four fresh random 2/¢-bit
masks 6; ; for 4, j € {0,1} and computes the four pairs:

{(Enchl,i((si,j)7 EnCsz,j((st,kmz) EBéi,j)) VS {071}7 k= 'L*J} (1)

Namely, Bob uses the secret key L., ; to encrypt the mask d; ; itself, and the
other secret key L., ; to encrypt the masked label (concatenated with ¢ zeros).
The “gadget” for this gate consists of the four pairs of ciphertexts from Eq. ()
in random order. The garbled circuit that Bob sends back to Alice consists of
the n OT second messages ms[1],...,mza[n], and the gadgets for all the gates in
the circuit (which we assume include an indication of which wire connects what

2 We assume that the two input wires at each gate are always distinct. This can be
enforced, e.g., by implementing a fan-in-1 gate (i.e., NOT) via a fan-in-2 XOR~with-
one gate.
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gates). In addition, for each output wire w with labels L., o and L, 1, Bob sends
an ordered pair of public keys, the first corresponding to L., o and the second to
Ly 1. (We chose this particular mapping to enable re-randomization.)

Upon receiving this garbled circuit, Alice first uses the recovery procedure of
the OT protocol to recover one of the labels for each input wire. Then she goes
over the garbled circuit gate by gate as follows: For a fan-in-2 gate where she
knows the labels Lq, Lo for the two inputs, she uses the key L; to decrypt the
first component in each of the four pairs and uses the key Ly to decrypt the
second component of the four pairs. Then she XORs the two decrypted strings
from each pair, and if any of the resulting strings is of the form L*|0¢ then she
takes L* to be the label of the output wire. (If more than one string has the
form L*|0 then Alice takes the first one, and if none has this form then she sets
L* = 0%.) Upon recovering a label on an output port, she checks if this label
corresponds to the first or the second public keys that were provided for this
port, outputting zero or one accordingly. (Or L if it does not correspond to any
of them.) The proof of the following theorem is very similar to [12], and is given
in the full version.

Theorem 6. The protocol from above, using the BHHO encryption scheme, en-
joys both client and server privacy, under the DDH assumption.

Remark: balanced secret keys. We note that the BHHO scheme is used here
with secret keys that have exactly £/2 1’s in them, rather than with completely
uniform secret keys. This is used for the purpose of re-randomization, as de-
scribed in Section We note that this variant of BHHO is also semantically
secure: In fact, Naor and Segev proved that under DDH, the BHHO scheme is
semantically-secure for every secret-key distribution with sufficient min-entropy
(cf. [I4] Sec 5.2]). We use this stronger result in our proof of the re-randomization
property in Section

5.2 Re-randomizing Garbled Circuits

We proceed to show how garbled circuits from above can be re-randomized.
We begin by observing that a simple re-randomization method that only XORs
random masks into the labels does not work: Observe that the re-randomizer
does not know which of the two labels on a wire was used as key (or input)
in what ciphertext, so it cannot use two different masks to randomize the two
different labels on a wire. Rather, it can only apply the same mask A, to both
labels on a wire. But this is clearly not sufficient for randomization, since it
leaves the XOR of the two labels on each wire as it was before.

Moreover, such “partial randomization” is clearly insecure in our application:
Note that the predecessor of a node knows the two “old labels” for every wire in
its circuit, including the labels for the output wires (which are the current node’s
input wires). Also, the receiver (Alice) would learn one of the “new labels” on
these wire upon evaluation. Hence between the predecessor and Alice, they will
be able to reconstruct both new labels for every input, thus un-garbling the
circuit of the current node.
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To overcome this problem, we rely on stronger homomorphic properties of
BHHO: Namely, viewing keys and plaintexts as vectors, it is homomorphic with
respect to any affine function over Z,. This means, in particular, that it is ho-
momorphic with respect to permutations (i.e., multiplications by permutation
matrices). Namely, we can transform a ciphertext Encp (L) into Ency(r)(7'(L’))
for any two permutations m, 7’ of the bits. We therefore work with balanced
secret keys that have exactly £/2 1’s, and use permutations to randomize them.

Note that in the attack scenario from above, where a predecessor colludes
with the recipient, they will now know the old labels L, L’, and also one new
label, computed as w(L). In Lemma [Tl we show that given these three values, the
other new label 7(L’) still has a lot of min-entropy, provided that the Hamming
distance between L, L’ is not too small. In the honest-but-curious model, L and
L’ will be about ¢/2 apart, hence 7(L’) will have min-entropy close to ¢ (see
Lemma [l below). The Naor-Segev result [14] then implies that it is safe to use
m(L') as a secret key, which is indeed the way that it is used in the re-garbled
circuit. Putting all these arguments together, we have the following theorem:

Theorem 7. Under the DDH assumption, the BHHO-based protocol from above
18 computationally re-randomizable.

THE PERMUTATIONS LEMMA. Let HW,; C {0, 1} denote the set of all ¢-bit
strings with Hamming weight exactly k, and also let Sy denote the set of all
permutations over £ elements. Assume that ¢ is even from now on. The lemma
below shows that for two strings L and Lo, chosen uniformly at random from
HWy /2, and a random permutation 7 : [(] — [f], the string m(L2) has large
residual min-entropy even given L1, Ly and w(L1). For the lemma below, let
Ho(X|Y) be the average min-entropy of X given Y (cf. [6]), that is

ﬁfoo(X|Y) « —log E (maxPr[X =z|Y = y}> = —log E <2—HOC(X|Y_y)>
y<—Y x Y
Lemma 1. Let Ly1,La €g HW, 4/2, and ™ €r Se be uniformly random. Then:

HOO(TF(LQ) ‘ Ll,LQ,ﬂ'(Ll)) > f— 3log€

The proof is in the full version. It follows easily from the observation that given
Ly,Ly and w(Lq), the string w(Lg) is distributed uniformly from among all
strings in HW) 4/, whose Hamming distance from 7(L1) equals the Hamming
distance between L and Ls. O
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Abstract. Motivated by the question of basing cryptographic protocols
on stateless tamper-proof hardware tokens, we revisit the question of un-
conditional two-prover zero-knowledge proofs for NP. We show that such
protocols exist in the interactive PCP model of Kalai and Raz (ICALP
’08), where one of the provers is replaced by a PCP oracle. This strength-
ens the feasibility result of Ben-Or, Goldwasser, Kilian, and Wigderson
(STOC ’88) which requires two stateful provers. In contrast to previous
zero-knowledge PCPs of Kilian, Petrank, and Tardos (STOC ’97), in our
protocol both the prover and the PCP oracle are efficient given an NP
witness.

Our main technical tool is a new primitive that we call interactive
locking, an efficient realization of an unconditionally secure commitment
scheme in the interactive PCP model. We implement interactive locking
by adapting previous constructions of interactive hashing protocols to
our setting, and also provide a direct construction which uses a minimal
amount of interaction and improves over our interactive hashing based
constructions.

Finally, we apply the above results towards showing the feasibility of
basing unconditional cryptography on stateless tamper-proof hardware
tokens, and obtain the following results. (1) We show that if tokens
can be used to encapsulate other tokens, then there exist unconditional
and statistically secure (in fact, UC secure) protocols for general secure

* The full version of the paper is available at: http://eprint.iacr.org/2010/089
** This work was done mostly while this author was at UCLA, supported in part
from NSF grants listed below.
*** Supported in part by ISF grant 1310/06, BSF grants 2004361, 2008411, and NSF
grants 0716835, 0716389, 0830803, 0916574.
T This work done partially while this author was visiting UCLA. Supported by NSF
grants 0627526, 0426582 and 0832797.
1 Supported in part by BSF grants 2004361, 2008411, and NSF grants 0916574,
0716389, 0627781, 0830803.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 173 2010.
© International Association for Cryptologic Research 2010



174 V. Goyal et al.

computation. (2) Even if token encapsulation is not possible, there are
unconditional and statistically secure commitment protocols and zero-
knowledge proofs for NP. (3) Finally, if token encapsulation is not pos-
sible, then no protocol can realize statistically secure oblivious transfer.

1 Introduction

What is the minimal amount of trust required for unconditionally secure cryptog-
raphy? Unconditional cryptography can be based on trusted two-party
functionalities such as oblivious transfer [II2] or noisy channels [3], on bounded
storage assumptions [4], on the presence of an honest majority [BI6I7], or even
on the presence of a dishonest majority of non-communicating parties [8]. More
recently, there has been a considerable amount of work on cryptographic proto-
cols in which parties can generate and exchange tamper-proof hardware tokens.
In this model it was shown that unconditionally secure commitments [9] or even
general secure two-party computation [I0] are possible, provided that the to-
kens can be stateful. In particular, stateful tokens can erase their secrets after
being invoked. The present work is motivated by the goal of establishing un-
conditional feasibility results for cryptography using stateless hardware tokens.
This question turns out to be related to the classical question of unconditional
multi-prover zero-knowledge proofs, which we revisit in this work. We start with
some relevant background.

Multi-Prover Zero-Knowledge. Since the introduction of zero-knowledge
proofs in the seminal work of Goldwasser, Micali, and Rackoff [T1], a large body of
work has been devoted to understanding the capabilities and limitations of such
proofs. A particularly successful line of research studied the power of statistical
zero-knowledge (SZK) proofs — ones which guarantee that even computation-
ally unbounded verifiers can learn nothing from the interaction with the prover.
In contrast to computational zero-knowledge proofs [12], a major limitation of
SZK proofs which restricts their usefulness in cryptography is that they seem
unlikely to cover the entire class of NP [I3JI4]. The related goal of obtaining
any kind of unconditional zero-knowledge proofs for NP, which do not rely on
unproven intractability assumptions, seems as unlikely to be achieved (cf. [15])
at least until the elusive P vs. NP question is resolved.

Motivated by the above goals, Ben-Or, Goldwasser, Kilian, and Wigderson [§]
introduced in 1988 the model of multi-prover interactive proofs (MIPs), a natural
extension of the standard model of interactive proofs which allows the verifier to
interact with two or more non-communicating provers. The main result of [§] is
an unconditional two-prover SZK proof for any language in NP (see [I6/17/T8] for
subsequent improvements). A direct cryptographic application suggested in [§] is
that of proving one’s identity using a pair of bank cards. We will further discuss
these types of applications later.

In a very surprising turn of events, the initial work on zero-knowledge in the
MIP model led to a rapid sequence of developments that have literally trans-
formed the theory of computer science. This line of research culminated in the
first proof of the PCP Theorem [19/20].
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The notion of probabilistically checkable proofs (PCPs) is very relevant to our
work. In 1988, Fortnow, Rompel, and Sipser [21] suggested an alternative model
for MIPs in which multiple provers are replaced by a single oracle, subsequently
called a PCP oracle or just a PCP. The difference between an oracle and a prover is
that an oracle, like a classical proof, cannot keep an internal state. When a prover is
asked multiple queries, the answer to each query can depend on all previous queries,
whereas the answer of an oracle to each query must depend on that query alone.
The latter difference makes soundness against PCP oracles easier to achieve than
soundness against provers, which explains the extra power of PCPs over traditional
interactive proofs. However, as already observed in [§], the zero-knowledge property
becomes harder to achieve when converting provers into oracles because oracles
have no control over the number of queries made by a dishonest verifier. In par-
ticular, if the verifier may query the entire domain of the oracle (as in the case of
traditional polynomial-length PCPs) then the oracle can no longer hide any secrets.

The question of replacing zero-knowledge provers by stateless oracles is
motivated by practical scenarios in which verifiers can “reset” provers to their
initial state, say by cutting off their power supply. (Note that similarly to zero-
knowledge provers, zero-knowledge PCP oracles should be randomized in the
sense that their answer depends both on the query and on a secret source of
randomness which is picked once and for all when the oracle is initialized.) This
motivation led to a recent line of work on resettable zero-knowledge, initiated
by Canetti, Goldreich, Goldwasser, and Micali [22]. The main results from [22]
show that, under standard cryptographic assumptions, there exist resettable
(computational) zero-knowledge proofs for NP. However, results along this line
do not seem relevant to the case of unconditional (and statistical) zero-knowledge
proofs, which are the focus of the present work.

Zero-knowledge PCPs. The question of unconditional zero-knowledge PCPs was
studied by Kilian, Petrank and Tardos [23] (improving over previous results im-
plicit in [I8]). Specifically, it is shown in [23] that any language in NEXP admits
a proof system with a single PCP which is statistical zero-knowledge against
verifiers that can make any polynomial number of PCP queries (but are oth-
erwise computationally unbounded). However, as expected from proof systems
for NEXP, the answers of the PCP oracle cannot be computed in polynomial
time. This still leaves hope for scaling down the result to NP and making the
PCP oracle efficient given an NP witness. Unfortunately, such a scaled down
version presented in [23] has the undesirable side effect of scaling down the zero-
knowledge property as well, effectively restricting the number of queries made by
a cheating verifier to be much smaller than the (fixed polynomial) entropy of the
oracle. Thus, compared to typical feasibility results in cryptography, the results
of [23] for NP require us to either make an unreasonable assumption about the
computational capability of the (stateless) prover, or to make an unreasonable
assumption about the limitations of a cheating verifier.

Interactive PCPs. The above state of affairs motivates us to consider the Inter-
active PCP (IPCP) model, which was recently put forward by Kalai and Raz [24]
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and further studied in [25]. This model can be seen as lying in between the pure
PCP model and the pure MIP model, thus aiding us in our quest for a “min-
imal” model for efficient unconditional zero-knowledge proofs for NP. In the
IPCP model there is one interactive prover as in the MIP model and one PCP
as in the PCP model. The study of IPCPs in [24] was motivated by the efficiency
goal of allowing shorter PCPs for certain NP languages than in the traditional
PCP model, at the price of a small amount of interaction with a prover. In con-
trast, our use of the IPCP model is motivated by the feasibility goal of obtaining
unconditional zero-knowledge proofs for NP with polynomial-time prover and
PCP oracle. Another difference is that while in the context of [24] a PCP is at
least as helpful as a prover, the zero-knowledge property we consider is harder
to satisty with a PCP oracle than with a prover (as discussed above). The IPCP
model can be made strictly stronger than the MIP model by requiring soundness
to hold also with respect to stateful PCP oracles. We tackle this stronger variant
as well, but we stick to the basic IPCP model by default.

To meaningfully capture zero-knowledge proofs with polynomial-time provers
in the IPCP model, we extend the original IPCP model from [24] in two natural
ways. First, we allow the PCP to be randomized. Concretely, we assume that
both the prover and the PCP are implemented by polynomial-time algorithms
with three common inputs: an instance x, a witness w, and a random input
r. (This is analogous to earlier models for efficient multi-prover zero-knowledge
proofs for NP.) The length of both w and r is polynomial in |z|. Second, as dis-
cussed above, in order to allow the PCP oracle to hide secrets from the verifier
we need to use PCP oracles with a super-polynomial query domain, and we re-
strict cheating verifiers to make (an arbitrary) polynomial number of queries to
the oracle, but otherwise allow them to be computationally unbounded. Note,
however, that in contrast to the solutions from [23] we cannot use PCP ora-
cles with a super-polynomial entropy since we want our PCP to be efficiently
implementable.

This gives rise to the following feasibility question:

Are there (efficient-prover) statistical zero-knowledge proofs for NP in
the interactive PCP model?

Our Results. We answer the above question affirmatively, presenting an wun-
conditional SZK proof for NP in the interactive PCP model with efficient prover
and PCP oracle. Zero-knowledge holds against cheating verifiers which can make
any polynomial (in fact, even sub-exponential) number of PCP queries, but are
otherwise computationally unbounded. Our protocol can be implemented in a
constant number of rounds. We also show how to get a similar protocol (with a
non-constant number of rounds) in the stronger variant of the IPCP model in
which a cheating PCP oracle may be stateful, thus strengthening the previous
feasibility result from [g].

Interactive locking. The main technical tool we use to obtain the above results (as
well as additional applications discussed below) is a new primitive which we call
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an interactive locking scheme (ILS). This primitive extends in a natural way the
notion of non-interactive locking schemes which were defined and implemented
in [23]. The original locking primitive can be viewed as a PCP-based implementa-
tion of a non-interactive commitment with statistical hiding and binding. Roughly
speaking, a locking scheme is an oracle which hides a secret that can later be re-
vealed to the receiver by sending it a decommitment key. Given access to the oracle
alone, it is hard for the receiver to learn anything about the secret. However, it is
easy for the receiver to become convinced that at most one secret can be success-
fully decommitted even when the oracle is badly formed.

The locking scheme from [23] requires the oracle to have bigger entropy than
the number of queries against which the hiding property should hold. We prove
the intuitive fact that such a limitation is inherent, and therefore there is no
efficient-oracle non-interactive locking scheme which resists an arbitrary polyno-
mial number of queries. This is because intuitively if the entropy of the oracle is
bounded, then either: (1) the receiver is able to learn all the entropy by making
a polynomial number of queries, and therefore break the hiding property; or (2)
if some entropy is hidden no matter what queries the receiver makes, then a
cheating sender is able to create a “fake” oracle that can cheat on this entropy
and therefore be opened to any value, breaking the binding property.

This motivates our notion of an interactive locking scheme. An ILS is a locking
scheme in the IPCP model: the commitment phase can involve, in addition to
oracle queries by the receiver, interaction with the sender from whom the secret
originated. Here the sender and the oracle play the roles of the prover and PCP
oracle in the IPCP model, respectively. Decommitment still involves a single
message from the sender to the receiver. Somewhat surprisingly (and counter to
our own initial intuition), we show that interaction can be used to disrupt the
intuitive argument above.

We present several constructions of efficient interactive locking schemes. We
show how to obtain such schemes from interactive hashing — a primitive which
was introduced by Naor, Ostrovsky, Venkatesan, and Yung [26] for the purpose
of constructing statistically hiding and computationally binding commitment
schemes from any one-way permutation (see also [27I28/29]). The high level idea
of the transformation from interactive hashing to ILS is to “implement” a one-
way permutation by an oracle which contains a random point function (i.e., a
function that outputs 0 on all but one random point). To ensure the binding
property even when the oracle is badly formed, the receiver should query the
oracle on a small number random points to verify that it is not “too far” from
a point function. The (black-box) proof of security of the interactive hashing
protocol implies (unconditional) proof of security for the ILS.

The above connection allows us to use interactive hashing protocols from the
literature for obtaining interactive locking schemes, but leaves open the question
of minimizing the amount of interaction with the sender. We resolve this question
by presenting a novel direct construction of ILS which requires only a single
round of interaction with the sender.
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The high level idea behind our single round ILS is as follows. The oracle
7 constructed by the sender will be the zero function over {0,1}" except for
an “interval” of size 2¢". That is, m(z) = 1 for a < x < a + 2" and 7(z) =0
elsewhere. Depending on whether the sender commits to zero or one, the interval
will be planted in the first or second half of the oracle w. The position a of the
interval will be revealed to the receiver in the decommitment phase. When ¢ < 1,
the interval size 2° will be small enough to prevent the receiver from finding the
committed bit during the commitment phase. But now the sender is able to cheat
by planting intervals in both the first and second half of . To guarantee binding,
we let the receiver ask a “challenge” question about the interval in such a way
that the sender cannot find a pair of planted intervals in the first and second
half of m with the same challenge answer. A natural idea is to use a pairwise
independent function h: {0,1}" — {0,1}%" and ask the sender to reveal h(a).
The sender is able to plant at most 2(1=9" separate intervals in each half of 7.
Each of the intervals in the first and second half of 7 will have the same hashes
with probability 279", Therefore if 2(1 — ¢) < d, then with high probability
over the choice of h the sender is not able to find two intervals with the same
hash value h(a) and thus gets committed to a fixed bit. But now the information
revealed by h(a) might help the receiver find a non-zero point in 7 and break the
hiding property. We show how to modify the a known construction of pairwise
independent hash functions to get another function which is still almost pairwise
independent but has the additional property that the preimages of any hash value
are “scattered” in the domain of the hash function. The latter property prevents
the receiver from taking advantage of the knowledge of h(a) to find where the
interval is planted. Using this approach we simultaneously guarantee binding
and hiding.

Cryptography using hardware tokens. The above study of zero-knowledge in-
teractive PCPs and interactive locking schemes is motivated by a recent line
of research on the capabilities of cryptographic protocols in which parties can
generate tamper-proof hardware tokens and send them to each other. Katz [30]
shows that, under computational assumptions, general universally composable
(UC) secure two-party computation [31] is possible in this model if the tokens
are allowed to be stateful, and in particular can erase their secrets after being
invoked. It was subsequently shown that even unconditional security is possible
in this model, first for the case of commitment [9] and then for general tasks [10].
See [32I33)34] and references therein for other applications of stateful tokens in
cryptography.

Obtaining similar results using stateless tokens turns out to be more challeng-
ing. Part of the difficulty stems from the fact that there is no guarantee on the
functionality of tokens generated by malicious parties — they may compute ar-
bitrary functions of their inputs and may even carry state information from one
invocation to another. It was recently shown in [10], improving on [35], that any
one-way function can be used for basing (computationally) UC-secure two-party
computation on stateless tokens. More practical protocols which satisfy weaker
notions of security were given in [36]. These works leave open the question of
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obtaining a similar result unconditionally, and with statistical security. (To get
around impossibility results in the plain model, the number of queries to a token
should be polynomially bounded, but otherwise malicious parties may be com-
putationally unbounded.) In fact, the constructions from [35[T0/36] may lead to
a natural conjecture that achieving statistical security in this setting is impossi-
ble, since in these constructions all the “useful information” contained in tokens
can be learned by a computationally unbounded adversary using a polynomial
number of queries.

However, similar to the case of ILS discussed above, the combination of state-
less tokens and interaction turns out to be surprisingly powerful. As already
alluded to in [8], MIP protocols can naturally give rise to protocols in the hard-
ware token model. In our case, we implement the ILS (or IPCP) by having a
single sender (prover) create a stateless tamper-proof hardware token which im-
plements the PCP oracle and send it to the receiver (verifier). Applying this to
our results, this directly gives rise to the first unconditionally secure commitment
protocols and SZK proofs for NP using stateless tokens.

We show how this can be extended to general unconditionally secure (in fact,
UC-secure) two-party computation if parties are allowed to build tokens which
encapsulate other tokens: namely, the receiver of a token A is allowed to build
another token B which internally invokes A. The high level idea is the following.
By the completeness of oblivious transfer (OT) [2I37], it suffices to realize OT
using stateless tokens. This is done as follows. The OT sender’s input is a pair of
strings (sg, s1) and the OT receiver’s input is a selection bit b. The OT receiver
commits b using an ILS. Applying our best construction, this involves sending
a token A to the OT sender and responding to a random challenge message
received from the OT sender. The OT sender now prepares and sends to the
receiver a token B with the following functionality. Token B accepts a selection
bit b along with a corresponding decommitment message. It checks that the
decommitment is valid (this involves invocations of the token A, which token
B encapsulates) and then returns the string s, if decommitment was successful.
The binding property of the ILS guarantees that the OT receiver can learn at
most one string s,. The hiding property of the ILS guarantees that the sender
cannot learn b.

Interestingly, we also show a matching negative result: if token encapsulation
is not allowed, then statistically secure OT is impossible. This holds even if
both parties are guaranteed to follow the protocol except for making additional
queries to tokens in order to learn information about the other party’s input. The
proof of this negative result employs a variant of the recent notion of accessible
entropy from [38] and has the following high level intuition: In the standard
model without tokens, one way to explain why statistical OT is not possible is
to consider the randomness rg of the receiver conditioned on the transcript 7
of the protocol. If this conditional distribution reveals information about the
receiver’s choice b, then an unbounded sender can cheat by sampling from this
distribution. But if not, then an unbounded receiver can cheat by sampling from
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this distribution for both values of b, and using the result to obtain both strings
so and s1 of the sender.

In the token model, however, this situation is not symmetric, since the sender
might not know what queries the receiver has asked from the tokens it holds (or
vice versa). Informally, we define a protocol (A, B) to have accessible entropy
if the parties can nevertheless (information theoretically) sample their random-
ness conditioned on the other party’s view. If an OT protocol did have accessible
entropy, then essentially the above impossibility argument would apply. (In con-
trast, the original definition of accessible entropy of [38] required that the parties
could efficiently sample, since the focus in that work was on analyzing protocols
secure against computationally bounded parties.)

The technical core of our impossibility result is the following technical lemma:
For any protocol (A, B) in the stateless token model, there is another protocol
(A’, B') that differs from (A, B) only in that the parties ask (a polynomial num-
ber) more queries to the tokens that they hold. Furthermore, almost all the
entropy of the new protocol (A’, B') is accessible. This lemma allows us to carry
out the intuition above and rule out statistically secure OT in the stateless token
model.

Organization. In Section 2, we define the notions of zero-knowledge IPCPs and
ILS, and show how to use ILS to build unconditional zero-knowledge IPCPs for
NP. We also show that interaction is required for efficient ILS. In Section 3, we
show how to construct ILS. In Section 4, we show the implications of our work
on (unconditionally secure) cryptography with tamper-proof hardware tokens.

2 Statistically Zero-Knowledge IPCP for NP

Interactive PCPs (Definition [l below) were first introduced in [24] and combine
the notion of oracle algorithms with interactive algorithms. Here we define IPCPs
in a general way, not only for the purpose of a proof system, but rather as a
model of interaction consisting of two interactive algorithms and a prover. (This
way we can define our notion of interactive locking schemes as a protocol in the
IPCP model implementing the commitment functionality.)

Definition 1. (Adapted from [2]]]) An interactive probabilistically checkable
proof (IPCP) I' = (P, w, V') consists of an interactive algorithm P (the prover),
an oracle ™ (the PCP oracle), and an interactive algorithm V (the verifier) such
that:

— P and w share common randomness rp, and V is given the randomness v .

— P, w, and V will be given an input x of length |x| = n. P and © may also
recetve a common private imnput w

— The PCP oracle 7 is a function of (rp,x,w,q) where q is a query of the
verifier V. Since (rp,z,w) is fived at the beginning of the protocol, we might
simply use w(q) to denote the answer to the query q.

! For example when (P, ) are efficient and L € NP, w could be a witness for € L.
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— P and V™ engage in an interactive protocol during which V can query the
PCP oracle w and at the end V' accepts or rejects.

By an efficient IPCP we mean one in which the prover P, the PCP oracle w
and the verifier V. run in polynomial time over the input length |x| = n.

By the round complezity of an IPCP we mean the number of rounds of interaction
between the verifier and the prover (and not the PCP oracle) where each round
consists of a message from the verifier followed by a message from the prover.
(See the full version of the paper for more discussion on this definition and a
comprehensive elaboration on the IPCP model.)

Now we define the notion of a proof system in the IPCP model which directly
incorporates the statistical zero-knowledge feature. We use a quantitative defi-
nition allowing us to speak about exponential zero-knowledge (rather than just
super-polynomial security).

Definition 2 (SZK-IPCP for languages). We say that I' = (P,m, V) is an
SZK-IPCP for the language L with SZK (u(n),e(n)) and soundness 1 — o(n) if
the following holds:

— Completeness: If x € L, then Pr[(P,V7™)(x) = 1] = 1.

— Soundness: I' has soundness 1 =9 if for all x ¢ L and for any arbitrary
prover P and oracles 7 it holds that Pr[(P V™ (z) = 1] < 6(n).

— Statistical zero-knowledge (SZK): We say that the IPCP I is (u,¢€)-
SZK for L with a straight-lindd simulator if there is a simulator Sim as
follows. The (straight-line) simulator Sim interacts with a (potentially ma-
licious) wverifier 17, while the simulator Sim receives all the queries of the
the verifier (including both the queries asked from the prover and from the
oracle) and responds to them. Since an unbounded verifier can ask arbitrary
number of queries from its oracle, here we put a bound u on the number of
oracle queries asked by V' and demand the following to hold: For any v < u,
if V asks at most v oracle queries, then Sim runs in time poly(n,v) and
produces a view for V which is e-close to the view of V when interacting
with (P, ).

We simply call I' an SZK-IPCP for L with security w, if I' is (1 — 1/u)-
(adaptively)-sound and (u,1/u)-SZK.

Note that when u(n) is super-polynomial, Definition ] implies zero-knowledge
against polynomial-time verifiers.

We prove that 22(")_secure constant-round SZK-IPCPs exist for any language
L € NP where both the prover and the PCP oracle in our construction can be
implemented efficiently given a witness w for « € L.

Theorem 3 (Constant-round SZK-IPCP for NP). For any language L €
NP there exists a 2-round efficient SZK-IPCP Iy for L with security 292(n)

2 Since all of our simulators in this paper are straight-line, for sake of simplicity here
we only describe how to define SZK for IPCPs with straight-line simulators.
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The simulator of I, in Theorem [3 is straight-line and therefore by a result of
[39], for a small enough constant ¢, a 2¢"-fold concurrent composition of Iy
remains (29(”)7 2_9(”))—SZK if the inputs to the instances of I are fixed in the
beginning.

Ideas of the proof of Theorem [3 Our main step to prove Theorems Bl is to
construct an “interactive locking scheme” (ILS) (Definition (), a primitive cor-
responding to commitment schemes in the IPCP model. In Theorem [ we present
an ILS with optimal round complexity (i.e. one round). Then we feed our ILS
(as a commitment scheme) into the well-known construction of [I2] to achieve
zero-knowledge for NP with non-negligible soundness. A classical way to am-
plify the soundness of proof systems (while keeping the round-complexity) in the
standard model of interaction is to use parallel composition. Firstly we define
parallel composition of TIPCPs (see the full version) in a careful way and prove
an optimal bound on how the soundness amplifies in such a parallel composition.
The latter result is interesting on its own since the IPCP model lies in between
the single-prover and the multi-prover models and it is known [21] that the par-
allel repetition does mot amplify the soundness in a simple exponential form
(as one would wish). Secondly, we show that although the parallel composition
might hurt the zero-knowledge in general, by crucially using a special feature
of our ILS called “equivocability” (see Definition [Bl) one can prove that SZK is
preserved under parallel composition. Roughly speaking, an ILS is equivocable,
if a malicious sender can efficiently decommit to any desired value by changing
the content of the oracle after the commitment phase. See the full version for
the full proof of Theorem.

We also show how to achieve a 22(")-secure SZK-IPCP for any L € NP
where the security holds even against stateful oracles. A stateful oracle can
save a state and behave as maliciously as an interactive algorithm. Namely, the
answers returned by a (malicious) stateful oracle can depend on the previous
queries asked to the oracle as well as the other queries asked in the same “round”
of queries. We call such IPCPs (secure against stateful oracles) adaptively-sound.

Theorem 4 (Adaptively-secure SZK-IPCP for NP). There ezists a
(poly(n)-round) efficient SZK-IPCP Ia4ap for any L € NP with adaptive-
security 22

Ideas of the proof of Theorem[f} To prove Theorem H] we use ideas from [40]
about converting multi-prover proof systems into an equivalent two-prover one
(with non-negligible soundness) where the second prover is asked only one query.
When a prover is asked only one query, it can be considered as an oracle. In our
transformation to achieve adaptive security in the IPCP model, we use a similar
compiler to that of [40] over the IPCP I of Theorem Bl and crucially use the
fact that I is “public-coin” (i.e. the soundness holds even if the prover gets to
see which oracle queries are asked). A public-coin IPCP is one which is sound
even if the prover gets to see the oracle queries asked by the verifier. Finally we
use sequential composition to amplify the soundness. See the full version of the
paper for the full proof of Theorem.
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3 Interactive Locking Schemes

An Interactive locking scheme is a commitment scheme implemented in the IPCP
model. A similar definition appeared in [23] without the interaction (i.e. only with
an oracle), but as we will see in Theorem [0] non-interactive locking schemes are
inherently inefficient and therefore not as applicable in cryptographic settings.

Definition 5 (Interactive locking scheme). Let A = (S, 0, R) be an efficient
IPCP (where we call S the sender, o the locking oracle and R the receiver). A
is called an interactive locking scheme (ILS) for the message space W,, if it of
the following form:

The common input is 1™ where n is the security parameter. (S,o) receive
a private input w € W, which is called the committed message as well as the
private randomness rs. The receiver R gets the randomness rg. The receiver R
gets oracle access to the locking oracle o and R interacts with S in two phases:
(1) commitment phase and (2) decommitment phase. The decommitment phase
consists of only one message from the sender S to the receiver R which includes
the committed message w and the private randomness rg used by S. Following
this message the receiver R (perhaps after asking more queries from the oracle
o) accepts or rejects. We demand the following properties to hold:

— Completeness: For any w € W, if all parties are honest the receiver always
accepts. N

— Binding: We define A to be (1—0)-binding if for any sender S and any oracle
o, with probability at least 1—§ over the interaction of the commitment phase
there is at most one possible w such that S can decommit to successfully.

— Hiding: Let R be any malicious receiver who asks at most u oracle queries
from o, and let T, be the random wvariable which consists of the transcript
of the interaction of R with (S,o0) till the end of the commitment phase
when the committed message is w € W. A is (u, €)-hiding if for every such
malicious receiver R and every {wi,we} CW it holds that SD(7y,, Tw,) < €.

— Equivocability: A is equivocable if there is an efficient sampling algorithm
Sam that given (T, w) where T is the transcript (including the oracle queries)
of the commitment phase of (S, R“’) (for an arbitrary receiver R) and any
w € W, Sam(7,w) outputs r according to the distribution (rg | 7,w). Namely
r is sampled according to the distribution of the private randomness rs of
(S,0) conditioned on w being the committed message and T being the tran-
script of the commitment phase.

We simply call the ILS A w-secure if it is (1 — 1/u)-binding and (u, 1/u)-hiding.
If W ={0,1}, we call A a bit-ILS.

The following theorem presents an ILS with optimal round complexity.
Theorem 6. (A round-optimal ILS) Let £(n) = poly(n), then

1. There exist an efficient ILS Az = (S,0,R) for the message space {0,1}*
with security 22 which has a commitment phase of only one round.
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2. Any ILS with a noninteractive commitment phase needs an inefficient oracle
o and thus A has optimal round-complexity (as an efficient ILS).

In the full version of the paper we give a general construction of ILS from any
interactive hashing scheme with some minimal properties. Unfortunately non-
trivial interactive hashing needs at least two rounds of interaction and thus this
approach is incapable of giving us a round-optimal ILS. Due to space limit we
refer the reader for this connection to the full version and here will only present
the optimal construction.

Before proving Theorem [0l we need the following lemma whose proof is imme-
diate.

Lemma 7. Forn > m let A be the family of n x m Boolean matrices as follows.
To get a uniform member of A, choose the first n—m rows all at random, and take
the last m rows to be an independently chosen at random conditioned on having
full rank m. Then for any 0 # x € {0,1}", it holds that Pra_ 4[tA=0] <2™™
(and equivalently for any z1 # x2 € {0,1}" and y € {0,1}™, it holds that
PracalziA=axA] <27™).

Construction 8 (A 1-round ILS) Suppose b € {0,1} is the private message
given to sender and the oracle (S, ), and suppose R is the receiver. Let m =
3n/4. Below we associate {0,1}™ with the integers [0,2™) and all additions and
subtractions below are modulo 2™.

The commitment phase of Ag:

1. Sender S chooses a «— {0,1}" at random. Let fy, be the function: fy(z) =1
iffa <z < a+2™, and let f1_p be the zero function over {0,1}". The locking
oracle will be the combination of the two functions o = (fo|f1) (indexed by
the first bit of the query to o).

2. Receiver R samples A «— A from the family of matrices of Lemma[] condi-
tioned on the last m rows of A being independenﬁ and sends A to S.

3. Sender S checks that the last m rows of A are independent, and if so he
sends h = aA to the receiver R.

The decommitment phase of Ag:

1. Sender S sends (b,a) to the receiver R.
2. Receiver R does the following checks and rejects if any of them does not hold.
(a) Check that aA = h.
(b) Check that fi_p(a) =0, and fy(a) =1.
(¢c) For each i € [0,m], sample 10n random points from [a,a+2%) and check
that fp(x) =1 for all of them, and also sample 10n random points from
(a — 2%, a — 1] and check that fi(x) =0 for all of them

Proof (of TheoremI[d).
Now we study the properties of the ILS Ajg.
Completeness and Equivocability are immediate.

3 Note that the last rows of A are independent with probability 1 —2™™ =1 — 27",
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Binding. As a mental experiment we pretend that the randomness used during
the decommitment phase by R is chosen in the decommitment phase (rather
than in the beginning of the commitment phase).

For a fixed locking oracle o, Let X (resp. X1) be the set of possible values of
a that sender S can send to the receiver R as the decommitment of b = 0 (resp.
b = 1) and get accepted in the decommitment phase with probability at least
272" We prove that by the end of the commitment phase, with probability at
least 1 —27~™/8 it holds that |Xo| = 0 or | X;| = 0 which means that the sender
has only one way to decommit the value b and get accepted with probability more
than 272", But now if we choose the receiver’s randomness in the commitment
phase, since there are at most 2"*! possible values for (b,a), it follows by a
simple average argument that with probability at least 1 — 22"~"~1 over the
commitment phase, the prover gets committed to only one possible value for
(b, a) which he can use to pass the decommitment phase successfully.

Claim. XO ﬂXl = J.

Proof. If a € XgN X1. Then when a is used as the decommitment of 0, in Step
2B of the decommitment phase the receiver R checks that fo(a) =1, f1(a) = 0.
On the other hand in the case of decommitting to 1, receiver R checks that
fo(a) =0, fi—p(a) = 1, but they can’t both hold at the same time.

Claim. It holds that | Xo| < 2"™™ and |X;| < 2" ™.

Proof. We show that if {a,a'} C Xo then |a — a'| > 2™ (and this would show
that X < 27/2™). Assume on the contrary that o’ < a and a —a’ < 2™. Let
i € [1,m] be such that 2°=! < a — a’ < 2°. Then by the pigeonhole principle
ether at least half of o([a’, a]) are zero or at least half of the values o([a’, a]) are
one. Without loss of generality let assume that at least half of o([a’, a]) is zero.
In this case at least 1/4 of the values o([[@’, a’ +2%)]) are zero. But then by Step
2d of the decommitment phase (0, a’) will be accepted with probability at most
(3/4)10" < 2727 "and therefore @’ ¢ Xy which is a contradiction.

Claim. With probability at least 1 — 2(") over the choice of A, it holds that
|X0‘ =0or |X1‘ =0.

Proof. Fix any pair ag € Xo and a; € X, we know that ag # a;. Therefore,
PrafapA = a1A] = Pra[(ap — a1)A = 0] < 27™. Claim [ yields that there are at
most 2" ~"*2" ™™ such pairs, so by using a union bound, with probability at least
1—27m22n=2m — 1 _22n=3m gyer the choice of A, it holds that XgANX,4A =@
which implies that if the sender sends any hash value h, the consistency check
of Step 2al of the decommitment phase either makes | Xo| = 0 or | X;| = 0.

As we said before Claim [ implies that with probability 1 — poly(n) - 227~3™ =
1—poly(n)- 2-n/4 > 1 —-277/8 gyer the interaction in the commitment phase the
sender gets bound to a fixed b € {0, 1} to which he can decommit successfully.
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Hiding. Suppose receiver R can ask at most u < 2"/% queries from the locking
oracle o. We claim that before sending the matrix A, all of receiver R’s queries to
o are answered zero with probability at least 1 —2~"/%. To see why, think of Zo»
as being divided into 27~ = 2"/4 equal intervals such that a is the beginning of
one of them. Since receiver R asks up to 2"/8 queries, before sending the matrix
Z, he will ask a query from the interval beginning with a with probability at most
2n/8 jon/4 = 2=n/8 Therefore (up to 27"/% statistical distance in the experiment)
we can assume that the matrix A is chosen by receiver R independently of a.

After receiving h, the information that the receiver R knows about « is that
it satisfies the equation aA = h. If we choose and fix the first n — m bits of (a
potential) a, then the remaining bits are determined uniquely because the last
m rows of A are full rank. It means that for every y € [0,2" ™) there is a unique
solution for a in the interval [y2™, y2™ 4 2™), and they are all equally probable
to be the true answer from the receiver’s point of view.

Now again we claim that (although there are 2™ nonzero points in f) all the
queries that the receiver R asks from f; are answered 0 with probability at least
1-27"/8 Let Z = {2 | 2A = h} be the set of possible values for a. For z € Z, let
I(z) = [z, 2+2™). We claim that no x € {0,1}" can be in I(z) for three different
2’s from Z. To see why, let z; < z2 < z3 and that & € I(z1) N I(z2) N I(z3).
But now the interval [y2™, y2™ + 2™), containing 25 separates z; and z3, and so
zg — z1 > 2™. Therefore I(z1) N I(z3) = @ which is a contradiction. So, if the
receiver R asks u queries from fp,, he can ask queries from I(z)’s for at most 2u
different 2’s (out of 2"~™ many of them). As a mental experiment assume that a
is chosen from Z after the receiver R asked his queries, it holds that I(a) will be
an interval that the receiver R never asked any query from with probability at
least 1 —u/2""™ > 1— -277/8 Therefore with probability at least 1 —27"/9 all
of receiver R’s queries during the commitment phase will be answered zero. But
putting the oracle queries aside, the hash value h does not carry any information
about the bit-message b and therefore the scheme is (1 — 2"/®)-hiding.

Now we turn to proving Part [ of Theorem

By a noninteractive locking scheme (NLS), we mean an ILS where the com-
mitment phase is noninteractive and sender S only participates in the decom-
mitment phase. Note that an efficient locking scheme by definition uses poly(n)-
sized circuits to implement the locking oracle o, and therefore o can have at
most poly(n) entropy. In this section we show that there exist no efficient NLS
with super-polynomial security.

Since we are going to prove that NLS’s cannot be efficient, we need to deal with
unbounded senders. Thus we can no longer assume that the decommitment phase
is only a message (b, 7g) sent to the receiver, because the randomness rg used by
the sender can be exponentially long. Therefore to prove the strongest possible
negative result, we allow the decommitment phase of a NLS to be interactive.

The following theorem clearly implies Part 2] of Theorem

Theorem 9. Let A = (5,0, R) be any NLS for message space {0, 1} in which the

function o of the locking oracle has Shannon entropy at most H(o) < od, when

the committed bit b is chosen at random b — {0, 1}. Let u be an upper bound on
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the number of oracle queries to o asked by the receiver R in the decommitment
phase. Then either of the following holds:

— Violation of binding: There is a fived locking oracle &, and a sender strat-
egy S such that when G is used as the locking orale, for both b =0 and b =1,
S can decommit successfully with probability at least 4/5.

— Violation of hiding: There exists an unbounded receiver R who can guess
the random bit b «— {0,1} used by (S,0) with probability at least 4/5 by
asking at most u queries to the locking oracle o.

Ideas of the proof of Theorem [d Our main tool in proving Theorem [ is the
notion of “canonical entropy learner” (EL). Roughly speaking, EL is an efficient-
query (computationally unbounded) algorithm which learns a randomized func-
tion f (with an oracle access to f) under the uniform distribution assuming that
f has a bounded amount of entropy. EL proceeds by choosing to ask one of the
“unbiased” queries of f at any step and stop if such queries do not exist. An
unbiased query x is one whose answer f(z) is not highly predictable with the
current knowledge gathered about f by EL. Whenever EL chooses to ask a query
it learns non-negligible entropy of f, and thus the process will stop after poly(n)
steps. On the other hand, when EL stops, all the remaining queries are biased
and thus will have a predictable answer over the randomness of f. We prove that
either the receiver is able to find out the secret message of the sender (in an NLS)
by running the EL algorithm, or otherwise if by the end of the learning phase
still part of the entropy left in the locking oracle is hiding the secret message,
then a malicious prover can plant at least two different messages in the locking
oracle in such a way that it can decommit to successfully.

4 On Oblivious Transfer from Stateless Hardware Tokens

In this section we prove that in the stateless hardware token model, there is no
statistically secure protocol for oblivious transfer (OT), when the only limitation
on malicious parties is being bounded to make polynomially many queries to the
tokens.

The stateless token model. In the stateless (tamper-proof hardware) token model,
two (computationally unbounded) interactive algorithms A and B will interact
with the following extra feature to the standard model. Each party at any time
during the protocol can construct a circuit 7" and put it inside a “token” and
send the token T to the other party. The party receiving the token T will have
oracle access to T and is limited to ask poly(n) number of queries to the token.
The parties can exchange poly(n) number of tokens during the interaction. The
stateless token model clearly extends the IPCP model in which there is only
one token sent from the prover to the verifier in the beginning of the game.
Therefore proving any impossibility result in the stateless token model clearly
implies the same result for the the IPCP model. It is easy to see that without
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loss of generality the parties can avoid sending “explicit messages” to each other
and can only use tokens (with messages planted inside the tokens) to simulate
all the classical communication with the tokens.

Oblivious transfer by semi-honest parties. If one of the parties is semi-honest
(i.e. runs the protocol honestly, and only remember’s its view for further off-line
investigation), then in fact unconditionally secure OT is possible in the stateless
token model. If the receiver is honest, then the protocol is simply a token 7T sent
from the sender which encodes T'(0) = x¢, T'(1) = 1. The receiver will read 7'(7)
to learn x;. Moreover it is well known that secure OT in one direction implies
the existence of secure OT in the other direction, so if the sender is semi-honest
unconditionally secure OT is possible in the stateless token model.

We prove that unconditionally secure OT is impossible in the stateless token
model, if both parties are slightly more malicious than just being semi-honest.
Roughly speaking, we define the notion of “curious” parties who run the original
protocol (honestly), but will ask more queries from the tokens along the way.
We will prove that for any protocol (A, B) aiming to implement OT, there are
curious extensions of the original parties (Acyr, Beur) who break the security of
the protocol. We prove the following theorem.

Theorem 10 (No unconditional OT from stateless tokens). Let (S, R) be
any protocol for the oblivious transfer in the stateless token model. Then there
are curious extensions (Scur, Reur) to the original algorithms where (Scyr, Reur)
(and thus (S, R)) is not a secure protocol for oblivious transfer even when the
mputs are random. More formally either of the following holds:

— Violation of sender’s security: When the sender S chooses xg and x1 at
random from {0,1} and interacts with Reyr, then Reye can find out both of
xo and x1 with probability at least 51/100.

— Violation of receiver’s security: When the receiver R chooses i — {0,1}
at random and interacts with Scyr, then Scyr can guess i correctly with prob-
ability at least 51/100.

For a high level description of the ideas behind Theorem [I0] we refer the reader
to the discussion in the Introduction.

Perhaps surprisingly we show that if the parties are allowed to build tokens
around the tokens received from the other party, then unconditional (UC) secure
computation is possible by using stateless tokens.

UC secure OT by encapsulation. For a discussion on ideas behind our UC secure
OT by token encapsulation we refer the reader to the Introduction and for more
details to the full version of the paper.

4 The term “honest but curious” is sometimes used equivalent to “semi-honest”. Qur
notion is different from both of them because a curious party deviates from the
protocol slightly by learning more but emulates the original protocol honestly.
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Abstract. This paper presents a fully secure functional encryption
scheme for a wide class of relations, that are specified by non-monotone
access structures combined with inner-product relations. The security is
proven under a well-established assumption, the decisional linear (DLIN)
assumption, in the standard model. The proposed functional encryp-
tion scheme covers, as special cases, (1) key-policy and ciphertext-policy
attribute-based encryption with non-monotone access structures, and
(2) (hierarchical) predicate encryption with inner-product relations and
functional encryption with non-zero inner-product relations.

1 Introduction

1.1 Background

Although numerous encryption systems have been developed over several thou-
sand years, any traditional encryption system before the 1970’s had a great
restriction on the relation between a ciphertext encrypted by an encryption-key
(ek) and the decryption-key (dk) such that ek and dk should be equivalent. The
innovative notion of public-key cryptosystems in the 1970’s relaxed this restric-
tion, where ek and dk differ and ek can be published.

Recently, a new innovative class of encryption systems, functional encryption
(FE), has been extensively studied. FE provides more sophisticated and flexible
relations between the ek and dk where the ek and dk are parameterized by x
and v, respectively, and dk, can decrypt a ciphertext encrypted with ek, :=
(ek,x) iff R(x,v) holds for some relation R. FE has various applications in the
areas of access control for databases, mail services, and contents distribution
[2I7QIT6IT 7221232412527 .

When R is the simplest relation or equality relation, i.e., R(x,v) holds iff
x =, it is identity-based encryption (IBE) [BIABIGITOT2/TIITH.

As a more general class of FE, attribute-based encryption (ABE) schemes
have been proposed [2/TITETTI2223I24)2527], where either one of the param-
eters for ek and dk is a tuple of attributes and the other is a access struc-
ture or (monotone) span program M along with a tuple of attributes, e.g.,

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 191-208,|2010.
© International Association for Cryptologic Research 2010
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x = (x1,...,12q) for ek and v := (M, (v1,...,vq)) for dk, or v := (vy,...,vg) for
dk and x := (M, (21, ...,z4)) for ek. Here, some elements of the tuple may be
empty. The component-wise equality relations for (non-empty) attribute com-
ponents, e.g., {T+ = V¢}se(1,...,a}, are input to (monotone) span program M,
and R(z,v) holds iff the truth-value vector of (T(z1 = v1),..., T(xq = vq)) is
accepted by M, where T() :=1if ¥ is true, and T(¢) := 0 if ¢ is false (For
example, T(z =v) :=1if 2 = v, and T(z = v) := 0 if 2 # v). If M is embedded
into decryption-key dk, (e.g., v := (M, (v1,...,vq)) for dk and = := (21,...,2q)
for ek), it is called key-policy ABE (KP-ABE). If M is embedded into a ci-
phertext (e.g., # := (M, (x1,...,24)) for ek and v := (vy,...,vq) for dk), it is
ciphertext-policy ABE (CP-ABE).

Inner-product encryption (IPE) [I7] is also a class of FE, where each parameter
for ek and dk is a vector over a field or ring (e.g., @ := (71,...,7,) € F; and
vV o= (v1,...,0,) € F;' for ek and dk, respectively), and R(Z, ) holds iff
7 -0 =0, where 7 - ¥ is the inner-product of 2 and ¥’. The inner-product
relation represents a wide class of relations including equality, conjunction and
disjunction (more generally, CNF and DNF) of equality relations and polynomial
relations.

There are two types of secrecy in FE, attribute-hiding and payload-hiding [17].
Roughly speaking, attribute-hiding requires that a ciphertext conceal the asso-
ciated attribute as well as the plaintext, while payload-hiding only requires that
a ciphertext conceal the plaintext. Attribute-hiding FE is called predicate en-
cryption (PE) [I1]. Anonymous IBE and hidden-vector encryption (HVE) [9] are
a class of PE and covered by predicate IPE, or PE with inner-product relations.

Although many ABE and IPE schemes have been presented over the last sev-
eral years, no adaptively-secure (or fully-secure) scheme has been proposed in
the standard model except [18]. The ABE scheme in [I§] supports monotone
access structures with equality relations and is secure under non-standard as-
sumptions over composite order pairing groups. The IPE scheme in [I8] supports
inner-product relations and is secure under a non-standard assumption, whose
size depends on some parameter that is not the security parameter.

