

Lecture Notes in Computer Science 6193
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Masatoshi Yoshikawa Xiaofeng Meng
Takayuki Yumoto Qiang Ma Lifeng Sun
Chiemi Watanabe (Eds.)

Database Systems
for Advanced Applications
15th International Conference, DASFAA 2010
International Workshops:
GDM, BenchmarX, MCIS, SNSMW, DIEW, UDM
Tsukuba, Japan, April 1-4, 2010
Revised Selected Papers

13

Volume Editors

Masatoshi Yoshikawa
Graduate School of Informatics, Kyoto University, Yoshida-Honmachi
Sakyo-ku, Kyoto 606-8501, Japan
E-mail: yoshikawa@i.kyoto-u.ac.jp

Xiaofeng Meng
Information School, Renmin University of China
Beijing 100872, China
E-mail: xfmeng@ruc.edu.cn

Takayuki Yumoto
Graduate School of Engineering, University of Hyogo
2167 Shosha, Himeji, Hyogo 671-2280, Japan
E-mail: yumoto@eng.u-hyogo.ac.jp

Qiang Ma
Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
E-mail: qiang@i.kyoto-u.ac.jp

Lifeng Sun
Institute of HCI and Media Integration, Tsinghua University
Beijing 100084, China
E-mail: sunlf@tsinghua.edu.cn

Chiemi Watanabe
Department of Information Science, Ochanomizu University
2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
E-mail: chiemi@is.ocha.ac.jp

Library of Congress Control Number: 2010930790

CR Subject Classification (1998): H.3, H.4, I.2, C.2, H.2, H.5

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-14588-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14588-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

Database Systems for Advanced Applications (DASFAA) is an international fo-
rum for academic exchanges and technical discussions among researchers, devel-
opers, and users of databases from academia, business, and industry. DASFAA
has been a leading conference in the areas of databases, large-scale data man-
agement, data mining, and the Web. Workshops of the 15th DASFAA were
held in Tsukuba, Japan on April 4, 2010. These proceedings contain papers of
DASFAA2010 workshops. Among the proposals submitted in response to the
call-for-workshops, we decided to hold the following six workshops:

– First International Workshop on Graph Data Management: Techniques and
Applications (GDM 2010)

– Second International Workshop on Benchmarking of Database Management
Systems and Data-Oriented Web Technologies (BenchmarX 2010)

– Third International Workshop on Managing Data Quality in Collaborative
Information Systems (MCIS 2010)

– Workshop on Social Networks and Social Media Mining on the Web
(SNSMW 2010)

– Data-Intensive eScience Workshop (DIEW 2010)
– Second International Workshop on Ubiquitous Data Management

(UDM 2010)

The research area of DASFAA is growing rapidly. The topics of each workshop
cover specific area of DASFAA and complement topics of the main conference.

We are grateful to the workshop organizers for their effort in soliciting papers,
selecting papers by peer review, and preparing attractive programs. We would
like to express our appreciation to Qiang Ma, Lifeng Sun and Takayuki Yumoto
for their dedicated work. Our thanks also goes to Chiemi Watanabe for her hard
work in preparing this proceedings volume.

April 2010 Xiaofeng Meng
Masatoshi Yoshikawa

DASFAA 2010 Workshop Organization

Workshop Committee Co-chairs

Masatoshi Yoshikawa Kyoto University, Japan
Xiaofeng Meng Renmin University, China

Workshop Committee

Qiang Ma Kyoto University, Japan
Lifeng Sun Tsinghua University, China
Takayuki Yumoto University of Hyogo, Japan

Publication Chair

Chiemi Watanabe Ochanomizu University, Japan

First International Workshop on Graph Data Management:
Techniques and Applications (GDM 2010)

Workshop Co-chairs

Sherif Sakr University of New South Wales, USA
Wei Wang University of New South Wales, USA

Program Committee

Ghazi Al-Naymat University of New South Wales, Australia
Toshiyuki Amagasa University of Tsukuba, Japan
Ahmed Awad University of Potsdam, Germany
Sourav S. Bhowmick Nanyang Technological University, Singapore
Stephane Bressan National University of Singapore, Singapore
Lei Chen Hong Kong University of Science and Technology,

China
Hong Cheng Chinese University of Hong Kong, China
James Cheng Nanyang Technological University, Singapore
Claudio Gutierrez Universidad de Chile, Chile
Herman Haverkort Technische Universiteit Eindhoven,

The Netherlands
Huahai He Google, USA
Jun Huan University of Kansas, USA

VIII Organization

Yiping Ke Chinese University of Hong Kong, China
Mohamed F. Mokbel University of Minnesota, USA
Yuanyuan Tian IBM Almaden Research Center, USA
Alexander Wolff University of Würzburg, Germany
Raymond Wong National ICT Australia, Australia
Lei Zou Peking University, China
Rui Zhang University of Melbourne, Australia

Second International Workshop on Benchmarking of
Database Management Systems and Data-Oriented Web
Technologies (BenchmarX 2010)

Workshop Organizers

Irena Mlýnková Charles University in Prague, Czech Republic
Martin Nečaský Charles University in Prague, Czech Republic
Jǐŕı Dokulil Charles University in Prague, Czech Republic

Program Committee Chairs

Martin Nečaský Charles University in Prague, Czech Republic
Eric Pardede La Trobe University, Bundoora, Australia

Program Committee

Radim Bača Technical University of Ostrava, Czech Republic
Geert Jan Bex Hasselt University, Belgium
Martine Collard INRIA Sophia Antipolis, France
Sven Hartmann Clausthal University of Technology, Germany
Kazuhiro Inaba National Institute of Informatics, Japan
Agnes Koschmider Institute AIFB, Universität Karlsruhe, Germany
Michal Krátký Technical University of Ostrava, Czech Republic
Sebastian Link Victoria University of Wellington, New Zealand
Sebastian Maneth University of New South Wales, Australia
Alexander Paar Universität Karlsruhe, Germany
Incheon Paik The University of Aizu, Japan
Sherif Sakr University of New South Wales, Australia
Dmitry Shaporenkov University of Saint Petersburg, Russia
Jakub Yaghob Charles University in Prague, Czech Republic

Organization IX

Third International Workshop on Managing Data Quality
in Collaborative Information Systems (MCIS 2010)

Workshop Organizers

Shazia Sadiq The University of Queensland, Australia
Xiaochun Yang Northeastern University, China
Xiaofang Zhou The University of Queensland, Australia
Ke Deng The University of Queensland, Australia

Program Committee

Lei Chen Hong Kong University of Science and Technology,
Hong Kong

Jun Gao Peking University, China
Marta Indulska University of Queensland, Australia
Adam Jatowt Kyoto University, Japan
Cheqing Jin East China Normal University, China
Marek Kowalkiewicz SAP Australia
Jiuyong Li University of South Australia, Australia
Qing Liu CSIRO, Australia
Mohamed Medhat Gaber Monash University, Australia
Wanita Sherchan CSIRO Australia
Yanfeng Shu CSIRO Australia
Bin Wang Northeastern University, China

Workshop on Social Networks and Social Media Mining
on the Web (SNSMW 2010)

Workshop Co-chairs

Yoshinori Hijikata Osaka University, Japan
Guandong Xu Victoria University, Australia

Program Co-chairs

Lin Li Wuhan University of Technology, China
Munehiko Sasajima Osaka University, Japan

Program Committee

James Bailey University of Melbourne, Australia
Yixin Chen Washington University in St. Louis, USA
Irene Ggarrigos University of Alicante, Spain
Kenji Hatano Doshisha University, Japan
Yoshinori Hijikata Osaka University, Japan

X Organization

Makoto Iguchi Synclore Corporation, Japan
Fumihiro Kato Keio University, Japan
Yukiko Kawai Kyoto Sangyo University, Japan
Hideyuki Kawashima Tsukuba University, Japan
Sang-Wook Kim Hanyang University, Korea
Ichiro Kobayashi Ochanomizu University, Japan
Tadahiko Kumamoto Chiba Institute of Technology, Japan
Yuefeng Li Queensland University of Technology, Australia
Wenxin Liang Dalian University of Technology, China
Mitsunori Matsushita Kansai University, Japan
Harumi Murakami Osaka City University, Japan
Hidetsugu Nanba Hiroshima City University, Japan
Ikki Omukai National Institute of Informatics, Japan
Shingo Otsuka National Institute for Materials Science, Japan
Hitomi Saito Aichi University of Education, Japan
Hiroshi Sakamoto Kyushu Institute of Technology, Japan
Shigeaki Sakurai Toshiba Corporation, Japan
Munehiko Sasajima Osaka University, Japan
Hiroko Shoji Chuo University, Japan
Taro Sugihara Japan Advanced Institute of Science and

Technology, Japan
Yasufumi Takama Tokyo Metropolitan University, Japan
Xiaohui Tao Queensland University of Technology, Australia
Kenji Tateishi NEC Corporation, Japan
Masashi Toyoda University of Tokyo, Japan
Botao Wang Northeastern University, China
Guoren Wang Northeastern University, China
Kazuaki Yamada Toyo University, Japan
Zhenglu Yang University of Tokyo, Japan
Koji Zettsu National Institute of Information and

Communications Technology, Japan
Jianwei Zhang Kyoto Sangyo University, Japan
Yanchun Zhang Victoria University, Australia

Data-Intensive eScience Workshop (DIEW 2010)

Workshop Organizers

Kento Aida National Institute of Informatics (NII), Japan
Geoffrey Fox Indiana University, USA
Neil Chue Hong Open Middleware Infrastructure Institute (OMII),

UK
Isao Kojima National Institute of Advanced Industrial Science

and Technology (AIST), Japan
Masatoshi Ohishi National Astronomical Observatory of Japan

(NAOJ), Japan

Organization XI

Program Committee

Takeshi Horinouchi Hokkaido University, Japan
Toshiaki Katayama University of Tokyo, Japan
Akira Kinjo Osaka University, Japan
Akiyoshi Matono National Institute of Advanced Industrial Science

and Technology (AIST), Japan
Yuji Shirasaki National Astronomical Observatory of Japan

(NAOJ), Japan
Yukio Yamamoto Japan Aerospace Exploration Agency (JAXA),

Japan
Shohei Yokoyama Shizuoka University, Japan

External Reviewers

Yoshiharu Ishikawa Nagoya University, Japan
Hiroko Kinutani University of Tokyo, Japan
Steven Lynden AIST, Japan
Toshiyuki Shimizu Kyoto University, Japan

Supported by

KAKEN-fuzoroi (20240010)
RENKEI project

The Second International Workshop on Ubiquitous Data
Management (UDM 2010)

Honorable Workshop Chair

Katsumi Tanaka Kyoto University, Japan

Organization Co-chairs

Yutaka Kidawara NICT, Japan
Ki-Joune Li Pusan National University, Korea

Program Co-chairs

Koji Zettsu NICT, Japan
Hannu Jaakkolam Tampere University of Technology, Finland

Publication Co-chairs

Kyoungsook Kim NICT, Japan
Sungwoo Tak Pusan National University, Korea

XII Organization

Local Arrangements Co-chairs

Takafumi Nakanishi NICT, Japan
Hisashi Miyamori Kyoto Sangyo University, Japan
Yuhei Akahoshi NICT, Japan

Publicity Chair

Mitsuru Minakuchi Kyoto Sangyo University, Japan

Program Committee Members

Paolo Atzeni University of Rome 3, Italy
Bostjan Brumen University of Maribor, Slovenia
Takahiro Hara Osaka University, Japan
Hannu Jaakkola Tampere University of Technology, Finland
Christian S. Jensen Aalborg University, Denmark
Sang-Wook Kim Hanyang University, Korea
Yong-Jin Kwon Korea Aerospace University, Korea
Ray R. Larson University of California, Berkeley, USA
Robert Laurini INSA de Lyon, France
Mario A. Lopez Denver University, USA
Cyrus Shahabi University of Southern California, USA
Shashi Shekhar University of Minnesota, USA
Kazutoshi Sumiya University of Hyogo, Japan
Guangzhong Sun University of Science and Technology of China,

China
Bernhard Thalheim Christian Albrechts University at Kiel, Germany
Peter Vojtas Charles University, Czech Republic
Ouri Wolfson University of Illinois at Chicago, USA
Xing Xie Microsoft Research Asia, China
Koji Zettsu NICT, Japan
Aoying Zhou East China Normal University, China

Organization XIII

Organizers

University of Tsukuba The Database Society of Japan (DBSJ)

In Cooperation with:

KIISE Database Society of Korea
The China Computer Federation Database Technical Committee
ARC Research Network in Enterprise Information Infrastructure
Asian Institute of Technology (AIT)
“New IT Infrastructure for the Information-explosion Era”, MEXT (Ministry of
Education, Culture, Sports, Science and Technology) Grant-in-Aid for Scientific
Research on Priority Areas, Japan
Information Processing Society of Japan (IPSJ)
The Institute of Electronics, Information, and Communication Engineers

(IEICE)
Japan PostgreSQL Users Group
MySQL Nippon Association
The Japanese Firebird Users Group

Sponsoring Institutions

Platinum Sponsors

BeaconIT, Japan MITSUBISHI ELECTRIC
CORPORATION, Japan

XIV Organization

Gold Sponsors

National Institute for
Materials Science (NIMS),
Japan

KDDI R&D Laboratories
Inc., Japan

National Institute of
Advanced Industrial
Science and Technology
(AIST), Japan

FUJITSU LIMITED TOSHIBA CORPORA-
TION

Silver Sponsors

Ricoh Co., Ltd., Japan NTT DATA
CORPORATION, Japan

Hitachi, Ltd., Japan

Bronze Sponsors

Ricoh IT Solutions Co.,
Ltd., Japan

SRA OSS, Inc., Japan

Table of Contents

1st International Workshop on Graph Data
Management: Techniques and Applications
(GDM 2010)

GDM2010 Workshop Organizers’ Message . 1
Sherif Sakr and Wei Wang

On-Line Preferential Nearest Neighbor Browsing in Large Attributed
Graphs . 2

Jiefeng Cheng, Jeffrey Xu Yu, and Reynold C.K. Cheng

Mining Useful Time Graph Patterns on Extensively Discussed Topics
on the Web (Position Paper) . 20

Taihei Oshino, Yasuhito Asano, and Masatoshi Yoshikawa

Querying Graph-Based Repositories of Business Process Models 33
Ahmed Awad and Sherif Sakr

SGDB – Simple Graph Database Optimized for Activation Spreading
Computation . 45

Marek Ciglan and Kjetil Nørv̊ag

Data Intensive e-Science Workshop (DIEW2010)

Introduction to the Data Intensive e-Science Workshop (DIEW) 2010 . . . 57
Isao Kojima, Kento Aida, Geoffrey Fox, Neil Chue Hong, and
Masatoshi Ohishi

WISE-CAPS: Web-Based Interactive Secure Environment for
Collaborative Analysis of Planetary Science . 58

Junya Terazono, Ryosuke Nakamura, Shinsuke Kodama,
Naotaka Yamamoto, Hirohide Demura, Naru Hirata,
Yoshiko Ogawa, Jun’ichi Haruyama, Makiko Ohtake, and
Tsuneo Matsunaga

Towards Large-Scale Scientific Dataspaces for e-Science Applications . . . 69
Ibrahim Elsayed and Peter Brezany

Providing Constructed Buildings Information by ASTER Satellite
DEM Images and Web Contents . 81

Takashi Takagi, Hideyuki Kawashima, Toshiyuki Amagasa, and
Hiroyuki Kitagawa

XVI Table of Contents

Gfdnavi, Web-Based Data and Knowledge Server Software for
Geophysical Fluid Sciences, Part I: Rationales, Stand-Alone Features,
and Supporting Knowledge Documentation Linked to Data 93

Takeshi Horinouchi, Seiya Nishizawa, Chiemi Watanabe,
Akinori Tomobayashi, Shigenori Otsuka, Tsuyoshi Koshiro,
Yoshi-Yuki Hayashi, and GFD Dennou Club

Gfdnavi, Web-Based Data and Knowledge Server Software for
Geophysical Fluid Sciences, Part II: RESTful Web Services and
Object-Oriented Programming Interface . 105

Seiya Nishizawa, Takeshi Horinouchi, Chiemi Watanabe,
Yuka Isamoto, Akinori Tomobayashi, Shigenori Otsuka, and
GFD Dennou Club

3rd International Workshop on Managing Data
Quality in Collaborative Information Systems
(MCIS2010)

MCIS2010 Workshop Organizers’ Message . 117
Shazia Sadiq, Xiaochun Yang, Xiaofang Zhou, and Ke Deng

Checking Structural Integrity for Metadata Repository Systems by
Means of Description Logics . 118

Xiaofei Zhao and Zhiqiu Huang

On Memory and I/O Efficient Duplication Detection for Multiple
Self-clean Data Sources . 130

Ji Zhang, Yanfeng Shu, and Hua Wang

Top-K Generation of Mediated Schemas over Multiple Data Sources 143
Guohui Ding, Guoren Wang, and Bin Wang

A Graphical Method for Reference Reconciliation . 156
Zheng Yongqing, Kong Qing, and Dong Guoqing

2nd International Workshop on Benchmarking of
Database Management Systems and Data-Oriented
Web Technologies (BenchmarX’10)

BenchmarX’10 Workshop Organizers’ Message . 168
Irena Mlýnková, Martin Nečaský, and Jǐŕı Dokulil

Benchmarking Holistic Approaches to XML Tree Pattern Query
Processing (Extended Abstract of Invited Talk) . 170

Jiaheng Lu

Benchmarking the Compression of XML Node Streams 179
Radim Bača, Jǐŕı Walder, Martin Pawlas, and Michal Krátký

Table of Contents XVII

Generation of Synthetic XML for Evaluation of Hybrid XML
Systems . 191

David Hall and Lena Strömbäck

Benchmarking Publish/Subscribe-Based Messaging Systems 203
Kai Sachs, Stefan Appel, Samuel Kounev, and Alejandro Buchmann

An Experimental Evaluation of Relational RDF Storage and Querying
Techniques . 215

Hooran MahmoudiNasab and Sherif Sakr

Analyzer : A Framework for File Analysis . 227
Martin Svoboda, Jakub Stárka, Jan Sochna, Jǐŕı Schejbal, and
Irena Mlýnková

Workshop on Social Networks and Social Media
Mining on the Web (SNSMW2010)

SNSMW 2010 Workshop Organizers’ Message . 239
Yoshinori Hijikata and Guandong Xu

Task-Oriented User Modeling Method and Its Application to Service
Navigation on the Web . 240

Munehiko Sasajima, Yoshinobu Kitamura, and Riichiro Mizoguchi

Tag Disambiguation through Flickr and Wikipedia 252
Anastasia Stampouli, Eirini Giannakidou, and Athena Vakali

Measuring Attention Intensity to Web Pages Based on Specificity of
Social Tags . 264

Takayuki Yumoto and Kazutoshi Sumiya

SQL as a Mashup Tool: Design and Implementation of a Web Service
Integration Approach Based on the Concept of Extensible Relational
Database Management Systems . 274

Yoshihiko Ichikawa, Yuuki Matsui, and Minoru Tanaka

Design of Impression Scales for Assessing Impressions of News
Articles . 285

Tadahiko Kumamoto

An Evaluation Framework for Analytical Methods of Integrating
Electronic Word-of-Mouth Information: Position Paper 296

Kazunori Fujimoto

A Framework for Finding Community in Complex Networks 308
Naoki Okada, Kyohei Tanikawa, Yoshinori Hijikata, and
Shogo Nishida

XVIII Table of Contents

C&C: An Effective Algorithm for Extracting Web Community Cores . . . 316
Xianchao Zhang, Yueting Li, and Wenxin Liang

Extracting Local Web Communities Using Lexical Similarity 327
Xianchao Zhang, Wen Xu, and Wenxin Liang

An Improved Algorithm for Extracting Research Communities from
Bibliographic Data . 338

Yushi Nakamura, Toshihiko Horiike, Yoshimasa Taira, and
Hiroshi Sakamoto

Proposal of Deleting Plots from the Reviews to the Items with
Stories . 346

Kaori Ikeda, Yoshinori Hijikata, and Shogo Nishida

Basic Study on a Recommendation Method Considering
Region-Restrictedness of Spots . 353

Kenta Oku and Fumio Hattori

A Hybrid Recommendation Method with Double SVD Reduction 365
Yusuke Ariyoshi and Junzo Kamahara

Monitoring Geo-social Activities through Micro-blogging Sites 374
Tatsuya Fujisaka, Ryong Lee, and Kazutoshi Sumiya

The 2nd International Workshop on Ubiquitous Data
Management(UDM2010)

UDM2010 Workshop Organizers’ Message . 385
Katsumi Tanaka, Yutaka Kidawara, and Ki-Joune Li

Distributed SLCA-Based XML Keyword Search by Map-Reduce 386
Chenjing Zhang, Qiang Ma, Xiaoling Wang, and Aoying Zhou

FVC: A Feature-Vector-Based Classification for XML Dissemination 398
Xiaoling Wang, Ester Martin, Weining Qian, and Aoying Zhou

An Object-Field Perspective Data Model for Moving Geographic
Phenomena . 410

K.-S. Kim and Y. Kiyoki

GRAMS3: An Efficient Framework for XML Structural Similarity
Search . 422

Peisen Yuan, Xiaoling Wang, Chaofeng Sha, Ming Gao, and
Aoying Zhou

An Asynchronous Message-Based Knowledge Communication in a
Ubiquitous Environment . 434

Petri Rantanen, Pekka Sillberg, Hannu Jaakkola, and
Takafumi Nakanishi

Table of Contents XIX

Providing Scalable Data Services in Ubiquitous Networks 445
Tanu Malik, Raghvendra Prasad, Sanket Patil,
Amitabh Chaudhary, and Venkat Venkatasubramanian

On-Demand Data Broadcasting for Data Items with Time Constraints
on Multiple Broadcast Channels . 458

Ta-Chih Su and Chuan-Ming Liu

Author Index . 471

GDM2010

Workshop Organizers’ Message

Sherif Sakr and Wei Wang

University of New South Wales, Sydney, Australia

The graph is a powerful tool for representing and understanding objects and
their relationships in various application domains. Recently, graphs have been
widely used to model many complex structured and schemaless data such as
semantic web, social networks, biological networks, chemical compounds, multi-
media databases and business process models. The growing popularity of graph
databases has generated interesting and fundamental data management prob-
lems which attracted a lot of attention from the database community such as:
subgraph search queries, supergraph search queries, frequent subgraph mining
and approximate subgraph matching. In principle, efficient management of large
graph databases is a key performance issue in any graph-based application.

The1st InternationalWorkshoponthe techniquesandapplicationsofgraphdata
management (GDM’10) was held on April 4, 2010 at the University of Tsukuba,
Japan in conjunction with the 15th InternationalConference on Database Systems
for Advanced Applications (DASFAA’10). The overall goal of the workshop was
to bring people from different fields together, exchange research ideas and results,
encourage discussion about how to provide efficient graph data management tech-
niques in different application domains and to understand the research challenges
of such area.

The workshop attracted eight submissions in addition to an invited paper.
The submissions are highly diversified, coming from Australia, Germany, Swe-
den, China, Chile and Japan. The program committee consisted of 19 members
from 8 different countries. All submissions were peer reviewed by three program
committee members for its technical merit, originality, significance, and relevance
to the workshop. The program committee selected three papers for inclusion in
the workshop proceedings (Acceptance Rate 38%). The accepted papers covered
important research topics and novel applications on business process model,
mining timely graph patterns, and spread activation queries.

In fact, this workshop would not be successful without the help of many
people. We would like to thank the program committee members for evaluating
the assigned papers in a timely and professional manner. The great efforts of the
members in the organization committee of DASFAA 2010 in accommodating
and supporting the workshops are highly appreciated. Certainly, running this
workshop would not have been possible without the support from the authors
for their submissions.

After this successful first edition of the workshop which provided many in-
sights for interesting ideas and research problems, we believe that the GDM
workshop will become a traditional annual meeting for the community of re-
searchers in the different topics of the graph data management field.

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On-Line Preferential Nearest Neighbor Browsing in
Large Attributed Graphs

Jiefeng Cheng1,�, Jeffrey Xu Yu2, and Reynold C.K. Cheng1

1 University of Hong Kong, China
{jfcheng,ckcheng}@cs.hku.hk

2 The Chinese University of Hong Kong, China
yu@se.cuhk.edu.hk

Abstract. Given a large weighted directed graph where nodes are associated
with attributes and edges are weighted, we study a new problem, called pref-
erential nearest neighbors (NN) browsing, in this paper. In such browsing, a user
may provide one or more source nodes and some keywords to retrieve the nearest
neighbors of those source nodes that contain the given keywords. For example,
when a tourist has a plan to visit several places (source nodes), he/she would like
to search hotels with some preferred features (e.g., Internet and swimming pools).
It is highly desirable to recommend a list of near hotels with those preferred
features, in order of the road network distance to the places (source nodes) the
tourist wants to visit. The existing approach by graph traversal at querying time
requires long query processing time, and the approach by maintenance of the pre-
computed all-pairs shortest distances requires huge storage space on disk. In this
paper, we propose new approaches to support on-line preferential NN browsing.
The data graphs we are dealing with are weighted directed graphs where nodes
are associated with attributes, and the distances between nodes to be found are
the exact distances in the graph. We focus ourselves on two-step approaches. In
the first step, we identify a number of reference nodes (also called centers) which
exist alone on some shortest paths between a source node and a preferential NN
node that contains the user-given keywords. In the second step, we find the pref-
erential NN nodes within a certain distance to the source nodes via the relevant
reference nodes, using an index that supports both textural (attributes) and and the
distance. Our approach tightly integrates NN search with the preference search,
which is confirmed to be efficient and effective to find any preferential NN nodes.

1 Introduction

Recently, with the rapid growth of Internet and the World-Wide-Web, the fast-paced
data archiving and analyzing techniques sparkle increasing interest in efficient search
of nearest neighbors (NN) that meet a user’s preferences. In this paper, we study a
new nearest neighbors search problem by taking keyword search into consideration.
Several examples are given below to motivate our study. As an example, in a large road
network [19], a tourist, who plans to visit a few places, would like to find near hotels

� This work was mainly done while Jiefeng Cheng was working in The Chinese Univ. of Hong
Kong.

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 2–19, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On-Line Preferential Nearest Neighbor Browsing 3

with some preferred features (e.g., Internet and swimming pools), and wants to know
the exact distances between the hotels and the places he/she wants to visit in order by the
distance. As another example, a user may give hotel names and search restaurants with
some features that are near to the given hotels. It is desirable to see the hotel which is
closest to a restaurant with the requested features to be visited is returned first. Examples
can be also found in a collaborative network. Suppose that a researcher is interested in
a new topic and is looking for people who have done the relevant work to collaborate.
On the collaborative network, she/he can search authors who study that topic and are
close to her/his friends in the collaborative network. The possible collaborators can be
ranked by the distances to her/his friends.

Motivated by these requirements and the applications, in this paper, we study a new
nearest neighbors search problem, which we call the preferential NN browsing. In de-
tail, we use the common graph distance: Let G = (V, E) be an edge-weighted directed
graph, where V is a set of nodes, and E is a set of edges, and every edge weight is a
non-negative number. The shortest distance from a node u to a node v, denoted δ(u, v),
is the minimum total weight along a path from u and v. And a shortest path from u to
v is a path from u to v with the minimum total weight δ(u, v). A node is associated
with attributes to describe its features. A number of literals, {t}, are used to represent
the node attributes or a user’s preferences (keywords).1 For preferential NN browsing,
a user provides one or more source nodes {q} and a number of keywords {t}. A list of
node pairs is returned where one node is one taken from {q} and the other is a node, v,
that contains all the required {t}. The list is ranked by the distance between q and v.

This kind of queries can also be applied as building blocks for emerging graph-
distance-based applications: graph-structured XML data, bio graphs, and keyword
search. The twig query against graph-structured XML data [12] intensively processes
the required node pairs of the ancestor/descendant relationship with the corresponding
distance information, where one node in a pair is derived from an intermediate result
while the other node corresponds to a certain label (literal) and connects to the first
node with a specified distance. Those node pairs are enumerated in the increasing order
to their distances for top-k queries. The approach of [13] finds star-like tree answers
for a set of user-given keywords in large graphs. For each tree answer, all leaf nodes
contain all keywords. [13] enumerates node pairs (r, vt) in the increasing order of their
distances in a large graph where r in the pair is the root node of a possible answer
which can be any node in the large graph while vt in the pair is required to contain the
keyword t.

Efficient algorithms to explore shortest paths and corresponding distances on de-
mand in main memory [8] or with graphs organized on the secondary storage [16] have
been studied. To perform the preferential NN browsing, a naive graph traversal ap-
proach is to use the shortest path algorithm multiple times on all specified source nodes
({q}). While visiting nodes in the increasing order of distance from a source node, a
node is returned as a result if it contains all user-given keywords. However, the average
number of nodes within a certain distance from a specific node increases dramatically
as the distance increases [21], which results in a high processing cost. Moreover, while
only a few nodes may contain the user-given keywords, the shortest path algorithm can

1 In this paper, we use literals and keywords interchangeably about attributes or preferences.

4 J. Cheng, J.X. Yu, and R.C.K. Cheng

visit a huge number of nodes, in order to find them. On the other hand, an alternative
and simple solution is to use pre-computed edge transitive closure with distance in-
formation, which has been adopted by [13] to support keyword search and by [12] to
support twig queries, in graphs. Let DG be the all-pairs distances for G, namely, DG

consists of all pairs 〈(u, v): δ(u, v)〉, which records the distance (δ(u, v)) from node
u to node v, for all u, v ∈ V , if there is a directed path from u to v in G. This so-
lution materializes DG and is effective in finding the distance between two arbitrary
nodes, because no shortest path computation is needed at querying time. However, the
solution by pre-computing edge transitive closure with distance suffers from the large
storage overhead as O(|V |2). Moreover, if we want to be able to directly retrieve any
node pairs containing a user-given keyword in order, using the edge transitive closure,
we need to maintain many edge transitive closures for different keywords. The overall
storage cost can be O(Nt · |V |2), where Nt is the total number of different keywords.

In this paper, we propose a compact index approach to support on-line preferential
NN browsing. In contrast to the hop-by-hop graph traversal approach, we efficiently find
any specified number of preferential NN nodes of different distances to source nodes
based on a two-step search method. In the first step, we identify a number of reference
nodes (also called centers) which exist alone on some shortest paths between a source
node and a preferential NN node that contains the user-given keywords. In the second
step, we find the preferential NN nodes within a certain distance to the source nodes
via the relevant reference nodes, using an index that supports both textural (attributes)
and and the distance. Furthermore, we associate each attribute with a list of centers,
which can be used to find all relevant index keys. And those index keys suggest that
only relevant nodes with a given attribute will be searched in the two-step search. The
index size is manageable. Our approach tightly integrates NN search with the preference
search, which is fast and effective to find any preferential NN nodes. Our approach is
motivated by the fact that there are too many pairs in DG (in O(|V |2)) while the total
number of centers must be less than |V |. Therefore, our approach only includes all
keyword to center lists, which require O(Nt · |V |) space, and a search structure for
all centers to buckets of encoded nodes. In our approach, all buckets consume O(|V | ·√|E|) space. We can obtain all node pairs corresponding to a keyword efficiently.

Contributions. (1) We characterize and address an important problem, the preferential
NN browsing; (2) we investigate the solution to use all-pairs shortest distances, DG,
for this problem. (3) we design a compact index which does not need to store DG

directly but can be used to find any pairs in DG, which supports searching with the
textural information and and the distance. of ranking queries and a tightly integration
of NN search with the preference search, for this problem; (5) we conducted extensive
experimental evaluation with real data to verify the superiority of our approach over the
existing approach.

Paper organization. We briefly state our problem in Section 2. Then we investigate
a straightforward solution which uses pre-computed edge transitive closure with dis-
tance information in Section 3. We introduce a center-based processing framework in
Section 4, including a detailed implementation to cope with the ranking query and pref-
erence search in NN browsing. The experimental results are discussed in Section 5.
Related work is given in Section 6. Section 7 concludes this paper.

On-Line Preferential Nearest Neighbor Browsing 5

2

0

3 4

6 7

BibDB

PROC

1
PROC

{VLDB,2001}

{XML,Web}

{XML}
{XML,graph}

{alg,graph}

{VLDB,2004} {SODA,2004}

{Tim,Jon}
{David,Jon}

PROC

paper
5
paper paper

12 13
author cite

14 15
author cite

16 17
author cite

8
paper

9
person

10
person

people

Fig. 1. An Example

2 Problem Statement

Our preferential NN browsing problem is considered on a large attributed graph G(V, E),
where each node has one or more keywords to represent its attributes. Similarly, a
user also provides one or more keywords to represent her/his preference that should
be matched by a neighbor’s attributes. Suppose that I(t) consists of all nodes contain-
ing keyword t in G. We use several kinds of queries that characterize our NN browsing
problem. Given a keyword t and a node set Q of interest, the main form of our query is

Q
d

↪→ t (or Q
d←↩ t), asking for a specified number of 〈(u, v): δ(u, v)〉 ∈ DG ordered

by δ(u, v), for all u ∈ Q and v ∈ I(t) (or u ∈ I(t) and v ∈ Q), where δ(u, v) �= ∞.
This is a ranking query, where the actual number of all node pairs returned is decided
by the user or application. Note that the two directions for the above query indicate
the outgoing/incoming path between any node in Q and its neighbors. A typical case
exists in terms of Q: there is Q = I(t′) and t′ corresponds to another keyword. Next,
we introduce a number of generalizations from this query. However, for the interest of
space in this paper, we focus on the processing for this kind of queries in this paper, and
discuss how our approach can be extended to support other variants of this query.

Example 1. A sample graph is shown in Fig. 1, which shows a bibliography database.
Each node has a label which is common in XML and other semi-structure data. Each
edge in this graph has a unit weight, that is, all edge weight is 1 and we thus do not list
them in Fig. 1. In this example, there are labels PROC, paper and so on. Each node in
the graph is also described by some texture information. For example, node 1 contains
VLDB and 2001. A keyword t is either the name of a label or from the containing text.
Suppose Q is I(PROC) and t is Jon. Then, I(PROC) = {1, 2, 3} and I(Jon) = {9, 10}.
Then, a ranked list consisting of all the query results for Q

d
↪→ Jon is 〈(1, 10): 3〉,

〈(2, 9):3〉, 〈(3, 9):3〉, 〈(2, 10):5〉 and 〈(3, 10):7〉.
To perform the preferential NN browsing, a naive method is to use multiple instances
of the shortest path algorithm on all specified source nodes. Upon each visited node in
the increasing order of distance, if it contains all user-given keywords then we return
it as one result. However, the average number of nodes within a certain distance from

6 J. Cheng, J.X. Yu, and R.C.K. Cheng

a specific node increases dramatically as the distance increases [21], which results in
necessitating processing cost. Moreover, while only a few nodes may contain those
keywords, the shortest path algorithms can visited a huge number of nodes in order to
find them. Therefore, we first study a quick solution that pre-computes and stores edge
transitive closure with distance information, which has been adopted by [12,13].

3 Pairwise Processing

Our first target is a thorough investigation for methods using pre-computed and ma-
terialized DG, which is effective in finding the distance between two arbitrary nodes,
because there is no shortest path computation needed at querying time. Because it re-
lies on DG directly, it is called pairwise processing in this paper. It is straightforward

to solve preferential NN browsing based on DG, where Q
d

↪→ t (or Q
d←↩ t) can be

viewed as |Q| × |I(t)| several individual queries Qd(q, v) for all q ∈ Q and v ∈ I(t).
And each individual query Qd(q, v) asks for the distance from q to v in G. A straight-
forward method is to index all δ(u, v) in DG by (u, v) with a B+-tree or a hash table.
Then it is sufficient to find out δ(u, v) via a single index look-up. Thus, Q ↪→ t can be
evaluated by first using |Q|×|I(t)| look-ups for all δ(u, v) and then sorting all obtained
〈(u, v): δ(u, v)〉. However, we thus need to find all query results and sort all obtained
〈(q, v): δ(q, v)〉 even if the user only request several top-ranked results. This can be
costly and unwise especially when |Q|×|I(t)| is large and only few results is requested
from the user.

We consider a better choice as to index DG by u (or v) for all 〈(u, v): δ(u, v)〉 and
to search for results in DG progressively, that is, we find a few top-ranked results first

instead of all results, for Q
d

↪→ t. Now the key issue is how to organize and store DG

on disk for efficient processing of Q
d

↪→ t (or Q
d←↩ t). In particularly, we store all

different 〈(u, v): δ(u, v)〉 into a cluster in terms of some specific u (or v). For the two
cases for u or v, we first discuss the design of indexing DG by the source node u to

process Q
d

↪→ t.

For a single node u, it is possible to materialize all results of {u} d
↪→ t in the cluster

of u. To fast process Q
d

↪→ t, it is possible to materialize all 〈(u, v): δ(u, v)〉 ∈ DG

for each t such that v ∈ I(t) or u ∈ I(t). However, the number of different t, denoted
by Nt, can be large. The total storage can be O(Nt · |V |2)), which is prohibitive for
a large data graph. Therefore, a more practical storage is to organize DG and not to
duplicate portions of DG with different t. Under such a guideline, we group all 〈(u, v):

δ(u, v)〉 ∈ DG in terms of some specific u. And the main idea to process Q
d

↪→ t is to
scan all cluster of u ∈ Q and in the same time to check whether v ∈ I(t) is true for
each encountered 〈(u, v):δ(u, v)〉. And all 〈(u, v):δ(u, v)〉 in the cluster of u are sorted
in the ascending order of δ(u, v).

Algorithm 1 scans |Q| clusters of u ∈ Q sequentially in a round-robin fashion. That
is, in one round, it accesses all clusters for one δ value, where it examines all pairs
〈(u, v):d〉 in those clusters for requested results. Then, in the next round, it increases δ
by one to repeat the scan on all clusters for all requested results. All sequential scans are

On-Line Preferential Nearest Neighbor Browsing 7

Algorithm 1. PairwiseProcessing

Input: Q
d

↪→ t.
Output: 〈(u, v):δ(u, v)〉 ∈ DG sorted by δ(u, v), where u ∈ Q or

v ∈ I(t).

1: δ ←− 1;
2: while TRUE do
3: for all 〈(u, v):δ〉 in u’s clusters based on DG, where u ∈ Q do
4: if v ∈ I(t) then

5: output 〈(u, v):δ〉 for Q
d

↪→ t;
6: end if
7: end for
8: δ ←− δ + 1;
9: end while

u v δ

1 5 1
1 12 2
1 10 3

(a)
Node 1

u v δ

2 6 1
2 7 1
2 13 2
2 14 2
2 15 2
2 5 3
2 9 3
2 12 4
2 10 5

(b)
Node 2

u v δ

3 8 1
3 16 2
3 17 2
3 7 3
3 9 3
3 14 4
3 15 4
3 5 5
3 12 6
3 10 7

(c)
Node 3

Fig. 2. The Clusters Based on Transitive Closure

started from the records with the smallest δ, suggested by Line 1 of Algorithm 1. Line 2

assumes the results of Q
d

↪→ t are requested on demand and the loop can be stopped at
the user’s will if the user does not request more results or all pairs in clusters of u ∈ Q
are consumed. For each 〈(u, v):d〉 encountered, we check if v is in I(t). If it is, 〈(u, v):

d〉 can be output as a result of Q
d

↪→ t. Note that Algorithm 1 has to rely on sequential
scan to find all proper 〈(u, v): δ(u, v)〉. Therefore, even if I(t) is a very small set, the
sequential scan can access all pairs in those clusters, which include at most |Q| · |V |
pairs. Moreover, processing Q

d
↪→ t and Q

d←↩ t requires storing two copies of DG, one
copy is indexed by u and the other by v, for all 〈(u, v):δ(u, v)〉 ∈ DG. It is worth noting
that only a kind of indexing scheme on DG, which organizes 〈(u, v): δ(u, v)〉 ∈ DG

independent of the first node u or the second node v, can support both Q
d

↪→ t and

Q
d←↩ t by storing DG once.

8 J. Cheng, J.X. Yu, and R.C.K. Cheng

Example 2. In order to process Q
d

↪→ Jon for our running example, where Q =
{1, 2, 3}, pairwise processing accesses the clusters of node 1, 2 and 3, as the three
tables shown in Fig. 2. According to each δ value, the three tables are scanned for all
records with the same δ. So, starting with δ = 1, 〈(1, 5): 1〉, 〈(2, 6): 1〉, 〈(2, 7): 1〉 and
〈(3, 8): 1〉 are obtained and examined for query results. When δ = 3, the first result
〈(1, 10):3〉 is spotted. It is also required to scan all 22 records in those tables to find all

results of Q
d

↪→ Jon, shown as the shadowed rows in Fig. 2.

4 Center-Based Processing

In this section, we introduce a center-based processing framework to support preferen-
tial NN browsing. In this framework, the NN search is based on a number of important
reference nodes, where the reference nodes are used to suggest all target nodes v ∈ I(t)

connected by all source node q ∈ Q, for evaluating Q
d

↪→ t or Q
d←↩ t. This is possible

because those reference nodes carry distance information for other nodes. Recently, the
idea of selecting a number of reference nodes in graphs to support processing distance
or shortest path queries are widely used, including landmarks [11,18] and centers [6].
However, the landmark approach does not support finding exact distances directly and
can only derive an approximate distance value with the upper and lower bounds [11].
However, as required by our problem, we prefer that the distance between v and q can
be obtained with the reference nodes. Hence we will not use the landmark-like reference
nodes in this paper.

A essential property for the reference nodes we need is that we can use each reference
node to represent a number of distances in the graph. In detail, each reference node
resides on a number of shortest paths in G, and those shortest paths are preferred to be as
many as possible. Then, we can use the reference node to represent the set of distances
corresponding to those shortest paths. In detail, there can be a number of shortest paths
in G, say from a to d, all go through w. Thus, we can have w as a reference node for all
those (a, d) pairs. Therefore, we can group all pairs 〈(a, d):δ(a, d)〉 in DG according to
different w, where a cluster of w is said to include all such 〈(a, d):δ(a, d)〉. In literature,
this kind of reference nodes are studied in [6]. It first proposes finding a set W of such
reference nodes, called centers, to insure that any 〈(a, d):δ(a, d)〉 in DG is included in
some cluster of w ∈ W . [6] focuses on the cluster construction in order to minimize the
overall storage cost for all clusters, which we will review more shortly.

Example 3. For our running example, we have 6 centers in total on all shortest paths in
the graph, as shown in Fig. 3. Specifically, Fig. 3(a) shows the center 7, with a circle on
it, and a cluster of 7 containing a number of shortest paths from different a to d going
through 7. The set of all a, A7, and the set of all d, D7, are marked by two shadowed
areas with two background colors. Similarly, Fig. 3(b) and Fig. 3(c) show the other
centers and clusters. Then we obtained all centers assigned to all associated nodes as
illustrated by Fig. 5 (a), where for a node v in Aw, we assign v with the center w and
the distance d from v to w, such as 〈w, d〉. And similar operations are performed for
each d in Dw.

On-Line Preferential Nearest Neighbor Browsing 9

0

6 3 82

1 4

15

17

14 9

5 12 10

16713

(a)

0

6 3 82

1 4

15

17

14 9

5 12 10

16713

(b)

0

6 3 82

1 4

15

17

14 9

5 12 10

16713

(c)

Fig. 3. The Clusters of All Centers

5 6 7 8 9 10

B Tree+

(1,5):1
(15,5):1
(5,12):1
(5,10):2
(1,12):2
(15,12):2
(1,10):3
(15,10):3

(2,6):1
(6,13):1
(2,13):2

(2,7):1
(13,7):1
(7,14):1
(7,15):1
(6,7):2
(7,5):2
(7,9):2
(2,14):2......

(3,8):1
(8,16):1
(8,17):1
(3,16):2
(3,17):2
(8,9):2
(3,9):3

(4,9):1
(14,9):1
(16,9):1

(4,10):1
(12,10):1

Fig. 4. Indexing All-Pairs Distances Clustered by Centers

v centers (Lout)
1 〈5 : 1〉
2 〈6 : 1〉〈7 : 1〉
3 〈7 : 3〉〈8 : 1〉

· · ·
(a) Centers for q

t centers (Lin)
Jon 〈5 : 2〉〈7 : 2〉〈8 : 2〉〈9 : 0〉〈10 : 0〉
Tim 〈7 : 2〉〈8 : 2〉〈9 : 0〉
David〈5 : 2〉〈7 : 4〉〈10 : 0〉

· · ·
(b) Centers for t

Fig. 5. Obtaining Relevant Centers

4.1 Indexing All-Pairs Distances by Centers

Recall that in pair-wise processing, we have to store two copies of the transitive closure
of G: one copy is clustered by a and the other by d, for all 〈(a, d): δ(a, d)〉 ∈ DG, in

order to support both Q
d

↪→ t and Q
d←↩ t. Such a limitation is essentially caused by

the way that we search clusters and distances based on the two end nodes a and d of
〈(a, d):δ(a, d)〉. It is possible to avoid such an awkward treatment: in our first solution
as the center-based processing, we propose an all-pairs distance index based on centers

where only one copy of the transitive closure of G is sufficient to support both Q
d

↪→ t

and Q
d←↩ t. In detail, consider all 〈(a, d): δ(a, d)〉 ∈ DG included in a cluster of w,

we store them in a list sorted by δ(a, d) in the increasing order of it. We use a search
structure such as a B+-tree to support finding the sorted list (the cluster of w) with a
specified w. For our running example, the all-pairs distance index is given in Fig. 4. It
shows that 6 sorted lists are formed based on the 6 clusters in Fig. 3, which are indexed
by corresponding centers.

10 J. Cheng, J.X. Yu, and R.C.K. Cheng

A framework. With this all-pairs distance index, we can explain our two-step search
framework for the preferential NN browsing. In particular, here are the two steps: (i)
Compute all relevant centers; (ii) use those centers to compute requested 〈(q, v):δ(q, v)〉
(or 〈(v, q): δ(v, q)〉) sorted by δ(q, v) (or δ(v, q) progressively. These are the overall

steps that can be used to process both of Q
d

↪→ t and Q
d←↩ t with only slightly dif-

ference. Therefore, we use Q
d

↪→ t to describe the processing in this section. We next
explain the processing in the first step, followed by an explanation for the second step
using this all-pair distance index first.

The first step. For a query Q
d

↪→ t, a relevant center w (or the cluster) indicates one
or more query results is included in the cluster of w. This is to say, there must exist
one or more (q, v), q ∈ Q and v ∈ I(t), such that a shortest path from q to v goes
through w. Therefore, we should consider those centers connected to any q ∈ Q as well
as any v ∈ I(t). Recall that all centers are already assigned with each individual node

(Fig. 5 (a)), it allows us easily obtain those centers for each q ∈ Q. For Q
d

↪→ t where
there is Q = {1, 2, 3}, we can find all centers connected with Q center are node 5, 6, 7,
and 8 based on Fig. 5 (a). On the other hand, in order to obtain centers connected to any
v ∈ I(t), we maintain a keyword to center list for each t, called the c-list of t, based
on those centers connected to any v ∈ I(t). Specifically, if v contains a keyword t and
some 〈(a, v): δ(a, v)〉 or 〈(v, d): δ(v, d)〉 is included the cluster of w, then a record of
w is added to the c-list of t. The record of w in a c-list also includes a min distance d
between w and any v ∈ I(t) such as 〈w : d〉. In Fig. 5 (b), we illustrate such c-lists
for some keywords. For example, consider Jon and I(Jon) = {9, 10}. Excluding the
cluster of 6, all other 5 clusters include some distance involving 9 and 10, then the c-
list of Jon consists the records of 5, 7, 8, 9 and 10, as illustrated in the first row of
Fig. 5 (b). Considering the records of 7 in the c-list of Jon, it is 〈7 : 2〉 because the
distance between 7 and 9 is 2, which is smaller than the other distance between 7 and
10 by 1. Now, we can find the relevant centers to be those one appear as the centers
for each q ∈ Q and in the c-list of t. For example, to process the sample query for
Q = {1, 2, 3} and t = Jon, we obtain relevant centers as 5, 7 and 8 based on all center
records of Fig. 5 (a) and the first row of Fig. 5 (b).

For different t, it is practical and beneficial to materialize all centers w. Thus, we can
immediately obtain the relevant centers of Q ↪→ t (or Q←↩ t) for different t, while the
total storage cost is O(Nt · |V |)), in contrast to the O(Nt · |V |2)) storage of pairwise
processing to materialize pairs of DG for different t. For example, all centers for Jon,
Tim, David and so on, can thus be stored as disk index (Fig. 5 (b)).

The second step. With all relevant centers w and the B+-tree, we can find all all rel-
evant clusters. Then, we use similar processing as the pair-wise processing to find all
requested results (Section 3).

Example 4. On all relevant clusters for the centers 5, 7 and 8 for our sample query, we
perform sequential scan in a round-robin fashion. All scanned pairs 〈(a, d):δ(a, d)〉 are
not requested results for δ is set to 1 and 2, because no pair satisfies a ∈ Q and d ∈ I(t).
Then, when δ is set to 3, we obtain the first results 〈(1, 10):3〉 in the cluster of 5.

On-Line Preferential Nearest Neighbor Browsing 11

On the other hand, in order to illustrate processing of Q
d←↩ t using the same index,

consider Q = {9, 10} and t = PROC. There is I(PROC) = {1, 2, 3} and the c-list of
PROC can be obtained based on Fig. 5 (a), which consists of 5, 6, 7 and 8. Note that the
center connected to any node in Q = {9, 10} is 5, 7, 8, 9 and 10, which is the same to
the c-list of Jon. Therefore, the relevant center is again 5, 7 and 8. Therefore, on the
clusters of 5, 7 and 8, we use the similar processing in the previous previous example
to find the requested results.

A main setback of the all-pairs distance index is its huge storage cost to store all-pairs
distances in O(|V |2) space, therefore the I/O cost to access the clusters is high.

4.2 The Implementation for a Compact Index

In this section, we discuss a new index structure for the all-pairs distances. We first re-
view the 2-hop labeling to support on-line processing of exact distance queries, which is
extensively studied in the literature recently [6,24,3]. in [6], which aims at a compressed
form of the whole edge transitive closure of a given graph.

The 2-hop labeling is based on the centers discussed in Section 4, which assigns
the center w to all a and d where the shortest path from a to d is contained in the
cluster of w. Let the set of all a be Aw and that of all d be Dw, for w. Thus, with
|Aw| + |Dw| space, total |Aw| · |Dw| several distances between nodes in Aw and Dw

can be remembered this way. Therefore, the 2-hop labeling is conjectured to encode all
all-pairs distances in O(V · √E) space [6]. Particularly, it assigns every node v ∈ V
a label L(v) = (Lin(v), Lout(v)) for G, where Lin(v) and Lout(v) are subsets of DG

whose entries are in the form of 〈(w, v): δ〉 and 〈(v, w): δ〉, or simply 〈w : δ〉. Then, a
query, Qd(u, v), querying the shortest distance from u to v, can be answer by

min{δ1+δ2|〈(u, w):δ1〉∈Lout(u)∧〈(w, v):δ2〉∈Lin(v)} (1)

It means to find a center, w, in both Lout(u) and Lin(v) with the minimum δ1 + δ2.
Qd(u, v) is infinite if there is no such w found using Eq. (1). A 2-hop distance label-
ing of G can be obtained with the computation of a distance-aware 2-hop cover of G.
A distance-aware 2-hop cover of G, denoted by L, is defined to be a set of clusters
of all centers in G, denoted by Sw, then we have L = {Sw1 , Sw2 , · · · , Swm}. Each
Sw is exactly a cluster based on the center w, which we briefly mentioned in the pre-
vious section. Here we give a formal description for it. A 2-hop clusters Sw, where
Sw = S(Aw, w, Dw), compactly represents a subset of DG. Formally, let ancs(w)
and desc(w) be the sets consisting of all entries in the form of 〈(a, w): δ〉 and 〈(w, d):
δ〉 in DG, respectively. Let Aw ⊆ ancs(w) and Dw ⊆ desc(w). A 2-hop cluster
S(Aw, w, Dw) covers the shortest paths from a ∈ Aw to d ∈ Dw via w as many as
possible, where we abuse a ∈ Aw (or d ∈ Dw) by signifying 〈(a, w): δ〉 ∈ Aw (or
〈(w, d):δ〉 ∈ Dw). If the following equation (Eq. (2)) holds:

δ(a, w) + δ(w, d) = δ(a, d) (2)

for some a ∈ Aw and d ∈ Dw, then it is said the 〈(a, d): δ(a, d)〉 ∈ DG is “covered”.
This suggests that the shortest path from a to d is the concatenation of the shortest path
from a to w and the shortest path from w to d. Note that it is possible that for some

12 J. Cheng, J.X. Yu, and R.C.K. Cheng

center: 5
from to

distance: 1 1 2
keyword: Paper, cite, XML, Web author, person, David, Jon

node: 1,15 12 10

(a) The Cluster of 5

center: 7
from to

distance: 1 2 · · · 1 2 · · ·
keyword: PROC, paper,alg · · · author, paper, Web, · · ·

VLDB, XML, · · · cite person, Tim, · · ·
2004,cite graph · · · XML, Jon · · ·

node: 2, 13, 17 6,8 · · · 14, 15 5,9 · · ·
(b) The Cluster of 7

center: 8
from to

distance: 3 1 2
keyword: PROC, SODA, 2004 author, cite person, Tim, Jon

node: 3 16,17 9

(c) The Cluster of 8

Fig. 6. Organizing Clusters

v Lin Lout

1 ∅ 〈5:1〉
2 ∅ 〈6:1〉〈7:1〉
3 ∅ 〈7:3〉〈8:1〉
4 ∅ 〈9:1〉〈10:1〉
5 〈5:0〉〈7:2〉 〈5:0〉
6 〈6:0〉 〈6:0〉〈7:2〉
7 〈7:0〉 〈7:0〉
8 〈8:0〉 〈7:2〉〈8:0〉
9 〈7:2〉〈8:2〉〈9:0〉 ∅
10 〈5:2〉〈7:4〉〈10:0〉 ∅
12 〈5:1〉〈7:3〉 〈10:1〉
13 〈6:1〉 〈7:1〉
14 〈7:1〉 〈9:1〉
15 〈7:1〉 〈5:1〉
16 〈8:1〉 〈9:1〉
17 〈7:1〉 〈8:1〉

Fig. 7. An example for the distance-
aware 2-hop cover

a ∈ Aw and d ∈ Dw, the corresponding 〈(a, d): δ(a, d)〉 ∈ DG is not covered by
S(Aw, w, Dw), due to the constraint given in Eq. (2).

The distance-aware 2-hop cover L of G compactly encodes all entries in DG by
computing 2-hop clusters. Given L, the 2-hop distance labeling for G is determined
by adding 〈w : δ(a, w)〉 into each Lout(a) for 〈(a, w): δ(a, w)〉 ∈ Aw and adding
〈w : δ(w, d)〉 into each Lin(d) for 〈(w, d): δ(w, d)〉 ∈ Dw, for every S(Aw, w, Dw)
in L. Similarly, we also abuse w ∈ Lout(a) (or w ∈ Lin(d)) by signifying 〈(a, w):
δ〉 ∈ Lout(a) (or 〈(w, d):δ〉 ∈ Lin(d)). Let PL be the set of all entries 〈(a, d):δ1 + δ2〉
for any 〈(a, w): δ1〉 and 〈(w, d): δ2〉 in L, a 2-hop cover of G guarantees PL ⊇ DG

as shown in [6], which guarantees that any distance query can be answered using the
2-hop distance labeling with Eq. (1). Recent work [3,24] on 2-hop labelings focuses on
improvement for better construction efficiency. Fig. 7 shows the 2-hop distance labels,
Lin(v) and Lin(v), of all nodes in our sample graph (Fig. 1). With the 2-hop distance
labels of the sample graph, we already obtained the clusters of all centers (Fig. 3) as
well as all c-lists (Fig. 5).

Now we discuss a better all-pairs distance index. Specifically, we organize the sorted
list for Sw = S(Aw, w, Dw) associated with a center w (Fig. 4) according to Aw and
Dw. Then, we further group nodes in the two parts by their distances to/from w into
a number of a F-buckets/T-buckets. Those F-buckets/T-buckets are arranged in the in-
creasing order of the node distance. We collect all keywords for all nodes in a bucket.
For example, the cluster of 7 as illustrated in Fig. 6(b), where A7 and D7 is shown in
different background and each F-buckets/T-buckets is shown as a column in Fig. 6(b).
For the F-bucket with distance 1, we have three nodes 2, 13 and 17, which have total
4 keywords, PROC, VLDB and 2004 from node 1, and cite from node 13 and 17.
We can sequentially scan the two ordered lists of F-buckets/T-buckets in order to obtain

On-Line Preferential Nearest Neighbor Browsing 13

Query t1 t2 |I(t1)| |I(t2)|
Q1 conference database 9792 1156
Q2 SIGMOD VLDB 1309 1061
Q3 VLDB SIGMOD 1061 1309
Q4 VLDB cacm 1061 688
Q5 system VLDB 672 1061
Q6 cacm book 688 540
Q7 query rule 469 129
Q8 query efficient 469 121
Q9 tkde performance 329 135

Fig. 8. Queries

the sorted lists as shown in Fig. 4 progressively. Due to the space constraint, we do not
discuss it in detail. Interested readers can refer to [12]. Then, we again relies on similar

processing described in Section 4.1 for Q
d

↪→ t and Q
d←↩ t. Therefore, both the storage

cost and access overhead can be largely relieved.

5 Performance Evaluation

In this section, we evaluate the performance of our approach experimentally. All those
algorithms are implemented using C++. We experimented on the real dataset, DBLP2.

For the DBLP dataset, we get all paper nodes and author nodes from elements in the
XML data, and edges are obtained as bibliographic links and co-authorship relation-
ships. And a node is removed from the graph to make it more dense, if the correspond-
ing paper has no citation to other papers, or is not cited by other papers. We also add
some other nodes to make it more like a graph. That is, we create nodes to indicate the
conference name or journal name for the paper, such as SIGMOD, VLDB and so on, of
each individual years. Those paper nodes are added with edges to those corresponding
conference nodes or journal nodes being created. The DBLP graph contains 30K nodes
and 122K edges.

We test nine queries as shown in Fig. 8. We construct each query Q
d

↪→ t using
t1 and t2 which are two keywords based on those extracted from the DBLP graph.

And for Q
d

↪→ t, the node set Q is I(t1) and t is t2. For those queries, Q1 to Q9, the
number of nodes in Q or I(t) is gradually decreasing roughly in three categories: (a)
Both |Q| and |I(t)| are larger than 1 thousand (large sets); (b) both |Q| and |I(t)| are
larger than 5 hundreds but smaller than about 1 thousand (middle sets) and (c) both
|Q| and |I(t)| are smaller than 5 hundreds (small sets). The |Q| and |I(t)| are used
to differentiate those queries because they relate to the maximum possible number of
results, which is |Q| · |I(t)|, and indirectly reflex the cost of accessing 2-hop labels
and c-lists. We experimented with the pairwise processing, represented as Pairwise
in all figures, and three algorithms of center-based processing, where each algorithm

2 http://dblp.uni-trier.de/xml/

14 J. Cheng, J.X. Yu, and R.C.K. Cheng

50 100 500 1K 5K 100K 500K
0

1

2

3

4

5

6

7
x 104

K Values

E
la

ps
ed

 T
im

e
(m

ill
is

ec
on

d)
Pairwise
Center−D
Center−R
Center−L

(a) Q1 Time

50 100 500 1K 5K 100K 500K
0

1

2

3

4

5

6

7

8
x 104

K Values
#I

O

Pairwise
Center−D
Center−R
Center−L

(b) Q1 IO

50 100 500 1K 5K 100K 500K
0

0.5

1

1.5

2

2.5

3

3.5
x 104

K Values

E
la

ps
ed

 T
im

e
(m

ill
is

ec
on

d)

Pairwise
Center−D
Center−R
Center−L

(c) Q2 Time

50 100 500 1K 5K 100K 500K
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

K Values

#I
O

Pairwise
Center−D
Center−R
Center−L

(d) Q2 IO

50 100 500 1K 5K 100K 500K
0

0.5

1

1.5

2

2.5
x 104

K Values

E
la

ps
ed

 T
im

e
(m

ill
is

ec
on

d)

Pairwise
Center−D
Center−R
Center−L

(e) Q3 Time

50 100 500 1K 5K 100K 500K
0

1000

2000

3000

4000

5000

6000

7000

8000

K Values

#I
O

Pairwise
Center−D
Center−R
Center−L

(f) Q3 IO

16.67% 33.33% 50% 66.67% 83.33% 100%
0

1

2

3

4

5

6

7
x 104

Percentage of Total # Results

E
la

p
se

d
 T

im
e

(m
il

li
se

co
n

d
)

Pairwise
Center−D

(g) Q1 Time

16.67% 33.33% 50% 66.67% 83.33% 100%

2000

4000

6000

8000

10000

Percentage of Total # Results

#
IO

Pairwise
Center−D

(h) Q1 IO

16.67% 33.33% 50% 66.67% 83.33% 100%
0

1

2

3

4

5

6

7
x 104

Percentage of Total # Results

E
la

p
se

d
 T

im
e

(m
il

li
se

co
n

d
)

Pairwise
Center−D

(i) Q2 Time

16.67% 33.33% 50% 66.67% 83.33% 100%
0

2

4

6

8
x 104

Percentage of Total # Results

#
IO

Pairwise
Center−D

(j) Q2 IO

16.67% 33.33% 50% 66.67% 83.33% 100%
0

0.5

1

1.5

2

2.5
x 104

Percentage of Total # Results

E
la

p
se

d
 T

im
e

(m
il

li
se

co
n

d
)

Pairwise
Center−D

(k) Q3 Time

16.67% 33.33% 50% 66.67% 83.33% 100%
1000

2000

3000

4000

5000

6000

7000

8000

Percentage of Total # Results

#
IO

Pairwise
Center−D

(l) Q3 IO

Fig. 9. Performance on Large Sets

corresponds to a different way of obtaining relevant centers. Specifically, we use (i)
the algorithm to use the two stored c-lists for both t1 and t2, represented as Center-
D in all figures; (ii) the algorithm to use the stored c-list for t1 and access all 2-hop
labels for t2, represented as Center-R in all figures; and (iii) the algorithm to use the
stored c-list for t2 and access all 2-hop labels for t1, represented as Center-L in all
figures. We compare the processing performance of the pairwise and the center-based
with two important measurements, the elapsed time and number of IO, for all nine
queries against the DBLP graph. For each query, we first test all algorithms by giving a
number of fixed K values: 50, 100, 500, 5,000, 10,000, 100,000 and 500,000, which ask
the top-K results for those queries. Then, we further examine the performance when K
is increasing, we specify different K values which are 16.67%, 16.67%, 33.33%, 50%,
66.67%, 83.33% and 100% of the total result number for each individual query. We
conducted all the experiments on a PC with a 3.4GHz processor, 180G hard disk and
2GB main memory running Windows XP.

On-Line Preferential Nearest Neighbor Browsing 15

5.1 The Large Sets

Fig. 9 shows the performance of different algorithms for Q1, Q2 and Q3, which belong
to the large sets. Specifically, the figures from Fig. 9(a) to Fig. 9(f) show the perfor-
mance of Pairwise, Center-D, Center-R and Center-L in terms of a number of fixed
K values. In general, the superiority of all center-based processing algorithms over
Pairwise is quite obvious. Center-D, Center-R and Center-L are very close to each
other while they all spend less processing time and IO numbers than those required
by Pairwise up to an order of magnitude. For example, when K = 500, 000, Pair-
wise requires 24,013.76 milliseconds while Center-D, Center-R and Center-L spend
3,257.48, 3,199.33 and 4,199.69 milliseconds, respectively, for Q3. As for the IO num-
ber for Q3, Pairwise consumes 7,092 while Center-D, Center-R and Center-L spend
1,290, 1,141 and 1,714, respectively.

On the other hand, the figures from Fig. 9(g) to Fig. 9(l) show the performance
of Pairwise and Center-D when the K value is increasing. Because all algorithms
of center-based processing have close performance, in which all three corresponding
curves become too close for this experiment, therefore, those figures only show the
performance for Center-D. Based on those figures, we can perceive that the superiority
of the center-based processing is even stronger when K value is increased to a large
value, for both elapsed time and IO number. For example, in Fig. 9(g), the elapsed time
for Center-D is from 1,392.42 to 3,974.71. However, that for Pairwise is from 7,882.60
to 23,924.01. Furthermore, those figures indicate that the IO numbers of Center-D for
those queries are not sensitive to the increasing K . For example, the IO numbers for
Center-D is from 1,139 to 1,290. However, that for Pairwise is from 1,928 to 7,051.

5.2 The Middle Sets and the Small Sets

Fig. 10 shows the performance of different algorithms for Q4, Q5 and Q6, which be-
long to the middle sets. And the figures from Fig. 10(a) to Fig. 10(f) illustrate the per-
formance of Pairwise, Center-D, Center-R and Center-L in terms of fixed K values.
In these figures, there is still a clear difference in terms of the elapsed time of all center-
based processing algorithms v.s. that of Pairwise. However, similar of even more IO
numbers are consumed by those center-based processing algorithms. This can be ex-
plained by the fact that the Pairwise uses much less IO numbers that those for the
large sets. Because the numbers of Q nodes are descreased noticiablely for Q4, Q5 and
Q6, compared to Q1, Q2 and Q3. Pairwise needs to access much less clusters to an-
swer all queries. When K is large, Pairwise still has to consume more IO numbers, as
suggested by Fig. 10(d) and Fig. 10(f). For example, when K = 5, 000, Pairwise re-
quires 6,093.36 milliseconds while Center-D, Center-R and Center-L spend 1,247.18,
752.97 and 1,169.249 milliseconds, respectively, for Q5. As for the IO number for Q3,
Pairwise consumes 991 while Center-D, Center-R and Center-L spend 973, 807 and
1428, respectively.

The figures from Fig. 10(g) to Fig. 10(l) show the performance of Pairwise and
Center-D when the K value is increasing. We can also observe that Pairwise still has
to consume more IO numbers when K is large, as suggested by Fig. 10(j) and Fig. 10(l).
For example, in in Fig. 10(l), the IO numbers for Center-D is 730, 1,030, 1,156 and

16 J. Cheng, J.X. Yu, and R.C.K. Cheng

50 100 500 1K 5K 100K 500K
0

0.5

1

1.5

2

2.5

3
x 104

K Values

E
la

ps
ed

 T
im

e
(m

ill
is

ec
on

d)
Pairwise
Center−D
Center−R
Center−L

(a) Q4 Time

50 100 500 1K 5K 100K 500K
0

1000

2000

3000

4000

5000

6000

7000

8000

K Values
#I

O

Pairwise
Center−D
Center−R
Center−L

(b) Q4 IO

50 100 500 1K 5K 100K 500K
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

K Values

E
la

ps
ed

 T
im

e
(m

il
li

se
co

nd
)

Pairwise
Center−D
Center−R
Center−L

(c) Q5 Time

50 100 500 1K 5K 100K 500K
0

500

1000

1500

2000

2500

K Values

#I
O

Pairwise
Center−D
Center−R
Center−L

(d) Q5 IO

50 100 500 1K 5K 100K 500K
0

2000

4000

6000

8000

10000

12000

14000

K Values

E
la

ps
ed

 T
im

e
(m

il
li

se
co

nd
)

Pairwise
Center−D
Center−R
Center−L

(e) Q6 Time

50 100 500 1K 5K 100K 500K
0

200

400

600

800

1000

1200

1400

1600

1800

K Values

#I
O

Pairwise
Center−D
Center−R
Center−L

(f) Q6 IO

16.67% 33.33% 50% 66.67% 83.33% 100%
0

0.5

1

1.5

2

2.5
x 104

Percentage of Total # Results

E
la

p
se

d
 T

im
e

(m
il

li
se

co
n

d
)

Pairwise
Center−D

(g) Q4 Time

16.67% 33.33% 50% 66.67% 83.33% 100%
1000

2000

3000

4000

5000

6000

Percentage of Total # Results

#
IO

Pairwise
Center−D

(h) Q4 IO

16.67% 33.33% 50% 66.67% 83.33% 100%
0

0.5

1

1.5

2

2.5
x 104

Percentage of Total # Results

E
la

p
se

d
 T

im
e

(m
il

li
se

co
n

d
)

Pairwise
Center−D

(i) Q5 Time

16.67% 33.33% 50% 66.67% 83.33% 100%
1000

1500

2000

2500

Percentage of Total # Results

#
IO

Pairwise
Center−D

(j) Q5 IO

16.67% 33.33% 50% 66.67% 83.33% 100%
0

2000

4000

6000

8000

10000

12000

14000

Percentage of Total # Results

E
la

p
se

d
 T

im
e
 (

m
il

li
se

c
o

n
d

)

Pairwise
Center−D

(k) Q6 Time

16.67% 33.33% 50% 66.67% 83.33% 100%
600

800

1000

1200

1400

1600

1800

Percentage of Total # Results

#
IO

Pairwise
Center−D

(l) Q6 IO

Fig. 10. Performance on Middle Sets

so on. However, that for Pairwise is 813, 939, 1,070 and so on; on the other hand,
in Fig. 10(k), the elapsed time for Center-D is from 1,252.35 to 3,337.12. However,
that for Pairwise is from 6,188.12 to 21,109.82. The main reason for the more IO
numbers consumed by the center-based processing is that it has to access many small F-
buckets/T-buckets, while Pairwise only need to access much less clusters. Even though,
the center-based processing can still be faster than Pairwise, because it process much
less 〈(a, d):δ(a, d)〉 for required number of query results.

Fig. 11 shows the performance of different algorithms for Q7, Q8 and Q9, which be-
long to the small sets. For all the three queries, the center-based processing outperforms
Pairwise in terms of both the elapsed time and the IO number. In terms of IO number,
the margin of the center-based processing over Pairwise is not so large as that for the
large se, because Pairwise operates on large storage requirement. On the other hand,
Pairwise can not use less IO number than the center-based processing, like the middle
set, because there are only a few nodes |Q| and I(t) and less results for the center-based
processing. In all, the center-based processing is always faster than Pairwise.

On-Line Preferential Nearest Neighbor Browsing 17

50 100 500 1K 5K 100K 500K
0

2000

4000

6000

8000

10000

12000

14000

K Values

E
la

ps
ed

 T
im

e
(m

il
li

se
co

nd
)

Pairwise
Center−D
Center−R
Center−L

(a) Q7 Time

50 100 500 1K 5K 100K 500K
0

200

400

600

800

1000

1200

1400

1600

1800

2000

K Values
#I

O

Pairwise
Center−D
Center−R
Center−L

(b) Q7 IO

50 100 500 1K 5K 100K 500K
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

K Values

E
la

ps
ed

 T
im

e
(m

il
li

se
co

nd
)

Pairwise
Center−D
Center−R
Center−L

(c) Q8 Time

50 100 500 1K 5K 100K 500K
0

200

400

600

800

1000

1200

1400

1600

1800

2000

K Values

#I
O

Pairwise
Center−D
Center−R
Center−L

(d) Q8 IO

50 100 500 1K 5K 100K 500K
0

2000

4000

6000

8000

10000

12000

K Values

E
la

ps
ed

 T
im

e
(m

il
li

se
co

nd
)

Pairwise
Center−D
Center−R
Center−L

(e) Q9 Time

50 100 500 1K 5K 100K 500K
0

500

1000

1500

K Values

#I
O

Pairwise
Center−D
Center−R
Center−L

(f) Q9 IO

16.67% 33.33% 50% 66.67% 83.33% 100%
0

2000

4000

6000

8000

10000

12000

14000

Percentage of Total # Results

E
la

p
se

d
 T

im
e
 (

m
il

li
se

c
o

n
d

)

Pairwise
Center−D

(g) Q7 Time

16.67% 33.33% 50% 66.67% 83.33% 100%

500

1000

1500

2000

Percentage of Total # Results

#
IO

Pairwise
Center−D

(h) Q7 IO

16.67% 33.33% 50% 66.67% 83.33% 100%
0

5000

10000

15000

Percentage of Total # Results

E
la

p
se

d
 T

im
e
 (

m
il

li
se

c
o

n
d

)

Pairwise
Center−D

(i) Q8 Time

16.67% 33.33% 50% 66.67% 83.33% 100%

500

1000

1500

2000

Percentage of Total # Results

#
IO

Pairwise
Center−D

(j) Q8 IO

16.67% 33.33% 50% 66.67% 83.33% 100%
0

2000

4000

6000

8000

10000

Percentage of Total # Results

E
la

p
se

d
 T

im
e
 (

m
il

li
se

c
o

n
d

)

Pairwise
Center−D

(k) Q9 Time

16.67% 33.33% 50% 66.67% 83.33% 100%
200

400

600

800

1000

1200

1400

Percentage of Total # Results

#
IO

Pairwise
Center−D

(l) Q9 IO

Fig. 11. Performance on Small Sets

6 Related Work

In this paper, we focus on using the disk index to support the preferential nearest neigh-
bors (NN) browsing in graphs. Recently, preprocessing the data graph to support effi-
cient path finding in the graph receives intensive study. Many work are on reachability
query processing in graphs. For example, [1,26] all considered assigning intervals to
each node to encode the set of reachable nodes from that node in the underlying graph.
However, this type of work can hardly be extended to support shortest-path queries, be-
cause these intervals are usually based on a spanning tree (called tree-cover in [1,2,17])
of the underlying graph, where the distance information is incomplete for the whole
graph. The similar setback also exists in the work [15,17] which decomposes the graph
into a number of simple structures, such as chains or trees, to compress the transitive
closure.

Fast distance query processing was considered by [20,25,9]. But they are for
undirected graphs and can not be applied to directed graphs. Recently, on supporting

18 J. Cheng, J.X. Yu, and R.C.K. Cheng

the processing of k nearest neighbor queries in road networks, [14] discusses distance
signatures for distance computation over long distances from single source node. But
for our ranked distance queries, multiple source nodes and arbitrary distances will be
searched. [22,23] have proposed a compact distance oracle where any distance and
shortest path can be found in O(δ · |V |) time. However, its index construction relies
on the spatial coherence of the data, and it is not easy to obtain such structures in ar-
bitrary general directed graphs. Some recent work [10,11,18,7] pre-computes distance
information for a number of selected nodes, which are called landmarks, and considers
approximating the distance of any given two nodes based on pre-computed distance in-
formation. These approaches can avoid pre-computing all-pairs shortest paths. But they
are thus unaware of the number of shortest paths and exact distance information that can
be recorded by those landmarks, and can not support the exact distance and shortest path
answering required by our problem. [27] preprocesses a graph in Õ(|E| · |V |ω) time,
where ω < 2.376 is the exponent of matrix multiplication. And any single distance
query can be processed in O(|V |) time, which can still be expensive if the total number
of distances queried is very large. To handle the intensive processing of shortest path
queries to support top-k keyword queries [13] and twig matching [12] in graphs, even
the whole edge transitive closure with distance information of the underlying graph is
employed. However, even with the all-pairs shortest distances, a close examination in
this paper indicates the processing cost to use it can still be high.

The index used in this paper has similar spirit to the join index in [4,28], but the
join index of [5,28] can not be used to progressively process ranking queries, which is
required in our problem. To search for all node pairs which has a distance smaller than a
given threshold, [28] develops an indexing scheme based on landmarks. This indexing
scheme can help filter out the node pairs with a larger distance than the threshold, but
can not support finding the exact distance. Therefore, it can not be directly used for our
problem either.

7 Conclusion

In this paper, we propose a two-step search framework to support a new problem called
preferential NN browsing. In such browsing, a user may provide one or more source
nodes and some keywords to retrieve the nearest neighbors of those source nodes that
contain the given keywords. The first step identifies a number of reference nodes (also
called centers) which exist alone on some shortest paths between a source node and
a preferential NN node that contain the user-given keywords. In the second step, we
find the preferential NN nodes within a certain distance to the source nodes via the
relevant reference nodes, using an index that supports both textural (attributes) and and
the distance. Our approach has innovations to progressively process ranking queries as
well as to tightly integrates NN search with the preference search, which is confirmed
to be efficient and effective to find any preferential NN nodes.

Acknowledgment. The work described in this paper was supported by grants of the
Research Grants Council of the Hong Kong SAR, China No. 419008 and 419109.

On-Line Preferential Nearest Neighbor Browsing 19

References

1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships in
large data and knowledge bases. In: Proc. of SIGMOD 1989 (1989)

2. Chen, L., Gupta, A., Kurul, M.E.: Stack-based algorithms for pattern matching on dags. In:
Proc. of VLDB 2005 (2005)

3. Cheng, J., Yu, J.X.: On-line exact shortest distance query processing. In: EDBT (2009)
4. Cheng, J., Yu, J.X., Ding, B., Yu, P.S., Wang, H.: Fast graph pattern matching. In: Proc. of

ICDE 2008 (2008)
5. Cheng, J., Yu, J.X., Lin, X., Wang, H., Yu, P.S.: Fast computing reachability labelings for

large graphs with high compression rate. In: Proc. of EDBT 2008 (2008)
6. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop

labels. In: Proc. of SODA 2002 (2002)
7. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Predicting internet network distance with

coordinates-based approaches. In: SIGCOMM (2004)
8. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Math. 1,

269–271 (1959)
9. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. Algo-

rithms 53(1), 85–112 (2004)
10. Goldberg, A.V., Werneck, R.F.: Computing point-to-point shortest paths from external mem-

ory. In: ALENEX (2005)
11. Goldberg, A.V., Werneck, R.F.: Reach for a*: Efficient point-to-point shortest path algo-

rithms. In: ALENEX (2006)
12. Gou, G., Chirkova, R.: Efficient algorithms for exact ranked twig-pattern matching over

graphs. In: Proc. of SIGMOD 2008 (2008)
13. He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword searches on graphs. In: Proc. of

SIGMOD 2007 (2007)
14. Hu, H., Lee, D.L., Lee, V.C.S.: Distance indexing on road networks. In: VLDB (2006)
15. Jagadish, H.V.: A compression technique to materialize transitive closure. ACM Trans.

Database Syst. 15(4), 558–598 (1990)
16. Jiang, B.: I/o-efficiency of shortest path algorithms: An analysis. In: ICDE (1992)
17. Jin, R., Xiang, Y., Ruan, N., Wang, H.: Efficiently answering reachability queries on very

large directed graphs. In: Proc. of SIGMOD 2008 (2008)
18. Ng, T.S.E., Zhang, H.: Predicting internet network distance with coordiantes-based ap-

proaches. In: INFOCOM (2001)
19. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network

databases. In: VLDB (2003)
20. Peleg, D.: Proximity-preserving labeling schemes. J. Graph Theory 33, 167–176 (2000)
21. Rattigan, M.J., Maier, M., Jensen, D.: Using structure indices for efficient approximation of

network properties. In: KDD (2006)
22. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial

databases. In: SIGMOD (2008)
23. Sankaranarayanan, J., Samet, H.: Distance oracles for spatial networks. In: ICDE (2009)
24. Schenkel, R., Theobald, A., Weikum, G.: Efficient creation and incremental maintenance of

the HOPI index for complex XML document collections. In: Proc. of ICDE 2005 (2005)
25. Thorup, M., Zwick, U.: Approximate distance oracles. In: Proc. of STOC 2001 (2001)
26. TrißI, S., Leser, U.: Fast and practical indexing and querying of very large graphs. In: Proc.

of SIGMOD 2007 (2007)
27. Yuster, R., Zwick, U.: Answering distance queries in directed graphs using fast matrix mul-

tiplication. In: Proc. of FOCS 2005 (2005)
28. Zou, L., Chen, L., Özsu, M.T.: Distancejoin: Pattern match query in a large graph database.

In: VLDB (2009)

Mining Useful Time Graph Patterns on

Extensively Discussed Topics on the Web

(Position Paper)

Taihei Oshino, Yasuhito Asano, and Masatoshi Yoshikawa

Department of Social Informatics, Graduate School of Informatics, Kyoto University

Yoshida Honmachi, Sakyo-ku, Kyoto, 606–8591 Japan

oshino@db.soc.i.kyoto-u.ac.jp, {asano,yoshikawa}@i.kyoto-u.ac.jp

Abstract. Temporal characteristics of the web have been analyzed

widely in recent years, but graph patterns have served important roles for

analyzing the web’s structural characteristics. Although temporal char-

acteristics of the web have not been estimated in previous patterns, we

specifically examine a novel kind of pattern, time graph patterns, esti-

mating time-series data including the creation times of pages and links.

We find useful time graph patterns representing the process by which

a topic is discussed extensively during a short period without manual

investigations of web graphs. We have also analyzed the patterns and

the web pages corresponding to the patterns. Three characteristic pages

are contained in the patterns. Additionally, we have succeeded in finding

a subgraph matching a mined pattern. We observed that the subgraph

corresponds to an extensively discussed topic.

1 Introduction

The world-wide web has been changing since its inception. In recent years, many
researchers have devoted attention to temporal characteristics of the web. For
example, studies have been undertaken to analyze blogs [1] and social bookmark
services [2] using time-series data such as time stamps of blog entries or user
access logs and tags annotated to bookmarks. Several models, such as the “forest
fire model” proposed by Leskovec et al. [3], have been proposed for simulating the
growth of a social network, a community of sites, and the whole web. Kumar et
al.[4] introduced a “web time graph” to depict the bursty growth of communities.
These studies confirmed that analyses of the temporal characteristics of the web
are useful for information retrieval.

A web is a graph structure whose nodes are pages and edges are links. “Graph
patterns” on a web graph have played important roles in analyzing structural
characteristics of the web. A graph pattern is a property that should be satisfied
by specified subgraphs. It is used as the object of matching or enumeration for
a graph. Trawling, proposed by Kumar et al. [5], enumerates complete bipartite
subgraphs on a web graph to identify communities. In addition, the HITS algo-
rithm, proposed by Kleinberg [6], computes the importance of web pages using

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 20–32, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Mining Useful Time Graph Patterns on Extensively Discussed Topics 21

graph patterns representing hubs and authorities. Several studies are useful to
analyze the patterns of growth processes of graphs. Leskovec et al.[7] introduced
a technique to analyze the blogosphere using “cascade” graph patterns whose
nodes are blog pages and whose edges are links as propagations of information.
They enumerate all cascades in a huge blog networks and count frequency, and
analyze characteristics of the blogs and cluster them. Innumerable possible graph
patterns exist, although few have proved to be useful for information retrieval
on the web. Therefore, finding a new and useful graph pattern, even a single
pattern, is expected to constitute a valuable research endeavor.

The graph patterns described above are based on the structural topology of
a web graph: they estimate only a link structure, not temporal characteristics
including the creation and deletion time of pages. Most previous studies dealing
with graph patterns on a web graph predict useful patterns, such as a com-
plete bipartite subgraph for trawling, by investigating the graph manually; then
those studies find subgraphs matching the pattern. Such graph patterns based
on structural topology have been sought extensively during the last decade. It
is considered difficult to find a new and useful graph pattern today. However,
finding unprecedented graph patterns that are useful for information retrieval
on the web can be expected if we introduce time-series data to a web graph.
For example, even if two communities of web pages have similar graph struc-
tures, one might have grown rapidly, whereas the other might have grown slowly.
We might distinguish them and enumerate only those rapidly grown communi-
ties if we were able to construct a graph pattern estimating the creation time
of links. Furthermore, existing studies of information propagation do not dis-
tinguish whether the information spreads rapidly or slowly. Therefore, we seek
such a useful graph pattern estimating time-series data on the web, named a time
graph pattern, without manual investigation. However, the prediction seems dif-
ficult for time graph patterns whose nodes and edges have a limited lifetime
because time graphs are much more complicated.

“Dynamic graph” mining has been studied for dealing with temporal changing
of graphs [8]. However, dynamic graphs can not represent the increase of nodes;
it is assumed that edge creations and deletions are frequent. Therefore, dynamic
graphs are not considered to be useful for analysis of the web. Few reports
describe analysis of the web using dynamic graphs.

The purpose of our research is to find useful time graph patterns without
manual investigation of huge web graphs, and to analyze the web using time
graph patterns. As described in this paper, we found a new and useful time graph
pattern representing the process by which a topic was discussed in blogs and
news sites extensively during a short period. In our method, we first construct
several web graphs; then labels the nodes and edges are assigned in the graphs
by analyzing their creation times. We then mine time graph patterns that appear
commonly on most graphs using an existing method for graph mining. Graph
mining methods are unable to return results in a practical time for a large
graph, including typical web graphs, without a certain number of labels. We
propose a method to mine time graph patterns representing the process described

22 T. Oshino, Y. Asano, and M. Yoshikawa

above in practical time: we assign labels that are appropriate for the process to
the nodes of web graphs by analyzing the creation times of the pages. Results
revealed patterns of several characteristics from extensively discussed topics on
the web. We also discover several subgraphs matching these patterns from the
web. Each subgraph also corresponds to pages discussing a topic that has spread
quickly. Therefore, finding time graph patterns using our method is useful for
information retrieval on the web. An additional direction is web page clustering.
Existing clustering methods specifically examine only link structures. However,
it is expected that clustering can be done in greater detail using time graph
patterns.

The remainder of the paper is organized as follows, Section 2 surveys the
related work. Section 3 describes our method for finding useful time graph pat-
terns. Section 4 explains how we find a time graph pattern representing the
process by which a topic was discussed extensively, and evaluate the obtained
pattern using case studies. Finally, we conclude with a discussion of the results
in Section 5.

2 Related Work

In this section, we introduce the studies using time-series data of the web. Then,
we introduce studies related to graph patterns. Subsequently, we state general
graph mining applications in the real world. Finally, we explain an existing graph
mining algorithm “gSpan” proposed by Yan and Han. We use this algorithm to
enumerate frequent time graph patterns in our technique.

2.1 Analysis of the Web Using Time-Series Data

In recent years, several studies have been made of temporal properties of the
web. For example, some studies identify influential bloggers by analyzing the
time stamps of blog entries [1]. They specifically examine the degree to which
the pages or entries in a blog community increase during a particular period,
and also analyze the degree of the rapid spread of topics. Other studies predict
attractive pages among newly posted pages on a social bookmark service using
time-series data, such as user access logs and tags annotated to bookmarks [2].
Several models have been proposed [3,9,10] for simulating the growth of a social
network, a community of sites, and the whole web. For example, the “forest fire
model” proposed by Leskovec et al.[3] can simulate properties of the web such
that their degree distribution follows a power law [11]; their diameter shrinks over
time [3]. Kumar et al.[4] introduced a “web time graph” to discover the bursty
growth of communities. A web time graph is an extension of a web graph showing
nodes as pages and edges as links: in a web time graph, each node is given the
creation and deletion time of the corresponding page; each link between two
pages is regarded as valid for the duration that both pages exist. Their studies
analyze time variation of the number of pages or bookmarks in the community
statistically, but our research analyzes the time variation of graph structures.

Mining Useful Time Graph Patterns on Extensively Discussed Topics 23

“Dynamic graph” mining has been studied for dealing with temporal changes
of graphs [8]. A dynamic graph represents a graph that is transformed n-times
such as G1, G2, · · · , Gn during a period. In a dynamic graph, the number of edges
might change, but the number of nodes does not change. Each edge is labeled
with an n bit sequence {0|1}n. The i-th bit of the sequence is 1 if the edge exists
in Gi, and 0 if the edge does not exist in Gi. These algorithms can enumerate
frequently occurring dynamic patterns from a dynamic graph. However, dynamic
graphs can not represent increases of nodes. It is assumed that edge creations and
deletions are frequent. On the web, the increase of pages is frequent. The links
are created once; they usually remain unchanged. Therefore, a dynamic graph is
not considered to be useful to analyze web contents. Few studies analyzing the
web use dynamic graphs.

2.2 Graph Patterns

Several studies have examined information retrieval using graph patterns. Ex-
isting methods that use patterns to discover web communities are given below.

The HITS algorithm proposed by Kleinberg [6] uses the two concepts of “hub”
and “authority” in the web graph. Hub pages and authoritative pages have a
mutually reinforcing relation. In fact, HITS finds better pages on a specific topic
using the pattern by which a good hub page links many good authoritative
pages and by which a good authoritative page is linked by many good hub
pages. Trawling, as proposed by Kumar [5] discovers communities by finding
subgraphs matching patterns called complete bipartite graphs. Other studies
use a maximal clique enumeration method to identify web communities from an
inter-site graph whose nodes are web sites and whose edges are links between
sites [12]. A subgraph is called a clique if there is an edge between every pair of
nodes. Maximal cliques and isolated pseudo-cliques of sites are also used as graph
patterns to find communities or link farms: sets of spam links [12,13,14,15].

In addition, studies exist that find spam pages. The HITS algorithm described
above has properties by which pages of densely linked structures are assigned
high scores. Consequently, the method of extracting cliques is used to detect link
farms [13]: groups of spam pages linked densely together so that their pages are
assigned high scores. Additionally, some studies have examined the distribution
and evolution of link farms using time-series dates of web graphs [14]. Studies
exist to enumerate maximal cliques efficiently [15]. In addition, Uno proposed a
method for detecting pseudo-cliques, which are subgraphs obtained by removing
a few edges from cliques [16].

2.3 Applications of Graph Mining

Graph mining has been applied in many fields. For example in the field of chem-
ical informatics, common protein structure patterns are enumerated from a set
of graphs of chemical compounds. In the field of sociology, many graph mining
methods are used to analyze social networks to obtain various social character-
istics [17]. Another application in the real world is improving hospital processes

24 T. Oshino, Y. Asano, and M. Yoshikawa

Fig. 1. Mining frequent patterns

by mining frequent combination operations from time-series data and graphs
representing clinical pathways [18]. Several researchers have examined frequent
graph pattern enumeration. Frequent graph pattern mining delivers useful in-
formation. An outline of the frequent graph pattern enumeration algorithms is
shown in Figure. 1. We explain how to mine frequently occurring patterns from
a set of graphs in Section 2.4.

2.4 Frequent Graph Pattern Mining Algorithm

We explain the gSpan algorithm proposed by Yan and Han [19], which enu-
merates frequent graph patterns from a set of graphs. Target graphs are simple
graphs. Their nodes and edges are labeled. Regarding a molecular structure, for
example, each node is labeled with its atomic symbol; each edge is labeled with a
symbol representing a single bond or covalent bond. Looking at the set of graph
{G1, G2, G3} shown in Figure. 1, various patterns are apparent in them. Patterns
p1 and p2 appear on all three graphs. Pattern p3 appears on two graphs: G1 and
G2. Patterns p4 and p5 appear on a single graph G3.

The inputs of gSpan are a set of graphs as D and minimum support as minSup.
In fact, gSpan outputs all patterns appearing in more than minSup graphs,
where minSup is a parameter meaning the minimum support, in a set D of
graphs. Consequently, in the case of Figure. 1, it is assumed that we input as
D = {G1, G2, G3} and minSup = 2. The results are all patterns appearing in
more than two graphs such as p1, p2, and p3. As described in this paper, we use
a library of gSpan1.

3 Our Method to Mine Time Graph Patterns

In this section, we propose a method to identify useful time graph patterns by
estimating temporal characteristics of the web without manual investigation of
huge graphs. The proposed method comprises the following five steps (1)–(5).
(1) Prepare several desired topics (e.g., topics discussed extensively in a short
time) about which a user wants to extract patterns. (2) For each topic, collect
pages using a search engine. Then construct a set of graphs. Furthermore, obtain
the creation time of each page. (3) Label every node by analyzing the creation

1 Parsemis: http://www2.informatik.uni-erlangen.de/research/ParSeMiS/index.html

Mining Useful Time Graph Patterns on Extensively Discussed Topics 25

time of the page. Then construct a set of time graphs. (4) Enumerate frequent
time graph patterns using gSpan. (5) Detect characteristic time graph patterns
from enumerated patterns.

We can identify other topics whose link structure similar to the intended topics
by discovering several subgraphs matching these patterns from the web if useful
time graph patterns are mined in this way.

3.1 Construct Web Graph Sets

First, we construct a set of graphs for the input of gSpan. To do so, we prepared
some topics that have been discussed extensively on the web in advance. For
each topic, we construct a set of graphs whose nodes are the pages containing
the topic. We use the Google search engine2 to collect web pages related to
the topics. We query the characteristic keywords representing a topic and an
approximate time period. In this way, we can restrict results pages for our target
of interests. Consequently, we can obtain the top k, say 300, web pages and their
indexed time by Google, and construct a web graph consisting of the pages and
links between them. We can regard the indexed time as the creation time of the
page because it almost always corresponds with its posted time in the text of
the blog entry or the new page.

We use a search engine to construct a set of graphs because it is sufficient
for this case to collect pages referring to particular topics in certain periods.
However, in considering other applications, we might use another method to
construct graphs. For example, we might use a crawler instead of a search engine
to collect web pages and extract date information of the page by HTML parsing.

3.2 Analyzing Time-Series Data for the Labeling Method

For each graph, we collect a set of web pages whose topic is discussed extensively
in a specified period. On such topics, few pages discuss the topic at first. After
that, the topic spreads gradually, i.e., few pages related to the topic are created.
An explosive spread then occurs: many pages are created in a few days. Subse-
quently, new pages referring to the topic do not increase so much. The spread
enters a stable period. Thereafter, if some progress or change is made on this
topic, then a second or third explosion occurs.

To use characteristics of the spread, we assign the nodes labels reflecting the
growth period of a graph. We were able to consider the following simple method
for labeling: dividing the whole period into n sub-periods, the nodes created
during the i-th sub-period are labeled Ni. Using this method, the meaning of the
fixed i-th sub-period might differ from topic to topic. For example, the second
sub-period for a topic might correspond to a period when the topic spreads
gradually; the same sub-period might correspond to an explosive spread for
another topic. We desire to use the same label for the periods with the same
temporal characteristics, such as how the topic spreads, as possible. Therefore, we

2 http://www.google.co.jp/

26 T. Oshino, Y. Asano, and M. Yoshikawa

Fig. 2. Example of the growth of a graph

find the time points at which the graph growth changes drastically. Subsequently,
we label the nodes of graph in the order of periods whose boundaries are these
time points.

Let us consider an example of a web graph whose pages increase during
September 1–15, 2009, as depicted in Figure. 2. In this example, the first page
appeared on September 1; then pages increased slowly. On September 4, the
graph suddenly expanded; after September 7, the graph showed a stable period.
Consequently, two inflection points of the pages were identified: September 4 and
September 7. Therefore, the nodes made during September 1–3 are labeled as
N0, representing the early period of the graph; the nodes made during Septem-
ber 4–6 are labeled as N1, representing the growth period, and the nodes made
during September 7–15 are labeled as N2, representing the stable period.

A specific method for calculation of inflection points is that we divide the
period of the topic into n sub-periods and let the first date of each sub-period
be t1, t2, · · · , tn. (In our experiment explained in Section 4, n is set to 10.) At that
time, the i-th period di is defined as ti ≤ di < ti+1 (i = 1, 2, · · · , n− 1). Therein,
vi is the number of pages created in each period di. This is the velocity of the
increase of pages. Additionally, ai = vi − vi−1 (i = 1, 2, · · · , n) can be regarded
as acceleration of the increase at ti. The growth of a graph changes considerably
if the absolute value of this acceleration is greater than a certain value θ. As
described in this paper, letting the number of all nodes of the graph be N , we
define θ as θ = N

n . Then, ti that meets |ai| > θ is regarded as an inflection point,
and as the boundary point of labeling. We assume that two inflection points ap

and aq (1 < p < q < n) are obtained. The nodes made during d1 ∪ · · · ∪ dp−1 are
labeled N0. The nodes made during dp ∪ · · · ∪ dq−1 are labeled N1. The nodes
made during dq∪· · ·∪dn are labeled N2. Using such a method, we can enumerate
the time graph patterns successfully in this time.

Mining Useful Time Graph Patterns on Extensively Discussed Topics 27

Labels are necessary for existing graph pattern mining algorithms such as
gSpan. It is difficult to obtain results in practical time without appropriate
labeling because frequent pattern mining problems are NP-hard. We use the
labeling method described above in this case. However, another method would
be more effective for another case. Generally, if many labels exist, then the
computational cost is not so high because few frequent patterns exist. If few
labels exist, then the computational cost is high because many frequent patterns
exist. Therefore, an effective labeling method for each case would be obtained
by considering periodical characteristics for the case (e.g. specifying a period
during which the number of nodes increase rappidly in a short time.)

3.3 Mining Time Graph Patterns

We enumerate frequent graph patterns from the set of graphs labeled as ex-
plained in 3.2. The number of enumerated patterns depends on minSup. If min-
Sup is not so large, then many patterns are enumerated. They contain both
useful patterns and uninteresting ones. Therefore, we must identify them from
the enumerated patterns to characteristic patterns and detect useful structures.
Enumerated patterns have several clusters consisting of patterns whose struc-
tures are mutually similar. The similar patterns are inferred to represent the
same characteristics of the topic. Therefore, we regard the patterns involving
the maximum cluster as characteristic patterns. As described in this paper, we
detect such characteristic patterns manually.

Enumerating subgraphs containing detected patterns from the web is another
difficult problem, but we are not concerned with that problem here.

4 Experiments and Analysis

In this section, we mine time graph patterns around the extensively discussed
topics in out method as an experiment. we explain our analysis and considera-
tions to evaluate our method. In addition, we verify that we can mine useful time
graph patterns feasibly using our method. We construct a set of web graphs from
the actual topics discussed extensively, and enumerate frequent graph patterns.
Consequently, our target web pages are blogs and news sites. All experiments
were done using a PC (Core i7; Intel Corp.) with 4 GB memory and a 64-bit
operating system (Windows Vista; Microsoft Corp.).

4.1 Choosing Topics

We mine time graph patterns around the extensively discussed topics in our
method. Particularly, we specifically examine discussions found on blogs and
news sites. In such discussions, once an entry about a topic is posted on a blog
or news site, then bloggers discuss the topic by creating links to the entry and
posting their personal comments. We choose and investigate seven topics that
have been discussed in the past, and determine the input for each topic, i.e. the
search query and the time period, to a search engine, as listed below. We also
explain the outline of each topic.

28 T. Oshino, Y. Asano, and M. Yoshikawa

(1) Discussion of the average cost for producing a web site. It is also discussed
whether the quality of a site corresponds to the cost.

(2) Discussion about the relation between school records and a person’s intelli-
gence.

(3) Discussion about hakenmura—makeshift shacks for temporary workers
whose contracts have been terminated—in a Japanese park.

(4) Discussion about a problem by which some persons post illustrations tracing
other illustrations in pixiv; pixiv is a Japanese SNS specializing in posting
illustrations.

(5) Discussion about yominige, where a person reads another person’s diary in
mixi without commenting on the diary; mixi is a popular SNS in Japan.

(6) Rumors about the release date of a software game “Final Fantasy 13” pre-
sented by Square Enix Holdings, a Japanese company.

(7) Discussion related to the coding style of HTML on a blog community.

For each topic (1)–(7), we construct a web graph as explained in the previous
section. The graph structures and the labels of nodes are depicted in Figure. 3.
The graphs for topics (2)–(6) are shrunk because of space limitations.

Fig. 3. Input graphs of the topics

4.2 Discovering Patterns

We apply the gSpan algorithm to the constructed seven graphs (Figure. 3) by
setting minSup to 4. If minSup is too large, then the number of nodes in each
maximal pattern becomes extremely small. Small patterns are usually found on
almost all web graphs other than the constructed graphs. Therefore, the patterns
are not useful for finding interesting topics. In contrast, if minSup is too small,
then the structures of enumerated patterns would depend on the constructed
graphs considerably: consequently, the patterns would not be sufficiently versa-
tile to find new useful information for many topics. In addition, the number of
patterns would be too large to compute them in practice. We actually investi-
gated various values for minSup. It is difficult to discover versatile patterns when
minSup is 5 or greater, although we cannot obtain results in a particular time
when minSup is 3 or less. Therefore, we regard frequent patterns as all maxi-
mal patterns appearing in more than four graphs in seven input graphs. When

Mining Useful Time Graph Patterns on Extensively Discussed Topics 29

Fig. 4. Characteristic patterns

minSup = 4, we can obtain results in a few minutes. The mined characteristic
patterns are presented in Figure. 4.

Analyzing the mined patterns, we found that the following nodes of four types
(a)–(d) appear commonly in all those patterns.

(a) A page created during the early period, corresponding to label N0, and linked
to many pages created during various periods.

(b) A page created during the growth period, corresponding to label N1, and
linked by many pages created during the growth period and the stable period,
corresponding to label N2.

(c) A page created during the stable period, and linking to many pages including
pages of types (a) and (b).

(d) A page created during the growth period, linking to many pages including
pages of types (a) and (b).

Figure. 4 depicts which nodes correspond to types (a)–(d) in each pattern. We
also verified what roles pages of the three types play for spreading a topic by
investigating the pages carefully. It is particularly interesting that the following
facts are observed in all patterns. Page (a) is either a page reporting the topic
first on a news site, or the first blog entry discussing the topic. Therefore, we can
say that page (a) is a primary source for the topic. Page (b) often links to page
(a). It usually contains an attracted opinion or good information about the topic.
Page (b) is often written by a famous blogger. Many bloggers are interested in
the topic by reading such a page. Consequently, many pages linking to page (b)
appear. Page (b) is regarded as a trigger for the growth period for the discussion.
Actually, the pages discussing the topic were increased gradually before page (b)
was made, although they were increased drastically after page (b) was made.
Page (c) and page (d) are hub pages linking to authoritative pages, i.e., pages
linked from many pages created during the growth period. Pages (c) and (d)
often summarizes the past discussion, defines a conflict in the discussion, and
concludes. Therefore, we call them summarizers.

4.3 Information Retrieval Using Mined Patterns

We could retrieve extensively discussed topics, other than the used topics, from
the web by enumerating subgraphs matching to the patterns mined as explained

30 T. Oshino, Y. Asano, and M. Yoshikawa

above. The ideal way is expected to be development of a method for enumerating
such subgraphs automatically. For example, trawling is a method for enumer-
ating complete bipartite subgraphs automatically to find communities. Kumar
et al. [5] investigated samples among the enumerated subgraphs manually and
confirmed that most samples actually correspond to communities. They con-
cluded that their pattern is effective for information retrieval. We unfortu-
nately have not established an automatic method for enumeration yet. We verify
whether our patterns are useful by finding a subgraph matching to one of the
patterns from the web and analyzing the subgraph manually. If the identified
subgraph represents the spread of a topic similarly to the mined patterns, then
the patterns would be useful for information retrieval.

We collect web pages using a crawler with hub pages for many topics as
sources, and construct a web graph consisting of the pages. To find a subgraph
matching a mined pattern, we first find page p with large out-degree. Let t(p)
be the creation time of page p. We then find pages q and r linked from many
pages including p such that t(r) < t(q) < t(p). We expect here that r might be
a primary source, q might be a trigger, and p might be a summarizer. We finally
check whether a subgraph containing p, q, and r matches a mined pattern by
assigning label N0 to the pages created before t0 = (t(r) + t(q))/2, and label
N1 to the pages created after t0 and before (t(q) + t(r))/2, and label N2 to the
remaining pages. In this way, we actually found a subgraph matching a mined
pattern. We observed that the subgraph corresponds to an extensively discussed
topic. As we expected, pages r, q, and p are, respectively, a primary source, a
trigger and a summarizer. We explain this topic as well as the topics used in the
previous subsection.

Outlines: Topic related to NHK’s interview of a comic artist. A comic artist
posted an entry on his blog to complain about NHK’s interview of him. NHK
is the Japanese national public broadcasting organization.

Primary source: http://blog.livedoor.jp/dqnplus/archives/1301496.html
A famous blogger refers to the blog above in his own blog.

Trigger: http://blog.nawosan.com/archives/51567295.html
After this topic was discussed extensively, the comic artist posted a new
entry to give comments on his blog.

Summarizer: http://homepage3.nifty.com/DOCUMENT/pakuri301.html
This page links to many pages related to this topic.

This observation implies that the mined patterns are useful for information re-
trieval. Therefore, we confirm that mining time graph patterns found according
to our method is meaningful for analyzing temporal characteristics of the web.
We expect that other useful time graph patterns can be mined using our method
in the future.

5 Conclusion

We have proposed a method for mining time graph patterns representing tem-
poral characteristics of the topics discussed extensively on web graphs. We have

Mining Useful Time Graph Patterns on Extensively Discussed Topics 31

analyzed the patterns and web pages corresponding to the patterns. Results show
that three characteristic pages are contained in the patterns. Additionally, we
have succeeded in finding a subgraph matching a mined pattern. We observed
that the subgraph corresponds to an extensively discussed topic. Consequently,
we have claimed that time graph patterns are useful for information retrieval
and web analysis.

Our future work includes the following two subjects: (1) developing a general
method for mining time graph patterns; and (2) analyzing web using time graph
patterns. The proposed method uses labels specialized to extensively discussed
topics, and chooses characteristic patterns manually. We should try to develop
a generalized labeling, and a method for choosing characteristic patterns au-
tomatically. Leskovec used the cascade for analyzing web; they classified blogs
into conservative and humorous ones by investigating the number of cascades
in blogs. We could analyze web using time graph patterns in a similar way if
we propose a method for enumerating subgraphs matching to a specified time
graph pattern.

Acknowledgment

This work was supported in part by the National Institute of Information and
Communications Technology.

References

1. Nakajima, S., Tatemura, J., Hara, Y., Tanaka, K., Uemura, S.: A method of blog

thread analysis to discover important bloggers. Journal of Japan Society for Fuzzy

Theory and Intelligent Informatics (2007)

2. Menjo, T., Yoshikawa, M.: Trend prediction in social bookmark service using time

series of bookmarks. In: Proceedings of DEWS, vol. (2), pp. 156–166 (2008)

3. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,

shrinking diameters and possible explanations. In: Proceedings of the eleventh

ACM SIGKDD International Conference on Knowledge Discovery in Data Mining,

pp. 177–187 (2005)

4. Kumar, R., Novak, J., Raghavan, P., Tomkins, A.: On the bursty evolution of

blogspace. In: Proceedings of the 12th International World Wide Web Conference,

pp. 159–178 (2005)

5. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the web for

emerging cyber-communities. Computer Networks 31, 1481–1493 (1999)

6. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of

the ACM 46(5), 604–632 (1999)

7. McGlohon, M., Leskovec, J., Faloutsos, C., Hurst, M., Glance, N.: Finding patterns

in blog shapes and blog evolution. In: Proceedings of ICWSM (2007)

8. Borgwardt, K.M., Kriegel, H.P., Wackersreuther, P.: Pattern mining in frequent

dynamic subgraphs. In: Proceedings of ICDM, pp. 818–822 (2006)

9. Tawde, V.B., Oates, T., Glover, E.: Generating web graphs with embedded com-

munities. In: Leonardi, S. (ed.) WAW 2004. LNCS, vol. 3243, pp. 80–91. Springer,

Heidelberg (2004)

32 T. Oshino, Y. Asano, and M. Yoshikawa

10. Pennock, D.M., Flake, G.W., Lawrence, S., Glover, E.J., Giles, C.L.: Winners don’t

take all: Characterizing the competition for links on the web. Proceedings of the

National Academy of Sciences of the United States of America, National Acad

Sciences, 5207 (2002)

11. Huberman, B., Adamic, L.: Growth dynamics of the world-wide web. Nature 401,

131 (1999)

12. Asano, Y., Imai, H., Toyoda, M., Kitsuregawa, M.: Finding neighbor communities

in the web using inter-site graph. IEICE transactions on information and sys-

tems 87(9), 2163–2170 (2004)

13. Wu, B., Davison, B.D.: Identifying link farm spam pages. In: Proceedings of the

14th International World Wide Web Conference (2005)

14. Joo Chung, Y., Toyoda, M., Kitsuregawa, M.: A study of link farm distribution

and evolution using a time series of web snapshots. In: Proceedings of AIRWeb,

pp. 9–16 (2009)

15. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. LNCS,

pp. 260–272. Springer, Heidelberg (2004)

16. Uno, T.: An efficient algorithm for solving pseudo clique enumerating problem.

Algorithmica 56(1), 3–16 (2008)

17. Coffman, T., Marcus, S.: Pattern classification in social network analysis: a case

study. In: Proceedings of IEEE Aerospace Conference, vol. 5, pp. 3162–3175 (2004)

18. Lin, F., Chou, S., Pan, S., Chen, Y.: Mining time dependency patterns in clinical

pathways. International Journal of Medical Informatics 62(1), 11–25 (2001)

19. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: Proceedings

of the 2002 IEEE International Conference on Data Mining, pp. 721–724 (2002)

20. Cook, D.J., Holder, L.B. (eds.): Mining Graph Data. Wiley-Interscience, Hoboken

(2005)

Querying Graph-Based Repositories of Business

Process Models

Ahmed Awad1 and Sherif Sakr2

1 HPI, University of Potsdam, Germany

ahmed.awad@hpi.uni-potsdam.de
2 CSE, University of New South Wales, Australia

ssakr@cse.unsw.edu.au

Abstract. With the rapid and incremental increase in the number of

process models developed by different process designers, it becomes cru-

cial for business process designers to be able to look up the repository

for models that could handle a similar situation before developing new

ones. In this paper, we present an approach for querying repositories of

graph-based business process models. Our approach is based on a visual

query language for business processes called BPMN-Q. BPMN-Q is used

to query business process models by matching the structure of a graph

query to that of a process model. The query engine of our system is built

on top of traditional RDBMS. We make use of the robust relational in-

dexing infrastructure in order to achieve an efficient and scalable query

evaluation performance.

1 Introduction

Business process modeling is an essential first phase in the business process en-
gineering chain. Business process models are created by business analysts with
an objective to capture business requirements, enable a better understanding
of business processes, facilitate communication between business analysts and
IT experts, identify process improvement options and serve as a basis for the
derivation of executable business processes. Designing a new process model is a
highly complex, time consuming and error prone task. As the number of busi-
ness process models increases, providing business process designers with a query
engine for reusing previously designed business process models (by themselves
or others) is of a great practical value. Reusing implies the need an intuitive,
easy-to-use and expressive query languages of business process models.

In this paper, we present a query engine for repositories of graph-based busi-
ness process models. The query engine relies on a novel Business Process Mod-
els Query language called BPMN-Q [2]. BPMN-Q allows expressing structural
queries and specifies proceedings of determining whether a given process model
(graph) is structurally similar to a query graph. A primary challenge in com-
puting the answers of graph queries is that pairwise comparisons of graphs are
usually hard problems. For example, subgraph isomorphism is known to be NP-
complete [8]. A naive approach to compute the answer set of a BPMN-Q graph
query (q) is to perform a sequential scan on the stored graph models and check

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 33–44, 2010.
� Springer-Verlag Berlin Heidelberg 2010

34 A. Awad and S. Sakr

whether each model satisfies the conditions of (q). However, the business process
repository can be very large which makes a sequential scan over the repository
impracticable. Moreover, the query processing of BPMN-Q queries is more chal-
lenging than the traditional graph queries in the sense that the edges between the
nodes of the BPMN-Q queries are not always simple or direct connections that
can be evaluated using intuitive retrieval mechanisms. However, BPMN-Q query
edges can represent more complex and recursive types of connections between
the nodes of the business process graph models. Therefore, it is apparent that
the efficiency of BPMN-Q query processor is directly dependent on its back-end
graph indexing and query processing mechanisms.

Relational database management systems (RDBMSs) have repeatedly proven
to be highly efficient, scalable and successful in hosting different types of data
such complex objects [7] and XML data [9,6]. In addition, RDBMSs have shown
to be able to handle vast amounts of data efficiently using their powerful indexing
mechanisms. Thus, we decided to build the storage and query engines of our
business process query engine on top of traditional RDBMS. We use a fixed-
mapping storage scheme to store the graph-based models of the business process
repository. We make use of the robust relational indexing infrastructure in order
to achieve an efficient and scalable query evaluation performance.

The remainder of this paper is organized as follows. Section 2describesBPMN-Q
as a language for querying repositories of business process models. The design and
implementation of the back-end relational query processor is presented in Section
3. In Section 4 we experimentally demonstrate the efficiency of our query engine.
Related work is discussed in Section 5 before we conclude the paper in Section 6.

2 BPMN-Q

BPMN has been recently considered as the defacto standard for business process
modeling [12]. Figure 1 shows the core process modeling concepts in BPMN
notation. In principle, a process model based on BPMN can be viewed as a
directed typed attributed labeled graph. The process model shown in Figure 2
is a simplified loan handling process using BPMN notations. We will use this
process model to describe queries and their matching to the process. When a
customer applies for a real-estate credit, the customer’s credit rating, the real
estate construction documents and the land register record are checked. As a
result of those assessments, the application will be either rejected or the contract
is to be prepared. After the contract has been prepared, the process can either
end or the bank might offer additional products: a loan protection insurance and
a residence insurance. Conceptually, process models are considered as graphs
with nodes and edges which are formalized as follows:

Definition 1. [Process Model] is a tuple P = (A, E, D, G, S, CF, DF) where:
– A is the set of activities in a process model.
– E is the set of events where Es, Ee represent the start and end events.
– D is the set of data objects/elements that are needed for the activities
– G is the set of control flow routing gateways.

Querying Graph-Based Repositories of Business Process Models 35

Fig. 1. Representation of Core Concepts in BPMN Notation

– S is the set of states(values) a data object can assume.
– CF ⊆ A ∪G ∪ (E \ Ee)×A ∪G ∪ (E \ Es) is the control flow relations
– DF ⊆ (D × (A ∪ E ∪G)× S) ∪ ((A ∪ E)×D × S) is the data flow relation

between control objects and data objects.

Customer applies for
real-estate credit

Credit Rating
[rejected]

Check credit rating

Credit Rating
[accepted]

Check real-estate
construction
document

Check land register
record

Const. Doc.
[invalid]

Const. Doc
[valid]

Record
[absent]

Record
[present]

Prepare contract

Reject application

All OK

Offer loan protection
insurance

Offer residence
insurance

Fig. 2. A Banking Business Process (in BPMN Notation)

The BPMN-Q query language is designed to help the business process designers
on querying repositories of graph-based business process models. The language
relies on the notation of BPMN as its concrete sytax and supports querying on
all its core concepts. Figure 3 summarizes the symbols used to represent the
query concepts of BPMN-Q. We describe in detail the meaning of the querying
constructs of BPMN-Q as follows:
– Path edges: a path edge connecting two nodes in a query represents an

abstraction over whatever nodes could be in between in the matching process
model. Moreover, path edges have an exclude property. When the exclude

36 A. Awad and S. Sakr

Variable Node It is used to indicate unknown activities in a query. It resembles an
activity but is distinguished by the @ sign in the beginning of the label.

Generic Node It indicates an unknown node in a process. It could evaluate to any node
type.

Generic Split It refers to any type of split gateways.

Generic Join It refers to any type of join gateways.

Negative
Sequence Flow

It states that two nodes A and B are not directly related by sequence
flow.

Path It states that there must be a path from A to B. A query usually returns
all paths.

N ti P th It t t th t th i t th b t t d A d BNegative Path It states that there is not any path between two nodes A and B.

Fig. 3. BPMN-Q Query Constructs

Customer applies for
real-estate credit Reject application//

(a) A Query with Path edge

Customer applies for
real-estate credit

Check credit rating

Check real-estate
construction
document

Check land register
record

Reject application

(b) Match of the Query to Process in Figure 2

Fig. 4. A Path Query and its Match

property is set to some node. The evaluation of the path edge succeeds only
if there are sequences of nodes between the source and destination nodes to
whom excluded node does not belong.

– Undirected Data Flow edges: this type of edges is used to connect a data
object to a path edge in a query. This is also an abstraction mechanism to
find paths on which there are nodes that access the specified data object.

– Anonymous activities and data objects: They are used users who may
need to issue a query on the form, what activities read/update the insurance
claim data object. Since, the user does not know that activity, he/she can
start its label with the ’@’ symbol to declare it as an anonymous activity
the query processor has to find. Similarly, data objects can be anonymous.

– Negative control flow and path edges: They are used to express that
nodes A and B must have no control flow edge from A to B (negative control
flow), or there must be no path at all from A to B (negative path).

– Concrete ControlObject and GateWay: These classes are no longer
abstract. i.e., in a query, the user is able to put a generic node, generic split,

Querying Graph-Based Repositories of Business Process Models 37

generic join in order to abstract from the details and let the query processor
figure out the match to that node in the inspected process model.

Nodes and path edges can be assigned with variable names which start with
the symbol ‘?’. These names can be used in the exclude property of paths to
help describe non-trivial queries. For example, matching a path from activity
“customer applies for real-estate credit” to activity “Reject application”, see
Figure 4(a), succeeds in the process model in Figure 2 because there is at least
one sequence of nodes and control flow edges that connects “Identify Respondent
Bank” to activity “Add Respondent Bank to Black List”, see Figure 4(b). Setting
the exclude property of the path in Figure 4(a) to “Check land register record”
would yield no matches. we can define a BPMN-Q query graphs as follows:
Definition 2. [Query] a BPMN-Q query is a tuple
Q = (QO, QA, QE, QD, QG, QS, QCF, QP, QDF, QUF, isAnonymous,
isNegative, exclude) where:

– QO is the set of generic objects in a query.
– QA is the set of activities in a query.
– QE is the set of events where QEs, QEe represent the start and end events

respectively.
– QD is the set of data objects/elements that are needed for the activities
– QG is the set of control flow routing gateways.
– QS is the set of states(values) a data object can assume.
– QCF ⊆ QO ∪QA ∪QG ∪ (QE \ QEe) ×QO ∪QA ∪ QG ∪ (QE \QEs) is

the control flow relation between control nodes
– QP ⊆ QO ∪QA∪QG∪ (QE \QEe)×QO ∪QA∪QG∪ (QE \QEs) is the

path relation between control nodes
– QDF ⊆ (QD×(QO∪QA∪QE∪QG)×QS)∪((QO∪QA∪QE)×QD×QS)

is the data flow relation between control objects and data objects.
– QUF ⊆ QD×̇path is the set of undirected associations between data objects

and paths.
– isAnonymous : QA ∪ QD → {true, false} is a functions that determines

whether activities and data objects in a query are anonymous.
– isNegative : QCF ∪ QP → {true, false} is a function that determines

whether the control flow or path edges are negative.
– exclude : {p ∈ QP : isNegative(p) = false} → 2QO∪QA∪QE∪QG

Since BPMN-Q is designed to match queries to process definitions in a repository,
it is necessary to identify a candidate set of process models that might have
the chance to provide a match to the query, rather than scanning the whole
repository. A process model is said to match a BPMN-Q query if it satisfies all
sequence flow and path edges as in Definition 3 which is formalized as follows:

Definition 3. A process model P = (A, E, D, G, S, CF, DF) matches a
query Q = (QO, QA, QE, QD, QG, QS, QCF, QP, QDF, QUF, isAnonymous,
isNegative, exclude) iff:
– QE ⊆ E.
– QG ⊆ G

38 A. Awad and S. Sakr

– ∀o ∈ QO ∪ {a ∈ QA : isAnonymous(a) = true}∃a ∈ A ∪ E ∪ G :
(o,) ∈ QCF ∧ isNegative((o,)) = false → (a,) ∈ CF ∧ (, o) ∈
QCF ∧ isNegative((, o)) = false → (, a) ∈ CF . All non negative control
flow edges must be satisfied for anonymous activities and generic objects.

– ∀d ∈ QD∃d′ ∈ D : (d,) ∈ QDF → (d′,) ∈ DF ∧ (, d) ∈ QDF → (, d′) ∈
DF . All data flow edges must be satisfied for data objects.

– (x, y) ∈ QCF ∧ isNegative((x, y)) = true → (x, y) /∈ CF . a process must
not have control flow edges specified as negative control flows in the query.

3 Relational Processing of BPMN-Q Queries

3.1 Relational Encoding of Process Models

The starting point of our SQL-based processor for BPMN-Q graph-based queries
is to design an efficient and suitable mapping scheme for each business process
graph model BPMi of the business process repository (BPR) [11]. In our im-
plementation, we use a fixed-mapping storage scheme to store the models of
the BPR. In this mapping scheme, each business process model is assigned a
unique identity, ModelID. Each element of the business process model is as-
signed a unique identity, elementID. Each element is represented by one tuple
in a single table (Elements table) which stores all elements of the business pro-
cess repository. Additionally, each element has additional attributes to store the
element name and type (activity, event or gateway). Similarly, each edge in the
business process models is assigned a unique identity EdgeID and all edges of
the graph database are stored in a single table (BPEdges table) where each edge
is represented by a single tuple in this table. Each edge tuple describes the busi-
ness process model to which the sequence flow belongs, the unique identity of
the source element of the edge, the unique identity of the destination element of
the sequence flow and the edge type (Sequence flow or association). The over-
head of checking the existence of indirect sequence between the elements of the
business process models can be optionally reduced by encoding paths with all
lengths that are extracted from process models in an incremental fashion ac-
cording to the user query workloads. The relational storage scheme of business
process repository is therefore described as follow:

– BPModel(ModelID, ModelName, ModelDescription).

– BPElements(ModelID, ElementID, ElementName, ElementType).

– BPEdges(ModelID, EdgeID, SElementID, DElementID, EdgeType).

– BPPaths(ModelID, PathID, SElementID, DElementID, ElementList).

Figure 5 illustrates an example of storing business process models which are de-
fined using BPMN notations into our defined relational mapping scheme. In this
example, BPMN elements with the kind start event, end event or gateway do
not have labels. Therefore null values are stored in the ElementName attribute
for their encoding tuples. Integer codes are used to represent the different types
of BPMN elements (for example 1 represents start events, 2 represents activities
and 3 represents gatways). With the aim of reducing the cost of the verification

Querying Graph-Based Repositories of Business Process Models 39

phase of the query evaluation process, table BPPaths represents a materializa-
tion for some paths of the stored business process graph models. The records of
this table is added incrementally based on the query workload. In this table the
symbol G is used to represent gateway elements in the ElementList attribute.

3.2 BPMN-Q Query Evaluation

The query processing of BPMN-Q queries goes beyond the traditional sub-graph
query processing in two main aspects: 1) BPMN-Q subgraph queries do not treat
all nodes of the graph repository or graph query in the same way. Each node
has its own type and characteristics. The nodes of BPMN-Q queries can be also
generic nodes which means they can be matched to nodes with different types on
the source repository models. 2) The edges between the nodes of the subgraph
query is not always simple or direct connections that can be evaluated using the
intuitive retrieval mechanisms. However, these query edges can represent more
complex and recursive types of connections (paths, negative paths and negative
connections). Therefore, in order to achieve an efficient execution for BPMN-Q
queries and avoid the high cost of evaluating the recursive constructs, we have
divided this task into two phases: filtering and verification. The first phase re-
trieves from the repository all candidate business models to match the structure
of the input query. The second phase verifies each candidate model to ignore
the ones which does not satisfy the recursive constructs of the input queries.
More specifically, using our defined relational storages scheme, we employ the
following SQL-based filtering-and-verification mechanism to speed up the search
efficiency of BPMN-Q queries.