No adaptively-secure (or fully-secure) ABE (even for monotone access struc-
tures) or IPE scheme has been proposed under a well-established assumption in
the standard model, and no adaptively-secure (or fully-secure) ABE scheme with
non-monotone access structures has been proposed (even under non-standard as-
sumptions) in the standard model. In addition, to the best of our knowledge,
no FE scheme (even with selective security) has been presented that supports
more general relations than those for ABE, i.e., access structures with equality
relations, and those for IPE, i.e., inner-product relations.

1.2 Our Result

— This paper proposes an adaptively secure functional encryption (FE) scheme
for a wide class of relations, that are specified by non-monotone access struc-
tures combined with inner-product relations. More precisely, either one of the
parameters for ek and dk is a tuple of attribute vectors and the other is a
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non-monotone access structure or span program M := (M, p) along with a
tuple of attribute vectors, e.g.,  := (T1,..., Tq) € Fpittnd for ek and

v = (M,(V1,...,0aq) € Foittna) for dk. The component-wise inner-
product relations for attribute vector components, e.g., {@; - ¥’ = 0 or not

}teqi,....a}, are input to span program M, and R(z,v) holds iff the truth-

value vector of (T(Z1 01 =0),...,T(T¢- v = 0)) is accepted by span
program M.

Similarly to ABE, we propose two types of FE schemes, the KP-FE and
CP-FE schemes. Although this paper focuses on the KP-FE scheme, similar
results are obtained for the CP-FE scheme (see the full version of this paper).
Note that in Section Bl parameter x for encryption is expressed by I' :=
{(t, ;) | 1 <t < d} in place of a tuple of vectors (7'1,..., T'q), where
1 <t < d means that ¢ is an element of some subset of {1,...,d}, and
parameter v for the decryption key is expressed by S := (M, p) (not by
M := (M, p) along with (U'1,..., 0 4) as described above), where p in S is
abused as p in M combined with (7'1,..., ¥ 4) (see Definition M.

Since the class of relations supported by the proposed FE scheme is more
general than that for ABE and IPE, the proposed FE scheme includes the
following schemes as special cases:

1. The (KP and CP)-ABE schemes for non-monotone access structures
with equality relations. Here, the underlying attribute vectors of the
FE scheme, {?t}te{l,...,d} and {7t}te{1,...,d}7 are specialized to two-
dimensional vectors for the equality relation, e.g., @'y := (1,2;) and
V= (vg, —1), where T’y - vy = 0 iff 2y = vy.

2. The IPE and non-zero-IPE schemes, where a non-zero-IPE scheme is a
class of FE with R(Z, ) iff © - ¥ # 0. Here, the underlying access
structure S of the FE scheme is specialized to the 1-out-of-1 secret shar-
ing. The IPE scheme is ‘attribute-hiding,’ i.e., it is the PE scheme for
the inner-product relations (see the full version for the proof).

In addition, if the underlying access structure is specialized to the d-out-
of-d secret sharing, our FE scheme can be specialized to a hierarchical
zero/non-zero IPE scheme by adding delegation and rerandomization
mechanisms (see the full version for the construction and proof).
The proposed FE scheme with such a wide class of relations is proven to
be adaptively secure (adaptively payload-hiding against CPA) under a well-
established assumption, the decisional linear (DLIN) assumption (over prime
order pairing groups), in the standard model.
Note that even for FE with the simplest relations or the equality relations,
i.e., IBE, only a few IBE schemes are known to be adaptively secure under
well-established assumptions; the Waters IBE scheme [26] under the DBDH
assumption, and the Waters IBE scheme [28] under the DBDH and DLIN
assumptions.
The DLIN assumption is considered to be the simplest decisional assumption
regarding pairing group G, since the DLIN assumption is defined only over
G, the DDH assumption does not hold in G, and the DBDH assumption is
defined over two groups G and Grp.
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— To prove the security, this paper elaborately combines the dual system en-
cryption methodology proposed by Waters [28] and the concept of dual pair-
ing vector spaces (DPVS) proposed by Okamoto and Takashima [20021], in
a manner similar to that in [I8]. See Section I (and the full version of this
paper) for the concept and actual construction of DPVS.

This paper also develops a new technique to prove the security based on the
DLIN assumption. This provides a new methodology of employing a simple
assumption defined on primitive groups to prove a complicated scheme that
is designed on a higher level concept, DPVS.

In our methodology, the top level of the security proof (based on the dual
system encryption methodology) directly employs only top level assump-
tions (assumptions by Problems 1 and 2), that are defined on DPVS. The
methodology bridges the top level assumptions and the primitive one, the
DLIN assumption, in a hierarchical manner, where several levels of assump-
tions are constructed hierarchically. Such a modular way of proof greatly
clarifies the logic of a complicated security proof.

— The efficiency of the proposed FE scheme is comparable to that of the ex-
isting ABE and IPE schemes. For example, if the proposed FE scheme is
specialized to the IPE scheme, the key and ciphertext sizes are (4n+5) - |G|,
while they are (2n + 3) - |G| for the IPE scheme in [I8], where n is the di-
mension of the attribute vectors, and |G| denotes the size of an element of
pairing group G, e.g., 256 bits.

— It is easy to convert the (CPA-secure) proposed FE scheme to a CCA-secure
FE scheme by employing an existing general conversion such as that by
Canetti, Halevi and Katz [11] or that by Boneh and Katz [8] (using additional
8-dimensional dual spaces (Bqy1,B},,) with ngy1 := 2 on the proposed FE
scheme, and a strongly unforgeable one-time signature scheme or message
authentication code with encapsulation). That is, we can present a fully
secure (adaptively payload-hiding against CCA) FE scheme for the same
class of relations in the standard model under the DLIN assumption as well as
a strongly unforgeable one-time signature scheme or message authentication
code with encapsulation (see the full version of this paper for the construction
and security proof).

1.3 Notations

When A is a random variable or distribution, y & A denotes that y is randomly

selected from A according to its distribution. When A is a set, y & 4 denotes
that y is uniformly selected from A. y := z denotes that y is set, defined or
substituted by z. When a is a fixed value, A(x) — a (e.g., A(z) — 1) denotes
the event that machine (algorithm) A outputs @ on input . A function f : N — R
is negligible in A, if for every constant ¢ > 0, there exists an integer n such that
FO) <A~ forall A > n.

We denote the finite field of order ¢ by Fy, and F, \ {0} by Fx. A vector sym-
bol denotes a vector representation over Fy, e.g., 7 denotes (21,...,2,) € Fg.
For two vectors Z = (x1,...,2,) and v = (vy,...,v,), @ - v denotes the
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inner-product Z?:l z;v;. The vector ﬁ is abused as the zero vector in IF‘(;‘
for any n. XT denotes the transpose of matrix X. I, and 0, denote the £ x ¢
identity matrix and the ¢ x £ zero matrix, respectively. A bold face letter de-
notes an element of vector space V, e.g., € € V. When b; € V (i = 1,...,n),
span(by,...,b,) C V (resp. span(Z1,..., T n)) denotes the subspace gener-
ated by by,...,b, (resp. T'1,..., Tp). For bases B := (by,...,by) and B* :=
(by,....b%), (z1,...,zN)B == Zf\il x:b; and (y1,...,yn)B* = Zf\il y;by.

2 Dual Pairing Vector Spaces by Direct Product of
Symmetric Pairing Groups

Definition 1. “Symmetric bilinear pairing groups” (q,G,Gr,G,e) are a tuple
of a prime q, cyclic additive group G and multiplicative group Gr of order q,
G # 0 € G, and a polynomial-time computable nondegenerate bilinear pairing
e:GxG— Gr ie, e(sG,tG) = e(G,G)*" and e(G,G) # 1.

Let Gupg be an algorithm that takes input 1* and outputs a description of
bilinear pairing groups (q,G,Gr, G, e) with security parameter .

In this paper, we concentrate on the symmetric version of dual pairing vector
spaces [2002T] constructed by using symmetric bilinear pairing groups given in
Definition [I}

Definition 2. “Dual pairing vector spaces (DPVS)” (q,V,Gr, A, e) by a direct
product of symmetric pairing groups (¢,G,Gr,G,e) are a tuple of prime q, N-
N

)
dimensional vector space V := @ X +ee X @ over Fg, cyclic group Gr of order g,

i—1 N—i
A~ A

canonical basis A := (a1,...,an) of V, where a; := (6, .. .,6, G, 6, e ,6), and
pairing e : VXV — Gr.

The pairing is defined by e(x,y) := Hfil e(G;, H;) € Gp where x := (Gq, .. .,
Gn) € V and y := (Hy,...,Hy) € V. This is nondegenerate bilinear i.e.,
e(sx,ty) = e(x,y)* and if e(x,y) = 1 for all y € V, then * = 0. For all
i and j, e(a;,a;) = e(G,G)%i where §;; = 1 if i = j, and O otherwise, and
e(G,G) #1 € Grp.

DPYVS also has linear transformations ¢; ; on'V s.t. ¢; j(a;) = a; and ¢; ;(ax)

i—1 N—i
A~ P

=0 if k # j, which can be easily achieved by ¢; ;(x) = (6,...,0,Gj,0,...,6)
where x := (G1,...,GnN). We call ¢;; “distortion maps”.

DPVS generation algorithm Gapys takes input 1* (A € N) and N € N, and
outputs a description of paramy = (q,V,Gr, A, e) with security parameter A
and N-dimensional V. It can be constructed by using Gupg.

For the asymmetric version of DPVS, (¢, V,V* Gr, A, A* e), see the full version
of this paper. The above symmetric version is obtained by identifying V = V*
and A = A* in the asymmetric version.
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We describe random dual orthonormal bases generator G, below, which is
used as a subroutine in the proposed FE scheme.
R u
gob(]-)\v ﬁ = (da ny,... 7nd)) L paramg = (q»GaGTa Ga 6) — gbpg(lA)a ¢ — F();v
No:=5, Ny:=dny fort=1,...,d,
fort =0,...,d, paramy, :=(¢,Vy,Gr,As,€) := de\,s(l’\, Ny, paramg),

u _
X = (Xt,ij)ij & GL(Nt, Fy), (i )i = (X571,
N
bei = (Xti1s- s Xt,i,N Ay = Djq Xt,inj@t,js Be := (b1, ... by ),
b= e, Dein)a, = Yooy Veigae, Bf = (bf,....bf ),

gr = e(G, G)w, param; := ({paramy, }i—o,....d, 97)
return (paramsy, {B:, B} }+=0,...4)-

We note that gr = e(by i, b;;) for t =0,...,d;i=1,..., Ny.

3 Functional Encryption with General Relations

3.1 Span Programs and Non-monotone Access Structures

Definition 3 (Span Programs [1]). Let {p1,...,pn} be a set of variables. A

span program over Fy is a labeled matriz M = (M, p) where M is a ({xT) matriz
over Fy and p is a labeling of the rows of M by literals from {p1,...,pn, D1, ..,

—pn} (every row is labeled by one literal), i.e., p: {1,...,£} = {p1,...,Pn, D1,
o =pa}.

A span program accepts or rejects an input by the following criterion. For
every input sequence 6 € {0,1}" define the submatriz Ms of M consisting of
those rows whose labels are set to 1 by the input §, i.e., either rows labeled by
some p; such that §; = 1 or rows labeled by some —p; such that §; = 0. (i.e.,
v i {L ) — {0,1} ds defined by v(j) = 1 if [p() = pi] A6 = 1] or
[p(3) = =] A 0s = 0], and ~(j) = O otherwise. M5 := (Mj)(j)=1, where M; is
the j-th row of M.)

The span program M accepts 8 if and only sz € span(Ms), i.e., some linear
combination of the rows of Ms gives the all one vector T. (The row vector has
the value 1 in each coordinate.) A span program computes a Boolean function f
if it accepts exactly those inputs § where f(0) = 1.

A span program is called monotone if the labels of the rows are only the positive
literals {p1,...,pn}. Monotone span programs compute monotone functions. (So,
a span program in general is “non”-monotone.)

We assume that the matrix M satisfies the condition: M; # 0 fori= 1,...,¢.

We now introduce a non-monotone access structure with evaluating map v by
using the inner-product of attribute vectors, that is employed in the proposed
functional encryption schemes.
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Definition 4 (Inner-Products of Attribute Vectors and Access Struc-

tures). U, (t=1,...,d and Uy C {0,1}*) is a sub-universe, a set of attributes,

each of which is expressed by a pair of sub-universe id and ny-dimensional vector,
e, (t, V), where t € {1,...,d} and ¥ € Fre\ {6}}

We now define such an attribute to be a variable p of a span program M =
(M, p), i.e., p:= (t,7). An access structure S is span program M = (M, p)
along with variables p == (t,vV),p’ := (t',v’),..., i.e., S := (M, p) such that
p:{l,. . 0= {(t,0), (t,0),..., =(t,70),~(t,D),...}.

Let I be a set of attributes, i.e., I := {(t, Z¢) | @y € Tt \ {6)}, 1<t <d},
where 1 <t < d means that t is an element of some subset of {1,...,d}.

When I’ is given to access structure S, map v : {1,...,¢} — {0,1} for span
program M = (M, p) is defined as follows: For i = 1,...,¢, set v(i) = 1 if
[0i) = (6, T3)] Allt, T1) € I A[T:- T = 0] o7 [pli) = ~(t, T2)] Allt, T0) € I
AV - Ty #0]. Set v(i) = 0 otherwise.

Access structure S := (M, p) accepts T’ zﬁT € span((M;)(i)=1)-

We now construct a secret-sharing scheme for a non-monotone access structure
or span program.

Definition 5. A secret-sharing scheme for span program M = (M, p) is

1. Let M be ¢ x r matriz. Let column vector fT = (fr,.., )T

Then, sg = T 7 = > iy [k is the secret to be shared, and ST o=
(s1,...,80)7T = f 1s the vector of £ shares of the secret so and the
share s; belongs p(7).

2. If span progmmM (M, p) accept &, or access structure S := (M, p) accepts
I ie, 1€ span((M;)~(iy=1) with v : {1,...,£} — {0,1}, then there exist

constants {a; € Fy | i € I} such that I C {i € {1,...,£} | v(i) = 1} and
> icr @isi = so. Furthermore, these constants {a;} can be computed in time
polynomial in the size of matriz M .

3.2 Key-Policy Functional Encryption with General Relations

Definition 6 (Key-Policy Functional Encryption : KP-FE). A key-policy
functional encryption scheme consists of four algorithms.

Setup. This is a randomized algorithm that takes as input security parameter
and format W = (d;ni,...,nq) of attributes. It outputs public parameters
pk and master secret key sk.

KeyGen. This is a randomized algorithm that takes as input access structure
S:=(M,p), pk and sk. It outputs a decryption key sks.

Enc. This is a randomized algorithm that takes as input message m, a set of
attributes, I := {(t, @¢)| 7y € F \{6)},1 <t < d}, and public parameters
pk. It outputs a ciphertext ctp.
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Dec. This takes as input ciphertext ctp that was encrypted under a set of at-
tributes I', decryption key sks for access structure S, and public parameters
pk. It outputs either plaintext m or the distinguished symbol L.

A KP-FE scheme should have the following correctness property: for all
(pk, sk) i Setup(1*, 1), all access structures S, all decryption keys skg A
KeyGen(pk, sk, S), all messages m, all attribute sets I', all ciphertexts ctp &

Enc(pk, m, I'), it holds that m = Dec(pk, sks, ct;) with overwhelming probabil-
ity, if S accepts I

Definition 7. The model for proving the adaptively payload-hiding security of
KP-FFE under chosen plaintext attack is:

Setup. The challenger runs the setup algorithm, (pk,sk) i Setup(1*, 7), and
gives public parameters pk to the adversary.

Phase 1. The adversary is allowed to adaptively issue a polynomial number of
queries, S, to the challenger or oracle KeyGen(pk,sk,-) for private keys, sks
associated with S.

Challenge. The adversary submits two messages m®©, m() and a set of at-
tributes, I, provided that no S queried to the challenger in Phase 1 ac-

cepts I'. The challenger flips a coin b A {0,1}, and computes ctgf) K

Enc(pk,m(®, I"). It gives ctgf) to the adversary.

Phase 2. The adversary is allowed to adaptively issue a polynomial number of
queries, S, to the challenger or oracle KeyGen(pk,sk,-) for private keys, sks
associated with S, provided that S does not accept I'.

Guess. The adversary outputs a guess b’ of b.

We note that the model can easily be extended to handle chosen-ciphertext attacks
by allowing for decryption queries in Phases 1 and 2.

The advantage of adversary A in the above game is defined as AdvﬁP'FE’PH(/\)
= Pr[t/ =b] — 1/2 for any security parameter \. A KP-FE scheme is secure if
all polynomial time adversaries have at most a negligible advantage in the above
game.

Similarly we can define a ciphertezt-policy FE (CP-FE) scheme (see the full
version of this paper).

4 Assumption

Definition 8 (DLIN: Decisional Linear Assumption). The DLIN problem
is to guess B € {0,1}, given (paramg, G,EG, kG, wEG,vkG,Y3) i QﬁDL'N(lA),
where

QBDL'N(l)‘) : paramg := (¢, G,Gr, G, €e) &K Gbpg (1),

Kawagvry(_u]qu }/0 = (W‘F’Y)G, Yl <_UGa
return (paramg, G,¢G, KG,wéG, 7RG, Yp),
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for B A {0,1}. For a probabilistic machine £, we define the advantage of £ for
the DLIN problem as:

AdvBIN()) .= ’Pr [5(1& 0)—1 ]g R QEL'N(l’\)} —Pr [5(1& 0)— 1‘9 <—RgPL'N(1’\)} ] .

The DLIN assumption is: For any probabilistic polynomial-time adversary £, the

advantage Adv?L'N()\) is negligible in \.

5 Proposed KP-FE Scheme

We define function p : {1,...,£} — {1,...,d} by p(i) := t if p(i) = (t, V) or
p(i) = —(t, @), where p is given in access structure S := (M, p). In the proposed
scheme, we assume that p is injective for S := (M, p) with decryption key sks.
We will show how to relax the restriction in the full version of this paper.

In the description of the scheme, we assume that input vector, 'y := (24,1, ...,
Ttp,), is normalized such that z;; := 1. (If 7’4 is not normalized, change it to
a normalized one by (1/x¢1) - T, assuming that Z¢1 1s non-zero).

Setup(1*, 7 = (d;ny,...,na)) :  (param=, {By, B }imo...a) < Gop(1*, ),
Bo := (bo,1,b0,3,b0,5), B::= (be1,--,b¢n,,bt30,41,bran,) fort=1,..4d,
By = (bé,lvbé,?ﬂbéA)v By == ( :,17 - by :,2nt+17 e :,Snt) fort=1,..d,
—(

t,ne?

1%, param, {Bi}i=o,...a), sk :={B} }i=o, ..,
return pk, sk.
KeyGen(pk, sk, S:= (M,p)):

pk :

N
f (_UIF(;v ?T = (817"'aSZ)T ::M'7T’ S0 ::T'7Ta UO(E]qu
k; = (—S0,0, 1777070)]337

fori=1,...,7,

. . - U
if p(i) = (t, Vi == (i1, .- vin,) €FF\{0}), OisMi1s s Mine < Fo,
nt Nt ne nt
~ -~ ~~  ~r -~ ~~ -~ =

kf:=( s;i +0;vi1,0v2,..,0:vin,, 0™, M1y Mine s ore )B:

. . U
if p(l) :_‘(ta 72)7 Ni1y -5 Ming (_]an

Nt n¢ e ne
~ -~ ~~ N~ Nr -~ ~~ 7~ =
* L (0 . nt . . nt )
ki = ( Sz(vz,lv ~~7’U2,nt)v 0 5 N1y -3 Ming s 0 By

return sks := (S, kg, k7, - . ., k7).

Enc(pk, m, I:={(t, Tt = (21,20, ) EFPN{O}) [ 1 <t < dyyy:=1}) :

U
6a ©Yo, P15 - - ~a90t,nm(: — IF(I for (t’ ?t) € F’
Co ‘= (57 07 Ca 07 QOO)IBO’
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ne ne Nt ne
-~ -~ N~ N NN N -~ ~
Ct'_(6($t,17"axt,7u)’ 0 fa 0 fv Pt 1y -5 Pt,ng )Bt for (t7 $t)EF7

Cd+1 = Q%ma ctr = (F7 Co, {ct}(t,?t)el"a Cd+1)'
return ctp.
Dec(pk, sks := (S, kg, k7, ..., k), ctr = (I',co, {¢t} 4,7 ,)er Cd+1))
If S:= (M, p) accepts I' := {(t, Z'+)}, then compute I and {c;};c; such that

50 = ) ;er iSi, and

IC{ie{l,....0} | [pli)=(t7Vi) A & T el A V- Ti=0
Vo lp(d) =t T A (LT el A 0i-Ti 40}
K :=e(co, k) 11 e(cy, ki)™ e(cy, k)i/ (T
i€l A p(3)=(t,v;) i€l A p(i)=—(t,7;)

return m’ := cq41/K.

[Correctness]
e(cos ko) ILicr n piy= ) €€ k™ Tlier n por=nie o) €l k@770
—ds0+C dais; daisi (Vi @)/ (Vi @)
7 [Licr A p(i):(t,m)gTa “ILier o p(i):ﬁ(t,T’i)gTa ST
S(—=0+ ser @isi)+<
— gT S0 crI ;S — g%

6 Security

The proofs of Lemmas [[HAl and [6H8, and Claim [ are given in the full version of
this paper.

6.1 Theorem

Theorem 1. The proposed KP-FE scheme is adaptively payload-hiding against
chosen plaintext attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines SO,S;[,EhH (h =
0,...,v — 1), whose running times are essentially the same as that of A, such
that for any security parameter \,

v—1
AV TEPH () < AdBINO) + D (AVREN () + AdVREY (V) + e,
h=0

where v is the mazimum number of A’s key queries and € := (2dv+12v+d+7)/q.

6.2 Lemmas

We will show three lemmas for the proof of Theorem [
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Definition 9 (Problem 1). Problem 1 is to guess (3, given (paramﬁ,ﬁo,fﬂ\ié,

es,0,{B:, B, et,iti=1,.. di=1,..n.) & Pl(l’\ ), where

ggl(l)\, %}) : (paramﬁa {Bta Br}t:O,...,d) <_R gob(]-Av W)v

201

Bo := (bo,1,b0,3,b0,5), Bt := (be1,..,ben,, be3ni+1, ., bran,) fort=1,.,

- * X X A* —— * * * X _
= (bo,labo,?,abo,4)a Bt = ( t, 15 bt e Ot 2ns+10 "abt,?mt) fort=1,.,

U

d,
d,

Uy < F;, 5, (50 <—U ]Fq, (ut,i’j)i’j:Lm’nt <— GL(nt,]Fq) fOI‘ t= ]., ..,d,
€0,0 : = (5707070750)307 €1,0 ‘= (57 u07070750)ﬂ307
fort=1,...,d; i=1,...,n4

U .

Oy — Fq forj=1,...,m,
ng ng ng on
- -~ ~ - -~ ~~ 7 ~r -~ ~

R i—1 ne—1u n¢ T . .
€0,t,i = ( 0 a57 (U ) 0 fa 0 fa 6t,z,17 (3} 5t,z,nt )Bta

— i—1 nt—1 ) ] e ) )
€1t = ( 0 , 0,077, Ut 5,155 Ut ingy 0ne, 5t,z,17 i) 5t,z,nt )IB%”

return (params B07B07eﬁ Oy{BtaBtveﬁtz}t 1oy d=1,me)s

for B A {0,1}. For a probabilistic machine B, we define the advantage of B as
the quantity

AdviH(N)

::‘Pr[B(lA, 0)—1 ‘Q <—Rggl(1Aﬁ’)} _Pr{5(1A7 0)—1 ’Q (_Rglljl(lA7ﬁ>)} ‘ _

Lemma 1. For any adversary B, there exists a probabilistic machine &, whose
running time is essentially the same as that of B, such that for any security

parameter X, Advig-(\) < AdvE"'™N()\) 4+ 5/4.

Definition 10 (Problem 2). Problem 2 is to guess (3, given (paramﬁ,@o,]ﬁs,

S R 5p> —
hj o €0, {Be. By h i eritimt, o dii=t,ne) < G5° (1Y, ), where

* R
gﬁP2(1>\7 n) : (param—n {Btht }t:(),m,d) — gob(lkvﬁ)v
]Bo = (bo,1,b0,3,b0,5), B, := (bt,1s 2 btmy s bt 3n, 415, bean,) fort=1,..d,
= (bo.1,-b0.4)s E: = (b 1507 s O 2y 15 B gp,) fort=1,..d,
T, U <—U ]F , W, 0,7 & Fy, wo := 7/uo,
U _
(Zt,i,j)@j:lwmt = Zt «— GL(nt, ), (ut i j)iyj:L--JLt Z:(Zt l)T fOI‘ tzl, ..,d,

hé,O = (wvoaov’yovo)BSv hl 0 - (w wOvoa’YOvO)]BSv €p = (57 anovoao)IBov

fort=1,...,d; i=1,...,ny4
U .
(wt’iaj )i,j:L---,m =T 2 Vtiig < ]Fq forj=1,.,m
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¢ nt nt e

~ -~ ~- -~ ~- -~ ~~ N
hg,t,i = ( Ozj_l,w, Ont—z:, 0m, Yt i, 1s o0 Vtyines om )]B;‘
Ry = (07w, 0™ Wi, o Weings  Veids - Yeiones 0" ey
et’i = ( 0171, 5, Ontiz, ut,i,la cey Ut,i’nt, Ont, Ont )BH

-V -
return (paramﬁ'v BOv BOv hﬁ,07 €, {Bta IBt ) h’ﬁ7t,ia et,i}t:L..,d;i:l,“,nt)7

for B & {0,1}. For a probabilistic adversary B, the advantage of B for Problem
2, AdviZ(N), is similarly defined as in Definition 3.

Lemma 2. For any adversary B, there exists a probabilistic machine &, whose
running time is essentially the same as that of B, such that for any security
parameter \, Advig(\) < AdvE-™N()\) 4 5/¢.

Lemma 3. Forp € Fy, let C, := {(Z,V)|7 - v } - V* where V is
n-dimensional vector space Fr, and V* its dual. Fo r all ( ) € Cyp, for all
(7, w)€Cp, Pr[TU =7 A UZ:w]zl/ﬁC’p,whereZ GL(n,F,),U =
(Zz=HT.

V x
— —
T, v

9

6.3 Proof of Theorem [1]

Proof Outline : At the top level of strategy of the security proof, we follow the
dual system encryption methodology proposed by Waters [28]. In the method-
ology, ciphertexts and secret keys have two forms, normal and semi-functional.
In the proof herein, we also introduce another form called pre-semi-functional.
The real system uses only normal ciphertexts and normal secret keys, and semi-
functional /pre-semi-functional ciphertexts and keys are used only in a sequence
of security games for the security proof.

To prove this theorem, we employ Game 0 (original adaptive-security game)
through Game 3. In Game 1, the target ciphertext is changed to semi-functional.
When at most v secret key queries are issued by an adversary, there are 2v game
changes from Game 1 (Game 2-0), Game 2-07, Game 2-1 through Game 2-
(v —1)* and Game 2-v. In Game 2-h, the first h keys are semi-functional while
the remaining keys are normal, and the target ciphertext is semi-functional. In
Game 2-h*, the first h keys are semi-functional and the (h + 1)-th key is pre-
semi-functional while the remaining keys are normal, and the target ciphertext
is pre-semi-functional. The final game with advantage 0 is changed from Game
2-v. As usual, we prove that the advantage gaps between neighboring games are
negligible.

For sks := (S, kf, ki, ..., k;) and ctp == (I, co, {€t} 4, 7,)er> Ca+1), we focus

on E}g = (ki k%,...,k}) and €1 := (co, {et} 4, 7,)er), and ignore the other
part of sks and cty (and call them secret key and ciphertext, respectively) in
this proof outline. In addition, we ignore a negligible factor in the (informal)
descriptions of this proof outline. For example, we say “A is bounded by B”
when A < B+ ¢(\) where €(\) is negligible in security parameter .
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N

A normal secret key, k& "™ (with access structure S), is the correct form of
the secret key of the proposed FE scheme, and is expressed by Eq. (). Similarly,
a normal ciphertext (with attribute set I"), }"rm, is expressed by Eq. @)). A

— .
semi functional secret key, k § %™, is expressed by Eq. (), and a semi-functional

ciphertext, ¢ %M is expressed by Eqs. @)-(@). A pre-semi-functional secret key,

?* pre-semi —>pre semi

s , and pre—semi—functional ciphertext, ¢ , are expressed by Eq.

() and Egs. @), (@) and (&), respectively.
To prove that the advantage gap between Games 0 and 1 is bounded by the

advantage of Problem 1 (to guess 8 € {0,1}), we construct a simulator of the
challenger of Game 0 (or 1) (against an adversary .A) by using an instance with

1654 & {0,1} of Problem 1. We then show that the distribution of the secret
keys and target ciphertext replied by the simulator is equivalent to those of
Game 0 when 8 = 0 and Game 1 when § = 1. That is, the advantage of
Problem 1 is equivalent to the advantage gap between Games 0 and 1 (Lemma
M). The advantage of Problem 1 is proven to be equivalent to that of the DLIN
assumption (Lemma [).

The advantage gap between Games 2-h and 2-h™ is similarly shown to be
bounded by the advantage of Problem 2 (i.e., advantage of the DLIN assump-

tion) (Lemmas[Bland 2]). Here, we introduce special forms of pre-semi-functional

Al
keys and ciphertexts, kg spec.pre-semi. 1 g Spec-presemi. respectively7 such that
they are equivalent to pre-semi-functional keys and ciphertexts, k * presemi ond
e semi respectively, except that wore = ag = > req 9k and o a ]Fq (note that
—

5 presemi and €P*%™). These forms of keys and ciphertexts,

—>spec pre-semi

u
ro,wo < F, for k
?; spec.pre-semi

and ¢ , are simulated by using Problem 2 with § = 1.

* spec.pre-semi

>
From the definition of these forms, kg can decrypt € P semifor

* spec.pre-semi

any I" when S accepts I, i.e., it is hard for simulator l’)’+ to tell (k ,

gepecPresemy for Game 2-ht from (k:* norm - “grsemi) for Game 2-h under the
assumption of Problem 2. On the other hand7 ao(= worp) is independently dis-
tributed from the other variables when S does not accept I (shown in Proof of
Claim [ by using Lemma [3]). That is, the joint distribution of k x presemi and

—> pre-semi * spec.pre-semi —>spec.pre-semi
ch pec-p and ¢FP

is equwalent to that of k , When S does
not accept I" (i.e., B ’s simulation using Problem 2 with § = 1 is the same

distribution as t that of Game 2-h* from the adversary’s view). In other words,

—} . . . .
wo and rg in k x specpressemi ,nd eepre emi(given by B;’s simulation using

Problem 2 with ﬁ =1) are correlated for the case that S accepts I" or for simu-
lator B,ﬁf’s view, but adversary A cannot notice the correlation since A’s queries
should satisfy the condition that S does not accept I

The advantage gap between Games 2-h* and 2-(h+1) is similarly shown to be
bounded by the advantage of Problem 2, i.e., advantage of the DLIN assumption
(Lemmas [0 and [2I).

Finally we show that Game 2-v can be conceptually changed to Game 3
(Lemma [7]).
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Proof of Theorem [I]: To prove Theorem[I] we consider the following (2v + 3)
games. In Game 0, a part framed by a box indicates coefficients to be changed
in a subsequent game. In the other games, a part framed by a box indicates
coefficients which were changed in a game from the previous game.

Game 0 : Original game. That is, the reply to a key query for S := (M, p) with
£ X r matrix M is:

kg := (=50, 0,1,m0,0)g:,

fori=1,...,¢,

i p(@):(t,m),k*. (si+0:vi,1, 0052, ., 0i0ip,, O™ i1,y Wiy 0™ By,
if p(i) :_‘(tv?i)v ki = (s:(vi1, Vi, ); 0™, mis s m’"”om)mz’

(1)

Where?<—U]F’“ ST = (51,...,80)7 ::M~7T,so :zT-?T, 0i,m0,Mi1s -,
Niny & Fg, and V' == (vi1,-..,Vin,) € F*\ {6)} The target ciphertext for
0)

challenge plaintexts (m/ m(l)) and I' := {(t T |1 <t<d}is:

Cpy = (67 0 7Ca07300)B07
Ct = (5(%}71, ey 'Ttﬂlf,)’ ome , 0™, Pt 1y wtynt)]Bt for (t, ?t) el (2)
Cd+1 = Q%m(b),

U U
where b — {0,1};0,¢, 00, 0t1,---,9tn, — Fq, and T = (Xt1ye -y Ttm,) €

N

Fre\{0}.

Game 1 : Same as Game 0 except that the target ciphertext is:
Co ‘= ((5, To ,470,900)]307 (3)
Ct = (6($t,1a "7$t7nt)7 Tt,15 -5 Tt,n 7Onta Pt,15 - (pt,nt)Bt for (t? ?t) € F7 (4)
Cda1 = g%m(l’)7 (5)

u
where ro,7¢1,.. ., Ttn, — Fq.

Game 2-hT (h =0,...,v—1) : Game 2-0 is Game 1. Game 2-h™ is the same
as Game 2-h except the reply to the (h + 1)-th key query for S := (M, p) with
¢ x r matrix M, and ¢; of the target ciphertext are:

ki = (—s0, wo ,1,70,0)5:,
fori=1,...,¢,
if p(i) = (t,0)
kj = (si 4 0;vi1,0ivi2, -, 0iVin,, Wiy o, Wiin, 5115 -5 Miine, 0)B:,
if p(i) = —(t, V)

R . n
ki = (8i(vi1s Vi )y Wily o, Wiing 57150 Ming, 0By,

Ct = (6($t,1a -~7$t,nt)7 Tt, 15 Tt,n, 7Onta Pt,155 5, wt,nt)Bt for (t’ ?t) € Fa (7)
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U — U —T . T . —T U .
where wg — Fy, ¢ < F;, a" = (a1,...,a0)" =M -g~, 7« F,(i=

1,...,0), Z < GL(ny,Fy), Uy == (Z; YT fort=1,....d,

(Wi,1s s Wi, ) = (@5 + Ti0i1, TiVi2s - -+ s TiVim, ) - Zt,
(wm, ey wivnt) = ai(vivl, . 7’Ui7nt) . Zt,
(’rt,la ey Ttﬂlt) = (l’tJ, e 7$t,nt) . Ut-

Game 2-(h+1) (h=0,...,v—1) : Game 2-(h + 1) is the same as Game
2-hT except the reply to the (h + 1)-th key query for S := (M, p) with £ x r
matrix M, and ¢; of the target ciphertext are:

kg := (—s0,wo, 1,70, 0)B;,
fori=1,...,¢,

e (8)
if p(’L) = (t,?i), k:( = (Si—|—9i’l}i71, 9{0@2, . 9ivi7nt, om s i1y oy Mimg ,Ont)B:,
if p(i) ==, 05), K := (53 (Vi 15 Vi, )y O™ L7150y iy O™ )z

C; = (5($t71, A axtﬂlt)a Tty Ttn, ,Ont,(ptl, ey (pt,nt)Bt for (t, ?t) S F,

where 741, ..., Ttn, Y F,.
Game 3 : Same as Game 2-v except that ¢y and c¢411 of the target ciphertext
are

Cp ‘= (57 To, C/ 7074100)15307 Cd+1 = g%m(b)a

where (’ & F, (i.e., independent from ¢ A a)-

Let Adv®(\), Adv(P (), Adv™ (1), AdvZ" () and Adv®)(\) be the ad-
vantage of A in Game 0, 1,2-h,2-h* and 3, respectively. Advf)(/\) is equivalent
to Adv E\P FEPH()\) and it is clear that Advf)(/\) = 0 by Lemma [

We will show four lemmas (Lemmas A7) that evaluate the gaps between

pairs of Adv(? (1), Adv(P (1), AdvE™ (1), AdvZ (n), Adv D (\) for b =
0,...,v—1and Advf) (M\). From these lemmas and Lemmas III and [l we obtain
AVEFEPH ) = AV (V) < ]Advf;” A) — AdvP (A )‘ + ) ‘Advf’h)()\)—
Advff‘h+>(x)]+z;;é AdvE (1) — AdyZ D) (y MAdv(2 Y0 = Adv (\)
FAVE (A) < AdVEE(A) + V20 AdvE2 (0 ) + O AdVEE (V) + (2dv + 20+ d +
2)/q < Advg-™N(\) + 34 (AdvDL'N()\) +Adv2HN ()\)) (2dv +12v+d+7)/q.

Ent1

This completes the proof of Theorem [II a

Lemma 4. For any adversary A, there exists a probabilistic machine By, whose
running time is essentially the same as that of A, such that for any security

parameter A, |Adv52)()\) — Advfi)(/\)\ < AdVngi N+ (d+1)/q
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Lemma 5. For any adversary A, there exists a probabilistic machine B,f[, whose
running time is essentially the same as that of A, such that for any security

parameter X, |Advf'h)(/\) — Advf_h+)()\)| < Advii (V) + (d+1)/q.
h

Proof. In order to prove Lemma [l we construct a probabilistic machine B;{
against Problem 2 by using an adversary A in a security game (Game 2-h or
2-h™T) as a black box as follows:

*

1. B, is given a Problem 2 instance, (paramﬁ,@o,]ﬁé,hao,eo, {I@t,]@f,h&m,
€rji=1, . dij=1,..n.).
. B; plays a role of the challenger in the security game against adversary A.
. At the first step of the game, B,‘f provides A a public key pk := (1*, param;,
{Bt}t=0,....a) of Game 2-h (and 2-h™), that is a part of the Problem 2 in-
stance.
4. When the t-th key query is issued for access structure S := (M, p), B,f[
answers as follows:
(a) When 1 < ¢ < h, B/ answers semi-functional key (kg,...,k}) with Eq.
@), that is computed by using {Bj }+=o.... 4 of the Problem 2 instance.
(b) When ¢ = h+ 1, B, calculates (kf, ..., k;) by using
(h5.0:{Pj 4 =1, d;j=1,...,n,) of the Problem 2 instance as follows:

W N

,ut,l,ﬁk,“—UIFq fort=1,...,d; k=1,...,r; 1 =1,2,

Pho = Sher (ki + fik2by )
fort=1,...,d; k=1,...,r; j=1,...,ny4
Py = peahpe ;s +pesbi Pl = Hiihie; + Heebi;,
ko == —ppo+bos
fori=1,...,¢,
if p(i) = (t,0), k=" 0iiPh, ;+ > ee1 MikBly m,»
if p(i) = (¢, ?2)’ ki = Z?Ll Ui, j (2221 Mi,kﬁz,t,k,j)’
where (M; i )i=1,....ek=1,...r := M.
(¢) When ¢ > h+2, B,f[ answers normal key (k§,...,k;) with Eq. (), that

is computed by using {I/Bgf}tzov__’d of the Problem 2 instance.
5. When B;{ receives an encryption query with challenge plaintexts (m(9), m(1))
and I":= {(t, ;) | 1 <t < d} from A, B;f computes the challenge ciphertext
(co,{et} i,z ,)er> ca+1) such that for (¢, T er,

co:=eo+Cbos+qo, cii=0 il et Qa1 = ggm®),

Where C <_U ]an b (_U {Oa 1}7 qo0 (E span<b075>, qt (E 5P3n<bt,3nt+17 ey bt,4nt>7
and (bo 3, €0, {€tj =1, .d;j=1,.n,) is & part of the Problem 2 instance.

6. When a key query is issued by A after the encryption query, B;[ executes
the same procedure as that of step [l

7. A finally outputs bit &'. If b = b', B outputs 3’ := 1. Otherwise, B; outputs

g =0.
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Claim 1. The distribution of the view of adversary A in the above-mentioned
game simulated by B,f given a Problem 2 instance with 8 € {0,1} is the same
as that in Game 2-h (resp. Game 2-h™) if 3 =0 (resp. 3 =1).

The proof of Claim [ is given in the full version of this paper. This completes
the proof of Lemma O

Lemma 6. For any adversary A, there exists a probabilistic machine Bypy1,
whose running time is essentially the same as that of A, such that for any secu-

rity parameter A, |Advf'h+)()\) - /—\dvf_(hﬂ))()\ﬂ <AVE . (A 4+ (d+1)/q.

Bhi
Lemma 7. For any adversary A, Advf)()\) < Advf‘y)()\) +1/q.

Lemma 8. For any adversary A, Advf)()\) = 0.
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Abstract. A modular approach for cryptographic protocols leads to a
simple design but often inefficient constructions. On the other hand,
ad hoc constructions may yield efficient protocols at the cost of losing
conceptual simplicity. We suggest structure-preserving commitments and
signatures to overcome this dilemma and provide a way to construct
modular protocols with reasonable efficiency, while retaining conceptual
simplicity.

We focus on schemes in bilinear groups that preserve parts of the
group structure, which makes it easy to combine them with other prim-
itives such as non-interactive zero-knowledge proofs for bilinear groups.

We say that a signature scheme is structure-preserving if its verifica-
tion keys, signatures, and messages are elements in a bilinear group, and
the verification equation is a conjunction of pairing-product equations. If
moreover the verification keys lie in the message space, we call them au-
tomorphic. We present several efficient instantiations of automorphic and
structure-preserving signatures, enjoying various other additional prop-
erties, such as simulatability. Among many applications, we give three
examples: adaptively secure round-optimal blind signature schemes, a
group signature scheme with efficient concurrent join, and an efficient
instantiation of anonymous proxy signatures.

A further contribution is homomorphic trapdoor commitments to group
elements which are also length reducing. In contrast, the messages of pre-
vious homomorphic trapdoor commitment schemes are exponents.

1 Introduction

The designer of cryptographic protocols faces a tension between choosing a mod-
ular approach using generic primitives that lead to a simple design but inefficient

* Work done while at NTT Information Sharing Platform Laboratories.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 209*, 2010.
© International Association for Cryptologic Research 2010
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protocols or using ad hoc constructions that sometimes yield efficient protocols
at the cost of losing conceptual simplicity. Cryptographic protocols often com-
bine general building blocks such as commitments, encryption, signatures, and
zero-knowledge proofs. While modular design is useful to show feasibility of
cryptographic tasks and also to illustrate a comprehensible framework, efficient
instantiations are sometimes left as a next challenge. Some cryptographic tasks
find “cleverly crafted” efficient solutions dedicated to their specific purposes.
Nevertheless, modular construction makes implementing more complex primi-
tives easier when the building blocks have reasonable instantiations. We suggest
structure-preserving commitments and signatures to provide a way to construct
modular protocols that retain conceptual simplicity and at the same time yield
reasonable efficiency.

A classical way of realizing efficient instantiations is to rely on the random-
oracle heuristic [BR93] for non-interactive zero-knowledge (NIZK) proofs—or to
directly use interactive assumptions (like the LRSW assumption [LRSWO00] and
its variants, or “one-more” assumptions [BNPS03]). Due to a series of criticisms
starting with [CGH98] more and more practical schemes are being proposed and
proved secure in the standard model (i.e., without random oracles) and under
falsifiable (and thus non-interactive) assumptions [Nao03]. All schemes given in
this work satisfy these criteria.

STRUCTURE-PRESERVING SIGNATURES. The combination of NIZK proofs of
knowledge and signatures appears frequently in privacy-protecting cryptographic
protocols such as group signatures [BMWO03], [KY05] [BSZ05, [Gro07], blind signa-
tures [Fis06], [AO09], anonymous credentials [BCKLOS, IBCCT09|, verifiably en-
crypted signatures [BGLS03], [RS09], non-interactive group encryption [CLY09]
and many more.

An efficient non-interactive proof system in the standard model, however,
has been absent until recently. In [GS08], Groth and Sahai presented the first
(and currently the only) efficient non-interactive proof system for a large class
of statements over bilinear groups. The most interesting and widely used type is
a conjunction of pairing-product equations (PPE) whose variables are elements
of the bilinear group (cf. Section 24]). A PPE consists of products of pairings
applied to the variables and constants from the group. For this type of equations,
the proofs are fully extractable which actually makes them proofs of knowledge.
This renders GS proofs particularly interesting for modular protocol design.

Research on signature schemes that are compatible with GS proofs was ini-
tiated in [Gro06]. While the design goal is clear and simple, giving an efficient
instantiation has proved hard for years. There are efficient signature schemes,
e.g., [BB04, [CT.04, BCKLOSK, [CKS09], whose verification predicates are pairing-
product equations, but none of them have signatures and messages that exclu-
sively consist of group elements. Since only group elements can be extracted from
GS commitments, this entailed limited applicability of each scheme or stronger
security notions such as F-unforgeability [BCKLOS].

The desirable properties of a signature scheme enabling modular design to-
gether with GS proofs are the following:
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1. the scheme is unforgeable against chosen-message attacks;

2. the verification keys, messages, and signatures are elements of a bilinear
group; and

3. the verification predicate is a conjunction of pairing-product equations over
the key, the message and the signature.

Note that this proscribes the use of hash functions, which usually play a central
role in making signature schemes unforgeable against adaptive chosen-message
attacks. We therefore call such a scheme structure preserving. If in addition its
verification keys lie in the message space, we call it an automorphic signature
(since it signs its own keys besides preserving structure).

Combined with GS proofs, structure-preserving signatures allow to prove
knowledge of messages, signatures and/or verification keys without actually re-
vealing them. Proving knowledge of signatures has been used in many construc-
tion of group signatures, anonymous proxy signatures, anonymous credentials,
blind signatures, and others. Clearly, structure-preserving signatures combined
with the GS proof system will allow to instantiate those constructions with-
out resorting to interactive assumptions nor to the random-oracle model while
maintaining a modular design.

For example, Fischlin [Fis06] presented the following framework for round-
optimal blind signatures in the common reference string model. To obtain a
signature from the signer, the user commits to a message and sends the com-
mitment to the signer. Then, the signer signs the commitment and sends back
the signature. The user produces a NIZK proof of knowledge of a commitment,
an opening of the commitment to that message, and a signature on the com-
mitment. This proof constitutes a blind signature for the message. Despite its
simplicity, the scheme has not been instantiated efficiently in the standard model
because it requires a signature scheme which signs trapdoor commitments and
whose verification equations should mesh well with the GS proof system.

An application that also requires signing verification keys are anonymous
proxy signatures [FPO§|. They enable users to delegate (and redelegate) their
signing rights to other users. A signature on behalf of another user (proxy signa-
ture) hides the identity of the proxy signer and possible intermediate delegators.
Instantiating anonymous proxy signatures requires a signature scheme that is
both GS compatible and enables users to sign other user’s verification keys to
delegate. Automorphic signatures can thus be used create a delegation chain of
which the proxy signer proves knowledge using GS proofs.

TRAPDOOR COMMITMENTS TO GROUP ELEMENTS. A non-interactive commit-
ment scheme allows to create a commitment c to a message m. The commitment
hides the message, but we may later disclose m and demonstrate that ¢ was a
commitment to m by revealing the randomness r used when creating it. This
is called opening the commitment. It is essential that once a commitment is
made, it is binding, meaning that it is infeasible to find two openings of the
same commitment to two different messages.

In this paper, we consider public-key trapdoor commitments [GQ88] [Ped92]
which are also homomorphic and length reducing. The former means that
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messages and commitments belong to abelian groups and if we multiply two
commitments, we get a new commitment that contains the product of the two
messages, whereas the latter requires that the commitment is shorter than the
message.

An example would be a generalization of Pedersen commitments whose n
message components are in Zj,. The public key consists of n + 1 group elements
G1,...,Gp, H and a commitment to (m1,...,m,) is C = H"[[\_, G{**. This
scheme is length-reducing since a commitment to n messages consists of only
one group element, a feature that has been found useful in contexts such as mix-
nets/voting, digital credentials, blind signatures, leakage-resilient one-way func-
tions, and zero-knowledge proofs [FS01], Nef01l, Bra99, [KZ06l, [ADW09, [Lip03].

Common to all the homomorphic trapdoor commitment schemes is that they
are homomorphic with respect to addition in a ring or a field. However, in public-
key cryptography we often work over groups that are not rings or fields and it
is useful to commit to elements from such groups. Of course, if we know the
discrete logarithms of the group elements we want to commit to, we can commit
to them using Pedersen commitments. In general, we cannot expect to know the
discrete logarithms of the messages though, leaving us with the open problem of
constructing homomorphic trapdoor commitments to group elements.

Furthermore, such schemes could be combined with Pedersen commitments
since commitments of the latter scheme are single group element. So, if we have a
homomorphic trapdoor commitment scheme whose commitments to O(n) group
elements are of size O(1), we can commit to m - n elements in Z, using com-
mitment schemes with public keys of total size O(m + n). In comparison, when
using only Pedersen commitments the public key would be of size O(m - n).

Finally, note that similarly to structure-preserving signatures, “GS compati-
bility” of a homomorphic trapdoor commitment scheme makes it a useful com-
ponent in constructing more advanced zero-knowledge arguments or giving an
efficient proof of knowledge of a message and/or an opening of a commitment.

1.1 Owur Contribution

The paper presents three main results, all of them based on groups with a bilinear
map. We focus on constructions in asymmetric bilinear groups whereas those in
the symmetric setting are given in the full versions.

Firstly, we present a homomorphic trapdoor commitment to group elements.
The commitments are perfectly hiding, computationally binding, and length re-
ducing. An advantage of our commitment scheme is that the construction is very
simple. The public key consists of n + 1 group elements (Gg,G1,...,G,) from
G1 and we commit to M,..., M, € Gs by choosing R € Go at random and
computing the commitment

C=¢e(Gg, R He G, M;)

The commitment scheme is computationally binding under the double pairing as-
sumption, which we show to be implied by decisional Diffie-Hellman assumption



Structure-Preserving Signatures and Commitments to Group Elements 213

in G1. We extend our construction to commit to commitments as mentioned above
and present an honest verifier zero-knowledge argument of knowledge of the con-
tents of such commitments.

Next, we present the first instantiation of structure-preserving signatures on
group elements. The messages consist of 2 group elements from an asymmetric
bilinear group and signatures of 5 elements. Since the verification keys lie in the
message space, the scheme is actually an automorphic signature. The scheme is
proved secure under a variant of the strong Diffie-Hellman assumption [BB04],
a “g-type” assumption which holds in the generic-group model. We combine the
scheme with the GS proof system to construct the first efficient round-optimal
blind signature scheme, which also remains automorphic. Moreover, we give a
generic transformation from any automorphic signature scheme to one that signs
message vectors of arbitrary length that leaves the keys unchanged.

Lastly, we present a structure-preserving signature scheme which signs vec-
tors of general group elements. It has a constant signature size regardless of
the message length. Our scheme does not rely on setup assumptions nor the
messages having a specific structure, e.g. Diffie-Hellman pairs, like in the pre-
vious construction. While its verification key grows linearly in the maximum
message length, it is possible to extend the scheme to sign unbounded-length
messages at the cost of signatures growing proportionally to the length. This
way, it is possible to make the signature automorphic albeit less efficient than
the scheme above. The security is based on a novel strong, “q-type”, assumption
which is fairly complex. However, it has an optimal quadratic security bound in
generic bilinear groups unlike the popular strong Diffie-Hellman assumption and
its variations. Finally, we define the notion of simulatable signatures and give
an efficient instantiation. It is defined in the common reference string (CRS)
model and allows to create valid signatures using the trapdoor associated with
the CRS.

APPLICATIONS: We illustrate the advantages of structure-preserving signature
schemes by presenting several useful applications. The round-optimal blind sig-
nature scheme of Fischlin described before, which is secure in the universal-
composability framework [Can01], is easily instantiated with such a building
block in hand. The only extra tool we need is a trapdoor commitment on mes-
sages in Z, whose commitments and openings are group elements. Such scheme
is easily derived from the Pedersen commitment scheme when working in bilinear
groups.

We then present a practical group signature scheme in the strongest security
model [BSZ05] which moreover supports concurrent join. The construction fol-
lows a commonly used approach, based on the technique of proving knowledge
of a signature.

Finally, we present the first efficient instantiation of anonymous proxy signa-
tures (APS) in the standard model. Since automorphic signatures allow certify-
ing public keys, delegation can be done by signing the delegatee’s public key. An
anonymous proxy signature is a GS proof of knowledge of a certification chain
that starts at the original delegator and ends at the message. We also discuss
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how to strengthen the anonymity guarantees of APS. Using blind automorphic
signatures, we give a protocol that hides the identity of the delegatee from the
delegator. Moreover, using randomizability of GS proofs, we show how to main-
tain anonymity of the intermediate delegators w.r.t. the delegatee.

We note that since the announcement of our work, automorphic signatures
have been used to construct the first fair blind signatures without random or-
acles [FVI0] and non-interactively delegatable anonymous credentials [Fucl0].
The commitment schemes and the related assumptions have been used to con-
struct efficient leakage-resilient signatures and one-way relations [DHLAWTOJ.
Moreover, one can use the commitment schemes to reduce the communication
complexity of Groth’s [GroQ9b| sub-linear size zero-knowledge argument for cir-
cuit satisfiability from O(|C|2) group elements to O(|C|#) group elements.

1.2 Related Work

There are many examples of homomorphic commitments. Homomorphic cryp-
tosystems such as [EIG86l, [OU98|, [Pai99, [BGNOH] or Linear Encryption [BBS04]
can be seen as homomorphic commitment schemes that are perfectly binding
and computationally hiding. Commitments based on homomorphic encryption
can be converted into computationally binding and perfectly hiding homomor-
phic commitments, see for instance the mixed commitments of Damgard and
Nielsen [DN02] and the commitment schemes used by Groth, Ostrovsky and
Sahai [GOS06], Boyen and Waters [BW06], Groth [Gro06] and Groth and Sa-
hai [GS08]. Even in the perfectly hiding versions of these schemes the size of a
commitment is larger than the size of a message though. This length increase
follows from the fact that the underlying building block is a cryptosystem whose
ciphertexts must be large enough to include the message.

There are also direct constructions of homomorphic trapdoor commitment
schemes such as Guillou and Quisquater commitments [GQ88] and Pedersen
commitments [Ped92]. The latter are one of the most used commitment schemes
in the field of cryptography. They are perfectly hiding with a trapdoor and if
the discrete-logarithm problem is hard they are computationally binding. There
are many variants of the Pedersen commitment scheme. Fujisaki and Okamoto
[FO97] and Damgard and Fujisaki [DF02] for instance suggest a variant where
the messages can be arbitrary integers. However, none of the previous trapdoor
commitment schemes has messages from a group.

Feasibility of structure-preserving signatures on group elements was first shown
by Groth [Gro06], who presents a construction based on the decision linear as-
sumption (DLIN) [BBS04]. While it is remarkable that the security can be based
on a simple standard assumption, the scheme is not practical as signatures
consist of hundreds of thousands of group elements. Based on the g-Hidden LRSW
assumption, Green and Hohenberger [GHOS8] presented an efficient scheme that
provides security against random-message attacks. An extension to chosen-
message security is not known.

Independently of our work, Cathalo, Libert and Yung [CLY(9] gave a practical
scheme based on a combination of the hidden strong Diffie-Hellman assumption,
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the flexible Diffie-Hellman assumption, and the DLIN assumption. It was the first
structure-preserving signature scheme to sign single group elements. However, it
cannot sign its own verification keys and signatures on vectors grow linearly in
their length.

An instantiation, though not practical, of anonymous proxy signatures was
given in [FP09]. Moreover, they are similar to the delegatable anonymous creden-
tials from [BCCT09] in that they provide mechanisms enabling users to prove
possession of certain rights while remaining anonymous; and they consider re-
delegation of received rights. The interactive delegation protocol for anonymous
credentials provides even mutual anonymity of the delegator and the delegatee.
The two instantiations rely on similar assumptions.

1.3 Merging Our Results

This paper combines the results of three different lines of research. In [Gro(9a]
Groth presented the first homomorphic trapdoor commitments to group elements
which are moreover length-reducing (Section Bl). Fuchsbauer [Fuc09] gave the
first structure-preserving signatures on group elements and used it to efficiently
implement round-optimal blind signatures in the standard model (Section [).
Abe, Haralambiev and Ohkubo [AHOTO] gave the first constant-size signature
scheme on vectors of general group elements. They also explicitly defined the
notion of simulatable signatures, gave an efficient construction, and used it to
implement UC-secure round-optimal blind signatures (Sections [B] and B.T]).

2 Preliminaries

2.1 Bilinear Groups
We will work in bilinear groups of the form A = (p, G1, G2, Gr, e, G, H) where

— pis a A-bit prime, where ) is a security parameter

— G1,Gg, Gp are order p groups with efficiently computable group operations,
membership tests and map e : G; X Gy — Gr

— G generates Gy, H generates Go and e(G, H) generates G

— The map e is bilinear YA € G1VB € GoVz,y € Z), : e(A”, BY) = e(A, B)™

To simplify notation, we define G} = G1\ {1}, G5 = G2\ {1} and G} = G\ {1}.

2.2 Assumptions

We will work with bilinear groups generated by a probabilistic polynomial-time
algorithm G that takes the security parameter as input. The schemes we present
will rely on one or more of the following computational assumptions about the
bilinear groups generated by G. We note right away that the assumptions imply
G1 # Go and furthermore some of them imply that we are working in so called
type III bilinear groups [GPS08] where there are no efficiently computable non-
trivial homomorphisms between the two base groups G; and Go. We refer to the
full papers for schemes that work in type I and type II bilinear groups.
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Variants of DDH and CDH. The decisional Diffie-Hellman (DDH) problem
in a group G is, given (G, G%, G?, G¢), to decide whether ¢ = ab. The symmetric
external Diffie-Hellman (SXDH) assumption in a bilinear group states that DDH
is hard in both groups.

Assumption 1 (SXDH). For A = (p,G1,Ga, Gr,e,G, H) «+ G(1*), the deci-
sional Diffie-Hellman assumption holds in both Gy and Gs.

The 2-out-of-8 CDH assumption [KP06] states that given (G, G, H), it is hard
to output (G", H") for an arbitrary r # 0. To break the Flexible CDH assump-
tion [LVO8| [CLY09], an adversary must additionally compute G*". We further
weaken the assumption by defining a solution as (G", G, H", H*"), and gener-
alize it to asymmetric groups by letting G € G; and H € Gs. The asymmetric
weak flexible CDH is defined as follows:

Assumption 2 (AWF-CDH). Let G € Gi, H € G2 and a € Z, be random.
Given (G, A = G* H), it is hard to output (G",G", H", H*") with r # 0, i.e.,
a tuple (R, M, S, N) that satisfies

e(4,S) = e(M,H)  e(M,H)=c(G,N)  e(R,H)=e(G,S) (1)
Given a DDH instance (G,G?, G?, G¢), solving AWF-CDH for (G, G, H) yields

(G", G, H", H%"); thus G¢ = G can be checked by e(G®, H") = e(G?, H").
We have thus

Lemma 1. The AWF-CDH assumption holds if the decisional Diffie-Hellman
assumption is hard in G.

The Double Pairing Assumption. The double pairing problem is given ran-
dom Gr, Gt € G to find non-trivial R, S € Gg satistying e(Gr, R)e(Gr,T) = 1.

Assumption 3 (DBP). For all nonuniform polynomial-time adversaries A

Pr|A— G(1"); Gr,Gr < Gy; (R, T) — A(A,Gr,Gr) :
(R,T)e Gy xG5 A e(Gr,R)e(Gr,T) =1| = negl(A).

We show in the full papers the following lemma:

Lemma 2. The double pairing assumption holds if the decisional Diffie-Hellman
assumption is hard in Gq.

The reverse double pairing problem, where the base groups are interchanged and
the challenge is to find a non-trivial pair (R, S) € G? is defined analogously.
Next, observe that given an answer to an instance of the DBP problem, one can
easily yield more answers. We eliminate such possibility by multiplying random
pairings to both sides of the equation. As one of those stays the same in all
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instances, whereas the other, e(V, W), changes in each instance, the intuition
is that it would be hard to combine e(V, W) and e(V’', W) into one equivalent
pairing e(V", W") — we call such a pairing flexible as it can be easily randomized
and, when relations with respect to the same base is known, combined with
another. Also, to make the assumption valid, we make a system of two such
equations and require that their solutions share a common element, Z.

Assumption 4 (Simultaneous Flexible Pairing Assumption (¢-SFP)).
Let A be a bilinear groups setup and let Gz, Fz, Gr, and Fy be random gener-
ators of Gy. Let (A,/i), (B,é) be random pairs in Gy X Go. For j =1,...,q, let
R; =(Z,R,S,T,U,V,W) that satisfies

e(A,A) =e(Gyz, Z) e(Gr,R) e(S,T) and (2)
e(B,B) = e(Fz,Z) e(Fy,U) e(V,W). (3)

Given (A,GZ,FZ,GR,FU,A,A,B,B) and uniformly chosen Ri,...,Rq, it is
hard to find (Z*, R*,S*,T*, U*,V* , W*) that fulfill relations (@) and {3) under
the restriction that Z* # 1 and Z* # Z € R for every R;.

We also show that the SFP assumption can be justified and has an optimal
bound in the generic bilinear group model.

Lemma 3. For any generic algorithm A, the probability that A breaks SFP with
¢ group operations and pairings is bound by O(q* + () /p.

A variant of the g-strong Diffie Helmman assumption. The g-strong
Diffie-Hellman (SDH) assumption [BB04] implies hardness of the following two
problems in bilinear groups [FPV09):

1. Given G,G?® and ¢q — 1 pairs (GTJ:F ,¢;), output a new pair (Gmic ,C).
2. Given G, K,G", ((K- G”)”fl( , ci,vi)fkl

=1’
Boyen and Waters [BWQ7] define the hidden SDH assumption which states that
the first problem is hard when the pairs are substituted with triples of the form
(GY/(@ted) Gei He), for a fixed H. Analogously, Fuchsbauer et al. [FPV09] de-
fine the double hidden SDH (DHSDH) by giving the scalars in the second prob-
lem as exponentiations of two group elements. We adapt DHSDH to asymmetric
groups by giving generators G, F, K € G; and H € Gg; the elements ¢; and
v; are given as (F, H%) and (G"i, H""). Due to the pairing, a tuple can thus
be effectively verified. The assumption holds in the generic-group model [Sho97]
for both asymmetric and symmetric groups [Fuc09] and falls in the generalized
“Uber-Assumption” family [Boy0§].

Assumption 5 (¢-ADH-SDH). Let G,F,K € Gy, H € Gy and z,¢;,v; € Zy
be random. Given (G, F,K,X=G*; H,Y =H") and
(Ai = (K-G¥)=+e, C;=F%, D;=H", V;=G", Wi=H") ,

for1 <i<gq-—1, it is hard to output a new tuple ((K- G”)w}rc,FC,HC,G”,H”)
with (¢,v) # (¢, v;) for all i.

output a new ((K-G") S v).
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Note that a tuple (A, C, D,V, W) of this form satisfies the following equations:
e(A,Y-D)=¢e(K-V,H) ¢e(C,H)=¢e(F,D) eV,H)=e(G,W) (4)

2.3 Digital Signatures

A digital signature scheme Sig = (Setup, KeyGen, Sign, Verify) consists of the
following algorithms: Setup outputs system parameters; KeyGen outputs a pair
(vk, sk) of verification and signing keys; and Sign(sk, M) outputs a signature
o, which is verified by Verify(vk, M, o). Signatures are ezistentially unforgeable
under chosen-message attack (EUF-CMA) [GMRSS] if no adversary, given vk
and a signing oracle for messages of its choice, can output a pair (M, ) s.t. M
was never queried and Verify(vk, M, o) = 1.

Signatures are strongly EUF-CMA (sEUF-CMA) if no adversary can output a
valid pair (M, o) such that (M,o) # (M;,0;) for all i, with M; being the i-th
oracle query and o; the response.

2.4 SXDH Groth-Sahai Proofs for Pairing-Product Equations

One of the main motivations of structure-preserving signatures is to combine
them with Groth-Sahai (GS) proofs [GS08], in particular witness-indistinguish-
able (WI) proofs of satisfiability of pairing-product equations (PPE). A PPE over
variables X1,...,X,, € Gy, Y1,...,Y, € Gy is an equation of the form

He (A;,Y7) He X;, B;) HHe X, V) = tr (E)

i=1j=1

determined by A; € G1, B; € Ga,7;,j € Zp, and tr € Gr.

Groth and Sahai define an extractable commitment scheme for group ele-
ments. The setup algorithm is given a bilinear group and outputs a commitment
key ck € G} x G3. A commitment Com(ck, X, p) to X € G; using randomness
p € 72 is in G} (for i = 1,2). These commitments are perfectly binding and
given an extraction key, the committed values can be recovered.

A proof of satisfiability of a PPE is constructed as follows. First, make com-
mitments to the satisfying witness (X1, ..., Xm, Y1,...,Y,). Then make a proof
¢ that the committed values satisfy the equation, using the values and the ran-
domness of the commitments. The proofs, which are in G} x G3, are perfectly
sound: if a proof passes verification for a set of commitments then the committed
(and extractable) values satisfy the equation.

There is an alternative setup that outputs keys ck® which lead to commitments
and proofs that are equally distributed for all witnesses. Under SXDH, these keys
are indistinguishable from original keys; witness indistinguishability of GS proofs
follows thus from SXDH.

Note that due to extractability, a proof of satisfiability is actually a non-
interactive proof of knowledge of a witness; we will write thus

NIPK{(X1,.., Xm, Y1,..,Yy) : [Te(A:, V) [Te(Xi, B) [ T[] e(X;,Y;)"7 =tr}
and PKVrf for the verification algorithm.
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If for a signature scheme, public keys, messages and signatures are group
elements that are verified by checking PPEs, we can commit to (encrypt) keys,
messages and/or signatures and prove validity of the committed values using GS
proofs.

Randomization. Groth-Sahai commitments can be randomized, in particular,
given ¢ = Com(ck, X, p), one can compute Com(ck, X, p+ p’) for any p’ without
knowledge of X or p. Moreover, given commitments and a proof ¢ that the
committed values satisfy a PPE, we can randomize the commitments and adapt
¢ to the randomized commitments [BCCT09]. WI implies that a randomized
proof is indistinguishable from a proof computed with a different witness.

3 Commitments

A non-interactive commitment scheme consists of three polynomial-time algo-
rithms (G, Geom, com). G is a probabilistic polynomial-time setup algorithm that
takes as input the security parameter A and outputs some setup information
A; in our commitment scheme G will be a bilinear group generator. Geon, is a
probabilistic polynomial-time algorithm that takes as input the setup A and and
generates a public commitment key ck and a trapdoor key tk. The commitment
key ck specifies a message space Mk, a randomizer space R., and a commit-
ment space C.,. We assume it is easy to verify membership of the message space,
randomizer space and the commitment space and it is possible to sample ran-
domizers uniformly at random from R.x. The algorithm Com takes as input
the commitment key ck, a message m from the message space, a randomizer
r from the randomizer space and outputs a commitment ¢ in the commitment
space. We call a message-randomizer pair an opening. Anybody with an opening
and a commitment can check whether the commitment is a commitment to the
message specified in the opening.

A commitment scheme should be binding, which means it is infeasible to find
two openings of the same commitment to two different messages. A commitment
scheme should also be hiding such that the commitment does not disclose any-
thing about the message. Our commitment scheme is a trapdoor commitment
scheme, which makes it hiding in a very strong sense. The commitment has a
trapdoor opening algorithm Topen that takes the trapdoor key, an opening of
a commitment and a message and outputs a randomizer such that the message
and the randomizer constitute a new opening of the commitment.

We will now describe our commitment scheme. The commitment scheme will
have message space M., = G5, randomizer space R = G2 and commitment
space C.r, = Gp. In other words, we can commit to an n-tuple of base group
elements with a commitment that consists of a single target group element.

Setup: On input 1* return A = (p, Gy, Go, Gr, e, G, H) «— G(1*).

Key generation: On input A pick Gg «— G} and zi1,...,z, < Z, and set
Gy =G%, -+, G, =G} The commitment and trapdoor keys are

ck=(A,Gr,G1,...,Gy) and thk=(ck,z1,...,2,).



220 M. Abe et al.

Commitment: Using commitment key ck on input message (M,...,M,) €
GY% pick randomizer R «+ Ga. The commitment is given by

C=e(Gr.R) [[ e(Gi, M) .

i=1

Trapdoor opening: On a commitment C' € G with opening (M, ..., M,, R)
€ GY x G2 and another message (M{,..., M]) € G} use the trapdoor key
tk to compute the trapdoor randomizer R’ = R[]\, (M;/M])". This gives
us a trapdoor opening (Mj,..., M/, R’) satisfying

C = e(Gr, R) [ e(Gi, Mi) = e(Gr, B) [ [ e(Gir M) -

i=1 i=1

The commitment scheme has several useful properties. The commitment is length-
reducing, since a commitment to a tuple of messages yields a commitment consist-
ing of a single target group element. The commitment scheme is homomorphic
since multiplying two commitments yields a commitment to the entry-wise prod-
uct of the messages, i.e.,

n n n
e(Gr, R) [ e(Gi, My) - e(Gr, R') [ [ e(Gi, M) = e(Gr, RR) [ [ e(Gi, Mi ).
i=1 i=1 i=1
The commitment scheme is perfectly hiding since for all messages (M, ..., M,) €

G% the commitment procedure returns a uniformly random commitment C' € Gp
and therefore no information is leaked about the commitment. Indeed, with the
trapdoor key we can even take a commitment and its opening and create an open-
ing to any other message. Finally, we prove in the full papers that the commitment
scheme is computationally binding if the double pairing assumption holds for the
bilinear group generator G. We summarize these properties in the theorem below,
which we prove in the full papers.

Theorem 1. (G, Gecom, Com, Topen) described above is a homomorphic, perfectly
hiding trapdoor commitment scheme; and assuming the double pairing assump-
tion holds for G the commitment scheme is computationally binding.

It is straightforward to construct a similar type of commitment scheme for tuples
in G} using the reverse double pairing assumption.

Committing to commitments. The defining characteristic of our commit-
ment scheme is that we commit to base group elements as opposed to field
elements. This opens up new applications for commitment schemes. As a sim-
ple example, we can for instance construct commitments to commitments. Re-
call that Pedersen commitments to tuples (m,...,m,) € Z; are of the form
C=H" H;L:1 H;nj. Each Pedersen commitment is a group element, and we can
commit to many Pedersen commitments using our commitment scheme. Com-
bining the two commitment schemes we can commit to n? field elements from
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Zy,. Since both Pedersen commitments and our commitments are homomorphic,
the combined commitment scheme is also homomorphic. It also preserves the
trapdoor opening property and is perfectly hiding. A commitment consists of a
single group element in Gy and the commitment key consists of approximately
2n group elements, so unlike the Pedersen commitment we have a commitment
key that is much smaller than the messages.

4 Automorphic Signatures

For elaborate applications, Groth-Sahai compatibility of a signature scheme is
not sufficient; in addition, the verification keys have to lie in the message space.
This enables constructions of certification chains (sequences of public keys linked
by certificates from one key on the next one), which can be anonymized by GS
proofs, as required by anonymous proxy signatures (see Section [63)) and delegat-
able anonymous credentials. We call such a scheme an automorphic signature,
as it is able to sign its own keys and it is structure preserving.

Definition 1. An automorphic signature over A = (p,G1,Ga,Grp,e,G, H) is
an EUF-CMA secure signature whose verification keys lie in the message space.
Moreover, the messages and signatures consist of elements from Gy and Gz, and
the verification predicate is a conjunction of pairing-product equations.

The trick that enables an efficient instantiation of automorphic signatures is to
define a message (and thus a verification key) as a pair of group elements of
the form (GY, H”). Hence, the message space is the set of Diffie-Hellman pairs
DH = {(G",H")|v € Z,}. In Assumption [}l we could interpret G, F, K, H as
parameters, (X,Y) as the public key, (V,W) as the message and (A, C, D) as
the signature—since a signer holding the secret key x can choose ¢ and pro-
duce (A, C, D) without knowing v. ADH-SDH states that these signatures are
unforgeable when the adversary gets ¢ — 1 signatures on random messages.

To make the scheme secure against chosen-message attacks, we interpret GV
in the definition of A as a trapdoor commitment to the message (M, N). The
key is an element T := G! € Gy, where ¢t is the trapdoor, and a commitment
to (M, N) is defined as V :=T" - M with opening (G", H"). AWF-CDH implies
that the commitments are computationally binding. Trapdoor opening requires
knowledge of W such that (V, W) € DH: for any (V,W), (M, N) € DH, a valid
opening is ((V - M)~t (W - N)~t).

The final signature will be (A4, C, D) together with the opening of the com-
mitment (R, S); a signature is thus in G$ x G3.

4.1 Instantiation

Our automorphic signature scheme Sig = (Setup, KeyGen, Sign, Verify) is defined
as follows.

Setup: On input 1* run A = (p,G1,Ge,Gr,e,G, H) « G(1), choose random
elements F, K,T € G; and output the parameters pp := (A, F, K,T). The
message space is DH := {(G™,H™) |m € Z,}.
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Key generation: On input pp choose = «+ Z, and return the verification key
vk := (G*, H*) and the signing key sk := x.

Signing: On input the parameters pp, a secret key x and a message (M, N) €
DH, choose ¢, r «— Z, and return

A= (K-T"-M)s+e C:=F° D:=H° R:=G S:=H"

Verification: On input pp, a public key (X,Y") and a message (M, N), both in
DH, and a signature (A,C, D, R, S), return 1 if

e(C,H) =e(F,D)

e(A,Y-D)=¢e(K-M,H)e(T,S) e(R,H) = e(G,9)

()

Theorem 2. Under ADH-SDH and AWF-CDH, Sig is strongly unforgeable
against chosen-message attacks.

We refer to the full version [FucQ9] for a proof. Note that the scheme can also
be instantiated for Gy = Gs. Our scheme (and the blind signature scheme in
the next section) can also be used to sign bit strings if we assume a collision-
resistant hash function Hash: {0,1}* — Z,: before signing a message or verifying
a signature, we map m € {0,1}* to (M, N) := (GHash(m) prHash(m)y ¢ D,

4.2 Automorphic Blind Signatures

We now show how to combine automorphic signatures with the Groth-Sahai
proof system to construct the first round-optimal blind signature scheme, satis-
fying standard security requirements as in [Oka06] (see Section for a univer-
sally composable scheme). Similarly to Fischlin’s generic construction, our blind
signatures are defined as a proof of knowledge of a signature from an underlying
scheme, which perfectly hides the signature. We thus only have to ensure that
the signer does not learn the message while signing. In our scheme the user sends
a randomization of the message, on which the signer makes a “pre-signature”.
By adapting the randomness, the user can retrieve a signature on the message
(rather than on a commitment for which the user has to prove knowledge of
the opening, as in Fischlin’s construction). This increases useability of our blind
signatures for applications (cf. Section [6.3]) and also makes them shorter.

To obtain a blind signature on (M, N), the user randomly picks p « Z, and
blinds M by the factor T”. In addition to U := T* - M, she sends a GS proof
of knowledge of (M, N,G?, H?). The signer now formally produces a signatur
on U, for which we have A = (K - T7- U)Y/@+e) = (K. T+ . M)V (@+e); thus
A is the first component of a signature on (M, N) with randomness r + p. The
user can complete the signature by adapting randomness r to r 4 p in the other
components. The blind signature is a GS proof of knowledge of this signature.

! Note that the user does not obtain a signature on U (unless U = M), since it is
not an element of the message space; to produce (U, H'egc Y) € DH, the user would
have to break AWF-CDH.
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Obtain((pp’, ck), vk, (M, N)) Choose p «— Zp, set P:=G*, Q := H”, and send:
- U=T"-M
— ¢ = NIPK{(M, N, P,Q) : e(M, H) = e(G, N)
ANe(P,H)=¢e(G,Q)N e(T,Q)e(M,H) = e(U,H)}

Issue((pp’, ck), ). If ¢ is valid, choose ¢, 7 « Z, and send:
A= (K-T"-U)ste C:=F° D=H° R =G §=H"

Obtain sets R:=R' - P, S:=5"-Q.If (A,C,D,R,S) is valid on (M, N) under vk,
it outputs

o= NIPK{(A,C,D,R, S): VerifySig(pp, vk,(M,N), (A,C,D, R, S))} .

Fig. 1. Two-move blind signing protocol

Our blind signature scheme BSig = (Setup, KeyGen, Obtain, Issue, Verify) is de-
fined as follows.

Setup: On input 1* run the setup algorithms for Sig and for Groth-Sahai
proofs; return the respective outputs pp’ and ck as parameters pp.

Key generation: The message space and key generation are defined as for Sig.

Signature issuing: The protocol consists of interactive algorithms Obtain, run
by the user, and Issue, run by the signer. Obtain has inputs pp, the signer’s
verification key vk and a message (M, N) € DH. Issue has inputs pp and the
signing key . The protocol is given in Figure [Il

Verification: On input pp, a verification key vk, a message (M, N) € DH and
a signature o, return 1 if ¢ is a valid Groth-Sahai proof, i.e.,

PKVrf{o : Verify, (vk, (M,N), )} =1 .

Theorem 3. Under ADH-SDH and SXDH, scheme BSig is an unforgeable
blind-signature scheme.

Using soundness of Groth-Sahai proofs, unforgeability is shown by reduction to
the unforgeability of Sig, which holds under ADH-SDH and SXDH (the latter
implies AWF-CDH). Under SXDH, the user’s message (U, ¢) computationally
hides (M, N) and the blind signature hides what the signer sends in the issuing;
together this can be shown to imply blindness. See [Fuc(9] for a formal proof of
Theorem [3l

The round complexity of the scheme is optimal. A blind signature consists of
commitments to (A, C, D, R, S) in G$ x G4 and GS proofs, which are in G} x G3,
for 3 equations. A blind signature is thus in Gi% x G1%, the two messages sent
during issuing are in G{7 x G1° and G} x G2, respectively. Note that the scheme
remains automorphic since GS proofs consists of group elements and are verified
by checking pairing-product equations.
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4.3 Automorphic Signatures on Message Vectors

In order to sign vectors of messages of arbitrary length, we proceed as follows. We
first show how to transform any signature scheme whose message space forms
an algebraic group (and contains the public-key space) into one that signs 2
messages at once—if we exclude the neutral element from the message space
of the transform. A signature on a message pair will contain 3 signatures (of
the original scheme) on different products of the components. Note that DH,
the message space of Sig, is a group when the group operation is defined as
component-wise multiplication.

We then give a straightforward generic transformation from any scheme sign-
ing 2 messages (and whose verification keys lie in the message space) to one
signing message vectors of arbitrary length (Definition [3)). Both transformations
do not modify setup and key generation and they are invariant w.r.t. the struc-
ture of verification; in particular, if the verification predicate of the original
scheme is a conjunction of PPEs then so is that of the transform.

Definition 2. Let Sig = (Setup, KeyGen, Sign, Verify) be a signature scheme
whose message space (M, -) is an algebraic group that contains the verification
keys. The pair transform of Sig with message space M* x M* is defined as
Sig’ = (Setup, KeyGen, Sign’, Verify') with

Sign’(sk, (M1, My)): Set (vko,sko) < KeyGen and return
o= (Vko, Sign(sk, vko),
Sign(sko, M), Sign(sko, M1 - M), Sign(sko, My - M3)) .
Verify' (vk, (My, Mz), (vko, 00, 01,02,03)): Return 1 if all of the following are 1:
Verify(vk, vkg, 09)
Verify(vko, My,01)  Verify(vko, My - My, 00) Verify(vko, My - M3, 03)
Theorem 4. If Sig is EUF-CMA secure then so is Sig'.

Definition 3. Let Sig = (Setup, KeyGen, Sign, Verify) be a signature scheme
with message space M x M, such that M contains the verification keys. Assume
an efficiently computable injection I: {1,...,|M|} — M. The vector transform
of Sig is defined as Sig” = (Setup, KeyGen, Sign”, Verify”) with

Sign” (sk, (M1, ..., M,)): Set (vko,sko) < KeyGen and return
o= (Vko, Sign(sk, vko, I(n)),
Sign(sko, M1,1(1)),...,Sign(sko, My, 1(n))) .
Verify”(vk, (My,...,M,), (vko,00,01,- .-, an)): Return 1 if the following are 1:
Verify(vk, (VkO,I(n)),ao) Verify(vko, (M;, 1(7)), O'i) (for all 1 <i<n)
Theorem 5. If Sig is EUF-CMA secure then so is Sig’” .

We refer to [Fuc09] for proofs of Theorems Ml and [ where we also discuss why
the construction in Definition [2] is optimal and why it seems somehow hard to
construct a generic vector transform directly.
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5 Signatures on Vectors of Group Elements

In this section, we present the first constant-size structure-preserving signature
scheme for messages of general bilinear groups elements. We start by describing
useful randomization techniques, followed by the scheme description and various
extensions. Full details, as well as the byproduct of several trapdoor commitment
schemes, can be found in [AHOT0].

5.1 Randomization Techniques

We introduce techniques that randomize elements in a pairing or a pairing prod-
uct without changing their value in Gr. Let (p,G1,Go,Gr, e, G, H) «— G(1).

Inner Randomization (X', Y’) « Rand(X,Y): A pairing A = e(X,Y) # 1 is
randomized as follows. Choose v « Z7 and let (X’,Y’) = (X7,Y'/7). It then
holds that (X’,Y”) distributes uniformly over G; x G2 under the condition of
A =e(X'Y'). If A =1, then first flip a coin and pick e(1,1) with probability
1/(2p—1). If it is not selected, flip a coin and pick either e(1, X) or e(X, 1) with
probability 1/2. Then select X uniformly from the corresponding group except
for 1.

Sequential Randomization {X/,Y/}% | <« RandSeq({X;,Y;}¥ ;): A pairing
product A = e(X1,Y1) e(X2,Y2)...e(Xg, Ys) is randomized into A = e(X7,Y/)
e(X5,Y5) ... e(X},Y)) as follows: Let (y1,...,7k—1) < Z’;_l. We begin with
randomizing the first pairing by using the second pairing as follows. First verify
that Y7 # 1 and Xy # 1. If Y7 = 1, replace the first pairing e(X1, 1) with e(1, Y7)
with a new random Y3 (# 1). The case of X2 = 1 is handled in the same manner.
Then multiply 1 = e(X; ™, Y1) e(X2,Y]"™) to both sides of the formula. We thus
obtain

A=e(X1 Xy, Y1) e(Xo, Y] Y2) e(X3,Y3) - - (X, Yi)-

Next we randomize the second pairing by using the third one. As before, if
Y'Y, = 1 or X3 = 1, replace them to random values. Then multiply 1 =
e(X3 7, Y"Ys) e( X3, (Y] Y2)"2). We thus have

A= e(X1 X, V) e(Xa X5 7, YY) e X, (V)1 Ya)2Y3) - - e X, Ya).

This continues up to the (k—1)-st pairing. When done, the value of the i-th pairing
distributes uniformly in G due to the uniform choice of ;. The k-th pairing fol-
lows the distribution determined by A and preceding k — 1 pairings. To complete
the randomization, every pairing is processed by the inner randomization.

The sequential randomization can be used to extend a product of k pair-
ings to a product of arbitrary k' pairings, k' > k, by appending e(1, 1) before
randomization. By {X/,Y/}*_, « RandExtend({X;,Y;}*_,) we denote the se-
quential randomization with extension. Parameters k& and k’, k' > k, should be
clear from the input and the output.

Note that the algorithms yield uniform elements and thus may include pairings
that evaluate to 1g,.. If it is not preferable, it can be avoided by repeating that
particular step once again excluding the bad randomness.
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5.2 Basic Signature Scheme

We define the signature scheme Sig = (G, KeyGen, Sign, Verify) below. In addition
to the common parameters outputted by the G algorithm, the key generation
algorithm KeyGen also takes a parameters k which determines the message space
G%; messages of shorter length are implicitly padded with 1g,-s. We do not use
any trusted setup, but only the bilinear group generation.

Setup: On input 1* return A = (p, Gy, Go,Gr,e,G, H) «— G(1*).

Key generation: On input A and k, choose random generators G, Fiy +— Gj.
For i =1,...,k, choose v;,0; «— Z;2 and compute G; = G}, and F; = Fg
Choose vz,0z7 «— Zf and compute Gz = G’}CZ and Fy = ng. Also choose
a, = Z;;z and compute {4;, A;}}_, « RandExtend(Gg, H*) and
{B;, B;}}_, < RandExtend(Fy;, H%). Set sk = (vk, o, 8,77, Sz, {7, 6 YE))

and vk = (AvGZ7FZ7GRaFU7{GiaFi}éC:]a{AiaAiaBivBi}}:())’ OUtPUt
(vk, sk).

Signature issuing: On input sk and M, choose ¢, p, 7, ¢,w randomly from Zj
and set:

Z=HS R=Hr 7] M 8§ =Gy, T =H I
U = H¥—92¢ Hf:l M;éi, V= F[L]d7 W = HB-9)/w,
Output ¢ = (Z,R,S,T,U,V,W) as a signature.

Verification: Oninputvk, M ,ando,parsethesignaturecas(Z, R, S, T,U, V,W).
Output 1 if the following equations:

=

A=¢(Gz,Z)e(Ggr,R) e(S,T) e(Gi, M;) and (6)

=1

s
Il

=

B= €(Fz,Z) €(FU, U) 6(‘/, W) G(Fi,MZ‘) (7)

N
Il
_

hold for A = e(Ag, Ag) e(A1, A1) and B = e(By, By) e(By, B1). Output 0,
otherwise.

The following theorem is proved in [AHOT0]:

Theorem 6. (G, KeyGen, Sign, Verify) described above provides perfect correct-
ness. It is existentially unforgeable against adaptive chosen-message attack if the
SFP assumption holds for G.

Next, we describe some notable properties of the signature scheme:

Partial Perfect Randomizability. Given a signature (Z, R, S, T, U, V, W) one
can randomize every element except for Z by applying the sequential random-
ization technique with small tweak as follows. Define the function

(R, S, T",U", V', W') « SigRand(R, S, T,U, V, W), as:
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— Randomize (R, S,T) into (R’,S’,T") as follows.
e First, if T'=1, set S =1 and choose T+ G3.
e Then, choose ¢ «+ Z, and compute

R' =RT? (9,7') < Rand(SGR°,T)
— Randomize (U, S,T) into (U’,S’,T") analogously.

Lemma 4. The above (R',S’,T', U, V', W') distributes uniformly over (Go x
Gy x G2)? under constraint that e(Ggr,R)e(S,T) = e(Gr,R')e(S",T") and
e(Fy,U)e(V,W) =e(Fy,U") e(V',W').

The claim implies that (S’, 7, V', W) is information theoretically independent
of Z, the message, and the verification key. (In general, the same is true for
publishing any two elements from (R’,S’, T’) and (U’, V', W’) respectively.)

Signature Binding Property. Roughly, it claims that no one but the signer
can obtain two signatures which have the same S and V. In the following formal
statement, the adversary is allowed to submit both M and M to the signing
oracle. That is way the property is not implied by EUF-CMA in general.

Lemma 5. Under adaptive chosen message attacks, no adversary can output
(M, o) and (M*,0") such that 1 = Verify(vk, M, o) = Verify(vk, MT,ot), M #
M, and (S,V) are shared in o and o'.

Hence, in a way, publishing (S, V') together with the verification key works as a
commitment on the signature and the message without revealing any information
(recall that (S, V') are chosen uniformly in the signing algorithm).

5.3 Variations and Extensions

In this section we describe various extensions and modifications of the above
scheme. Due to the space limitations, the ideas are only described briefly and
the full description is presented in the full version.

Messages € GY¥. When working with asymmetric pairings, it is possible to
define a “dual scheme” with a message space G¥ (by essentially swapping G,
and G in the above description).

Messages € le X (Gk2 It is possible to combine the signature schemes with
message spaces G and Gk2 to obtain a signature scheme whose message space
is le X Gk2. Note that this is not trivial, as there is no efficient mappings
between G; and Go, and straightforward independent signing allows a forgery.
The transformation is applicable to (or required by) the extensions below.

Short Variable-Length Messages. Let (n) denote a deterministic encoding
of non-negative integer n (< p) to an element of G3. By limiting the maximum
message length to be k— 1, for a signature with message space G5, and appending
(M) to the input message M, messages with length less than k can be treated.
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Unbounded-Length Messages. For a signature scheme with message space
G%, it is possible to sign messages from the space GJ, n > k, by using a “chain-
ing” technique. The basic idea is to split the message vector into (almost) equal
chunks and sign each chunk along with the signature of the previous chunk (or
part of it using the signature binding property described above). This is useful
when the signer does not know a priori the maximum length of the messages or
has to sign her own verification key (e.g. autormorphic signatures).

Strong One-time Signatures. Dropping the flexible part e(S,T") and e(V, W)
from the construction results in a strongly unforgeable one-time signature scheme
based on a (weaker) static assumption which is implied by the DBP.

Strongly Unforgeable Signatures. We construct a structure-preserving sig-
nature scheme with constant-size signatures that is sSEUF-CMA secure. The
generic construction, combining a EUF-CMA and a one-time sEUF-CMA sig-
nature schemes, is optimized by sharing some parts of the verification keys.

vk Variations. We can replace {Ai,fli,Bi,Bi}}:O with A = e¢(Gr, H®) and
B = e(Fy, H?) in a verification key, and use A and B directly in the verification
equations (@) and (7). The reason we include a representation of A (and B) in G
and Gy is to address the needs to put the verification key into the base groups.
The GS proof system provides zero-knowledge property for statements that do
not include elements from Gr except for 1g,. When WI is of only concern, we
do such replacement.

Symmetric Pairings. The signature scheme is also secure when working with
symmetric pairings (G; = Gg). The above extensions apply in that case as well.

5.4 Simulatable Signatures

A simulatable signature scheme SSig=(G,CrsGen,KeyGen,Check,Sign,Verify,Sim)
consists of algorithms for which Sig=((G + CrsGen),KeyGen,Sign, Verify) consti-
tutes a regular signature scheme. It is defined in the common reference string
(CRS) model and allows to create valid signatures using the trapdoor associated
with the CRS. The three algorithms not defined for regular signatures (CrsGen,
Check, Sim) are, respectively, for generating a CRS and the associated trapdoor,
for checking that a verification key produced by a user is valid, and for simulating
a signature on any valid message on behalf of any user using the trapdoor key
rather than the corresponding signing key. A simulatable signature is a useful
tool in combination with a witness indistinguishable (WT) proof system. Unlike
zero-knowledge (ZK) proofs, WI proof system does not accompany a simulator.
So when a signature is part of the witness and the signer is corrupt and use-
less, simulatable signature can provide a correct witness to the entity having the
trapdoor.

The notion is introduced in [AOQ9] but in an informal way dedicated for
their purposes. We present a formal treatment and give an efficient construction,
but due to the space limitation, we can only sketch the intuition, the security
definitions, and the construction details. Full details are presented in [AHOT0].
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The security properties we require from a simulatable signature scheme are
correctness, simulatability, and unforgeability, extended to a multi-user setting
where the adversary has access to a signing oracle for all correctly generated
verification keys in addition to a proof oracle for simulated signatures on any
valid verification key and message. Our construction shares a lot with our basic
signature scheme. The main difference is that to sign messages of length k, we
need k flexible pairings rather than 1, so the signature is of size 4k 4+ 3 group
elements. The Verify algorithm is defined similarly, with the verification equations
being:

=

A=¢e(Gz,7Z) e(Gr, R) e(Gi, M;) e(S;,T;) and (8)

1

o
I

=

B=e(Fz,7Z)e(Fy,U) e(Fy, M;) e(Vi, W) . (9)

i=1

So, for k = 1, the two schemes have the same signature distribution and verifica-
tion algorithms. The key generation algorithm of the basic scheme is divided into
two parts: CrsGen generating the elements on the right side of equations (8)-(@)
and KeyGen computing those on the left as well as a signature on the default
message (e.g. the all-1g, vector). The CRS is, in fact, a commitment key for a
trapdoor commitment scheme similar to the one presented in Section 3, whereas
any vk is a commitment to the default message. The signing algorithm is quite
intricate as it opens the commitment, the signer’s vk, to any given message with-
out using the commitment trapdoor. That is why we need k flexible pairings to
achieve perfectly random distribution for a signature under the condition that
the verification equations are satisfied.

Theorem 7. The SSig described above is a perfectly correct signature scheme
and signature-simulatable. It is EUF-CMA with WI-simulation in the multi-user
setting for k =1 if the SFP assumption holds for G.

The security for the case of k > 1 is shown under a generalization of the SFP
assumption and also presented in the full version.

6 Applications of Signatures on Group Elements

This section highlights the benefits of combining structure-preserving signatures
on group elements with the GS proof system when building applications. We
present the first efficient round-optimal non-committing blind signature scheme
which is adaptively secure in the universal-composability framework, efficient
group signatures with concurrent join under the strongest security definitions,
and efficient anonymous proxy signatures with enhanced anonymity properties.
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6.1 UC-Secure Blind Signatures

It has been an open problem to efficiently instantiate Fischlin’s [Fis06] framework
for UC-secure round-optimal blind signatures. We do so using our signature
scheme from Section [} and a variant of Pedersen commitments [Ped92]. In fact,
we use the modification of [HKKL07, [AO09] for which the generic construction
uses a NIWI proof system and a simulatable signature scheme as it achieves
adaptive security.

We instantiate the framework as follows: a user commits to a message m € Z,,
with opening D = G", as C' = H™Y" and sends C' to the signer. Note that the
verification equation for (D, m) being a valid opening is e(G,C)e(D,Y 1) =
e(G, H™) which could be viewed as a “pairing-based variant” of Pedersen com-
mitment. The signer signs the commitment ¢ using the simulatable signature
scheme from Section [l and returns the signature to the user. Then, the user
computes a NIWI proof of knowledge 7 of a commitment C' to the message m,
an opening D of the commitment for that message, and a valid signature on C'
with respect to the signer’s verification key. The user outputs that proof as a
blind signature on the message m.

Details of the instantiation can be found in [AHOT0]. The signature size is 28
group elements when working with symmetric pairings and 28 group elements
with asymmetric, while the total communication complexity is only 8 group
elements in both cases.

6.2 Group Signatures

Group signatures have enjoyed much interest since they were introduced by
Chaum and van Heyst [Cv91] almost twenty years ago. Most previous con-
structions, [CS97, [ACIT00, BBS04, [CL04, BSZ05, BW06l, BW07, [Gro06] among
others, could be viewed as unsatisfactory in some aspect: relying on the random-
oracle model, satisfying weaker security definitions, or not being efficient. The
scheme by Groth [Gro07] both is practical and satisfies the strengthened se-
curity definitions of [BSZ05]. However, it does not support concurrent join of
new users. Using our signature schemes in combination with the GS proof sys-
tem and an appropriate encryption scheme [Kil06, [Sha07], we overcome this
shortcoming and construct a group signature scheme under the strongest se-
curity definitions which supports concurrent join while achieving comparable
efficiency.

Our construction follows a common approach used, e.g., in [CS97, [Gro07].
The dynamic join protocol between a group member and the issuer simply con-
sists in the issuer signing the member’s verification key. To sign a message m,
the member signs the message using her secret key and gives a NIWI proof of
knowledge of a verification key, a signature on that key by the issuer, and a
signature on the message under that key. For the details of our constructions
and further discussions, we refer to the full versions of our papers.
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6.3 Anonymous Proxy Signatures

Combined with Groth-Sahai proofs, automorphic signatures enable the first ef-
ficient instantiation of anonymous proxy signatures [FP08]. This primitive gen-
eralizes (multi-level) proxy signatures [MUQO96, BPWO03] and group signatures.
Consider a setting where users publish signature verification keys, which they
have previously registered with an authority. Proxy signatures enable users to
delegate others to sign on their behalf; moreover, received rights can be redele-
gated. Anonymity of proxy signatures guarantees that they neither reveal who
signed nor who redelegated. As for group signatures, an opening authority can re-
voke anonymity to deter from misuse. Every valid signature can be opened to reg-
istered users (traceability) and no coalition even comprising the authorities can
produce a signature that wrongfully accuses an honest user (non-frameability).

Automorphic signatures allow a straightforward instantiation of the generic
construction. To delegate to Bob, Alice signs his public key (and possibly some
public attributes). To redelegate to Carol, Bob forwards her the received sig-
nature and signs her public key. Carol makes a proxy signature by signing the
message and then making a proof of knowledge of the following: Bob’s key, Al-
ice’s signature on it, her own key, Bob’s signature on it, and her signature on the
messageE Since all of them consist of elements of a bilinear group and validity
is expressed as pairing-product equations, Groth-Sahai (GS) proofs apply per-
fectly. The extraction key is given to the opener who can thus revoke anonymity
of a signature by retrieving the public keys of the intermediate delegators and
the proxy signer. A signature is verified by checking validity of the GS proof
with respect to Alice’s public key.

Enhanced Anonymity Guarantees. In the model of [FP0g|, anonymity holds
only w.r.t. the verifier. We show how to protect the privacy of the delegatee and
the delegators even during delegation. The delegatee remains anonymous if we
use the issuing protocol of the blind signature from Section for delegation.
In the end, the delegatee holds an actual signature on her public key, as in the
original scheme, but without the delegator having learned her identity.

The previous delegators can remain anonymous w.r.t. the delegatee as well,
as due to the modularity of Groth-Sahai proofs, the “anonymization” of a sig-
nature need not be delayed until the proxy signing: instead of forwarding the
received delegation chain, a delegator forwards a proof of knowledge of it. The
delegatee can then extend the proof by one delegation step, or make a proxy
signature; before doing so, she randomizes the proof, which prevents linkability
of delegations and signatures. By additionally proving knowledge of his public
key and signature, the delegator can also hide his own identity. Unfortunately,
this is not compatible with blind delegation, while hiding the previous delegators
is. We refer to [Fuc09] for the details.

2 To guarantee traceability, Carol additionally proves knowledge of certificates from
the authority on the public keys. Moreover, to delegate, a user actually signs (a hash
value of) an identifier set by the original delegator and his position in the chain in
addition to the public key to achieve non-frameability.



232 M. Abe et al.

Acknowledgments

The second author is supported by EADS, the French ANR-07-TCOM-013-04
PACE Project and the European Commission through the ICT Program under
Contract ICT-2007-216676 ECRYPT II.