– Filtering phase: In this phase we use an effective and efficient pruning
strategy to filter out as many as possible of the non-required business process
models early. Specifically, in this phase we specify the set of graph database
members which contain the set of nodes and edges that are described by
the BPMN-Q query. Therefore, the filtering process of a BPMN-Q query q
consists of a set of nodes QE with a size that is equal to m and a set of
edges QS equal to n is achieved using the SQL translation template which
is represented in Figure 6. In this template, each referenced table Ei (Line
number 2) represents an instance from the table BPElements and maps
the information of one element of the set of query nodes QE. Similarly, each
referenced table Sj represents an instance from the table BPEdges and maps
the information of one edge of the set of query edges QS. f is the mapping
function between each element of QE and its associated BPElements table
instance Ei. Lines number 4 and 5 of the SQL translation template represents
a set of conjunctive conditions to ensure that all queried elements and egdes
belong to the same process model graph. Line number 6 represents the set of
conjunctive predicates of the element labels with exclusion of variable and
generic nodes. Line number 7 represents the set of conjunctive predicates of
the element types with exclusion of generic nodes and generalization for the
generic split and generic join constructs. Line number 8 represents the set of

40 A. Awad and S. Sakr

A B C

d1

(a) Sample business process model (BPMN1)

A

B

D

C

E

(b) Sample business process model (BPMN2)

modelID elementID Element
Name

Element
Type

1 1 1 (start)

1 2 A 2(Activity)

1 3 B 2(Activity)

1 4 C 2(Activity)

1 5 d1 5(Data Obj.)

1 6 4(End)

2 1 1 (start)

2 2 A 2(Activity)

2 3 3(Gateway)

2 4 B 2(Activity)

modelID sElement dElement edgeType

1 1 2 1 (sequence)

1 2 3 1 (sequence)

1 3 4 1 (sequence)

1 4 5 2 (association)

1 4 6 1 (sequence)

2 1 2 1 (sequence)

2 2 3 1 (sequence)

2 3 4 1 (sequence)

2 4 5 1 (sequence)

2 5 6 1 (sequence)2 4 B 2(Activity)

2 5 C 2(Activity)

2 6 4(End)

2 7 D 2(Activity)

2 8 E 2(Activity)

2 9 4(End)
BPEdges

BPElements

(q)

2 3 7 1 (sequence)

2 7 8 1 (sequence)

2 8 9 1 (sequence)

BPPaths

modelID pathID sElement dElement elementList

1 1 A C B

2 1 A C GB

2 2 A E GD

(c) Relational encoding of process graphs

Fig. 5. An example of relational encoding of business process graphs

Querying Graph-Based Repositories of Business Process Models 41

1 SELECT DISTINCT E1.modelID, Ei.ElementID
2 FROM BPElements as E1,..., BPElements as Em, BPEdges as S1,..., BPEdges as Sn

3 WHERE

4 ∀m
i=2(E1.modelID = Ei.modelID)

5 AND ∀n
j=1(E1.modelID = Sj .modelID)

6 AND ∀m
i=1(Ei.ElementName = QEi.ElementName)

7 AND ∀m
i=1(Ei.ElementType = QEi.ElementType)

8 AND ∀n
j=1(Si.EdgeType = SJ .EdgeType)

9 AND ∀n
j=1(Sj .SElementID = Ef(Sj .SElementID).ElementID

10 AND Sj .DElementID = Ef(Sj .DElementID).ElementID);

Fig. 6. SQL treanslation template of the filtering phase of BPMN-Q queries

conjunctive predicates of the edge types (sequence flow or association). Due
to their very expensive evaluation cost, these conditions are not represented
for recursive or negative edges and delayed to the verification phase after
uploading the candidate process models into the main memory. Lines number
9 and 10 represent the conditions of the edge connection information between
the mapped elements.

– Verification phase: This phase is an optional phase. We apply the veri-
fication process only if the BPMN-Q query contains any of the Path, Neg-
ative Path or Negative Sequence Flow constructs. Although the fact that
the conditions of evaluating these constructs could be injected into the SQL
translation template of the filtering phase as nested or recursive queries, we
found that it is more efficient to avoid the cost of performing these conditions
over each stored business process and delay their processing, if required, in
a separate phase after pruning the candidate list. In this phase we load the
candidate process models (which are passed from the filtering phase) into
the main memory and verify the conditions of the recursive and negative
edge constructs. We use the aid of the information of BPPaths table to
accelerate the evaluation process of this phase.

4 Experiments

To demonstrate the efficiency of our query engine in processing BPMN-Q graph-
based queries [1], we conducted our experiments using the IBM DB2 DBMS
running on a PC with 2.8 GHZ Intel Xeon processors, 4 GB of main memory
storage and 200 GB of SCSI secondary storage. In our experiments we use a real
dataset which is collected from the online business process modeling repository,
ORYX1. This real dataset consists of 250 business process models. The average
number of nodes in each business process model graph is 12 nodes and the
average number of edges between these nodes are 17. We mapped the available
RDF presentation of these models into our relational storage scheme. A query
set which consists of 10 manually designed BPMN-Q queries has been used

1 http://oryx-editor.org/backend/poem/repository

42 A. Awad and S. Sakr

(a) (Q1): Path query between two activ-

ity objects

(b) (Q2): Path query between a starting

event and an activity object

(c) (Q3): Association query between a

data object and an activity

(d) (Q4): Association query between a

data object and a variable activity

(e) (Q5): Multipath query with generic nodes and generic gateway

(f) (Q6): Multipath query with an XOR

splitting gateway

(g) (Q7): And join query with multiple

sources

(h) (Q8): A query for detecting deadlock

situations

(i) (Q9): An association query between

an activity and a variable data object

(j) (Q10): A query with an XOR split that matches an AND join

Fig. 7. Queries of the Performance Experiments

Querying Graph-Based Repositories of Business Process Models 43

-- Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

DB250
DB500
DB1000

Q
ue

ry
ex

ec
ut

io
n

tim
e

(in
m

ill
is

ec
on

d)

BPMN-Q queries

(a) Scalability of BPMN-Q query processor

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
0

10

20

30

40

50

60

70

P
er

ce
n

ta
g

e
o

fv
er

ifi
ca

tio
n

tim
e

BPMN-Q Queries

DB250
DB500
DB1000

(b) Verification time of BPMN-Q queries

Fig. 8. Performance Evaluation of BPMN-Q Query Processor

(Figure 7). These queries have be designed with ranging number of elements
and covering the most important constructs of the BPMN-Q query languages.
To demonstrate the scalability of our approach, we run our experiments using
larger database sizes of business process models. We duplicated the instances
of the available two process models two times to generate another two datasets
with sizes of 500 and 1000 process models respectively.

Figure 8(a) illustrates the average execution times for the relational processor
of BPMN-Q queries. In this figure, the X-axis represents BPMN-Q queries while
the execution time of each query is presented in the Y-axis . The execution
times of these experiments include both the filtering and verification phases.
The results show that the execution times of our system performs and scales in
a decreasing linear fashion with respect to the increasing size of the process model
repository. The main reason behind this is the scalability of the relational-based
filtering phase to avoid a high percentage of the false positive process models
and to reduce the size of the candidate process models. Figure 8(b) illustrates
the percentage of the verification phase with respect to the total execution time
of BPMN-Q queries. The reported percentages are computed using the formula:
(1 − V

T) where V represents the execution time of the verification phase while
C represents the total execution time of the BPMN-Q query. Queries Q3, Q4
and Q9 does not require any verification phase because they do not include
any recursive or negative edge connections. In principle, the more recursive or
negative edges the query has, the longer the time for the verification phase is
required. Thus, queries Q5, Q8 and Q10 have the highest percentage of their
execution times reserved to verify their multiple generic nodes and recursive
connections. The experiment results confirm the importance of applying efficient
filtering mechanisms to avoid the high cost of the verification phase. Although
it is expected that the number of candidate process models is increasing linearly
with respect to the size of the process model repository, the efficiency of the
filtering phase is shown by the decreasing linear increase of the verification time
in comparison to the increase of the repository size.

44 A. Awad and S. Sakr

5 Related Work

Several authors have developed process query languages to query about the
allowed executions of a BPM [3,10]. The main difference between those graphical
languages and BPMN-Q is that BPMN-Q is used to formulate queries about the
business process model itself (i.e. its structure), not about the state space of its
executions. This makes it possible to use BPMN-Q for searching for modeling
problems without having to compute the state space of all possible executions.
Beeri et al. [4,5] have presented a query language for querying business processes
called BP-QL. The query language is designed based on the BPEL standard and
thus focuses on querying executable processes. Our work focuses on the reuse
of higher level business knowledge. In addition, our query specification language
is more expressive in that apart from constraints on data and control flow, the
user can specify additional properties of the structure of the models.

6 Conclusion

In this paper we described the design and implementation of a query engine
which provides the business process designers with effective querying mecha-
nisms. The query engine relies on a visual, easy-to-use and expressive query
language to specify their queries against the repository of business process mod-
els. Using the robust relational infrastructure, our experiments demonstrate the
efficiency and scalability of the implementation of our query engine to deal with
large business repository. As a future work, we are planning to consider the social
aspect in the context of collaborative building and reusing of process models.

References

1. QBP: A Flexible Framework for Querying and Reusing Business Process Models,

http://bpmnq.sourceforge.net/
2. Awad, A.: BPMN-Q: A Language to Query Business Processes. In: EMISA (2007)

3. Eshuis, R., Grefen, P.: Structural Matching of BPEL Processes. In: ECOWS (2007)

4. Beeri, C., et al.: Querying Business Processes with BP-QL. In: VLDB (2005)

5. Beeri, C., et al.: Querying Business Processes. In: VLDB (2006)

6. Yoshikawa, M., et al.: XRel: a path-based approach to storage and retrieval of XML

documents using relational databases. TOIT 1(1) (2001)

7. Cohen, S., et al.: Scientific formats for object-relational database systems: a study

of suitability and performance. SIGMOD Record 35(2) (2006)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, New York (1979)

9. Grust, T., Sakr, S., Teubner, J.: XQuery on SQL Hosts. In: VLDB (2004)

10. Momotko, M., Subieta, K.: Process Query Language: A Way to Make Workflow

Processes More Flexible. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.)

ADBIS 2004. LNCS, vol. 3255, pp. 306–321. Springer, Heidelberg (2004)

11. Sakr, S.: Storing and Querying Graph Data Using Efficient Relational Processing

Techniques. In: UNISCON (2009)

12. Wohed, P., Aalst, W., Dumas, M., Hofstede, A., Russell, N.: On the Suitability of

BPMN for Business Process Modelling. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P.

(eds.) BPM 2006. LNCS, vol. 4102, pp. 161–176. Springer, Heidelberg (2006)

http://bpmnq.sourceforge.net/

SGDB – Simple Graph Database Optimized for
Activation Spreading Computation

Marek Ciglan and Kjetil Nørvåg

Dep. of Computer and Information Science, NTNU, Trondheim, Norway
marek.ciglan@idi.ntnu.no

Abstract. In this paper, we present SGDB, a graph database with a storage
model optimized for computation of Spreading Activation (SA) queries. The pri-
mary goal of the system is to minimize the execution time of spreading activation
algorithm over large graph structures stored on a persistent media; without pre-
loading the whole graph into the memory. We propose a storage model aiming to
minimize number of accesses to the storage media during execution of SA and
we propose a graph query type for the activation spreading operation. Finally, we
present the implementation and its performance characteristics in scope of our
pilot application that uses the activation spreading over the Wikipedia link graph.

1 Introduction

The graph data structure is one of the most important data structures in computer science
and it is also an useful structure for data modeling. Many real-world objects can be
naturally described by graphs. The most straightforward examples are those of various
types of networks; e.g., transportation networks, delivery networks, hypertext networks,
citation networks, social networks or communication networks.

Although the relational data model is dominant in nowadays information systems,
modeling data in the graph structure is gaining noticeable interest. Graph databases are
information systems providing graph abstraction for modeling, storing and accessing
the data. In the graph data model, relations between modeled objects are as impor-
tant as the data describing the objects. This is the most distinctive feature from other
database models - graph databases aim to provide efficient execution of queries taking
into account the topology of the graph and the connectivity between stored objects.

Graph traversal and graph analysis operations are traditionally implemented by pre-
loading whole graph in the memory and process it in memory, due to performance rea-
sons. This approach naturally suffers from memory size limits. Graph databases aim to
provide efficient persistent storage for graph data that also allow for fast graph traversal
processing.

In this paper we present the storage model for the graph structure together with the ar-
chitecture and the implementation of a graph database, named Simple Graph Database1

(SGDB). The storage model of SGDB is optimized for execution of Spreading Activa-
tion (SA) algorithm over stored graphs. Spreading Activation algorithm was designed
for searching semantic and association networks. Its basic form, as well as the most

1 https://sourceforge.net/projects/simplegdb/

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 45–56, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

46 M. Ciglan and K. Nørvåg

common variations, are extensively described in [6]. The nodes in graph structure rep-
resents objects and links denotes relations between objects. The algorithm starts by
setting activation of the input nodes and the processing consists of iterations, in which
the activation is propagated from activated nodes to their neighbor nodes. Mechanism
of SA utilize breadth first expansion from activated nodes to identify other nodes in the
network that are strongly associated with initial nodes (have high activation value). The
breadth first traversal, utilized in SA, can be characterized by random accesses to the
underlying graph structure, to retrieve edges of activated nodes.

To motivate the use of Spreading Activation algorithm over graph databases, we pro-
vide several use-cases. In the domain of Semantic Web , SA technique was successfully
used for mining socio-semantic networks [18]. In the enterprise environment, SA can
be used for product recommendation systems to identify the products that the customer
have not purchased yet, but are highly associated with the products he already bought.
Social networks can be naturally represented by graphs. Also in this application do-
main, we can find uses for SA technique. E.g., recommendation of people that the user
might know.

Motivated by presented use-cases, we propose a graph database optimized for exe-
cution of SA algorithm. The main contributions of the paper are the following:

– proposal of the storage model for graph data, aiming at supporting the random
access pattern for retrieval of the connectedness information of nodes activated
during SA process.

– proposal of the query type for the Spreading Activation operation for graph
databases, to facilitate the usage of the SA over stored graph data.

The paper is organized as follows. In Section 2, we discuss related work, we then de-
scribe the SA procedure in Section 3 to define the context of the work. The storage
model for SGDB is proposed in Section 4 and we propose the graph query type for the
SA operation over graph database in Section 5. The architecture of proposed system is
described in 6, providing also few important implementation details (6.1). We conclude
the paper by describing performance characteristics of the system, evaluated using a
pilot application for finding connections in Wikipedia link graph (Section 7).

2 Related Work

The concept of a graph database was popular in academic studies in nineties. An ex-
tensive survey of the graph database models proposed in this period is presented in [2].
Proposed models ranged in the complexity, from simple directed graphs with labeled
nodes and edges [8, 9] to complex representations of nested objects [13, 12]. Also vari-
ety of graph query languages were proposed and ranged from SQL-like languages [1]
to graphical queries [16].

For a period of time, the interest in graph databases disappeared. The emergence of
Semantic Web shifted attention to RDF2 stores. RDF can be also viewed as a graph
data structure. Early RDF stores were design to operate in-memory or used relational

2 http://www.w3.org/RDF/

SGDB – Simple Graph Database Optimized for Activation Spreading Computation 47

database back-ends for the data persistence [17]. Later, specialize persistent stores op-
timized for semantic data were developed [11] [7]; those are designed as triple stores to
support RDF model.

The focus on graph databases recently re-emerged. Several companies in the indus-
try have developed graph databases systems (e.g. Freebase [4], DirectedEdge3, Neo4j4).
There is also an effort for providing systems for large-scale graph processing in dis-
tributed environment (e.g. Google Pregel [14], graph package in Hama5, or [10]). The
data in [10] as well as Hama is stored in a distributed key value store, used in con-
junction with Map-Reduce systems and the graph structure is modeled as the adjacency
matrix.

3 Preliminaries

In this section, we first describe the structure that is being modeled, we then describe
the Spreading Activation algorithm to define the context for the proposed approach.
We discuss the modified SA technique that allows to observe the value of activation
received from distinct initial nodes. We highlight important points that influence the
design of presented system.

3.1 Modeled Data Structure

The aim of this work is to support the SA technique over a graph with weighted and
typed edges, stored on a persistent medium. We can define the modeled structure using
equation

G = (V, E, f, w, T, t)

where G is the graph label, V is a set of nodes, E is a set of edges, f is a function
f : V × V → E defining mapping between nodes and edges, w is a function defining
edge weights w : E → 〈0, 1〉, T is a set of edge type labels and t is a function defining
edges types t : E → T .

The operations considered for this data structure are insertion,deletion of nodes and
edges, retrieval of outgoing and incoming edges for a given node and iteration over
node and edges sets. Due to the space limitation, we define only insertion operations.
Similarly, operations for nodes and edge deletion, edge weight, type modification and
others can be defined. Operation of node insertion can be defined as

insert(G = (V, E, f, w, T, t), v) = (V ′ = {V ∪ v}, E, f ′ : V ′×V ′ → E, w, T, t);
edge insertion operation is

insert(G = (V, E, f, w, T, t), (enew , i, j, wval, tval)) =
(V, E′ = {E ∪ enew}, f ′, w′, T, t′) | i, j ∈ V ; f(i, j) =⊥; wval ∈ 〈0, 1〉; tval ∈ T

where f ′ : V × V → E′, w′ : E′ → 〈0, 1〉, t′ : E′ → T and

f ′(k, l) =
{

f(k, l) ; k �= i ∧ l �= j
enew ; k = i ∧ l = j

; w′(e) =
{

w(e) ; e ∈ E
wval ; e = enew

3 http://www.directededge.com (visited: 10.12.2009)
4 http://neo4j.org/ (visited: 10.12.2009)
5 http://wiki.apache.org/hama (visited: 10.12.2009)

48 M. Ciglan and K. Nørvåg

t′(e) =
{

t(e) ; e ∈ E
tval ; e = enew

Edge retrieval operations can be defined as follows:
outgoing(G, n) = {e | n, i ∈ V ; e : f(n, i) �=⊥} and
incoming(G, n) = {e | n, i ∈ V ; e : f(i, n) �=⊥}

In addition to the graph topology, we want to store user defined attributes that can be
associated with nodes and edges. In our approach, the user defined data (node and edges
attributes) are stored in a separate structure, linked with graph by node identifiers. The
storage of the user defined data is out of the scope of this paper, as it does not influence
the graph traversal operations.

3.2 Spreading Activation Algorithm

The Spreading Activation algorithm is based on the breadth first expansion from acti-
vated nodes in the graph data structure. Edges can be weighted or typed (or both) and
can be directed or undirected. The input of the SA algorithm is a set of initially activated
nodes and a set of parameters influencing the activation process, the output is a set of
nodes activated by the SA process. The SA process consists of iterations in which the
activation is spread in breadth first manner. Each iteration is composed of a spreading
phase and a pre-adjustment or post-adjustment phases. In pre/post-adjustment phases
the activation decay can be applied on activated nodes. In the spreading phase, activated
nodes send impulses to their neighbors. The value of the impulse propagated from an
activated node is a function of the node’s input value. In the basic SA variant, the input
value of a node n is equal to the sum of weighted output values of nodes connected with
n by outgoing edges. The output values are weighted by the edge weights. Let T be a
set of edge types of the graph and Q ⊆ T be the types allowed in the SA computation.
Function a is

a(t, Q) =
{

1 ; t ∈ Q
0 ; t /∈ Q

The output value is described by following formula: In =
∑

i Oiw(ei,n)a(t(ei,n), Q);
where In is the input value of the node n; Oi is the output value of the node i connected
to n by an outgoing edge and w(ei,n) is the weight of the edge connecting i and n;
w ∈ 〈0, 1〉; t(ei,n) is the type of the edge ei,n. The most commonly used output function
is the threshold function, where the output is zero when the node input value is below
the user defined threshold th. In case that In > th the output is equal to one.

The activation thus spreads from initial nodes over the network. The algorithm fin-
ishes when the there are no nodes with On > 0 in an iteration. The convergence and
the fix point of the SA process has been studied in [3]. In practice, some additional
termination conditions are used (e.g., distance constraint).

3.3 Activation Vector Spreading

In the standard SA algorithm, we can not distinguish whether a node received an acti-
vation from one or multiple initial nodes. To obtain richer information about activation

SGDB – Simple Graph Database Optimized for Activation Spreading Computation 49

spread, we have introduced a modification of the standard SA technique in [5], called
Activation Vector Spreading (AVS).

We store the node activation as a vector, its length is equal to the number of input
nodes and the n-th element of the vector represents the amount of the activation orig-
inating from the n-th input node. The activation vector n-th input node is initiated as
follows: all the values in the vector are equal to zero, expect n-th element, which is ini-
tially set to one. The activation spread is computed individually for each element of the
activation vector. Informally, the activation spread is computed individually for each in-
put node. In addition to that, in each iteration, if the individual elements of node’s input
vector are lower than the defined threshold th but the sum of all the elements is greater
than t, we spread an output activation vector with a non-zero element, which is the ele-
ment with highest value in the input activation vector. The AVS method is described in
detail in [5].

This modification allows us to observe which sources the node received the activa-
tion from (non-zero values in the activation vector) and the amount of activation from
each source. Important aspect of the SA algorithm for the graph storage design is the
use of breadth first expansion from activated nodes. The activation value of a node n
dependents on activation values of the connected nodes and weights and/or types of
connecting edges. Those are the only values necessary to compute the activation value
of a node.

4 Storage Model

The aim of this work is to design a persistent graph database system allowing for fast
execution of the spreading activation algorithm, without pre-loading the whole graph
to the memory prior to the execution. As the access to the persistent medium is the
most time costly operation, we aim at minimizing the number of accesses to the stor-
age medium. The SA procedure utilize the breadth first expansion, characterized by a
number of random accesses to the graph data. The addressed problem can be formu-
lated as follows: Propose a persistent storage system for representation of a directed,
weighted graph with typed edges that allows for an implementation of the spreading
activation algorithm with the minimum number of accesses to the persistent storage
media.

We can not avoid the random access pattern in general; however we organize the data
in a way to reduce the number of disk access operations for retrieving the information
needed to compute the activation spreading.

This section describes the storage model proposed for SGDB system, aiming at re-
ducing storage lookups for the SA technique. Adjacency list is an ideal representation
of a graph structure for breath first traversals, a graph representation, where each node n
has an associated list of nodes that are connects to n by an edge. The adjacency list can
be viewed a set of tuples, where first element of each tuple is a node n and the second
element is the list of nodes adjacent to n.

A practical data structure for adjacency list is key − value map, where key is the
identifier of the node and value is the list of identifiers of the adjacent nodes. As the
key − value map is a practical data structure, there has been already a considerable

50 M. Ciglan and K. Nørvåg

A A
A

B

B

0.7
0.1

0.83

0.4

0.5
Key Value

Fig. 1. Example of graph representation in proposed storage model

amount of work done and there are numerous persistent key − value stores available
(e.g. Berekeley DB, JDBM6, BabuDB7), able to store large amount of data.

Using this representation, given a starting node n, we need 1 + d lookups (where d
is the number of nodes adjacent to n) in a key − value store to obtain a set of iden-
tifiers of nodes distant two hops from n. Spreading Activation method requires more
than structural information. As stated in 3.2, to compute activation values in the SA
algorithm we need additional data - weights and/or edge types. To keep the number of
lookups low and to avoid additional retrieval from the data storage, we propose to keep
the edges weights and types directly in the adjacency list as they are required by the
SA algorithm. This simple, even trivial, change brings important time savings for SA
processing, oppose to the approach where the edge weights and types are modeled as
edge attributes and are stored in a separate structure.

In our storage model, the graph is stored as a set of key− value pairs (i, Ni), where
i is the identifier of the node and Ni is the representation of edges adjacent to node i.
Each edge e is represented by a triple e = (j, w(i,j), t(i,j)) where j is the identifier of
adjacent node, w(i,j) is the weight of the edge connecting i and j and t(i,j) is the type of
the edge. We model the weight by a float value and the type by an integer value. As we
need to model directed graphs, we must distinguish the direction of edges. We model
adjacent edges Ni as a tuple Ni = (k, {e1, e2, . . . , em}), were k denotes the number
of outgoing edges; {e1, e2, . . . , em} is a list of edges and all el : l < k represent
outgoing edges and all el : l > k represent incoming edges. An example of a graph
represented using proposed storage model is depicted in Fig. 1. Let us examine the
record encoding node 1; the first element of the V alue part of the record indicates that
there are two outgoing edges from node 1 (those are the first two in the list - (3, 0.7, A)
and (2, 0.5, A)) and the rest of the list represents incoming edges (in this case only the
edge (4, 0.1, B)).

This representation allows us to retrieve outgoing and incoming edges of a node n
together with edge weights and types in one lookup. The disadvantage of this approach
is that information on edges are redundant; i.e., edge e(i,j) is stored as an outgoing edge
in the record of node i and as an incoming edge in the node j record. This necessitates
to modify both records, in case of edge manipulation (e.g., update of the weight, type
values or deletion).

6 http://jdbm.sourceforge.net/ (visited: 10.12.2009)
7 http://code.google.com/p/babudb/ (visited: 10.12.2009)

SGDB – Simple Graph Database Optimized for Activation Spreading Computation 51

5 Spreading Activation Queries

As mentioned in 3.2, the input of the SA algorithm is a set of initially activated nodes
and set of parameters influencing the activation spread. In this section, we propose a
query syntax for executing the SA operation over the stored graph with the aim to allow
the definition of SA process using simple plain text string. The purpose of the SA query
is to facilitate the usage of the system, the execution of SA operation over stored graph.

The set of parameters considered for the SA algorithm is the following: activa-
tion threshold (Th), activation decay (Decay) , allowed edge types (Types) , use
of incoming edges for spreading (Incoming) and maximal number of SA iterations
(MaxIteration). The specification of activated nodes is done in terms of node proper-
ties that identify nodes. Proposed syntax for the SA query is the following:

([node([prop=val;]*);]*) ; SAProperties: Th:threshold_val; Decay: decay_value;
Types=([[edge_type]* | all]); Incoming=[true|false]; MaxIteration=max_iterationt

We explain the SA query on the following example. In our pilot application, we use
the graph constructed from Wikipedia articles (modeled as nodes) and links (modeled
as edges). Following example query executes the SA algorithm from nodes representing
articles ’Spreading Activation’ and ’Wikipedia’, with activation threshold 0.4 and decay
0.8, using all edge types and both directions of edges, constrained to three SA iterations:

(node(name=’Spreading Activation’); node(name=’Wikipedia’)) ; SAProperties:
Th:0.4; Decay: 0.8; Types=all; Incoming=true; MaxIteration=3

Query execution is done in two phases. In the first phase, the input for SA operation is
constructed. This involves identification of the initial activation nodes, using attributes
specified in the node definition part of the query. Nodes with given attributes and at-
tribute values are selected and the initial nodes vector is constructed. From the node
definition part of the query, we construct a vector of initial nodes. E.g., initial nodes vec-
tor constructed from the example query would be [’Spreading Activation’, ’Wikipedia’]
(for simplicity, article names represent nodes of the graph).

Initial nodes vector, together with other parameters, is then used as inputs for SA
operation. In the second step the AVS algorithm is executed, taking advantage of the
underlying storage model for fast retrieval of information required to compute the acti-
vation spread. The results of the SA query is a set of tuples; each tuple contains follow-
ing elements: (Activated node, activation, partial activations vector, number of impulses
vector, distance vector). Activated node is the node activated in the process of activation
spreading, activation is the node’s total activation, partial activations vector contains
partial activations received from distinct initial nodes (n-th element of the vector corre-
sponds to the activation received from the n-th element of initial nodes vector). Number
of impulses vector contains information on the number of impulses received by the node
from distinct initiators and the distance vector contains information on the distance of
the node from distinct initiators.

52 M. Ciglan and K. Nørvåg

E.g., part of the result set for the example query is:

(Semantic Web; 12.42; [2.4182642, 10.0,]; [3, 10,]; [2,2,])
(Web search engine; 12.12; [0.7190919, 11.407564,]; [1, 21,]; [1,3,])
(Knowledge management; 10.80; [4.8060675, 6.0,]; [5, 6,]; [2,2,])

Proposed SA query can be formulated in the plain text and its result set can be also
communicated in the plain text. Another advantage of proposed SA query is that the
upper bound of query selectivity can be estimated based on query specification (use of
outgoing and incoming links) and the information about initial nodes in/out-degrees.

6 SGDB Architecture

This section presents the overall high-level architecture of SGDB system and its imple-
mentation. The architecture of the SGDB is depicted in Figure 2. The system is decom-
posed into modules with distinct functionality; modules are organized in layers, where
each layer provide a simplified abstraction for the upper layer, making the complexity
of underlying layers transparent.

Fig. 2. Architecture of SGDB

The base stone of SGDB is the key-
value store that maintains the adjacency
lists of the graph structure in form of
the key-value tuples. The main respon-
sibility of this module is to provide fast
lookups for adjacency lists based on the
given key (node identifier).

Properties store component is re-
sponsible for storing data (properties)
related to the objects modeled by nodes
and relationships modeled by edges.
E.g. let us suppose that node n in the
graph represents a person; properties associated with n could be name of the person,
address of the person. The property store is independent of the graph structure store and
allows for retrieval of the graph nodes based on their attributes. Graph Abstraction
API (GAAPI) provide graph abstraction layer, so that users can access and manipulate
the graph data using graph theory concepts - nodes and edges, instead of node identi-
fiers and adjacency lists. GAAPI provide functions for iterating over collection of graph
nodes, retrieval of graph nodes based on node identifiers or user defined properties, re-
trieval of outgoing and incoming edges. In addition GAAPI provide functionality to
modify the graph structure - insertion and removal of nodes and edges. Properties API
provides access to properties store. Graph traversal layer contains implementations of
graph traversal operations, such as the Spreading Activation algorithm or path finding
algorithms. It exploits (GAAPI) to access the graph structure. Finally, graph queries
layer is a presentation layer, providing access to the database functionality using graph
queries (current implementation provides SA queries (described in Section 5)).

SGDB – Simple Graph Database Optimized for Activation Spreading Computation 53

6.1 Implementation

SGDB8 is implemented in JAVA programming language. Current implementation does
not support transactions and can be used as an application embedded database (it can
not be run in a standalone mode). SGDB is available as an open source software. It
exploits Oracle Berkeley DB Java Edition9 as a key-value store.

The storage model used in SGDB allows to retrieve outgoing and incoming edges
together with edge weight and type data in one lookup. This is convenient for breath first
traversals, especially the SA. The drawback of this approach, from the implementation
point of view, is that for update operations on the graph (insertion, deletion of nodes and
edges) the edge list must be retrieved from the storage, modified and then stored back,
rewriting the whole original record. In addition, the data describing edge ei,j are stored
twice in the storage - it is stored as an outgoing edge in the record of node i and as an
incoming edge in the record of node j. This is the trade-off of proposed storage model,
more demanding update operations are compensated by efficient retrieval operations.

7 Evaluation

In this section we first compare performance of the proposed approach with a general
purpose graph database for retrieval of weighted and typed links using the random ac-
cess pattern. Secondly, we provide performance characteristics of SGDB in the scope
of our pilot application. We describe the application and properties of used graph data,
describe the evaluation setting and present achieved performance characteristics.

Experiments were conducted over data set of Wikipedia link graph. The graph struc-
ture was generated by a custom parser from Wikipedia XML dump (dump from
03.11.2009 was used). The resulting graph contained 3.3 millions nodes and over 91
millions edges. As shown by previous research [15], Wikipedia link graph exhibits
small-world properties. Small-world networks are characterized by small average path
length between nodes and high values of the clustering coefficient.

In the first part of the evaluation, we have studied the performance of a general pur-
pose graph database for SA technique, in which the link weights and types are modeled
as edge attributes. We have compared the time required to retrieve edges for a randomly
chosen node without and with weight and type data. We have used Neo4j10), an open
source graph database as a general purpose graph database for the tests. The default
settings of Neo4j database were used in the tests. The experiment was conducted in a
black-box testing fashion.

Wikipedia link graph data set was used in the experiment. All the experiments were
conducted on a PC with 2GHz Intel Core 2 Duo-processor and 7200 RPM hard drive.

First, we have generated lists of identifiers of randomly chosen nodes from the graph.
We have created lists containing 10, 100, 1 000 and 10 000 node identifiers; we used
10 identifiers sets for each. This setup was used to test the random access pattern that
is typical in SA computation. Pregenerated lists of identifiers were used to ensure the

8 https://sourceforge.net/projects/simplegdb/
9 http://www.oracle.com/technology/products/berkeley-db/je/index.html (visited: 10.12.2009)

10 http://neo4j.org/ (visited: 10.12.2009)

54 M. Ciglan and K. Nørvåg

 100

 1000

 10000

 100000

 1e+06

 1e+07

10 100
1000

10000

tim
e

(m
s)

Number of lookups

Performance of random node lookups

SGDB
Neo4j (edges only)

Neo4j (edges with weight and type)

Fig. 3. Time required to perform sets of random lookups; X-axis depicts the number of lookups
per set; Y-axis represents the time required to perform lookups. Log scale is used for both axes.

same conditions for distinct tests. We have then measured the time required to retrieve
both outgoing and incoming edges for the nodes in the lists. We used generic graph
database to retrieve edges without retrieving weight and type attributes. Next, we have
measured the time required to retrieve the edges for the same nodes, but with weight
and type data. In average, the time required to retrieve weighted and typed edges was
2.1 times higher than the retrieval of edges without weight and type attributes.

We have performed the same experiments using SGDB, where the weight and type
data are stored together with link targets. The edges retrieval (with weight and type
data) was 16.9 times faster compared to the retrieval of typed and weighted edges from
general purpose graph database. The reason is that in SGDB the weight and type data
are coupled together with edges definitions, so only one disk access can be used to read
all the data for the SA expansion from a given node; in addition, SGDB random access
operation for retrieval of node’s edges was slightly faster. Figure 3 shows histogram of
the time required to retrieve the edges using SGDB, and general purpose graph database
(with and without retrieving weight and type attributes).

In the second series of tests, we have run our pilot application. The pilot application
aims at finding connections between two or more given input nodes in Wikipedia link
graph. Nodes in the Wikipedia link graph model articles and edges represent links be-
tween articles. The pilot application uses the activation spreading over the Wikipedia
link graph to find highly activated nodes (named connecting nodes), and identifies the
paths with the highest sum of activation on the nodes between initial nodes to con-
necting node. In each test, we have measured the time required for finding connections
between two randomly chosen nodes, constrained to two iterations of activation spread.
Under the two iterations constraint, we can identify the connections of the maximal
length of 4 between two initial nodes. Because of the small average distance between
nodes in the test set (one of the properties of the small-world graphs), we found connec-
tions for randomly chosen nodes in 86.4% of cases. We have performed 1000 queries,
both incoming and outgoing links were used, decay parameter was set to 1 (meaning

SGDB – Simple Graph Database Optimized for Activation Spreading Computation 55

 10

 100

 1000

 10000

 10 20 30 40 50 60 70 80 90 100

tim
e

(m
s)

Number of lookups

Avg. time for query execution

 1

 10

 100

 1000

 10000

 10 20 30 40 50 60 70 80 90 100

tim
e

(m
s)

Number of lookups

Fig. 4. X-axis represents number of node lookups in queries. Y-axis (log scale) represents time in
ms the queries took to execute. Plot on the left represent averaged values and figure on the right
depicts points representing values for individual queries.

no decay in iterations) and activation threshold was set to minimal values. The effect of
this setting was the full breath first expansion from the initial nodes in two iterations.

Figure 4 depicts the time required to execute queries with an increasing numer of
node lookups for a query. The average execution time was 1136.4 ms, the activation
values for 181820.1 nodes in average was computed for a single query. The average
number of edge retrieval operations from the SGDB storage was 49.7.

8 Conclusion

In this paper, we have proposed a storage model for a graph database, designed to
provide fast data store for execution of the Spreading Activation (SA) technique. We
have described the motivation for the SA usage over graph databases. In addition, we
have presented the architecture and implementation of SGDB, the graph database that
utilize proposed storage model.

We have compared performance of our approach with the performance of a general
purpose graph database, for the activation spreading over the stored graph. The eval-
uation showed important time savings using proposed approach. As our approach was
designed for a specific problem, it is not surprising that it performs better (for that prob-
lem) than a generic one. However, we believe that the SA technique has a wide number
of possible uses in context of graph databases and it is worth to exploit the optimization
for the SA even at the graph structure storage level.

We have also proposed a query type for the Spreading Activation operation over
the graph database. The SA query has an easily interpretable definition and results and
the upper bound of query selectivity can be easily estimated. We have described the
performance characteristics of SGDB, using proposed SA operation in the scope of our
pilot application that exploits the Wikipedia link graph.

References

1. Amann, M., Scholl, B.: Gram: A graph data model and query language. In: Proceedings of
the European Conference on Hypertext Technology (ECHT), pp. 201–211. ACM, New York
(1992)

56 M. Ciglan and K. Nørvåg

2. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1), 1–39
(2008)

3. Berthold, M.R., Brandes, U., Kötter, T., Mader, M., Nagel, U., Thiel, K.: Pure spreading acti-
vation is pointless. In: CIKM 2009: Proceeding of the 18th ACM conference on Information
and knowledge management, pp. 1915–1918. ACM, New York (2009)

4. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively cre-
ated graph database for structuring human knowledge. In: SIGMOD 2008: Proceedings of
the 2008 ACM SIGMOD international conference on Management of data, pp. 1247–1250.
ACM, New York (2008)

5. Ciglan, M., Rivière, E., Nørvåg, K.: Learning to find interesting connections in wikipedia.
In: Proceeding of APWeb 2010 (2010)

6. Crestani, F.: Application of spreading activation techniques in information retrieval. Artif.
Intell. Rev. 11(6), 453–482 (1997)

7. Erling, O., Mikhailov, I.: RDF support in the virtuoso DBMS. In: Conference on Social
Semantic Web. LNI, vol. 113, pp. 59–68. GI (2007)

8. Gyssens, M., Paredaens, J., Gucht, D.V.: A graph-oriented object model for database end-
user. In: Proceedings of the 1990 ACM SIGMOD International Conference on Management
of Data, pp. 24–33. ACM Press, New York (1990)

9. Hidders, J.: A graph-based update language for object-oriented data models. Ph.D. disserta-
tion. Technische Universiteit Eindhoven (2001)

10. Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: A peta-scale graph mining system
implementation and observations. In: Ninth IEEE International Conference on Data Mining,
ICDM 2009, December 2009, pp. 229–238 (2009)

11. Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM - a pragmatic semantic repository for
OWL. In: Proc. Workshop Scalable Semantic Web Knowledge Base Systems

12. Levene, M., Poulovassilis, A.: The hypernode model and its associated query language. In:
Proceedings of the 5th Jerusalem Conference on Information technology, pp. 520–530. IEEE
Computer Society Press, Los Alamitos (1990)

13. Mainguenaud, M.: Simatic XT: A data model to deal with multi-scaled networks. Comput.
Environ. Urban Syst. 16, 281–288 (1992)

14. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.:
Pregel: a system for large-scale graph processing. In: PODC 2009: Proceedings of the 28th
ACM symposium on Principles of distributed computing, p. 6. ACM, New York (2009)

15. Mehler, A.: Text linkage in the wiki medium: A comparative study. In: Proceedings of the
EACL 2006 Workshop on New Text: Wikis and Blogs and Other Dynamic Text Sources, pp.
1–8 (2006)

16. Paredaens, J., Peelman, P., Tanca, L.: G-Log: A graph-based query language. IEEE Trans.
Knowl. Data Eng. 7, 436–453 (1995)

17. Rohloff, K., Dean, M., Emmons, I., Ryder, D., Sumner, J.: An evaluation of triple-store
technologies for large data stores. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS
2007, Part II. LNCS, vol. 4806, pp. 1105–1114. Springer, Heidelberg (2007)

18. Troussov, A., Sogrin, M., Judge, J., Botvich, D.: Mining socio-semantic networks using
spreading activation technique. In: International Workshop on Knowledge Acquisition from
the Social Web, KASW 2008 (2008)

Introduction to the Data Intensive e-Science

Workshop (DIEW) 2010

Isao Kojima, Kento Aida, Geoffrey Fox, Neil Chue Hong, and Masatoshi Ohishi

National Institute of Advanced Industrial Science and Technology, Japan

National Institute of Informatics, Japan

Indiana University, USA

Open Middleware Infrastructure Institute, United Kingdom

National Astronomical Observatory of Japan

As the amount and the complexity of scientific data is rapidly increasing, data
has become a key aspect in scientific research. Creating the computer infrastruc-
ture which enables scientists to extract scientific knowledge by linking, process-
ing and analyzing these distributed and diverse data would be a crucial issue
towards a fourth paradigm ? Data Intentive Scientific Discovery proposed by
late Jim Gray. This e-Science infrastructure is also a basis for constructing dig-
ital repositories which can archive and share valuable knowledge among science
communities.

As the climate change problem shows, scientific research needs to be conducted
collaboratively on a global scale, and the distributed data infrastructure which
can support various science communities would be indispensable. Based on this
motivation, this workshop aims to bring scientists from diverse fields together,
and to serve them an opportunity to share their research experiences on how
data intensive computing has been facilitating scientific discoveries.

In the rigorous review process, each submitted paper was reviewed by three
experts and we selected five papers to be included in the workshop proceedings.
The paper by J.Terazono et al. presented a Web-GIS based collaboration envi-
ronment for lunar and planetary science. The work by I.Elsayed and P.Brezany
proposed a large-scale scientific data management based on their concept of
dataspaces for e-science applications. T.Takagi et al. proposed an event detec-
tion method by using satellite images and web contents. A web-based knowledge
server for Geophysical fluid science is presented by T.Horinouchi et al., and its
REST-based programming interface is presented by S.Nishizawa et al. An ex-
cellent invited talk was given by Prof. Malcolm Atkinson, who is UK e-Science
envoy.

We are very grateful to the efforts of all authors while writing and revising
their papers. Finally, we appreciate the indispensable support of the members of
the Programming Committee and External Reviewers, who provided excellent
feedback and valuable directions for the authors to improve their work.

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, p. 57, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 58–68, 2010.
© Springer-Verlag Berlin Heidelberg 2010

WISE-CAPS: Web-Based Interactive Secure
Environment for Collaborative Analysis

of Planetary Science

Junya Terazono1, Ryosuke Nakamura2, Shinsuke Kodama2, Naotaka Yamamoto2,
Hirohide Demura1, Naru Hirata1, Yoshiko Ogawa1,

Jun’ichi Haruyama3, Makiko Ohtake3, and Tsuneo Matsunaga4

1 The University of Aizu, Tsuruga, Ikki-Machi, Aizu-Wakamatsu,
Fukushima 965-8580, Japan

{terazono,demura,naru,yoshiko}@u-aizu.ac.jp
2 National Institute of Advanced Industrial Science and Technology (AIST),

Higashi, Tsukuba, Ibaraki 305-8651, Japan
{r.nakamura,s.kodama}@aist.go.jp, naotaka@ni.aist.go.jp

3 The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
3-1-1, Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan
{haruyama.junichi,ohtake.makiko}@jaxa.jp

4 National Institute for Environmental Studies (NIES)
16-2, Onogawa, Tsukuba, Ibaraki 305-8506, Japan

matsunag@nies.go.jp

Abstract. We are now developing Web-GIS based collaboration environment
for lunar and planetary science. This system, called WISE-CAPS aims for pro-
motion of researchers’ collaboration and data sharing through the network. In
WISE-CAPS, all data are stored in server and data access to server is controlled
with security modules of the server and control files. This system combines
easy-to-use user environment and flexible and robust security.

Keywords: Web-GIS, planetary science, security, data exchange, web server,
access control.

1 Introduction

Location-based information is essential for lunar and planetary exploration to com-
bine. Here “location-based” means mainly the map. By comparing data obtained by
different instruments in one map overlapping, researchers can find new knowledge on
the planetary bodies inspired by difference of data in the same location.

Currently, Geographical Information System (GIS) is widely used in terrestrial ex-
pression of location. In conventional GIS, users can display any data provided by
variety of organizations and companies as layers over the base map. Particularly,
Web-GIS, the system that displays maps and layers in the web browsers, are becom-
ing common. The merit of using Web-GIS is that users only need to prepare browsers
to obtain data. Users do not need to care their operating platform or access environ-
ment, and to prepare special and proprietary GIS software.

 WISE-CAPS: Web-Based Interactive Secure Environment 59

The Web-GIS infrastructure is becoming common in lunar and planetary explora-
tion field. Several platforms are provided for displaying and distributing data of ex-
ploration. These sites include Map-a-Planet [1], operated by USGS (US Geological
Survey), and Marsoweb [2]. These sites offers map-based interface to browse a map
and ancillary scientific data in the browser.

However, these sites are now offering data browsing and downloading function.
Therefore, more capabilities are required for such site to become data sharing plat-
form based on Web-GIS. One of the key functions are security assurance.

The term security is widely used not only in computer technology but in daily
computer operation. In our context, security means the following part:

• Security from vulnerabilities: These reside in the platform software and can be
fixed by frequent application to patches provided by software creators. This is a
operational problem and not an essential one in technology.

• Security from network attacks: The security attack frequently happens in the net-
work environment. The purpose of cracker is to steal information from servers or
personal computers. Though our system will not have financially important infor-
mation or personal data, the scientific results and their derivatives are still very im-
portant for us. Therefore the data should be protected from these attacks.

• Security from internal users: Many security incidents are induced by the employees
or members who belong to same group or share same security clearance. These in-
ternal security threat is the most difficult problem as these are sometimes provoked
by poor security settings (such as insufficient user access mode settings, neglect of
system management) or mistake operation (human errors).

The third problem is the most crucial threat for data sharing platform, as system users
usually do not care about this. In scientific data sharing platform, it can be happen that
some data should not be opened to other individuals or group members. Also, even
the data should be opened to all members in shared platform, some data should not be
opened until some days, such as release data of the journal. The security system used
in scientific research platform should have capability to handle these requirements
specific in scientific purposes. Also, the system should be capable to protect from
other security issues.

Here we propose our prototype data sharing and research platform, WISE-CAPS
(Web-based Integrated Secure Environment for Collaborative Analysis for Planetary
Science). Our system has flexible and robust security enhancements so that research-
ers can put their analyzed data without worrying seeing (and copying, altering) from
unauthorized or unpermitted members or groups in the same system.

In the meantime, users can share any data with users who she or he admitted. This
scheme promotes online data sharing and discussion based on the data, and ideal for
group works for writing research papers and building theories. Using our system,
users can use this system as “virtual laboratory” in the network. Users do not need to
gather in one place frequently to discuss, bringing with large amount of data with risk
of divulgation.

60 J. Terazono et al.

2 System Design

Here we show the basic system design and requirement of WISE-CAPS.

2.1 Open-Source Based System

All platform software, including operating system and key software, are open-source
based. This enables us to use cutting-edge technology provided by developing com-
munities. Also, as the all sources and derived system application software is also
open-source based, the developers can link and combine any function in their system
using mash-up scheme or API-based coalition [3].

2.2 Limitation of Access Method to Servers

Multiple data path to servers (download and upload) makes system more vulnerable
as system administrator must prepare corresponding server software. For example,
upload method by FTP, while still widely used worldwide, is less secure in the view-
point of security as the protocol communicates with server software with unencrypted
password in the packets. Even using Secure Shell (ssh), system administrators should
prepare the sudden security updates of ancillary software upon discoveries of vulner-
abilities. These labors make system administrators’ load more.

By confining users’ access method to HTTP protocol only, we can assure more
protected system security and simplification of access method. Even data upload can
be made from dedicated web pages and users do not need to prepare special software
to upload. Also users only need to prepare web browsers to see and download data.

2.3 Security Awareness

As noted in the Introduction section, the security enhancement is the key element of
the WISE-CAPS.

2.4 Capability of Large Data Handling

Current lunar and planetary exploration are producing large amount of data. For ex-
ample, Japanese lunar explorer “Kaguya” produced approximately 20 terabytes as a
published data. America’s Mars Reconnaissance Orbiter communicates with the Earth
with 3 to 4 Mbps and approximately seventy terabytes of data will be obtained [4]. It
is virtually impossible for researchers to keep all these data in their desktop or local
storage, as the data will increase during their analysis phase. And these data should
not kept only in the researchers’ individual storage but shared in the same server stor-
age to discuss about their ongoing analysis.

This means the system should be capable of handling large amount of data. High-
speed network systems and powerful processors are mandatory. The system also
should keep quick turn-around time for every data processing even for the large
amount of data. Users will not want to use the system if the system response is too
slow. For example, Map-a-Planet system has a map zooming capabilities, however,
the page reloading is required in every time we change the map focus and zoom
changes. This makes less usability for the system.

 WISE-CAPS: Web-Based Interactive Secure Environment 61

The WISE-CAPS system has broad network connection and powerful processors
with large amount of storage. Furthermore, the system uses most current web tech-
nology to increase usability and system response.

3 The System

3.1 Hardware

The WISE-CAPS system consists of two servers, one for web servers and one for
database servers. These two servers have same configuration and specification. These
servers (Fujitsu Primagy RX2000) have Intel Xeon 5130 single CPU, 8GB in memory
and 73 GB RAID-1 type disk array [5].

These two servers are connected to an external storage (Fujitsu ETERNUS 2000) ,
approximately 12 TB in total capacity. This storage has 48 disks with single 750 GB
SATA connection inside and they are configured as RAID-5 system. Due to the file
system capacity limitation of ext3, the disk is divided into approximately 6TB and
6TB to be attached in each server. The individual partition is connected using 4Gbps
optical fibrechannel to each server.

Fig. 1. The WISE-CAPS servers (two servers in the center of the rack) and an attached storage
(the bottom of the rack)

62 J. Terazono et al.

These servers are directly connected with Japan Gigabit Network (JGNIIPlus), gi-
gabit connection network of Japan, via a router. Currently, the maximum speed to the
external connection is confined to 100Mbps because of the router specification.

The WISE-CAPS servers and an attached storage are installed with a half-height
19-inch system rack at the Information Center at The University of Aizu, Fig. 1 shows
the server installation.

3.2 Software

As noted in the section 2, all software used in servers are open-source based. Base
system is Red Hat Enterprise Linux (RHEL) version 4, with unnecessary software
uninstalled. The RHEL 4 is widely used system platform and it ensures stable system
operation and immediate security response.

In the web server, Apache 2.0, the most prevailed web server in the world, is used.
The most current version of 2.0 branch is used due to affinity of the security module,
which will describe later.

To enable map drawing in Web-GIS system, the MapServer [6], open-source based
map drawing application, are installed. The MapServer act as a CGI (Common Gate-
way Interface) program on the web server to draw the map according to the parameter
assigned from the map configuration file, or “Mapfile”. This scheme enables us to
make flexible mapping and easy settings of map drawing.

MapServer supports wide variety of image formats such as TIFF (GeoTIFF), PNG,
JPEG as well as proprietary GIS software image formats. This feature is useful for
web mapping ofdata produced by proprietary image processing software.

MapServer has built-in support of WMS (Web Mapping Server) function which
complies with the OGC (Open Geospatial Consortium) standard data transfer proto-
col [7]. Therefore, coalition with other OGC-compliant servers can be enabled by
operating MapServer with WMS mode.

OpenLayers [8], an open-source implementation of JavaScript files, are used upon
map drawing. It has built-in Ajax support so that web page creators can write
Ajax-capable pages with few lines of JavaScript. The Ajax technology enables quick
display redrawing in the browsers without re-loading pages upon re-zooming and
moving of map focus.

Also, as OpenLayers’ programming scheme is generally object-oriented, the add-
ing and removing of objects can be realized easily. For example, adding a layer object
variables of JavaScript means adding a layer in the map. Once users create objects,
their behaviors can be changed by modifying parameters in objects.

Upon using OpenLayers, users only need several lines of JavaScript codes to write.
By setting several parameters and writing JavaScript codes of objects (layers) crea-
tion, users can realize multi-layer mapping in the web browser.

4 Mapping Data

We are currently using lunar data obtained by Clementine as a base layer for map-
ping. And adding layers on Kaguya data are in progress. Clementine was a lunar ex-
plorer of America launched in 1994 [9], and obtained global digital lunar images for
the first time in the world.

 WISE-CAPS: Web-Based Interactive Secure Environment 63

Our data is based on UVVIS (UV and Visible ray camera) data of 750 nm wave-
length, processed and distributed by USGS (US Geological Survey) [9]. The data is
freely downloadable and arranged for immediate use as a GIS layer.

Upon the Clementine base layer, we mapped some images obtaind by Kaguya mis-
sion. Currently, two crater regions, Jackson and Yamamoto, are mapped in our
system. Figure 2 shows the mapping of Jackson crater using Kaguya TC (Terrain
Camera) images, DTM (Digital Terrain Model) derived from TC data and a ratio
image created by data obtained by MI (Multi-band Imager).

Fig. 2. Webpage snapshot of WISE-CAPS system displaying multiple images near Jackson
crater on the moon. The base image is Clementine UVVIS image data, and the sharper image is
Kaguya TC image. The red and blue strip is the ratio image created from Kaguya MI data. As
the opacity of individual images can be changed in the control window below the map, users
can display multi-layered images in WISE-CAPS.

However, MapServer currently do not support any lunar and planetary coordinate.
Moreover, we have no lunar standard coordinate system for the projection of maps
currently. Therefore, we used mapping by using terrestrial coordinate system instead
of lunar coordinate.

5 Security Integration

5.1 Policy of Security Control

As noted in Introduction section, the concept of security has variety of meanings in
current networked environment. In WISE-CAPS system, we focused security control
for the following three parts:

64 J. Terazono et al.

─ Security at the local computer system.
─ Security at the data transmission through the network (the Internet).
─ Security for the server protection.

The secure HTTP protocol (HTTPS) are widely used to maintain data transmission
security through the Internet. However, HTTPS protocol only protects the content of
transmission by encrypting, and it does not guarantee the identification of origination
and destination. We cannot evaluate whether correct user is coming to our system by
their originating addresses and names as they are sometimes falsified.

The general measure to ensure the identification of origination is to use digital cer-
tificate storing in users’ computer. The server program checks the certificate as
needed and judges whether the accessing users are real.

Also, these digital certificates need to be revoked regularly to maintain latest security
information, however, the frequent change and re-installation of certificates makes both
users and administrators involved in laboring works. The identification mechanism
which can use easily for even non-expert people such as scientists is necessary.

Additionally, the digital certificate system is not common particularly in Japan.
This fact means that users (researchers) must create their digital certificates from
scratch, and few user-friendly tools are prepared.

One more requirement for identification system in WISE-CAPS is the flexible
grouping. It happens often that researchers share their data and documents with their
collaborators upon writing papers and discussing their result in the laboratory. The
same function should be implemented in our virtual laboratory. In this mechanism,
one user which another user allowed to access his/her resources can share, see or, in
some cases, modify them. In other cases, users can publish the data after a date which
is determined by him/her. This situation happens on the publication of research pa-
pers. The security mechanism that allows the flexible change of users’ demand are
also required.

5.2 GridSite Security Module

To solve these problems and satisfy with the above security requirements, we adopted
the security module for Apache, called “GridSite” [10] for security enhancement of
the WISE-CAPS.

GridSite is a security module developed for Apache web server, developing mainly
or security improvement in computer grid environment. However, its security capabil-
ity can be used also for our environment.

GridSite module uses its own access control file, GACL (Grid Access Control
List), variant of XML. It controls access to resource (mainly users’ file) upon the
description in GACL. Users can put GACL files on the directory, like .htaccess file
used for access control used in Apache, to manage access to the files in the directory.
The grammar of GACL is so simple with inheritance of XML format that users can
write the file easily.

Upon security checking, users’ certificate files are sent to the server enhanced with
a GridSite module to check validity to access to each resource. The certificates are
transmitted via HTTPS protocol.

By setting specific data sharing group, Virtual Organization (VO), the users be-
longing to same VO can share the same information such as files and directories. This

 WISE-CAPS: Web-Based Interactive Secure Environment 65

function enables users to share with other users who want to work with the same
subject. This scheme is similar to SIG (Specially Interest Group) in the Internet,
but different in the point that users’ verification is made automatically using their
certificates.

However, it is not so common for users, particularly Japanese users, to have their
own certificate in their computer. Therefore, our system uses proxy server, OGC
Proxy, to issue the certificate based on the ID and password which are registered in
the proxy server in advance.

Users who want to access to the server protected by GridSite access first to
the OGC Proxy server using their ID and password. Once authentication is successful,
the proxy server issues the certificate and sends it to the destination server. Once the
authentication is successful, user can access to the destination server, with continuing
logging in to the proxy server. The destination server inspects the certificate created
by OGC Proxy and determines whether the user can access to the specific resource.
Through these processes, no transaction of ID and password between the destination
server and users are necessary. The schematic procedure are shown in Figure 3.

Fig. 3. Schematic concept of GridSite authentication and OGC Proxy

6 Current Implementation Issues

The Virtual Organization should be defined in its own server, however, the server is
currently outside the WISE-CAPS system. As current group is only one, this is not
becoming a major problem. However, it will need our own VO server as the number
of group and users increase.

The WISE-CAPS system carefully implements security features, however, current
GACL scheme is not effective for local access. This problem is currently safe for our
system as the system confines direct access to the server except HTTP/HTTPS access.
However, we cannot assure that the administrator(s) make a malicious access to the

66 J. Terazono et al.

server using other protocol such as SSH. Also, if the server is attacked and hijacked
using SSH or other controllable protocol, the server is under the external threat of
leaking information and security violation. To protect from such threat, the establish-
ment of conventional security measures such as port closing and IP-address based
access control are necessary.

As a general and fundamental concept, the authentication by ID and password is
weaker in security viewpoint than ones used with the individually issued digital cer-
tificate. Our system can use directory their own certificate, without using OGC Proxy
server, however, the configuration of our system is result of trade-off between usabil-
ity and security. The combination of ID-and-password based security and certificates
is the current best solution to realize the flexible and robust security system according
our operation experience. However, other authentication methods should be incorpo-
rated into our system in future advancement of security enhancement requirements.

7 Future Prospective

As our system is open-source based and has flexible implementation, the linkage with
other system can be realized easily.

For example, we are now developing lunar nomenclature search system [11] which
can query from all lunar features registered in IAU Planetary System Nomenclature
Working Group (WGPSN) [12]. By adding an interface to show the portion of web
page display using longitude and latitude of target object, users can see the map of the
feature with the search result. This implementation is currently in progress.

There are many possibilities to link the WISE-CAPS with the external system. One
possibility is the usage of KML (Keyhole Markup Language) as a glue language. The
KML is XML-based language which is commonly used to describe geospatial infor-
mation. As the popular application such as Google Earth can handle KML to control
its behavior, the KML is now the de facto standard in this field. We are now investi-
gating how to output KML in specific mapping snapshot possibly by using internal
function in OpenLayers. If we can implement this function, our map can be linked
with other applications such as Google Earth and NASA WorldWind which can han-
dle KML.

As this system aims for scientists’ collaboration platform, the validation of usabil-
ity is also required. Currently, the targeted scientific subject are:

• Geoscience: Any data which can be described as maps are able to put into our
platform. The most typical type of science is geosciences, which is closely related
with the distribution of minerals and elements. For example, the webpage snapshot
shown in Figure 2 includes the ratio image, the composite image between bands to
enhance the difference of spectroscopic absorption of characteristic minerals. By
substituting band ratio to three primary colors (RGB), we can enhance the differ-
ence of spectroscopy. In most cases, the occurrence of material is closely related
with the topographic features, the comparison with material distribution and topog-
raphy will combine the origin of the material and topography, hence the history of
geology in the target area.

• Topography: GIS can express the topography viscerally, in any form like image-
based maps and contour drawings. These data can be shown in conjunction with

 WISE-CAPS: Web-Based Interactive Secure Environment 67

geosciences data which has been described above. Topography data can be used
for large variety of scientific research such as clarification of geologic history and
terrain formation. These scientific elements will lead to larger questions such as
origin of the region, and consequently origin of the moon.

On the other hand, WISE-CAPS has no function to display subsurface and aerial
location data now. This fact does not mean the system cannot map these data, but the
ability of expression is severely restricted as all data should be express as one plain
layer or several units of layers. This is also a limit of current GIS that cannot handle
continuously variable quantities in the vertical direction. The development of system
that enables the expression of three dimensional distributions of quantities as a form
of GIS will be a future topic, and we think our most current task is to enhance cur-
rently available functions of WISE-CAPS.

8 Conclusion

We have developed Web-GIS based lunar and planetary collaboration environment
which can share the data among the users under the control using Apache module.
The system has flexible and robust security features and it is ideal for research pur-
pose for planetary science. System is open-source based and open standard compliant,
and thus the any system which supports such standards can be collaborated with our
system.

The security implementation is ACL (Access Control List) basis, and this enables
flexible control of security. Also, the proxy server which can interpret ID and pass-
word into digital certificate can reduce users’ labor to prepare it.

The system is under intensive development and new features are adding. We will
continue to improve this system into the network-based collaboration platform to add
more functions and linkage with external system.

References

1. USGS Map-A-Planet, http://www.map-a-planet.org/
2. Marsoweb website, http://marsoweb.nas.nasa.gov/
3. Terazono, J., Asada, N., Demura, H., Hirata, N., Saiki, K., Iwasaki, A., Oka, R., Hayashi,

T., Suzuki, T., Miyamoto, H.: Web-GIS based Collaboration Environment Using Scientific
Data of the Moon. In: Proceedings of the XXI Congress of the International Society for
Photogrammetry and Remote Sensing (2008)

4. Chin, G., Brylow, S., Foote, M., Garvin, J., Kasper, J., Keller, J., Litvak, M., Mitrofanov,
I., Paige, D., Raney, K., Robinson, M., Sanin, A., Smith, D., Spence, H., Spudis, P., Stern,
S.A., Zuber, M.: Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mis-
sion. Space Science Reviews 129(4), 391–419 (2007)

5. Terazono, J., Sobue, S., Okumura, S., Asada, N., Demura, H., Hirata, N., Fujita, T.,
Yamamoto, A.: Web-GIS based collaboration environment and remote GIS application
experiment using lunar exploration data. In: Proceedings of the International Symposium
on GeoInformatics for Spatial-Infrastructure Development in Earth and Allied Science,
pp. 239–244 (2008)

6. MapServer website, http://www.mapserver.org/

68 J. Terazono et al.

7. Open Geospatial Consortium, http://www.opengeospatial.org/
8. OpenLayers website, http://www.openlayers.org/
9. Nozette, S., Rustan, P., Pleasance, L.P., Kordas, J.F., Lewis, I.T., Park, H.S., Priest, R.E.,

Horan, D.M., Regeon, P., Lichtenberg, C.L., Shoemaker, E.M., Eliason, E.M., McEwen,
A.S., Robinson, M.S., Spudis, P.D., Acton, C.H., Buratti, B.J., Duxbury, T.C., Baker,
D.N., Jakosky, B.M., Blamont, J.E., Corson, M.P., Resnick, J.H., Rollins, C.J., Davies,
M.E., Lucey, P.G., Malaret, E., Massie, M.A., Pieters, C.M., Reissse, R.A., Simpson, R.A.,
Smith, D.E., Sorenson, T.C., Vorder Breugge, R.W., Zuber, M.T.: The Clementine Mis-
sion to the Moon: Scientific Overview. Science 266(5192), 1835–1839 (1994)

10. Clementine Basemap Mosaic Version 2,
http://webgis.wr.usgs.gov/pigwad/down/
moon_warp_clementine_750nm_basemap.htm

11. Gridsite website, http://www.gridsite.org/
12. Terazono, J., Bhalla, S., Izumta, T., Asada, N., Demura, H., Hirata, N.: Construction of

Lunar Nomenclature Search System. In: The 26th International Symposium on Space
Technology and Science (2008)

13. Gazetter of Planetary Nomenclature, http://planetarynames.wr.usgs.gov/

Towards Large-Scale Scientific Dataspaces for

e-Science Applications

Ibrahim Elsayed and Peter Brezany

University of Vienna, Department of Scientific Computing

Nordbergstrasse 15/C/3, A-1090 Vienna, Austria

{elsayed,brezany}@par.univie.ac.at
http://www.par.univie.ac.at/

Abstract. This work intends to provide a large-scale scientific data

management solution based on the concepts of dataspaces for e-Science

applications. Our approach is to semantically enrich the existing rela-

tionship among primary and derived data items, and to preserve both

relationships and data together within a dataspace to be reused by own-

ers and others. To enable reuse, data must be well preserved. Preser-

vation of scientific data can best be established if the full life cycle of

data is addressed. This is challenged by the e-Science life cycle ontology,

whose major goal is to trace semantics about procedures in scientific

experiments. jSpace, a first prototype of a scientific dataspace support

platform is implemented and deployed to an early core of adopters in the

breath gas research domain from which specific use cases are derived. In

this paper we describe the architecture, discuss a specific prototype im-

plementation and outline the design concepts of a second prototype.

Keywords: ScientificDataspace, ScientificDataManagement, e-Science.

1 Introduction

Dataspaces are not a data integration approach, rather they are a data co-
existence approach [1]. The goal is to rise the abstraction level at which data is
managed. Dataspaces consist of participants and relationships. Participants can
be any data element and relationships should be able to model any interconnec-
tion among these participants. Dataspace support platforms (DSSPs) represent
the collection of software pieces and services that control the organization, stor-
age and retrieval of data in a dataspace. The challenges of dataspaces discussed
in [2] have influenced many research groups of the data management commu-
nity. However, most effort was put on the mainstream related dataspace research
[3,4,5] or on development of personal dataspace systems [6,7].

A major challenge faced by the scientific data management community is to
efficiently organize data products used in and generated by scientific experiments
of diverse e-Science applications. The challenge to derivate history of a data
product is known as data provenance [8]. In contrast to the mainstream related
dataspace research scientific dataspaces can be seen as an umbrella to those

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 69–80, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.par.univie.ac.at/

70 I. Elsayed and P. Brezany

research challenges with the goal to establish a distributed large-scale scientific
repository where the full life cycle of scientific data is well preserved. In our
previous work we have addressed a scientific dataspace paradigm [9] aiming at
semi-autonomous creation of semantically rich relationships among data sets
used in scientific studies and further, at preserving both, relationships and their
corresponding data sets within a distributed space of data.

Breath gas analysis in medicine [10], an emerging new scientific field with
a growing international scientific community, represents our driving life science
application from which we derive specific dataspace use cases [11]. Breath gas
researcher are addressing many different breath gas studies in terms of inves-
tigating and screening for hundreds of compounds in exhaled breath gas. Such
studies include several experiments. There is a need to provide structured rep-
resentations of scientific experiments for the breath gas analysis domain. It is
hardly possible for a breath gas researcher to re-run an experiment that was
conducted at a different research lab from his own, far less to understand its
semantics. Both formal research works in publications and also scientific data
used in or produced by corresponding experiments should be interlinked with
semantics. The e-Science life cycle ontology [12] addresses the precise description
of scientific experiments by taking advantage of well-defined semantics of the Re-
source Description Framework (RDF) [13] and the expressive formal logic-based
OWL language [14]. Experiments described by the ontology are referred to as
Life Cycle Resources (LCRs). A LCR in fact represents the semantic relation-
ship among dataspace participants. We differentiate three kinds of participants
(a) data sources being accessed for investigation (primary data), (b) its corre-
sponding findings (derived data), and (c) the set of activities defining concrete
preprocessing and analysis methods (background data). Instances of those kinds
of data sets are interconnected by LCRs within the scientific dataspace.

In this paper we discuss the implementation of jSpace, which is our first ex-
perimental prototype of a scientific dataspace system based on semantic web
technologies. It represents a further development of the dataspace paradigm in-
troduced in [1], in particular it implements the scientific dataspace framework
proposed in [9]. jSpace is an important key-point for collaboration of members
of the breath gas analysis research community. After a brief review of related
work in dataspace research in the next section we describe the architecture of
the scientific dataspace support platform by breaking the system into its major
tools in Section 3. That followed, we present the implementation status of jS-
pace version 1.0 in Section 4 and discuss it in Section 5. Finally, we conclude
the paper and outline our next steps, which are towards developing the semantic
grid-enabled version of jSpace in Section 6.

2 Related Systems

The concept of dataspaces introduced by Franklin et al. [1] gave rise to new data
management challenges. Much dataspace research is applied in terms of personal
information management. For example Yukun et al. describe in [7] a personal

Towards Large-Scale Scientific Dataspaces for e-Science Applications 71

dataspace management system, named OrientSpace, which implements data in-
tegration and data query functions. They introduce the CoreSpace framework,
which represents a subspace of the personal dataspace containing only objects
that are frequently accessed by the owner. The data model used is based on the
vertical data model, which takes a vector to describe attributes of an object.

iMeMex [6] provides data management functionalities, such as querying, up-
dating, performing backup and recovery operations. All data is presented using
a single graph data model and queried using an own query language, called the
iMeMex Query Language (iQL) [15]. Special converters convert the contents of
data sources into the internal graph structure. Core idea of iMeMex is a logical
layer called Resource View Layer that abstracts from underlying subsystems and
data sources. A Data Source Proxy connects to the data sources and provides plu-
gins for file systems, IMAP email servers and RSS feeds, which shows that iMeMex
is designed for personal information management, however not limited to it. An-
other personal dataspace management approach is proposed by Lei et al. in [16].
It introduces the Galaxy data model, which is an extension of the iMeMex data
model in order to better consider security issues, primarily access policies.

Also the initiators of dataspaces proposed solutions to major dataspace re-
search challenges like indexing dataspaces [3] and pay-as-you-go data integration
approaches for dataspace systems [4,5]. This relates to the mainstream dataspace
research. However, so far to our best knowledge no effort was put on applying
dataspace concepts to e-Science applications in order to establish a large-scale
scientific repository, that preserves scientific studies in conjunction with all its
interconnected scientific data sets.

3 jSpace Architecture

In this Section we provide a summary of the architecture of jSpace. Main entities
of the architecture (Figure 1) are the Life Cycle Composer - for creation of LCRs,
the RDF Store - for storing those resources, the scientific dataspace itself - for
storing participating data sets, the Dataspace Indexer - for their subscription,
the Search&Query Processor allowing scientists to find those LCRs, and the
Dataspace Browser for exploration of the dataspace. These, with each other
cooperating software programs represent the environment in which the scientific
dataspace is able to grow and evolve into a remarkable space of well preserved
scientific data. They also provide the organization and retrieval of scientific data
including their well defined semantics within the dataspace.

3.1 e-Science Life Cycle Composer

The aim of the e-Science life cycle composer is to provide a simple interface
to the acting scientists to describe their experiments according to predefined
attributes given by a scientific community. It can be seen as the feeding interface
to the scientific dataspace. It is an easy but efficient way to capture semantically
rich information about dataspace participants and relationships. It guides the

72 I. Elsayed and P. Brezany

SEARCH&QUERY
PROCESSOR

Query
Translator

Query
Interpreter

LIFE CYCLE
COMPOSER

Instance
Creator

e-Science
life cycle
ontology

DATASPACE
INDEXER

Index
Matrix

DATASPACE
BROWSER

Scientific
Dataspace

RDF
STORE

SQL

SPARQL

RDF

SPARQL

INSERT
INDEX

INSERT
INSTANCE

INSERT
DATA

QUERY
INDEX

INDEXES

Fig. 1. Overview of the system architecture

user through the five e-Science life cycle activities, creates new individuals, and
attaches them to a new LCR. It communicates with the Dataspace Indexer, which
indexes new individuals. The indexing mechanism and its purpose are described
in Section 3.4. Based on guidelines defined by responsible persons of the e-Science
application domain to whom the dataspace is deployed, the scientist fills out a
number of mandatory fields during experiment execution. Also references to data
sets being used in the experiment are recorded. The information entered is used
to create individuals of classes defined by the e-Science life cycle ontology. These
individuals, consolidated within a LCR describe on a semantically high level a
scientific experiment. The resulting RDF graph represents a LCR. It is saved
within the RDF store.

3.2 RDF Store

The RDF store manages LCRs persistently. The SPARQL query language [17],
which has been accepted as a W3C recommendation for querying RDF resources
is used to query LCRs. There might be many dataspace instances set up at
multiple research centers, which work together in terms of collaborative science.
In such a very common scenario each center will host their own RDF store for
storing their LCRs, which results in a distributed RDF data environment. There
are two main approaches to handle the problem with multiple RDF stores.

Approach 1 - Global centralized RDF Store. This data warehouse alike ap-
proach provides a global centralized RDF store that organizes LCRs on a multi-
institutional level. Local stores should guarantee high performance for the people
working on the local site. Scientific experiments being conducted at any research
lab that participates in a dataspace environment are stored in local stores as

Towards Large-Scale Scientific Dataspaces for e-Science Applications 73

long as access should be limited to researchers of the local organization. Once
researchers want to share their experiments with other external collaborators or
make them public to the scientific community, its corresponding LCRs will be
stored in a central global store, which is shared with other dataspace instances.

Approach 2 - Distributed RDF Storage. This solution requires a middleware that
supports federated SPARQL query processing. Currently, concepts from tradi-
tional approaches of federated query processing systems are adapted to provide
integrated access to RDF data sources. Basic idea is to query a mediator, which
distributes subqueries to local RDF stores and integrates the results. The DARQ
engine [18] is an extension of the Jena-embedded query engine ARQ to support
federated SPARQL queries. Very similar to the DARQ approach the SemWIQ
[19] system contains contains a mediator service that distributes the execution
of SPARQL queries. DAI-RDF [20] is a service-based RDF database middleware
suite which extends the OGSA-DAI middleware to support RDF data processing
activities including SPARQL query language, ontological primitives, and reason-
ing functions. Since DAI-RDF is based on service-based grid architecture, it is
most promising to realize large-scale distributed scientific dataspaces.

Both approaches are feasible with the architecture. There might be use case
scenarios and application domains where one approach fits better due to scale
of the dataspace infrastructure or legal issues of participating institutions, etc.
Also, a hybrid approach is plausible, for instance, when multiple already deployed
dataspaces of homogenous application domains will be merged into a large scale
dataspace infrastructure. We discuss such a scenario in Section 5.

3.3 Scientific Dataspace

While dataspace relationships are stored in the RDF store, the dataspace par-
ticipants are organized in multiple heterogeneous databases that might be geo-
graphically distributed. In jSpace a participant represents a data set that either
is the input data to a scientific experiment, or the analytical method being used
within an experiment, or it is a dataset that has emerged during execution of
an experiment. We therefore classify three types of participants: (a) primary
data participants - the input data set, (b) background data participants i.e. an
analytical method (web service, MATLAB script, etc.), and (c) derived data
participants - emerged data sets i.e. histograms. The decision what DBMS to
select for storing those different types of dataspace participants depends on the
schemas of the corresponding data sets, to be used by the scientific community,
to whom the dataspace is deployed. The OGSA-DAI [21] middleware is being
used as common interface for all dataspace participants. Thus relational, XML,
and file based resources can be organized as dataspace participants.

Dataspace participants are interconnected by relationships, which provide se-
mantic information about the participant and the LCR they are connected to.
Meta data of participants is organized by the OWL class metaData of the e-
Science life cycle ontology. It allows the scientist to describe data sets according
to user-defined attributes. An instance of the class metaData has the form of

74 I. Elsayed and P. Brezany

subclass

subclass

subclass

participant

backgroundData

primaryData

derivedData

lifeCycle

isUsedIn

describesRelationshipAmong

otherData

subclass

dataspace

participatesIn participatesIn

consistsOf consistsOf

goalSpecification

resultPublishing

dataPreparation

taskSelection

taskExecution

Fig. 2. Scientific dataspace modeled in the e-Science Life Cycle ontology

a triple <instanceID, attribute, value>. In Figure 2 we illustrate the main
OWL classes and properties defined in the e-Science life cycle ontology show-
ing how the scientific dataspace is modeled. It shows that the class dataspace
consists of a class participant and a class named lifeCycle, which in fact rep-
resents relationships among participants. Instances of the lifeCycle class model
how data sets (primary, background, or derived participants) were used in a
specific experiment.

3.4 Dataspace Indexer

The purpose of the Dataspace Indexer is to organize LCRs, including their sub-
scription. It implements a storage and indexing mechanism that allows to quickly
evaluate the state of the dataspace in terms of calculating specific measures such
as (total number of unique LCRs, number of reran LCRs, etc). Also questions
like - What activity was re-used most? - can simply be answered without the
need to access any RDF store. The examination of dataspace measures allows to
monitor system usage and thus helps improving the system. The LCR indexes
are organized in a flat table. Each row in the table represents a LCR key, which
identifies the index of the resource itself and the indexes of all its participating
individuals of the e-Science life cycle activities.

3.5 Search and Query Processor

Searching and querying a dataspace in general is not like querying a database. In a
dataspace we need to drift away from the one-shot query to query-by-navigation.

Towards Large-Scale Scientific Dataspaces for e-Science Applications 75

Users will have to pose several queries, which results in an Information Gathering
Task (IGT). IGT was introduced by Halevy et al. in [2] as one of the major princi-
ples of a dataspace system. In jSpace this task is implemented as a multi-level pro-
cess where different types of queries can be submitted. In level 1 the RDF-Store,
which organizes individuals of the e-Science life cycle ontology, is queried using
SPARQL queries. The information a scientist is gathering in this first level repre-
sent semantics about applied scientific experiments, like what were the research
goals, what data set was used, what analytical methods, etc. It will lead the scien-
tist to those LCRs he might be interested in and to those that are interconnected
to them. In the second level data items that are used within previously identified
LCRs can be retrieved, by submitting queries to data sources that are participat-
ing the dataspace. Such data sets are for example the input data set used, or the
data set derived from selected scientific experiments. In order to apply such kind
of deeper searching and querying more sophisticated queries are submitted to the
scientific dataspace, in particular to the corresponding DBMS that participates
in the dataspace. Such level-2 queries can be in any other query language that is
supported by the underlying data source.

Dataspace relationships and participants are precisely described by individu-
als of the e-Science life cycle ontology, therefore organized as RDF resources. The
Search&Query Processor consists of a Query Interpreter and a Query Transla-
tor. The query interpreter receives a request, which can be expressed either as
a SPARQL-Query or as keyword based search string or in any query language
format that is supported by the underlying participants of the dataspace. For
level-1 queries, the request is forwarded to the Query Translator, who generates
a SPARQL query (if not yet already expressed in SPARQL) search string. This
SPARQL query is then submitted to the RDF store. Level-2 queries are directly
submitted to the OGSA-DAI client of the dataspace participant.

3.6 Dataspace Browser

The dataspace browser is a tool that allows the user to navigate trough the
LCRs available in the dataspace in a visual way. It sends requests to the Query
Processor in terms of SPARQL queries to be submitted to the RDF store. The
response represents RDF data and is used as input for the dataspace browser.

There are a number of tools available that visualize RDF data. Some example
projects include Welkin [22], multiple plugin tools for the Protege environment
[23], and Semantic Analytics Visualization (SAV) [24]. These tools need to be
elaborated and probably an appropriate tool might be adapted or some bits
of the tools might be reused. However the jSpace architecture allows to easily
attach own tools for browsing the dataspace. The decision what tools to use
might depend on the community the dataspace system is deployed for.

4 Implementation Status

A first prototype of jSpace has beed applied to a small research group of a lead-
ing breath gas research institute [25], which is acting as an early core of adopters.

76 I. Elsayed and P. Brezany

Guidelines defining mandatory descriptions for breath gas experimentswere elabo-
rated. This first prototype is based on the Jena framework with MySQL databases
to provide persistent RDF data storage. We used the persistent ontology model
provided in the Jena framework in order to create and store LCRs according to
the concepts defined in the e-Science Life Cycle ontology. A dataspace client has
a local copy of the ontology, which is used by the RDF Store Connection Manager
to create a local ontology model. This model is then used to create new individu-
als and properties according to the ontology. Three MySQL databases for storing
primary, background, and derived datasets were set up as OGSA-DAI resources,
to be accessible on a service-based grid architecture.

The e-Science life cycle composer, a tool implemented in Java provides an easy
graphical user interface to the breath gas researcher allowing to describe and pub-
lish breath gas experiments. It organizes text fields for pre-defined descriptions
of breath gas experiments in five tabs according to their activity. For instance
the TaskSelection activity, shown in the e-Science Life Cycle Composer GUI in
Figure 3, requires to fill in a brief textual description and some corresponding
keywords and to upload an archive file of the analytical methods being used in
the experiment. The acting breath gas research group mainly uses MATLAB
for their calculations. A typical background data set therefore is the collection
of MATLAB functions used in an experiment compressed as zip archive. Once
an experiment has beed finished, it can be published into the scientific datas-
pace by a single click on the OK button of the GUI. The information entered is
used to create a new LCR, which then is saved in the corresponding RDF store.
Connection details about local and global RDF Store as well as about corre-
sponding OGSA-DAI resources are stored in a configuration file. A web service
that communicates with an OGSA-DAI client stores the uploaded datasets into
their corresponding databases.

Fig. 3. The e-Science life cycle composer GUI

Towards Large-Scale Scientific Dataspaces for e-Science Applications 77

CLIENT
(Java)

RDF Store Connection
Manager

GLOBAL - RDF STORE
Host; lela.gridlab.univie.ac.at
MySQL DB
Port:3306
[JenaDB]

create
Persistent
Ontology
Model
OntModel

SPARQL
Query

Processor
Jena/ARQ

LifeCycle
Composer

Jena/
Ontology

Model

e-Science Life Cycle
Ontology

Remote Ontology

http://ww.gridminer.org/e-sciencelifcycle/lifecycle.owl

LOCAL - RDF STORE
Host; 127.0.0.1
MySQL DB
Port:3306
[JenaDB]

RDF
STORE
JENA

e-Science Life Cycle
Ontology

Local Copy

RDF
STORE
JENA

Concepts

Individuals

chech if reload is
neccessary ()

load
OntModel
into local
RDF Store

OntModel
query RDF
Store

Publication Manager
commits new
LifeCycle resources

Local Dataspace 2

...

Local
DS 3

...

Local
DS 1

5. Query and Insert
into RDF Store

3. get ModelMaker Object
with Ont URI as DB name

2. establish JDBC con.

4. load OntModel into DB

6. Query Results

1. access remote ontology
map to local ontology

Fig. 4. Local and global RDF Store in a Scientific Dataspace Environment

In the first jSpace version we have chosen the data warehouse alike approach
in order to provide efficient access to scientific experiments that were conducted
at different research centers. However at the moment we only simulate a second
dataspace instance. The Connection Manager handles a connection to a global
and one to a local RDF store. Figure 4 illustrates one global RDF store, where
meta data of breath gas experiments (LCR) that are public to the community is
stored. There are three scientific dataspace instances illustrated, each deployed
for a specific research group, which might be geographically distributed. Ev-
ery dataspace instance has their own local RDF store to organize meta data of
experiments that should be available only for the local organization. A Publica-
tion/Update Manager commits new LCRs to the global store. On the dataspace
participants layer each dataspace instance deploys at least three databases as
OGSA-DAI resources, where data sets used in an experiment are stored. Due to
limit of space, this is not illustrated in the figure.

The e-Science life cycle model [9] has been applied as relationship model for
the scientific dataspace. Jena SDB Version 1.3.1 with MySQL Version 5.0.67 as
underlying RDBMS is used to implement multiple local and one global RDF
stores. For the search and query interface we provided Joseki Version 3.4 as
HTTP interface. A number of most important queries, such as {Get me all
experiments with VOC ‘keyword’}, and {Get me all experiments from researcher
‘name’ where specified goal includes ‘keyword’}, or {Get me all experiments with

78 I. Elsayed and P. Brezany

Fig. 5. Large-scale scientific dataspace infrastructure

ANY keyword equals ‘keyword’ and input dataset ‘datasetName’ is used} were
predefined in SPARQL to enable the breath gas researcher to easy interact with
the SPARQL query interface. However, the scientific dataspace is still in an early
stage of evolution. It will need some time in order to get a large amount of LCRs
including its corresponding dataspace participants into the dataspace.

5 Discussion

Currently, three breath gas research teams from our driving e-Science application
produce at an average 48 breath gas experiment in three different studies in a
single week. The total size of a LCR of a typical breath gas experiment including
its primary, derived, and background data sets amounts to approximately 7 MB.
The average number of triples that correspond to a single LCR is 170 with an
average size of 150 KB stored in Jena’s SDB triple layout. From this we can
estimate the total size of the scientific dataspace after six month with a single
research lab involved to roughly 8.7 GB with about 8160 triples in the local
RDF store (approx. 50K triples in three years). In regard to the Berlin SPARQL
benchmark [26], which states that the overall runtime for executing 50 query
mixes on a 250K triples Jena SDB test data set is short above one minute, we can
be confident that the presented solution provides reasonable performance. Based
on this high-level estimation jSpace might need to scale up not before three years
of deployment. However having multiple organizations or even various related
e-Science application domains involved, it might be much earlier.

Vertical scalability can be achieved by interconnecting multiple dataspace
instances, which leads to a large-scale scientific data space infrastructure. Such a
scenario is illustrated in Figure 5. In this scenario we assume that each dataspace
was already deployed for a specific virtual organization where acting scientist are
feeding the dataspace continuously with their regularly running experiments.
The global centralized RDF store approach was chosen to support exchange

Towards Large-Scale Scientific Dataspaces for e-Science Applications 79

with a second virtual organization of the same domain. Now, as both research
domains are related scientific fields, it might be the case that scientists would
like to share their knowledge among each other. In order to utilize this arising
large-scale dataspace it will be necessary to provide a distributed RDF storage
solution on top of global RDF stores. Most promising candidate to realize this is
DAI-RDF, since it is based on OGSA-DAI, which we already use for organizing
dataspace participants.

We are aware that we rely on active participation of members from the scien-
tific community in order to establish a large scale scientific dataspace for breath
gas analysis. Therefore we provide a simple interface that can easily be used
by scientists from diverse research domains, especially for non-computer scien-
tists, which was a major requirement from our driving application. However, we
suspect that young-researchers (Master and PhD students) will be the major
user group of the e-Science life cycle composer, while senior researcher will most
likely interact with the system in terms of submitting requests. Once a first re-
lease is ready we expect that it enforces building of collaborations among breath
gas research institutions as it supports the community in exchanging data and
knowledge. This will build the basis for automation-based breath gas analysis.

6 Conclusions and Future Work

This paper presented the architecture of a scientific dataspace paradigm build
on top of the e-Science life cycle ontology. A first prototype was developed on
top of existing semantic web technology and deployed to a small core of early
adopters in a highly relevant life science domain from which specific use cases are
derived. It is the bases for development of an intelligent and more powerful second
prototype, which will be based on semantic grid technology. One of the most
promising technology for distributed SPARQL query processing in a large-scale
context, which is a key concern for a wider acceptance of the presented dataspace
paradigm seems to be the RDF(S) Realization [27], of the Data Access and
Integration Working Group of the Open Grid Forum. However, as our prototype
has shown that in order to get semantically rich scientific data from e-Science
applications that can be further used we need first to ensure that the experiments
being conducted are well preserved. Preservation of scientific data can best be
established if the full life cycle of data is addressed [28]. This goal was successfully
implemented by the first prototype of jSpace. We see in our future work both, to
improve and automatize the preservation process and the upgrade from semantic
web to semantic grid technology, which provides more powerful middleware for
distributed management of storage systems that expose SPARQL endpoints.

References

1. Franklin, M., Halevy, A., Maier, D.: From databases to dataspaces: A new abstrac-

tion for information management. In: SIGMOD (2005)

2. Halevy, A., et al.: Principles of dataspace systems. In: PODS (2006)

3. Dong, X., Halevy, A.: Indexing dataspaces. In: SIGMOD, pp. 43–54 (2007)

80 I. Elsayed and P. Brezany

4. Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user feedback for datas-

pace systems. In: SIGMOD, pp. 847–860 (2008)

5. Das Sarma, A., Dong, X., Halevy, A.: Bootstrapping pay-as-you-go data integration

systems. In: SIGMOD, pp. 861–874 (2008)

6. Dittrich, J.P., et al.: Imemex: escapes from the personal information jungle. In:

VLDB. VLDB Endowment, pp. 1306–1309 (2005)

7. Li, Y., et al.: Research on personal dataspace management. In: IDAR, pp. 7–12

(2008)

8. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.

SIGMOD Rec. 34(3), 31–36 (2005)

9. Elsayed, I., et al.: Intelligent Dataspaces for e-Science. In: CIMMACS, WSEAS,

pp. 94–100 (2008)

10. Amann, A., et al.: Applications of breath gas analysis in medicine. International

Journal of Mass Spectrometry 239, 227–233 (12 2004/12/15/print)

11. Elsayed, I., et al.: Towards realization of scientific dataspaces for the breath gas

analysis research community. In: IWPLS, CEUR, UK (2009)

12. Elsayed, I., et al.: The e-science life cycle ontology (owl documentation) (2008),

http://www.gridminer.org/e-sciencelifecycle/owldoc/
13. W3C: Resource description framework, RDF (2003), http://www.w3.org/RDF/
14. W3C: Web ontology language, OWL (2004), http://www.w3.org/2004/OWL/
15. Dittrich, J.P., Salles, M.A.V.: IDM: a unified and versatile data model for personal

dataspace management. In: VLDB. VLDB Endowment, pp. 367–378 (2006)

16. Jin, L., Zhang, Y., Ye, X.: An extensible data model with security support for

dataspace management. In: HPCC, pp. 556–563 (2008)

17. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF (2008),

http://www.w3.org/TR/rdf-sparql-query/
18. Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL. In:

Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.

LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008)

19. Langegger, A., et al.: A semantic web middleware for virtual data integration on

the web. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.)

ESWC 2008. LNCS, vol. 5021, pp. 493–507. Springer, Heidelberg (2008)

20. Kojima, I., et al.: Implementation of a service-based grid middleware for access-

ing RDF databases. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009

Workshops. LNCS, vol. 5872, pp. 866–876. Springer, Heidelberg (2009)

21. Antonioletti, M., et al.: OGSA-DAI 3.0 - the whats and the whys. In: Proceedings

of the UK e-Science All Hands Meeting 2007 (September 2007)

22. Mazzocchi, S., et al.: Welkin - a graph-based RDF visualizer (2004),

http://simile.mit.edu/welkin/
23. Protege: a free, open source ontology editor and knowledge-base framework (2010),

http://protege.stanford.edu/
24. Deligiannidis, L., et al.: Semantic analytics visualization. In: Mehrotra, S., Zeng,

D.D., Chen, H., Thuraisingham, B., Wang, F.-Y. (eds.) ISI 2006. LNCS, vol. 3975,

pp. 48–59. Springer, Heidelberg (2006)

25. Amann, A., et al.: Volatile organic compounds research group (2009),

http://www.voc-research.at/
26. Bizer, C., et al.: The berlin sparql benchmark. Int. J. Semantic Web Inf. Syst. 5(2),

1–24 (2009)

27. Gutiérrez, E., et al.: Accessing RDF(S) data resources in service-based grid infras-

tructures. Concurr. Comput.: Pract. Exper. 21(8), 1029–1051 (2009)

28. Lynch, C.: Big data: How do your data grow? Nature 455(7209), 28–29 (2008)

http://www.gridminer.org/e-sciencelifecycle/owldoc/
http://www.w3.org/RDF/
http://www.w3.org/2004/OWL/
http://www.w3.org/TR/rdf-sparql-query/
http://simile.mit.edu/welkin/
http://protege.stanford.edu/
http://www.voc-research.at/

Providing Constructed Buildings Information by

ASTER Satellite DEM Images and Web
Contents

Takashi Takagi1, Hideyuki Kawashima2,
Toshiyuki Amagasa2, and Hiroyuki Kitagawa2

1 Graduate School of Systems and Information Engineering, University of Tsukuba,

Tennodai 1-1-1, Tsukuba, Ibaraki, 308-8573, Japan

t takagi@kde.cs.tsukuba.ac.jp
2 Graduate School of Systems and Information Engineering, University of Tsukuba,

and Center for Computational Sciences,

Tennodai 1-1-1, Tsukuba, Ibaraki, 308-8573, Japan

{kawasima,amagasa,kitagawa}@cs.tsukuba.ac.jp

Abstract. It has become easy to accumulate and to deliver scientific data

by the evolution of computer technologies. The GEO Grid project has col-

lected global satellite images from 2000 to present, and the amount of the

collection is about 150 TB. It is required to generate new values by in-

tegrating satellite images with heterogeneous information such as Web

contents or geographical data. Using GEO Grid satellite images, some re-

searches detect feature changes such as earthquakes, fires and newly con-

structed building. In this paper, detections of feature changes from time

series satellite image are referred to as events, and we focus on events about

newly constructed buildings. Usually, there are articles about such newly

constructed buildings on the Web. For example, a newly started shopping

center is usually introduced in a news report, and a newly constructed

apartment is often on the lips of neighboring residents. So, we propose an

event detection system that extracts candidate events from satellite im-

ages, collects information about them from the Web, and integrates them.

This system consists of an event detection module and a Web

contents collection module. The event detection module detects geograph-

ical regions that have differences with elevation values between two satel-

lite images which are temporally different. The expressions of regions are

translated from latitudes/longitudes to building names by using an in-

verse geocoder. Then, the contents collection module collects Web pages

by querying names of buildings to a search engine. The collected pages

are re-ranked based on temporal information which is close to event oc-

currence time. We developed a prototype system. The result of evaluation

showed that the system detected some information of building construc-

tion events with appropriate web contents in Tsukuba, Japan.

1 Introduction

It has become easy to accumulate and to deliver scientific data by the evolution
of computer technologies. The GEO Grid project has collected global satellite

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 81–92, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

82 T. Takagi et al.

images from 2000 to present, and the amount of the collection is about 150
TB. The original utilization purpose of satellite images is just simply observing
the earth. However, satellite images have rich information compared with sensor
devices facilitated on the ground. Therefore satellite images can be utilized in
a variety of ways over the original purpose. For example, GEO Grid satellite
images, some researches detected feature changes including earthquakes, fires
and newly constructed buildings [7][10].

This paper focuses on the detection of newly constructed buildings by using
satellite images obtained by the ASTER sensing device. It is because earthquakes
and fires occur rarely, while building constructions occur frequently. Urban de-
velopment projects are always running all over the world. Also at Tsukuba city
which we live in, large scale shopping centers and apartment buildings have been
constructed in these years.

The detection of building constructions can be achieved by using web. When
a building is constructed, usually the information is posted to web as a content
by press persons or people living around it. Many people can post contents
because of user friendly systems are available now such as the twitter, blogs,
social networks, wikipedia, etc.

As written above, there are two methods to detect building constructions.
Both methods have advantages and disadvantages. The advantage of satellite
images is regional completeness. All the constructed buildings can be completely
detected by using a satellite image. On the other hand, the disadvantage of
satellite images is the lack of content information. Images inform the existence
of building constructions, however it does not inform the name of companies,
restraints, shops, etc in the buildings. This disadvantage can be overcome by
using web contents which include utilization details of the buildings. Therefore,
if we can smoothly integrate satellite images and appropriate web contents, then
we can provide rich information with newly constructed buildings. This paper
presents such a system. To the best of our knowledge, this is the first paper
which detect newly constructed buildings by integrating satellite images and
web contents.

The system consists of an event detection module and a web contents se-
lection module. The event detection module detects constructed buildings by
using satellite images which are temporally different, but regionally the same.
For each image, a digital elevation model (DEM) image is generated and then
elevation values for each pixel for two images are compared. If the difference of a
region is more than the threshold, the system output the region as a constructed
building. The web contents selection module receives the region from the event
detection module. The region is identified by latitudes/longitudes which is has
not contents information. Therefore our system translates latitudes/longitudes
to building names by using an inverse geocoder. Then, the names of buildings
are queried to a search engine using API. Then, returned contents are re-ranked
based on temporal information which is close to event occurrence time.

The rest of this paper is organized as follows. We describe GEO Grid and
data used in this research in Section 2. In Section 3, we describe the proposed

Providing Constructed Buildings Information by ASTER Satellite 83

system. It includes calibration method and efficient event detection algorithm.
In Section 4, we describe experimental results. In Section 5, we describe related
works. Finally, we conclude this paper and indicate future directions in Section 6.

2 GEO Grid

In this section, we describe GEO Grid and ASTER sensor data archived in GEO
Grid. Our research group participates in GEO Grid project. GEO Grid (Global
Earth Observation Grid) is a system for archiving and high-speed processing
satellite large quantities of satellite observation data by using grid technique.
GEO Grid introduce the design concept called VO (Virtual Organization), where
necessary data or service is provided depending on a demand from a research
community (e.g., disaster prevention, environmental conservation, geological re-
search). Our research group belongs to ”BigVO”, in which we can get data sensed
by MODIS and ASTER.

2.1 MODIS Optical Sensor

MODIS is name of an optical sensor on NASA’s earth observation satellite
”TERRA/AQUA”. MODIS sensor is mounted on both TERRA satellite and
AQUA satellite, and the observation cycle is once a day. A spatial resolution
of MODIS is 250m (band 1-2), 500m (band 3-7), 1000m (band 8-36) and can
observe waveband of 0.4-14μm with 36 channels. From satellite images from
MODIS, cloud, radiated energy, aerosol, ground coverage, land use change, veg-
etation, earth surface temperature, ocean color, snow cover, temperature, hu-
midity, sea ice, etc., can be observed with the use of 36 channels.

2.2 ASTER Optical Sensor

ASTER is one of optical sensors on TERRA satellite, and can sense waveband
from visible to thermal infrared. The observation cycle of ASTER is 16 days.
ASTER consist of three independent sensors (VNIR, SWIR, TIR).

ASTER Sub-system. VNIR is an optical sensor which can sense reflected light
of geosphere from visible to near infrared, and intended to do resource survey,
national land survey, vegetation, and environment conservation. SWIR is a multi
bands optical sensor which can sense short wavelength infrared region from 1.6μ
to 2.43μ, and intended to do resource survey, environment conservation such as
vegetation, volcanic action with a rock or mineral distinction. TIR is multi bands
optical sensor which can sense thermal infrared radiation on earth surface, and
intended to do distinct mineral resource or to observe air, geosphere, or sea surface.

Digital Elevation Model (DEM). ASTER has another near infrared sensor
(stereoscopic band) at the 27.6-degree back added, and is able to stereoscope
with the just downward sensor which sense same band (band 3). The elevation
value can be generated by stereo matching these two images (stereoscopic band

84 T. Takagi et al.

Fig. 1. System overview

and band 3). It is called Digital Elevation Model (DEM) image. A DEM image
is used for making three dimensional graphic, geomorphological analysis, and so
on. The detection of constructed buildings is performed by using DEM images
for the same region.

3 Proposed System

In this section, we propose a constructed buildings information service system.
Fig. 1 shows the overview of the proposed system. The proposed system consists
of two modules. They are an event detection module and a web contents selection
module. In the event detection module, the input is assumed as the amount of
change with cubic volume, and the output is assumed as spatial regions. In the
web contents selection module, the input is assumed as a spatio-temporal region,
and the output is assumed as web contents related to buildings at the region. The
rest of this section describes the event detection module and the web contents
selection module in detail.

4 Event Detection Module

In this section, we describe the event detection module. This module detects
newly constructed buildings from two DEM images, and a building construction
is denoted as an event.

Event Model. An events is expressed by a spatio-temporal region and the
amount of change with cubic volume. Here we define the word “event” by in-
troducing notations. time stamp denotes event occurrence time. S denotes the
region where a building construction is detected. V denotes a grand total of an
elevation value change on time section time stamp at S. vt

ij denotes a pixel value
of position (i, j) on a DEM image at the time. |vt1

ij − vt2
ij | denotes the difference

of cubic volume on spatially (i, j) and on temporally (t1, t2). An event is defined
by a rectangular solid decided uniquely on domain S, volume V and a temporal
interval (t1, t2).

Providing Constructed Buildings Information by ASTER Satellite 85

event = (time stamp, S, V)
time stamp = (t1, t2)

S = (x1, x2, y1, y2)

V =
x2∑

i=x1

y2∑
j=y1

|vt1
ij − vt2

ij |

Query by User. The input of module is a condition about the amount of
change with cubic volume, and a temporal interval (t1, t2). The condition is
issued by a user. The output of module is a set of spatio-temporal regions
(x1, x2, y1, y2, t1, t2) where a condition holds. However, for all regions, (t1, t2)
are the same since it is specified by a user.

Satellite Images Pair Generation. After receiving a query, the module se-
lects images that satisfy the query condition from all images in the database1

The selection procedure first filters images by time stamp condition. Therefore
images sensed between t1 and t2 are obtained. From the obtained images, the
module enumerate all the pairs. Therefore if the number of images is n, nC2
pairs are generated.

4.1 Calibration of ASTER DEM

For each image of pairs, a DEM image is generated. Unfortunately, a DEM image
has vertical/horizontal errors. ASTER DEM has relatively 7.8 meters offset in a
vertical direction, 1.18 px offsets in a horizontal X direction and 0.67 px offset in a
horizontal Y direction[5]. Therefore before conducting event detection procedure,
the error should be corrected. Here we describe our approach.

Removing Offsets in a Horizontal Direction. At first, we calculate offset
in a horizontal direction by a method similar to [5]. For each image for a region,
we sum up the differences of the image and base image with elevation values
of all the pixels. The base image is common through this calibration procedure,
and it was one observed on March 29, 2000. Then, we continually perform the
same summing up procedure by moving 1 px in horizontal XY direction (latitude
longitude direction). Matching cost RSAD is the average of the difference value
in a domain overlapping between images, which is expressed in formula. For each
image, we choose i and j which minimizes the following RSAD.

RSAD =

∑M−1
i=0

∑N−1
j=0 |PixelDiff(i + offseti, j + offsetj)|

s
(1)

Where M × N is the number of pixels in an image. Please note that all the
images have the same size. PixelDiff is the difference of elevation value with
pixels with an image and base one.
1 Although GEO-Grid has images all over the world, our database includes a part of it.

The region is limited to only Tsukuba area, Japan. The database is just a collection

of image files, and it is not managed by any DBMSs.

86 T. Takagi et al.

Removing Offsets in a Vertical Direction. Vertical offsets is calculated by
comparing ASTER DEM with a ground truth dataset. 10 m mesh (altitude) of
base map information is published by geographical survey institute, Japan[6].
We used is as a ground truth dataset. In the dataset of ASTER DEM and the
ground truth dataset, the average of altitudes with some geographical points are
calculated. The selected points are widely known to be flat from 2000 to now in
Tsukuba city. For each image, we modified elevation values of all the pixels. For
example, assume the average of selected points in the base image avgHbase is
100, and one in an image X, avgHX is 10. Then, for each pixel in X, its elevation
value is added 90 so that it fits into the model of base image.

The Result of Removing Offsets. We conducted a calibration experiment.
All the data are provided from portal site of GEO Grid with the cooperation
of Advanced Industrial Science and Technology. The target region is Tsukuba
city, Ibaraki, Japan. In each image, offsets are removed by methods in Section
4.1 and 4.1. In each image after the removing offset, Table 1 shows result that
calculated each standard deviation for ten observation points. In Table 1, σ
denotes standard deviation in case without offset removal, σXY denotes the one
in case with only horizontal offset removal, σZ denotes the one in case with
vertical offset removal, and σXY Z denotes the one in case with both a horizontal
and vertical offset removal. Table 1 shows that σXY Z is better than σ at nine
of ten observation points after calibration. Even in the only exception (Football
ground in Univ. of Tsukuba), the difference is just only 0.09. Therefore it is
considered that our approach succeeded calibration.

Event Detection. The proposed system performs event detection by division
algorithm to detect an event efficiently. At first, a difference image is generated
from two DEM images each other different time. For detecting events, the whole
image is divided into four parts in the top, bottom, right and left. Next, among
the domains that are divided, domains where quantity of volume change exceeds
threshold are divided into four parts again. The event detection is stopped on

Table 1. Removing Offsets of ASTER DEM

Observation point name σ(m) σXY (m) σZ(m) σXY Z(m)

Baseball ground in Univ. of Tsukuba 3.78 3.76 2.80 2.51

Football ground in Univ. of Tsukuba 3.96 4.33 3.76 4.05

Athletics track field in Univ. of Tsukuba 4.37 4.18 2.76 2.66

Play ground in Univ. of Tsukuba 3.89 4.09 3.37 3.30

Play ground in Doho park 3.95 3.73 2.63 2.34

Baseball ground in Doho park 4.17 4.16 1.99 2.17

Meteorological Research Institute 4.40 4.56 2.73 2.70

Play ground in Azuma junior high school 5.22 4.63 4.05 3.75

Play ground at campus of Kasuga in Univ. of Tsukuba 3.83 3.59 2.78 2.72

Play ground in Azuma junior school 4.07 4.52 3.08 3.18

Average 4.16 4.16 3.00 2.94

Providing Constructed Buildings Information by ASTER Satellite 87

Fig. 2. Method for Detecting an Event

domains where quantity of volume change does not exceed threshold because
it is thought that these domains do not include events moreover. Furthermore,
domains divided into four parts are performed a threshold processing, and do-
mains where quantity of volume change exceeds threshold are divided again and
again. A threshold processing and division processing are repeated recursively in
this way, and domains where an area becomes a minimum as an event occurred
domain are output. Fig. 2 shows an overview of proposed method for detecting
events in this paper.

5 Web Contents Selection Module

Fig. 3 shows the web contents selection module. Events are output by the event
detection module, and they are input into a this module. First, the position
coordinate of an event is input into an inverse geocoder, and then the name
of the geographical object which intersects the position coordinate is output.
Second, the name is queried by using the Yahoo! search engine API, and 1000
pages are returned. It should be noted that when only a position name is queried,
pages whose position name is same but whose location is different are often
returned. To avoid it, each query is expanded so that it is unique by adding the
municipality name. The result pages of expanded query is routed to re-ranking
module. In this module, representations with time are extracted from pages by

Fig. 3. Web contents collection module

88 T. Takagi et al.

using regular expression. Next, an event occurrence time and a extracted time
representation are converted into UNIX TIME, and time lag of the two times
is calculated. A ranking score is assumed the minimum value of time lags with
event occurrence time among time representations on the page. Calculated for all
input pages, this ranking score is performed re-ranking from one having a small
score sequentially. Among the re-ranked page sets, pages having high score is
output for the system.

6 Evaluation

In this section, we develop the proposal system described in Section 3 and show
the evaluated result. Satellite images to use is acquired from portal site of GEO
Grid and is images observed by optics sensor ASTER carried in TERRA satellite.
The image format is GeoTiff format, and the coordinate system is world coor-
dinate system. The data form of DEM to use in this system is two-dimensional
raster type 2 bytes signed integer, and the space resolution is 15m. The pro-
gramming language for development is C++, and the development environment
is as follows.

IDE: Visual Studio2005 CPU: Intel Core2 Quad Q6700 2.66GHz RAM: 3.25GB

6.1 Evaluation of Event Detection Module

Events detected from a the proposal system are mapped onto on Google Maps to
evaluate the event detection module and evaluate whether these events accord
with events occurred in real world. Fig. 4 shows the result that performed the
event detection using images observed at January, 2008 and February, 2009, and
the input for the system is volume change 450000m3. In fig. 4, the domain sur-
rounded in a red circle is the shopping center started a business in October, 2008.
Because this shopping center started a business between the time of difference
image generation, it is thought that the construction of the building in the real
world is able to be detected. Fig. 5 shows the result that performed the event
detection using images observed at November, 2006 and January, 2009, and the
input for the system is volume change 225000m3. In fig. 5, the three rectangles
shown centrally are detected events. In the detected domain, there is a com-
pletion planned apartment in the end of January, 2009, and it is thought that
the event that occurred in real world is able to be detected because the images
used for a calculation for a difference is 2006 and 2009. Fig. 6 shows the result
that performed the event detection using images observed at January, 2004 and
November, 2006, and the input for the system is volume change 225000m3. In
fig. 6, the three rectangles shown centrally are detected events, and the shopping
center which started a business in March, 2005 was detected. Because this shop-
ping center starts a business between the time of difference image generation,
it is thought that the construction of the building in the real world is able to
be detected. Fig. 7 shows the result that performed the event detection using

Providing Constructed Buildings Information by ASTER Satellite 89

images observed at June, 2002 and December, 2004, and the input for the system
is volume change 225000m3. In fig. 7, though an event does not occur clearly
in the time interval on the domain surrounded in a circle, it is detected as an
event. We was able to detect some real events, but have detected the domain
where an event did not occur clearly as an event according to fig. 7 when the
proposal method for a real satellite image is applied. It is thought that a reason
is a noise included in a DEM image.

6.2 Evaluation of Web Contents Collection Module

We developed the Web contents collection module, performing an experiment
to collect contents about an event detected by satellite images on the WEB.
A house map database of Tsukuba-city by ZENRIN Co., Ltd. is used for per-
forming inverse geocoding in this experiment. Input is event object in a domain
surrounded in a red circle in fig. 4 in subsection 6.1.

Fig. 4. Event detection result for real data 1

Fig. 5. Event Detection Result for Real Data 2

90 T. Takagi et al.

Evaluation result. Inverse geocoding is performed for an input event object,
and so name of shopping center ”iias Tsukuba” at Tsukuba-city is output. As
a result for collecting contents based on this name and time information on
the Web, documents ”iias Tsukuba was built newly” are described in top four
contents. In addition, precision is 0.4 when the re-ranking is performed though
precision is 0.2 when the re-ranking is not performed in Web contents collection
module, and so a page about an event was able to be post in the high rank by
performing re-ranking.

7 Related Work

As a study of event detection from satellite image, in [3], the method for detect-
ing newly constructed building is proposed, comparing latest GIS data to a high
resolving power satellite image for event detection. In this method, the detection
of the buildings not included in GIS data is performed based on an edge and
vegetation index of the pixel value. [3] evaluates the method for detecting build-
ings for the city area of Yokohama-city, and the rate of detection is from about
75 to 80%. Detected by using GIS data in [3], the events can be detected only
between generation time of GIS data and observation time of satellite image.
Generally, GIS data is built manually, so it is thought that generating GIS data
takes long time. In contrast, events can be detected at comparatively short time
to compare satellite images in our method.

Additionally, there is a study that integrate Web contents with satellite images
[8]. [8] proposes a system extracting geographic and time information about
the events from free encyclopedia ”Wikipedia” on the Web and mapping into
satellite images. From an aspect of the information integration, [8] integrates

Fig. 6. Event Detection Result for Real Data 3

Providing Constructed Buildings Information by ASTER Satellite 91

Fig. 7. Event Detection Result for Real Data 4

the satellite image with the event extracted from the Web resource, and it is a
inverse approach from our study that integrate Web contents based on the event
extracted from a satellite image. Moreover, [8] uses limited information resource
on ”Wikipedia”, but the events, which [8] cannot detect, can be integrate in our
study because our study intend for the whole Web content.

8 Conclusions and Future Work

This paper proposed methods and the architecture of a system that collect in-
formation about newly constructed buildings by using satellite images and web
contents. The system integrates web contents with satellite images, therefore it
was mentioned that web contents related to an event is able to be collected.

In future work, we improve event detection algorithm and make the detection
precision of the event detection 100%. In addition, we focus on structure of
the HTML in re-ranking for contents and are going to perform evaluation of
relevance between the event and the article unit of the page.

References

1. Aster Science Project, http://www.science.aster.ersdac.or.jp/t/

2. GEO Grid, http://www.geogrid.org/

3. Miura, H., Midorikawa, S.: Automated building detection from high-resolution

satellite image for updating gis building inventory data. Journal of social safety

science (5), 37–44 (November 2003)

4. Honda, S., Ohishi, M., Shirasaki, Y., Tanaka, M., Kawanomoto, S., Mizumoto, Y.:

A mechanism in federating internationally distributed databases and computing

resources to realize virtual observatories. DBSJ Letters 4(1)

5. Kodama, S., Arioka, M., Mio, A., Nakamura, R., Iwao, K.: Geometric accuracy of

aster dem. RSSJ (5), 55 (December 2007)

6. Base Map Information, Geographical Survey Institute,

http://www.gsi.go.jp/kiban/index.html

http://www.science.aster.ersdac.or.jp/t/
http://www.geogrid.org/
http://www.gsi.go.jp/kiban/index.html

92 T. Takagi et al.

7. Matsuoka, M., Yamazaki, F.: Detection of building damage areas due to earth-

quakes using satellite sar intensity images. Journal of structural and construction

engineering. Transactions of AIJ (551), 53–60 (2002)

8. Okamoto, A., Kuroi, S., Yokoyama, S., Fukuta, N., Ishikawa, H.: Proposal of ex-

traction technique of geographic information and time information form wikipedia.

In: DEIM Forum 2009 (March 2009)

9. Tamamoto, N., Tatebe, O., Sekiguchi, S.: Performance evaluation of astronomical

data analysis tools on grid datafarm architecture. In: SWoPP 2003, August 2003,

pp. 185–190 (2003)

10. Urai, M., Fukui, K.: Global volcano observation plan and a volcano image database

with aster. Journal of the Remote Sensing Society of Japan 32, 75–76 (2009)

11. Takagi, T., Kawashima, H., Amagasa, T., Kitagawa, H.: Integration of Satellite

Images and Web Contents based on Event Detection. In: DEIM Forum 2009 (March

2009)

Gfdnavi, Web-Based Data and Knowledge

Server Software for Geophysical Fluid Sciences,
Part I: Rationales, Stand-Alone Features, and

Supporting Knowledge Documentation Linked
to Data

Takeshi Horinouchi1, Seiya Nishizawa2, Chiemi Watanabe3,
Akinori Tomobayashi4, Shigenori Otsuka5, Tsuyoshi Koshiro6,

Yoshi-Yuki Hayashi2, and GFD Dennou Club

1 Faculty of Environmental Earth Science, Hokkaido University, N10W5 Sapporo,

Hokkaido 060-0810, Japan
2 Department of Earth and Planetary Sciences, Kobe University
3 Department of Information Sciences, Ochanomizu University

4 Shouganji
5 Department of Geophysics, Kyoto University

6 Climate Research Department, Meteorological Research Institute

www.gfd-dennou.org

Abstract. In recent years, many data centers and research groups pro-

vide data on geophysical fluids such as the atmosphere and oceans

through the Internet along with on-line visualization. However, their

services are not available once data files are downloaded. This paper

presents open-source software named Gfdnavi developed to reduce the

limitation and to support data handling beyond initial “quick-looks”.

Gfdnavi extracts metadata from scientific data and stores them in a

database. They can be accessed with web browsers for search, analysis,

and visualization. It supports a wide range of usage such as public data

services, group data management, and desktop use. As its unique feature,

Gfdnavi supports writing and archiving documents based on knowledge

obtained through data analysis. The documents are linked with the orig-

inal data and analysis/visualization procedures. It has a wide variety of

applications such as interdisciplinary- and collaborative-study support,

a realization of falsifiability, and educational use.

Keywords: Data server, Geophysical fluid sciences, Visualization, Web

application, Knowledge archive.

1 Introduction

Contemporary scientists of “geophysical fluids”, such as the atmosphere and the
ocean, are facing a rapid increase of data. Observational data from satellites,
ground-based remote-sensing instruments, and in situ measurements have been

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 93–104, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

94 T. Horinouchi et al.

increasing year by year in both amount and kinds. Also, numerical simulations,
such as climate prediction, produce vast amount of data. Therefore, to enhance
information technology (IT) infrastructure for data access and handling would
be helpful for the sciences.

There is also increasing demand for interdisciplinary studies to solve environ-
mental problems. In such studies scientists have often to use data from fields
of studies that are not familiar to them. Thus, IT infrastructure would also be
needed to assist them.

Recently, many research organizations provide geophysical fluid data through
the Internet. Some provides server-side visualization as well. Although many
data servers are still custom made, it is becoming common to use data-server
construction tools such as Live Access Server (LAS)[1]. LAS is the most advanced
tool used for geophysical fluid sciences. A LAS server enables its users to visualize
data using web browsers. It is highly configurable so that its administrator can
design a façade suitable to its contents.

There are, however, still problems with currently used data servers for geo-
physical fluid sciences as follows:

1. Visualization capability is generally limited, so only “quick-looks” on the
initial stage of researches are possible.

2. The features of the servers are not available once data files are downloaded.
Therefore, the data need to be analyzed and visualized independently. In
such a case, even to opening the files could be time-consuming, since a num-
ber of binary data formats are used in these sciences.

3. Most of the browser-based advanced data servers support only georeferencing
data, despite the fact that non-georeferencing data are also important and
frequently required for conducting researches.

4. The search capability of these servers is often limited. Furthermore, it is
difficult to search for data across network, except for their documents that
are available via Internet search engines.

5. Interdisciplinary and/or collaborative studies would require communication
among scientists for the purpose of exchanging know-hows, results, and so
on. However, to the best of authors’ knowledge, none of the existing data
servers for geophysical fluid sciences support such communication.

To solve all these problems, we have developed software named Gfdnavi [2], which
stands for Geophysical fluid data navigator. Our approach is to create software
that seamlessly support a variety of use cases from the management and analysis
of local (desktop) data by individual scientists to public data services, where one
can not only download but also interactively analyze and visualize data.

An alternative approach to help remote data access is to provide a good li-
brary to support client-side data analysis and visualization. In geophysical fluid
sciences, it is OPeNDAP [3] that is widely used for such purposes. OPeNDAP
provides remote access to numerical data situated in directory trees. The OPeN-
DAP server is a CGI program and is frequently installed on web servers of
public data centers to allow data access through application programming in-
terfaces (APIs). OPeNDAP has an abstract data model to hide file formats and

Gfdnavi, Web-Based Data and Knowledge Server Software 95

supports subsetting. The two approaches, client-side analyses with OPeNDAP
and server-side analyses with LAS or Gfdnavi, can complement each other.

This paper describes the design and features of Gfdnavi as a stand-alone web
application. The companion paper [4] describes its web services and synergetic
use across multiple Gfdnavi servers. The rest of the paper is organized as follows.
Design principles and decisions made are explained in Section 2. Section 3 intro-
duces Gfdnavi as a stand-alone data server. In Section 4, we argue the usefulness
to support collection of knowledge that users obtained through data analysis,
and we introduce its implementation. Conclusions are drawn in Section 5.

2 Design Rationales

Gfdnavi is designed and implemented to solve the problems stated in the previous
section. In this section we introduce the principles and decisions made when
designing it.

Since it is impossible to predefine all possible scientific data-analysis and visu-
alization functionalities, in order to solve the problem 1 it is necessary to provide
some kind of programmability for clients. We chose to provide programmability
in multiple ways as follows:

1. To support web services.
2. To allow its user to download a subset of data and a script to reproduce

what is conducted on the server. Then, one can further refine the analysis
and/or visualization.

3. To allow its registered users to upload scripts to conduct data analysis and
visualization on the server.

Here, we chose the Ruby programming language as the primary language to
provide programmability, so the second and the third of the programmability
are implemented for this language. Also, we provide a Ruby library to access the
web service as introduced by [4].

The language choice is justified as follows. We earlier developed a Ruby class
library GPhys [5], which represents multi-dimensional numerical data and is used
by a growing number of scientists to conduct geophysical fluid data analysis and
visualization. It supports a variety of data formats and solves the problem 3, so
it is quite suitable for our purposes. By extensively supporting programmability,
we can bridge the gap between public data services and desktop data handling
(the problem 2) in terms of programming.

Our design principle in providing programmability is to unify application
programming interfaces (APIs) irrespective of data location (whether they are
on run-time memory or in locally accessible external files or over network) and
access method (whether through Gfdnavi or other network data services such as
OPeNDAP or local IO calls). Ruby is an object-oriented language suitable for
such unification.

The problem 2 still remains in terms of browser access. That is, one can access
public data servers with a web browser, but he/she cannot use the same browser

96 T. Horinouchi et al.

interface to access local data. The problem can be solved if he/she installs the
same data server software locally. To make it practical, the server software should
be easy to install, manage, and run for scientists, who are often unfamiliar with
web server installation and database management systems. Gfdnavi is designed
as such.

The problem 4 should also be treated. Search among a single Gfdnavi server
is introduced in what follows, and search across multiple Gfdnavi servers is in-
troduced by the companion paper [4].

Last but not least, to tackle the problem 5 is important. Other data servers
only provide access to data and do not have features to collect knowledge ob-
tained through data analysis. We propose to support document creation on data
servers, in which data analysis processes are automatically recorded and saved
with the documents created. As shown in Section 4, a variety of applications
can be made possible by inter-linking scientific data, analysis and visualization
procedures, and the documents. This is a unique feature of Gfdnavi.

3 Overview of Gfdnavi as a Data Server

Gfdnavi is a set of software to build and run a data server. Figure 1 shows
an overview of the system components of Gfdnavi. A user of a Gfdnavi server
accesses it with a web browser or through web service APIs. The server serves
data in local file systems or on remote servers for analysis and visualization. It
also serves metadata, stored in a relational database (RDB), for browsing and
search.

Gfdnavi was developed with the Ruby on Rails application development
framework [6][7], which helps develop web applications that utilize RDBs.

Fig. 1. Overview of the system components of Gfdnavi

Gfdnavi, Web-Based Data and Knowledge Server Software 97

It supports most of major RDB managements systems (RDBMSs). Owing to the
use of the framework, Gfdnavi is equipped with a custom web server program,
which runs on arbitrary communication port with a single command. Therefore,
one can run a Gfdnavi server easily on a PC whenever needed, which makes
it easier to use Gfdnavi personally on a PC than other data-server tools such
as LAS. Gfdnavi can also be operated with commonly used web servers such as
Apache, which is suitable to long-term public data services. Since most scientists
are not familiar with RDBMSs, the installer of Gfdnavi suggests to use SQLite,
a non-daemon type RDBMS, if a desktop configuration is selected, which makes
it easy to use Gfdnavi furthermore.

Basic features of Gfdnavi are available for anonymous users. However, it has
a “login” system in order to allow access limitation and to support features that
are not necessarily safe, such as uploading source codes, or computationally de-
manding. The basic account system is local to each Gfdnavi server, supposing
that the administrators give accounts only to reliable persons. In addition, Gfd-
navi supports OpenID1 for authentication that is available across servers. For
security, OpenID accounts are restricted, so, for example, uploading source codes
is prohibited.

3.1 Scientific Data and Metadata Database

To start up or maintain a data server, Gfdnavi collects metadata from data files
under specified directories in local file systems or on remote OPeNDAP servers
(Fig. 2). Most scientific data formats used in geophysical fluid sciences such as
NetCDF [8] have metadata embedded. In addition, Gfdnavi supports texts files
to supplement metadata. The metadata collected are stored in a RDB along
with the structure of directory trees.

The metadata of numerical data consists of keyword attributes and space-and-
time attributes. A keyword attribute is a combination of a name and a value

Directory tree

group

attributes

Data files Variables

text

Optional text files
to add metadata

param1 = value1
param2 = [val21,val22]
coordinate info
…

Treated as directories
in Gfdnavi (hatched)

text

Image

Fig. 2. A schematic illustration of the directory tree (on local storage or remote OPeN-

DAP servers) to be served by Gfdnavi

1 http://openid.net/

98 T. Horinouchi et al.

Regular lat-lon grid

satellite
track

satellite

Swath grid

Points

Fig. 3. Treatment of a variety of spatial sampling by bounding boxes. Irregular sam-

pling in terms of longitude and latitude are bounded by multiple boxes, as shown by

thick gray lines in the rhs panels.