References

[ACJT00]

[ADW09]

[AHO10]

[AO0Y]

[BBO4]

[BBS04]

[BCCT09]

[BCKLOS]

[BGLS03]

[BGNO5)

[BMWO03]

[BNPS03]

Ateniese, G., Camenisch, J.L., Joye, M., Tsudik, G.: A practical and
provably secure coalition-resistant group signature scheme. In: Bellare,
M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255-270. Springer, Hei-
delberg (2000)

Alwen, J., Dodis, Y., Wichs, D.: Survey: Leakage-resilience and the
bounded-retrieval model. Invited Paper to International Conference on
Information Theoretic Security (2009),
http://cs.nyu.edu/~dodis/surveys.html

Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear
groups for modular protocol design. Cryptology ePrint Archive, Report
2010/133 (2010), http://eprint.iacr.org/

Abe, M., Ohkubo, M.: A framework for universally composable non-
committing blind signatures. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 435-450. Springer, Heidelberg (2009)

Boneh, D., Boyen, X.: Short signatures without random oracles.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 56-73. Springer, Heidelberg (2004)

Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41-55. Springer, Heidel-
berg (2004)

Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A.,
Shacham, H.: Randomizable proofs and delegatable anonymous creden-
tials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108-125.
Springer, Heidelberg (2009)

Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures
and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 356-374. Springer, Heidelberg (2008)
Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifi-
ably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EU-
ROCRYPT 2003. LNCS, vol. 2656, pp. 416-432. Springer, Heidelberg
(2003)

Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ci-
phertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325-341.
Springer, Heidelberg (2005)

Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group sig-
natures: Formal definitions, simplified requirements, and a construction
based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 614-629. Springer, Heidelberg (2003)

Bellare, M., Namprempre, C., Pointcheval, D.; Semanko, M.: The one-
more-RSA-inversion problems and the security of Chaum’s blind signa-
ture scheme. Journal of Cryptology 16(3), 185-215 (2003)


http://cs.nyu.edu/~dodis/surveys.html
http://eprint.iacr.org/

Structure-Preserving Signatures and Commitments to Group Elements 233

[Boy08] Boyen, X.: The uber-assumption family (invited talk). In: Galbraith,
S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 39-56.
Springer, Heidelberg (2008)

[BPWO03] Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature
schemes for delegation of signing rights. Cryptology ePrint Archive, Re-
port 2003/096 (2003), http://eprint.iacr.org/

[BRI3] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for
designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp.
62-73. ACM Press, New York (1993)

[Bra99] Brands, S.: Rethinking public key infrastructure and digital certificates—
building privacy. PhD thesis, Eindhoven Inst. of Tech., The Netherlands
(1999)

[BSZ05] Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The

case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 136-153. Springer, Heidelberg (2005)

[BWO06] Boyen, X., Waters, B.: Compact group signatures without random ora-
cles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
427-444. Springer, Heidelberg (2006)

[BWOT] Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size
group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 1-15. Springer, Heidelberg (2007)

[Can01] Canetti, R.: Universally composable security: A new paradigm for cryp-
tographic protocols. In: 42nd FOCS, pp. 136-145. IEEE Computer So-
ciety Press, Los Alamitos (2001)

[CGH9S| Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology,
revisited (preliminary version). In: 30th ACM STOC, pp. 209-218. ACM
Press, New York (1998)

[CKS09] Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on
bilinear maps and efficient revocation for anonymous credentials. In:
Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481-500.
Springer, Heidelberg (2009)

[CLO4] Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous cre-
dentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 56-72. Springer, Heidelberg (2004)

[CLY09] Cathalo, J., Libert, B., Yung, M.: Group encryption: Non-interactive
realization in the standard model. In: Matsui, M. (ed.) ASTACRYPT
2009. LNCS, vol. 5912, pp. 179-196. Springer, Heidelberg (2009)

[CS97] Camenisch, J., Stadler, M.: Efficient group signature schemes for large
groups (extended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 410-424. Springer, Heidelberg (1997)

[Cv91] Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 257-265. Springer, Heidelberg
(1991)

[DF02] Damgard, I., Fujisaki, E.: A statistically-hiding integer commitment

scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASI-
ACRYPT 2002. LNCS, vol. 2501, pp. 125-142. Springer, Heidelberg
(2002)

[DHLAW10] Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Efficient public-
key cryptography in the presence of key leakage. Cryptology ePrint
Archive, Report 2010/154 (2010), http://eprint.iacr.org/


http://eprint.iacr.org/
http://eprint.iacr.org/

234 M. Abe et al.

[DN02]

[EIGS6]

[Fis06]

[FO97]

[FPOS]

[FPOY]

[FPV09)

[FS01]

[Fuc09]

[Fucl0]

[FV10]

[GHO8|

[GMRSS]

[GOS06]

[GPS08]

[GQsS]

Damgard, I., Nielsen, J.B.: Perfect hiding and perfect binding universally
composable commitment schemes with constant expansion factor. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581-596. Springer,
Heidelberg (2002)

El Gamal, T.: On computing logarithms over finite fields. In: Williams,
H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 396-402. Springer, Hei-
delberg (1986)

Fischlin, M.: Round-optimal composable blind signatures in the com-
mon reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 60-77. Springer, Heidelberg (2006)

Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove
modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 16-30. Springer, Heidelberg (1997)

Fuchsbauer, G., Pointcheval, D.: Anonymous proxy signatures. In: Os-
trovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229,
pp. 201-217. Springer, Heidelberg (2008)

Fuchsbauer, G., Pointcheval, D.: Proofs on encrypted values in bilinear
groups and an application to anonymity of signatures. In: Shacham, H.,
Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 132-149. Springer,
Heidelberg (2009)

Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Transferable constant-
size fair E-cash. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS
2009. LNCS, vol. 5888, pp. 226-247. Springer, Heidelberg (2009)
Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368-387. Springer,
Heidelberg (2001)

Fuchsbauer, G.: Automorphic signatures in bilinear groups and an ap-
plication to round-optimal blind signatures. Cryptology ePrint Archive,
Report 2009/320 (2009), http://eprint.iacr.org/

Fuchsbauer, G.: Commuting signatures and verifiable encryption and
an application to non-interactively delegatable credentials. Cryptology
ePrint Archive, Report 2010/233 (2010), http://eprint.iacr.org/
Fuchsbauer, G., Vergnaud, D.: Fair blind signatures without random or-
acles. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS,
vol. 6055, pp. 16-33. Springer, Heidelberg (2010)

Green, M., Hohenberger, S.: Universally composable adaptive oblivious
transfer. In: Pieprzyk, J. (ed.) ASTACRYPT 2008. LNCS, vol. 5350, pp.
179-197. Springer, Heidelberg (2008)

Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme se-
cure against adaptive chosen-message attacks. STAM Journal on Com-
puting 17(2), 281-308 (1988)

Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new tech-
niques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 97-111. Springer, Heidelberg (2006)

Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptogra-
phers. Discrete Applied Mathematics 156(16), 3113-3121 (2008)
Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol
fitted to security microprocessor minimizing both trasmission and mem-
ory. In: Giinther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp.
123-128. Springer, Heidelberg (1988)


http://eprint.iacr.org/
http://eprint.iacr.org/

Structure-Preserving Signatures and Commitments to Group Elements 235

[Gro06] Groth, J.: Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In: Lai, X., Chen, K. (eds.) ASTACRYPT
2006. LNCS, vol. 4284, pp. 444-459. Springer, Heidelberg (2006)

[Gro07] Groth, J.: Fully anonymous group signatures without random oracles.
In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164—
180. Springer, Heidelberg (2007)

[Gro09a] Groth, J.: Homomorphic trapdoor commitments to group elements.
Cryptology ePrint Archive, Report 2009/007 (2009),
http://eprint.iacr.org/

[Gro09b] Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192-208. Springer,
Heidelberg (2009)

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415-432. Springer, Heidelberg (2008)

[HKKLO7] Hazay, C., Katz, J., Koo, C.-Y., Lindell, Y.: Concurrently-secure blind
signatures without random oracles or setup assumptions. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 323-341. Springer, Heidelberg
(2007)

[Kil06] Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In:
Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581-600.
Springer, Heidelberg (2006)

[KP06] Kunz-Jacques, S., Pointcheval, D.: About the security of MTI/CO and
MQV. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116,
pp. 156-172. Springer, Heidelberg (2006)

[KYO05] Kiayias, A., Yung, M.: Group signatures with efficient concurrent join.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198-214
Springer, Heidelberg (2005)

[KZ06] Kiayias, A., Zhou, H.-S.: Concurrent blind signatures without random
oracles. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116,
pp. 49-62. Springer, Heidelberg (2006)

[Lip03] Lipmaa, H.: Verifiable homomorphic oblivious transfer and private
equality test. In: Laih, C.-S. (ed.) ASTACRYPT 2003. LNCS, vol. 2894,
pp. 416-433. Springer, Heidelberg (2003)

[LRSWO0] Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems.
In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp.
184-199. Springer, Heidelberg (2000)

[LVOS] Libert, B., Vergnaud, D.: Multi-use unidirectional proxy re-signatures.
In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008, pp. 511-520.
ACM Press, New York (2008)

[MUOY6] Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating
signing operation. In: ACM CCS 1996, pp. 48-57. ACM Press, New York
(1996)

[Nao03] Naor, M.: On cryptographic assumptions and challenges (invited talk).

In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96-109.
Springer, Heidelberg (2003)

[Nef01] Andrew Neff, C.: A verifiable secret shuffle and its application to e-
voting. In: ACM CCS 2001, pp. 116-125. ACM Press, New York (2001)
[Oka06] Okamoto, T.: Efficient blind and partially blind signatures without ran-

dom oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 80-99. Springer, Heidelberg (2006)


http://eprint.iacr.org/

236

[OU9S]

[Pai99)]

[Ped92)

[RS09]

[Sha07]

[Sho97]

M. Abe et al.

Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure
as factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 308-318. Springer, Heidelberg (1998)

Paillier, P.: Public-key cryptosystems based on composite degree resid-
uosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 223-238. Springer, Heidelberg (1999)

Pedersen, T.P.: Non-interactive and information-theoretic secure veri-
fiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 129-140. Springer, Heidelberg (1992)

Riickert, M., Schréder, D.: Security of verifiably encrypted signatures
and a construction without random oracles. In: Shacham, H. (ed.) Pair-
ing 2009. LNCS, vol. 5671, pp. 19-35. Springer, Heidelberg (2009)
Shacham, H.: A cramer-shoup encryption scheme from the linear as-
sumption and from progressively weaker linear variants. Cryptology
ePrint Archive, Report 2007/074 (2007), http://eprint.iacr.org/
Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256-266.
Springer, Heidelberg (1997)


http://eprint.iacr.org/

Efficient Indifferentiable Hashing into Ordinary
Elliptic Curves

Eric Brier!, Jean-Sébastien Coron?, Thomas Icart?*, David Madore?,
Hugues Randriam®, and Mehdi Tibouchi?*

! Ingenico
eric.brier@ingenico.com
2 Université du Luxembourg
jean-sebastien.coron@uni.lu, thomas.icart@mé4x.org
3 TELECOM-ParisTech
{david.madore,randriam}@enst.fr

4 Tcole normale supérieure

mehdi.tibouchi@ens.fr

Abstract. We provide the first construction of a hash function into
ordinary elliptic curves that is indifferentiable from a random oracle,
based on Icart’s deterministic encoding from Crypto 2009. While almost
as efficient as Icart’s encoding, this hash function can be plugged into
any cryptosystem that requires hashing into elliptic curves, while not
compromising proofs of security in the random oracle model.

We also describe a more general (but less efficient) construction that
works for a large class of encodings into elliptic curves, for example the
Shallue-Woestijne-Ulas (SWU) algorithm. Finally we describe the first
deterministic encoding algorithm into elliptic curves in characteristic 3.

1 Introduction

Hashing into Elliptic Curves. Many elliptic curve cryptosystems require to
hash into an elliptic curve. For example in the Boneh-Franklin IBE scheme [4],
the public-key for identity id € {0,1}* is a point Q;q = Hi(id) on the curve.
This is also the case in many other pairing-based cryptosystems including IBE
and HIBE schemes [IIT7/I8], signature and identity-based signature schemes
[BBI6IT2/27] and identity-based signcryption schemes [SI21].

Hashing into elliptic curves is also required for some passwords based authen-
tication protocols, for instance the SPEKE (Simple Password Exponential Key
Exchange) [20] and the PAK (Password Authenticated Key exchange) [9], and
also for discrete-log based signature schemes such as [I3] when instantiated over
an elliptic curve. In all those previous cryptosystems, security is proven when the
hash function is seen as a random oracle into the curve. However, it remains to

* Work done while working for SAGEM company.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 237[254] 2010.
© International Association for Cryptologic Research 2010
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determine which hashing algorithm should be used, and whether it is reasonable
to see it as a random oracle.

In [4], Boneh and Franklin use a particular supersingular elliptic curve E for
which, in addition to the pairing operation, there exists a one-to-one mapping
f from the base field E, to E(F,). This enables to hash using Hi(m) = f(h(m))
where h is a classical hash function from {0,1}* to F,. The authors show that
their IBE scheme remains secure when A is seen as a random oracle into F, (in-
stead of Hy being seen as a random oracle into E(E,)). However, when no pairing
operation is required (as in [9II3I20]), it is more efficient to use ordinary elliptic
curves, since supersingular curves require much larger security parameters (due
to the MOV attack [23]).

For hashing into an ordinary elliptic curve, the classical approach is inherently
probabilistic: one can first compute an integer hash value z = h(m) and then
determine whether x is the abscissa of a point on the elliptic curve:

v =a3+ar+b

otherwise one can try x + 1 and so on. Using this approach the number of
operations required to hash a message m depends on m, which can lead to a
timing attack (see [7]). To avoid this attack, one can determine whether x + i
is the abscissa of a point, for all i between 0 < i < k, and use for example the
smallest such i; here k is a security parameter that gives an error probability of
roughly 2%, However, this leads to a very lengthy hash computation.

The first algorithm to generate elliptic curve points in deterministic polyno-
mial time was published in ANTS 2006 by Shallue and Woestijne [25]. The algo-
rithm has running time O(log® p) for any p, and O(log® p) when p = 3 (mod 4).
The rational maps in [25] were later simplified and generalized to hyper-elliptic
curves by Ulas in [26]; we refer to this algorithm as the Shallue-Woestijne-Ulas
(SWU) algorithm. Letting f : F, — E(F,) be the function defined by SWU, one
can then hash in deterministic polynomial time using H(m) = f(h(m)) where h
is any hash function into F,.

Another deterministic hash algorithm for ordinary elliptic curves was recently
published by Icart in [I9]. The algorithm works for p = 2 (mod 3), with com-
plexity (9(10g3 p). Given any elliptic curve E defined over E,, Icart defines a
function f that is an algebraic function from F, into the curve. As previously
given any hash function h into F,, one can use H(m) = f(h(m)) to hash into
E(F,). As shown in [I9], H is one-way if h is one-way.

The Random Oracle Model (ROM). Many cryptosystems based on elliptic
curves have been proven secure in the random oracle model, see for example
[BIABESQIT2TIT820021127]. In the random oracle model [2], the hash func-
tion is replaced by a publicly accessible random function (the random oracle);
the adversary cannot compute the hash function by himself but instead he must
query the random oracle. Obviously, a proof in the random oracle model is not
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fully satisfactory, because such a proof does not imply that the scheme will
remain secure when the random oracle is replaced by a concrete hash function.
Numerous papers have shown artificial schemes that are provably secure in the
ROM but completely insecure when the RO is instantiated with any function
family (see [11]). Despite these separation results, a proof in the ROM is believed
to indicate that there are no structural flaws in the design of the system, and
that no flaw will suddenly appear when a “well designed” hash function is used
instead.

For a cryptosystem that requires a hash function H into an ordinary elliptic
curve (such as [9I20]), one possibility could be to use H(m) = f(h(m)) where
f is either Icart or SWU’s function and h is a hash function into F,. However
we know that neither Icart nor SWU’s function generate all the points of E;
for example, Icart’s function covers only ~ 5/8 of the points [I5/16]; moreover
it is easy to see that the distribution of f(h(m)) is not uniform in Imf. There-
fore the current proofs in the random oracle model for H do not guarantee the
security of the resulting scheme when H(m) = f(h(m)) is used instead (even
if h is assumed to be ideal). In other words, even if a proof in the random
oracle for H can indicate that there are no structural flaws in the design of
the cryptosystem, using H(m) = f(h(m)) could introduce a flaw that would
make the resulting cryptosystem completely insecure (we give an example in

Section B.T]).

Our Results. We provide the first construction of a hash function H into
ordinary elliptic curves with the property that any cryptosystem proven secure
assuming H is a random oracle remains secure when our construction is plugged
instead (still assuming that the underlying h is a random oracle). For this we use
the indifferentiability framework of Maurer et al. [22]. As shown in [14], when
a construction H is indifferentiable from a random oracle, such a construction
can then replace a random oracle in any cryptosystem, and the resulting scheme
remains secure in the random oracle model for h.

Since the output of Icart and SWU functions only covers a fraction of the
elliptic curve points, we cannot use the construction H(m) = f(h(m)) for indif-
ferentiable hashing. Our main result is to show that for Icart’s function f, we
can use the following alternative construction which is almost as efficient:

H(m) := f(hi(m)) + f(ha(m))

where h1, hy are two hash functions into [,, and + denotes elliptic curve addition.
Therefore H(m) can be used in any cryptosystem provably secure with random
oracle into elliptic curves, and the resulting cryptosystem remains secure in the
random oracle model for Ay and hs.

However the proof involves somewhat technical tools from algebraic geome-
try, and it is not so simple to adapt to other encodings such as the SWU algo-
rithm. Therefore we describe a more general (but less efficient) construction that
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applies to a large class of encoding functions satisfying a few simple axioms.
Those encodings include Icart’s function, the SWU algorithm, new deterministic
encodings in characteristic 3, etc. More precisely, given an elliptic curve FE
defined over E, whose group of points is cyclic of order N with generator G, our
general construction is as follows:

H(m) := f(hi(m)) + ha(m)G

where hy : {0,1}* — F, and hy : {0,1}* — Zy are two hash functions, and f is
SWU or Icart’s function. We show that H(m) is indifferentiable from a random
oracle when h; and ho are seen as random oracles. Intuitively, the term ho(m)G
plays the role of a one-time pad; this ensures that H(m) can behave as a random
oracle even though f(hi(m)) does not reach all the points in E. Note that one
could not use H(m) = ha(m)G only since in this case the discrete logarithm of
H(m) would be known, which would make most protocols insecure

We also show how to extend the two previous constructions to hashing into
the subgroup of an elliptic curve (with cyclic or non-cyclic group) and to hash-
functions into strings (rather than [F,). We also describe a slightly more efficient
variant of the SWU algorithm when p = 3 (mod 4). Finally, we describe the
first deterministic encoding algorithm into elliptic curves in characteristic 3.
We summarize in Table [I] the known hashing algorithms into ordinary elliptic
curves.

2 Preliminaries

2.1 Icart’s Function

Consider an elliptic curve E over a finite field F,;, with ¢ odd and congruent to
2 mod 3, with equation:
V?=X%+aX +b

Icart’s function is defined in [19] as the map f,; : F, — E(F,) such that f, ,(u) =
(z,y) where:

T = v2—b—U6 1/3—|—U2 =uxr +v U—SG_U4
- 27 3 v= ~ 6u

for u # 0, and f,,(0) = O, the neutral element of the elliptic curve. When ¢ = 2
(mod 3) we have that z — 23 is a bijection in F, so cube roots are uniquely
defined with /3 = £(2¢=1/3_ We recall the following properties of fap:

Lemma 1 (Icart). The function fop is computable in deterministic polynomial
time. For any point w € fqop(F,), the set f(;g (w) is computable in polynomial

time and #f;bl(w) < 4. Moreover q/4 < # fap(F;) < q.

! For example in Boneh-Franklin IBE one could then decrypt any ciphertext.
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Table 1. Known deterministic hashing algorithms into ordinary elliptic curves with
discriminant A # 0. We denote by @ the set of quadratic residues. In char 2 we denote
by n the extension degree.

char(K) normal form discriminant A encoding condition
Icart [19] p=2 (mod 3)
SW [25] -
2_ .3 _ 3 2
#2,3 y =z"4+axr+b 16(4a” + 27b%) SWU [26] _
SWU, Sec.[M p=3 (mod 4)
2 _ 3 2 Icart [19] odd n
2 Yy +rxy=a"+ax"+b b SW [23] -
Sec. BT Ae@
3 v =a+az?+0b —a’b Sec. AdQ
Sec. —

2.2 Indifferentiability
We recall the notion of indifferentiability introduced by Maurer et al. in [22].

Definition 1 (Indifferentiability [22]). A Turing machine C' with oracle ac-
cess to an ideal primitive h is said to be (tp,ts,qp,)-indifferentiable from an
ideal primitive H if there exists a simulator S with oracle access to H and run-
ning in time at most tg, such that for any distinguisher D running in time at
most tp and making at most qp queries, it holds that:

’Pr {Dchvh _ 1} —Pr {DHvSH - 1” <e

C" is said to be indifferentiable from H if € is a negligible function of the security
parameter k, for polynomially bounded qp, tp and tg.

It is shown in [22] that the indifferentiability notion is the “right” notion for
substituting one ideal primitive by a construction based on another ideal prim-
itive. That is, if the construction C” is indifferentiable from an ideal primitive
H, then C" can replace H in any cryptosystem, and the resulting cryptosystem
is at least as secure in the h model as in the H model; see [22] or [14] for a proof.

Foh h H S
“\\ AN Y R4
D 0/1

Fig. 1. The indifferentiability notion, illustrated with construction C* = Foh for some
function F', and random oracles h and H
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3 Admissible Encodings and Indifferentiability

Our goal is to construct a hash function into elliptic curves that is indifferentiable
from a random oracle. First, we introduce our new notion of admissible encoding.
It can be seen as a generalization of the definition used in [4].

Definition 2 (Admissible Encoding). A function F': S — R between finite
sets is an e-admissible encoding if it satisfies the following properties:

1. Computable: F is computable in deterministic polynomial time.

2. Regular: for s wuniformly distributed in S, the distribution of F(s) is e-
statistically indistinguishable from the uniform distribution in R.

3. Samplable: there is an efficient randomized algorithm T such that for any
r € R, I(r) induces a distribution that is e-statistically indistinguishable
from the uniform distribution in F~1(r).

F' is an admissible encoding if € is a negligible function of the security parameter.

The following theorem shows that if F': S — R is an admissible encoding, then
the hash function H : {0,1}* — R with:

is indifferentiable from a random oracle into R when h : {0,1}* — S is seen as a
random oracle. This shows that the construction H(m) = F(h(m)) can replace
a random oracle into R, and the resulting scheme remains secure in the random
oracle model for h.

Theorem 1. Let F' : S — R be an e-admissible encoding. The construction
H(m) = F(h(m)) is (tp, ts, qp,&’)-indifferentiable from a random oracle, in the
random oracle model for h : {0,1}* — S, with ¢’ = 4qpe and ts = 2qp - t1,
where ty is the maximum running time of F'’s sampling algorithm.

Proof. We first describe our simulator; then we prove the indistinguishability
property. As illustrated in Figure[I the simulator must simulate random oracle
h to the distinguisher D, and the simulator has oracle access to random oracle
H. It maintains a list L of previously answered queries. Our simulator is based
on sampling algorithm Z from F'.

Simulator S:
Input: m € {0,1}"
Output: s € S

1. If (m, s) € L, then return s

2. Query H(m) =r and let s — Z(r)
3. Append (m,s) to L and return s.

We must show that the systems (C”, h) and (H,SH) are indistinguishable. We
consider a distinguisher making at most qp queries. Without loss of generality,
we can assume that the distinguisher makes all queries to h(m) (or S¥) for
which there was a query to C"(m) (or H(m)), and conversely; this gives a total
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of at most 2qp queries. We can then describe the full interaction between the
distinguisher and the system as a sequence of triples:

View = (mi, Siy Ti)lgngq

where s; = h(m;) (or SH(m;)) and r; = C"(m;) (or H(m;)). Without loss of
generality we assume that the m;’s are distinct.

In system (C" h) we have that s; = h(m;). Therefore the s;’s are uniformly
and independently distributed in S. Moreover we have r; = C"(m;) = F(s;) for
all 4.

In system (H,S™) we have that r; = H(m;). Therefore the r;’s are uniformly
and independently distributed in R. Moreover we have s; = Z(r;) for all 5. The
proof of the following Lemma is given in the full version of the paper [10]:

Lemma 2. For r uniformly distributed in R, the distribution of s = Z(r) is
2e-statistically indistinguishable from the uniform distribution in S.

This implies that in system (H,S¥) the distribution of s; = Z(r;) is 2e-
indistinguishable from the uniform distribution in S. Moreover from the defi-
nition of algorithm Z we have that r; = F(s;) except if s; = L. Therefore, the
statistical distance between View in system (C" h) and View in system (H,S)
is at most 4gpe. This concludes the proof of Theorem [II a

4 Our Main Construction

Let E be an elliptic curve over a finite field I, with ¢ = 2 (mod 3). Let f : F, —
E(F,) denote Icart’s function to E. It is easy to see that Icart’s function f is
not an admissible encoding into E since as mentioned previously, the image of
f comprises only a fraction of the elliptic curve points. Therefore we cannot use
the construction H(m) = f(h(m)) for indifferentiable hashing (not even on Imf
since the distribution of f(u) is not uniform in Imf for uniform u € ).

In this section, we describe a different construction which is almost as efficient.
Namely we prove that if hy,he : {0,1}* — F, are two hash functions in the
random oracle model, then the hash function H : {0,1}* — E(F,) defined by

H(m) := f(h1(m)) + f(h2(m))
is indifferentiable from a random oracle into the elliptic curve.

Theorem 2. If ¢ > 2'3 is any 2k-bit prime power congruent to 2 mod 3 (even
or odd), and if the j-invariant of E is not in {0;2592}, then the function

H(m) := f(hi(m)) + f(ha(m))

is (tp,ts, qp, €')-indifferentiable from a random oracle, where &’ =29 qp-27F,
in the random oracle model for hy, he : {0,1}* — F,.
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Theorem 2] implies that this construction H(m) can be used in any cryptosys-
tem provably secure with random oracles into elliptic curves, and the resulting
cryptosystem remains secure in the random oracle model for h; and hy. We
note that to prevent timing attacks (as in [7]), our construction H can easily
be implemented in constant time since Icart’s function can be implemented in
constant time.

To prove this result, it is enough, in view of Theorem [I to show that the
function F : (F,)? — E(F,) given by:

F(u,v) = f(u) + f(v)

is an e-admissible encoding with e = 28 - ¢=1/2.

F' is clearly computable in deterministic polynomial time, so Criterion 1 of
admissible encodings is satisfied. To prove Criterion 2, we denote for any w €
E(F,): ) .

N(@) = #{(u,v) € (F)" | f(u) + f(v) =@} = #F (@)

Proposition 1. If g is an odd prime power congruent to 2 mod 3, and if the
j-invariant of E is not in {0;2592}, then for every point w € E(IF,) except at
most 144, we have

lg— N(w)| <27 /q

and all the remaining points w satisfy N(w) < 2° - q.

Sections [AT] and are devoted to the proof of this proposition. Intuitively,
the idea of the proof is to show that, for all points w € E(F,) except a few
exceptional ones, F~1(w) is an irreducible algebraic curve of bounded genus in
the affine plane A? over F,. The estimate for the number of points then follows
from the Hasse-Weil bound.

In the full version of this paper, we show that Proposition [Tl directly implies
Criterion 2, and that Criterion 3 easily follows from the point counting of [I5I16].
Additionally, we prove that F' is also an admissible encoding when using Icart’s
function f in characteristic 2.

5 A More General Construction

Our construction of Section (4] has the advantage of being simple and efficient as
it only requires two evaluations of Icart’s function. However, the proof involves
somewhat technical tools from algebraic geometry, and it is not so simple to
adapt to other encoding functions, such as the SWU algorithm.

At the cost of a small performance penalty, however, we describe a more
general construction that applies to a large class of encoding functions satisfying
a few simple axioms. Those encoding functions include Icart’s function, a simpler
variant of the SWU function, new deterministic encodings in characteristic 3, etc.
We call them weak encodings. They are defined as follows.

Definition 3 (Weak Encoding). A function f : S — R between finite sets is
said to be an a-weak encoding if it satisfies the following properties:
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1. Computable: f is computable in deterministic polynomial time.

2. a-bounded: for s uniformly distributed in S, the distribution of f(s) is a-
bounded in R, i.e. the inequality Prs[f(s) = r] < a/#R holds for any r € R.

3. Samplable: there is an efficient randomized algorithm T such that Z(r) in-
duces the uniform distribution in f~1(r) for any r € R. Additionally Z(r)
returns N, = #f~1(r) for all r € R.

The function f is a weak encoding if « is a polynomial function of the security
parameter.

The main difference with an admissible encoding is that in Criterion 2, the
distribution of f(s) is only required to be a-bounded instead of being e-
indistinguishable from the uniform distribution. More precisely Criterion 2 for a
weak encoding requires:

Vr e R, Psr[f(s) =7 = #f#;(r) < #aR

From inequality (I]) we have that any invertible function with bounded pre-image
and bounded #R/#5S is a weak encoding; in particular, this is the case for Icart’s
function (the proof is given in the full version of the paper [10]).

(1)

Lemma 3. Icart’s function fqp is an a-weak encoding from B, to E, p(IF,), with
a =4N/q, where N is the order of E, ,(F,).

When the output set is a group (such as the group of points on an elliptic
curve), we demonstrate how to construct an admissible encoding from any weak
encoding.

Theorem 3 (Weak — Admissible Encoding). Let G be cyclic group of order
N noted additively, and let G be a generator of G. Let f : S — G be an a-weak
encoding. Then the function F': S X Zny — G with F(s,z) = f(s) + G is an
e-admissible encoding into G, with ¢ = (1 — 1/a)* for any t polynomial in the
security parameter k, and e = 27% fort = o - k.

We prove this theorem in the full version of this paper [I0]. As a consequence,
we get that if f: .5 — G is any weak encoding to a cyclic group with generator
G, then the hash function H : {0,1}* — G defined by:

H(m) := f(h1(m)) + ha(m)G

where hqy : {0,1}* — F, and hy : {0,1}* — Zx are two hash functions, is
indifferentiable from a random oracle in the random oracle model for h; and hs.
In particular, this is the case when f is Icart’s function. We note that for elliptic
curves with non-cyclic group, we can easily adapt the previous construction with
H(m) = f(h1(m)) + h2(m)G1 + h3(m)G2 where (G1,G2) are the generators of
the group.
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5.1 Discussion

We see that the construction H(m) = fqp(hi(m)) + fop(ha(m)) of Section M
requires two evaluations of Icart’s function f, ; but no scalar multiplication. Since
fa,b is essentially a field exponentiation, and in practice field exponentiation is
roughly 10 times faster than scalar multiplication, the construction of Section [
is approximately 5 times faster than the general construction of this section.

We note that for a number of existing schemes that are proven secure in the
random oracle model into an elliptic curve, it would actually be sufficient to
use H(m) = fqp(h(m)) only. This is because for many existing schemes the
underlying complexity assumption (such as CDH or DDH) has the random self-
reducibility property. So in the security proof one “programs” the RO using a
random instance generated from the original problem instance. Then instead of
letting H(m) = P where P is from the random instance, one can adapt the
proof by letting f(h(m)) = P. To make sure that h(m) is uniformly distributed,
one can “replay” the random instance generation depending on the number of
solutions to the equation f(u) = P, as we do in the proof of Theorem [3

However it is easy to construct a cryptosystem that is secure in the ROM but
insecure with H(m) = f(h(m)). Consider for example the following symmetric-
key encryption scheme: to encrypt with symmetric key k, generate a random r
and compute ¢ = m—+ H (k, ) where the message m is a point on the curve and H
hashes into the curve; the ciphertext is (¢, r). This scheme is semantically secure
in the ROM for H, since this is a one-time pad. But the scheme is insecure with
H(k,r) = f(h(k,r)) because in this case H (k, r) is not uniformly distributed, and
for two messages mgy and m; the attacker has a good advantage in distinguishing
between the encryption of mg and m;.

6 Extensions

6.1 Extension to a Prime Order Subgroup

In many applications only a prime order subgroup of E is used, so we show how
to adapt the constructions of Sections Ml and [l into a subgroup. Let E be an
elliptic curve over F, with IV points, and let G be a subgroup of prime order N’
and generator G. Let £ be the co-factor, i.e. N = £- N'. We require that N’ does
not divide ¢ (i.e. that (N’)? does not divide V), which is satisfied in practice for
key size and efficiency reasons.

We show that it suffices to scalar multiply by co-factor ¢ the constructions of
Sections [] and [l and the resulting constructions are still indifferentiable hash
functions. More precisely, we consider the construction H : {0,1}* — G with:

H(m) := £(fa,p(h1(m)) + fap(ha(m))) (2)
with hy, hg : {0,1}* — F, and f, 5 is Icart’s function.

Proposition 2. H is (tp,ts,qp,€)-indifferentiable from a random oracle, in
the random oracle model for h1 and ho, with e = 219 - ¢p .27k,
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Informally, we show that the composition of two admissible encodings remains
an (almost) admissible encoding, and that multiplication by a co-factor is an e-
admissible encoding, with ¢ = 0. This proves that H is an indifferentiable hash
function. See the full version of the paper [I0] for the proof.

The same result holds for the construction of Section [Bl In this case for both
cyclic and non-cyclic elliptic curves we simply use H(m) = £f(hy(m)) + ha(m)G
where G is a generator of the subgroup.

6.2 Extension to Random Oracles into Strings

The constructions in the previous sections are based on hash functions into E,» or
Zy . However in practice a hash function outputs a fixed length string in {0, 1}
We can modify our construction as follows. We consider an elliptic curve E, 4
over I, with p a 2k-bit prime. We define the hash function H : {0,1}* — E, »(F,)
with:

H(m) := fap(hi(m) mod p) + fap(h2(m) mod p)

where h; and hy are two hash functions from {0, 1}* to {0, 1}3* and f, 4 is Icart’s
function.

Proposition 3. The previous hash function H is (tp,ts,qp, €)-indifferentiable
from a random oracle, in the random oracle model for hi and hs, with ¢ =
211 qp - 27k‘

Informally, we first show that reduction modulo p is an admissible encoding
from {0, 1}* to F, if 2¢ > p. Since the composition of two admissible encodings
remains an (almost) admissible encoding, this shows that F'(u,v) = f(u mod p)+
f(vmod p) is also an admissible encoding into E(I,) and therefore H is an
indifferentiable hash function. The same result holds for the general construction
of Section Bl See the full version of the paper [10] for the proof.

7 A Simpler Variant of the SWU Algorithm

In this section, we describe a slightly simpler variant of the Shallue-Woestijne-
Ulas (SWU) algorithm over F,, for ¢ = 3 (mod 4). Note that this condition is
usually satisfied in practice, since it enables to compute square roots efficiently.

Proposition 4 (Simplified Ulas maps). Let F, be a field and let g(z) :=
23 4+ ax +b, where a,b# 0. Let:

Xz(t)z_ab (”#iﬁ)’ Xs(t) = =Xa(t),  U(t) = °9(Xs(1))

Then U(t)? = —g(X2(t)) - 9(X3(t)).
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Proof. Let g(x) = ® + ax + b. Let u be a non-quadratic residue and consider
the equation in =

glu-x) =u’g(x) 3)

The first observation is that we can solve this equation for x because the terms
of degree 3 cancel:

gu-z) =u?- g(zx) & (uz)® + a(uz) + b = u(2® + ax + b)
& aur +b=vlar +udb
b(u>—1) —b ( 1 )
Sr= = 114+

alu —u?) a u + u?

The second observation is that since u is not a square, either g(u - z) or g(x)
must be a square. Therefore either x or u - x must be the abscissa of a point
on the curve. Moreover when ¢ = 3 (mod 4) we have that —1 is a quadratic

non-residue and we can take u = —t2. Finally from () we get:
glu-z) - g(z) = u’- g*(x) = ~1° g*(z) = —(* - g(2))?
which gives the maps of Proposition (] a

Simplified SWU algorithm:

Input: F, such that ¢ =3 (mod 4), parameters a,b and input ¢ €
Output: (z,y) € E,p(F,) where E, i 4% = 2% + az + b

a — —t?

X +— —ab (1 + 023_0)

X3 — Q- X2

ho — (X2)® +a-Xo+b; hy— (X3)3+a-X3+b

If hs is a square, return (Xo, héq+1)/4), otherwise return (Xs, héq+1)/4)

DA il S

In the full version of the paper [10] we show that our simplified SWU algorithm
is a weak encoding into the curve. Therefore it can be used with the general
construction from Section Bl An implementation is also provided in the full
version of the paper [10].

8 Hashing in Characteristic 3

In characteristic 3 the normal form of an elliptic curve with j-invariant j # 0
and discriminant A # 0 is:

Y?=X*+aX?+b
with A = —a®b. It is easy to see that Icart’s technique cannot work in charac-

teristic 3, and the SWU algorithm does not work in characteristic 3 because the

2 A similar equation was used in [24] to show that there exists infinitely many elliptic-
curves with j-invariant equal to given j # 0,1728 and with Mordell-Weil rank > 2.
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elliptic curve has a different equation. In this section we show the first deter-
ministid? encoding algorithms for elliptic curves in characteristic 3. We denote
by @ the set of quadratic residues in the field. An implementation of the three
algorithms is provided in the full version of the paper [10].

8.1 Algorithm for A € Q

Proposition 5. Let Fbe a field of characteristic 3 and g(x) = 23 + ax? + b with
a#0and A= —a3b€ Q. Let n ¢ Q and let ¢ such that ¢> = —b/a. Let

X(t):c~(1—n.t2

Then either g(X (t)) or g(n-t?- X(t)) is a quadratic residue.

Proof. As previously we choose u ¢ @ and we consider the equation in :

glu-z) =u’- g(x) (4)
As previously the terms of degree 3 cancel, and using u® — 1 = (u — 1)3 in char
3, we get:

gu-z) =u?- g(zx) & au’s? + b= auz® + bu®

s bW —1)  bu—-1)3 b [(u—1)
o p? = = = .
a(u? —ud)  au?(l —u) a u
Since A = —a®bh € Q, we have —b/a € Q so we can compute ¢ such that
¢? = —b/a. Therefore we can take the following solution for equation (H):

e (i)

For u we can take u = 1 - t> where 1 ¢ @ is pre-computed. We recover the map
X (t) of Proposition El Moreover from equation (@) since u® ¢ Q either g(x) or
g(u - ) must be a quadratic residue. O

From Proposition [l we easily deduce a deterministic encoding algorithm.

8.2 Algorithm for A ¢ Q

Proposition 6. Let F be a field of characteristic 3 and g(x) = x3 + ax? + b with
A=—a’b ¢ Q. Let z9 € F such that g(xg) = 0. Let n ¢ Q. Let :

X(t):—2-x0~<1+n.1t2>

Let X1(t) = X(t) +xo and Xo(t) = n-t2- X (t) + x9. Then either g(X1(t)) or
9(Xa(t)) is a quadratic residue.

Proof. When A ¢ @ we have that g(z) = 23 +az?+b has a (unique) root z¢ € F.
Therefore we can let:

3 We allow for a probabilistic pre-computation phase given the elliptic curve parame-
ters.
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f(z)=g(x +x0) =2® +ax? + bz

where b’ = 2-a - zg. A deterministic encoding for elliptic curves of equation
y? = 23 + az® + bz is already described in [26]. Given u ¢ @ one considers the
equation in x:
flu-z)=u?- f(z) & av’s? + bur = au®z? + b'us
& az(u?® —ud) = b (ud —u)

& azu*(1 —u) = bu(u —1)(u+1)

b (u+1 1
=T = . :—2'1‘0~ 1+
a u u

Then either f(z) or f(u-x) is a square, which implies that either g(x + z¢) or
g(u -z + 1) is a square. Letting u = 7 - t2 where n ¢ Q one recovers the maps
X (t), X1(t) and Xa(t). O

8.3 Algorithm for Any A

In this section we describe a different encoding algorithm that works for any
discriminant A. We pre-compute 7 ¢ @Q and 2o, yo such that an- 2 —y3 +b = 0.

Deterministic Encoding Algorithm in char 3:

Input: t € F

OUtIIzlelt?z(g ?{)—EOE(P 2yot — anzg)/(an — t2)

Let y =yo +1- (2 — 20)

Let k=a/(b—y?)

Find the unique solution « of the linear system o® + k- a = —k/a
Let © = 1/a and output (z,y)

GU o=

We show in Appendix [B] that this also defines a deterministic encoding into
elliptic curves.
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A Proof of Proposition [

This appendix gives a proof of Proposition[Il For the sake of brevity, the proofs
of some technical lemmas are omitted in this extended abstract, and can be
found in the full version [10].

A.1 Geometric Interpretation of Icart’s Function

Icart’s function f admits a natural extension to the projective line over [, by
setting f(oo) = O, the neutral element of the elliptic curve. Then, consider the
graph of f:

C={(u,w) €P' x E| f(u) = w}

As shown in [19, Lemma 3], C is the closed subscheme of P! x E defined by
ut — 6zu? + 6yu — 3a = 0 (5)

In other words, Icart’s function is the algebraic correspondence between P! and

E given by ().
Let j be the j-invariant of E:

4a3 c
4a3 + 2702

Save for a few exceptional values of j, we can precisely describe the geometry of C'.

j=1728- F,

Lemma 4. If j & {0;2592}, the subscheme C' is a geometrically integral curve
on P! x E with one triple point at infinity and no other singularity. Its nor-
malization C is a smooth, geometrically integral curve of genus 7. The natural
map h: C — FE is a morphism of degree 4 ramified at 12 distinct finite points of
E(F,), with ramification index 2.
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A.2 The Square Correspondence

In this context, the function (u,v) — f(u)+ f(v) occurring in our hash function
construction admits the following description. A point (u,v) in the affine plane
A?, or more generally in P! x P, corresponds to w on the elliptic curve E if and
only if there is some point (o, §) € C x C over (u,v) such that h(a)+h(5) = w.

Consider the surface S = C x (NZ', and define the following two morphisms.
The map p : S — P! x P! is the square of the first projection, and s : § — F
is obtained by composing h x h : S — FE x E with the group law £ x £ — E.
Then the set of points (u,v) € P! x P! corresponding to a given w € E is exactly
p(s~1(w)) (and we can take the intersection with A? if we are only interested in
affine points). This allows us to give a geometric proof of Proposition [Il

Let us first describe the geometry of the fibers s~!(w). Denote by p1, ..., p12
the 12 geometric points of E over which h is ramified, and let R = {p; +
piti<ij<iz C E. The map s is of rank 1 at (a, ) if and only if h is of rank
1 at at least one of « or 3, which is certainly the case when h(a) or h(B) is
not one the p;. Therefore, s is smooth of relative dimension 1 over the open
subscheme Fy = F — R, and all points in Fy have smooth curves on S as fibers.
The following lemma makes this more precise.

Lemma 5. The fibers of s at all geometric points of Ey are smooth connected
curves on SF; of genus 49.

Consider now a fiber Z of s at some F;-point w of E not in R. The previous
description says that Z is a smooth geometrically integral curve of genus 49 on
S. This gives a precise estimate of the number of F;,-points on Z in view of the
Hasse-Weil bound:

lg+1-#Z(F)| < 98vq
What we are interested in, however, is the number of points in p(Z), or more

precisely even, in p(Z)NAZ. But those numbers are related in a simple way when
Icart’s function is well-defined, i.e. ¢ =2 (mod 3).

Lemma 6. Suppose that ¢ = 2 (mod 3), and let N be the number of F,-points
in p(Z) N A2. Then we have

q—98,/g—23< N <q+98/q+1

The first part of Proposition[[lnow follows from the previous propositions: under
the hypotheses of that theorem, if w € E(F,) does not belong to R, then N(w) =

#{(u,v) € (F,)? | f(u) + f(v) = w} satisfies
lg = N(w)| <98y/qg+23 <27 /g

as required. And obviously, there are at most 122 = 144 points in R.
It remains to bound N (w) for an [F,-point @w € RN E(IF;). To do so, consider
again Z = s 1(w) the fiber at such a point, and E’ C E x E the image of Z
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under h x h (or equivalently, the fiber of the group law of E at w). The morphism
7 — E' is of degree 16, so each point has at most 16 pre-images. Hence

N(w) < 16- #E'(F,) < 16(g+1+2/q) <2°-¢

since ¢ > 5. This concludes the proof.

B Analysis of the Algorithm from Section

We consider the elliptic curve equation y?> = 3 + az? 4+ b which we rewrite
3+ ax® + (b —y?) = 0. Letting a = 1/x, we get:

1 a

st LT (b—y*)=0

o o?

Multiplying by o?/(b — y?), this gives:

a

3
a +b—y

,ra=—1/(b—y?) (6)
Given k € Fwe consider the function f(a) = o+ k- . In char 3 this is a linear

function. We have:
fla)=0sa=0o0ra?=—k

Therefore f is bijective if and only if —k ¢ Q. When f is bijective its inverse
can be computed in deterministic polynomial time by solving a linear system.

Since k = a/(b — y?) in equation (@), we must have —a/(b — y?) ¢ Q so that
equation (@) has a unique solution. This is equivalent to —(b — y%)/a ¢ Q or
—(b—v?)/a=n-2? for some fixed n ¢ Q. This gives:

anz® —y?> +b=0

which is the equation of a conic which is easy to parameterize. Such parameter-
ization is computed at steps [Il and [ of the algorithm in Section B3]
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Abstract. This paper initiates a study of two-party identification and
key-exchange protocols in which users authenticate themselves by prov-
ing possession of credentials satisfying arbitrary policies, instead of using
the more traditional mechanism of a public-key infrastructure. Defini-
tions in the universal composability framework are given, and practical
protocols satisfying these definitions, for policies of practical interest,
are presented. All protocols are analyzed in the common reference string
model, assuming adaptive corruptions with erasures, and no random or-
acles. The new security notion includes password-authenticated key ex-
change as a special case, and new, practical protocols for this problem
are presented as well, including the first such protocol that provides re-
silience against server compromise (without random oracles).

1 Introduction

Secure two-party authentication and key exchange are fundamental problems.
Traditionally, the parties authenticate each other by means of their identities,
using a public-key infrastructure (PKI). However, this is not always feasible or
desirable: an appropriate PKI may not be available, or the parties may want to
remain anonymous, and not reveal their identities.

To address these needs, we introduce the notion of credential-authenticated
identification (CAID) and key exchange key exchange (CAKE), where the com-
patibility of the parties’ credentials is the criteria for authentication, rather than
the parties’ identities relative to some PKI.

We assume that prior to the protocol, the parties agree upon a policy, which
specifies the types of credentials they each should hold, along with additional
constraints that each credential should satisfy, and (possibly) relationships that
should hold between the two credentials. The protocol should then determine
whether or not the two parties have credentials that satisfy the policy, and in
the CAKE case, should generate a session key, which could then be used to
implement a secure communication session between the two parties. In any case,
neither party should learn anything else about the other party’s credentials,
other than whether or not they satisfied the policy.
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For example, Alice and Bob may agree on a policy that says that Alice should
hold an electronic ID card that says her age is at least 18, and that Bob should
hold a valid electronic library card. If Alice then inputs an appropriate ID card
and Bob inputs an appropriate library card, the protocol should succeed, and,
in the CAKE case, both parties should obtain a session key. However, if, say,
Alice tries to run the protocol without an appropriate ID card, the protocol
should fail; moreover, Alice should not learn anything at all about Bob’s input;
in particular, Alice should not even be able to tell whether Bob had a library
card or not.

As mentioned above, we may even consider policies that require that certain
relationships hold between the two credentials. For example, Alice and Bob may
agree upon a policy that says that they both should have national ID cards, and
that they should live in the same state.

Both of the two previous examples illustrate that the CAKE problem is closely
related to the “secret handshake” problem. In the latter problem, two parties
wish to determine if they belong to the same group, so that neither party’s status
as a group member is revealed to the other, unless both parties belong to the
same group. There are many papers on secret handshakes (see [12] for a recent
paper, and the references therein). The system setup assumptions and security
requirements vary significantly among the papers in the secret handshakes lit-
erature, and so we do not attempt a formal comparison of CAKE with secret
handshakes. Nevertheless, the two problems share a common motivation, and to
the extent that one can view owning a credential as belonging to a group, the
two problems are very similar.

We also observe that the CAKE problem essentially includes the PAKE
(password-authenticated key exchange) problem as a special case: the credentials
are just passwords, and the policy says that the two passwords must be equal.

Our Contributions. So that our results are as general as possible, we work
in the Universal Composability (UC) framework of Canetti [7]. We give natural
ideal functionalities for CAID and CAKE, and give efficient, modularly designed
protocols that realize these functionalities. If the underlying credential system is
practical and comes equipped with practical proof-of-ownership protocols (such
as the IDEMIX system, based on Camenisch and Lysyanskaya [5]), and if the
policies are not too complex, the resulting CAKE protocols are fairly practical.
In addition, if the credential system provides extra features such as traceability
or revocability, or other mechanisms that mitigate against unwanted “credential
sharing”, then our protocols inherit these features as well.

All of our protocols are proved UC-secure in the adaptive corruption model,
assuming parties can effectively erase internal data. Our protocols require a com-
mon reference string (CRS), but otherwise make use of standard cryptographic
assumptions, and do not rely on random oracles.

As mentioned above, CAKE includes PAKE, and we also obtain two new
practical PAKE protocols. The first is a practical PAKE protocol that is secure in
the adaptive corruption model (with erasures); this is not the first such protocol
(this was achieved recently by Abdalla, Chevalier, and Pointcheval [I], using
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completely different techniques). The second PAKE protocol is a simple variant
of the first, but provides security against server compromise: the protocol is an
asymmetric protocol run between a client, who knows the password, and a server,
who only stores a function of the password; if the server is compromised, it is still
hard to recover the password. Our new protocol is the first fairly practical PAKE
protocol (UC-secure or otherwise) that is secure against server compromise and
that does not rely on random oracles. Previous practical PAKE protocols that
provide security against server compromise (such as Gentry, MacKenzie, and
Ramzan [11]) all relied on random oracles (and also were analyzed only in the
static corruption model).

Outline of the paper. In 2 we provide some background on the UC frame-
work; in addition, we provide some recommendations for improving some of the
low-level mechanics of the UC framework, to address some minor problems with
the existing formulation in [7] that were uncovered in the course of this work. In
any case, our results can be understood independently of these recommendations.

In §8l we introduce ideal functionalities for strong CAID and CAKE. These
ideal functionalities are stronger than we want, as they can only be realized by
protocols that use authenticated channels. Nevertheless, they serve as a useful
building block. We also discuss there the types of policies that will be of interest
to us here, as we want to restrict our attention to policies that are useful and
that admit practical protocols.

In §41 we show how a protocol that realizes the strong CAID or CAKE func-
tionalities can be easily and efficiently transformed into a protocol that realizes
the CAID and CAKE functionality. The resulting protocol does not rely on au-
thenticated channels. To this end, we utilize the idea of “split functionalities”,
introduced in [2]. Although the idea of using split functionalities for nonstan-
dard authentication mechanisms was briefly mentioned in [2], it was not pursued
there, and no new types of authentication protocols were presented. In this sec-
tion, we review the basic notions introduced in [2], adjusting the definitions and
results slightly to better meet our needs. We also give some new constructions,
which are simpler and more efficient in the two-party setting.

In §8l we review definitions of UC zero knowledge (UCZK), and provide some
new definitions that will be useful to us. UCZK will be a critical building block
in the design of our CAID/CAKE protocols. In this section, we discuss a general
language of statements we will want to be able to prove, as well as practical
implementations of UCZK protocols for proving such statements. In a companion
paper, we plan on fleshing out the details of this general framework, but it should
be clear, based on these discussions, that there are, in fact, practical UCZK
protocols for all the statements we need to prove in our CAID/CAKE protocols.

In §06l we present practical strong CAID/CAKE protocols for some fairly gen-
eral policies of interest, and prove their security in the UC-framework, assuming
secure channels. Using the split functionalities ideal in §4l these protocols can be
transformed into practical CAID/CAKE protocols, which do not assume secure
channels.
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In 71 we present practical strong CAID/CAKE protocols for the equality
relation and an interesting relation related to discrete logarithms. The former
gives rise to our first new PAKE protocol, while the latter gives rise to our second
new PAKE protocol (which provides resilience against server compromise).

Due to space limitations, many details, and all proofs, are left to the full

paper [4].

2 Some UC Background

Our corruption model is always adaptive corruptions with erasures. We believe
that allowing adaptive corruptions is important — there are known examples of
protocols that are secure with respect to static corruptions, but trivially insecure
if adaptive corruptions are allowed. Allowing erasures is a bit of a compromise:
on the one hand, properly implementing secure erasures is difficult — but not
impossible; on the other hand, if erasures are not allowed, then it becomes very
difficult to obtain truly practical protocols, leading to results that are of theo-
retical interest only.

To streamline the descriptions of ideal functionalities, we assume the following
convention in any two-party ideal functionality: the adversary may at any time
tell the ideal functionality to abort the protocol for one of the parties — the
ideal functionality sends the special message abort to that party, and does not
communicate any further with that party.

In an actual protocol, an abort output would be generated when a “time out”
or “error” condition was detected; the aborting party will also erase all inter-
nal data, and all future incoming messages will be ignored. While not essential
for modeling security, it does allow us to distinguish between detectable and
undetectable unfairness in protocols.

We clarify here a number of issues regarding terminology and notation in
the UC framework. By a party we always mean an interactive Turing machine
(ITM). A party P is addressed by party ID (PID) and session ID (SID).
So if P has PID P,;iq and SID Pq, then the PID/SID pair (Ppiq, Psia) uniquely
identifies the party: no two parties in the system may have the same PID/SID
pair. The convention is that the participants of any single protocol instance share
the same SID, and conversely, if two parties share the same SID, then they are
regarded as participants in the same protocol.

In [7] there are no semantics associated with PIDs, other than their role to
distinguish participants in a protocol instance. Some authors (sometimes implic-
itly) tend to use the term “party” to refer to all ITMs that share a PID. We
shall not do this: a party is just a single ITM (but see §2.2] below).

In describing protocols and ideal functionalities, we generally omit SIDs in
messages — these can always be assumed to be implicitly defined.

2.1 Notions of Security

We recall some basic security notions from [7], with some extensions in [I0] and
[2]. We will not be too formal here.
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We say that a protocol I realizes a protocol IT*, if for every adversary A,
there exists an adversary (i.e., simulator) A* such that for every environment
Z, Z cannot distinguish an attack of A on II from an attack of A* on IT*.
Here, Z is allowed to interact directly with the adversary and (via subroutine
input/output) with parties (running the code for I or IT*) that share the same
SID.

If we like, we can remove the restriction that parties must share the same
SID, which effectively allows Z to interact with multiple, concurrently running
instances of a single protocol in the above experiment. With this relaxation, we
say that IT multi-realizes IT*. If these multiple instances of IT access a common
instance of a setup functionality G, then we say that IT multi-realizes IT* with
joint access to G. In applications, G is typically a common reference string
(CRS).

The UC Theorem [7] implies that if IT realizes IT*, then IT multi-realizes IT*.
However, if IT makes use of a setup functionality G, then it does not necessarily
follow that II multi-realizes IT* with joint access to G: one typically has to
analyze the multiple-instance experiment directly.

In the above definitions, if IT* is the ideal protocol associated with an ideal
functionality F, then we simply say that IT (multi-)realizes F (with joint access
to G). We also have some simple transitivity properties: if II; realizes ITs, and
11, realizes II3, then Il realizes Il3; also, if II; multi-realizes I1o with joint
access to G, and II5 realizes I13, then II; multi-realizes I3 with joint access
to G.

A protocol IT may itself make use of an ideal functionality F’ as a subroutine
(where an instance of IT may make use of multiple, independent instances of
F'). In this case, we call I an F’-hybrid protocol. We may modify IT by
instantiating each instance of F’ with an instance of a protocol II’, and we
denote the modified version of II by IT[F’/II’']. The UC Theorem implies that
if IT' realizes F', then IT[F'/II’] realizes II. Also, if IT’" multi-realizes F’ with
joint access to G, then IT[F'/II'] multi-realizes IT with joint access to G.

This last statement is essentially a reformulation of a special case of the JUC
Theorem [10], but in a form that is more convenient to apply. The notion of multi-
realization (introduced, somewhat informally, in [2], and which can be easily
expressed in the Generalized UC (GUC) framework [8]) seems a more elegant
and direct way of modeling joint access to a CRS or similar setup functionality.

2.2 Conventions Regarding SIDs

We shall assume that an SID is structured as a pathname:
nameg/namey/ - - - /namey. These pathnames reflect the subroutine call
stack: when an honest party invokes an instance of subprotocol as a separate
party, the new party has the same PID of the invoking party, and the SID
is extended on the right by one element. Furthermore, we shall assume for
two-party protocols, the rightmost element namey, called the basename, has
the form ext: Ppiq: Qpid: data, where ext is a “local name” used to ensure
unique basenames, Ppiq and @piq are the PIDs of the participants P and @),
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and data represents shared public parameters. The ordering of these PIDs can
be important in protocols where the two participants play different roles.

These conventions streamline and clarify a number of things. In application
of the UC Theorem, we will be interested exclusively in protocols that act as
subroutines: they are explicitly invoked by a single caller, who provides all inputs,
and who receives all outputs.

The main points here are: (i) a subroutine is explicitly invoked by the caller,
and (ii) the callee implicitly knows where to write its output. We can (and will)
design protocols that deviate from this simple subroutine structure, although
the UC Theorem will not directly apply in these cases.

With these restrictions, it also is convenient to make some restrictions on
ideal functionalities: we shall assume that an ideal functionality only delivers
an output to a party that has previously supplied the ideal functionality with an
mnput.

These conventions are simply self-imposed restrictions, and do not represent
a modification of the UC framework itself. However, in the full paper, we discuss
some modifications to the UC framework that strictly impose these restrictions,
along with a few other rules. Our rules guarantee that if P is a party with PID
pid and SID sid, and if P’ is a party with PID pid and SID sid/basename,
then P’ is a subroutine of P that was created by P, and moreover, so long as
P remains honest, then so does P’. As discussed in the full paper, we believe
that without some type of restrictions such as these, there are some fundamental
problems with the UC framework itself.

2.3 System Parameters

A common reference string, or CRS, is sometimes very useful. Sometimes, how-
ever, a different, but related notion is useful: a system parameter. Like a CRS,
a system parameter is assumed to be generated by a trusted party, but unlike a
system parameter, a CRS is visible to all parties, including the environment. A
nice way to model this is using some elements of the GUC framework (although
we do not attempt to design any protocols that achieve full GUC security here).

In designing a protocol that realizes some ideal functionality, a system pa-
rameter is a much better type of setup functionality than a CRS, as the security
properties of protocols that use a CRS are not always so clear (e.g., “deniability”
— see discussion in [§]). These problems do not arise with system parameters.
Moreover, if a protocol II realizes an ideal functionality F using a system pa-
rameter, then it is easy to see that IT multi-realizes F as well — there is no need
to separately analyze a multi-instance experiment. A system parameter can also
be used to parameterize an ideal functionality — a CRS cannot be used for this
purpose, as that would conflate specification and implementation.

We can distinguish between two types of system parameters: public coin and
private coin. In a public-coin system parameter, even the random bits used to
generate the system parameter are visible to the environment (but no one else).
In a private-coin system parameter, the random bits used to generate the system
parameter remain hidden from all parties.
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2.4 Authenticated Channels

We present here an ideal functionality for an authenticated channel. We have
tuned this functionality to adhere to our conventions. We call this tdeal func-
tionality Fach.

For an SID is of the form sid := parent/ext : Ppiq : Qpid : , where P is the sender
and @ is the receiver, and for an adversary A, the ideal functionality F,c, runs
as follows:

1. Wait for both: (a) an input message (send,z) from P, then send (send, z)
to A; (b) an input message ready from @, then send ready to A.

2. Wait for the message deliver from A, then send the output message
(deliver,z) to Q.

Corruption rule: If P is corrupted between Steps la and 2, then A is allowed
to change the value of x (at any time before Step 2).

NOTES: (i) Like the corresponding functionality in [7], this one allows delivery
of a single message per session. Multiple sessions should be used to send multiple
messages. Alternatively, one could also define a multi-message functionality. (%)
Unlike the corresponding functionality in [7], the receiver here must explicitly
initialize the channel before receiving a message. This design conforms to our
conventions stated above, and is further discussed in the full paper.

2.5 Secure Channels

Secure channels provide both authentication and secrecy. We present a ideal
functionality that is tuned to adhere to our conventions, and to our adaptive
corruptions with erasures assumption.

One way to define secure channels is to modify F,q, as follows: in Step 1,
send (send,len(z)) to A, and in the corruption rule, A is given = and allowed to
modify it x as well. Here, len(x) is the length of x. However, it turns out that a
different functionality can be implemented more efficiently:

1. Wait for both: (a) an input message (send, x) from P, then send the message
(send, len(x)) to A; (b) an input message (ready, mazlen) from Q, then
send the message (ready, mazlen) to A.

2. Wait for the message lock from A; verify that len(xz) < mazlen; if not, halt.

3. Wait for both: (a) a message done from A, then send the output message
done to P; (b) a message deliver from A, then send the output message
(deliver,z) to Q.

Corruption rule: If P is corrupted between Steps la and 2, then A is given x
and is allowed to change the value of x (at any time before Step 2).

We call this ideal functionality Fscn. Here, the receiver specifies the maximum
length message he is prepared to accept. This functionality reflects the fact that
most of the time, the receiver knows the general “size and shape” of the message
it is expecting, and so no additional interaction is required. In the cases where
this information is not known in advance, the sender can transmit the length
information to the receiver ahead of time on an authenticated channel.
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3 Ideal Functionalities for Strong CAID and CAKE

In this section, we present ideal functionalities for strong CAID and CAKE.
These ideal functionalities are stronger than we want, as they can only be realized
by protocols that use authenticated channels. However, in the next section, we
discuss how to we can very easily modify such protocols to obtain protocols that
realize the desired CAID/CAKE functionalities (which will be defined in terms
of strong CAID/CAKE).

We start with strong CAID. At a high level, the ideal functionality for strong
CAID, denoted F7,,,, works as follows. We have two parties, P and @. P and
@ agree (somehow) on a binary relation R, which consists of a set of pairs (s, t).
Then P and @ submit values to the ideal functionality: P submits a value s and
Q@ a value t. The ideal functionality then checks if (s,t) € R; if so, it sends P and
@ the value 1, and otherwise the value 0. The relation R represents the “policy”,
discussed in {11

The above description is lacking in details: some essential, and others not. We
now describe some detailed variants of the above general idea. We assume that
party P has PID P,iq and SID Pq4. Likewise, we assume that party @ has PID
Qpia and SID Qgiq.

3.1 Ideal Functionality F ;4

We assume that the SIDs of the two parties are of the form
parent/ext: Ppig: Qpia: ( R), where (R) is a description of the relation R. In
principle, any efficiently computable family of relations is allowable, but specific
realizations may implement only relations from some specific family of relations.
It will convenient to assume that the special symbol L has the following seman-
tics: for all s, ¢, neither (L, ¢) nor (s, L) are in R.

An instance of F} ;; with SID parent/ext: Ppiq: Qpia: (R) runs as follows.

a

1. Wait for both: (a) an input message (left-input,s) from P, then send

left-input to A; (b) an input message (right-input,t) from @, then

send right-input to A.

Wait for a message lock from A; set res to 1 if (s,t) € R, and 0 otherwise.

3. Wait for both: (a) a message deliver-left from A, then send the output
message (return, res) to P; (b) a message deliver-right from A, then
send the output message (return, res) to Q.

N

Corruption rules: (i) If P (resp., Q) is corrupted between Steps la (resp., 1b)
and 2, then A is given s (resp., t), and is allowed to change the value of s
(resp., t) at any time before Step 2. (ii) If P (resp., Q) is corrupted between
Steps 2 and Steps 3a (resp., 3b), then A is given s (resp., t).

Note that the inclusion of Fyiq, Qpiq in the SID serves to break symmetry, and
establish P as the “left” party and @ as the “right” party. The above ideal func-
tionality captures the inherent “unfairness” in any such protocol: if one party
is corrupt, they may learn that the relation holds, while the other may not.
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However, such unfairness is at least detectable: since we do not conflate abort
with a result of 0, if any party is being treated unfairly, this will at least be
detected by an abort message. One could consider a weaker notion of security,
in which 0 and abort were represented by the same value. While this may allow
for more efficient protocols, such protocols may allow “undetectable unfairness”.
With our present formulation, a result of abort may indicate an unfair run of
the protocol (or it may just indicate that there are network problems). The func-
tionality F ;4 does not provide as much privacy as one might like; in particular,
if P and @ are honest, then A still learns the relation R. In the full version of
the paper, we discuss variations that prevent this.

3.2 From Authentication to Key Exchange

Functionality F7;; may be extended to provide key exchange in addition to

authentication modifying Step 2 as follows:

2. Wait for a message (lock, K,qy) from A; then set res to (1, K) if (s,t) € R,
and 0 otherwise, where the key K is determined as follows: if either P or @
are currently corrupted, set K := K,qv; otherwise, generate K at random
(according to some prescribed distribution).

*

Corruption rules are unchanged. We call this ideal functionality F,, .

3.3 Some Relations of Interest

One type of relation that is of particular interest is a simple product relation,
where R = S x T'. For example, we may have S = {s: (x,s) € E}, for a given
z and a fixed relation E. Here, s might be an “anonymous credential” issued by
some authority whose public key is x; the relation E would assert that s is a
valid credential relative to x, possibly satisfying some other constraints as well.

A well-known example of an anonymous credential system of this type is the
IDEMIX system [5]. This system comes with efficient zero-knowledge protocols
for proofs of possession of credentials that we will be able to exploit. IDEMIX
may also be equipped with mechanisms for identity escrow, revocation, etc.,
which automatically enhances the functionality of any strong CAID/CAKE pro-
tocol.

Similarly, we may have T = {t : (y,t) € F}, for a given y and fixed relation
F'. In this case the description ( R) of R is the pair (z,y).

Two generalizations of potential interest are as follows. First, suppose we have
binary relations Ry, ..., R;. We can define their vectored union as the binary
relation R = {((s1,...,5k), (t1,.-.,tx)) : (si,t;) € R; for some i =1..k}. For
example, each relation R; may represent a pair of “compatible” credentials,
and the protocol should succeed if the two parties hold one such pair between
them. Or more simply, the two parties may agree on a list of “clubs”, and then
determine if there is any one club to which they both belong.

Second, we might consider the intersection of a product relation with a par-
tial equality relation: {(s,t) : o(s) = 7(t)}, where o0 and 7 are appropriate
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functions. Such relations can usefully model the “secret handshake” scenario,
where o(s) and 7(¢t) perhaps represent “group names”. A special case of this,
of course, is the equality relation. A CAKE protocol for equality is essentially a
PAKE protocol — this is discussed in {71

One might even combine the above, considering vectored unions of such in-
tersections. The reason for singling out these types of relations is that they are
of potential practical interest, and admit efficient protocols.

4 Bootstrapping an Authentication Protocol

We shall presently give efficient protocols that realize strong CAID/CAKE func-
tionalities for various relations of interest. All of these protocols work assuming
secure channels. Of course, this is not interesting by itself, since we really want to
use these protocols to establish secure channels in a setting without any existing
authentication mechanism.

Without at least authenticated channels, it is impossible to realize strong
CAID/CAKE. The solution is to weaken the notion of security, using the idea
of “split functionalities”, introduced in [2]. Our definitions of the CAID/CAKE
functionalities are simply the split versions of the strong CAID/CAKE function-
alities.

Although the idea of using split functionalities for nonstandard authentication
mechanisms was briefly mentioned in [2], it was not pursued there, and no new
types of authentication protocols were presented. In this section, we review the
basic notions introduced in [2], adjusting the definitions and results slightly to
better meet our needs, and give some new constructions, as well.

4.1 Details: Split Functionalities

We give a slight reformulation of the definitions and results in [2]: we focus on
the two-party case, and we also make a few small syntactic changes that will
allow us to apply the results in a more convenient way.

The basic idea is the same as in [2]. If F is a two-party ideal functionality
involving two parties, P and @), then the split functionality sF works roughly as
follows. Before any computation begins, the adversary partitions the set {P, Q}
into authentication sets: in the two-party case, the authentication sets are
either {P} and {Q}, or the single authentication set {P, Q}. The parties within
an authentication set access a common instance of F, while parties in different
authentication sets access independent instances of F. This is achieved by “man-
gling” SIDs appropriately: each authentication set is assigned a unique “channel
ID” chid, which is used to “mangle” the SIDs of the instances of F. Thus, the
most damage an adversary can do is to make P and ) run two independent
instances of F.

As we shall see, one can transform any protocol IT that realizes F, where IT
relies on authenticated and/or secure channels, into a protocol sIT that realizes
sF, where sII relies on neither authenticated nor secure channels. Moreover, sIT
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is almost as efficient as IT. This result was first proved in [2]; however, we give a
more efficient transformation — based on Diffie-Hellman key exchange — that
is better suited to the two-party case.

Our CAID/CAKE functionalities are simply defined as the split versions of
the strong CAID/CAKE functionalities: sF} ;4 and sFJ,, .. Protocols for these
functionalities may be obtained by applying the split transformation to the pro-

tocols for the corresponding strong functionalities.

4.2 General Split Functionalities

Now we give the general split functionality in more detail. Let F be an ideal
functionality for a two party protocol. As in §2.2 we assume that the SID for
F is of the form parent/ext: Ppiq : Qpid : data, and that F never generates an
output for a party before receiving an input from that party.

The split functionality sF has an SID s := parent/ext : Ppiq : Qpia : data of
the same form as F, and for an adversary A runs as follows.

— Upon receiving a message init from a party X € {P,Q}: record
(init, Xpiq), send (init, Xpiq) to A.

— Upon receiving a message (authorize, Xpid, H, chid) from A, such that

(1) Xpia is the PID of some X € {P,Q}; (2) {Xpia} € H C {Pyid, Qpia};
(3) (init, X}iq) has been recorded; (4) no tuple (authorize, Xpq,...)
has been recorded; and (5) if a tuple (authorize, X/ 4, ', chid") has
been recorded, then either (a) H' = ‘H and chid’ = chid or (b) H'NH = ()
and chid' # chid
do the following:

(1) if no tuple of the form (authorize,-,’H, chid) has already been
recorded, then initialize a “virtual” instance of F with SID sidy =
chid/sid; we denote this instance Fp and define chidy = chid; in
addition, for each Y € {P,Q}, if Ypia ¢ H or Y is corrupt, then no-
tify Fy that the party with PID Y,iq and SID sidy is corrupt, and
forward to A the response of Fj; to this notification;  (2) record
the tuple (authorize, Xy, H, chid); (3) send the output message
(authorize, chid) to X.

— Upon receiving a message (input,v) from X € {P,Q}, such that a tuple
(authorize, Xpiq, H, chid) has been recorded: send the message v to Fy, as
if coming as an input from the party with PID Xpiq and SID sidy.

— Upon receiving a message (input, Xpiq, H, v) from A, such that

(1) Xpiq is the PID of some X € {P,Q}, (2) a (uniquely determined)
instance Fp with Xpia € H has been initialized; and, (3) Xpia ¢ H
send the message v to Fp, as if coming as an input from the party with PID

Xpida and SID sidyy.

— Whenever an instance F3; delivers an output v to a party with PID Xq,
where Xpiq is the PID of some X € {P,Q}, do the following: if Xpiq € H,
then send the output message (output,v) to X, else send the output message
(output, Xpia, v) to A.
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— Upon receiving notification that a party X € {P,Q} is corrupted, such that
a (uniquely determined) instance Fy with Xpiq € H has been initialized:
notify F34 that the party with PID Xq and SID sidy is corrupted, and
forward to A the response of Fy to this notification.

T

We have a slightly different formulation of split functionalities than in [2], but
the differences are mainly syntactic — our method of mangling the SIDs fits
nicely in to our set of conventions on SIDs. In addition, in [2], a party is allowed
to send an input as long as its authentication set is defined, whereas we require
that a party wait for its explicit authorization notification before proceeding.
This seems to avoid some potential confusion.

4.3 A Multi-session Secure Channels Functionality

We need a “multi-session extension” of our ideal functionality for secure channels.
One approach would be to use the definition in [10]. However, a direct application
of that definition would be unworkable, for two reasons: first, it would require
that any implementation keep track of all subsession IDs that were ever used;
second, the multi-session extension applies to all possible parties, whereas, we
can really only deal with the same two parties in all subsessions. So for these
reasons, we present our own multi-session extension, which we denote Fy,s.. Note
that in addition to secure channels (corresponding to the functionality Fyepn), it
also provides for channels that only provide authentication (corresponding to the
functionality Fach). It is quite tedious, and not very enlightening. The details
are in the full paper.

4.4 Split Key Exchange

We now discuss a simple, low-level primitive: split key exchange. Let I be a
key set. The ideal functionality Fske (parameterized by K) has an SID of the
form parent/ext: Ppia : Qpia:, and for an adversary A, runs as follows:

— Upon receiving a message init from a party X € {P,Q}: record
(init,Xpid), send (init, Xpid) to A.

— Upon receiving a message (authorize, Xy, H, chid, K) from A, such that
(1) Xpia Is the PID of some X € {P,Q}; (2) {Xpa} € H C
{Ppid, Qpia}; (3) K € K; (4) (init, Xpia) has been recorded; (5)
no tuple (authorize, Xpiq,...) has been recorded; and, (6) if a tu-

ple (authorize, X/, H/, chid’, K') has been recorded, then either (a)

H' = H and chid’ = chid or (b) H' N'H = 0 and chid" # chid

do the following:

(1) record the tuple (authorize, Xyiq, H, chid, K); (2) if K3 is not yet
defined, then define it as follows: if H = {Xpiq}, then Ky — K, else
K3 «+r K; (3) send the output message (key, chid, K1) to X.
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We now present a simple protocol, I, that realizes the functionality Fgye,
under the decisional Diffie-Hellman (DDH) assumption. Assume a group G of
prime order ¢ generated by g € G where the DDH holds. The description of G,
q, and g is viewed here as a system parameter. We also assume a PRG that maps
a random w € G to a pair of keys (K, Kautn) € K X Kauth, where ICautn is some
large set.

For two parties P and @ with SID sid := parent/ext: Ppiq: Qpid :, protocol
ITg e runs as follows. The roles played by P and @ are asymmetric. The protocol
for P runs as follows:

1. P waits for an input init; then it computes x «r Z4, u < g%, and sends u
to Q.

2. P waits for v € G from @Q; then it computes w < v*, derives keys K, Kauth
from w using the PRG, sets chid «— (u,v ), sends the key Kaun to Q (after
erasing all internal state other than chid and K ).

3. P waits for a continuation signal, and then outputs and outputs
(key, chid, K) (after erasing all internal state).

Note that in the UC framework, a party is allowed to only send one message at a
time; therefore, P first sends a message to @ (via the adversary, of course), and
then waits for a continuation signal (provided by the adversary) before delivering
its own output.

The protocol for @ runs as follows:

1. Q waits for an input init; then it then does nothing, except to notify the
network (i.e., adversary) that it is ready.

2. Q waits for u € G from P; then it computes y <R Zq, v < ¢g¥, w «— uY,
derives keys K, Kaun from w, erases y,w, sets chid «— (u,v), and sends v
to P.

3. Q waits for K. 1 € Kawn from P; then it tests if Kauyn = K/ 4 if s0, it
outputs (key, chid, K) (after erasing all internal state).

Theorem 1. Assuming the DDH for G, an appropriate PRG, and assuming the
set Kautn 18 large, protocol g realizes the ideal functionality Feye.

4.5 Realizing Split Multi-session Secure Channels

Our goal now is to realize the split version sFs of the multi-session secure chan-
nels functionality Fisc presented in §4.31 This will be done with an Fy.-hybrid
protocol Iy, where Fye is the split key exchange functionality discussed in
4.4l At a high-level, protocol IMgmsc works as follows:

1. Wait for an input message init, then send the message init to Fgke.

2. Wait for a message (key, chid, K) from Fue; then do the following:
(a) derive subkeys required to implement bidirectional secure channels,
erasing the key K; these channels will be implemented using a variant
of Beaver and Haber’s technique [3] (see full paper). (b) generate the
output message (authorize, chid).
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3. Now use the keys derived in the previous step to process the secure channels
logic.

Theorem 2. The Fye-hybrid protocol Ilgne. realizes the ideal functionality
SFmsc, assuming a secure PRG and secure MAC.

4.6 Realizing General Split Functionalities

Let F be an arbitrary two-party ideal functionality. Let G be a setup functional-
ity, such as a CRS. Let IT be an (Fach, Fscn)-hybrid protocol that multi-realizes
F with joint access to G (where Facp is defined in §2.4] and Fyep, is defined in
2.

Our goal is to use Il to design an sFysc-hybrid protocol sII that multi-
realizes sF with joint access to G. The point is, sII does not require secure
channels. Moreover, instantiating sFsc with Ilgnse, we obtain the a protocol
SIT[sFmsc/ Hsmsc) that multi-realizes sF with joint access to G.

At a high level, protocol sIT works as follows:

1. Wait for an input message init, then send the message init to sFpsc-

2. Wait for a message (authorze, chid) from sFps; then do the following: (a)
initialize a “virtual” instance of I, assigning it a PID and SID that are
the same as that of this protocol instance, except that the SID pathname is
prefixed chid; (b) generate the output message (authorize, chid).

3. Proceed as follows: (a) process input requests by passing them to the virtual
instance of IT; (b) pass along outputs of the virtual instance of I as outputs
of this protocol instance; (c) use sFymsc to implement the secure channels
used by the virtual instance of II.

Theorem 3. If IT is an (Fach, Fsch)-hybrid protocol that multi-realizes F with
joint access to G, then sl is an sFmsc-hybrid protocol that multi-realizes sF with
joint access to G.

This is essentially the same as the main technical result (Lemma 4.1) of [2], but
there are some technical differences — see full paper for more discussion.

5 Practical UC Zero Knowledge

Before getting into strong CAID/CAKE protocols, we need to discuss an essen-
tial building block: practical protocols for UC ZK (zero knowledge). We will need
a slightly stronger version of ZK, which we call “enhanced ZK”. In the adaptive
corruptions with erasures model, this is no more difficult to realize than ordinary
ZK.

Let R be a binary relation, consisting of pairs (z,w): for such a pair, x is
called the “statement” and w is called the “witness”.

Let ¢: {0,1}* — {0,1}* be an “information leakage” function. The SID for
an enhanced ZK protocol is of the form parent/ext : Pyiq : Qpid : , where P is the
prover and @ the verifier. For an adversary A, an instance of ideal functionality
Fezk with SID sid := parent/ext: Ppiq : Qpia : runs as follows:
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1. Wait for both: (a) an input message (send, x, w) from P such that (x,w) € R,
then send the message (send, ¢(x)) to A; (b) an input message ready from
Q, then send ready to A.

2. Wait for the message lock from A.

3. Wait for both: (a) a message done from A, then send the output message
done to P; (b) a message deliver from A, then send the output message
(deliver,z) to Q.

Corruption rule: If P is corrupted between Steps 1a and 2, then A is given
(x,w) and is allowed to change the value of (x,w) to any value (z',w’) € R
(at any time before Step 2).

Note the similarity with our secure channels functionality. Here, the functionality
is parameterized by the information leakage function ¢, which is used to model
the fact that some information about x may be leaked to an eavesdropping
adversary. Typically, this information will be some rough information about the
“size and shape” of z that ultimately determines the lengths of the ciphertexts
that must be sent in an implementation.

Parameterized relations. In the above discussion, the relation R was consid-
ered to be a fixed relation. However, for many applications, it is convenient to let
R be parameterized by a some system parameter (see §2.3). To realize the ZK
(or extended ZK) functionality, it may be necessary to assume that the system
parameter was generated in a certain way.

For example, a ZK protocol might require that the system parameter contains
an RSA modulus N that is the product of two primes. To realize the ZK ideal
functionality, it might not even be necessary that the factorization of N remain
hidden. In such a case, the system parameter might be profitably viewed as a
public-coin system parameter. This means that the environment may know the
factorization of NV, which may be useful to model situations where the factoriza-
tion of N is used, say, to sign messages in higher-level protocols that use a ZK
protocol as a subprotocol.

5.1 Practical Protocols

Practical ZK protocols exist for the types of relations that we will be needed in
our strong CAID/CAKE protocols — indeed, our protocols were designed with
such protocols specifically in mind. In a companion paper, we give a detailed
account of the current state of the art for such protocols. Here, we give a very
brief sketch — see the full paper for more details.

We will be proving statements of the form

Nwy € Dy,...,wy €Dyt Plwn, ..., wy). (1)

Here, we use the symbol “A” instead of “3” to indicate that we are proving “knowl-
edge” of a witness, rather than just its existence. The D;’s are domains which are
finite intervals of integers centered around 0. ¢ is a predicate — we will presently
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place restrictions on the form of the domains and the predicate. A witness for a
statement of the form () is a tuple (w1, ..., w,) of integers such that w; € D; for
i =1..nand ¢(wy,...,w,). In cases where only the residue class of w; modulo
m is important, we may write the corresponding domain as Z,,.

The predicate ¢(ws,...,w,) is given by a formula that is built up from
“atoms” using arbitrary combinations of ANDs and ORs. An atom may express
several types of relations among the w;’s: (i) integer relations, such as F = 0,
F >0, F =0 (mod m), or gcd(F,m) = 1, where F is an integer polynomial
in the variables wy,...,w,, and m is a positive integer; (i) group relations,
such as H?:l gfj = 1, where the g;’s are elements of an abelian group, and the
F}’s are integer polynomials in the variables wi, ..., wy; the descriptions of the
groups appearing in such atoms will in general be given as system parameters
(see [Z3); the group order need not be known, but certain technical restrictions
apply.

It is known how to construct efficient protocols for these types of statements
that, under reasonable assumptions, multi-realize F.,x with joint access to a
CRS. (As discussed in the full paper, we actually allow corrupt provers to submit
witnesses lying in somewhat larger intervals; the ideal functionality has to be
modified to allow for this.) The computational complexity of these proof systems
can be easily related to the arithmetic circuit complexity of the polynomials that
appear in the description of ¢: the number of exponentiations is proportional
to the sum of the circuit complexities; a more precise running time estimate
depends on the types of groups and domains.

In some cases, we will write statements that quantify over certain variables
using 3 rather than N. Roughly speaking, witnesses quantified under 3 are as-
serted just to exist, rather than to be explicitly “known” by the prover. Making
sense of this formally requires some effort; however, the effort pays off in that
the resulting ZK protocols may be substantially more efficient.

6 Strong CAID/CAKE Protocols

6.1 A Protocol for Vectored Unions of Product Relations

*iq that works for a vectored union of

We present here a protocol Iy for F;
product relations (see §3.3)).

We assume the relation is described by values z1, ...,z and y1, ..., yi. Party
P has inputs s; € S7,...,s; € 5}, and () has inputs ¢, € I, ...ty € T} . They
are trying to determine if \/f:1 [(.TZ, s;) € By A (yi, ty) € Fi], for fixed relations
El,...,Ek and Fl,...,Fk.

We assume that as system parameters, we have a group G of prime order g,
and random generator g. We will need to assume that the computational Diffie-
Hellman (CDH) assumption holds in this group. This protocol also requires some
extra machinery, described below.
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la. P computes h;, «—gr G and sends hy, to () over a secure channel.
1b. @ computes hg <—r G and sends hyr to P over a secure channel.
2a. P walts for hg, and then computes:
forizl..k:{%HRZq’a;(_RZq , /
if (x;,8;) € F; then e; «— g% else e; < hr /g%
Using Feux, P proves to Q:

N{s; € S/, o} € Zy} |:/\(.Z‘Z,SZ EE\/g»—hR/eJ]

Note that eq,...,ex are delivered to Q via the Fe, functionality after P
erases o, ..., 0.
2b. Q waits for hy,, and then computes:
forizl..k:{_ﬁiHRZq’ﬁ’{(_RZq , /
if (y;,t;) € F; then f; — g% else f; «— hy/g"
Using Feux, @ proves to P:

N{tiGTi*,ﬂ;GZq}i‘g: |:/\(yza z e F; \/gg _hL/fz>:|

Note that f1,..., fr are delivered to P via the Fe, functionality after Q)
erases [31,. .., [,
3a. P computes: for i =1..k: if (z;,s;) € E; then u; < fi else u; < r G
3b. Q computes: for i =1..k: if (y;,t;) € F; then v; «— eg’ else v; —r G
4. P and @ run a strong CAID subprotocol to evaluate the predicate \/Z L (u; =
v;), and output the result of this computation after erasing all local data.

NOTES: (i) We have reduced our original strong CAID problem to a simpler
strong CAID problem in Step 4. We discuss implementations of Step 4 below.
(#) The intuition for the main idea of the protocol runs as follows. Suppose, for
example, that P is honest and @ is corrupt. In Step 2b, @) intuitively proves for
each ¢ = 1..k, either that it knows ¢; such that (y;,t;) € E; or that it does not
know B;; in the latter case, @ will not be able to predict the value ¢®# when
it comes to Step 4. (iii) Assuming the E;’s and F;’s are relations based on an
anonymous credential system like IDEMIX, then all of the ZK protocols have
relatively efficient implementations (see §5.1]).

6.2 Security Analysis

Our goal now is to show that protocol Ily realizes F7 ;. Note that Iy is a
hybrid protocol that uses the following ideal functionalities as subroutines: secure
channels (i.e., Fsen), enhanced ZK (i.e., Feqx) for relations of the form appearing
in Steps 2a and 2b of the protocol, and F;, for relations of the form appearing
in Step 4 of the protocol.

Theorem 4. Under the CDH assumption for G, protocol Il realizes F[ ;4.



272 J. Camenisch et al.

6.3 Implementing Step 4

In the case where & = 1, one can use the equality test protocol in §7 As an
alternative to protocol Iy, in the case where k¥ = 1 one can use a different
protocol altogether, described in the full paper.

In the general case where k > 1, we suggest the following method. Assume
we have a UC protocol for evaluating an arithmetic circuit mod IV, where IV is
a system parameter that is the product of two large primes. Then to evaluate
the boolean expression \/le(ui = v;), P chooses ag € Zy at random, and for
it = 1..k, encodes u; as an element a; of Zy; similarly, @ chooses by € Zx at
random, and for i = 1..k, encodes v; as an element b; of Zy. Then P and Q
jointly evaluate in the expression Hf:o (a;—b;) over Zy . If the boolean expression
is true, then the expression over Zy is zero; otherwise, the expression over Zy
evaluates to a random element of Zy .

Thus, we reduce the original strong CAID problem to a strong CAID problem
for a simpler predicate, namely, boolean expressions of the form \/le(ui = v;),
and the latter is easily reduced to a simple circuit evaluation problem for expres-
sions of the form Hf:o(ai —b;) over Zy. There are quite practical protocols for
circuit evaluation, which we discuss in detail in a companion paper. The basic
idea is to use known techniques for circuit evaluation based on homomorphic en-
cryption, making use of a semantically secure variant of Camenisch and Shoup’s
encryption scheme [6], which has the advantage that generating public keys is
very inexpensive (making security with adaptive corruptions and erasures more
practical) and proofs about plaintexts fit very nicely into the framework for ZK
proofs discussed in §5.I1 These protocols (and hence the resulting strong CAID
protocols) require O(k) exponentiations, and O(log k) (the circuit depth) rounds
of communication, and O(k) total communication complexity.

6.4 Adding Key Exchange

Adding key exchange is simple, especially since we are already assuming secure
channels. We simply modify the protocol so that P generates a random key, and
sends it to Q over a secure channel at the beginning of the protocol. In addition,
whenever either party would output 1, it instead outputs (1, K). This is a generic
transformation that converts any F7.; protocol into an F7,,. protocol. Some
other variations of protocol I, including one that deals with partial equality
relations, are discussed in the full paper.

6.5 From Strong CAID/CAKE to CAID/CAKE

We can instantiate protocol Iy to get a practical Fgen-hybrid protocol IT] that
multi-realizes F,; (or any of the variations discussed above) with joint access
to a CRS — the crucial building block is Fe,k, discussed in §8l Then using
the split functionalities techniques in § we can turn II} into a protocol sII))
that multi-realizes sF,;; with joint access to a CRS. The resulting protocol is a

CAID/CAKE protocol that works without secure channels.
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Typically, the purpose of running a CAKE protocol is to use the session key
to implement a secure session. If, in fact, this is the goal, a more straightforward
way of achieving it is as follows. Simply design a Fyn-hybrid protocol that
works as follows: first, it runs a strong CAID protocol, and if that succeeds, the
parties continue to communicate, using the secure channels provided by the Fgcp,
functionality. Now apply the split functionalities techniques in §4]to this protocol,
obtaining a protocol that essentially provides a “credential authenticated secure
channel”.

7 A Protocol for Equality Testing and a Related Problem

Here is a simple protocol for equality testing, called protocol Il.q. We assume
that a group G of prime order ¢, along with a generator g € G, are given as
system parameters. We will need to assume the DDH for G. We assume the
inputs to the two parties are encoded as elements of Z,. Again, we use Fe,x as
a subprotocol. The protocol runs as follows, where P has input a € Z,, and @
has input b € Z,:

1. P computes: h g G, 1,22,7 <R Zg, ¢ — ¢g*'h"2?, u; — g¢", us «— h",
e «— g¢°", and using Fe,x proves to Q: Na € Zgsadr € Zg : g" = u1 A
h" = ug A g%c” = e; note that h,c,u1,us, e are delivered to @ via the Fe,x
functionality after erasing r.

2. Q computes: s «r L, t <R Lg, U1 — uig’, Uy « ush', & — e*g7°ct,
and using Fe,x proves to P: Nb € Z,3s,t € Ly : uigt = U1 Aufh! =
g A e*g~bct = é A ged(s, q) = 1; note that iy, tia, € are delivered to P via
the Fe,x functionality after erasing s,t.

3. P computes: z «g Z;, d « &*(i1)”**1 () "**2, and using Feg proves to
Q: Fx1,0,2 € Ly = g¥'h™2 = c AN E*(U1) ** (t2) *™2 = d A ged(z,q) = 1;
here, d is delivered to ) via the F, functionality after erasing x1, T2, z.

4. After erasing all local data, both parties output 1 if d = 1, and output 0
otherwise.

NOTES: (i) We are using 3 as well as A quantifiers here. This allows for certain
optimizations, since values quantified under 3 are never explicitly needed in
the simulator in the security proof below, other than to verify the that the
corresponding relation holds. (i) In Step 1, (h, ¢) is the public key and (21, z2)
the private key for “Cramer-Shoup Ultra-Lite” — the semantically secure version
of Cramer-Shoup encryption. (u1,us,e) is an encryption of g*. We will exploit
the fact that this scheme is “receiver non-committing”, as was demonstrated by
Jarecki and Lysyanskaya [I3]. This property will allow us to simulate adaptive
corruptions. (i) In Step 2, assuming (uy, ug, €) encrypts g%, then (1, tg, €) is
a random encryption of g*(¢=% . (iv) In Step 3, P is decrypting (i1, o, €), and
raising it to the power z, so that d = g#*(@—?) (v) All of the ZK protocols have
practical implementations, as discussed in §5.11

Theorem 5. Assuming the DDH for G, protocol Il.q realizes functionality F7 .4
for the equality relation.
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Applications. One application of protocol Il., is in the implementation of
Step 4 of protocol Iy (see §6.3). However, in this situation, a specialized protocol
in the full paper is more efficient.

Another application is to PAKE protocols. We can efficiently implement Fe,j
for the necessary relations using secure channels and a common reference string,
and augment the protocol to share a random key over a secure channel. This
gives us a fairly efficient strong CAKE protocol for the equality relation that uses
secure channels. We then derive the split version of the protocol, using a simple
Diffie-Hellman key exchange as in 4, which realizes the CAKE functionality
(more precisely, it multi-realizes the CAKE functionality with joint access to
a CRS). As observed in [2], a protocol that realizes this functionality in fact
realizes the PAKE functionality (as defined in [9]). Our particular protocol is
probably a bit less efficient than the one in [9]; however, our protocol has the
advantage of being secure against adaptive corruptions (assuming erasures). A
very different PAKE protocol, with a structure similar to that in [9], that is
secure against adaptive corruptions was recently presented in [IJ.

7.1 A Variation

A variation on the above protocol gives a strong CAID protocol for the relation
DL := {(a,9%) : a € Zs}. That is, it tests if g¢® = v, where a is the input to
P and v is the input to Q. The idea is to have @} “verifiably encrypt” v. The
protocol, which we call protocol Ilg;, runs as follows:

1. P computes: h < G, x1,22,7 <R Zq, ¢ — ¢g"'h"?, w3 «— g", ug «— h",
e «— g¢°c", and using Fe,x proves to Q: Na € Zgar € Zg 1 g" = u1 A
h" = ug A g%c" = e; note that h,c,uy,us, e are delivered to @ via the Fe,x
functionality after erasing r.

2. Q computes: s <R Z}, t <R Ly, Yy <R Lq, U g¥v, U1 «— ujg’, Uy — ush’,
¢ — e*vsc¢! and using Fe, proves to P: Ny € Z,3s,t € Zy : ujg' =
1 Ausht = g A e 5g¥ct = € A ged(s, q) = 1; note that 0,14, 49, € are
delivered to P via the Fe,x functionality after erasing vy, s,t.

3. P computes: z «g Z;, d « &*(i1)”**1 () ~**2, and using Feg proves to
Q: Fx1,0,2 € Ly = g¥'h™2 = c AN E*(U1) ** (t2) *™2 = d A ged(z,q) = 1;
here, d is delivered to ) via the F, functionality after erasing x1, T2, z.

4. Both parties output 1 if d = 1, and output 0 otherwise.

NOTES: (i) Step 1 is exactly the same as before. (i) In Step 2, @ is generating
a random encryption of (¢%/v)°. Moreover, by giving ¥ and y to Fezk, @ is
effectively giving v to Fe,k. (i) Step 3 is the same as before, but now d =

(g% /v)™.
Theorem 6. Assuming the DDH for G, protocol 114 realizes functionality FJ, .4
for the relation DL.

Applications. This protocol, when augmented with a key sharing step over a
secure channel, and “split” as in 4], gives us a practical PAKE protocol that is
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secure against adaptive corruptions and server compromise. That is, the client
stores the password a, while the server stores g®. If the password file on the
server is compromised, then it will not be easy to an attacker to login to the
server as the client.

Unlike previous protocols, such as in [I1], our protocol does not rely on ran-
dom oracles. To be fair, the definition of security in [TI] is so strong that it
probably cannot be achieved without random oracles: the security definition in
[11] requires that in the event of a server compromise, an attacker must carry
out an offline dictionary attack in order to guess the password. Also, note that
the protocol in [I1] is proved secure only in the static corruption model.

In a complete PAKE protocol, one would likely set a =
H(pw, clientID, serverID), where H is a cryptographic hash, pw is the
actual password, and clientID and serverID are the names of the client and
server, respectively. If H is entropy preserving, pw is a high-entropy password,
and the discrete logarithm problem in G is hard, then it will be infeasible to
login as the client, even if the server is compromised. Moreover, if H is modeled
as a random oracle, and the discrete logarithm problem in G is hard, then even
in the event of a server compromise, an attacker must still carry out an offline
dictionary attack in order to login as the client. Thus, our new protocol is the
first fairly practical PAKE protocol (UC-secure or otherwise) that is secure
against server compromise and does not rely on random oracles; as a bonus, it
is also secure against adaptive corruptions.
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Abstract. The problem of password-authenticated key exchange
(PAKE) has been extensively studied for the last two decades. Despite
extensive studies, no construction was known for a PAKE protocol that
is secure in the plain model in the setting of concurrent self-composition,
where polynomially many protocol sessions with the same password may
be executed on the distributed network (such as the Internet) in an ar-
bitrarily interleaved manner, and where the adversary may corrupt any
number of participating parties.

In this paper, we resolve this long-standing open problem. In partic-
ular, we give the first construction of a PAKE protocol that is secure
(with respect to the standard definition of Goldreich and Lindell) in the
fully concurrent setting and without requiring any trusted setup assump-
tions. We stress that we allow polynomially-many concurrent sessions,
where polynomial is not fixed in advance and can be determined by an
adversary an an adaptive manner. Interestingly, our proof, among other
things, requires important ideas from Precise Zero Knowledge theory
recently developed by Micali and Pass in their STOC’06 paper.

1 Introduction

The problem of password authenticated key exchange (PAKE) has been studied
since early 1990’s. PAKE involves a pair of parties who wish to establish a high
entropy session key in an authenticated manner when their a priori shared secret
information only consists of a (possibly low entropy) password. More formally,
the problem of PAKE can be modeled as a two-party functionality F involving
a pair of parties P; and Ps; if the inputs (passwords) of the parties match, then
F outputs a uniformly distributed session key, else it outputs L. Hence the goal
of PAKE is to design a protocol that securely realizes the functionality F. Un-
fortunately, positive results for secure multi-party computation (MPC) [1I2] do
not immediately translate to this setting; the reason being that known solutions
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** Supported in part by IBM Faculty Award, Xerox Innovation Group Award, the
Okawa Foundation Award, Intel, Lockheed Martin, Teradata, NSF grants 0716835,
0716389, 0830803, 0916574 and U.C. MICRO grant..

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 277 2010.
© International Association for Cryptologic Research 2010



278 V. Goyal, A. Jain, and R. Ostrovsky

for secure MPC require the existence of authenticated channels — which is in fact
the end goal of PAKE. Therefore, very informally speaking, secure multi-party
computation and PAKE can be viewed as complementary problems.

The problem of password authenticated key exchange was first studied by
Bellovin and Meritt [3]. This was followed by several additional works propos-
ing protocols with only heuristic security arguments (see [4] for a survey). Sub-
sequently, PAKE was formally studied in various models, including the random
oracle/ideal cipher model, common reference string (CRS) model, and the plain
model (which is the focus of this work). We briefly survey the state of the art on
this problem. The works of Bellare et al [5] and Boyko et al [6] deal with defining
and constructing PAKE protocols in the ideal cipher model and random oracle
model respectively. In the CRS model, Katz, Ostrovsky and Yung [7] gave the first
construction for PAKE without random oracles based on the DDH assumption.
Their result were subsequently improved by Gennaro and Lindell [§], and Genarro
[9]. Again in the CRS model, Canetti, Halevi, Katz, Lindell and MacKenzie [10]
proposed new definitions and constructions for a PAKE protocol in the frame-
work of Universal Composability [I1]. They further proved the impossibility of a
Universally Composable PAKE construction in the plain model.

Goldreich and Lindell [I2] formulated a new simulation-based definition for
PAKE and gave the first construction for a PAKE protocol in the plain model.
Their construction was further simplified (albeit at the cost of a weaker secu-
rity guarantee) by Nguyen and Vadhan [I3]. Recently, Barak et al [I4] gave a
very general construction for a PAKE protocol that is secure in the bounded-
concurrent setting (see below) in the plain model.

To date, [12/I3] and [14] remain the only known solutions for PAKE in the
plain model. However, an important limitation of Goldreich and Lindell [12] (as
well as Nguyen and Vadhan [I3)]) is that their solution is only relevant to the stand-
alone setting where security holds only if a single protocol session is executed on
the network. A more natural and demanding setting is where several protocol ses-
sions may be executed concurrently (a typical example being protocols executed
over the Internet). In such a setting, an adversary who controls parties across dif-
ferent sessions may be able to mount a coordinated attack; as such, stand-alone
security does not immediately translate to concurrent security [I5]. In the con-
text of PAKE, this problem was was fully resolved assuming CRS trusted setup
(see below) and only partially addressed in the plain model by Barak, Canetti,
Lindell, Pass and Rabin [I4] who gave a construction that maintains security in
the setting of bounded-concurrency. In this setting, an a priori bound is known
over the number of sessions that may be executed concurrently at any time; this
bound is crucially used in the design of the protocol. It is natural to consider the
more general setting of full concurrent self-composition, where any polynomially
many protocol sessions (with no a priori bound) with the same password may be
executed in an arbitrary interleaved manner by an adversary who may corrupt
any number of parties. We stress that although the works of [ZT6ISIT0/4] solve
this problem (where [7I8] are secure under self-composition, and [16] also enjoy
forward secrecy, while [I0] is secure under general-composition), they all require
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a trusted setup in the form of a common reference string. Indeed, to date, no con-
structions are known for a PAKE protocol that is secure in the plain model in the
setting of concurrent self-composition.

Our Contribution. In this paper, we resolve this open problem. In particular, we
give the first construction of a PAKE protocol in the plain model that allows for
concurrent executions of the protocol between parties with the same password.
Our techniques rely on several previous works, most notably the works of Barak,
Prabhakaran and Sahai [I7] and Micali and Pass [I8].

Our construction is proven secure as per the definition of Goldreich and Lin-
dell [12] in the concurrent setting. We stress that Lindell’s impossibility re-
sult [19] for concurrent self-composition is not applicable here since (a) Goldreich
and Lindell used a specific definition that is different from the standard paradigm
for defining secure computatio, and (b) further, they only consider the sce-
nario where the honest parties hold fixed inputs (while Lindell’s impossibility
result crucially requires adaptive inputs).

In fact, our security definition is somewhat stronger than the one by Goldreich
and Lindell [T2]. The definition in [12], for example, does not consider the case
where the adversary may have some a priori information on the password of the
honest parties in a protocol execution. We consider an improved simulation-based
security model similar to that proposed by [6]. More specifically, in our model, the
simulator in the ideal world is empowered to make a constant number of queries
per (real world) session to the ideal functionality (as opposed to just one). Our
security definition then requires computational indistinguishability of the out-
put distributions of real and ideal world executions in keeping with the standard
paradigm for secure computation. As noted in [20], this improved definition im-
plies the original definition of Goldreich and Lindell (see full version for a proof).

In our main construction, we consider the setting where the honest parties
across the (polynomially-many) concurrent executions hold the same password
or independently chosen passwordsﬁ. An example of the same password case is

! Note that in the standard simulation paradigm, the output distributions of the
“real” and “ideal” worlds must be computationally indistinguishable; in contrast,
the definition of Goldreich and Lindell [I2] allows these distributions to be O(1/|D|)
apart (where D is the password dictionary).

A more general question is to consider the setting where the passwords of honest parties
in different sessions might be correlated in any arbitrary way. Towards this end, we note
that our construction can be easily extended to this setting. However, in this case we re-
quire the ideal simulator to be able to query the ideal functionality an expected constant
number of times per session. Jumping ahead, in case the honest parties were using the
same password or fully independent passwords, the simulator is able to “trade” ideal
functionality calls in one session for another. Hence, the simulator is able to even out
the number of calls to a fixed constant in each session. This in turn means that for the
setting of correlated passwords, our construction will satisfy a security definition which
is slightly weaker (in that the number of ideal functionality calls are constant only in
expectation). Obtaining a construction for correlated (in an arbitrary way) passwords
where the number of calls are not just constant in expectation but always bounded by
a constant is left as an interesting open question.
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when a server expects a specific password for authentication and several parties
are trying to authenticate simultaneously.

We note that our techniques and constructions are quite general. Our con-
struction can be instantiated with a basic semi-honest secure computation pro-
tocol for any PPT computable functionality. This would lead to a concurrently
secure protocol for that functionality as per the security definition where we
allow the simulator to make an expected constant number of calls to the ideal
function per (real world) session. The meaningfulness of such a definition is
shown in the case of password based key exchange which is the focus of this
work (more precisely, by comparing it with the definition of [20]). However we
anticipate that the above general construction with such security guarantees
might be acceptable in many other settings as well.

A related model is that of resettably secure computation proposed by Goyal
and Sahai [21]. In resettably secure computation, the ideal simulator is given the
power to reset and query the trusted party any (polynomial) number of times.
However there are important differences. Goyal and Sahai [21] consider only the
“fixed role” setting and only one of the parties can be thought of as accepting
concurrent sessions. This means that the key technical problems we face in the
current work (arising out of the possibility of mauling attacks in the concurrent
setting) do not arise in [2I]. Secondly, [2I] do not try to optimize (or even bound)
the number of queries the ideal simulator makes to the trusted party per session.

Overview of Main Ideas. Note that in the setting of concurrent self-composition,
an adversary may corrupt different parties across the various sessions. Consider
for instance two different sessions where one of the parties is corrupted in each
session. We can view one of these sessions as a “left” session and the other as a
“right session”, while the corrupted parties can be jointly viewed as an adversar-
ial man-in-the-middle. An immediate side-effect of this setting is that it allows
an adversary to possibly “maul” a “left” session in order to successfully estab-
lish a session key with an honest party (say) P in a “right” session without the
knowledge of P’s secret password. Clearly, in order to provide any security guar-
antee in such a setting, it is imperative to achieve independence between various
protocol sessions executing on the network. Note that this is akin to guarantee-
ing non-malleability across various sessions in the concurrent setting. Then, as
a first step towards solving this problem, we borrow techniques from the con-
struction of concurrent non-malleable zero knowledge argument due to Barak,
Prabhakaran and Sahai [I7] (BPS-CNMZK). In fact, at a first glance, it might
seem that compiling a semi-honest two-party computation protocol (that emu-
lates the PAKE functionality in the stand-alone setting) with the BPS-CNMZK
argument or some similar approach might fully resolve this problem. However,
such an approach fails on account of several reasons. We highlight some impor-
tant problems in such an approach.

We first note that the simulation of BPS-CNMZK is based on a rewinding
strategy. In a concurrent setting, the adversary is allowed to control the schedul-
ing of the messages of different sessions. Then for a given adversarial scheduling,
it is possible that the simulator of BPS-CNMZK may rewind past the beginning
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of a session (say) s when “simulating” another session. Now, every time session
s is re-executed, an adversary may be able to change his input (i.e., make a new
password guess possibly based on the auxiliary information it has). In such a
case, the simulator would have to query the ideal functionality for that session
more than once; therefore, we need to allow the simulator to make extra (i.e.,
more than one) queries per session to ideal functionality. In order to satisfy our
definition, we would need to limit the number of queries to a constant per ses-
sion. However, the simulator for BPS-CNMZK, if used naively, may require large
polynomially many queries per session to the ideal functionality, and therefore,
fail to satisfy our definition.