(or values). A space-and-time attribute is a three-dimensional bounding box in
terms of longitude, latitude, and time. As shown in Fig. 3, this simple strategy
covers a variety of sampling by allowing to have multiple bounding boxes.

Note that Gfdnavi can handle data without georeferencing and/or time di-
mensions. Such data are simply excluded from searches based on space and/or
time, but they can be found by keyword search or in the directory tree. As for
numerical analysis and visualization, any kinds of coordinates are accepted. For
example, spectral data that are functions of frequencies are accepted.

Scientists normally organize data directories hierarchically, so metadata of a
directory are likely to be applicable to its children. Therefore, in order to make
automatically generated metadata practical, we treat metadata to be inherited
downward the tree. This treatment is useful to supplement data files with poor
metadata. Because of this downward inheritance, metadata in Gfdnavi can be sup-
plemented efficiently by placing text files at right levels in the directory hierarchy.

The downward inheritance may not necessarily be adequate. However, a good
ranking and user interface (UI) could allow screening of false match. It is, there-
fore, rather important not to exclude data wanted.

3.2 Browser User Interface

Finding data on a Gfdnavi server using web browser is based on two UIs: a
directory tree viewer and a search window. Figure 4 shows a screen-shot of the
directory tree viewer. With this page, one can browse and select data to analyze
and/or visualize. The tree viewer uses asynchronous communication and caching,
so a huge data tree with numerous files is handled lightly.

Figure 5 shows a screen-shot of the search window. It provides a variety of
searches: free text search, faceted navigation of keyword attribute search, search

Gfdnavi, Web-Based Data and Knowledge Server Software 99

Fig. 4. A screen-shot of the directory-tree viewer. By clicking the the “Anal/Viz”

buttons, variables under the files are put in a “cart”, and the browser is directed to

the visualization/analysis page.

by location and time. Here, multiple queries can be combined. Also, data types
such as numerical data and knowledge documents can be specified.

Numerical data selected in either of the interfaces mentioned above can be
analyzed and visualized in a single UI. Figure 6 shows a screen-shot of the UI.

Fig. 5. A screen-shot of the search window

100 T. Horinouchi et al.

Fig. 6. A screen-shot of the visualization/analysis UI

Windows on the left-hand-side are the UI to specify visualization (“Draw” tab
in the lower left panel) or numerical/statistical analysis (“Analysis” tab). The
upper-left window is a “cart” of selected numerical variables. The middle-left
panel shows dimensions in the variable and is used for subsetting. The lower-left
panel is used to specify various parameters for graphics, including animation.

After visualization, as shown Fig. 7, one can

– download the Ruby script and the minimum subset of data to reproduce the
visualization,

– save the image on the server (login required),

Fig. 7. A pop-up window to navigate user for further operations after visualization

Gfdnavi, Web-Based Data and Knowledge Server Software 101

– get the URL, with which a window to redo the visualization can be obtained,
and

– create a document with figures that consist of visualization results (see
Section 4).

4 Supporting a Knowledge Archiving System in a Data
Server

The cycle of a scientific data analysis of geophysical fluids would typically start
with visualizing and analyzing numerical data, saving graphics obtained, which
is often along with memos, to end by writing a report or paper to publish. It
is meaningful to support the entire cycle with one database application, since
cross referencing would be available for all the entities involved in the cycle.

Our scope is to support personal research memos, technical documentation,
exchange of knowledge and know-hows for interdisciplinary and collaborative
studies, outreach or public relations of data centers (such as to create “What’s
new” pages), and educational materials. We do not aim to support peer-reviewed
electronic journal publication systems within Gfdnavi, but in future supplemen-
tary materials of research papers could include URLs on Gfdnavi.

A knowledge document in Gfdnavi consists of a title, a summary, a text body,
and figures, along with attributes such as category. A figure has not only a
caption and an image file but also the script used to create the image. Therefore,
if one finds a knowledge document on a Gfdnavi server. He or she can follow
links in its figures to reproduce them and further to visualize data with different
conditions or even to make additional analysis. This feature is useful to support
falsifiability, which is important for sciences.

This feature is also useful for collaborative and/or interdisciplinary studies.
For example, one can document an example of data analysis, with which actual
operations may be reproduced. Then its readers can directly follow or extend it.

In order to further support interactions, knowledge documents can take “com-
ments”, which are also knowledge documents. With this feature, collaborators
can make threads of interactions, where each of the comments can have dynamic
links to data.

The knowledge documentation system of Gfdnavi brings a new depth to out-
reach and education. Many data centers have “what’s new” pages or educational
materials, in which scientific outcomes are documented for broad readers. By us-
ing the knowledge documentation system of Gfdnavi, such a documents can have
figures that are linked to the data used and are dynamically reproducible. The
readers can follow links from the figures to further explore scientific data by
themselves.

The knowledge documents annotate numerical data. If scientists work with
Gfdnavi and stores what they find as knowledge documents, the numerical data
used are annotated with text and visual information. Therefore, it can be re-
garded as a system to collect high-level metadata from scientists. For example,
one may leave a document on a specific typhoon found in year 2009 using an

102 T. Horinouchi et al.

⇒

⇒

Fig. 8. Demonstration of knowledge document creation from visualization results. By

clicking the rounded rectangle below at the bottom of the visualization window (upper-

left panel), the user is lead to a document input form (lower-left panel), in which the

images on the visualization window are set to figures by default. The lower panel shows

the document created.

image made from a global rainfall dataset based on satellite-borne microwave
radiometers. Since the image is saved with visualization parameters, it automat-
ically has space-time information on the typhoon. In other words, saving the

Gfdnavi, Web-Based Data and Knowledge Server Software 103

document annotates the rainfall data with text, image, and space-time infor-
mation on the typhoon. The annotation enriches the metadata of the dataset
significantly, since the original metadata of microwave rainfall data may not even
have the word “typhoon”. In terms of data search, one may find the microwave
radiometer data useful to visualize typhoons because of this document. This is
useful especially for those whose specialty is not the atmospheric sciences.

Figure 8 demonstrates how a knowledge document can be created from visu-
alization results. By clicking a button on the visualization window (upper-left
panel), the user is lead to a document input form including the visualization
results as default figures (lower-left panel). By using the form, visualization
procedures are recorded automatically. The procedures to reproduce the visu-
alization from the original data are recorded automatically, and the document
created have links to them (bottom panel).

The documents made with Gfdnavi can be browsed and searched in many
ways. They are covered by the search UI introduced in Section 3. In addition,
Gfdnavi has a window specialized for document browsing and search.

5 Conclusions

In this paper, we presented the problems that the web-browser-based data servers
for geophysical fluid sciences have, and we introduced our software Gfdnavi to
solve them. The gap between network data services and desktop data handling
can be solved by extensively supporting programmability and by making the
server software easy to install, manage, and run. A unique feature of Gfdnavi is
to support writing and archival of documents based on knowledge that its users
obtained through data analysis. It has a wide variety of applications such as
accumulation of knowledge, interdisciplinary- and collaborative-study support,
a realization of falsifiability, and creation of dynamic documents for outreach
and education.

Acknowledgments. This study was supported by the MEXT grant-in-aid “Cy-
ber infrastructure for the information-explosion era” A01-14 (19024039,
21013002). We thank Masato Shiotani, Masaki Ishiwatari, Masatsugu Odaka,
and Tomohiro Taniguchi for supporting and promoting this work. We thank
Takuji Kubota, Kazuki Joe, Yumi Yanagitaira, Asami Sato, Mai Saito, Eriko
Touma, Toshitaka Tsuda, Yasuhiro Morikawa, Youhei Sasaki, Eriko Nishimoto,
and Mariko Horikawa for their contributions and comments.

References

1. Hankin, S., Callahan, J., Sirott, J.: The Live Access Server and DODS: Web visu-

alization and data fusion for distributed holdings (2001),

http://ferret.wrc.noaa.gov/Ferret/LAS/LASoverview.html

2. Horinouchi, T., Nishizawa, S., Watanabe, C., collaborators.: Gfdnavi homepage,

http://www.gfd-dennou.org/arch/davis/gfdnavi/

http://ferret.wrc.noaa.gov/Ferret/LAS/LASoverview.html
http://www.gfd-dennou.org/arch/davis/gfdnavi/

104 T. Horinouchi et al.

3. Cornillon, P., Gallagher, J., Sgouros, T.: OPeNDAP: Accessing data in a distributed,

heterogeneous environment. Data Science Journal 2, 164–174 (2003)

4. Nishizawa, S., Horinouchi, T., Watanabe, C., Isamoto, Y., Tomobayashi, A.,

Otsuka, S., GFD Dennou Club: Gfdnavi, Web-based Data and Knowledge Server

Software for Geophysical Fluid Sciences, Part II: Web services. In: Yoshikawa, M., et

al. (eds.) DASFAA 2010. LNCS, vol. 6193, pp. 105–116. Springer, Heidelberg (2010)

5. Horinouchi, T., Mizuta, R., Nishizawa, S., Tsukahara, D., Takehiro, S.:

GPhys – a multi-purpose class to handle gridded physical quantities (2003),

http://ruby.gfd-dennou.org/products/gphys/

6. Hansson, D.H., et al.: Ruby on Rails, http://www.rubyonrails.org/

7. Thomas, D., Hansson, D.H.: Agile Web Development with Rails, The Pragmatic

Programmers LLC, USA (2005)

8. Rew, R., Davis, G.: NetCDF – An interface for scientific-data access. IEEE Com-

puter Graphics and Applications 10(4), 76–82 (1990)

http://ruby.gfd-dennou.org/products/gphys/
http://www.rubyonrails.org/

Gfdnavi, Web-Based Data and Knowledge

Server Software for Geophysical Fluid Sciences,
Part II: RESTful Web Services and

Object-Oriented Programming Interface

Seiya Nishizawa1, Takeshi Horinouchi2, Chiemi Watanabe3, Yuka Isamoto3,
Akinori Tomobayashi4, Shigenori Otsuka5, and GFD Dennou Club

1 Department of Earth and Planetary Sciences, Kobe University,

1-1 Rokohdai-cho Nada-ku Kobe, Hyogo 657-8501, Japan
2 Faculty of Environmental Earth Science, Hokkaido University
3 Department of Information Sciences, Ochanomizu University

4 Shoganji
5 Department of Geophysics, Kyoto University

Abstract. In recent years, increasing amounts of scientific data on geo-

physical and environmental fluids, e.g., in the atmosphere and oceans,

are being available. Further, there is increasing demand for web-based

data services. Several browser-based data servers, on which geophysical-

fluid data can be analyzed and visualized, have been developed. However,

they are suitable only for initial “quick-looks” and not for subsequent re-

search processes. As a solution, we developed data server software named

Gfdnavi. One of its important features is that it provides extensive sup-

port for programming (scripting). With Gfdnavi, users can easily switch

between operations using a web browser and operations using scripts or

command lines. This paper describes its network features: web services,

which is an important part of Gfdnavi’s programmability, and the func-

tionality to search across multiple Gfdnavi servers. To develop the web

services, we adopted the REST architecture. We also developed a client

library to ensure access to web services in the programming language

Ruby. Using this library, data can be analyzed and visualized on either

the server side or client side. It also enables data handling on multiple

servers. Search across multiple web servers is made possible by a simple

peer-to-peer network with a central server, with the peer-to-peer com-

munication based on web services.

1 Introduction

In recent years increasing amounts of scientific data on geophysical and environ-
mental fluids, e.g., in the atmosphere and oceans, are being available. Many data
centers and research organizations or groups are now providing data through the
Internet, and some are also providing on-line visualization capabilities.

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 105–116, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

106 S. Nishizawa et al.

As stated in the companion paper [1] (hereafter referred to as “Part I”), the
following problems are encountered by existing web-based data servers during
browser-based access employed in geophysical fluid sciences:

1. The visualization capability of existing web-based data servers is limited, be-
cause of which only initial “quick-looks” are possible; the resultant diagrams
would not be of sufficiently high quality suitable for publication.

2. The features of the servers are not available once the data files are down-
loaded. Therefore, the data need to be analyzed and visualized indepen-
dently. In such a case, even the opening of files could be difficult, because a
number of binary data formats are used in these sciences.

3. Most of the browser-based advanced data servers support only georeferencing
data, despite the fact that non-georeferencing data are also important and
frequently required for conducting researches.

4. The search capability of these servers is often limited. Furthermore, it is
difficult to search for data across networks, except for documents that are
available via Internet search engines.

5. Interdisciplinary and/or collaborative studies would require communication
among researchers for the purpose of exchanging know-hows, results, and so
on; however, to the best of the authors’ knowledge, none of the existing data
servers for geophysical fluid sciences support such communication.

To solve all these problems, we have developed web-based data and knowledge
server software for application in geophysical fluid sciences, termed Gfdnavi [2].
The basic features of Gfdnavi are described in Part I. Part II of this paper
deals mainly with the solution to problems 1 and 4 by the use of the developed
Gfdnavi. It is, however, also useful for solving problem 2.

In order to ensure the usefulness of data servers in all stages of scientific
studies, it is necessary to provide programmability to clients. A browser-based
graphical user interface (GUI) would be useful in initial trial-and-error stages;
however, it would not necessarily be productive in the later stages, in which
repetition is frequently required; instead, programming would be effective for
such repetition. Therefore, the support of a smooth transition between GUI
operations and programming by a data server would be a useful feature.

In order to improve the practical applicability of Gfdnavi, we have included
in it multiple ways of programmability; as a result, it can be used to

1. support web services
2. allow the user to download a subset of data and a script for reproducing the

action that he or she performed on the server with the GUI
3. allow a registered user to upload scripts to carry out his/her original data

analysis and visualization on the server

The web services (item 1 in the above list) are described in the present paper,
whereas the other two items have been described in Part I.

We have not only included support for web services in Gfdnavi but also pro-
vided a client library for accessing the web services in the object-oriented pro-
gramming (hereafter referred to as “OOP”) language Ruby [3]. As will be shown

Gfdnavi, Web-Based Data and Knowledge Server Software 107

subsequently, because of the library, the programmability associated with Gfd-
navi is unified irrespective of the data location (e.g., on the run-time memory,
in locally accessible external files, or over the Internet) and access method (e.g.,
through Gfdnavi, other network data services, or local input-output calls). This
unification is the basis for achieving a smooth transition between GUI operations
and programming.

Researchers in the field of geophysical fluid sciences frequently combine data
from multiple sources for conducting research. It is, therefore, important to sup-
port the combining by realizing search and analysis across multiple data servers.
However, existing browser-based data servers have limited capability in this re-
spect. In particular, searching across networks (hereafter referred to as “cross
search”) is rather important, since researchers must first know what kinds of
data are available for the task at hand and also the location of the data.

It would be ideal to conduct a search over a variety of heterogeneous data
servers. Our scope, however, is limited to a search among Gfdnavi servers. Such
a limited search would still be useful if Gfdnavi is used extensively. A typical use
case that we aim to cover is as follows: Suppose that a researcher conducts a study
using data obtained by his/her own observations or numerical simulations or
those of his/her research group. In many cases, the researcher would additionally
use external data such as satellite observations, which may be stored locally or
available only on servers of data centers. In such a case, a search should be
conducted across data on both local and remote servers.

In this paper, we present the design and implementation of two network fea-
tures of Gfdnavi: web services and cross search. The rest of this paper is organized
as follows. In Sect. 2, we present the design of Gfdnavi web services. Then, we
describe the implementations of the web services in Sect. 3, a client library in
Sect. 4, and functionality of use of multiple servers in Sect. 5. Finally, we present
the conclusions and discussions in Sect. 6.

2 Design of Gfdnavi Web Services

2.1 Motivating Scenario

We show an example use case of Gfdnavi web services in research in the field of
geophysical fluid sciences. Suppose that a researcher in the field having performed
several numerical simulations of the future climate with different scenarios for
future emission of carbon dioxide wants to compare these results. At first, he or
she analyze and visualize result data of one simulation run out of the simulations
with the GUI of Gfdnavi web applications, in order to figure out characteristics
of spatial pattern of temperature. After that, he or she would want to apply the
same analysis and visualization to result data of the other runs. Carrying out
them with programming would be more efficient than that with GUI. A Ruby
script reproducing the action performed with the GUI can be downloaded; e.g.,
Fig. 1. Methods in the script send an HTTP request to Uniform Resource Locator
(hereafter referred to as “URL”) of Gfdnavi web services, which is as shown in

108 S. Nishizawa et al.

1: require "numru/gfdnavi data"

2: include NumRu
3: t = GfdnaviData.parse("http://example.com/data/T.exp01.nc/T")

4: t mean = t.analysis("mean","longitude")

5: tone = t mean.plot("tone")

6: png = tone.to png

Fig. 1. Example of Ruby script reproducing the action with the GUI on Gfdnavi web

applications

line 3: /data/T.exp01.nc/T.yml

line 4: /data/T.exp01.nc/T/analysis(mean;longitude).yml

line 5: /data/T.exp01.nc/T/analysis(mean;longitude)/plot(tone).yml

line 6: /data/T.exp01.nc/T/analysis(mean;longitude)/plot(tone).png

Fig. 2. URL paths of HTTP requests yielded by methods in the Ruby script in Fig. 1.

The number at left side of each line represents line number in the script.

Fig. 2. He or she modifies the script to perform the analysis and visualization
with data of all the runs; e.g., Fig. 3.

Further, he or she would want to compare the results with those of simulations
performed by other researchers. Using the cross search feature of Gfdnavi, he or
she could find other simulation data than his/hers. Then the same analysis and
visualization can be applied to these data, and comparison of those results can
be performed.

2.2 Web Services and Client Library

We developed web services of Gfdnavi for ensuring programmability and a client
library for programming irrespective of the data location and access method. We
designed the web services such that they can be used from programs, particularly
from the client library, and designed the client library such that it behaves in a
manner similar to a library for data analysis and visualization at the local level.

RESTful Web Services. Several technologies for developing web services are
available, two of the popular ones being REST [4] and SOAP [5]. REST is based
on resource-oriented architecture. It uses a uniform interface, i.e., an HTTP
method. RESTful web services are stateless because of the use of HTTP methods.
SOAP is a protocol for remote procedure call (RPC). Web services based on
SOAP could be either stateful or stateless.

We decided to develop Gfdnavi web services with REST, the most important
reason for this being that REST is based on resource-oriented architecture, which
has similarities with OOP, and as a result, it would be easy to develop the Ruby
client library having access to RESTful web services.

Gfdnavi, Web-Based Data and Knowledge Server Software 109

1: require "numru/gfdnavi data"

2: include NumRu
3: NRUNS = 10 # number of runs
4: pngs = Array.new

5: for n in 0...NRUNS # loop for all the runs

6: crun = sprintf("%02d", n+1) #=> "01", "02", ...

7: t = GfdnaviData.parse("http://example.com/data/T.exp"+crun+".nc/T")

8: t mean = t.analysis("mean","longitude")

9: tone = t mean.plot("tone")

10: pngs[n] = tone.to png

11: end

Fig. 3. Example of Ruby script modified for repetition from the script in Fig. 1

Statelessness is an important feature of RESTful web servers. A stateless sys-
tem is advantageous over a stateful system in some ways. For example, scaling
out a stateless system is easy. Scalability of Gfdnavi is important, because its
operations such as analysis and visualization could require large computing re-
sources such as CPU usage time and memory space. Further, testing of a stateless
system is easier than that of a stateful system.

However, making Gfdnavi web services RESTful is somewhat difficult because
of certain problems. One problem is how to define URL of dynamic resources,
which are generated dynamically as result of operations such as analysis and
visualization. In this study, we defined URLs such that they have correspon-
dence with OOP. In OOP, dynamic objects generated from a static object are
represented in the form a_static_object.method1[.method2[....]] with a
method chain. In a similar manner, the URL path of the dynamic resources is
defined as follows: /a_static_resource/method1[/method2[/...]] The path
of dynamic resources generated from multiple static resources is also defined on
the basis of the correspondence of the URLs with OOP.

Another problem is dealing with temporary data in sequential programming.
A program is usually a set of sequential operations. Results of operations are
set to temporal variables and used later. In stateless web services, temporary
resources are usually not used, though they are used to represent transactions
in some systems. For simplicity, we decided not to use temporary resources in
Gfdnavi. This could result in unnecessary duplicate executions. For example, an
operation applied to a result of other operations could result in repeated exe-
cutions of all those other operations. To prevent such duplication, we introduce
delayed execution and cache mechanisms.

Ruby Client Library. Many researchers in the field of geophysical fluid sci-
ences use Ruby and a Ruby class library GPhys [6], which represents multi-
dimensional numerical data and supports a variety of data formats, for data
analysis and visualization at the local level. We developed a client library of
Gfdnavi web services using Ruby in order to enable users to analyze and visu-
alize data on Gfdnavi servers in a manner similar to programming with GPhys.

110 S. Nishizawa et al.

Using the library, users can carry out data analysis and visualization on either
the server side or the client side and select either side for execution, on the basis
of efficiency or other factors.

2.3 Use of Multiple Servers

For researchers in the abovementioned field, who often work with several kinds
of data, network capability is an important requirement, as explained in Sect.
1. Gfdnavi provides the features of cross search and analysis/visualization with
multiple data provided by different Gfdnavi servers. The web services is used in
Gfdnavi web applications, in order to access remote resources of other Gfdnavi
servers.

Cross Search. In the case of use of multiple servers for data analysis and
visualization, the location of resources is specified by users. For cross search,
however, users would want to search data on not only known servers but also
unknown servers.

The following are some of the candidates for implementing cross search. One
is a client-server model, which is a central server having all the information of all
the data on servers forming a network for cross search; all the search requests are
sent to the central server. Another is a pure peer-to-peer (P2P) network model,
which contains all the information shared in the network. Yet another candidate
is a hybrid P2P model, which is a server list managed by a central server; in this
model, search requests are sent to each peer.

Generally, the pure P2P model has the advantage of scalability over the client-
server model and does not require a high-performance central server. However,
the development of the pure P2P model tends to be difficult. We decided that
at least for the time being, the hybrid P2P model is suitable for Gfdnavi.

3 Implementation of Gfdnavi Web Services

In this section, we present the implementation of Gfdnavi web services.
There are two types of resources in Gfdnavi web services: static and dynamic.

A static resource represents column data in database tables, such as data in
files and knowledge data. These data are organized as a directory tree structure,
and each data set is called a node. A dynamic resource represents results of
operations such as search, analysis, or visualization.

3.1 URL Syntax

Each resource of Gfdnavi web services has at least one URL, which con-
sists of prefix for Gfdnavi web service, resource path, extension, and parame-
ters: http://{host}:{port}/.../{resource_path}.{extension}?{params},
where “var” is a variable name and is substituted to the value of the vari-
able. “Extension” specifies the media type for representing the response for a
requested resource (Table 1).

http://{host}:{port}/.../{resource_path}.{extension}?{params}
var
Extension

Gfdnavi, Web-Based Data and Knowledge Server Software 111

Table 1. Extensions for URL of Gfdnavi web service

extension media type

html text/html (HTML)

xml text/xml (XML)

yml text/x-yaml (YAML [7])

nc application/x-netcdf (NetCDF [8])

png image/png (PNG)

knlge text/x-yaml (YAML for Gfdnavi knowledge data)

gphys application/octet stream (GPhys marshaled binary)

“Params” are parameters for representation, and they can be omitted along
with the leading question mark. “Resource_path” is an appropriately encoded
resource path, which is the identifier of a resource in the Gfdnavi web services;
here, the encoding is done by percent-encoding [9].

3.2 Resource Path

The path of a static resource is simply its node path in the directory tree.
The path of a dynamic resource is /{orig_resource}/{operation}, where
“orig_resource” is the resource path of original data and “operation” is the
operation to be performed.

Currently, three types of operations are performed:
search, analysis, and visualization. The search operation is
find({all_or_first};{queries};{params}). If all_or_first is “all”,
all the search results are returned, whereas if it is “first”, only the first result
is returned. “Queries” are search queries joined with an ampersand. Available
queries are shown in Table 2. “Params” represents search parameters other
than the queries joined with a comma. The currently available parameters
are offset={offset} and limit={limit} to specify offset and number of
search results to be returned, respectively. Results for searching are sorted by
descending order, a parameter to specify the order will be available.

The currently available parameters for analysis and visualization are
analysis({method};{arguments}) and plot({method};{arguments}), re-
spectively. Here, “method” is the node path of analysis functions or visualization
methods, such as /usr/{user_name}/functions/{method_name} for analysis
functions and /usr/{user_name}/draw_methods/{method_name} for visualiza-
tion methods. The methods can be written as {method_name},{user_name}.
User_name and the leading comma can be omitted when user_name is root.
Methods whose user_name is root are provided by a server administrator and
available to all the users in the server, while other methods are added by users.

The original resource could be either a dynamic resource or a static data
resource. The resource path for the result of multiple operations is written as
a method chain in OOP, such as object.method1.method2..... The resource
path is written as /{orig_resource}/{operation1}/{operation2}/....

Params
Resource_path
/{orig_resource}/{operation}
orig_resource
operation
operation
find({all_or_first};{queries};{params})
all_or_first
all
first
Queries
Params
offset={offset}
limit={limit}
analysis({method};{arguments})
plot({method};{arguments})
method
/usr/{user_name}/functions/{method_name}
/usr/{user_name}/draw_methods/{method_name}
{method_name},{user_name}
User_name
user_name
root
user_name
root
/{orig_resource}/{operation1}/{operation2}/...

112 S. Nishizawa et al.

Table 2. Query types for search

search type query syntax

keyword search kw.{attribution_name}={attribution_value}

free keyword search fw={keyword}

data type search datatype={datatype}

node path search path={path}

spatial search sp.overlap=[{slon},{slat},{elon},{elat}]

time search tm=[{start},{end}]

An array of resources is also a resource, and its path is
[{resource1},{resource2},...]. Though every operation can take only
one original data resource, the array resource can be used for operations that
require multiple data, e.g., [{resource1},{resource2}]/{operation}. Fur-
ther, every operation returns an array resource, and [{indexes}] is available
to specific required elements of the array. “Indexes” denotes an index number
of arrays, beginning from 0 or a list of the index joined with a comma; e.g.,
/{resource}/{operation}[0,2] represents an array resource that consists of
the first and third elements of an array result.

4 GfdnaviData

We have developed a Ruby class library, named GfdnaviData, as a web ser-
vice client. GfdnaviData class is a class whose instance object corresponds to a
resource of Gfdnavi web services.

Figure 1 shows an example of Ruby script for server-side analysis with
GfdnaviData; it yields four HTTP requests shown in Fig. 2. Methods #find,
#analysis, and #plot correspond to /find(), /analysis(), and /plot() in
the resource path, respectively, where the leading “#” in the method name in-
dicates that the method is an instance method. These methods send an HTTP
request to an appropriate URL whose extension is “yml”, which requires a result
in the YAML format. The reason why the result is in the YAML format and
not the XML format is that the YAML format is simpler and easier to handle
in Ruby. The instance method #to_{type} acquire a resource in the specified
format corresponding to “type” by setting the extension of the URL; #to_html
(html), #to_xml (xml), #to_nc (nc), #to_knlge (knlge), #to_gphys (gphys),
and #to_png (png).

Some methods having similarity to GPhys are provided in GfdnaviData. Naive
execution of four arithmetic operations with GfdnaviData is slightly complex.
For example, to add objects dataA and dataB, we must write

GfdnaviData[dataA,dataB].analysis("addition"),

where the GfdnaviData[] class method creates an object corresponding to an
array resource. Methods #+, #-, #*, and #/ are added for convenience and for

[{resource1},{resource2},...]
[{resource1},{resource2}]/{operation}
[{indexes}]
Indexes
/{resource}/{operation}[0,2]
/find()
/analysis()
/plot()

Gfdnavi, Web-Based Data and Knowledge Server Software 113

ensuring similarity with GPhys, and then, we can write “dataA + dataB” for
the above example.

Basic authorization is used for access control in the Web services. Adding
your user name and password to GfdnaviData.parse as its arguments, or using
#user and #password methods, you can specify your user name and password,
respectively. You might not want to embedding password into a script for secu-
rity reason. GfdnaviData ask your password to you interactively, if you has not
specified your password.

4.1 Delayed Execution and Caching

The generation of dynamic resources in Gfdnavi web services, such as analyzed
and visualized resources, could cause serious performance problems. The method
chain of OOP requires a return object for every method call, which could result
in repetition.

Then, in the example shown in Fig. 1, averaging could be executed three times
at the last three method calls. In order to prevent such repetition, we introduced
delayed execution and caching in Gfdnavi. Operations such as search, analysis,
and visualization are not executed, and only resource information is returned
for HTTP requests, except for those requests that really require result data.
Such a request requiring result data has the following extensions: html and xml
for search, nc and gphys for analysis, and png for visualization. The #find,
#analysis, and #plot methods acquire information about only resources in the
YAML format. Consequently, in the case of the above example, averaging is
executed only once at the last HTTP request, which requires PNG image data,
and results in the execution of both averaging and plotting.

As mentioned above, we also included a caching system in Gfdnavi. Analyzed
binary data and drawn image data are cached in the memory or storage and used
for later requests for the same data. Their lifetime depends on the frequency of
use and time required for generating the data.

5 Use of Multiple Servers

We have provided the network capability of use of multiple servers in Gfdnavi.
Gfdnavi web services are used internally in Gfdnavi web applications, and Gfd-
naviData is used in Gfdnavi web services for obtaining remote resources from
other Gfdnavi servers.

A request for a resource with a URL of the Gfdnavi web services is converted
into a GfdnaviData class instance. This instance would send requests to other
Gfdnavi servers for remote resources, which implies that Gfdnavi servers could
serve as a web service client during cross-server use (Fig. 4). The flowchart of
this process is as follows:

1. The GfdnaviData class instance in a client constructs a URL and sends an
HTTP request to the server identified by the URL.

html
xml
nc
gphys
png

114 S. Nishizawa et al.

2. In the server, the web service controller creates a GfdnaviData class instance
corresponding to the requested resource.

3. If required, the instance repeats the process in step 1 as a web service client.
4. The instance executes necessary operations using local data and the results

obtained in step 3.
5. The instance returns an object of the requested resource to the controller.
6. On the basis of the returned object, the controller returns a representation

of the requested resource to the requesting instance.
7. This instance in the client creates another GfdnaviData class instance or data

object such as a binary or image data object, depending on the response.

Fig. 4. Structure of web applications and web services provided by Gfdnavi

5.1 Cross Search

Cross search enables users to search for data on all Gfdnavi servers forming a net-
work for cross search, even if theusersknowonlyone serveroutof them.Cross search
has been developed in the Gfdnavi web application using the Gfdnavi web services.

To enable cross search, we have to activate a central server that contains a
list of Gfdnavi servers forming a network for cross search. Each Gfdnavi server
makes a request to the central server and receives the server list.

Figure 5 shows a screen shot of the cross search page in the Gfdnavi web
application. For performing cross search, users select target servers on which
search is to be performed.

The flowchart of the cross search is as follows:

1. A user accesses the search page of a Gfdnavi server, specifies search condi-
tions, and selects those servers from the list that he or she wants to include
as search targets.

2. The user can also add other servers that are not in the list to the targets.
3. The search request is sent to the Gfdnavi server.
4. The server executes search for its own data.

Gfdnavi, Web-Based Data and Knowledge Server Software 115

Fig. 5. Screen shot of cross search page in Gfdnavi web application

5. The server sends the request to the servers specified as search targets via
the web services.

6. Then, it collects results from all the specified servers.
7. Finally, it returns the result to the user.

6 Concluding Remarks

In this paper, we have presented the development of the network capability of
Gfdnavi. The Gfdnavi web services are developed on the REST architecture. A
Ruby client library, termed GfdnaviData, is also developed in order to enable
researchers in the field of geophysical fluid sciences to carry out data analysis
and visualization on either the server side or the client side and to handle data
on multiple servers. A cross search feature across multiple Gfdnavi servers is
realized by using a simple peer-to-peer network with a central server, where the
peer-to-peer communication is based on the Gfdnavi web services.

It should be noted that we could not control the reliability and quality of re-
mote data in the cross search. However, it is obvious that in a scientific research,
the reliability and quality of data used in analysis are vital. In a conventional
way of research, researchers in the field of geophysical fluid sciences directly
download data from a known generator or distributor. They usually know the
nature and quality of the data that they are working with. In contrast, by using
the cross search feature, researchers can acquire unknown data. The data may
be of varied quality levels or could be incomplete. In the future, we need to find
a way to determine the quality and reliability of data and convey the same to
users. At the very least, traceability information of data, such as their generator
and distributor, should be made available to users.

116 S. Nishizawa et al.

Acknowledgments

We appreciate three anonymous reviewers for their helpful comments. This study
was supported by Grant-in-Aid for Scientific Research on Priority Areas “Cyber
Infrastructure for the Information-Explosion Era” A01-14 (19024039, 21013002)
by the MEXT. We thank Yoshi-Yuki Hayashi, Masato Shiotani, Masaki Ishi-
watari, Masatsugu Odaka, and Tomohiro Taniguchi for supporting and promot-
ing this work. We also thank Tsuyoshi Koshiro, Yasuhiro Morikawa, Youhei
Sasaki, and Eriko Nishimoto for their valuable contributions and comments.

References

1. Horinouchi, T., Nishizawa, S., Watanabe, C., Tomobayashi, A., Osuka, S., Koshiro,

T., GFD Dennou Club: Gfdnavi, Web-based Data and Knowledge Server Software

for Geophysical Fluid Sciences, Part I: Rationales, Stand-alone Features, and Sup-

porting Knowledge Documentation Linked to Data. In: Yoshikawa, M., et al. (eds.)

DASFAA 2010. LNCS, vol. 6193, pp. 93–104. Springer, Heidelberg (2010)

2. Gfdnavi, http://www.gfd-dennou.org/arch/davis/gfdnavi/

3. Ruby, http://www.ruby-lang.org/

4. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Ar-

chitectures. Doctoral dissertation, University of California, Irvine (2000)

5. SOAP, http://www.w3.org/TR/soap/

6. Horinouchi, T., Mizuta, R., Nishizawa, S., Tsukahara, D., Takehiro, S.: GPhys

- A Multi-purpose Class to Handle Gridded Physical Quantities (2003),

http://ruby.gfd-dennou.org/products/gphys/

7. YAML, http://www.yaml.org

8. Rew, R., Davis, G.: NetCDF – An interface for Scientific-data Access. IEEE Com-

puter Graphics and Applications 10(4), 76–82 (1990)

9. RFC3986, http://tools.ietf.org/html/rfc3986

http://www.gfd-dennou.org/arch/davis/gfdnavi/
http://www.ruby-lang.org/
http://www.w3.org/TR/soap/
http://ruby.gfd-dennou.org/products/gphys/
http://www.yaml.org
http://tools.ietf.org/html/rfc3986

MCIS2010

Workshop Organizers’ Message

Shazia Sadiq1, Xiaochun Yang2, Xiaofang Zhou1, and Ke Deng1

1 The University of Queensland, Australia
2 Northeastern University, China

In today’s global information sharing environments, poor data quality is known
to compromise the credibility and efficiency of commercial as well as public
endeavours. Several developments from industry as well as academia have con-
tributed significantly towards addressing the problem. These typically include
analysts and practitioners who have contributed to the design of strategies and
methodologies for data governance; solution architects including software ven-
dors who have contributed towards appropriate system architectures that pro-
mote data integration; and data experts who have contributed to data qual-
ity problems such as duplicate detection, identification of outliers, consistency
checking and many more through the use of computational techniques. The at-
tainment of true data quality lies at the convergence of the three aspects, namely
organizational, architectural and computational. At the same time, importance
of managing data quality has increased manifold, as the diversity of sources,
formats and volume of data grows.

The MCIS workshop provided a forum to bring together diverse researchers
and make a consolidated contribution to new and extended methods to address
the challenges of data quality in a collaborative settings. Topics covered by the
workshop include data integration, linkage; consistency checking, data profiling
and measurement; methods for data transformation, reconciliation, consolida-
tion; etc. Following the success of MCIS2008 in New Delhi, India and MCIS2009
in Brisbane, Australia, the 3rd MCIS was held on April 4, 2010 at the Univer-
sity of Tsukuba, Japan in conjunction with the 15th International Conference
on Database Systems for Advanced Applications (DASFAAf10). In this year,
MCIS workshop attracted eight submissions from Australia, China, Greece, and
Italy. All submissions were peer reviewed by at least three program committee
members to ensure that high quality papers are selected. On the basis of techni-
cal merit, originality, significance, and relevance to the workshop, the program
committee decided on four papers to be included in the workshop proceedings
(acceptance rate 50%).

The workshop program committee consisted of 12 experienced researchers
and experts in the area of data analysis and management. We would like to
acknowledge the valuable contribution of all the PC members during the peer
review process. Also, we would like to show our gratitude to the DASFAA 2010
workshop chairs for their great support in ensuring the success of MCIS2010.

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, p. 117, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 118–129, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Checking Structural Integrity for Metadata Repository
Systems by Means of Description Logics

Xiaofei Zhao1 and Zhiqiu Huang2

1 Department of Computer Science and Technology
Nanjing University of Information Science and Technology

210044 Nanjing, China
zxf-first@nuaa.edu.cn

2 Department of Computer Science and Engineering
Nanjing University of Aeronautics and Astronautics

210016 Nanjing, China
zqhuang@nuaa.edu.cn

Abstract. The organization of the metadata in repository systems exhibits a
complex structure which is layered, multi-level and dynamically adaptable; it is
insufficiently specified in existing repository system standard how to ensure
structural integrity, the above two reasons lead to the violation of structural in-
tegrity frequently during the creation of the metadata structure based on Meta
Object Facility(MOF), thus affect the stability of repository systems. However,
structural integrity checking for repository systems based on MOF is difficult
because MOF is rendered to users by graphs, which lack precise semantics. In
this paper, we try to solve this problem by means of Description Logics (DLs).
The approach is based on a particular formal logic of the family of Description
Logics. We make a study of how to formalize the different levels of MOF archi-
tecture into the DL knowledge base and how to check inconsistencies automati-
cally using query and reasoning mechanism provided by the Description Logic.
We perform performance evaluation for structural integrity checking prototypi-
cal system implemented in terms of the approach, the results are encouraging.

1 Introduction

The organization of the metadata in repository systems[1](metadata structure) exhibits
a complex structure which is layered, multi-level and dynamically adaptable, so pre-
serving the consistency of the systems is a major challenge. Consistency in repository
systems has several aspects: (1) operational consistency: deals with the interaction
between repository applications and is closely related to the notion of repository
transactions. There are two sub-aspects: concurrent multi-client access; and coopera-
tive atomicity; (2) metadata integrity: comprises the notions of well-formedness and
structural integrity. Well-formedness ensures the syntactical correctness of the model
definitions within a meta-layer. Structural integrity guarantees the conformance of
objects on one level to type definitions on the adjacent higher meta-level[1].

Structural integrity is the most important aspect of repository systems consistency.
Without structural integrity, repository applications might create or modify metadata

 Checking Structural Integrity for Metadata Repository Systems 119

elements on Mn-1 inconsistent with respect to their meta-classes on Mn. For example,
an application may read the value of an attribute of an object whose meta-object does
not exist and is therefore invalid. A database system contains layers M0 through M2,
where M2 is immutable. To provide a custom-defined and extensible system catalogue
repository systems utilize an additional layer. Therefore the layer M3 is introduced
allowing for custom-defined M2, repository systems allow for dynamic modification
of M2, M1 and M0 at run time. This however entails the specific problem of consis-
tency between adjacent layers, i.e. the problem of structural integrity. Other systems
do not face this kind of issues because they assume that the catalogue is static at run
time.

As a well-accepted and widely applied repository system standard from Object
Management Group(OMG), Meta Object Facility(MOF)[2] provides several mecha-
nisms for controlling metadata integrity. Firstly, MOF defines a set of MOF Model
constraints. Secondly, MOF defines a set of closure rules and computational seman-
tics for the abstract mapping, and JMI defines computational semantics for the Java
mapping. Thirdly, MOF provides the MOF constraint model element for expressing
domain rules. Last but not least, MOF (and JMI) defines a set of repository interfaces.
However all of the above contribute to well-formedness, but not structural integrity,
i.e. propagation of changes to underlying layers when instances exist. This also leads
to the violation of structural integrity frequently during the creation of the metadata
structure, thus affect the stability of repository systems.

Aiming at this situation, in this paper, we study how to check structural integrity
for repository systems based on MOF. Because MOF is rendered to users by graphs,
which lack formal semantics, we believe that structural integrity checking has to
based on a powerful underlying formalism. We try to check structural integrity by
means of logic. Description Logics(DLs)[3], which are subsets of First-Order Logic,
provide powerful description ability and equipped with reasoning engines such as
LOOM[4], RACER[5], Fact[6], etc. which can perform various reasoning tasks, be-
come our first choice.

First, in order to fully represent MOF architecture, according to the specialities of
MOF architecture, we propose a DL which supports identification constraints on
concepts, then we make a study of how to formalize the different levels of MOF ar-
chitecture by means of the DL, next, we study how to check structural integrity using
query and reasoning mechanism provided by the DL, finally, we discuss performance
evaluation for the prototypical structural integrity checking system implemented by
our approach and conclude the paper.

2 Related Work

The idea of supporting consistency across different meta-levels is not repository sys-
tem specific - it emanates from the field of computational reflection[7] and Meta
Object Protocols[8]. Metadata integrity is a key characteristic of reflective sys-
tems[12] supporting different Meta Object Protocols: OpenC++[9], MPC++[10],
SOM[11]. A number of languages contain built-in reflective facilities supporting
MOP with high levels of intercession: SmallTalk [14], CLOS, Schema etc. All of the
above MOPs support intercession, which is the kind of reflection most relevant in the

120 X. Zhao and Z. Huang

context of metadata integrity. However, in the field of repository systems, how to
ensure structural integrity is still not well solved due to the particularity of the sys-
tems, also the concept of structural integrity is insufficiently specified in current MOF
specification. Bernstein et al.[1] and Ilia et al.[13] elaborate conditions ensuring struc-
tural integrity for repository systems, they classify the structural integrity inconsisten-
cies and present strategies to resolve them. Logic and theorem proving have been
proposed by several authors for expressing software models and the derivation of
inconsistencies from these models resp., e.g., [15][16][17], the logics they use are all
not Description Logics. Compared with their approaches, the advantages of our ap-
proach is that reasoning problems in Description Logics are decidable, and a lot of
work has investigated DLs wrt their expressive power and computational complexity.
Diego et al. [19] introduce DLR, an expressive Description Logic with n-ary relations,
for specifying and reasoning on a great variety of data models, including the
relational, the entity-relational, and the object-oriented model. In [20], they further
analyse the internal mechanism of DLR and discuss the decidability problems and
computational complexity of reasoning in DLR. In addition, Simmonds [18] proposes
the approach to deal with inconsistencies between UML class, statechart and se-
quence diagrams by means of Description Logics. Franz et al. [21] survey the related
researches on the relationship between expressive power and computational complex-
ity of reasoning of Description Logics.

3 The Description Logic DLid

The basic elements of Description Logics are concepts and relations, which describe
the types of objects and the relations between them in a domain, respectively. Com-
plex concepts and complex relations can be formed from atomic concepts and atomic
relations by constructors. The set of allowed constructors characterizes the expressive
power of a Description Logic. Various Description Logics have been considered by
the DL community. According to the specialities of MOF architecture, in this paper
we propose a DL which supports identification constraints on concepts, here called
DLid. The DLid offers highly expressive power for structuring mechanisms of MOF
architecture and is equipped with decidable reasoning procedures, thus provides the
description and reasoning of MOF architecture a rigorous formal and reasoning
framework. The DLid can be seen as a fragment of the Description Logic DLR pre-
sented in [20] by Diego et al.. The basic elements of DLid are concepts(unary rela-
tions) and roles(binary relations). Atomic concepts and atomic roles are denoted by A
and P, respectively. Arbitrary concepts, denoted by C, and arbitrary roles, denoted by
R, are built according to the following syntax:

R::= ⊤2 | P | (i/2:C) | ¬R | R1⊓R2

C::= ⊤1 | A | ¬C | C1⊓C2 | (≤k[i]R)

where i denotes the i-th component of role R, it can be 1 or 2; k denotes a non-
negative integer; (i/2:C) denotes that the i-th concept associated with role R is concept

C, sometimes we abbreviate (i/2:C) with (i:C); ≤k[i]R is the multiplicity constraint on
the participation to role R of the i-th component of R. We consider only concepts and

 Checking Structural Integrity for Metadata Repository Systems 121

roles that are well-typed, which means that i≤2 whenever i denotes a component of a
role R.

A DLid knowledge base (KB) is constituted by the Tbox and the Abox. The Tbox is
the set of axioms describing domain structure and contains inclusion assertions of

type R1⊑R2, C1⊑C2. Besides inclusion assertions, DLid KBs allow for assertions ex-
pressing identification constraints.

An identification assertion on a concept has the form:

(id C [i1]R1, … , [ih]Rh)

where C is a concept, each Rj is a role, and each ij denotes one component of Rj. Intui-
tively, such an assertion states that if two instances of concept C both participate to Rj
as the ij-th component, then they coincide.

The Abox in DLid is the set of axioms describing instances, it is constituted by con-
cept assertions stating whether an object belongs to a certain concept and role asser-
tions stating whether two objects satisfy a certain relation.

The semantics of DLid is specified through the notion of interpretation. An inter-

pretation I = (△I, •I) of a DLid KB K is constituted by an interpretation domain △I

and an interpretation function •I that assigns to each concept C a subset CI of △I and

to each role R a subset RI of (△I)2. More semantics are shown in table 1:

Table 1. Semantic rules for DLid

⊤2
I⊆ (△I)2 ⊤1

I = △I

P I ⊆⊤2
I A I ⊆△I

(i/2:C) I ={t∈⊤2
I | t[i] ∈C I } (¬C) I = △I \C I

(¬R) I = ⊤2
I \R I (C1⊓C2)

 I = C1
I∩C2

I

(R1⊓R2)
 I = R1

I∩R2
I (≤k[i]R) I={a∈△I | #{t∈R1

I | t[i]=a}≤k}

To specify the semantics of a KB we have the following definitions:

(i) An interpretation I satisfies an inclusion assertion R1⊑R2 (resp. C1⊑C2) if R1
I⊆R2

I

(resp. C1
I⊆C2

I).
(ii) An interpretation I satisfies the assertion (id C [i1]R1, … , [ih]Rh) if for all a,

b∈CI and for all t1,s1∈R1
I, …, th ,sh∈Rh

I we have that:

a=t1[i1]=…=th[ih],
b=s1[i1]=…=sh[ih], implies a=b

tj[i]=sj[i],j∈{1,…,h},i≠ij

An interpretation that satisfies all assertions in a KB K is called a model of K.
Several reasoning services are applicable to DLid KBs. The most important ones

are KB satisfiability and logical implication. A KB K is satisfiable if there exists a
model of K. A concept C is satisfiable in a KB K if there is a model I of K such that

CI is nonempty. A concept C1 is subsumed by a concept C2 in a KB K if C1
I⊆C2

I for

122 X. Zhao and Z. Huang

every model I of K. An assertion a is logically implied by K if all models of K
satisfy a.

Reasoning in the basic DL ALC[3] is EXPTIME-complete, on the other hand, DLid
can be mapped to a fragment of the Description Logic DLR[20] in which reasoning is
also EXPTIME-complete, hence reasoning in DLid is decidable, and is EXPTIME-
complete.

4 Formalization of Different Levels in Repository System

In MOF architecture, the relationship between elements on two adjacent levels is the
type-instance relationship, so we translate the elements on meta-levels Mn+1(n=0 or 1)
into the Tbox and the elements on levels Mn which are the instances into the Abox. In
detail, in the case of n=1, we formalize level M2 and M1 into the Tbox and the Abox,
respectively, and the consistency checked is the consistency between level M2 and M1;
in the case of n=0, we formalize level M1 and M0 into the Tbox and the Abox, respec-
tively, and the consistency checked is the consistency between level M1 and M0. To be
precise and brief, the following formalization is described in DLid expressions.

4.1 Formalization of Meta-levels Mn+1

(1) Metaclasses
In the meta-level, a metaclass is also a class, so in the following we don’t distinguish
metaclass and class. A metaclass is graphically rendered as a rectangle divided into two
parts, as shown for example in Figure 1. The first part contains the name of the meta-
class; the second part contains the attributes of the metaclass, each denoted by a name
and with an associated class, which indicates the domain of the attribute values. For
example, the attribute namespace: Namespace of metaclass ModelElement means that
each namespace is an instance of Namespace. Each “/” indicates that the type of the
attribute is the metaclass already included in the meta-level, i.e., the metaclass that the
attribute belongs to is associated with the metaclass that is the type of the attribute.

Fig. 1. Representation of a metaclass in level Mn+1

A metaclass is represented by a DLid concept. This follows naturally from the fact
that both metaclasses and DLid concepts denote sets of objects.

An attribute a of type C＇for a class C associates to each instance of C, zero, one,
or more instances of a class C＇, so we think of an attribute a of type C＇for a class
C as a binary relation between instances of C and instances of C＇. We capture such

 Checking Structural Integrity for Metadata Repository Systems 123

a binary relation by means of a role a of DLid. To specify the type of the attribute we
use the assertion:

C ⊑ ∀[1] (a ⇒(2 : C＇))

Such an assertion specifies precisely that, for each instance c of the concept C, all
objects related to c by a, are instances of C＇. It also indicates that an attribute name
is not necessarily unique in the whole meta-level, and hence two different metaclasses
could have the same attribute, possibly of different types. Note that although the at-
tributes after “/” denote associations between C and C＇, the formalization of such
attributes is necessary, because one attribute of C may has several corresponding
associations between C and C＇, if we only formalize the corresponding associations,
the name of the attribute may be lost.

(2) Aggregation Associations
An aggregation association in the meta-level, graphically rendered as in Figure 2
(attributes are ignored), is a binary relation between the instances of two metaclasses,
denoting a part-whole relationship. For example, the aggregation association between
metaclass Classifier and Feature specifies that each instance of Classifier is made up
of a set of instances of Feature. Observe that in MOF architecture, names of aggrega-
tion associations (as names of metaclasses) are unique. In other words, there can’t be
two aggregation associations with the same name.

Fig. 2. Aggregation association in level Mn+1

The general form of the formalization of aggregation association is that if instances
of the metaclass C1 have components that are instances of metaclass C2 by aggrega-
tion association A, the multiplicity on C1 is m1..m2, the multiplicity on C2 is n1..n2,
then A is formalized in DLid by means of a role A, and the following assertions are
added to the Tbox:

A ⊑(1 : C1)⊓(2 : C2)

C1 ⊑(≥n1[1]A)⊓(≤n2[1]A)

C2 ⊑(≥m1[2]A)⊓(≤m2[2]A)

The second assertion specifies that for each instance of C1, there can be at least n1 and
at most n2 instances of C2 related to it by role A. Note that the distinction between the
contained metaclass and the containing metaclass isn’t lost. Indeed, we simply use the
following convention: the first argument of the role is the containing class. So the
aggregation association shown in Figure 2 is formalized by means of the assertions
(the multiplicities 0..* on Feature and 0 on Classifier are omitted):

A ⊑(1 : Classifier)⊓(2 : Feature)

Feature ⊑(≤1[2]A)

124 X. Zhao and Z. Huang

Role names are not formalized, such as the role name owner of Classifier, because if we
want to keep track of them in the formalization, it suffices to consider them as conven-
ient abbreviations for the components of the DLid role modeling the aggregation.

(3) Ordinary Associations
In MOF architecture, each ordinary association has a corresponding association class.
To capture the information of an ordinary association, we formalize each ordinary
association into a DLid concept and two roles.

Fig. 3. Ordinary association in level Mn+1

For example, we represent an ordinary association shown in Figure 3 by introduc-
ing a concept A and two roles r1, r2, one for each component of the ordinary associa-
tion A. Each role has A as its first component and concept ModelElement or Stereo-
type as its second component. Then we enforce the following assertion:

A ⊑ ∃[1] r1⊓ ∀[1] (r1⇒(2 : ModelElement))⊓

∃[1] r2⊓(≤1[1] r2)⊓ ∀[1] (r2⇒(2 : Stereotype))

Note that the presentation of r1 and r2 is different from that in aggregation association
because the names of DLid roles (which correspond to the components of an ordinary
association) are unique wrt the ordinary association only, not the entire meta-level.

∃[1] ri(i∈{1,2})specifies that the concept A must have all components r1, r2 of the

ordinary association A; ≤1[1] r2 specifies that the corresponding component is single-

valued; ∀[1] (r1⇒(2 : ModelElement))specifies that the second component of r1 has
to belong to ModelElement. Finally we use the assertion:

(id A [1]r1，[1]r2)

to specify that each instance of the concept A indeed represents a distinct tuple of the
corresponding association. By imposing suitable number restrictions on r1 and r2, we
can easily represent a multiplicity on an ordinary association. Differently from aggre-
gation association, the names of DLid roles (which correspond to the components of
an ordinary association) may be not unique wrt the entire meta-level, so the assertions
which represent the multiplicities of an ordinary association are slightly different from
those of an aggregation association. The multiplicities shown in Figure 3 are captured
as follows:

ModelElement ⊑(≥0 [2] (r1⊓(1 : A)))⊓(≤1 [2] (r1⊓(1 : A)))

 Checking Structural Integrity for Metadata Repository Systems 125

(4) Generalization and Inheritance
In MOF architecture, one can use generalization between a parent class and a child
class to specify that each instance of the child class is also an instance of the parent
class. Hence the instances of the child class inherit the prosperities of the parent class,
but typically they satisfy additional properties that do not hold for the parent class.

Generalization is naturally supported in DLid. In MOF architecture, the metaclass
Element generalizes ModelElement, we can express this by the DLid assertion: Mod-

elElement ⊑ Element.
Inheritance between DLid concepts works exactly as inheritance between meta-

classes. This is an obvious consequence of the semantics of “⊑” which is based on

subsetting. Indeed, in DLid, given an assertion C1⊑C2, every tuple in a role having C2

as i-th argument type may have as i-th component an instance of C1, which is in fact
also an instance of C2. As a consequence, in the formalization, each attribute of C2,
and each aggregation association and each ordinary association involving C2 are cor-
rectly inherited by C1. Observe that the formalization in DLid also captures directly
multiple inheritance between metaclasses.

(5) Constraints
In MOF architecture, there are constraints expressed in the Object Constraint Lan-
guage(OCL). These OCL constraints are used to express in an informal way informa-
tion which can not be expressed by other constructs of model. Some constraints can
be captured in DLid, and reasoning about them is decidable. For example, the OCL
constraint in level M2: An Interface can only contain Operations, can be captured by:

Interface ⊑ ∀Classifier-Feature . Operation

The other OCL constraints are essentially full first order logic formulas, hence they
would make reasoning undecidable, so we don’t consider these OCL constraints.

4.2 Formalization of Levels Mn

Each element in level Mn is an instance of the corresponding metaclass in level Mn+1,
each relation between elements is the instance of the corresponding association be-
tween metaclasses, so the elements in level Mn should be formalized into the Abox in
DLid knowledge base. General forms are as follows:

(1) if element c in level Mn is the instance of metaclass C in meta-level, then we
have:

c : C or C(c)

(2) if element c1 in level Mn aggregates c2, the corresponding metaclsss C1 (its ances-
tor) aggregates C2 (its ancestor) by aggregation association A, aggregation association
A is translated as role A in the Tbox, then we have:

< c1 , c2> : A

(3) if element c1 in level Mn is related to c2 by non-aggregation, the corresponding
metaclass C1 (its ancestor) is related to C2 (its ancestor) by an ordinary association

126 X. Zhao and Z. Huang

which is translated as concept A and roles r1, r2, then the relation between c1 and c2
can be captured by three assertions:

a : A < a , c1> : r1 < a , c2> : r2

5 Structural Integrity Checking

After the construction of DLid knowledge base, the query and reasoning mechanism of
the reasoning tool will allow the query and reasoning on the levels in repository system
so that various inconsistencies can be detected. After a study of each reasoning tool, we
choose LOOM which has a very expressive concept definition language and a powerful
query and retrieval mechanism. The query facility and production rules of LOOM can
be used to detect inconsistencies. Although the classification algorithm of LOOM is
incomplete[4], it is complete on the knowledge base we introduce. The following is an
illustration in which LOOM is used to detect the violation of structural integrity.

Structural integrity constraint specifies that when the type of an attribute in the
meta-level is changed, if the primitive type is the metaclass which is already included
in the meta-level and the new attribute type is not a super-class of the old one, then
the change should be propagated to underlying layers, otherwise inconsistency will
arise[1]. The inconsistency can be detected by the following function(assume that the
type of the attribute referencedTableType which belongs to the metaclass Column is
changed from SQLStructuredType(which is shown in Figure 4) to SQLSimpleType,
but not the super-class of SQLStructuredType, e.g. SQLDataType):

Fig. 4. An example for structural integrity inconsistency

(defun AttributeTypeCheck (referencedTableType)
... //the part omitted queries the Tbox, detects
metaclass Column which is the owner of
referencedTableType and metaclass SQLSimpleType which
is the type of referencedTableType and the
instances ?column of Column.
(let* ((?count1 (length (retrieve (?sqldatatype)
(:and
(referencedTableType ?column ?sqldatatype)))))
(?count2 (length (retrieve (?sqldatatype)
(:and
(referencedTableType ?column ?sqldatatype)
(SQLSimpleType ?sqldatatype))))))
(if (> ?count1 ?count2)
(format t "Attribute type conflict: some fillers don't
belong to the type ~S." referencedTableType))))

 Checking Structural Integrity for Metadata Repository Systems 127

Given the metaattribute, the function queries the Tbox to obtain the metaclass which
is the type of the attribute, and then queries the Abox, if there are fillers which are not of
the type of the attribute, structural integrity is violated and the user is notified.

The next example is about the change of the multiplicity. Structural integrity con-
straint specifies that the change of the multiplicity of an attribute or an association end
in the meta-level should be propagated to underlying layers, otherwise the number of
corresponding instances in underlying layers may be inconsistent with the modified
multiplicity. Assume that the multiplicity on metaclass AssociationEnd which is re-
lated with metaclass Association by a association is changed from 1 to 2, while the
instances in underlying layers are not changed, we can apply the following function to
detect the inconsistency:

(defun MultiplicityCheck (?association)
... //the part omitted queries the knowledge base,
detects Association which is the corresponding
metaclass of ?association and Association aggregates
AssociationEnd by aggregation association Association-
AssociationEnd.
(let* ((?count1 (length (retrieve (?associationEnd)
(:and
(Association-AssociationEnd
?association ?associationEnd)))))
(?count2 (get-role-min-cardinality (get-concept
'Association)(get-relation 'Association-AssociationEnd
))))
(if (< ?count1 ?count2)
(format t "Multiplicity conflict: ~S is associated with
~S elements, at least ~S is needed." ?association
?count1 ?count2))))

Given the metadata element, the function queries the Tbox to obtain the bottom
limit of the multiplicity range of the association related to the element imposed by the
meta-level, and then compares it with the result that is obtained by querying the
Abox, if the constraint is violated, the information about the inconsistency will be
printed.

6 Performance Evaluation

In this section we briefly discuss the performance of structural integrity checking
prototypical system implemented in terms of the above approach. We performed
extensive tests to prove experimentally the validity of the proposed approach. The
tests covered fully every case in structural integrity constraints: inconsistencies about
changes of the generalization hierarchies; inconsistencies about the creation, deletion
and modification of classes; inconsistencies about changes of the multiplicities of
attributes and association ends; inconsistencies about the creation and deletion of
packages; inconsistencies about changes of references, etc. The experimental results
showed that the proposed approach can detect these inconsistencies accurately.

The performance tests were performed on a Pentium 4, 1.7GHz computer with 512
MB RAM. All measured times are in milliseconds.

128 X. Zhao and Z. Huang

Fig. 5. Evaluation for time performance

Figure 5 shows the time performance of structural integrity checking system when
the size of M2, M1 and M0 models are changed. Figure 5(a) depicts the time perform-
ance in the case of a small M2 model with 6 classes (total of 9 elements), while varying
the number of corresponding M1 and M0 models instances and checking for consistency.
Figure 5(b) depicts the time performance in the case of larger M2 model and larger cor-
responding M1 and M0 models. An approximately linear dependency between the time
performance of the prototypical system and the size of checked models can be seen, as it
may be expected. The test results also show that the prototypical system exhibits ac-
ceptable time performance, on the average, on the small set of data.

7 Conclusion

In this paper, we propose an approach to check structural integrity for MOF-based
repository systems. Using a particular formal logic of the family of Description Lo-
gics, this approach can provide support for the development of repository systems, so
as to improve the reliability and the stability of repository systems. We have imple-
mented a prototypical system in terms of the approach, the elementary performance
evaluation results are encouraging.

References

1. Bernstein, P., Dayal, U.: An overview of repository technology. In: 24th International Con-
ference on Very Large Databases, pp. 705–713. Morgan Kaufmann, San Francisco (1998)

2. Object Management Group: Meta Object Facility Specification Version 2.0 (2006)
3. Franz, B., Diego, C., Deborah, M., Daniele, N., Peter, F.P.: The description logic hand-

book: Theory, implementation, and applications, 2nd edn. Cambridge University Press,
Cambridge (2007)

4. University of Southern California. Loom Knowledge Representation System 4.0 (2004)
5. Haarslev, V., Moller, R., Wessel, M.: RacerPro User’s Guide Version 2.0 (2009)
6. Horrocks, I.: FaCT and iFaCT. In: International Workshop on Description Logics (DL

1999), pp. 133–135 (1999)

 Checking Structural Integrity for Metadata Repository Systems 129

7. Albertini, B., Rigo, S., Araujo, G., Araujo, C., Barros, E., Azevedo, W.: A computational
reflection mechanism to support platform debugging in SystemC. In: 5th IEEE/ACM in-
ternational conference on Hardware/software codesign and system synthesis
(CODES+ISSS 2007), pp. 81–86. ACM Press, New York (2007)

8. Eisenberg, A.D., Kiczales, G.: A simple edit-time metaobject protocol: controlling the dis-
play of metadata in programs. In: 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications (OOPSLA 2006), pp. 696–697. ACM
Press, New York (2006)

9. Pirkelbauer, P., Solodkyy, Y., Stroustrup, B.: Open Multi-methods for C++. In: 6th
International Conference on Generative Programming and Component Engineering,
pp. 123–134. ACM Press, New York (2007)

10. Ishikawa, Y., Hori, A., Sato, M., Matsuda, M., Nolte, J., Tezuka, H., Konaka, H., Maeda,
M., Kubota, K.: Design and Implementation of Metalevel Architecture in C++, MPC++
Approach. In: 1996 International Conference on Reflection, pp. 141–154 (1996)

11. Bingham, E., Kuusisto, J., Lagus, K.: ICA and SOM in text document analysis. In: 25th
annual international ACM SIGIR conference on Research and development in information
retrieval (SIGIR 2002), pp. 361–362. ACM Press, New York (2002)

12. Coulson, G., Blair, G., Grace, P.: On the performance of reflective systems software. In:
2004 IEEE International Conference on Performance, Computing, and Communications,
pp. 763–769. IEEE Press, New York (2004)

13. Petrov, I., Jablonski, S., Holze, M., Nemes, G., Schneider, M.: iRM: An OMG MOF Based
Repository System with Querying Capabilities. In: Atzeni, P., Chu, W., Lu, H., Zhou, S.,
Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 850–851. Springer, Heidelberg (2004)

14. Black, A.P., Schärli, N., Ducasse, S.: Applying traits to the smalltalk collection classes. In:
18th annual ACM SIGPLAN conference on Object-oriented programing, systems, lan-
guages, and applications (OOPSLA 2003), pp. 47–64. ACM Press, New York (2003)

15. Liau, C.-J.: A modal logic framework for multi-agent belief fusion. J. ACM Transactions
on Computational Logic (TOCL) 6(1), 124–174 (2005)

16. Halpern, J.Y., Weissman, V.: Using First-Order Logic to Reason about Policies. J. ACM
Transactions on Information and System Security (TISSEC) 11(4) (2008)

17. Emmerich, W., Finkelstein, A., Antonelli, S., Armitage, S., Stevens, R.: Managing stan-
dards compliance. J. IEEE Transactions on Software Engineering 25(6), 836–851 (1999)

18. Simmonds, J.: Consistency maintenance of uml models with description logic. Master’s
thesis, Vrije Universiteit Brussel, Brussel (2003)

19. Calvanese, D., De Giacomo, G., Lenzerini, M.: Identification constraints and functional
dependencies in description logics. In: 17th International Joint Conference on Artificial In-
telligence (IJCAI 2001) (2001)

20. Calvanese, D., De Giacomo, G.: Expressive description logics. In: The Description Logic
Handbook: Theory, Implementation and Applications, pp. 178–218. Cambridge University
Press, Cambridge (2003)

21. Baader, F., Lutz, C.: Description Logic. In: The Handbook of Modal Logic, pp. 757–820.
Elsevier, Amsterdam (2006)

On Memory and I/O Efficient Duplication Detection for
Multiple Self-clean Data Sources

Ji Zhang1, Yanfeng Shu2, and Hua Wang1

1 Department of Mathematics and Computing,
The University of Southern Queensland, Australia
{Ji.Zhang,Hua.Wang}@usq.edu.au

2 CSIRO ICT Centre, Hobart, Australia
Yanfeng.Shu@csiro.au

Abstract. In this paper, we propose efficient algorithms for duplicate detection
from multiple data sources that are themselves duplicate-free. When developing
these algorithms, we take the full consideration of various possible cases given
the workload of data sources to be cleaned and the available memory. These al-
gorithms are memory and I/O efficient, being able to reduce the number of pair-
wise record comparison and minimize the total page access cost involved in the
cleaning process. Experimental evaluation demonstrates that the algorithms we
propose are efficient and are able to achieve better performance than SNM and
random access methods.

1 Introduction

Data cleaning is of crucial importance for many industries over a wide variety of ap-
plications [5]. Aiming to detect the duplicate or approximately duplicate records that
refer to the same real-life entity, duplicate record elimination is a very important data
cleaning task attempting to make the database more concrete and achieve higher data
quality. There are two major branches of research efforts in duplicate detection, with
one mainly focusing on the efficiency issue of duplicate detection through developing
high-level duplication detection frameworks, and the other on its effectiveness through
studying more accurate record similarity measurements.

In terms of high-level duplication detection frameworks, the Sorted Neighborhood
Method (SNM) [7] is among the first proposed to speed up the duplicate detection
process by only examining neighboring records for a specific record. It involves three
major steps: create key, sort data, and merge records. First, a key is computed for each
record in the database by extracting relevant fields or portions of fields for discrim-
inating records. Then all the records are sorted by the chosen key, and finally in the
step of record merging, a window of fixed size is moved through the sequential order
of records, limiting the record comparison to be carried out only within the window.
SNM only compares a newly entered record with all the records in the window. The
first record in the window will slide out upon the entry of a new record into the win-
dow. SNM serves as the basis of many existing duplicate detection methods. Among
the variants of SNM are Duplicate Elimination SNM (DE-SNM) [6], Multi-pass-SNM
[6], Clustering-SNM [7], SNM-IN/OUT [12] and RAR [14]. In DE-SNM, the records

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 130–142, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Memory and I/O Efficient Duplication Detection 131

are first divided into a duplicate list and non-duplicate list. The SNM algorithm is then
performed on the duplicated list to produce the lists of matched and unmatched records.
The list of unmatched records is merged with the original non-duplicate list using SNM
again. Multi-pass-SNM uses several different keys to sort the records and perform SNM
algorithm several times, rather than only one pass of SNM based on a single key. Gen-
erally, combination of the results of several passes over the database with small window
sizes will be better than the result of the single pass over the database. Clustering-based
SNM clusters records into a few clusters and the record comparison/merging process
is performed independently for every cluster using SNM. SNM-IN/OUT and RAR use
several properties based on the lower and upper bounds of the Longest Common Sub-
sequence (LCS) Similarity and TI-Similarity, to save record comparisons without im-
pairing accuracy under the framework of SNM.

Instead of using a fixed window in scanning the sorted databases, the Priority Queue
method [10] clusters the records and uses the structure of priority queue to store records
belonging to the last few clusters already detected. The database is sequentially scanned
and each record is tested as whether it belongs to one of the clusters residing in the pri-
ority queue. The information-theoretic metric and clustering technique have also been
used to identify groups of similar tuples, which will be considered duplicates [2].

In addition to the above window-based and clustering-based methods, an on-the-
fly detection scheme for detecting duplicates when joining multiple tables [8]. This
method, however, is not directly applicable for detecting duplicates in a single table
where no join operations will be involved. A fuzzy task-driven duplicate match method
is proposed to detect duplicates for online data [1][4]. Technique for detecting duplicate
objects in XML documents is also proposed [16]. Zhang et al. proposed a partition-
based duplicate detection method without using the sliding window or clusters [17].

The effectiveness of duplicate detection is typically addressed by using various met-
rics to measure the similarity of records. So far, there have been two broad classes of
similarity metrics applied in measuring similarity of records: domain-dependent and
domain-independent metrics. As for the domain-dependent metrics, an approach that
uses an equational theory consisting of a set of rules to decide whether two records
are duplicates is adopted [9]. This set of rules typically involves human knowledge
and therefore are highly application-dependent. The major disadvantages of domain-
dependent metrics are: (i) the rules can only decide whether two records are duplicate
or not, and cannot reflect the degree to which the two records are similar to each other;
(ii) the creation of such rules is time-consuming and must be updated to allow for the
data updates; and (iii) the rule-based comparison is normally slow and cannot well
scale up for large databases. The domain-independent measures, such as Edit Distance,
LCS-Similarity and TI-Similarity, are used to measure the similarity of two fields of
records by considering each field of the records as an alphanumeric string [10], [11],
[13]. N-Gram is used to measure record similarity in [15]. These metrics are domain-
independent since they can be applied in a wide range of applications without any ma-
jor modifications. The adaptive combination of different domain-independent metrics
is also studied using machine learning technique in order to achieve a higher level of
accuracy than using each of them alone [3].

132 J. Zhang, Y. Shu, and H. Wang

This paper falls into the first research direction, i.e., investigating ways to improve the
efficiency of duplicate detection. However, unlike existing methods that primarily focus
on detecting duplicates from a single data source that can be fully loaded into memory,
we study the case where data comes from multiple sources and duplicate detection
needs to take into account memory constraints.

In this research, we assume that all the workloads are collected and processed in
a single physical location. The transferring of data in this collection process is out of
the scope of this paper. In addition, each data source are assumed to be self clean,
meaning that each of them does not contain any records that are duplicated from others
in the same source. This assumption is reasonable as it is pretty easy to apply whatever
duplication methods that are appropriate to conduct cleaning for each data source before
they are transfered to the same physical site for further cleaning. Each data sources is
called a cleaning workload in the reminder of this paper.

As the technical contributions of this paper, we propose a number of duplicate detec-
tion algorithms for multiple self-clean data sources under memory constraint. These al-
gorithms are memory and I/O efficient. They are able to reduce the number of pair-wise
record comparison and minimize the total page access cost involved in the cleaning pro-
cess. Experimental evaluation demonstrates that the algorithms we propose are efficient
and are able to achieve better performance than SNM and random access methods.

Roadmap. The reminder of this paper is organized as follows. In section 2, we will
present our duplicate detection algorithms for multiple self-clean data sources. We re-
port the experimental results in Section 3. Section 4 concludes the whole paper.

2 Our Duplication Detection Algorithms

In this section, we will discuss in details the duplicate detection algorithms we propose
for multiple self-clean data sources under memory constraint. Specifically, three pos-
sible cases will be explored and the corresponding memory or I/O efficient algorithms
will be developed.

1. Case 1: All the workloads can be accommodated in the memory, that is,∑n
i=1 |CWi| ≤M . This also implicitly indicates that ∀i, |CWi| ≤M ;

2. Case 2: Not a single pair of workloads can be entirely accommodated in the mem-
ory, that is, ∀i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ n, i �= j, we have |CWi|+ |CWj | ≥M ;

3. Case 3: The cases other than case 1 and 2, that is, ∃i, j, |CWi|+ |CWj | < M and
∃k,

∑k
i=1 |CWi| > M .

Note that there is another possible case that not a single workload can be accommodated
in the memory. However, from the prospective of duplication detection where we need
to have pair-wise evaluation between workloads, there is no difference between this
case and Case 2. In other words, this case has been inexplicitly encompassed in Case 2.

The algorithm we propose for Case 1 is an in-memory algorithm as all the data
sources can be fully loaded into the memory. However, the algorithms for Case 2 and
Case 3 have to be external memory ones as the memory is not sufficiently large to hold
all the data sources simultaneously.

On Memory and I/O Efficient Duplication Detection 133

2.1 In-Memory Duplication Detection Algorithm

We first discuss the in-memory duplication detection algorithm for Case 1. Since pair-
wise evaluation needs to be conducted for all the memory-resident workloads, thus
it suffice to only discuss the duplication of two memory-resident cleaning workloads
for Case 1. Let denote by m and n the number of records of two cleaning workloads
CW1 and CW2 that will be performed and we have |CW1| = m and |CW2| = n,
where |CWi| denotes the number of records in cleaning workload CWi. Intra-workload
cleaning work is unnecessary since each cleaning workload itself is clean (We have
assumed that each cleaning workload has undergone cleaning locally and the records
in each of the workloads are already sorted). Hence, the duplication detection only
involves inter-workload cleaning that aims to detect duplicate records across different
cleaning workloads. Two straightforward methods can be applied to detect duplicates
from these two workloads:

A. Pairwise Comparison
In the pairwise comparison method, each record in CW1 will be compared with each
record in CW2. Obviously, the complexity of the pairwise comparison method is
O(m ∗ n).
B. Sorted Neighborhood Method (SNM) Variant
We can also adopt the standard SNM method with some modifications for cleaning the
two workloads. The two general steps of this SNM variant are as follows:

1. Sort the merged workload CW = CW1 ∪ CW2;
2. Apply SNM on CW .

At the first glance, this variant of SNM is identical to the standard SNM method, how-
ever, there are a few important differences between them, as elaborated below.

– First, in the sorting step, the SNM variant does not have to re-sort the whole work-
load CW from scratch. Instead, it can take advantage of the fact that CW1 and
CW2 are pre-sorted and thus it is able to sort CW more quickly. This is because (i)
for two records r1 and r2 in CW1, if r2 comes after r1 based on the sorting order in
CW1, then it is definitely that r2 comes after r1 based on the sorting order in CW ;
(ii) find the appropriate position in CW2 for a certain record in CW1 is efficient
since CW2 has been sorted, and vice versa;

– Second, when the window used in SNM slides through CW in the second step,
comparison is only performed among the records that are both in the current active
window and come from different workloads.

In light of the above discussions, we can see that this SNM variant is more efficient
than the standard SNM method. But the question still remains that whether this SNM
variant is more efficient than the pairwise comparison method which is more easily im-
plementable. To answer this question, we will discuss in details their respective compu-
tational complexity to get insight on how to select the more efficient record comparison
method between them.

134 J. Zhang, Y. Shu, and H. Wang

Now, let us analyze the complexity of each step in the SNM variant as follows:

1. In the sorting step, we can either insert the m records in CW1 into the n records
in CW2 or insert the n records in CW2 into the m records in CW1 in order to
sort the merged workload CW . Since the records in both workloads are sorted,
the worst-case complexities of the first and second strategies are O(m ∗ logn) and
O(n ∗ logm), respectively. Hence, the complexity of this step is O(m ∗ logn) if
m < n or O(n ∗ logm) otherwise;

2. In the comparison step, we identify two extreme cases to study the complexity: (i)
the records of the two workloads involved are uniformly distributed in the merged
workload CW , and (ii) the records of the two workloads involved are highly skewed
in the merged workload CW , i.e., the records of one workload are all located at the
beginning of CW while the records of another workload are all located at the end
of CW . Given the window size ω is normally small in practice, thus it is safe to
assume that m >> ω and n >> ω in our analysis.

In the first case discussed above, the number of records with which each of m records
in CW1 have to compare is in the order of O(ω ∗ n

m+n) , where ω denotes the size of
the sliding window used in SNM, and n

m+n denotes the probability that the records in
the current window are from CW2. Likewise, the number of records with which each
of n records in CW2 have to compare is in the order of O(ω ∗ m

m+n). Therefore, the
total computation of this step in this case will be

O(m ∗ ω ∗ n

m + n
+ n ∗ ω ∗ m

m + n
) = O(

mnω

m + n
)

In the second case discussed above, records comparison will be performed only when
the sliding window moves to the position that overlaps the records of the two workloads.
Thus, the number of records comparison need to be performed is equal to (ω − 1) +
(ω− 2)+ . . .+3+2+1 = O(ω2). Therefore, the total computation of this step in this
case will be O(ω2).

Without losing generality, we assume that m > n, then we have

mnω

m + n
>

mnω

2m
=

nω

2
>> ω2

since n >> ω. This also holds when m < n. This analysis indicates that a higher com-
plexity occurs for record comparison when the records of two workloads are uniformly
or near uniformly distributed in the merged workload because, for each record, there
will be a higher number of records need to be compared in the current window. We will
thus use the complexity of this case as the complexity of the second step of the SNM
variant in the sequel.

Combining the complexities of the above two steps, we can obtain the total complex-
ity of this SNM variant as

O(min(m ∗ logn, n ∗ logm) +
mnω

m + n
)

Again, we assume that m > n, the complexity of the SNM variant will become

O(n ∗ logm +
mnω

m + n
)

On Memory and I/O Efficient Duplication Detection 135

Since we have:

n ∗ logm +
mnω

m + n
< m ∗ logm +

1
2
∗ω(m + n) < m ∗ logm + ωm = m(logm + ω)

The complexity of this SNM variant is thus bounded by

O(m(logm + ω))

This analysis is consistent with our preceding claim that our SNM variant is more ef-
ficient than the standard SNM method which has a complexity of O((m + n)log(m +
n)+ω(m+n)), where O((m+n)log(m+n)) is the complexity for sorting the records
in the two workloads and ω(m + n) corresponds to the complexity of scanning all the
records in the two workloads using the sliding window.

Therefore, if n >> logm+ω, then O(mn) >> O(m(logm+ω)), in which case we
should choose the SNM variant method since it features a lower complexity. Otherwise,
we choose the pairwise comparison method.

Since ω is normally small, a more general and approximated selection strategy can
thus be given as: if min(m, n) >> log max(m, n), then we choose the SNM variant
method with a complexity of

O(max(m, n) ∗ (log max(m, n) + ω))

the pairwise comparison method with a complexity of O(m ∗ n) will be picked
otherwise.

2.2 External Memory Duplication Detection Algorithms

In this subsection, we will investigate Case 2 and 3 where not all the cleaning workloads
are able to be loaded simultaneously into the memory. External memory algorithms are
developed for addressing these two cases.

• Algorithm for Case 2
In this case, not a single pair of workloads can be fully loaded into the memory

for processing. Thus, we have to perform workload partitioning in order to re-size the
workloads for memory loading. Here, we classify the workload partitions as the resi-
dent workload partition and the streaming workload partition. The resident workload
partitions are the partitions that reside in the memory as long as possible and the stream-
ing workload partitions are those that are discard from memory when they have been
compared with the current resident workload partition in memory.

Corresponding to the above categorization of workload partitions, we split the mem-
ory available into two parts accordingly: the memory allocated for the resident workload
partitions and the memory allocated for the streaming workload partitions. We denote
by Mr as the size of the memory allocated for resident workload partition, thus the
memory for streaming workload partition is M −Mr, where M is the total memory
available.

Now, let us give a description of the algorithm. In each step, we pick up a cleaning
workload as the resident workload (all its partitions obtained are the resident workload

136 J. Zhang, Y. Shu, and H. Wang

Algorithm Clean Workloads In Case 2
Input: All the n workloads to be cleaned;
Output: The cleaned workloads;
1. WorkloadSet = ∅;
2. FOR i=1 to n DO
3. WorkloadSet = ∪{i};
4. WHILE WorkloadSet
= ∅ DO {
5. Pick workload r as resident workload from Workloadset based on Equation (3);
6. WorkloadSet− = {r};
7. WHILE r has not been fully loaded into memory DO {
8. Load r with a size of Mr into memory;
9. WHILE the streaming workloads have not been fully loaded
10. into memory DO {
11. Load the streaming workloads with a size of M −Mr into memory;
12. Compare the currently loaded resident and streaming workloads;
13. Label duplicates in the current resident and streaming workloads;
14. Discard the loaded streaming workload;
15. }
16. }
17. }
18. Remove duplicates from all the workloads;

Fig. 1. Algorithm to compare two workloads in Case 2

partitions), and all the remaining workloads are the streaming workloads (all its partitions
obtained are the streaming workload partitions). When each resident workload partition
is loaded into the memory, all the streaming workload partitions will sequentially stream
into the memory and compared with the current resident workload partition. The stream-
ing workload partitions are then removed from the memory afterwards. After each step,
the resident workload will be deleted from the set of workloads, and a new resident work-
load will be selected for the next round of comparison. The whole comparison process
is terminated when there are no any workloads that can be potentially picked up as the
resident workloads. The detailed algorithm is presented in Figure 1.

If we model each workload partition as a page, we will be able to analyze the number
of page access in each step of the algorithm. Suppose CWj is the resident workload
selected in a step when there are k− 1 workloads left, with a total workload of W (i.e.,
W = |CW1| + |CW2| + · · · + |CWk|). The number of page access of CWj will be
|CWj |

Mr
, and the number of page access of the streaming workload CWi (1 ≤ i ≤ k and

i �= j) is |CWi|
M−Mr

. Therefore, the total number of page access when CWj is chosen as
the resident workload is

f(CWj) =
|CWj |
Mr

∗(|CW1|
M −Mr

+
|CW2|

M −Mr
+
|CWj−1|
M −Mr

+
|CWj+1|
M −Mr

+. . .+
|CWk|

M −Mr
)

=
|CWj | ∗ (W − |CWj |)

Mr ∗ (M −Mr)
(1)

On Memory and I/O Efficient Duplication Detection 137

Taking the first derivative of f(CWj) w.r.t Mr, we have

∂f(CWj)
∂Mr

=
−|CWj |(W − |CWj |)(M − 2Mr)

M2
r (M −Mr)2

Let ∂f(CWj)
∂Mr

= 0, we can get the optimal Mr, denoted as M∗
r , as

M∗
r =

M

2
(2)

Obviously, M∗
r �= 0 and M∗

r �= M , so it is always guaranteed that ∂f
∂Mr

is meaningful.
By specifying Mr as in Equation (2), we can minimize the function f(CWj). Note
that the optimal size of memory allocated to resident workload partitions (and also to
streaming workload partitions) is independent of CWj , the actual workload we choose
in each step as the resident workload.

Now, the unsolved question is that which workload should be chosen as the resident
workload in each step. In other words, how CWj can be decided in each step. Based on
Equation (1), let us take the first derivative of f(CWj) w.r.t CWj as

∂f(CWj)
∂CWj

=
W − 2|CWj |
Mr(M −Mr)

Let∂f(CWj)
∂CWj

= 0, we can get

|CWj | = W

2
Note that when |CWj | = W

2 , the objective function f(CWj) will reach its maximum.
Therefore, to minimize f(CWj) we need to choose workloads whose sizes are as far
from W

2 as possible. In other words, the optimal value for |CWj |, denoted as |CW ∗
j |,

is specified as

CW ∗
j = argmax(||CWj | − W

2
|) (3)

• Algorithm for Case 3
In the third case where there exists some workload pairs that can be loaded into the
memory but not all the workloads can be loaded into the memory, we will perform the
cleaning in the following five steps:

1. All the workloads are sorted in a descending order by their sizes, that is, in the
sorted order, if CWi come before CWj then |CWi| ≤ |CWj |;

2. Starting from the first workload in the sorting order, we pick as many workloads as
possible whose total size will not exceed the memory limit and load them into the
memory simultaneously. To be more specific, we pick the first l workloads in the
ordered list to load into the memory if

∑l
i=1 |CWi| ≤ M and

∑l+1
i=1 |CWi| > M .

Remove these l workloads from the sorting list;
3. Like Case 1, the in-memory duplication detection algorithm can be employed to

clean all these k workloads. After this is done, all these k workloads are merged to
form a new workload as CW ′ = CW1 ∪ CW2∪, . . . ,∪CWl;

138 J. Zhang, Y. Shu, and H. Wang

4. Repeat Step 2 and 3 until there not long exists a pair of workloads that can be
loaded into the memory simultaneously for cleaning;

5. The algorithm of Case 2 is then used to clean the new set of merged workloads that
are obtained after Step 4.

We present the following lemma to ensure that the condition of case 2 is alway satisfied
after Step 4 of the above algorithm.

Lemma 1. For any pair of merged workloads CW1 and CW2 after Step 4 of the above
algorithm, we have |CW1|+ |CW2| > M .

Proof. By contradiction. We assume that there exist two workloads CW1 and CW2

such that |CW1|+ |CW2| ≤M . |CW1| and |CW2| are two maximal memory-loadable
workloads and are obtained by merging m and n workloads in the sorting list, respec-
tively, i.e.

CW1 = CW11 ∪ CW12∪, . . . ,∪CW1m

CW2 = CW21 ∪ CW22∪, . . . ,∪CW2n

Without losing generality, we assume that CW1 come before CW2 in the sorting
list. Let CW1 m+1, CW1 m+2, . . . , CW1 m+n be the n consecutive workloads after
CW1 in the sorting list. Thus, ∀i, 1 ≤ i ≤ n, |CW1 m+i| ≤ |CW2i|. Therefore,∑n

i=1 |CW1 m+i| ≤
∑n

i=1 |CW2i|, that is,
∑n

i=1 |CW1 m+i| ≤ |CW2|. Because
|CW1|+ |CW2| ≤ M (by assumption), thus |CW1|+

∑n
i=1 |CW1 m+i| ≤ M , which

is contradicted with the fact that CW1 itself is a maximal memory-loadable workload.
This lemma ensures that the algorithm of Case 2 can be safely employed on the

merged workloads in the Step 5 of the algorithm of Case 3.

2.3 Duplication Labeling

Before finishing this section, we would like to give some remarks on duplication la-
beling, which are applicable to algorithms of all the three cases. When two records are
identified as duplicates, then we need to mark these two records as duplicates to each
other. Suppose that two records r1 ∈ CW1 and r2 ∈ CW2 are detected as duplicates,
then we have the following labeling for these two records:

For Record r1 in CW1, we label ”duplicated with r2 in CW2”
For Record r2 in CW2, we label ”duplicated with r1 in CW1”
The duplicate records are not removed from workloads until the whole detection pro-

cess is finished. This is to ensure that more duplicate records can be detected. Following
the above example, Record r1 and r2 are detected as duplicates. If r2 is deleted imme-
diately but it is duplicated with another record r3, then r3 cannot be detected due to
the deletion of r2. The duplication labeling is particularly important for the algorithm
of Case 2 (and Case 3 as well which is based on the algorithm of Case 2) because not
all the workloads can be simultaneously loaded into memory and duplication labeling
helps maintain all the duplication information amongst records across different cleaning
workloads.

On Memory and I/O Efficient Duplication Detection 139

3 Experimental Results

In this section, we will report the experimental results on the algorithms we proposed.
The experimental evaluation is divided into major parts. The first part mainly evaluates
the efficiency of the dual-workload in-memory duplication detection algorithm we pro-
posed, while the second part is on the efficiency of our I/O-efficient external memory
algorithm.

3.1 Efficiency of In-Memory Duplication Detection Algorithm

In the first part of our experimental evaluation, we compare our in-memory duplication
detection method with the traditional Sorted Neighborhood Method (SNM). It suffices
to only investigate the dual-workload case in this experiment. Both our method and
the traditional SNM method first merge the two different cleaning workloads and use a
sliding window to scan the merged cleaning workloads. They differ in that our method
will not compare two records in the sliding window if they come from the same clean-
ing workload. The number of pair-wise record comparison is counted for both methods
under varying degree of record skewness in the two cleaning workloads. The skewness
of the records is measured by the metric of overlapping ratio. Let us suppose that the
records are sorted by the same single key for two cleaning workloads CW1 and CW2

and we have max(KeyV alue(CW1)) < max(KeyV alue(CW2)). Also, the records
within each cleaning workload are uniformly distributed. The overlapping ratio is de-
fined as the ratio between the number of record pair {r1, r2} where r1 ∈ CW1 and
r2 ∈ CW2 that satisfy KeyV alue(r1) > KeyV alue(r2) against the total number of
records in the merged cleaning workload. Intuitively, the higher the value of overlapping
ratio, the lower degree of record skewness will be for the merged workloads from CW1

and CW2. We evaluate in this experiment the number of pair-wise record comparison
under varying overlapping ratio ranging from 10% to 90%. The size of the two cleaning
workloads are both set to be 100 and window size ω = 10. The number of pair-wise

10 30 50 70 90
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Overlapping Ratio (%)

N
u
m

b
e
r

o
f
p
a
ir
−

w
is

e
 r

e
co

rd
 c

o
m

p
a
ri
so

n

Our method

SNM

Fig. 2. The number of pair-wise record comparison of our method and SNM method

140 J. Zhang, Y. Shu, and H. Wang

record comparison for the two methods are averaged over 10 runs for each overlap-
ping ratio under study. The result is presented in Figure 2. As the figure shows, our
proposed dual-workload in-memory cleaning method features a much smaller number
of pair-wise record comparisons than the traditional SNM method, indicating a better
efficiency of other method, espcially when a higher degree of skewness (i.e., a lower
overlapping ratio) exists between the two cleaning workloads.

3.2 Efficiency of External-Memory Duplication Detection Algorithm

For the external memory duplication detection algorithm, we investigate the total num-
ber of pages that need to loaded into memory during the duplication detection process.
We only study the second case, as discussed in Subsection 2.2, where not a single pair
of cleaning workloads can be fully loaded into memory for processing. Experiments
are not conducted for the third case as it has been proven that the third cases can be
reduced to the second case. We compare our method with the random access method
in this experiment. The random access method randomly chooses the size of the mem-
ory allocated to the resident workload partitions (i.e., Mr) and the order in which the
streaming cleaning workloads are loaded into memory. Without losing generality, we
simply limit the memory M being only able to accommodate 100 records and a total
of 5 cleaning workloads are created with varying sizes ranging from 200 to 1000, with
200 increment, in our experiment. This ensures that the condition of the second case is
satisfied. Due to the nature of randomness for the random access method, we present
the results of 5 different runs of the random access method in the figure and compare it
with our method. The results are presented in Figure 3. The results show that in all of
the 5 runs, our method outperforms the random access method, achieving a consider-
ably lower number of pages that need to be loaded by delicately optimizing the size of
resident workload partition and the loading order of streaming cleaning workloads.

1 2 3 4 5
1200

1250

1300

1350

1400

1450

1500

1550

1600

Five runs of the experiment

T
o
ta

l n
u
m

b
e
r

o
f
p
a
g
e
 a

cc
e
ss

Our method
Random access method

Fig. 3. The number of page access of our method and the random access method

On Memory and I/O Efficient Duplication Detection 141

4 Conclusions and Future Work

We investigate in this paper the problem of duplicate detection from the prospective
of developing more memory and I/O-efficient algorithms for multiple self-clean data
sources. Three possible cases are considered given the size of the data sources to be
cleaned and the available memory. An in-memory efficient algorithm is proposed for
dealing with the case that all the data sources can be fully loaded into the memory. This
algorithm makes a good use of the characteristics of self duplicate-free for the data
sources that need to be cleaned. It is faster than the traditional SNM method by reduc-
ing unwanted record comparison in the detection process. We also propose I/O-efficient
duplicate detection algorithms for another two possible cases where the memory is not
big enough to accommodate all the data sources simultaneously. These algorithms can
minimize the page access overhead. Experimental results illustrate the better perfor-
mance of our proposed algorithms.

Our methods require that all the data sources be obtained in one physical site to
conduct duplicate detection. However, this may be quite expensive in practice if the
data sources are geographically distributed due to the huge transfer overhead involved.
We are interested in investigating in our future work the problem of how to deal with
distributed self-clean data sources in order to achieve a small transfer overhead.

References

1. Ananthakrishna, R., Chaudhuri, S., Ganti, V.: Eliminating Fuzzy Duplicates in Data Ware-
houses. In: Proceedings of the 28th International Conference on Very Large Databases
(VLDB 2002), Hong Kong, China, pp. 586–597 (2002)

2. Andritsos, P., Miller, R.J., Tsaparas, P.: Information-Theoretic Tools for Mining Database
Structure from Large Data Sets. In: Proceedings of ACM SIGMOD 2004, Paris, France, pp.
731–742 (2004)

3. Bilenko, M., Mooney, R.J.: On Evaluation and Training-Set Construction for Duplicate De-
tection. In: Proceedings of the KDD 2003 Workshop on Data Cleaning, Record Linkage, and
Object Consolidation, Washington, DC, August 2003, pp. 7–12 (2003)

4. Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R.: Robust and Efficient Fuzzy Match for
Online Data Cleaning. In: Proceedings of ACM SIGMOD 2003, San Diego, USA, pp. 313–
324 (2003)

5. English, L.P.: Improving Data Warehouse and Business Information Quality. J. Wiley and
Sons, New York (1999)

6. Hernandez, M.: A Generation of Band Joins and the Merge/Purge Problem. Technical Report
CUCS-005-1995, Columbia University (February 1995)

7. Hernandez, M.A., Stolfo, S.J.: The Merge/Purge Problem for Large Databases. In: Proceed-
ings of the 1995 ACM-SIGMOD International Conference on Management of Data, pp. 127–
138 (1995)

8. Gravano, L., Ipeirotis, P.G., Koudas, N., Srivastava, D.: Text Joins for Data Cleansing and
Integration in an RDBMS. In: Proceedings of ICDE 2003, Bangalore, India, pp. 729–731
(2003)

9. Low, W.L., Lee, M.L., Ling, T.W.: A Knowledge-Based Framework for Duplicates Elim-
ination. Information Systems: Special Issue on Data Extraction, Cleaning and Reconcilia-
tion 26(8) (2001)

142 J. Zhang, Y. Shu, and H. Wang

10. Monge, A.E., Elkan, C.P.: An Efficient Domain-independent Algorithm for detecting Ap-
proximately Duplicate Database Records. In: Proceedings of SIDGMOD Workshop on Re-
search issues and Data Mining and Knowledge Discovery (1997)

11. Monge, A.E., Elkan, C.P.: The Field Matching Problem: Algorithms and Application.
In: Proceedings of International Conference on Knowledge Discovery and Data Mining
(SIGKDD 1996), pp. 267–270 (1996)

12. Li, Z., Sung, S.Y., Sun, P., Ling, T.W.: A New Efficient Data Cleansing Method. In:
Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, p. 484.
Springer, Heidelberg (2002)

13. Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. Journal of
Molecular Biology 147, 195–197 (1981)

14. Sung, S.Y., Li, Z., Peng, S.: A Fast Filtering Scheme for Large Database Cleansing. In:
Proceedings of Conference on Information and Knowledge Management (CIKM 2002), pp.
76–83 (2002)

15. Tian, Z., Lu, H., Ji, W., Zhou, A., Tian, Z.: An N-gram-based Approach for Detecting Ap-
proximately Duplicate Database Records. International Journal of Digital Library 3, 325–331
(2002)

16. Weis, M., Naumann, F.: Detecting Duplicate Objects in XML Documents. In: Proceedings
of IQIS 2004, Paris, France, pp. 10–19 (2004)

17. Zhang, J., Ling, T.W., Bruckner, R.M., Liu, H.: PC-Filter: A Robust Filtering Technique for
Duplicate Record Detection in Large Databases. In: Galindo, F., Takizawa, M., Traunmüller,
R. (eds.) DEXA 2004. LNCS, vol. 3180, pp. 486–496. Springer, Heidelberg (2004)

Top-K Generation of Mediated Schemas over

Multiple Data Sources

Guohui Ding, Guoren Wang, and Bin Wang

College of Information Science & Engineering, Northeastern University, China

dgh acheng@sina.com, {wanggr,binwang}@mail.neu.edu.cn

Abstract. Schema integration has been widely used in many database

applications, such as Data Warehousing, Life Science and Ontology Merg-

ing.Though schema integration has been intensively studied in recent yeas,

it is still a challenging issue, because it is almost impossible to find the per-

fect target schema. An automatic method to schema integration, which

explores multiple possible integrated schemas over a set of source schemas

from the same domain, is proposed in this paper. Firstly, the concept graph

is introduced to represent the source schemas at a higher-level of abstrac-

tion. Secondly, we divide the similarity between concepts into intervals to

generate three merging strategies for schemas. Finally, we design a novel

top-k ranking algorithm for the automatic generation of the best candi-

datemediated schemas.The key component of our algorithm is the pruning

technique which uses the ordered buffer and the threshold to filter out the

candidates. The extensive experimental studies show that our algorithm

is effective and runs in polynomial time.

1 Introduction

Schema integration has been a long-standing research problem and continues
to be a challenge in practice [1, 11, 2]. Most of previous approaches that we
know focus on outputting only one mediated schema which is just adapted to a
given scenario. However, if this scenario changed, additional effort is needed to
reintegrate the original data sources for a new mediated schema. So, it makes
sense to create multiple mediated schemas. The work of [11] designs a tool that
enumerates all possible mediated schemas and exploits user constraints to restrict
their enumeration. However, their method is not an automatic process and relies
heavily on user interaction; so, it is time consuming and labor intensive. An
automatic approach for generation of multiple mediated schemas is proposed
in [14], but they restrict the size of the input source schemas to only two; thus,
their approach is helpless in the face of multiple data sources.

Based on the analysis above, in this paper, we propose an automatic approach
to schema integration, which explores multiple possible mediated schemas over a
set of source schemas. As opposed to the work of [14], our approach has no con-
straints on these source schemas, except they come from the same domain. The
input to our method is multiple source schemas and correspondences between
attributes, which are user-specified or discovered through the automatic schema

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 143–155, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

144 G. Ding, G. Wang, and B. Wang

matching tools [5], while the output is multiple interesting mediated schemas.
Firstly, the concept graph is introduced to abstract away the physical details of
schemas with different models(relational or XML models). Then, the similarity
between concepts is divided into intervals to generate three kinds of merging
edges: positive edges, possible edges and negative edges, which are used to de-
cide whether to merge two concepts. Finally, we design a novel top-k ranking
algorithm for the automatic generation of the best candidate mediated schemas.
The key component of the algorithm is the process of enumerating candidate
schemas and the pruning technique. We test the time complexity of the algo-
rithm, and the experimental results show that our algorithm is effective and runs
in polynomial time. The contributions of this paper are summarized as follows:

1. For the first time, we propose an automatic approach to explore multiple
mediated schemas over a set of source schemas.

2. We divide the similarity between concepts into intervals to form the merging
edges which can be used to decide whether to merge the concepts.

3. A top-k ranking algorithm attached the pruning technique is designed to
derive the best candidate mediated schemas.

4. The extensive experimental studies show that the proposed algorithm runs
in polynomial time and has good performance.

The rest of this paper is organized as follows. Section 2 describes the concept
graphs. The assignments and the top-k ranking algorithm are discussed in Sec-
tion 3. The extensive experimental results are given in Section 4. A brief related
work is reviewed in Section 5. Finally, we conclude in Section 6.

2 Preliminaries

In this section, we first describe the correspondences between attributes. Then,
the concept graphs are presented, followed by some instances of the input source
schemas and the concept graphs.

2.1 Attribute Correspondences

The traditional correspondence is a binary relationship between two elements
both of which refer to the same object. However, our approach needs to tackle
a set of source schemas, so the binary correspondence is invalid. As a result, we
need to extend it to multivariate correspondence. The definition of multivariate
attribute correspondence in our approach is given in the following.

Definition 1. Let S be a universe of the input source schemas. Let U be a
universe of attributes of S. Let A = {a1, a2, ..., ai, ..., an} be an attribute set and
A ⊂ U . If the attribute set A satisfies the following constraints:

• all attributes in set A have the same semantics,
• for any attribute x ∈ U and x /∈ A, the semantics of attribute x is different

from the semantics of the attribute set A,

then we call the set A multivariate attribute correspondence, MAC for short.

Top-K Generation of Mediated Schemas over Multiple Data Sources 145

school: Set [
 sid
 sname
 saddress
 stime
 director: Set [
 did
 dname
 dOPhone
]
 teacher: Set [
 tid
 tname
 tgender
 tOPhone
]
 student: Set [
 stu-id
 stu-name
 credit
 speciality
]
] S3

department: Set [
 d_id
 d_name
 d_phone
 d_address
 d_time
]
professor: Set [
 d_id
 p_id
 p_name
 p_oPhone
 p_title
 p_paper_num
 p_sci_num
]
graduate: Set [
 d_id
 p_id
 g_id
 g_name
 g_gender
 g_paper_num
 aver_grade
]

S2

institution: Set [
 i-id
 i-name
 i-phone
]
researcher: Set [
 i-id
 r-id
 r-name
 r-title
 r-sci-num
]
PhD: Set [
 i-id
 r-id
 p-id
 p-name
 p-res-field
 p-paper-num
 nationality
]

S1

Fig. 1. The Input Source Schemas

According to Definition 1, we can see that the correspondence in our approach
is an attribute set where the binary correspondence exists between any pair of
attributes; thus, MAC satisfies a (m : n) mapping cardinality constraint. As an
example, the set mac ={“i-name”, “d name”, “sname”} is a MAC, where the
attributes are shown in Figure 1 (be introduced in detailed later). They have
the same semantics, which represents the name of a group or a department.

2.2 The Graphs of Concepts

The source schemas may exist within different data models. For example, the
three source schemas which are the input to our approach, are depicted in Figure
1. S1 and S2 are the relational schemas, while S3 is the XML schema. The arrows
represent the reference relationship. As in [11], we make use of the concept graphs
with the edges depicting the has-a relationships to represent, at a higher-level
of abstraction, the input source schemas.

The concept graph is a pair (V, has) where V is a set of concept nodes and has
is a set of directed edges between concepts. Each concept node has an associated
set of attributes and represents one category of data (an entity type) that can
exist according to its schema, such as a relation name or a specific class in
ontology. An edge of the graph depicts a directional reference relation between
concepts. Please see [11] for more details.

The concept graphs corresponding to the input schemas S1, S2 and S3, are
shown in Figure 2 (overlooking the edges across the schemas for now). For sim-
plicity, we omit the has edges of S2 from the figure. As it can be seen, each
relation name in the source schemas corresponds to exactly one concept node in
Figure 2, for example, the relation table “PhD” corresponding to the concept
node labeled “PhD”. The method that transforms the source schemas into the
concept graphs can be found in [14]. We shall use this example of the concept
graphs in Figure 2 throughout this paper.

146 G. Ding, G. Wang, and B. Wang

3 Top-K Generation of Mediated Schemas

In this section, we first describe how to merge the concept graphs, then introduce
the assignment and the scoring function. Finally, we present the top-k ranking
algorithm for the generation of the best candidate mediated schemas.

3.1 Merging the Concept Graphs

In general, there may exists much overlapping information and similar semantics
between schemas from the same domain. For example, the relation “department”
of S2 is quite similar to the XML segment “school” of S3, so they need to be
combined to one. That’s the reason for why we merge the concepts of the graphs.

Definition 2. Let cs = {c1, c2, ..., ci, ..., cn} be a concept set where n ≥ 2. Let
mac = {a1, a2, ..., ai, ..., an} be a MAC. If ai is an attribute of ci for 1 ≤ i ≤ n,
we say that cs is matched.

The meaning behind the matched concepts is that these concepts have over-
lapping semantics. If two concepts are matched, an edge labeled with weight
is created between them, and we call it merging edge. In Figure 2, the lines
connecting nodes across schemas are the merging edges, and the weight is the
similarity showing how well the two concepts overlap. To keep the fluency, we
compute the weight later. According to Definition 2, we can also conclude easily
that any subset of a matched concept set is matched too. So, if a concept set
cs = {c1, c2, ..., ci, ..., cn} is matched, there exist n− 1 merging edges which are
outgoing from ci. However, only the edges with the highest value of weight are
reserved, because we would like to merge the most similar concepts.

In Figure 2, the similarity between “school” and “department” is very high
(0.9), and all attributes of “school” have the same semantics with the corre-
sponding attributes of “department”. Obviously, they need to be merged into
one single concept. On the contrary, only one attribute of “PhD” has the same
semantics with the attribute “p-paper-num” of “professor”, so they are differ-
ent and we can not merge them. However, for “graduate” and “student”, we
can’t make a decision about whether they should be combined or not, because
of their vague similarity value (different users have different decisions). For the
three cases above, we divide the similarity (weight) into three intervals from high
to low: positive interval, possible interval, negative interval; then, obtain three
kinds of merging edges with associated intervals. We list them in the following:

• positive edges: the weight of these edges locates at the positive interval and
is very high. The two concepts connected by them have the same semantics
over most of their attributes, so, we merge them to a single one;
• possible edges: these edges are associated with the middle weight which lo-

cates at the possible interval, so the combining relationship between the two
concepts connected by them is vague. Thus, we take two merging strategies:
combining them to a single concept or leaving them alone respectively.

Top-K Generation of Mediated Schemas over Multiple Data Sources 147

director:
 did
 dname
 dOPhone

teacher:
 tid
 tname
 tgender
 tOPhone

student:
 stu-id
 stu-name
 credit
 specialty

professor:
 p_id
 p_name
 p_oPhone
 p_title
 p_paper_num
 p_sci_num

institution:
 i-id
 i-name
 i-phone

researcher:
 r-id
 r-name
 r-title
 r-sci-num

graduate:
 g_id
 g_name
 g_gender
 g_paper_num
 aver_grade

0.8 0.9

0.83 0.75

0.62

0.
2

0.6 0.45

school:
 sid
 sname
 saddress
 stime

department:
 d_id
 d_name
 d_phone
 d_address
 d_time

PhD:
 p-id
 p-name
 p-res-field
 p-paper-num
 nationality

Fig. 2. Concept Graphs

director:
 did
 dname
 dOPhone

teacher:
 tid
 tname
 tgender
 tOPhone

student:
 stu-id
 stu-name
 credit
 specialty

professor:
 p_id
 p_name
 p_oPhone
 p_title
 p_paper_num
 p_sci_num

researcher:
 r-id
 r-name
 r-title
 r-sci-num

graduate:
 g_id
 g_name
 g_gender
 g_paper_num
 aver_grade

0.83 X4

0.
75

 X

2

0.62 X1

0.6 X5 0.45 X0

PhD:
 p-id
 p-name
 p-res-field
 p-paper-num
 nationality

institution:
 i-id
 i-name
 i-phone

0.8 X3

dep-sch:
 d_id2

 d_name2

 d_phone
 d_address2

 d_time2

Fig. 3. Merging Graph

• negative edges: the weight of these edges locates at the negative interval
and is very low, so, we break the edges and leave the concepts alone.

We use the binary vector, denoted as δ = (v1, v2), to represent the intervals,
where v1 indicates the right end point of the positive interval, while v2 indicates
the left end point of the negative interval. For example, δ = (0.9, 0.3) represents
the following intervals: [1, 0.9], (0.9, 0.3) and [0.3, 0]. With these intervals, we
can merge the “department” and “ school” into the new concept “dep-sch”,
and break the edge between “PhD” and “professor”; then, the new graph, called
merging graph, is obtained in Figure 3, with a set of possible edges X0 to X5 (not
showing the has edges). For a possible edge, there exist two merging strategies;
thus, we can get 26 mediated schemas based on X0 to X5. Obviously, the space
of the candidate mediated schemas exhibits exponential growth in the size of
possible edges. In what follows, we focus on how to retrieve the top-k candidate
mediated schemas in this space.

3.2 Assignment and Scoring Function

Following the approach in [11], we use bit assignments to capture all the alterna-
tives for using or not using the possible edges. We assume the edge x has a value
of 0 or 1, where x = 0 represents one state (merging concepts or not), while
x = 1 signifies the other state. Thus, all the possible edges make up of a bit
assignment X which is a fixed-sized, ordered vector of bits. For now, we don’t
restrict that the value 0 or 1 denotes a specific state (X0 = 0 be “merging”,
while X1 = 0 may be “not merging”). As an example, all the possible edges
in Figure 3 constitute an assignment X = [X5 X4 X3 X2 X1 X0], and each
specific assignment yields a possible mediated schema.

We design a scoring function for the assignment X , further, to find the top-k
assignments which give rise to the most likely mediated schemas. The scoring
function attaches a score to each possible assignment by aggregating the scores
associated with the individual bits within the assignments. So, we need to com-
pute first the score of the individual decision about whether to use or not use

148 G. Ding, G. Wang, and B. Wang

an edge. Here, we leverage the thought in [14]; that is, the score of the possible
edge x, must reflect how much the decision to use or not the edge x agrees with
the level of similarity between the two concepts connected by x. If the edge x
that connects the concepts Ca and Cb is not used, then we impose a penalty
which is referred to as the score for this strategy and is equivalent to the sim-
ilarity between Ca and Cb, namely scorex = S(Ca, Cb). Obviously, the higher
the similarity between the two concepts, the higher the penalty (the score) is
for not merging them. Conversely, if the edge x is included, then we impose
a penalty which is equal to the dissimilarity between the two concepts, namely
scorex = 1−S(Ca, Cb). We use the notation D(Ca, Cb) to represent the quantity
1−S(Ca, Cb) for simplicity. Similarly, the higher the difference between the two
concepts is, the higher the penalty is for merging the concepts.

Now, we present the definition of the scoring function for the assignment.
Let X = [Xn...Xi...X0] be an assignment, and Xi is any individual bit within
X. Let Ci and C′

i be two concepts which are connected by the possible edge Xi.
We define the scoring function to be:

score(X) = 1
n

∑n
i=1 f(Xi)

f(Xi) =
{

min(S(Ci, C
′
i), D(Ci, C

′
i)), Xi = 0

max(S(Ci, C
′
i), D(Ci, C

′
i)), Xi = 1

(1)

According to this definition, if we set the value of one bit to 0 within the as-
signment, the bit signifies the state which makes less contribution to the overall
penalty of the assignment. In Figure 3, if X1 is set to 0, then it suggests that
the concepts “professor” and “teacher” should be combined (using the edge X1),
while if X0 is set to 0, then it suggests that we can not merge the concepts “grad-
uate” and “student” (ignoring the edge X0). Now, we show an example for the
computation of the score of the specific assignment X = [001001]. Applying the
equation 1, we obtain score(X) = 1

6 (0.4+0.17+0.8+0.25+0.38+0.55) = 0.425.

3.3 Top-K Ranking Algorithm

We can discuss the problem of finding the top-k assignments which yield the most
likely mediated schemas. The likelihood of the assignment being in the top-k
results is inversely proportional to its score, so, our aim is to find the assignments
with the lowest scores. In general, there exist 2n possible assignments for a
merging graph including n possible edges. Thus, the naive approach is infeasible.

Here, we develop a novel algorithm for the top-k assignment problem. Our al-
gorithm enumerates the possible assignments and attaches the pruning technique
to the enumeration. We use an example for the top-3 assignments, in Figure 4,
intuitively to demonstrate the process of the algorithm. The assignment X cor-
responds to the possible edges in Figure 3. Our first step is to find the optimal
assignment, namely the top-one. The state 0 of each individual bit represents
the merging strategy making less contribution to the overall penalty. So, we set
each bit to 0, within a given assignment, to derive the first optimal assignment.

Top-K Generation of Mediated Schemas over Multiple Data Sources 149

X X5 X4 X3 X2 X1 X0 score(X) Top-3 Buffer

A0 0 0 0 0 0 0 0 .308 A0

A1 0 0 0 0 0 1 0 .325 A0, A1

A2 0 0 0 0 1 0 0 .348 A0, A1, A2

A3 0 0 0 0 1 1 0 .365 A0, A1, A2

A4 0 0 0 1 0 0 0 .392 A0, A1, A2

A5 - A7 * * A0, A1, A2

A8 0 0 1 0 0 0 0 .408 A0, A1, A2

A9 - A15 * * A0, A1, A2

A16 0 1 0 0 0 0 0 .418 A0, A1, A2

A17 - A31 * * A0, A1, A2

A32 1 0 0 0 0 0 0 .342 A0, A1, A32

Fig. 4. Example of The Top-k Ranking Algorithm

With our example, A0 is the top-one assignment, and is inserted into the buffer.
Based on the first assignment A0, the rest of X is enumerated from the low bit
to the high bit. If the binary assignment is represented as a decimal number,
actually, we may perform an enumeration from 0 to 2n (i.e. the subscript of the
assignment notation A). So, A1 (the decimal 1) and A2 are the next two assign-
ments, and we insert them directly into the buffer, because the size of the buffer
is less than 3. We refer to the maximum of the scores of the assignments in the
buffer as the threshold for the unknown assignments, denoted as λ. Because of
score(A3) > λ, A3 is not the result. Next, according to the Theorem 1 and the
fact, score(A4) > λ, we can infer that the scores of the following three assign-
ments, A5, A6, A7, are all exactly greater than λ; thus, they are pruned from
the following exploration. This is our pruning technique. The situation for the
following A8 and A16 is the same as A4. The assignments pruned are denoted in
red color to be distinguished from the assignments enumerated. Subsequently,
the next assignment A32, as the new result, replaces A2 in the buffer, because
of score(A32) < score(A2), and becomes the new threshold. The subsequent
enumeration of the unknown assignments is similar to the above process for
exploring from A0 to A32, and we omit it due to space limitation.

Theorem 1. Let X = [Xn...Xi...X0] be an assignment, and Xi is any bit of X
for n ≥ i > 0. Let dec(X) denotes the decimal number that X corresponds to.
If Xi = 1, Xj = 0 for i− 1 ≥ j ≥ 0, and score(X) > λ, then we can infer that
all the scores of the next sequential 2i − 1 assignments of X are greater than
λ, formally described as score(A) > λ, where A is any assignment of X and
satisfies the constraint: dec(X) + (2i − 1) ≥ dec(A) > dec(X).

Proof. Here, we also refer to the assignment as a binary number. We rewrite
the X to [BxB0], where Bx denote the high bits [Xn...Xi], while B0 repre-
sents the low bits [0...0] which consists of all 0. The upper bound dec(X) +
(2i − 1) can also be rewritten to binary form [BxB1], where Bx is the same
as the above, and B1 denotes the low bits [1...1]. Now, we can rewrite A to
[Bx X ′

i−1...X
′
j ...X

′
0], and get [Bx X ′

i−1...X
′
j ...X

′
0] > [BxB0], according to the

150 G. Ding, G. Wang, and B. Wang

Algorithm 1. Top-k Ranking Algorithm
X[n]: the assignment corresponding to n possible edges;

Buffer: the ordered buffer for the top-k results;

Initialize X[n], λ, i = n− 1;

1: topk(i) begin
2: for (int v = 0; v ≤ 1; v++) do
3: X[i] = v;

4: if X[i] == 1 and i
= 0 and buffer.size == k then
5: set X[i− 1 to 0] = 0;

6: if score(X[]) > λ then
7: break;

8: end if
9: end if

10: i−−;

11: if i ≥ 0 then
12: topk(i);
13: else
14: if score(X[]) < λ then
15: buffer.push(X[]); update buffer, λ;

16: end if
17: end if
18: i++;

19: end for
20: end

constraint above. Further, we can obtain [X ′
i−1...X

′
j ...X

′
0] > [0...0]. Thus, there

exist one bit at least in [X ′
i−1...X

′
j ...X

′
0], whose value must be 1. Consequently,

we can get score([X ′
i−1...X

′
j ...X

′
0]) > score([0...0]), because the value 1 signifies

more penalty than the value 0, further, obtain score(A) > score(X) > λ. Be-
cause A is any assignment between dec(X) and dec(X) + (2i − 1), we conclude
that all the scores of the next sequential 2i − 1 assignments of X are greater
than λ, and the above theorem is true.

As the above example shows, we use the threshold and the Theorem 1 to prune
the sequential assignments during each enumeration. The buffer preserves the
temporary top-k assignments that have been enumerated. We may get the true
top-k results cached in the buffer, in the end, when the algorithm terminates.
The details are described in Algorithm 1. The algorithm is a recursive procedure.
The data structure “Buffer” is the buffer of the top-k results generated so far.
The lines 4− 9 are the filtering condition for pruning the following assignments
(line 12). In lines 14 to 16, the threshold and the top-k buffer is updated, if the
score of the new assignment is less than the threshold.

Now, we will make a little change to Algorithm 1 in order to improve its
efficiency, just like in [14]. The notation Δα = scorex=1 − scorex=0 is referred
to as the increased score flipping the bit x from 0 to 1. If the assignment A
corresponding to n edges includes m bits whose values are 1, the total increment
in score is 1

n

∑m
i=1 Δαi with respect to the score of the optimal assignment (the

Top-K Generation of Mediated Schemas over Multiple Data Sources 151

top-one). It can be seen that if A includes less bits whose values are 1, and each
bit owns smaller Δα, then A becomes the true results with high possibility. As
a result, we rank the bits of the assignment X in a descending order of their Δα
from the higher bits to the lower bits. This ensures that the assignments with
smaller Δα are enumerated early and, further, enables most of the true top-k
results to distribute in the early enumeration. Thus, the λ can quickly converge
to the true threshold, and filter much of the following assignments.

3.4 Concept Similarity

Here, we regard the concept as a set which owns a number of attribute elements.
Then, the improved Hausdorff distance [3] can be used to compute the distance
between concepts and, further, we can calculate the concept similarity.

Definition 3. Let Ca and Cb be two concepts, Ca = {a1, a2, ..., ai, ..., an} and
Cb = {b1, b2, ..., bj , ..., bm}. We define the similarity between Ca and Cb to be:

S(Ca, Cb) = 1− 1
2
(
1
n

∑n

i=1
d(ai, Cb) +

1
m

∑m

j=1
d(bj , Ca)) (2)

In the above equation, the portion computing the average of the summation is
the improved Hausdorff distance, which is asymmetric. The first represents the
distance from Ca to Cb, while the second signifies the reverse distance. So, we
use the average for our concept similarity. The notation d(ai, Cb) denotes the
distance from the element ai to the set Cb. If no attributes in Cb with ai are in
the same MAC (no correspondences between ai and any attribute in Cb), then
the value of d(ai, Cb) is 1, else is 0.

4 Performance Evaluation

In this section, we first present the synthetic integration scenarios, then, show
the simulation results evaluating the performance of our top-k ranking algorithm
along three dimensions: the number of the input schemas, the number k of results
retrieved, and the parameter δ which is used to divide the similarity. Further-
more, we compare the top-k algorithm with its improved version in which the
bits of the assignments are ranked, and we call them “original” and “improved”
algorithm respectively in our experiment. Our algorithm is implemented using
C++ language and the experiments were carried on a PC compatible machine,
with Intel Core Duo processor (1.73GHz).

We describe how to generate the synthetic schemas. For one input schema, we
randomly generate a number of concepts between 2 and 7, then, we randomly
assign 3 to 8 attributes to a given concept. In what follows we focus on simulating
the correspondences between attributes, namely MAC. The perfect integration
scenario is that all input schemas are the same as each other, namely any schema
can be referred to as the duplicate of one of them. The number of MACs for
this scenario is the number of attributes of a schema, denoted as m, and each

152 G. Ding, G. Wang, and B. Wang

MAC contains all the duplicates of an attribute. Because of the real-world input
schemas to our approach coming from the same domain, we assume that 80%
of the attributes are similar; this means that 8 of 10 attributes from different
schemas have the same semantics. So, we get the computation for the number
of MAC in our synthetic scenario, denoted as aver

0.8 , where aver represents the
average of the attribute number in each schema. Based on the MAC generated,
we randomly distribute the attributes to any MAC. For each time of running
the algorithm, we randomly generate a set of synthetic schemas according to
the requirement of the algorithm. Aa a result, all the simulation results are the
average performance of running the algorithm for some times.

Figure 5 shows the change in the running times as the effect of varying the
number of the input schemas. As it can be seen, the time increase with the
variation in the number of the input schema from 10 to 100. Both of the two
algorithms perform well, even the original one itself have good performance, less
than one second for retrieving 20 results from the 100 input schemas. We also
observe that the improved one take less time than the original algorithm, and
varies slowly with the increase of input schemas. And this is consistent with the
analysis for using the ordered assignment in the end of subsection 3.3.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70 80 90 100

T
im

e(
S)

Number of Input Schemas

original
improved

(a) k = 20

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100

T
im

e(
S)

Number of Input Schemas

original
improved

(b) k = 60

Fig. 5. Time Cost Vs. Input Schemas With δ = (0.9, 0.3)

The study in the Figure 6 is similar to the above experiment. But we decrease
the δ to (0.7, 0.4), and this significantly affect the variation of the running time,
especially the case for k = 60. The curve first reach up to the maximum, then
decrease with the increase of the input schemas. The reason is that the similarity
between concepts augments with the increase of the input schemas because of
the stable number of MAC; thus, much of the edges whose weights exceed 0.7
is filter out by the config δ = (0.7, 0.4), when the number of the input schemas
increases beyond some value, for example 60 in Figure (b).

We study the effect of the number k on the performance in Figure 7. We
observe that the time of the original algorithm increases as the k increase. This
answers to the fact that the more the results are found, the more computation
cost is. But the curve for the improved one changes slowly and is less sensitive
to the variation of the k. The reason is the same as the above experiment.

Finally, we test the possible edges with varying the input schemas from 10 to
100. To consist with the above writing format, we show the experimental results

Top-K Generation of Mediated Schemas over Multiple Data Sources 153

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

0 10 20 30 40 50 60 70 80 90 100

T
im

e(
S)

Number of Input Schemas

original
improved

(a) k = 20

0

0.1

0.2

0.3

0 10 20 30 40 50 60 70 80 90 100

T
im

e(
S)

Number of Input Schemas

original
improved

(b) k = 60

Fig. 6. Time Cost Vs. Input Schemas With δ = (0.7, 0.4)

0

0.75

1.5

0 10 20 30 40 50 60 70 80 90 100

T
im

e(
S)

Number of the Results, K

original
improved

(a) Fifty Input Schemas

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

T
im

e(
S)

Number of the Results, K

original
improved

(b) One Hundred Input Schemas

Fig. 7. Time Cost Vs. Results Retrieved

with config δ = (0.9, 0.3) in Figure 8(a), and δ = (0.7, 0.4) in Figure 8(b). In
Figure (a), the number of possible edges reaches up to around 300 while the
input schemas increase to 100. The reason is that the later concepts caused by
the increase of the schemas result in many edges, while much of them is survived
from δ = (0.9, 0.3) which leaves a larger space of weight for the possible edges.
By contrast, the possible edges decrease with the input schemas beyond 50. As
the analysis above, the similarity of the edges augments as the increase of the
schemas; thus much of the edges are filtered out for the smaller space generated
by the config δ = (0.7, 0.4).

0
30
60
90

120
150
180
210
240
270
300

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 P

os
si

bl
e

E
dg

es

Number of Input Schemas

δ=(0.9, 0.3)

(a) δ = (0.9, 0.3)

0
30
60
90

120
150
180
210
240
270
300

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 P

os
si

bl
e

E
dg

es

Number of Input Schemas

δ=(0.7, 0.4)

(b) δ = (0.7, 0.4)

Fig. 8. Possible Edges Vs. Input Schemas

154 G. Ding, G. Wang, and B. Wang

5 Related Work

A basic problem in the data integration is the schema integration [11,6,4,12,14,8].
A pay-as-you-go integration system is proposed in [12], which uses the possible
mapping to create the target schemas. The recent work of [11] developed a tool
that systematically enumerates multiple mediated schemas. But their approach
relies heavily on the user’s interaction. Another recent work [14] proposed an
automatic approach to schema integration. Their main disadvantage is that they
can not achieve the schema integration over multiple source schemas.

The work of [7] provide a generic framework that can be used to merge models
in all these contexts. One of the their main features is the use of a mapping, which
can be seen as a ”template” for the integrated model. A formalism-independent
algorithm for ontology merging and alignment, named PROMPT, is developed
in [4], which automates the merging process as much as possible. An ontology
merging system FCA-MERGE [6] is developed, following bottom-up techniques
which offers a structural description of the merging process.

The correspondences used in our approach are the results of schema matching,
which is another long-standing research problem [5,9,10,12,13]. The automatic
approach to schema matching is summarized in [5]. A multi-column substring
matching [9] is presented to discovery complex schema translations involving
substrings from multiple database columns. Recently, different from the tradi-
tion, the possible mapping is introduced to the schema matching [10,12], which
presents another research mode for schema matching.

6 Conclusions

In this paper, we propose an automatic approach to schema integration. Our ap-
proach explores multiple possible mediated schemas over a set of source schemas
from the same domain. To tackle multiple source schemas, we define the mul-
tivariate correspondence MAC to represent the attribute set where all the at-
tribute elements have the same semantics. We introduce the parameter δ to
divide the similarity between concepts into intervals, and this generates three
kinds of edges, namely positive edges, possible edges and negative edges. We
merge the concepts connected by the positive edges, and break the negative
edges leaving the concepts alone. The concepts connected by the possible edges
can either be merged or not merged (different users have different opinions).
As a result, we introduce the assignment to represent the two state (merg-
ing or not) of the possible edges. Then, we design the top-k ranking algo-
rithm to find the assignments resulting in the best mediated schemas. The
algorithm is an enumeration of all the possible assignments. We make use of
the top-k buffer and the threshold to prune much of the assignments. The ex-
periment shows that our algorithm has good performance and runs in polynomial
time.

Top-K Generation of Mediated Schemas over Multiple Data Sources 155

References

1. Buneman, P., Davidson, S.B., Kosky, A.: Theoretical Aspects of Schema Merging.

In: Pirotte, A., Delobel, C., Gottlob, G. (eds.) EDBT 1992. LNCS, vol. 580, pp.

152–167. Springer, Heidelberg (1992)

2. Miller, R.J., Ioannidis, Y.E.: The Use of Information Capacity in Schema Integra-

tion and Translation. In: Proc. of VLDB, pp. 12–133 (1993)

3. Dubuisson, M.-P., Jain, A.K.: A Modified Hausdorff Distance for Object Matching.

In: Proc. of Int. Conf. on Pattern Recognition, pp. 566–568 (1994)

4. Noy, N.F., Musen, M.A.: PROMPT: Algorithm and Tool for Automated Ontology

Merging and Alignment. In: Proc. of AAAI/IAAI, pp. 450–455 (2000)

5. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.

VLDB Journal 10(4), 334–350 (2001)

6. Stumme, G., Maedche, A.: FCA-MERGE: Bottom-up merging of ontologies. In:

Proc. of IJCAI, pp. 225–234 (2001)

7. Pottinger, R., Bernstein, P.A.: Merging Models Based on Given Correspondences.

In: Proc. of VLDB, pp. 826–873 (2003)

8. Dong, X., Halevy, A.: A Platform for Personal Information Management and Inte-

gration. In: Proc. of CIDR (2005)

9. Warren, R.H., Tompa, F.: Multicolumn Substring Matching for Database Schema

Translation. In: Proc. of VLDB, pp. 331–342 (2006)

10. Dong, X., Halevy, A.Y., Yu, C.: Data integration with uncertainty. In: Proc. of

VLDB, pp. 687–698 (2007)

11. Chiticariu, L., Kolaitis, P.G., Popa, L.: Interactive Generation of Integrated

Schemas. In: Proc. of SIGMOD, pp. 833–846 (2008)

12. Sarma, A.D., Dong, X., Halevy, A.: Bootstrapping Pay-As-You-Go Data Integra-

tion Systems. In: Proc. of SIGMOD, pp. 861–874 (2008)

13. Chan, C., Elmeleegy, H.V.J.H., Ouzzani, M., Elmagarmid, A.: Usage-Based Schema

Matching. In: Proc. of ICDE, pp. 20–29 (2008)

14. Radwan, A., Popa, L., Stanoi, I.R., Younis, A.: Top-K Generation of Integrated

Schemas Based on Directed and Weighted Correspondences. In: Proc. of SIGMOD,

pp. 641–654 (2009)

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 156–167, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Graphical Method for Reference Reconciliation

Zheng Yongqing, Kong Qing, and Dong Guoqing

Department of Computer Science, Shandong University
zyq@sdu.edu.cn, xiaoqinger4848@126.com, dgq@sdu.edu.cn

Abstract. In many applications several references may refer to one real entity,
the task of reference reconciliation is to group those references into several
clusters so that each cluster associates with only one real entity. In this paper we
propose a new method for reference reconciliation, that is, in addition to the
traditional attribute values similarity, we employ the record-level relationships
to compute the association similarity values of references in graphs, then we
combine this kind of similarity with the traditional attribute values similarity
and use the clustering algorithm to group the closest references.

Keywords: reference reconciliation, record-level relationships, association
similarity, attribute values similarity.

1 Introduction

Nowadays much work needs to integrate information from heterogeneous data
sources into one database. This can lead to the occurrence of similar references, some
of which may exist originally in one of the data sources; others can be generated from
the integration of several data sources. Similar references which potentially refer to
one real entity must be reconciled before this database can be efficiently used for
further process. The problem of similar references referring to one real entity appears
because one real entity may have many descriptions. Many reference reconciliation
methods have been proposed to solve this problem.

Reference reconciliation focuses on reconciling and grouping similar references
which potentially refer to the same real entities into clusters so that each cluster corre-
sponds to one real entity. Reference reconciliation has something to do with the problem
of entity resolution [13], record linkage [1], and duplicate detection [2], object consoli-
dation [5] and so on. Record linkage [1] is dedicated to merging similar records which
are judged to refer to the same entity in the real world. It is a little different from refer-
ence reconciliation: record linkage deals with records in the database, whereas reference
reconciliation deals with references— a concept of a finer grain. Another related prob-
lem is reference disambiguation [9], the goal of which is to match object representations
(references) with the list of possible objects which are known in advance. Object Dis-
tinction [4, 11] considers a problem which is different from the above. It mainly focuses
on distinguishing different objects with identical names.

Traditional methods usually utilize textual similarity [2] or attribute values similar-
ity like the context attributes similarity [6] or the feature-based similarity (FBS).

 A Graphical Method for Reference Reconciliation 157

There are also some other methods which use the relational information between the
references [5, 8, 9, 10, 15].

But most of the previous works which employ relational information only consider
relationships between attributes within records and they compute the similarity values
between similar references based on these relationships. In this paper, we proposed an
algorithm which employs record-level relationships, that is, we use records as the
carriers of references and take the relationships between records as the association
similarity values of similar references within these records.

Our algorithms have many advantages: first of all, the record-level relationships
taken as the association similarity values of similar references within these records
combine multiple attribute-level relationships which are always employed by tradi-
tional works. Second, the record-level relationships could also improve the perform-
ance of reference reconciliation in single relation since traditional works on single
relations only considers textual similarity or context attributes similarity. Although
there are also some works focusing on employing relational information in single
relation, like works by X. Dong et al [8] and Parag and Pedro Domingos [19], they
only consider attribute-level relationships, too.

Single relation means that only one relation exists in the problem and no E-R
model can be constructed. In this problem there is only single relation and the records
inside represent a certain kind of real entities like books, movies, papers or orders.
And in these records, some attributes can refer to other kind of real entities, such as
publisher in book relation, director in movie relation, author in paper relation or
commodity in order relation (these attributes are called references). All of the above
kind of references may have the problem of similar references referring to the same
real entity and our algorithm in this paper is able to reconcile these references.

We build similarity matrix for all the records in the single relation at first, and
based on this, we build the similarity association graphs (SAG) for all the references
we want to reconcile, then we combine the association similarity we acquire from the
SAGs with the traditional attribute values similarity to get the overall similarity val-
ues between similar references. Finally we use clustering algorithm to group the ref-
erences into clusters so that each cluster corresponds to one real world entity.

Our contributions in this paper can be summarized as follows:

• A novel algorithm which employ record-level relationships to build the similarity
association graphs to compute the association similarity values between refer-
ences in single relation.

• A method to combine the association similarity with the attribute values similar-
ity to compute the overall similarity values between references.

• An empirical result evaluation and analysis of our algorithm. Our experiments
test our algorithm’s performance on large real datasets and manual datasets.

The rest of this paper is organized as follows. Section 2 describes the problem of
reference reconciliation through an example. Section 3 formalizes the problem. Our
algorithm is introduced in detail in Section 4 and Section 5. Experimental results are
presented in Section 6. Section 7 is the related work. Section 8 is the conclusion.

158 Z. Yongqing, K. Qing, and D. Guoqing

2 Problem Description

In the real world, many datasets only contain single relation, like DBLP, Cora in the
author matching problem. A segment of the relation contains the following data:

1. <P1, 'Ekkart Rudolph', 'Title1...', 'venue1'>
2. <P2, 'Wilhelm K. Hackmann', 'E. Rudolph', 'Hans Seidl', 'Title2...', 'venue2'>
3. <P3, 'P. Graubmann', 'E. R', 'Hans Seidl', 'Title3...' 'venue3'>
4. <P4, 'P. Graubmann', 'Toshio Uchiyama', 'Title4...','venue1'>

The schema for this relation is <id, author_name, author_name... title, venue>. Notice
that in this data segment there are several similar author_names which potentially
refer to one real entity, they are 'Ekkart Rudolph' in P1, 'E. Rudolph' in P2, 'E. R' in
P3....The goal of our reference reconciliation algorithm is to group all these references
into clusters so that each cluster corresponds to only one real entity.

We build similarity matrix for all the paper records as follows (sim(P1,P2) represents
the similarity between paper P1 and P2, the computing method will be illustrated later):

Fig. 1. The similarity matrix

Then, based on this matrix, we are able to build many similarity association graphs
(SAG) for all the author_name references in these records and compute the associa-
tion similarity values between the references. The similarity association graph (SAG)
for this exemplary data segment is shown in Figure 2. Notice that in this SAG, nodes
represent records, some of which contain references needing reconciliation, some do
not. Edges (solid lines) represent the associations between two records, and the dotted
lines represent how the two records are connected. For example, in Figure 2 P2 and P3
are connected because they share the same co-author ‘Hans Seidl’. In this algorithm
the similarity values of the two records are employed to represent the association
similarity values of the two similar references included in the two records. We com-
bine this kind of similarity (called association similarity) with the traditional attribute
values similarity to get a whole similarity value for further process.

Fig. 2. The similarity association graph for the data segment

 A Graphical Method for Reference Reconciliation 159

3 Notation

Suppose that there is only single relation in our dataset, and the records included in
the relation are in set P= {P1, P2...., Pm} (in the example above are papers). The
schema for this relation is <...Ref1,1, Ref1,2, Ref1,3..., Ref2,1, Ref2,2... Refi,j...>. In Refi,j '
i ' represents the ith kind of references in each record in P and ' j ' represents the jth
reference in all the ith kind of references.

For example, in the relation shown in Section Ⅱ, author_name represents the first
kind of references and venue represents the second kind of references in the records,
and the author_name is the exact kind of references needing reconciliation.

Suppose that in the dataset being processed, all real entities underlying the refer-
ences needing reconciliation are in set A= {A1, A2, A3... An...}. In the set P, the ith
kind of references is the exact kind needing reconciliation. All the ith kind of refer-
ences will be put into a set R={P1.Refi,1, P1.Refi,2,..., P2.Refi,1, P2.Refi,2, P2.Refi,3,...,
Pm.Refi,1....}. Our goal is to group all the references in R into clusters set C= {C1,
C2...Cn...}, each cluster in C contains references referring to the same real entity in A.

4 Computing Similarity Values between References

4.1 Similarity Matrix

A similarity matrix will be built for all the records in P as sim(Pi,Pj) (Pi,Pj∈P,1<=i,
j<=|P|). The process is as follows: Suppose that a reference from P1 and a reference
from P2 (denoted as P1.Refm,i and P2.Refm,j) are from the same field (they are both the
mth kind of references) and share the same value (P1.Refm,i = P2.Refm,j), we think that
P1 and P2 are connected by these two references P1.Refm,i and P2.Refm,j. Then we
compute their strength of connecting the two records P1 and P2 and add them to the
prior similarity value of P1 and P2 which is denoted as sim(P1, P2) in the similarity
matrix, the initial value of which is zero. The computation of the connection strength
is as follows:

P1.Refm,i = P2.Refm,j (1)

sim(P1, P2) = sim(P1, P2)+1/frequency(P1.Refm,i) (2)

frequency(P1.Refm,i)=frequency(P2.Refm,j) (3)

The frequency(P1.Refm,i) in formula(2) represents the number of times P1.Refm,i has
appeared in the overall single relation, in other words, it represents how many refer-
ences are from the same field and share identical values as P1.Refm,i in this single
relation. We compute the connection strength of this reference as the reciprocal of
frequency because we assume that the more frequently the reference appears in the
relation the less important it will be. For example, in the problem of author matching,
if the reference which connect two records refer to the venue of VLDB, then it will be
less important than the reference referring to one of the same co-authors of the papers,
i.e. if the two papers are connected by same venues like VLDB, then the connection

160 Z. Yongqing, K. Qing, and D. Guoqing

strength will be smaller than those two papers which are connected by the same co-
authors. In the example above, after we find that P1.Refm,i = P2.Refm,j, then fre-
quency(P1.Refm,i) will increase by 1, so does frequency(P2.Refm,j), the process is
shown in Figure 3.

Fig. 3. Computing the Strength of connecting. In this example, the number of branches repre-
sents the frequency of the reference. Then sim(Pi,Pj)=1/5+1/4.

4.2 Similarity Association Graph

In Section 3 we assume that all the ith kind of references are put into a set
R={P1.Refi,1, P1.Refi,2,..., P2.Refi,1, P2.Refi,2, P2.Refi,3,..., Pm.Refi,1....}. Since set R
contains references which may refer to many different real entities, we can not proc-
ess them all at a time, we must divide them into groups roughly based on the attribute
values similarity. Here the attributes contain the ones that characterize the underlying
entities. For example, in the author matching problem, the author’s name is that kind
of attribute when we want to reconcile author references. In this state, similar refer-
ences which potentially refer to one real world entity will be put into approximate
groups.

There are many techniques to achieve this. One of them is that we can find some
attributes as the blocking attributes to decrease the number of pairs needing compari-
son by blocking [12]. Another method is that we can use clustering algorithm to
merge the most similar clusters of references based on the attribute values similarity.

After we get the approximate groups, each of which contains references possibly
referring to one real entity, we can build many similarity association graphs (SAG)
based on these approximate groups. In the SAGs, initially, references from the same
approximate group form all the nodes in one SAG. In Figure 2, initially ‘Ekkart Ru-
dolph’ in paper P1, ‘E. Rudolph’ in paper P2 and ‘E. R.’ in paper P3 formed a SAG,
and only ‘E. Rudolph’ and ‘E. R.’ have path (solid line) between them because ini-
tially only P2 and P3 have connections by the same co-author ‘Hans Seidl’. As shown
in Figure 4.

Fig. 4. The initial SAG of the data segment

 A Graphical Method for Reference Reconciliation 161

4.3 Expansion of the Similarity Association Graphs

In the state above, the SAGs only contain direct connecting paths between two
references (nodes) since the two records (Pi and Pj) which the two references belong
to have direct connection thus sim(Pi,Pj) is not zero. From Figure 4 we can see these
paths are all with length 1. In this state we will expand the SAGs to develop paths
that are longer than 1 and are not directly connecting two nodes of references in the
SAG.

As shown in Figure 2, 'Ekkart Rudolph' in P1 doesn't have any direct connection
with 'E. R.' in P3, but they can still be connected indirectly through their common
neighbour node P4, so in this state we will expand the existing SAGs to add indirect
paths into them. The goal can be easily achieved through the search of the similarity
matrix. Since in the similarity matrix, if there is association between two records in
P, the similarity value between the two records is positive, otherwise it will be zero.
So we can use some algorithms on Graph Theory like FindPath [16] to find paths of
given length, in these SAGs we will find paths longer than 1 to connect references.

After this state, many final SAGs like the one in Figure 2 are built. Then we will
compute the connection strength of the newly added paths and add them to the exist-
ing similarity values of two references.

Suppose that reference No.1 belongs to record Pa, reference No.2 belongs to Pb,
they are connected by record Pd, some other records and Pc.

Fig. 5. Computing the connection strength of the newly added paths

Then the connection strength of the newly added path (Pa->Pd…->Pc->Pb) is
computed as follows (this connection strength is denoted as cs(Pa,Pb)):

cs(Pa,Pb)=sim(Pa,Pd)*…*sim(Pc,Pb) (4)

sim(Pa,Pb)=sim(Pa,Pb)+cs(Pa,Pb) (5)

asso_sim(Ref No.1,Ref No.2)=sim(Pa,Pb) (6)

In formula (4) we compute the connection strength of the newly added paths. We can
treat the cs(Pa,Pb) as the probability of reaching Pb from Pa. Based on the random
walk probability [4], we multiply the similarity values of all the associations in the
paths to get the overall connection strength of the newly added paths.

The initial similarity value sim(Pa,Pb) which only contain connection strength of
direct paths is also updated in formula (5). Then the association similarity value be-
tween two references could be computed as the similarity value between the two re-
cords they belong to in formula (6).

162 Z. Yongqing, K. Qing, and D. Guoqing

4.4 Combination of Associate Similarity and the Attribute Values Similarity

The final similarity value between two references can be computed as follows:

sim(Ref No.1,Ref No.2)=α*asso_sim(Ref No.1,Ref No.2)+(1-α) *
attributes_sim (Ref No.1,Ref No.2)

(7)

In this formula asso_sim(Ref No.1,Ref No.2) is the association similarity of the two
references and α represents the weight of the association similarity in the final simi-
larity value. attributes_sim (Pi.Refm,x, Pj.Refm,y) represents the similarity value of the
attributes which characterize the entities underlying the references. For example, book
name, isbn are attributes which characterize the property of a book. Another example,
for a person, his/her name, email, address can be attributes characterizing the person.
Here the attribute is different from the concept of references: references are the kind
of attributes which refer to real entity, but attributes only characterize entity but do
not refer to any other real entities. Attributes_sim can be computed using some meth-
ods such as string-based distance and vector-based cosine similarity.

5 Clustering Algorithm

Since in many applications we don't know how many clusters we should get in ad-
vance, we can use the Hierarchical cluster algorithm to group the closest clusters of
references in a SAG repeatedly until the algorithm meets the termination conditions.

There are many methods to evaluate the performance of the clustering algorithm
and its result, some are unsupervised [17], such as the cluster cohesion, cluster separa-
tion, and others are supervised like the entropy [5]. In this method, as we don't know
how many clusters to get in advance, we choose the unsupervised methods.

As it is supposed in preceding paragraphs, the set of clusters our method outputs is
C= {C1, C2,...Cn,...}, the evaluation of the cluster validity [17] are as follows:

overallvalidity=∑
=

|C|

1

)(*
i

iCvaliditywi

cohesion(Ci)=∑
∈
∈

ciy
cix yxfinalsim),(

separation(Ci,Cj)=∑
∈
∈

cjy
cix yxfinalsim),((i!=j)

In the formulas above, overallvalidity represents the overall validity of all the clusters.
The validity of a cluster Ci can be computed in many ways. Some are based on the
cohesion, which means the extent of agglomeration, some are based on the separation,
and others use both of them. wi represents the weight of the validity of cluster Ci. As
we always want the cohesion to be large or the separation to be small, so when we use
cohesion as the validity of the cluster, when the overallvalidity gets the maximum we
believe the result is the best and vise versa.

6 Experimental Results

We test our method on 2 real world datasets; one is DBLP-SUB series which contains
3 datasets, dblp-sub-01(475KB), dblp-sub-02(1278KB), dblp-sub-03(6316KB). An-
other is a smaller dataset s-dblp which we completely arrange it manually.

 A Graphical Method for Reference Reconciliation 163

We will measure the quality of our result by precision, recall and f-measure.
They are defined as follows: as it is supposed before, the clusters our method out-
puts are in set C={C1,C2,...Cn,...}, and the ground truth is in A= {A1, A2, A3...
An...}. In each cluster Ci in C, we check all the reference pairs, if references in the
pairs also belong to the same element in A, we add 1 to the tp(true positive), else
we add 1 to fp(false positive). In each cluster Ai in A, we check all the reference
pairs, if references in the pairs don't belong to the same cluster in C, we add 1 to the
fn(false negative).

Precision=

fptp

tp

+
, Recall=

fntp

tp

+
, F-measure=

recallprecision

recallprecision

+
**2

As we always want the fp and fn to be close to zero so that the closer the precision
and the recall are to 1, the better the performance our algorithm will be, so does the F-
measure which is a combined criterion of the both the precision and the recall.

6.1 DBLP-SUB

There are 3 datasets in this series, we will introduce the experiment on dblp-sub-01,
and the other 2 datasets are the same as the first one.

In dblp-sub-01 there are 1509 papers and 4961 authors, we first traverse all the
elements in the xml document, like the author, venue etc and record their frequency,
but we remove all the elements named "year" because we think that kind of elements
are useless in our experiments. Then we build the similarity matrix for all the paper
records in set P and compute the similarity value sim(Pi, Pj) for all of them. We as-
sume that sim(Pi,Pj)=sim(Pj,Pi) and sim(Pi,Pi) is meaningless so we can decrease the
number of times of computation greatly. Since the similarity matrix is very large, we
keep the result in a document so that we don't have to compute it every time. The text
document we get is 17815KB.

Then we use a hierarchical cluster method to get initial SAGs in which we merge
the most similar clusters of references repeatedly until there are no two clusters hav-
ing the similarity value greater than a threshold, we set the threshold value to be 0.63
to get all the SAGs in this experiment.

After the initial SAGs are built we execute the search algorithm to add paths longer
than 1 but shorter than 3 to the SAGs and compute connection strength for all the
paths to get the association similarity of every pairs of references. In the state of ex-
pansion of the SAGs, we set the length of the paths to be no longer than 3 since our
experiments show that much longer paths will be helpless.

We compute the attribute values similarity for all the author_name pairs using the
TFIDF method.

After that we use the same cluster method as the one used for building the SAGs,
which is merging the most similar clusters of references repeatedly until no two clus-
ters having similarity value greater than a threshold t. The figures below illustrate the
impact of different parameters to the result.

164 Z. Yongqing, K. Qing, and D. Guoqing

(a) Hierarchical cluster threshold t and the
result quality (α=0.7)

(b) á and the result quality

Fig. 6. Different methods of computing the similarity of clusters

In Figure 6(a), the broken line shows that when cluster threshold t is 0.3, the ex-
periment gets the best result, precision is 0.997, recall is 0.9978, f-measure is 0.9974.
In Figure 6(b), the result is best when α is 0.7, precision is 0.9968, recall is 0.9978, f-
measure is 0.9973. This indicates that the association similarity value accounts for
major proportion in the final similarity value. In this experiment, our precision is
always very high, but the recall has bigger up and downs because, in the Figure 6(a),
when the threshold t is greater than 0.31, the algorithm will divide some clusters into
many smaller clusters which are false and impact the recall greatly. In Figure 6(b), α
(from formula (7)) can not be too closer to 1. It means that association similarity and
the attribute values similarity should be combined to get the best result.

The results of the experiments are also impacted by the different clustering meth-
ods as shown in the following figure:

Fig. 7. Different methods of clusters

The figure above shows that average-link method can achieve the best result. For
single-link and mix of single-link and complete link, they get lower recall values
because they can not get accurate SAGs which impact the final result greatly.

6.2 Artificial Dataset s-dblp

In the above Section we have shown our experiments on some real world datasets, but
those datasets have some deficiency to test the performance of our algorithm. First, in
most of the SAGs there are no more than 10 references and most of them share the
same name and refer to the same author, so the performance has a lot to do with the
formation of the SAGs. In this experiment we want to find a dataset in which a SAG
has many references (more than 20) which refer to many different real world entities
(more than 3), so we construct a dataset manually from the DBLP website about sev-
eral names, they are shown in the following table:

 A Graphical Method for Reference Reconciliation 165

Table 1. Names corresponding to multiple authors

Name Authors References Name Authors References
Ajay Gupta 4 28 Micheal Wagner 3 18
Hui Fang 3 20 Rakesh Kumar 2 8
Jim Smith 3 16 overall 15 90

We apply our algorithm to this dataset with some changes: First of all, we don’t need
to build the SAGs because naturally references with identical names fall into the same
SAGs. This can reflect the performance of our algorithm in a better way because it will
not be impacted by the quality of the formation of the SAGs. Second, we use the clus-
tering criterion functions described in Section 5 combined with the following formula:

wi=1/|Ci| (8)

validity(Ci)=cohesion(Ci) (9)

As illustrated in former experimental section, association similarity and the attribute
values similarity separately should be combined to get the best result. In this experi-
ment, the attributes_similarity is always 1 because all the references in the same SAG
share identical name, so we can just add a small real number p to all the association
similarity values to get better performance. The impact of p to the quality of the result
is shown in the following figure:

Fig. 8. The impact of p to the quality of the result

From the figure above we can see that when p is set to 1.0 the experiment can
achieve the best result.

The following figure shows that the impact of different lengths of paths.

Fig. 9. The impact of different lengths of paths

This figure shows that when the paths with the length 1 and 2 are combined, the
experiment can achieve the best F-measure of 0.8853. When we add the paths with
length of 3, the result is good too but worse than the situation above, because when
we add paths of length 3, the recall will be lower. This result indicates that much
longer paths are helpless, sometimes even harmful to the result.

166 Z. Yongqing, K. Qing, and D. Guoqing

We compare the performance of our method with our preceding method based on
decision tree but without employing relationships between multi-type entities [11] and
the work DISTINCT by Jiawei Han et al [4] which employing relationships between
multi-type entities. The comparison results are shown in the following figure.

Fig. 10. Performance comparison

From the figure we can conclude that this method acquire higher precision and F-
measure on real datasets.

7 Related Work

Traditional work on record linkage can be summarized into two parts: First, how to
acquire the object pairs which need to be distinguished. In this field, what we need to
do is to increase the efficiency, which is trying to reduce the number of candidate
pairs, so we can compare for less times. M. A. Hernandez and S. J. Stolfo [18] devel-
oped the sorted neighbourhood method for limiting the number of potential duplicate
pairs that require distance computation. Second, how to increase the accuracy of the
record linkage, that is, to use higher performance method to distinguish records with
identical names or merge similar records. Traditional methods usually based on tex-
tual similarity [2] or attribute values similarity like the context attributes similarity [6]
or the feature-based similarity (FBS). Some of these methods focus on developing
different algorithm to compute the similarity values of attributes. Typically, some
string similarity metrics like edit distance [14] or TFIDF [11] or learnable string simi-
larity measure [2] are used to get the similarity values. Other methods always use
some machine learning methods such as decision tree[11], SVM [4], perceptron learn-
ing [7] to combine these similarity values based on different weights which have been
learned to get a whole similarity value to determine whether the two references asso-
ciate with one real world entity. In the paper [6] M. Lee et al also developed a method
to discover these context attributes and calculate their similarity, which is using asso-
ciation rules to determine the set of attributes that constitute each object’s context.

There are also some other methods which use the relational information between
the references or the references and their attributes. In the paper [8] X. Dong et al
describe an algorithm based on a general framework for propagating information from
one reconciliation decision to another using dependency graph. In several papers of
D. V. Kalashnikov et al [5, 9, 10], the methods which analyses not only object fea-
tures, but also additional semantic information: inter-objects relationships for the
purpose of object consolidation have been developed. In paper [15], some iterative
methods are developed to group similar references in an iterative way, as the common
authors are identified the additional potential co-references are also identified.

 A Graphical Method for Reference Reconciliation 167

8 Conclusion

In this paper we study the problem of reference reconciliation in single relation. We
develop a new method to solve this problem using record-level relationships to get the
association similarity values combined with the traditional attribute values similarity
to get the overall similarity value. Then we use the hierarchical cluster method to
group references into different clusters so that each cluster corresponds with one real
world entity. Experiments show that our algorithm can achieve high accuracy.

References

1. Winkler, W.E.: The state of record linkage and current research problems. Technical re-
port, Statistical Research Division, U.S. Bureau of the Census (1999)

2. Bilenko, M., Mooney, R.: Adaptive duplicate detection using learnable string similarity
measures. In: SIGKDD (2003)

3. Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R.: Robust and efficient fuzzy match for
online data cleaning. In: Proc. of ACM SIGMOD Conf. (2003)

4. Yin, X., Han, J., Yu, P.S.: Object Distinction: Distinguishing Objects with Identical
Names. In: ICDE 2007 (2007)

5. Chen, Z., Kalashnikov, D.V., Mehrotra, S.: Exploiting relationships for object consolida-
tion. In: ACM IQIS (2005)

6. Lee, M., Hsu, W., Kothari, V.: Cleaning the spurious links in data. IEEE Intelligent Sys-
tems (2004)

7. Ananthakrishna, R., Chaudhuri, S., Ganti, V.: Eliminating Fuzzy Duplicates in Data Ware-
houses. In: Proceedings of 28th VLDB conference (2002)

8. Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex information
spaces. In: SIGMOD (2005)

9. Kalashnikov, D.V., Mehrotra, S., Chen, Z.: Exploiting relationships for domain-
independent data cleaning. In: SIAM SDM (2005)

10. Kalashnikov, D.V., Mehrotra, S., Chen, Z., Nuray-Turan, R., Ashish, N.: Disambiguation
algorithm for people search on the web. In: ICDE 2007 (2007)

11. Kong, Q., Li, Q.: Object distinction based on decision tree. In: ITCS 2009 (2009)
12. Baxter, R., Christen, P., Churches, T.: A comparison of fast blocking methods for record

linkage. In: ACM KDD 2003 workshop on Data Cleaning, Record Linkage and Object
Consolidation, Washington DC, pp. 25–27 (2003)

13. Bhattacharya, I., Getoor, L.: Relational clustering for multi-type entity resolution. In:
MRDM Workshop (2005)

14. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University Press,
New York (1997)

15. Bhattacharya, I., Getoor, L.: Iterative record linkage for cleaning and integration. In:
DMKD Workshop (2004)

16. Sahni, S.: Data Structures, Algorithms, and Application in C++. Silicon Press
17. Tan, P.-N., Steinbach, M.: Introduction to Data Mining. Addison Wesley Press, Reading
18. Hernandez, M.A., Stolfo, S.J.: The merge/purge problem for large databases. In: Proceed-

ings of the 1995 ACM SIGMOD International Conference on Management of Data
(SIGMOD 1995), San Jose, CA, May 1995, pp. 127–138 (1995)

19. Singla, P., Domingos, P.: Multi-relational record linkage. In: MRDM Workshop (2004)

BenchmarX’10

Workshop Organizers’ Message

Irena Mlýnková, Martin Nečaský, and Jǐŕı Dokulil

Department of Software Engineering, Charles University in Prague, Czech Republic

The 2nd International Workshop on Benchmarking of Database Management
Systems and Data-Oriented Web Technologies (BenchmarX’10) was held on
April 4, 2010 at the University of Tsukuba, Japan in conjunction with the
15th International Conference on Database Systems for Advanced Applications
(DASFAA’10). It was organized by Irena Mlynkova, Martin Necasky and Jiri
Dokulil from the Department of Software Engineering of the Charles University
in Prague, Czech Republic.

BenchmarX’10 was aimed at benchmarking (and related issues) of all stages
of data processing in the context of up-to-date database management systems
and data-oriented web technologies in general. Typical (but not the only) repre-
sentatives of such applications and technologies can be web services and seman-
tic web services, Web 2.0 applications, social networks etc. Similarly, new data
types, such as data streams, sensor data or imprecise/uncertain data, triggered
proposal and implementation of new strategies for their storage, processing and
management that need to benchmarked, tested and compared specifically.

Even though data management and data-oriented applications are involved
in topics of many conferences around the world, the community dealing with
benchmarking of such applications and related issues is still scattered. The aim of
BenchmarX is to bring it together and provide a platform for common discussion
of all the related topics.

The program committee of the workshop consisted of 14 researchers and spe-
cialists representing 11 universities and institutions from 8 different countries.
To ensure high objectiveness of the paper selection process 2 PC chairs from dif-
ferent institutions were selected, in particular Martin Necasky from the Charles
University in Prague, Czech Republic and Eric Pardede from La Trobe Univer-
sity, Bundoora, Australia. Each of the papers submitted for BenchmarX’10 was
reviewed by 3 PC members for its technical merit, originality, significance, and
relevance to the workshop. Finally, the PC chairs decided to accept 42% of the
submitted papers.

The final program of the workshop consisted of an invited talk on “Bench-
marking Holistic Approaches to XML Tree Pattern Query Processing” and 2
sessions involving the accepted papers. The invitation was kindly accepted by
Jiaheng Lu from the University of China.

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 168–169, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

BenchmarX’10 Workshop Organizers’ Message 169

Last but not least, let us mention that BenchmarX’10 would not be pos-
sible without the support of our sponsors. In particular it was partially sup-
ported by the Grant Agency of the Czech Republic, projects of GAČR number
201/09/P364 and P202/10/0573.

We believe that BenchmarX will become a traditional annual meeting oppor-
tunity for the whole benchmarking community.

Benchmarking Holistic Approaches to XML Tree

Pattern Query Processing

(Extended Abstract of Invited Talk)

Jiaheng Lu

School of Information and DEKE, MOE, Renmin University of China

jiahenglu@ruc.edu.cn

Abstract. In this talk I outlined and surveyed some developments in the

field of XML tree pattern query processing, especially focussing on holis-

tic approaches. XML tree pattern query (TPQ) processing is a research

stream within XML data management that focuses on efficient TPQ an-

swering. With the increasing popularity of XML for data representation,

there is a lot of interest in query processing over data that conforms to

a tree-structured data model. Queries on XML data are commonly ex-

pressed in the form of tree patterns (or twig patterns), which represent

a very useful subset of XPath and XQuery. Efficiently finding all tree

pattern matches in an XML database is a major concern of XML query

processing. In the past few years, many algorithms have been proposed

to match such tree patterns. In the talk, I presented an overview of the

state of the art in TPQ processing. This overview shall start by provid-

ing some background in holistic approaches to process TPQ and then

introduce different algorithms and finally present benchmark datasets

and experiments.

1 Research Problem

With the rapidly increasing popularity of XML for data representation, there is
a lot of interest in query processing over data that conforms to a tree-structured
data model. Since the data objects in a variety of languages (e.g. XPath [1],
XQuery [2]) are typically trees, tree pattern matching is the central issue. For
example, the following query

“Q=//book[author=‘‘Chen’’]//chapter/title”

can be represented as a twig (small tree) pattern. Intuitively, it returns the title
of chapter for a book that has an author named by “Chen”.

In practice, XML data may be very large, complex and have deep nested
elements. Thus, efficiently finding all twig patterns in an XML database is a
major concern of XML query processing. In the past few years, many algorithms
([10],[9]) have been proposed to match such twig patterns. These approaches (i)
first develop a labeling scheme to capture the structural information of XML doc-
uments, and then (ii) perform tree pattern matching based on labels alone with-
out traversing the original XML documents. For solving the first sub-problem

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 170–178, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Benchmarking Holistic Approaches to XML Tree Pattern Query Processing 171

level

author author title

book

chapter

"Suciu" "Chen" title section

"XML" texttitle

0

0.0 0.3 0.4 0.5

0.0.−1 0.3.−1 0.5.0 0.5.1

0.5.0.−1 0.5.1.0 0.5.1.1

keyword
0.5.1.1.1

book

bib
ε

chapterauthor

sectiontitle"..."

sectiontitle

title text

1

1.0 1.2

1.0.−1 1.2.11.2.0

1.2.1.0 1.2.1.1

1.2.1.1.11.2.1.1.0

1.1
title

3

4

5

0

1

2

Fig. 1. An XML tree with extended Dewey labels

of designing a proper labeling scheme, the previous methods use a tree-traversal
order(e.g. extended preorder [11]) or textual positions of start and end tags (e.g.
region encoding [3]) or path expressions(e.g. Dewey ID [20]) or prime numbers
(e.g. [23]). By applying these labeling schemes, one can determine the relation-
ship (e.g. ancestor-descendant) between two elements in XML documents from
their labels alone.

2 XML Tree Pattern Matching Algorithms

In the context of semi-structured and XML databases, tree-based query pattern
is a very practical and important class of queries. Lore DBMS [7] and Timber [8]
systems have considered various aspects of query processing on such data and
queries. XML data and various issues in their storage as well as query processing
using relational database systems have recently been considered in [16,25,20,17].

The recent papers (e.g. [15,24,5,4]) are proposed to efficiently process an XML
twig pattern. In paper [15], a new holistic algorithm, called OrderedTJ, is pro-
posed to process order-based XML tree query. In paper [24], an algorithm called
TwigStackListNot is proposed to handle queries with negation function. Chen et
al [5] proposed different data streaming schemes to boost the holism of XML
tree pattern processing. They showed that larger optimal class can be achieved
by refined data streaming schemes. In addition, Twig2Stack [4] is proposed for
answering generalized XML tree pattern queries. Note the difference between
generalized XML tree pattern and extended XML tree pattern here. Generalized
XML tree pattern is defined to include optional axis which models the expres-
sion in LET and RETURN clauses of XQuery statements. But extended XML tree
pattern is defined to include some complicated conditions like negative function,
wildcard and order restriction.

172 J. Lu

Besides the holistic algorithms, there are other approaches to match an XML
tree pattern, such as ViST ([22,21]) and PRIX ([18]), which transform an XML
tree pattern match to sequence match. Their algorithms mainly focus on ordered
queries, and it is non-trivial to extend those methods to handle unordered queries
and extended queries studied in this article. Note that the paper [16] made com-
prehensive experiments to compare different XML tree query processing algo-
rithms (including sequence match and holistic match) and concluded that the
family of holistic processing methods, which provides performance guarantees,
is the most robust approach.

From the aspect of theoretical research about the optimality of XML tree
pattern matching, Choi et al. [6] developed theorems to prove that it is impossible
to devise a holistic algorithm to guarantee the optimality for queries with any
combination of P-C and A-D relationships. Shalem et al. [19] researched the
space complexity of processing XML twig queries. Their paper showed that the
upper bound of full-fledge queries with parent-child and ancestor-descendant
edges are O(D), where D is the document size. In other words, their results
also theoretically prove that there exists no algorithm to optimally process an
arbitrary query Q/,//,∗.

Most of these works build on some labeling scheme of XML elements to fa-
cilitate the verification of the structural relationship. The most commonly used
labels are the containment and prefix labeling scheme. The containment labeling
was introduced by Zhang et al. [25] to facilitate the containment queries. The
verification of ancestor -descendant structural relationship is of the same com-
plexity as that of parent -child relationship by using regional labeling. Dewey ID
is the first example of using prefix labeling to represent XML data. It can be used
to preserve the path information during query processing. Recent work of Lu at
el. [14] utilize the extended Dewey encoding which encodes path information
including not only the element IDs but also the element names.

3 Benchmarking Holistic Algorithms

In this section, we present an extensive experimental study of five holistic algo-
rithm on real-life and synthetic data sets,including TreeMatch [13], TwigStack [3],
TJFast [14], OrderedTJ [15] and TwigStackListNot [24]. We implemented all tested
algorithms in JDK 1.4 using the file system as a simple storage engine. We
conducted all the experiments on a computer with Intel Pentium IV 1.7GHz
CPU and 2G of RAM. To offer a comprehensive evaluation of our new algo-
rithms, we conducted experiments on both synthetic and real XML data. The
synthetic dataset is generated randomly. There are totally 7 tags A,B,...,F ,G
in the dataset and tags are assigned uniformly from them. The real data are
DBLP (highly regular) and Treebank (highly irregular), which are included to
test the two extremes of the spectrum in terms of the structural complexity. The
recursive structure in TreeBank is deep (average depth: 7.8, maximal depth: 36).
We can easily find queries on this dataset to demonstrate the sub-optimality for
our tested algorithms.

Benchmarking Holistic Approaches to XML Tree Pattern Query Processing 173

3.1 Query Class Q/,//,∗

In this section, we show the experimental results for queries class Q/,//,∗. All
queries tested in our evaluation are shown in Figure 2 and 3.

Small size of main memory. In the first experiment, we did not allow the
outputlist in TreeMatch to buffer any elements in the main memory, meaning
that any element added to outputlist should be output to the secondary storage.
Then the requirement for main memory size is quite small. The purpose of this
experiment is to simulate the application where the document is extremely large
but the available main memory is relatively small. Table 1 shows the number of
total output elements (including intermediate and final results) and the corre-
sponding percentage of useful elements. We made the experiments by using three
different sizes of random documents. In particular, D1 has 100K nodes and D2
has 500K nodes and D3 has 1M nodes. From Table 1, we observe that for most of
queries, TreeMatch achieves the optimality in the sense that each of the output
elements does belong to final results. Figure 4(a) compares the performance of

(f) Q6 (sub−optimal)

A

B

*

B C

A

B C

B C B

A

C

A

*

A

B C

ED ED

(a) Q1 (optimal) (b) Q2 (optimal) (c) Q3 (sub−optimal)

(d) Q4 (optimal) (e) Q5 (optimal)

Fig. 2. Queries for random data

(g)Q13 (optimal)

title

inproceedings

author

sup

S

VP

IN

NP
IN NP

VBN

PP
VP

NN S ADJP PP

NP IN

S

author

article

cdrom

title

sup

inproceedings

author

(b) Q8(sub−optimal)(a) Q7(optimal) (c) Q9(optimal)

(e) Q11 (sub−optimal)(d) Q10(optimal) (f) Q12 (optimal)

Fig. 3. Queries for DBLP (Q7-Q9) and TreeBank (Q10-Q13) data

174 J. Lu

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190

Q1 Q2 Q3 Q4 Q5 Q6

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Query

TwigStack
TJFast

TreeMatch

 0

 10

 20

 30

 40

 50

 60

 70

Q1 Q2 Q3 Q4 Q5 Q6

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Query

TwigStack
TJFast

TreeMatch

(a) Small memory (b) Large memory

Fig. 4. Execution time of Q/,//,∗ on random data

TreeMatch with other three existing algorithms. Clearly, TreeMatch is the best
for all queries. This advantage is due to the fact that TreeMatch guarantees that
(almost) all of output elements belong to final results, which, in general, avoids
the I/O cost for outputting useless intermediate results.

Large size of main memory. In the second experiment, we allow the outputlist
to buffer all elements in the main memory. The purpose of this experiment is
to simulate the application where the available main memory is large so that
a big portion of documents can fit in the main memory. Table V shows the
maximal number of elements buffered in order to avoid outputting any useless
intermediate results. An obvious observation is that Q3 and Q6 need to buffer
many elements, but all other queries only need to buffer very small number of
elements. This also can be explained that all queries except Q3,Q6 belong to
the optimal query class. We compared the performance of three algorithms in
Figure 4(b) and Figure 5(a). Obviously, TreeMatch is superior to TwigStack and
TJFast, reaching 20%−95% improvement in execution time for all queries.

Medium size of main memory. In most real application, the main memory
size is not so large that the whole document can fit in memory, neither so limited
that only the elements in a single path can load in memory. In order to test
whether TreeMatch has the ability to fully exploit the available medium size of
main memory, we show the performance of algorithms in terms of the number
of output elements with varying the size of main memory in Figure 6. In this

Table 1. Number of output elements (O) and the percentage (P) of useful elements

for TreeMatch on random data

D1 D2 D3

Query O P O P O P

Q1 1321 100% 6576 100% 13290 100%

Q2 3558 100% 17757 100% 35649 100%

Q3 9575 98.8% 95291 99.9% 156954 94.5%

Q4 6635 100% 33055 100% 65691 100%

Q5 296 100% 1313 100% 2782 100%

Q6 7506 100% 94132 100% 127478 99.9%

Benchmarking Holistic Approaches to XML Tree Pattern Query Processing 175

Table 2. # of required buffered elements (Random data)

D1 D2 D3

Q1 5 6 6

Q2 9 10 11

Q3 528 27067 89779

Q4 6 7 8

Q5 7 8 10

Q6 520 26808 89627

 0

 5

 10

 15

 20

 25

Q13Q12Q11Q10Q9Q8Q7

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Query

TwigStack
TJFast

TreeMatch

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

Q17 Q18 Q19 Q23 Q24 Q25

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Query

TwigStackListNot
TreeMatch

(a) Q/,//,∗ (b) Q/,//,∗,<,¬

Fig. 5. Execution time on DBLP, TreeBank data (large memory)

experiment, we choose Q1 and Q6, since Q1 is an optimal query for TreeMatch,
but Q6 is sub-optimal. The experimental results show that the number of output
elements in TreeMatch is always much less than that in TwigStack and TJFast
for all sizes of main memory. In particular, for Q1, with the increasing of the size
of the available main memory, the number of output elements in TwigStack and
TJFast decreases linearly. The reason is that TwigStack and TJFast buffer the
intermediate results in the main memory and reduce the output of intermediate
results. But the numbers of output elements in TreeMatch remain the same,
which always equals the final result size. For query Q6, all algorithms are not
optimal. But TreeMatch still outputs much less elements than TwigStack and
TJFast.

Table 3. # of output elements (O) and the percentage (P) of useful elements for

TreeMatch on random data

D1 D2 D3

Query O P O P O P

Q14 3596 68.2% 17922 69.8% 35959 68.7%

Q15 2481 100% 12367 100% 24575 100%

Q16 1075 100% 5408 100% 10820 100%

Q17 19792 100% 100008 100% 199727 100%

Q18 3926 100% 20182 100% 39796 100%

Q19 19565 100% 190789 100% 246783 100%

176 J. Lu

 0

 10

 20

 30

 40

 50

 60

5040302010

of

 o
ut

pu
t e

le
m

en
ts

 (
K

)

of buffered elements (K)

TwigStack
TJFast

TreeMatch
Useful

 0

 10

 20

 30

605040302010

of

 o
ut

pu
t e

le
m

en
ts

 (
K

)

of buffered elements (K)

TwigStack
TJFast

TreeMatch
Useful

(a) Q1 (b) Q6

Fig. 6. Output data size with varying memory (medium memory)

Table 4. # of required buffered elements (Random data)

D1 D2 D3

Q14 3926 20182 39796

Q15 9 9 10

Q16 4 5 6

Q17 3 5 6

Q18 6 8 9

Q19 9 11 11

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140

Q14 Q15 Q16 Q20 Q21 Q22

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Query

OrderedTJ
TreeMatch

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70

Q14 Q15 Q16 Q20 Q21 Q22

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Query

OrderedTJ
TreeMatch

(a) Small memory (b) Large memory

Fig. 7. Execution time of Q/,//,∗,< on random data

4 Conclusion

In this paper, we proposed the problem of XML tree pattern matching and
surveyed some recent works and algorithms. Our comprehensive benchmarck-
ing compared five holistic algorithms and demonstrated their efficiency and
scalability. There is no clear winner in all scenarios in our experiments. But
TreeMatch[13] has an overall good performance in terms of running time and the
ability to process generalized tree patterns. More details and discussion about
our experiments can be found in [12].

Acknowledgement

This paper was partially supported by 863 National High-Tech Research Plan of
China (No: 2009AA01Z133), National Science Foundation of China (NSFC) (No.

Benchmarking Holistic Approaches to XML Tree Pattern Query Processing 177

60903056), Key Project in Ministry of Education (No: 109004) and SRFDP Fund
for the Doctoral Program (No. 20090004120002) and Program for New Century
Excellent Talents in University.

References

1. Berglund, A., Boag, S., Chamberlin, D.: XML path language (XPath) 2.0. W3C

Recommendation (January 23, 2007), http://www.w3.org/TR/xpath20/

2. Boag, S., Chamberlin, D., Fernandez, M.F.: Xquery 1.0: An XML query language.

W3C Working Draft (August 22, 2003)

3. Bruno, N., Srivastava, D., Koudas, N.: Holistic twig joins: optimal XML pattern

matching. In: Proc. of SIGMOD Conference, pp. 310–321 (2002)

4. Chen, S., Li, H.-G., Tatemura, J., Hsiung, W.-P., Agrawal, D., Candan, K.S.:

Twig2stack: Bottom-up processing of generalized-tree-pattern queries over XML

document. In: Proc. of VLDB Conference, pp. 19–30 (2006)

5. Chen, T., Lu, J., Ling, T.W.: On boosting holism in XML twig pattern matching

using structural indexing techniques. In: SIGMOD, pp. 455–466 (2005)

6. Choi, B., Mahoui, M., Wood, D.: On the optimality of the holistic twig join al-

gorithms. In: Mař́ık, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003.

LNCS, vol. 2736, pp. 28–37. Springer, Heidelberg (2003)

7. Goldman, R., Widom, J.: Dataguides: Enabling query formulation and optimiza-

tion in semistructured databases. In: Proc. of VLDB, pp. 436–445 (1997)

8. Jagadish, H.V., AL-Khalifa, S.: Timber: A native XML database. Technical report,

University of Michigan (2002)

9. Jiang, H., et al.: Holistic twig joins on indexed XML documents. In: Proc. of VLDB,

pp. 273–284 (2003)

10. Jiang, H., Lu, H., Wang, W.: Efficient processing of XML twig queries with OR-

predicates. In: Proc. of SIGMOD Conference, pp. 274–285 (2004)

11. Li, Q., Moon, B.: Indexing and querying XML data for regular path expressions.

In: Proc. of VLDB, pp. 361–370 (2001)

12. Lu, J.: Benchmarking holistic approaches to XML tree pattern query processing.

Invited talk slides for BenchmarX (2010),

http://datasearch.ruc.edu.cn/paper/keynote03.ppt

13. Lu, J., Ling, T.W., Bao, Z., Wang, C.: Extended XML tree pattern matching:

theories and algorithms. In: IEEE Transacion on Knowledge and Data Engineering

(to appear, 2010), http://datasearch.ruc.edu.cn/paper/TKDE2010.pdf

14. Lu, J., Ling, T.W., Chan, C., Chen, T.: From region encoding to extended dewey:

On efficient processing of XML twig pattern matching. In: VLDB, pp. 193–204

(2005)

15. Lu, J., Ling, T.W., Yu, T., Li, C., Ni, W.: Efficient processing of ordered XML

twig pattern matching. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.)

DEXA 2005. LNCS, vol. 3588, pp. 300–309. Springer, Heidelberg (2005)

16. Moro, M., Vagena, Z., Tsotras, V.J.: Tree-pattern queries on a lightweight XML

processor. In: VLDB, pp. 205–216 (2005)

17. O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs:

Insert-friendly XML node labels. In: SIGMOD, pp. 903–908 (2004)

18. Rao, P., Moon, B.: PRIX: Indexing and querying XML using prufer sequences. In:

ICDE, pp. 288–300 (2004)

http://www.w3.org/TR/xpath20/
http://datasearch.ruc.edu.cn/paper/keynote03.ppt
http://datasearch.ruc.edu.cn/paper/TKDE2010.pdf

178 J. Lu

19. Shalem, M., Bar-Yossef, Z.: The space complexity of processing XML twig queries

over indexed documents. In: ICDE (2008)

20. Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang,

C.: Storing and querying ordered XML using a relational database system. In: Proc.

of SIGMOD, pp. 204–215 (2002)

21. Wang, H., Meng, X.: On the sequencing of tree structures for XML indexing. In:

ICDE, pp. 372–383 (2005)

22. Wang, H., Park, S., Fan, W., Yu, P.S.: ViST: A dynamic index method for querying

XML data by tree structures. In: SIGMOD, pp. 110–121 (2003)

23. Wu, X., Lee, M., Hsu, W.: A prime number labeling scheme for dynamic ordered

XML trees. In: Proc. of ICDE, pp. 66–78 (2004)

24. Yu, T., Ling, T.W., Lu, J.: Twigstacklistnot: A holistic twig join algorithm for twig

query with not-predicates on XML data. In: Li Lee, M., Tan, K.-L., Wuwongse, V.

(eds.) DASFAA 2006. LNCS, vol. 3882, pp. 249–263. Springer, Heidelberg (2006)

25. Zhang, C., Naughton, J.F., DeWitt, D.J., Luo, Q., Lohman, G.M.: On support-

ing containment queries in relational database management systems. In: Proc. of

SIGMOD Conference, pp. 425–436 (2001)

Benchmarking the Compression of XML

Node Streams�

Radim Bača, Jǐŕı Walder, Martin Pawlas, and Michal Krátký

Department of Computer Science, VŠB–Technical University of Ostrava

17. listopadu 15, Ostrava, Czech Republic

{radim.baca,martin.pawlas,jiri.walder,michal.kratky}@vsb.cz

Abstract. In recent years, many approaches to XML twig pattern query

processing have been developed. Holistic approaches are particularly sig-

nificant in that they provide a theoretical model for optimal processing

of some query classes and have very low main memory complexity. Holis-

tic algorithms are supported by a stream abstract data type. This data

type is usually implemented using inverted lists or special purpose data

structures. In this article, we focus on an efficient implementation of a

stream ADT. We utilize previously proposed fast decoding algorithms

for some prefix variable-length codes, like Elias-delta, Fibonacci of order

2 and 3 as well as Elias-Fibonacci codes. We compare the efficiency of the

access to a stream using various decompression algorithms. These results

are compared with the result of data structures where no compression

is used. We show that the compression improves the efficiency of XML

query processing.

Keywords: stream ADT, XML node streams, variable-length codes, fast

decompression algorithms, XML query processing.

1 Introduction

In recent years, many approaches to XML twig pattern query (TPQ) processing
have been developed. Indexing techniques for an XML document structure have
been studied extensively and works such as [20,16,11,1,5,12,6,7] have outlined
basic principles of streaming scheme approaches. Nodes of an XML tree are
labeled by a labeling scheme [20,16] and stored in a stream array. Streaming
methods usually use the XML node tag as a key for one stream. Labels retrieved
for each query node tag are then merged by an XML join algorithm such as
structural join [1] or holistic join [5].

XML joins use a stream abstract data type which is usually implemented
using inverted lists or special purpose data structures [12,13]. Since XML node
labels are often small values, we can use universal variable-length codes for their
compression. The main disadvantage of these codes is their inefficient compres-
sion/decompression based on bit-by-bit algorithms. In [18], we introduced fast
� Work is partially supported by Grants of GACR No. P202/10/0573 and SGS, Tech-

nical University of Ostrava, No. SP/2010138, Czech Republic.

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 179–190, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

180 R. Bača et al.

decoding algorithms for some universal codes. In [4], we introduced a compression
scheme for a stream ADT. This data structure allows us to store variable-length
labels such as Dewey order without any storage overhead. In the article, the re-
sult of Fast Fibonacci coding was compared with often used RLE. In this paper,
we propose a benchmarking of this scheme; we compare building and accessing
of node streams using fast algorithms of more universal codes.

In Section 2, we describe an XML model. Section 3 introduces the stream ab-
stract data type. Since we utilize prefix variable-length codes, Section 4 includes
a brief description of these codes. In Section 5, we describe various compression
techniques applied to a stream. Section 6 proposes experimental results.

2 XML Model

An XML document can be modeled as a rooted, ordered, labeled tree, where
every node of the tree corresponds to an element or an attribute of the document
and edges connect elements, or elements and attributes, having a parent-child
relationship. We call such representation of an XML document an XML tree.
We can see an example of the XML tree in Figure 1. We use the term ’node’ to
define a node of an XML tree which represents an element or an attribute.

The labeling scheme associates every node in the XML tree with a label. These
labels allow us to determine structural relationships between nodes. Figures 1(a)
and 1(b) show the XML tree labeled by Containment labeling scheme [20] and
Dewey order [16], respectively.

The containment labeling scheme creates labels according to the document
order. We can use a simple counter, which is incremented every time we visit a
start or end tag of an element. The first and the second number of a node label
represent a value of the counter when the start tag and the end tag are visited,
respectively. In the case of Dewey order, every number in the label corresponds
to one ancestor node.

(a) (b)

Fig. 1. (a) Containment labeling scheme (b) Dewey order labeling scheme

Benchmarking the Compression of XML Node Streams 181

3 Stream ADT

Holistic approaches [5,7] use an abstract data type (ADT) called a stream. A
stream is an ordered set of node labels with the same schema node label. There are
many options for creating schema node labels (also known as streaming schemes
in holistic works like [5,7]). A cursor pointing to the first node label is assigned to
each stream. We distinguish the following operations of a T stream: head(T) – re-
turns the node label to the cursor’s position, eof(T) – returns true iff the cursor is
at the end of T , advance(T) – moves the cursor to the next node label. Implemen-
tation of the stream ADT usually contains additional operations: openStream(T)
– open the stream T for reading, closeStream(T) - close the stream.

The stream ADT is often implemented by an inverted list. In the following
section we describe a data structure called stream array [4], which implements
stream ADT.

3.1 Persistent Stream Array

Persistent stream array is a data structure using a common paged scheme [10],
where labels are stored in blocks on the secondary storage and the main memory
cache keeps blocks from the secondary storage. In Figure 2, we see an overview
of the scheme. The cache utilizes the least recently used (LRU) schema for a
selection of cache blocks [10]. Each block includes an array of tuples (node la-
bels) and a pointer to the next block in the stream. Pointers enable a dynamic
character of the data structure. We can easily insert or remove tuples from the
blocks using the node split or merge. Blocks do not have to be fully utilized;
therefore, we also keep the number of tuples stored in each block.

Insert and delete operations. The insert operation is very simple. We first
find the position of a new label within the stream and then we test whether
there is enough space for the new label or not. We can utilize a common label
shift between blocks or block split to create the space for a new label. The delete
operation first finds the position of the label which should be deleted and then
removes this label from the block. Block merge can be also utilized in this case.

Position searching within the stream during the insert can be quite a time-
consuming process since the streams can span many blocks. A more common

Fig. 2. Overview of the paged data structure

182 R. Bača et al.

operation in the case of an XML index is the insert operation of many labels
which corresponds to an XML tree insert. We address this issue in the next
section.

Bulk insert operation. The insert of a whole XML document (or several docu-
ments) is a quite common operation when working with XML databases. Loading
an XML document into the index can be processed significantly faster then using
the insert label-by-label. The situation is simple thanks to the fact that we create
labels in the same order in which they are stored in the stream. Therefore, during
the bulk insert operation we sequentially read the input XML document, we create
labels and we store the labels at the end of each stream. Compared to the insert we
do not have to search for the exact position of a new label in the stream. InSection 6,
we utilize the bulk insert algorithm to build the indexes.

3.2 Compressed Stream Array

There are two advantages of a stream array compression. The first advantage
is that we can decrease the size of the data file and, therefore, decrease the
number of disk accesses. Of course, there is extra time spent on the compression
and decompression of data. The compression and decompression time should
be lower or equal to time saved by having less disk accesses. As a result, the
compression algorithm should be fast and should have a good compression ratio.
The second advantage is that we can store variable-length tuples. Tuples in a
regular stream block are stored in an array with the fixed items’ size. The items’
size has to be equal to the size of the longest label stored in the stream array
and we waste quite a lot of space in this way.

The stream array has a specific feature which enables efficient compression.
We never access items in one block randomly during the stream read. Random
access to a tuple in the block may occur only during the stream open operation,
but the stream open is not processed very often. Therefore, we can keep the
block items encoded in the byte array and remember only the actual cursor
position in the byte array. The cursor is created during the stream open and it
also contains one tuple where we store the encoded label of the current cursor
position. Each label is encoded only once during the advance(T) operation. The
head(T) operation only returns the encoded tuple assigned to the cursor. Using
this schema we keep data compressed even in the main memory and have to
have only one decompressed tuple assigned to each opened stream.

4 Variable-Length Codes and Fast Decoding Algorithms

Since we utilize variable-length universal codes for the compression of XML
node streams, we briefly describe variable-length codes and fast decompression
algorithms in this section. We chose Elias-delta, Fibonacci of order 2 and 3, and
Elias-Fibonacci codes for the compression of streams. This selection is based on
benchmarking depicted in [19,17].

Benchmarking the Compression of XML Node Streams 183

4.1 An Overview of Universal Codes

The Elias-delta code is one of the most widely used prefix codes. This code was
introduced by Peter Elias [8]. The Elias-delta code E(n) for any positive integer
n is coded as follows:

1. Let B(n) be the binary representation of the number n without insignificant
0-bits. Let B′(n) be B(n) without the leading 1-bit.

2. Let L(n) be the length of B(n) as the binary value (meaning the number of
bits of B(n)).

3. Let Z(n) be a sequence of zeros, the number of zeros is equal to the length
of L(n)− 1.

4. Elias-delta code is then the concatenation E(n) = Z(n)L(n)B′(n).

The Fibonacci code is based on Fibonacci numbers [14] and it was introduced
in [9]. In [2], authors introduced the generalized Fibonacci code. Fibonacci num-
bers of order m (m ≥ 2) are defined as follows:

F
(m)
i = F

(m)
i−1 + F

(m)
i−2 + . . . + F

(m)
i−m , for i ≥ 1,

where F
(m)
−m+1 = F

(m)
−m+2 = . . . = F

(m)
−2 = 0,

and F
(m)
−1 = F

(m)
0 = 1.

For m = 2 we obtain the classical Fibonacci numbers 1, 2, 3, 5, 8, 11, ... etc.

Definition 1. Fibonacci sum
Let S

(m)
n be the sum of Fibonacci numbers. The sum is defined as follows:

S(m)
n =

⎧⎪⎨
⎪⎩

0, for n < −1
n∑

i=−1

F
(m)
i , for n ≥ −1

Consequently, the coding algorithm for the Fibonacci code F (m)(n) of order m
for any positive integer n is as follows:

1. If n = 1, then F (m)(n) = 1m. END.
2. If n = 2, then F (m)(n) = 01m. END.
3. Find k such that S

(m)
k−2 < n ≤ S

(m)
k−1. Let Q = n− Sk−2 − 1.

4. Compute F (m)(Q).
5. Append 01m as a suffix to F (m)(Q). If necessary, append leading 0-bits to

make F (m)(n) of length m + k.

The Fibonacci code has the property which means that this code starts with a
sequence of m adjacent 1-bits; however, this sequence is not presented in another
part of the code.

The Elias-Fibonacci code EF (n) for any positive integer n is as follows:
EF (n) = F (2)(L(n))B(n) [18]. It means it consists of two parts. The second

184 R. Bača et al.

Table 1. Examples of codewords for some integers for Elias-delta, Fibonacci of order

2 and 3, and Elias-Fibonacci codes

n E(n) F(2)(n) F(3)(n) EF (n)

1 1 11 111 11

2 0100 011 0111 0110

3 0101 0011 00111 0111

4 01100 1011 10111 001100

5 01101 00011 000111 001101

6 01110 10011 100111 001110

7 01111 01011 010111 001111

8 00100000 000011 110111 1011000

9 00100001 100011 0000111 1011001

10 00100010 010011 1000111 1011010

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

1000 0001010111101000 0000010000000011 00000011010111 010011111101000

part is a binary representation of the number n labeled B(n). The first part
is the length of B(n), labeled L(n), encoded by the Fibonacci code of order 2.
We do not utilize a delimiter in this code; however, we utilize a sequence of two
1-bits between the end of F (2)(L(n)) and start of B(n). In other words, if we
reach two 1-bits in a code, we read L(n) and we know that we must read L(n)−1
bits to complete B(n). Examples of all proposed codes are shown in Table 1.

4.2 Fast Decoding Algorithms

We utilize the fast decoding algorithms introduced in [18]. The basic idea of all
fast algorithms is to read an input stream byte by byte instead of bit by bit.
This algorithm is based on a finite automaton; a precomputed mapping table is
used for each state of the automaton. The precomputed table included in each
automaton state allows converting segments of the input stream’s bytes directly
into decoded numbers for each state. The mapping table also defines the new
automaton state for each segment. The algorithm for mapping table building
is based on a conventional bit-oriented algorithm. During the building of the
mapping table we must consider all states and possibilities when we read the
current segment. Authors stated that the fast algorithms are up to 5.2× more
efficient than conventional decoding algorithms.

5 Compression of XML Node Streams

In this section, we describe methods utilized for the compression of XML node
streams. We must keep in mind that labels are ordered in a block. We use the
following methods: 1. Fixed-length tuple, 2. Variable-length tuple, 3. Common
prefix compression, 4. Variable-length code compression, 5. Variable-length code
compression with the reference item. Obviously, the first two methods are not real

Benchmarking the Compression of XML Node Streams 185

compression methods, and we use them for a comparison with other methods.
We describe some of these methods in the following sections in more detail. In
the following we assume that an integer is stored using 4Bytes.

5.1 Fixed-Length and Variable-Length Tuple Methods

The variable-length tuple method is usable only in the case of a path-based
labeling scheme like Dewey order. In the case of the fixed-length tuple method
and Dewey order, we must set a maximal tuple length and all shorter tuples
must be filled by a gap value.

Example 1. Let us have these two tuples: 〈1, 2〉 and 〈1, 2, 3, 7〉. When using the
variable-length tuple method they occupy 6×4B + 2 B for the dimension length
of these two tuples. If we use the fixed-length tuple method, the first tuple must
be filled, so it looks like 〈1, 2, 0, 0〉. Consequently, these two tuples occupy 8×4B.

5.2 Common Prefix Compression

Common prefix compression is based on the idea of Run Length Encoding
(RLE) [15]. Due to ordering of the tuples in a block, the ancestor of a tuple
is very similar and therefore we do not have to store each values.

Example 2. Let us have the following tuples: 〈1, 2, 3, 7, 9, 7〉, 〈1, 2, 3, 7, 5, 6, 7〉,
〈1, 2, 3, 7, 7, 0, 0, 7〉. The first tuple cannot be compressed, due to the fact that it
has no ancestor. If we compare the second tuple with the first it differs only in the
3 last dimensions, and the third one differs in the last 4 dimensions. Therefore
we can store the number of similar dimensions and all differences. The result
is as follows: 0 − 〈1, 2, 3, 7, 9, 7〉, 4 − 〈5, 6, 7〉, 4 − 〈7, 0, 0, 7〉. Using this method
we obtain 7 × 4 B for first, 4 × 4B for second, and 5 × 4 B for the third tuple.
In total, we obtain 16× 4B =64B. For fixed-length we need 8× 3× 4B =96B,
because all tuples must be extended to the length of 8 dimensions.

5.3 Variable-Length Code Compression

In this case, data is encoded by variable-length codes proposed in Section 4. This
kind of compression is based on the behavior of the variable-length codes that the
smaller number is coded by a shorter code. This assumption is achieved for both
Containment and Dewey order labeling schemes. For the Containment labeling
scheme each label includes the range and a small number of the tree depth. We
assume that the range represented by a variable-length code will occupy fewer
bits than the range represented by binary coding. Similarly, for Dewey order
each subtree starts with 1; therefore, the labels are assumed to be small values.

Example 3. Let us have a tuple 〈1, 2, 3, 7〉. After encoding the tuple with Fi-
bonacci of order 2, the tuple is stored as a sequence of 11011001101011bits,
which occupy 2 B instead of original 16B (it means 4× 4B).

186 R. Bača et al.

5.4 Variable-Length Code Compression with Reference Item

Variable-length codes proposed in Section 4 are appropriate for the compres-
sion of small values. However, numbers in the case of the Containment labeling
scheme grow rapidly. In this case, the variable-length codes become inefficient
and compression does not work appropriately. This issue is less noticeable in the
case of Dewey order. Tuples in a stream array are sorted and we can use this
feature to compress a tuple with knowledge of its ancestor. The first tuple in the
block is stored unchanged. In order to keep all other numbers small, we store
the differences between the current tuple and the previous tuple. The first tuple
and all differences are than encoded with any of presented codes. Obviously, the
difference coding is a well-known technique in the field of data compression [15].

Example 4. Let us have these two tuples: 〈1000, 200, 300, 7〉 and
〈1005, 220, 100, 7〉. From this example we see that we can subtract first 2
dimensions. After subtraction we get tuples 〈1000, 200, 300, 7〉 and 〈5, 20, 100, 7〉,
which are encoded faster and also occupy less space.

6 Experimental Results

In our experiments1, we use the XMARK2 data collection with the factor 2,
240MB in size; it includes 4,000k nodes. We generate labels for all nodes by
means of two proposed labeling schemes: Containment labeling scheme with
the fixed-length of labels and Dewey order labeling scheme with the variable-
length. Since labeled path streaming scheme was used [3,7], 512 streams were
created. The nodes in streams are ordered. The stream array and all compression
algorithms have been implemented in C++3.

We provide a set of tests where we simulate real work with the stream array
and measure the influence of the compression. For each test we randomly select
100 streams and read them until the end. This is processed by holistic join as
well structural join approaches. Accessing all labels in one stream is called query
processing. As usual, tests are processed with a cold cache (OS cache as well
as cache buffer of indices). For all tests we measure index size, query processing
time, Disk Access Cost (DAC), and time of index building. The query processing
time is the time needed for opening each randomly selected stream and the time
needed for decompression of all number codes stored in the stream. DAC is
equal to the number of disk accesses during query processing. For the time
measurement, we repeat the tests 10 times and calculate the average time. In
tables and figures we use the abbreviation ’RI’ instead of ’reference item’, so
’Fibonacci 2 RI’ means ’Fibonacci 2 with the reference item’.

1 The experiments were executed on an Intel� Core 2 Duo 2.4 Ghz, 512 kB L2 cache;

3GB RAM; Windows 7.
2 http://monetdb.cwi.nl/xml/
3 Test application: http://db.cs.vsb.cz/download/streamarray.zip

Benchmarking the Compression of XML Node Streams 187

Table 2. Index size, query processing time, DAC, and build time for the Containment

labeling scheme

Index Size Query Processing Time DAC Build Time
[kB] [s] [s]

Fixed length 97,708 3.23 3,551 58.22
Common Prefix 85,736 2.37 3,119 52.54
Elias-delta 71,448 2.21 2,611 82.49
Fibonacci 2 73,688 2.18 2,695 97.16
Fibonacci 3 67,860 2.12 2,475 92.29
Elias-Fibonacci 71,000 2.12 2,588 92.36
Elias-delta RI 36,252 1.55 1,356 48.30
Fibonacci 2 RI 37,040 1.56 1,365 61.21
Fibonacci 3 RI 39,472 1.55 1,467 54.98
Elias-Fibonacci RI 38,780 1.52 1,437 60.03

6.1 Results for Containment Labeling Scheme

The results for the fixed-length Containment labeling scheme are shown in
Table 2 and Figure 3. As we see in Figure 3a the Elias-delta code with the
reference item produces the smallest index file; however, the most efficient query
processing time was achieved by the Elias-Fibonacci code with the reference item
(see Figure 3b). Consequently, Elias-delta code with the reference item achieved
the lowest DAC; however, Elias-Fibonacci provides a more efficient decoding
time for all numbers larger than 6 due to the fact that these codewords are
shorter [18]. The effect of faster decoding for the Elias-Fibonacci code outper-
forms lower DAC for Elias-delta. All variable-length codes produce very similar
results for the index size, query processing time, and DAC and we see that these
codes outperform often used RLE; the index size is approximately 2.4× lower.
Obviously, the compression with the reference item is more efficient then the
compression without reference item. The compression saves approximately 68 %
of the index size, 50 % of the query processing time, and 68 % of DAC. The
results of the index build time are depicted in Figure 3d. Compression using
varible-length codes with the reference item achieved up-to 1.2× more efficient
index build time than the fixed-length tuple method. Obviously, the Elias-delta
code with the reference item outperforms all other codes.

6.2 Results for Dewey Order Labeling Scheme

The results for variable-length Dewey order are shown in Table 3 and Figure 4.
Obviously, all variable-length codes produce very similar results; the compression
saves approximately 80% of the index size, 64% of the query processing time,
and 80% of DAC. Morevover, the build time is approximately 2.8×more efficient
than in the case of the fixed-length tuple method. In this case, value differences
are very often zeros which are coded with the shortest codeword. For Elias-
delta, the shortest codeword includes only 1 bit while other codes use more
bits. Therefore, the Elias-delta code outperforms all other codes. This fact also
provides an opportunity to improve compression in the future, when the number
of zeros can be reduced by RLE.

188 R. Bača et al.

(a) (b)

(c) (d)

Fig. 3. (a) Index size (b) Query processing time (c) DAC for (d) Build time for the

Containment labeling scheme

Table 3. Index size, query processing time, DAC, and build time for the Dewey order

labeling scheme

Index Size Query Processing Time DAC Build Time
[kB] [s] [s]

Fixed length 274,620 9.63 9,968 132.98
Variable length 127,156 3.06 4,624 79.81
Common Prefix 77,676 2.35 2,832 55.78
Elias-delta 41,504 1.59 1,516 74.51
Fibonacci 2 41,124 1.58 1,496 86.30
Fibonacci 3 43,232 1.58 1,571 80.00
Elias-Fibonacci 43,192 1.59 1,578 86.24
Elias-delta RI 28,076 1.29 1,026 46.68
Fibonacci 2 RI 30,896 1.45 1,126 54.78
Fibonacci 3 RI 35,172 1.51 1,285 48.98
Elias-Fibonacci RI 31,576 1.37 1,157 58.78

Although we utilized conventional bit-by-bit coding algorithms for the
variable-length codes, the build time for these methods is more efficient than
the build time for methods not using variable-length codes. Consequently, the
build time is more influenced by the index size than the coding time.

Dewey order is the more important labeling scheme from the XML data up-
date point of view; therefore, it is important to see that we achieve smaller index
sizes than with the Containment labeling scheme. It is because two neighboring
labels are similar; they usually differ only in the last positions. The compres-
sion using the reference item is more efficient than the compression without the
reference item.

Benchmarking the Compression of XML Node Streams 189

(a) (b)

(c) (d)

Fig. 4. (a) Index size (b) Query time (c) DAC (d) Build time for the Dewey order

labeling scheme

7 Conclusion

In this article, we evaluated various compression methods of XML node steams.
This data structure is often used by structural as well as holistic query processing
approaches. We tested the two most common labeling schemes: Containment
and Dewey order labeling schemes. We performed a series of experiments with
various compression techniques. Variable-length codes with the reference item
are always more efficient than methods not using the reference item. We propose
that Dewey order is more suitable for compression. It is a suitable feature of
Dewey order since this labeling scheme is much more appropriate for updates of
XML data. Moreover, we see that compression is an interesting way to improve
the query processing time; the query processing time was improved up-to 7.5×.
In our future research we want to improve the proposed compression methods
for XML node streams.

References

1. Al-Khalifa, S., Jagadish, H.V., Koudas, N.: Structural Joins: A Primitive for Effi-

cient XML Query Pattern Matching. In: Proceedings of ICDE 2002, pp. 141–152.

IEEE CS, Los Alamitos (2002)

2. Apostolico, A., Fraenkel, A.: Robust Transmission of Unbounded Strings Using

Fibonacci Representations. IEEE Transactions on Information Theory 33(2), 238–

245 (1987)

190 R. Bača et al.

3. Bača, R., Krátký, M.: TJDewey – On the Efficient Path Labeling Scheme Holistic

Approach. In: Chen, L., Liu, C., Liu, Q., Deng, K. (eds.) Database Systems for

Advanced Applications. LNCS, vol. 5667, pp. 6–20. Springer, Heidelberg (2009)

4. Bača, R., Pawlas, M.: Compression of the Stream Array Data Structure. In: Pro-

ceedings of the 9th Annual International Workshop on DAtabases, TExts, Specfi-

cations and Objects, DATESO 2009. CEUR Workshop Proceedings, vol. 471, pp.

23–31 (2009)

5. Bruno, N., Srivastava, D., Koudas, N.: Holistic Twig Joins: Optimal XML Pat-

tern Matching. In: Proceedings of ACM SIGMOD 2002, pp. 310–321. ACM Press,

New York (2002)

6. Chen, S., Li, H.-G., Tatemura, J., Hsiung, W.-P., Agrawal, D., Candan, K.S.:

Twig2Stack: Bottom-up Processing of Generalized-tree-pattern Queries Over XML

documents. In: Proceedings of VLDB 2006, pp. 283–294 (2006)

7. Chen, Z., Korn, G., Koudas, F., Shanmugasundaram, N., Srivastava, J.: Index

Structures for Matching XML Twigs Using Relational Query Processors. In: Pro-

ceedings of ICDE 2005, p. 1273. IEEE CS, Los Alamitos (2005)

8. Elias, P.: Universal Codeword Sets and Representations of the Integers. IEEE

Transactions on Information Theory 21(2), 194–203 (1975)

9. Fraenkel, A., Klein, S.: Robust Universal Complete Codes as Alternatives to Huf-

fiman Codes. Technical Report Tech. Report CS85-16, Dept. of Appl. Math.,

The Weizmann Institute of Science, Rehovot (1985)

10. Garcia-Molina, H., Ullman, J., Widom, J.: Database Systems: The Complete Book.

Prentice Hall, Englewood Cliffs (2002)

11. Grust, T., van Keulen, M., Teubner, J.: Staircase Join: Teach a Relational DBMS

to Watch Its (Axis) Steps. In: Proceedings of VLDB 2003, pp. 524–535 (2003)

12. Jiang, H., Lu, H., Wang, W., Ooi, B.: XR-Tree: Indexing XML Data for Effi-

cient Structural Join. In: Proceedings of ICDE, India, pp. 253–264. IEEE CS, Los

Alamitos (2003)

13. Krátký, M., Bača, R., Snášel, V.: Implementation of XPath Axes in the Multi-

dimensional Approach to Indexing XML Data. In: Lindner, W., Mesiti, M., Türker,

C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 219–229.

Springer, Heidelberg (2004)

14. Leonardo of Pisa (known as Fibonacci). Liber Abaci. 1202

15. Salomon, D.: Data Compression: The Complete Reference, 3rd edn. Springer,

New York (2004)

16. Tatarinov, I., et al.: Storing and Querying Ordered XML Using a Relational

Database System. In: Proceedings of ACM SIGMOD 2002, pp. 204–215. ACM

Press, New York (2002)

17. Walder, J., Krátký, M., Bača, R.: Benchmarking Coding Algorithms for the R-

tree Compression. In: Proceedings of the 9th Annual International Workshop on

Databases, Texts, Specifications and Objects, DATESO 2009. CEUR Workshop

Proceedings, vol. 471, pp. 32–43 (2009)

18. Walder, J., Krátký, M., Bača, R., Platoš, J., Snášel, V.: Fast Decoding Algorithms

for Variable-Lengths Codes. Submitted in Information Science (February 2010)

19. Williams, H.E., Zobel, J.: Compressing Integers for Fast File Access. The Computer

Journal 42(3), 193–201 (1999)

20. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On Supporting Con-

tainment Queries in Relational Database Management Systems. In: Proceedings of

ACM SIGMOD 2001, pp. 425–436. ACM Press, New York (2001)

Generation of Synthetic XML for Evaluation of

Hybrid XML Systems

David Hall and Lena Strömbäck

Linköpings universitet, S-581 83 Linköping, Sweden

Abstract. Hybrid XML storage offers a large number of alternative

shredding choices. In order to automatically determine optimal shredding

strategies it is crucial to have an insight into how the structure of a XML

data set affects the performance. Since the structure can take many forms

and the number of possible mappings is huge it is important to gain

insights on the relation between structure and performance for formats

that are actually used. By taking real-world data sets and modify the

structure in steps you can see how the performance and other measurable

properties change. We describe how a data generator can be used to

produce a synthetic data set based on an existing data set, by using four

different models. We compare the performance on the original data set

with the performance on the different synthetic models.

1 Introduction

The world wide web has evolved into a platform where diverse systems and ap-
plications exchange data and documents. Many commonly used data formats
used by these applications are based on XML and there is an increasing need
for efficient data management for the web. The structure of XML documents
may vary from a flat, regular, structure to a deep, irregular, structure. The
flat, data-centric, structure is common for formats exported directly from rela-
tional databases, while the document-centric structure is common for documents
containing text with markup. The large variation of possible structures is one
important characteristic of XML.

The flexibility of XML puts new demands on data management systems to
capture all properties of the XML data model while achieving high performance.
Three main approaches for storage of XML data have been used: native XML
databases; shredding XML documents into relations; and hybrid storage that
combines native and relational solutions. In principle, data-centric structures
are easy to map into relations with both a performance-efficient and easy-to-
use relational structure while it is harder to find a good shredding for the more
irregular document-centric structure.

Hybrid storage is provided by the major relational database vendors (Oracle,
IBM and Microsoft). It allows data to be stored using mapping to relations but
also allows storage of sub-trees of XML data using the XML support available in
the different RDBMSs. By using the hybrid storage model the user is not limited
to either native or relational storage but can choose storage model for different

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 191–202, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

192 D. Hall and L. Strömbäck

parts of the data based on for instance query performance, bulk loading speed
or document reconstruction speed.

This leaves the user with a large number of possible choices for one schema and
the choice between relational and XML storage of different parts of the schema
is a trade-off between speed and a representation as close to the original XML
schema as possible. The large number of possible mappings makes it practically
hard to compare the choices to find metrics to easily determine suitable mapping
in terms of speed and ease of use. For this purpose tools such as HShreX[1] can
be used to aid the user in the process of mapping. HShreX makes it possible to
map XML data to database systems with hybrid storage support and allows us
to evaluate different storage alternatives in an efficient manner.

As a new field, storage of XML have seen much improvement over the last
decade. There was early a need to compare systems when it comes to their
capabilities and performance to allow users to select database system which
match their need. In traditional database research benchmarks have been used to
find a common ground for testing and comparing existing and proposed systems.
Benchmarks are also important since they help developers of database systems
to pinpoint limitations in their own systems. The benchmarks typically consist
of one or several data sets and sets of queries for that data. Examples of such
benchmarks are the Wisconsin benchmark[2] and the Datamation benchmark[3]
for relational database systems and OO7[4] for object-oriented database systems.
Since the possible ways to represent and structure data in the XML data model
is far greater than in relational and object databases the data sets used in these
benchmarks must be more diverse or only cover a certain application of XML. A
number of benchmarks, such as XMach-1[5], XMark[6] and XOO7[7], have been
developed since the advent of XML.

However, most existing benchmarks only allow limited possibilities of varying
the XML structure. In this work our aim is to create a data set that as far as
possible resembles real data but also allows us to vary different parameters so
that we can evaluate connections between the parameters and performance. By
varying these parameters we could find thresholds for where different storage
strategies are optimal for the given data.

In this paper we evaluate the possibility of recreating a data set using synthetic
data to the extent that the synthetic data can be used for testing the behavior
of hybrid XML systems when altering XML structural properties such as depth
and fan-out. The paper starts with motivating why these structural properties
are interesting and why we want to recreate existing data sets. We then give
an overview of existing benchmarks and systems for generation of synthetic
XML data and why the latter can be used to create data sets useful in testing
hybrid XML storage. This is followed by a description of the properties of the
original data set that we want to model in the data generator to be able to test
for their influence when it comes to measurable characteristics. After this we
evaluate the approach by comparing authentic and synthetic data in a hybrid
XML system and show that by using a data generator and a template, that
specifies an element structure that is similar in number and depth to the original,

Generation of Synthetic XML for Evaluation of Hybrid XML Systems 193

we can generate a synthetic data set that behaves similar to the original data in
terms of performance.

2 Motivation

In order to automatically determine optimal mapping strategies for hybrid XML
storage it is crucial to have an insight into how the structure of a certain XML
data set affects the performance of the hybrid XML database system. The speed
at which queries are processed, bulk loading is performed and documents are
reconstructed depends on the structure of the original XML document and the
mapping chosen for storing it in the hybrid XML system. We have studied the
structure of several real-world XML-based formats, such as UniProt[8], SBML[9],
DBLP[10], Open Street Map[11] and House Legislative Documents[12], and have
found a large variation of structure between them. Some formats also show varia-
tion in structure between different documents adhering to one standard or within
one document itself. The large variation of structure in XML can be illustrated
by the fact that different measures for describing structures of XML documents
have been proposed in the literature[13,14,15,16].

Since the structure of XML can take many forms and the number of possible
hybrid mappings based on the different structures is huge it is important to gain
more interesting insights on the relation between structure and performance that
are relevant for formats that are actually used. This can be done by taking real-
world data sets and modify the structure in steps and see how the performance
and other measurable properties change. Since we want to be able to modify
the existing data set in a number of ways we need a description of the data
set that lends itself to easy manipulation. Using the description we should not
only be able to produce an artificial version of the data set that for all practical
purposes behaves identically to the original but also allows for modification of
structure and/or data properties. The identically behaving version is to be used
for verifying that the artificial model of the format behaves identical to the
original version. If it does not we have not been able to model the format with
enough precision.

As an example on how the structure affects performance we can look at the
UniProt[8] data set and some of the different storage alternatives for data af-
fected by the XPath query

/uniprot/entry[comment/subcellularLocation/location/text()="Cytoplasm"]/accession

We could potentially make nine different choices when it comes to use the two
alternatives of shredding or store as XML; (1) shred everything and store nothing
as XML or store any sub-tree beneath (2) location, (3) subcellularLocation,
(4) comment, or (5) entry as XML and shred everything above that. In addition
to that we also have the previous mentioned choices (1)–(4) with accession
either shredded or stored as XML, leaving us with a total of nine choices. The
purely shredded version will result in high performance for query processing
while reconstruction and serialization of data into a XML tree will take longer
time than the alternative where the entry sub-tree is stored as XML. Figure 1

194 D. Hall and L. Strömbäck

Fig. 1. Run time [ms] for different mappings in UniProt

Fig. 2. Run time [ms] for different mappings in PSI-MI

shows the run-times for the different mappings. In fig. 2 we have choosen a
similar query and set of mappings for another data set, PSI MI. For this data
set, we get a similar performance increase by shredding the XML. However, the
increase in performance for shredding one level is not the same as in the first
data set due to the difference in structure between the data sets.

To further explore this we need a synthetic data set that is easy to modify.
Modifications that could be interesting to perform using the artificial data set
are e.g. change of depth or fan-out of the element tree, change of size of data
or change of selectivity when used in queries. The description language for the
format should thus have parameters for specifying both the overlying structure
(as a schema for the XML-based format) but also, a varying number of elements
and different instances of data of varying values and size. The number of ele-
ments, size and values of data often occur according to some distribution why a
way to define such is needed.

3 Current Benchmarks and Data Generators

By using constructed data sets and queries the community has been given tools
to test systems and techniques for handling XML data. Benchmarks are thought
of as ways to capture data sets and queries typical of one or several applications
of XML systems. They are aimed at comparing capabilities and performance

Generation of Synthetic XML for Evaluation of Hybrid XML Systems 195

of said systems, but not mainly intended for testing different techniques for
storage and querying in the development of XML data management systems.
A number of benchmarks have been proposed, e.g. [5,6,7]. They use data sets
with both data-centric and document-centric properties. Some of them ([5,6])
use synthetically generated data with a scaling factor of the resulting data set
as the only parameter that can be adjusted by the user.

Micro benchmarks are data sets (and queries) aimed at testing one particular
property. The Michigan benchmark[17] is a micro benchmark made for testing
basic operations like selections, joins and aggregation and how it is affected by
particular properties of XML structure such as fan-out and depth. The main
purpose of the Michigan benchmark is to pinpoint particular properties of XML
database systems in order to improve them, not to compare different systems.
They also aim at development of efficient ways to store data and process queries
when it comes to structures with different fan-out and depth.

Data generators are used to create data sets when real data sets are not
available or when you want more flexibility in the data to test with. Several of the
benchmarks use some kind of data generator to create their data set which makes
it possible to change some input parameters (in the case of benchmarks often a
scaling factor of the total database size). There are a number of different features
a data generator can have, but in principle all use some format specification and
a repetitive, random, iteration. The specification states the structure as well as
the data (values). In some of the more advanced data generators[18,19] a number
of constraints can be added so that certain wanted properties can be achieved,
such as how often a certain element or element value should appear (e.g. if a
value should be unique or appear several times to allow joins).

ToXgene[20] was developed as a part of the Toronto XML engine and is used
as a data generator in the XBench benchmark. ToXgene uses a template format
similar to XML schema but with added elements for specifying distributions
(used for e.g. element counts, numerical values and size of text data). Geng and
Dobbie describes a method[21] for modifying existing XML data sets to achieve
specific selectivity, depth, fan-out and size, meant to be used for producing data
sets to be used for XML semantic query optimization.

In our case we want to study the efficiency for any given XML schema and
data set when stored in a hybrid XML database system. Therefore, we cannot
get satisfying results using a fixed data set from a benchmark. Since benchmarks
are aimed at other goals than ours they usually have structure and data that
allow a multitude of queries interesting for comparing performance of XML sys-
tems. They are not meant for studying how structure affects performance. Micro
benchmarks have such a goal, however, but the data set, like the one used in
the Michigan benchmark, has structures that differ a great deal from real-world
data formats we have studied. In this work we would like to benefit from us-
ing a data generator to allow us to base experiments on existing structures and
data but allow for easy manipulation to test how different characteristics affects
performance.

196 D. Hall and L. Strömbäck

4 Generating Synthetic Data

Our goal in this work is to generate data similar to real data sets, but where
we can vary properties to determine thresholds for storage strategies. As a first
step we will investigate if the relation between data size and query times for a
selected database holds for generated data sets with a somewhat other structure.
We say that the generated artificial data sets behave like the original if it has
the same results on performance tests.

The following definitions will be used hereafter in this article:

Definition 1. Two measures A and B are similar if |A − B| is less than 10%
of A and B.

Definition 2. The selectivity Sel(Q, D) of a query Q on a data set D is the
number of answers for Q on D.

We will use ToXgene and try a number of different methods to generate data
sets in order to see what parameters influence the performance of the queries.
Other goals are to see what is needed to get the same results for a certain query
and if ToXgene has enough expressiveness to achieve this. First we only generate
the parts of the data set needed to get a result for the query that is similar to
the original data. We need to have a selectivity that reflects that of the original
document, i.e. we need to have about the same number of rows in the result. For
this part we only reconstruct the paths that are needed to represent the data we
use in the query.

We continue by testing how we can modify the generated data set to get
behavior like the original. We suspect that the size of the document affects speed
and thus will add random string data so the amount of data in the XML parts
stored in the database is equal to that in the original document. We also want to
test if the number of XML elements and its structure affects the performance of
queries when taking size into consideration. This will be achieved by specifying
different recursive element structures with different depths and widths.

We define four different models of increasing complexity: Skeleton – the min-
imum structure that is needed for a certain query, Random data – the previous
model with the addition of strings of random data to get the correct size of the
data set, Flat elements – the skeleton model but with addition of elements with
depth 1 to achieve the correct size and right amount of XML elements of the
data set, Recursive elements – the skeleton model but with addition of elements
with varying depth to recreate both data size and element structure of the data
set.

4.1 Skeleton Model

Our first model is a rudimentary model that is enough to perform a certain query
on the data set.

Definition 3. A Skeleton data set S given a query Q and a data set D, is a
dataset where Sel(Q, D) is similar to Sel(Q, S). This means the selectivity is
similar for the query on the two data sets.

Generation of Synthetic XML for Evaluation of Hybrid XML Systems 197

For our tests we generate a minimal dataset that is a Skeleton
model of Q. We illustrate how it works by using the previous
mentioned XPath query for the UniProt data set. Thus we need
to construct elements for the paths /uniprot/entry/accession and
/uniprot/entry/comment/subcellularLocation/location. Since child ele-
ments can occur several times under one element we need to specify occurrence
to get a structure similar to the original document. The ToXgene Template
Specification Language allows you to set minimum and maximum occurrence of
an element. Here we specify that the root element, uniprot, should occur once,
the entry element exactly 1000 times and for accession we have specified a
distribution to use.
<tox-document name="output/up">

<element name="uniprot" minOccurs="1" maxOccurs="1">
<complexType>

...
<element name="entry" maxOccurs="1000" minOccurs="1000">

<complexType>
<element name="accession" tox-distribution="r1" maxOccurs="30">
...

By examining a subset consisting of 1000 entries from the original data set we
have found that accession occurs between one (the most common) and 23 times
(for one entry) in an entry with a distribution that can best be approximated as
a exponential distribution and with a mean of 1.458 times. We therefore define
a distribution like this and refer to it in accession.

<tox-distribution name="r1" type="exponential" mean="1.45" minInclusive="1" maxInclusive="30"/>

Similar distributions are added for comment, subcellularLocation and lo-
cation. We also need to specify how often the value cytoplasm should occur to
achieve the right selectivity. The value ”Cytoplasm” occurs 49 percent of the
instances in the location node, ”Secreted” 7 percent, and so on (the rest have
been omitted from the listing).
<element name="location" tox-distribution="locdist" minOccurs="1" maxOccurs="3">

<complexType>
...
<tox-alternatives>

<tox-option odds="49"><tox-expr value="’Cytoplasm’"/></tox-option>
<tox-option odds="7"><tox-expr value="’Secreted’"/></tox-option>
...

</tox-alternatives>
</complexType>

</element>

We now get a number of location elements with the value ”Cytoplasm” that
is near the number in the original data set. The actual number will differ some
due to the random process. We also get a number of accession elements for the
query described earlier that is near the results for the original data set.

4.2 Random Data

Our second approach is based on the fact that earlier tests have suggested a link
between data size and query times. Therefore we fill the document with elements
containing random data until the size is the same as in the original data set.

198 D. Hall and L. Strömbäck

Definition 4. Path(Q, D) is the set of all sub-paths accessed while executing a
query Q on the data set D.

Definition 5. A Random dataset R given a query Q and a data set D is a
Skeleton dataset such that for all paths in Path(Q, D) the size of data stored in
the path is similar in R and D.

For our example data set and query this means that the entry elements are
filled with random data. We insert new elements with given distribution whose
only role is to create more content that is really never used. One of these pay-
load elements are placed between the accession and the comment element, the
second in comment and the third after comment. The resulting synthetic data set
is now also similar in total size to that of the original, authentic, data set.

<element name="x_payload">
<simpleType>

<restriction base="string">
<tox-string maxLength="36656" minLength="1100"

tox-distribution="entryfirstpayload"/>
</restriction>

</simpleType>
</element>

4.3 Flat Elements

The next step is to add an additional number of elements so we reach the number
of elements present in the original data set.

Definition 6. A Flat dataset F given a query Q and a data set D is a Random
data set such that for all paths in Path(Q, D) the number of elements stored in
the path is similar in F and D.

Here we produce a constant number of elements in each entry. 77 elements
between accession and comment, and 126 elements after comment.

<tox-distribution name="firstelemrepeat" minInclusive="126" maxInclusive="126" type="constant"/>
...
<element name="rec_payload_1" maxOccurs="77" tox-distribution="firstelemrepeat">

<simpleType>
<restriction base="string">

<tox-string minLength="5" maxLength="10"/>
</restriction>

</simpleType>
</element>

4.4 Recursive Elements

By specifying a recursive element with constraints for number and distributions
for recursion that reflects the original data set, and adding a small amount of
data to each element we now have both a structure and size of the data set that
is similar to the original data set.

Generation of Synthetic XML for Evaluation of Hybrid XML Systems 199

Definition 7. A Recursive data set R given a query Q and a data set D is
a Flat dataset such that for all paths in Path(Q, D) the path lengths of each
sub-tree are similar in R and D.

<element name="rec_payload_1" maxOccurs="77" tox-recursionLevels="reclev1">
<complexType>

<element name="name" minOccurs="1" maxOccurs="3">
<simpleType>

<restriction base="string">
<tox-string minLength="5" maxLength="20"/>

</restriction>
</simpleType>

</element>
<element name="rec_payload_1" maxOccurs="3"></element>

</complexType>
</element>

5 Evaluation

The goal with the evaluation is to test if our synthetic data sets have a similar
performance as the real data.

As a first step we have to verify that we get approximately the same number of
answers as we get from the original data set for a given query. This is necessary
for comparing response times with the original data set. Table 1 shows that
we managed to achieve a number of values that are approximately the number
in the original data set. The column for ”Cytoplasm” shows the number of
location elements with that value, the column for ”accession” shows the number
of accession values our example query will produce. Since ToXgene randomly
select the number of elements and what value to insert, the number will vary
somewhat between runs. The other models for synthetic data sets produce the
same number of resulting rows as skeleton.

Table 1. Resulting rows for authentic and synthetic data

Cytoplasm accession

original 384 271

skeleton 392 237

To test performance for each of the synthetic models and for the original
model we have measured the run time for the XPath query mentioned in section
2. For each of the mappings (1)–(5) we have repeated the query 20 times and the
number given here is an average. These test have been performed using Microsoft
SQL Server 2008 which has support for XML types and using HShreX for gen-
erating table definitions and transforming data. The tests have been performed
on a system with AMD Athlon 64X2 Dual Core processor 5600+ with 2.90 GHz
clock frequency and 4 GiB RAM running the 64-bit version of Windows Vista.
No XML indexes have been created.

200 D. Hall and L. Strömbäck

Table 2. Timings for original and synthetic data

shredded (1) location (2) subcell. . . (3) comment (4) entry (5)

original 8.6 ms 21.1 ms 22.7 ms 96.1 ms 631.1 ms

skeleton 8.2 ms 21.9 ms 22.7 ms 77.3 ms 62.4 ms

random 8.6 ms 23.4 ms 30.4 ms 99.9 ms 112.3 ms

flat elements 8.6 ms 20.3 ms 25.8 ms 103.0 ms 609.2 ms

recursive elements 7.0 ms 24.2 ms 26.5 ms 98.1 ms 633.3 ms

In table 2 the timings for the query using the different mappings (1)–(5) in
the original and the different synthetically constructed data sets are shown.

Our tests show that the query processing times for our skeleton model data
set is substantially faster than that of the original data set which shows that we
have not captured enough properties of the original data set to mimic it. For the
random data model the query times for native XML storage increases somewhat
but only with a factor less than 2 for entry compared to the skeleton model. By
using the recursive element model we have achieved a run time for the example
query when entry is mapped as XML that is within 1 percent of run time for
the original data set with same mapping. For the shredded storage alternative
the difference between the models is very low.

6 Discussion and Future Work

We have found that a synthetic model of an XML document needs to reflect not
only the amount of data but also have structure reminding of that in the original
document to get similar performance in a hybrid XML database.

In general it is possible to build the synthetic data with available tools. How-
ever, the selectivity of the data set, as exemplified in table 1, can be hard to
model. If there are both global and local constraints, for example: 14 location
elements with the value ”cytoplasm” in the entire document but maximum 2
such elements under each subcellularLocation, there is a need to calculate
how both these constraints boil down to the probability of the value being ”cy-
toplasm”. With even more constraints it gets even more complicated to keep
track of and model. The difficulty with modeling constraints can be exempli-
fied by the comment element in the Flat elements model. Here the number of
comment sub-elements were over-shot by 30 percent when striving for getting
local constraints right. Thus the resulting run time, as shown in table 2, for the
query on mapping 4 in the model is higher than expected. As a solution, [18,19]
discusses using global and local count constraints, DTD and XPath expressions
to generate XML data. These techniques look promising for accurate and simple
modeling of data sets.

Our tests have been performed on unindexed data. If the existing support
for XML indexes is used the resulting performance will be different. Therefore it
would be interesting to study if the performance similarity holds also when using

Generation of Synthetic XML for Evaluation of Hybrid XML Systems 201

XML indexes and if so, use this knowledge to find mappings that are optimal
when using XML indexes.

Our final goal is to automatically vary the structure of the data set and
test the efficiency of different mappings for each structure variation. This could
be achieved by building an environment that analyze existing data sets, then
generate synthetic variants of these data sets, iterates over a number of possible
parameters and for each of those variants evaluate and compare mappings by
running queries over the different mappings.

7 Conclusion

In this paper we studied the problem of finding relevant XML data sets to exper-
imentally study the properties of hybrid XML storage. We first discussed current
benchmarks for relational databases, object databases and XML databases, and
the special characteristics of XML structure and what demands it poses on
benchmarks. We gave a short overview on benchmarks, micro benchmarks and
data generators in the XML area. We then described how a data generator can
be used to produce a synthetic data set based on an existing data set, by using
four different approaches. One approach, skeleton model, only contains enough
data to answer a certain query. In the next approach, random data, we add
random string to different elements in the document to get the same size as in
the original. The third approach, flat elements, is to create the same amount
of elements in the document as in the original. The last approach, recursive el-
ements, is to create the same amount of elements but with a overall structure
that matches that in the original data set.

We compared the performance of an example query on the original data
set with the performance on the different models we created. This compari-
son showed that it is possible to use a data generator, like ToXgene, to create a
synthetic data set that behaves like a, rather complex, original data set.

Acknowledgements

We acknowledge the financial support from the Swedish Research Council and
the Center for Industrial Information Technology.

References

1. Strömbäck, L., Ȧsberg, M., Hall, D.: HShreX - A Tool for Design and Evaluation of

Hybrid XML Storage. In: Int. Work. on Database and Expert Systems Applications

(DEXA), pp. 417–421 (2009)

2. Bitton, D., DeWitt, D.J., Turbyfil, C.: Benchmarking Database Systems: A Sys-

tematic Approach. In: Proc. of the 1983 Very Large Database Conf. VLDB (1983)

3. Anon, et al.: A Measure of Transaction Processing Power. In: Stonebraker, M. (ed.)

Readings in Database Systems. Morgan Kaufmann, San Francisco (1988)

202 D. Hall and L. Strömbäck

4. Carey, M.J., DeWitt, D.J., Jeffrey, F.N.: The OO7 Benchmark. In: Proc. of the

1993 ACM SIGMOD International Conference on Management of Data, pp. 12–21

(1993)

5. Böhme, T., Rahm, E.: XMach-1: A Benchmark for XML Data Management. In:

Proc. of German database conference BTW 2001, Oldenburg. Springer, Berlin

(2001)

6. Schmidt, A.R., Waas, F., Kersten, M.L., Florescu, D., Manolescu, I., Carey, M.J.,

Busse, R.: The XML Benchmark Project. Technical report, CWI, Amsterdam, The

Netherlands (2001)

7. Nambiar, U., Lacroix, Z., Bressan, S., Li Lee, M., Li, Y.: XML Benchmarks Put

to the Test. In: IIWAS (2001)

8. The UniProt Consortium The Universal Protein Resource (UniProt). Nucleic Acids

Res. 36, D190–D195 (2008)

9. Hucka, M., Finney, A., Sauro, H.M., et al.: The Systems Biology Markup Language

(SBML): A Medium for Representation and Exchange of Biochemical Network

Models. Bioinformatics 19(4), 524–531 (2003)

10. DBLP XML Records, http://acm.org/sigmoid/dblp/dp/index.html

11. Haklay, M., Weber, P.: OpenStreetMap: User-generated Street Maps. IEEE Per-

vasive Computing 7(4), 12–18 (2008)

12. Legislative Documents in XML at the United States House of Representatives,

http://xml.house.gov/

13. Nierman, A., Jagadish, H.V.: Evaluating Structural Similarity in XML Documents.

In: Proc. of the 5th Int. Work. on the Web and Databases (2002)

14. Freire, J., Haritsa, J., Ramanath, M., Roy, P., Simeon, J.: StatiX: Making XML

Count. In: Proc. of ACM SIGMOD Conference, pp. 181–191 (2002)

15. Flesca, S., Manco, G., Masciari, E., Pontieri, L., Pugliese, A.: Fast Detection of

XML Structural Similarities. IEEE Trans. Know Data Eng. 7(2), 160–175 (2005)

16. Polyzotis, N., Garofalakis, M.N.: XCLUSTER Synopses for Structured XML Con-

tent. In: Proc. of the 22nd Int. Conf. on Data Engineering (2006)

17. Runapongsa, K., Patel, J.M., Jagadish, H.V., Chen, Y., Al-Khalifa, S.: The Michi-

gan benchmark: Towards XML Query Performance Diagnostics. In: Proc. VLDB

Conference, vol. 31 (2003)

18. Cohen, S.: Count-Constraints for Generating XML. In: Etzion, O., Kuflik, T.,

Motro, A. (eds.) NGITS 2006. LNCS, vol. 4032, pp. 153–164. Springer, Heidelberg

(2006)

19. Cohen, S.: Generating XML Structure Using Examples and Constraints. In: Proc.

of the VLDB Endowment, pp. 490–501 (2008)

20. Barbosa, D., Mendelzon, A., Keenleyside, J., Lyons, K.: ToXgene: A Template-

based Data Generator for XML. In: Proc. of the 2002 ACM SIGMOD int. conf. on

Management of data (2002)

21. Geng, K., Dobbie, G.: An XML Document Generator for Semantic Query Opti-

mization Experimentation. Int. J. of Web Information Systems 3(1), 26–40 (2007)

http://acm.org/sigmoid/dblp/dp/index.html
http://xml.house.gov/

Benchmarking Publish/Subscribe-Based

Messaging Systems

Kai Sachs1,�, Stefan Appel1 ,�, Samuel Kounev2, and Alejandro Buchmann1

1 Databases and Distributed System Group, TU Darmstadt, Germany

lastname@dvs.tu-darmstadt.de
2 Descartes Research Group, Karlsruhe Institute of Technology

skounev@acm.com

Abstract. Publish/subscribe-based messaging systems are used increas-

ingly often as a communication mechanism in data-oriented web appli-

cations. Such applications often pose serious performance and scalability

challenges. To address these challenges, it is important that systems are

tested using benchmarks to evaluate their performance and scalability be-

fore they are put into production. In this paper, we present jms2009-PS, a

new benchmark for publish/subscribe-based messaging systems built on

top of the SPECjms2007 standard workload. We introduce the benchmark

and discuss its configuration parameters showing how the workload can be

customized to evaluate various aspects of publish/subscribe communica-

tion. Finally, we present a case study illustrating how the benchmark can

be used for performance analysis of messaging servers.

1 Introduction

Publish/subscribe-based messaging systems are used increasingly often as a
communication mechanism in data-oriented web applications such as Web 2.0
applications, social networks, online auctions and information dissemination ap-
plications to name just a few [1]. Moreover, the publish/subscribe paradigm
is part of major technology domains including Enterprise Service Bus, Enter-
prise Application Integration, Service-Oriented Architecture and Event-Driven
Architecture. With the growing adoption of these technologies and applica-
tions, the need for benchmarks and performance evaluation tools in the area
of publish/subscribe systems increases. While general benchmarks for message-
oriented middleware (MOM) exist, no benchmarks specifically targeted at pub-
lish/subscribe communication have been proposed. In this paper, we present a
new benchmark for publish/subscribe-based messaging systems built on top of
the SPECjms2007 standard workload.

SPECjms2007 is the current industry-standard benchmark for MOM servers
based on the JMS (Java Message Service) standard interface [2]. It was devel-
oped by the Java subcommittee of the Standard Performance Evaluation Cor-
poration (SPEC) with the participation of TU Darmstadt, IBM, Sun, BEA,
� Partly supported by the German Federal Ministry of Education and Research under

grant 01IA08006 (ADiWa).

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 203–214, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

204 K. Sachs et al.

Sybase, Apache, Oracle and JBoss. One of the major benefits of SPECjms2007
is that, in addition to providing a standard workload and metrics for MOM per-
formance, the benchmark provides a flexible and robust framework for in-depth
performance evaluation of messaging infrastructures. It allows to create custom
workload scenarios and interactions to stress selected aspects of the MOM in-
frastructure. Examples of such user-defined scenarios can be found in [3] and [4].
While SPECjms2007 includes some limited publish/subscribe communication as
part of the workload, the focus of the benchmark is on point-to-point (PtP) com-
munication via queues which dominate the overall system workload [5]. More-
over, the workload does not exercise message filtering through JMS selectors
which is an important feature of publish/subscribe messaging that typically
causes the most performance and scalability issues.

To address the need for a workload focused on publish/subscribe messaging,
we developed the new jms2009-PS benchmark which uses the SPECjms2007
workload as basis. A preliminary version of the benchmark was demonstrated at
the SIGMETRICS/Performance 2009 Demo Competition [6]. In this paper, we
introduce the benchmark and discuss its configuration parameters showing how
the workload can be customized to evaluate different aspects of publish/subscribe
communication. Overall, jms2009-PS provides more than 80 new configuration
parameters allowing the user to customize the workload in terms of the num-
ber of topics, the number of subscriptions, the number and type of selectors,
and the message delivery modes. After discussing the configuration parameters,
we present a case study, in which we demonstrate how to use jms2009-PS for
evaluating alternative ways of implementing publish/subscribe communication
in terms of their overhead, performance and scalability.

The rest of this paper is structured as follows: We start with some background
on message-oriented middleware and the SPECjms2007 benchmark in Section 2.
Following this, we present the jms2009-PS benchmark in Section 3. We intro-
duce the various configuration parameters and show how the workload can be
customized. Finally, in Section 4, we present our case study and wrap up with
some concluding remarks in Section 5.

2 Background

2.1 Message-Oriented Middleware

Message-oriented middleware (MOM) is a specific class of middleware that sup-
ports loosely coupled communication among distributed software components
by means of asynchronous message-passing as opposed to a request/response
metaphor. The loose coupling of communicating parties has several important
advantages: i) message producers and consumers do not need to know about each
other, ii) they do not need to be active at the same time to exchange information,
iii) they are not blocked when sending or receiving messages [7].

The Java Message Service (JMS) [2] is a standard Java-based interface for
accessing the facilities of enterprise MOM servers. JMS supports two messaging

Benchmarking Publish/Subscribe-Based Messaging Systems 205

Fig. 1. Point-to-point messaging Fig. 2. Pub/sub messaging

models: point-to-point (PtP) and publish/subscribe (pub/sub). With PtP mes-
saging each message is sent to a specific queue and is retrieved and processed
by a single consumer whereas with pub/sub messaging each message is sent to
a specific topic and it may be delivered to multiple consumers interested in the
topic. Consumers are required to register by subscribing to the topic before they
can start receiving messages. In the pub/sub domain, message producers are
referred to as publishers and message consumers as subscribers. JMS queues and
topics are commonly referred to as destinations. The two messaging models are
depicted in Figures 1 and 2.

The JMS specification defines several modes of message delivery with different
quality-of-service attributes:

Non-Persistent/Persistent: In non-persistent mode, pending messages are
kept in main memory buffers while they are waiting to be delivered and are
not logged to stable storage. In persistent mode, the JMS provider takes
extra care to ensure that no messages are lost in case of a server crash. This
is achieved by logging messages to persistent storage such as a database or
a file system.

Non-Durable/Durable: JMS supports two types of subscriptions, durable
and non-durable. With non-durable subscriptions a subscriber will only re-
ceive messages that are published while he is active. In contrast to this,
durable subscriptions ensure that a subscriber does not miss any messages
during periods of inactivity.

Non-Transactional/Transactional: A JMS messaging session can be trans-
actional or non-transactional. A transaction is a set of messaging operations
that are executed as an atomic unit of work.

In addition to the above described delivery modes, JMS allows the specification
of selectors to enable message filtering. When publishing messages, producers
can specify property-value pairs (e.g., ”color=red”) which are stored in the mes-
sage headers. When subscribing, consumers can specify a selector to receive only
messages with certain property values (e.g., ”color=blue AND size=42”). Selec-
tors are specified using a subset of the SQL92 conditional expression syntax. For
a more detailed introduction to MOM and JMS the reader is referred to [8,2].

206 K. Sachs et al.

2.2 SPECjms2007

The SPECjms2007 benchmark models a supermarket supply chain where RFID
technology is used to track the flow of goods. The participants involved are the
headquarters (HQ) of the supermarket company, its stores (SM), its distribution
centers (DC) and its suppliers (SP). SPECjms2007 defines seven interactions
between the participants in the scenario:

1. Order/shipment handling between SM and DC
2. Order/shipment handling between DC and SP
3. Price updates sent from HQ to SMs
4. Inventory management inside SMs
5. Sales statistics sent from SMs to HQ
6. New product announcements sent from HQ to SMs
7. Credit card hot lists sent from HQ to SMs

Interactions 1 and 2 represent a chain of messages while the rest of the inter-
actions include a single message exchange [4]. A single parameter called BASE
determines the rate at which interactions are executed and is used as a scaling
factor. The benchmark is implemented as a Java application comprising multiple
JVMs and threads distributed across a set of client nodes. For every destination
(queue or topic), there is a separate Java class called Event Handler (EH) that
encapsulates the application logic executed to process messages sent to that des-
tination. Event handlers register as listeners for the queue/topic and receive call
backs from the messaging infrastructure as new messages arrive. In addition,
for every physical location, a set of threads (referred to as driver threads) is
launched to drive the benchmark interactions that are logically started at that
location.

2.3 Related Work

Over the last decade several proprietary and open-source benchmarks for evalu-
ating MOM platforms have been developed and used in the academia and indus-
try including SonicMQ’ Test Harness [9], IBM’s Performance Harness for Java
Message Service [10], Apache’s ActiveMQ JMeter Performance Test [11] and
JBoss’ Messaging Performance Framework [12]. Using these and other similar
benchmarks, numerous performance studies have been conducted and published,
see for example [13,14,15,16,17,18,19,20]. While the benchmarks we mentioned
have been employed extensively for performance testing and system analyses,
unfortunately, they use artificial workloads that do not reflect any real-world
application scenario. Furthermore, they typically concentrate on stressing in-
dividual MOM features in isolation and do not provide a comprehensive and
representative workload for evaluating the overall MOM server performance.
For a more detailed discussion of related work we refer the interested reader to
[4,21].

Benchmarking Publish/Subscribe-Based Messaging Systems 207

Table 1. Configuration parameters supported for each message type

Intr. Message Location T P D Q TD ST Description

order DC � � � � � - Order sent from SM to DC.
orderConf SM � � � � � - Order confirmation sent from DC to

SM.
shipDep DC � � � � � - Shipment registered by RFID readers

upon leaving DC.1
statInfo-
OrderDC

HQ � � � � � - Sales statistics sent from DC to HQ.

shipInfo SM � � � � � - Shipment from DC registered by
RFID readers upon arrival at SM.

shipConf DC � � � � � - Shipment confirmation sent from SM
to DC.

callForOffers HQ � � � - � � Call for offers sent from DC to SPs
(XML).

offer DC � � � � � - Offer sent from SP to DC (XML).
pOrder SP � � � � � - Order sent from DC to SP (XML).
pOrderConf DC � � � � � - Order confirmation sent from SP to

DC (XML).2
invoice HQ � � � � � - Order invoice sent from SP to HQ

(XML).
pShipInfo DC � � � � � - Shipment from SP registered by RFID

readers upon arrival at DC.
pShipConf SP � � � � � - Shipment confirmation sent from DC

to SP (XML).
statInfo-
ShipDC

HQ � � � � � - Purchase statistics sent from DC to
HQ.

3 priceUpdate HQ � � � - � - Price update sent from HQ to SMs.

4 inventoryInfo SM � � � � � - Item movement registered by RFID
readers in the warehouse of SM.

5 statInfoSM HQ � � � � � - Sales statistics sent from SM to HQ.

6 product-
Announcement

HQ � � � - � - New product announcements sent
from HQ to SMs.

7 creditCardHL HQ � � � - � - Credit card hotlist sent from HQ to
SMs.

3 jms2009-PS – A Pub/Sub Benchmark

We now present the new jms2009-PS benchmark which is specifically targeted at
pub/sub systems. We developed jms2009-PS using the SPECjms2007 [4] work-
load and its scaling strategy as a basis [22]. Overall, we added more than 80
new configuration parameters allowing the user to customize the workload to
his needs. All configurations are identical in terms of the number of subscrip-
tions and the message throughput generated for a given scaling factor, however,
they differ in six important points:

1. number of topics and queues used
2. number of transactional vs. non-transactional messages
3. number of persistent vs. non-persistent messages
4. total traffic per topic and queue
5. complexity of used selectors (filter statements)
6. number of subscribers per topic

While the benchmark is targeted at pub/sub workloads, it allows to use queue-
based PtP messaging in cases where messages are sent to a single consumer. This

208 K. Sachs et al.

allows to compare the costs of queue-based vs. topic-based communication for
different message delivery modes. In the case of topic-based communication, for
each interaction several implementations are supported. In the first implementa-
tion, all types of messages are exchanged using one common topic per interaction.
Each message consumer (e.g., orders department in DC1) subscribes to this topic
using a selector specifying two filters that define the messages he is interested in:
message type (e.g., orders) and location ID (e.g., DC 1). The message type and
location ID are assigned as properties of each message published as part of the
respective interaction. In the second implementation, a separate topic is used for
each type of message (e.g., one topic for orders, one for invoices). Consequently,
message consumers do not have to specify the message type at subscription time,
but only their location ID. It is easy to see that the number of subscribers per
topic is lower and the filtering is simpler (only one property to check) in the
second implementation compared to the first one. In the first implementation,
more traffic is generated per topic, while in the second implementation the traffic
per topic is less but the system has to handle more topics in parallel. Therefore,
the two implementations stress the system in different ways and allow to eval-
uate different performance aspects. In addition to these two implementations,
the benchmark supports several further implementations which allow to stress
additional aspects of topic-based communication. The user can select an imple-
mentation by means of the Target Destination (TD) parameter discussed in the
next section.

3.1 Configuration Parameters

In this section, we describe in detail the new configuration parameters introduced
in jms2009-PS. The parameters can be configured on a per message type basis.
Table 1 shows the parameters supported for each message type. In the following,
we briefly describe each parameter.

Transactional [true|false] (T). Specifies whether messages should be sent as
part of a transaction.

Persistent [true|false] (P). Specifies whether messages should be sent in
persistent mode.

Durable [true|false] (D). Specifies whether a durable subscription should be
used by message consumers.

Queue [true|false] (Q). Specifies whether a queue or a topic should be used
in cases where there is a single message consumer.

Target Destination (TD). Specifies for each message type the set of topics
and respective selectors that should be used to distribute messages to the target
consumers. The benchmark supports six different target destination options. De-
pending on the selected configuration, it automatically takes care of configuring
message properties (set by producers) and selectors (set by consumers at subscrip-
tion time) to guarantee that messages are delivered to the correct consumers. The

Benchmarking Publish/Subscribe-Based Messaging Systems 209

Table 2. Target destination options

Setting Description Selector

LocationID-
MessageType

A separate topic for each combination of location
instance and message type is used, e.g., a topic
per DC for order messages: DC1_OrderT for DC 1,
DC2_OrderT for DC 2, etc.

– No selectors are needed.

MessageType A single topic per message type is used, e.g., a
topic DC_OrderT for order messages of all DCs. – TargetLocationID=

’locationID’

Interaction A single topic per interaction is used, e.g., a topic
Interaction1_T for all messages involved in Inter-
action 1.

– TargetLocationID=
’locationID’

– MessageType=
’messageType’

LocationType A single topic per location type is used, e.g., a
topic SM_T for all messages sent to SMs. – TargetLocationID=

’locationID’
– MessageType=

’messageType’

LocationID A separate topic for each location instance is
used, e.g., a topic SM1_T for all messages sent to
SM 1.

– MessageType=
’messageType’

Central One central topic for all messages is used, e.g.,
one topic T for all messages that are part of the
seven interactions.

– LocationType=
’locationType’

– TargetLocationID=
’locationID’

– MessageType=
’messageType’

target destination options supported by jms2009-PS are shown in Table 2. For
each option, the set of topics and the required selectors are described.

Subscription Type [IN |OR|SET] (ST). In Interaction 2, a distribution
center (DC) sends a CallForOffers to suppliers (SP). Each SP offers a subset
of all product families and is only interested in the CallForOffers messages
targeted at the respective product families. There are multiple ways to implement
this communication pattern and jms2009-PS supports the following options:

– Use a separate topic for each product family: The SP has to subscribe
to all topics corresponding to the product families he is interested in and no
selector is needed.

– Use one topic for all product families: The SP has to subscribe to
this topic using a selector to specify the product families he is interested in.
jms2009-PS offers three ways to define the respective subscription:
• Using multiple OR operators: The SP places a single subscrip-

tion using the following selector: ProductFamily=”PF1” OR ProductFam-
ily=”PF2” OR ... OR ProductFamily=”PFn”
• Using a single IN operator: The SP places a single subscription using

the following selector: ProductFamily IN (”PF1”,”PF2”,...,”PFn”)
• Using a set of subscriptions: The SP subscribes for each product

family he is interested in separately:
ProductFamily=”PF1” [· · ·] ProductFamily=”PFn”

210 K. Sachs et al.

4 Case Study

4.1 Introduction

We now present a case study illustrating how jms2009-PS can be used for per-
formance analysis of messaging servers. The environment in which we conducted
our case study is depicted in Figure 3. ActiveMQ server was used as a JMS server
installed on a machine with two quad-core CPUs and 16 GB of main memory.
The server was run in a 64-bit JRockit 1.6 JVM with 8 GB of heap space. A
RAID 0 disk array comprised of four disk drives was used for maximum perfor-
mance. ActiveMQ was configured to use a file-based store for persistent messages
with a 3.8 GB message buffer. The jms2009-PS drivers were distributed across
three machines. To further increase the network capacity, a separate GBit link
was installed between the JMS server and the third driver machine. The latter
was configured to always use this link when accessing the server. The drivers
were distributed across the machines in such a way that the network traffic was
load-balanced between the two networks.

ActiveMQ 4.1.2
2 x 4-Core Intel Xeon 2.33 GHz
16 GB RAM, 4 SAS RAID 0
Windows 2003 Server 64bit

1GBit1GBit

jms2009-PS Driver
IBM x3850 Server
4 x 2-Core Intel Xeon 3.5 GHz
16 GB, 6 SAS RAID 10
Debian Linux 2.6.26

jms2009-PS Driver
Sun Fire X4440 x64 Server
4 x 4-Core Opteron 8356 2.3 GHz
64 GB RAM, 8x146 GB RAID 10
Debian Linux 2.6.26

jms2009-PS Driver
Sun Sparc Enterprise T5120
8-Core T2 1.2 GHz
32 GB RAM, 2x146 GB RAID 0
Solaris 10 10/08 SPARC

Fig. 3. Experimental Environment

4.2 Test Scenarios

We studied three different scenarios which were identical in terms of the to-
tal number of messages sent and received for a given scaling factor (BASE).
Transactions and persistent message delivery were configured as defined in the
SPECjms2007 workload description [4]. The scenarios differ in the number of
message destinations and destination types used for communication. Figure 4
illustrates the configurations used in the three scenarios for two of the message
types: order messages sent from SMs to DCs and orderConf messages sent from
DCs to SMs (cf. Table 1).