In order to overcome this problem, we build on the techniques of precise sim-
ulation, introduced by Micali and Pass [I8] in the context of (stand-alone) zero
knowledge and later extended to the setting of concurrent zero knowledge by
Pandey, Pass, Sahai, Tseng, and Venkitasubramaniam [22]. Specifically, Pandey
et. al. [22] use a time-oblivious rewinding schedule that (with a careful choice
of system parameters) ensures that the the time spent by the simulator in the
“look-ahead” threaddy is only within a constant factor of the time spent by the
simulator in the “main” thread. We remark that we do not require this precision
in simulation time; instead we require that the number of queries made by the
simulator in the look-ahead threads is only within a constant factor of the num-
ber of queries made in the main thread. For this purpose, we employ the precise
Zero-Knowedlge paradigm of Micali and Pass and consider an imaginary experi-
ment in which our adversary takes a disproportionately large amount of time in
generating the message after which the simulator has to query the trusted party.
Our rewinding strategy is determined by running the PPSTV [22] simulator us-
ing the next message generation timings of such an (imaginary) adversary (even
though our simulator is fully black-box and does not even measure the timings
for the real adversary) in order to bound the number of queries.

We further note that in the security proof of the above approach, the simu-
lator must be able to extract the inputs of the adversary in all the sessions in
order to simulate its view. However, the extractor of [I7] is unsuitable for this
task since it can extract adversary’s inputs (in the setting of BPS-CNMZK) only
on a session-by-session basis. To further elaborate, let us first recall the setting
of BPS-CNMZK, where an adversary is interacting with some honest provers as
well as some honest verifiers. Now, in order to extract the input of an adversarial
prover in a particular session s, the extractor in [I7] honestly runs all the un-
corrupted verifiers except the verifier in session s. We stress that the extractor
is able to run the honest verifiers by itself since they do not possess any secret
inputs; clearly, such an extraction technique would fail in our setting since the
simulator does not know the inputs of the honest parties.

3 Very roughly speaking, a “thread of execution” between the simulator and the ad-
versary is a simulation of a prefix of an actual execution. The simulator may run
multiple threads of execution, and finally output a single thread, called the main
thread. Any other thread is referred to as a look-ahead thread.
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To address this problem, we require each party in our protocol to commit to its
input and randomness inside a separate preamble [22]23] that allows extraction
of the committed values in a concurrent setting. However, we note that such a
preamble requires a complicated rewinding strategy for extraction of committed
value, and so is the case for simulating the BPS-CNMZK argument. Indeed,
it seems that we might need to compose the (possibly conflicting) individual
rewinding strategies of BPS-CNMZK and the additional preamble into a new
uniform rewinding strategy. Fortunately, by ensuring that we use the same kind
of preamble (for committing to the input of a party) as the one used inside
BPS-CNMZK, we are able to avoid such a scenario, and crucially, we are able
to use the BPS-CNMZK strategy as a single coherent rewinding strategy. The
above idea also gives us a new construction of a concurrent non-malleable zero-
knowledge protocol where the extraction can be automatically done in-line along
with the simulation. We believe this implication to be of independent interest.

Finally, the construction in [I7] is only analyzed for the setting where the
theorems to be proven by the honest parties are fixed in advance before any
session starts (in keeping with the impossibility results of Lindell [19]). Towards
that end, our protocol only makes use of BPS-CNMZK in the very beginning
of the protocol to prove a statement which could be generated by the honest
parties before the start of any session.

2 Definitions and Preliminaries

2.1 Our Model

We first summarize the main differences in our model with respect to [12]. We
first note that even in the stand-alone setting, if an adversary A controls the
communication link between two honest parties, then A can execute separate
“left” and “right” executions with the honest parties. Therefore, these executions
can be viewed as two concurrent executions where A is the common party. In
keeping with this observation, in our model, the adversary A is cast as a party
participating in the protocol instead of being a separate entity who controls the
communication link (as in [I2], see full version for more details). We stress that
this modeling allows us to assume that the communication between protocol
participants takes place over authenticated channels. Furthermore, in contrast
to [12], we allow the adversary to have a-priori information on the password.
More details follow.

Description of F. We model the problem of password-authenticated key ex-
change as a two-party functionality F involving parties P; and P» (where either
party may be adversarial). If the inputs (password from a dictionary D) of Py
and P, match, then F sends them a uniformly distributed session key (whose
length is determined by the security parameter), else it sends L.

Further, in contrast to the stand-alone setting of [12] (where security holds
only if a single protocol session is executed on the network), we consider the
more general setting of concurrent self-composition, where polynomially many



Password-Authenticated Session-Key Generation on the Internet 283

(in the security parameter) protocols with the same password may be executed
on the network in an arbitrarily interleaved manner. In this setting, an adversary
A may corrupt several parties across all the different sessions.

To formalize the above requirements and define security, we extend the stan-
dard simulation paradigm for defining secure computation. In particular, we
allow the adversary in the ideal world to make a constant number of (output)
queries to the trusted party for each protocol session. In the definition below,
we focus only on the case where the honest parties hold the same password p.
However it can be extended to the case of arbitrarily correlated passwords (or,
in fact, general secure computation) in a natural way where the simulator in
the ideal world might make an expected constant number of calls to the ideal
functionality for every session in the real world.

We consider the static corruption model and probabilistic polynomial time
(PPT) adversaries only. We denote computational indistinguishability by é, and
the security parameter by . Let D be the dictionary of passwords.

IDEAL MODEL. In the ideal model, there is a trusted party that computes the
password functionality F (described above) based on the inputs handed to it
by the players. Let there be n parties Py, ..., P, where different pairs of parties
are involved in one or more sessions, such that the total number of sessions
is polynomial in the security parameter k. Let M C [n] denote the subset of
corrupted parties controlled by an adversary. An execution in the ideal model
with an adversary who controls the parties M proceeds as follows:

I. Inputs: The honest parties hold a fixed input which is a password p chosen
from a dictionary D. The input of a corrupted party is not fixed in advance.

I1. Session initiation: If a party P; wishes to initiate a session with another
party P;, it sends a (start-session,i,j) message to the trusted party. On
receiving a message of the form (start-session,i, j), the trusted party sends
(new-session, 4, j, k) to both P; and P;, where k is the index of the new session.

ITI. Honest parties send inputs to trusted party: Upon receiving (new-
session,i, j, k) from the trusted party, an honest party P; sends its real input
along with the session identifier. More specifically, P; sets its session k input
x; ) to be the password p and sends (k,x; ) to the trusted party.

IV. Corrupted parties send inputs to trusted party: A corrupted party
P; sends a message (k,z; ) to the trusted party, for any x;, € D of its
choice.

V. Trusted party sends results to adversary: For a session k involving
parties P; and P;, when the trusted party has received messages (k,x; )
and (k,z; ), it computes the output F(z;x, ;). If at least one of the
parties is corrupted, then the trusted party sends (k, F(2s,x, %)) to the ad-
versaryH. On the other hand, if both P; and P; are honest, then the trusted
party sends the output message (k, F(xik,x;x)) to them.

4 Note that here, the ideal functionality does not restrict the adversary to a fized
constant number of queries per session. However, in our security definition, we will
require that the ideal adversary only makes a constant number of queries per session.
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VI. Adversary instructs the trusted party to answer honest players: For
a session k involving parties P; and P; where exactly one party is honest, the
adversary, depending on its view up to this point, may send the (output, k) mes-
sage in which case the trusted party sends the most recently computed session
k output (k, F (i k, ;%)) to the honest party. (Intuitively, for each session k
where exactly one party is honest, we allow the adversary to choose which one
of the A output values would be received by the honest party.)

VII. Adversary makes more queries for a session: The corrupted party P;,
depending upon its view up to this point, can send the message (new-query, k)
to the trusted party. In this case, execution of session k in the ideal world comes
back to stage IV. P; can then choose its next input adaptively (i.e., based on
previous outputs).

VIII. Outputs: An honest party always outputs the value that it received
from the trusted party. The adversary outputs an arbitrary (PPT com-
putable) function of its entire view (including the view of all corrupted
parties) throughout the execution of the protocol.

Let S be a probabilistic polynomial-time ideal-model adversary that controls the
subset of corrupted parties M C [n]. Then the ideal execution of F (or the ideal
distribution) with security parameter s, password p € D and auxiliary input z
to S is defined as the output of the honest parties along with the output of the
adversary S resulting from the ideal process described above. It is denoted by
IDEALY; 5(K, P, 2).

REAL MODEL. We now consider the real model in which a real two-party password-
based key exchange protocol is executed.

Let F, Pi,..., P,, M be as above. Let X be the password-based key exchange
protocol in question. Let A be probabilistic polynomial-time (PPT) machine such
that for every i € M, the adversary A controls the party P;.

In the real model, a polynomial number (in the security parameter x) of
sessions of X’ may be executed concurrently, where the scheduling of all messages
throughout the executions is controlled by the adversary. We do not assume that
all the sessions have a unique session index. We assume that the communication
between the parties takes place over authenticated channeld]. An honest party
follows all instructions of the prescribed protocol, while an adversarial party may
behave arbitrarily. At the conclusion of the protocol, an honest party computes
its output as prescribed by the protocol. Without loss of generality, we assume
the adversary outputs exactly its entire view of the execution of the protocol.

The real concurrent execution of X' (or the real distribution) with security
parameter k, password p € D and auxiliary input z to A is defined as the
output of all the honest parties along with the output of the adversary resulting
from the above process. It is denoted as REALAZ/[,A(K,p, ).

We now give our definition of concurrently-secure password-authenticated key
exchange protocol.

5 As mentioned earlier, this is a reasonable assumption since in our model, the ad-
versary is a protocol participant instead of being a separate entity that controls the
communication links (as in [12]).
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Definition 1. Let F and X be as above. Let D be the dictionary of passwords.
Then protocol X for computing F is a concurrently secure password authenticated
key exchange protocol if for every probabilistic polynomial-time adversary A in
the real model, there exists a probabilistic expected polynomial-time adversary S
such that S makes a constant number of queries to the ideal functionality per
session, and, for every z € {0,1}*, p€ D, M C [n],

{ibEALY; 5(K, D, z)}HEN = {REALJ%LA(K,p,Z)}HeN

We note that our security definition implies the original definition of Goldreich
and Lindell [I2] (adapted to the concurrent setting). We refer the reader to the
full version for a formal proof. We now state our main result.

Theorem 1. (Main Result) Assume the existence of 1-out-of-2 oblivious trans-
fer protocol secure against honest but curious adversariedd. Let T be the two-
party PAKE functionality as described above. Then, there exists a protocol X
that securely realizes F as per Definition [l

We prove the above theorem by constructing such a protocol X in section Bl If
the underlying primitives are uniform (resp., non-uniform), then the protocol X
is uniform (resp., non-uniform) as well. A polynomial time adversary against X'
translates to a polynomial time adversary against one of the underlying primitives.

2.2 Building Blocks

We now briefly mention some of the main cryptographic primitives that we use
in our construction. We refer the the reader to the full version of the paper for
more details.

Statistically Binding Commitments. In our protocol, we shall use the 2-round sta-
tistically binding commitment scheme of Naor [25] based on one-way functions.
Given a random string z from the receiver, let COM,(-) denote the commitment
function of the scheme.

Preamble from PPSTV [22]. A PPSTV preamble is a protocol between a commit-
ter and a receiver that consists of two main phases, namely, (a) the commitment
phase, and (b) the challenge-response phase. Let k be a parameter that deter-
mines the round-complexity of the protocol. Then, in the commit phase, very
roughly speaking, the committer commits to a secret string o and k2 pairs of its
2-out-of-2 secret shares. The challenge-response phase consists of k iterations,
where in each iteration, very roughly speaking, the committer “opens” k shares,
one each from k different pairs of secret shares as chosen by the receiver.

The goal of this protocol is to enable the simulator to be able to rewind and
extract the “preamble secret” o with high probability. In the concurrent setting,
rewinding can be difficult since one may rewind past the start of some other
protocol [26]. However, as it has been demonstrated in [22] (see also [23127])

5 Note that 1-out-of-2 oblivious transfer (OT) secure against honest but curious ad-
versaries implies 1-out-of-2 OT secure against malicious adversaries [24].
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there is a “time-oblivious” rewinding strategy that the simulator can use to
extract the preamble secrets from every concurrent cheating committer, with
high probability. In the sequel, we will refer to the preamble simulator as CEC-
Sim. For our purpose, we will use PPSTV preambles with linear (in the security
parameter ) number of rounds. Then, the simulation strategy in [22] guarantees
a linear precision in the running time of the simulator. Specifically, the running
time of the simulator is only a constant multiple of the running time of the
adversarial committer in the real execution.

Concurrent Non-Malleable Zero Knowledge Argument. We shall use a concur-
rent non-malleable zero knowledge (CNMZK) argument for every language in NP
with perfect completeness and negligible soundness error. In particular, we will use
a slightly modified version of the CNMZK protocol of Barak, Prabhakaran and Sa-
hai [I7], henceforth referred to as mBPS-CNMZK. In the modified version, we re-
place the PRS [23] preamble used in the original construction with a PPSTV pream-
ble with linear (in the security parameter) number of rounds. We will also require
that the non-malleable commitment scheme used in the protocol is public-coin [28].

Statistically Witness Indistinguishable Arguments. In our construction, we shall
use a statistically witness indistinguishable argument (sWI) for proving mem-
bership in any NP language with perfect completeness and negligible soundness
error. Such a scheme can be constructed by using w(log n) copies of Blum’s
Hamiltonicity protocol [29] in parallel, with the modification that the prover’s
commitments in the Hamiltonicity protocol are made using a statistically hid-
ing commitment scheme. Statistically hiding commitments were constructed by
Naor, Ostrovsky, Venkatesan and Yung [30] in O(k/log(k)) rounds using a one
way permutation ([30] in turn builds on the interactive hashing technique intro-
duced in [31]). Constructions based on one way functions were given in [32/33].

Semi-Honest Two Party Computation. We will also use a semi-honest two party
computation protocol gy paxe that emulates the PAKE functionality F (as de-
seribed in section [Z]]) in the stand-alone setting as per the standard definition of
secure computation. The existence of such a protocol gy paks follows from [TU34].

3 Owur Construction

In this section, we describe our two-party protocol X that securely realizes the
password functionality F in the setting of concurrent self-composition as per
Definition [I1

Notation. Let P; and P, be two parties with private inputs (password from dic-
tionary D) x1 and x5 respectively. Given a random string z (from the receiver),
let coM,(+) denote the commitment function of Naor’s commitment scheme [25].
By mBPS-CNMZK, we will refer to the modified version of the CNMZK proto-
col of [I7] described in section Let II,pps,p,—p, denote an instance of the
mBPS-CNMZK protocol where P; and P; play the roles of prover and verifier
respectively. Let Ilgypaks be any semi-honest two party computation protocol
that emulates the functionality F in the stand-alone setting. Let U,, denote the
uniform distribution over {0, 1}", where 7 is a function of the security parameter.
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The protocol X' proceeds as follows.

I. Trapdoor Creation Phase

1. P <> Py : P; sends a random string zo (of appropriate length) to P, as the
first message of Naor’s commitment scheme. Similarly, P, sends a random
string 21 to P;.

2. Py — P, : P creates a commitment com; = coM,, (0) to bit 0 and sends it
to P». P; and P> now engage in the execution of a mBPS-CNMZK argument
1,505, P, — P, Where Py proves that com; is a commitment to 0.

3. P, — P : P, now acts symmetrically. Specifically, it creates a commitment
coms = COM,, (0) to bit 0 and sends it to P;. P> and P, now engage in the
execution of a mBPS-CNMZK argument Il,,,zps p,— p, Where P5 proves that
como 18 a commitment to 0.

II. mPPSTYV Preamble Phase. In this phase, each party P; engages in the
execution of a modified PPSTV preamble (henceforth referred to as mPPSTV)
with P; where it commits to its input and randomness. In our modified ver-
sion of the PPSTV preamble, for a given receiver challenge, the committer
does not “open” the commitments, but instead simply reveals the committed
value (without the randomness) and proves its correctness by using a sWI. Let
I nppstv, p,— p; denote an instance of the mPPSTV protocol where F; plays the
role of the committer. We now describe the steps in this phase.

1. P, — P, : Generate a string & U, and let 81 = {x1,71}. Here rq is the
randomness to be used (after coin-flipping with P») by P; in the execution
of the protocol Iy pake in Phase III. We assume that |r1| = 7 is sufficiently
long for that purpose. Now P; and P, engage in the execution of a mPPSTV
preamble I1,,ppsrv, p, — P, in the following manner.

Let kbea polynomial in the security parameter k. Py first prepares 2k? secret
shares {a?’ iz {ai ;35 =1 such that of ; ® of ; = f1 (= {@1,m1}) for all
1,j. Using the commltment function coMy, (+), P1 commits to 8; and all its
secret shares. Denote these commitments by By, {A?7j}f7j:1, {A},j}ﬁj:r P
now engages in the execution of a sWI with A in order to prove the following
statement: either
(a) theabove commlt phase is “valid”, i.e., there exist values (3, {2 ST
such that (a) &;; @ a = (3 for all i,j, and, (b) commitments By,

{A} }kj 1 {Al }” | can be decommitted to 3y, {a?
(b) com in phase I'is a commitment to bit 1.
It uses the witness corresponding to the first part of the statement. P; and

1 1k
i Qi j Vi j=15 OT,

P, now execute a challenge-response phase. For j =1,... k:

(a) P» — Py : Send challenge bits 21 j,..., 2k, ; & {0, 1}*.

(b) P — P : Send ailjij, .. akkj’ Now, P1 and P, engage in the execution
of a sWI, where P1 proves the following btatement either
(a) commitments AT, ..., Ay rj can be decommitted to ai's,. a;k/

respectively, or (b) com1 in Phase I is a commitment to bit 1. It uses the
witness corresponding to the first part of the statement.
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2. P, < Py : P, now acts symmetrically.

IT1. Secure Computation Phase. In this phase, the parties run an execution
of the semi-honest two party protocol Il paxe “compiled” with sWI.

Coin Flipping. P and P» first engage in a coin-flipping protocol. More specif-
ically, Py (resp., P») generates 7} & U, (resp., r} & U,) and sends it to P,
(resp., P1). Define r{ = r1 @7} and r§ = ro & 7). Now r{ and r}) respectively are
the random coins that P; and P, will use in the execution of protocol Ilgy_psks.

Protocol gy paks. Let the protocol gy pake have ¢t rounds where one round is
defined to have a message from P; to P, followed by a reply from P, to P;.
Let transcript 71 ; (resp., Tz ;) be defined to contain all the messages exchanged
between P; and P» before the point party P; (resp., P») is supposed to send a
message in round j. Now, each message sent by either party in protocol gy paxs
is compiled into a message block in X. For j =1,...,t:

1. Pi — P, : P; sends the next message Ay ;j(= Ilsypaxe(T1,;,21,77)) as per
protocol Iy paks- Now, Py and P, engage in the execution of a sSWI where
P, proves the following statement: either
(a) there exists a value §; = {&;,71} such that (a) the commitment B;

in phase IL1 can be decommitted to 81 = {&1,71}, and (b) the sent
message A ; is consistent with input #; and randomness 7 & ] (i.e.,
Al,j(: HSH—PAKE(Tl,ja 1,7 @ 7"/1))7 or
(b) com; in Phase I is a commitment to bit 1.
It uses the witness corresponding to the first part of the statement.
2. P, — Py : P, now acts symmetrically.

This completes the description of the protocol X'. Note that X consists of several
instances of sWI where the proof statement in each instance consists of two parts.
Specifically, the second part of the statement states that prover committed to
bit 1 in the trapdoor creation phase. In the sequel, we will refer to the second
part of the proof statement as the trapdoor condition. Further, we will call the
witness corresponding to the first part of the statement as real witness and that
corresponding to the second part of the statement as the trapdoor witness.

4 Proof of Security

Theorem 2. The proposed protocol X is a concurrently secure PAKE protocol
as per Definition [

Let there be n parties in the system where different pairs of parties are involved in
one or more sessions of X, such that the total number of sessions m is polynomial in
the security parameter x. Let A be an adversary who controls an arbitrary number
of parties. In order to prove theorem 2] we will first construct a simulator S that
will simulate the view of A in the ideal world. We will then show that S makes only
a constant number of queries per session while simulating the view of A. Finally,
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we will argue that the output distributions of the real and ideal world executions
are computationally indistinguishable. For simplicity of exposition, we will assume
that exactly one party is corrupted in each session. We note that if the real and ideal
distributions are indistinguishable for this case, then by using standard techniques
we can easily remove this assumption. Due to lack of space, in this version, we only
give the description of the simulator and bound its output queries. We refer the
reader to the full version of the paper for a complete proof.

Notation. In the sequel, for any session ¢ € [m], we will use the notation H to
denote the honest party and A to denote the corrupted party. Let I1,pps, ir— .4
(resp., Ilnpps, A—m) denote an instance of mBPS-CNMZK where H (resp., A)
plays the role of the prover and A (resp., H) plays the verifier. Similarly, let
I pestv, i—a (resp., yppsrv, o— ) denote an instance of mPPSTV where H
(resp., A) plays the role of the committer and A (resp., H) plays the receiver.
Wherever necessary, we shall augment our notations with a super-script that
denotes the session number.

Consider any session between H and A. Consider the last message from A
before H sends a message to A during the coin-flipping sub-phase in the secure
computation phase. Note that this message could either be the first message of
the coin-flipping phase or the last message of the mPPSTV phase, depending
upon whether A or H sends the first message in the coin-flipping phase. In the
sequel, we will refer to this message from 4 as the special message. Intuitively,
this message is important because our simulator will need to query the ideal
functionality every time it receives such a message from A. Looking ahead, in
order to bound the number of queries made by our simulator, we will be counting
the number of special messages sent by A during the simulation.

4.1 Description of Simulator S

The simulator S consists of two parts, Sgee and Scorg. Informally speaking, Scpc
is essentially the simulator CEC-Sim (see section 22]) whose goal is to extract
the preamble secret in each instance of the PPSTV preamble where A acts as
the committer. These extracted values are passed on to Scorg, who uses them
crucially to simulate the view of A. We now give more details.

Description of Scpc. Scrc is essentially the main simulator in that it handles
all communication with A. However, for each session ¢ € [m], Scgc by itself only
answers A’s messages in those instances of the PPSTV preamble where A plays
the role of the committer; Scpe in turn communicates with the core simulator
Score to answer all other messages from A.

Specifically, recall that our protocol consists of two instances of the PPSTV
preamble where A plays the role of the committer. Consider any session £ € [m].
The first instance is inside the mBPS-CNMZK instance anBPS,HHA in the trap-
door creation phase, while the second instance is in fact the mPPSTV preamble
Hﬁzppsw, 4_ g in the second phase. Then, Scyc is essentially the simulator CEC-
Sim that interacts with A in order to extract the preamble secret in each of the
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above instances of the PPSTV preamble. Specifically, in order to perform these
extractions, Scpe employs the time-oblivious rewinding strategy of CEC-Sim for
an imaginary adversary (see next paragraph). During the simulation, whenever
Scec receives a message from A in any of the above instance of the PPSTV
preamble, then it answers it on its own in the same manner as CEC-Sim does
(i.e., by sending a random challenge string). However, on receiving any other
message, it simply passes it to the core simulator Scors (described below), and
transfers its response to A. Whenever Scp extracts a preamble secret from A
at any point during the simulation, it immediately passes it to Scorg. If Scpc
fails to extract any of the preamble secrets from A, then it outputs the abort
symbol 1.

Message generation timings of A. We note that in order to employ the time-
oblivious rewinding strategy of CEC-Sim, Scge needs to know the amount of time
that A takes to send each message in the protocol (see [22]). We remark that we
do not seek precision in simulation time (guaranteed by the rewinding strategy of
CEC-Sim); instead we only require that the number of queries made by the sim-
ulator in the look-ahead threads is only within a constant factor of the number
of the number of sessions. To this end, we consider an imaginary experiment in
which A takes a disproportionately large amount of time in generating the mes-
sage after which our simulator has to query the trusted party. Then the rewinding
strategy of Scgc is determined by running CEC-Sim using the next message gen-
eration timings of such an (imaginary) adversary, explained as follows.

Consider all the messages sent by A during a protocol execution. We will
assign ¢ time units to the special message, where ¢ is the round complexity
(linear in the security parameter) of our protocol; any other message from A is
simply assigned one time unit. Intuitively, by assigning more weight to the special
message, we ensure that if the running time of our simulator is only within a
constant factor of the running time of A in the real execution, then the number
of special messages sent by A during the simulation must be a constant as well.
Looking ahead, this in turn will allow us to prove that the number of queries
made by the simulator are only a constant.

Description of Scors. We describe the strategy of Scorg in each phase of the
protocol, for each session ¢ € [m]. We stress that Scopg uses the same strategy in
the main-thread as well as all look-ahead threads (unless mentioned otherwise).

Trapdoor Creation Phase. Sqopg first sends a commitment to bit 1, instead of
committing to bit 0. Now, recall that Scgc interacts with 4 during the preamble
phase in IT, f;bBPS’ — 4 and extracts the preamble secret UanPS’ 4 from A at the
conclusion of the preamble. Then, on receiving UanPs’ H—.4 from Scge, Scors sim-
ulates the post-preamble phase of HlePS,HHA (see [17] for protocol description)
in a “straight-line” fashion, as described below.

Let y¢ be the proof statement in H’lf’LBPS,HH.A' Then, in phase II of HﬁTBPS,HHA,
Score Creates a statistically hiding commitment (sCOM) to aanP&HéA (in-
stead of a string of all zeros) and follows it up with an honest execution of
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statistical zero knowledge argument of knowledge (sZKAOK) to prove knowledge
of the decommitment. In phase IV of II, f;mps, 4> Scorp creates a non-malleable
commitment (NMCOM) to an all zeros string (instead of a valid witness to
y%). Finally, in phase V, Scors proves the following statement using sZKAOK:
(a) the value committed to in phase IV is a valid witness to y, or (b) the value
committed to in phase II is UanPS’ .- Here it uses the witness corresponding
to the second part of the statement.

Now, consider the mBPS-CNMZK instance Hf;mps, A p» Where H plays the
role of the verifier. Here, Scorgs simply uses the honest verifier strategy to interact

with A.

mPPSTV Preamble Phase. Consider the execution of the mPPSTV instance
Hﬁzppsw, - Here, Scopy commits to a random string and answers A’s chal-
lenges with random strings. Note that the trapdoor condition is true for each
instance of SWIin II} oy g7 4 Since Scops committed to bit 1 (instead of 0) in
the trapdoor creation phase. Therefore, Scorg uses the trapdoor witness in order
to successfully simulate each instance of sWI in IT ﬁzppsw, HoA

Now consider the mPPSTYV instance anppsw, A—p- Note that in this pream-

ble, Scrc interacts with A without the help of Scorgs. As explained earlier, Scpc
extracts the preamble secret (that contains the input and randomness of A in
session £) and passes it to Scorg-
Secure Computation Phase. Let Sy, ..., denote the simulator for the semi-honest
two-party protocol ITgy paks used in our construction. Scorg internally runs the
simulator S, ., on adversary’s input in session ¢. Sp, ..., starts executing,
and, at some point, it makes a call to the trusted party in the ideal world with
some input (say) x. Scorr uses the following strategy to manage queries to the
trusted party.

Scors Maintains a counter ¢ to count the total number of queries (including
all sessions) made to the trusted party on the look-ahead threads so far in the
simulation (note that there will be exactly m queries on the main thread). Now,
when S, .., makes a call to the trusted party, Scors computes a session index s
in the following manner. If the query corresponds to the main thread, then Scogg
sets s = £, else it computes s = ¢ mod m. Now, if Scors has already queried
the trusted party at least once for session s, then it first sends the (new-query, s)
message to the trusted party. Otherwise, it simply sends the message (s, z) to the
trusted party[lf The response from the trusted party is passed on to S Mawone - 1

T We stress that the simulator is able to “trade” the ideal functionality calls in one
session for another since the inputs of the honest parties are the same across all the
sessions.

Note that by choosing the session index for the output query in the above fashion,
Score is able to equally distribute the queries across all the sessions. Looking ahead,
in the next subsection, we will argue that the total number of queries across all
the sessions are only within a constant factor of the number of sessions. Then, this
strategy of distributing the queries will ensure that the queries per session are also
a constant.

[ed]
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the query corresponds to the main thread, Score sends the message (output, s)
to the trusted party, indicating it to send the output to the honest party in
session s

Having received the trusted party’s response from Soorg, Sty TURS further,
and finally halts and outputs a transcript Afl, Agyl, ey Aft, Agvt of the execu-
tion of Ilgypake, and an associated randomness Tﬁ. Let fﬁl be the randomness
that S extracted from A in phase II. Now, Scorg computes a random string ffét
such that rf4 = fﬁt &) fﬁt.

Now, in order to force A to use randomness rﬁl during the execution of
Iy pake, Score Sends Fﬁl to A during the coin-flipping phase prior to the ex-
ecution of Iy pake. Finally, Score forces the transcript Af |, A5, ..., A, AS,
onto A during the execution of ITgy.prks. This is done as follows. Without loss
of generality, let us assume that the honest party sends the first message in
this instance of Il pake. Then, in round j, 1 < j < t, Scorp sends Afj to A
(instead of sending a message as per the input and randomness committed to
in the preamble in Phase II). Scorp uses the trapdoor witness to complete the
associated sWL. If the reply of A is different from the (expected) message Ag, s
then Sgore outputs the abort symbol L.

This completes the description of our simulator & = {Sckc, Score }-

4.2 Total Queries by S

Lemma 1. Let m be the total number of sessions of X being executed concur-
rently. Then, the total number of queries made by S to the trusted party is within
a constant factor of m.

Proof. Let T be the total running time of the adversary in the real execution, as
per the time assignment strategy described in section [l Now, since S employs
the time-oblivious rewinding strategy of CEC-Sim (see section 2.2)), it follows
that the total running time of S is within a constant factor of 7. Let us now
assume that our claim is false, i.e., the total number of queries made by § is a
super-constant multiple of m. We will show that in this case, the running time
of § must be super-constant multiple of T, which is a contradiction. We now
give more details.

Let ¢ be the round complexity of Y. Then, as per the time assignment strat-
egy given in section Il T = (¢ — 1 4 ¢) - m (recall that the special message is
assigned a weight of ¢ time units, while each of the remaining ¢ — 1 messages is
assigned one time unit). Now, let A be a value that is super-constant in the secu-
rity parameter such that S makes \-m total queries during the simulation. Note

9 Note that s = £ in this case. We stress that by setting s = £ for a query on the main
thread, Score ensures that the honest party in session ¢ receives the correct output.
(Note that an honest party does not receive any output for an output query on a
look-ahead thread.)
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that each output query corresponds to a unique special message. Let T” be the
total running time of S. We calculate T’ as follows:

T'>q-(A-m)+(g—1)-m

>q-(A-m)
A-q
T lg-1+q)

Since ( ) is a super-constant in the security parameter, we have that T” is a

A-q
q—1+q
super-constant multiple of T', which is a contradiction. Hence the claim follows.

The corollary below immediately follows from lemma/[ll and the description of S
in section 11

Corollary 1. S makes aconstantnumber of queries per session to the trusted party.
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Abstract. We show that the widely deployed RSA-OAEP encryption
scheme of Bellare and Rogaway (Eurocrypt 1994), which combines RSA
with two rounds of an underlying Feistel network whose hash (i.e., round)
functions are modeled as random oracles, meets indistinguishability un-
der chosen-plaintext attack (IND-CPA) in the standard model based on
simple, non-interactive, and non-interdependent assumptions on RSA
and the hash functions. To prove this, we first give a result on a more gen-
eral notion called “padding-based” encryption, saying that such a scheme
is IND-CPA if (1) its underlying padding transform satisfies a “fooling”
condition against small-range distinguishers on a class of high-entropy
input distributions, and (2) its trapdoor permutation is sufficiently lossy
as defined by Peikert and Waters (STOC 2008). We then show that the
first round of OAEP satifies condition (1) if its hash function is ¢-wise
independent for appopriate ¢t and that RSA satisfies condition (2) under
the @-Hiding Assumption of Cachin et al. (Eurocrypt 1999).

This appears to be the first non-trivial positive result about the in-
stantiability of RSA-OAEP. In particular, it increases our confidence that
chosen-plaintext attacks are unlikely to be found against the scheme. In
contrast, RSA-OAEP’s predecessor in PKCS #1 v1.5 was shown to be
vulnerable to such attacks by Coron et al. (Eurocrypt 2000).

1 Introduction

The RSA-OAEP encryption scheme was designed by Bellare and Rogaway [5]
as a drop-in replacement for RSA PKCS #1 v1.5 [37] with provable security
guarantees. In particular, it follows the same paradigm as RSA PKCS #1 v1.5
in that it encrypts a message of less than k bits to a k-bit ciphertext (where k is
the modulus size) by first applying a fast, randomized, and invertible “padding
transform” to the message before applying RSA. In the case of RSA-OAEP,
the underlying padding transform (which is itself called ‘OAEPE) embeds a

! We often use the same terminology for ‘f-OAEP,’” which refers to OAEP using an
abstract TDP f, with the meaning hopefully clear from context.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 295 2010.
© International Association for Cryptologic Research 2010
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message m and random coins r as s||(H(s) @ r) where ‘||’ denotes concatenation,
s = (m|0%1) ® G(r) for some parameter k;, and G and H are hash functions (see
Figure [ on p. B0H). In contrast, PKCS #1 v1.5 essentially just concatenates m
with r.

RSA-OAEP was designed using the random oracle (RO) methodology [4].
This means that, for the security analysis, its hash functions are modeled as in-
dependent truly random functions, available as oracles to all parties. When the
scheme is implemented in practice, they are heuristically “instantiated” in cer-
tain ways using a cryptographic hash function like SHA1. A cryptographic hash
function is certainly not random (it has a short public description), but schemes
designed using this methodology are hoped to be secure. Unfortunately, a series
of works, starting with the seminal paper of Canetti et al. [I6] showed that there
are schemes secure in the RO model that are insecure under every instantiation
of the oracle; such RO model schemes are called uninstantiable. Thus, to gain
confidence in an RO model scheme, we should show that it is not uninstantiable,
i.e., that it admits a secure instantiation by an efficiently computable function
under well-defined assumptions. Then, when we instantiate the scheme, we know
that our goal is at least plausible. This is especially important for a scheme such
as RSA-OAEP, which is by now widely standardized and deployed.

Yet, while RO model schemes continue to be proposed, few have been shown
to be instantiable. In particular, we are not aware of any result showing instan-
tiability of RSA-OAEP, even under a relatively modest security model. In fact,
the scheme has come under criticism lately due to several works (discussed in
Section [[2)) showing the impossibility of certain types of instantiations under
chosen-ciphertext attack (IND-CCA). Fortunately, we bring some good news: We
give reasonable assumptions under which RSA-OAEP is secure against chosen-
plaintext attack (IND-CPA). We believe this is an important step towards a
better understanding of the scheme’s security.

1.1 Owur Contributions

Our result on the instantiability of RSA-OAEP is obtained via three steps or
other results. (These other results may also be of independent interest.) First,
we show a general result on the instantiability of “padding-based encryption,”
of which f-OAEP is a special case, under the assumption that the underlying
padding transform is what we call a fooling extractor and the trapdoor permu-
tation is sufficiently lossy [36]. We then show that OAEP and RSA satisfy the
respective conditions.

PADDING-BASED ENCRYPTION WITHOUT ROS. Our first result is a general the-
orem about padding-based encryption (PBE), a notion formalized recently by
Kiltz and Pietrzak [29] PBE generalizes the design methology of PKCS #1 and
RSA-OAEP we already mentioned. Namely, we start with a k-bit to k-bit trap-
door permutation (TDP) that satisfies a weak security notion like one-wayness.

2 Such schemes were called “simple embedding schemes” by Bellare and Rogaway 5],
who discussed them only on an intuitive level.
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To “upgrade” the TDP to an encryption scheme satisfying a strong security no-
tion like IND-CPA, we design an invertible “padding transform” which embeds
a plaintext and random coins into a k-bit string, to which we then apply the
TDP. This methodology is quite natural and has long been prevalent in prac-
tice, motivating the design of OAEP and later schemes such as SAEP [9] and
PSS-E [20]. The latter were all designed and analyzed in the RO model.

We show that the RO model is unnecessary in the design and analysis of IND-
CPA secure PBE. To do so, we formulate an interesting connection between PBE
and a new notion we call “fooling extractor for small-range distinguishers” or just
“fooling extractor.” Intuitively, a fooling extractor transforms a high-entropy
source into something that “looks random” to any function (or distinguisher)
with a small mngeﬁ Our result says that if the underlying padding transform of
a PBE scheme is a fooling extractor for all sources of the form (m, R) where m
is a plaintext and R is the random coins (which we call “encryption sources”)
and its TDP is lossy as defined by Peikert and Waters [36] then the PBE scheme
is IND-CPA. We call such padding transforms “encryption-compatible.”

OAEP FOOLS SMALL-RANGE DISTINGUISHERS. Our second result says that the
OAEP padding transform is encryption-compatible as we defined it above if the
hash function G is t-wise independent for appropriate ¢ (essentially, proportional
to the allowed message length, where the latter is determined by how large
an output range of the distinguisher should be tolerated in the definition of
encryption-compatibility). Note that no restriction is put on hash function H;
in particular, neither hash function is modeled as a RO.

The inspiration for our proof comes from the “Crooked” Leftover Hash Lemma
(LHL) of Dodis and Smith [22] (see [6] for a simpler proof of the latter). Qual-
itatively, the Crooked LHL says that K, f(II(K, X)) looks like K, f(U) for any
small-range function f, pairwise-independent function II keyed by K, and high-
entropy source X ; in our terminology, this says that a pairwise-independent func-
tion is a fooling extractor for such X. In our application, we might naively view
IT as the OAEP. There are two problems with this. First, OAEP is not pairwise
independent, even in the RO model. Second, showing that OAEP is encryption-
compatible entails showing it fools f on all encryption sources simultaneously,
whereas the lemma pertains to a fized source. To solve the first problem, we
show that the lemma can be strengthened to say that K, f(X, II(K, X)) looks
like K, f(X,U); i.e., that II(K, X) looks random to f even given X. Then, we
view X as the random coins in OAEP and I as the hash function G; we can
conclude that OAEP is a fooling extractor for a fized encryption source (m, R)
(note that our analysis does not use any properties of H—the only fact we use
about the second Feistel round is that it is invertible). To solve the second prob-
lem, we extend an idea of Trevisan and Vadhan [42] to our setting and show
that if G is in fact t-wise independent for large enough ¢, the error probability
for a particular encryption source is so small that we can take a union bound
and conclude that OAEP is a fooling extractor on all of them, as required.

3 In the formal defintion there is also an “outer” distinguisher who gets the extractor
seed; see Section [3] for details.
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LoSSINESS OF RSA. To instantiate RSA-OAEP, it remains to show lossiness
of RSA. Our final result is that RSA is indeed lossy under reasonable assump-
tions. Intuitively, lossiness [36] means that there is an alternative, “lossy” key
generation algorithm that outputs a public key indistinguishable from a nor-
mal one, but which induces a small-range (uninvertible) function. We first show
lossiness of RSA under the ¢-Hiding Assumption (@A) of Cachin, Micali, and
Stadler [I3]. $A has been used as the basis for a number of efficient protocols,
e.g., [13, 12] 24} 25]. PA states roughly that given an RSA modulus N = pg, it
is hard to distinguish primes that divide ¢(N) = (p — 1)(¢ — 1) from those that
do not. Normal RSA parameters (IV,e) are such that ged(e, ¢(IN) = 1. Under
@A, we may alternatively choose (N’ e) such that e divides p — 1. The range of
the RSA function is then reduced by a factor 1/e. To resist known attacks, we
can take the bit-length of e up to almost 1/4 that of N, giving RSA lossiness of
almost k/4 bits, where k is the modulus lengthE

We then observe that for small e lossiness may be amplified for a fixed modulus
length by considering multi-prime RSA where N = py -+ -p,, for m > 2, and in
the lossy case choosing (N’ e) such that e divides p; for all 1 <i < m — 1; the
range of the RSA function is then reduced by a factor 1/e™~!. (The maximum
bit-length of e in this case to avoid known attacks is roughly k(1/m—2/m?) where
k is the modulus length, so for a fixed modulus size we gain in lossiness only for
small e.) If we assume such multi-prime RSA moduli are indistinguishable from
two-prime ones, we can achieve such lossiness in the case of standard (two-prime)
RSA as well.

IMPLICATIONS FOR RSA-OAEP. Combining the above implies that RSA-OAEP
is IND-CPA in the standard model under (rather surprisingly) simple, non-
interactive, and non-interdependent assumptions on RSA and the hash func-
tions. The parameters for RSA-OAEP supported by our proofs are discussed
in Section [0l While they are considerably worse than what is expected in practice,
we view the upshot of our results not as the concrete parameters they support,
but rather that they increase the theoretical backing for the scheme’s security at
a more qualitative level, showing it can be instantiated at least for larger param-
eters. In particular, our results give us greater confidence that chosen-plaintext
attacks are unlikely to be found against the scheme; such attacks are known
against the predecessor of RSA-OAEP in PKCS #1 v1.5 [19]. That said, we
strongly encourage further research to try to improve the concrete parameters.

Moreover, our analysis brings to light to some simple modifications that may
increase the scheme’s security. The first is to key the hash function G. Although
our results have some interpretation in the case that G is a fixed function (see
below), it may be preferable for G to have an explicit, randomly selected key. It
is in an interesting open question whether our proof can be extended to function
families that use shorter keys. The second possible modification is to increase
the length of the randomness versus that of the redundancy in the message

* We remark that the recent attacks on $A [40] are for moduli of a special form that
does not include RSA.
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when encrypting short messages under RSA-OAEP. Of course, we suggest these
modifications only in cases where they do not impact efficiency too severely.

USING UNKEYED HASH FUNCTIONS. Formally, our results assume G is randomly
chosen from a large family (i.e., it is a keyed hash function). However, our
analysis actually shows that almost every function (i.e., all but a negligible
fraction) from the family yields a secure instantiation; we just do not know an
explicit member that works. In other words, it is not strictly necessary that G
be randomly chosen. When G is instantiated in practice using a cryptographic
hash function, it is plausible that the resulting instantiation is secure.

CHOSEN-CIPHERTEXT SECURITY. Any extension of our results to CCA security
must get around the recent negative results of Kiltz and Pietrzak [29] (which we
discuss in more detail below). We outline some possible approaches in the full
version [27].

1.2 Related Work

SECURITY OF OAEP IN THE RO MODEL. In their original paper [5], Bellare
and Rogaway showed that OAEP is IND-CPA assuming the TDP is one-way.
They further showed it achieves a notion they called “plaintext awareness.”
Subsequently, Shoup [4I] observed that the latter notion is too weak to imply
security against chosen-ciphertext attacks, and in fact there is no black-box proof
of IND-CCA security of OAEP based on one-wayness of the TDP. Fortunately,
Fujisaki et al. [23] proved that OAEP is nevertheless IND-CCA assuming so-
called “partial-domain” one-wayness, and that partial-domain one-wayness and
(standard) one-wayness of RSA are equivalent.

SECURITY OF OAEP wiTHOUT ROS. Results on instantiability of OAEP have
so far mainly been negative. Boldyreva and Fischlin [7] showed that (contrary to
a conjecture of Canetti [14]) one cannot securely instantiate even one of the two
hash functions (while still modeling the other as a RO) of OAEP under IND-
CCA by a “perfectly one-way” hash function [I4] [I7] if one assumes only that f is
partial-domain one-way. Brown [I0] and Paillier and Villar [34] later showed that
there are no “key-preserving” black-box proofs of IND-CCA security of RSA-
OAEP based on one-wayness of RSA. Recently, Kiltz and Pietrzak [29] (building
on the earlier work of Dodis et al. [21] in the signature context) generalized these
results and showed that there is no black-box proof of IND-CCA (or even NM-
CPA) security of OAEP based on any property of the TDP satisfied by an ideal
(truly random) permutationﬁ In fact, their result can be extended to rule out a
black-box proof of NM-CPA security of OAEP assuming the TDP is lossy [30],
so our results are in some sense optimal given our assumptions.

INSTANTIATIONS OF RELATED SCHEMES. A positive instantiation result about a
variant of OAEP called OAEP++ [26] (where part of the transform is output

5 Note, however, that their result does not rule out such a proof based on other
properties of the TDP, non-black-box assumptions on the hash functions, or in the
case of a specific TDP like RSA.
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in the clear) was obtained by Boldyreva and Fischlin in [§]. They showed an
instantiation that achieves (some weak form of) non-malleability under chosen-
plaintext attacks (NM-CPA) for random messages, assuming the existence of
non-malleable pseudorandom generators (NM—PRGS)E We note that the ap-
proach of trying to obtain positive results for instantiations under security no-
tions weaker than IND-CCA originates from their work, and the authors explic-
itly ask whether OAEP can be shown IND-CPA in the standard model based
on reasonable assumptions on the TDP and hash functions.

Another line of work has looked at instantiating other RO model schemes
related at least in spirit to OAEP. Canetti [14] showed that the IND-CPA scheme
in [4] can be instantiated using (a strong form of) perfectly-one way probabilistic
hash functions. More recently, the works of Canetti and Dakdouk [15], Pandey et
al. [35], and Boldyreva et al. [I1] obtained (partial) instantiations of the earlier
IND-CCA scheme of [4]. Hofheinz and Kiltz [28] recently showed an IND-CCA
secure instantiation of a variant the DHIES scheme of [I].

2 Preliminaries

NOTATION AND CONVENTIONS. For a probabilistic algorithm A, by y < A(z)
we mean that A is executed on input x and the output is assigned to y, whereas
if S is a finite set then by s &£ S we mean that s is assigned a uniformly random
element of S. We sometimes use y < A(z; Coins) to make A’s random coins
explicit. We denote by Pr[A(z) =y : ... ] the probability that A outputs y on
input z when « is sampled according to the elided experiment. Unless otherwise
specified, an algorithm may be probabilistic and its running-time includes that
of any overlying experiment. We denote by 1¥ the unary encoding of the security
parameter k. We sometimes surpress dependence on k for readability. For i € N
we denote by {0, 1} the set of all binary strings of length i. If s is a string then
|s| denotes its length in bits, whereas if S is a set then |\S| denotes its cardinality.
By ‘||” we denote string concatenation. All logarithms are base 2.

BaAsic DEFINITIONS. Writing Px (z) for the probability that a random variable
X puts on z, the statistical distance between random variables X and Y with
the same range is given by A(X,Y) = 1> |Px(z) — Py (z)|. If A(X,Y) is at
most € then we say X,Y are e-close and write X =, Y. The min-entropy of X
is Hoo(X) = —log(max, Px(x)). A random variable X over {0,1}" is called a
(n, £)-source if Hyo (X) > £. Let f : A — B be a function. We denote by R(f) the
range of f, i.e., {b € B | Ja € A, f(a) = b}. We call |R(f)| the range-size of f.
We call f regular if each pre-image set is the same size, i.e., |{x € D | f(x) = y}|
is the same for all y € R.

PUBLIC-KEY ENCRYPTION AND ITS SECURITY. A public-key encryption scheme
with message-space MsgSp is a triple of algorithms AE = (K,&,D). The

5 In particular, their security notion does not imply IND-CPA since they consider
random messages. We also point out that it remains an open question whether NM-
PRGs can be constructed.
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key-generation algorithm K returns a public key pk and matching secret key
sk. The encryption algorithm & takes pk and a plaintext m to return a cipher-
text. The deterministic decryption algorithm D takes sk and a ciphertext ¢ to
return a plaintext. We require that for all messages m € MsgSp

Pr | D(sk,E(pk,m)) #m : (pk,sk) &K

is negligible.
To an encryption scheme IT = (K,&,D) and an adversary A = (A1, A2) we
associate a chosen-plaintext attack experiment,
Experiment Exp'h® % (k)
b {0,1}; (pk,sk) < K(1F)
(mo, m1, state) <~ Ay (pk)
¢ < E(pk, my)
d < By(pk, ¢, state)
If d = b then return 1 else return 0

where we require A’s output to satisfy |mg| = |m|. Define the ind-cpa advantage
of A against IT as

AdVEET (k) =2 Pr [ Expli i (k) = 1] — 1.

LOSSY TRAPDOOR PERMUTATIONS. A lossy trapdoor permutation (LTDP) gen-
erator [36[] is a pair LTDP = (F, F') of algorithms. Algorithm F is a usual
trapdoor permutation (TDP) generator, namely it outputs a pair (f, f~!) where
f is a (description of a) permutation on {0,1}* and f~! its inverse. Algorithm
F' outputs a (description of a) function f’ on {0,1}*. We call F the “injective
mode” and F’ the “lossy mode” of LTDP respectively, and we call F “lossy” if
it is the first component of some lossy TDP. For a distinguisher D, define its
ltdp-advantage against LTDP as

AdviTEe oK) =Pr [ D(f) =12 (£, f )& F|=Pr[D() =12 f & F ]

We say LTDP has residual leakage s if for all f’ output by F’ we have |R(f')| <
2%. The lossiness of LTDP is £ = k — s.

t-WISE INDEPENDENT HASHING. Let H: K x D — R be a hash function. We say
that H is t-wise independent if for all distinct x1,...,2¢ € Dand all y1,...,y; €
R

1

Pr[H(K,21)=y1 A ... N HE,z) =y : K< K] = Rt

In other words, H(K,x1),...,H(K,z;) are all uniformly and independently
random.

” We note that [36] actually defines lossy trapdoor functions, but the extension to
permutations is straightforward.
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3 Padding-Based Encryption from Lossy TDP + Fooling
Extractor

In this section, we show a general result on how to build IND-CPA secure
padding-based encryption (PBE) without using random oracles, by combining a
lossy TDP with a “fooling extractor” for small-range distinguishers.

3.1 Background and Tools

We first provide the definitions relevant to our result.

PADDING-BASED ENCRYPTION. Theidea behind padding-based encryption (PBE)
is as follows: We start with a k-bit to k-bit trapdoor permutation (e.g., RSA) and
wish to build a secure encryption scheme. As in [5], we are interested in encrypting
messages of less than k bits to ciphertexts of length k. It is well-known that we
cannot simply encrypt messages under the TDP directly to achieve strong security.
So, in a PBE scheme we “upgrade” the TDP by first applying a randomized and
invertible “padding transform” to a message prior to encryption.

Our definition of PBE largely follows the recent formalization in [29]. Let
k, p, p be three integers such that u+ p < k. A padding transform (7, 7T) consists
of two mappings 7 : {0,1}#*? — {0,1}* and # : {0,1}* — {0,1}# U {L} such
that 7 is injective and the following consistency requirement is fulfilled:

Ym e {0,1}*,r € {0,1}* : #(n(m| 1)) =m.
A padding transform generator is an algorithm IT that on input 1* outputs a
(description of a) padding transform (m, 7). Let F be a k-bit trapdoor permu-
tation generator and IT be a padding transform generator. Define the associ-

ated padding-based encryption scheme AEp|[F] = (K,E,D) with message-space
{0,1}* by

Alg K(1%) Alg &((m, f),m) Alg D((m, f~1),y)
(m,7) <= II(1%) r 0,1} & —a(m|r)  x— f(y)
™ — (7, 7) y — f(z) m «— 7(x)
f, fh il F(1F) Return y Return m

Return ((m, f), (m, f~1))

Padding-based encryption schemes have long been prevalent in practice, for ex-
ample PKCS #1 [37]. While OAEP [5] is the best-known, the notion also captures
later schemes such as SAEP [J] and PSS-E [20].