– Scenario I (SPECjms2007-like Workload): The workload is configured
similar to the SPECjms2007 workload, i.e., it uses mainly queues for com-
munication. Each location instance has its own queue for each message type
and therefore there is no need for selectors.

– Scenario II (Pub/Sub with Multiple Topics): For each message type,
a separate topic is used, i.e., the TD configuration parameter is set to
MessageType (cf. Table 2).

Benchmarking Publish/Subscribe-Based Messaging Systems 211

Recv

OrderQueue1 OrderQueuen
Other Queues

Topics

SM1 DC1

Pub Sub

SMn DCn

Recv

Pub Sub

Recv

ConfQueue1 ConfQueuen

DC1 SM1

Pub Sub

DCn SMn

Recv

Pub Sub

Incoming Order Topic

Other Topics

SM1

Pub

SMn

Pub

(DC=1) (DC=n)

Order Confirmation Topic

Recv

DC1 DCn

Sub

(DC=n)

Recv

Sub

(DC=1)

DC1

Pub

DCn

Pub

(SM=n)

Recv

SM1 SMn

Sub

(SM=n)

Recv

Sub

(SM=1)(SM=1)

Message Bus

SM1

Pub

SMn

Pub

(DC=1)
(T=Order)

(DC=n)
(T=Order)

Recv

DC1 DCn

Sub

(DC=n)
(T=Order)

Recv

Sub

(DC=1)
(T=Order)

DC1

Pub

DCn

Pub

(SM=1)
(T=Conf.)

(SM=n)
(T=Conf.)

SM1 SMn

Sub

(SM=n)
(T=Conf.)

Recv

Sub

(SM=1)
(T=Conf.)

Scenario I

Scenario II

Scenario III

Se
t

Pr
op

er
ti

es Selectors
Se

t
Pr

op
er

ti
es Selectors

Se
t

Pr
op

er
ti

es Selectors

Fig. 4. Considered Scenarios

– Scenario III (Pub/Sub with Message Bus): One topic is used for all
messages, i.e., the TD configuration parameter is set to Central (cf. Table 2).

The three scenarios differ mainly in terms of the flexibility they provide. While
Scenario I is easy to implement given that no properties or selectors are nec-
essary, it requires a reconfiguration of the MOM server for each new location
or message type since new queues have to be set up. In contrast, Scenarios II
and III, which only use topics, provide more flexibility. In Scenario II, a recon-
figuration of the MOM server is necessary only when introducing new message
types. Scenario III doesn’t require reconfiguration at all since a single topic (mes-
sage bus) is used for communication. In addition, Scenarios II and III support
one-to-many communication while the queue-based interactions in Scenario I
are limited to one-to-one communication. One-to-many communication based
on pub/sub allows to easily add additional message consumers, e.g., to maintain
statistics about orders. On the other hand, the use of a limited number of topics
in Scenarios II and III degrades the system scalability. As shown in the next sec-
tion, the jms2009-PS benchmark allows to evaluate the trade-offs that different
configurations provide in terms of flexibility, performance and scalability.

212 K. Sachs et al.

 0

 20

 40

 60

 80

 100

200 400 600 800

C
P

U
 U

til
iz

at
io

n

BASE

I
II
III

 0

 5

 10

 15

 20

 25

50 100 150 200

C
P

U
 U

til
iz

at
io

n

BASE

I
II

III

Scenario Max Load CPU/BASE Avg. Dlv. Latency (ms)

I 720 0.077 123

II 125 0.168 1587

III 63 0.147 3235

Fig. 5. Experimental Results

4.3 Experimental Results

Figure 5 presents the experimental results for the three scenarios described
above. It shows the CPU utilization for increasing workload intensities (BASE),
the maximum load that can be sustained by each scenario, the CPU time per
unit of the BASE parameter and the average message delivery latency. The re-
sults show the scalability and performance of the three configurations as well as
their costs in terms of CPU consumption. Scenario I scales up to BASE 720 and
exhibits the lowest message delivery latency (123ms). The flexibility provided
by Scenario II and III comes at the cost of much worse scalability and perfor-
mance. The maximum load that can be sustained in Scenario II and Scenario III
is respectively 6 and 12 times lower than that in Scenario I. Similarly, the aver-
age message delivery latency is about 13 times higher for Scenario II compared
to Scenario I and about 26 times higher for Scenario III. Thus, the flexibility
provided by Scenario II and III comes at a high price. This is due to two reasons:
i) the use of selectors leads to roughly two times higher CPU processing time per
message as shown in Figure 5, ii) the use of topics for communication leads to
synchronization delays. Comparing Scenarios II and III reveals that the selector
complexity in this case does not have a significant impact on the CPU processing

Benchmarking Publish/Subscribe-Based Messaging Systems 213

time per message. What is much more significant is the number of topics used
for communication. The single topic in Scenario III clearly leads to a scalability
bottleneck and explosion of the message delivery latency. In the third scenario,
the throughput was limited by the performance of a single CPU core.

Overall, the results show that topic-based communication using selectors is
much more expensive than queue-based communication and, depending on the
number of topics used, it limits the scalability of the system. We demonstrated
how, by using jms2009-PS, the performance and scalability of different messaging
workloads and configuration scenarios can be quantified. The high configurabil-
ity of the benchmark allows to tailor the workload to the user’s requirements
by customizing it to resemble a given application scenario. The user can then
evaluate alternative ways to implement message communication in terms of their
overhead, performance and scalability.

5 Conclusions

We presented a new benchmark for publish/subscribe-based messaging systems
built on top of the SPECjms2007 standard workload. We discussed its config-
uration parameters showing how the workload can be customized to evaluate
different aspects of publish/subscribe communication. Overall, jms2009-PS pro-
vides more than 80 new configuration parameters allowing the user to customize
the workload in terms of the number of topics, the number of subscriptions, the
number and type of selectors, and the message delivery modes.

We presented a case study demonstrating how using jms2009-PS, alternative
ways to implement publish/subscribe communication in an example application
scenario can be evaluated in terms of their overhead, performance and scalability.
We defined three different scenarios with different communication patterns. The
case study showed that the flexibility provided by topic-based publish-subscribe
communication comes at a high price. The use of selectors in our scenario led to
roughly two times higher CPU processing time per message. The most critical
factor affecting the system performance however was the number of topics used
for communication. Having a low number of topics provides maximum flexibility,
however, it introduces a scalability bottleneck due to the synchronization delays.
Especially, the scenario in which a single topic was used to implement a message
bus clearly identifies the limitations of such an approach.

Overall, with jms2009-PS we provide a powerful benchmarking tool. Through
its configurability it allows the user to evaluate publish/subscribe platforms for
certain communication patterns using a complex real-world workload. Our next
steps will be to extend the benchmark workload with new interactions and to
prepare a complex case study analysing and comparing different scenarios on
alternative platforms.

References

1. Hinze, A., Sachs, K., Buchmann, A.: Event-Based Applications and Enabling Tech-

nologies. In: Proceedings of the International Conference on Distributed Event-

Based Systems, DEBS 2009 (2009)

214 K. Sachs et al.

2. Sun Microsystems, Inc.: Java Message Service (JMS) Specification - Ver. 1.1 (2002)

3. Happe, J., Friedrich, H., Becker, S., Reussner, R.H.: A pattern-based Performance

Completion for Message-oriented Middleware. In: Proc. of the ACM WOSP (2008)

4. Sachs, K., Kounev, S., Bacon, J., Buchmann, A.: Performance evaluation of

message-oriented middleware using the SPECjms2007 benchmark. Performance

Evaluation 66(8), 410–434 (2009)

5. Sachs, K., Kounev, S., Buchmann, A.: Performance Modeling of Message-Oriented

Middleware - A Case Study (2009) (in review)

6. Sachs, K., Kounev, S., Appel, S., Buchmann, A.: A Performance Test Harness

For Publish/Subscribe Middleware. In: SIGMETRICS/Performance 2009 Demo

Competition, June 2009. ACM, New York (2009)

7. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The Many Faces of

Publish/Subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

8. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley, Reading (2003)

9. Sonic Software Corporation: Sonic Test Harness (2005),

http://communities.progress.com/pcom/docs/DOC-29828

10. IBM Hursley: Performance Harness for Java Message Service (2005),

http://www.alphaworks.ibm.com/tech/perfharness

11. ActiveMQ: JMeter performance test (2006),

http://incubator.apache.org/activemq/jmeter-performance-tests.html

12. JBoss: JBoss JMS New Performance Benchmark (2006),

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossJMSNew

PerformanceBenchmark

13. Crimson Consulting Group: High-Performance JMS Messaging - A Benchmark

Comparison of Sun Java System Message Queue and IBM WebSphere MQ (2003),

http://www.sun.com/software/products/message queue/

wp JMSperformance.pdf

14. Krissoft Solutions: JMS Performance Comparison (2006),

http://www.fiorano.com/comp-analysis/jms_perf_report.htm

15. Sonic Software Corporation: Benchmarking E-Business Messaging Providers.

White Paper (January 2004)

16. Carter, M.: JMS Performance with WebSphere MQ for Windows V6.0 (2005),

http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg24010028

17. Fiorano Software Inc.: JMS Performance Comparison - Performance Comparison

for Publish Subscribe Messaging (2010),

http://www.fiorano.com/whitepapers/fmq/jms_performance_comparison.php

18. Rindos, A., Loeb, M., Woolet, S.: A performance comparison of IBM MQseries

5.2 and Microsoft Message Queue 2.0 on Windows 2000. IBM SWG Competitive

Technical Assessment, Research Triangle Park, NC (2001)

19. Maheshwari, P., Pang, M.: Benchmarking message-oriented middleware: TIB/RV

versus SonicMQ. Concurrency Computat.: Pract. and Exper. 17(12) (2005)

20. Menth, M., Henjes, R., Zepfel, C., Gehrsitz, S.: Throughput performance of popular

JMS servers. SIGMETRICS Perform. Eval. Rev. 34(1), 367–368 (2006)

21. Kounev, S., Sachs, K.: Benchmarking and Performance Modeling of Event-Based

Systems. IT - Information Technology 51(5), 262–269 (2009)

22. Sachs, K., Kounev, S., Appel, S., Buchmann, A.: Benchmarking of Message-

Oriented Middleware. In: Proc. of the DEBS 2009 (2009)

http://communities.progress.com/pcom/docs/DOC-29828
http://www.alphaworks.ibm.com/tech/perfharness
http://incubator.apache.org/activemq/jmeter-performance-tests.html
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossJMSNewPerformanceBenchmark
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossJMSNewPerformanceBenchmark
http://www.sun.com/software/products/message_queue/wp_JMSperformance.pdf
http://www.sun.com/software/products/message_queue/wp_JMSperformance.pdf
http://www.fiorano.com/comp-analysis/jms_perf_report.htm
http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg24010028
http://www.fiorano.com/whitepapers/fmq/jms_performance_comparison.php

An Experimental Evaluation of Relational RDF

Storage and Querying Techniques

Hooran MahmoudiNasab1 and Sherif Sakr2

1 Macquarie University, Sydney, Australia

Hooran@ics.mq.edu.au
2 University of New South Wales, Sydney, Australia

ssakr@cse.unsw.edu.au

Abstract. The Resource Description Framework (RDF) is a flexible

model for representing information about resources in the web. With the

increasing amount of RDF data which is becoming available, efficient and

scalable management of RDF data has become a fundamental challenge

to achieve the Semantic Web vision. The RDF model has attracted a

lot of attention of the database community and many researchers have

proposed different solutions to store and query RDF data efficiently. In

this paper, we focus on evaluating the state-of-the-art of the approaches

which are relying on the relational infrastructure to provide scalable

engines to store and query RDF data. Our experimental evaluation is

done on top of recently introduced SP2Bench performance benchmark

for RDF query engines. The results of our experiments shows that there

is still room for optimization in the proposed generic relational RDF

storage schemes and thus new techniques for storing and querying RDF

data are still required to bring forward the Semantic Web vision.

1 Introduction

The Resource Description Framework (RDF) is a W3C recommendation that
has rapidly gained popularity as a mean of expressing and exchanging semantic
metadata, i.e., data that specifies semantic information about data. RDF was
originally designed for the representation and processing of metadata about re-
mote information sources and defines a model for describing relationships among
resources in terms of uniquely identified attributes and values. The basic build-
ing block in RDF is a simple tuple model, (subject, predicate, object), to express
different types of knowledge in the form of fact statements. The interpretation
of each statement is that subject S has property P with value O, where S and
P are resource URIs and O is either a URI or a literal value. Thus, any object
from one triple can play the role of a subject in another triple which amounts to
chaining two labeled edges in a graph-based structure. Thus, RDF allows a form
of reification in which any RDF statement itself can be the subject or object
of a triple. One of the clear advantage of the RDF data model is its schema-
free structure in comparison to the entity-relationship model where the entities,
their attributes and relationships to other entities are strictly defined. In RDF,

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 215–226, 2010.
� Springer-Verlag Berlin Heidelberg 2010

216 H. MahmoudiNasab and S. Sakr

&2 &1 &3John

UNSW

h d

www.cse.unsw.edu.au/~john

l l h ’

Alice

Alice@nicta.com.auNICTA

affiliatedBy webPage affiliatedBy hasEmail

hasEmail

authoredBy editedByhasName hasName

roomNohasTitle publishedIn

John@cse.unsw.edu.au Relational RDF Query Engines BenchmarX’10 518

Fig. 1. Sample RDF Graph

SELECT ?Z
WHERE {?X hasTitle “Relational RDF Query Engines”.

?X publishedIn “BenchmarX’10”.
?X authoredBy ?Y.
?Y webPage ?Z.}

Fig. 2. Sample SPARQL query

the schema may evolve over the time which fits well with the modern notion of
data management, dataspaces, and its pay-as-you-go philosophy [11]. Figure 1
illustrates a sample RDF graph.

The SPARQL query language is the official W3C standard for querying and
extracting information from RDF graphs [14]. It represents the counterpart to
select-project-join queries in the relational model. It is based on a powerful graph
matching facility which allows binding variables to components in the input RDF
graph and supports conjunctions and disjunctions of triple patterns. In addition,
operators akin to relational joins, unions, left outer joins, selections, and pro-
jections can be combined to build more expressive queries. Figure 2 depicts a
sample SPARQL query over the sample RDF graph of Figure 1 to retrieve the
web page information of the author of the paper published in BenchmarX’10 with
the title ”Relational RDF Query Engines”.

Efficient and scalable management of RDF data is a fundamental challenge
at the core of the Semantic Web. Relational database management systems
(RDBMSs) have repeatedly shown that they are very efficient, scalable and suc-
cessful in hosting types of data which have formerly not been anticipated to be
stored inside relational databases such as complex objects [18], spatio-temporal
data [3] and XML data [8]. In addition, RDBMSs have shown their ability to
handle vast amounts of data very efficiently using powerful indexing mechanisms.
Several research efforts have been proposed to provide efficient and scalable RDF
querying engines by relying on the relational infrastructure [2,9,10,19]. These re-
lational RDF query engines can be mainly classified to the following categories:

An Experimental Evaluation of Relational RDF Storage 217

Id1 publishedIn BenchmarX’10

Id1 hasTitle Relational RDF Query Engines

Id1 authoredBy Id2

Id2 hasName John

Id2 affiliatedBy UNSW

Id2 hasEmail John@cse.unsw.edu.au

Id2 webPage www.cse.unsw.edu.au/~john

Id1 editedBy Id3

Id3 hasName Alice

Id3 affiliatedBy NICTA

Select T3.Object
From Triples as T1, Triples as T2,

Triples as T3, Triples as T4
Where T1.Predicate=“publishedIn”
and T1.Object=“Book Chapter”
and T2.predicate=“hasTitle”
and T2.Object=“Relational RDF Query Engines”
and T3.Predicate=“webPage”
and T1.subject=T2.subject
and T4.subject=T1.subject
and T4.Predicate=“authoredBy”
and T4.Object = T3.Subject

Id3 affiliatedBy NICTA

Id3 hasEmail Alice@nicta.com.au

Id3 roomNo 518

Fig. 3. Relational Representation of Triple RDF Stores

– Vertical (triple) table stores: where each RDF triple is stored directly
in a three-column table (subject, predicate, object).

– Property (n-ary) table stores: where multiple RDF properties are mod-
eled as n-ary table columns for the same subject.

– Horizontal (binary) table stores: where RDF triples are modeled as one
horizontal table or into a set of vertically partitioned binary tables (one table
for each RDF property).

Figures 3,4 and 5 illustrate examples of the three alternative relational represen-
tations of the sample RDF graph (Figure 1) and their associated SQL queries
for evaluating the sample SPARQL query (Figure 2).

Experimental evaluation and comparison of different techniques and algo-
rithms which deals with the same problem is a crucial aspect especially in ap-
plied domains of computer science. Previous studies of RDF query engines [15,16]
have been presented in the literature. However, they were different in their focus.
For example, [15] compares between the native RDF engines (with no database
backend) while [16] compares the performances of triple stores and binary ta-
bles in the context of a column-oriented RDBMS, MonetDB. This paper takes
a different focus by providing an extensive experimental study for evaluating
the state-of-the-art of the relational -based RDF query engines in the context of
traditional and most frequently used row-oriented RDBMS (e.g: PostgreSQL,
Oracle, SQL Server, ...,etc). The remainder of this paper is organized as fol-
lows. Section 2 gives a brief overview over the state-of-the-art of the relational
RDF query engines. Section 3 gives on overview of the SP2Bench performance
benchmark which we used to perform our experiments. Detailed description
of the experimental framework and the experimental results are presented in
Section 4. Section 5 concludes the chapter and suggests for possible future re-
search directions on the subject.

218 H. MahmoudiNasab and S. Sakr

Id1 BenchmarX’10 Relational RDF Query Engines Id2 id3

Publication

Id2 John UNSW John@cse.unsw.edu.au www.cse.unsw.edu.au/~john

Id3 Alice NICTA Alice@nicta.com.au 518

Person

Select Person.webPage
From Person, Publication
Where Publication.publishedIn = “BenchmarX’10”
and Publication.hasTitle = “Relational RDF Query Engines”
and Publication.authoredBy = Person.ID

Fig. 4. Relational Representation of Property Tables RDF Stores

Id1 BenchmarX’10

publishedIn

Id1 Relational RDF Query Engines

hasTitle

Id2 John

Id3 Alice

hasName
Id2 UNSW

Id3 NICTA

affiliatedBy

Id2 John@cse.unsw.edu.au

Id3 Alice@nicta.com.au

hasEmail
Id3 518

roomNo

Id2 www.cse.unsw.edu.au/~john

webPage

authoredBy editedBy
Id1 Id2 Id1 Id3

Select webPage.value
From PublishedIn, hasTitle,

authoredBy, webPage
Where publishedIn.value = “BenchmarX’10”
and hasTitle.value = “Relational RDF Query Engines”
and publicationType.ID = hasTitle.ID
and publicationType.ID = authoredBy.ID
and authoredBy.value = webPage.ID

Fig. 5. Relational Representation of Binary Tables RDF Stores

An Experimental Evaluation of Relational RDF Storage 219

2 Relational RDF Query Engines: State-of-the-Art

2.1 Vertical (Triple) Stores

Harris and Gibbins [9] have described the 3store RDF storage system which is
based on a central triple table that holds the hashes for the subject, predicate,
object and the RDF graph identifier. A symbols table is used to allow reverse
lookups from the hash to the hashed value and to allow SQL operations to be
performed on pre-computed values in the data types of the columns without
the use of casts. To produce the intermediate results table, the hashes of any
SPARQL variables required to be returned in the results set are projected and
the hashes from the intermediate results table are joined to the symbols table
to provide the textual representation of the results.

Neumann and Weikum [13] have presented the RDF-3X (RDF Triple eX-
press) query engine which tries to overcome the criticism that triples stores
incurs too many expensive self-joins by creating the exhaustive set of indexes
and relying on fast processing of merge joins . The physical design of RDF-
3x is workload-independent and eliminates the need for physical-design tuning
by building indexes over all 6 permutations of the three dimensions that con-
stitute an RDF triple. Additionally, indexes over count-aggregated variants for
all three two-dimensional and all three one-dimensional projections are created.
The query processor follows RISC-style design philosophy [4] by using the full
set of indexes on the triple tables to rely mostly on merge joins over sorted index
lists. The query optimizer relies upon its cost model in finding the lowest-cost
execution plan and mostly focuses on join order and the generation of execution
plans.

Weiss et al. [19] have presented the Hexastore RDF storage scheme with main
focuses on scalability and generality in its data storage, processing and repre-
sentation. Hexastore does not discriminate against any RDF element and treats
subjects, properties and objects equally. Each RDF element type have its special
index structures built around it and every possible ordering of the importance
or precedence of the three elements in an indexing scheme is materialized. Each
index structure in a Hexastore centers around one RDF element and defines a
prioritization between the other two elements. Two vectors are associated with
each RDF element (e.g. subject), one for each of the other two RDF elements
(e.g. property and object). In addition, lists of the third RDF element are ap-
pended to the elements in these vectors. In total, six distinct indices are used for
indexing the RDF data. A clear disadvantage of this approach is that Hexastore
features a worst-case five-fold storage increase in comparison to a conventional
triples table.

2.2 Property Table Stores

Jena is a an open-source toolkit for Semantic Web programmers [20]. It uses a
denormalized schema in which resource URIs and simple literal values are stored
directly in the statement table. In order to distinguish database references from

220 H. MahmoudiNasab and S. Sakr

literals and URIs, column values are encoded with a prefix that indicates the
type of the value. A separate literals table is only used to store literal values
whose length exceeds a threshold, such as blobs. Similarly, a separate resources
table is used to store long URIs. By storing values directly in the statement table
it is possible to perform many queries without a join. However, a denormalized
schema uses more database space because the same value (literal or URI) is
stored repeatedly. Jena permit multiple graphs to be stored in a single database
instanceand supports the use of multiple statement tables in a single database so
that applications can flexibly map graphs to different tables. In this way, graphs
that are often accessed together may be stored together while graphs that are
never accessed together may be stored separately.

Chong et al. [5] have introduced an Oracle-based property table approach
which translates the RDF query to a self-join query on Triple-based RDF table
store. The resulting query is executed efficiently by making use of B-tree in-
dexes as well as creating materialized join views for specialized subject-property.
Subject-Property Matrix materialized join views are used to minimize the query
processing overheads that are inherent in the canonical triples-based represen-
tation of RDF. The materialized join views are incrementally maintained based
on user demand and query workloads. A special module is provided to analyze
the table of RDF triples and estimate the size of various materialized views,
based on which a user can define a subset of materialized views. For a group of
subjects, the system defines a set of single-valued properties that occur together.

Levandoski and Mokbel [12] have presented another property table approach
for storing RDF data without any assumption about the query workload statis-
tics. The approach provides a tailored schema for each RDF data set based on
two main parameters: 1) Support threshold which represents a value to mea-
sure the strength of correlation between properties in the RDF data. 2) The null
threshold which represents the percentage of null storage tolerated for each table
in the schema. The approach involves two phases: clustering and partitioning.
The clustering phase scans the RDF data to automatically discover groups of re-
lated properties. Based on the support threshold, each set of n properties which
are grouped together in the same cluster are good candidates to constitute a
single n-ary table and the properties which are not grouped in any cluster are
good candidates for storage in binary tables. The partitioning phase goes over
the formed clusters and balances the tradeoff between storing as many RDF
properties in clusters as possible while keeping null storage to a minimum based
on the null threshold.

2.3 Horizontal Stores

Abadi et al. [2] have presented SW-Store a new DBMS which is storing RDF
data using a fully decomposed storage model (DSM) [6]. In this approach, the
triples table is rewritten into n two-column tables where n is the number of
unique properties in the data. In each of these tables, the first column contains
the subjects that define that property and the second column contains the ob-
ject values for those subjects while the subjects that do not define a particular

An Experimental Evaluation of Relational RDF Storage 221

Table 1. SP2Bench Benchmark Queries

Q1 Return the year of publication of ”Journal 1 (1940)”.
Q2 Extract all inproceedings with properties: creator, booktitle, issued, partOf, seeAlso,

title, pages, homepage, and optionally abstract, including their values.
Q3abc Select all articles with property (a) pages (b) month (c) isbn.
Q4 Select all distinct pairs of article author names for authors that have published in the

same journal.
Q5 Return the names of all persons that occur as author of at least one inproceeding and at

least one article.
Q6 Return, for each year, the set of all publications authored by persons that have not

published in years before.
Q7 Return the titles of all papers that have been cited at least once, but not by any paper

that has not been cited itself.
Q8 Compute authors that have published with Paul Erdos or with an author that has

published with Paul Erdös.
Q9 Return incoming and outgoing properties of persons.
Q10 Return publications and venues in which ”Paul Erdös” is involved either as author or

as editor.
Q11 Return top 10 electronic edition URLs starting from the 51th publication, in

lexicographical order.
Q12abc (a) Return yes if a person is an author of at least one inproceeding and article.

(b) Return yes if an author has published with ”Paul Erdös” or with an author that has
published with ”Paul Erdös”.
(c) Return yes if person ”John Q. Public” exists.

property are simply omitted from the table for that property. Each table is
sorted by subject, so that particular subjects can be located quickly, and that
fast merge joins can be used to reconstruct information about multiple prop-
erties for subsets of subjects. For a multi-valued attribute, each distinct value
is listed in a successive row in the table for that property. The implementation
of SW-Store relies on a column-oriented DBMS, C-store [17], to store tables as
collections of columns rather than as collections of rows.

3 SP2Bench Performance Benchmark

In [15] Schmidt et al. have presented the SPARQL Performance Benchmark
(SP2Bench) which is based on the DBLP scenario [1]. The DBLP database
presents an extensive bibliographic information about the field of Computer Sci-
ence and, particularly, databases. The benchmark is accompanied with a data
generator which supports the creation of arbitrarily large DBLP-like models in
RDF format. This data generator mirrors the vital key characteristics and dis-
tributions of the original DBLP dataset. The logical RDF schema for the DBLP
dataset consists of Authors and Editors entities which are representation types of
Persons. A superclass Document which is decomposed into several sub-classes:
Proceedings, Inproceedings, Journal, Article, Book, PhDThesis, MasterThesis,
Incollection, WWW resources. The RDF graph representation of these entities
reflects their instantiation and the different types of relationship between them.

In addition, the benchmark provides 17 queries defined using the SPARQL
query language on top of the structure of the DBLP dataset in a way to cover the
most important SPARQL constructs and operator constellations. The defined
queries vary in their complexity and result size. Table 1 lists the SP2Bench

222 H. MahmoudiNasab and S. Sakr

Benchmark Queries. For more details about the benchmark specification, data
generation algorithm and SPARQL definition of the benchmark queries, we refer
the reader to [15].

4 Experimental Evaluation

4.1 Settings

Our experimental evaluation of the alternative relational RDF storage techniques
are conducted using the IBM DB2 DBMS running on a PC with 3.2 GHZ Intel
Xeon processors, 4 GB of main memory storage and 250 GB of SCSI secondary
storage. We used the SP2Bench data generator to produce four different testing
datasets with number of triples equal to: 500K, 1M, 2M and 4M Triples. In our
evaluation, we consider the following four alternative relational storage schemes:

1. Triple Stores (TS): where a single relational table is used to store the
whole set of RDF triples (subject, predicate, object). We follow the RDF-3X
and build indexes over all 6 permutations of the three fields of each RDF
triple.

2. Binary Table Stores (BS): for each unique predicate in the RDF data,
we create a binary table (ID, Value) and two indexes over the permutations
of the two fields are built.

3. Traditional Relational Stores (RS): In this scheme, we use the Entity
Relationship Model of the DBLP dataset and follow the traditional way
of designing normalized relational schema where we build a separate table
for each entity (with its associated descriptive attributes) and use foreign
keys to represent the relationships between the different objects. We build
specific partitioned B-tree indexes [7] for each table based on the referenced
attributes in the benchmark queries.

4. Property Table Stores (PS): where we use the schema of RS and decom-
pose each entity with number of attributes ≥ 4 into two subject-property
tables. The decomposition is done blindly and based on the order of the at-
tributes without considering the benchmark queries (workload independent).

4.2 Performance Metrics

We measure and compare the performance of the alternative relational RDF
storage techniques using the following metrics:

– Loading Time: represents the period of time for shredding the RDF dataset
into the relational tables of the storage scheme.

– Storage Cost: depicts the size of the storage disk space which is consumed
by the relational storage schemes for storing the RDF dataset.

– Query Performance: represents the execution times for the different SQL-
translation of the SPARQL queries of SP2Bench over the alternative rela-
tional storage schemes.

An Experimental Evaluation of Relational RDF Storage 223

Table 2. A comparison between the alternative relational RDF storage techniques in

terms of their loading times

Loading Time (in Seconds)

Dataset Triple Stores Binary Tables Traditional Relational Property Tables

500K 282 306 212 252

1M 577 586 402 521

2M 1242 1393 931 1176

4M 2881 2936 1845 2406

Table 3. A comparison between the alternative relational RDF storage techniques in

terms of their storage cost

Storage Cost (in KB)

Dataset Triple Stores Binary Tables Traditional Relational Property Tables

500K 24721 32120 8175 10225

1M 48142 64214 17820 21200

2M 96251 128634 36125 43450

4M 192842 257412 73500 86200

All reported numbers of the query performance metric are the average of
five executions with the highest and the lowest values removed. The rational
behind this is that the first reading of each query is always expensively incon-
sistent with the other readings. This is because the relational database uses
buffer pools as a caching mechanism. The initial period when the database
spends its time loading pages into the buffer pools is known as the warm up
period. During this period the response time of the database declines with
respect to the normal response time.

For all metrics: the lower the metric value, the better the approach.

4.3 Experimental Results

Table 2 summarizes the loading times for shredding the different datasets into
the alternative relational representations. The RS scheme is the fastest due to
the less required number of insert tuple operations. Similarly, the TS requires
less loading time than BS since the number of inserted tuples and updated tables
are smaller for each triple.

Table 3 summarizes the storage cost for the alternative relational representa-
tions. The RS scheme represents the cheapest approach because of the normalized
design and the absence of any data redundancy. Due to the limited percentage of
the sparsity in the DBLP dataset, the PS does not introduce any additional cost
in the storage space except a little overhead due to the redundancy of the object
identification attributes in the decomposed property tables. The BS scheme rep-
resents the most expensive approach due to the redundancy of the ID attributes
for each binary table. It should be also noted that the storage cost of TS and BS
are affected by the additional sizes of their associated indexes.

224 H. MahmoudiNasab and S. Sakr

Table 4. A comparison between the alternative relational RDF storage techniques in

terms of their query performance (in milliseconds)

1M 2M 4M

TS BS RS PS TS BS RS PS TS BS RS PS

Q1 1031 1292 606 701 1982 2208 1008 1262 3651 3807 1988 2108

Q2 1672 1511 776 1109 2982 3012 1606 1987 5402 5601 2308 3783

Q3a 982 1106 61 116 1683 1873 102 198 3022 3342 191 354

Q3b 754 883 46 76 1343 1408 87 132 2063 2203 176 218

Q3c 1106 1224 97 118 1918 2109 209 275 3602 3874 448 684

Q4 21402 21292 11876 14116 38951 37642 20192 25019 66354 64119 39964 48116

Q5 1452 1292 798 932 2754 2598 1504 1786 5011 4806 3116 35612

Q6 2042 1998 1889 2109 3981 3966 3786 4407 7011 6986 6685 8209

Q7 592 30445 412 773 1102 58556 776 1546 2004 116432 1393 2665

Q8 9013 8651 1683 1918 15932 13006 3409 3902 27611 24412 8012 8609

Q9 2502 15311 654 887 4894 26113 1309 1461 9311 37511 2204 2671

Q10 383 596 284 387 714 1117 554 708 1306 2013 1109 1507

Q11 762 514 306 398 1209 961 614 765 2111 1704 1079 1461

Table 4 summarizes the query performance for the SP2Benchbenchmark queries
over the alternative relational representations using the different sizes of the
dataset. Remarks about the results of this experiment are given as follows:

– There is no clear winner between the triple store (TS) and the binary ta-
ble (BS) encoding schemes. Triple store (TS) with its simple storage and
the huge number of tuples in the encoding relation is still very compet-
itive to the binary tables encoding scheme because of the full set of B-
tree physical indexes over the permutations of the three encoding fields
(subject, predicate, object).

– The query performance of the (BS) encoding scheme is affected badly by the
increase of the number of the predicates in the input query. It is also affected
by the subject-object or object-object type of joins where no index informa-
tion is available for utilization. Such problem could be solved by building
materialized views over the columns of the most frequently referenced pairs
of attributes.

– Although their generality, there is still a clear gap between the query per-
formance of the (TS) and (BS) encoding schemes in comparison with the
tailored relational encoding scheme (RS) of the RDF data. However, design-
ing a tailored relational schema requires a detailed information about the
structure of the represented objects in the RDF dataset. Such information
is not always available and designing a tailored relational schema limits the
schema-free advantage of the RDF data because any new object with a vari-
ant schema will require applying a change in the schema of the underlying
relational structure. Hence, we believe that there is still required efforts to
improve the performance of these generic relational RDF storages and reduce
the query performance gap with the tailored relational encoding schemes.

An Experimental Evaluation of Relational RDF Storage 225

– The property tables encoding schemes (PS) are trying to fill the gap be-
tween the generic encoding schemes (TS and BS) and the tailored encoding
schemes (RS). The results of our experiments show that the (PS) encoding
scheme can achieve a comparable query performance to the (RS) encoding
scheme. However, designing the schema of the property tables requires either
explicit or implicit information about the characteristics of the objects in the
RDF dataset. Such explicit information can not be always available and the
process of inferring such implicit information introduces an additional cost
of a pre-processing phase. Such challenges call for new techniques for flexible
designs for the property tables encoding schemes.

5 Concluding Remarks

A naive relational way to store a set of RDF statements is using a relational
database with a single table including columns for subject, property, and ob-
ject. While simple, this schema quickly hits scalability limitations. Therefore,
several approaches have been proposed to deal with this limitation by using ex-
tensive set of indexes or by using selectivity estimation information to optimize
the join ordering [13,19]. Another approach to reduce the self-join problem is
to create separate tables (property tables) for subjects that tend to have com-
mon properties defined [5,12]. In [2] Abadi et al. have explored the trade-off
between triple-based stores and binary tables-based stores of RDF data. The
main advantages of binary tables are:

– Improved bandwidth utilization: In a column store, only those attributes
that are accessedby a query need to be read offdisk. In a row-store, surrounding
attributes also need to be read since an attribute is generally smaller than the
smallest granularity in which data can be accessed.

– Improved data compression: Storing data from the same attribute do-
main together increases locality, improves data compression ratio and reduce
the bandwidth requirements when transferring compressed data.

On the other side, binary tables do have the following main disadvantages:

– Increased cost of inserts: Column-stores perform poorly for insert queries
since multiple distinct locations on disk have to be updated for each tuple.

– Increased tuple reconstruction costs: In order for column-stores to of-
fer a standards-compliant relational database interface (e.g. ODBC, JDBC,
etc.), they must at some point in a query plan stitch values from multiple
columns together into a row-store style tuple to be output from the database.

In [2] Abadi et al. reported that the performance of binary tables is superior to
clustered property table while [16] reported that even in column-store database,
the performance of binary tables is not always better than clustered property
table and depends on the characteristics of the data set. Moreover, the experi-
ments of [2] reported that storing RDF data in column-store database is better
than that of row-store database while [16] experiments have shown that the gain

226 H. MahmoudiNasab and S. Sakr

of performance in column-store database depends on the number of predicates
in a data set. Our experiments have shown that no approach is dominant for
all queries and none of these approaches can compete with a tailored relational
model. Therefore, we believe that there is still required efforts for improving
the performance of the proposed generic relational RDF storage schemes and
thus new techniques for storing and querying RDF data need to be developed
to support the achievement of the Semantic Web design goals.

References

1. DBLP Computer Science Biliography,

http://www.informatik.uni-trier.de/~ley/db/

2. Abadi, D., Marcus, A., Madden, S., Hollenbach, K.: SW-Store: a vertically parti-

tioned DBMS for Semantic Web data management. VLDB J. 18(2) (2009)

3. Botea, V., Mallett, D., Nascimento, M., Sander, J.: PIST: An Efficient and Practi-

cal Indexing Technique for Historical Spatio-Temporal Point Data. GeoInformat-

ica 12(2) (2008)

4. Chaudhuri, S., Weikum, G.: Rethinking Database System Architecture: Towards

a Self-Tuning RISC-Style Database System. In: VLDB (2000)

5. Inseok Chong, E., Das, S., Eadon, G., Srinivasan, J.: An Efficient SQL-based RDF

Querying Scheme. In: VLDB (2005)

6. Copeland, G., Khoshafian, S.: A Decomposition Storage Model. In: SIGMOD

(1985)

7. Graefe, G.: Sorting and Indexing with Partitioned B-Trees. In: CIDR (2003)

8. Grust, T., Sakr, S., Teubner, J.: XQuery on SQL Hosts. In: VLDB (2004)

9. Harris, S., Gibbins, N.: 3store: Efficient Bulk RDF Storage. In: PSSS (2003)

10. Harth, A., Decker, S.: Optimized Index Structures for Querying RDF from the

Web. In: LA-WEB (2005)

11. Jeffery, S., Franklin, M., Halevy, A.: Pay-as-you-go user feedback for dataspace

systems. In: SIGMOD (2008)

12. Levandoski, J., Mokbel, M.: RDF Data-Centric Storage. In: ICWS (2009)

13. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. PVLDB 1(1)

(2008)

14. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF, W3C Rec-

ommendation (January 2008), http://www.w3.org/TR/rdf-sparql-query/

15. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Perfor-

mance Benchmark. In: ICDE (2009)

16. Sidirourgos, L., Goncalves, R., Kersten, M., Nes, N., Manegold, S.: Column-store

support for RDF data management: not all swans are white. PVLDB 1(2) (2008)

17. Stonebraker, M., Abadi, D., Batkin, A., Chen, X., Cherniack, M., Ferreira, M.,

Lau, E., Lin, A., Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., Zdonik,

S.: C-Store: A Column-oriented DBMS. In: VLDB (2005)

18. Türker, C., Gertz, M.: Semantic integrity support in SQL: 1999 and commercial

(object-)relational database management systems. VLDB J. 10(4) (2001)

19. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web

data management. PVLDB 1(1) (2008)

20. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF Storage and

Retrieval in Jena2. In: SWDB (2003)

http://www.informatik.uni-trier.de/~ley/db/
http://www.w3.org/TR/rdf-sparql-query/

Analyzer : A Framework for File Analysis�

Martin Svoboda, Jakub Stárka, Jan Sochna, Jǐŕı Schejbal, and Irena Mlýnková

Department of Software Engineering, Charles University in Prague, Czech Republic

analyzer.contact@gmail.com

Abstract. This paper aims to introduce Analyzer – a complete frame-

work for performing statistical analyses of real-world documents.

Exploitation of results of these analyses is a classical way how data pro-

cessing can be optimized in many areas. Although this intent is legit-

imate, ad hoc and dedicated analyses soon become obsolete, they are

usually built on insufficiently extensive collections and are difficult to

repeat. Analyzer represents an easily extensible framework, which helps

the user with gathering documents, managing analyses and browsing

computed reports. This paper particularly attempts to discuss proposed

analyses model, standard application usage and features, and also basic

aspects of Analyzer architecture and implementation.

1 Introduction

Exploitation of results of statistical analyses of real-world data is a classical
optimization strategy in various areas of data processing. It is based on the
idea to focus primarily on efficient implementation of constructs that are used
in real-world data most often. However, working with real-world data is not
simple, since they can often change, are not precise, or even involve a number
of errors. Firstly, we need to gather a reasonably large and representative set
of real-world data. There exists a huge number of crawlers, however we usually
require data having a particular format or structure, so a wide range of filters
must be supported. Secondly, since the data are usually human-written, they
contain a number of errors. In this case we can either discard the incorrect data,
and, hence, loose a significant portion of them, or provide a kind of corrector.
In the next step we want to make the analyses themselves. In this case we have
to cope with the fact that the data can change and hence the analytical phase
must be repeatable and extensible. And, finally, having obtained the results of
the statistics, we need to be able to visualize and analyze the huge amount of
information efficiently and mutually compare the results.

In this paper we describe a proposal background, architecture outline, imple-
mentation aspects and usage scenarios of a general framework called Analyzer
that aims to cope with all the previously named requirements. In other words it
provides all essential functionality for an easy management of files to be analyzed,

� Supported by the Czech Science Foundation (GAČR), grant no. 201/09/P364, and

the Ministry of Education of the Czech Republic, grant no. MSM0021620838.

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 227–238, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

228 M. Svoboda et al.

configuration and execution of selected analyses and an advanced graphical user
interface for browsing generated reports.

The fundamental feature of Analyzer is extensibility. This not only means the
ability to implement own and more suitable kernel components responsible, e.g.,
for storing computed analytical data, but primarily the open concept of plugins.
Analyzer provides a general environment, whereas all analytical computations
themselves are defined solely within the implementation of plugins. The user
is therefore expected to first install Analyzer itself and then create his/her own
plugins designed to correspond to the determined research intents. Although our
initial motivations were related to XML [8] data, Analyzer usage is not limited
only to this area.

Simplified functionality overview of Analyzer can be started by already men-
tioned file management. Its usage is based on projects, where each project repre-
sents an isolated analytical work. New files can be automatically downloaded into
projects via provided crawlers or can be manually imported from locally reach-
able locations. Using the mechanism of following previously recognized links be-
tween documents, new documents can also be automatically sought out. The user
has a complete control over the analytical computations through the composition
of selected and configured methods from available plugins. All computations are
executed in parallel by multiple threads. Despite this fact, the performance was
not the primary goal and more crucial emphasis was put on document model
complexity and implied analytical possibilities the user can utilize. Finally, doc-
uments can be grouped into collections, which form the basis for presentation of
computed statistical reports.

The current plugins support essential processing of general files and basic
analysis of XML documents, schemas and queries. In particular, we focus on
structural characteristics of XML data files, their schemata written in DTD [8]
or XML Schema [24,12] and XQuery [9] and XPath [7] querying languages.

The paper is structured as follows: Section 2 discusses existing related works.
Section 3 focuses on the proposed model of documents, their description and
mutual linking, as well as the model of grouping documents into collections
and collections into clusters. In Section 4 we describe Analyzer architecture and
functionality of key components. Section 5 provides basic overview of plugins
and their collaboration with Analyzer. Section 6 introduces basic experimental
results and, finally, Section 7 provides conclusions.

2 Related Work

Currently there exist several papers that describe the results of analysis of real-
world XML data. Firstly, there occurred several analyses of the structure of
DTDs [23,14,16] which analyzed mainly the complexity of content models and
usage of various constructs. With the arrival of XML Schema [24,12], as the ex-
tension of DTD, a natural question arised: Which of the extra features of XML
Schema not allowed in DTD are used in practice? Papers [11,19] are trying to
answer it using statistical analysis of real-world XML schemas. Finally, there

Analyzer : A Framework for File Analysis 229

exist also papers that analyze the structure of XML documents. Paper [20] an-
alyzes the structure of XML documents regardless eventually existing schema.
On the other hand, paper [22] focuses on the question which of the constructs
that appear in XML schemas are really exploited in XML documents.

Naturally, there also exist multiple approaches that exploit the results of the
analyses. For instance, the finding that the depth of XML documents is on av-
erage less than 10 [20] is widely exploited in techniques which represent XML
documents as a set of points in multidimensional space and store them in cor-
responding data structures, e.g. R-trees, UB-trees, or BUB-trees [17]. On the
other hand, the authors of [11] define several classes of commonly used regular
expressions and exploit their finding in later papers on inference of identifiable
classes of languages [10]. Or, in paper [21] the authors exploit the results of paper
[22] for tuning weights of a similarity metric.

However, though the amount of existing works is significant and the findings
are important, all the papers have the same common disadvantage. Soon each
analysis becomes obsolete and it should be repeated. However, the respective
crawlers, data analyzers and their settings are not available any more or they
have limited functionality and cannot be extended with new features easily.

3 Analyses Proposal

Let us suppose the following standard life cycle of each analysis from the point
of view of the way it can be performed in Analyzer :

1. Creation of a new project and its configuration,
2. Selection and configuration of required analyses,
3. Insertion of documents to be analyzed,
4. Computation of analytical results over documents,
5. Selection and configuration of collections,
6. Document classification and assignment into collections, and
7. Computation of reports over collections.

Projects encapsulate inserted documents, configuration of analyses and com-
puted data, and represent a single research intent. Each project has its own
repository for saving computed data, at least one storage for storing data con-
tents of inserted documents and at least one crawler for downloading new doc-
uments. If these three components or their content remain reachable, projects
themselves can be easily ported from one computer or location to another.

Document Insertion. The subject of analyses are documents. Documents can
be inserted into the project in three different ways. Two of them are explicit in
a way that the user directly describes particular files and initiates the process
of insertion (import or download), the third one represents automatic seeking of
linked documents previously not inserted using first two mechanisms.

The import functionality enables the user to select a sub-tree of locally reachable
files (e.g. on hard or optical drives). These files can be optionally hard copied to the

230 M. Svoboda et al.

project home folder or canbe left at the original location.Consider that the user has
previously downloaded the entire sub-tree of some web site and all files are stored
on the drive. In this case the user can specify the original base URL address and
Analyzer attempts to map relative paths of these files to this base address.

The second way is a download using one of the supported crawlers. Depending
on particular crawler behavior, the user is able to either request a set of particular
addresses to be downloaded or select a set of addresses the unlimited download
should be initiated from. In the first mode the crawler downloads exactly the
selected files, the second mode can be characterized like flooding crawling.

Document Model. Each document is characterized by a pair of physical and
logical resources. The first one is the URL address from which the file was really
imported, downloaded or sought from, the second one represents an address
Analyzer “thinks” the original file should be located at. However, the heuristic
guessing is not currently completely implemented and is a subject of our future
work. Analyzer itself is able to maintain multiple versions of the same document.
This more precisely means that all individual import or download sessions are
grouped into chains. Each chain is described by a relative age and it is not
possible to have more than one document of the same logical resource in it, thus
two same documents of the same relative age in a project.

As we have already discussed, since each document is described by a relative
age and a pair of logical and physical resource, the document entity is only an
abstraction of a file – data content of a given file is treated independently. Once
a new document is inserted into the project, the corresponding original file is
bounded with this document. In order to support file corrections, one type of
plugin methods can perform content modifications. Whenever a new version of
content is generated, the previously valid one is thrown away, unless the previous
one is the original one. Plugins always work with the current content version.

During first analytical steps of document processing, document types are rec-
ognized. Because this detection is realized by plugins, the typing concept is not
limited and programmers are allowed to work with their own typing namespace.
We have proposed to harness standardized MIME types [18]. The most important
fact about types is that each document is described by a set of recognized types,
not only one type. The idea behind types is simple: plugins recognize types,
plugins analyze only documents of selected known types and finally projects can
be restricted to processing of selected types only.

Analyzer also supports detection and processing of links between documents.
A link is a reference from a source document to a target document. It can be
a reference defined in an XML type document and pointed to its schema file.
Another example can be a link from an HTML type document to an image in-
cluded in the given page. It does not matter whether links represent aggregation,
composition or only association. Analyzer is able to delay analytical processing
of a given document until all required and accessible referenced documents are
present in the project.

Collections Model. Let us suppose that some methods published by plugins
are dedicated to computation of analytical data over documents. These data are

Analyzer : A Framework for File Analysis 231

called results, thus a result is a small piece of information computed by a given
plugin over a given document. It is expected that results are not the goal of
analyses, they are created in order to be aggregated over multiple documents
later in a form of reports and then presented.

Collections are introduced in order to allow grouping of documents. Formally
we can define a collection as a set of documents. Once again collections are
defined by plugins in a way that plugins are responsible for classification of
individual documents. Despite this fact, the user is also able to filter documents
using general criteria like, e.g., resources or relative age restrictions. Since each
project can have a higher number of collections and some collections can be
related (e.g. they classify documents into multiple categories using a shared set
of criteria), Analyzer enables also grouping of collections into clusters.

When the classification of all documents is done and the user does not want to
add new documents, computed results can be aggregated as previously outlined.
This is done separately in each collection and thus generated reports are always
derived only from documents that are members of a given collection.

Analyses Course. In a project life cycle, the recommended sequence of steps
a user should perform may not be followed. However only advanced users should
do this, because not well considered actions may lead to computed data reci-
sion. Although Analyzer automatically detects these situations and invokes the
minimal set of required recalculations, extra work and time is needed.

During a new project creation the user (besides other configuration) can op-
tionally select types the project should be dedicated for. This selection is defined
by a set of regular expression patterns over types (in default typing namespace
over MIME types).

The next step is a selection of analyses to be used in a given project. Analyzer
lists all plugins that are currently accessible, but the user can only select those
which seem to be consistent. Some plugins can be configured, in the other case
the plugin can be selected only once. As it will be explained later, plugins offer
their functionality through methods. An integral part of analyses selection and
configuration is also definition of fixed order of all analytical methods, this means
the order in which Analyzer executes these methods over documents.

Now the user can import or download required documents. Even during this
insertion the computation of results over documents can be processed. If a project
involves types filtering, the given document is removed from a project if it does
not match any of the provided patterns.

The next step is a creation of new clusters and thus sets of collections. Once
a new collection is created, Analyzer automatically starts the classification of all
existing documents satisfying other filtering criteria defined during the cluster
creation and shared by all collections of the given cluster.

The final step is the closure of clusters which invokes aggregation of the re-
sults into reports. Analyzer ensures that all reports that can be generated are
computed without any user endeavor. Reports are stored permanently and the
user can browse them any time later.

232 M. Svoboda et al.

4 Implementation

Analyzer is implemented in Java 6 language [1] as a desktop application with
robust GUI. It is built on the top of NetBeans 6.8 platform [2] and capable of
the cross platform usage. Its simplified architecture is depicted in Figure 1.

Fig. 1. A simplified architecture of Analyzer

From the runtime point of view Analyzer architecture can be divided into two
layers. First of them represents components of opened application shared by all
opened projects, the second layer represents components exclusively used and
created separately in each opened project.

Project Components. Components at the project level involve particularly
repositories, storages and crawlers. They are exclusively owned by each project,
but this does not mean that, e.g., a real relational database server behind a
repository cannot be used by multiple projects. It is allowed and the given com-
ponent only has to ensure the required isolation between projects (which can be
done easily in the given example using different databases).

Each project must have a single repository. It serves for storing all computed
data and even the majority of metadata like, e.g., analyses configuration or cre-
ated collections. Although Analyzer design does not require it, all three provided
repositories are based on standard relational databases (MySQL server database
through MySQL Connector 5.1.7 [3], embedded Apache Derby 10.5.1.1 database
[4] and embedded H2 Database 1.1.117 [5]).

Storages are used for storing document contents. The only stable implemen-
tation is based on a native file system, but experiments were taken with native
storages for XML files.

Analyzer is able to work with two orthogonal categories of crawlers. First
differentiation is based on explicit and flooding behaviors. In order to limit the
crawling explosion, the user can specify maximum allowed depth. The second
division is based on the way how new download requests are created, processed
and finished from the point of view of whether these actions are synchronous
or asynchronous. Analyzer currently contains one simple embedded downloader
and is able to work with the Egothor crawler [15].

Principal design feature of all these three components is extensibility. Al-
though a typical user would probably not need it, new components can be im-
plemented and added relatively easily.

Analyzer : A Framework for File Analysis 233

The project layer also contains the set of managers, which are responsible for
creating, editing and processing of all entities such as documents, collections or
reports. As all computed data and data on entities are stored permanently in a
repository, in order to increase efficiency these managers are able to cache loaded
data and even release them, if they are no longer required. Some managers are
also able to postpone and aggregate update operations, but the consistency of
computed data is still guaranteed.

Shared Components. In a running Analyzer a user is able to concurrently
open more projects than only just one. Passing over other auxiliary components,
the most important one is a launcher, which is responsible for executing tasks
over all such projects.

Tasks represent fragments of analytical or other computations, which have
been scheduled. For example each download of a selected resource, computation
over a given document or aggregation of reports over collections is internally
encapsulated and processed in a form of tasks. Once Analyzer decides that some
work should be done, a new task is created, scheduled and thus prepared for
execution. Clearly this model is a compromise, since it increases computational
demands, but gives the user nearly full control over processing with a small
granularity.

The user is able to attach or detach the project from the launcher and therefore
say whether tasks from a given project should be executed now or not. As a
consequence the user can pause started computations and resume them later.
Scheduled tasks are performed in parallel by worker threads from a prepared
pool. If a given task could not be successfully finished (for whether reasons),
Analyzer attempts to execute it repeatedly with a defined number of attempts.
In order to enhance performance, Analyzer also makes an effort to, e.g., run tasks
over one document successively to minimize required disk reading operations.

GUI Browser. The GUI of Analyzer is based on the possibilities of the Net-
Beans platform. It brings the complete and robust environment for creating and
managing projects and performing analyses from their configuration to browsing
of computed reports. An example of screenshot image can be found in Figure 2.

The browser itself contains adjustable windows through which the user is
able to monitor the progress of computations and browse all existing entities in
opened projects. These data are provided mainly in a form of interactive trees
or listings and the user is able to easily navigate between them according to the
analyses model and entities relations.

More complicated actions like creation of new components or analyses config-
uration are implemented as wizards.

Analyzer Download. The current distribution of Analyzer and all imple-
mented plugins can be downloaded from http://urtax.ms.mff.cuni.cz/
anaxml/. This site includes also other related information and complete doc-
umentation including manual for creating new plugins.

234 M. Svoboda et al.

Fig. 2. A screenshot of Analyzer

5 Plugins

Analyzer itself provides a general environment for performing analyses over doc-
uments and collections of documents, but the intrinsical analytical logic is not
a part of it. All analytical computations and mechanisms are implemented in
plugins. The current distribution of Analyzer includes a few basic plugins for
processing general files and XML related files, but the user is the one who is
expected to create and use own plugins.

Each plugin is in fact a Java class that satisfies particular structural condi-
tions. It is expected, that each plugin is determined for analyzing files of specific
types. When Analyzer starts, it attempts to load all accessible plugins, therefore
their usage is simple and without any complicated integration. Briefly, the plugin
publishes the functionality and Analyzer makes it usable.

Analyses Computation. Disregarding the ability of a plugin to be configured
(and thus, e.g., adjusted to particular analytical intents), each plugin specifies
a set of types that can be processed by it. This restriction is defined by regular
expression patterns. The plugin functionality is provided through implemented
methods. They are of predefined eight different types. Although these methods
are not java methods but classes, we can omit this fact for simplicity. Each of
these methods and even the plugin itself contains also meta-data, which enable
Analyzer to inspect the provided capabilities.

Analyzer : A Framework for File Analysis 235

First four method types serve for analyzing documents. They produce results,
which form the basis for reports generation:

– The detector recognizes types of a given document,
– The tracer looks for links starting in a given document,
– The corrector attempts to repair content of a given document, and
– The analyzer primarily produces results.

After the user selects and configures all required analyses (therefore plugins
the user wants to use), the selection of particular available detectors, tracers,
correctors and analyzers must be managed. This comprises not only selection,
but also ordering of these methods.

Continuing with description of types of methods, a collector is a method that is
responsible for classifying documents, thus saying, whether the given document
should be part of a related collection or not. Once the user closes a cluster,
Analyzer invokes provider methods over all its collections in order to aggregate
results into reports. This step is complicated, because Analyzer has to process
all documents in given collections in order to compute really all reports.

Finally, viewer and performer methods are used for presenting computed
results over documents and computed reports over collections respectively.

Execution of Methods. The execution of tasks representing methods is similar
to execution of other tasks, Analyzer only wraps the code written by the plugin
programmer, invokes the own computation and handles potentially raised errors
or other forms of incorrect processing.

All methods share the way how they access the functionality of Analyzer and
how they acquire data about documents or other entities they are processing or
generating. These requests are processed by mediators, objects with well known
interface and contract. Each method type has own specialized mediator, which
allows only the relevant operations.

Because requests initiated by a plugin programmer may be formally correct,
but may violate selected rules for behavior of methods, Analyzer attempts to
detect and prevent these situations by disallowing the successful ending of ex-
ecution of such methods. The mediator in fact only pretends processing of all
requests, internally simulates required actions and the real execution is post-
poned until the very end of a given task execution.

Implemented Plugins. The implementation of Analyzer comes with a few
created plugins, which are ready for use. If we omit sample plugins demonstrating
only framework possibilities, there are three main groups of plugins: a universal
plugin for basic analyses of documents regardless their types, a plugin for XML
documents and their schema analyses and finally a plugin for XQuery and XPath
analyses.

The universal plugin is, among others, capable of detecting document types
using the mechanism of combined file suffix processing and content guessing
based on MIME Magic [18].

The XML plugin is able to analyze elements and attributes count, distribu-
tion of content at different levels or usage of DTD/XML Schema. XML Schema

236 M. Svoboda et al.

file analysis contains usage of constructs like simpleContent, complexType,
restriction or group. DTD file analysis focuses on elements and attributes
definitions, usage of ANY, EMPTY, allowed or required constructs.

The XQuery and XPath plugin is capable of, e.g., analysis of FLWOR con-
structs occurrence, path expressions, constructors etc.

6 Experiments

This section provides a short presentation of the computing possibilities of An-
alyzer. Apparently, the key impact on computation speed represent repositories
and, thus, the main effect brings primarily the number of analyzed documents.
Therefore we configured 2 simple analyses with 4 methods for generating results.
The documents were inserted into a project using a soft import without copying.
A single cluster with 6 collections was created.

Table 1. Results of experiments with computation speed

Set Document Repository Document Result Collection Report

name count and size database import computation filling computation

A 1,000 x 100 kB

Derby 7 s 60 s 14 s 12 s

H2 DB 2 s 12 s 6 s 1 s

MySQL 3 s 19 s 9 s < 1 s

B 10,000 x 10 kB

Derby 45 s 13 min 5 min 11 min

H2 DB 10 s 100 s 90 s 60 s

MySQL 15 s 135 s 70 s 10 s

C 100,000 x 1 kB
H2 DB 1 min 150 min 150 min 16 h

MySQL 3 min 22 min 14 min 1 min

Table 1 shows the speed of the performed experiments over 3 different sets of
documents. All tests were executed using a PC with Intel Core 2 Quad Q9550
2.83 Ghz processor, 4 GB RAM and Gentoo Linux 10.1 [6] OS. The analyzed
documents were stored on a local hard disk and also all three repositories stored
their internal data locally on the same disk. The MySQL Community Server
5.0.84 was installed locally and used through JDBC connector 3.0. Both Collec-
tion filling and Report computation phases are based only on repository querying
(documents are never read). As we can see, there is a significant difference be-
tween H2 and MySQL. It can be explained by the inability to work with defined
indexes during selection queries.

Last but not least we will demonstrate the purpose and required output of
Analyzer. Due to space limitations we made only a basic set of analyses over
a simple collection. A more comprehensive analysis of a set of real-world XML
documents is the very next step of our future work. Figure 3 depicts the output
of computed XML statistics over the set A generated by the XMark generator
[13]. From the additional information we select the following ones: maximum
depth = 12; average depth = 9.4; minimum depth = 5; average element count
per a document = 1,455; average attribute count per a document = 333.

Analyzer : A Framework for File Analysis 237

Fig. 3. Elements content statistics

7 Conclusion

Despite our original motivations related to XML technologies, we finally imple-
mented an application that is completely capable of performing analyses over
documents of whatever types. Analyzer represents a framework, that gives a
user an environment for gathering documents, configuring analyses, managing
and scheduling computations, permanent storage for files and computed data,
and a browser for presenting generated reports. The key advantages of Analyzer
are as follows:

– Multiple versions of the same document are supported,
– Documents can be described by multiple types concurrently,
– Automatic attempts to download referenced documents are performed,
– Projects can be forced to process only documents of selected types,
– All analytical logic is implemented separately in plugins,
– Executing scheduled tasks in multi-threaded environment is exploited,
– Started computations can be interrupted and resumed later, and
– Computed data are permanently stored and available for browsing.

Our future plans will primarily be targeted to improvements of existing plugins
related to XML file analyses. We particularly want to extend the set of metrics
that are computed over XML files and their schemas. One partial intent is, e.g.,
based on pattern matching against documents content and implied documents
classification. We also plan to perform experiments over vast document sets and
especially over sets of real-world data automatically gathered by the supported
flooding crawler. Since these data are often not well-formed or valid, we also
want to create more sophisticated corrector that would decrease the set of XML
documents that we are not able to analyze.

References

1. http://java.sun.com/javase/6/
2. http://platform.netbeans.org/
3. http://dev.mysql.com/downloads/connector/j/

http://java.sun.com/javase/6/
http://platform.netbeans.org/
http://dev.mysql.com/downloads/connector/j/

238 M. Svoboda et al.

4. http://db.apache.org/derby/

5. http://www.h2database.com/

6. http://www.gentoo.org/

7. XML Path Language (XPath) 1.0. W3C (1999), http://www.w3.org/TR/xpath

8. Extensible Markup Language (XML) 1.0, 4th edn. W3C (2006),

http://www.w3.org/XML/

9. XQuery 1.0: An XML Query Language. W3C (2007),

http://www.w3.org/TR/xquery/

10. Bex, G.J., Gelade, W., Neven, F., Vansummeren, S.: Learning Deterministic Reg-

ular Expressions for the Inference of Schemas from XML Data. In: WWW 2008,

pp. 825–834. ACM, New York (2008)

11. Bex, G.J., Neven, F., Van den Bussche, J.: DTDs versus XML Schema: a Practical

Study. In: WebDB 2004, pp. 79–84. ACM, New York (2004)

12. Biron, P.V., Malhotra, A.: XML Schema Part 2: Datatypes, 2nd edn. W3C (2004),

http://www.w3.org/TR/xmlschema-2/

13. Busse, R., Carey, M., Florescu, D., Kersten, M., Manolescu, I., Schmidt, A., Waas,

F.: XMark Generator 0.96,

http://www.xml-benchmark.org/

14. Choi, B.: What are Real DTDs Like? In: WebDB 2002, Madison, Wisconsin, USA,

pp. 43–48. ACM, New York (2002)

15. Galamboš, L.: Egothor 1.0, Java Search Engine (2006), http://www.egothor.org/

16. Klettke, M., Schneider, L., Heuer, A.: Metrics for XML Document Collections. In:

XMLDM 2002 Workshops, Prague, Czech Republic, pp. 162–176 (2002)

17. Krátký, M., Pokorný, J., Snášel, V.: Indexing XML Data with UB-Trees. In:

Manolopoulos, Y., Návrat, P. (eds.) ADBIS 2002. LNCS, vol. 2435, pp. 155–164.

Springer, Heidelberg (2002)

18. McArdle, S.: MIME Utils 2.0, Mime Type Detection Utility for Java (2009),

http://www.medsea.eu/mime-util/

19. McDowell, A., Schmidt, C., Yue, K.: Analysis and Metrics of XML Schema. In:

SERP 2004, Las Vegas, Nevada, USA, pp. 538–544. CSREA Press (2004)

20. Mignet, L., Barbosa, D., Veltri, P.: The XML Web: a First Study. In: WWW 2003,

pp. 500–510. ACM, New York (2003)

21. Mlýnková, I., Pokorný, J.: Similarity of XML Schema Fragments Based on XML

Data Statistics. In: Innovations 2007, pp. 243–247. IEEE Press, Los Alamitos

(2007)

22. Mlýnková, I., Toman, K., Pokorný, J.: Statistical Analysis of Real XML Data

Collections. In: COMAD 2006, New Delhi, India, pp. 20–31. Tata McGraw-Hill

Publishing Company Limited, New York (2006)

23. Sahuguet, A.: Everything You Ever Wanted to Know About DTDs, But Were

Afraid to Ask. In: Suciu, D., Vossen, G. (eds.) WebDB 2000. LNCS, vol. 1997, pp.

171–183. Springer, Heidelberg (2001)

24. Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema Part 1:

Structures, 2nd edn. W3C (2004), http://www.w3.org/TR/xmlschema-1/

http://db.apache.org/derby/
http://www.h2database.com/
http://www.gentoo.org/
http://www.w3.org/TR/xpath
http://www.w3.org/XML/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xmlschema-2/
http://www.xml-benchmark.org/
http://www.egothor.org/
http://www.medsea.eu/mime-util/
http://www.w3.org/TR/xmlschema-1/

SNSMW 2010

Workshop Organizers’ Message

Yoshinori Hijikata and Guandong Xu

Osaka University, Victoria University

The First International Workshop on Social Networks and Social Media Mining
on the Web (SNSMW 2010) was held in Tsukuba, Japan on 4 April, 2010, in con-
junction with the DASFAA 2010 conference. The aim of the workshop is to pro-
vide an opportunity to present papers on social networks and social media mining.
The web has evolved since its birth. Currently, the role of the web is not only the
media for information transmission but the media for people’s collaboration. So-
cial aspects are not negligible for web computing. The topics of interest include
computational models for social media, trust and privacy, social-network analy-
sis/mining, community detection and evolution, Blog search and retrieval, human
interface and interaction techniques for social media, and so on.

The workshop has attracted 22 submissions. All submissions were peer re-
viewed by program committee members. The program committee selected 14
papers for inclusion in the proceedings (Acceptance ratio is 63.6%). The ac-
cepted papers covered important research topics and novel applications on web
computing. About 50 people participated in the workshop as audiences and
deeply discussed in the above topics.

The workshop would not be successful without the help of many organizations
and individuals. First, we would like to thank program committee co-chairs of
SNSMW 2010. Prof. Lin Li prepared the CFP and a submission system for
the workshop. Prof. Munehiko Sasajima managed all the review process for the
workshop. Next, we would like to thank the program committee members for
evaluating the assigned papers in a timely and professional manner. Also, the
workshop committee members and local arrangement committee members of
DASFAA 2010 gave us a lot of help for preparing the workshop. Finally, we
would like to thank all the authors and participants of the workshop. The authors
submitted very innovative and challenging impressive papers. The audiences gave
precious comments and discussed the research direction in this area. We believe
that they are the main factors for our succession.

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, p. 239, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 240–251, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Task-Oriented User Modeling Method and Its
Application to Service Navigation on the Web

Munehiko Sasajima, Yoshinobu Kitamura, and Riichiro Mizoguchi

I.S.I.R, Osaka University. 8-1 Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
{msasa,kita,miz}@ei.sanken.osaka-u.ac.jp

Abstract. Value of information accumulated on the Web should be enhanced if it
is provided to the user who just faces to a problematic situation which can be
solved by the information. The authors have been investigating a task-oriented
menu, which enables users to search for mobile internet services not by category
but by situation of the users. Construction of the task-oriented menu is based on a
user modeling method which supports descriptions of user activities, such as task
execution and defeating obstacles encountered during the task, which in turn
represents users’ situations and/or needs for certain information. We have built
task models of the mobile users which covered about 97% of the assumed situa-
tions of mobile internet services. Then we reorganized “contexts” in the model
and designed a menu hierarchy from the view point of the task. We have linked
the designed menu to the set of actual mobile internet service sites included in the
i-mode service operated by NTT docomo, consists of 5016 services. Among them,
4817 services are properly connected to the menu. This paper introduces a frame-
work for real scale task-oriented menu system for mobile service navigation with
its relations to the SNS applications as knowledge resources.

Keywords: User modeling, Mobile internet services, Knowledge-based
Systems, Task Ontology.

1 Introduction

Today, various kinds of information are accumulated on the web including SNS.
Wikipedia provides generic knowledge about things with hierarchical structure, while
Twitter provides real-time information via short messages, for example. Subscribing
such services, people are executing many kinds of tasks in daily life.

Providing appropriate information for users in a specific situation should enhance
value of information, because value of information is proportional to the necessity of
the information for the user. Short messages on Twitter, a late breaking SNS, give
latest and dynamic information to users, thus suitable for users who need the latest
information to solve certain problem. Messages on Twitter about current train situa-
tion support users who seek for the fastest train route to the destination just now,
while the service does not work well for users who want to understand whole subway
networks of the train-services in Tokyo, for example.

To realize situation-oriented information services, the authors have been investigat-
ing a framework to navigate users to the information resources along with the user’s

 Task-Oriented User Modeling Method and Its Application to Service Navigation 241

situation. For the purpose, we have modeled daily activity of the users who subscribe
Japanese mobile internet service as the first step.

Here we explain characteristics about the Japanese mobile internet services. While
they provide many mobile internet services via mobile handsets in Japan, such as online
shopping, mobile banking, and news services, current methods for mobile service navi-
gation have proven insufficient to guide users efficiently to the mobile internet services
they need. To solve this problem, the authors have been investigating a task-oriented
menu which enables users to search for services by “what they want to do” in certain
problem-solving situations, instead of by “name of category” [1]. On this first prototype
system, Naganuma proved that the task-oriented menu system has ability to navigating
novice users to the mobile services they want faster than conventional domain oriented
menu system. The first prototype system mentioned in [1], however, was a limited one.
In terms of task and domain knowledge, the first prototype assumed only limited situa-
tions, thus limited services were built in the menu system.

To extend the first prototype menu system to the real scale one, we need to investi-
gate two issues. The first one is how to enhance scalability. The second one is how to
develop a menu system with real scale on the basis of the investigation about the
scalability. The authors discussed these two issues and developed a new menu system
with real scale for navigating users to the mobile services they want, which is linked
to a real scale of mobile services consisting of about 9,000 services. We have de-
scribed about the user modeling issues in [3].

This paper describes design and development process of the new menu system,
with the system’s possibility to work with SNS services.

2 Task-Oriented Menu for Mobile Service Navigation

Fig. 1 shows the process of service selection using a task-oriented menu on the first
prototype system [1]. First, the most abstract task candidates are shown on the mobile
phone (Fig. 1 left). A user selects one of them (e.g. “Go to a department store”) to
solve current problem (e.g., “need to buy clothes”). Then, tasks and/or subtasks asso-
ciated with each task are unfolded and displayed under the task nodes (Fig. 1 center).
Finally, services associated with the task selected by the user are shown, and each of
them leads to access to the actual service (Fig. 1 right).

As shown in this example, the task-oriented menu is easy to use for novice users of
mobile internet services. By just selecting what he/she wants to do in the real world
from the menu, he/she will be led to a service for solving the current problem.
Knowledge about the hierarchy of the domain-oriented menu labeled like “hobbies”,
“local info”, “life” and so on, is not necessary.

Although such a generic task hierarchy looks like the hierarchical structure of the
category-based menus of today, there are fundamental differences. In certain cases, it
is possible to label a concept with a noun instead of a verb or action. It is acceptable
to label a mobile internet service that sells tickets as “Ticketing” or “Buy a ticket”, for
example. In the same manner, abstract tasks can be labeled with nouns. Although it
seems that any concept can be labeled by both verbs and nouns, it is a hasty generali-
zation. Such a generalization may lead to the misunderstanding that we just followed
the process used by the designer of the category-based menu in classifying the mobile
internet services, thus introducing an abstract hierarchy of the tasks.

242 M. Sasajima, Y. Kitamura, and R. Mizoguchi

Fig. 1. Task oriented menu (The first prototype by Naganuma[1])

An important point is that the difference between “Ticketing” and “Buy a ticket” is
just the expression of the label. The concepts are the same task. We focus on the con-
cept and essential characteristics of the mobile user’s task. Comparing them at the
conceptual level, a category-based classification of objects is totally different from a
task-based one in terms of its structure.

In the case of category-based classifications today, generally speaking, the bound-
ary or definition of each category becomes vague or implicit. Classification of an
object or a concept heavily depends on the intention of the designer who developed
the menu. The categories “Hobbies” and “Shopping” are both located at the top level
of the Japanese i-mode menu, for example. A mobile internet service that sells cars is
classified in the former if the designer considers driving a car as a hobby. On the other
hand, the service is classified in the shopping category if the designer focuses on the
commercial aspect of the service rather than its object.

On the other hand, in classification of actions from the viewpoint of tasks, the
boundary or definition of each category becomes more explicit. Since the criteria for
the classification, such as pre-conditions, processes, and effects of the action, appear
in both the label of the category and the classified concepts, it is easy to find the loca-
tion of a new concept in a hierarchy which is classified based on task. For the same
reason, it is easy to add a new concept to the task-based classification. A service that
sells cars is classified in a sub-category of the task “Buy”, whether driving a car is a
hobby or not.

For the reasons described so far, task-based categories are more suitable for the
classification of mobile services. On this point, Naganuma [1] conducted a user test
involving nine adult subjects to confirm the effectiveness of a task-oriented menu
system and evaluate the process used to find services for problem-solving purposes in
terms of process functionality. Subjects were divided into three groups according to
their experience of mobile internet services: 1) subjects using mobile internet services
every day, 2) subjects using mobile internet services a few days a week, and 3) sub-
jects with no experience in using mobile internet services.

Subjects were asked to retrieve appropriate services to given problems by using the
task-oriented menu system, a keyword-type full-text search system newly developed
for the experiment, and a major commercial directory-type menu system.

 Task-Oriented User Modeling Method and Its Application to Service Navigation 243

Analyzing the results by the user types, only the task-oriented menu system al-
lowed non-expert users to find the appropriate services with the same success rate as
experienced users. The results show that the task-oriented menu system is effective
for mobile internet service navigation.

3 Issues on Building Real-Scale Task Oriented Menu

For realization of task-oriented menu system in real scale, we have to tackle two is-
sues: (1) Scalability of the system and (2) Building a task-oriented menu system with
real scale. For the first issue, the authors have identified four kinds of scalabilities to
be satisfied [2][3]: (a) Coverage for domains of mobile services (b) Granularity of
user modeling (c) Coverage for mobile services in real world (d) Coverage for mobile
users’ situations in which they rely on mobile services. For the item (a) and (b), we
have already proposed a new ontology-based modeling method which is named
OOPS (abbreviation of “Ontology-based Obstacle, Prevention and Solution).

Fig. 2 represents a process of building an OOPS model. The dotted rectangle la-
beled (1) corresponds to the basic model of users' activities. It is described by instan-
tiating generic models or ontologies. Description of the OOPS model starts from the
task at the level of large granularity.

Next, ways to achieve the task are linked, and each of the ways consists of a se-
quence of sub-tasks. Our "way" is similar to the "method" of CommonKADS [4] and
"how to bundle" of the Business Process Handbook [5]. Following this process, the
task of large granularity is decomposed into sub-tasks via ways. Area (1) in Fig. 2
represents that a task “Move to a theme park” is achieved by three ways. Among
them, the way “Move by driving my own car” consists of three sub-tasks, "Go to the
parking space", "Drive from home", and "Park the car at the parking lot".

Fig. 2. The process of building OOPS models

244 M. Sasajima, Y. Kitamura, and R. Mizoguchi

We have designed and developed an ontology which covers users’ daily tasks and
necessary domain knowledge. Modeling method based on the ontology solves com-
plicated domain modeling (i.e., (a)) and gives guidelines for granularity of the task
modeling (i.e., (b)). The modeling method supports descriptions of users’ activities
and related knowledge, such as how to solve problems that the users encounter and
how to prevent or solve them on the spot. By experiments in [3], OOPS modeling
method showed performance that promotes generation of idea for modeling users’
daily activities. Further details are described in [3].

4 Prototyping Real-Scale Task-Oriented Menu

In this research, we concentrated on the issue (2) as well as scalability issues of (c)
and (d). For testing the coverage of mobile services and mobile users’ situations (item
(c) and (d)), a new menu system with real scale is definitely needed.

4.1 Analysis of User Activities

To make such a system, analysis of the user activities in a wide range of domains is
required. For such analysis, we have applied the OOPS modeling method to “Tour-
ism” domain which covers a broader spectrum of actions from traveling around and
consuming money to staying at a hotel. We have evaluated the coverage of the OOPS
model by comparing situations assumed and represented in the model which we de-
veloped on tourism setting with those situations assumed to be supported by current
mobile services.

We have tested coverage of the model by a full set of mobile services which are
available at the official sites of NTT docomo in 2004. Among about 5,000 officially
authorized service sites, excluding entertainment services sites (Games, ring-tone
downloading, etc), there are 2,732 sites that consist of 9,162 specific services inside.
We analyzed a situation for each of the 9,162 services. Among them, our OOPS user
model covered about 98% of the typical situations assumed by the mobile service
sites, and just 199 services (2.17% of the 9, 162 official services) were not covered by
the situations represented by our OOPS model.

4.2 Development of New Prototype System

Based on the OOPS user model, we developed a menu system with real scale. Fig.3
depicts our environment for developing the task-oriented menu, which is based on an
environment by NTT docomo for building i-appli (applications for i-mode mobile hand-
sets). On the left part of the figure, the menu we designed is displayed hierarchically.

Fig.4 depicts the first two levels of the menu. The OOPS model on tourism domain
consists of 5 tasks. At first, we built a menu hierarchy where the 5 tasks are at the top
level(“Move”, “Have meal”, “Have fun”, “Buy” and “Stay overnights”). Those at the
second level (17 items) have how users achieve the tasks, those at the third level (97
items) have subtasks which consist of methods, those at the fourth level (112 items)
have obstacles which can occur when users do subtasks and those at the fifth level
(445 tasks) have tasks which can prevent or solve obstacles such as “Go to some-
where”, “Have meal”, “Draw cash”, “Buy things”, and so on. As a whole, the menu
consists of 5 levels at the deepest level.

 Task-Oriented User Modeling Method and Its Application to Service Navigation 245

Fig. 3. Environment for developing task-oriented menu

Menu top
 - Move
 - On foot
 - By public transportation

 - By taxi
 - By car
 - By rent-a-car
 - Have meal
 - At a restaurant
 - Take out
 - Cook by self
 - Have fun
 - By sight seeing
 - By playing at a theme park
 - By watching sports/play/etc.
 - Buy
 - In a town
 - By internet shopping
 - By auction
 - Stay over nights
 - Stay at a hotel
 - Stay at friends

Fig. 4. First two levels of the menu

The menu hierarchy enables users to search the mobile internet services they need
if they select task, method, subtask, obstacle, and prevention/solution task in order.
Then we implemented the menu system and assigned all of the officially authorized
service sites. Fig.5 shows statistics about mobile services. As a result, 96% of 5,016
mobile internet services were allocated to the real-scale menu properly (Fig.5 (a)).

246 M. Sasajima, Y. Kitamura, and R. Mizoguchi

Although the entire menu contained 445 tasks, no mobile service is allocated to
100 tasks (Fig.5, (b)). If we develop a new mobile service for such tasks, it will be a
new business opportunity. Furthermore, issues on usability still remain. For example,
11 % of task menu items are linked to more than 50 services. A cause of this is that
today’s mobile services are biased to limited tasks like “know weather forecast”, “get
movie information”, and so on. Also we plan to do other usability tests without limita-
tions of task and domain.

4.3 Separation of Prevention and Solution Tasks

The authors have considered that there are two situations when users need mobile
services. The one is the situations where users want to prevent problems they encoun-
tered, and the other is the situations where they want to solve problems. We should
have clearly divided the two situations and applied the result to the menu hierarchy.
For example, when users who want to move by train cannot take it because the seats
are not available and they select the node “No seat available”, we can find the preven-
tion task “Make a reservation” and the solution task “Change transportation”. When
the problem “no seat available”; has occurred already, however, users would be upset
because they cannot make a reservation for the seats after they have been fully
booked. This means the menu hierarchy should show the node “Make a reservation”
before the problem occurs.

Therefore we have developed the menu system where users can select “before
problems” or “after problems” at the first step, following which they can find services
which suit their situation. For the example mentioned above, when users select the
node “Seat not available” they can find the prevention task “Make a reservation” if
they choose “before problems” and the solution task “Change transportation” if they
choose “after problems” at the first step.

Fig. 5. Statistics about service contents

4.4 Process of Mobile Service Navigation

Fig.6 shows screen shots of the developed system. When a user selects one of them
(e.g. “Move”) to achieve the current goal (e.g., “go to a shop”), methods which can
achieve the task are unfolded. By selecting an item among the menu, tasks and
subtasks associated with each task are unfolded and displayed under the task nodes.

 Task-Oriented User Modeling Method and Its Application to Service Navigation 247

Finally, at the deepest level of the menu, each of the menu items is linked with a URL
of an internet service like “City map service”.

Suppose a scenario that a user wants to go to a shop by public transportation sys-
tem. Fig.6 depicts a sample process of service selection using screen shots of the
menu system of the latest version. First, the most abstract task candidates are shown
on the mobile phone (Fig.6, Upper-left). Since the user wants to go to the shop by
public transportation system, he/she selects one of them (e.g. “Move”) to achieve the
current goal (go to a shop). Then, five methods which can achieve the task “Move”
are unfolded (Fig.6 Upper-right). By selecting the second item among the menu (e.g.,
“By public transportation”), tasks and/or subtasks associated with each task are un-
folded and displayed under the task nodes (Fig.6, Lower-left). Selecting tasks further,
plausible obstacles for the subtasks and their solution tasks are unfolded (Fig.6
Lower-right). The user might lose his/her way to a ticket station, for example. In that
case, selecting such a troublesome situation among the menu items, solutions for the
trouble are unfolded (e.g., “Find a ticket information” and “Seek for a route map” in
Fig.6). Finally, services associated with the task selected by the user are shown, and
each of them leads to access to the actual service.

4.5 Design Review by Experts

Our new prototype menu system is now under the design review by experts of mobile
services. Compared to the original menu system prototyped by Naganuma [1], they
positively point out followings.

(1) Granularity of the menu has become uniform. Since original menu was an ad
hoc one, granularities of some menu items were coarse and others were fine. As a
result, understandability of the menu has become better.

(2) Since the new menu system is composed of finer grained menu items, users
who have definite purpose (e.g., go to a department store to buy cloths) will be guided
more easily to the target information services.

(3) Those services which are not utilized before are “revealed” and are able to ac-
cess now. Some television companies, for example, provide information about recipes
introduced within their TV programs. Since their sites have been in the “TV” category
before, some users should miss the recipes because they cannot imagine TV compa-
nies provide such recipes. New menu system guides to the recipes by “Have meal
(task) > Cook by self (method) > Look for recipes (sub-task)”. Then links for recipes
are listed including those provided by the TV companies.

5 Social Network Services as a Knowledge Resource

Since valuable knowledge are generated and accumulated on variety of SNS services
such as Wikipedia, Twitter, Blog, and so on, appropriate selection of the knowledge
source should be done according to the “context” of the users. Suppose that a user
plans to do a long business trip on next Monday. He/she has to survey an appropriate
route, select and reserve a train, buy tickets, and do the trip. When the user wants to
select the route, he/she should refer to the encyclopedia-like knowledge resource from
which we can get a quick overview of things. Wikipedia would play the role. On the
other hand, if he/she needs dynamic information on the way to the destination, such as

248 M. Sasajima, Y. Kitamura, and R. Mizoguchi

train situation of local trains near the destination, Twitter, on which people always
tweet the latest information might play the role.

Our service navigation framework based on OOPS model has potential to indicate
the knowledge resource suitable for the users’ context. Task model of “Reservation of
the seat of the train”, for example, is a prevention task to avoid occurrence of the
obstacle “The train is full and cannot sit down”. Since such preventive tasks are al-
ways carried out before the execution of the main task, i.e., goes to the business trip,
we can set a heuristic rule reasonably: “For the users seeking information to do pre-
ventive task, “static” information services like Wikipedia should be preferred.” On
the other hand, solution tasks which are carried out when certain problems occur on
the spot, dynamic information is should be preferred more to solve the problem on the
spot. To solve a problem “Train services are temporally not available”, for example,
real-time tweets about train situation on Twitter should be helpful for users. Referring
to such preferences about the information resources, our task-oriented service naviga-
tion system will be able to recommend suitable social network services to users who
seek for solution.

(Left)Top menu: “Move” task is selected by user. (Right) Five methods for “Move” are un-
folded and “By public transportation” method is selected.

(Left)Subtasks of “move by public transportation” are unfolded. (Right) Plausible obstacles for
the subtasks and their solution tasks are unfolded.

Fig. 6. Sample screen shots

 Task-Oriented User Modeling Method and Its Application to Service Navigation 249

6 Related Work

Boreum et al. investigated which factors of mobile internet services are important for
users [6]. They interviewed people from three countries, Japan, Korea, and Finland,
which have mature mobile internet service markets. According to their analysis, both
the "logical order of the menu" and "meaningful classification of the contents" are
considered to be important by many subjects from the three countries. The results
validate our approach for improving the menu system and classification of the con-
tents by user tasks, which should contribute to user satisfaction.

To satisfy users' needs, many researchers today focus on better composition of
existing mobile internet services. Our modeling method, which focuses on better
analysis of users' needs, is able to strengthen the research explained in the following.
Hierarchical Task Network planning (a general explanation is given in [7], and appli-
cations for web services are described in [8]) supports how to divide and conquer a
web user's "problem", which resembles our task decomposition process in OOPS
modeling. In the process of composing web services, Motahari-Nexhad [9] proposes
how to identify mismatches of the interfaces and protocols between two services to be
composed. Domingue [10] describes how to cope with heterogeneous interaction
patterns with the framework of IRS-III, and Ashri [11] discusses the interaction pro-
tocols in their experience of IRS-II. In such an organization process, alignment of the
ontologies behind the services is necessary. Omelayenko [12] proposes a method for
mapping meta-ontologies among web services, and Ehrig [13] describes a machine-
learning method for an initial stage of ontology alignment. Tsz-Chiu Au [14] points
out that it is unrealistic to assume that the information provided by the web services is
static in many cases. They propose another framework to deal with volatile informa-
tion, taking a ticket reservation service problem as an example.

These studies, however, do not consider the contents of the mobile internet ser-
vices. In contrast, our approach starts from analyzing users' activities, including prob-
lematic situations which require mobile internet services. We then design the menu
system for user navigation based upon the user model. Most research on web services
implicitly assumes that web browsing is done on desktop computers; thus, the time
and cost involved in searching and evaluating the answers are not of much concern.
On the other hand, in the case of our mobile internet service problem, users need
prompt answers. Thus, we pay attention to navigating users directly from the obsta-
cles which they face to the proper service which is the source of the answer. We leave
evaluation of the answers to the users themselves.

Masuoka proposed a Task Computing framework and built a ubiquitous environ-
ment which provides more than 100 web services [15]. The web services are
described by OWL-S, and the environment changes dynamically. The ubiquitous
environment is unique because it deals with dynamic changes such as sudden appear-
ance/ disappearance of clients/services, like the real world.

MIT's Process Handbook Project [5] deals with knowledge models about businesses.
It focuses on modeling business activities and has a taxonomy of basic business activi-
ties. However, the method for building the model is implicit, and confusion of task
concepts with way concepts occurs with some models. One of the models, "buy in a
store", consists of a task concept "buy" and a way concept "in a store", for example.
Such confusion lowers the generality of the model, and does not meet our requirements.

250 M. Sasajima, Y. Kitamura, and R. Mizoguchi

In the field of the human–computer interactions, although there are many studies
about web interfaces, there are not so many studies specific to mobile phones. James
[16] compares the efficiency of two text input methods used on mobile phone: multitap
and prediction. Kamvar [17] analyzed search patterns of a search engine specifically
designed for mobile internet services on a large scale. The search patterns resembled
those of desktop search engines. The results show that mobile internet services are still
not organized well for mobile users. The users rely on search engines, as they do on
desktop computers, since they cannot reach the necessary services. As mentioned in
section 1, basically task-oriented menu system navigates users along with their necessity
of the services, thus not so much depends on search technologies.

7 Conclusion and Future Work

This paper introduced our research on the task-oriented menu system with real-scale
mobile internet services in it, as well as its possibility to work with SNS. Now the
system is under the design review by experts and we plan to do field test by general
users of mobile phones in longer term.

Furthermore, we plan to improve user interface for the task-oriented menu system.
First, it is unrealistic to replace everything with a task-oriented style; rather, integra-
tion of a search engine and/or domain-oriented classification will be necessary for
some tasks. For example, the task “buy” deals with millions of items which require
conventional search technologies.

Secondly, we are designing “shortcut” menus for some frequently accessible ser-
vices. The menu hierarchy has some subtasks which frequently appear under different
tasks. Such subtasks are possible to be carried out as not only subtasks associated with
each task but also independent tasks. For example, if users who want to draw cash to
buy train tickets intend to search services about ATM information, in the current menu
system, they must select “Move”, “By public transportation”, “Buy tickets”, “Short of
cash”, “Draw cash” and “Search ATM” step by step. Although the task oriented menu
system can support users to search for the ATM services to solve problems, the shortcut
menu should be a good help for users because the services for drawing cash are neces-
sary in many other situations. Therefore, we have been trying to define the problems
which happen frequently and build the shortcut menu for such services.

Lastly, we plan to utilize SNS as resource of knowledge and solution for users.
Each SNS services has both strong point and weak point, appropriate recommenda-
tion along with user’s context should be helpful.

References

1. Naganuma, T., Kurakake, S.: Task Knowledge Based Retrieval for Services Relevant to
Mobile User’s Activity. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC
2005. LNCS, vol. 3729, pp. 959–973. Springer, Heidelberg (2005)

2. Sasajima, M., Kitamura, Y., Naganuma, T., Kurakake, S., Mizoguchi, R.: Task Ontology-
Based Framework for Modeling Users’ Activities for Mobile Service Navigation. In: Sure, Y.,
Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 71–72. Springer, Heidelberg (2006)

 Task-Oriented User Modeling Method and Its Application to Service Navigation 251

3. Sasajima, M., Kitamura, Y., Naganuma, T., Fujii, K., Kurakake, S., Mizoguchi, R.: Obsta-
cles Reveal the Needs of Mobile Internet Services -OOPS: Ontology-Based Obstacle, Pre-
vention, and Solution Modeling Framework. J. of Web Engineering 7(2), 133–157 (2008)

4. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., de Velde,
W.V., Wielinga, B.: Knowledge Engineering and Management - The CommonKADS
Methodology. MIT Press, Cambridge (2000)

5. Malone, T.W., Crowston, K., Herman, G.A.: Organizing Business Knowledge - The MIT
Process Hand Book. MIT Press, Cambridge (2003)

6. Choi, B., Lee, I., Kim, J., Jeon, Y.: A Qualitative Cross-National Study of Cultural Influ-
ences on Mobile Data Service Design. In: Proc. of the SIGCHI conference on Human fac-
tors in computing systems, CHI 2005, pp. 661–670 (2005)

7. Kambhampati, S.: Refinement Planning as a Unifying Framework for Plan Synthesis. AI
Magazine, 67–97 (summer 1997)

8. Kuter, U., Sirin, E., Nau, D., Parsia, B., Hendler, J.: Information gathering during planning
for web service composition. J. of Web Semantics 3(2-3), 183–205 (2005)

9. Motahari-Nexhad, H.R., Martens, A., Curbera, F., Casati, F.: Semi-Automated Adaptation
of Service Interactions. In: Proc. of WWW 2007, pp. 993–1002 (2007)

10. Domingue, J., Galizia, S., Cabral, L.: Choreography in IRS-III- Coping with Heterogene-
ous Interaction Patterns in Web Services. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 171–185. Springer, Heidelberg (2005)

11. Ashri, R., Denker, G., Marvin, D., Surridge, M., Payne, T.: Semantic Web Service Interac-
tion Protocols: An Ontological Approach. In: McIlraith, S.A., Plexousakis, D., van Har-
melen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 304–319. Springer, Heidelberg (2004)

12. Omelayenko, B.: RDFT: A Mapping Meta-Ontology for Web Service Integration. In:
Omelayenko, B., Klein, M. (eds.) Knowledge Transformation for the Semantic Web, pp.
137–153. IOS Press, Amsterdam (2003)

13. Ehrig, M., Staab, S., Sure, Y.: Bootstrapping Ontology Alignment Methods with APFEL.
In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 186–200. Springer, Heidelberg (2005)

14. Au, T., Kuter, U., Nau, D.: Web Service Composition with Volatile information. In: Gil,
Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp.
52–66. Springer, Heidelberg (2005)

15. Masuoka, R., Parsia, B., Labrou, Y.: Task Computing - The Semantic Web Meets Perva-
sive Computing. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS,
vol. 2870, pp. 866–881. Springer, Heidelberg (2003)

16. James, C.L., Reischel, K.M.: Text Input for Mobile Devices: Comparing Model Prediction
to Actual Performance. In: Proc. of CHI 2001, pp. 365–371 (2001)

17. Kamvar, M., Baluja, S.: A Large Scale Study of Wireless Search Behavior: Google Mobile
Search. In: Proc. of CHI 2006, pp. 701–709 (2006)

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 252–263, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Tag Disambiguation through Flickr and Wikipedia

Anastasia Stampouli1, Eirini Giannakidou1,2, and Athena Vakali1

1 Aristotle University of Thessaloniki, Department of Informatics, 54124 Thessaloniki, Greece
{astampou,eirgiann,avakali}@csd.auth.gr

2 Centre of Research & Technology - Hellas
Informatics and Telematics Institute

6th km Harilaou - Thermi, 57001, Thessaloniki, Greece
igiannak@iti.gr

Abstract. Given the popularity of social tagging systems and the limitations
these systems have, due to lack of any structure, a common issue that arises in-
volves the low retrieval quality in such systems due to ambiguities of certain
terms. In this paper, an approach for improving the retrieval in these systems, in
case of ambiguous terms, is presented that attempts to perform tag disambigua-
tion and, at the same time, provide users with relevant content. The idea is
based on a mashup that combines data and functionality of two major web 2.0
sites, namely Flickr and Wikipedia and aims at enhancing content retrieval for
web users. A case study with the ambiguous notion “Apple” illustrates the value
of the proposed approach.

Keywords: term disambiguation, flickr, Wikipedia, DBpedia project, mashup.

1 Introduction

With the development of social tagging systems a great amount of information was
created in a relatively short time interval. This led a lot of researchers to think of vari-
ous ways in which they could exploit this kind of information for various aims. How-
ever, an issue that emerges regarding this information that comes from many users is
that it can be interpreted in many different ways because of its clearly subjective
character. This subjective character is based on the fact that in most systems of such
type users select the labels (i.e. tags) that they use, in order to characterize/describe
digital objects, without any control over the procedure of choice through some con-
crete vocabulary.

An important issue that arises in such systems that the users have the possibility of
selecting freely the tags that they use is the disambiguation of certain notions. The
meaning of the tags may be obvious for the author but not for all the other users.
Thus, because of the ambiguous character of tag information, a need was identified
for combination of information from various sources of data, so that the information
that is provided in the users has a more valid character and better quality results are
produced in the various user queries. A solution towards that direction was the crea-
tion of mashups (i.e. concurrent use of information from multiple social data sources
for users’ benefit). The applications that are based in mashups do not receive static

 Tag Disambiguation through Flickr and Wikipedia 253

information but high quality processed elements that render the user information more
useful. There are certain examples of tags that are used as a basis for the development
of mashups which support in an efficient way the interconnection between the sources
of information and operations concerning the management of their content [1].

The idea of creating customized applications (i.e. mashups) to use interlinked web
2.0 content and improve retrieval quality in social sites is often seen in various
approaches [2]. Beyond this, there are also approaches that aim at resolving tag ambi-
guities and achieving better retrieval rates, by analyzing the tag space or using exter-
nal resources [3, 4, 5].

In this paper, a mashup idea is presented that attempts to perform tag disambigua-
tion and, at the same time, provide users with relevant content. The mashup combines
data and functionality of two major web 2.0 sites, namely Flickr and Wikipedia and
aims at enhancing content retrieval for web users. The rest of the paper is organized
as follows. In the next section, a description of the “mashup” term is given, along
with some indicative examples of successful and, currently, well adopted by users
mashups that use either Flickr or Wikipedia. The proposed mashup framework is
presented, in detail, in Section 3. Experimental results with real datasets follow and
illustrate the value of the approach. Finally, the paper concludes with some conclu-
sions and some ideas for future research.

2 Mashups

Mashups have recently gained special attention as concerns to the creativity that is
included in their development and their functionality with regard to the users. Sub-
stantially, a mashup is a combination of data that are found in the World Wide Web
via some processing. If we consider that the web is constituted by levels (the physical
one that is referred to the equipment, the logical one that is referred to the communi-
cation protocols, the data level that is referred to the content and the social one that is
referred to users and applications), then, the mashups are classified between the data
level and the social one [6]. In this way, mashups achieve to change the way that the
users are related to the content of web sites.

Fig. 1. Mashups in the web levels hierarchy ([6])

254 A. Stampouli, E. Giannakidou, and A. Vakali

In web development the term mashup is defined as a web application which com-
bines data that originate from more from than one source in one functionally com-
pleted tool. The term mashup implies easy and quick incorporation which is realized
mainly with access to APIs and to sources of data aiming at the production of more
relevant results. The mashup developers use in a dynamic way data from a source and
incorporate them in another application. This intra-application communication sparks
interoperability concerns. Most developers of web 2.0 sites address these concerns by
offering compatible technologies (e.g. APIs), web services and other tools that allow
the users to create mashups [6].

A lot of users experiment with mashups using sources of information such as Mi-
crosoft, Google, eBay, Amazon, Flickr, Facebook and APIs of Yahoo [6]. As the
majority of web users, in the past few years, have begun exploiting the services of the
web in a way that approaches more their daily activities, a lot of mashups have been
deployed towards this direction. Below we will report some of the basic mashups that
have been created in the past few years, so that we can have a better view in reference
to this phenomenon which is considered to be one of the technology trends that will
shape the future web. Mainly, we focused on mashups that use Wikipedia, DBpedia
and Flickr which are related immediately to our work.

Wikipedia Mashups. An example of such a mashup is Wikipedia Vision1 that is a
mashup in which for each wikipedia edit a box is displayed in a world map with the
title of the article, the summary of the edit and other information such as geographical
location of the Wikipedia user and the time the edit happened. The social resources
utilized in this mashup are Wikipedia and Google Maps.

Flickr Mashups. It is observed that there are a lot of mashups that have been struc-
tured based on Flickr API. It should be placed emphasis on Flickr Wrappr2 which is a
mashup that combines data from DBpedia and Flickr that are two sources of informa-
tion used in the development of the mashup, presented in this paper. Flickr Wrappr
combines geographic information and assigns them in tags from Flickr and Wikipedia
aiming at the favoring of pictures from Flickr which have high correlation with the
notion that is relevant to the search of the user. Other examples of mashups that are
based on Flickr are Flickr Mania3, Flickr Fight4, Feelimage5, Semapedia6, InSuggest7,
Flicktionary8, etc.

DBpedia mashups. The basic idea in these mashups is to exploit the structured data
offered by the DBpedia project. An example of such mashups is DBpedia Mobile that
locates in the map locations that exist in DBpedia and gives the user the possibility of
exploring relative information that exists for these places [7].

1 Wikipedia Vision: http://www.lkozma.net/wpv/
2 Flickr Wrappr: http://www4.wiwiss.fu-berlin.de/flickrwrappr/
3 Flickr Mania: http://www.flickrmania.com/
4 Flickr Fight: http://flickrfight.net/
5 Feelimage: http://www.feelimage.net
6 Semapedia: http://en.semapedia.org/
7 InSuggest: http://www.insuggest.com/
8 Flicktionary: http://imagine-it.org/flickr/flicktionary.htm

 Tag Disambiguation through Flickr and Wikipedia 255

3 Framework Description

In this work we present a mashup that connects DBpedia with Flickr, in an effort to
combine information that provides DBpedia with the information that is provided by
the tags that are assigned to the photos of Flickr. This convergence aims at improving
the retrieval quality and, thus, returning more relevant results to various user queries
in Flickr site.

Fig. 2. Proposed framework overview

As it is widely known, Flickr constitutes one of the largest world sources of pub-
lished photographs. It gives the opportunity to the users to characterize their photos
with tags. Aiming at the facilitation of the user, there are not strictly determined rules
for the potentially used tags. That is to say, there are no restrictions with regard to the
name, the level of detail, as well as the relativity of tags. As a consequence, disam-
biguation may arise in cases, such as when certain photos are characterized with tags
that are referred to general terms. To ensure better retrieval, users often use multiple
related tags to describe a resource, which results in tag redundancy.

256 A. Stampouli, E. Giannakidou, and A. Vakali

To the same extend with Flickr, as popularity is concerned, Wikipedia constitutes
an enormous collection of semi-structured content from which the project of DBpe-
dia.org extracts structured information. Here we will focus on a special functionality
offered by Wikipedia, the so-called term disambiguation. With the term disambigua-
tion in Wikipedia we refer to the activity of resolution of conflicts that result from the
titles of articles in Wikipedia. These conflicts occur when a term is connected with
more than one subjects, therefore this term is likely to appear in the title of more than
one articles. In such cases, there must be a way that redirects the user in the page of a
certain article that corresponds to the correct sense of the notion. What is reported
above is widely known in Wikipedia as disambiguation. For example the term Texas
appears to more than 20 different entities in Wikipedia such as university, musical
album etc. The term disambiguation in Wikipedia enables the user to select the exact
sense of Texas he/she is looking information for.

The system we present here materializes the interconnection of DBpedia and Flickr, in
an effort to tackle the disambiguation issue that worsens the retrieval in Flickr. In Figure 2,
the developed system is described graphically, along with the tools that were used in the
proposed implementation. When the user performs a query at Flickr, a SPARQL query is
executed via the DBpedia public SPARQL endpoint to the DBpedia data source. The
DBpedia data source is hosted and published using OpenLink Virtuoso RDF Store. The
SPARQL query returns the various senses of the user query terms. Then, an individual
query is posed in Flickr for each different sense and the user gets Flickr photos grouped by
the various senses. A more detailed description follows.

First of all, we will describe the way the Wikipedia data is represented in the
DBpedia project. Each notion in DBpedia is found at a link of the form
http://dbpedia.org/page/Resource where Resource is the name of the corresponding
notion. In this particular page certain basic information that refers to the specific
notion is included, in RDF triplets. More specifically, there is a column named “prop-
erty” in which all predicates are recorded. With the term predicate we define the rela-
tion that exists between the basic notion and the values that are found in the right
column of page. This way, the information that the DBpedia project extracts from
Wikipedia for each notion exists in structured form. Therefore, the user is given the
possibility of having access in these data via queries expressed in SPARQL.

As mentioned above, there is a term disambiguation page in Wikipedia for each
basic notion, where there are links that redirect the users to pages describing each one
of the ambiguous senses of the specified notion. The predicate (i.e. property) that is
used to refer to the various senses of a notion, in the DBpedia project, is named
dbpprop:disambiguates. In this property a list of disambiguations is included,
that is substantially links that lead to the various senses of the particular senses.

Below, we quote a SPARQL query that returns the various senses of the notion
Paris.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

 SELECT DISTINCT ?label ?disambiguates WHERE {

 dbpedia:Paris dbpprop:disambiguates ?disambiguates .

 ?disambiguates rdfs:label ?label.

 FILTER(lang(?label) = "en").

 Tag Disambiguation through Flickr and Wikipedia 257

The results of the above SPARQL query include all the various ambiguous senses
of the notion in question. More specifically, for each of these senses a list of related
words that describe each particular sense is returned. Then, a preprocessing occurs
that removes special characters from the returned words, such as parentheses and
commas. Finally, each list contains labels that are supposed to characterize a photo-
graph wrt a particular significance of the initial concept-notion. Such lists of words
constitute tag lists that are given as input to the flick.photos.search Flick
API function.

 The user may define the number of the pictures that he/she wants to be returned
for each of the disambiguations. The results are stored in an xml file that includes
information for all the photographs that are returned from the search in Flickr and
fulfill certain criteria that are defined by the user and concern the certain sense of the
initial word (notion). Moreover, these photographs are stored in jpeg format at a cer-
tain user-defined path, and they are also presented in thumbnail format at html pages,
grouped by each sense. In that way the user has the complete monitoring of the re-
turned results.

4 Experimentation

To study the retrieval quality of our proposed approach, we tested with various am-
biguous notions, such as paris, jaguar, apple, bush and many others. The results were
satisfying, as the script returned photos grouped by sense. Here, we demonstrate a
case study, where user wants to discover the possible disambiguation of the word
Apple. The DBpedia page for the particular notion is http://dbpedia.org/
resource/Apple. In Figure 3, the various senses extracted from Wikipedia and related
to Apple notion appear9.

Fig. 3. Values of DBpedia dbprop:disambiguates property for the word Apple

9 Some of them it is likely not to have the property rdfs:label therefore they will not be

presented in the results in the html page.

258 A. Stampouli, E. Giannakidou, and A. Vakali

After the processing of the dbprop:disambiguates property values (as de-
scribed in the previous section), we perform one query to Flickr for each different
sense of the word Apple. In Figure 4, the Flickr results for these queries are given,
that is to say the photographs that were returned as relevant for each different sense.

Fig. 4. Flickr photos related to "Apple" grouped by sense meaning, after DBpedia information
exploitment (no further processing)

 Tag Disambiguation through Flickr and Wikipedia 259

Fig. 4. (continued)

These results were returned when the search for the relevant photographs in the
site of Flickr is conducted with criterion each photograph to be characterized with the
total of the tags that corresponds in each sense. It is observed that for certain senses
the photographs that are returned from Flickr are highly relevant with the subject,
such as Apple (automobile), Apple (band), Apples, Vaud etc. However for certain
senses the photographs that are returned are not highly relevant with the real meaning
of the particular sense. Some cases of this kind of search are Apple Daily, Apple Cup
and Apple Inc. For example, in the case of “Apple Daily” which is a newspaper that is

260 A. Stampouli, E. Giannakidou, and A. Vakali

published in Hong-Kong, the search that was conducted in Flickr for photographs that
would be characterized with both tags (Apple and Daily) did not return any relevant
results. This happened because these two tags are possible to be assigned in photo-
graphs that depict other relevant things. As an example for the above case might be a
photograph that depict the fruit apple and it has been also assigned with the tag
“daily” while it could depict a daily moment from the life of person.

Fig. 5. Flickr photos related to "Apple" grouped by sense meaning, after DBpedia information
exploitment (with further processing)

 Tag Disambiguation through Flickr and Wikipedia 261

Fig. 5. (continued)

After the preprocessing that we applied that concerns the removal of special char-
acters and the joint use of words that describe one sense as a single tag in the Flickr
query, we get the results that appear in Figure 5. The difference in the retrieval be-
tween the two cases is observed especially in senses that the words that describe them
are separated from each other with a void. For example, in the case of “Apple Cup”

262 A. Stampouli, E. Giannakidou, and A. Vakali

sense, in the first case where the search was conducted with two tags (`Apple' and
'Cup') the results do not approach at all the real meaning of the concept Apple Cup.
Apple Cup is the annual football's game between the two biggest universities in the
United States. In the second case is observed that after the code modification that
result in a search with only one tag (`Apple Cup') the results correspond completely in
the actual meaning of “Apple Cup” according to DBpedia. The described case study
illustrates that the proposed framework achieves high retrieval quality in terms of
grouping together really relevant Flickr photos, in case of ambiguous terms.

5 Conclusions

Given the popularity of social tagging systems and the limitations these systems have,
due to lack of any structure, we presented in this paper an approach for improving the
retrieval in these systems, in case of ambiguous terms. The developed system may
also contribute in familiarizing the user with various senses of a given notion, as they
are described in Wikipedia, and may be used in order to inform users for a particular
sense of the word. It can also be used as a presentation tool that describes each sense
of an ambiguous term with optical means via the relevant photographs from Flickr.
Furthermore it could be used as a recommendation system which will be embedded in
a site such as Flickr, and it would help users in the choice of relevant tags by propos-
ing tags relative with the various senses of a certain word.

As ambiguities are bound to happen very often in non-structured text, the proposed
approach may, also, be used in the text processing domain, to resolve ambiguities of
particular terms. For as long as natural language terms are used, without any formal or
other representation that embeds structural linkage between terms, term disambigua-
tion remains an issue. Our future work towards this aim involves testing with other
sources, apart from DBpedia, for gaining information about various senses of am-
biguous terms. Furthermore, we plan to extend the current framework to an approach
that renders structure and semantics to data from social sites, stepping, thus, towards
the direction of Web 3.0.

References

1. Hagemann, S., Vossen, G.: ActiveTags: Making Tags More Useful Anywhere on the Web.
In: Proc. of the Twentieth Australasian Database Conference (ADC 2009), New Zealand
(2009)

2. Bizer, C., et al.: DBpedia - A crystallization point for the Web of Data. Journal of Web Se-
mantics: Sci. Serv. Agents World Wide Web (2009), doi:10.1016/j.websem.2009.07.002

3. Au Yeung, C.M., Gibbins, N., Shadbolt, N.: Understanding the Semantics of Ambiguous
Tags in Folksonomies. In: Proc. of the International Workshop on Emergent Semantics and
Ontology Evolution (ESOE 2007) at ISWC/ASWC, South Korea (2007)

4. Giannakidou, E., Koutsonikola, V., Vakali, A., Kompatsiaris, I.: Co-clustering Tags and
Social Data Sources. In: Proc. of the 9th International Conference on Web-Age Information
Management (WAIM 2008), China, pp. 317–324. IEEE Computer Society, Los Alamitos
(2008)

 Tag Disambiguation through Flickr and Wikipedia 263

5. Giannakidou, E., Kompatsiaris, I., Vakali, A.: SEMSOC: SEMantic, SOcial and Content-
based Clustering in Multimedia Collaborative Tagging Systems. In: Proc. of the 2nd IEEE
International Conference on Semantic Computing (ICSC 2008), CA, USA, pp. 128–135.
IEEE Computer Society, Los Alamitos (2008)

6. Palfrey, J., Gasser, U.: Mashups Interoperability and eInnovation. Berkman Publication Se-
ries (2007)

7. Becker, C., Bizer, C.: DBpedia Mobile: A Location-Enabled Linked Data Browser. In: Proc.
of the Linked Data on the Web (LDOW 2008), China, (2008)

Measuring Attention Intensity to Web Pages

Based on Specificity of Social Tags

Takayuki Yumoto1 and Kazutoshi Sumiya2

1 Graduate School of Engineering, University of Hyogo

2167 Shosha, Himeji, Hyogo 671-2280, Japan

yumoto@eng.u-hyogo.ac.jp
2 School of Human Science and Environment, University of Hyogo

1–1–12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan

sumiya@shse.u-hyogo.ac.jp

Abstract. Social bookmarks are used to find Web pages drawing much

attention. However, tendency of pages to collect bookmarks is different

by their topic. Therefore, the number of bookmarks can be used to know

attention intensity to pages but it cannot be used as the metric of the in-

tensity itself. We define the relative quantity of social bookmarks (RQS)

for measuring the attention intensity to a Web page. The RQS is cal-

culated using the number of social bookmarks of related pages. Related

pages are found using similarity based on specificity of social tags. We

define two types of specificity, local specificity, which is the specificity for

a user, and global, which is the specificity common in a social bookmark

service.

1 Introduction

Recently, social bookmarks are not only used to save private bookmarks on
the Web but also for users to be notified of popular or interesting Web pages,
therefore, the number of social bookmarks is an important metric. This number,
however, depends on not only the quality of Web pages but also users’ interests
in the social bookmark service. Suppose that there are two pages A and B.
The topic of page A is popular and the topic of page B is not popular. In this
case, page A tends to gather more social bookmarks than page B. However,
if pages A and B have the same number of social bookmarks, the attention
intensity to page A is smaller than that of page B. To eliminate this bias of
users’ interests, we need to compare the number of social bookmarks with those
of related pages. We define the relative quantity of social bookmarks (RQS) to
measure the attention intensity to Web pages. The RQS is calculated using the
numbers of social bookmarks of related pages.

Related pages are found using social tags. In social tags, however, there are
synonymity and ambiguity problems. An example of a synonymity problem is
that some users use the tag “Programming” (capitalized) and other users use
“programming” (not capitalized) to bookmark the same page. An example of
an ambiguity problems is that tag “apple” can mean “Apple Computer” or a

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 264–273, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Measuring Attention Intensity to Web Pages 265

fruit. This problem also contains a granularity problem of tags. Suppose that
some users use the tag “programming” to bookmark pages about a specific
programming language, but others use that tag only to bookmark pages whose
topic is common in several programming languages. To bookmark pages about
a specific programming language such as perl, these other users would use the
tag “perl”. In this case, the granularity of concept of “programming” for these
users is different.

We focus on the fact that synonymity and ambiguity problems do not occur
in tags of one user. To find related pages, we use pages bookmarked with the
same tags with which the users bookmark the target page. We also focus on the
granularity of the concept of tags, and we propose a method for finding related
pages using the specificity of tags. We define two types of specificity, global,
which is specificity for a social bookmark service, and local, which is specificity
for a user.

The rest of this paper is organized as follows. In Section 2, we describe related
work. In Section 3, we explain the specificity of social tags. In Section 4, we define
relative quantity of social bookmarks to measure the attention intensity to Web
pages. In Section 5, we explain our experiments for specificity and for the RQS.
In Section 6, we give the concluding remarks and discuss future work.

2 Related Work

Social bookmarks are often modeled as (user, page, tags) or (user, page, tags,
time). There have been many studies on social bookmarks for various purposes.
Most research defines some kind of relationship between the one of the elements
of the model using the other elements. For example, Krestel and Chen extracted a
user graph of social bookmarking data to find spammers[1]. This is an example
of the relationship between users. On the other hand, Niwa et al. proposed a
Web page recommending system, in which they use tag clustering[2]. This is an
example of the relationship between tags. Sugiyama et al. proposed a method
for finding related pages using the similarity between pages[3]. To measure the
attention intensity to Web pages, we need to obtain pages related to the target
page and also define similarity between pages. In general, similarities using social
bookmarks can be defined as follows:

Sim(o1, o2) = Sim(S1, S2), (1)

where oi is an element in the social bookmark model and Si is the other elements.
In Sugiyama et al.’s and our research, oi is a page and Si is user-tag pairs.
These similarities are also based on the similarity measure for sets such as cosine
similarity and the Jaccard coefficient. These are generalized as:

Sim(S1, S2) =
|S1 ∩ S2|

Univ(S1, S2)
(2)

If we change the function Univ(S1, S2) in formula (2), this function becomes
various similarity measure listed in Table 1. In formula (2), all the elements

266 T. Yumoto and K. Sumiya

Table 1. Universe Function of Similarity between Sets

Univ(S1, S2)

Cosine
√
|S1||S2|

Jaccard |S1 ∪ S2|
Dice (|S1|+ |S2|)/2
Simpson min(|S1|, |S2|)

s ∈ S1 ∩ S2 are evenly treated. When we weight s by weighting function f , we
can describe formula (2) as follows:

Sim(S1, S2) =

∑
s∈S1∩S2

f(s)

Univ(S1, S2)
(3)

Formula (2) equals formula (3) where f(s) = 1. In many studies, this weighting
function is defined in various forms. For example, Sugiyama et al. defined it
based on corresponding ratios of tags and we define it based on the specificity
of tags.

Liang et al. proposed recommendation system based on each user’s personal
usage of tags and the common usage of tags by many users[4]. Their idea is
partly similar to ours but the approaches are different. Though they focused
on the tags frequently used by each user, we focused on the tags specifying the
bookmarked pages in detail.

Chi et al. focused on the specificity of social tags and reported that this
specificity decreases through observing the transition of entropy of social tags[5].
We focus on the concept of this specificity to define similarity between pages.

3 Specificity of Social Tags

3.1 Overview of Specificity

Specificity means the ability of a tag to differenciate the page from a set of
pages. For example, if the contents of pages bookmarked using a tag vary, the
specificity of the tag is low. On the other hand, if the pages bookmarked using
the tag describe narrow topic, the specificity of the tag is high. To calculate
the specificity, we analyze the pages that the same user bookmarked using the
same tag. We used another method that does not depend on content analysis.
Furthermore, we propose two types of specificity, local, which is the specificity
for a user, and global, which is the specificity common in a social bookmark
service.

3.2 Local Specificity

When the user bookmarks fewer pages using the tag against the number of
pages the user bookmarks, the local specificity becomes higher. We define the
local specificity of tag t for user u, spl(u, t) as follows:

Measuring Attention Intensity to Web Pages 267

spl(u, t) = 1− |Pages(u, t)|
|PagesU (u)| , (4)

where Pages(u, t) is a set of pages that are bookmarked by the user u using the
tag t and PagesU(u) is a set of the pages that are bookmarked by the user u.
When user u bookmarks using the tag set T , we define the specificity as follows:

spl(u, T) = min
t′∈T

(spl(u, t′)) (5)

In both cases, the range of local specificity is [0, 1].

3.3 Global Specificity

Considering the number of the users who use the tag and the frequency of the
tags, we define the global specificity of tag t as follows:

spg(t) = min
(

1,
|Users(t)|
|PagesT (t)|

)
, (6)

where Users(t) is a set of users who use tag t and PageT (t) is a set of pages
bookmarked using tag t. The range of spg(t) is [0, 1]. When the number of pages
bookmarked using tag t is large against the number of users who use tag t, the
global specificity becomes high. When the number of pages bookmarked using
tag t is larger than the number of users who use tag t, we regard the global
specificity is high enough and set the value as 1. This specificity is weak at
polysemy and synonymity. However, it is used to reduce the effect of the biased
usage of user tags.

3.4 Combination of Two Specificities

We discuss the relationship between local and global specificity. If the tendency
of local specificity matches that of global specificity, tag’s usages are the same.
Next, we consider the case when the tendency of local specificity does not match
that of the global specificity. Suppose that local specificity is high and the global
specificity is low. A user uses general tags for bookmarking a few pages. There-
fore, this user seems to be familiar with the topic and the specificity of the tag is
high. When the local specificity is low and the global specificity is high, the user
uses the tag in his/her own way. In this case, the tag may specify the contents in
detail but it does not always specify them. In short, when local and global speci-
ficities are high, the specificity of the tag should be high. Otherwise, it should be
low. Then, the combined specificity of the tag for the user is defined as follows:

sp(u, t) = spl(u, t)× spg(t) (7)

4 Measuring Attention Intensity to Web Page

4.1 Relative Quantity of Social Bookmarks

Tendency of pages to collect bookmarks is different by their topic. because
the number of users who are interested in each topic is different. We need to

268 T. Yumoto and K. Sumiya

…

tag 1

tag 2

tag 1

tag 1

tag 1

tag 1

tag 1

tag 2

tag 2

target page

users

comparison of # of SBM

related pages

Fig. 1. Schematic of Relative Quantity of Social Bookmarks

normalize the number of social bookmarks of the target page using those of re-
lated pages. We define the RQS as the normalized number of social bookmarks.
We define RQS of page p, RQS(p) as follows:

RQS(p) = BM(p)/

(
1
m

m∑
i=1

BM(pi)

)
(8)

where BM(p) is the number of social bookmarks of page p, and pi is a related
page of page p. We use the RQS as an estimated value of the attention intensity
to the Web page. We show a schematic of this in Figure 1. Related pages are
selected from the pages bookmarked with the same tags used by the user to
bookmark the target page. RQS is calculated by comparing the numbers of the
social bookmarks of the target page and the ones of the related pages.

4.2 Discovering Related Pages

Related pages are found using their similarity to the target page. Similarity is
defined using specificity and is based on the Jaccard coefficient.

Sim(p1, p2) =

∑
(u,t)∈UT (p1)∩UT (p2)

sp(u, t)

|UT (p1) ∪ UT (p2)| (9)

where UT (pi) is a set of pairs of users who bookmark page pi and tags which
they use for bookmarking that page. However, if |UT (p1) ∩ UT (p2)| is large,
calculation of Sim(p1, p2) requires a large amount of time. Regarding this, there
have been studies focused on users who bookmark pages earlier than others.
Noll et al. called them discoverers and introduced the concept of discoverers into
the HITS algorithm[6] to find experts and spammers among social bookmark
users[7]. We use discoverers for approximation and define them as follows:

Measuring Attention Intensity to Web Pages 269

{ui|(ui, pi, ti, τi), τi ≤ τi+1, i = 1, · · · , n} (10)

where (ui, pi, ti, τi) means that user ui bookmarked page pi with tags ti at time
τi and n is a parameter. We approximate the similarity function (9) using only
discoverers to calculate the numerator. We define the approximate similarity
function as follows:

Simn(p1, p2) =

∑
(d,t)∈UT (p1,n)∩UT (p2)

sp(d, t)

|UT (p1) ∪ UT (p2)| (11)

where UT (p1, n) is a set of user-tag pairs whose users are discoverers and d
denotes a discoverer. |UT (p1, n)| ≤ |UT (p1)| and sp(d, t) ≥ 0 are always satisfied.
Hence, the following formula is also satisfied.

Simn(p1, p2) ≤ Sim(p1, p2) (12)

We use Simn(p1, p2) instead of Sim(p1, p2).
The candidate pages related to the target pages are obtained using those book-

marked by users who bookmarked the target page with the same tags. When we
want to obtain the related page candidates of pages bookmarked by many users,
however, it requires a large amount of time to obtain the candidates. To avoid
this problem, we consider only pages that are bookmarked by the discoverers as
the candidates. We developed an algorithm for collecting the candidates of the
related pages. If the discoverer d bookmarks page p with the tag t, we collect
pages Pages(d, t) bookmarked by d with t. Then, we calculate sp(d, t) of each
discoverer d with tag t. We show the pseudo-code as follows:

for all (d, t) ∈ UT (p, n) do
if spl(d, t), spg(t) is undefined then

calculate spl(d, t) and spg(t).
end if
for all p′ ∈ Pages(d, t) do

if sim[p′] is undefined then
sim[p′] ← spl(d, t)× spg(t)

else
sim[p′] ← sim[p′] +spl(d, t)× spg(t)

end if
end for

end for
for all p′ in sim do

sim[p′] ← sim[p′] / |UT (p) ∪ UT (p′)|)
end for

sim[p′] is an array to reserve the similarity between the pages p and p′.

270 T. Yumoto and K. Sumiya

5 Evaluation

5.1 Evaluation on Specificity

We used Livedoor clip data1 in December 2008 for the experiments. We found
the URLs listed in Table 2 from pages bookmarked by discoverers. The discov-
erers are defined by formula (10) with n = 10. We list the URLs, the number
of social bookmarks, and the number of the related page candidates in Table
2. We selected ten pages whose similarity with the target pages were highest
from our algorithm using each sp(d, t) function. Pages we could not visit are
removed from the experimental targets in advance. All of the related page can-
didates were sorted in ascending order of their URLs and were presented to the
three volunteers who did not know which function each page derived from. The
volunteers rated them using the following standard.

– 3: almost the same topic as the target page
– 2: deeply related topic with the target page
– 1: related topic with the target page
– 0: unrelated topic with the target page

We evaluate the similarity ranking using the average of discount cumulated
gain(DCG)[8], which is defined as follows:

DCG[i] =
{

G[i], if i = 1
DCG[i− 1] + G[i]/ log i, otherwise (13)

where i is the rank in the similarity ranking and G[i] is the average score rated
by the volunteers.

The results are listed in Table 3. The scores in bold are the highest scores
for each target page. If sp(d, t) = 1, then the similarity function equals the
Jaccard coefficient of user-tag pairs. We regard this as the baseline. From the
results, the average DCG when only global specificity is used (sp(d, t) = spg(t))
is highest, and the average DCG when local and global specificity are used
(sp(d, t) = spl(d, t) × spg(t)) is second highest. On the other hand, the average
DCG of the case when only local specificity is used (sp(d, t) = spl(d, t)) is lower
than that of the baseline. We also counted the number of URLs whose DCG
was higher than the baseline. The number increased the most when only global
specificity is used or global and local specificities are used. The number was 8
out of 10. The number when only local specificity was used was 5 out of 10.
We discuss the reason local specificity does not contribute to a high DCG. In
URL2, the DCG score of local specificity is very low. Therefore, we analyzed the
URL2. Most of the tags used to bookmark URL2 were related to movies such
as “Movie” but some users used tags related to April Fool. They bookmarked
URL2 on April 1. In April 1, this page might have contained contents related to
April Fool. On the other hand, we found that most of the related pages of URL2
derived from local specificity contained joke or parody related to April Fool and
1 http://clip.livedoor.com/

http://clip.livedoor.com/

Measuring Attention Intensity to Web Pages 271

Table 2. Pages used for Experiments

ID URL #SBM candidates

URL1 http://codezine.jp/ 47 56

URL2 http://eiga.com/ 12 28

URL3 http://javascriptist.net/ 188 292

URL4 http://lifehacking.jp/2008/03/life-instructions/ 45 265

URL5 http://otoko-cooking.com/index.html 77 32

URL6 http://staff.aist.go.jp/toru-nakata/sotsuron.html 299 45

URL7 http://www.asahi.com/ 84 54

URL8 http://www.hereticanthem.com/webdesign/295/ 144 562

URL9 http://www.iknow.co.jp/ 112 18

URL10 http://www.uta-net.com/ 22 11

Table 3. Experimental Results for Specificity

sp(d, t) spl(d, t)× spg(t) spl(d, t) spg(t) 1

URL1 5.74 4.84 5.74 5.01

URL2 6.64 0.05 6.64 0.79

URL3 5.74 6.21 6.03 5.95

URL4 6.45 5.97 6.50 5.55

URL5 7.78 7.78 7.78 8.59
URL6 4.31 2.28 4.31 3.59

URL7 8.51 9.01 7.93 8.45

URL8 6.69 2.91 6.69 6.66

URL9 6.66 6.57 6.58 4.08

URL10 6.99 7.05 6.99 6.45

AVG. 6.47 4.97 6.54 5.18

of improved 8 5 8 -

were published in April 1. Thus, certain users who have different tendencies
in tagging can easily affect local specificity. To solve this problem, we need to
consider the meaning of the tag.

In addition, the DCG scores were the same in 6 out of 10 tasks between when
only global specificity was used when global and local specificities are used. This
is because the narrow range distribution of the value of spl(d, t) and spl(d, t)
does not have much effect on the value of sp(d, t) = spl(d, t)× spg(t). Hence, we
need to analyze the differences in the usage of tags between users and the design
of the local specificity function.

5.2 Evaluation of Relative Quantity of Web Pages

To evaluate the RQS as a measure of the attention intensity to Web pages, we
use the attention degree of Web pages, which we define as the attention inten-
sity a user feels when he/she knows the number of social bookmarks

http://codezine.jp/
http://eiga.com/
http://javascriptist.net/
http://lifehacking.jp/2008/03/life-instructions/
http://otoko-cooking.com/index.html
http://staff.aist.go.jp/toru-nakata/sotsuron.html
http://www.asahi.com/
http://www.hereticanthem.com/webdesign/295/
http://www.iknow.co.jp/
http://www.uta-net.com/

272 T. Yumoto and K. Sumiya

Table 4. Experimental Results for RQS

ID #SBM RQS User

URL1 47 2.749 0

URL2 12 0.381 -1

URL3 188 20.889 1

URL4 45 1.282 0

URL5 77 4.583 1

URL6 299 25.556 1

URL7 84 3.000 0.667

URL8 144 4.816 1

URL9 112 2.363 0.667

URL10 22 1.424 0

Spearman 0.877 0.922 -

of the target page and its related pages. If the RQS has a strong correla-
tion with the attention degree, the RQS is useful as a measure of the attention
intensity to Web pages. The values of the attention degree are obtained from
volunteers ratings. Considering the title and the number of social bookmarks of
the target pages and those of its related pages when sp(d, t) = spl(d, t)× spg(t),
the volunteers rated the pages using the following standards:

– 1: Attention degree is high
– 0: Attention degree is medium
– -1: Attention degree is low

If all pages of a blog site have the same title, we use the title of each blog entry
instead of the page title. Three volunteers rated each page listed in Table 2 and
we used the average of these scores as the attention degree.

If the RQS is useful for measuring the attention intensity to Web page, the
Spearman rank correlation coefficient between it and the attention degree should
be high. Therefore, we evaluated the RQS using the Spearman rank correlation
coefficient between attention degree. To evaluate the RQS, we compared it with
the number of social bookmarks. We used Spearman rank correlation coefficient
between it and the attention degree as the baseline. The results are shown in
Table 4. In Table4, #SBM means the number of social bookmarks and User
means the attention degree obtained from user evaluation. Spearman means the
Spearman rank correlation coefficient against the attention degree. We found
that RQS has a stronger correlation with attention degree than the number of
social bookmarks. Therefore, the RQS is more useful than the number of social
bookmarks for estimating the attention degree.

6 Conclusions

We proposed a similarity measure based on the specificity of social tags and
a method for obtaining related pages using the measure. We defined local and

Measuring Attention Intensity to Web Pages 273

global specificity and evaluated their effectiveness and the effectiveness of their
combination. From the evaluation, we found that global specificity improves
the similarity measure but local specificity sometimes makes it worse. One of
the reasons seems that certain users who have different tendencies in tagging
can easily affect the local specificity. We also define the RQS to measure the
attention intensity to the Web pages using related pages. We compared the
Spearman rank coefficient between the RQS and attention degree and the one
between the number of social bookmarks and attention degree. We found that
the Spearman rank coefficient between the RQS and attention degree is higher.
For future work, we need to improve local specificity.

Acknowledgment

This work was supported in part by the National Institute of Information and
Communications Technology.

References

1. Krestel, R., Chen, L.: Using co-occurence of tags and resources to identify spammers.

In: ECML/PKDD Discovery Challenge (RSDC 2008), Workshop at ECML/PKDD

2008 (2008)

2. Niwa, S., Doi, T., Honiden, S.: Web page recommender system based on folksonomy

mining. In: ITNG 2006: Third International Conference on Information Technology

New Generations, pp. 388–393 (2006)

3. Sugiyama, N., Seki, Y., Aono, M.: A method for finding related pages by users’

tagging behavior from social bookmarks (in Japanese). Journal of the DBSJ 7(1),

239–244 (2008)

4. Liang, H., Xu, Y., Li, Y., Nayak, R.: Collaborative filtering recommender systems

based on popular tags. In: ADCS 2009: Proceedings of the Fourteenth Australasian

Document Computing Symposium (2009)

5. Chi, E.H., Mytkowicz, T.: Understanding the efficiency of social tagging systems us-

ing information theory. In: HT 2008: Proceedings of the nineteenth ACM conference

on Hypertext and hypermedia, pp. 81–88. ACM, New York (2008)

6. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5),

604–632 (1999)

7. Noll, M.G., Au Yeung, C.M., Gibbins, N., Meinel, C., Shadbolt, N.: Telling experts

from spammers: expertise ranking in folksonomies. In: SIGIR 2009: Proceedings of

the 32nd international ACM SIGIR conference on Research and development in

information retrieval, pp. 612–619. ACM, New York (2009)

8. Järvelin, K., Kekäläinen, J.: Ir evaluation methods for retrieving highly relevant

documents. In: SIGIR 2000: Proceedings of the 23rd annual international ACM

SIGIR conference on Research and development in information retrieval, pp. 41–48.

ACM, New York (2000)

SQL as a Mashup Tool: Design and

Implementation of a Web Service Integration
Approach Based on the Concept of Extensible

Relational Database Management Systems

Yoshihiko Ichikawa1, Yuuki Matsui2, and Minoru Tanaka2

1 Media and Information Technology Center, Yamaguchi University,

Minami Kogushi 1-1-1, Ube, Yamaguchi, Japan

ichikay@yamaguchi-u.ac.jp
2 Graduate School of Science and Engineering, Yamaguchi University, Japan

Abstract. Recently Web services based on the HTTP and XML tech-

nology have become widely used, and application programs or mashups

integrating such services have also proliferated. In order to support the

integration process, we have developed a tool to convert user-defined

function specifications written in XML to the corresponding user-defined

functions loadable to PostgreSQL, an extensible relational database man-

agement system. With this conversion layer provided by the tool, mul-

tiple Web services and relational databases can be integrated in SQL,

and therefore, integrated applications or mashups can be built quickly

without being bothered by variety of Web service interfaces defining the

calling sequences and result data types. Moreover, even if one of the

Web service providers that a particular mashup depends on changes its

service specification, the application does not need to be modified ac-

cordingly, when the corresponding function’s calling interface remains

intact by changing the specification of the function body. This property

which we refer to as Web service independence is quite important since

Web service interfaces may change without any previous notices, and so

some management methodology is needed for mashups.

Keywords: Web Service, Mashup, Extensible Relational Database

Management System.

1 Introduction

After proliferation of the World Wide Web and the technologies to support ser-
vices on the Web, HTTP-based services such as Yahoo! Search Web Services
and Flikr [1], Amazon Web Services [2] and Twitter API [3] have become freely
available, and hybrid applications integrating these services, called mashups due
to its similarity to music and video mashups, have become popular. These ser-
vices are referred to as Web services and each of them “is a software system
designed to support interoperable machine-to-machine interaction over a net-
work. It has an interface described in a machine-processable format (specifically

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 274–284, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

SQL as a Mashup Tool: Design and Implementation 275

WSDL). Other systems interact with the Web service in a manner prescribed
by its description using SOAP-messages, typically conveyed using HTTP with
an XML serialization in conjunction with other Web-related standards” accord-
ing to the definition of W3C [4].1 While W3C definition is based on the rigid
RPC-like protocols such as WSDL and SOAP, we include REST style services in
Web services here.2 Moreover, HTML based services like search engines, bulletin
boards, news sites, weather reports may also be included, since they also provide
quite valuable information and a simple gateway script defining a wrapper, an
intermediate process working between clients and servers to adapt data formats,
may make them look like Web services in a narrow sense.

The success of Web services has lead to mashups, i.e., Web pages or services
built from other existing Web services. Typical mashups include a news reader
which collects news update data from multiple news sources, a meta-search en-
gine making use of more than one search engine service, and a mapping mashup
that lays out information retrieved from an index server on top of a map image
retrieved from a map service. A programmer trying to develop mashups must
understand the interfaces of the services, and integrate the returned results.
Although data returned from these services are often formatted in the standard-
ized language XML, they usually defined in different schemas or DTDs, and
hence integration process can be done only in an ad hoc manner. To lessen the
burden of the application programmers, utilization of declarative programming
languages is attractive. YQL [5], for instance, allows a data source to be defined
from multiple data sources using JavaScript, and support filtering, projection
and sub-querying functionality. Recent database technologies, such as XQuery
[6], a query language designed for XML databases, and SQL/XML [7], which
is a part of the SQL2003 standard and defines an abstract data type for XML
data in SQL, have been proposed for storing and integrating XML databases,
Web-services and/or relational databases.

New declarative languages and data types provide us with new exploration
opportunities, but application programmers still take care of variety of Web
service interfaces and schemas of returned data. Instead of adhering to XML
data and its flexibility, we propose another approach in which Web services are
encapsulated in user-defined functions of extensible relational database manage-
ment systems (DBMSs). Recently, major free or commercial relational DBMS
products support extensibility to some extent, and when database administra-
tors need procedures or functions which are not supported by default, they can
write their own definitions and make them available in SQL statements. Note
that the discussion in this paper is based on PostgreSQL [8], an extensible re-
lational DBMS. The proposed approach, however, may apply to other DBMS.
The following is a simply query making use of Yahoo! Search Service:

SELECT *
FROM getcontents_yahoo(

$${{’numberperpage’,’50’},{’startnumber’,’1’},{’reqnumber’,’100’}} $$,

1 We will shortly describe WSDL and SOAP below.
2 We will briefly explain SOAP and REST in Section 2.

276 Y. Ichikawa, Y. Matsui, and M. Tanaka

’Web Service’,’any’)

getcontents yahoo is a user-defined function encapsulating the process of in-
teracting with the service and converting the returned result into a relation. The
first argument gives optional parameters3 , followed by the search keyword and
the search type. The function’s return type is

SET OF (rank integer, title text, summary text, url text).

Since the result is just a relation, it can be arbitrarily filtered, projected and
joined with other relations including stored relations, views and those from Web
services as far as SQL permits. Our approach hides the details of Web services,
and provides application programmers with declarative simplicity and flexibility
of SQL. This approach is attractive especially when we want to build data-
intensive mashups like news mashups and search mashups, since the main part of
the data returned from each underlying Web service has some iterative structure,
and thus can be easily translated into a table format. We call our system as
SQL/MT short for SQL as a mashup tool. In contract to YQL which does not
support arbitrary combination of data sources in its basic syntax, our approach
can make use of the expressive power of SQL directly.

While the burden of application programmers with respect to Web service uti-
lization is eased in this approach, most part of it now has been moved to those
who define the user-defined functions. We call the latter library programmers to
discriminate them from application programmers. In order to further lessen the
burden of library programmers, we provide them with a translator that maps
a specification in XML of a user-defined function encapsulating Web service
utilization into the corresponding definition of the function directly loadable
to PostgreSQL. We call the specification language Pg/WAFL, short for Pos-
greSQL Web service accessing function markup Language. A sample description
in Pg/WAFL is shown in Appendix A. The approach taken by Ohshima et al.
[9,10] is similar to ours in the sense that their system, EaRDB, also makes use
of user-defined functions to access outer information sources, while they do not
propose any mechanism to support development of user-defined functions.4

Our approach also provides another benefit. A particular Web service interface
may change without any previous notices, and thus the programs depending on
the service may have to be modified accordingly. When a wrapper is used for
accessing the service, the wrapper may absorb the effect of modification of the
Web service by modifying the wrapper definition. In our approach, the user-
defined functions for accessing Web services work as wrappers, and hence, even
if one of the Web service providers that a particular mashup depends on changes
its service specification, the application does not need to be modified, as long
as the header part of the corresponding function can remain intact, while the
3 $$ is used to introduce literals in PostgreSQL as well as ’. In this case, a two-

dimensional array literal whose first row is ’numberperpage’ and ’50’, second row is

’startnumber’ and ’1’, and third row is ’reqnumber’ and ’100’ is given.
4 To be precise, the term “stored procedure” should be used, since the target of [9] is

Transact-SQL supported by Microsoft SQL Server and Sybase.

SQL as a Mashup Tool: Design and Implementation 277

function body is changed accordingly. So DBMSs with user-defined functions for
accessing Web services support this property, which we refer to as Web service
independence, as well as logical and physical data independence [11], one of the
most important concepts that database management systems support.

The rest of this paper is organized as follows. In Sections 2 and 3, we will
describe target Web services first and then explain Pg/WAFL and its translator
implementation. Section 4 shows some applications we have developed with our
proposed technique. The last section concludes and addresses some future work.

2 Target Web Services

While all the Web services make use of HTTP for sending a request and receiving
its result, some formally or informally defined protocols are usually put on top of
HTTP. These protocols specifically define how to format the request and how the
result is formatted. For instance, information regarding the updated content of
a particular on-line news site may be accessed by simply accessing the Web page
specified by the service and parsing the returned data formatted in a particular
feed format (or simply feed), where typical feed formats include RSS1.0 family,
RSS 2.0 family, and ATOM, all of which are extended from XML. In this case,
the request is simply implied by the URL of the Web page itself, and the result
format is the feed. Serialization of returned data is typically done with XML,
but other methods such as PHP serialization (a character representation of PHP
data)and JSON (the JavaScript correspondent) are also used.

Similar, but more general-purpose service style is called REST (Representa-
tional State Transfer). A typical Web service adopting REST accepts service
parameters usually as HTTP GET parameters, and returns the result, which is
serialized typically in XML or JSON, as part of the HTTP response. Although
there is no W3C recommendation for REST, there have been a lot of REST-
based Web services, and is easy to comprehend and use. So in this paper, we
mainly treat REST style Web services as the target.

More abstract and standardized Web service specifications are given and im-
plemented with WSDL (Web service description language) and SOAP (Simple
Object Access Protocol), respectively. Since WSDL is used to formally specify
a particular Web service, automatic generation of user-defined functions for the
Web service might be possible. And probably, WADL (Web application descrip-
tion language) designed for formally describing REST-style Web services might
be used as the starting point of automatic generation. This paper, however, does
not cover the issue, and we only name it as one of the future work.

3 Pg/WAFL and Its Translator

A user-defined function description in Pg/WAFL comprises three parts as shown
in Appendix A. The first part specifies the header part of the user-defined func-
tion, i.e., the function name, the list of arguments and the return type, specified
by the FuncName element, FuncArg and RetType, respectively. We use two kinds

278 Y. Ichikawa, Y. Matsui, and M. Tanaka

of arguments. First, ordinary parameters (we call them “positional parameters”
since they are given in a particular position in the argument list) are used to pass
mandatory arguments. In the example, “query” and “format” are positional pa-
rameters, and specify the second and the third arguments of the corresponding
functions, respectively. The first argument of the function, on the other hand,
is used to pass parameters of the second kind, that we call them “keyword pa-
rameters” as every actual parameter value is preceded by a keyword giving the
parameter name. “reqnumber”, “numberpage” etc. are keyword parameters. The
keyword parameters are passed to functions as the first argument using an array
of keyword-value pairs. The following is a sample query we explained above:

SELECT *
FROM getcontents_yahoo(

$${{’numberperpage’,’50’},{’startnumber’,’1’},{’reqnumber’,’100’}} $$,
’Web Service’,’any’)

The array passed as the first argument specifies the “numberparpage”, “start-
number”, and “requnumber” keyword parameters, and the second argument
“Web service” and the third one “any” are parameter values for “query” and
“format”, respectively. We use keyword parameters due to two reasons. First,
many of Web service parameters are optional. So giving optional parameter some
positions on a particular function argument list might lead to a lot of null values
when the function is actually used. Second, this is an implementation-dependent
issue though, PostgreSQL’s user-defined functions can have up to eight parame-
ters. Although raising this threshold is possible, that would result in reducing the
server performance.5 The required attribute specifies optionality of arguments.

The RetType element specifies the return type. In the example, the result is
table, i.e., a set of tuples, and has four columns, i.e., “rank” of type integer,
“title” of type text, “summary” of type text and “url” of type text. Note that
“rank” is of type “rank” in the Pg/WAFL specification. This indicates that each
tuple in the table has its ranking information as the value of the “rank” column.

How to call web services with the given parameters is described in the Request
part. baseurl gives the base url of the corresponding Web service, and the param
elements and param paging element gives the parameters passed to the Web
service. Since we support only REST style parameters, the actual url with its
base url baseurl and parameter values vi for p1, v2 for p2 · · · and vn for pn is
“baseurl?p1 = v1&p2 = v2& · · ·&pn = vn.” The required attribute specifies
optionality of parameters, again. The value of a particular parameter is defined
by the source attribute, and the default value is given in the content of the
corresponding param element. Note that we only support query parameters for
now, while path and matrix parameters may be used to access some Web services.

param paging is used for paging parameters. When we want to retrieve, say,
one hundred, items from, say, a Web search engine service, we can not necessarily

5 Note that PostgreSQL supports type hierarchies and overloading. Therefore, which

function is actually called is determined at runtime according to the combination of

the argument types. So at worst, the function searching algorithm may exponential

with respect to the number of function arguments.

SQL as a Mashup Tool: Design and Implementation 279

accomplish the task by sending only one request. A typical Web service has
some maximum number of items that can be requested by a single request. So,
when we want more items than the limit, we have to make multiple requests to
achieve our task. This is called “paging” . In this example, “start” and “result”
Web service parameters are used to specify the start position and the page size
of a particular page request, and the “start”, “reqnumber” and “numperpage”
function arguments define the initial item position, the total number of items,
and the page size, respectively. In the generated function body, these paging
parameters control iterative access to the Web service.

The last part, “Returning”, specifies how to translate data returned by a
Web service to a relation. We can split the translation process into two sub-
processes. The first sub-process maps returned XML data to another XML data
representing the result relation, while the second one further maps the relation
described in XML to the actual relation stored in PostgreSQL. Since the second
sub-process is trivial from the context, we require library programmers to write
only the first sub-process. Any method of XML data transformation may be
applied to the first sub-prosess, as it is just a XML-to-XML translation process.
We now support only XSLT[12] as the specification language, but other languages
such as XQuery and even DSSSL6 might be used here. Note that the stylesheet
in this sample defines only three columns, while the return type defines four
columns. This is because the “rank” column of a particular tuple in the table is
automatically filled by the system according to the position of the tuple in the
result. Note also that the current implementation of SQL/MT does not support
verification. Hence, even if the Returning element contains an incorrect code
fragment, it is executed as is. This is another issue yet to be explored.

We use plPHP7 as the description language of generated user-defined func-
tions. As the name indicates, the plPHP module allows the programmers to write
user-defined functions of PostgreSQL in PHP. We choose plPHP, since PHP it-
self supports DOM and XSLT libraries for XML data manipulation. This choice,
however, is not inherent in our approach. Other procedural languages supported
by PostgreSQL such as Perl, Tcl and Python might be used, as long as XML
data manipulation is supported at runtime.

The SQL command automatically generated from the sample include about
120 lines. Although the difference between the command and the the Pg/WAFL
description may not seem so much for expert programmers, SQL/MT provides
us with a few favorable (probably future) properties. First of all, the Pg/WAFL
description might be used for other types of DBMSs than PostgreSQL if we
write an appropriate Pg/WAFL translator, and therefore it allows us to have
the chance to support good portability. Second, if the similar descriptions were
provided by Web service providers themselves, application programmers would
be able to build mashups in SQL without resorting to library programmers.
Lastly, as we mentioned in the introduction, even if a Web service specification

6 This is a Lisp-like predecessor of XSLT. DSSSL is not an XML-based language, but

might be used by CDATA elements.
7 See http://sourceforge.net/projects/plphp/ for more detail.

280 Y. Ichikawa, Y. Matsui, and M. Tanaka

is modified, applications depending on the service may remain intact, if only
modifying the Pg/WAFL description can absorb the effect of modification.

4 Sample Applications

To show effectiveness of SQL/MT, we have implemented several applications. We
explain two application in this section. The first one is a so-called meta-search
engine, which sends a request to more than one search engine, and combines the
results to generate an aggregated result. For each query term, it sends a query
request to Yahoo! Web Search service, and also sends another query request
to Yahoo! Image Search service. The two results are simply joined by SQL’s
standard functionality:
SELECT
ysearch.rank, ysearch.title, ysearch.summary, ysearch.url,
yimg.title, yimg.summary, yimg.url
FROM
getcont_yahoo($${{’reqnumber’,’100’}}$$, :QUERY, ’any’) AS ysearch
LEFT JOIN

getcont_yahooimage($${{’reqnumber’,’100’}}$$, :QUERY, ’any’) AS yimg
ON url_compare(ysearch.url,yimg.url)>=1
ORDER BY ysearch.rank ASC;

where “:QUERY” is replaced with an actual query keyword at runtime,
getcont yahoo and getcont yahooimage are functions for two Yahoo!’s ser-
vices, respectively, and url compare is a user-defined function to evaluate the
similarity between given two URLs. In this sample, url compare returns a value
greater than or equal to 1, when at least the site names of the URLS given as
actual parameters are equal to each other. Without using SQL/MT, application
programmers would have to write code for sorting data, merging data and gen-
erating result explicitly, which are coded in the above SQL statement implicitly
in “LEFT JOIN”.

Figure 1 shows our second sample, New Analyzer, which illustrates how re-
mote Web applications, local non-DBMS services and local databases are inte-
grated. This is a tool for collecting word occurrence frequencies in news pages
and storing them in a database table, periodically. Words in news pages are
extracted with a morphological analyzer, Chasen[13]. The overall architecture is
shown in Figure 1 (b). NewsAnalyzer is accompanied by a data viewer to browse
the stored data as a tagcloud. A partial screenshot of the viewer is shown in
Figure 1 (a). The frequency of a word is represented by the size and the color of
the font: larger and more redish fonts indicate higher frequencies. Frequently used
words in the screenshot include “application”, “sales activity”, “development”,
“management”, “corporation”, “function” and “business”. Note that since we
do not eliminate common words, they do not necessarily indicate interesting
words. With the slide bar, users can choose the date of interest. Every step of
the collection process is written in SQL. Since the interface to the morphological
analyzer is also written as a function returning a table representing the analysis

SQL as a Mashup Tool: Design and Implementation 281

(a) a partial screenshot of the viewer (b) the overall architecture

Fig. 1. A sample application: News Analyzer. (NB: The viewer support both Japanese

and English, though all of the collected articles are written in Japanese. Japanese-

English translation is perfomed by utilizing Google AJAX Language API.)

result, the final source code of the collection tool comprises about a dozen of
lines for calling SQL statements.8

5 Conclusion

We explained a novel approach to building mashups of Web services using the
extensibility of recent relational database management systems, and introduced
its implemenation, SQL/MT short for SQL as a mashup tool. In our approach,
details of Web services are encapsulated in the corresponding user-defined func-
tions which are used to extend the functionality of DBMSs. This particularly
ease the burden of application programmers, but there remains the burden of
those who write user-defined functions. So we have developed a tool converting
the specification of a particular user-defined function accessing a Web-service
into the corresponding loadable user-defined function definition. We refer to the
language for describing the input as Pg/WAFL, which is an extension of XML.
By using this approach, we can improve construction efficiency, portability and
maintainability of mashups. Moreover, if Web service providers provide their ser-
vice descriptions in Pg/WAFL, application programmers would be able to build
mashups in SQL by simply writing some SQL statements. Our approach also
introduces another concept into database management systems, Web-service in-
dependence akin to physical/local data independence: even if a Web service spec-
ification is modified, applications depending on the service may remain intact,
when changing the Pg/WAFL description can absorb the effect of modification.
8 If you really adhere to SQL itself, you might use a procedural extension of SQL such

as Pl/PgSQL to execute all the steps on the server side.

282 Y. Ichikawa, Y. Matsui, and M. Tanaka

While we have shown two applications to illustrate effectiveness of our ap-
proach, there are some issues to be explored in the future. First, some quantita-
tive comparison of our approach to the previously known approaches should be
needed to clarify the pros and cons of our approach. Second, formal descriptions
of Web services in WSDL and WADL may be utilized in forming Pg/WAFL spec-
ifications. When this were accomplished completely, applications programmers
would be able to access some Web services instantly with no additional cost.
Third, we need some verification mechanism to check validity of Pg/WAFL de-
scriptions. Otherwise, reliability of applications is difficult to ensure. Lastly, we
also have to study the effect of external resources to the transactional proper-
ties, especially atomicity9 and isolation10[11], which may be easily broken when
external resources are utilized.

References

1. Yahoo! Inc.: Yahoo! Search Services, http://developer.yahoo.com/search/

2. Amazon.com: Amazon Web Services, http://aws.amazon.com/

3. Twitter: Twitter API Documentation,

http://apiwiki.twitter.com/Twitter-API-Documentation

4. W3C: Web Services Glossary (February 2004), http://www.w3.org/TR/ws-gloss/

5. Yahoo! Inc.: Yahoo! Query Language, http://developer.yahoo.com/yql/

6. W3C: W3C XML Query (XQuery), http://www.w3.org/XML/Query/

7. Eisenberg, A., Kulkarni, K., Melton, J., Michels, J.E., Zemke, F.: Sql:2003 has been

published. SIGMOD RECORD 33(1), 119–126 (2004)

8. PostgreSQL Global Development Group: PostgreSQL: The world’s most advanced

open source databases, http://www.postgresql.org/

9. Ohshima, H., Oyama, S., Tanak, K.: Eardb: A platform for processing web aggre-

gate queries. DBSJ Letters 6(2), 49–52 (2007) (in Japanese)

10. Ohshima, H., Oyama, S., Tanak, K.: Cloud as virtual databases: Bridging private

databases and web services. In: Yoshikawa, M., et al. (eds.) DASFAA 2010. LNCS,

vol. 6193, pp. 274–284. Springer, Heidelberg (2010)

11. Date, C.J.: Introduction to Database Systems, 7th edn. Addison-Wesley, Reading

(2001)

12. W3C Consortium: XSL Transformations (XSLT) Version 2.0. W3C Consortium

(January 2007)

13. Computational Linguistics Laboratory, Graduate School of Information Science,

Nara Institute of Science and Technology: Chasen (2007),

http://chasen-legacy.sourceforge.jp/

9 Atomicity is a property that database updates submitted from a transaction should

be performed in an all-or-nothing manner.
10 Isolation is a property that correctness of a transaction should not be affected by

other concurrently executed transactions. More specifically, when a transaction does

not modify an database item, the value of the item should be the same whenever it

is read in the transaction, even if other transactions may modify the item.

http://developer.yahoo.com/search/
http://aws.amazon.com/
http://apiwiki.twitter.com/Twitter-API-Documentation
http://www.w3.org/TR/ws-gloss/
http://developer.yahoo.com/yql/
http://www.w3.org/XML/Query/
http://www.postgresql.org/
http://chasen-legacy.sourceforge.jp/

SQL as a Mashup Tool: Design and Implementation 283

A A Sample Description in Pg/WAFL

<?xml version="1.0" encoding="UTF-8"?>

<FuncSpec>

<!-- Part I: function header -->

<FuncName>getcont_yahoo</FuncName>

<FuncArgs>

<FuncArg argname=’reqnumber’ argtype=’keyword’

required="true">integer</FuncArg>

<FuncArg argname=’numberperpage’ argtype=’keyword’

required="false">integer</FuncArg>

<FuncArg argname=’query’ argtype=’positional’>text</FuncArg>

<FuncArg argname=’format’ argtype=’positional’>text</FuncArg>

<FuncArg argname=’appid’ argtype=’keyword’>text</FuncArg>

<FuncArg argname=’startnumber’ argtype=’keyword’

required="false">integer</FuncArg>

</FuncArgs>

<RetType srf=’Yes’>

<RowType name=’contents_yahoo’>

<SrfElement name=’rank’ type=’rank’ />

<SrfElement name=’title’ type=’text’ />

<SrfElement name=’summary’ type=’text’ />

<SrfElement name=’url’ type=’text’/>

</RowType>

</RetType>

<!-- Part II: Web service binding -->

<Request type=’xml’>

<url>

<baseurl>http://search.yahooapis.jp/WebSearchService/V1/webSearch</baseurl>

<param_paging start=’start’ size=’results’

source_start=’start’ source_total=’reqnumber’ source_size=’numperpage’/>

<param name="appid" type="xsd:string" source="appid"

required="false">############</param>

<param name="query" type="xsd:string" source="query"

required="true" />

<param name="format" type="xsd:string" source="format" required="true" />

<url>

</Request>

<!-- Part III: conversion of responce data to table data -->

<Returning lang=’xslt’>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:yahoo="urn:yahoo:jp:srch">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">

<table>

<xsl:apply-templates/>

</table>

</xsl:template>

<xsl:template match="yahoo:Result">

284 Y. Ichikawa, Y. Matsui, and M. Tanaka

<record>

<title><xsl:value-of select="yahoo:Title"/></title>

<summary><xsl:value-of select="yahoo:Summary"/></summary>

<url><xsl:value-of select="yahoo:Url"/></url>

</record>

</xsl:template>

</xsl:stylesheet>

</Returning>

</FuncSpec>

Design of Impression Scales for Assessing

Impressions of News Articles

Tadahiko Kumamoto

Department of Information and Network Science,

Faculty of Information and Computer Science,

Chiba Institute of Technology,

2–17–1, Tsudanuma, Narashino, Chiba 275–0016, Japan

kumamoto@net.it-chiba.ac.jp

Abstract. This paper focuses on the impressions that people get from

reading articles in newspapers. We have already proposed web applica-

tion systems that extract and use several types of impressions from news

articles. However, the types of impressions extracted and used in these

systems were intuitively defined by us on the basis of a basic emotion

model, which the well-known psychologist Robert Plutchik proposed to

represent human emotions. That is, the characteristics of news articles

that result in different impressions have not been taken into consideration

in much detail. Therefore, we have tried to design one or more impression

scales suitable for assessing impressions generated by news articles. First,

we conducted nine experiments in each of which 100 people read ten news

articles and indicated their impressions on 42 five-point scales, where 42

impression-related words such as “happy” and “strained” were assigned

for the 42 scales. Consequently, we obtained impression-estimation data

for the 42 impression-related words. Next, we applied factor and cluster

analysis to these impression-estimation data, and analyzed similarities

among the impression-related words in terms of their scores. In our re-

sults, the words that convey similar impressions are classified into a single

group and the words that convey opposite impressions are classified into

different groups of words. Finally, we designed six impression scales suit-

able for assessing impressions generated by news articles on the basis

of these results, each of which consisted of two contrasting groups of

impression-related words.

1 Introduction

In recent years, in the field of “Affective Computing,” that is, computing that re-
lates to, arises from, or deliberately influences emotions [1], many research groups
around the world have been trying to model the roles of emotion in interactions
between people or between people and computers, and to make computers rec-
ognize and express emotions. In particular, there have been numerous studies
in which computers explicitly express their computed affective state to users
as dialogue participants, or convey the affective state of a user to other users
as intermediaries, where the embodied conversational agents are equipped with
synthesized emotional facial expressions in order to play their roles [2,3].

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 285–295, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

286 T. Kumamoto

However, there are few studies that extract and use the impressions that peo-
ple feel upon seeing or listening to information that someone has presented.
Although for works of art such as music and painting several impression-based
music and image retrieval methods [4,5,6] have been proposed as a means to iden-
tify pieces of music and paintings that convey similar impressions with those that
users have entered, there have been very few proposed impression-based methods
for texts such as news articles, novels, and poems. According to the Daijirin1,
the term “emotion” is defined as a “movement of mind; becoming happy or
suffering sadness, affections, sentiments, moods,” while the term “impression”
is defined as a “feeling that people get by seeing or listening to something.”
That is, “emotion” means the affective state of people, or a change in this state,
and represents a psychological aspect of mind at a deep level. In contrast, an
“impression” is the mental picture that people have at a perceived level, and
represents a perceptive aspect of mind at a surface level.

We previously focused on impressions generated by news articles, and pro-
posed an impression mining method for extracting several types of impressions
from news articles [7] and web application systems that effectively use the ex-
tracted impressions [8,9,10,11]. However, the impressions that were extracted
and used in these systems were intuitively determined on the basis of the basic
emotion model2 [12], which well-known psychologist Robert Plutchik proposed to
represent human emotions, while we considered the intended use of the systems.
This means that the characteristics of news articles with regard to impressions
have not been taken into consideration in much detail.

Therefore, in this study, we tried to design one or more scales suitable for
assessing impressions of news articles. First, we conducted nine experiments
with a total of 900 participants, and collected impression-estimation data that
represent the relationship between news articles and the impressions that they
generate. In each experiment, 100 participants read ten news articles, and rated
each of them on 42 scales, where 42 impression-related words such as “happy”
and “strained” were assigned for the scales, and each scale was used to assess, on
a five-point scale from 1 (strongly) to 5 (not at all), how much each of the news
articles generates the target impressions in the participants. Next, we applied
factor and cluster analysis [13] to the impression-estimation data, and analyzed
similarities among the impression-related words in terms of their scores. In our
results, the words that conveyed similar impressions were classified into a single
group and the words that conveyed opposite impressions were classified into
different groups. Finally, we designed and proposed six impression scales suitable
for assessing impressions of news articles on the basis of these results, each of
which consisted of two contrasting groups of impression-related words.

1 The Daijirin is one of the most famous Japanese dictionaries, which can be accessed

in the form of an online version at http://dictionary.goo.ne.jp/ .
2 According to Plutchik, basic emotions are defined as those that form the basis of all

the emotions that people have, and all other emotions are explained by mixing the

basic emotions.

http://dictionary.goo.ne.jp/

Design of Impression Scales for Assessing Impressions of News Articles 287

The rest of this paper is organized as follows. In Section 2, some related work
about emotions, reputations, and impressions is introduced. In Section 3, we
describe nine online experiments that we conducted to collect the impression-
estimation data that represented the relationship between news articles and the
impressions they generate. In Section 4, we analyze the impression-estimation
data, and design six impression scales suitable for assessing impressions of news
articles. Finally, in Section 5, we present our conclusions.

2 Related Work

Studies for inferring the emotions of people are most prevalent in the field of
“Affective Computing.” The goal of these studies has been to enable smoother
communication with robots and avatars and smoother communication between
people using e-mail. For instance, a commercial system that extracts vocal fea-
tures from users’ utterances and determines their emotions from six types of
emotion, namely, “anger,” “joy,” “sadness,” “normal,” “laughter,” and “excite-
ment,” has been released to the public [14]. There is also a system that recognizes
users’ emotionally charged or offensive utterances like “wow” and “oh my god”
and locates their emotions in the emotion space designated by three axes: “ac-
ceptance — refusal,” “relaxation — impatience,” and “pleasant — unpleasant”
[15]. A system has been proposed to measure users’ facial expressions with a
three-dimensional measuring instrument, which matches the facial expressions
with the five typical facial expressions that represent “joy,” “anger,” “surprise,”
“fear,” and “disgust” [16]. A system that infers users’ emotions using the positive
feelings [17] associated with the words appearing in their utterances has been
proposed [18], while the degree of positive feelings associated with a word was
determined by workers on the basis of their experiences. There is a difference
between these studies and ours in that our focus is on the impressions that are
generated in people due to text through which information is transmitted, rather
than the associated emotion or affective state.

Methods of extracting writers’ reputations and evaluation from movie reviews,
book reviews, and production evaluation questionnaires have also been studied.
For example, Turney proposed a method of classifying various genres of reviews
into “recommended” or “not recommended” [19]. The primary characteristics of
his method are the following: one is that the class into which a text is classi-
fied is determined on the basis of the co-occurrence relationship between each
of the words extracted from the text and predefined reference words, namely,
“excellent” and “poor,” and the other is that the relationship is determined on
the basis of the number of hits obtained using the AltaVista Advanced Search
engine3. This method was designed only for a specific scale: “recommended —
not recommended.”

We have already proposed not only an impression mining method that extracts
several types of impressions from news articles [7] but also web application systems
3 The URL at that time was http://www.altavista.com/sites/search/adv, but it

is not available now.

http://www.altavista.com/sites/search/adv

288 T. Kumamoto

that effectively use the extracted impressions [8,9,10,11]. The News Reader with
Emotional Expressions or wEE [8] automatically generates news-program-like an-
imations with synthesized emotional speech and background music. A distinctive
aspect of the wEE is that it automatically determines appropriate backgroundmu-
sic and an appropriate tone of voice for the animated newscaster in the animation
generation according to impressions of news articles to be read by the newscaster.
The Web OpinionPoll [9] collects web pages that are related to users’ questions
through web retrieval when users ask questions in the form of “What do people
think about · · ·?” and plots impressions of the collected web pages on two impres-
sion planes: one is a plane spanned by two impression scales “anticipation — sur-
prise” and “acceptance — disgust,” and the other is a plane spanned by another
two impression scales “joy — sadness” and “fear — anger.” My Portal Viewer Plus
[10] and Fair News Reader [11] manage users’ preferences for impressions of news
articles on four impression scales, and recommend news articles that users might
want to read, not only from the viewpoint of topics, but also from impressions,
where the four impression scales are “happy — unhappy,” “acceptance — rejec-
tion,” “relaxation - strain,” and “fear — anger.” These impression scales were all
intuitively designed on the basis of a basic emotion model, although impression-
related words constituting each impression scale were determined depending on
the intended use of the application systems.

3 Collection of Impression-Estimation Data

We conducted online impression-estimation experiments with a total of 900 par-
ticipants, and collected the impression-estimation data that represented the re-
lationship between news articles and their impressions.

First, 900 participants were divided equally into nine groups, and ninety dif-
ferent news articles that had been selected from the society or local-news pages
of Mainichi newspapers published in 2002 were also equally divided into nine
groups. This means that a total of 100 participants, 50 male and 50 female, read
ten different news articles. Each participant was asked to read the ten news arti-
cles presented in a random order and rate each of them on 42 scales corresponding
to the 42 impression-related words listed in Table 1. That is, each participant
was asked to assess, on a scale of 1 to 5, how much she/he felt the impressions
represented by the corresponding impression-related word upon reading a target
news article, with 1, 2, 3, 4, and 5 being “strongly,” “comparatively strongly,”
“comparatively weakly,” “weakly,” and “not at all,” respectively.

Only the first paragraphs of the original news articles were presented to the
participants in order to reduce their workload. In addition, personal informa-
tion such as individual names, organization names4, and regional names5 were
4 Names of public institutions were not replaced except for the parts denoting regional

names, but names of sections in the public institutions were replaced with symbols.

The parts denoting the types of organization such as “University” and “Corporation”

were not replaced.
5 The parts denoting the types of region such as “Prefecture” and “City” were not

replaced.

Design of Impression Scales for Assessing Impressions of News Articles 289

Table 1. Forty-two impression-related words presented to participants in a random

order

Common, Strained, Untroubled, Fear, Anger, Grief-stricken, Idyllic, Sur-

prising, Sophisticated, Unsophisticated, Interesting, Pitiful, Pathetic, De-

plorable, Favorable, Brutal, Cool, Arrogant, Modest, Naive, Daring, Bright,

Dark, Favorite, Fortunate, Unfortunate, Happy, Refreshing, Unpleasant, Glad,

Sad, Peaceful, Optimistic, Uncomfortable, Pessimistic, Sick, Unexpected,

Lamentable, Uninteresting, Awful, Least favorite, Serious

replaced with diamond, circle, and square symbols and hidden so that people
could not identify anything specific from the news articles. The ten news articles
presented to each group were selected in a balanced manner in terms of the im-
pressions that they generated. That is, several hundred news articles published
in 2002 in the society or local-news pages of the Mainichi newspaper were ex-
tracted from a database, and were then classified into seven impression classes:
“joy,” “anger,” “sadness,” “delight,” “surprise,” “fear,” and “others.” Then, one
or two news articles were selected from each impression class so as to obtain a
total of ten news articles.

The forty-two impression-related words were selected from a Japanese the-
saurus [20] using the following method.

(1) Impression-related words that can represent impressions of news articles were
exhaustively extracted from the thesaurus, and 532 impression-related words
were obtained.

(2) Context-dependent words such as “large” and “low” and document-structure-
dependent words such as “felicitous” and “simple” were excluded from the 532
impression-related words.

(3) Synonymous and semi-synonymous words were grouped together, and conse-
quently 42 groups were formed. One impression-related word was finally se-
lected from each of the groups as determined by the number of hits obtained
by entering a character string concatenated with the impression-related word
and the term “article” into the Google search engine [21].

By performing the experiments mentioned in this section, 9,000 impression-
estimation data were obtained for each of the 42 impression-related words.

4 Design of Impression Scales

In this section we analyze the impression-estimation data obtained in the preced-
ing section, and determine similarities among the 42 impression-related words.
We design one or more scales suitable for assessing impressions of news articles
on the basis of these results.

290 T. Kumamoto

4.1 Analysis of Basic Statistics

Averages and standard deviations of the 9,000 data were computed for each of
the 42 impression-related words. The results are arranged in ascending order of
standard deviation and shown in Table 2.

Table 2 shows that the standard deviations are between 0.84 and 1.50, and
that they vary substantially among the impression-related words. Since small
standard deviations mean that the corresponding impressions were rarely ob-
served among the 9,000 data, we decided to exclude the words “modest” and “so-
phisticated,” whose standard deviations were less than 1.0, and their antonyms
“arrogant” and “unsophisticated” from the list of 42 impression-related words.

Table 2. Averages (Ave) and standard deviations (SD) of all data for each impression-

related word

Impression-related word Ave SD Impression-related word Ave SD

Modest 4.58 0.84 Strained 4.10 1.26

Sophisticated 4.54 0.93 Idyllic 4.16 1.26

Untroubled 4.37 1.07 Sick 4.13 1.29

Naive 4.36 1.08 Pessimistic 4.06 1.30

Uninteresting 4.34 1.09 Bright 4.12 1.30

Optimistic 4.35 1.09 Fear 4.02 1.34

Unsophisticated 4.40 1.11 Surprising 3.83 1.35

Interesting 4.32 1.11 Grief-stricken 3.91 1.39

Glad 4.34 1.12 Pathetic 3.93 1.39

Unexpected 4.24 1.12 Least favorite 3.98 1.41

Fortunate 4.32 1.12 Brutal 3.99 1.41

Daring 4.32 1.13 Uncomfortable 3.83 1.42

Favorite 4.31 1.14 Dark 3.84 1.42

Refreshing 4.31 1.15 Sad 3.79 1.46

Common 4.21 1.16 Anger 3.84 1.47

Happy 4.26 1.18 Pitiful 3.83 1.47

Cool 4.22 1.19 Unfortunate 3.79 1.47

Arrogant 4.27 1.22 Serious 3.69 1.49

Favorable 4.17 1.24 Lamentable 3.74 1.50

Deplorable 4.17 1.25 Awful 3.75 1.50

Peaceful 4.18 1.25 Unpleasant 3.76 1.50

4.2 Factor Analysis

As described in the preceding subsection, four impression-related words were
excluded from the list of 42 impression-related words. Therefore, we applied
factor analysis to the data for the remaining 38 impression-related words while
changing the number of factors from three to seven in the factor analysis, where
the Varimax method was adopted and used for rotation of factors so as to create
an orthogonal space. The highest accumulated contribution ratio of 64.4% was
obtained when the number of factors was four. Therefore, we adopted this result.
The result is shown in Table 3.

Design of Impression Scales for Assessing Impressions of News Articles 291

Table 3. Results of factor analysis for all data for 38 impression-related words

Factor loadings

Factor Impression-related First-order Second-order Third-order Fourth-order

word factor factor factor factor

First-order Sad 0.86 -0.09 -0.04 -0.06

factor Unfortunate 0.86 -0.09 -0.02 -0.08

Lamentable 0.82 -0.13 0.02 0.03

Dark 0.81 -0.08 0.10 0.00

Serious 0.81 -0.12 -0.02 0.08

Brutal 0.81 -0.05 0.01 0.01

Pitiful 0.81 -0.07 -0.07 -0.11

Grief-stricken 0.80 -0.04 0.07 0.10

Pathetic 0.80 -0.04 0.10 -0.02

Awful 0.79 -0.15 0.17 0.10

Fear 0.79 -0.03 0.03 0.16

Uncomfortable 0.78 -0.08 0.03 0.15

Anger 0.78 -0.13 0.10 0.13

Pessimistic 0.77 0.01 0.11 0.07

Unpleasant 0.75 -0.16 0.21 0.13

Deplorable 0.73 0.02 0.21 0.08

Sick 0.72 -0.01 0.14 0.20

Strained 0.71 0.05 0.05 0.19

Least favorite 0.70 -0.05 0.30 0.14

Second-order Happy -0.11 0.87 -0.01 0.07

factor Bright -0.17 0.86 -0.01 0.03

Fortunate -0.06 0.86 0.03 0.04

Favorite -0.04 0.86 -0.01 0.09

Idyllic -0.15 0.85 0.09 -0.05

Glad -0.05 0.85 -0.01 0.09

Favorable -0.11 0.85 -0.02 0.05

Refreshing -0.07 0.85 0.04 0.01

Peaceful -0.15 0.79 0.16 -0.05

Untroubled 0.00 0.78 0.13 0.03

Interesting -0.05 0.74 0.03 0.25

Naive 0.00 0.72 0.25 -0.03

Optimistic 0.02 0.70 0.24 0.10

Third-order Uninteresting 0.17 0.23 0.67 0.07

factor Common 0.17 0.33 0.55 -0.04

Fourth-order Surprising 0.52 0.19 -0.05 0.53

factor Unexpected 0.30 0.38 0.12 0.51

— Cool 0.49 0.07 0.49 0.18

Daring 0.39 0.30 0.21 0.42

292 T. Kumamoto

Fig. 1. Four-dimensional orthogonal space representing relationships among

impression-related words

We can see from Table 3 that negative words such as “sad” and “dark,”
positive words such as “happy” and “bright,” impression-related words “unin-
teresting” and “common,” and impression-related words “surprising” and “un-
expected” were grouped into the first-order factor, the second-order factor, the
third-order factor, and the fourth-order factor, respectively. Therefore, we cre-
ated a four-dimensional orthogonal space spanned by these four factor axes. This
space is illustrated in Figure 1.

4.3 Cluster Analysis

Since the two factor axes “positive” and “negative” in the space created in the
preceding subsection exhibit a limited resolution, we do not consider that they
are suitable for assessing impressions of news articles.

Therefore, we decided to analyze the data6 from another viewpoint, and
applied cluster analysis to the data, where we adopted Ward’s method as a
clustering method and used the squared Euclidean distance as a measure of sim-
ilarity. Consequently, the impression-related words were grouped according to
score patterns of the participants for the data.

The results are illustrated in Figure 2. From Figure 2, we find that the cluster
size is the most appropriate when the number of clusters is ten. That is, the
word “optimistic” is added to the word group consisting of “peaceful,” “idyllic,”
“naive,” and “untroubled” when the number is nine, and the words “unexpected”
and “surprising” are separated from each other when the number is 11. We
consider that this addition and separation are inappropriate. Note that, in the
figure, this case is denoted by a dashed line. For readers’ reference, impression-
related words constituting each cluster are enumerated below.

6 Two impression-related words “cool” and “daring” were excluded from the 38

impression-related words before applying cluster analysis to the data. This is why

these two impression-related words were not grouped into any factors, as shown in

Table 3.

Design of Impression Scales for Assessing Impressions of News Articles 293

Fig. 2. Results of cluster analysis for all data for 36 impression-related words

– Happy, Bright, Glad, Fortunate, Favorite, Favorable, Refreshing, Interesting
– Peaceful, Idyllic, Naive, Untroubled
– Optimistic
– Sad, Dark, Brutal, Pathetic, Unfortunate, Pitiful, Serious, Lamentable,

Grief-stricken
– Anger, Least favorite, Awful, Unpleasant
– Strained, Fear, Sick, Uncomfortable
– Pessimistic, Deplorable
– Uninteresting
– Common
– Surprising, Unexpected

4.4 Design of Impression Scales

Although there is some degree of similarity between the results of cluster analysis
and the results of factor analysis, there are differences in at least the following two
points. The first is that, in the clustering analysis, the positive words constituting
the second-order factor and the negative words constituting the first-order factor
were classified into three and four clusters, respectively. The second is that the
impression-related words “uninteresting” and “common” constituting the third-
order factor were separated into two clusters.

Upon taking these findings into consideration, impression scales are designed
by the following procedures. First, since the number of negative clusters is
larger than that of positive clusters and is four, we consider separating all the
impression-related words in the three positive clusters into four groups. In this
separation, it is essential that the four negative clusters correspond with the four
newly generated positive groups and that each positive group has an antonymous
relationship with the corresponding negative cluster. Consequently, four impres-
sion scales are generated. Next, the impression-related words “uninteresting”

294 T. Kumamoto

and “common” constituting the third-order factor are separated, and then pair
off with their antonyms and “interesting” and “surprising/unexpected,” respec-
tively. Consequently, two impression scales are generated. We summarize these,
and propose the following six impression scales as measures for assessing im-
pressions of news articles. Note that each impression-related word group can be
represented by one or two words within it.

– Happy, Bright, Refreshing
versus Sad, Dark, Brutal, Pathetic, Unfortunate, Pitiful,

Serious, Lamentable, Grief-stricken
– Glad, Fortunate, Favorite, Favorable

versus Anger, Least favorite, Awful, Unpleasant
– Interesting

versus Uninteresting
– Optimistic

versus Pessimistic, Deplorable
– Peaceful, Idyllic, Naive, Untroubled

versus Strained, Fear, Sick, Uncomfortable
– Surprising, Unexpected

versus Common

5 Conclusion

We have proposed six impression scales as those suitable for assessing the im-
pressions generated by news articles. First, we conducted nine experiments with
a total of 900 participants, and collected impression-estimation data in order to
analyze similarities among 42 impression-related words. In each experiment, 100
participants read ten news articles in a random order, and rated each of them
on 42 scales. These 42 scales correspond to the 42 impression-related words that
were extracted from a Japanese thesaurus as words suitable at some level for
assessing the impressions generated by news articles. Each scale was used to as-
sess, on a scale of 1 (strongly) to 5 (not at all), the strength of impressions that
were generated in the participants by the news articles. There were no overlaps
in the participants and news articles in all of the experiments. As a result of
these experiments, we obtained 9,000 impression-estimation data for each of the
42 impression-related words. Next, we applied factor and cluster analysis to the
collected data, and analyzed similarities among the impression-related words.
On the basis of the results of this analysis, we designed six impression scales.

Our future work will be as follows. The validity and usability of the pro-
posed impression scales will be tested through more impression-estimation ex-
periments. We are also planning to analyze the characteristics of news articles
in terms of impressions in more detail using the proposed impression scales.

References

1. Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)

2. Massaro, D.W.: Perceiving Talking Faces: From Speech Perception to a Behavioral

Principle. MIT Press, USA (1998)

Design of Impression Scales for Assessing Impressions of News Articles 295

3. Bartneck, C.: How Convincing Is Mr. Data’s Smile: Affective Expressions of Ma-

chines. User Modeling and User-Adapted Interaction 11, 279–295 (2001)

4. Kumamoto, T., Ohta, K.: A Query by Musical Impression System using N-gram

Based Features. In: Proc. of IEEE Conference on Cybernetics and Intelligent Sys-

tems, pp. 992–997 (2004)

5. Kumamoto, T.: Design and Evaluation of a Music Retrieval Scheme that Adapts

to the User’s Impressions. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005.

LNCS (LNAI), vol. 3538, pp. 287–296. Springer, Heidelberg (2005)

6. Kurita, T., Kato, T., Fukuda, I., Sakakura, A.: Sense Retrieval on an Im-

age Database of Full Color Paintings. Trans. Information Processing Society of

Japan 33(11), 1373–1383 (1992)

7. Kumamoto, T., Tanaka, K.: Proposal of Impression Mining from News Articles. In:

Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3681,

pp. 901–910. Springer, Heidelberg (2005)

8. Kumamoto, T., Nadamoto, A., Tanaka, K.: Automatic Generation of Computer

Animation Conveying Impressions of News Articles. In: Lovrek, I., Howlett, R.J.,

Jain, L.C. (eds.) KES 2008, Part I. LNCS (LNAI), vol. 5177, pp. 588–597. Springer,

Heidelberg (2008)

9. Kumamoto, T., Tanaka, K.: Web OpinionPoll: Extensive Collection and

Impression-based Visualization of People’s Opinions. In: Advances in Commu-

nication Systems and Electrical Engineering, ch.17. Lecture Notes in Electrical

Engineering, vol. 4, pp. 229–243. Springer, US (2008)

10. Kawai, Y., Kumamoto, T., Tanaka, T.: User Preference Modeling Based on Interest

and Impressions for News Portal Site Systems. In: Bressan, S., Küng, J., Wagner,

R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 549–559. Springer, Heidelberg (2006)

11. Kawai, Y., Kumamoto, T., Tanaka, T.: Fair News Reader: Recommending News

Articles with Different Sentiments Based on User Preference. In: Apolloni, B.,

Howlett, R.J., Jain, L. (eds.) KES 2007, Part I. LNCS (LNAI), vol. 4692, pp.

612–622. Springer, Heidelberg (2007)

12. Plutchik, R.: The Emotions: Facts, Theories, and a New Model. Random House,

New York (1962)

13. Kan, T.: Multivariate Statistical Analysis, Gendai-Sugakusha, Kyoto, Japan (2000)

14. SGI Japan Ltd.,

http://www.sgi.co.jp/newsroom/press_releases/2004/sep/st.html
15. Fukui, M., Shibazaki, Y., Sasaki, K., Takebayashi, Y.: Multimodal Personal Infor-

mation Provider Using Natural Language and Emotion Understanding from Speech

and Keyboard Input. IPSJ SIG Notes, HI64-8, 43–48 (1986)

16. Kuraishi, H., Shibata,Y.: FeelingCommunication SystembyFacial Expression Anal-

ysis/Synthesis Using Individual Models. IPSJ SIG Notes, DPS74-14, 79–84 (1996)

17. Mera, K., Ichimura, T., Aizawa, T., Yamashita, T.: Invoking Emotions in a Di-

alog System Based on Word-Impressions. Trans. Japanese Society for Artificial

Intelligence 17(3), 186–195 (2002)

18. Ren, F.M., Mitsuyoshi, K., Kuroiwa, S., Lin, S.G.: Researches on the Emotion

Measurement System. In: Proc. IEEE International Conference on System, Man

and Cybernetics, pp. 1666–1672 (2003)

19. Turney, P.D.: Thumbs Up or Thumbs Down? Semantic Orientation Applied to

Unsupervised Classification of Reviews. In: Proc. of the Conference on Association

for Computational Linguistics, Philadelphia, USA, pp. 417–424 (2002)

20. Ohno, S., Hamanishi, M.: Ruigo-Kokugo-Jiten. Kadokawa Shoten Publishing Co.,

Ltd., Tokyo (1986)

21. http://www.google.co.jp/

http://www.sgi.co.jp/newsroom/press_releases/2004/sep/st.html
http://www.google.co.jp/

An Evaluation Framework for Analytical

Methods of Integrating Electronic
Word-of-Mouth Information: Position Paper

Kazunori Fujimoto

Kinki University, Osaka, 5778502, Japan

kfujimoto@kindai.ac.jp

http://ccpc01.cc.kindai.ac.jp/english/

Abstract. This paper presents an evaluation framework for analytical

methods of integrating eWOM Information. This framework involves a

communication model that assumes a set of human subjective probabil-

ities called an belief source and includes two translation processes: (1)

encoding the belief source into a representation to communicate with a

computer; these encoded messages are called eWOM messages, and (2)

in the computer, decoding the eWOM messages to estimate the prob-

abilities in the belief source. The efficiency of reducing the difficulty of

describing the belief source and the accuracy of reconstructing the belief

source are quantitated using this model. The evaluation processes are

illustrated with an analytical method of integrating eWOM messages for

probabilistic classification problems.

Keywords: electronic word-of-mouth, opinion analysis, belief represen-

tation, probabilistic reasoning, subjective probability.

1 Introduction

The World Wide Web enables people to electronically exchange such individual
information as opinions, experiences, recommendations, and so on. As a result,
an immense quantity of not only objective information but also subjective in-
formation is stored on the Web. Studies of subjective information on the Web
are considered a crucial issue in social psychology [2,1] and computer science
[11,8]. This paper uses the term “electronic word-of-mouth (eWOM) informa-
tion,” which is often used in the area of social psychology [6,9,7] rather than of
computer science, to refer to subjective information that is provided electroni-
cally for the general public.

Probabilistic reasoning [10], which is a useful framework for handling uncer-
tainty, has been applied to various fields [12]. This framework may help provide
intelligent systems that summarize and explain eWOM information to people.
However, a number of subjective probabilities must be given to a computer to
ensure a workable framework. The application domain for reasoning is restricted
because of the difficulty of acquiring subjective probabilities.

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 296–307, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Evaluation Framework for Analytical Methods 297

In human word-of-mouth communication, subjective information is usually
communicated after being translated into a natural language with which people
are familiar. They reconstruct the belief contained in the information held by the
sender with the pieces obtained from the described information. A communica-
tion framework can be established from humans to computers based on this fact.
This paper focuses on the communicating subjective probabilities from humans
to computers. A human communicates subjective probabilities to a computer
after translating them into a familiar representation that is available to describe
beliefs for computers. The computer estimates the subjective probabilities using
the described information provided by humans.

This paper presents an evaluation framework for analytical methods of in-
tegrating eWOM information. Section 2 describes the basic idea of the frame-
work that involves a communication model. This model assumes a set of human
subjective probabilities called an belief source and includes two translation pro-
cesses: (1) encoding the belief source into a representation to communicate with
a computer; these encoded messages are called eWOM messages, and (2) in the
computer, decoding the eWOM messages to estimate the probabilities in the
belief source. The efficiency of reducing the difficulty of describing the belief
source and the accuracy of reconstructing the belief source are quantitated us-
ing this model. These two measures allow evaluation of the analytical methods
for integrating eWOM information. Section 3 develops an analytical method to
integrate the eWOM information that does not directly use subjective probabil-
ities but uses logical conditions with verbal expressions of uncertainty. Section 4
illustrates the evaluation processes for the analytical method with a probabilis-
tic classification problem [4]. For comparison, the uncertainty calculation based
on the certainty factors [14] and a simple method that uses subjective proba-
bilities directly are also introduced in the illustration. Section 5 discusses the
significance of the proposed framework and describes future work.

2 Communicating Subjective Probabilities

2.1 Basic Idea

Fig. 1 shows the model for the communicating subjective probabilities. The
belief source is communicated to a computer in the form of eWOM messages
translated using the belief source encoding. In the computer, the belief source
is decoded using the belief source decoding from the eWOM messages. As a
result, the information of the belief source is stored in the computer memory.
In these processes, the belief source encoding does not describe the belief source
completely and the belief source decoding must estimate the belief source using
the incomplete information obtained from the eWOM messages. Thus, there
is a deficiency of information at the time of both translations, so the exact
probabilistic values in the belief source can not be obtained. The utility of the
communication can be evaluated from the efficiency of reducing the difficulty in
describing the belief source and the accuracy in reconstructing the probabilities
in the belief source.

298 K. Fujimoto

Fig. 1. Communication Model

2.2 Two Evaluation Measures

In this subsection, the efficiency and accuracy are quantitated as Description
Rate for belief source encodings and Estimation Error for belief source decodings,
respectively. The notations used in this quantization are explained below.

– Ω denotes a discrete random variable which range is {e1,. . .,eN}. For an
example of digital equipment evaluation, Ω may be introduced as evaluation
results for the equipment, where e1 and e2 means the equipment is good for
a professional use and is good for a novice use, respectively.

– F denotes a discrete random variable which range is all subsets, except the
null set, of Υ = {f1,. . .,fR}. For the example, F may be introduced as the set
of observed features of the equipment, where f1 and f2 means the equipment
has a lot of switches and has a lot of interfaces, respectively. M and f denotes
the number of all subsets of Υ and a subset of Υ , respectively.

– P̃r(Ω|F) denotes the estimated value for the Pr(Ω|F). The estimation for
the belief source means the estimation for all Pr(Ω|F)s in the belief source,
which is the complete probabilistic data that allow the calculation of any
Pr(Ω|F).

Description Rate. Description Rate for belief source encoding represents the
efficiency of reducing the difficulty in describing the belief source. The idea for
quantitating Description Rate is described below.

When a human directly describes a value for a probability, the human must
choose an appropriate value for the probability from all possible choices. For
example, consider two translations, E0 and E1. Translation E0 describes the
probabilistic values with two decimal places. There are 101 possible choices for
describing the probability value. (The reason for this is that there are 101 possible

An Evaluation Framework for Analytical Methods 299

values from 0.00 to 1.00 at intervals of 0.01.) On the other hand, E1 describes
whether or not a feature f contributes to gain the possibility of the result e.
There are only two possible choices for E1, i.e., a feature f contributes to gain
the possibility the result e or not. Translation E1 has fewer choices than E0. This
reduction in the number of possible choices can be considered as reducing the
difficulty in the description because the number of possible choices determines
the degree of ease for humans to describe.

With this notion, Description Rate for the belief source encodings is quanti-
tated using the number of possible choices for describing the domain.

Definition 1. Description Rate R for belief source encoding E of belief source
S is defined as

R(S, E) =
log2N (S, E)
log2N (S, E0)

, (1)

where N denotes a function that gives the number of possible choices for the
description using the encoding, and E0 denotes an encoding that directly describes
the belief source.

Estimation Error. Estimation Error for belief source decoding represents the
accuracy of the estimated probabilities. The error mean square of the estimated
posterior probabilities is used for quantitating Estimation Error.

Definition 2. Estimation Error E for belief source decoding D of eWOM mes-
sages K is defined as

E(K, D) =
1

N ×M

∑
(Ω,F)

{P̃r(Ω|F) − Pr(Ω|F)}2, (2)

where N and M denotes the size of the range of Ω and the number of all subsets
of Υ , and P̃r(Ω|F) denotes the estimated value for Pr(Ω|F) in the belief source
using eWOM messages K and decoding D.

3 Communication Based on Logical Statements

This section describes belief source encoding that encodes the belief source into
the eWOM messages involving logical conditions with some verbal expressions of
uncertainty. This encoding is called ELV (Encoding in Logical conditions with
Verbal expressions). Belief source decoding corresponding to the ELV is also
described. This decoding is called DLV (Decoding of Logical conditions with
Verbal expressions). These ELV and DLV are described and formalized in the
next following subsections.

300 K. Fujimoto

3.1 Encoding in Logical Conditions with Verbal Expressions

The ELV procedure is shown below.

For each ei for Ω,

1. extract the set of features, f , that satisfies Pr(Ω = ei|F = f) > Pr(Ω = ei)
from the belief source (This set is denoted by Spt(ei).),

2. calculate the value for Pr(Ω = ei|F = Spt(ei)) using the belief source (This
value is denoted by μi.),

3. obtain the verbal expression vi for each μi by using a mapping table from
probability values to verbal expressions. (An example of the table is shown
in Appendix [A].)

4. make logical statements with verbal expressions such as ei ← f1∧· · ·∧fri : vi,
where f1, . . . , fri are all features in Spt(ei) and vi is the verbal expression
for μi.

Using this ELV, the belief source is translated into a set of logical statements
each which has a verbal expressions of uncertainty.

3.2 Decoding of Logical Conditions with Verbal Expressions

The purpose of DLV is to reconstruct all Pr(Ω|F)s in the belief source using the
eWOM messages and the ELV encoding rules. The sets of features Spt(ei)s with
verbal expressions vis are extracted from the eWOM messages and are exploited
for the reconstruction.

Any Pr(Ω = ei|F = f) in the belief source can be calculated1 using the
equation

Pr(Ω = ei|F = f) =

{
1 +

N − 1∏
f∈f L(f |ei)

}−1

, (3)

where N is the size of the range of Ω and L(f |ei) is the likelihood rate Pr(F =
f |Ω = ei)/ Pr(F = f |Ω = ¬ei). Thus, the problem of reconstructing the belief
source results in the problem of estimating all L(f |ei) parameters.

In this subsection, constraints for L(f |ei)s is derived by using the ELV encod-
ing rules and the probabilistic axioms. Some assumptions are then introduced
based on the properties of the belief source in order to construct the L(f |ei)
parameters estimation. The estimation for L(f |ei)s is formalized by using the
constraints and the assumptions.

Parameter Constraints. Based on the statements in the ELV, some con-
straints can be obtained for the L(f |ei) parameters. The condition f ∈ Spt(ei)
implicates Pr(Ω = ei) < Pr(Ω = ei|F = f), so that

L(f |ei) > 1 (4)
1 For simplicity, it is assumed that the prior probability of any ei is the same value

and any feature f depends only on whether ot not ei is determined.

An Evaluation Framework for Analytical Methods 301

for all f ∈ Spt(ei), and for all ei that are obtained. The value μi for ei implicates
Pr(Ω = ei|F = Spt(ei)) = μi, which value is decoded from the verbal expression
in the statement, so that ∏

f∈Spt(ei)

L(f |ei) =
μi

1− μi
(N − 1) (5)

for all ei that are obtained.
Based on the probabilistic axiom “the sum of the probabilities for all ei be-

comes 1,” ∑
ei

1
1 + (N − 1)/L(f |ei)

= 1 (6)

for all f that are obtained.
Each constraint is not derived from the others, so that the number of the inde-

pendent equations is R+N , even though the number of parameters is R×N . The
solution for the parameters is indeterminate because the number of parameters
is larger than the number of equations.

Assumptions. Three assumptions, described below, are introduced in order to
construct the L(f |ei) parameter estimation.

1. When a feature, f , where L(f |ei) ≤ 1 is observed, the posterior probability
of ei takes a smaller value because the observation works negatively on the
probability. In this case, the exact estimation of the posterior probability is
less important because Estimation Error will be smaller even if the estimated
value is fixed to a small value. With this notion, the L(f |ei), which is less
than or equal to 1, is assumed to take a constant small value, εi.

2. For L(f |ei) that is greater than 1, L(f |ei) = W (f)K(ei) is assumed, where
W (f) and K(ei) take positive real numbers, W (f) denotes the degree of
effectiveness of observing f , and K(ei) denotes the degree of ease in recog-
nizing ei in the domain.

3. When all features in Υ are observed, the posterior probability Pr(Ω = ei|F =
Υ) takes the same value as the prior probability Pr(ei) because the Υ contains
all features of all eis, so that all feature observations become meaningless.
Using eq. (3) this assumption is formalized below.∏

f∈Υ

L(f |ei) = 1 (7)

for all ei.

As these assumptions are not always true, the DLV involves an estimation error,
which is measured by Estimation Error in the framework.

Approximate Solution for DLV. The estimation for Pr(Ω = ei|F = f) is
derived in four steps:

1. equations that calculate W (f)s is defined as the approximate equation ob-
tained from eqs. (4) and (6),

2. equations that calculate K(ei)s is derived from eq. (5) with the set of W (f)s,

302 K. Fujimoto

3. equations that calculate εis is derived from eq. (7) with W (f)s and K(ei)s,
and

4. express using W (f)K(ei)s and εis instead of L(f |ei)s in eq. (3).

These steps are formalized below.
Equation (6) means that the sum of Pr(Ω = ei|F = f)s for all eis becomes

1. Pr(Ω = ei|F = f) takes a small value that is near 0 if f �∈ Spt(ei) because
L(f |ei) takes εi. So the volume of Pr(Ω = ei|F = f) can be determined by the
number of ei which satisfies f ∈ Spt(ei). With this notion, the W (f) is defined
as

W (f) =
1

Inv(f)
, (8)

where Inv(f) denotes the number of ei including the f in Spt(ei).
By substituting L(f |ei) = K(ei)/Inv(f) into eq. (5),

K(ei) =

⎧⎨
⎩(N − 1)μi

1− μi

∏
f∈Spt(ei)

Inv(f)

⎫⎬
⎭

1
ri

, (9)

where ri, the number of features in Spt(ei) is obtained.
By substituting eqs. (8) and (9) into eq. (7),

εi =
{

1− μi

(N − 1)μi

} 1
R−ri

, (10)

where R is the number of features in Υ are obtained.
Using W (f)K(ei)s and εis instead of L(f |ei)s, the estimation is written

P̃r(Ω = ei|F = f) =

{
1 +

N − 1

εβ
i K(ei)

α ∏
f∈{f∩Spt(ei)} W (f)

}−1

, (11)

where α is the number of features in both f and Spt(ei), and β is the number
of features in f but not in Spt(ei).

Using eq. (11), the estimated value for any Pr(Ω|F) in the belief source can
be calculated using the eWOM messages translated by the ELV.

4 Examples

In this section, the ELV-DLV is demonstrated using a probabilistic classification
problem. The efficiency of the ELV and the accuracy of the DLV are evaluated
using Description Rate and Estimation Error.

4.1 Belief Source and eWOM Messages

Table 1 shows the belief source used in the example. Discrete random variables
Ω and F , each which range is {e1, . . . , e4} and {f1, . . . , f6}, is introduced as eval-
uation results for the equipment and a set of observed features of the equipment,
respectively. All the posterior probabilities in the belief source can be calculated
using the equation

An Evaluation Framework for Analytical Methods 303

Table 1. Belief Source: Pr(F = fj |Ω = ei)

f1 f2 f3 f4 f5 f6

e1 0.9 0.1 0.1 0.1 0.9 0.1

e2 0.1 0.9 0.1 0.1 0.1 0.9

e3 0.1 0.1 0.9 0.1 0.1 0.9

e4 0.1 0.1 0.1 0.9 0.9 0.1

(a) e1 is very likely because it has f1 and f5.

(b) e2 is very likely because it has f2 and f6.

(c) e3 is very likely because it has f3 and f6.

(d) e4 is very likely because it has f4 and f5.

Fig. 2. eWOM Messages

Pr(Ω = ei|F = f) =

∏
f∈f P (f |ei)∑4

k=1

∏
f∈f P (f |ek)

, (12)

which is derived from Bayes’ theorem.
Fig. 2 shows eWOM messages, which is formed into a regular expression, used

in the example. In the framework, some clues as to shapes of the belief source
are extracted from the eWOM messages. For example, DLV extracts the list of
features, each which increases the value of posterior probabilities of ei compared
to the prior probabilities, from the body part of each message, e.g., {f1, f5} are
extracted as the list for e1 from message (a). The verbal expressions are also
extracted to obtain the value for Pr(Ω = ei|F = Spt(ei)), e.g., the expression
“very likely” is extracted and is interpreted as a probabilistic value 0.9 by using
Table 2. These pieces of clues are used in DLV to reconstruct the belief source.

4.2 Evaluation

Fig. 3 shows the Description Rate for the ELV and the Estimation Error for
the DLV. In this figure, the horizontal and vertical lines represent Description
Rate and Estimation Error, respectively. For comparison, the Description Rate
for the belief source encoding that directly describes the belief source (this is de-
noted by E0 and describes the probabilistic values with a decimal place) and the
Estimation Error for the uncertainty calculation based on the certainty factors
(this is denoted by CF) are shown together. (Appendix [B] shows how the pos-
sible choices for the description are calculated, Appendix [C] shows important
parameter values calculated by DLV, and Appendix [D] shows the uncertainty
calculation.)

This figure shows that the Description Rate for E0 and ELV is 1.0 and 0.46,
respectively. This means that the ELV reduces the difficulty of the description by
nearly one second. The uncertainty calculation uses the same eWOM messages

304 K. Fujimoto

Fig. 3. Description Rate and Estimation Error

as the DLV uses, so that the Description Rate for these are the same as shown in
the figure. The Estimation Error for the DLV and the uncertainty calculation is
0.02 and 0.15, respectively. The DLV can estimate the probabilities in the belief
source more accurately than the uncertainty calculation.

As described above, each method is mapped on a two-dimensional plane
formed by Description Rate and Estimation Error. A method can be evaluated
using the distance between its point and the origin. (The smaller the distance,
the better calculus.)

5 Discussion and Future Work

This paper presented two evaluation measures for analytical methods to integrate
eWOM information: Description Rate and Estimation Error. Even though many
uncertainty calculi can reduce the difficulty of describing the belief source [13,15],
especially the number of probabilistic values for the calculation, the efficiency
of reducing the difficulty and the calculation accuracy have not been studied.
In [5], only the qualitative relationships between the certainty factors and the
probabilities were studied. The proposed framework enables the efficiency and
the accuracy to be measured by using Description Rate and Estimation Error.
These measures provide one of the most fundamental evaluation frameworks for
analytical methods.

Description Rate represents the efficiency of reducing the difficulty of describ-
ing the belief source. Analytical methods with smaller Description Rates simplify
the description of eWOM messages because there are fewer possible choices for
describing them. From a different viewpoint, the Description Rate represents the
degree of the complexity of the message understanding because it measures the
number of possible choices for understanding as well. In both cases, analytical
methods that allow simple eWOM messages are evaluated better with respect
to Description Rate.

An Evaluation Framework for Analytical Methods 305

Estimation Error represents, on the other hand, the accuracy in reconstructing
the belief source. Different from Description Rate, analytical methods that allow
simple messages are not always evaluated better with respect to Estimation
Error. Detailed information is necessary to correctly estimate the belief source
and to derive new variable information, as shown by the evaluation illustrated
in Section 4. The belief source encoding, E0, which directly describes the belief
source, has a smaller Estimation Error and a larger Description Rate. In addition,
the belief source encodings, ELV-DLV and CF, which have the same Description
Rate, do not always have the same Estimation Error. Although the example is
quite simple, it explains well the basic idea of the evaluation framework.

Showing that humans have subjective information in the shape of subjective
probabilities is not easy. However, once subjective probabilities are obtained,
many powerful tools in probabilistic reasoning can be applied. With such prob-
abilistic tools, the proposed framework can be used to develop a promising ap-
proach for integrating eWOM messages and deriving new knowledge from them.

This paper describes a case where eWOM messages were only provided by
a single person. The idea has to be extended for a multiple person case where
eWOM messages are provided by the general public. In the extension, additional
random variables are introduced to discriminate between each person. This ex-
tended model will be reported in the near future.

References

1. Chen, Y., Xie, J.: Online consumer review: Word-of-mouth as a new element of

marketing communication mix. Management Science 54(3), 477–491 (2008)

2. Chiou, J.S., Cheng, C.: Should a company have message boards on its web sites?

Journal of Interactive Marketing 17(3), 50–61 (2003)

3. Druzdzel, M.: Qualitative verbal explanations in bayesian belief networks. Artificial

Intelligence and Simulation of Behaviour Quarterly 94, 43–54 (1996)

4. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley and

Sons, Chichester (1973)

5. Heckerman, D.: Probabilistic interpretations for mycin’s certainty factors. In: Pro-

ceedings of the First Conference on Uncertainty in Artificial Intelligence (UAI-85),

pp. 9–20. Elsevier Science, Amsterdam (1985)

6. Hennig-Thurau, T., Qwinner, K.P., Walsh, G., Gremler, D.D.: Electronic word-of-

mouth via consumer-opinion platforms: What motivates consumers to articulate

themselves on the internet? Journal of Interactive Marketing 18(1), 38–52 (2004)

7. Lee, J., Lee, J.N.: Understanding the product information inference process in

electronic word-of-mouth: An objectivity-subjectivity dichotomy perspective. In-

formation and Management 46(5), 302–311 (2009)

8. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends

in Information Retrieval 2(1-2), 1–135 (2008)

9. Park, D.H., Kim, S.: The effects of consumer knowledge on message processing

of electronic word-of-mouth via online consumer reviews. Electronic Commerce

Research and Applications 7, 399–410 (2008)

10. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, San Francisco (1988)

306 K. Fujimoto

11. Riloff, E., Wiebe, J., Phillips, W.: Exploiting subjectivity classification to improve

information extraction. In: Proceedings of the 20th National Conference on Artifi-

cial Intelligence (AAAI 2005), pp. 1106–1111 (2005)

12. Shafer, G., Pearl, J. (eds.): Readings in Uncertainty Reasoning. Morgan Kaufmann,

San Francisco (1990)

13. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,

Princeton (1976)

14. Shortliffe, E.H.: Computer-Based Medical Consultations: MYCIN. Elsevier Pub-

lishing Company, Amsterdam (1976)

15. Wellman, M.P.: Fundamental concepts of qualitative probabilistic networks. Arti-

ficial Intelligence 44(3), 257–303 (1990)

Appendix

[A] An Example of Mapping Tables

Table 2 shows an example of mapping tables from probability values to verbal
expressions. This is made by referring to a sample table in [3].

Table 2. Mapping Table [3]

Probability Adjective Adverb

0.0 impossible never

0.1 very unlikely very rarely

0.2 unlikely rarely

0.3 fairly unlikely fairly rarely

0.4 less likely than not less often than not

0.5 as likely as not as often as not

0.6 more likely than not more often than not

0.7 fairly likely fairly often

0.8 likely commonly

0.9 very likely very commonly

1.0 certain always

[B] Calculations for the Number of Possible Choices

The Description Rate is calculated using eq. (1). In the calculations, the number
of possible choices for the description is determined as follow:

E0 The number of the possible choices is 114×6 because each relationship be-
tween f and ei has 11 possible values from 0.0 to 1.0 at intervals of 0.1 and
the number of the relationships is 4×6.

ELV Without value μi, the number of possible choices is 24×6 because each
relationship between f and ei has two possible choices (Pr(Ω = ei|F = f) >
Pr(Ω = ei) or not) and the number of the relationships is 4×6. The number
of possible choices to describe μis is 114 so that the number of total possible
choices is 24×6 × 114.

An Evaluation Framework for Analytical Methods 307

[C] Parameter Values Calculated by the DLV

Using eq. (8), W (f1) = W (f2) = W (f3) = W (f4) = 1 and W (f5) = W (f6) =
0.5 are obtained. Using eq. (9), K(ei) = 7.35 for all ei are obtained. Using eq.
(10), εi = 0.44 for all i are obtained. The posterior probabilities in the belief
source are calculated using eq. (11) with these values.

[D] Uncertainty Calculation

The uncertainty calculation for ei ← f1 ∧ · · · ∧ fr: μi used in the evaluation is

if {f1, · · · , fr} ⊆ f then P̃r(Ω = ei|F = f) = μi

otherwise P̃r(Ω = ei|F = f) = 0.

A Framework for Finding Community in

Complex Networks

Naoki Okada, Kyohei Tanikawa, Yoshinori Hijikata, and Shogo Nishida

Graduate School of Engineering Science, Osaka University, Japan

Abstract. There is an increasing number of researches of complex net-

works such as the WWW, social networks and biological networks. One

of the hot topics in this area is community detection. Nodes belonging

to a community are likely to have common properties. For instance, in

the WWW, a community may be a set of pages which belong to a same

topic. Community structure is undoubtedly a key characteristic of com-

plex networks. In this paper, we propose a new framework for finding

communities in complex networks.This framework uses the idea of inter-

section graph and uses semantic information such as texts and attributes

which appear in networks.

1 Introduction

Many researchers have studyed complex networks such as the WWW, social
networks and biological networks and have found the property of a scale free, a
small world, a large clustering coefficient, and so on [1]. Recently, the commu-
nity structure in complex networks gains increased attention from researchers.
The community structure means the appearance of densely connected groups of
nodes, with only sparser connections between groups. Based on the definition,
many methods of community detection have been proposed and the analyses of
community structure in various complex networks have been conducted [2].

Against this problem of community detection, the point whether the over-
laps between communities can be extracted starts to gather emphasis [6-8]. The
overlaps mean that one node belongs to several communities. For example, one
person belongs to several communities like a group of college members and a
group of business members in social networks. In the WWW, a page can be
categorized to several groups like Apple Inc.’s page can be categorized to ”com-
puter” and ”audio.” It is important that a method of community detection can
assign a node to not only one community but several communities.

A network is assumed constant in exisiting methods of community detection.
That is, all edges between nodes are treated as homogeneous in many cases.
However, it is rare the edges are homogeneous in real networks. For example, in
the WWW, there are various links such as internal links, advertisement links,
and links to other cites. Similarly, there are various human connections such as
bussiness, hobby and organization in social networks.

We propose new framework which can solve above two problems. The frame-
work can extract overlapsbetween communities by using the idea of an intersection

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 308–315, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Framework for Finding Community in Complex Networks 309

graph. And we address a problem of the edge’s inhomogeneity in complex networks
by using the similarity of semantic information such as texts and attributes which
appear in networks.The attribute information is machine-readable and is given ex-
pressly in networks. For example, the information is birthday and hobby in SNS.

The remainder of this paper is organized as follows. We describe related works
in Section 2 and our proposed framework in Section 3. We describe our implemen-
tation of community detection in social networks and the result of experiment
using the implementation in Section 4. The experiment is an example of appli-
cation to an actual complex network. Finally, we describe some conclusions and
future works.

2 Related Work

The problem of community detection in complex networks has been studied in
various areas such as social networks, the WWW, and biological networks. One
community in social networks shows a set of people related each other such as
business, hobby, and organization. At the same time, that in the WWW shows
a set of Web pages about certain one topic [4]. When we divide one network into
some communities in community detection, there is a problem how we evaluate
the division. Addressing the problem, Newman et al. proposed the indicator
called modularity and some methods based on the modularity [5].

Some researchers have tried to extract communities in complex networks in-
cluding the overlaps between communities. Fuzzy clustering is one of the major
method [6]. One node can belong to several communities in these methods. Some
researchers proposed some methods of community detection using the fuzzy
clustering [7,8].

Our proposed framework uses a semantic information appeared in a network.
This framework addresses a problem of the edge’s inhomogeneity. We examine
how change the result of extracting community by using the semantic informa-
tion in our experiment.

3 Proposed Framework

3.1 Step 1. Enumeration of Dense Subgraphs

Our system enumerates dense subgraphs in the input graph G = (V, E) in Step
1. One of typical dense subgraphs is the maximal clique. A clique is a set of
nodes with every pair of nodes in the set connected by an edge and a maximal
clique is a clique to which no node in the graph can be added to create a larger
clique. There are various types of clique which relaxes a condition such as n-
clique, n-clan, k-plex and k-core [9]. For example, n-clique is a group of at least
size n within which each node is n or fewer steps from every other node.

We need to select one dense subgraph from these types. The choice criteria
are the clustering coefficient and the average number of dense subgraphs which
each node belongs to. Because nearby nodes are connected densely in the case

310 N. Okada et al.

of the network where a clustering coefficient is high, many dense subgraphs can
be extracted even if the condition is strict. On the other hand, in the case of the
network where a cluster coefficient is low, enough number of dense subgraphs
can’t be extracted if the condition is strict.

3.2 Summary of Our Framework

Our proposed framework can extract the overlaps between communities by using
the idea of the intersection graph. Our system weights edges by calculating
the similarity of the semantic information and address a problem of the edge’s
inhomogeneity in network. The input is one graph G = (V, E). V is the set of
nodes and E is that of edges. Additionally, semantic information are given to the
nodes and edges. We apply the following four steps to this graph. We describe
the detail about each step from Section 3.2-3.5.

– Step 1. Enumeration of dense subgraphs: Our system enumerates
dense subgraphs (generally, it is called clique) from graph G = (V, E).

– Step 2. Conversion to the intersection graph: Our system regards
each subgraph enumerated in Step 1 as one node and convert them to the
intersection graph.

– Step 3. Calculation of the weight of edges: Our system calculates the
weight of edges by using the degree of overlaps of the sets (dense subgraphs)
and the similarity of semantic information between the sets.

– Step 4. Clustering based on the modularity: Our system divides the
nodes in the intersection graph into clusters by using a clustering method
based on the modularity.

3.3 Step 2. Conversion to the Intersection Graph

When there are several sets (dense subgraphs) Si(i = 1, · · · , n), our system
generates a node vi for each set Si. If there are common component for two
arbitrary nodes vi and vj , our system puts the edge between the two nodes.
The undirected graph obtained like this is called the intersection graph [3]. Our
system sets each dense subgraph enumerated in Step 1 as one set and make the
intersection graph G’=(V’,E’) from the input graph G=(V,E) in Step 2.

3.4 Step 3. Calculation of the Weight of Edges

Our system calculates the weight of edges in the intersection graph in Step 3.
The weight is calculated from two indicators. The first is the degree of overlaps
of the two sets which correspond to both endpoints of an edge in the intersection
graph. The second is the similarity of the semantic information such as texts and
attributes appeared in above two sets.

There are the co-occurrence frequency, the Jaccard coefficient and so on as
the degree of overlaps of two arbitrary sets X, Y [10]. We express this degree as
d(X, Y) and implement the following Jaccard coefficient in this paper.

d(X, Y) =
| X ∩ Y |
| X ∪ Y | (1)

A Framework for Finding Community in Complex Networks 311

The method which uses vector space model as the similarity of the semantic
information of two arbitrary sets X, Y can be considered. For example, in case
our system calculates the similarity from the texts, our system regards each set
as one vector, evaluates tf · idf values for the keyword which is occurred in the
texts of the set, and characterizes the vector. Then set x, y as vector of the two
sets X, Y and calculate the similarity between the vectors by using the cosine.
The texts corresponding to the nodes and the edges between the sets are the page
texts and the anchor texts (text around anchor) in the case of the WWW, and
those are self-introduction profiles and friend introduction sentences in the case
of the SNS. We call this the similarity of the semantic information sim(X, Y).

sim(X, Y) = cosθ =
x · y

‖ x ‖‖ y ‖ (2)

We define the weight for the edge between node vi and vj in the intersection
graph corresponding to the set X, Y by using the degree of overlaps of the sets
and the similarity of the semantic information.

w(i, j) = w(X, Y) =
d(X, Y)

1 + ε− sim(X, Y)
(3)

Now ε is the invariable for the denominator not to be 0.

3.5 Step 4. Clustering Based on the Modularity

Our system divides the intersection graph generated in Step 3 into the commu-
nity in Step 4. When our system divide one network into several communities
in the community detection, there is a problem how we evaluate the division.
Addressing the problem, the idea called modularity that is very instinctive de-
spite simple idea is now recognized generally. This is defined by Newman et al
[5]. This is based on an idea that a random network does not show the commu-
nity structure. When the division result Pk (Pk is a divition of the nodes into
k groups) is given, the modularity is represented by following module function
Q(Pk).

Q(Pk) =
k∑

i=1

(eii − a2
i) (4)

Briefly speaking, eii represents the ratio of the edges for the total edges that
exists in the community i. And ai represents the expected value of the ratio of
the edges that exist in the community i. If the division become more properly,
the rate of the edge in the community become higher value. As a result, the
value of the module function Q is increased. This coincides with the definition of
the community described in Section 1. The clustering based on the modularity
is the clustering method that aims maximizing module function Q.

3.6 Expectation to the Friend Recommendation System

We apply the above clustering framework to SNS network in Section 4. Generally,
the SNS user tends to connect actual world’s friends. The way to find the friends

312 N. Okada et al.

is that user traces the existing connections on SNS. Another way is to use a friend
search function which is equipped in SNS. However it is difficult to find friends in
the former case because the user need to see many pages of the people irrelevant
to him. It is also difficult in the latter case because he need to see many pages
of the people who have same name but not related to him. Now it is thought
that people in the same cluster might be friends each other if it assumes that
our proposed method can get a proper cluster. Wherein, we can help the user to
find his friends effectively by introducing the people unconnected to him in the
same cluster.

4 Application to SNS Network

Our study targets a following network. It has various relationships between the
nodes and we can use semantic information represented these relationships. Then
we select mixi (http : //mixi.jp/) that is the most popular SNS in Japan as a
network of an implementation example. Users write self-introduction profiles
and write friend introduction sentences for their friends in mixi, therefore it is
easy to get the semantic information. Additionally, there are various relation-
ships between users such as the connection of university, the working place, the
connection of hobby. However, service of friend introduction sentences is unique
service in mixi and is not equipped in all SNS.

4.1 Dataset

Examinees are the users of mixi. Then the examinee is put as a center user and
the link structure from the center user to two in the radius is extracted. The
friend introduction sentences between users in dataset are collected as semantic
information. We invited four users as central users.

4.2 Implementation

We select the maximal clique as dense subgraphs in Step 1 and the Jaccard
coefficient as the degree of overlaps of the sets in Step 3. We select friend intro-
duction sentences as semantic information in Step 3 and use the vector space
model for calculating the weight of edges in the intersection graph. Only the
nouns are extracted by the morphological analysis of these friend introduction
sentences and our system regards this as the component of each vector in vector
space model. Our system evaluates tf · idf value for each noun extracted from
all friend introduction sentences in certain maximal clique (corresponding with
node in intersection graph) and replace the noun by one vector, then calculate
the similarity between the nearby maximal cliques by equation(3). We also set
ε in equation(3) as 0.1. We use the method of repeatedly finding combination
that maximizes increment of the module function in Step 4. In this method,
firstly we regard each node as one community. When one community i and an-
other community j are merged, the increment ΔQ of the module function Q is
following.

ΔQ = 2(eij − aiaj) (5)

A Framework for Finding Community in Complex Networks 313

Until the figure of the community becomes one, our system finds the combination
of the communities maximized Q value and merge these communities. Q value
is calculated in each merged step. Finaly, our system outputs the division result
of merged step of the highest Q value. We call this method proposed method
from now on. We also implement the method using only the Jaccard coefficient
as weight of edges in Step 3. By comparing proposed method with this, we
can research the contribution of the similarity of the semantic information. This
method equals the method of Evrett et al [3]. We call this method Evrett method
from now on.

4.3 Result of Experiment

We extracted the communities from the data of examinee 1. We exclude the
communities that the examinee do not contain and show the result in Figure 1
and 2. Figure 1 is in the case of proposed method and Figure 2 is in the case of
Evrett method. The node of examinee 1 is surrounded by thick circle. In Figure 1,
there are five communities(A-E). The diamond nodes show nodes which belong
to two or more communities. The white nodes in A and the diamond node belong
to the community A. The black nodes in B and the diamond node belong to the
community B. In Figure 2, there are two communities. The black nodes show
the first community, and all nodes show the second community. We leave out
the figures showed the result of examinee 2-4 for convenience of space.

Fig. 1. Result of community detection for examinee 1 (proposed method)

314 N. Okada et al.

Fig. 2. Result of community detection for examinee 1 (Evrett method)

4.4 Consideration

We can see that the proposed method could extract meaningful five communities
for examinee 1. In Figure 1, A showed the connection of club in the examinee’s
university, B showed the connection of his university, C showed the connection
of his friends in hometown, D showed the connection of university in Tokyo, and
E showed the connection of university in Okayama. In A and B, the examinee
locates in the center of the community, but in C-E, the examinee locates in the
surface of the community. For D and E, the three nodes surrounded by dashed
circle show the connection of same high school. It is thought that these three
nodes and examinee 1 act as intermediary of D and E. Using the term of the
field of social network analysis [9], examinee 1 is high centrality in A and B but
low centrality in C-E. However he is at the location where the betweenness is
high in D and E.

Evrett method for examinee 1 extracted two communities. One is big com-
munity and the other is bigger community including it. These two communities
are not useful because they mixed communities extracted in proposed method.

Proposed method for examinee 2 extracted five communities (F -J). F and
H show the connection of the same high school and the same grade, therefore
it is more appropriate to merge them. G shows the connection of the club in
high school. I and J show the connection of the same university, therefore it

A Framework for Finding Community in Complex Networks 315

is appropriate to merge them. For both pairs (F, Hand I, J), the person who
have numerous number of friends exist in the one of communities (H and I).
He tends to make a big community with his surroundings and it is hard for
another community to merge the big community. As a result, it is thought the
big community tends not to be merged but to be remained.

Proposed method for examinee 3 and 4 can not get useful result. The feature
is similar to the result of Evrett method. The reason is that because the correct
communities included a lot of common nodes each other, it is hard to separate
them. Additionally, even if the critical words appear, it can not affect to separate
because we use all nouns appeared in friend introduction sentences. We try
the method using the only critical words or using another definition as dense
subgraphs in the future work.

5 Conclusion and Future Work

In this paper, we proposed the new framework for the community detection.
This framework can extract the overlaps of communities by using an idea of the
intersection graph. We also addressed a problem of the edge’s inhomogeneity.
We applied this framework to actual social network. We will conduct a detailed
analysis for the result of the community detection and apply it to friend recom-
mendation system in the future.

References

1. Newman, M.E.J.: The Structure and function of complex networks. SIAM Re-

view 45, 167–256 (2003)

2. Danon, L., Duch, J., Guilera, A.D., Arenas, A.: Comparing community structure

identification. Statistical Mechanics, P09008 (2005)

3. Everett, M.G., Borgatti, S.P.: Analyzing Clique Overlap. Connections 21(1), 49–61

(1998)

4. Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.: Self- Organization of the Web

and Identification of Communities. IEEE Computer 35(3), 66–71 (2002)

5. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-

works. Physical Review E 69(2), 026113 (2004)

6. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting

compact well-separated clusters. J. Cybernet. 3, 32–57 (1973)

7. Reichardt, J., Bornholdt, S.: Detecting fuzzy community structures in complex

networks with potts model. Physical Review Letters 93(21), 218701 (2004)

8. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys-

ical Review E 74(1), 016110 (2006)

9. Scott, J.: Social Network Analysis: A Handbook, 2nd edn. Sage Publications,

London (2000)

10. Rasmussen, E.: Clustering Algorithms. In: Frakes, W.B., Yates, R.B. (eds.) Infor-

mation Retrieval: Data Structures and Algorithms. Prentice Hall, Englewood Cliffs

(1992)

C&C: An Effective Algorithm for Extracting

Web Community Cores�

Xianchao Zhang, Yueting Li, and Wenxin Liang��

School of Software, Dalian University of Technology, China

xczhang@dlut.edu.cn,

liyueting@mail.dlut.edu.cn,

wxliang@dlut.edu.cn

Abstract. Communities is a significant pattern of the Web. A commu-

nity is a group of pages related to a common topic. Web communities

are able to be characterized by dense bipartite subgraphs. Each com-

munity almost surely contains at least one core. A core is a complete

bipartite graph (CBG). Focusing on the issues of extracting such com-

munity cores from the Web, in this paper we propose an effective C&C
algorithm based on combination and consolidation to extract all embed-

ded cores in web graphs. Experiments on real and large data collections

demonstrate that the proposed algorithm C&C is efficient and effective

for the community core extraction because: 1) all the largest emerging

cores can be identified; 2) identifying all the embedded cores with dif-

ferent sizes only requires one-pass execution of C&C; 3) the extraction

process needs no user-determined parameters in C&C.

Keywords: Web mining; Community core; Bipartite graph.

1 Introduction

Web communities is a significant structure of the Web. A web community is
defined as a set of web pages concerning a group of individuals sharing a common
interest. These communities play an important role in analyzing the structures
of the Web. Therefore, automatically finding those communities would be a great
help to modern search engines.

Previous work on the issues of extracting communities using link analysis in
web graphs can be roughly divided into two categories. One category is based on
the availability of one or more seeds for a possible community whose members
are those pages closest to the given seed or seeds. Technologies involved in this
category refer to max-flow/min-cut [6,7,10,15], HITS [8,11,4] and so on.

The other category does not require any seeds and aims to extract commu-
nities existing in the Web as many as possible. Our work here also belongs to
� This work was partially supported by NSFC under grant No. 60873180, and by

the start-up funding (#1600-893313) for newly appointed academic staff of Dalian

University of Technology, China.
�� Corresponding author.

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 316–326, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

C&C: An Effective Algorithm for Extracting Web Community Cores 317

the second category. Previous work mostly focused on finding dense subgraphs
with certain predetermined characteristics, such as [12,9,5,14]. It is worthwhile
to note that Kumar et al. [12] proposed a method named Trawling to identify
cyber-communities by extracting community cores. However, there are no effi-
cient techniques in common for discovery of abundant objective communities
without subjective parameters.

In this paper, we pay attention to the problems of distinguishing all objective
cores of communities in a large collection of web pages. We propose a novel algo-
rithm based on combination and consolidation (C&C algorithm for short) using
several heuristic methods. In the C&C algorithm, a number of unit cores are
firstly extracted by the technique of combination, and then the cores that belong
to larger complete bipartite graphs are automatically combined by the algorithm
of consolidation. The C&C algorithm is much more efficient and effective than
the Trawling algorithm because: 1) C&C does not need any user-determined pa-
rameters; 2) Identifying all the embedded cores with different sizes only requires
one-pass execution of C&C, while it needs many times of iterative execution
of Trawling; 3) C&C is capable of extracting all the largest complete bipartite
subgraphs emerged in the web graph, which are more valuable than the fixed-size
cores extracted by Trawling.

The reminder of the paper proceeds as follows. Section 2 reviews some related
techniques and backgrounds. In Section 3, Algorithm C&C is introduced. We
report our experimental results and discuss performance of proposed algorithms
and other related issues in Section 4, followed by conclusion and future work in
Section 5.

2 Backgrounds

This section first reviews several related technologies, followed by a profile of
Trawling and some characteristics we conclude.

2.1 Link Analysis

Link analysis [17,13] is a major tool in the field of the World Wide Web. One
central property of web information retrieval is the relativity among web pages,
and linkages imply predicting information to determine the importance of web
pages, which is the start of link analysis.

From the view of linkage analysis, Web is a directed graph G = (V, E), where
V is a set of nodes representing web pages, and E is the representation of linkages.
Given u, v be a pair nodes of a directed graph G, if there exists an edge e = (u, v)
delegating a linkage from u to v, then e is an outlink of u, and an inlink of v.
In addition, u is called a parent of v, and v is a child of u. For each node u, we
use P (u) and T (u) to represent the set of its parents and children, respectively.
Then, the outdegree of u, O(u) = |T (u)|, i.e., the number of u’s children, and
the indegree of u, I(u) = |P (u)|, i.e., the number of u’s parents. Heuristically,
communities can be regarded as dense subgraphs of web pages [5].

318 X. Zhang, Y. Li, and W. Liang

2.2 Trawling

In [12], Kumar et al. developed a mathematical intuition in which web commu-
nities are able to be characterized by dense directed bipartite subgraphs, and a
random large enough and dense enough bipartite directed subgraph of the Web
almost surely has a core.

A bipartite graph is a graph whose nodes can be partitioned into two disjoined
sets, which are symbolized by L and R, and every directed edge e(u, v) in the
graph is pointed from a node u in L to a node v in R. Moreover, every node in
L is named a fan and each node in R is called a center. A graph G = (V, E)
is a complete bipartite graph (CBG) or a core if ∀u ∈ L of G, T (u) = R, and
∀u ∈ R, P (u) = L. A largest core is a core that is not a subset of other complete
bipartite subgraphs. Furthermore, C(u) denotes the cores including node u, and
C{X} indicates the cores in which set X is contained. The graph depicted in
Fig.1 is a (3, 4) core, i.e. a core with 4 fans in L and 3 centers in R, and it is
denoted as C4,3.

L R

Fig. 1. A C4,3 Bipartite Graph

1

2

3

4

5

6

7

8

9

10

11

Fig. 2. An example of bipartite graph

Based on the hypothesis that dense bipartite graphs are signatures of web
communities, Kumar et al. proposed Trawling, an approach to extract cores
from the Web. To identify community cores, Trawling system is divided into
four steps. The first step is iterative pruning, which is to prune nodes in L whose
outdegrees are smaller than j and nodes in R with indegree smaller than i when
looking for (i, j) cores. In the process of pruning nodes, the associate edges also
should be deleted, and therefore this step should be iteratively. After iterative
pruning, the second step is inclusion-exclusion pruning, which either eliminate a
page from contention, or discover an (i, j) core. Given a node x whose outdegree
is exactly equal to j, Kumar et al. employed Criterion 1 to determine whether
x belongs to a core. The third step is to generate cores and filter nepotistic ones
whose fans come from the same Website. Finally, a priori algorithm of Agrawal
and Srikanth [2] is employed to finish off.

Criterion 1. Let c1,c2,...,cn be centers adjacent to x. Let N(ci) represent the
neighborhoods of ci. Then, x is part of a core if and only if the intersection of
sets N(ci) has size at least i.

C&C: An Effective Algorithm for Extracting Web Community Cores 319

2.3 Discussion on Trawling

The goal of Trawling is to find non-overlapped cores as many as possible, and it
appears that virtually all of these cores correspond to real communities rather
than coincidental occurrences of complete bipartite subgraphs.

Example 1. In Fig.2, when looking for (3, 3) cores, the output of Trawling is
C{L(1, 2, 3), R(6, 7, 8)}. While, when i = 3, j = 4, the final result of Trawling is
C{L(3, 4, 5), R(8, 9, 10, 11)}
As shown in Example 1, the consequential cores of Trawling are yielding to
values of i and j. Under the circumstances that i > 3 or j > 4, no complete
bipartite subgraphs would be identified from Fig.2. While, the unknown and
tremendous characteristics of the Web make the initialization of i and j become
a big challenge. In addition, some removal strategies of Trawling would destroy
the structures of other complete bipartite subgraphs and certain cores would be
missing. Let’s return to the graph in Fig.2, node 3 belongs to both C3,3 and C3,4,
while the removal of nodes that related to C3,3 would destroy the structure of
C3,4. Besides, one community might has more than one cores, it is unreasonable
that those bipartite cores are non-overlapped. For example, both C3,3 and C3,4

in Fig.2 might be the cores of certain communities.

3 C&C Algorithm

To overcome the drawbacks of Trawling described in Section 2.3, we put over
an efficacious algorithm C&C. To extract all the largest cores, C&C could be
approximately divided into two phases. The first phase is to extract all unit cores
according to Criterion 2, and the second phase is the consolidation of unit cores
output by the first one.

3.1 Unit Cores Extraction

The criterion of finding a core proposed by Kumar et al. [12] is just suit to
vertices whose ourdegrees are exactly equal to j. Heuristically, a new criterion
is proposed to estimate whether an arbitrary potential fan qualifies to be a part
of a community.

Criterion 2. Let c1,c2,...,cn be n centers adjacent to a node x. Let N(ci) repre-
sents the neighborhoods of ci, i.e., the set of fans that point to ci. Then, x is part
of a core if and only if one kind of its combinations cj

N(x) meets the intersection
of its neighborhood sets has size at least i.

All cores from a node are output if more than one type of combinations satisfy
Criterion 2; otherwise, none is output. The cores generated in this step are the
units to be consolidated next step. In other words, the values of i and j indicate
the basic unit of cores and we initialize them both to be 3 which is the smallest

320 X. Zhang, Y. Li, and W. Liang

value of Trawling [12]. The goal of this step is to enumerate all existing C3,3 of
the graph. For convenience of operation, A map seeds of elements < O, V > is
introduced, where O are integer keys indicating values of outdegree, and V are
sets containing pages whose outdegrees are equal to their corresponding keys
in O. In the process of finding C3,3, always the first element of seeds is fetched
until seeds is empty. The detailed process of extracting the unit cores based on
combinations is illustrated in Algorithm 1.

Algorithm 1. Cores extraction
Input: seeds: a map of nodes and their corresponding outdegree

G: a web graph < V, E >
i: number of fans

j: number of centers

Output: all existing C3,3

1: for r ∈ seeds, compute C3
T (r) do

2: for each C3
T (r) of T(r) do

3: compute the intersection size of fans pointed to these 3 centers;

4: if the intersection size ≥ 3 then
5: output these fans and 3 centers;

6: end if
7: end for
8: delete r and iteratively modify seeds and G;

9: end for

Example 2. Still taking Fig.2 for example, C&C can extract five C3,3 from it,
which are C{L(1, 2, 3), R(6, 7, 8)}, C{L(3, 4, 5), R(8, 9, 10)}, C{L(3, 4, 5), R(8, 9,
11)}, C{L(3, 4, 5), R(9, 10, 11)} and C{L(3, 4, 5), R(8, 10, 11)}.
As depicted in Example 2, this step outputs all existing C3,3, while only one C3,3

was extracted by Trawling showing in Example 1. However, a great number of
C3,3 have the same fans or centers, therefore, we need next step to consolidate
these closely related cores.

3.2 Cores Consolidation

In order to consolidate these closely related cores, a heuristic step is adopted to
merge these cores based on Theorem 1.

Theorem 1. Given two complete bipartite graphs C1, C2, if fans or centers of
C1 are exactly the same as those of C2, then a graph whose fans are the union of
C

′
1s fans and C

′
2s fans and centers are the union of C

′
1s centers and C

′
2s centers

still be a complete bipartite graph.

Proof 1. C1 and C2 are both complete bipartite graphs, L1, L2 are two sets of
fans of C1 and C2 respectively, and R1, R2 are two sets of centers of C1 and

C&C: An Effective Algorithm for Extracting Web Community Cores 321

C2. ∀u ∈ L1, T (u) = R1 and ∀u ∈ L2, T (u) = R2. Besides, ∀u ∈ L1 (or R1),
u also ∈ L2 (or R2), hence ∀u ∈ L1 and L2 (or R1 and R2), T (u) = R1 ∪ R2

(or P (u) = L1 ∪ L2). According to the definition of complete bipartite graph in
Section 2.1, Theorem 1 is proved.

According to Theorem 1, combine cores that have the same fans or centers
could obtain plenty of non-fixed-size bipartite complete graphs. A map Cores of
elements < T, I > is introduced, where T is a set containing fans of cores, and I
is a set including corresponding centers of cores. Then cores stored in the map
Cores are united according to the keys or values of them. Algorithm 2 illustrates
the process of consolidating bipartite cores generated by Algorithm 1.

Algorithm 2. Cores consolidation
Input: Cores: a map of cores output by Algorithm 1

T : a set of fans

I : a set of centers

Output: merged cores

1: set Cores to ∅;
2: for each core output by algorithm 1 do
3: set T to ∅;
4: set I to ∅;
5: read fans of core to set T;

6: read centers of core to set I;

7: if T has exist in Cores then
8: insert 〈T, I ∪ Cores[T]〉 into Cores;

9: end if
10: if I has exist in Cores then
11: insert 〈T ∪ Cores[I], I〉 into Cores;

12: else
13: insert〈T, I〉 into Cores;

14: end if
15: end for

Example 3. After consolidation, the cores enumerating in Example 2 are merged
into C{L(1, 2, 3), R(6, 7, 8)}, C{L(3, 4, 5), R(8, 9, 10, 11)}.
This step consolidates all the unit cores C3,3 output by Algorithm 1 into largest
bipartite graphs. As described in Example 3, two largest cores embedding in
Fig.2 are totally discovered.

4 Experiments

This section gives a presentation of our experiments, followed by some ex-
perimental results and analysis on real, large web collections. We apply our
method on uk-2007-05 data collection [3], which includes 105,896,555 nodes and
3,738,733,648 links. All of our experiments are performed on a single PC with
an Intel 2.67GHz Pentium processor and 2GB memory.

322 X. Zhang, Y. Li, and W. Liang

4.1 Dataset

For such a huge data collection, some pre-processing steps are necessary to prune
meaningless linkages and pages that surely cannot be any parts of bipartite cores.
Then, the web graph is translated into advisable data structures.

Data Preprocess. Since most linkages among pages come from the same web-
site are just for navigation instead of adoration that such linkages were pruned
from the page collection. Then we removed the possible duplicates or mirrors
according to mirror similarity given in Definition 1. It is efficient for that the
similarity of two pages just rests on the ratio of their common children. The
empirical threshold we chosen to determine whether two pages are mirrors is
0.85. The code is available online [16].

Definition 1. Let x, y be two pages of a graph, the mirror similarity of x and
y is calculated by next equation 1.

mirror similarity(x, y) =
0.5∗(|x∩T (y)|+ |y∩T (x)|) + (T (x)∩T (y))

min{|T (x)|, |T (y)|} . (1)

Drawn lessons from [12], we pruned both popular and unpopular pages. The
popular pages, such as www.yahoo.com are pages that are highly referred; the
unpopular pages are those that are seldom referred. The pages that have more
than 50 parents were removed from the data sets in our experiments. We consider
a page is unpopular if its parents less than 2 [14], and hence the pages that have
less than 2 parents were also removed.

As a result of pre-process, the rest nodes, less than 4,000,000, are capable
of fitting into 2G memory so that both Trawling and C&C were carried out
without accessing hard disk.

Data Structure. An unique integer was allocated as ID for each URL, which
indexes two adjacency lists outLinks and inLinks. The entry of outLinks and
inLinks is corresponding to each URL by storing its ID. For outLinks, each
entry holds IDs which its URL points to. As expected, IDs of its parents are
saved in every entry of inLinks. The reasons using adjacency lists are because:
1) parents or children of a node can be immediately obtained just through an
integer index of arrays; 2) the number of parents or children of a node can be
easily acquired just by the size of list, and if a node is deleted, the size of a list
will dynamically change.

To heighten the efficiency of subsequent operations to find C3,3, iteratively
pruning was employed the here. We iteratively pruned the all the nodes and
corresponding edges in outLinks whose outdegree less than 3, meanwhile, pruned
nodes and corresponding edges in inLinks whose indegree less than 3.

4.2 Results

At the beginning, for the convenience of comparing the consequential cores, a
tiny synthetic data collection including 20 nodes was used. Then, both C&C and
Trawling were executed on processed uk-2007-05 data collection.

C&C: An Effective Algorithm for Extracting Web Community Cores 323

Fig.3 shows the link relationship of the synthetic data set with 20 nodes. The
results of C&C versus Trawling on the synthetic data set are summarized in
Table 1: 1) All the embedded cores can be extracted by only one-pass execution of
C&C; 2) C&C is capable of identifying the largest and non-fixed-size complete
cores, which is more valuable than only discovering the fixed-size cores; 3) the
extraction process in C&C needs no user-determined parameters.

21 34 5 6 78 9101113 141516 17 18

21 3 5 6 7 8 10 11 1213 14 1516 17 1920

Fig. 3. Synthetic data set

Table 1. C&C vs. Trawling on synthetic data set

C&C Trawling
Parameters No Yes
Execution 1 2

Results

C{L(2,15,16), R(1,3,7)} i = 3, j = 3
C{L(4,6,13), R(5,10,20)} C{L(2,15,16), R(1,3,7)}
C{L(4,5,13), R(6,10,20)} C{L(4,6,13), R(5,10,20)}
C{L(7,8,10), R(11,14,15)} i = 3, j = 4

C{L(3,7,8), R(11,15,17,19)} C{L(3,7,8), R(11,15,17,19)}

Algorithm 1 found 59,877 unit C3,3 from uk-2007-05 data. After employed
Algorithm 2, there were 3204 cores left. Fig.4 presents the distribution of core
sizes output by C&C algorithm and number of corresponding cores output by
Trawling. From Fig.4, we can see that the number of most kinds of cores iden-
tified by C&C algorithm are greater than Trawling, which better achieve the
goal of Trawling to find cores embedded in web graphs as many as possible.
It is also forgivable that Trawling extracts more cores than C&C under some
circumstances, as C&C merely output the largest Ci,j while Trawling also takes
the super cores of a Ci,j as Ci,j .

In addition, Finding all these C3,3, C3,4, C3,5, C4,3 and so on just take one
time running of C&C, while Trawling would be executed more than 20 times
according to various values of i or j. Since C&C leaves out a time-consuming
procedure, the iterative pruning, the total running time of C&C reduces to less
than 20 minutes. In contrast, one round execution of Trawling costs more than
100 minutes. Fig.5 depicts the distribution of cores versus the number of their

324 X. Zhang, Y. Li, and W. Liang

(3,3) (3,4) (3,5) (3,6) (4,3) (4,4) (4,5) (5,3) (6,4)
0

100

200

300

400

500

600

Core Type

C
or

e
N

um
be

r

C&C
Trawling

Fig. 4. C&C vs. Trawling on distribution of consequential cores

0

10

20

0
5

10
15

20
25

0

100

200

300

400

500

600

Fan

Center

C
or

e

Fig. 5. Distribution of cores vs. Fans and Centers

fans and centers, which shows that the distributions of cores versus fans and
centers obey power-law [1]. This phenomenon indicates that the distributions of
cores are concordant with the distributions of links.

Furthermore, relying on manual inspection, we randomly chose 100 cores
in five times to analysis whether they correspond to real communities, which
demonstrated that almost all these cores had community patterns. To reflect
the community pattern of identified cores, we present Example 4 to show a core
whose members are all related to e-shop identified by C&C.

C&C: An Effective Algorithm for Extracting Web Community Cores 325

Example 4. Core of e-shop output by C&C
Fans:
http://www.ldb.co.uk/index.htm
http://www.ldb.co.uk/urc/urchome.shtml
http://www.lichfieldwebdesign.co.uk/watercolourlandscapes/
http://www.vitaminshop.org.uk/
Centers:
http://www.cathedralchemdry.co.uk/
http://www.conveyorbeltsuk.co.uk/
http://www.dragsys.co.uk/
http://www.emuoils.co.uk/
http://www.iso9000uk.co.uk/
http://www.jointgenie.co.uk/ http://www.sugarsurgeons.co.uk/
http://www.suttoncoldfieldymca.org.uk/

Example 5 shows an e−shop C3,3 found by Trawling, which is a subgraph of the
core depicted in Example 4. Comparison of Example 4 and Example 5 shows
that C&C is capable of finding more complete and abundant community cores.

Example 5. Core of e-shop output by Trawling
Fans:
http://www.ldb.co.uk/urc/urchome.shtml
http://www.lichfieldwebdesign.co.uk/watercolourlandscapes/
http://www.vitaminshop.org.uk/
Centers:
http://www.dragsys.co.uk/
http://www.iso9000uk.co.uk/
http://www.suttoncoldfieldymca.org.uk/

5 Conclusion and Future Work

Communities are very important structures for people to obtain valuable infor-
mation from the Web. Therefore, to effectively discover meaningful communities
related to specific topics from a large number of webpages in the Web becomes
a challenge job. In this paper, we proposed a novel C&C algorithm based on
combination and consolidation techniques. The C&C algorithm overcomes the
drawbacks of the typical CBG-based algorithm Trawling in the following aspects:
1) C&C is more efficient because all the embedded cores can be extracted by
only one-pass execution; 2) C&C is capable of extracting all the largest complete
cores, which are more valuable than the fixed-size cores extracted by Trawling;
3) the extraction process in C&C needs no user-determined parameters. We
conducted experiments using both synthetic and real data sets to evaluate the
effectiveness of C&C comparing with the Trawling algorithm. The experimental
results indicate that our method is superior to the original Trawling algorithm.

As one part of our future work, the page’s context should be considered when
finding bipartite cores. In addition, an efficient algorithm to divide massive data
collection into independent memory-suitable sub-collections is desirable. Besides,
investigation on chasing down the relationships among the extracted cores and
the corresponding communities and organizing them into hierarchical structures
is another part of our future work. In addition, automatically assigning themes
to each community level is also a worthwhile research.

326 X. Zhang, Y. Li, and W. Liang

References

1. Adamic, L.A., Huberman, B.A.: Pawer-Law Distribution of the World Wide Web.

Science 287, 2115 (2000)

2. Agrawal, R., Srikanth, R.: Fast algorithms for mining association rules. In: pro-

ceedings of 20th International Conference on Very Large Data Bases, pp. 487–499.

Morgan Kaufmann, San Fransisco (1994)

3. Boldi, P., Vigna, S.: The Web Graph Framework: Compression Techniques. In:

Proceedings of the Thirteenth International World Wide Web Conference, pp. 595–

601. ACM, New York (2004)

4. Borodin, A., Gareth, O., Jeffrey, S., Tsaparas, P.: Finding authorities and hubs

from link structures on the World Wide Web. In: Proceedings of the 10th interna-

tional conference on World Wide Web, pp. 415–429. ACM, New York (2001)

5. Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and classification of dense

communities in the web. In: 16th international conference on World Wide Web,

pp. 461–470. ACM, New York (2007)

6. Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of Web communities.

In: Proceedings of the sixth ACM SIGKDD international conference on Knowledge

discovery and data mining, pp. 150–160. ACM, New York (2000)

7. Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self-Organization and Iden-

tification of Web Communities. Computer 35, 66–71 (2002)

8. Gibson, D., Kleinberg, J.M., Raghavan, P.: Inferring Web communities from link

topology. In: Proceedings of the ninth ACM conference on Hypertext and hyper-

media: links, objects, time and space, pp. 225–234. ACM, New York (1998)

9. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive

graphs. In: 31st international conference on Very large data bases, pp. 721–732.

ACM, New York (2005)

10. Hao, J.X., Orlin, J.B.: A faster algorithm for finding the minimum cut in a graph.

In: Proceedings of the third annual ACM-SIAM symposium on Discrete algorithms,

pp. 165–174. SIAM, Philadelphia (1992)

11. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of

the ACM 46, 604–632 (1999)

12. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the Web for

emerging cyber-communities. Computer Networks 31, 11–16 (1999)

13. Park, H.W., Thelwall, M.: Hyperlink Analyses of the World Wide Web: A Review.

Journal of Computer Mediated Communication 8(4) (2003)

14. Reddy, P.K., Kitsuregawa, M.: An Approach to Find Related Communities Based

on Bipartite Graphs. Institute of Electronics, Information and Communication

Engineers 101, 7–14 (2001)

15. Stoer, M., Wagner, F.: A simple min-cut algorithm. Journal of the ACM 44, 585–

591 (1997)

16. WISDOM Lab.: http://wisdom.dlut.edu.cn/

17. Zhang, Y.C., Yu, J.X., Hou, J.Y.: Web communities: analysis and construction.

Springer, Berlin (2006)

http://wisdom.dlut.edu.cn/

Extracting Local Web Communities Using Lexical
Similarity�

Xianchao Zhang, Wen Xu, and Wenxin Liang��

School of Software, Dalian University of Technology, China
xczhang@dlut.edu.cn,

wendyxuwen@mail.dlut.edu.cn,
wxliang@dlut.edu.cn

Abstract. The World Wide Web contains rich textual contents that are
interconnected via complex hyperlinks. Most studies on web community
extraction only focus on graph structures. Consequently, web commu-
nities are discovered purely in terms of explicit link information with-
out considering textual properties of web pages. This paper proposes an
improved algorithm based on Flake’s method using the maximum flow
algorithm. The improved algorithm considers the differences between
edges in terms of importance, and assigns a well-designed capacity to
each edge via the lexical similarity of web pages. Given a specific query,
it also lends itself to a new and efficient ranking scheme for members
in the extracted community. The experimental results indicate that our
approach efficiently handles a variety of data sets across a novel opti-
mization strategy of similarity computation.

Keywords: Community Extraction, Maximum Flow Algorithm, Lexical
Similarity.

1 Introduction

The World Wide Web holds numerous communities, each providing resources on
a specific topic, such as movies, associations and companies. Generally the web
is reckoned as a directed graph, regarding web pages as nodes and hyperlinks
as edges. A web community is a dense subgraph of a given web graph whose
members are, in some sense, more similar to each other than to other non-
community members.

The problem of detecting such communities within networks has been well
studied. Early approaches such as spectral partitioning [12], the Kernighan-Lin
algorithm [10], hierarchical clustering [13], and G-N algorithm [8] work well for
specific types of problems (particularly graph bisection), but generally perform
poorly in real networks. Recently, most works focus on graph partitioning ap-
proaches. In this case, discovering web community is identical to finding a proper
� This work was partially supported by NSFC under grant No. 60873180, and by

the start-up funding (#1600-893313) for newly appointed academic staff of Dalian
University of Technology, China.

�� Corresponding author.

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 327–337, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

328 X. Zhang, W. Xu, and W. Liang

cut that separates a subgraph from the web graph. For example, Anderson and
Lang [1] explore the problem of incubating seed sets into communities through
random walks. Flake et al. [5, 6] firstly extract the community structure by
recasting the problem into a maximum flow framework. Flake’s community al-
gorithm is fast in practice because its runtime is often determined by the size of
the community it finds (not the whole graph). Moreover, it yields communities
that have strong theoretical guarantees on their local and global properties.

In Flake’s community identification algorithm, Flake heuristically assigns all
edge capacities with a constant value but fails to take the semantic informa-
tion of pages into account. Therefore, the extracted community often contains
many noisy pages (which are irrelevant to the topic of the community) and the
precision of the community decreases accordingly. Noriko Imafuji et al. assign
edge capacities using hub and authority scores obtained from HITS calculation
[9]. Yasuhito Asano et al. build a site-oriented framework to displace Flake’s
page-oriented framework [3]. Because these improvements only focus on the link
structures of the web graph, we utilize the lexical similarity between web pages
to represent differentiated importance of each edge, taking both link and text
information into account. To compute the content-based similarity, we quan-
tify each page using TF-IDF (Term Frequency-Inverse Document Frequency)
vector, a popular metric for measuring the relevance of entities in documents,
which also has effective performance when applied to web mining applications
such as ranking of web pages [4, 16] and classification of hyper-linked document
objects [2].

In summary, our main contributions in this paper are as follows:
Firstly, we examine the performance of Flake’s method based upon the max-

imum flow algorithm and summarize possible drawbacks and problems caused
by simply assigning a constant value to edge capacities.