FoOOLING EXTRACTORS. We define a new notion that we call “fooling extractor
for small-range distinguishers” or just “fooling extractor.” Intuitively, fooling
extractors are a type of randomness extractor that “fools” distinguishers with
small-range output. We give some more intuition after the formal definition.

Definition 1. Let FExt: {0,1}¢ x {0,1}"™ — {0,1}* be a function and let X =
{X1,..., X4} be a class of n-bit sources. We say that FExt fools range-2°
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distinguishers on X’ with probability 1 — e (or is an (s,¢e)-fooling extractor for
X ) if for all functions f on {0,1}* with range-size at most 2° and all 1 < i < gq:

(K, f(FExt(K, X;)) =~ (K, f(U)) ,

where K is uniform on {0,1}¢ and U is uniform and independent on {0,1}™.
(Here K is the key or seed of FExt.) For ezample, one is often interested in the
class X ¢ consisting of all (n,£)-sources X. As a strengthening of the above, we
say that FExt simultaneously fools range-2° distinguishers on X with probability
1 —¢€ (or is a simultaneous (s,¢€)-fooling extractor for X ) if for all functions f
on {0,1}* with range-size at most 2°:

E {max A(f(FExt(k,Xi)) : f(U))] <e.
k& fo,1}e L1SiS4

As a useful special case, we say that FExt fools regular range-2° distinguishers
on X with probability 1 — e (or is a regqular (s,e)-fooling extractor for X ) if we
quantify only over regular f in the definition. A simultaneous regular (s,e¢)-
fooling extractor for X is defined analogously.

Intuitively, one can think of the definition of a fooling extractor as involving a
two-stage distinguisher. The first stage is represented by the function f, which
takes as input FExt(K, X;). The second stage is represented only implicitly, and
takes as input f(FExt(K,X;)) and K. While the intuition given prior to the
definition captures only the first stage, the second stage is crucial for the defini-
tion to be meaningful. Indeed, just asking that f(FExt(K, X;)) be indistinguish-
able from f(U) for all small-range functions f is equivalent to asking only that
FExt(K, X;) be indistinguishable from U. This latter requirement is trivial to
achieve—for example, by using K as a one-time pad.

We note that the concept of fooling extractors was implicit in the work of
Dodis and Smith [22] on error-correction without leaking partial information,
whose “Crooked” Leftover Hash Lemma establishes in our language that a
pairwise-independent function is a (s,e)-fooling extractor for every singleton
(n, £)-source X where s < ¢ — 2log(1/e) + 2.

3.2 The Result

To state our result, we first formalize the concept of encryption-compatible
padding transforms.

Definition 2. Let II be a padding transform generator whose coins are drawn
from Coins. Define the function hyr : Coins x {0, 1}#FF — {0,1}F by h(c, m|r) =
7(m||r) for all ¢ € Coins,m € {0,1}*,r € {0,1}*, where (m, %) « II(1¥;Coins).
We say that I is (s, e)-encryption-compatible if hyr as above is a simultaneous
(s,€)-fooling extractor for the class X of sources of the form (m,R), where
m € {0,1}* is fized and R € {0,1}* is uniformly random. (Note that the class
X contains 2% distinct (4 p)-bit sources.) We call Xi7 the class of encryption
sources associated to II. A regular (s,e)-encryption-compatible padding trans-
form generator is defined analogously.
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Theorem 1. Let LTDP = (F,F’) be an LTDP with residual leakage s, and let
IT be an (s, €)-encryption-compatible padding transform generator. Then for any
IND-CPA adversary A against AE p[F) there is a adversary D against LTDP
such that for all k € N

AdVREPM (k) < AdviTEp p(k) + e

Furthermore, the running-time of D is the time to run A.

Remark 1. The analogous result to the above holds for regular LTDPs and reg-
ular encryption-compatible padding transforms. That is, if the LTDP is regular
(meaning F’ is) then it suffices to use a regular encryption-compatible padding
transform to obtain the same conclusion. The latter may be easier to design
or more efficient than in the general case; indeed, we get better parameters for
OAEP in the regular case in Section @l Furthermore, known examples of LTDPs
(including RSA, as shown in Section[l) are regular, although some technical
issues make it difficult to exploit this for RSA-OAEP; cf. Section [El

4 OAEP as a Fooling Extractor

In this section, we show that the OAEP padding transform of Bellare and Rog-
away [5] is encryption-compatible as defined in Section [if its initial hash func-
tion is t-wise independent for appropriate t.

4.1 OAEP

We recall the OAEP padding transform of Bellare and Rogaway [5], lifted to the
“Instantiated” setting where hash functions may be keyed. Let G: Kgx{0,1}* —
{0,1}* and H: Ky x{0,1}* — {0, 1}* be hash functions. The associated padding
transform generator OAEP[G, H] on input 1% returns (Tx 1y, Txe kg ), Where
Ko < Kg(1%) and Ky <~ Ky (1F), defined via

Algorithm 7g, i, (m||r) Algorithm 7, i, (z)

s—m®G(Kg,r) ||t — x
t—r®H(Kg,s) r—t®H(Kg,s)
x — st m«—s®G(Kg,r)
Return x Return m

See Figure [Tl for a graphical illustration.

Remark 2. Since we mainly study IND-CPA security, for simplicity we define
above the “no-redundancy” version of the OAEP, i.e., corresponding to the “ba-
sic scheme” in [5]. However, our results also hold for the redundant version.
Additionally, as is typical in the literature we have defined OAEP to apply the
G-function to the least-significant bits of the input; in standards and implemen-
tations it is typically the most significant bits (where the order of m and r are
switched). Again, we stress that our results hold in either case.
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m € {0, 1}+ re{0,1}° m
1
Id { L]
(771
o (@]
s L s e {0,1}# te{0,1}*

Fig. 1. Algorithms Tr, kp (m,r) and Trg, ky (s, t) for OAEP|G, H]

4.2 Analysis

The following establishes that OAEP is encryption-compatible if the hash func-
tion G is t-wise independent for appropriate t. No restriction is put on the other
hash function H. Indeed, our result also applies to SAEP [9] (although the latter
is neither standardized nor known to provide CCA security in the RO model,
except in certain cases).

Theorem 2. Let G: Kg x {0,1}* — {0,1}* and H: Kz x {0,1}* — {0,1}” be
hash functions, and suppose G is t-wise independent. Let OAEP = OAEP|G, H].
Then

(1) OAEP is (s,e)-encryption-compatible where e = 27 for u = 3t12 (p—s—

logt+2) — 24t — 1.

(2) OAEP is regular (s, €)-encryption-compatible where e=2"" for u= ', (p—

s —logt+2) — o — 1.

(3) When t = 2, OAEP (s,¢)-encryption-compatible where € = 27% for u =
(p—s—2u)/4-1.

Note that parts (2) and (3) capture special cases of (1) in which we get better
bounds. We give a high-level idea of the proof; details are deferred to the full
version [27].

The high-level idea for all three parts of the theorem is the same. Fix a lossy
function f with range-size at most 2°. We first show that for every fized message
m € {0, 1}*, with high probability (say 1—9) over the choice of the hash function
G, the statistical distance between (K¢, f(OAEP(m,R))) and ((Kq, f(U)) is
small (say ¢€). Namely, we first compute the expected statistical distance over
the choice of G and then apply tail bounds. This aspect of the proof changes
from part to part. For part (3) we use a strengthened version of the Crooked
Leftover Hash Lemma (LHL) of [22] and Markov’s inequality. For parts (1) and
(2) we adapt the techniques of [42] (see also [2]) developed in the context of
the standard LHL and use the tail inequality for ¢-wise independent random
variables due to Bellare and Rompel [3]. (For part (2) this is relatively easy,
but for part (1) we first apply a “balancing” lemma saying that for any non-
regular f we can find a “almost-regular” function g that agrees with f on a large
fraction of its domain.) In all three parts, we can then take a union bound to
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show that OAEP is good for all messages with probability at least 1 — 2#4. This
means that the statistical distance between the pair (K¢, f(OAEP(m, R))) and
(K¢, f(OAEP(U))) is at most € = &€+ 2#§. Finally, we express ¢ as a function of
¢, and select € to minimize this sum. Note that the entire argument works for
any choice of H.

In order to get a more qualitative “feel” for the bounds in the theorem, we
give the following simplification as a corollary:

Corollary 1. Let G: Ko x {0,1} — {0,1}* and H: Kg x {0,1}* — {0,1}”
be hash functions and suppose that G is t-wise independent for t > 3’;2. Then
OAEP[G, H] is (s, e)-encryption-compatible where € = exp(—c(p — s —logt)) for
a constant ¢ > 0.

In particular, ¢ ~ 1/2 for regular functions. For such a function, if p— s is at least
180 then ¢ is roughly 278 for ¢ = 10 and message lengths pu < 2'5 (which for
practical purposes does not restrict the message-space). Applying Theorem [I]
we see that if G is 10-wise independent and the number of random bits used in
OAERP is at least 180 bits larger than the residual lossiness of the TDP, then the
security of OAEP is tightly related to that of the lossy TDP.

Remark 3. To show security of OAEP against what we call key-independent
chosen-plaintext attack, it suffices to argue that OAEP[G, H] is a fooling extrac-
tor for any fized encryption source X = (m, R) where m € {0,1}*. The latter
holds for any ¢ > 0 and s < p — 2log(1/¢) + 2 assuming G is only pairwise-
independent (i.e., t = 2). See the full version [27] for details.

5 Lossiness of RSA

In this section, we show that the RSA trapdoor permutation is lossy under
reasonable assumptions. In particular, we show that, for large enough encryption
exponent e, RSA is considerably lossy under the @-Hiding Assumption of [I3].
We then show that by generalizing this assumption to multi-prime RSA we can
get even more lossiness. Finally, we propose a “Two-Or-m-Primes” Assumption
that, when combined with the former, amplifies the lossiness of standard (two-
prime) RSA for small e.

5.1 Background on RSA and Notation

We denote by RSAj the set of all tuples (IV,p,q) such that N = pq is the
product of two distinct k/2-bit primes. Such an N is called an RSA modulus. By
(N,p,q) &£ RSA) we mean that (N, p,q) is sampled according to the uniform
distribution on RSAg. An RSA TDP generator [38] is an algorithm F that
returns (N, e), (N,d), where N is an RSA modulus and ed = 1 (mod ¢(NV)).
(Here ¢(-) denotes Euler’s totient function, so in particular ¢(N) = (p—1)(¢g—1).)
The tuple (N,e) defines the permutation on Z3 given by f(x) = ¢ mod N,
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and similarly (N,d) defines its inverse. We say that a lossy TDP generator
LTDP = (F,F’) is an RSA LTDP if F is an RSA TDP generator.

To define the ¢-Hiding Assumption and later some extensions of it, the follow-
ing notation is also useful. For i € N we denote by P; the set of all i-bit primes.
Let R be a relation on p and q. By RSAg[R] we denote the subset of RS Ay
for that the relation R holds on p and ¢. For example, let e be a prime. Then
RSAk[p =1 mod €] is the set of all (N, p, q), where where N = pgq is the product
of two distinct k/2-bit primes p, ¢ and p = 1 mod e. That is, the relation R(p, q)
is true if p = 1 mod e and ¢ is arbitrary. By (N, p, q) < RSA[R] we mean that
(N, p, q) is sampled according to the uniform distribution on RSAx[R)].

5.2 RSA Lossy TDP from #-Hiding

@-HIDING ASSUMPTION (PA). We recall the #-Hiding Assumption of [13]. For
an RSA modulus N, we say that N ¢-hides a prime e if e | ¢(N). Intuitively,
the assumption is that, given RSA modulus N, it is hard to distinguish primes
which are ¢-hidden by N from those that are not. Formally, let 0 < ¢ < 1/2 be
a (public) constant determined later. Consider the following two distributions:

Ri={(e,N) : e,¢/ = Pu; (N,p,q) < RSA[p=1mod €]}
L1 ={(e,N) : e Pe; (N,p,q) < RSAk[p =1 mod e])} .

To a distinguisher D we associate its ®A advantage defined as
Advip(k) = Pr[D(Ry)=1]—Pr[D(Ly)=1] .

As shown in [I3], distributions R4, £; can be sampled efficiently assuming the
widely-accepted Extended Riemann Hypothesisﬁ

RSA LTDP rroM ®A. We construct an RSA LTDP based on @A. In injective
mode the public key is (N, e) where e is not ¢-hidden by N, whereas in lossy
mode it is. Namely, define LTDP; = (F, F}) as follows:

Algorithm F; Algorithm Fj
e,/ &Py e Py
(N,p,q) & RSAk[p=1mod ¢, p| (N,p,q) & RSAk[p =1 mod €]
If ged(e, p(N)) # 1 then return L. Return (IV, e)
d « e ! mod ¢(N)
Return ((N,e), (N, d))

The fact that algorithm F7 has only a negligible probability of failure (returning
1) follows from the fact that ¢(IN) can have only a constant number of prime
factors of length ck and Bertrand’s Postulate.

8 This is done by choosing a uniform (1/2 — ¢)k-bit number z until p = ze + 1 is a
prime.
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Proposition 1. Suppose there is a distinguisher D against LTDP1. Then there
is a distinguisher D’ such that for all k € N

Itd A
Adv 8, plk) < 2- Advi (k).
Furthermore, the running-time of D’ is that of D. LTDPy has lossiness ck.

Remark 4. From a practical perspective, a drawback of LTDP is that F; chooses
N = pq in a non-standard way, so that it hides a prime of the same length as
e. Moreover, for small values of e it returns L with high probability. This is
done for consistency with how [I3] formulated $A. But, to address this, we also
propose what we call the Enhanced ®A (EPA), which says that N generated
in the non-standard way (i.e., by F1) is indistinguishable from one chosen at
random subject to ged(e, p(N)) = 14 We conjecture that EGA holds for all
values of ¢ that $A does. Details are given in the full version [27]. An analogous
enhancement pertains to later extensions of ®A.

PARAMETERS FOR LTDP;. When e is too large, #A can be broken by using
Coppersmith’s method for finding small roots of a univariate modulo an unknown
divisor of N [I8,[32]. (No other attack on @A here is known.) Namely, consider
the polynomial r(x) = ex+ 1 mod p. Coppersmith’s method allows us to find all
roots of r smaller than N'/4, and thus factor N, in lossy mode in polynomial
time if ¢ > 1/4. (This is essentially the “factoring with high bits known” attack.)
More specifically, applying [32], Theorem 1], N can be factored in time O(N€) if
c=1/4—¢ (i.e., loge > k(1/4 —€)). For example, with modulus size k = 2048,
for about 80-bit security in lossy mode we set ¢ = .04 (to enforce ke > 80).
The lossiness of LTDP; is then 432 bits according to Proposition[Il A similar
calculation shows that for a modulus of size 1024 (resp., 3072) the lossiness of
LTDP; we get is 176 (resp., 688) bits.

5.3 RSA Lossy TDP from Multi-prime #-Hiding

Multi-prime RSA (according to [3I] the earliest reference is [39]) is a generaliza-
tion of RSA to moduli N = p; ---py, of length k with m > 2 prime factors of
equal bit-length. Multi-prime RSA is of interest to practitioners since it allows to
speed up decryption and is included in RSA PKCS #1 v2.1. We are interested
in it here because for it we can show greater lossiness and even with smaller
encryption exponent e.

NOTATION AND TERMINOLOGY. Let m > 2 be fixed. We denote by MRS A
the set of all tuples (N,p1,...,pm), where N = pq---p,, is the product of
distinct k/m-bit primes. Such an N is called an m-prime RSA modulus. By

(N,p1,---yPm) & MRS A, we mean that (N,p1,...,pm) is sampled according

9 Additionally, in practice the encryption exponent e is usually fixed. This can be
addressed by parameterizing EPA by a fixed e instead of choosing it at random.
Note that for e = 3 one should make both e | p—1 and e | ¢ — 1 in the lossy case
(otherwise the assumption is false; cf. [I3] Remark 2, p. 6]).



Instantiability of RSA-OAEP under Chosen-Plaintext Attack 309

to the uniform distribution on MRSA;. The rest of the notation and terminol-
ogy of Section [ is extended to the multi-prime setting in the obvious way.

MuLTI @-HIDING ASSUMPTION. For an m-prime RSA modulus N, let us say
that N m¢-hides a prime e if e | p; — 1 for all 1 < i < m — l.Intuitively, the
assumption is that, given such N, it is hard to distinguish primes which are mgo-
hidden by N from those that do not divide p; — 1 for any 1 < i < m. Formally,
let m = m(k) > 2 be a polynomial and let ¢ = ¢(k) be an inverse polynomial
determined later. Consider the following two distributions:

R ={(e,N) : e,¢' < Pe; (N,p1,....pt) & MRSAg[pi<m—1 = 1 mod ']}
Ly ={(e,N) : e Pus; (N,p1,...,pi) & MRSAk[picm—1 = 1 mod €]} .

Above and in what follows, by pi<m—1 = 1 mod e we mean that p; = 1 mod e
for all 1 < i < m — 1. To a distinguisher D we associate its M®A advantage
defined as

AdvMPA (k) = Pr[D(Ry) = 1] —Pr[D(Ly)=>1] .

m,c,D

As before, distributions Rz, Lo can be sampled efficiently assuming the widely-
accepted Extended Riemann Hypothesis.

Note that if we had required that in the lossy case N = p; - - - py, is such that
e | p; for all 1 < i < m, then in this case we would always have N = 1 mod e.
But in the injective case N mod e is random, which would lead to a trivial
distinguishing algorithm. This explains why we do not impose e | py, in the lossy
case above.
MULTI-PRIME RSA LTDP FrROM M@®A. We construct a multi-prime RSA

LTDP based on M®A having lossiness (m — 1)loge, where in lossy mode N
ma@-hides e. Namely, define LTDP, = (F5, F5) as follows:

Algorithm 7 Algorithm F)
e, e <Py, e Pop
(N,p1y- s Pm) (N, P15 Pm)
E MRSA, [Pi<m—1 = 1 mod ¢'] E MRSA, [Pi<m—1 = 1 mod €]

If ged(e, p(IN)) # 1 then Return L Return (N, e)
d «— e~ mod ¢(N)
Else return (N, e), (N, d)

Proposition 2. Suppose there is a distinguisher D against LTDPs. Then there
is a distinguisher D' such that for all k € N

Adv 5B, (k) < 2-Adv%A (k) .
Furthermore, the running-time of D’ is that of D. LTDPy has lossiness (m—1)ck.

PARAMETERS FOR LTDP5. As in the case of LTDPy, if e is too large then Copper-
smith’s method [I8] can be used to factor N in the lossy case. But this time the
attack is more involved than “factoring with high bits known.” Let us first con-
sider m = 3. Consider the polynomial r(z},z5) = (ex| + 1)(exh + 1) mod p1ps.
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Substituting x1 = z{xh and zo = 2] + 24 gives r(z1,22) = e®xr1 + exy +
1 mod p1p2. Applying [33] Theorem 3] with 8 = 2/3 and v = 26 tells us that
we can find all roots smaller than N? for § = (2(1 —2/3)3/2)/3 ~ .12 in polyno-
mial time, so we require ¢ < 1/3 — .12 &~ .21 to prevent this attack. (Note that
is slightly smaller than what we would deduce from “factoring with high bits
known” [32], which gives ¢ < .22.) More specifically, for m = 3 we can factor N
in the lossy case in time O(N¢) if ¢ > 1/3 — 0 — ¢ (i.e., loge = k(1/3 — 0 —¢€))
with § as above.

In the general case, we can apply [33, Theorem 4] to deduce we must require
¢ <1/m — 6 where
2((1/m)/m=t — (1/m)m/ =) 2

m(m — 1) ~ mm-1)"
Note that this is only smaller than the bound with 6§ = 1/m? obtained from
“factoring with high bits known” for m > 5, namely for m = 5 we have § ~ 0.06.
(The reason we also had a better attack for m = 3 is that we used a specialized
theorem.)

We note that this may not be the best attack possible based on Coppersmith’s
method (in particular the coefficients of the polynomial we use are highly cor-
related). It is an interesting open question whether there is a better attack. We
also remark that for a fized modulus length, m cannot be too large since the
Elliptic Curve Method for factoring can compute a factor p; of N faster than
the Number Field Sieve one if p; is significantly smaller than N''/2 [31].

5:

5.4 Small-Exponent RSA LTDP from 2-Or-m-Primes

For efficiency reasons, the public RSA exponent e is typically not chosen to be
too large in practice. (For example, researchers at UC San Diego [43] observed
that 99.5% of the certificates in the campus’s TLS corpus had e = 26 4 1.)
Therefore, we investigate the possibility of using an additional assumption to
amplify the lossiness of RSA for small e.

The high-level idea is to assume that it is hard to distinguish N = pq where
p,q are primes of length k/2 from N = py---p,, for m > 2, where p1,...,pm
are primes of length k/m (which we call the “2-or-m Primes” Assumption).
Combined with the M@A Assumption of Section 5.3, we obtain (m — 1) loge bits
of lossiness from standard (two-prime) RSA. Due to space constraints, details
are deferred to the full version [27].

6 Instantiating RSA-OAEP

By combining the results of Section [3 Section ] and Section Bl we obtain stan-
dard model instantiations of RSA-OAEP under chosen-plaintext attack.

REGULARITY. In particular, we would like to apply part (2) of Theorem [2 in
this case, as it is not hard to see that under all of the assumptions discussed in
Section Bl RSA is a regular lossy TDP on the domain Z% . Unfortunately, this
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domain is different from {0, 1}**# (identified as integers), the range of OAEP. In
RSA PKCS #1 v2.1, the mismatch is handled by selecting p + p = [log N| — 2,
and viewing OAEP’s output as an integer less than 2°T# < N/4. The problem is
that in the lossy case RSA may not be regular on the subdomain {0, ..., 2°T# —1}.

We can prove, in some cases, that in the lossy case RSA is approzimately
regular on this subdomain, and in those cases we obtain the better parameters
given by part (2) of Theorem [2l However, here use just use the weaker parameters
given by part (1) of Theorem 21 We leave a detailed discussion of approximate
regularity to future work. In particular, understanding the regularity of RSA
on subintervals of the domain is a first step towards improving the concrete
parameters we obtain.

CONCRETE PARAMETERS. Since the results in Section [l have several cases and
the parameter settings are rather involved, we avoid stating an explicit theorem
about RSA-OAEP. From part (1) of Theorem [2] one can see that for u = 80
bits security and assuming RSA has ¢ bits of lossiness, messages of roughly
== ¢ — 3-80 bits can be encrypted (for sufficintly large ¢). For concreteness,
we give two example parameter settings. Using the Multi #-Hiding Assumption
with N = 1024 bits and 3 primes, we obtain ¢/ = k — s = 291 bits of lossiness
and hence can encrypt messages of length p = 40 bits (for ¢ &~ 400); using the
&-Hiding Assumption with N = 2048, we obtain ¢ = k — s = 430 bits of lossiness
and hence can encrypt messages of length = 160 bits (for ¢ ~ 150). We stress
that while we view our results as providing important theoretical backing for
the scheme at a more qualitative level, we strongly encourage further research
to try to improve the concrete parameters.
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Abstract. We introduce the notion of an extractable hash proof system. Essen-
tially, this is a special kind of non-interactive zero-knowledge proof of knowledge
system where the secret keys may be generated in one of two modes to allow for
either simulation or extraction.

— We show how to derive efficient CCA-secure encryption schemes via
extractable hash proofs in a simple and modular fashion. Our construc-
tion clarifies and generalizes the recent factoring-based cryptosystem of
Hotheinz and Kiltz (Eurocrypt ’09), and is reminiscent of an approach
proposed by Rackoff and Simon (Crypto 91). We show how to instantiate
extractable hash proof system for hard search problems, notably factoring
and computational Diffie-Hellman. Using our framework, we obtain the first
CCA-secure encryption scheme based on CDH where the public key is a
constant number of group elements and a more modular and conceptually
simpler variant of the Hotheinz-Kiltz cryptosystem (though less efficient).

— We introduce adaptive trapdoor relations, a relaxation of the adaptive
trapdoor functions considered by Kiltz, Mohassel and O’Neil (Eurocrypt
’10), but nonetheless imply CCA-secure encryption schemes. We show how
to construct such relations using extractable hash proofs, which in turn yields
realizations from hardness of factoring and CDH.

1 Introduction

The most basic security guarantee we require of a public key encryption scheme
(PKE) is that of semantic security against chosen-plaintext attacks (CPA) [21]: it
is infeasible to learn anything about the plaintext from the ciphertext. On the other
hand, there is a general consensus within the cryptographic research community that
in virtually every practical application, we require semantic security against adaptive
chosen-ciphertext attacks (CCA) [37, [15], wherein an adversary is given access to
decryptions of ciphertexts of her choice. So far, there have been two largely separate
lines of works addressing the construction of CCA-secure encryption schemes: the
first examines constructions from general assumptions starting with the beautiful
works of Dolev, Dwork, Naor and Yung [15, 134, 37, 139, 131, 118, 36, 138, 133, 29] and
related questions pertaining to minimal assumptions; the second examines practical and
efficient constructions from specific number-theoretic assumptions, starting from those
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of Cramer and Shoup [IL1, 40, [12, 130, 2, 24, 9, 10, 25]]. In recent years, two distinct
trends have surfaced in each of these lines of works.

Practical CCA from Search Problems. Until very recently, all of the practical
CCA-secure encryption schemes (namely the Cramer-Shoup encryption scheme and
all its variants) inherently relied on decisional assumptions, e.g., the Decisional Diffie-
Hellman (DDH) assumption or the quadratic residuosity assumption. In general,
decisional assumptions are a much stronger class of assumptions than computational
assumptions based on search problems, such as factoring, finding shortest vectors in
lattices, or even the Computational Diffie-Hellman (CDH) problem. Indeed, there are
groups, such as certain elliptic curve groups with bilinear pairing map, where the
DDH assumption does not hold, but the Computational Diffie-Hellman (CDH) problem
appears to be hard. As such, schemes based on search problems are generally preferred
to those based on decisional assumptions. However, such schemes seem to be very hard
to obtain.

Several years ago, Canetti, Halevi and Katz [9] proposed the first practical CCA-
secure PKE based on a computational assumption, namely the Bilinear DH assumption
in bilinear groups (BDH). Since then, a series of works have shown how to base CCA-
secure encryption schemes on CDH [[10, 22, 23] and on hardness of factoring [25].
However, there seems to be no overarching framework explaining these schemes. Partial
progress towards a unifying approach was made recently by Cramer, Hofheinz and Kiltz
[13]; their approach remains unsatisfactory in two ways: first, it does not encompass
constructions from hardness of factoring (it does cover the RSA assumption, which
is possibly a stronger assumption), and second, the ensuing schemes even with suitable
algebraic optimizations, do not quite match the efficiencies obtained in preceding works
(for instance, the public key in the RSA-based scheme contains a linear number of group
elements, whereas that in the factoring-based scheme of Hotheinz and Kiltz [25] only
requires a constant number of group elements).

CCA from weaker general assumptions. Since the breakthrough work of Peikert and
Waters on lossy trapdoor functions [36], a series of works has identified successively
weaker general assumptions from which we may realize CCA-secure encryption
schemes [38, 129] (in a black-box way). The current state-of-the-art is the (tag-based)
adaptive trapdoor functions of Kiltz, Mohassel and O’Neil [29]; roughly speaking, these
are trapdoor functions that remain one-way even if the adversary is given access to a
restricted inversion oracle that inverts the function on “most” inputs. In spite of the
black-box separations indicating that adaptive trapdoor functions are strictly weaker
than its predecessors [29, 41], all of the concrete (standard) assumptions from which
we can realize adaptive trapdoor functions are not significantly different from those
known to imply lossy trapdoor functions. Most notably, we do not know how to base
adaptive trapdoor functions on hardness of factoring (or the standard RSA assumption,
and more generally, any hard search problem not related to lattices). On the other hand,
we do know how to derive CCA-secure encryption schemes from enhanced trapdoor
permutations, which may in turn be based on hardness of factoring [[15, 16, 19].
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1.1 Our Contributions

We introduce the notion of an extractable hash proof system, inspired in part by the
Cramer-Shoup universal hash proof systems [[12]. Informally, extractable hash proofs
are like universal hash proofs in that they are a special kind of non-interactive zero-
knowledge proofs [4], except we replace the soundness requirement (corresponding to
smoothness) with a “proof of knowledge property” [37,114]. That is, the secret keys may
be generated in one of two modes to allow for either simulation or extraction. Using
extractable hash proofs, we obtain new insights into the construction of CCA-secure
encryption schemes, and obtain new results for both lines of works described earlier.
Before we describe our results, we present an overview of extractable hash proofs.

Extractable Hash Proof Systems. Fix R to be a relation corresponding to some hard
search problem — namely, R is efficiently samplable, but given a random u, it is hard to
find an s such that (u, s) € R. (For instance, s is the pre-image of w under a one-way
permutation.) We consider a family of hash functions {Hx } indexed by a public key
PK which maps an input u to some value. (We clarify that the name is somewhat of a
misnomer since the “hash function” will in fact be injective, and possibly even length-
increasing.) Moreover, we require that the hash function be efficiently computable given
PK and the coin tosses 7 used to sample (u,s) € R. We denote this public evaluation
algorithm by Pub(PK, r) and the hash value by Hpk ().

Associated with this family of functions is a set-up algorithm that generates the
public key PK along with a secret key. The set-up algorithm operates in one of two
modes. In both modes, the algorithm generates exactly the same distribution of public
keys; however, the functionality afforded by the secret key depends on the mode:

— In the hashing mode, the secret key SK* allows us to compute the hash value
Pub(PK, u) without knowing either s or r. Specifically, there is a private evaluation
algorithm Priv such that for all (u, s) € R, Priv(SK*, u) = Hpx (u).

— In the extraction mode, the secret key SK allows us to verify whether a hash value
is correctly computed and if so extract a witness s. More formally, there is an
extraction algorithm Ext, such that for all u, 7: Ext(SK,u, ) outputs s satisfying
(u,s) € Riff 7 = Hpg(w). This implies efficient verification of the hash value
(given SK) whenever R is efficiently computable.

Looking ahead, we will rely on the extraction mode for decryption in a CCA-secure
encryption scheme, and on the hashing mode for the proof of security. This is opposite
to the use of universal hash proofs in the Cramer-Shoup framework, where the hashing
mode is used for decryption and the smoothness property (corresponding to soundness
and thus extraction) is used to establish security. Moreover, unlike Cramer-Shoup hash
proofs, extractable hash proofs are designed in tandem with families of relations, and
are particularly well-suited for use with computationally hard search problems.

Practical CCA via Extractable Hash Proofs. We provide a generic construction
of CCA-secure encryption schemes from extractable hash proofs. We use as an
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intermediate building block a somewhat richer cryptographic abstraction called all-but-
one extractable hash proofs (which can be constructed generically from extractable hash
proofs). The overall construction follows a variant of the Rackoff-Simon paradigm [37]
(as opposed to the Naor-Yung double-encryption paradigm [34], also used in [13]):
encrypt (or commit to) a one-time symmetric key (which is in turn used to encrypt
the message, following the hybrid encryption paradigm), and then provide a zero-
knowledge proof of knowledge of the key using an extractable hash proof. Indeed,
such an approach was used implicitly in the afore-mentioned cryptosystems based on
computational assumptions; however, the connection to the Rackoff-Simon paradigm
has never been made explicit. Our framework may be viewed as a clarification and uni-
fication of all these constructions. We present extractable hash proofs related to hardness
of factoring and CDH; in addition, we obtain the following new cryptosystems:

— a variant of the Hofheinz-Kiltz CCA-secure encryption scheme based on hardness
of factoring (Fig [3), which is more modular and both conceptually and mathemat-
ically simpler, albeit less efficient — there is a linear blow-up in both ciphertext
overhead and public key size over the previous scheme;

— a CCA-secure encryption scheme based on CDH where the public key comprises
a constant number of group elements (Fig B and a linear ciphertext overhead;
previous works all require a linear number of group elements [10, 22, 23] in
the public key. Our construction offers a trade-off between public key size and
ciphertext overhead when compared with the schemes in [22,[23]; such a trade-off
may be preferable when encrypting very long messages via the hybrid encryption
paradigm.

Our framework also encompasses a series of CCA-secure encryption schemes [9, 7, 127,
28] derived from the identity-based encryption schemes in [, [§] whose security are
based on decisional assumptions.

CCA from Adaptive Trapdoor Relations. We also propose a relaxation of adaptive
trapdoor functions, which we call adaptive trapdoor relations. The relaxation here lies
in the functionality requirement for evaluation: we only require that there exists an
efficient sampling algorithm that generates a random input to the trapdoor function
along with its image; the function itself need not be efficiently computable. It follows
immediately from [29] (with essentially the same construction as that in [36, 138])
that adaptive trapdoor relations imply CCA-secure encryption schemes. Interestingly,
the ensuing construction unlike previous constructions, is not witness-recovering (that
is, the decryption algorithm does not completely recover the randomness used for
encryption, c.f. [36, Section 1.1]).

Next, we show how to derive adaptive trapdoor relations from hardness of factoring
and CDH. This partially answers an open problem posed in [29] on realizing adaptive
trapdoor functions from hard search problems not related to lattices. (A comparison
with previous works is shown in Fig[1l) Our construction relies on the use of extractable
hash proofs and is very similar to our CCA-secure encryption schemes. Moreover, our
adaptive trapdoor relations are fairly efficient and achieve parameters similar to the
state-of-the-art lossy trapdoor functions based on DCR and DDH respectively [[17].
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Fig. 1. Summary of CCA-secure PKEs from general assumptions, and how the latter relate to
(standard) specific assumptions [15,116,119,136,138,135,129,132,117]. Here, lossy TDF and adaptive
TDF refer to the respective all-but-one/tag-based variants. The bold lines denote our contributions
(the dotted lines denote those that are straight-forward or follow readily from previous work). All
of the constructions from general assumptions are black-box, except for the one marked with
dashed lines. (Following current conventions, we do not regard hash proof systems [12] as a
general assumption.)

2 Preliminaries and Definitions

2.1 Key Encapsulation Mechanisms

A key encapsulation mechanism (KEM) (Gen, Enc,Dec) with key-space {0,1}*
consists three polynomial-time algorithms.Via (PK, SK) « Gen(1*) the randomized
key-generation algorithm produces public/secret keys for security parameter 1¥; via
(C,K) « Enc(pK), the randomized encapsulation algorithm creates a uniformly
distributed symmetric key K € {0,1}*, together with a ciphertext C; via K «
Dec(Sk, (), the possessor of secret key SK decrypts ciphertext C' to get back a key
K which is an element in {0, 1}* or a special reject symbol L. For consistency, we
require that for all k£ and all (C, K) « Enc(PK), we have Pr[Dec(sK,C) = K| = 1,
where the probability is taken over the choice (PK, SK) < Gen(1*) and the coins of all
the algorithms in the expression above.

Chosen-Ciphertext Security. The common requirement for a KEM is indistinguishabil-
ity against chosen-ciphertext attacks (IND-CCA) [12] where an adversary is allowed
to adaptively query a decapsulation oracle with ciphertexts to obtain the corresponding
session key. More formally, for an adversary A, we define the advantage function

(PK, SK) « Gen(1%);

(Cv KO) — EI"IC(PK); Ky {07 1}k;

b {0,1};

bV — APt (pr| K, C)

AdvCCAL,, (k) :=Pr [b=1":
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with the restriction that A4 is only allowed to query Dec(SK, -) on ciphertexts different
from the challenge ciphertext C'. A KEM is said to be indistinguishable against
chosen ciphertext attacks (IND-CCA) if for all PTA adversaries A, the advantage
AdvCCAZ,, (k) is a negligible function in k.

It was shown in [12] that an IND-CCA secure KEM with a CCA-secure symmetric
encryption scheme yields an IND-CCA secure hybrid encryption scheme.

2.2 Binary Relations for Search Problems

Fix a family of (binary) relations Ry indexed by a public parameter PP. We require that
PP be efficiently samplable given a security parameter 1¥, and assume that all algorithms
are given PP as part of its input. We omit PP henceforth whenever the context is clear.
We will also require that Rpp be efficiently verifiable (possibly given some trapdoor for
PP) and efficiently samplable, where the sampling algorithm is denoted by SampR.

Intuitively, the relation Rpp corresponds to a hard search problem, that is, given a
random w, it is hard to find s such (u, s) € Rpp. More formally, we say that a binary
relation Rpp is one-way if:

— with overwhelming probability over PP, for all u, there exists at most one s such
that (u, s) € Rpp; and

— there is an efficiently computable generator G such that Gpp(s) is pseudorandom
even against an adversary that gets PP, u and oracle access to Rep, where (u, ) <
SampR(PP). (We will also refer to G as extracting hard-core bits from s.)

For relations where computing s given u is hard on average, we may derive a generator
Gpp with a one-bit output via the Goldreich-Levin hard-core bit GL(-) [20] (with the
randomness in PP). In many cases as we shall see shortly, we may derive a linear number
of hard-core bits by either iterating a one-way permutation or relying on decisional
assumptions. Next, we present one-way relations related to hardness of factoring and
the Diffie-Hellman assumption.

Iterated Squaring. Fix a Blum integer N = P( for safe primes P,Q = 3 (mod 4)
(such that P = 2p + 1 and Q = 2q + 1 for primes p, q). Following [26], we work over
the cyclic group of signed quadratic residues, given by the quotient group QR}, :=
QRy/ + 1. QR;{, is a cyclic group of order pq and is efficiently recognizable (by
verifying that the Jacobi symbol is +1). In addition, the map = + 22 is a permutation
over QRE. Furthermore, assuming that factoring Blum integers are hard on average and
that safe primes are dense, the family of permutations = +— z? (indexed by V) acting
on the groups QR} is one-way.

In our constructions, the public parameter PP comprises (V, g), where N is a random
2k-bit Blum integer and g is chosen uniformly from QR}. We will henceforth assume
that g is a generator for QR};, which happens with probability 1 — O(1/v/N). We
consider the relation:

RE" = { (u,5) € QRY x QR s u=s7"}

The associated sampling algorithm SampR picks a random r € [(N — 1)/4]
and outputs (ngT, g"). Note that the output distribution is statistically close to the
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uniform distribution over QR% whenever g is a generator. Using the Blum-Blum-Shub
(BBS) pseudorandom generator [3], we may extract k& hard-core bits from s that are
pseudorandom even given wu, that is:

GEbS () := (Isby (s), Isbn (s%), . .., Isbn (s

2k—1

)

Diffie-Hellman Relation. We consider a family of groups G of prime order g. The
public parameter PP is given by (g, g®) for arandom g < G and a random « «— Zj,.
We consider the Diffie-Hellman relation

Rgsz{(u,s)GGxG:s:uo‘}

Note that R is efficiently verifiable in bilinear groups (by computing a pairing) or
if provided with « as a trapdoor. The associated sampling algorithm SampR picks a
r < Z, and outputs (9", g*"). Next, we explain how to obtain hard-bit bits for R
under various assumptions.

- The Strong DH assumption assumption [1] asserts that computing ¢®® given
(9,9 g") is hard on average, even given oracle access to Ry 4a)(, ) (note that
in bilinear groups, this is equivalent to CDH). Under Strong DH, we may extract a
single hard-core bit from s using GL(s).

— The Bilinear DDH (BDDH) assumption [6] asserts that e(g, g)**¢ is pseudorandom
given g, g%, g%, g¢ where g, g%, g°, g° are random elements of a bilinear group.
Under BDDH, we may extract a linear number of hard-core bits from s using:

G (s) 1= e(s,97) (= GH*™(9™") = e(g,9)™")

where PP is now given by (g, g%, g7). In addition, we may improve efficiency by
pre-computing the pairing and setting PP to be (g,9%,e(g,9”)) and computing
GRddh(gm) := e(g,¢")". This construction extends naturally to the Gap Hashed
DH assumption [28].

Following the twinning framework [[10], we will also consider the twin Diffie-Hellman
relation given by:

Rggh = {(u, (50,51)) € G x G?: (s9,51) = (u“,uﬁ)}

where PP is given by (g, g%, ¢°) for random «, 8 Zg4, and SampR picks r «— Z,
and outputs (g”, (927, g°")). As shown in [10, Theorem 9], GL(s() is a hard-core bit
for the relation R2¢" under CDH.

2.3 Extractable Hash Proofs

We consider a family of hash functions {Hp¢} indexed by a public key PK. An
extractable hash proof system associated with a one-way relation Rpp is a tuple of
algorithms (SetupExt, SetupHash, Pub, Ext, Priv) satisfying the following properties
with overwhelming probability over PP:

(PUBLIC EVALUATION.) For all (PK, SK) « SetupExt(PP) and (u,s) = SampR(r):
Pub(PK, r) = Hpk (u).
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(EXTRACTION MODE.) For all (PK, SK) < SetupExt(PP) and all (u, 7):

T=Hi(u) <= (u,Ext(SK,u,7)) €R

(HASHING MODE.) For all (PK, SK*) < SetupHash(PP) and all (u, s) € R,
Priv(SK™, u) = Hpx (u)

(INDISTINGUISHABILITY.) The first outputs (namely PK) of SetupHash(pp) and
SetupExt(PP) are statistically indistinguishable.

All-But-One Extractable Hash Proofs. For all of our applications, it is convenient
to work with a richer abstraction, where as before, we consider a family of hash
functions indexed by a public key PK, that takes a tag as an additional input. More
formally, an all-but-one (ABO) extractable hash proof system is a tuple of algorithms
(SetupExt, SetupABO, Pub, Ext, Ext™, Priv) satisfying the following properties with
overwhelming probability over PP:

(PUBLIC EVALUATION.) For all PK, TAG and (u, s) = SampR(r): Pub(PK, TAG, 1) =
Hex (TAG, u).

(EXTRACTION MODE.) For all (PK, SK) < SetupExt(PP) and all (TAG, u, 7):

7 = Hw(TAG,u) <<= (u,Ext(SK,TAG,u,7)) €R

(ALL-BUT-ONE MODE.) For all TAG* and all (PK, SK*) <« SetupABO(PP, TAG*): for
all (u,s) € R,

Priv(SK*, TAG*, u) = Hpx (TAG™, 1)
In addition, for all TAG # TAG* and all (u, 7):

7= Hu(TAG,u) <= (u,Ext"(SK",TAG,u,7)) € R

(INDISTINGUISHABILITY.) For all TAG*, the first outputs (namely PK) of
SetupABO (PP, TAG*) and SetupExt(PP) are statistically indistinguishable.

2.4 Trapdoor Functions

Informally, trapdoor functions are a family of functions {Fgp } that are easy to sample,
compute and invert with trapdoor, and hard to invert without the trapdoor (in this work,
we always assume that the functions are injective). In the tag-based setting, the function
takes an additional input, namely the tag; also, the trapdoor is independent of the tag.
A family of adaptive trapdoor functions [29] is one that remains one-way even if the
adversary is given access to a inversion oracle, except the adversary cannot query the
oracle on the same tag as that in the challenge.

Adaptive Trapdoor Relations. In this work, we consider a relaxation of the func-
tionality guarantee for adaptive trapdoor functions, that is, instead of requiring that
Frp be efficiently computable, we only require that we can efficiently sample from the
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distribution (s, Fap(TAG, s)) for a random s given FID, TAG. More precisely, a family
of (tag-based) adaptive trapdoor relations is given by a family of injective functions
{Fep} that satisfies the following properties:

(TRAPDOOR GENERATION.) There is an efficient randomized algorithm TDG that
outputs a random (FID, TID).

(PUBLIC SAMPLING.) There is an efficient randomized algorithm PSamp that on input
(FID, TAG), outputs (s, Frup (TAG, s)) for a random s/

(TRAPDOOR INVERSION.) There is an efficient algorithm Tdlnv such that for all
(FID, TID) — TDG and for all TAG, y, computes TdInv(TID, TAG, y) = Fr (TAG, ) B

(ADAPTIVE ONE-WAYNESS.) For all efficient stateful adversaries .4, the following
quantity is negligible:

TAG* «— A(1F);

(FID, TID) «; TDG(1F);

(s,y) <= PSamp(FID, TAG*);

s — AFw () (FID, y)

Pr|s=s":

where A is allowed to query Fr2 (-, -) on any tag different from TAG*.

It follows immediately from [29, Theorem 2] that adaptive trapdoor relations imply
IND-CCA secure encryption.

3 Generic Constructions from Extractable Hash Proofs

In this section, we show that starting from an extractable hash proof, we may derive
(1) a IND-CPA secure encryption scheme (as a simple warm-up exercise); (2) an ABO-
extractable hash proof; (3) an ABO-extractable hash proof with multiple hard-core bits;
and finally, (4) a IND-CCA secure KEM.

3.1 CPA-Secure Encryption

Starting from an extractable hash proof (SetupExt, SetupHash, Pub, Ext, Ext*, Priv)
for a one-way relation Rpp with an associated generator Gpp, we may derive a IND-CPA
secure bit encryption scheme as follows:

— Gen(PP): same as SetupExt(PP).

— Enc(pK, b): sample (u, s) := SampR(r) and output (u, Pub(PK, ), G(s) ® b).

- Dec(sK, (u, T,c)): compute s := Ext(SK, u, 7) and return G(s) & c.

! This is essentially the only distinction from the adaptive trapdoor functions in [29]; there, they
require that Frp be efficiently computable.

2 Since Fyp is not necessarily efficiently computable given FID, it is crucial here that we quantify

over all y and that TdInv outputs L if y does not have a pre-image under Frp (TAG, ). In our
constructions, it will be the case Frp is efficiently computable given TID.



Efficient Chosen-Ciphertext Security via Extractable Hash Proofs 323

Observe that correctness of the encryption scheme follows readily from correctness
of the extraction mode. To establish IND-CPA security, we consider an intermediate
game where we generate (PK, SK*) using SetupHash(PP) and computes Hpk (v) in the
ciphertext using Priv(SK*, u). Any adversary that can distinguish between encryptions
of 0 and 1 in this game yields a distinguisher that given PP, u distinguishes G(s) from
random.

3.2 From Extractable to ABO-Extractable

Starting from an extractable hash proof for a relation Rpp, we may derive a ABO-
extractable hash proof (SetupExt’, SetupABO’, Pub’, Ext’, Ext’", Priv’) for the same
relation and tag space {0, 1}5 via a construction analogous to those in [34, |15, 136, 38]:

— SetupExt’(PP): run SetupExt(PP) to obtain (PK;g,SKio), (PK;1,SK;1), @ =

1,...,0; output PK = (PK; 0, PK; 1)ic[e and SK = (SK; 0, SKi,1)ic[q]-
- Pub’(PK, TAG, r): parse TAG=(TAG, . . . , TAG) and output (Pub(PK; 1ac,, 7)) ic[4]-
- Ext'(SK, TAG,u, (71, ...,7¢)): compute s; := Ext(SKi tac;,u, 7;) fori =1,...,¢,

and output s; if all £ values agree, and | otherwise.

- SetupABO’ (PP, TAG*): run SetupHash(PP) to generate (PKZ-,TAG;«,SKZ-,TAG;«) and
SetupExt(PP) to generate (PK,;J_TAG;« , SK¢,1_TAG;), for: =1,...,¢; output PK =

—~— %

(PK;,0, PKi 1)ic)e and SK = (SK; 0, SKi1)ic|]-

- Priv/(PK, TAG, u): output (Priv(SK; mc, , 1) )ic[q]-

- Ext’"(SK", TAG, u, (11, ..., 7¢)): first, check that 7, = Priv(SK; 1aq,, ) for all i
such that TAG] =TAG; and if not, output _L; next, compute s; := Ext(SK; rac,, U, 7;)

for all ¢ such that TAG! # TAG;; output the common value if all these values agree
and L otherwise.

3.3 Obtaining Multiple Hard-Core Bits

Starting from an ABO-extractable hash proof for a relation Ryp, we may derive a ABO-
extractable hash proof (SetupExt’, SetupABO’, Pub’, Ext’, Ext’™, Priv’) for the k-wise
direct product REF of Rpp. This allows us to obtain more hard-core bits by using the
k-wise direct product G,(?;k of Gpp. The construction is as follows:

- SampG'(r1,...,7%) = (SampG(r1),...,SampG(ry))
— SetupExt’ and SetupABQ’ are the same as SetupExt and SetupABO respectively.

- Pub/(PK, TAG, (71, ...,7%)): output (Pub(PK, TAG, 7;))ic k-

— Ext/(SK,TAG, (u1,...,uk), (71,...,7¢)): compute s; := Ext(SK,u;,7;) fori =
1,...,¢, and output (s1, ..., Sk).

- Priv/(PK, TAG, (u1, . .., ug)): output (Priv(SK, u;))ie[e)-

Ext'"(SK, TAG, (u1, . .., ug), (71, . .., 7¢)): output (Ext(SK, us, 73))ie k-
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3.4 CCA-Secure Encryption

Starting from an ABO-extractable hash proof for a one-way relation Rpp along with
a target collision-resistant hash function TCR, we may derive a IND-CCA KEM
(Gen, Enc, Dec) as follows:

— Gen(PP): same as SetupExt(PP).

— Enc(PK): sample (u,s) := SampR(r), compute TAG := TCR(u),7 =

Pub(PK, TAG, r), and return (C, K) = ((u, 7), G($)).

— Dec(SK, (u, 7)): compute TAG := TCR(u) and s := Ext(SK, TAG, u, 7); if (u, s) €
Rpp, return G(s), else return L.

We assume here that Gpp has linear output length; if not, we first apply the transforma-
tion in Section[3.3

Theorem 1. If Ry is a one-way relation, then the above KEM (Gen, Enc, Dec) is IND-
CCA secure.

Proof. Observe that correctness of the encryption scheme follows readily from cor-
rectness of the extraction mode. We proceed to establish IND-CCA security. In the
following, we write (u*,s*) = SampR(r),C* = (u*,7*), K{, K; to denote the
challenge ciphertext and keys chosen by the IND-CCA experiment, and we set TAG* to
denote the tag TCR(u*) used in computing C*. We proceed via a sequence of games.
We start with Game 0, where the challenger proceeds like in the standard IND-CCA
game (i.e, K is a real key and K7 is a random key) and end up with a game where
both K and K7 are chosen uniformly at random. Then, we show that all games are
indistinguishable under the assumption that G(s) is pseudorandom even given u.

GAME 1: ELIMINATING COLLISIONS. We replace the decapsulation mechanism Dec
with Dec’ that outputs L on inputs (u,7) such that TCR(u) = TAG* but
otherwise proceeds like Dec. We show that Games O and 1 are computationally
indistinguishable, by arguing that Dec and Dec’ essentially agree on all inputs
(u, 7). We consider three cases:

— case 1: TCR(u) # TAG*. Here, Dec and Dec’ agree by definition.
— case 2: u # wu* but TCR(u) = TCR(u*) = TAG™*. This only occurs with
negligible probability, by target collision-resistance of TCR.