Secondly, we apply TF-IDF to max-flow/min-cut algorithm by devising a new
edge capacity assignment based on the semantic similarity (lexical similarity in
specific), thus utilizing both link information and content information during
community extraction.

Thirdly, we propose a new ranking strategy which not only considers text
similarity but also strengthens the difference between candidate seeds. Besides,
taking user’s query into account, our strategy can be implemented as dynamic
on-line algorithm.

Finally, by conducting experiments on randomly selected 20 topics, we show
that our improved maximum flow algorithm outperforms the Flake’s by greatly
decreasing the number of noisy pages and extracting more topic-related pages
with high efficiency and accuracy.

The rest of the paper is organized as follows. Section 2 states related work on
Flake’s maximum flow algorithm. In Section 3, the delicate assignment of edge
capacities is addressed, followed by the heuristic approach for optimizing the
computing and the explanation of our improved algorithm. Experimental results
and analysis are conducted in Section 4. The conclusion and future work are
summarized in Section 5.

Extracting Local Web Communities Using Lexical Similarity 329

2 Related Work

As stated in the previous section, our objective is to find a dense web subgraph
given a specific topic. The method using the maximum flow algorithm for ex-
tracting web communities is first proposed by Flake [5, 6]. In this section, we
begin with a subsection describing s− t maximum flow algorithm. Next, we de-
scribe Flake’s community algorithm followed with analysis and discussion about
its performance in the context of quality and quantity.

2.1 Maximum Flow Algorithm

Let G = {V,E} be a directed graph where V and E are a set of nodes and
edges respectively. Denote (u, v) be a directed edge from the node u to v and
each edge (u, v) ∈ E has an assigned capacity c(u, v) ∈ Z

+. Suppose s, t be the
fixed nodes in V . The flow from s to t of G is a non-negative integer function f
which satisfies the following conditions: 0 ≤ f(u, v) ≤ c(u, v) for all (u, v) ∈ E
and

∑
(ui,v)∈E f(ui, v) =

∑
(v,uj)∈E f(v, uj) for all v ∈ V − {s, t}. The latter

condition implies the total flow out of s equals to the total flow into t. The value
of total flow is called a graph flow of G. The maximum flow algorithm finds the
maximum flow of the graph.

Let S ⊆ V , T = V /S, and s ∈ S, t ∈ T . The set of edges {(u, v) ∈ E|u ∈
S, v ∈ T } is called a s − t cut on a graph G. A minimum cut is a cut whose
capacity which minimizes the total capacities of the cut edges. The famous max
flow - min cut theorem [7] proves that a maximum graph flow equals to the value
of a minimum cut.

2.2 Community Extraction Based on the Maximum Flow Algorithm

According to the graph theory, Flake et al. define a community on the web
as a set of sites that have more links (in either direction) to members of the
community than to non-members [5, 6] (Fig. 1).

They have proved a theorem that after the s-t maximum flow algorithm per-
formed on the web graph, all the nodes accessible from s through unsaturated
edges satisfy the definition of a web community. Because it is not practical to
apply s-t maximum flow algorithm on the whole web graph due to the web size,

Cut Set

Fig. 1. A simple example of Flake’s community (a node set in the left)

330 X. Zhang, W. Xu, and W. Liang

Flake devises a procedure to obtain the web community that approximately
satisfies the definition proposed previously. The process of Flake’s algorithm is
summarized as follows:

First step: crawl a graph. Suppose S is a set of seed nodes. Crawl in depth 2
from the nodes in S to gain a subgraph of the web graph G = (V, E) which is
also called a vicinity graph.

Second step: assign edge capacities. Suppose any edge e ∈ E is dual directed
with the edge capacity c(e) = |S|. Add a virtual source node s to V with the
edges connecting to all the nodes in S with the edge capacity =∞. Add a virtual
sink node t to V with the edges connected from all the nodes in V − S

⋃
s
⋃

t
with the edge capacity = 1.

Third step: perform s-t maximum flow algorithm for G. All the nodes acces-
sible from s through unsaturated edges become the new member pages of a web
graph.

Forth step: add some new nodes in the community to S, repeat the procedure
until the desired community can be obtained.

Fig. 2 shows a simple procedure starting with three seeds in S and a vicinity
graph of depth 2.

seed

sets

virtual
source

∞
∞

∞

one link

away
two links away virtual

sink

virtual

sink

1

1

1

vicinity graph
G(V,E)

3
3

3

3

3

3

3

3

3

3

3

3

1

Fig. 2. An example of applying maximum flow for obtaining an appropriate web
community. For simplifying, suppose all the edges are going the same direction.

Flake’s maximum flow algorithm is a E-M process that iteratively applies
estimation (the "E" step) and maximization (the "M" step). It solves the topic
drifting problem in community extraction effectively. However, there still exist
problems to be tackled with.

During the "E" step in which a subset of the community is found, it heuristi-
cally assigns the capacity of each edge with a constant |S|, which equals to the
seed numbers in the procedure. On the one hand, graph structures containing
many noisy pages are often extracted, thus no community of appropriate size
is obtained; on the other hand, some valuable links are reckoned as cut edges,
causing the extracted community too small.

Another problem lies in the "M" step in which some newly discovered sites
are relabeled as seeds. Flake’s method just rank the candidates via link numbers.

Extracting Local Web Communities Using Lexical Similarity 331

However, this strategy can not distinguish the candidates effectively since some
sites with many links turns out not so relevant with the seeds or the communities
topic in content.

The relationship between assignment of edge capacities and community qual-
ity and quantity has been intensely studied [9]. By increasing the edge capacities,
we can easily enlarge the desired community size. However, along with the sim-
ple increment of edge capacity, the phenomenon of topic drifting occurs and
more noisy pages are added in. The main reason for this is that the methods
treat all the edges in the web graph the same and deny the differences between
edges.

3 Method

In order to solve the problems mentioned in the former section, we propose a
new assignment of edge capacities combining links and contents, which reflects
the diverse influence that each edge devotes to the community.

3.1 Assignment of Edge Capacities Using the Lexical Similarity

The flow produced between two web pages can be viewed as the exchange of
authority between each other [11]. Intuitively, more similar contents the two
pages have, more authority they exchange. Therefore, edge capacities in the web
graph are supposed to be set according to the content similarity between two
web pages.

To compute the content-based similarity, we quantify each page using TF-
IDF (Term Frequency-Inverse Document Frequency) vector, a popular metric
for measuring the relevance of entities in documents. To construct the TF-IDF
vector of each page’s features, we perform the following pre-processing: (1) For
page content and title, we first eliminate stop words and then further conflate
remaining words using the standard Porter Stemmer. Term space dimension are
reduced even further by using document frequency threshold to de-emphasize the
impact of rare terms unlikely to influence global performance. (2) For meta data
and anchor text, we perform analogous preprocessing except that the features
shun stemming.

We employ the extended Jaccard coefficient to compute the similarity between
various string data objects, since this metric has been shown to produce superior
results for many clustering approaches [14]. The extended Jaccard coefficient for
page u and v with respect to a feature g (such as meta description) is defined as

σg(u, v) =
ug · vg

|ug|2 + |vg|2 − ug · vg
(1)

where ug, vg is the TF-IDF vector representative of feature g on page u, v.
Using this measure, we can compute the similarity between each pair of pages
with respect to various features. Finally, we compute the similarity between page

332 X. Zhang, W. Xu, and W. Liang

u and v by combining all similarity values associated with each page in the form
of a weighted linear sum:

S(u, v) =
∑

gk∈Ω

σgk
(u, v) · φk (2)

where φk is a suitable weight for each gk ∈ Ω . The similarity value S(u, v) gener-
ated from TF-IDF vector lies in the range that 0 ≤ S(u, v) ≤ 1. It’s not appropri-
ate to be used in the assignment of edge capacity, because in the maximum-flow
algorithm, the edge capacities are supposed to be a positive integer. Therefore,
we have to add a constant adapter into the equation of edge capacity:

c(u, v) = fq · S(u, v) (3)

where fq is the upper limiting value of edge capacities in Flake’s method using
maximum flow algorithm, at which the edge capacities are set, all edges become
unsaturated and all nodes in the vicinity graph turn out to be community mem-
bers. The computing of fq is at hand and described in detail by Noriko Imafuji
[9]. We call this method the MT (Max-flow+TF-IDF) assignment.

3.2 Optimization of Similarity Computing

Inspired by the concept of co-citation in IR field, we propose an optimal method
to compute the lexical similarity between pages using the seeds, thus to improve
the efficiency of algorithm. The resulting method is named as MTS (Max-flow
+ TF-IDF + Seed) assignment.

Namely, we regard the lexical similarity of a page p to the good seeds as a
probability that p belongs to the community. In other words, if two pages are
both more similar to good seeds, the edge between them would have greater
influence for the desired community and the edge capacity should be set larger
accordingly.

More precisely, let ωg = {ωg
1 , ωg

2 , . . . , ωg
|ω|} be the TF-IDF vector representa-

tive of seeds with respect to content feature g. Then the similarity between page
u, v with respect to the feature g can be described as follows:

σg(u, v) = σg(u, w) · σg(v, w) (4)

Note that sometimes we may not confident about our seeds, or it might be
expensive to provide many. In this case, we can construct manually a TF-IDF
vector representing keywords and terms for the desired community to alternate
the TF-IDF vector of seeds.

3.3 Improved Algorithm Based on the Maximum Flow

The algorithm based on the maximum flow to extract community which assigns
edge capacities using the lexical similarity requires a good seed set and gener-
ates a community cohesive to a specific topic. It iterates until the members in

Extracting Local Web Communities Using Lexical Similarity 333

the community converge or generally remain the same. The whole process is
described in algorithm 1.

When choosing new seeds in the "M" step, we propose a new ranking strategy
for each node in the extracted community which is different from Flake’s method
[5]. Let v

(in)
ci be the number of nodes which link to vci , v

(out)
ci be the number of

nodes to which vci links. Assume Rc(vci) to be the rank value of the node vci in
the community C, and the equation for it is as follows:

Rc(vci) = S(vci , w)× (v(in)
ci

+ v(out)
ci

) (5)

Algorithm 1. Improved Maximum Flow Algorithm
Input: seed set S = {vs1 , vs2 , · · ·, vsl}
Output: a web community C = {vc1 , vc2 , · · ·, vcm}
1: repeat
2: starting from each seed vsl ∈ S, crawl pages in depth of 2 for a web subgraph

G(V, E);
3: compute the similarity between each node and the seeds according to the equation

(1) (2) or (4) (2);
4: add source s and sink t to V ;
5: for ∀vsi ∈ S do
6: add edge (s, vsi) into E;
7: c(s, vsi) =∞
8: end for
9: for ∀(u, v) ∈ E do

10: set c(u, v) using MT or MTS;
11: if(u, v)
∈ E then
12: add edge (v, u) into E;
13: c(v, u) = c(u, v)

14: end for
15: for ∀v ∈ v and v
∈ S

⋃
{s, t} do

16: add edge (v, t) into E;
17: c(v, t) = 1;
18: end for
19: execute s− t maximum flow algorithm;
20: return C = {v | v ∈ C, v is connected to seed nodes };
21: compute the value for ∀c(vsi) ∈ C using equation (5) described later;
22: rank the nodes list according to the value;
23: add the top 10 nodes into S;
24: until the nodes in C remain steady

Flake ranks the nodes only according to their link numbers (including in-links
and out-links), however, it’s not sufficient since certain top nodes are probably
have the same number of links. We take the lexical similarity between nodes
and seeds into account, thus combining both link and content information to
strengthen the difference between nodes. For nodes with the same number of
links, we tend to rank higher the one which is more similar to seed nodes in the
content.

334 X. Zhang, W. Xu, and W. Liang

4 Experiments

In this section, using the original capacity, MT capacity, MTS capacity, we
perform experiments to evaluate the algorithms.

4.1 Data Collecting and Pruning

Data Sets. In order to assure that the experimental data sets will not affect the
reliability of our research outcome, 20 well-known and specific web pages relevant
to distinct topics are selected randomly as seed pages, including 10 Chinese web
pages and 10 English ones. Pages that have more than 200 (empirical value)
in-links or out-links are avoided since they will result in a huge vicinity graph
causing the topics drift easily. We collect about 3.8 G raw pages in Sep. 2009
using a famous focused crawler NUTCH. The queries equal to the seed nodes
and the constructing of vicinity graph begins from crawling from the seeds. The
outgoing links come from parsing the HTML pages of crawler, while the incoming
links are provided by the Google search engine.

Data Pruning. 1) Remove the pages whose numbers of incoming links or out-
going links exceed 500 (empirical value), because these pages are probably the
well-known pages such as Yahoo, Sina and so on which can be found easily with-
out any mining strategy. 2) Cut pages whose URLs include %, ?, bbs, cgi-bin,
diary, news, since most of these pages are irrelevant to user’s query. 3) Merge
mirrors.

4.2 Experimental Results and Discussion

Let C1 be the community obtained by the Flake’s maximum flow algorithm
with a constant edge capacity, C2 and C3 be the community obtained by our
improved algorithm with MT capacity and MTS capacity respectively. In our
experiments, we choose the shortest augmenting path algorithm which adopts
the breadth-first search to solve the s − t problem, since it’s appropriate to be
used in identifying web communities with time complexity limited to O(V E2).

Table 1 shows the general size of C1, C2 and C3 for each seed node. The left
three columns in table 1 represent topic ID, seed url, and topics which are based
on keywords or page titles. |V |, |C1|, |C2|, |C3| indicate the numbers of nodes
in the vicinity graph, the number of nodes in the web community obtained by
using the original constant capacity, MT capacity, MTS capacity respectively.
It demonstrates that the communities C2 and C3 obtained by the improved
algorithm excel in quantity than Flake’s C1. For No. 2, 9 and 20, no matter what
values are assigned for edge capacities, we cannot obtain ideal communities of
appropriate size.

We browse the highest 15 pages in the obtained communities and check
whether the pages have the same topics with the seeds or not. The experi-
mental results are shown in fig. 3. The average numbers of relevant pages in C1,
C2 and C3 are 5.95 (ranges from 2 to 10), 10.7 (ranges from 8 to 15) and 12.1

Extracting Local Web Communities Using Lexical Similarity 335

(ranges from 10 to 15) respectively. As shown in fig. 3 (a), C2 and C3 obviously
outperform C1. For example, in 18 among 20 topics, C2 is better than C1, and
only in 2 cases, C2 is inferior to C1.

Table 1. Seed nodes, topics, size of the vicinity graph and the extracted community

No. Seed URLs Topics |V| |C1| |C2| |C3|

1 http://www.scientificamerican.com/ science 2089 26 38 42
2 http://www.aaai.org/home.html artificial intelligence 1380 8 25 28
3 http://www.ca.gov/ state of California 6175 36 46 49
4 http://www.epa.gov.cn/ environmental agency 4603 60 89 72
5 http://succulent-plant.com/ succulent-plant 471 21 28 29
6 http://www.ncac.org/ censorship 1123 18 30 35
7 http://www.olmpic.org/ olympic 620 17 29 31
8 http://www.rockclimbing.com/ rock climbing 2154 24 33 38
9 http://www.jaguarcars.com jaguar 1289 4 26 27
10 http://www.gulfwarvets.com gulf war 2013 17 22 26
11 http://www.jcrb.com/ legal system,prosecution 3890 66 79 84
12 http://junshi.xilu.com/ China’s military 2248 31 35 44
13 http://www.fec.com.cn/ financial securities 5540 28 41 47
14 http://www.yishu.com/ art appreciation 982 21 29 38
15 http://www.shufa.org/ calligraphy 3161 58 60 64
16 http://www.5ijk.net/ health care 3452 13 18 21
17 http://www.chinacars.com/ automobile 7240 14 72 85
18 http://www.edu.cn/ education 5012 18 26 24
19 http://www.zhb.gov.cn/ environmental protection 1409 19 33 32
20 http://www.lknet.ac.cn landscape garden 345 2 20 18

We also browse all the other member pages in the obtained communities using
three capacities and calculate the precision of extracted C1, C2 and C3 as shown
in fig. 4. The precision of community C is defined as follows: precision (C) =
number of relevant pages in C / total pages in C. Compared MTS capacity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2

4

6

8

10

12

14

16

Topic ID

N
um

be
r

of
 R

el
at

ed
 P

ag
es

C1
C2
C3

Fig. 3. The number of related pages ranked top 15 in the community

336 X. Zhang, W. Xu, and W. Liang

Top 15 Pages Whole Community
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

is
io

n

C1
C2
C3

Fig. 4. The precision of top 15 pages and the whole community

to MT capacity, there is a slight increase in precision due to the use of seeds.
For C2 and C3, the precision of the top 15 pages is generally in accordance
with that of the whole community. For C1, the precision of top 15 pages is
rather lower than that of the whole community. On the contrary, our algorithm
provides better precision for top 15 pages (0.74 for C2, 0.8066 for C3) than
that of the whole community (0.7091 for C2, 0.7833 for C3). Because web users
usually browse top few pages when using a search engine, our algorithm using
the lexical similarity therefore is better for user recommendation.

5 Conclusions and Future Work

We have analyzed features and problems of the Flake’s maximum flow algorithm
and explored benefits of page contents in the extraction of web communities from a
given graph. Based on the original maximum flow algorithm, we devise new meth-
ods to assign edge capacities according to different importance. By introducing the
lexical similarity, we exploit fully both content and link information of the web. We
also propose a new ranking strategy combining text with links, thus strengthening
the difference between pages. Our preliminary experiment conducted on randomly
selected 20 seeds has shown that the community obtained by the improved algo-
rithm has much better precision than the original algorithm, thus proving that
using our content-combined method is better than purely link-based methods. In
the future, we will investigate further how the setting of seeds and community
keyword vector influence the performance of communities and provide the alterna-
tives. Another promising direction is to use WordNet to disambiguate word senses
[15] in the computing process of lexical similarity.

References

1. Andeson, R., Lang, K.J.: Community from seed sets. In: 15th International Con-
ference on WWW, New York, USA, pp. 223–232 (2006)

2. Angelova, R., Weikum, G.: Graph-based Text classification: learn from your neigh-
bors. In: 29th ACM Conference on Research and Development in Information Re-
trieval, Seattle, Washington, pp. 485–492 (2006)

Extracting Local Web Communities Using Lexical Similarity 337

3. Asano, Y., Nishizeki, T., Toyoda, M., Kitsuregaw, A.M.: Mining Communities on
the Web Using a Max-Flow and a Site-Oriented Framework. IEICE Trans. on
Information and Systems (2006)

4. DeRose, P., Shen, W., Chen, F.: Building Structured Web Community Portals:
A Top-down, Compositional, and Incremental Approach. In: 33rd International
Conference on VLDB, Vienna, Austria, pp. 399–410 (2007)

5. Flake, G.W., Lawrence, S., Giles, C.L.: Efficient Identification of Web Communi-
ties. In: sixth ACM International Conference on KDD, pp. 150–160. ACM Press,
Boston (2000)

6. Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self-Organization and Iden-
tification of Web Communities. Computer (2002)

7. Ford, L.R., Fulkson, D.R.: Maximal Flow through A Network. Canadian Journal
of Mathematics 8, 399–404 (1956)

8. Girven, M., Newman, M.E.J.: Community Structure in Social and Biological Net-
works. Proc. Nati. Acad. 99, 7821–7826 (2002)

9. Imafuji, N., Kitsuregawa, M.: Finding Web Communities by Maximum Flow Al-
gorithm Using Well Desinged Edge Capacities. IEICE Trans. on Information and
Systems (2004)

10. Kernighan, B.W., Lin, S.: Tech. J. 49, 291 (1970)
11. Lee, H.C., Borodin, A., Goldsmith, L.: Extracting and Ranking Viral Communi-

ties Using Seed and Content Similarity. In: 19th ACM Conference on Hypertext,
Pittsburgh, PA, pp. 139–148 (2008)

12. Pothen, A., Simon, H., Liou, K.P.: Matrix Anal. Appl. 11, 430 (1990)
13. Scott, J.: Social Network Analysis: A Handbook, 2nd edn. Sage, London (2000)
14. Strehl, A.: Relationship-based Clustering and Cluster Ensembles for High-

Dimensional Data Mining. Phd thesis, Univ. of Texas at Austin (2002)
15. Voorhees, E.M.: Using WordNet to disambiguate word senses for text retrieval.

In: 16th ACM Conference on Research and Development in Information Retrieval,
New York, USA, pp. 171–180 (1993)

16. Xu, G., Ma, W.Y.: Building Implicit Links From Content For Forum Search. In:
29th ACM Conference on Research and Development in IR, Seattle, Washington,
pp. 300–307 (2006)

An Improved Algorithm for Extracting Research

Communities from Bibliographic Data

Yushi Nakamura1, Toshihiko Horiike1,
Yoshimasa Taira1, and Hiroshi Sakamoto12

1 Kyushu Institute of Technology

680-4 Kawazu, Iizuka-shi, Fukuoka, 820-8502, Japan
2 PRESTO JST

Kawaguchi Center Building 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan

{y nakamura,t horiike,taira,hiroshi}@donald.ai.kyutech.ac.jp

Abstract. In this paper we improve the performance of the community

extraction algorithm in [1] from bibliographic data, which was originally

proposed for web community discovery by [2]. A web community is con-

sidered to be a set of web pages holding a common topic, in other words,

it is a dense subgraph induced in web graph. Such subgraphs obtained by

the max-flow algorithm are called max-flow communities, and this algo-

rithm was improved to obtain research communities from bibliographic

data by the strategy for selection of community nodes in [1]. We propose

an improvement of this algorithm by carefully selecting initial seed node,

and show the performance of this algorithm by experiments for the list

of many keywords frequently appearing in data.

1 Introduction

We develop an algorithm for extracting research communities from bibliographic
data, which is based on the maximum flow algorithm to find dense subgraphs
as web communities [2]. We consider a web community to be a set of web pages
holding a common topic, which is represented by a connected subgraph in web
graph. We apply this idea to research community extraction.

For given bibliographic data, the list of frequent keywords are obtained. For
such keywords, we design our algorithm to compute suitable research commu-
nities related to the keywords. The relevance of keyword to obtain community
depends on initial seed. In [1], initial seeds are randomly chosen from candidates.
We thus propose a careful strategy for the selection of initial seeds, and show
the performance of our improvement.

Study of extracting web communities has attracted many researchers since its
wide application to web technology, like trend discovery and information recom-
mendation, and many algorithms were presented. The algorithms in [2,3,4] aim
to find dense subgraphs using local information of web graph. On the other hand,
algorithms in [5,6,7] try to extract communities by using global information, like
HITS [8].

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 338–345, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Improved Algorithm for Extracting Research Communities 339

Related to such pioneering studies, the problem handled in this paper is to
extract research communities from bibliographic data, and we focus on the for-
mer research strategy, i.e. extracting dense subgraphs using local information.
This problem motivate us to extract interesting research communities as follows.

In [7], a community is defined as a subgraph which contains at least one
clique. Here, indegree/outdegree of nodes are closely related to extracted com-
munities, and consequently, a small degree node is hardly selected as a member
of a community. This method is basically equal to [8].

Such a method based on hub-authority is effective for extracting a global
relation in a graph. However, not all important communities are extracted by this
method. For instance, consider to find communities from network constructed
by the relation of researchers, which is represented by a bibliographic data. An
important community is constructed by several outstanding papers and other
related studies. It is difficult to extract such communities by global information
only since there is very few study which impacts on the whole research field or
many different research fields. In order to extract such compact relations, we
adopt the strategy of maximum flow community.

In [2,3], a community is defined to be a set of web pages that link to more web
pages in the community than to pages outside of the community. Generally the
problem of finding such subsets is computationally hard. However by exploiting
various properties of web, identifying web communities becomes identical to
solving the tractable max-flow problem [9]. Flake et al. introduced an efficient
method of extracting communities using such max-flow algorithm. So we call a
community extracted by the max-flow algorithm a max-flow community.

Efficiency of max-flow communities depends on the ranking of community
nodes. In [1] we proposed a modification for the ranking by careful evaluation
according to connectivity to seed nodes. In original strategy, ranking is decided
by only the number of sum of indegree and outdegree of an extracted node. Such
communities are very sensitive to the number of edges, and there is a possibility
that irrelevant nodes are associated to a community due to their many edges.
We thus considered that ranking of community nodes should be evaluated by
also the relation to seed nodes, which are some cores of a community, i.e. some
nodes deeply related to seeds should be ranked as higher positions. By this
modification, we obtained good communities related to [2] for several keywords.

However, in this method, the selection of initial seed is critical. By experiment
for CiteSeer bibliographic data, we can confirm that many communities are not
suitable, i.e. they are often too large. So it is hard for us to understand the main
topic of such a research community. To improve the inconvenience, we propose a
new strategy for the selection of initial seeds. This strategy is based on the special
characteristic of research network. Generally such a network is acyclic, i.e. the
flow going from a node cannot came in the same node. Thus, if an initial seed
has no indegree edge, the resulting community maybe decided by the seed only.
To avoid such situation, our improved algorithm takes account of the indegree
edges of seeds as well, and we show the efficiency by experiments.

340 Y. Nakamura et al.

The remainder of this paper is divided into four additional sections. In Sec-
tion 2 we give the definition of web community in [2] and a summary of the
algorithm for extracting research community in [1]. In Section 3 we propose
an idea of selection of seed nodes, and present experimental results in CiteSeer
bibliographic data. Finally we discuss a future work on this study.

2 Research Community by Max-Flow Algorithm

The definition of web community is given bellow.

Definition 1. (G.W. Flake et al. [2]) A community of undirected graph G =
(V, E) is a subset C ⊆ V such that for all nodes v ∈ C, v has at least as many
edges connecting to nodes in C as it does to nodes in (V − C).

It is easy to expand this definition to directed graph like WWW. In web graph,
each node is corresponding to a web page, and an edge (u, v) is a link from u to
v with a unit capacity c(u, v) = 1. Initially we assume a set S of seed nodes and
a set C = ∅ of community nodes.

Here we summarize the original algorithm by [2]. For any nodes s, t, we can
compute s−t maximum flow such that s, t are separated by a minimum cut set of
saturated edges1. All such saturated edges are removed, and all nodes reachable
from a node in S are added to C. Next we compute the ranking of nodes in
C with respect to their indegree/outdegree numbers. Upper ranked nodes are
moved to S, and we continue the above process until C is steady. Then obtained
connected subgraphs are called max-flow communities. A virtual source s and a
virtual sink t are assumed such that c(s, v) = 1 and c(v, t) = ∞ for any v ∈ V .
In [2], by this assumption, we can extract such web communities without a priori
knowledge about web graph.

Next we summarize the modified algorithm in [1] for research community
based on the above max-flow community. In this modification, a new ranking
method for the node set C was proposed. When we obtain a set C of community
nodes, for the next iteration, we must compute the ranking of all members in C
according to a criterion.

In [2] the ranking is computed by the value indegree(v)+outdegree(v), which
is independent of the number of seed nodes directly associated with v, while the
relation between S and C is important information for our communities. On the
other hand, in [1], the ranking is computed by the number of edges associated
with S, i.e. indegree(v, S) + outdegree(v, S).

In Fig. 1, the modified ranking method is illustrated. The seed nodes are de-
noted by the black nodes, and the community nodes are labeled by integers 1, 2, 3,
and 4. Since node 1 is maximum in the measure indegree(v)+outdegree(v), this
node is ranked in the top by the original method. On the other hand, in our rank-
ing method by indegree(v, S)+outdegree(v, S), node 3 is ranked in the top, and

1 For max-flow algorithm, see [9].

An Improved Algorithm for Extracting Research Communities 341

Fig. 1. Seed nodes and ranking of community nodes

the community nodes are sorted as 3, 2, 1, 4. Using this ranking measure, we de-
scribe the max-flow community algorithm below.

Research Community Extraction Algorithm
Input: The set of seed nodes, S, and a web graph G(V, E) whose nodes are

reachable from a seed node within 2 edges.
Output: Web community C.
Preprocess: For (u, v) ∈ E, set the capacity c(u, v) = |S|, for the virtual source

s and sink t, and v ∈ V , set c(s, v) = 1 and c(v, t) =∞, and let C = ∅.
(1) Execute the max-flow algorithm on G.
(2) Compute all v ∈ V which are reachable from an s ∈ S by only unsaturated

edges, and add all of them to C.
(3) Decide the ranking for c ∈ C by indegree(c, S) + outdegree(c, S), and move

the higher ranked nodes from C to S.
(4) Continue (1)-(3) until C become to be steady, and output C.

In Fig. 2, we show flow of extracting communities from web graph. The high-
est node is the virtual source and the lowest is the virtual sink. Any seed node is
associated by the source, and the sink is associated by any node. By the step (1)
of the algorithm, a maximum flow is obtained. At this time, the saturated edges,
which are illustrated by bold broken lines in Fig. 2, denote the cut edges. Intu-
itively, an extracted web community is consisting of nodes which are reachable
from the source without cut edges. In the next section we examine the efficiency
of our improvement.

3 Proposed Method and Experimental Results

In this section we explain our improvement for selection of initial seed node in the
algorithm, and show experimental results of the improved algorithm compared
to the previous one [1].

342 Y. Nakamura et al.

Fig. 2. The flow of community extraction

In the previous algorithm, initial seed node is randomly chosen from candi-
dates which are consisting of all nodes having at least k outdegree edges for a
threshold k. On the other hand, in the proposed algorithm, candidates for initial
seed nodes must satisfy at least k indegree and outdegree edges.

In this experiment, we set k = 3 and we use CiteSeer bibliographic data [12],
which includes over 700,000 entries for research documents. The following ex-
ample is a typical record in this data.

<record>
<id>7348</id>
<title>Parallel Sorting by Overpartitioning</title>
<description>In this paper we propose. . . </description>
<ref>14421,40374,91922,40140,372786,4945,8848</ref>

</record>

In this data, any paper has its unique ID defined inside <id> tag. In the above ex-
ample, paper 7348 is referring other studies indicated by 7 integers inside <ref>
tag. Thus, we can regard a collection of such records as a directed graph. For
such a bibliographic graph, we examine the efficiency of the proposed algorithm
compared to the previous algorithm in [1].

We first preprocess the bibliographic data to obtain keywords. From the fre-
quency list of all keywords, we get 20 keywords related to computer science field.
For each keyword, the algorithm computes an initial seed node from candidates,
where each candidate must contain an occurrence of the keyword in its title or
abstract.

In Table 1, we show the experimental result. In this table, all keywords
are sorted according to the frequency. For each keyword, the efficiency of the
proposed algorithm is compared with the previous algorithm in [1]. Each in-
teger indicated by “size” denotes the number of nodes in the community ob-
tained for the corresponding keyword, and each rational indicated by “relevance”

An Improved Algorithm for Extracting Research Communities 343

denotes the ratio of the nodes in the community which are closely related to the
corresponding keyword. We measured this value by reading all records. The
character “-” means that the obtained community is too small. In such a case,
we regard the extraction as being unsuccessful.

Compared with the result of the previous algorithm, we can confirm that the
proposed algorithm outputs compact research community, and the proposed al-
gorithm can produce suitable communities related to given keywords. Therefore,
we conclude that compact communities are obtained from bibliographic data by
this improved community extraction algorithm.

Table 1. Comparison of two algorithms

keyword frequency proposed previous
size / relevance size / relevance

mining 13550 31 0.710 89 0.191

infinite 13472 6 0.667 2 -

paths 13277 16 0.875 17 0.294

integer 13082 26 0.154 43 0.093

automata 12912 23 0.174 34 0.147

robots 12534 3 0.667 8 0.750

clusters 12224 10 0.300 2 -

grammar 11914 26 0.654 60 0.433

formula 11732 1 - 15 0.533

game 11396 2 - 4 1

graphics 11152 9 1 16 0.563

www 11116 17 0.059 135 0.237

logics 10774 9 0.778 33 0.606

boolean 10519 68 0.338 19 0.105

string 10204 7 0.857 21 0.762

xml 9798 46 0.065 89 0.090

category 9755 9 0.444 1 -

encoding 9567 14 0.286 13 0.231

indexing 9249 36 0.361 56 0.018

heuristics 8657 7 0.429 18 0.833

4 Conclusion

We propose an improvement for the selection of initial seed node on the com-
munity extraction. Our method is based on the previous community extraction
algorithm in [1] using careful evaluation of the relation between seed nodes and
community nodes. The effectiveness of our improvement is shown by experi-
ments for finding research communities from CiteSeer bibliography data. More
compact and close communities are obtained by the proposed algorithm com-
pared to the privies one. We thus conclude that our algorithm is effective for

344 Y. Nakamura et al.

extracting relatively compact research communities closely related to keywords.
Next we must try to show the precision and recall of our extracted communities
using benchmark data.

As future work we would develop a hybrid algorithm for community extrac-
tion. In [13], comparison of two types of algorithms based on complete bipartite
graphs and max-flow network was presented, and it was reported that more
generic communities are obtained by the former method and more specific com-
munities are obtained by the latter method. In [14], a method for extracting
relation among web communities using HITS was proposed. We thus try to ex-
pand our strategy to the above different types of community extraction.

Acknowledgements

This work was supported by JST PRESTO program. The authors would be
grateful to the anonymous referees for their careful reading of the draft and
uesful comments.

References

1. Horiike, T., Takahashi, Y., Kuboyama, T., Sakamoto, H.: Extracting research com-

munities by improved maximum flow algorithm. In: Velásquez, J.D., Ŕıos, S.A.,

Howlett, R.J., Jain, L.C. (eds.) KES 2009, Part II. LNCS, vol. 5712, pp. 472–479.

Springer, Heidelberg (2009)

2. Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of web communities.

In: KDD 2000, pp. 150–160 (2000)

3. Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.: Self-organization and identifi-

cation of web communities. IEEE Computer 35(3), 66–71 (2002)

4. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the web for

emerging cyber-communities. Computer Networks 31(11-16), 1481–1493 (1999)

5. Chakrabarti, S., Dom, B., Raghavan, P., Rajagopalan, S., Gibson, D., Kleinberg,

J.M.: Automatic resource compilation by analyzing hyperlink structure and asso-

ciated text. Computer Networks 30(1-7), 65–74 (1998)

6. Gibson, D., Kleinberg, J.M., Raghavan, P.: Inferring web communities from link

topology. In: Hypertext 1998, pp. 225–234 (1998)

7. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Extracting large-scale

knowledge bases from the web. In: VLDB 1999, pp. 639–650 (1999)

8. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. In:

SODA 1998, pp. 668–677 (1998)

9. Goldberg, A., Tarjan, R.: A new approach to the maximal flow problem. In:

STOC 1986, pp. 136–146 (1986)

10. Ford Jr., L., Fulkerson, D.: Maximal flow through a network. Canadian Journal of

Mathematics 8, 399–404 (1956)

11. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for

network flow problems. J. ACM 19(2), 248–264 (1972)

12. CiteSeer.IST: http://citeseer.ist.psu.edu/

13. Imafuji, N., Kitsuregawa, M.: Effects of maximum flow algorithm on identifying

web community. In: WIDM 2002, pp. 43–48 (2002)

http://citeseer.ist.psu.edu/

An Improved Algorithm for Extracting Research Communities 345

14. Toyoda, M., Kitsuregawa, M.: Creating a web community chart for navigating

related communities. In: Hypertex 2001, pp. 103–112 (2001)

15. Imafuji, N., Kitsuregawa, M.: Finding a web community by maximum flow algo-

rithm with hits score based capacity. In: DASFAA 2003, pp. 101–106 (2003)

16. Dean, J., Henzinger, M.R.: Finding related pages in the world wide web. Computer

Networks 31(11-16), 1467–1479 (1999)

17. Asano, Y., Nishizeki, T., Toyoda, M., Kitsuregawa, M.: Mining communities on the

web using a max-flow and a site-oriented framework. IEICE Transactions 89-D(10),

2606–2615 (2006)

Proposal of Deleting Plots from the Reviews to

the Items with Stories

Kaori Ikeda, Yoshinori Hijikata, and Shogo Nishida

Graduate School of Engineering Science, Osaka University, Japan

Abstract. Recently, there are a lot of commercial web sites in which

users can write reviews. Many people see the reviews of an item they

are interested in. The opinions in reviews are useful when they want to

measure whether a certain item is good. However, some reviews about

items that contains stories (e.g. novels, movies, and computer games)

have spoilers (undesirable descriptions of the story) as well as the opin-

ions of review authors (reviewers). If users see a review involving spoilers,

they might feel less interesting when you read or watch the item. We try

to make a system that helps users see reviews without seeing plots.

1 Introduction

Recently, many people do online shopping. Before they make a decision on
whether they buy an item they are interested in, they often undertake infor-
mation gathering about the item. They decide whether they buy it or not based
on the gathered information. People can exchange information easily in a com-
munity website, such as BBS and SNS. There are some websites in which users
can write and read reviews of items easily (e.g. Amazon.com 1 and eBay 2).
Many people use these websites when they want to get the information about a
certain item. They can get a lot of users’ opinions from reviews, which is useful
for evaluating a certain item.

However, in the reviews about items that contains stories (e.g. novels, movies,
and computer games), there may be spoilers (undesirable descriptions of the
stories) in addition to useful opinions. Here is an example.

<example review>
Half-Blood Prince is easily one of the better books in the Harry Potter se-
ries, though each is a masterpiece. Several of the chapters are particularly well-
written, with great suspense and imagery. After completing this book, I was in
a state of total shock and to this moment I wish only to read the seventh book.
The end of the book is very sad indeed, yet, I was not crying–I was merely
shocked, flabbergasted at the circumstances. before reading this book, if I had
to make a list of impossible things that could never happen... Snape killing the
Headmaster and fleeing the school with a bunch of Death Eaters, would have
1 http://www.amazon.com
2 http://www.ebay.com

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 346–352, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Proposal of Deleting Plots from the Reviews to the Items with Stories 347

been right at the top of the list. But, I’d have been wrong. I had a very strong
feeling that Dumbledore would be the one to die in this book. But I never saw
the way it happened coming. Disturbing ending leaves you frustrated waiting for
the next book.

Users can realize that the item is a good book of this series from this review.
The opinion in this review can be useful for those who are making a decision on
whether they buy the item.

However readers are forced to know about the crucial plot “Snape killing
the Headmaster”, which they would not have known before they read the item.
After reading this review, they may be less interesting when they read this item.
Social Survey Research Information Co. conducted an online inquiry survey of
spoilers in reviews, and reported that the answerers said “I was disappointed at
knowing the ending of the story from a review.”, “I was shocked because I saw
the criminal person’s name while reading the reviews of the mystery novel.”, and
so on. Furthermore, more than half of respondents insist they do not want to
see spoilers.

We try to detect and hide plots from reviews. We assign scores that indicate
the likelihood of “plots” to each phrase by machine learning to detect the plots.

In this paper, we present a system that helps users see reviews without see-
ing plots. Here, plots mean the description of items’ stories. Our system treats
English reviews.

In Section 2, we refer to related works. We explain our approach in Section
3. We present a method for detecting plots and a method for presenting users
reviews with plots hidden in Section 4. We give some conclusions and future
works in Section 5.

2 Related Work

The most relevant region of research to ours is opinion mining, and the most
representative theme in this region is opinion classification. Dave et al. [1] and
Wilson et al. [6] conducted opinion classification. Dave et al. [1] presented a
polarity classification method at sentence-level using Naive Bayes. Wilson et
al. [6] proposed a system that classifies each phrase as positive or negative,
considering a priori polarity and contextual polarity of words in the phrase.
These researches both treated product reviews.

There are some researches that presented integrated systems for opinion anal-
ysis. Morinaga et al. [3] proposed a framework for gathering and analyzing repu-
tations for a certain product. In their system, an extracted statement is attached
a numerical value expressing a degree of confidence that the statement is indeed
an opinion, as well as the label indicating the statement is positive or nega-
tive. The system also presents a map that shows the relationships between items
and characteristic words contained in the statements of opinions. Hu et al. [2]
presented a method for extracting opinions from reviews and summarizing them
with regard to each product feature. They treated reviews about digital cameras,
cellular phones, and mp3 players.

348 K. Ikeda, Y. Hijikata, and S. Nishida

In addition, there are researches that classified sentences as subjective or
objective. These researches could be useful for opinion acquisition. Pang et
al. [4] classified sentences as either subjective or objective using Naive Bayes.
Furthermore, the subjective sentences were classified as positive or negative.
They treated movie reviews. Yu et al. [7] separated opinions from facts at either
document-level or sentence-level. Riloff et al. [5] presented a bootstrapping pro-
cess to allow classifiers to learn from unlabeled texts. The process finds common
patterns in which subjective sentences have, using original training data (known
subjective vocabulary). It classifies sentences as subjective or objective using
the patterns as well as the original training data. These classified sentences were
used as a training set to learn extraction patterns associated with subjectivity.
Yu et al. [7] and Riloff et al. [5] both treated newspaper articles.

Our research aims at detecting plots from reviews about items that contain
stories (e.g. novel, movie). We classify each phrase in reviews as a plot or not in
order to detect plots. Our research is similar to the researches detecting opinions
from reviews and classifying them as positive or negative. However, we focus not
on opinions but on plots. As far as we know, no research works on detecting plots.
Opinions are comparatively easy to classify using dictionaries of expressions for
evaluation. On the other hand, no effective tool exists for detecting plots. It seems
that detecting plots from reviews is rather difficult than polarity classification.

3 Approach

In order to develop the system described above, we have to consider how to
detect plots from a review. It is difficult to detect plots perfectly from a review.
This is because the understanding of the meaning of sentences is needed to detect
plots and computers are weak at understanding them even when we introduce
deep natural language processing techniques.

In addition, whether a certain plot should be eliminated or not depends on the
reader. Some users think it is OK to see some plots unless they read the core of
the story, other users may think they do not want to see a subtle depiction about
the story because they want to be moved while reading or seeing the item. If we
show users the reviews in which same plots are eliminated, it seems impossible
to satisfy all of them.

We checked 100 reviews in Amazon.com to find any clues to judge whether
a phrase is a plot or not. We noticed that there are specific words that are
likely to appear in plots, and words that seldom appear in plots. For example,
words “kill” and “island” seldom appear in sentences except for plots. On the
other hand, words “think” and “be moved” are frequently used for representing
reviewers’ opinions. We think we can detect plots using this feature, without
introducing deep natural language processing techniques.

In our research, we assign scores that indicate the likelihood of “plots” to
each phrase by machine learning. We try to detect plots based on the scores and
provide an interface on which users can adjust a rate at which plots are hidden.
We present users a slider to adjust the rate in this interface. We think that users

Proposal of Deleting Plots from the Reviews to the Items with Stories 349

can see reviews with plots hidden as they like. In Section 4, we explain these
methods in detail.

4 Detecting Plots

We assign scores that indicate the likelihood of “plots” to each phrase, and detect
plots based on the scores. We use Naive Bayes method to get the scores. Plots
and opinions usually appear in different sentences, however, sometimes plots and
opinions both appear in one sentence. Thus we treat phrase as a unit. We explain
how to detect and hide plots in detail as below.

4.1 Assigning Scores to Phrases

We assign scores that indicate the likelihood of belonging to the “plot” cate-
gory to phrases by Naive Bayes method. The manually labeled data are used
to train Naive Bayes classifier. Naive Bayes Classifier calculates the probability
that indicates how much each word is likely to appear in plots. A probability of
appearance of a certain word ω in plots P (plot|ω) is calculated as

P (plot|ω) =
a number of appearance of ω in plots

a number of appearance of ω
(1)

Each sentence in the reviews is separated into phrases and each phrase is checked
whether it is regarded as a plot or not. To check whether a certain phrase is
regarded as a plot, the probability that indicates how much the phrase is likely
to belong to the “plot” category is calculated based on words appearing in the
phrase. (See (2).)

P (plot|phrase) =
n∏

i=1

P (wi|plot)P (plot)
P (wi)

(2)

In (2), wi is the i-th word that appears in the phrase. n is the number of the
words the phrase has. The probability P (other|phrase) can be calculated as
1−P (plot|phrase). Consequently, if P (plot|phrase) > 0.5, the phrase is classified
in the “plot” category, and vice versa.

We consider generalizing character names and author names respectively.
Here, a character name means a name that a character who appears in an item
has, and an author name means a creator’s name of the item. We found that
phrases that contain character names are comparably plots and the phrases that
contain author names are likely not to be plots. However, character names and
author names are of huge variety, so same words seldom appear in reviews. Lit-
tle important scores are given to these words by Naive Bayes method because it
highly depends on how many times each word appears in reviews. If we general-
ize those words and train the classifier, we can utilize the existence of character
names and author names in plots. We make a list of personal names in advance

350 K. Ikeda, Y. Hijikata, and S. Nishida

for generalizing character names. We compare the list to words that appear in a
content summary in an item description page provided by e-commerce site (e.g.
Amazon.com and eBay), in order to treat words that appear in both of them as
character names. We extract author names from each item description page for
generalizing author names. It seems easy because each author name appears in
a uniform manner in the item description page.

We introduce some options for scoring. We try to use bigram and trigram in
addition to monogram, so as to take into account the order of words. We also
consider using simple syntactic information. In reviews, sentences whose subject
is “I” frequently express reviewers’ opinions, hence they are likely not to be plots.
On the other hand, the sentences whose subject is a character name are likely
to be plots, because reviewers tend to choose the character name for subject
in order to describe character’s action or feeling. It is useful to use syntactic
information to judge a phrase as a plot or not.

We also try to use scores that indicate the likelihood of opinions. Here, opin-
ions mean reviewers’ impressions or requests. We found that opinions are likely
to exist apart from plots in reviews. Hence it seems that phrases whose proba-
bility of belonging to “opinion” are high are likely not to be plots. We want to
utilize this for detecting plots by reducing the probability of opinions from the
probability of plots.

4.2 Interface

Each phrase is assigned the probability of belonging to the “plot” category by
Naive Bayes classifier. The phrases whose probabilities are higher than a thresh-
old are hidden. We plan to provide an interface to show users reviews with plots
hidden, shown in Figure 2. The interface has a slider to enable users to adjust
the threshold. In this way, users can see reviews with plots hidden as they like.

Figure 1 shows a raw review before hiding plots. Figure 2 shows a review with
some plots hidden. In Figure 2, the threshold of the bottom review is lower than
that of the top review, hence more plots are hidden than the top review.

Fig. 1. A raw review before hiding plots

Proposal of Deleting Plots from the Reviews to the Items with Stories 351

Fig. 2. A review with some plots hidden

5 Conclusion

In our research, we try to hide plots in reviews. We propose a system that helps
users see reviews without seeing plots. In order to detect plots, we assign scores
that indicate the likelihood of “plots” to each phrase by Naive Bayes. The phrases
whose score is higher than a threshold are hidden. Users can see reviews with
plots hidden as they like by adjusting the threshold using a slider. We create the
supervised data to train Naive Bayes and implement the system in the future.

References

1. Dave, K., Lawrence, S., Pennock, D.: Mining the Peanut Gallery: Opinion Extraction

and Semantic Classification of Product Reviews. In: Proceedings of the Twelfth

International World Wide Web Conference (WWW 2003), pp. 519–528 (2003)

2. Hu, M., Liu, B.: Mining and Summarizing Customer Reviews. In: Proceedings of

International Conference on Knowledge Discovery in Databases (KDD’04), pp. 168–

177 (2004)

3. Morinaga, S., Yamanishi, K., Tateishi, K., Fukushima, T.: Mining Product Rep-

utations on the Web. In: Proceedings of International Conference on Knowledge

Discovery in Databases (KDD’02), pp. 341–349 (2002)

352 K. Ikeda, Y. Hijikata, and S. Nishida

4. Pang, B., Lee, L.: A Sentimental Education: Sentiment Analysis Using Subjectivity

Summarization Based on Minimum Cuts. In: Proceedings of the Association for

Computational Linguistics (ACL’04), pp. 271–278 (2004)

5. Riloff, E., Wiebe, J.: Learning Extraction Patterns for Subjective Expressions. In:

Proceedings of the 2003 Conference on Emprical Methods in Natural Language

Processing (EMNLP 2003), pp. 25–32 (2003)

6. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing Contextual Polarity in Phrase-

Level Sentiment Analysis. In: Proceedings of Human Language Technology Con-

ference and Conference on Empirical Methods in Natural Language Processing

(HLT/EMNLP 2005), pp. 347–354 (2005)

7. Yu, H., Hatzivassiloglou, V.: Towards Answering Opinion Questions: Separating

Facts from opinions and Identifying the Polarity of Opinion Sentences. In: Proceed-

ings of the 2003 Conference on Emprical Methods in Natural Language Processing

(EMNLP 2003), pp. 129–136 (2003)

Basic Study on a Recommendation Method
Considering Region-Restrictedness of Spots

Kenta Oku and Fumio Hattori

College of Information Science and Engineering, Ritsumeikan University,
1-1-1 Nojihigashi, Kusatsu-city, Shiga, Japan

oku@fc.ritsumei.ac.jp,fhattori@is.ritsumei.ac.jp

Abstract. We propose a recommendation method that considers region-
restrictedness. In this study, we define a spot as an establishment such as
a restaurant, amusement facility, or tourist attraction in the real world.
A spot with high region-restrictedness indicates that the spot is located
in a restricted area but not in a user’s home area. We define the region-
restrictedness score to extract region-restricted phrases from text data
about spots (such as promotional descriptions about spots). Then, spots
including these phrases are recommended to the user. In this paper, we
present our proposed method and discuss it on the basis of basic exper-
imental results.

Keywords: Recommendation, Region-restrictedness, Local search

1 Introduction

In recent years, many users have begun using local search services to search for
spots matching queries in a specific area. Google Maps[1] and Yahoo! Maps[2]
are examples of such local search services. When users search for an area using
an address or a place name along with keywords such as “bar” or “lunch,” close
spots matching the keywords are shown on the map.

However, simply providing information about the close spots does not always
satisfy the users. For example, suppose Ken, who lives in Osaka, Japan, goes on
a trip to Matsusaka, Mie prefecture, Japan. At night, he searches for restaurants
close to Matsusaka station and the foods available at these restaurants using a
local search service. Although he can obtain information about many restaurants
close to the station, some of the restaurants listed are also available in Osaka; for
example, Ken can eat a “teriyaki burger” at “McDonald’s” or a “hamburg steak”
at “Gusto” (a chain of family restaurants in Japan). Because Ken has been ea-
gerly awaiting this trip, he might not feel like going to these restaurants knowing
that they are also available in Osaka. A better solution would be to provide Ken
with information about restaurants and food available in Matsusaka but not in
Osaka (e.g. “Matsusaka beef” (a well-known food available in Matsusaka)).

In case of “Matsusaka beef,” a well-known specialty, Ken can retrieve in-
formation using keyword queries because he can easily associate “Matsusaka”
with “Matsusaka beef.” However, when he goes on a trip to an unknown place,

.

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 353–364, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

he would not know the names of special food. In order to find such foods, it is
necessary to automatically extract keywords related to the foods available in a
restricted area and show them to users.

In this paper, we propose a recommendation method for region-restricted
spots. We define a region-restricted spot as a spot that is located in a restricted
destination area but not in a user’s home area. Here, the destination area implies
an area that the user is visiting when on a trip. The user’s home area implies an
area where the user lives.

The remainder of this paper is organized as follows. In Section 2, we present
related works and services and describe the difference between our proposed
method and such existing methods. In Section 3, we explain the recommenda-
tion method for region-restricted spots. Section 4 presents basic experimental
analyses of the validity of our method when applied to real areas in Japan.
Finally, Section 5 presents the conclusions of this paper.

2 Related Work

Tezuka et al. [] have proposed a method for predicting the regionality of Web
pages and objects (e.g., “red leaves” or “noodles”). For example, when a user
wants to know about places that are famous for red leaves, he/she can input
“red leaves” as a search query, and this will display areas related to red leaves.
Therefore, the user can find related areas from the names of objects. On the
other hand, in this paper, we aim to extract region-restricted phrases based on
the input area.

Tarumi et al. [4] proposed the SpaceTag system to provide information to
users in a restricted area. The SpaceTag is an object such as text, an image,
a sound, or a program that is accessible in a restricted time and an area.
A SpaceTag is made by enterprises, public organizations, and general users.
Therefore, their opinions and intentions might be included in the SpaceTag. On
the other hand, our proposed method automatically extracts region-restricted
phrases from a large amount of spot data associated with real-world locations.

Many location- and time-based information delivery systems for tourism have
also been proposed [5][6][7]. However, these systems provide information about
only those spots that are close to a user’s current location. In other words, they
do not aim at region-restrictedness.

Many gourmet Web sites provide information about restaurants that serve
local specialties. However, such sites might also include the owner’s subjective in-
tentions. Moreover, although sufficient information is available about well-known
places, little or no information is available about unknown places. On the other
hand, if spot data were to be associated with real-world locations, our proposed
method can be applied to any place, including unknown ones. Furthermore, be-
cause our method automatically extracts region-restricted phrases, unexpected
phrases could also be discovered, such as minor phrases that a site owner might
not notice.

3

354 K. Oku and F. Hattori

Fig. 1. Home spots and destination spots

3 Recommendation Method Considering
Region-Restrictedness

In this section, we explain our proposed recommendation method that considers
region-restrictedness.

Our proposed method focuses on the region-restrictedness of spots, and it
recommends spots with high region-restrictedness. In this study, we define a
spot as an establishment such as a restaurant, amusement facility, or tourist
attraction in the real world. A spot with high region-restrictedness indicates a
spot that is located in a restricted area but not in a user’s home area.

We can acquire spot data such as location and other information from spot
information sites such as Gournavi[8]. The proposed method utilizes the follow-
ing information as spot data:

– Spot name
– Location (latitude/longitude or an address)
– Text data such as promotional descriptions

The proposed method recommends spots based on the following steps:

i Acquire home spots and destination spots.
ii Extract phrases from text data about each destination spot.
iii Calculate region-restrictedness score of each extracted phrase.
iv Recommend spots based on the region-restrictedness score.

In the remainder of this section, we explain each step.

3.1 Acquire Home Spots and Destination Spots

First, we define a home spot and a destination spot (see Figure 1).
We define a home spot hi as a spot in a user’s home area. A home spot set

is represented as follows:
H = {h1, h2, . . . , hn} (1)

Recommendation Method Considering Region-Restrictedness 355

Table 1. Extracted patterns of a part of speech

Here, n is the total number of home spots. For example, if a user’s home area is
“Osaka prefecture,” the home spot set H includes all spots in “Osaka prefecture”
with n being the number of spots.

We define a destination spot lj as a spot in a user’s destination area (e.g., area
visited for tourist or business purposes). A destination spot set, which includes
spots existing within a radius of r from a base point in the destination area, is
represented as follows:

L = {l1, l2, . . . , lm} (2)

Here, m is the number of spots existing within the range. For example, for
the destination “Matsusaka” with the base point as “Matsusaka station,” the
destination spot set L includes all spots within a radius of r from “Matsusaka
station” with m being the number of spots.

3.2 Extract Phrases from Text Data of Each Destination Spot

Our method extracts phrases included in text data about each destination spot
lj ∈ L. We can use a morphological parser such as ChaSen[9] to extract these
phrases. Phrases are extracted by the following steps:

i Extract words included in text data about each spot lj using morphological
parser.

ii Let a basic word be a word whose part of speech is “noun (general)” or “noun
(proper)” among the extracted words. If “noun (general)” or “noun (proper)”
occurs before or after the basic word in a sequence, combine these words into
one basic word. This prevents the loss of their features that may occur by
splitting them, for example, “Matsusaka beef ()” into “Matsusaka (

)” and “beef ().” On the other hand, exclude a basic word consisting
of only “noun (proper.place).” Although the method may extract a name
of an area such as “Matsusaka” as a region-restricted phrase, in this case,
“Matsusaka” is obvious to the user.

iii Combine the basic word and a prefix and suffix dependent on it into one
phrase. In other words, extract a noun phrase consisting of patterns of a
part of speech shown in Table 1.

iv In the case of a noun phrase that can be combined by “particle (pronom-
inal),” combine these words into one phrase. In this manner, the method
can extract more restricted phrase such as “well-established restaurant in
Matsusaka-city ()” or “store with Sukiya architecture in a
purely Japanese style ().”

356 K. Oku and F. Hattori

Fig. 2. Example of the extraction of phrases from text data about a sample spot

Wj = {wj1, wj2, . . .} (3)

3.3 Calculate Region- estrictedness Score of Extracted Phrase

Our method examines how each extracted phrase wjk ∈ W is restricted to
the destination area. In order to find it, we apply Inverse Document Frequency
(IDF), which is widely used in the field of document retrieval. Generally, the
IDF is represented as follows:

idf = log
d

de
(4)

Here, d is the total number of documents and de, the number of documents
including a word we. That is, a lower weight is assigned to a general word that
commonly occurs in many documents and a higher weight is assigned to a feature
word that occurs in specified documents.

Based on this notion, we define the restrictedness νjk. The restrictedness
denotes how each extracted phrase wjk in text about a destination spot is re-
stricted against a user’s home spot set. In equation (4), when we regard the text
data of spots as documents, the restrictedness is represented as follows:

νjk = log
n+ 1

njk + 1
(5)

Here, n is the number of spots included in a home spot set H (refer to 3.1) and
njk, the number of spots whose text includes a phrase wjk among the H. By
using this restrictedness, our method can extract a restricted phrase that occurs
only in the destination spots but not in the user’s home spots.

R

In Figure 2, we show an example of the extraction of phrases from text about
a spot. For example, a phrase “grilled meat with unpretentious price (

)” was extracted by combining “unpretentious (),” “price (),”
“with (),” and “grilled meat ().”

We represent an extracted phrase set for a spot lj as follows:

Recommendation Method Considering Region-Restrictedness 357

However, by considering only the restrictedness, a unique catch copy about a
spot, such as “with salad Vikings of coupon” or “vegetables for alcoholic drinks,”
may also be extracted. Most phrases used for such catch copy are unique. There-
fore, the restrictedness of these phrases is higher. Therefore, it is not necessary
that some content has regionality for a destination area.

Therefore, we consider the regional weight γjk in addition to the restricted-
ness νjk. The regional weight γjk indicates how a phrase wjk is related to the
destination area. That is, a higher weight is given to a phrase that is strongly
related to the destination area, such as “Matsusaka beef” in “Matsusaka,” and
a lower weight is given to a phase that is weakly related to one such as “with
salad Vikings of coupon.”

In order to take the regional weight, we use WebPMI[10], which indicates the
similarity between words based on their co-occurrence frequencies on the Web.
The WebPMI between words p and q is represented as follows:

WebPMI(p, q) =

⎧⎨
⎩
0 if H(p ∩ q) ≤ c

log
H(p∩q)

N
H(p)
N

H(q)
N

otherwise
(6)

Here, H(p), H(q), and H(p ∩ q) denote the number of Web search results ob-
tained using the queries “p,” “q,” and “p + q,” respectively. N is the number of
documents a search engine indexes. c is a threshold for avoiding noise caused by
words with low frequency.

By calculating the WebPMI(wjk, local) between a phrase wjk and the name
of a destination area local, the method obtains γjk, which is the regional weight
of the phrase wjk for an area. γjk is defined as follows:

γjk = WebPMI(wjk, local) (7)

Here, we utilize reverse geocoding [1] to detect the name of a destination area.
Let local be the name of a city, such as “Matsusaka city,” that has been acquired
by reverse geocoding from the latitude and longitude of the base point.

Finally, we obtain the region-restrictedness score sjk of a phrase wjk based on
the above two measures, namely, the restrictedness νjk and the regional weight
γjk. The score is calculated as follows:

sjk = ν�jk × γ�
jk (8)

Here, ν�jk and γ�
jk are normalized νjk and γjk as [0, 1] in spot lj , and they are

respectively calculated as follows.

ν�jk =
νjk −min

k
νjk

max
k

νjk −min
k

νjk
γ�
jk =

γjk −min
k

γjk

max
k

γjk −min
k

γjk
(9)

3.4 Recommend Spots Based on Region- estrictedness Score

For the threshold δ, we regard phrases that satisfy sjk ≥ δ as region-restricted
phrases. Our recommendation method provides users with spots with these
phrases.

R

358 K. Oku and F. Hattori

Fig. 3. Example of spot recommendation using region-restrictedness phrases

Table 2. Example of restaurant data used in this experiment

Figure 3 shows an example of spot recommendation using region-restricted
phrases. For a base point as the user’s current or input location, the method
shows the surrounding spots with the region-restricted phrases on the map. As
shown in Figure 3, our method might extract multiple phrases for one spot or
the same phrase for multiple spots. A user can choose spots that he/she wants
to use by referring to such phrases.

4 Basic Experiments

We carried out basic experiments in order to analyze the tendency of extraction
of phrases based on the region-restricted score described above. First, we explain
the data sets used in the experiments in Section 4.1. In Section 4.2, we show the
results of qualitative analysis to evaluate the relevance of the region-restricted
score and discuss the results. In Sections 4.3 and 4.4, we discuss the results
of extracted phrases depending on the destination spot areas and home areas,
respectively.

4.1 Data Set

Although our proposed method can be applied to a restaurant, amusement fa-
cility, or tourist attraction, in these experiments, we applied it to restaurants as
a genre of spots.

We acquired restaurant data from Gournavi [8], a Japanese restaurant guide.
We obtained the following restaurant data using the Gournavi API [8] provided
by Gournavi:

Recommendation Method Considering Region-Restrictedness 359

Table 3. Prefectures used as home areas in this experiment

Table 4. Base points used as destination areas in this experiment

– Restaurant name

– Location (as latitude/longitude)

– Text data (short and long versions of promotional descriptions)

Table 2 shows an example of the data.

In these experiments, we set the prefectures listed in Table 3 as home areas.
Let a home spot set of each prefecture be all restaurant data acquired by the
Gournavi API for each prefecture.

We also set the base points listed in Table 4 as destination areas. Let a
destination spot set of each base point be all restaurant data existing within a
radius of 3, 000 m from each base point. However, in cases where the number
of restaurants exceeded 30, the closest 30 restaurants from the base point were
chosen.

4.2 Qualitative Analysis of Region- estrictedness Score

We carried out a qualitative analysis of the tendency of phrase extraction based
on the region-restrictedness score in order to evaluate the relevance of the score.

In this analysis, let the home area be “Osaka” and the base point in the
destination area be “Nara Park.” Phrases were extracted from text data about
each restaurant data in the destination spot set according to the steps described
in Section 3.2. The number of extracted phrases was 483 (except for repeated
phrases).

The region-restrictedness score was calculated for each extracted phrase.
Then, we constructed a phrase ranking based on the score. Here, let c = 5
in Equation (6). The number of phrases that satisfies H(p ∩ q) ≤ c was 47. We
then ranked 436 phrases and excluded these 47 phrases. Figure 4 shows a part of
the ranking results. In order to evaluate the relevance of the ranking, we showed
the following:

(a) Top 30: 1st to 30th

(b) Worst 30: 407th to 436th (the lowest)

In the next section, we discuss each result.

R

360 K. Oku and F. Hattori

Fig. 4. Ranking results of phrases based on region-restrictedness scores (home: Osaka,
destination: Nara Park)

Discussion of Top 30 Phrases As shown in Figure 4 (a), we found that many
phrases that were strongly related to Nara but not to Osaka, such as “Yamato
chicken ()” (9th), “Yoshino Kudzu ()” (13th), “right in the
middle of Nature in Mt. Kasuga ()” (1st), and “Todaiji
()” (14th) were extracted. We focused on the contents of extracted phrases,
and found that the phrases could be broadly categorized as follows.

A. Phrases related to foods or ingredients
B. Phrases characterizing a restaurant in terms of its ambience or facilities
C. Phrases including a name of a landmark around a restaurant
D. Phrases related to a restaurant name

Each alphabet in Figure 4 (a) indicates one of the above categories. We now
discuss each category.

A. Phrases related to foods or ingredients
Phrases related to foods or ingredients, such as “Yamato chicken ()”

(9th), “Yoshino Kudzu” () (13th), and “Yamato beef ()” (25th),
that were peculiar to Nara were assigned higher ranks.

However, although “tea gruel ()” and “kakinoha sushi ()” are
also specialties peculiar to Nara, these phrases could not be extracted in this
experiment because they were not included in the promotional sentences used as
text data about restaurants. On the other hand, some restaurant data include
these phrases in their details pages or menu pages. Therefore, we would like to
consider these pages as text data about spot data in future work.

B. Phrases characterizing a restaurant in terms of its ambience or facilities
“Inn of ancient city ()” (4th) and “woody ()” (12th) were phrases

that characterized the restaurant’s ambience, and they were assigned higher
ranks. “French terrace ()” (11th) and “terrace style (

Recommendation Method Considering Region-Restrictedness 361

.

Fig. 5. Ranking results of phrases depending on destination areas (home: Osaka)

)” (23th) were phrases that characterized the restaurant’s facilities and
“Hirokuni Akiyoshi ()” (3rd) was the name of a chef; these phrases were
also assigned higher ranks.

Using such phrases, a user can choose restaurants by also referring to the
ambience or facilities peculiar to the destination area.

However, “French terrace” and “terrace style” are not region-restricted phrases
for Nara alone. These phrases were extracted because there were a few samples
in Osaka that included these phrases in the promotional sentences. In the future,
we intend to examine whether it is better to consider spots available not in a
home area or only in a destination area.

C. Phrases including a name of a landmark around a restaurant
“Right in the middle of Nature in Mt. Kasuga ()” (1st),

“the middle of famous temples ()” (2nd), “Todaiji (
)” (14th), and “primeval forest in Kasuga Okuyama ()” (20th)

were assigned higher ranks as phrases including a name of a landmark around a
restaurant. Because most landmarks indicate the regionality, it is also effective
to provide such landmarks in addition to the phrases characterizing a restaurant.

D. Phrases related to a restaurant name
“Kudara ()” (19th) and “Banzai ()” are the names of restaurants.

First, because most restaurant names are peculiar, these phrases can be extracted
easily. However, the names do not always characterize their contents. Therefore,
it is not effective to show these phrases to users. Therefore, it is necessary to
exclude these phrases related to a restaurant name from the ranking.

Discussion of Worst 30 Phrases Figure 4 (b) shows the worst 30 phrases.

362 K. Oku and F. Hattori

.

Fig. 6. Ranking results of phrases depending on home areas (destination: Nara Park)

We found that general phrases such as “course ()” and “restaurant
()” were assigned lower ranks. As a result, we confirmed that the general
phrases could be assigned lower ranks using the region-restrictedness score.

4.3 Discussion of Phrases Depending on Destination Areas

We compared the ranking results of extracted phrases for the home area “Osaka”
and destination areas as the base points listed in Table 4. Figure 5 shows the
top 10 phrases when the base points were “Matsusaka station ()” and
“Ohmihachiman station ().” 165 and 265 phrases were extracted for
these respective base points.

As shown in Figure 5, phrases restricted to each area could be extracted,
such as “Matsusaka beef ()” at “Matsusaka station” and “Hachiman Kon-
nyaku ()” at “Ohmihachiman station.” In particular, foods based on
“Matsusaka beef” such as “Matsusaka beef steak ()” (10th) were
extracted in various phrases at “Matsusaka station” and various foods such as
“Hachiman Konnyaku ()” (1st), “natural bittern ()” (2nd), and
“Chojifu ()” (4th) were extracted at “Hachiman station”; in addition, var-
ious landmarks such as “Kasuga Taisya ()” and “Todaiji ()” were
extracted at “Nara Park.” Therefore, the characteristics tend to depend on the
destination areas. In the future, we intend to carry out further detailed analyses
using various areas.

4.4 Discussion of Phrases Depending on Home Areas

We compared the ranking results of extracted phrases for the destination area
“Nara Park” and home areas as the prefectures listed in Table 3. Figure 6 shows
the top 20 phrases when the home areas were “Tokyo” and “Aichi.”

As shown in Figure 6, there was not much difference among the three prefec-
tures in this experiment. In only one case, we found that “Yamato vegetable” was
ranked 16th in “Tokyo” and “Aichi,” whereas it was ranked 24th in “Osaka.”
Actually, according to data obtained from Gournavi, there were three restau-
rants serving this food in Osaka but none in Tokyo and Aichi. This implies that
users have some opportunities to eat this food in Osaka but none in Tokyo and
Aichi. This is why its rank was lower in the case of Osaka than in Tokyo and

Recommendation Method Considering Region-Restrictedness 363

Aichi. This implies that the ranking results tend to change depending on the
home areas.

Although there was not much difference in this experiment, we intend to
examine the effect of the home area in greater detail in future work.

5 Conclusion

We proposed a recommendation method that considers region-restrictedness. In
this study, we define a spot as an establishment such as a restaurant, amuse-
ment facility, or tourist attraction in the real world. A spot with high region-
restrictedness indicates a spot that is located in a restricted area but not in
a user’s home area. Then, our proposed method recommends spots with high
region-restrictedness. We define the region-restrictedness score to extract region-
restricted phrases for the destination area from text data about spots.

We carried out a qualitative analysis of the region-restrictedness score. From
the ranking results based on the score, we found that many phrases related to
destination areas could be extracted with higher ranks. Moreover, we found that
the extracted phrases could be broadly categorized into four categories, and we
discussed each category separately.

Although we have presented a basic analysis of the recommendation method,
we intend to examine this method further with the aim of developing a practical
recommendation system that considers region-restrictedness.

References

364 K. Oku and F. Hattori

1. Google maps, http://maps.google.com/

2. Yahoo! maps, http://maps.yahoo.com/

3. Tezuka, T., Kondo, H., Tanaka, K.: Estimation of relevant regions for web content

by gaussian mixture models for object level local search. Information Processing

Society of Japan: Database 1(1), 13–25 (2008) (in Japanese)

4. Tarumi, H., Morishita, K., Kambayashi, Y.: Public applications of spacetag and

their impacts, digital cities: Technologies, experiences and future perspectives. In:

Ishida, T., Isbister, K. (eds.) Digital Cities 1999. LNCS, vol. 1765, pp. 350–363.

Springer, Heidelberg (2000)

5. Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cy-

berguide: A mobile context-aware tour guide. Wireless Networks 3(5), 421–433

(1997)

6. Sumi, Y., Etani, T., Fels, S., Simonet, N., Kobayashi, K., Mase, K.: C-map: Building

a context-aware mobile assistant for exhibition tours. In: Community Computing

and Support Systems, Social Interaction in Networked Communities, pp. 137–154.

Springer, London (1998)

7. Cheverst, K., Davies, N., Mitchell, K., Friday, A.: Experiences of developing and

deploying a context-aware tourist guide: the guide project. In: Proceedings of

the 6th Annual international Conference on Mobile Computing and Networking

(MobiCom 2000), pp. 20–31. ACM, New York (2000)

8. Gournavi, http://www.gnavi.co.jp/en/

9. Chasen (in Japanese), http://chasen.naist.jp/hiki/ChaSen/

10. Bollegala, D., Matsuo, Y., Ishizuka, M.: Measuring semantic similarity between

words using web search engines. In: WWW 2007 (2007)

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 365–373, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Hybrid Recommendation Method with Double SVD
Reduction

Yusuke Ariyoshi1 and Junzo Kamahara2

1 Faculty of Economics Management and Information Science, Onomichi University
1600 Hisayamada-cho, Onomichi, Hiroshima, 722-8506 Japan

y-ariyoshi@onomichi-u.ac.jp
2 Graduate School of Maritime Sciences, Kobe University

5-1-1 Fukaeminami, Higashinada-ku, Kobe, Hyogo 658-0022 Japan
kamahara@maritime.kobe-u.ac.jp

Abstract. An issue related to recommendation is the requirement of consider-
able memory for calculating the recommendation score. We propose a hybrid
information recommendation method using singular value decomposition
(SVD) to reduce data size for calculation. This method combines two steps.
First, the method reduces the number of documents on the basis of the users’
rating pattern by applying SVD based on collaborative filtering (CF). Second, it
reduces the number of terms on the basis of the term frequency pattern of the
reduced documents by applying SVD based on content-based filtering (CBF).
The experimental results show that the proposed method has almost the same
mean absolute error (MAE) as the SVD-based CBF. Originally, our data set has
9924 terms. The SVD-based CBF reduces the number of terms to 45 and the
proposed method to 15 while preserving the same MAE. This means that the
proposed method is effective for calculating recommendation.

Keywords: Recommender System, Content-Based Filtering, Collaborative
Filtering, Singular Value Decomposition.

1 Introduction

A recommendation system recommends an item by predicting a user’s ratings for the
item that the user does not evaluate. There are two methods of rating prediction. One
is content-based filtering (CBF), which predicts the rating on the basis of the content
of items, such as word appearance frequency. The other is collaborative filtering (CF),
which predicts the rating on the basis of other users’ ratings of an item.

There are actively researches of method which improve prediction[1, 2]. Singular
value decomposition (SVD) is one of the approaches used to improve predicts. There
is an improvement method that uses SVD for both CBF and CF[3, 4].

Advantages of SVD are (1) an increase in accuracy and (2) low memory require-
ment. However, in some cases, the size of memory required is not reduced. Data used
for recommending an item are represented as large sparse matrices. Since the matrices

366 Y. Ariyoshi and J. Kamahara

are often dense after SVD, size of the memory required for storing them can greater
than that required for the original matrix. Originally, SVD was used with latent se-
mantic indexing (LSI) for information retrieval. In the case of LSI, a sparse 5,526 ×
1,033 matrix generated from MEDLINE requires 0.4 Mbytes of memory to store the
original matrix, and 2.6 Mbytes to store the corresponding matrices after SVD [5].

In this paper, we propose a new recommendation method that requires a small
memory. SVD-based CBF predicts ratings on the basis of a term’s appearance-
frequency data. Theoretically, if unnecessary information is removed from the term’s
appearance-frequency data, the size of the memory required can be reduced.

The proposed method combines two reduction steps. First, the method reduces the
number of documents used on the basis of the users' rating pattern by applying SVD-
based CF to eliminate irrelevant information for prediction. Second, it reduces the
number of terms used on the basis of the term’s appearance-frequency pattern in these
reduced number of documents by applying SVD-based CBF.

The next section describes the conventional recommendation methods. Section 3
discusses the proposed method. Section 4 presents the experimental results, and sec-
tion 5 discusses the conclusions.

2 Existing Methods

In this section, we present LSI and the existing methods of content-based filtering and
collaborative filtering using SVD. We also describe Soboroff’s hybrid recommenda-
tion method, which uses SVD.

2.1 Latent Semantic Indexing (LSI)

LSI is an information retrieval technique based on the vector space model. In LSI, the
term weight of a document (e.g., term frequency) represents the document vector and
the entire set of retrieved documents represents the document-term matrix F.

The document-term matrix F is a d × t matrix since the entire document set has d
documents and t unique terms. Each element of matrix F refers to a term weight of the
corresponding term in the corresponding document. Each row of the document-term
matrix is equivalent to the document vector that represents the term weights in the
corresponding document. In the same way, each column of the document-term matrix
is equivalent to the term vector that represents the term weights for the corresponding
term in the documents.

LSI can reduce the document-term matrix using SVD. The SVD of the document-
term matrix F is

tTRDF ××= . (1)

The superscript t of a matrix indicates that the matrix is a transposed matrix.
The rank of matrix F can be described as rank(F) = r. D is a d × r orthogonal matrix,

and T is a d × r orthogonal matrix. R is an r × r diagonal matrix in which all elements
on the main diagonal have some value and all other elements are equal to zero.

 A Hybrid Recommendation Method with Double SVD Reduction 367

When we compare matrix D with matrix F, we observe that both matrices have d
rows; however, the number of columns in matrix D is reduced from t to r. Matrix D,
which exists in an r-dimensional space is reflected in matrix F, which exists in a t-
dimensional space for each d document. This means that SVD reduces the number of
document dimensions from t to r.

The term vector of matrix D (R and T) on the left is significant as it implies that the
distribution is high. Let us build a matrix Dk (Rk and Tk) using the k (<r) term vectors
extracted from the left side of matrix D (R and T). Then, Dk becomes a d × k orthogo-
nal matrix and represents each document in a k-dimensional space. This means that
the number of term dimensions is reduced to k. Further, the reduced k terms might be
sufficient to retrieve d documents from similarity on the basis of the term frequency
pattern.

Reducing the number of terms in LSI means that the synonyms can be intuitively
summarized as one term. Therefore, a search keyword can retrieve the documents that
contain the corresponding synonyms.

2.2 Content-Based Filtering with SVD (SVD-CBF)

Content-based filtering with SVD (SVD-CBF) is a type of CBF that applies LSI dur-
ing information retrieval. In the case of CBF, the interests of each user are represented
using a term vector called “user profile.” In the user profile, terms that appear fre-
quently in a document valued by the user have significant weight, and the terms that
appear frequently in a document not valued by the user have less weight. Further, the
entire set of user profiles is represented as the profile matrix P. P is a u × t matrix
since the number of users is u.

In CBF, filtering is carried out by matching a user profile with a document vector.
CBF calculates the u × d matrix GCBF, which represents the predicted ratings between
users’ interests and documents by using the profile matrix P and the document-term
matrix F;

 t
CBF FPG ×= . (2)

SVD-CBF filters the content using matrix Dk instead of matrix F. Furthermore, the
profile matrix is reduced by product of matrix Tk and matrix Rk

–1.

1−

− ××= kkCBFSVD RTPP . (3)

SVD-CBF calculates the matrix GSVD-CBF that represents the predicted ratings by using
the reduced profile matrix PSVD-CBF and matrix Dk;

 kCBFSVDCBFSVD DPG ×= −− . (4)

Therefore, the recommendations on a certain keyword would include documents that
contain the corresponding synonyms.

368 Y. Ariyoshi and J. Kamahara

2.3 Soboroff’s Hybrid Method

All of the known recommendation methods have strengths and weaknesses, and many
researchers have chosen to combine methods in different ways [6]. Soboroff’s method
is one of the hybrid method which combines CBF and CF with SVD [7].

In Soboroff’s hybrid method, SVD is applied to the profile matrix P. The rank of
matrix P can be described as rank(P) = v. The equation of SVD for matrix P is

 tLVJP ××= . (5)

Let J be a u × v orthogonal matrix and L be a t × v orthogonal matrix. V is a v × v
diagonal matrix.

On comparing matrix J with matrix P, we observe that both matrices have u rows;
however, the number of columns in matrix J is reduced from t to v. Originally, in
matrix P, each user is represented in a t-dimensional space; however, in matrix J, the
user is represented in a v-dimensional space. The number of term dimensions is re-
duced from t to v.

The term vector of matrix J (V and L) on the left is significant as implies a high
distribution. Let us build a matrix Jn (Vn and Ln) by extracting n (<v) column term
vectors from the left side of matrix J (V and L). Then, Jn becomes a u × n orthogonal
matrix and represents each user in an n-dimensional space. This means that the num-
ber of term dimensions is reduced to n. The reduced n terms may be sufficient to
make a recommendation for u users from the similarity on the basis of the term
weight pattern in the user profile.

Soboroff’s hybrid method filters content using matrix Jn instead of matrix P. Fur-
thermore, the document-term matrix is reduced by the product of matrix Ln and matrix
Vn

–1.

1−××= nnn VLFF . (6)

Soboroff’s hybrid method calculates the matrix GSoboroff, which represents the pre-
dicted ratings by using the reduced profile matrix Jn and the matrix Fn.

 nwSoboroff FJG ×= . (7)

2.4 Collaborative Filtering with SVD (SVD-CF)

The technique using SVD used for improving the accuracy of the recommendation in
a manner similar to that of SVD-CBF is collaborative filtering with SVD (SVD-CF).

Collaborative filtering represents the relationship between users and documents as
a user-document matrix G. Since u is the number of users and d is the number of
documents, the user-document matrix G is a u × d matrix. The elements of the user-
document matrix are values of the corresponding user’s rating for the corresponding
document. However, some elements do not have any value because the user did not
rate the document.

 A Hybrid Recommendation Method with Double SVD Reduction 369

SVD-CF also reduces the user-document matrix G by using SVD like LSI. The
rank of matrix G can be described as rank(G) = s. The equation of SVD for matrix G
is

 tESUG ××= . (8)

Let U be a u × s orthogonal matrix and E be a d × s orthogonal matrix. S is an s × s
diagonal matrix.

On comparing matrix U with matrix G, we observe that both matrices have u rows;
however, the number of columns in matrix U is decreased from d to s. Originally,
although in matrix G, each u user is represented in a d-dimensional space, in matrix
U, the user is represented in an s-dimensional space. The number of document dimen-
sions decreases from d to s.

The left side of matrix U (S and E) is significant as it implies a high distribution. Let
us build a matrix Uj (Sj and Ej) by extracting j (<s) column document vectors from the
left side of matrix U (S and E). Then, matrix Uj becomes a u × j orthogonal matrix and
represents each user in a j-dimensional space. This means that the number of document
dimensions is reduced to j. The reduced j documents might be sufficient to make a rec-
ommendation for u users from the similarity on the basis of the rating pattern.

In order to predict the value of the user ratings, the user-document matrix G' is re-
composed by using the reduced matrix Uj, Sj, and Ej. Although there are elements
that do not have the value of an unevaluated document in matrix G, the corresponding
elements have a predicted value in matrix G'.

t

jjj ESUG ××=' . (9)

3 Proposed Hybrid Method Using SVD

The recommendation system filters information by predicting the value of the user's
evaluation. The CBF predicts evaluation value based on the term frequency informa-
tion. However, there are effective or non-effective values of term frequency for pre-
dicting values.

Further, when we compare Uj with G of SVD-CF in equation (8) and (9), G repre-
sents characteristics of u users by evaluation values of d documents. Though, docu-
ments which have a similar evaluation pattern in G are reduced to one document in
Uj. Uj represents u users' characteristics by evaluation values of j reduced documents.
These j documents have different evaluation patterns. Therefore, it is important to
distinguish these j documents in order to estimate evaluation. On the other hand, dis-
tinguishing documents, which are separate in G, but become one document in Uj, is
not important to estimate evaluation.

Hence, the proposed method has the following steps. In the first step, the document
set that should be recommended will be reduced on the basis of the similarity of user
evaluations. In the next step, terms in document set will be reduced on the basis of the
similarity of term frequencies by applying SVD-CBF. In the last step, we will predict

370 Y. Ariyoshi and J. Kamahara

the values of the user ratings for the original document set by using SVD-CBF in the
reduced term set. These predicted values will be used for making the recommendation.

3.1 Reducing the Number of Documents

As described above, in the SVD-CDF, the number of dimensions (i.e., the number of
documents) will be reduced from d to s by processing SVD for matrix G, which
represents the values of the user ratings for the documents.

Let us transform equation (8) as follows:

 USEG =×× −1 . (10)

We can consider the matrix E × S–1 as the projection that reduces the number of col-
umns (documents) from d to s because the number of columns in matrix G is d and
the number of columns in matrix U is s. Furthermore, in the matrix Ej × Sj

–1, the num-
ber of columns (documents) is decreased from d to j.

Then, the number of documents in the term-document matrix F will be reduced by
using matrix Ej × Sj

–1. For this reduction, the number of rows (documents) in matrix F
is reduced from d to j by multiplying (Ej × Sj

–1)t with the d × t matrix F as follows:

 jjj FFES =××−1
. (11)

Matrix Fj, which has j documents, is reduced from matrix F, which has d documents,
on the basis of the similarity of user ratings.

3.2 Reducing the Number of Terms and Predicting User Ratings

Next, we apply the method of SVD-CBF to matrix Fj in order to reduce the number of
terms.

We can represent the following equation of SVD after replacing matrix F by matrix Fj
in the same way as that in SVD-CBF for the term-document matrix (see equation (1)).

t

j TRDF ''' ××= . (12)

We multiply matrix T’ and R’-1 on the both sides of equation (12), starting from the
right:

 ''' 1 DRTFj =×× −
. (13)

The rank of matrix Fj can be described as rank(Fj) = w. The matrix T' × R'–1 is a pro-
jection that can reduce the number of columns (terms) from t to w because the number
of columns in matrix Fj is t and the number of columns in matrix D' is w. Further-
more, declaring matrix Dm (Tm and Rm), which is built by extracting the m column
vectors of matrix D' (T' and R'), can reduce the number of columns from t to m.

Then, we would reduce the number of terms in the original term-document matrix
F by using the matrix Tm × Rm

–1. Firstly, multiplying the d × t matrix F with Tm ×
Rm

–1 on the left reduces the number of columns (terms) from t to m.

 A Hybrid Recommendation Method with Double SVD Reduction 371

Table 1. Histogram of Ratings

Ratings 1 2 3 4 5
of Documents 6815 2308 1774 1461 1250

Table 2. MAE and Number of Terms

SVD-CBF

Soboroff’s
Hybrid Method

Proposed Method

MAE 0.818 0.869 0.813
of Dimensions 45 22 15

 mmm FRTF =×× −1
. (14)

Matrix Fm is a d × m matrix.
Matrix Fm, which has m documents, is reduced from matrix F, which has d docu-

ments, on the basis of the similarity of term frequencies (and the similarity of user
ratings).

The profile matrix is also reduced by multiplying it with the matrix Tm × Rm
–1.

1−××= mmm RTPP . (15)

Finally, we can calculate the matrix Gproposed, which represents the predicted ratings by
using the reduced profile matrix Pm and matrix Fm.

 mmproposed FPG ×= . (16)

4 Experimental Evaluation

To evaluate the ability of reduction and the accuracy of the proposed method, we
compare the proposed method with SVD-CBF and Soboroff’s hybrid method.

4.1 Experimental Data

In the experiment, we use a data set of a technical document recommendation service.
This data set has the term frequency data of each document and the user ratings data.
In this data set, there are 86 users. These users have provided 13,608 ratings for 3,560
documents. Further, there are 9,924 terms in this data set. User ratings are recorded as
integer numbers in the range of 1 to 5. Table 1 is a histogram of the ratings.

4.2 Results

To compare each method and to decide the value for each parameter, a 10-fold cross-
validation is carried out. The accuracy of prediction is measured in terms of MAE

372 Y. Ariyoshi and J. Kamahara

(mean absolute error). We perform the 10-fold cross-validation while changing the
number of dimensions after reduction, and determine the number of dimensions that
gives the best value of MAE.

Table 2 shows the MAE and the number of dimensions after reduction by each
method. Figure 1 shows each user’s MAE. In the figure, users are sorted according to
the value of the MAE. The MAE of the proposed method and that of SVD-CBF are
almost the same. The performance of Soboroff’s hybrid method is slightly worse in
the case of this data set. Further, the number of dimensions in the case of SVD-CBF is
45, that in the case of Soboroff’s hybrid method is 22, and that in the case of the pro-
posed method is 15. That is, the number of dimensions in the proposed method is one-
third the number in SVD-CBF with almost the same prediction accuracy. The number
of dimensions in Soboroff’s hybrid method falls in between these two values.

Fig. 1. MAE of Each User

5 Conclusions

In this paper, we proposed a hybrid information recommendation method by using
SVD to reduce the data size for calculations. This method combined two reduction
steps. First, the method reduced the number of documents used on the basis of the
users' rating pattern by applying SVD based on CF. Second, it reduced the number of
terms used on the basis of the term frequency pattern of these reduced documents by
applying SVD based on CBF.

 A Hybrid Recommendation Method with Double SVD Reduction 373

The evaluation experiment was performed with a data set of a technical document
recommendation service. The experimental results showed that the proposed method
had almost the same MAE as that of the SVD-CBF. Originally, our data set had 9924
terms. The SVD-CBF reduced the number of terms to 45. The proposed method re-
duced the number of terms to 15 while preserving almost the same MAE. This im-
plied that the proposed method is effective for calculating recommendations about
memory size.

For example, there are two documents whose evaluation patterns were same, but
term frequency patterns were different. Information of term frequency to distinguish
these two documents is left in SVD-CBF. However, it does not have to distinguish
these two documents in order to predict evaluations. Therefore, two these documents
would reduced into one document in Uj. Thus, the proposed method can reduce the
number of documents than SVD-CBF more.

The test set, which was used in the experimental evaluation, was small. Therefore,
we would like to perform experiments with a larger test set. The proposed method
uses SVD which is basic dimensions reduction technique. We also plan to compare
the proposed method with other dimension reduction technique (pLSI[8], etc.).

Acknowledgements

We would like to express our sincere gratitude to the entire research team and Prof.
Shinji Shimojo, Associate Professor Yuichi Teranishi of Osaka University, in particu-
lar. In addition, the basic idea of the proposed method was conceived at the NEC
Internet system laboratories. We would also like to thank everyone at the laboratories
who contributed to the discussion of this research.

References

1. Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating Collaborative Filtering Re-
commender Systems. ACM Trans. on Information Systems 22(1), 5–53 (2004)

2. Kamishima, T.: Algorithms for Recommender Systems. Journal of JSAI 22(6), 826–837
(2007)

3. Foltz, P.W., Dumais, S.T.: Personalized Information Delivery: An Analysis on Information
Filtering Methods. Comm. of the ACM 35(12), 51–60 (1992)

4. Sarwar, B.M., et al.: Application of Dimensionality Reduction in Recommender System—A
Case Study. In: Proc. KDD Workshop on Web Mining for e-Commerce: Challenges and
Opportunities (WebKDD). ACM Press, New York (2000)

5. Berry, M.W., Drmac, Z., Jessup, E.R.: Matrices, vector spaces, and information retrieval.
SIAM Review 41(6), 391–407 (1999)

6. Burke, R.: Hybrid recommender systems; Survey and experiments. User-modeling and
user-adapted interactions 12(4), 331–370 (2002)

7. Soboroff, I.M., Nicholas, C.K.: Related, but not Relevant: Content-Based Collaborative Fil-
tering in TREC-8. Information Retrieval 5(2-3), 189–208 (2002)

8. Hofmann, T.: Probabilistic latent semantic indexing. In: Proc. of SIGIR 1999, pp. 50–57
(1999)

Monitoring Geo-social Activities through
Micro- logging Sites

Tatsuya Fujisaka, Ryong Lee, and Kazutoshi Sumiya

School of Human Science and Environment, University of Hyogo
1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan

nc06h211@stshse.u-hyogo.ac.jp,
{leeryong, sumiya}@shse.u-hyogo.ac.jp

Abstract. Micro-blogging sites are not only a place for sharing instant update
sharing, but also an unexplored land where we can monitor and analyze our
society from a great deal of everyone’s buzz. Interestingly, recent smartphones
are enabling us to easily write some micro-blogs outdoors and publish them
with additional tags about automatically identified location and time. In the
respect of the great number of participating users and their global distribution,
we can regard such micro-blogging sites as an unprecedented sensor network in
which each person is a kind of sensor to aware the real world events and
reporting their observations and opinions voluntarily. In this paper, we first
introduce our efforts to develop a geo-social activity monitoring system based
on the micro-blogging sites by aggregating and analyzing such a novel dataset.
We also present our preliminary work to find meaning geo-social activities with
their influence regions through extracting characteristic moving patterns of
mobile micro-bloggers.

Keywords: Micro-blog, Human Sensor Network, Geographic Social Activity.

1 Introduction

Micro-blogs represented by Twitter [19] are recently attracting a great deal of
attentions all over the world. From a report by Sysomos Inc. in June 2009 [5], Twitter
has experienced an explosive growth over the past two years; it has over 11.5 million
users and reached the position as the number one micro-blogging tool. The reason the
site has been used popularly can be summarized in two respects. At first, micro-
bloggers are able to send their most up-to-dates instantly to acquaintances or simply
to the public. Especially, one of the most significant characteristics is on the limited
size of writable texts. However, the restriction does not seem so critical problem,
since our update reporting would be enough represented even in such short length.
Second, on behalf of the wide availability of smartphones where we can easily write
and browse micro-blogs anytime and anyplace, it becomes much and much easier to
input a short length of texts for sending to other people or remaining some notes about
favorable events.

Furthermore, some micro-blogging applications available in smartphones such as
iPhone can attach a geographic location with the equipped positioning sensor by

b

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 374–384, 2010.
© Springer-Verlag Berlin Heidelberg 2010

stations or GPS. This functionality is also greatly expanding the usages of the micro-
blogging sites in an innovative way we have not experienced yet. The most crucial
difference is that such micro-blogs written with mobile devices capable of geo-
tagging about current place on the earth are exploding over the micro-blogging sites.
If we consider the diversity of the micro-bloggers who are participating at globally
different places and writing messages often about social events occurring at nearby
places where they are now, the geo-tagged micro-blogs are very useful and rapid
social media to monitor and analyze geographically social activities.

One interesting fact we should focus on is that human beings are voluntarily writing
their experiences, thoughts, opinions, feelings, etc. Sometimes, people are even
uploading photos or videos to the micro-blogging sites [18]. In this paper, we model
such human beings as sensors which are usually used to monitor some kinds of
environmental statues such as wild fire [1,14,17]. Surely, humankinds have developed
various kinds of sensing abilities such as ‘see’, ‘hear’, ‘taste’, etc. to protect
themselves from a lot of dangers in the nature. We can further arrange such sensing
experiences together and intellectually make a decision about what we will do next,
etc. Of course, micro-bloggers are a group of such evolved humankinds, while lots of
their messages look like useless babblings [8] or can include little information to the
public. In the respect of generic wireless sensor network model, each person makes a
short length of report and sends it to some specific people or simply broadcast to the
public, whenever he or she wants to share some experiences or for other personal
memories. Completely uncontrolled, each person can move to any place or take a
photograph to share. Furthermore, the total number of human sensors through the
micro-blogging sites is rapidly explosively growing all over the world. We cannot
simply regard such buzzing as a noise, since, in some important social events, the
sites showed its usefulness and effectiveness such as Iran’s demonstration [16] and
India’s terror [12] cases.

Writing instant
thought, feeling
and experience

Acquisition and
mapping in a map

Mining global and
local patterns

(micro-blogger)

Writing instant
thought, feeling
and experience

Acquisition and
mapping in a map

Mining global and
local patterns

(micro-blogger)

Fig. 1. Human Sensor Network based on Mass Micro-blog Data

cell-

 Monitoring Geo-social Activities through Micro-blogging Sites 375

Based on the concept of human sensor network over the micro-blogging sites, we
will build a framework to aggregate such uncontrollable and unexpectedly occurring
micro-blogs and develop a geographic social activity analysis system. In this paper,
we especially endeavor to estimate influence regions of social events based on micro-
blogging sites. In particular, we focus on the movement patterns of mass micro-
bloggers who make instant updates with geo-tagged and time-stamped data.

In order to achieve our goal, we have developed a micro-blogging monitoring
system to obtain mass geo-tagged and time-stamped micro-blog data at first. Then, we
performed a clustering to examine the spatial distribution of the data. Finally, we find
out clusters which heavily were occurring users’ movement and perform estimation of
influence region.

The remainder of this paper is constructed as follows. Section 2 describes our initial
motivation and reviews related work. Section 3 explains our system for gathering
mass micro-blog data. Section 4 presents full details of methods to estimate influence
region of spatio-temporal regional events. Section 5 illustrates the experiment
conducted with a real dataset collected from the Twitter. Section 6 will discuss some
research issues derived from our experiences. Section 7 concludes this paper with
future work.

2 Human Sensor Network over Micro-blogging Sites

2.1 Human Beings as Sensors

With the great advance of mobile web accessing infrastructures, people can easily
use web access anytime and anywhere, and share a variety of information about the
real world in real-time. Particularly, micro-blogging sites such as Twitter, Plurk, Jaiku,
Pownce, etc. are surprisingly accelerating the speed of personal up-to-date sharing
and distribution expanding their geographic coverage over all around the world
instantly. Nonetheless, some people considered that micro-blogs have too much
personal information and nonsense messages are often found. In fact, Grove [8]
negatively reported that the public’s pointless 40.5% babbles over the Twitter.
However, we can regard them in a completely different view as a human sensor
network. Conventionally, a sensor network [1,14,17] is referring to a monitoring
framework with a lot of elementary sensing nodes embedded in an environment,
where each node can periodically sense surrounding situations such as sudden
uprising temperatures to detect a wildfire in a forest and report periodically to an
administrative monitoring center through usually wireless communication technology.

Likewise, if we regard Micro-Blogging Services as a Sensor Network with the
thought of Humans as Sensors, we are able to see them as a huge-scale human sensor
network spreading all over the world. In the first place, each micro-blog user can be
seen as a unique sensor node. However, compared to the simple electronic sensor
nodes usually used in conventional sensor network, we human being are sure to have
much intelligent and sophisticated sensing capabilities. In general, we human being
can see, listen, feel, taste, smell, etc. In addition, our ability to recognize surrounding
natural or social environments is generally superior to the other devices. Of course,
there can be differences among the Human Sensor Nodes in their own abilities,

376 T. Fujisaka, R. Lee, and K. Sumiya

features, and even views to the world. With this novel view, the Twitter’s function
would take on a major significance to obtain sensing reports from all over the world.
Furthermore, there are really lots of human nodes whose quantity has been
explosively increasing; some nodes are reporting their daily life experiences, more
surprisingly, with no payment for their efforts with less privacy concerns. Thus, in
order to sense a globe for various purposes, we consider that it is very important to
establish such kinds of huge systems easily based on these open-minded human
sensors. In this paper, we especially make an effort to analyze the regional events
based on the noble concept as this human sensor.

2.2 Related Work

Micro-blogging is still in the state of evolution, simultaneously becoming many
academic and practical issues. Java et al. [7], Zhao et al. [22] and Krishnamurthy et al.
[10] examined the use of Twitter in relation to its impact on lifestyles and topical
discussions. Iwaki et al. [6] considered the discovery of useful topics from micro-
blogs. Both studies paid attention to the contents of messages and the link structure of
follows among users. These researches mainly analyzed the trends in remarks and the
discovery of tastes based on the context of the messages and link structures. Our study
differently focuses on the location and time when users actually write micro-blogs, in
order to detect unusually crowded places from movement patterns.

For a research analyzing the social movements of people, Wang et al. [21] analyzed
a dataset which were extracted from GPS-equipped taxis and found places which
were passengers were often picked up passengers or dropped -off them to analyze the
movement of human flows. In their research, they needed a large budget and the
support of taxi companies to collect datasets. However, we developed a system that is
easily able to extract datasets for any region everywhere. As a result, we can analyze
movement histories in various regions with almost zero cost.

Moriya et al. [11] developed a system that estimates situation of a region from
textual messages, in relation to geographic information provided by blogs, and
displayed the results on a digital map. This research is similar to our work in terms of
social analysis being the point used to consider tendencies, but in our research we try
to analyze movement patterns.

As a research analyzing the social movements of people, Otsuka et al. [13] and
Mohan et al. [15] discovered a relationship between the real world and network and
analyzed how behavior on the web reflects in real world. Our study detects unusually
crowded places based on micro-blogs where people’s movements are directly
reflected in the data.

3 Acquiring Mass Higher-Resolution Buzzes

In this section, we will explain a method for gathering mass human sensing data
from micro-blog sites. For the purpose, we developed a system that can obtain sensing
data for a region designated for analysis. Fig.2 presents the outline of system. This
system can receive various requests from analysts who want to obtain data on a large
region, such as at a nation-wide level, or for a narrow region such as for a city.

 Monitoring Geo-social Activities through Micro-blogging Sites 377

Among many micro-blogging sites, we utilized the most popular site, Twitter to
acquire our experimental data.

Users first need to specify the region for examination. The system then locates the
geographic region, accesses the micro-blog site and obtains data through the Twitter’s
API [20]. We explain our preliminary experiments to reveal where most twitter users
are publishing their messages in Japan. Given the limitations of Twitter’s Open API, a
naïve approach to examining such spatial distribution of human activities through
Twitter would be to split the entire region of interest into grid with a lot of small
cells(in Twitter, the minimum size should be 1-km.), and to place a virtual radar
station in every cell. For a circular area with a 100 km radius, we would need 2100
cells to cover the area.

Instead of such a naïve approach, we applied quad-tree based space splitting, where
a space is recursively split into four rectangular sub areas of the same size, until each
area is larger than the minimum radius permitted in the query specification and the
number of results will be under 1,500 (This is the maximally acquirable answers in
Twitter.). For practical processing and a simple discussion, we assume the basic shape
in this study is a rectangular region.

However, each rectangle should be examined with a circular query. Thus, we made a
circum-circle for every cell to cover the rectangular bound as show in Fig.2 (a).This
method can help us to utilize general planar-based space indexing algorithms when
asking for on-line APIs which usually only support a circular query. The resulting
number of required queries to aggregate the whole twitter-blogs occurred in the
specified region can be greatly improved, since usual occurrence pattern is not
uniform, instead, resulting in a high density in urban areas and a low density in other
places.

(a) Quadtree-based
Radar Deployment

(b) Adaptive Radar Deployment
in a strict of New York

(c) Generated Quadtree corresponding to (b)

(a) Quadtree-based
Radar Deployment

(b) Adaptive Radar Deployment
in a strict of New York

(c) Generated Quadtree corresponding to (b)

(b) Adaptive Radar Deployment
in an area of New York

(a) Quadtree-based
Radar Deployment

(b) Adaptive Radar Deployment
in a strict of New York

(c) Generated Quadtree corresponding to (b)

(a) Quadtree-based
Radar Deployment

(b) Adaptive Radar Deployment
in a strict of New York

(c) Generated Quadtree corresponding to (b)

(b) Adaptive Radar Deployment
in an area of New York

(b) Adaptive Radar Deployment
in an area of New York

Fig. 2. Outline of Micro-blog Monitoring System

378 T. Fujisaka, R. Lee, and K. Sumiya

As shown in Fig.2 (a), 8*8 cells can be managed only by 4 monitoring queries
which have adaptively computed radius and well-positioned centers. For example, we
investigated in an area of New York by adaptively deploying on queries, and
eventually 4 queries were formed to completely cover the whole target region. Of
course, the constructed quadtree depicted in Fig.2 (c), can be periodically re-
generated to follow the most up-to-date status. Consequently, in the timely drawn
trees in Fig.2 (c), a root node and 4 leaf nodes were made: each of them have a node
id, links to children, deployed location, a coverage by a radius, and actually acquired
tweets (message acquired from twitters). As another example, we illustrate an
experimental result of collecting tweets in Asia as shown in Fig.3.

Fig. 3. Geographic Distribution of Tweets in Asia (July, 2009)

4 Analyzing Influence Regions of Social Events

In this section, we explain a method to estimate influence regions of social events
based on movement pattern models [2, 3, 4]. At first, we have to find out unusually
crowed places where regional events may happen. In order to detect such places from
the mass micro-blog data, we need to decide selection of observed regions before
movement analysis based on movement pattern models. For this, we conducted
distribution of regions which depend on quantity of the data and we detect the change
of each cluster in a periodic time based on the constructed clusters. In this paper, we
preliminarily adopt the K-means [9] algorithm as a simple approach based on location.
By using the method, we regard each cluster as crowded regions.

 Monitoring Geo-social Activities through Micro-blogging Sites 379

Users’ data

Regional event place

Removal data

Filtering

Influence
region

Users’ movement
history

Users’ data

Regional event place

Removal data

Filtering

Influence
region

Users’ movement
history

Fig. 4. Outline of method to estimate influence region

At second, we estimate influence region of social events using users’ movement
histories as shown in Fig.4. As previously noted, we firstly find out unusual places
using “Crowd Activity” as follow. In other word, we discover the places where the
movement of people is intense.

clusterthiinusersfoundofnumberthe:users#

clusterthiofradiusthe:radius

(1)
rsuse#kmradius

userdistancemoving

Activity

i

i

ii

user#

j
j

i

i

At first, in this formula, we calculate movement distance of users which belong to in
a cluster. After we add up users' movement distance, we calculate the average of
clusters by considering the size of the cluster. Therefore, we can discover unusual
places which were occurring movement patterns such as aggregation and dispersion
using a measure of “Crowd Activity”. Next, we analyze users’ movement histories of
the crowd region which calculated high Crowd Activity score. In other words, we
analyze only movement histories of users who are in the crowd region by finding out
an unusual place with Crowd Activity beforehand. Next, we analyze whether the
movement of the users is related to a regional event and filter it as show in the right
lower side of Fig.4 if a user don’t relate. Finally, we decide to estimate effective
region based on movement distance from a crowd region to the place which were
occurring a regional event. In order to estimate influence region closely, we have to
consider a probability that the movement happens from a crowd region to an unusual
place. For instance, a lot of people in a region may move the unusual place; on the
one hand, a few of people in a region may go the place. However, we mainly want to
know which regional people were entering / leaving into the place. Therefore, we
estimate influence region based on moving distance without considering how much
probability movements in crowd regions would be.

380 T. Fujisaka, R. Lee, and K. Sumiya

5 Experiment

At first we obtained the micro-blog data in Japan using our monitoring system and
geo-tagged data only extracted. The number of data was 128,901 and the number of
user was 4,382. Next, we performed the detection of unusually places based on
“Crowd Activity”. Table1 presents 10 clusters which have high Crowd Activity
scores.

Table 1. The top 10 results of high Crowd Activity score

From the result, we performed analysis of a cluster (id=40) which located around
Odaiba where many events seemed to be performed particularly. In fact, there are a
famous tourist spot where the Fuji broadcasting center, amusement parks, and a
number of shopping malls. In fig.5 (a), the circle is the cluster which was formed in
the periphery of Odaiba. Yellow icons represent micro-blog data in the cluster and
there were 2,411 data. Next, we examined the user number of people in the cluster
and the number of users who really left movement histories.

Odaiba clusterOdaiba cluster

(a) The periphery of Odaiba

(b) Kantou area (c) Japan area

Fig. 5. Movement histories analysis (Aug. 5-11th, 2009)

 Monitoring Geo-social Activities through Micro-blogging Sites 381

As the result, they were obtained from 19 moving users among 59 found users. In the
figure, we depicted movement histories by using red icons and red lines on the map as
shown in Fig.5.

We can easily understand that there were many people coming to Odaiba from the
Kanto area. Also, users came to there from not only kantou area but also far-off places
such as Niigata, Fukuoka or Kagoshima. The result shows that a lot of people from
various parts of the country congregated in this region during this period. In fact,
various events took placed in Odaiba in this time.

Fig. 6. Miro-bloging messages with photo or video

In addition, it attracted attention, since huge Gundam was built there this summer.
Gungam is a very popular high animated cartoon among some Japanese people, and a
lot of goods is sold. In fact, size of life of the Gundam was exhibited in Odaiba during
this summer and we discovered that people in the considerably remote region visited
this spot to see the Gundam. In other words, we revealed that this was a nationwide
event to affect wide regional people. In fact, we analyzed messages in the cluster and
can extract “gundam” word. In Fig.6, we present some real messages with photos or
videos related to the topic word among the found messages. Therefore, we consider
that by analyzing micro-blog textual messages, we can not only discover explicit
social events or the real interesting patterns, but also know crowd’s thoughts and
emotions.

6 Discussion

In our pioneering work, we utilized mass micro-blogs for demographic survey. This
unprecedented approach, actually, requires a lot of practical implementation and
research from collecting the huge-scale data to analyzing useful social patterns. This
on-going work is now focused on the following issues:

-Real-time Buzz Monitoring: In order to fully access the flowing data stream of
upcoming twitter’s data around the word, our quadtree-based acquisition framework

382 T. Fujisaka, R. Lee, and K. Sumiya

needs to work much dynamically for tracing most up-to-dates with a well-scheduled
monitoring plan.

-Geo-Social Pattern Analysis: While our initial efforts to find characteristic
moving patterns was able to extract a little predicted pattern, there are much great
possibilities to extract unexpected and useful social patterns. For this, we primarily
observed much objective clue, that is, moving histories of crowd.

7 Conclusion

In this paper, we first presented a noble concept to model human beings as a
unique intelligent sensor for the purpose of dealing with micro-blogging sites as a
valuable resource of geo-social patterns analysis. In this fundamental model, we can
easily imagine the numerous numbers of applications utilizing such seemingly noisy
babbles, but actually invaluable reports through everyone’s voice and life style. The
bound of availability would be unlimited. We believe that we can find much useful
social patterns from the micro-blogging sites in the respects of the huge quantity and
their global distribution. In this paper, we showed a nation-wide pattern occurred in
Japan with the simple clustering and movement tracing. In the future work, we will
examine much deeper and unknown social patterns targeting for other countries or
continents, eventually realizing a real-time global geo-social event monitoring system.

Acknowledgment

This research was supported in part by a Grant-in-Aid for Scientific Research (B)(2)
20300039 from the Ministry of Education, Culture, Sports, Science, and Technology
of Japan.

References

 Monitoring Geo-social Activities through Micro-blogging Sites 383

1. Kansal, A., Nath, S., Liu, J., Zhao, F.: SenseWeb: An Infrastructure for Shared Sensing.
IEEE MultiMedia 14, 4 (2007)

2. Fujisaka, T., Lee, R., Sumiya, K.: Exploring Urban Characteristics Using the Movement
History of Mass Mobile Microbloggers. In: The Eleventh Workshop on Mobile
Computing Systems and Applications (HotMobile 2010) (February 2010) (to appear)

3. Fujisaka, T., Lee, R., Sumiya, K.: Discovery of User Behavior Patterns from Geo-tagged
Micro-blogs. In: 4th International Conference on Ubiquitous Information Management
and Communication (ICUIMC 2010) (January 2010) (to appear)

4. Fujisaka, T., Lee, R., Sumiya, K.: Detection of Unusually Crowded Places through
Micro-Blogging Sites. In: The 6th International Symposium on Web and Mobile
Information Services (WAMIS 2010) (April 2010) (to appear)

5. Inside Twitter: An In-depth Look Inside the Twitter World. Sysomos (June 10, 2009)
(Retrieved on 2009-06-23)

384 T. Fujisaka, R. Lee, and K. Sumiya

6. Iwaki, Y., Jatowt, A., Tanaka, K.: Supporting finding read-valuable articles in micro-
blogs. DEIM Forum 2009 A6-6 (2009)

7. Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblogging
usage and communities. In: Proceedings of the 9th WebKDD and 1st SNAKDD 2007
workshop on Web mining and social network analysis, San Jose, California, pp. 56 65
(2007)

8. Grove, J.V.: Twitter Analysis: 40% of Tweets Are Pointless Babble (from a survey by
Pear Analytics)

9. K-means algorithm,
http://docs.scipy.org/doc/scipy/reference/cluster.vq.html

10. Krishnamurthy, B., Gill, P., Arlitt, M.: A few chirps about twitter. In: WOSP 2008:
Proceedings of the first workshop on Online social networks, Seattle, WA, USA, pp. 19–
24 (2008)

11. Moriya, K., Sasaki, S., Kiyoki, Y.: A Dynamic Creation Method of Environmental
Situation Maps Using Text Data of Regional Information. DEIM Forum 2009 B1-6
(2009)

12. Mumbai terror,
http://japan.cnet.com/news/media/story/
0,2000056023,20384390,00htm

13. Otsuka, S., Takaku, M., Kitsuregawa, M., Miyazaki, N.: A Study for Analysis of User
Behavior in The Free Magazine Site for Women. DEIM Forum 2009 B8-4 (2009)

14. Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Commun. ACM 43(5),
51–58 (2000)

15. Mohan, P., Padmanabhan, V.N., Ramjee, R.: Nericell: rich monitoring of road and traffic
conditions using mobile smartphones. In: Proceedings of the 6th ACM conference on
Embedded network sensor systems, Raleigh, NC, USA, pp. 323–336 (2008)

16. Protests in Iran reported through Twitter,
http://zen.seesaa.net/article/121677479.html,
http://shinyai.cocolognifty.com/shinyai/2009/06/
twitterfriendfe.html

17. Haenselmann, T.: An FDL’ed Textbook on Sensor Networks,
http://pi4.informatik.uni-mannheim.de/~haensel/sn_book/

18. Twitpic, http://twitpic.com/
19. Twitter, http://twitter.com/
20. Twitter Open API, http://apiwiki.twitter.com/

Twitter-Search-API- Method%3A-search
21. Wang, H., Zou, H., Yue, Y., Li, Q.: Visualizing hot spot analysis result based on mashup.

In: Proceedings of the 2009 International Workshop on Location Based Social Networks
(2009)

22. Zhao, D., Rosson, M.B.: How and why people Twitter: the role that micro-blogging
plays in informal communication at work. In: Proceedings of the ACM 2009
international conference on Supporting group work, Sanibel Island, Florida, USA, pp.
243–252 (2009)

–

Katsumi Tanaka, Yutaka Kidawara, and Ki-Joune Li

Kyoto University, Japan

National Institute of Information and Communications Technology, Japan

Pusan National University, Korea

Ubiquitous computing technologies provide a pervasive base for a real world
environment such that we can acquire and deliver information at every place.
Advances in the technologies of displays, electronic papers, digital architecture,
sensors, RFID tags and storage devices etc. may bring a new real world environ-
ment for data access. The Second International Workshop on Ubiquitous Data
Management (UDM2010) held in Tsukuba, Japan on 4 April 2010, in conjunc-
tion with the DASFAA 2010 conference. The UDM2010 aims to focus more on
new emerging issues of data management (acquisition, storage, retrieval, and
delivery) involved with respect to pervasive, ubiquitous and sensor computing.

The UDM2010 was prepared and helped by a lot of people. First, we would
like to thank the program committee members for evaluating the assigned pa-
pers in a timely and professional manner. Especially, we would like to express
our sincere appreciation to the great work by the following persons: Program
Co-Chairs: Dr.Koji Zettsu (NICT: National Institute of Information and Com-
munications Technology, Japan), Dr.Hannu Jaakkola (Tampere University of
Technology, Finland), Publicity Chair: Dr. Mitsuru Minakuchi (Kyoto Sangyo
University, Japan), Publication Co-chairs: Dr.Kyoungsook Kim (NICT, Japan),
Dr.Sungwoo Tak (Pusan University, Korea), and Local Arrangement Co-Chair:
Dr. Takafumi Nakanishi (NICT, Japan), Dr.Hisashi Miyamori (Kyoto Sangyo
University, Japan), Mr. Yuhei Akahoshi(NICT, Japan). The success of the con-
ference is due to the hard work of these committee chairs and other volunteers.

We also thank Ms. Junko Masuda for their hard and diligent work for the
workshop secretariat.

Finally, we thank you for your contributions to UDM2010: for attending
sessions, presenting papers, being session chairs, and performing all the other
functions that are needed.

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, p. 385, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Distributed SLCA-Based XML Keyword Search

by Map-Reduce

Chenjing Zhang1,2, Qiang Ma2, Xiaoling Wang3, and Aoying Zhou2,3

1 College of Information Technology, Shanghai Ocean University, China

cjzhang@shou.edu.cn
2 School of Computer Science and Technology, Fudan University, China

{cjzhang,maqiang}@fudan.edu.cn
3 Shanghai Key Laboratory of Trustworthy Computing,

Software Engineering Institute, East China Normal University

{xlwang,ayzhou}@sei.ecnu.edu.cn

Abstract. Large scales of XML information comes continually from new

Web applications, and SLCA (Smallest Lowest Common Ancestor)-based

XML keyword search is one of the most important information retrieval

approaches. Previous approaches focus on building index for XML doc-

uments. However in information dissemination scenario, it is impossible

to build index in advance for continuous XML document streams. This

paper addresses SLCA-based keyword search for continuous XML docu-

ments by Map-Reduce mechanism. We use parallel algorithms to process

plenty of XML documents in Hadoop environment. A distributed SLCA

computation method is designed, where each net node computes SLCA

independently and just a little information needs be transmitted. A real

Hadoop environment is built and we demonstrate the efficiency of our

algorithms analytically and experimentally.

Keywords: SLCA, keyword search, XML, distributed system.

1 Introduction

XML is widely-used format for exchanging and storing information. Plenty of
XML data are produced continually and what users are interested in are some
parts of one XML document in many applications, for example publish/subscribe
system. It’s widely used in news, stock tickers, sports tickers, entertainment
delivery and so on. Many attentions focus on meaningful information filtering
and extracting. [6,4] filter XML data based on XPath queries. All of them
demand users to write XML path queries. However, many users aren’t familiar
with XML data schema and XPath query language. Most users tend to use
keywords to describe requirements.

SLCA-based keyword search is an important approach to extract information
in XML documents. A lot of work focus on the efficiency of XML keyword search
algorithms, such as [10,12,11]. They all store XML tree nodes in DB and index
them. They can’t process continuous XML data streams, because it is impossible
to build index in advance for data produced continually.

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 386–397, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Distributed SLCA-Based XML Keyword Search by Map-Reduce 387

Distributed system is a better choice for processing large scales of data. XML
data placement in distributed environment attracts many attentions, such as
[3,9,14]. Most of them give XML data placement strategy aiming at path queries.

Parse and Process QueriesXML data
streams

Subscribe
Keyword Queries

SLCAs Subscribe
Keyword Queries

... SLCAs
Users
Publisher

User User

Fig. 1. Keyword Search in XML Dissemination. Users commit keywords to subscribe

what they want. Publisher parses continuous XML data and returns SLCAs matching

the keywords.

Root

p1

z2

c1 c2

a1 b1 z1 a2 b2

pt-1

cj

a1000 b1000 z1000
01 ,false

10 ,false
00 ,false

01 ,false
10 ,false

00 ,false 00 ,false

01 ,false 10 ,false

11 ,true11 ,true 11 ,true

11 ,true 11 ,true
bitvector,flag

Fig. 2. An XML Tree. The label of arrows are transmitted information, bitvector and

flag. Bitvector =“01” means the first keyword appears. Flag =“false” means there

aren’t SLCAs in the current subtree.

This paper presents an approach to filter XML data using distributed SLCA-
based keyword search. It not only finds documents which contain users’ keywords,
but also locates meaningful contents. The application scenario is abstracted in
Fig. 1. Main contributions of our work are described briefly as follows:

– The paper introduces SLCA-based keyword search into XML filtering
application.

– The paper computes SLCAs in distributed environment. A series of algo-
rithms for distributed SLCA computation are also given.

– We experimentally demonstrate the performance of our solution for dis-
tributed SLCA computation.

The rest of paper is organized as follows. Section 2 gives problem definition of our
approach. Then is the system implementation in Section 3. The detail algorithms
are shown in subsection 3.2, which include partition strategy, SLCA computation

388 C. Zhang et al.

Root

p1

z2

c1 c2

a1 b1 z1 a2 b2

pt-1

cj

a1000 b1000 z1000
01 ,false

10 ,false
00 ,false

01 ,false 10 ,false
00 ,false 00 ,false

01 ,false 10 ,false

11 ,true11 ,true 11 ,true

(1,1.2- 11 -true-1<root>1.2)

Root

(1,1.t- 11 -true-1<root>1.t)
(docid,nodeid-bitvector-flag-prefix)

Map Map

Reduce

Fig. 3. Separated XML Tree. Data in one dotted box means one processing unit of

Map or Reduce task. “(docid,nodeid-bitvector-flag-prefix)” is the information from Map
task to Reduce task. “(1,1.2-11-true-1<root>1.2)” is an instance of it.

on local data and combination algorithm. Following are experiments in Section 4,
which show features and performance of our algorithms. Section 5 is related work.
Conclusions and future work are given in Section 6.

2 Problem Definition

SLCAs for given keywords are nodes in an XML tree which satisfy two conditions:
(1) all keywords appear in subtree rooted by the nodes, and (2) no descendant
of the nodes satisfies condition (1). Previous approaches build centralized index
for XML data and ids for different keywords need be joined to compute SLCAs.
Intermediate results including improper SLCAs will be involved. However, build-
ing centralized index for large scales of XML data is time consuming and it’s
impossible to build centralized index for continuous XML data. Therefore, XML
filtering method without index is needed in information dissemination.

Our goal is to compute SLCAs in distributed environment. All documents
in dataset are distributed to different net nodes. SLCA computation algorithm
runs on each net node to obtain SLCAs of local data. The information from each
net node is combined finally to compute rest SLCAs.

The best case is that one document can be placed wholly on one net node.
We run SLCA computation algorithm on each net node. Thus the results are
obtained directly.

However, one document needs be split and be placed on different net nodes
when we take size and parallelism into account. We give the placement strategy
of data to improve parallelism and to keep lower communication cost. The whole
work includes three steps.

– Step1: Documents in dataset are distributed to net nodes. Fig.2 shows an
document tree wholly placed on one net node. If one document needs be
split, we detach child subtrees from the whole document tree, as is shown in
Fig. 3. Upper common ancestor nodes (node root in Fig.3) are duplicated in
each subtrees. Each subtree is treated as an XML record and is distributed
to different net nodes. Fig. 3 gives a partition of the XML tree in Fig. 2.

Distributed SLCA-Based XML Keyword Search by Map-Reduce 389

– Step2: Each Map task processes local data to obtain SLCAs (may be empty).
If a document is split, each part transmits some information (docid, nodeid-
bitvector-flag-prefix) to Reduce task.

– Step3: Finally, non-processed nodes (duplicated ancestors) of separated doc-
uments in Map task will be processed in Reduce task to get the rest of
SLCAs.

3 Distributed SLCA-Based XML Keyword Search

In the section, we give the system architecture and system implementation.

3.1 System Architecture

Fig. 4 shows the architecture to compute SLCAs in distributed environment.
We use Hadoop [2] as the main platform and adopt MapReduce [5] program
paradigm to carry out the distributed system.

Processing logic of Map and Reduce are shown in two functions:
Map: (K1, V 1)→ list(K2, V 2)
Reduce: (K2, list(V 2))→ (K2, V 3)
Map function processes a pair of (K1,V1) to get a list of intermediate key-

value pairs (K2,V2). Reduce function merges intermediate results sharing same
K2 and output result V3.

SLCA-based Keyword Computation
Storage

Hadoop
Partition

Map
Map

Map
Map

Map

Reduce

Reduce

Results

Native XML
Documents Split

Keyword Queries

Commit job
XML

Records

Publisher

Subscriber

Hadoop
Platform

Fig. 4. System Architecture

There are three key steps in the system.
— The XML dataset is pre-split before committed to Hadoop. Each big native

XML document will be split into small XML records in function Split(shown
in Fig. 4) and original document id will be saved in each record. Small native
document is treated as an XML record. Then all XML records, keyword searches
are committed to Hadoop platform. Hadoop divides the XML records to several
processing nodes transparently.

— Map tasks process local XML records and obtain SLCAs. Some information
of each part of split documents need be transmitted to Reduce task.

— Reduce tasks use information from Map tasks to compute rest SLCAs of
split documents.

390 C. Zhang et al.

3.2 Algorithms

According to the description in subsection 3.1, detail algorithms are presented
in the following subsections.

Document Partition. If an XML document is bigger than a certain threshold,
which equals to default max input data size(64M) in Hadoop, the document
needs be split. Splitting XML document in our system is shown in algorithm 1.
If the size of subtree rooted by node n isn’t bigger than the threshold, algorithm 1
translates the content of subTree(n) to a line and add it into recordSet in lines
2-5(prefix is added also.). Otherwise, it detaches each child from node n as an
independent XML segment and recursively call algorithm 1 on them(lines 6-15).
We use Pres label [11] to labeling XML elements.

Algorithm 1. Split()
Input: n is the root node of current XML tree; prefix is the information of

upper nodes; recordSet stores split XML records.