— case 3: u = u* but 7 # 7*. This means 7 # Hpx (TAG*, u) and therefore Dec
returns | and agrees with Dec’.

GAME 2: DECAPSULATION WITH SetupABO. We modify the IND-CCA experiment
from Game 1, we generate the keys (PK, SK*) using SetupABO instead of SetupExt
and we answer decapsulation queries using SK* instead of SK. More precisely, the
IND-CCA experiment proceeds as follows:
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(u*, s*) < SampR(r); TAG* := TCR(u*);

(PK, SK*) < SetupABO(PP, TAG*);

C* = (u*, Pub(PK, TAG*,7)); K := G(s*); K} « {0, 1}*;
b — {0,1};

b — AP (K (P, K, C)

and where we replace Dec’(SK, -) from Game 1 with Dec*(SK*, -) which is defined
as follows:

On input (u, 7): compute TAG = TCR(u);
— if TAG = TAG" return L.
- if TAG # TAG*, compute s = Ext*(SK*, TAG, u, 7). If (u,s) € Ry,
return G(s), else return L.

We claim a stronger statement, namely that for all 7, the outputs of Games 1 and 2
are statistically indistinguishable. First, indistinguishability of the two modes imply
that the view (PK, K, C*) in Games 1 and 2 are statistically indistinguishable. As
such, it suffices to show that for all PK, Dec’(SK, -) and Dec*(SK*, -) agree on all
inputs (u, 7). Let s denote the unique value such that (u,s) € Rpp (if no such s
exists, then both Dec’ and Dec” return 1) and let TAG = TCR(u). We consider
three cases:

— case 1: TAG = TAG*. Both Dec’ and Dec* output L by definition.

— case 2: TAG # TAG*. Here, Dec’ always agrees with Dec by definition. By cor-
rectness of the extraction mode, Ext(SK, TAG*, 7) returns s iff 7 = Hpy (TAG, u).
Similarly, by correctness of the all-but-one mode, Ext™(SK*, TAG*, T) returns s
iff 7 = Hpx (TAG, u). It follows that both Dec (and thus Dec’) and Dec* return
G(s) if 7 = Hp (TAG, u) and L otherwise.

GAME 3: ENCAPSULATION WITH Priv. We compute Hpx (TAG*, ©*) in C* using Priv
instead of Pub; that is, in the IND-CCA experiment from Game 2, we set

C* = (u*, Priv(SK*, TAG*, u™))

Games 2 and 3 are identically distributed by correctness of the all-but-one mode.

GAME 4: REPLACING G(s*) WITH RANDOM. We generate K atrandom from {0, 1}*
instead of using G(s*) (recall here that (u*, s*) = SampR(r)). Observe thatin Game
3, we never use knowledge of the witness s* or randomness r associated with u*. It
follows from the pseudorandomness of G that Games 3 and 4 are computationally
indistinguishable. Specifically, we may transform any distinguisher for Games 3 and
4 into a distinguisher K and G(s*), given PP, u* and oracle access to Rpp (the latter
to simulate Dec®).

We conclude by observing that in Game 4, both Kj and K| are identically distributed,
so the probability that b’ = b is exactly 1/2. O
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4 Instantiations from Hardness of Factoring

We present a simple extractable hash proof for the iterated squaring relation from
Section 221 namely Rpy" := {(u, s) € QRY x QR}, : u = s2k} where N is a Blum
integer. We also present an efficient ABO-extractable hash proof for iterated squaring
that avoids the linear blow-up incurred by the transformation in Section 3.2} Both
of these extractable hash proofs appear implicitly in the Hotheinz-Kiltz cryptosystem
[25, 26].

Applying the generic transformations in Section[3]to the first hash proof, we obtain (i)
a simple factoring-based IND-CPA encryption scheme shown in Fig[2lwhere decryption
does not require knowing the factorization of the modulus; and (ii) a simple factoring-
based IND-CCA encryption shown in Fig[3l Applying the transformation in Section[3.4]
to the efficient ABO-extractable hash proof, we recover the original Hofheinz-Kiltz
cryptosystem.

4.1 A Simple Extractable Hash Proof

SYSTEM PARAMETERS. Here, PP = (N, g),PK € QR};. and SampR(r) := (gzk’r,gT),
where r € [(N — 1)/4]. We define
Hpk (u) := (PK - g)" where u = g2
PUBLIC EVALUATION / EXTRACTION.
— SetupExt: PK = g2" 5K sK « [(N — 1)/4]
- Pub(Pk,7) = (PK - g)"
— Ext(SK,u, 7): output 7 - u~%* if u, 7 € QR}, and L otherwise
Correctness of the extraction mode follows from the following simple calculation:

k —
T=Hp(u) =5 K =5 = 7.4 =5

HASHING MODE.
— SetupHash: PK = ¢2" K" =1 sK* « [(N — 1)/4]

— Priv(sk*,u) = u¥%

Correctness of the hashing mode follows from the observation that 2¥ . SK* =
2% . sk +1 (mod ¢(N)/4) and thus

k. r k.sk*\r
HPK(u) — (92 SK+1) — (92 SK ) :uSK

To establish indistinguishability, observe that the distributions of PK in both modes
are identical if we sample SK and SK* uniformly at random from Zg ()4 instead
of [(N — 1)/4]; moreover, sampling SK and SK* this way only changes the
distributions by a negligible quantity.

*
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Gen(PP), PP = (N, g): Enc(PK, b): Dec(sk, C):
PK := ¢g** SK ¢ [(N = 1)/4] r — [(N —1)/4] parse C as (u, T, 1))
return (PK, SK) return (¢2", (PK - )", Isb(g™) @ b) return Isb(r-u %) ¢

Fig. 2. An IND-CPA bit encryption scheme based on hardness of factoring

4.2 Efficient ABO-Extractable Hash Proof

SYSTEM PARAMETERS. As before, PP = (N, g) and PK € QR};. The tag space is Zq
and SampR(r) := (ngHT,g%T), where r € [(N — 1)/4]. We define

+.

Hex (TAG, 1) := (PK - g™°)" where u = ¢*"
PUBLIC EVALUATION / EXTRACTION.
— SetupExt: PK = g2 SK — [(N — 1)/4]
— Pub(PK, TAG, ) = (PK - g™°)"
— Ext(SK, TAG,u,7) : check that u,7 € QR}; and that 2N o a2 sk
and output | otherwise. Compute a, b, ¢ € Z such that 2¢ = gcd(TAG, 2¢7F) =
a - TAG + b2+ and then output (79 - ub—a-5%)2"°
Correctness of the extraction mode follows from the calculations: write u = 52"
and s = ¢g2". Then,

k . k+2 L+k Ltk
= HPK(TAG, 52 ) _ gr (TAG+2 SK) 72 — g TAG+2 SK

7-TAG SK

Moreover, if this holds, we have that g

4k ) ¥k
¢"%"", we may compute g"8¢d(TAG27)

s = ¢"2" since ged(TAG, 26+F) < 27,

= 7 -4 °" and together with ©v =
= ¢"*" from which we may compute

ABO-EXTRACTION MODE. We may write 25+¢ . sk* = 28+ . Sk + TAG*
— SetupABO: Pk = g2 SKT-TAGT giex L (N — 1) /4]
— Priv(sk*,u) = u’
— Ext*(SK*, TAG, u, 7) :check that u, 7EQR}; and that 72 #UTAG_TAG*"’QH]C'SK*
and output | otherwise. Compute a,b,c € Z such that 2¢ = gcd(TAG —
TAG*, 20+F) = a(TAG — TAG*) + b2¢* and then output (7 - ub=5K" )2,

Correctness of the ABO-extraction mode is similar to that for the extraction mode.

5 Instantiations from Diffie-Hellman Assumptions

We present an ABO-extractable hash proof for the Diffie-Hellman relation from
Section 221 namely R¥ = {(u,s) € G x G : s = u®} where G is a group of
order g and PP = (g, ¢“). The construction is implicit in [5] and also [7, 27, 128, 23].
Applying the transformation in Section[3.4]to this hash proof system and the generator
GRddh (L), we obtain a variant of the BDDH-based IND-CCA KEM in [7,27] (see FigH).
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Gen(PP), PP = (N, g): Enc(PK): Dec(sk, C):
fori=1,...,k forb=0,1: r— [(N —1)/4] parse C as (u, T1,...,7k)
SKs,p < [(N —1)/4] u = g2k?“,t := TCR(u) check u, 1, ..., € QRY
PK;p 1= g2 i fori=1,... k: t:=TCR(u)
PK := (PKi,o, PKi,l)ie[k] Ti 1= (PKi,ti . g)T fori = 17};' -k ®
SK := (SK4,0, SKi,1)ic[k] C:=(u,T1,...,Tk) check 77" = 4 SKit; Tl
return (PK, SK) return (C, GE2(g")) return GBE* (71 - 4 ~SKLt1)

Fig. 3. An IND-CCA KEM based on hardness of factoring

5.1 ABO-Extractable Hash Proof for the Diffie-Hellman Relation
SYSTEM PARAMETERS. Here, PP = (g, g®), SP = «; the tag space is Z,; SampR(r) :=
(97,9%") where r € Z,. We define
Hex (1) := (g% ™° - PK)" where u = g".

PUBLIC EVALUATION / EXTRACTION.

— SetupExt: PK = ¢°%, SK «— Z,

— Pub(PK, TAG, ) = (¢*™¢ - PK)"
— Ext(SK, TAG,u,7) = (- u~ %)™

Correctness of the extraction mode follows from the following simple calculation:

7 = Hp (TAG, 1) = YO TAGESK (r- u—SK)TA(f1 —u”

ABO-EXTRACTION MODE.
— SetupABO: PK = g% - (¢®) ™" SK* «y Z,
- Priv(sk*,u) = u®*
* *y—1
— Ext*(SK*, TAG, u, 7) = (7 - 45K )(TAG=TAGT)

Correctness of the ABO-extraction mode follows from the fact that SK* = « -
TAG™ + SK and thus

* * * *\—1
= HpK(TAG,u) — ua(TAG—TAG ) . K« (T LSk )(TAG—TAG )T — u®

5.2 Constructions for the Twin Diffie-Hellman Relation
The construction in the previous section extends naturally to yield an ABO-extractable
hash proof for the Twin Diffie-Hellman relation, by considering:

Heko o, (1) = ((g*™C - PKo)", (g% ™ - PKy)") where u = g".

We may then apply the transformations from Sections and [3.4] to obtain a CDH-
based IND-CCA KEM, shown in Fig [3l The public key comprises 5 group elements
and the ciphertext comprises O(k) group elements.
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SK := (a, SK, ) «x Z2

Efficient Chosen-Ciphertext Security via Extractable Hash Proofs 329

(h, PK) = (g, 9™)
PK := (h, PK)
return (PK, SK)

Gen(PP), PP = (g, R):

(a

,ﬁ, SKo, SK1) “—R Zg

(h07 hl) = (gav gB)

(PKo, PK1) := (g

PK := (ho, h1, PKo, PK1)

SK :
retur

m

(v, B, SKo, SK1)
(PK, SK)

Enc(PK): Dec(sk, C):
p u:=g",1r = Zq parse C' as (u, )
:=TCR(u), 7 := (PK - h')"  t:= TCR(w) B
C:= (’U;, T)7 K:=e gvg’y)r check 7 = uat+SK
return (C, K) return e(u®, g7)
Fig. 4. An IND-CCA KEM based on BDDH (variant of [7,127])
Enc(PK): Dec(sk, C):
fori=1,...k: parse C as (ui,no,nl)ie[k]
Ui = g™, 1 —r Lq t:= TCR(ul, CeeyUR)
Sk gk1) t:= TCR(u1,...,ux) fori=1,...,k:
fori=1,...,k,forb=0,1: check 70 = u"t'HKO
Tib = (PKb ht) i check 7} = uﬁt“'(l
= (ui, 70 T Dick return (GLR(uf"))icqx)
= (GLr(hg'))icn
return (C, K)

Fig.5. An IND-CCA KEM based on CDH

6 Adaptive Trapdoor Relations

Starting from an extractable hash proof (SetupExt, SetupABO, Pub, Ext, Ext*, Priv)

for a one-way relation Rpp,

and return (s, y).

TdInv(TID, TAG, (u, T

Rpp and L otherwise.

we may derive an adaptive trapdoor relation as follows:
FID is (PP, PK) and for all (u, s) € Rpp, Frp (TAG, 8) := (u, Hpx (TAG, u)).

TDG(1¥): computes (PK, SK) « SetupExt(PP) for a random PP and returns FID :=
(pp, PK) and TID := SK

PSamp(FID, TAG; r): computes (u,s) := SampR(r),y = (u, Pub(PK, TAG, 7))

)): computes s := Ext(SK, TAG, u) and returns s if (u,s) €

From an adaptive trapdoor relation, we may derive a one-bit IND-CCA encryption
scheme following the construction in [29, Theorem 2], or a more efficient k-bit IND-
CCA scheme by using the construction with multiple hard-core bits from Section

Theorem 2. IfR;; is a one-way relation, then the above construction yields an adaptive
trapdoor relation.

Proof (sketch). Trapdoor generation, public sampling and trapdoor inversion are
straight-forward, so we only sketch the reduction for establishing adaptive one-wayness,
which is very similar to that for our IND-CCA KEM in Section[3.4l Given an adversary
A that breaks adaptive one-wayness with probability €, we may construct an adversary
B given (PP, u) and oracle access to Rpp, computes s with probability roughly e:
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TDG(ppP),PP = (N, g): PSamp(FID, TAG;T): TdInv(SK, TAG, (u,T)):
TID «— [(N — 1) /4] (s,u) = (g2, g% "'m)  checku,T € QRY
FID := g2 7 := (FID - g™)" check 727" = g o2 s
return (FID, TID) return (s, (u, 7)) find a,b, ¢ € Z: 2° = a - TAG + b2°+F
return (7% - ub_“'SK)th
Fig. 6. An adaptive trapdoor relation based on factoring
TDG(pP), PP = (g): PSamp(FID, TAG; 7): TdInv(SK, TAG, (u, 7)):
TID = (o, SK) v Z; return (7, (g7, (PK - A™)7))  if 7 = u® O+,
FID := (h,PK) := (g%, ¢"%) return u®, else |

return (FID, TID)

Fig. 7. An adaptive trapdoor relation based on Strong DH

— runs A(1F) to get a tag TAG*;

— computes (PK, SK*) < SetupABO(PP, TAG*);

— computes FID := (PP, PK) and 7 := Priv(SK*, TAG*, u)

— computes and outputs s’ — A(FID, (u, 7)), by simulating Fi;2 (-, -) as follows:
on input (TAG, (u’, 7")) where TAG # TAG*, compute s’ := Ext™ (SK*, TAG, u/);
output s’ if (v, s") € Rpp and L otherwise.

It is easy to check that Pr[BR»() (PP, u) = s : (u,s) <& SampR(PP)] ~ ¢, which
contradicts the pseudorandomness of Gpp. O

Instantiating this construction with the ABO-extractable hash proofs in Sections [£.2]
and 3.1 we derive the adaptive trapdoor relations shown in Fig[6land[7l whose security
are based on hardness of factoring and Strong DH respectively. By using the ABO-
extractable hash proof in Section[3.2] we may also obtain an adaptive trapdoor relation
based on CDH.
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Abstract. This paper reports on the factorization of the 768-bit num-
ber RSA-768 by the number field sieve factoring method and discusses
some implications for RSA.

Keywords: RSA, number field sieve.

1 Introduction

On December 12, 2009, we factored the 768-bit, 232-digit number RSA-768 by
the number field sieve (NFS, [I9]). RSA-768 is a representative 768-bit RSA
modulus [34], taken from the RSA Challenge list [35]. Our result is a new record
for factoring general integers. Factoring a 1024-bit RSA modulus would be about
a thousand times harder and a 512-bit one was several thousands times easier.
Because the factorization of a 512-bit RSA modulus [7] was first reported in 1999,
it is not unreasonable to expect that 1024-bit RSA moduli can be factored well
within the next decade by a similar academic effort. Thus, it would be prudent
to phase out usage of 1024-bit RSA within the next three to four years.

The previous NFS record was the May 9, 2005, factorization of the 663-bit,
200-digit number RSA-200 [4]. NFS records must not be confused with special
NFS (SNFS) records. The current SNSF record is the May 21, 2007, factorization
of the 1039-bit number 21939 — 1 [2]. Although much bigger than RSA-768, its
special form made 2!%3 — 1 an order of magnitude easier to factor.

The new NFS record required the following effort. We spent half a year on
80 processors on polynomial selection. This was about 3% of the main task, the
sieving, which took almost two years on many hundreds of machines. On a single
core 2.2 GHz AMD Opteron processor with 2 GB RAM, sieving would have taken
about fifteen hundred years. We did about twice the sieving strictly necessary, to
make the most cumbersome step, the matriz step, more manageable. Preparing
the sieving data for the matrix step took a couple of weeks on a few processors.
The final step after the matrix step took less than half a day of computing.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 333[350] 2010.
© International Association for Cryptologic Research 2010
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Sieving is a laid back process that, once running, does not require much
care beyond occasionally restarting a machine. The matrix step is more sub-
tle. A slight disturbance easily causes major trouble, in particular if the problem
stretches the available resources. Oversieving led to a matrix that could be han-
dled relatively smoothly. More importantly, the extra sieving data allow exper-
iments aimed at getting a better understanding of the relation between sieving
and matrix efforts and the effect on NF'S feasibility and overall performance.
That work is in progress. All in all, the extra sieving time was well spent.

In |2] the block Wiedemann algorithm [9] was used, making it possible to pro-
cess the matrix on disjoint clusters. Larger problems (such as 1024-bit moduli)
require wider parallelization. Here we solve some of the challenges by dividing
the workload in a more flexible manner. As a result a matrix nine times harder
than in [2] was solved in less than four months, on clusters in three countries.
Larger matrices are within reach and there can be little doubt about the feasi-
bility by the year 2020 of the matrix for a 1024-bit modulus. We are studying if
our current matrix can be handled by block Lanczos [8] on a single cluster.

The steps taken to factor RSA-768 are described in Section Bl The factors
are given in Section Implications for moduli larger than RSA-768 are briefly
discussed in Section Bl Appendix [A] presents the sieving approach that we used,
and Appendix [Bl describes a new twist of the block Wiedemann algorithm that
makes it easier to share large calculations among different parties.

2 Factoring RSA-768

2.1 Factoring Using the Morrison-Brillhart Approach

The congruence of squares method factors a composite n by writing it as ged(z —
y,n) - ged(x + y,n) for integers x,y with 2 = 3? mod n: for random such
pairs (x,y) the probability of success is at least % We explain the Morrison-
Brillhart approach [25] to solve 22 = y? mod n and, roughly, how NFS works.

A non-zero integer u is b-smooth if the prime factors of |u| are at most b. Each
b-smooth integer u corresponds to the (7(b) 4 1)-dimensional integer vector v(u)
of exponents of the primes < b in its factorization, where m(b) is the number of
primes < b and the “+1” accounts for the sign. The factor base consists of the
primes at most equal to the smoothness bound.

Let n be a composite integer, b a smoothness bound, and ¢ a positive integer.
Let V be a set of 7w(b) + 1 + ¢ integers v for which the least absolute remainders
r(v) = v? mod n are b-smooth. Because the ((b)+1)-dimensional vectors v(r(v))
are linearly dependent, at least ¢ independent subsets T' C V' can be found using
linear algebra such that » _,v(r(v)) is an all-even vector. Thus, each T leads
to a solution # = [[,cpv and y = \/[[,c7 r(v) to #* = y* mod n. Overall, this
combining of congruences results in t chances of at least % to factor n.

In Dixon’s random squares method [I1] the set V' is generated by randomly
selecting integers v until enough have been found for which r(v) is smooth.
The expected runtime can be proved rigorously. With quadratic residues r(v) of
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order n, however, the method is not practical: earlier, Morrison and Brillhart [25]
had already shown how to use continued fractions to generate quadratic residues
of order n'/2. The much higher smoothness probabilities make their method
much faster than Dixon’s, despite the lack of a formal proof. Schroeppel with his
linear sieve was the first, in about 1976, to combine similarly high smoothness
probabilities with fast sieving-based smoothness detection [31, Section 6] and to
analyze the resulting heuristic expected runtime [I7, Section 4.2.6]. A variation
led to Pomerance’s quadratic sieve [31I32]. Factoring methods of this sort that
rely on smoothness of residues of order n?(*) have expected runtimes of the form
e(c-ﬁ—o(l))(lnn)lm(lnlnn)l/2 (fOI‘ n — OO)

for positive constants ¢. The number field sieve [I9] was the first, and so far the
only, practical factoring method to break through the barrier of the In n-exponent
of ; It uses more contrived congruences that involve smoothness of numbers of
order n°M | for n — oo, that can, as usual, be combined into a congruence of
squares 22 = y2 mod n. NFS factors a composite integer n in heuristic expected
time

(64/9)3+0(1))(Inn)*/3(In1nn)?/3

e (for n — o0).

It is currently the best algorithm to factor numbers without special properties,
such as RSA-768, a 768-bit, 232-digit RSA modulus taken from [35]:

123018668453011775513049495838496272077285356959533479219732245215172640050726
365751874520219978646938995647494277406384592519255732630345373154826850791702
6122142913461670429214311602221240479274737794080665351419597459856902143413.

Similar to Schroeppel’s linear sieve, the most important steps of NFS are sieving
and the matriz step. In the former relations are collected, congruences involv-
ing smooth values similar to the smooth r(v)-values above. In the latter linear
dependencies are found among the exponent vectors of the smooth values. NFS
requires two non-trivial additional steps: a pre-processing polynomial selection
step before the sieving can start, and a post-processing square root step to con-
vert the linear dependencies into congruences of squares. A rough operational
description of these steps as applied to RSA-768 is given below. For an explana-
tion why these steps work, we refer to the many expositions on NFS [T9/20/33].

2.2 Polynomial Selection

With n the integer to be factored, let f1(X), f2(X) € Z[X] be two irreducible
integer polynomials of degrees d; and ds, respectively, with a common root m
modulo n, i.e., fi(m) = fo(m) = 0 mod n. For simplicity we assume that f;
and fo are monic, even though the actual f; and fo are not. With vg(a,b) =
b fi(a/b) € Z (k = 1,2), relations are coprime pairs of integers (a, b) with b > 0
such that v;(a,b) and vy(a,b) are simultaneously smooth, v1(a,b) with respect
to some by and wvs(a,b) with respect to some by. Sufficiently many more than
m(b1) +7(b2) + 2 relations lead to enough chances to factor n, as sketched below.

Let Q(ax) = Q[X]/(fr(X)) for k = 1,2 be two algebraic number fields. The
elements a —bay, € Z[a] have norm vi(a,b) and belong to the first degree prime
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ideals in Q(ay) of (prime) norms equal to the prime factors of vi(a,b). These
prime ideals in Q(ay) correspond bijectively to the pairs (p,r mod p) where p is
prime and fi(r) = 0 mod p: excluding factors of fi’s discriminant, such a first
degree prime ideal has norm p and is generated by p and r — ay.

Because fi(m) = 0 mod n, the two natural ring homomorphisms ¢y, : Z[ayg] —
Z/nZ for k = 1,2 map szo a;al to ZZ 0 Ya;mi mod n and ¢y (a — boy) =
d2(a — bag) mod n. Linear dependencies modulo 2 among the exponent-vectors
of the primes in the b1-smooth v1 (a, b), ba-smooth va(a, b) pairs lead to subsets T
such that [], ,er(a—bag) is a square o) in Q(ay), for k =1,2. With ¢y (01) =
¢2(02) mod n it then remains to compute square roots 7, = (/o € Q(ay) for
k =1,2 to find a solution = ¢1(71) and y = ¢o(72) to 22 = y? mod n.

It is easy to find f1 and f3 so that numbers of order n"(l), for n — oo, must be
smooth. Let d; € N be of order (;; 31“" )1/37 let da = 1, let m be an integer slightly

smaller than nl/dl and write n in radix masn = Z?;O n;m’ with 0 < n; < m.

Then f1(X) = ZZ oni X" and fo(X) = X —m have common root m modulo n,
the coefficients are n°!) for n — oo, and the values a, b that suffice to generate
enough relations are small enough to keep b fi(a/b) and b fy(a/b) of order
n°M as well. Finally, if f; is not irreducible, it can be used to directly factor n
or, if that fails, one of its factors can be used instead of fi. If d; > 1 and dy =1
we refer to “k = 17 as the algebraic side and “k = 2”7 as the rational side. With
ds = 1 the algebraic number field Q(as) is simply Q, the first degree prime ideals
in Q are the regular primes and, with fo(X) = X — m, the element a — bag of
Zlas) is a — bm = va(a, b) € Z with ¢2(a — baz) = a — bm mod n.

Although with these polynomials NFS achieves its asymptotic runtime, there
is a lot of freedom in the choices of m, f1, and fo. Exploiting this involves ex-
tensive searches, comparing choices based on smoothness probabilities, and thus
with respect to coefficient size, number of real roots and roots modulo small
primes, smoothness properties of leading coefficients, and sieving experiments.
How the search is best conducted is the subject of active research; current ap-
proaches are guided by experience, helped by luck, and profit from patience.

One method is known that produces two good polynomials of degrees greater
than one (namely, twice degree two [5]). Its results are not competitive with the
current best d; > 1, do = 1 methods which are all based on refinements [I5] of
the approach from [24)26] as summarized in [ Section 3.1]. A search of three
months on a cluster of 80 Opteron cores (i.e., 12 -80 = 20 core years), conducted
at BSI in 2005 already and thus not including the idea from [16], produced three
pairs of polynomials of comparable quality. We used

= 265482057982680.X °

+ 1276509360768321888 X °

— 5006815697800138351796828 X *

— 46477854471727854271772677450X >

+ 6525437261935989397109667371894785X >

— 18185779352088594356726018862434803054 X

— 277565266791543881995216199713801103343120,

= 34661003550492501851445829X — 1291187456580021223163547791574810881.

fi(X

~

f2(X

~
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The leading coefficients factor as 23 -32.5.72.11-17-23-31 - 112877 and
13-37-79-97-103-331-601-619-769-907 - 1 063, respectively. The discriminant
of f1 equals 2'2-32.52.13.17- 17722398737 - c273, for a 273-digit composite
integer 273 that is most likely free of squares and of factors less than 10%°. The
discriminant of fs equals one. A renewed search at EPFL in the spring of 2007
(also not using the idea from [16]) produced a couple of candidates of similar
quality, again after spending about 20 core years.

Following [I5], during the search, the leading coefficient of fy allowed 11
(search at BSI) or 10 (search at EPFL) prime factors equal to 1 mod 6 and
at most one other factor < 2%, The leading coefficient of f; was a multiple
of 258060 = 22-3-5-11-17-23. At least 2- 10'8 pairs (f1, fo) were considered.

2.3 Sieving

To be able to profit from near misses during the search for relations an inte-
ger x is defined to be (by, be)-smooth if with the exception of, say, four prime
factors between by, and by, all remaining prime factors of |z| are at most by. We
thus change the definition of a relation into a coprime pair of integers (a, b) with
b > 0 such that b f1(a/b) is (b1, be)-smooth and b2 fa(a/b) is (ba, be)-smooth. Al-
though large primes speed up the sieving, they make it harder to decide whether
enough relations have been found, as the criterion that more than 7(by )+ (b2)+2
are needed is no longer adequate. The decision requires duplicate and singleton
removal. It is briefly touched upon at the end of Section

We used b; = 11 -108, by = 2- 108 and b, = 2%° on cores with at least 2 GB
RAM (the majority) and by = 4.5 - 108, by = 10® on others (preferably with at
least a GB RAM). Based on sieving experiments it was expected that it would
suffice to use as sieving region the subset S of Z x Z~q of about 11-10'® coprime
pairs (a,b) with |a| < 3-10°-x'/2 ~6.3-10'"" and 0 < b < 3-10/k'/2 ~ 1.4-107.
Here k = 44000 approximates the skewness of f1. It is used to approximately
minimize the largest norm v (a, b) encountered in the sieving region. Although
prime ideal norms up to 2%° were accepted, the parameters were optimized for
norms up to 237. Most jobs attempted to factor after the sieving algebraic and
rational cofactors up to 240 and 2''9, respectively, only considering the most
promising candidates [14]. As far as we know, this was the first NFS factorization
allowing more than three algebraic large primes.

Disregarding factors of fi’s discriminant, a prime p dividing fx(r) is equivalent
to (r mod p) being a root of fr modulo p. Because da = 1, the polynomial fo
has one root modulo p for each prime p not dividing its leading coefficient, and
each such p divides f2(j) once every p consecutive j-values. For f; there may be
between zero to d; roots modulo p: some primes p do not divide f;(j) for any j,
whereas other p may divide f1(j) a total of d; times for every p consecutive
j-values. The (p,r) pairs with p < by for f; and p < bs for fy are precomputed.

Early implementations of NFS used line sieving: for some b-value and k, one
marks for each precomputed (p,r) pair for fj the a-values of the form rb + ip
for i € Z with “p,” since for those a-values p divides b% f(a/b) = vi(a,b). The
locations hit by many different p’s are remembered, and the process is repeated
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for the other k. Relations may be found at locations that were hit twice. With
many lines (b-values) to be processed, line sieving can easily be parallelized.

For RSA-768 we did not use line sieving but a more efficient approach that has
gained popularity since the mid 1990s: the lattice sieve as described in [30]. For a
(prime,root) pair q = (g, s) define Lq as the lattice of integer linear combinations
of the 2-dimensional integer (row-)vectors (g,0), (s,1) € Z2. Let Sq = SNLq. Fix
a (prime,root) pair q = (g, s) for, say, f1. The special prime q (as it was referred
to in [30]) is chosen smaller than b,, and it divides % f(a/b) for (a,b) € S,.
Lattice sieving consists of marking, for each precomputed (prime,root) pair p
for fi, the points in the intersection L, N S;. Locations that are hit often are
remembered, and the process is repeated for the precomputed (prime,root) pairs
for fo. Relations may be found at locations that were hit twice. For each relation
thus found, ¢ divides v;i(a,b). The process is repeated for other ¢ until enough
relations have been found. Because relations may be found for each special prime
occurring in v (a,b), duplicates will be found when lattice sieving.

In practice one fixes bounds I and J independent of q and defines Sq =
{iv+jv: 4, € Z,—1/2 <i<I/2,0<j < J}, where u,v form a basis for
L, that minimizes the norms v1(a,b) for (a,b) € Sy. Such a basis is found by
partially reducing the basis (g,0), (s,1) for Lq such that the first coordinate is
roughly  times bigger than the second, cf. skewness of S. Sieving is carried out
over the set {(i,j) € Zx Zso: —1/2<i<1/2,0<j < J}, interpreted as Sj.

We used I = 2'6 and J = 2%, i.e., a lattice sieving area of size roughly
231 ~2.10%. With b; = 11-108 and by = 2-108, the majority of the sieving-primes
can be expected to hit Sy only a few times. Thus, for any sieving-p, only a few of
the j-values (the lines) will be hit, unlike line sieving where each line will be hit
several times by each prime. Therefore, when lattice sieving, a more sophisticated
sieving method must be used that avoids looking at all lines 0 < j < J for
each p. This sieving by vectors [30] was first implemented in [I3] and used for
many factorizations in the 1990s [L0J7]. We used the implementation from [12],
described in Appendix [Al Most of the about 0.48 billion (prime,root) pairs (g, s)
for special primes ¢ between 0.45 and 11.1 billion (and some special primes
below 0.45 billion, with a smaller b;-value) were processed by eight contributing
parties (cf. Table[I]) during the period August 2007 until April 2009. Scaled to
a 2.2 GHz Opteron core with 2 GB RAM, a single L, was processed in less
than 100 seconds on average and produced about 134 relations, for an average
of about four relations every three seconds. This average rate varies by a factor
of about two between both ends of the special primes range that we used.

We collected 64 334 489 730 relations in total, each requiring about 150 bytes.
Compressed they occupied about 5 terabytes of disk space, backed up at various
locations. The 27.4% duplicates were removed using hashing. This was done
mostly during the sieving, overall taking less than 10 days on a 2.66 GHz Core2
processor with ten 1TB hard disks. After including 57 223 462 free relations [19],
we ended up with 47 762 243 404 relations involving 35288 334 017 prime ideals.

Given the set of unique relations, those that involve a prime ideal that does
not occur in any other relation, the singletons, cannot be part of a dependency.
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Table 1. Percentages contributed

contributor relations matrix stages, % of matrix effort
contribution 1 (60%) 2 (0%) 3 (40%)  total
Bonn (University and BSI) 8.14%
CWI 3.44%
EPFL 29.78% 34.3% 100% 78.2% 51.9%
INRIA LORIA (ALADDIN-G5K) 37.97% 46.8% 17.3% 35.0%
NTT 15.01% 18.9% 4.5% 13.1%
Scott Contini (Australia) 0.43%
Paul Leyland (UK) 0.69%
Heinz Stockinger (Enabling Grids for E-sciencE) 4.54%

Singletons were removed using hashing. Doing this once reduced the set of re-
lations to 28 984 986 047 elements with 14498 007 183 prime ideals. Removal of
singletons usually creates new singletons, and the process must be repeated until
no new singletons are created. After a few more singleton removals 24 615 168 385
relations involving at most 9976 671 468 prime ideals were left.

Further singleton removal was combined with clique removal [6], i.e., search
of combinations with matching first degree prime ideals of norms larger than bg.
Ultimately, this led to 2458 248 361 relations with 1 697 618 199 prime ideals, still
containing an almost insignificant number (604 423) of free relations. Since there
are more relations than prime ideals (so that dependencies exist), we had done
enough sieving and lots of flexibility to create a matrix. Singleton and clique
removal took less than 10 days on the same platform as above.

2.4 The Matrix Step

Current best methods to find dependencies among the rows of a sparse matrix
take time proportional to the product of the dimension and the weight (i.e.,
number of non-zero entries) of the matrix. Merging is a generic term for the set
of strategies developed to build a matrix for which close to optimal dependency
search can be expected. It is described in [6]. We ran about 10 separate merging
jobs, aiming for various optimizations (low dimension, low weight, best-of-both,
ete.), which each took a couple of days on a single core per node of a 37-node 2.66
GHz Core2 cluster with 16 GB RAM per node, and a not particularly fast inter-
connection network. The best alternative was a 192 796 550 x 192 795 550-matrix
of total weight 27 797 115 920 (on average 144 non-zeros per row), requiring about
105 GB. It was generated in 5-days on two to three cores on the 37-node cluster,
where the long duration was probably due to the large communication overhead.
When we started the project, we expected dimension about a quarter billion and
density per row of about 150, which would have been about Z times harder.

To find dependencies we used block Wiedemann [9I38| as described in [2]
Section 5.1] . We give a high level description [18, Section 2.19]. Given a non-
singular d X d matrix M over the finite field F5 and b € Fg, we wish to solve the
system Mx = b. The minimal polynomial F' of M on the vector space spanned
by b, Mb, M?b, ... has degree at most d, so that F(M)b = Z?:o F,M*% = 0.
From Fy = 1 it follows that x = Z?Zl F;M*1b, so it suffices to find the F}’s.
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Denoting by m; ; the jth coordinate of the vector M, it follows that for
each j with 1 < j < d the sequence (m; ;)52 satisfies a linear recurrence relation
of order at most d defined by the coefficients F;: for any t > 0 and 1 < j < d
we have that Z?:o Fimity; = 0. Given 2d + 1 consecutive terms of an order d
linear recurrence, its coefficients can be computed using the Berlekamp-Massey
method [22]38]. Each j may lead to a polynomial of smaller degree than F', but
taking, if necessary, the least common multiple of the polynomials found for a
few different indices j, the correct minimal polynomial will be found.

Summarizing the above, there are three major stages: a first iteration consist-
ing of 2d matrixxvector steps to generate 2d 4+ 1 terms of the linear recurrence,
the Berlekamp-Massey stage to calculate the F;’s, and a second iteration consist-
ing of d matrixxvector steps to calculate the solution using the F;’s. For large
matrices the first and the final stage are the most time consuming.

In practice it is common to use blocking, to take advantage of the fact that on
64-bit machines 64 different vectors b over Fo can be processed simultaneously,
at little or no extra cost compared to a single vector [9], while using the same
three main stages. If the vector b is 64 bits wide and in the first stage the first
64 coordinates of each of the generated 64 bits wide vectors M'b are kept, the
number of matrix (M) times vector (b) multiplications in both the first and the
final stage is reduced by a factor of 64 compared to the number of M times b
multiplications, while making the central Berlekamp-Massey stage a bit more
cumbersome. It is less common to take the blocking a step further and run both
iteration stages spread over a small number n’ of different sequences, possibly
run on disjoint clusters; in [2] this was done with n’ = 4 sequences run on three
clusters. If for each sequence one keeps the first 64 - n’ coordinates of each of the
64 bits wide vectors they generate during the first stage, the number of steps to
be carried out (per sequence) is further reduced by a factor of n’/, while allowing
independent and simultaneous execution on possibly n’ disjoint clusters. After
the first stage the data generated for the n’ sequences have to be gathered at a
central location where the Berlekamp-Massey stage will be carried out.

While keeping the first 64 - n’ coordinates per step for each sequence results
in a reduction of the number of steps per sequence by a factor of 64-n’, keeping
a different number of coordinates while using n’ sequences results in another
reduction in the number of steps for the first stage. Following [2] Section 5.1], if
the first 64 -m’ coordinates are kept of the 64 bits wide vectors for n’ sequences,
the numbers of steps become 64fim, + 64‘2, = (7’:, + 1)64‘,1n, and 64‘?n, for the first
and third stage, respectively and for each of the n’ sequences. The choices of
m' and n’ should be weighed off against the cost of the Berlekamp-Massey step
with time and space complexities proportional to (m':,”')3 dtte() and (m':,n/)Q d,
respectively and for d — oo, and where the exponent “3” may be replaced by the
matrix multiplication exponent (our implementation uses “3”).

When running the first stage using n’ sequences, the effect of non-identical
resources used for different sequences quickly becomes apparent: some locations
finish their work faster than others (depicted in Fig. [[]). To keep the fast con-
tributors busy and to reduce the work of the slower ones (thereby reducing the
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wall-clock time), a quickly processed first stage sequence may continue for s
steps beyond (:fl/, + 1), fn, while reducing the number of steps in another first
stage sequence by the same s. As described in Appendix [Bl this can be done
in a very flexible way, as long as the overall number of steps over all first stage
sequences adds up to n’ - (7’:, +1)4 fn,. The termination points of the sequences
in the third stage need to be adapted accordingly. This is easily arranged for,
since the third stage allows much easier and much wider parallelization anyhow
(assuming checkpoints from the first stage are kept). Another way to keep all
parties busy is swapping jobs, thus requiring data exchanges, synchronization,
and more human interaction, making it a less attractive option altogether.

For our matrix with d ~ 193 - 10 we used, as in [2], m’ = 2n/. But where
n' = 4 was used in [2], we used n’ = 8. This quadrupled the Berlekamp-Massey
runtime and doubled its memory compared to the matrix from [2], on top of the
increased runtime and memory demands caused by the larger dimension of the
matrix. On the other hand, the compute intensive first and third stages could
be split up into twice as many independent jobs as before. For the first stage
19632_1806 ~ 565 000 steps needed to be taken per sequence (for
8 sequences), for the third stage the average was about 196?21806 ~ 380 000 steps.
The actual numbers of steps varied, approximately, between 490 000 and 650 000
for the first stage and between 300000 and 430000 for the third stage. The
calculation of these stages was carried out on a wide variety of clusters accessed
from three locations: a 56-node cluster of 2.2GHz dual hex-core AMD processors
with Infiniband at EPFL (installed while the first stage was in progress), a variety
of ALADDIN-G5K clusters in France accessed from INRIA LORIA, and a cluster
of 110 3.0GHz Pentium-D processors on a Gb Ethernet at NTT.

On 12 nodes of a 12-cores-per-node cluster of 2.2 GHz AMD processors with
16 GB RAM per node and an Infiniband network, one multiplication step (of
the matrix times a 64 bits wide vector) took between 4.3 and 4.5 seconds for
the first stage and about 4.8 seconds for the slightly more involved third stage.
Per-iteration timings for stage one on the Pentium cluster are 11.6 seconds per
iteration when two sequences are run in parallel (thus, effectively, 5.8 seconds
per sequence), and 6.4 seconds if one sequence is processed. For the third stage
it was 7.8 seconds per iteration, for a single sequence. For the ALADDIN-G5K
clusters the per-iteration timings for stages one and three varied between 2.3
and 4.1 seconds, and between 2.6 and 17.9 seconds, respectively. It follows that
doing the entire first and third stage would have taken 98 days on 48 nodes (576
cores) of the 56-node EPFL cluster.

The first stage was split up into eight independent jobs run in parallel on
those clusters, check-pointing once every 2'* steps. Running a first (or third)
stage sequence required 180 GB RAM, a single 64 bits wide b took 1.5 GB, and
a single m; matrix 8 KB, of which 565000 were kept, on average, per first stage
sequence. Each partial sum during the third stage evaluation required 12 GB.

The central Berlekamp-Massey stage was done in 17 hours and 20 minutes on
the 56-node EPFL cluster (with 16 GB RAM per node), while using just 4 of the
12 available cores per node. Most of the time the available 896 GB RAM sufficed,

on average (s +1)
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(a) First stage contributions. (b) Final shot of third stage bookkeeping.

Fig. 1. Contributions to sequences 0-7: blue=INRIA, orange=EPFL, pink=NTT

but during a central part of the calculation more memory was needed (up to
about 1 TB) and some swapping occurred. The third stage started right after
completion of the second stage, running as many jobs in parallel as possible. The
actual bookkeeping sheet used is pictured in Fig. [Ib. Fig. b pictures the first
stage contributions apocryphally but accurately. Calendar time for the entire
block Wiedemann step was 119 days, finishing on December 8, 2009.

2.5 That’s a Bing(ﬂ

As expected the matrix step resulted in 512 = 64 - 8 linear dependencies mod-
ulo 2 among the exponent vectors, more than enough to include the quadratic
characters at this stage [I]. This reduced the solution space to 460 elements,
giving us that many independent chances of about ; to factor RSA-768. In
the 52 = 512 — 460 difference, a dimension of 46 can be attributed to prime
ideals not included in the matrix that divide the leading coefficients or the
discriminant.

The square roots of the algebraic numbers were calculated by means of the
method from [23] (see also [29]), which uses the known factorization of the al-
gebraic numbers into small prime ideals of known norms. The implementation
based on [3] turned out to have a bug when computing the valuations for the
free relations of the prime ideals lying above the divisor 17722398 737 > 232
of the discriminant of f;. Along with a bug in the quadratic character calcu-
lation, this delayed completion of the square root step by a few (harrowing)
days.

Once the bugs were located and fixed, it took two hours using the hard disk
and one core on each of twelve dual hex-core 2.2GHz AMD processors to compute
the exponents of all prime ideals for eight solutions simultaneously. Computing
a square root using the implementation from [3] took one hour and forty minutes
on such a dual hex-core processor. The first one (and four of the other seven)
led to the factorization p - ¢, found at 20:16 GMT on December 12, 2009:

1 “Is that the way you say it? “That’s a bingo?””
“You just say “bingo”.” [37]
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p = 3347807169895689878604416984821269081770479498371376856891
2431388982883793878002287614711652531743087737814467999489,
q = 3674604366679959042824463379962795263227915816434308764267
6032283815739666511279233373417143396810270092798736308917,

where p and ¢ are 384-bit, 116-digit primes. With “pk” a k-digit prime, we found:

p—1=2%11% 13- 7193 - 160378082551 - 7721565388263419219 -
111103163449484882484711393053 - p47,

p+1=2-3-5-31932122749553372262005491861630345183416467 - p71,

q—1=2%-359-pl13, q+1=2-3-23-41-47-239875144072757917901 - p90.

3 Concluding Remarks

It is customary to conclude a paper reporting a new factoring record with a
preview of coming attractions. Our main conclusion was summarized in the
introduction and was already announced in [2], Section 7]: at this point factoring
a 1024-bit RSA modulus looks more than five times easier than a 768-bit RSA
modulus looked back in 1999, when we achieved the first public factorization of
a 512-bit RSA modulus. Nevertheless, a 1024-bit RSA modulus is still about a
thousand times harder to factor than a 768-bit one. It may be possible to factor
a 1024-bit RSA modulus within the next decade by means of an academic effort
on the same scale as the effort presented here. Recent standards recommend
phasing out such moduli by the end of the year 2010 [28]. See also [21].

Another conclusion from our work is that we can confidently say that if we
restrict ourselves to an open community, academic effort such as ours and unless
something dramatic happens in factoring, we will not be able to factor a 1024-bit
RSA modulus within the next five years [27]. After that, all bets are off.

The ratio between sieving and matrix time was almost 10. This is probably
not optimal if one wants to minimize the overall runtime. But the latter may not
be the most important criterion. Sieving is easy, and doing more of it may be a
good investment if that leads to an easier matrix step. The relations collected
for RSA-768 will give us a better insight in the trade-off between sieving and
matrix efforts, where also the choice of the large prime bound b, may play a role.
This is a subject for further study that may be expected to lead, ultimately, to
a recommendation for close to optimal parameter choices — depending on what
one wants to optimize — for NF'S factorizations in the 700- to 800-bit range.

Our computation required more than 10%° operations. With the equivalent
of almost 2000 years of computing on a single core 2.2GHz AMD Opteron, on
the order of 267 instructions were carried out. The overall effort is sufficiently
low that even for short-term protection of data of little value, 768-bit RSA
moduli can no longer be recommended. This conclusion is the opposite of the
one on [36], which is based on a hypothetical factoring effort of six months on
100 000 workstations, i.e., about two orders of magnitude more than we spent.
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A Sieving by Vectors

We briefly describe the lattice sieve implementation from [12] which was used
for most NFS factorization records of the last decade.

Let vy, (a, b) = b% fi,(a/b). Lattice sieving, introduced by Pollard [30], increases
the smoothness probability of v (a, b) by looking at (a, b)-pairs for which v (a, b)
is divisible by a large special prime ¢. Let s mod ¢ be a residue class such that this
is the case for a = sb mod ¢. One constructs a reduced basis (u,v) of the lattice
of all (a,b) € Z* with a = sb mod ¢. A scalar product adapted to the skewness
of the polynomial pair is used for this reduction. The problem is then to find all
coprime pairs (i,j), —I1/2 <i < 1/2,0 < j < J, such that v1(a,b)/q and v2(a,b)
are smooth, with (a,b) = iu + jv. We assume I to be even. As mentioned in
Section [2.3] for practical values of the parameters, I is much smaller than the
smoothness bounds b; and by, and it is non-trivial to efficiently sieve such regions.

Pollard proposed to do this by using, for each (prime,root) pair p with prime
p bounded by the relevant smoothness bound by, a reduced base of the lattice
I, of pairs (¢, 7) for which vy(a,b) for the corresponding (a, b)-pair is divisible
by p. In [I3] that approach was used for p larger than a small multiple of T,
while avoiding storage of “even, even” sieve locations (and using line sieving for
the other primes). Our approach uses a truncated continued fraction expansion
to determine a basis B = ((a, 8), (v, 5)) of I, with the following properties:

a The numbers  and § are positive.
b Wehave - I <a<0<y<lTandy—a>1.

Let us assume that I, consists of all (¢,7) for which ¢ = pj mod p, where 0 <
p < p. The case p = 0 and the case where I}, consists of all (¢,7) for which p
divides j are not treated, because they produce just (0, 1) and (1, 0), respectively,
as only coprime pairs. We also assume p > I, as smaller primes are better
treated by line sieving. To construct a basis with the above properties, one takes
(i0,jo) = (=p,0), (i1,51) = (p,1) and puts (igt1,jet1) = (fe—1,Je—1) + (e, je)
with r = L— vt J . Note that (—1)**1i, > 0, that r is positive and that the j, thus

e
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form an increasing sequence of non-negative numbers. The process is stopped at
the first ¢ with | 4, |< I. If £ is odd, we put (e, 8) = (i¢—1,Je—1) + 7(ie, Je),
where r is the smallest integer for which « > —1I. If £ is even, we put (v,d) =
(ie—1,7e—1) + 7(i¢, je), where r is the smallest integer such that v < I. In both
cases, the element of B = ((a, B8), (7, 5)) not yet described is given by (is, j¢).
To explain how to efficiently sieve using a basis with these properties, let
(1,7) € I, such that —I/2 <14 < I/2. We want to find the (uniquely determined)
(¢/,4") € I'y such that —I/2 <4’ < 1/2,j > j, and j’ is as small as possible. As
B is a basis of I}, there are integers d and e with

(i/’j/) - (Z’j) = d(avﬁ) + 6(776)'

If d- e < 0, then condition b on B would force the first component of the right
hand side to have absolute value > I, whereas our constraints on ¢ and i’ force it
to have absolute value < I. Since j' — 7, 3, and § are all positive, we have d > 0
and e > 0. It is now easy to see that the solution to our problem is:

(0,1) ifi<I/2—~
(de)=<¢(1,1) ifI/)2—y<i<—-I/2—q«
(1,0) ifi>—-1/2—a.

The minimality of j” follows because d = 0 leads to a violation of i’ < I/2 unless
i < I/2—7 (i.e., save for the first of the above cases) and e = 0 leads to ' < —I/2
unless ¢ > —1/2 — « (i.e., save for the third of the above cases).

To implement this process on a modern CPU, it seems best to take I = 2*
for some natural number ¢. It is possible to identify pairs (i, ) of integers with
—1/2 <i < I/2 with integers x by putting « = j-I+i+1/2. If o’ = j'-I+i'+1/2
with (¢/,5’) as above, then 2’ =z +C, 2’ =2+ A+ C and 2’ = x + A in the
three cases above, with A =a +1-f and C =~ + [ -§. The first component of
a pair (4,7), (o, B) or (v,9) is extracted from these numbers by using a bitwise
logical operation, and the selection of the appropriate one of the above three
cases is best done using conditional move instructions.

For cache efficiency, the sieving region S; was split into areas A;, 0 < ¢ <
T, of size equal to the Ll-cache size. For primes p larger than that size (or
a small multiple thereof), sieving is not done directly. Instead, the numbers x
corresponding to elements of SqNI}, were calculated ahead of the sieving process,
and their offsets into the appropriate region A; stored in the corresponding
element of an array S of T stacks. To implement the trial division sieve efficiently,
the corresponding factor base index was also stored. Of course, this approach
may also be used for line sieving, and in fact was used in [3]. A similar approach
has been described by T. Oliveira e Silva in connection with his implementation
of the Odlyzko-Lagarias-Lehmer-Meissel method.

Parallelization is possible in several different ways. A topology for splitting the
sieving region among several nodes connected by a network is described in [12].
If one wants to split the task among several cores sharing their main memory,
it seems best to distribute the regions A; and also the large factor base primes
among them. Each core first calculates its part of S, for its assigned part of the
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large factor base elements, and then uses the information generated by all cores
to treat its share of regions A;. A lattice siever parallelized that way was used
for a small part of the RSA-576 sieving tasks, but the code fell out of use and
was not used for the current project. The approach may be more useful today,
with many cores per processor being a standard.

B Unbalanced Sequences in Block Wiedemann

Before d