Output: recordSet stores split XML records.

parent id = get last Pres id from prefix ;1

if size of subTree(n) ≤ threshold then2

translate content of subTree(n) to a line;3

recordSet.addALine(prefix + sep char1 + subTree(n)); /* here, “+” is4

string concatenation operation.*/

end5

else6

n content = all contents of node n;7

prefix = prefix + sep char2 + n content;8

List eleList = n.elements();9

for each node c node in eleList do10

childPres id = construct current child’s Pres id from parent id ;11

prefix = prefix + sep char2 + childPres id ;12

Split(c node, prefix, recordSet); /*recursive call*/13

end14

end15

return recordSet ;16

The efficiency of algorithm 1 is O(n), in which n is the number of words in
XML tree. If the efficiency of XML Parsing is O(n), the whole efficiency is O(n).

After splitting raw XML data, XML records set and keyword queries are
committed to Hadoop. The XML records will be distributed to several net nodes
transparently. The detailed algorithm on each net node to process local data is
described in the following subsections.

SLCA computation by Map. In the subsection, how to obtain SLCAs from
current input data are described in algorithm 2.

Distributed SLCA-Based XML Keyword Search by Map-Reduce 391

Algorithm 2. myMap()
Input: key is the position of current XML segment in whole file; value is

content of current segment.

Output: collector store pairs of (docid, current id - bitvector - flag - prefix).

prefix = split value by sep char1 and return the first part;1

split prefix by sep char2 ;2

docid = the first part of prefix ;3

current id = the last part of prefix ;4

root = get root by way of using SAXReader to parse the second part of value;5

(bitvector, flag) = GetSLCA(root);6

collector.add(docid, current id - bitvector - flag - prefix);/*here, “-” is another7

char to separate strings. */

return collector ;8

Algorithm 3. Reduce()
Input: key is docid of current document; values includes the information from

different net machines.

Output: restSLCAs stores the rest of SLCAs of current document.

restSLCAs = ∅;1

levelList = ∅;2

while values.hasNext() do3

curnodeinfo = values.Next();4

level = curnodeinfo.getLevel();5

if level exists in levelList then6

insert curnodeinfo into levelList ascending by nodeid in curnodeinfo;7

end8

else9

insert new sublist to levelList descending by level number;10

add curnodeinfo to the the new sublist ;11

end12

end13

restSLCAs = GetRestSLCA(levelList);14

return restSLCAs;15

The input value is the content of the current XML segment. Lines 1-5 get
document id docid, current XML segment id current id and root node root. Then
line6 calls function GetSLCA() to compute SLCA and gets returns (bitvector,
flag). The current segment will transmit key-value pairs to the next step in line7.
Docid in line7 is the output key. Records sharing same docid will be hashed into
the same Reduce task.

According to semantics of SLCA, whether a node is SLCA or not depends
on whether there exist SLCAs in all its descendants. GetSLCA() traverses XML
tree bottom-up. Each tree node incorporates information from its children into
itself. It uses the information to test whether itself is SLCA node or not. Then
it returns the information to its parent. As is shown in Fig.2. Transmitted infor-
mation is “bitvector,flag” and “‘11 ’,true” is an instance of it. “Bitvector” shows

392 C. Zhang et al.

Algorithm 4. GetRestSLCA()
Input: ArrayList levelList contains sorted information from Map task.

Output: restSLCAs stores the rest of SLCA of current document.

restSLCAs = ∅;1

for each level >1 in levelList do2

levelNum = current level number;3

curList = current nodeinfo list in levelList;4

archor = null;5

d bitvector = 0;6

d flag = false;7

for each nodeinfo in curList do8

if archor is null then9

archor = current nodeinfo;10

d bitvector = archor.getBitvector();11

d falg = archor.getFlag();12

end13

else14

if archor and current nodeinfo(cur nodeinfo for short) has same15

parent then
d bitvector = combine their bitvector by bit OR operator;16

d flag = combine their flag by Boolean OR operator;17

end18

else19

SLCAid = processParent(archor, d bitvector, d flag, levelList);20

if SLCAid != null then21

restSLCAs.add(SLCAid);22

end23

archor = cur nodeinfo;24

d bitvector = archor.getBitvector();25

d flag = archor.getFlag();26

end27

end28

end29

if archor != null then30

SLCAid = processParent(archor, d bitvector, d flag, levelList);31

if SLCAid != null then32

restSLCAs.add(SLCAid);33

end34

end35

end36

return restSLCAs;37

which keywords appear in the current subtree. “Flag” means whether there exist
SLCAs in the current subtree.

Let n be the number of words in an XML tree. Let n1 be the number of words
in all subtrees and n2 the number of words in duplicated ancestors. The sum of
n1 and n2 is n. The efficiency of algorithm 2 is O(n1).

Distributed SLCA-Based XML Keyword Search by Map-Reduce 393

Combining Distributed Information by Reduce. Algorithm 3 sorts infor-
mation from each net node descending by node level number ascending by node
id. Then they are processed to compute rest SLCAs bottom-up in algorithm 4.

In the algorithm 3, information sharing same document id is in values and is
denoted as curnodeinfo. Curnodeinfos are sorted and are inserted into an array
levelList(lines 3-13). Line14 calls algorithm 4 to process information in levelList.
Rest SLCAs in restSLCAs are returned in line15.

Algorithm 4 computes SLCAs on the sorted array levelList. It gives the pri-
ority to lower level nodes. Here, child node has lower level than the parent. In
current level, nodeinfos sharing common parent will be considered as a group.
And archor represents the first one in the group(line10 and line24). All their
bitvectors and flags will be combined together (lines 15-18). Their parent’s in-
formation is constructed and then is inserted into levelList (in line20). If the
parent is SLCA, id of it will be added to restSLCAs(lines 20-23). Lines 24-26
prepare for the next group. All groups in current level are processed in lines 8-29
except the last group. Rest work of the last group, dealing with parent of it,
will be done in lines 30-35. After all the groups in current level are processed,
the upper level will be processed until all nodeinfos are processed. (In all algo-
rithms, prefix “p” of variables means “parent”. Prefix “d” means “descendants”.
For example, “d bicvector” means bitvector of descendants.)

Algorithm 5. ProcessParent()
Input: archor gives node information; d bitvector and d flag give information

of descendants; levelList stores rest nodes information sorted by level

and nodeid.

Output: nodeid equals id of parent node if it is SLCA else null.

nodeid = null;1

get p id,p content and p prefix from archor ;2

if d flag then3

insert (p id - d bitvector - d flag - p prefix) into levelList according to4

certain orders;

end5

else6

(p bitvector, p flag) = keyInNode(p content);7

p bitvector = p bitvector | d bitvector ;8

if p bitvector shows all keywords occur then9

p flag = true;10

end11

insert (p id - p bitvector - p flag - p prefix) into levelList according to12

certain orders;

if p flag and !d flag then13

nodeid = p id ;14

end15

end16

return nodeid ;17

394 C. Zhang et al.

Algorithm 5 is called by algorithm 4 in line20 and line31. It constructs some
information of archor ’s parent in line2. If there exist SLCAs in descendants, the
parent transmit d flag and d bicvector to next step directly(lines 3-5). Otherwise,
lines 7-12 compute p bicvector and p flag and insert information of the parent
into levelList. If the parent is SLCA, id of it will be saved in nodeid(lines 13-15).
Finally, nodeid will be returned in line17.

KeyInNode(p) computes bitvector and flag of a node p. Bitvector and flag of
p are set to be “0” and “false” at the beginning. If one keyword appears in p’s
label, corresponding bit of p’s bitvector will become “1”. If all keywords appear
in it, p’s flag becomes “true”.

Let t be the number of partitioned document parts. n2 has the same meaning
with n2 in subsection 3.2. The efficiency of algorithm 5 and KeyInNode() are
O(1). The efficiency of algorithm 4 is O(n2) because algorithm 4 processes all
words in duplicated nodes(the number equals n2 according to assumption). The
efficiency of algorithm 3 is the sum of efficiencies of insert-sort and algorithm 4.
Then it is O(t2 + n2). So the efficient of whole system is O(n + t2).

4 Experiments

In this section, we evaluate our distributed SLCA computation algorithms. There
are three groups of experiments. The first group is to show the impact of key-
word number and keyword frequency to distributed SLCA computing algo-
rithms, which is traditional experiment for SLCA computation in centralized
environment. The second group is to verify the scalability for query number in
our system, which is important in XML data dissemination. The last group is
about the scalability for data size, which is needed with the increasing of XML
information.

Experiments run in Linux, whose version is ubuntu0.8.4. Version of computing
platform Hadoop is 0.19.3. The size of system(# nodes in system) varies from
1 to 6. All the machines are dual-core desktop with 1GB memory. We test our
approach on real dataset DBLP [1]. Size of datasets in experiments are 135MB,
208MB, 515MB, 823MB and 1.06GB(The biggest size of DBLP dataset is about
623M. We copy some parts of it to get the bigger dataset.). In information dis-
semination scenario, most of data streams are small XML segments. So most
of them needn’t be split and needn’t Reduce. About one thousandth of XML
records will be combined in Reduce function in the second and the third exper-
iments. However, in the first experiment all XML records will be combined in
Reduce step. The queries are denoted as kN-L-H, which is the same as [10]. kN
is the number of keywords in the queries. L and H are frequencies of the low-
est frequency and the highest frequency of keywords separately. In each query,
only one keyword has the frequency L and other keywords have the frequency
H. We randomly generate a group of queries and execute them 3 times. Query
number of each group varies from 10 to 3000. The average time of each query is
recorded.

Distributed SLCA-Based XML Keyword Search by Map-Reduce 395

4.1 Impact of Query Features

The first experiment shows the influence of query features, which include key-
word number and keyword frequency. The size of dataset is 135M in Fig. 5(a)and
208M in Fig. 5(b). Keyword frequency pairs, L-H, have several options. Keyword
number varies from 2 to 4. We record the time from committing job to end of
whole work. It includes time of XML parsing, encoding and query processing.

In Fig. 5(a) and (b), query time increases slightly with the increasing of key-
word number. In Fig. 5(c),(d),(e) and (f), the trend is unobvious. According to
the design of algorithms, the whole XML tree will be scanned once no matter
what the keyword number is. Along with the increasing of keyword number, a
little check work is added. So it slightly affects the whole processing time. (The
processing time of kN =3 is bigger than it of kN =4 — Fig. 5(c) and Fig. 5(d)
occur experimental fluctuation when L-H are 100-1000 and 1000-10000.)

Fixing the keyword number, all sub figures in Fig. 5 show our approach isn’t
sensitive to keyword frequency. If one keyword appears in one XML node, we
just update a bit of bitvector. So keyword frequency won’t impact the algorithms
significantly. We also find performance of 6-nodes has no much improvement than
3-nodes. The reason is that small dataset can’t make full use of system capacity.

(a)135M-1node (b)208M-1node (c)135M-3nodes

(d)208M-3nodes (e)135M-6nodes (f)208M-6nodes

Fig. 5. Impact of Query Features. k is keyword number, which varies from 2 to 4. L-H
is lowest frequency and highest frequency of keywords. Query number of a group is 10.

4.2 Scalability for Query Number

The second experiment shows the scalability for query number. Let query class
be 2-100-10000. System size is 6.

In Fig. 6, the query number varies from 100 to 3000. Whole running time of
a group of queries increases linearly with the increasing of query number when
data size is fixed. Fig. 6 shows average running time of each query. Fixing data
size, the average time of each query descends slightly when the query number
ascends. It shows that parsing XML data takes up much time in whole work
when query number is small. With the increasing of query number, the whole
time depends on query number mostly.

396 C. Zhang et al.

Fig. 6. Average query time varies with

query No.

Fig. 7. Average query time varies with

datasize

4.3 Scalability for Data Size

Fig. 7 shows the scalability of data size. The query number is 100. Fig. 7 gives
average time of each query.

When the system size increases, the whole time of 100 queries and the average
time of each query both change slightly. Especially when the system size is 6,
processing times for the document size of 135M, 208M and 515M are the same
almost. Hadoop running report shows the capacity of task is 12 when system
size is 6. Map task number of 135M, 208M, 515M, 823M and 1.06G are 3, 4, 9,
14 and 20 separately(The default input size is no more than 64M. The map task
number is related with it.). All data splits can be processed parallel when data
size is 135M, 208M or 515M. However, the task number of 832M is 14, not all
the data splits can be processed at the same time. So the cost time still increases
slightly when data size is 823M and 1.06G.

5 Related Work

SLCA-based keyword search is an important approach for XML information
extracting. Most of previous SLCA computing [10,11,12] obtain a list of node
id for each keyword firstly. Then the id lists are joined to get potential SLCAs.
The improper results are deleted finally. [7] gives a stack-based algorithm to get
information from a mix of XML and HTML documents and rank the results.

There are also some work to study the semantics for XML keyword search.
Meaningful LCA in [8] is a similar semantics to SLCA semantics. [8] presents
a novel technology, schema-free XQuery, which enables users to retrieve XML
data without knowledge of document schema. [13] gives another XML keyword
search semantics, ELCA, which includes more useful LCA nodes.

XML data placement is a key factor in distributed XML processing. [3,9] give
different placement strategy to improve parallelism. All of them are designed
especially for path queries.

6 Conclusions and Future Work

In this paper, we present parallel algorithms for distributed SLCA computing.
XML documents are split into several parts to be processed parallel. In our al-
gorithms, SLCAs are computed bottom-up in one scan of document tree. Each

Distributed SLCA-Based XML Keyword Search by Map-Reduce 397

node just communicates with its parent. No intermediate results and no aux-
iliary complicated data structure. Each net node processes local data parallel
and transmits just a little information to the next step. We use Hadoop as the
platform and implement distributed SLCA algorithms in MapReduce paradigm.
A series of experiments are conducted to verify the efficiency of our approach.

Acknowledgments. This work is supported by NSFC grants (No. 60773075
and No. 60925008), National Hi-Tech 863 program under grant 2009AA01Z149,
973 program (No. 2010CB328106), Shanghai Education Project (No. 10ZZ33)
and Shanghai Leading Academic Discipline Project (No. B412).

References

1. DBLP XML records, http://dblp.uni-trier.de/xml/

2. Apache. Hadoop, http://hadoop.apache.org/core/

3. Bremer, J.-M., Gertz, M.: On distributing XML repositories. In: WebDB, pp. 73–78

(2003)

4. Bruno, N., Gravano, L., Koudas, N., Srivastava, D.: Navigation- vs. index-based

XML multi-query processing. In: ICDE, pp. 139–150 (2003)

5. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.

In: OSDI, pp. 137–150 (2004)

6. Gong, X., Yan, Y., Qian, W., Zhou, A.: Bloom filter-based XML packets filtering

for millions of path queries. In: ICDE, pp. 890–901 (2005)

7. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank: Ranked keyword

search over XML documents. In: SIGMOD Conference, pp. 16–27 (2003)

8. Li, Y., Yu, C., Jagadish, H.V.: Schema-free xquery. In: VLDB, pp. 72–83 (2004)

9. Machdi, I., Amagasa, T., Kitagawa, H.: Gmx: an xml data partitioning scheme for

holistic twig joins. In: iiWAS, pp. 137–146 (2008)

10. Sun, C., Chan, C.Y., Goenka, A.K.: Multiway slca-based keyword search in XML

data. In: WWW, pp. 1043–1052 (2007)

11. Wang, W., Wang, X., Zhou, A.: Hash-search: An efficient slca-based keyword search

algorithm on XML documents. In: DASFAA, pp. 496–510 (2009)

12. Xu, Y., Papakonstantinou, Y.: Efficient keyword search for smallest lcas in XML

databases. In: SIGMOD Conference, pp. 537–538 (2005)

13. Xu, Y., Papakonstantinou, Y.: Efficient lca based keyword search in XML data.

In: CIKM, pp. 1007–1010 (2007)

14. Yui, M., Miyazaki, J., Uemura, S., Kato, H.: Xbird/d: distributed and parallel

xquery processing using remote proxy. In: SAC, pp. 1003–1007 (2008)

http://dblp.uni-trier.de/xml/
http://hadoop.apache.org/core/

FVC: A Feature-Vector-Based Classification for

XML Dissemination

Xiaoling Wang1, Ester Martin2, Weining Qian1, and Aoying Zhou1

1 Shanghai Key Laboratory of Trustworthy Computing, Software Engineering

Institute, East China Normal University, Shanghai 200062, China

{xlwang,wnqian,ayzhou}@sei.ecnu.edu.cn
2 School of Computing Science, Simon Fraser University, Burnaby, BC, Canada

ester@cs.sfu.ca

Abstract. With the adoption of XML in a wide range of applications,

efficient XML classification has become an important research topic.

In current studies, users’ interests are expressed by XPath or XQuery

queries. However, such a query is hard to formulate, because it requires

a good knowledge of the structure and contents of the documents that

will arrive and some knowledge of XQuery which few consumers will

have. The query may even be impossible to formulate in cases where

the distinction of relevant and irrelevant documents requires the consid-

eration of a large number of features. Traditional classification method

can’t work well for XML dissemination, because the number of training

example is often small. Therefore, this paper introduces a data mining

approach to XML dissemination that uses a given document collection

of the user to automatically learn a classifier modelling his/her informa-

tion needs. We present a novel XML classifier taking into account the

structure as well as the content of XML documents. Our experimental

evaluation on several real XML document sets demonstrates the accuracy

and efficiency of the proposed XML classification approach.

1 Introduction

Nowadays, Extensible Mark-up Language (XML) becomes pervasive in more
and more applications, such as Digital Library, XML subscribe/publish system,
and other XML repositories. With the adoption of XML in a wide range of ap-
plications, XML classification has become an important application. There are
many“news streams” that can be modeled as XML documents arriving at some
server that is responsible for managing these documents and disseminating them
to a pool of clients. New CS research papers (DBLP), new webpages (GoogleAl-
ert), new movies all are examples of news streams and often use XML as data ex-
change format. Clients such as computer scientists, businessmen and consumers
want to be alerted of relevant news documents without being overwhelmed by
“spam” documents. For this purpose, clients subscribe at the server with some
specification of their information needs by some kind of keyword-based XML
query. Former methods have been proposed to optimize XML dissemination,

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 398–409, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

FVC: A Feature-Vector-Based Classification for XML Dissemination 399

improving the efficiency of the simultaneous execution of very large numbers of
XML queries by sharing the processing costs for common subqueries [1,2].

Current approaches [3,4] to XML dissemination require the clients to specify
their interests as XPath or XQuery queries. Unfortunately, XML queries are
hard to formulate for consumers, because they require a good knowledge of the
structure and contents of the documents of the news stream. In the case of XML
documents, it would also require familiarity with the XQuery language which
few clients will have.

On the other hand, in many scenarios a client would have an initial collection
of relevant documents obtained from other sources, e.g. a collection of related
research papers, a collection of favorite bookmarks or a collection of owned
movies. These document collections do implicitly specify the information needs
of the client which motivates a data mining approach to XML dissemination
based on classifiers that are learned automatically from the given collections of
relevant documents:

1. A training collection of ”positive” (relevant) XML documents on each client
describes the client’s (consumer’s) interest. Using a sample of other docu-
ments as ”negative” training documents, a two-class classifier (relevant /
irrelevant) is trained on the client.

2. A client subscribes to the server by sending his classifier to the server.
3. The server applies the classifiers of all clients that have subscribed to the

incoming XML documents and forwards a document to all clients whose
classifier predicts the document as relevant.

4. The client (consumer) receives a potentially relevant XML document, checks
the document for actual relevance and records relevance feedback (is / is not
relevant).

5. The client maintains and updates the classifier. If too many documents re-
ceived from the server are judged as irrelevant by the consumer, according to
the client relevance feedback, the client re-trains the classifier on the current
document collection and sends a new classifier to the server.

The architecture of a data mining-based XML dissemination system is shown in
Figure. 1.

Classification methods for XML documents have recently received some at-
tention in the database and data mining communities [6,9]. The information
dissemination scenario, however, creates unique challenges for XML classifica-
tion that have not yet been addressed in the literature. Compared to the classical
scenario of text and XML classification, training datasets are small, i.e. contain
only a few hundreds or dozens of documents. This makes classifier construction
much more difficult. For example, SVM approach needs more training examples
in order to achieve high precision.

To deal with small training sets, we introduce a novel classification method
that represents both the structure and the contents of XML documents in a natu-
ral way. Our method integrates the XRules approach [9], that takes into account
the XML structure only, and the Bag of Words text classification approach [6],
that exploits only the contents of XML documents.

400 X. Wang et al.

Document
Dissemination

Module Classifiers
/Rules

XML documents

Building
Classifier Rules

Server

Client 1

Document
dissemination Classifier

subscribe

Client 2 , Client n

Fig. 1. System Architecture

The main contributions of this paper are as follows:

– We introduce a data mining approach to XML dissemination and a corre-
sponding client-server system architecture is given.

– We present novel XML classification methods taking into account both the
structure and contents of XML documents.

– Our experimental evaluation on real XML document sets demonstrates the
precision of the proposed methods.

The rest of this paper is organized as follows. Related work is discussed in Sec-
tion 2. Section 3 introduces the novel XML classification methods for XML
documents. The results of our experimental evaluation are presented in Section
4, followed by the conclusion in Section 5.

2 Related Work

There are two kinds of approaches for XML document classification.

Schema-Driven Approach. Mining frequent sub-trees is one main problem
in XML classification. Former work [8,7,9] are rules-based approach for frequent
sub-tree mining. These methods focus on embedded and ordered trees, and it is
based on the property of frequent patterns: a super-pattern is less frequent or as
frequent as a sub-pattern. There are two steps of this algorithm: 1) enumerate
candidate sub-trees of size k and 2) count the frequency of these sub-trees. The
sub-tree of size k +1 is generated from the sub-trees of size k that have frequency
larger than the threshold. XRules [9] extend TreeMiner to find all frequent trees,
and it is cost-sensitive and uses Bayesian rule based class decision making.

Data-Driven Approach. Another kind of approaches [6,5] for XML classifi-
cation is based on text classification. They extract two kinds of features from
XML data: the first part is content parts - term, the second part is specific struc-
ture part - twig, such as leftchild/parent/rightchild. The shortcomings of these
approaches are: 1) The separation of structure mining and content mining may
result in incorrect rules. 2) SVM [6] for XML text classification is the most used

FVC: A Feature-Vector-Based Classification for XML Dissemination 401

method, however, an SVM classifier needs more training data, in the scenario of
XML dissemination, each client has no more examples to train the classifier.

3 XML Classification Methods

As discussed in Section 1, the scenario of information dissemination creates
unique challenges for XML classification. In particular, clients typically have
only a small number of training documents, but traditional text/XML classifica-
tion methods require larger training sets to achieve high classification accuracy.
Addressing the special characteristics of XML dissemination, this section firstly
give the preliminaries of this problem, and then presents our classification meth-
ods that take into account both the structure and content of XML documents
in an integrated fashion.

3.1 Preliminaries

We first introduce XML document trees and then revisit the XRules method [9],
which is the state-of-the-art rule-based XML classifier.

An XML document can be modelled as a labelled, ordered and rooted tree
T = (V, E, root(T)), where V is a set of nodes, E ⊂ V ×V is a set of edges, and
root(T) ∈ V is the root node of T . A node ni ∈ V represents an element, an
attribute, or a value.

All of the classification methods introduced in the following sections work on
XML document trees.

Obtaining Training Examples. Firstly, we discuss how to obtain positive
training examples and negative training examples at the client side. It is reason-
able to assume that a client would have an initial collection of relevant documents
obtained from other sources, e.g. a collection of related research papers or email
files. This collection is regarded as the positive training examples.

There are two approaches to generate negative training examples. Initially, if we
have no irrelevant document in our local storage, we can draw some samples from
the entire population of documents, such as DBLP or IEEE digital library. An-
other approach to obtain negative training examples is by feedback information.
Since any XML classifier produces some false positives, some of the documents
that the server sends to a client will actually be judged as irrelevant by the user.
Such documents can be collected and used as user-specific negative examples.

Note that the positive training examples are more important than the negative
examples, because clients are only interested in accurately predicting positive
documents. This unique property will be exploited in our algorithms to enhance
the precision of classifiers.

XRules Revisited. Secondly, we revisit the XRules [9] method, which is a repre-
sentative method designed for XML document classification. It employs the con-
cept of structural rules and frequent sub-tree mining. Each rule, i.e., sub-tree, is

402 X. Wang et al.

of the form T → c, (π, δ), in which T is a tree structure, c is the class label, π is
the support of the rule, and δ is the strength of the rule.

To train the classifier, XRules first mines all frequent structural rules with
respect to a specific class c whose support and strength is larger than the pre-
defined parameters πmin

c and δmin
c . Then all such rules are ordered according to

a precedence relation. Thus the classifier is obtained. In the testing phase, two
steps are performed, rule retrieval and class prediction. The former step retrieves
all rules that match an example, while the latter one determines the class label
by combining all evidence provided by those matched rules.

We argue that XRules is not sufficient for XML document classification. The
main reason is that XRules does not consider the content of XML documents.
Only structural information is used to generate the rules. Therefore, XRules is
useless for XML documents that conform to a given schema. In the following
sections, two methods considering both structure and content are introduced for
XML classification.

3.2 XRules+: Extending XRules to Handle Content

The first method is a naive approach to extend XRules [9] by adding content
leaf nodes into XML structure trees without additional preprocessing. We call
this method XRules+.

XRules+ first transforms an XML document into a tree by using the following
steps.

1. For each element, create a vertex, whose label is the element name;
2. For elements v1 and v2 with parent-child relationships, create a directed edge

e(v1, v1);
3. For each attribute, create a vertex, whose label is the attribute name;
4. For each attribute value, create a vertex, whose label is the value;
5. For each attribute a and its value av pair, create a directed edge e(a, av);
6. For each attribute a and the element v containing it, create a directed edge

e(v, a);
7. For each term t, create a vertex, whose label is the term;
8. For term t and the element v containing it, create a directed edge e(v, t);
9. For element v and the element v′ that v refers to, create a directed edge

e(v, v′).

If the content of one element E1 includes more than one term, each term can
be treated as a node, and then element E1 has more than one child node. Thus,
the inner nodes are structure nodes and the leaf nodes are content nodes. The
XRules approach can be applied to mining frequent sub-trees from extended
XML trees. Figure 2 depicts an example, where the circles denote the structure
nodes and the rectangles denote the content nodes.

Thus, an XML document is transformed to a directed tree automatically. Then,
XRules is applied to train the classifier. And the testing phase remains unchanged.

XRules+ is equivalent to considering all possible combinations of a term and
a structural pattern. However, for most XML documents, the number of terms

FVC: A Feature-Vector-Based Classification for XML Dissemination 403

article

author title year

Jennifer Widom 2006

Fig. 2. Extending XML Tree by XRules+

in the content is much larger than the number of structure nodes (elements), so
that there are many nodes in extended XML trees. Therefore, too many patterns
may be generated, and only few of them will be frequent. Suppose the number of
terms in the content of an element Ei is n, which will correspond to n leaf nodes
of Ei. Considering ordered trees, there are C0

n + C1
n + ... + Cn

n = 2n possible
embedded subtrees rooted at Ei. With increasing numbers of nodes in XML
trees, the number of candidate sub-trees becomes larger, and the efficiency of
XRules+ will suffer significantly.

We do some experiments to verify this argument. The training examples are
articles from dblp xml files, we extract the title and author information for
each article. The number of training examples are 800 per class and the number
of testing examples are 200 per class. The two-class problem are tested using
XRules method and XRules+ method. The result are shown in Table 1. It verifies
that if one XML document contains value nodes, the candidate subtrees will
increase quickly, so the performance will be affected.

Table 1. Num. of Rules in XRules and XRules+

MINSUPPORT #rules Execution Time(s)
XRule XRule+ XRule XRule+

10% 19 53 0.5 0.8

5% 23 172 2 3

1% 41 3381 48 84

We conduct another group of experiments to test the performance of XRules
and XRules+. After changing the training example where the number of nodes
in XML tree exceeds 30, the depth of each XML tree is about 8 and the training
data set contains 10 documents, XRules can’t find frequent sub-trees in 5 hours.
So, XRules and XRules+ is limited for many large XML documents.

3.3 FVC: A Feature-Vector-Based Classification Approach

Aiming at the shortcomings of XRules+, in this subsection, we present FVC,
an extension of XRules using feature vectors to handle the content of XML

404 X. Wang et al.

documents. Instead of creating one leaf node for every term in an element as
in XRules+, we determine the set of all relevant terms in the elements and
represent the whole content of a specific element by one corresponding term
frequency vector, also called feature vector.

An FVC rule has the form
(T, V)→ c, (π, δ),
in which T is a structural pattern, V is a feature vector, c is a class label, π

is the support of the structural rule T , and δ is the strength of the rule T .
Note that a feature vector in general represents the content of more than one

element, namely the content of all leaf nodes of the structural pattern of the
FVC rule.

A document is matched by the body of the rule, if the following two conditions
are satisfied.

1. The document contains the structural pattern T .
2. The distance from V to the feature vector of the matching pattern T is

calculated. The Nearest-Neighbour method is used to assign the class label
to the tested document.

When a training example matches T , and the class label is the same as c, it is
covered by the rule. The number of training examples that are covered by a rule
is the support of the rule. Similarly, the strength of the rule can be determined.

The mining of FVC rules proceeds in the following steps:

1. Generation of structural patterns. For each class, all frequent structural
patterns within this class are generated, whose support and strength are
above the predefined thresholds π and δ.

2. Determination of feature vector dimensions. For each combination of
a training XML document and a frequent structural pattern, one feature vec-
tor representing the union of all leaf nodes of that structural pattern is con-
structed. All terms appearing in the corpus of XML documents are considered.
Their term-frequencies and inverse-document-frequencies (TF*IDF) are cal-
culated using the standard information-retrieval techniques. The terms with
top ranked TF*IDF weights are selected as features1. Each preserved term is
used as one dimension in the content (feature) vectors.

3. FVC rule generation. For each structural pattern, each instance it covers,
i.e. the document fragment satisfying that structure, is extracted. Its con-
tent is then converted into a feature vector. Each vector, attached with its
structural pattern, becomes an FVC rule.

The pseudo-code of FVC is presented in Algorithm 1 and Algorithm 2.
In the test (dissemination) phase, all FVC rules with matching structural

patterns are retrieved. Among these rules, the feature vector that is nearest to
the feature vector of the test document is determined. The class label of the
corresponding FVC rule is used to predict the class of the test document.

1 In our experiments, 3000 terms were used to generate the vectors.

FVC: A Feature-Vector-Based Classification for XML Dissemination 405

Algorithm 1. FVCTrain
Input: training data set Train;

Output: rule set rs
Procedure FVCTrain(Train)

1: Use XRules to get frequent patterns PatternSet for input documents Train;

2: Get the first 3000 terms by TF*IDF from Train;

3: /* determine the vector dimensions of each pattern in PatternSet */

4: for all pattern p in PatternSet do
5: Generate feature vectors v for each p;

6: Add (p, v) into rs;
7: end for
8: return rs ;

Algorithm 2. FVC
Input: testing document d and rule set rs;
Output: Class label L
Procedure FVCTest(d)

1: for all pattern p : (T, V)→ c, (π, δ) in the rule set rs do
2: Parse document d to obtain the pattern set ps where the pattern in d matches

T in rs;
3: Extract the content and obtain the feature vector v in d;

4: end for
5: Obtain the class label L by NN approach;

6: Assign L to document d;

7: return L;

4 Experiments

In this section, we report the results of our experimental evaluation using several
real life XML datasets. All the experiments were conducted on a Pentium IV 3.2
G CPU platform with 512MB of RAM.

4.1 Experimental Setting

We define two classification tasks in order to evaluate methods presented in this
paper.

Classification tasks
The real data comes from two commonly used XML benchmarks called DBLP
[10] and SIGMODRecord [11]. Based on these two XML document collections,
we design two classification tasks:

1. Task1: SIGMOD-KDD classifier. We extract some documents from DBLP
and build dataset I. For a given document, even for an expert, it is not
easy to judge whether it comes from the SIGMOD proceedings or the KDD

406 X. Wang et al.

proceedings, because both conferences have papers focusing on data mining
or data management. But there are some hints, for example, some data
mining people often publish papers in SIGMOD proceedings. We want to
verify that structural classification method can find such patterns.

2. Task2: DB-AI classifier. We extract documents from DBLP according to
the ACM categories and build dataset II for task 2. Intuitively, DB and AI
are two relatively distinct topics, so that text mining is a good method for
classification. Integrated methods considering both structure and content
are expected to increase the precision. We want to test this point by our
experiments.

Data sets
We extract some XML documents from the DBLP and SIGMODRecord bench-
marks, giving a detailed introduction of each dataset below.

– Dataset I comes from DBLP [10], which collects more than 200000 published
papers in computer science area. The size of DBLP is about 226MB, the
depth of the XML document tree is about 4 to 5. The root of this collection
is “dblp”, and the second level nodes include “inproceedings”, “article” or
others. We extract sub-trees of “article” and “inproceedings” from “dblp”
tree. Thus, we obtained 533,077 small XML documents, and each document
is one paper published in journal or conference proceedings. Based on these
documents, we build three datasets I(1), I(2) and I(3).
1. Dataset I(1): We extract 1000 articles from SIGMOD conference pro-

ceedings and 1000 articles from KDD conference proceedings to create a
two-class problem: SIGMOD articles are considered as positive and KDD
articles as negative examples. We remove other information from these
articles/papers and used only the author and title elements in Dataset
I(1). This information is common for any published paper in common
digital libraries, such as citeseer or ACM/IEEE digital library.

2. Dataset I(2): In order to test the performance of compared methods
for small training document sets, we extracted a subset of 200 arti-
cles/papers from each class in Dataset I(1) and obtain Dataset I(2).

3. Dataset I(3): In order to test the role of content for classification meth-
ods, for articles/papers in Dataset I(2), we added the “abstract” element
into each document. Thus, we obtain Dataset I(3).

– Dataset II also comes from DBLP [10]. We extract articles for two ACM
categories, “DB” and “AI”. For these articles, we add abstract information
into each XML document. By changing the number of positive and negative
examples, we obtain Dataset II(1), II(2) and II(3). We want to test the
influence of the negative examples for the classification methods.
• Dataset II(1): The number of training documents is 160, including 80

“DB” articles and 80 “AI” articles. The testing documents are 20 “DB”
articles and 20 “AI” articles. So, we use 160(80+,80-)/40(20+,20-) to
denote Dataset II(1).
• Dataset II(2): The number of training documents is 180, including 120

“DB” articles and 60 “AI” articles. The testing documents are 20 “DB”

FVC: A Feature-Vector-Based Classification for XML Dissemination 407

articles and 20 “AI” articles. So, we use 180(120+,60-)/40(20+,20-) to
denote Dataset II(2).
• Dataset II(3): The number of training documents is 150, including 120

“DB” articles and 30 “AI” articles. The testing documents are 20 “DB”
articles and 20 “AI” articles. So, we use 150(120+,30-)/40(20+,20-) to
denote Dataset II(3).

Classification Methods
Five methods for XML classification are compared.

1. XRules. This method [9] considers only the structure of XML documents.
The XRules implementation was downloaded from the website of its author.

2. FVC. This method is presented in Section 3.3. It considers both structure
and content in an integrated approach, extending structural patterns by
feature vectors.

3. NN. This method is to implement traditional nearest neighbor based text
classification method, which only considers the content (TF*IDF) of a
document.

Experiments were conducted concerning the accuracy and the efficiency of the
compared methods. The evaluation measures include precision, runtime and
number of rules.

4.2 Performance of Classification Methods

In order to make the results more robust to random effects in the training and
test documents, all experiments were repeated 5 times, and the results were
averaged. In all experiments, we chose 3000 terms as features in FVC method.

Classification precision is the most important factor for XML document dis-
semination. Firstly, we study the precision of various methods. The precisions
of XRules, FVC and NN method over Dataset I are shown in Figure 3 and over
Dataset II are shown in Figure 4, always with respect to different minsupport
values π.

Figure 3(a) shows that when the number of training examples is large, each
method can obtain relatively good precision. However, with decreasing number
of training examples, FVC performs better than XRules and NN as shown in
Figure 3(b) and Figure 3(c).

From these experimental results, we draw the following conclusions.

– Influence of the size of training dataset. Dataset I(1) and I(2) are
designed to show the influence on precision when changing the size of training
examples. In dataset I(1), the number of training documents is 800 per class.
We use 200 documents as testing documents for each class. In dataset I(2),
we use 200 examples as training documents for each class.

XRules performs good enough for dataset I(1) when the size of training
documents is large enough. However, the small size of training documents
reduces the precision of XRules method. This verifies that XRules is not

408 X. Wang et al.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

20% 10% 5%

P
re

ci
si

on

Support

Precision on Dataset I(1)

XRules

FVC

NN

(a) I(1)

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%

20% 10% 5%

P
re

ci
si

on

Support

Precision on Dataset I(2)

XRules

FVC

NN

(b) I(2)

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

20% 10% 5%

P
re

ci
si

on

Support

Precision on Dataset I(3)

XRules

FVC

NN

(c) I(3)

Fig. 3. Precision on Dataset I

58.00%
60.00%
62.00%
64.00%
66.00%
68.00%
70.00%
72.00%

20% 10% 5%

P
re

ci
si

on

Support

Precision on Dataset II(1)

XRules

FVC

NN

(a) II(1)

0%
10%
20%
30%
40%
50%
60%
70%

20% 10% 5%

P
re

ci
si

on

Support

Precision on Dataset II(2)

XRules

FVC

NN

(b) II(2)

0%
10%
20%
30%
40%
50%
60%
70%

20% 10% 5%

P
re

ci
si

on

Support

Precision on Dataset II(3)

XRules

FVC

NN

(c) II(3)

Fig. 4. Precision on Dataset II

feasible to get good rules for personal users, because there are not enough
training documents available in this application context.

FVC performs better than XRules and NN methods, with decreasing num-
ber of training documents.

– Influence of the amount of content. Dataset I(2) and I(3) are to show the
influence when adding more content into XML documents. I(3) adds some
“abstract” information for each article into I(2). Figure 3(b) and Figure 3(c)
shows that the precision of the NN method is improved because NN is pure
text classification, and it does not consider structural information. Adding
“abstract” content increases the precision of NN from 50% to 60%.

We also find that, when comparing the results on I(2) and I(3), XRules
does actually improve (from 52% to 56% / from 55.5% to 59%). However
from analysis, the precision of XRules method shouldn’t improve, because
it only consider structure information and there is no more influence when
adding content. The reason is that I(3) add another element tag “abstract”
and related abstract content. So there is little difference from the structure
part between I(2) and I(3). Thus, XRules can obtain more rules from I(3)
than I(2). This is the major factor to affect the difference of precision for
XRules on I(2) and I(3).

For FVC, the precision is increasing because they consider both structure
and content for the classification task.

– Influence of the negative examples. In order to test the influence of neg-
ative examples, we changed the number of negative examples in dataset II.
II(1) has 80 positive-example/80 negative-examples, II(2) has 120 positive-
example/60 negative-examples, and II(3) has 120 positive-example/
30 negative-examples.

Figure 4 shows, with the decreasing number of negative examples, the
precision of almost all methods fall. Among these methods, XRules is the

FVC: A Feature-Vector-Based Classification for XML Dissemination 409

most sensitive and after the number of negative examples drops below 60,
its precision is only 50%.

5 Conclusion

With the adoption of XML in a wide range of applications, efficient XML dis-
semination has become an important research topic. To deal with small training
sets, we introduced a novel classification method, FVC, that represents both the
structure and the contents of XML documents in a natural way. Our experi-
mental evaluation on real XML document sets demonstrated the accuracy of the
proposed XML classification approach. As the further work, we want to further
exploiting how to optimize a large number of classifiers at the dissemination
server. We also want to design the new strategy to improve the performance of
proposed method.

Acknowledgments. We would like to thank Weiyan Wang for the discus-
sion and system implementation. This work is supported by NSFC grants (No.
60773075 and No. 60925008), National Hi-Tech 863 program under grant (No.
2009AA01Z149), 973 program (No. 2010CB328106), Shanghai Education Project
(No. 10ZZ33) and Shanghai Leading Academic Discipline Project (No. B412).

References

1. Diao, Y., Rizvi, S., Franklin., M.J.: Towards an Internet-Scale XML Dissemination

Service. In: Proc. of the 30th VLDB, pp. 612–623 (2004)

2. Gong, X., Yan, Y., Qian, W., Zhou, A.: Bloom Filter-based XML Packets Filtering

for Millions of Path Queries. In: ICDE 2005 (2005)

3. Li, G., Hou, S., Jacobsen, H.A.: Routing of XML and XPath queries in data dis-

semination networks. In: Proc. of ICDCS (2008)

4. Kwon, J., Rao, P., Moon, B., Lee, S.: Fast XML document filtering by sequencing

twig patterns. ACM Transactions on Internet Technology 9(4) (2009)

5. Theobald, A., Weikum, G.: The index-based XXL search engine for querying XML

data with relevance ranking. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S.,

Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 477–495.

Springer, Heidelberg (2002)

6. Theobald, M., Schenkel, R., Weikum, G.: Exploiting structure, annotation, and

ontological knowledge for automatic classification of XML data. In: WebDB, pp.

1–6 (2003)

7. Zaki, M.: Efficiently mining trees in a forest. In: 8th ACM SIGKDD Int’l Conference

on Knowledge Discovery and Data Mining (2002)

8. Zaki, M.: Efficiently mining frequent embedded unordered trees. Fundamenta In-

formaticae 66(1-2), 33–52 (2005)

9. Zaki, M.J., Aggarwal, C.C.: XRules: an effective structural classifier for XML data.

In: KDD, pp. 316–325 (2003)

10. Ley, M.: DBLP database web site (2000),

http://www.informatik.uni-trier.de/ley/db/index.html

11. http://www.acm.org/sigmod/record/xml

http://www.informatik.uni-trier.de/ley/db/index.html
http://www.acm.org/sigmod/record/xml

An Object-Field Perspective Data Model for

Moving Geographic Phenomena

K.-S. Kim and Y. Kiyoki

1 Knowledge Creating Communication Research Center

National Institute of Information and Communications Technology

3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0289 Japan

ksookim@nict.go.jp
2 Faculty of Environmental Information, Keio University

5322 Endo, Fujisawa-shi, Kanagawa 252-8520, Japan

kiyoki@sfc.keio.ac.jp

Abstract. We propose a new data model to represent dynamic and

continuous geographic phenomenaover spatiotemporal domain in moving-

object databases. Existing data models of moving objects have shortcom-

ings with respect to the representation of moving geographic phenomena

involving continuous fields, such as temperature, elevation, and the de-

gree of pollution. Moreover, in the case of a spatiotemporal model for con-

tinuous fields, it is difficult to deal with continuous movements through

time. In this paper, we define a data type called moving field to represent

both object-based and field-based views of geographic phenomena in spa-

tiotemporal domains. The main feature of our model is that it integrates

the spatial field model with the slice representation of moving objects. By

introducing moving fields, we provide a new computational environment

for analyzing various moving phenomena with numerical as well as geo-

graphic processing.

1 Introduction

As the effects of severe weather such as hurricanes, floods, droughts, and global
warming have become more apparent, geographic phenomena have been rapidly
gaining interest in various fields of the world. With advances in sensor tech-
nologies and communication networks, many researchers and organizations have
started to monitor and analyze geographic phenomena by using earth observa-
tion data. In sensing systems, issues such as how to capture, track, and transfer
the data concerning specific phenomena have been dealt with. Further, database
systems have been developed for storing and processing various types of spa-
tiotemporal data about geographic phenomena.

Spatial databases have long been an essential part of geographic informa-
tion system (GIS) applications in order to study geographic phenomena using
computers. However, traditional spatial databases are insufficient for analyz-
ing dynamic phenomena over a spatiotemporal space because they assume the
static aspects of the phenomena. Generally, geographic phenomena have dynamic

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 410–421, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Object-Field Perspective Data Model for Moving Geographic Phenomena 411

properties that change over time. For example, a hurricane moves from one po-
sition to another until it disappears, and its wind speed and temperature vary
depending on the location and time. For dealing with the dynamic changes in
spatiotemporal data, many data models have been developed to express the real-
world spatiotemporal processes [1]. In particular, moving-object databases have
focused on data models and operations to manipulate the locations and extent of
spatial objects such as vehicles and hurricanes that continuously move or change
their shape over time. They have excluded the continuous spatiotemporal field
data such as temperature, pressure, and the degree of air pollution; however,
these field-based data are important in the analysis of the characteristics and
progress of spatiotemporally continuous phenomena.

In this paper, we propose a new data type called moving field, e.g., pres-
sure of hurricanes, density of air pollution area, and temperature of forest fires,
with an object-based and field-based model in a moving-object database. The
moving-field data type represents the range of values for some measured at-
tribute associated with the moving domain of objects in space-time. We try to
integrate the spatial field data representation with moving-object database mod-
els. The moving object model allows the estimation of the location information
at any time during the lifetime of an object, and the spatial field data model
contains methods to evaluate the value at any location within the domain. This
study contributes to the development of data structures for handling not only the
movements but also changes in attribute values corresponding to the locations
of a moving object.

The rest of this paper is organized as follows: in section 2, we review data
models for moving objects and field-based perspectives, and in section 3, we
clarify the motivation for this study and define the problem, on which we fo-
cused, involved in the use of earth observation data. In section 4, we define the
conceptual model of moving fields, and in section 5, we describe the data struc-
tures at the implementation level. In section 6, we have presented the concluding
remarks and future research issues.

2 Related Work

Moving objects have been widely studied in the field of research for the past
decade. A moving-object database supports data models to estimate the geo-
metric information of objects at any time using sampling location data. In the
moving-object data models, there are two categories: one is for anticipating the
future movements as they have been introduced in [2,3], and the other is for
manipulating past movements of moving objects, i.e., trajectory data. In partic-
ular, the data model proposed by [4,5] has been a basis for the analysis of the
historical movements of trajectory data. In this paper, we refer to the trajectory
model to handle the historical changes of moving phenomena over time.

In general, a moving data type is constructed as a mapping function from
time to a data type: moving-type : time → data-type. Hence, a moving

412 K.-S. Kim and Y. Kiyoki

object with time-varying locations can be modeled as function mobject : time→
spatial-object. In [4,5], three types of moving objects–moving point, moving line,
and moving region–are defined using the concept of spatial object types such as
point, line, and region. For example, a moving point (mpoint) and a moving
region (mregion) are defined as the mapping functions mpoint : time → point
and mregion : time→ region, respectively. In particular, data structures on the
basis of the slice representation have been presented for implementing moving
regions in [6]. However, existing moving object models have some issues related
to the representation of moving geographic phenomena containing continuous
spatial fields because they have mainly concentrated on the continuous geometric
changes of an object, such as locations and shapes.

The GIS communities have investigated object-based models with a discrete
perspective and field-based models with a continuous perspective for the spatial
data modeling [7]. While a spatial object represents a discrete and independent
entity with a set of attributes, including geographical locations such as a coun-
try, a river, and a mountain, a spatial field is a set of attribute values that are
determined for each location in a spatial domain, such as elevation, temperature,
and air pollution density. Although people prefer to use an object-oriented ap-
proach to handle geographic data, a certain geographic phenomenon in the real
world needs a field-based representation according to an application task. In [8],
Tryfona mentioned that many cases of geographic phenomena are expressed by
a combination of spatial fields, e.g., a storm can be represented by a combination
of temperature, precipitation, and wind speed. However, most spatial applica-
tions need both models of space and time. In [9], Galton introduced object-field
as a hybrid model type to convert between objects and fields at the conceptual
level. In a similar work [10], an object field is presented to link fields and objects
for spatial phenomena like weather or wildfire. In particular, the work discusses
an example of implementation methods of object fields using the relationships
between locations and objects. In [11], a query language is presented to handle
continuous field data for geographic phenomena, as well as discrete objects. As
we referred to these works, we realized that field data play important roles in
describing the state of geographic phenomena at a place. However, they have
overhead cost to handle continuous field data with movements of a time-varying
spatial object. Therefore, we investigate a new model with object-field perspec-
tives to represent moving geographic phenomena in this study.

3 Problem Definition

This section addresses the problem of dealing with history information of moving
geographic phenomena in current moving-object databases. For supporting our
work, we consider a client/server application to archive geo-observation data
of specific phenomena through geo-sensor networks similar to the application
discussed in [12]. Figure 1 shows the application in the case of a hurricane. There
are two types of geo-sensors and they monitor two different field data related to
a hurricane: pressure and wind speed. When a hurricane happens, the sensors

An Object-Field Perspective Data Model for Moving Geographic Phenomena 413

T=T1 T=T2 T=T3

deactivated pressure
sensors
deactivated wind speed
sensors
activated pressure
sensors
activated wind speed
sensors

hurricane

Fig. 1. Example of moving geographic phenomena over a geosensor network

that become activated send the observed field data to a central data server until
the hurricane disappears periodically. The server stores these observation data
related to each hurricane and processes queries such as the following examples
about the hurricane that continuously changes over time.

Q1: In the period 2006 to 2008, did any hurricane pass through the same area
as hurricane “Katrina.”

Q2: Show the pressure within 100km from the eye of hurricane “Katrina”.
Q3: Show the hurricane “Katrina” area where wind speed was over 90KTS from

2005/08/24 to 2005/08/30.

In the application, a hurricane has object-based and field-based properties in a
spatiotemporal domain. That is, it is described by a discrete object that exists
at a certain place and time with stable attributes such as its name; it is also
perceived as a continuous field of the range of wind speed values of sensors
contained within the hurricane area where the sustained speed of the winds
reaches 74 mph. Among the above queries, while a query like Q1 can be answered
with a current moving-object database system, others have a few difficulties in
being solved. First, most moving-object databases consider the movement of
point-based objects such as people, vehicles, and ships, but moving geographic
phenomena mainly occupy a certain region and their region changes and evolves
continuously over time. Second, they contain continuous spatial fields such as
pressure and wind speed of their effect areas. As already mentioned, a spatial field
represents values of a certain attribute everywhere in the domain space. However,
it is usually impossible to measure continuous locations and values of a moving
phenomenon everywhere and every time. Therefore, we need a data model to
be able to reconstruct a moving phenomenon from the sampling data at some
locations and times and to process the above queries by estimating the field value
corresponding to any query point/area and any query time instance/interval.

In this study, we investigate the connection of object- and field-based models
of geographical phenomena, such as object-fields introduced in [9,10], for mod-
eling and analyzing moving phenomena. However, these works have focused on
the static aspects of the phenomena and have not considered the effect of time.
Figure 2 shows an example of the representation of object-fields using relation-
ships between locations and objects given in [10]. If we apply this representation
for moving phenomena, we should link new field data and new locations when-
ever the phenomena change their locations or shapes, and field values. This may

414 K.-S. Kim and Y. Kiyoki

Continuous field

Discrete object

Relationship between

field locations and

objects

Locations

Objects

Fig. 2. Representation of object-fields while establishing relationships between field

locations and objects

result in a considerable overhead on the system performance due to frequent up-
dating of the relationships. Therefore, we take account of a hybrid data model
of moving objects that contain continuous spatial fields.

4 Conceptual Modeling of Moving Fields

4.1 Moving Fields

In order to define a moving field, we first review the concepts of spatial fields and
dynamic fields for continuous geographic phenomena [13]. In the field-based mod-
els, every location within a spatiotemporal domain is associated with an attribute
value or a set of attribute values. A field can be a mathematical mapping function
of a given location domain to values. Therefore, a spatial field is denoted as a func-
tion sf from a spatial domain of locations S to a value range V , i.e., sf : S → V .
It represents the spatial variation of an attribute value assigned to the locations.
Let T be a set of time instants or periods, S be the set of spatial locations, and V
be the set of possible values of the field. In the same manner, a dynamic field can
be derived as a mapping function df from a spatiotemporal domain S × T into a
valid value range V , df : S × T → V like that shown in [3]. It can alternatively
take the form df : T → (S → V) like defined in [12]. Although two mapping
functions have different forms, the dynamic field represents the changes in spatial
fields across regions of space and periods of time.

Moving fields are motivated from the definition shown in [12] of dynamic
fields that consist of the data of active sensors that detect salient events over
geo-sensor networks. Compared to in-network monitoring methods of dynamic
fields proposed by [12], we focus the development of a data model for processing
and analyzing historical data of the continuous changes in the dynamic fields
with respect to the continuous movement of phenomena over time. In [14], the
efforts of combining continuous and discrete changes in objects and fields in
a spatiotemporal domain are presented; the work emphasizes the need of data
structures to represent multiple aspects of the phenomena. The moving field
suggests a hybrid data model of spatiotemporal object- and field-based repre-
sentations of moving phenomena, especially spatially and temporally continuous
changes. We assume in the following that moving fields are scalar fields. In order
to extend our previous work [15], we define a moving field as follows:

An Object-Field Perspective Data Model for Moving Geographic Phenomena 415

ta

tb

x

y

t ta tb

ta < ti <tb

field value

categories
(a) Spatial field (b) Discrete dynamic field (c) Moving field

Fig. 3. Field models for incorporating time

Definition 1. Moving fields
A moving field is defined as a continuous mapping function mf from time-varying
spatial locations in a moving phenomenon to time-varying scalar values of a field-
based attribute over time, i.e., mf:S(t) → V(t) such that ∀ t ∈ T, where T is
the life-time of the phenomenon. S(t), V(t) is a subset of locations, values at
time instance t of spatial domain S and field value range V, respectively. The
field values include the real numbers, integers, and Boolean values.

Figure 3 shows the incorporation of the temporal dimension into the field-based
models. Compared to a dynamic field with discrete changes, a moving field is
a continuous component that fills a part of space-time. In other words, we can
estimate a spatial field bounded by a certain spatial domain at any time between
two snapshots of a dynamic field. Intuitively, a moving field is an attribute of a
moving phenomenon, but its values vary depending on the location of the phe-
nomenon in a spatiotemporal space. Finally, we are concerned with the historical
changes of the moving phenomena. In a moving-object database, a trajectory of
a moving object is expressed as a sequence of locations (lc1, t1), (lc2, t2), ..., (lcn,
tn) during its life time. That is, the historical change of a moving phenomenon
can be described by an indexed sequence of snapshots that are domain-restricted
spatial fields at one moment in time. For this, we define the term “history” to
represent the historical changes of moving phenomena over time as follows:

Definition 2. Histories
The history of a moving phenomenon represents a region’s history as a sequence
of the forms (r1, t1, v1), (r2, t2, v2), ..., (rn, tn, vn), where ri is the region of the
spatial domain, ti is the time instance, and vi is the range of a field value of the
i-th capturing of the moving phenomenon.

Figure 4 shows the difference between (a) the trajectory of a moving object with
the linear temporal interpolation described as a polyline in a 3D(two spatial
and one temporal dimension) space and (b) the history of a point-based moving
phenomenon described as a polyline in a 3.5D (space-time with field values)
space, including a field dimension.

4.2 Field Operations

Next, we design operations to manipulate moving fields. Since we regard a mov-
ing field as a hybrid type of a moving object and a dynamic field, we consider

416 K.-S. Kim and Y. Kiyoki

x

y

t

(x1, y1, t1)

(x2, y2, t2)

(x3, y3, t3)

(x4, y4, t4)

(a) Trajectory

x

y

t

(x1, y1, t1, v1)

(x2, y2, t2, v2)

(x3, y3, t3, v3)

(x4, y4, t4, v4)

Field values

v1

v2

v3

v4

(b) History

Fig. 4. History with a moving field of a point-based moving phenomenon in space-time

Table 1. Operation types of moving fields

Types Operations Types Operations

Overlay join, merge Projection domain, range, history

Interaction evaluate,

evaluateInverse

Aggregation avg, min, max, sum,

count, density, surface

Numeration +, -, *, /, % Statistics correlation, variance

Selection clipping, slice,

section

Predicates <, >, =,
=, linear,

increases, decreases

both object-based and field-based operators for the moving fields. In [5], new
operations for moving data types are defined, such as deftime, trajectory, atin-
stant, speed, and turn, as well as basic spatial operators such as contains, area,
and distance. Hence, the moving field can be applied to these operations. For
instance, the atinstant operation returns a spatial field at a given time instant,
and the defttime returns the time period when the moving field exists. Moreover,
the operations related to continuous field data are brought to our attention, such
as operation overlay that produces the new field f from more than one field f1,
f2, ..., fn. In [8], four types of operations on spatial fields are described: attribute
computation, spatial computation, reclassification, and overlay, and particular
operations for continuous fields in [11] are defined with three categories: inten-
sity, spatial, and aggregate functions. On the basis of the previous reports, we
classify categories of field operations as listed in Table 1. We omit some basic op-
erations of spatiotemporal data types, such as temporal predicates (before, meet,
during), spatial predicates (contains, touches, overlaps), spatial operations (dis-
tance, buffer, convexhull), and set operations (union, intersection, difference) in
this paper. However, these operations should be primitive for moving fields.

Figure 5 shows an example of the overlay operation between two moving
fields A and B. We presuppose that the overlay operation and predicates can
only operate on the same spatiotemporal location. Therefore, only area C is
compatible to perform the operation shown in figure 5(b). We can express a
few examples of queries about moving fields using the operations introduced in
Section 3. For example, we can assume a relation for hurricanes containing one
moving point and two moving fields as follows:

An Object-Field Perspective Data Model for Moving Geographic Phenomena 417

x

y

t

3 2 3
2 1 2

3 2 3

t1

t2

a b c
a b c

a b c

t4
d

d
d

a b c d

5 4 5
34 3 4

5

5 4 5
5

5 66

6
66

6

6
5

6

t3
66

6 6

a b c
a b c

a b c

C

A

B

1

2

3

4

5

6

a

b

c

d

A B

field value

(a) Moving fields in a spatiotem-

poral space

x

t
t1 t2 t3 t4

A
B

C

(b) Compatible area

23 3

2 1 2

3 2 3

aa a

b b b

c c c

(2, a)(3, a) (3, a)

(2, b) (1, b) (2, b)

(3, c) (2, c) (3, c)

join

(c) Result field

Fig. 5. Join operation between two moving fields

hurricanes(id:integer, name:string, eye:mpoint, pressure:mfield,
windspeed:mfield)

Using the relation, we represent each query as followings:

Q1: In the period 2006 to 2008, find hurricanes passing through the same area as

hurricane “Katrina.”

LET q = SELECT trajectory(eye) FROM hurricanes WHERE name = ‘Katrina’;

SELECT name FROM hurricanes

WHERE Intersects(q, trajectory(slice(eye, ‘2006/01/01’, ‘2008/12/31’))) = true;

Q2: Show the pressure within 100km from the eye of hurricane “Katrina”.

SELECT clipping(pressure, buffer(eye, 1000))

FROM hurricanes WHERE name = ‘Katrina’;

Q3: Show the hurricane “Katrina” area where wind speed was over 90KTS from

2005/08/24 to 2005/08/30.

SELECT evaluateInverse(slice(windspeed, ‘2008/08/24’, ‘2008/08/30’),“>=90”)

FROM hurricanes WHERE name = ‘Katrina’;

5 Representing Moving Fields

This section explains how to realize moving fields at the implementation level.
Within the spatial database systems, there are two data models for represent-
ing spatial data: vector-based models and raster-based models. While the vector
data model is expressed by points, lines, and polygons, the raster data model
consists of grid cells or tessellations with each containing a value to describe an
attribute for the entire spatial domain [16]. In this study, we attempt to inte-
grate the representation spatial field into the data structure for moving objects
because moving fields are proposed for describing time-varying attributes of the
moving phenomena to be treated like individual objects such as the pressure of
hurricanes, density of air pollution area, and temperature of forest fires.

We divide moving objects into three subclasses: moving value, moving ge-
ometry, and moving field class types. The class MoValue for representing time-
varying values is the base class of moving boolean, moving integer, moving real,
and moving string instances. The class MoGeometry represents various types
of time-varying vector geometries like moving points, moving lines, and moving

418 K.-S. Kim and Y. Kiyoki

MoField

+domain(): MoGeometry
+range(): MoValue
+min(): MoValue
+max(): MoValue
+sum(): MoValue
+avg(): MoValue
+density(): MoValue
+variation(): MoValue
+clipping(mg: MoGeometry): MoField
+evaluate(p: Point): MoValue
+evaluateInverse(v: Value, condition: String): Set<MoGeometry>
+neighbors(p: Point, t: TimeInstant)
+correlation(mf: Moving Field): MoReal
+join(mf: MoField): MoField
+merge(mf: MovingFiled, op: OperationType): MoField

MObject

+beginTime(): TimeInstant
+endTime(): TimeInstant
+slice(t: TimeInstant): MObject
+section(from: TimeInstant, to: TimeInstant): MObject
+derivative(t: TimeInstant): Vector
+exist(t: TimeInstant): Boolean
+at(instance: Object): Set<Time>
+projection(): Object

MovingMethodType
<<enumeration>>

+Discrete
+Stepwise
+Linear
+HalfStepWise
+Complex
+UserDefined

CoverageMethodType
<<enumeration>>

+Null
+Linear
+Quadratic
+Bilinear
+Barycentric
+NearestNeighbor
+IDW
+Kriging

MoPointField MoCurveField

MoPolygonField

MoSurfaceField

MoTinFieldMoLineStringField

MoFieldCollection

MoGridField

UnitPointField UnitLineStringField UnitPolygonField UnitTinField UnitGridField

+unitElement 1..* +unitElement 1..* +unitElement 1..* +unitElement 1..* +unitElement 1..*

UnitField

+getValue(t: TimeInstant, p: Point): Value
+beginTime(): TimeInstant
+endTime(): TimeInstant

AmbiguityControlRuleType
<<enumeration>>

+average
+low
+high
+start
+end
+user

TemporalReferenceSystem

SpatialReferenceSystem

movingFunction

coverageFunction

commonPointRule

MoValue

MoGeometry

<<range>>

<<domain>>

Fig. 6. Class diagram of moving fields

polygons. They have already been defined and implemented through the work
of [4,5]. Therefore, we concentrated on the development of the data structures
for moving fields for describing time-varying field attributes of the moving phe-
nomena in this study. For the representation of fields, there are six different
spatial data models available: cell grids, polygons, TINs (triangulated irregular
networks), contour lines, point grids, and irregular points. Although each struc-
ture has its own strengths and weaknesses, we exclude the comparison among
these models and attempt to exploit some of models in this paper. Figure 6 shows
the moving field class (called by MoField), which is specified as the class Mo-
PointField, MoCurveField, MoSurfaceField, and MoFieldCollection, depending
on the type of domain geometry of moving phenomena. The class MoPointField is
a moving type of a spatial field consisting of irregular points, and MoLineString-
Field as the subclass of MoCurveField is a moving field type of contour lines. For
example, we can represent epidemics using MoPointField and weather fronts us-
ing MoLineStringField. However, usually moving phenomena appear with some
bounded regions such as floods, wildfires, and hurricanes. In this study, we are
devoted to concretize the representation of surface phenomena with MoSur-
faceField. The class MoSurfaceField has three subclass types–MoPolygonField,
MoTinField, and MoGridField–corresponding to polygons, TINs, and cell grids,

An Object-Field Perspective Data Model for Moving Geographic Phenomena 419

UnitPointField UnitLineStringField UnitPolygonField UnitTinField UnitGridField

UnitPointValue

+getPoint(t: TimeInstant): Point

+getValue(t: TimeInstant): Value

+coverageElement
*

UnitPolygonValue

+coverageElement *

UnitTriangleValue

+type

+getTriangle(t: TimeInstant): Triangle

+getValue(t: TimeInstant, p: Point): Value

UnitGridValue

+getLow(): MoPoint

+getHigh(): MoPoint

+getValue(i, j, t): Value

+coverageElement

*

+coverageElement *

UnitLineStringValue

+coverageElement *

UnitField

TPointValue

+time: TimeInstant

+pos: Coord

+val: Value

+samplePoint 2...*

+controlPosition 2...*

UnitLinearRingValue

+exterior

1

+interior 0..*

+controlPosition

3...*

+samplePoint

4

TGridMatrix

+low: Coord

+high: Coord

+col: Integer

+row: Integer

+values: Array<Value>

+time: TimeInstant

+getValue(i, j): Value

+sampleSnapshot
2

Fig. 7. Unit field-class types for coverage elements of moving fields

respectively. The principal idea of a moving field is that we can estimate the
locations and values at any time and any place using a set of explicit samples of
the moving phenomenon. For this reason, we need two interpolation functions to
reconstruct the moving phenomenon. One is a temporal interpolation function
to support the continuous movement, and the other is a spatial interpolation
function to evaluate field values with spatial continuity. The former function is
denoted by “moving function,” and the latter is the “coverage function” on the
class diagram of moving field types.

In order to create a moving field type, we take the sliced fragments of moving
objects as described by [4]. In the sliced representation, a moving type is com-
posed of unit moving types, and each unit moving type is defined by a pair of a
time interval and a unit function that offers the temporal interpolation method,
i.e., (timePeriod, unitFunction). This model allows us to retrieve the locations
where an object is located at an arbitrary time instance on the moving object
model. Therefore, we also design data structures for moving fields by the aggre-
gation of unit field types of (timePeriod, unitFieldFunction) except that our unit-
FieldFunction is associated with two interpolation methods as mentioned above.
Figure 7 illustrates the primitive unit field types to represent a moving field. The
unitFieldFunction is realized by the five classes of unit fields: UnitPointField,
UnitLineStringField, UnitPolygonField, UnitTinField, and UnitGridField, de-
pending on the interpolation methods. Each unit field respectively consists of
coverage elements as instances of UnitPointValue, UnitLineStringValue, Unit-
PolygonValue, UnitTriangleValue, and UnitGridValue. Finally, values of all units
are represented by sampling data at specific time instances. For example, each
instance of UnitPointValue and UnitTriangleValue needs two and four sampling
points with successive time instances, formed as (c, v, t), where c is a coordinate

420 K.-S. Kim and Y. Kiyoki

(a) Snapshots of the wind speed

field

(b) Continuous movement of the

wind speed field in space-time

Fig. 8. Example of a moving field within a typhoon area during its lifetime

as (x, y) for its latitude and longitude, v is a value of an attribute of the moving
phenomenon, and t is a time instance. In short, a moving field type is composed
of instances of a unit moving field type, and an instance of a unit moving field
type has explicit sampling data and moving and coverage interpolation methods.

Figure 8 demonstrates a moving field using real geo-observation data such as
pressure and wind speed acquired from weather stations and real track data of
historical typhoons. In particular, we work with MoTinField because triangular
irregular network (TIN) is a popular field model and is based on a set of points
and the linear interpolation. In addition, it is congruous to be absorbed in the
vector-based moving object model with the linear movement assumption. Figure
8(a) shows snapshots of wind speed sub-TINs around the eye of the typhoon.
Next, we created unit TIN fields between two successive sub-TINs. Finally, we
can obtain a moving field to show the movement of the hurricane and continuous
wind speed field in space-time, as shown by Figure 8(b).

6 Conclusion

Generally, a geographic phenomenon has both object-based and field-based prop-
erties in a spatiotemporal domain. In this paper, we have proposed a new data
model to represent moving objects containing continuous spatial fields, called
moving fields. It represents a spatiotemporal continuous field-based attribute of
an object, especially as its value range and domain vary every time depending
on the movement of the object. Further, we presented basic data structures on
the basis of the representation of spatial fields and moving objects to realize the
moving fields at the implementation level and showed an example of a moving
field based on the TIN model using the typhoon track and weather station data.
By developing the moving field, we can handle region-based moving phenomena
not only with geometric processing but also with numerical processing related to
correlations. For the future work, we will implement various moving-field types,
including raster models such as satellite images and operations in a current
database system.

An Object-Field Perspective Data Model for Moving Geographic Phenomena 421

References

1. Pelekis, N., Theodoulidis, B., Kopanakis, I., Theodoridis, Y.: Review of spatio-

temporal database models. The Knowledge Engineering Review 19(3), 235–274

(2004)

2. Sistla, A.P., Wolfson, O., Chamberlain, S., Dao, S.: Modeling and querying moving

objects. In: Proc. 13th International Conference on Data Engineering, pp. 422–432

(1997)

3. Praing, R., Schneider, M.: A universal abstract model for future movements of

moving objects. In: Proc. AGILE International Conference on Geographical Infor-

mation Systems, pp. 111–120 (2007)

4. Forlizzi, L., Güting, R.H., Nardelli, E., Schneider, M.: A data model and data struc-

tures for moving objects databases. In: Proc. 2000 ACM SIGMOD International

Conference on Management of Data, pp. 319–330 (2000)

5. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider,

M., Vazirgiannis, M.: A foundation for representing and querying moving objects.

ACM Transactions on Database Systems 25(1), 1–42 (2000)

6. Jin, P., Yue, L., Gong, Y.: A new approach to representing continuously moving

regions. In: Proc. 28th Annual International Computer Software and Applications

Conference, pp. 70–73 (2004)

7. Couclelis, H.: People manipulate objects (but cultivate fields): Beyond the raster-

vector debate in gis. In: Proc. International Conference GIS, pp. 65–77 (1992)

8. Tryfona, N.: Modeling phenomena in spatiotemporal databases: Desiderata and

solutions. In: Quirchmayr, G., Bench-Capon, T.J.M., Schweighofer, E. (eds.)

DEXA 1998. LNCS, vol. 1460, pp. 155–165. Springer, Heidelberg (1998)

9. Galton, A.: A formal theory of objects and fields. In: Proc. International Conference

on Spatial Information Theory, pp. 458–473 (2001)

10. Cova, T.J., Church, R.L., Goodchild, M.F.: Extending geographical representation

to include fields of spatial objects. International Journal of Geographical Informa-

tion Science 16(6), 509–532 (2002)

11. Laurini, R., Paolino, L., Sebillo, M., Tortora, G., Vitiello, G.: A spatial sql exten-

sion for continuous field querying. In: Proc. 28th Annual International Computer

Software and Applications Conference, pp. 78–81 (2004)

12. Duckham, M., Nittel, S., Worboys, M.: Monitoring dynamic spatial fields using re-

sponsive geosensor networks. In: Proc. 13th Annual ACM International Workshop

on Geographic Information Systems, pp. 51–60 (2005)

13. Kemp, K.: Environmental Modeling with GIS: A strategy for dealing with spatial

continuity. National Center for Geographic Information and Analysis, University

of California at Santa Barbara, Technical Report 93-3 (1993)

14. Galton, A.: Fields and objects in space, time, and space-time. Spatial Congnition

and Computation 4(1), 39–68 (2004)

15. Kim, K.-S., Zettsu, K., Kidawara, Y., Kiyoki, Y.: A field-based modeling approach

for historical disaster data. In: Proc. 2nd International Workshop on Knowledge

Cluster Systems, pp. 65–73 (2008)

16. Worboys, M., Duckham, M. (eds.): GIS: A Computing Perspective, 2nd edn.

CRC Press, Boca Raton (2004)

GRAMS3: An Efficient Framework for XML Structural
Similarity Search

Peisen Yuan1,2, Xiaoling Wang3, Chaofeng Sha1,2, Ming Gao1,2, and Aoying Zhou2,3

1 School of Computer Science, Fudan University, Shanghai 200433, P.R. China
2 Shanghai Key Laboratory of Intelligent Information Processing, Shanghai 200433, P.R. China

3 Shanghai Key Laboratory of Trustworthy Computing, Software Engineering Institute,
East China Normal University, Shanghai 200062, P.R. China

{peiseny,cfsha,mgao}@fudan.edu.cn,
{xlwang,ayzhou}@sei.ecnu.edu.cn

Abstract. Structural similarity search is a fundamental technology for XML data
management. However, existing methods do not scale well with large volume of
XML document. The pq-gram is an efficient way of extracting substructure from
the tree-structured data for approximate structural similarity search. In this paper,
we propose an effective framework GRAMS3 for evaluating structural similarity
of XML data. First pq-grams of XML document are extracted; then we study the
characteristics of pq-gram of XML and generate doc-gram vector using TGF-IGF
model for XML tree; finally we employ locality sensitive hashing for efficiently
structural similarity search of XML documents. An empirical study using both
synthetic and real datasets demonstrates the framework is efficient.

Keywords: pq-Gram, Structural Similarity, Locality Sensitive Hashing, XML
Document.

1 Introduction

XML has become a standard for data exchange with the web application development.
Efficient management for these tree-structured data is a basic demand. Structural simi-
larity search [1, 2, 3] over XML data is a fundamental technology for XML data man-
agement and search processing, which is related to data integration, XML classification
and clustering, data cleaning etc. Therefore structural similarity search on XML has
become an important research topic in database community recently.

XML is tree-structured data, its complex structure brings challenges for structural
similarity comparison. Researchers have proposed tree edit distance technique for struc-
ture comparing of tree-structured data. However, its time complexity for ordered tree
is O(n3) with O(n2) space cost and it’s NP-hard for unordered tree [4], where n is
the node number of the tree. Thus tree edit distance is time consuming for complex
structure XML document comparison.

Recently, approximate similarity has been proposed for tree structural similarity
comparison [5,6,7]. Augsten et al. [7] propose pq-gram with bag similarity in O(nlogn)
time complexity and O(n) space complexity for ordered tree data. Yang et al. [5] present

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 422–433, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

GRAMS3: An Efficient Framework for XML Structural Similarity Search 423

binary branch tree with L1 distance for the similarity comparing and Okura et al. [6]
propose q-gram for ordered unlabeled tree data with L1 distance metric.

However, one problem for XML structural similarity comparison is the need of deal-
ing with high-dimensional data. To solve the curse of dimensionality, new algorithms
need to be developed for efficiency. In this paper, a scalable and efficient pq-GRam-
based frAmework for XML Structural Similarity Search (GRAMS3) is proposed. We
employ pq-gram proposed in [7], which is flexible for XML data. Of course, our frame-
work can also be applied to other methods, such as [5]. To measure the characteristics
of pq-gram of XML tree, TGF-IGF model is proposed and cosine similarity is adopted
as the similarity metric. Furthermore, locality sensitive hashing and random projection
techniques are employed for dimension reduction for efficient search. Extensive exper-
iments are conducted to compare with other similarity metrics. The results indicate that
our approach is efficient and effective for XML structural similarity search.

The main contributions of this paper are briefly outlined as follows:

• A framework for XML structural similarity search GRAMS3 is
proposed.
• Observations of pq-gram of XML tree for XML structural comparison are pro-

posed.
• Based on the observations, the characteristics of pq-gram of XML tree are intro-

duced, which are measured by the TGF-IGF weight model.
• The locality sensitive hashing and random projection techniques are employed to

the solve the problem of curse of dimensionality for efficient search.
• Extensive experiments are conducted to demonstrate the effectiveness and

efficiency of our approach.

The rest of paper is organized as follows. Preliminaries are introduced in Section 2. In
Section 3, observations and TGF-IGF model are proposed. Architecture and algorithms
are presented in Section 4, and experiments evaluation are described in Section 5. We
summarize the related work in Section 6 and conclude the paper in Section 7.

2 Preliminaries

2.1 XML Model and pq-Gram

In this paper, the XML document is modeled as a rooted ordered labeled tree. In this
model, element nodes and attributes are considered as structural nodes, and the text
value and attribute value nodes are treated as text nodes. Only structural nodes are taken
into consideration as the structure of XML tree. The element tag and the attribute
name are considered as the node name.

The pq-gram [7] is a flexible way to extract the structural information from tree-
structured data. Therefore we employ pq-gram for XML structural similarity search.

According to [7], given a tree T and two integers p and q, an extended tree Tp,q is
built for T firstly. Fig.1 (1) is a tree of an XML document fragment of dblp dataset [8],
and Fig.1 (2) is the extended tree of T for p = 2 and q = 3. After building the extended
tree, pq-grams of tree T can be extracted by algorithm in [7]. The pq-gram is also called
tree-gram if not confused in this paper.

424 P. Yuan et al.

article

author yeartitle

T

(1) Tree

T2,3

(2) Extended Tree

*

*
*

*
*

* * * * * * * * *

(*,article,*,*,author)
(article,author,*,*,*)
(*,article,*,author,title)
(article,title,*,*,*)
(*,article,author,title,year)
(article,year,*,*,*)
(*,article,title,year,*)
(*,article,year,*,*)

(3) pq-gram Tuples of T

article

author title year

Fig. 1. Example tree and pq-gram tuple

2.2 Locality Sensitive Hashing and Random Projection

Locality Sensitive Hashing (LSH) is widely used in nearest neighbor search [9] for
high dimension data, similarity search [10] and clustering [11] etc.

LSH is a hash function family H defined on an object set O, which has a similarity
function sim : O×O → [0, 1]. The scheme of LSH is the hash function familyH with
a probability distribution D over the functions such that for two objects o1, o2 ∈ O, a
function h ∈ H is chosen according to D that satisfies

Prh∈H[h(o1) = h(o2)] = sim(o1, o2). (1)

Random Projection (RP) [12] is a method of LSH for dimensionality reduction, which
is a powerful tool designed for approximate the cosine distance. Given a collection of
objects which is represented by vectors with n dimensions, a random vector r is ran-
domly generated with each component randomly choosing from Gaussian distribution.
The hash function family of random projection is defined as :

hr(u) =
{

1 : if r · u ≥ 0;
0 : otherwise.

(2)

The process of random projection multiplies the matrix M ∈ R
n×d by a random matrix

R ∈ R
d×k (k � d) to generate a compact representation C = MR ∈ R

n×k. Vec-
tors in R

d×k are normalized with each component randomly choosing from Gaussian
distribution.

After projecting each vector into k bits, hamming distance of the bits vector can be
evaluated efficiently with much smaller memory and lower computation cost.

3 Observations and TGF-IGF Model

3.1 Observations

Data in the same XML document usually has the same DTD or schema, which leads the
XML document to be a wide-and-shallow tree with repeated tags in most cases. There-
fore, duplicate pq-grams are often occurred. However, XML document also includes the
optional elements, and they are important for comparing structural similarity. Whereas
the characteristic of pq-gram of the XML tree is similar with the keywords in the flat
document, different pq-grams should have distinct weight to differentiate the structure

GRAMS3: An Efficient Framework for XML Structural Similarity Search 425

b

c ed

b

c ed

a

T1

b

c ed

b

c ed

a

T2

b

c ed

b

c ed

b

c eu

a

T3

Fig. 2. An Example trees for observations

of XML document. Through the occurrences of some pq-grams may be small, they are
important to differentiate the structure.

Example 1. In Fig. 2, for p = 2, q = 3, tree T1 and T2 contain 20 and 29 pq-grams
respectively. However, cardinalities of their pq-gram sets are 12 and 13 respectively,
meaning that their pq-gram sets are almost the same with different frequency, though
they have different number of entities. This can also be seen from the Example 3. This
demonstrates that frequency of pq-gram is important to differentiate the XML tree struc-
ture. From this example, the first guideline of pq-gram for structural similarity compar-
ison is presented as follows.

Guideline 1. pq-Gram frequency of XML document tree is important for comparing
the structural similarity.

Example 2. From T1 and T3 in Fig. 2, for p = 2, q = 3, we get 20 pq-grams for each
tree, and they share 12 pq-grams. However there are 4 pq-grams {(a,b,*,c,u), (a,b,c,u,e),
(a,b,u,e,*), (b,u,*,*,*)} in tree T3 with minority frequency due to the node u, but these
4 pq-grams are important to differentiate the structure of T1 and T3. From this example,
the second guideline of pq-gram for structural similarity comparison is introduced.

Guideline 2. pq-Gram sparsity of XML document tree is also important for differenti-
ating the structural similarity.

After introducing the concept of pq-gram , pq-gram tuple and doc-gram vector are
presented as follows.

Definition 1. Let g be a pq-gram with the nodes N (g)= {n1,..., np,np+1,...,np+q}, where
ni is the i-th node in preorder traversal of the pq-gram subtree. The pq-gram tuple L∗(g)
= <l(n1),..., l(np), l(np+1),..., l(np+q)> is called label tuple of pq-gram g, where l(ni)
is the node name of the node ni.

Fig.1 (3) is the 2,3-gram tuples of the tree T . Assume the universe of pq-gram label
tuples of the corpus composes the alphabet set GU and it is sorted lexicographically.
Consequently, the structure of XML tree can be represented by a vector with dimen-
sion |GU |, with each entry of the vector is the frequency of the pq-grams in the XML
document, where |GU | is the cardinality of the set GU .

Definition 2. Let wi be the raw frequency of the pq-gram in the XML tree T , V (T, p, q)
= (w1,w2,...,w|GU |) is the pq-gram vector of T .

Example 3. In the example tree of Fig. 2, pq-gram vectors of 2,3-gram (1, 1, 1, 1, 0, 2,
2, 0, 2, 0, 2, 2, 0, 2, 2, 2, 0),(1, 1, 1, 1, 1, 3, 3, 0, 3, 0, 3, 3, 0, 3, 3, 3, 0) and (1, 1, 1, 1,
0, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1) are respective to T1, T2 and T3.

426 P. Yuan et al.

3.2 TGF-IGF

Based on the above observations, we propose Tree Gram Frequency and Inverse
pq-Gram Frequency(TGF and IGF for short respectively) to implement the above
guidelines for XML structural similarity comparison.

Definition 3. Let frequencyi,j be the raw frequency of pq-gram gi in the XML tree
Tj , the normalized Tree Gram Frequency(TGF) gi,j of pq-gram gi is given by

gi,j =
frequencyi,j∑
kfrequencyk,j

(3)

where
∑

kfrequencyk,j is the sum of all the pq-grams occurrences in the tree Tj .

TGF implements the first guideline, more frequent pq-gram has greater weight.

Definition 4. Let |T | be the total number of trees in the corpus and ti be the number of
trees which pq-gram gi appears, the Inverse pq-Gram Frequency (IGF) factor of gi is
defined as

igfi = log(1 +
|T |
ti

), (4)

The intuitive of IGF is that minority of pq-gram is also important for differentiating
XML structure, which materialize the second guideline. The weight of pq-gram gi in
XML tree tj is given by

wi,j = gi,j × igfi =
frequencyi,j∑
kfrequencyk,j

× log(1 +
|T |
ti

) (5)

Definition 5. The normalized pq-gram vector of Tj is a vector(w1j ,w2j ,...,w|GU |j), with
each dimension wij representing the normalized weight of the pq-gram defined in Eq.5.

After introducing the TGF-IGF model, cosine similarity can be adopted to measure
the similarity of XML, which is an effective metric in information retrieval [13]. Due
to the high dimension of pq-gram vector, the locality sensitive hashing technique is
used for efficiently evaluating. Then the problem of structural similarity search in high
dimensions is reduced into hamming distance evaluation in much lower dimensions.

4 System Architecture and Algorithms

4.1 System Architecture

The architecture of GRAMS3 is presented in Fig. 3. The preprocessing of GRAMS3 can
be divided into three steps. First, the XML documents are parsed and extracted into pq-
grams by the parser module using the algorithm in [7] . Second, the normalized doc-
gram vectors are constructed by the vector builder module for each document. Then
the vector sketch and inverted list module generates random vectors with Gauss dis-
tribution, computes the sketch for each doc-gram vector and builds the sketch inverted

GRAMS3: An Efficient Framework for XML Structural Similarity Search 427

XML CorpusXML CorpusXML Corpus Parser Module Vectors
Builder Vector Sketch and

Inverted List

Users

ResultsSearch

Fig. 3. Architecture of GRAMS3

index. Given a query Q, the result module retrieves the top-k results using the sketch
inverted list and output to the user at last.

Algorithms are introduced in the following section. Algorithm 1 generates a random
matrix from Gaussian distribution firstly. Then for each XML document, the pq-grams
are extracted and doc-gram vectors are built. Finally sketch inverted list is constructed
for the corpus. And the Algorithm 2 is used to deal with search processing.

4.2 Algorithms

Vector Sketch Algorithm. Algorithm 1 first generates a random matrix R ∈ R
d×k.

Each component of the vector of R is i.i.d from N(0,1) and each vector of the matrix R

Algorithm 1. Vector Sketch Algorithm
Input: XML corpus, parameters p and q
Output: Vector Sketch Inverted List(V SIL)
V = Φ; /*normalized vector of document*/1

generate a normalized random vector matrix R;2

foreach d ∈ corpus do3

extract pq-gram with the algorithm from [7];4

compute TGF and IGF for each tree-gram of document d ;5

construct vector v of pq-grams of document d ;6

V = V ∪ {v};7

SV = Φ /*Sketch Bits Stream Vectors*/8

foreach v ∈ V do9

foreach v′ ∈ R do10

h = v · v′;11

if h ≥ 0 then12

h = 1;13

else14

h = 0;15

BV ector.append(h);16

SV = SV ∪{BV ector};17

V SIL = BuildInvertedList(SV);18

return V SIL;19

428 P. Yuan et al.

is normalized (line 2). Then each XML document is parsed according to our model and
the pq-grams are extracted using Algorithm from [7](line 4).

After pq-gram extracting, doc-gram vectors of the corpus are built with TGF-IGF
model(line 5-7). Consequently the doc-gram matrix Mn×d is obtained, with each vector
of M is normalized. Subsequently, the vector sketch inverted list with random projection
for the corpus is built. For each doc-gram vector, the algorithm chooses random vectors
from R to calculate the inner product with hash function defined in Eq. 2, then appends
the hash result to the bits vector of the document(line 9-17).

Through random projection, each vector is represented as a bit vector {(0, 1)k} and
consequently the compact representation of doc-gram matrix Cn×k = Mn×d Rd×k is
obtained. Finally the inverted list for the sketch vectors is returned (line 18,19).

Search Algorithm. Give a query Q, the function getSketchV ector() first retrieves
the sketch vector of the query in the sketch inverted list. Then, it evaluates the hamming
distance with each bits vector in the sketch inverted list by sequential scanning (line
3-7). Finally, result list of top-k structural similarity XML documents are returned after
being sorted(line 8,9).

Algorithm 2. Structural Similarity Search
Input: Vector Sketch Inverted List V SIL, QueryQ
Output: Top-k list
Result = Φ;1

q′ = getSketchVector(Q);2

foreach v ∈ V SIL do3

hammingdist = computeHammingDistance(q ′, v);4

cosinesim = cos((1- hammingdist)× π);5

sim = (1+ cosinesim)/2 ;6

Result = Result ∪{sim};7

sort(Result);8

return top-k list;9

Complexity Analysis. Let |T | be the number of the XML trees in the corpus, |GU |
be the vector length of the corpus. The complexity of Algorithm 1 is analyzed as bel-
low. To compute the random matrix R (line 2), it costs O(|GU | × k). It costs O(|T |)
for extracting tree-gram and building normalized doc-gram vector (line 3-7). After gen-
erating normalized doc-gram vector, it costs O(|T | × |GU |) for sketch vector evalu-
ation. Thus the time complexity of Algorithm 1 is O(|T | × |GU |). For Algorithm 2,
it sequentially scans the sketch vector inverted list, thus it costs O(|T | × k), and the
sorting procedure costs O(|T | log |T |). Thus the time complexity of Algorithm 2 is
max{O(|T | × k), |T | log |T |}.

5 Experiments

Extensive experiments are conducted to compare the effectiveness and efficiency of the
TGF-IGF weighted cosine-based LSH similarity (CosineLSH for short) with different

GRAMS3: An Efficient Framework for XML Structural Similarity Search 429

similarity metrics used in [7,5]. First, the search quality is evaluated which is measured
by precision, recall, F -measure (denoted as P*R*F for simplicity) [13] and k-
precision. Second, experiments of the performance of GRAMS3 are conducted.

For the real data sets, the XML data from [8, 14] are used. As for the synthetic data
sets, 30 synthetic XML documents with the size from 100KB to 5MB are generated
with XMark [15] with the default DTD.

Due to experiment requirements, the data sets are divided into two parts. The first one
includes 596 documents, which is used to test the performance. The second includes
10 different kinds of data1, which aims at evaluating the k-precision against other
similarity metrics. For each document in the second group, noises are added randomly
with the proportion of 0.01, 0.05, 0.1, 0.15, 0.2, 0.25 of the total structural nodes of
the document. Consequently 70 documents are obtained in total including the original
ones.

5.1 Experiments Setup

All of the algorithms are implemented in Java SDK1.6 and run on Ubuntu 9.04 with
Intel duo core 2.33GHz processor, 2G main memory with 1G being allocated for JVM.
The default parameters of p and q are set to 2 and 3 respectively.

5.2 Search Quality

For search quality, experiments are divided into two groups. The first group is used to
measure the P*R*F of CosineLSH. The second one is used to measure the k-precision
of CosineLSH against other similarity metrics.

Group 1. In this group, the P*R*F of CosineLSH against the raw cosine(denoted for
RawCosine) are evaluated. Results of RawCosine are used as the baseline. The P*R*F
of 15 queries are evaluated with different project numbers and the average results are
shown in Fig. 4.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200 250 300

Pr
ec

is
io

n,
R

ec
al

l,F
-m

ea
su

re

Random Projection Number

Precision
Recall

F-measure

Fig. 4. P*R*F with random projection

1 These 10 kinds of data are: dblp, customer, mondial, OrdinaryIssue, Proceedings, reed, Sig-
modRecord, swissprot, Syn, treebank. Syn is the synthetic XML documents.

430 P. Yuan et al.

The x-axis of Fig. 4 represents the number of the random projection, and the y-
axis represents the P*R*F. The original dimension of doc-gram vector is 2962. Fig.
4 demonstrates that the P*R*F increase sharply with the random projection number
before 50. However, they become smooth after 150. This indicates that there exists a
threshold for balancing the P*R*F and the efficiency. For our experiments, the random
projection number can be chose from 100 to 150.

Group 2. In this group, the k-precision for five similarity metrics are evaluated: Raw-
Cosine [13], CosineLSH, set-based Jaccard similarity, bag-based [7] and L1 [5] simi-
larity metrics using the second datasets. The precision metric of k-precision is defined
as topr−k

k , where topr-k is relevant result in the top-k result list. Files without noise
in the second datasets are used for searching with k = 3, 5, 7. The average results of
k-precision are shown from Fig. 5a to Fig. 5d.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

top-3
top-5

top-7

K
-p

re
ci

si
on

Top-k

RawCosine
L1

Set Jaccard
CosineLSH

Bag

(a) p=1, q=2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

top-3
top-5

top-7

K
-p

re
ci

si
on

Top-k

RawCosine
L1

Set Jaccard
CosineLSH

Bag

(b) p=1, q=3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

top-3
top-5

top-7

K
-p

re
ci

si
on

Top-k

RawCosine
L1

Set Jaccard
CosineLSH

Bag

(c) p=2, q=3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

top-3
top-5

top-7

K
-p

re
ci

si
on

Top-k

RawCosine
L1

Set Jaccard
CosineLSH

Bag

(d) p=3, q=4

Fig. 5. top-k precision for different metrics and p, q

From Fig. 5a to Fig. 5d, two conclusions can be drawn. The first is that RawCosine
is better or on par with the other four similarity metrics, which indicates that TGF-IGF
model is effective for XML structural similarity search. The second is that CosineLSH
is even better than set-based with the increasing of k. These figures also show that
the k-precision of set-based Jaccard similarity is smaller than that of cosine-based,
bag-based and L1 metrics. The reason is that it misses the frequency and sparsity infor-
mation of the pq-grams.

GRAMS3: An Efficient Framework for XML Structural Similarity Search 431

5.3 Performance

As for the performance, sequential scan is used for similarity evaluation. Each query
is run 10 times and the average run time is used as the result. The processing time is
shown in Fig. 6 and Fig. 7, and the time unit is millisecond(ms). In Fig. 6, p, q and k
are set to 2, 3 and 100 respectively.

Fig. 6 demonstrates that the processing time of CosineLSH is only about 3.3% of
RawCosine metric and about 14% of set-based Jaccard similarity, far lower than that
of other similarity metrics aslo. This figure also shows that the processing time for Set-
based similarity metric is lower than L1 distance, and the bag metric takes the highest
time about 140 ms for each query. For a certain random projection k, Fig. 7 shows that
the processing time has little change with different p and q. Fig. 7 also indicates that
with the increasing of random projection number, the processing time increases linearly.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80

Pr
oc

es
si

ng
 T

im
e(

m
s)

Top k

CosineLSH
L1

Set Jaccard
RawCosine

Bag

Fig. 6. Time for different metrics

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300

Pr
oc

es
si

ng
 T

im
e(

m
s)

Random Project Number

2,3-gram
1,3-gram
1,2-gram
3,4-gram

Fig. 7. Time for random projection

In summary, the experimental evaluations of GRAMS3 show that (1) TGF-IGF with
RawCosine similarity has high quality for XML structural similarity search;
(2) CosineLSH is efficient and scales well for structural similarity search of XML
tree, which can greatly reduce search time comparing with other similarity metrics with
minute precision losing.

6 Related Work

Approximate tree structural comparison has been extensively studied and researchers
have proposed many approximate methods for XML structural comparison. One key
problem of approximate tree structural similarity evaluation is the method of extracting
the proper structural information.

Nierman et al. [16] propose a simple way of approximate structural similarity com-
puting by extracting node tag and set-based similarity. Due to structural information
being ignored, set-based tag similarity has a poor quality for comparing structural simi-
larity. Lian et al. [17] put forward edge matching method. They take the edge structure
into consideration, which is a more effective way due to the reason that it takes more
structural information into account. Path similarity method extracts the path set as the
structural information of the original XML tree [18]. Path similarity method provides

432 P. Yuan et al.

fairly high quality structural information. Recently, tree-gram based methods are pro-
posed to capture the structural similarity for ordered tree [7,5,6], which is becoming an
efficient and flexible way for tree data structural similarity evaluation.

Another key problem is the similarity metric. The mostly used similarity metrics
for tree similarity are set-based or bag-based [7, 19]. Distance-based dissimilarity as
a dual problem of similarity is frequently used for similarity computing, such as L1

distance [6,5]. However, the above methods either do not take the characteristics of the
XML or do not take the efficiency into account for large volume of document similarity
retrieving. Thus, we propose an efficient framework for structural similarity search of
XML documents.

7 Conclusion

In this paper, an efficient framework GRAMS3 is proposed for approximate XML struc-
tural similarity search with the pq-gram and locality sensitive hashing techniques. Two
important characteristics of pq-gram of XML are identified for structural comparison:
frequency and sparsity. To implement these two characteristics, TGF-IGF model is
proposed. Based on the TGF-IGF model, cosine similarity and the random projection
method are utilized to answer the query efficiently. Experiments show that GRAMS3

reduces search time greatly with minute precision losing.

Acknowledgments. This work is supported by NSFC grants (No. 60773075, No.
60925008 and No. 60903014), National Hi-Tech 863 program under grant
2009AA01Z149, 973 program (No. 2010CB328106), Shanghai International Cooper-
ation Fund Project (Project No.09530708400) and Shanghai Leading Academic Disci-
pline Project (No. B412).

References

1. Bertino, E., Guerrini, G., Mesiti, M.: A matching algorithm for measuring the structural
similarity between an XML document and a DTD and its applications. Information Sys-
tems 29(1), 23–46 (2004)

2. Viyanon, W., Madria, S.K., Bhowmick, S.S.: XML Data Integration Based on Content and
Structure Similarity Using Keys. In: OTM, pp. 484–493 (2008)

3. Tekli, J., Chbeir, R., Yetongnon, K.: An overview on XML similarity: background, current
trends and future directions. Computer Science Review 3(3), 151–173 (2009)

4. Jiang, T., Wang, L., Zhang, K.: Alignment of Trees-An Alternative to Tree Edit. In: CPM,
pp. 75–86 (1994)

5. Yang, R., Kalnis, P., Tung, A.K.H.: Similarity evaluation on tree-structured data. In: SIG-
MOD, pp. 754–765 (2005)

6. Okura, N., Hirata, K., Kuboyama, T., Harao, M.: The q-Gram Distance for Ordered Unla-
beled Trees. IEIC Technical Report, 105(273), 25–29 (2005)

7. Augsten, N., Böhlen, M., Gamper, J.: Approximate matching of hierarchical data using pq-
grams. In: VLDB, pp. 301–312 (2005)

8. UW XML Repository (2009),
http://www.cs.washington.edu/research/xmldatasets/

http://www.cs.washington.edu/research/xmldatasets/

GRAMS3: An Efficient Framework for XML Structural Similarity Search 433

9. Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Quality and efficiency in high dimensional nearest
neighbor search. In: SIGMOD, pp. 563–576 (2009)

10. Haghani, P., Michel, S., Aberer, K.: Distributed similarity search in high dimensions using
locality sensitive hashing. In: EDBT, pp. 744–755 (2009)

11. Haveliwala, T.H., Gionis, A., Indyk, P.: Scalable techniques for clustering the web. In:
WebDB, vol. 129, p. 134 (2000)

12. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. JACM 42(6), 1145 (1995)

13. Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval. Addison-Wesley, Reading
(1999)

14. Sigmod Record (2009),
http://www.sigmod.org/publications/sigmod-record/xml-edition

15. Xmark (2009), http://www.xml-benchmark.org/
16. Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents. In:

WebDB, pp. 61–66 (2002)
17. Lian, W., Cheung, D.W., Mamoulis, N., Yiu, S.M.: An efficient and scalable algorithm for

clustering XML documents by structure. In: TKDE, pp. 82–96 (2004)
18. Rafiei, D., Moise, D.L., Sun, D.: Finding Syntactic Similarities Between XML Documents.

In: ICDESA, pp. 512–516 (2006)
19. Augsten, N., Böhlen, M., Gamper, J.: The pq-Gram Distance between Ordered Labeled

Trees. TODS 35(1), 1–36 (2010)

http://www.sigmod.org/publications/sigmod-record/xml-edition
http://www.xml-benchmark.org/

An Asynchronous Message-Based Knowledge

Communication in a Ubiquitous Environment

Petri Rantanen, Pekka Sillberg, Hannu Jaakkola, and Takafumi Nakanishi

1 Tampere University of Technology (TUT),

Pohjoisranta 11 A, 28100 Pori, Finland

{petri.rantanen,pekka.sillberg,hannu.jaakkola}@tut.fi
2 National Institute of Information and Communications Technology (NICT),

3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0289, Japan

takafumi@nict.go.jp

Abstract. This paper presents the required operational logic for relay-

ing user requests from traditional Server/Client-based systems to services

or additional information sources that require asynchronous communica-

tions. The paper describes a simple syntax for user-generated messages

that can be used to determine where the messages should be forwarded.

The paper also explains how replies to these messages should be pro-

cessed. In the scope of this paper the Knowledge Grid works as the

external source of information, but the same principle could be applied

to any information source.

Keywords: IP-based alert message system, Knowledge grid, Message-

based System, Asynchronous communication.

1 Introduction

The original context of the topic discussed in this paper is management of disas-
ter related knowledge in connection with serious accidents and catastrophes. In
this kind of situation the availability of up-to-date information about the acci-
dent is important for the authorities as well as their opportunity to guide people
in the accident area to survive in exceptional circumstances. A fast reaction to
the situational knowledge is a precondition for successful rescue operations. It
provides an opportunity to limit financial losses and human suffering. In the
globalized world, major accidents and catastrophes are also becoming global –
involving citizens of several countries. As a result, the interest in rescue opera-
tions and information distribution is also global. In many cases even the access
to public knowledge – available on the Internet – is highly beneficial.

This paper is based on the long-term collaboration between the organizations
of the authors – Tampere University of Technology (Finland), and NICT and
Keio University (Japan). In addition, the research consortium covers partners
from Germany, the Czech Republic, and Indonesia. The purpose of the joint
research activity is to develop technologies and processes that improve the avail-
ability of knowledge in disasters. The kernel of this joint activity is the GRID

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 434–444, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Asynchronous Message-Based Knowledge Communication 435

based distributed knowledge management platform. This system has the capacity
to mine information items from public sources and authorities repositories, and
combine individual information items to create valid knowledge to be utilized in
the disaster context. Seamless – place, time, terminal independent, symmetric –
access to the sources of knowledge is recognized as vital. This is supported by the
Asynchronous Message-based Communication system that is being developed in
this joint research activity. The system is based on open protocols and provides
two-directional access between the terminals available in the disaster area and
the services provided by the connection server. The upward direction may be
utilized to transfer data, e.g. photos, data stream or measured data, from the
accident area to the authorities, and the downward direction may be utilized to
distribute information and guidance to the people in the accident area.

The wider context of the project related to this paper is the openness and
interoperability of information systems based on the ideas of the Service Ori-
ented Architecture (SOA) approach. It is based on standardized interfaces and
protocols and deep understanding of complex processes crossing organizational
borders. The inspiration for the project comes from the fact that every serious
accident and catastrophe demands coordinated collaboration between several
authorities that may also represent different nations and cultures. The knowl-
edge repositories of authorities – legacy systems – are typically closed, unable
to interoperate with each other and with open sources of knowledge. SOA-based
interfaces would provide a safe and easily implementable solution to this prob-
lem. The Asynchronous Message-based communication protocol further extends
access to registered service users using their mobile terminals to communicate
with the integrated service architecture.

This paper introduces the results of the joint Finnish-Japanese research activ-
ity. The focus of the paper is to describe the integration of the systems designed
and developed by the organizations of this paper’s authors. The purpose of the
integration is to promote the use of the both systems and act as a starting
point for developing more features between the systems. Chapter 2 opens the
discussion on the motivation to develop asynchronous message-based communi-
cation. Chapter 3 describes the IP-based message delivery system developed in
the earlier research. Chapter 4 gives an overview of the main components of the
extended system, Chapter 5 explains the operational logic of the system, and
Chapter 6 includes the summary of the research.

2 Why Asynchronous Message-Based Communication?

The nature of a Knowledge Grid query is that it is unknown beforehand how
long it will take. Processing the result may take any amount of time from a few
seconds to a very long time. Opening and keeping the request open to the service
provider until the result is received is not very efficient and ties up resources for
the whole length of the request. There are a few ways to build asynchronous Web
services to work around this issue. All listed methods have their own advantages
and disadvantages. [10]

436 P. Rantanen et al.

One of the approaches is to use one-way notifications between client and ser-
vice provider. Also a few variations of request/reply operations can be used.
The request/reply operations with polling requires the most simple client im-
plementation as it does not need its own Web service but requires the client
to implement the polling system to check the service provider periodically for
results. It may also require more than one request to retrieve the response if the
service provider has not yet completed the query. This approach provides a level
of decoupling but leaves the responsibility of retrieving the results to the client.

As the processing time of the Knowledge Grid query may be unknown, it might
be better to let the service provider handle the retrieval and sending of results.
Both one-way notification and a simple request/reply operation can be used.
The client is required to implement its own Web service, supply the endpoint
address of this service so the service provider can send the results and supply
correlation ID to identify the query. The disadvantages of this type of approach
are that it requires quite a large amount of implementation. Also there may be
difficulties for the service provider to reach the client when it needs to send the
results. On the other hand, if the client is already acting as a Web service for
someone else, typically most of the implementation, firewall configurations and
so on have already been done. The advantages are a high level of decoupling and
the fact that the client can just “fire and forget” the query and let the service
provider handle the sending of the results.

One of the possible scenarios for the system could be a traveler or tourist, who
uses the message delivery system for receiving travel news, advisories and alerts.
When the traveler encounters some event, he or she may want to report that
event to other users of the system. Also our traveler may want to know more
detailed information on this kind of event. In this case a new Knowledge Grid
query may be initiated. The data provided by the Knowledge Grid is background
data on the requested subject (and not for example situational awareness data
for an emergency), and as such a small delay in response is not critical. The
client software may also poll the feeds at some predefined time interval, which
means the information will not always be retrieved in real-time in either case.

3 IP-Based Knowledge Delivery System

The system described in this paper is based on the research published in paper
[2]. The paper proposes a system architecture that can be used to provide alert
messages to mobile and desktop clients using IP-based networks. The system
uses a traditional Client/Server architecture and secure server approach [1]. The
system offers two alternative messaging channels. The first messaging channel
is an SOAP-based [4] synchronous bi-directional communication between the
server and the client. The other channel is an Atom feed-based [3] information
resource that can be retrieved by any kind of client from proprietary custom
software to basic Really Simple Syndication (RSS) readers.

The fundamental idea of the system has been unaltered, but it has received
more functionality. The original system concept used RSS-feeds and other in-
formation sources provided by trusted parties as resources. Messages from these

An Asynchronous Message-Based Knowledge Communication 437

Knowledge
Grid

Asynchronous
data retrieval

Client

Synchronous
client/server−system

Atom + SOAP

Atom feed

Message
Server

Fig. 1. Communication overview

sources were added to Atom feeds provided by the server or sent directly to
clients depending on the use case. The system also offered the possibility for
clients to add additional information to existing feeds. In this paper the ap-
proach is extended by adding a Knowledge Grid as an additional resource. The
server has been added with the ability to process and respond to client generated
messages and to relay clients requests to server-known information sources. In
this paper, the designed server is called Message Server.

Figure 1 shows the Server/Client-system with the Knowledge Grid working
as an additional information resource. The right side of the figure shows the
communication between the clients and the Message Server. The feeds are pulled
by the clients at some pre-defined time interval using standard HTTP GET
commands and SOAP-messages are transferred using HTTP POST. In our use
cases, the clients are users, but they could as well be automated sensors or any
other kind of devices.

The original system proposal uses Common Alerting Protocol (CAP) [8] en-
capsulated in SOAP messages. CAP-messages are a standardized way for in-
forming and alerting in emergency situations, but may be cumbersome for more
casual messaging. Therefore we added a GeoRSS [5] extended Atom as a new
message type. Though GeoRSS has multiple variations [6][7] and is not an official
standard, we chose it because it is often used on the Internet and has a standard
way of presenting coordinate data [9]. For our experiments, GeoRSS is a good
starting point for testing of the system. Adding different kind of message types
should be quite easy based on our experience of adding the GeoRSS message
type. For more specific cases, a suitable message type should be created and
used for better communication and messaging.

The left side shows the asynchronous communication between the Message
Server and the Knowledge Grid. The communication is shown in the figure below
to give a complete overview of the designed system and is explained in more detail
in the following chapter.

4 Asynchronous Communication for a Knowledge-Based
System

One of the design goals of accessing Knowledge Grid was to clearly separate the
services of the Knowledge Grid and the Message Server. This approach has the

438 P. Rantanen et al.

Message ServerKnowlegde Grid
Grid Access

Gateway User queries

Fig. 2. Asynchronous communication

benefit of requiring both of the systems – Knowledge Grid and Message Server
– to implement only the common interface for communication. The systems can
be developed independently, and if needed the designed interfaces can be opened
to provide additional services to third party clients and servers.

Figure 2 shows an overview of asynchronous communication. The Knowledge
Grid and the implemented Grid Access Gateway which is needed to enable com-
munications with the Knowledge Grid and Message Server are shown in the
figure. These three components will be explained in more detail in the following
section. In our implementation, the Knowledge Grid functioned as the external
information source, but the same operational logic could be applied to any source
including possible third party systems.

4.1 Knowledge Grid

Recently, a wide variety of knowledge items have been created by using collabo-
rative environments in each community. Unfortunately, this knowledge is mainly
utilized only for sharing information resources within each community.

An event affects various aspects of an area, field, or community. For example,
in the case of a disaster, a secondary impact and secondary disaster may affect
other areas such as the environment, economy, and healthcare. In order to un-
derstand the arbitrary concept, it is important to transfer significant knowledge
related to accidental or irregular events to actual users from various knowledge
bases.

References [11,12,13] have proposed a Knowledge Grid, which provides an
infrastructure of acquisition, analysis, and delivery for knowledge sites. In par-
ticular, the interconnection method for knowledge bases has been presented by
references [12,13]. This method provides the interconnection of heterogeneous
knowledge based on the Knowledge Grid and representation of related concepts
in heterogeneous fields. It navigates to related contents in these heterogeneous
fields depending on the context. Furthermore, these knowledge bases that exist
independently can be used more effectively when arranged.

This method represents a lot of different concepts with contents over the
heterogeneous fields in a PC client. However, in the case of mobile devices, it is
difficult to represent these related contents provided by the method, because a

An Asynchronous Message-Based Knowledge Communication 439

mobile device does not have a screen large enough to represent a lot of various
related contents and the mobile user cannot wait for the computation of this
method.

In order to solve these issues, it is important to realize asynchronization com-
munications and the resulting delivery by streaming. It is necessary for mobile
users to push the halfway result at any time to deliver the results which have
been computed by deep analysis during a long processing time. A mobile device
can receive the halfway result at any time and it can be presented to the user
little by little. In this paper, we have developed asynchronized communication
for the interconnection computation of heterogeneous knowledge based on the
Knowledge Grid.

4.2 Grid Access Gateway

The Grid Access Gateway works as a common interface between the Message
Server and the Knowledge Grid. The Message Server and the Knowledge Grid
did not have mutually compatible interfaces, which meant that the design of a
middleware between the two systems was necessary. One option would have been
to change the interface of either the Knowledge Grid or the Message Server to
include compatibility with the other system, but we decided to couple the sys-
tems as loosely as possible. This approach allowed the gateway to be developed
separately, which also means that the gateway itself would work like any third
party system connected to a server.

In its current implementation, the only function of the gateway is to provide
simple message translation services. This means converting the messages for-
warded by the Message Server to the format understood by the Knowledge Grid
and vice versa. The Knowledge Grid messages – or more precisely replies to the
forwarded user queries – are converted to the client message format and sent
to the Message Server like any other message. In other words, the Grid Access
Gateway works like an additional service for the server and like a basic client
software.

4.3 Message Server

The original Message Server implementation functioned like a traditional web
server and used basic transactions when transferring information to and from
the clients. In a strict alert message relay this approach poses no problems, but
by itself it does not include internal logic to handle asynchronous data transfers.
In the case of an external information source that for some reason cannot send
immediate responses to requests this causes a problem. Our solution was not
to change the behavior of the Message Server, but to add to it a functionality
to recognize and forward to other services user queries that included messages
needing additional processing. This way the server could be kept as simple as
possible, but still enable enhanced functionality to clients using the server.

If the chosen design is used, there is no need for a separate server interface
for the responses of the forwarded queries. The receivers of the relayed requests

440 P. Rantanen et al.

can work as “clients” to the Message Server and send the responses as a normal
message. This message is then processed normally by the server and added to
a feed which can be read by other clients or forwarded to clients when needed.
Depending on the case, the messages can also be sent directly to clients by the
service that processed the request. The latter case will save server resources, but
on the other hand it may be easier for the users if they receive all the messages
from the same source, and that all the services seem to be offered by the same
party.

Relaying the requests also simplifies the addition of new services to the Mes-
sage Server as it is not necessary to modify the server to understand all the
possible different kinds of service responses. The downside of this approach is
that the responses that can be added to the servers feeds are limited to the mes-
sage types recognized by the server. For text-based information relay this should
not pose a problem, but for more complex data types – like video or audio –
a different approach must be taken. One possible solution could be to provide
a link to the data and host the content on another location, which would also
reduce the network load on the Message Server. Another option would be to
encode the data inside the XML using for example Multipurpose Internet Mail
Extensions (MIME).

5 Implementation and Usage Scenarios

In this implementation, encryption is not used by default. Encryption can be
enabled if required by the user, but as long as the messages are considered
to be casual user-to-user messages, encryption is not necessary. One possible
encryption method is for example Transport Layer Security/Secure Socket Layer
(TLS/SSL).

Accessing the data in external sources requires the user to type in the query
by using special markup recognized by the Message Server. The query can be
written to any message type (for example CAP or GeoRSS) and to any element
that is allowed by the type to have a clear text description. We chose to use
regular expressions to match and extract the query from the message. This
gives the possibility to define the query syntax flexibly. The following regular
expression is the currently used in our implementation:

Regular expression for matching and extracting the query

(\w|\-)+(\?\?)(\w|\s)+(\,(\w|\s)+)*\.

The syntax consists of five sections: target, double question marks, method,
parameter(s), and end sign. Basically target, method and parameter consist of
alphanumeric characters. In addition to this, the target may consist of character
“-”. The method and the parameter may additionally have whitespace charac-
ters. The target is always followed by double question marks. The target method
and parameters are separated with a comma, and the end sign is a period. An
example of a external query shown below:

An Asynchronous Message-Based Knowledge Communication 441

Example syntax for invoking external query

nict-kcs??article_query,EnvironmentNews,Tokyo,Hurricane.

Target in this example is “nict-kcs” and method is “article query”. After the
method there is three more parameters: context, place and keyword and values
are “EnvironmentNews”, “Tokyo” and “Hurricane” respectively. Interpretation
of the query would be that user wants NICT’s Knowledge Grid to provide some
kind of information (articles) about hurricanes around the Tokyo area in the
context of environment news.

To reduce the need for memorizing the full syntax, the user does not need to
fill in all the parameter(s) and can let the client or Message Server software fill
in the missing parameters. For example, if the full method call requires a target,
target method and parameters which are context, datetime, place and keyword,
the Server software could accept queries with only target, place and keyword.
The remainder of the required parameters would be filled in automatically using
default values. How and which parameters are requested from the user depends
on the service that needs to be invoked and on the client software used.

Based on the given target and the function, the Message Server can relay
the request to the actual service provider. The server itself does not process the
parameters. This way the server only needs a list of valid targets and their real
location, for example the IP address and the function that should be called on
the target. Based on the given information the server creates a simple SOAP-
encapsulated message targeted to the requested function. The message includes
the unprocessed parameters, unique identifier, URI, function and XML names-
pace information. The identifier can be used by the server to match service
responses to specific requests. The servers URI, function and namespace used by
the XML are provided to services in order to make returning the results possible.
Just like the messages between the server and the clients, the messages between
the server and the service providers can be encrypted when required.

5.1 Usage Scenarios

Information retrieval from the Knowledge Grid is divided into two phases, cre-
ating the Knowledge Grid query and receiving the results. Figure 3 shows a
simplified sequence diagram of creating a Knowledge Grid query. In fact, the
Knowledge Grid and the Grid Access Gateway shown in the figure are inter-
changeable as the user-made query can be directed to basically any other kind
of service. These use cases are applying the Knowledge Grid and the Article
query as an example. The users query is basically a query for the articles that
are related to the context and keywords that the user is interested in, hence the
terms “Article query” and “Article feed” which contains the results of the query.

The use case begins when the user creates a New message. This new message
is then added to the Message Server’s own feed database and can then be read by
other users. If the message contains the query syntax described in section 5, the
Message Server will then generate a corresponding query to the target specified
by the user. In this case, this is the Article query in the figure. The target of the

442 P. Rantanen et al.

New message

Article query

Grid query

Knowledge
Grid

Grid Access
Gateway

Update message
feed

Client
Message
Server

Fig. 3. Creating a new Knowledge Grid query

Fig. 4. Receiving the results of the Knowledge Grid query

query, the Knowledge Grid, has a Web service interface to provide the article
information. This is the target where the query should be sent by the Message
Server. When the Grid Access Gateway receives the query, it will create a Grid
query which starts processing on the Knowledge Grid.

The second use case – receiving the results of the Knowledge Grid query – is
shown in Figure 4. The Grid Access Gateway periodically checks for the status of
the grid query and, if the Knowledge Grid has processed the results, they will be
returned to the Grid Access Gateway. After this, the Grid Access Gateway will
add identification data to the result and send it back to the original caller. The
original caller may then process the information received, like in our example,
the update article feed. This phase will be repeated until the Knowledge Grid
announces to the Grid Access Gateway that there will be no more results.

Users may read the article feed at any point after the initial article query has
been made. At first the feed will be empty, but once the Knowledge Grid has
processed and returned some results, the feed will be updated and the items in
it will increase.

6 Summary

This paper presented a simple operational logic that allows connecting a syn-
chronous Client/Server system with an additional information source or service

An Asynchronous Message-Based Knowledge Communication 443

that requires asynchronous communications. The paper described the required
changes on the server side and the use cases involved in forwarding messages
from user queries to the Knowledge Grid and returning the replies to the users.
In the designed system, the Grid Access Gateway was used to transform message
formats between the Message Server and the Knowledge Grid.

In future research, the designed system – including the Message Server, Knowl-
edge Grid and client software – will be further modified to handle a wider range
of message types. The research will also concentrate more on general messaging
and less on pure alert message delivery. This will include researching the presen-
tation of Knowledge Grid data to an end user who is using a mobile device.

Acknowledgments

This work is partially funded by the Finnish Funding Agency for Technology
and Innovation (Tekes) Seamless Services and Mobile Connectivity in Disaster
Knowledge Management (SSMC/DDKM) research project and the Academy of
Finland UbiKnowS project. In SSCM/DDKM the work is based on the mem-
orandum of understanding – “mobile knowledge management architecture” be-
tween Tampere University of Technology (TUT) and the National Institute of
Information and Communications Technology (NICT).

References

1. Botterell, A.: An Advanced EAS Relay Network Using the Common Alerting Pro-

tocol, White Paper (2003)

2. Sillberg, P., Rantanen, P., Saari, M., Leppäniemi, J., Soini, J., Jaakkola, H.: To-

wards an IP Based Alert Message Delivery System. In: Information Systems for

Crisis Response and Management Conference, Gothenburg, Sweden (2009)

3. The Atom Syndication Format, RFC 4287,

http://www.ietf.org/rfc/rfc4287.txt

4. SOAP Version 1.2, W3C Recommendation (April 27, 2007),

http://www.w3.org/TR/soap12

5. GeoRSS Wiki, http://www.georss.org/

6. GeoRSS encodings, GeoRSS Wiki, http://www.georss.org/Encodings

7. W3C Geospatial Vocabularity, W3C Incubator Group Report October 23 (2007),

http://www.w3.org/2005/Incubator/geo/XGR-geo-20071023/

8. Common Alerting Protocol v1.1, OASIS Emergency Management TC,

http://www.oasisopen.org/committees/download.php/

14759/emergency-CAPv1.1.pdf

9. World Geodetic System 84 (WGS 84), Implementation manual, version 2.4, World

Geodetic System (1998)

10. IBM Developer Works, Asynchronous operations and Web services, Part 2,

http://www.ibm.com/developerworks/webservices/library/ws-asynch2

11. Zettsu, K., Nakanishi, T., Iwazume, M., Kidawara, Y., Kiyoki, Y.: Knowledge

Cluster Systems for Knowledge Sharing. In: Analysis and Delivery among Remote

Sites, Information Modelling and Knowledge Bases, vol. 19, pp. 282–289. IOS Press,

Amsterdam (2008)

http://www.ietf.org/rfc/rfc4287.txt
http://www.w3.org/TR/soap12
http://www.georss.org/
http://www.georss.org/Encodings
http://www.w3.org/2005/Incubator/geo/XGR-geo-20071023/
http://www.oasisopen.org/committees/download.php/14759/emergency-CAPv1.1.pdf
http://www.oasisopen.org/committees/download.php/14759/emergency-CAPv1.1.pdf
http://www.ibm.com/developerworks/webservices/library/ws-asynch2

444 P. Rantanen et al.

12. Nakanishi, T., Zettsu, K., Kidawara, Y., Kiyoki, Y.: Towards Interconnective Knowl-

edge Sharing and Provision for Disaster Information Systems -Approaching to

Sidoarjo Mudflow Disaster in Indonesia. In: Proc. of The 3rd Information and Com-

munication Technology Seminar (ICTS 2007), Surabaya, Indonesia, pp. 332–339

(2007)

13. Nakanishi, T., Zettsu, K., Kidawara, Y., Kiyoki, Y.: Approaching to Interconnec-

tion of Heterogeneous Knowledge Bases on a Knowledge Grid. In: Proc. of The

International Conference on Semantics, Knowledge and Grid (SKG 2008), Beijing,

China, pp. 71–78 (2008)

Providing Scalable Data Services in Ubiquitous
Networks

Tanu Malik1,�, Raghvendra Prasad2, Sanket Patil3,
Amitabh Chaudhary4, and Venkat Venkatasubramanian5

1 Cyber Center
2 Dept. of Computer Science

Purdue University, USA
3 Dept. of Computer Science

IIIT, Bangalore, India
4 Dept. of Computer Science and Enggineering

University of Notre Dame, USA
5 School of Chemical Engineering

Purdue University, USA
tmalik@cs.purdue.edu

Abstract. Topology is a fundamental part of a network that governs connectivity
between nodes, the amount of data flow and the efficiency of data flow between
nodes. In traditional networks, due to physical limitations, topology remains static
for the course of the network operation. Ubiquitous data networks (UDNs), alter-
natively, are more adaptive and can be configured for changes in their topology.
This flexibility in controlling their topology makes them very appealing and an at-
tractive medium for supporting “anywhere, any place” communication. However,
it raises the problem of designing a dynamic topology. The dynamic topology de-
sign problem is of particular interest to application service providers who need to
provide cost-effective data services on a ubiquitous network. In this paper we de-
scribe algorithms that decide when and how the topology should be reconfigured
in response to a change in the data communication requirements of the network.
In particular, we describe and compare a greedy algorithm, which is often used
for topology reconfiguration, with a non-greedy algorithm based on metrical task
systems. Experiments show the algorithm based on metrical task system has com-
parable performance to the greedy algorithm at a much lower reconfiguration cost.

1 Introduction

In the vision of pervasive computing, users will exchange information and control their
environments from anywhere using various wireline/wireless networks and computing
devices [1]. Although such a definition of pervasive computing is very appealing to
users, it has been reported that the technological path for building such an anytime,
anywhere networking environment is less clear [2]. A primary technical issue is the
configuration of the topology between nodes and devices [3], [2]. Traditional comput-
ing environments such as the Internet, the native routing infrastructure is fixed and the

� Contact Author.

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 445–457, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

446 T. Malik et al.

topology is predominantly static. However in large-scale pervasive computing environ-
ments, the topology is mostly deployed and maintained by application service providers
(ASPs) who contract with underlying ISPs and buy network bandwidth between nodes
to provide value-added network services to end-systems. Thus they can maintain a more
dynamic and flexible topology.

We are interested in understanding how and when a topology should be configured
in order to support distributed data management services. These services can be in the
form of replica or a caching service provided by an ASP in which nodes (both wired and
wireless) acquire and disseminate data. In a pervasive computing environment, config-
uring a topology to support such a distributed data service can be challenging. Firstly,
nodes and devices have limited resources [1]. The resource limitation is often due to
restricted buffer sizes and storage capacities at nodes, limited bandwidth availability
between nodes or limited number of network connections that a node can support. An
optimal usage of limited resources requires a topology design that routes the flow of data
through most cost-efficient paths. Secondly, the data communication pattern of clients
may change drastically over time [1], [3]. This may require a topology that quickly
adapts to the change in data requirements.

While the flexibility of reconfiguring a topology as data communication patterns
change is essential, reconfiguring a topology every time a communication pattern changes
may not be beneficial. Changing network topology is not cost-free: it incurs both man-
agement overhead as well as potential disruption of end-to-end flows. Additionally, data
in transit may get lost, delayed, or erroneously routed. In the presence of these costs,
it might be useful to monitor changes in the communication pattern at for every query
request but the topology should only be changed if the long term benefits of making a
change justifies the cost of the change.

In this paper, we are most interested in the dynamic topology design problem, i.e.,
the problem of determining how and when to reconfigure a topology in a resource-
constrained pervasive computing environment in which data communication patterns
change dynamically. We describe this problem in Section 3. In Sections 3.1 and 3.2
respectively, we describe the operational costs of satisfying a demand pattern in a given
topology and the cost of reconfiguring between two topologies. To calculate operational
costs on a graph, we describe a linear-programming based solution.

In Section 4, we describe the algorithms that decides when and how to reconfigure.
We first describe a greedy algorithm, which is a natural, first-order algorithm that one
would choose for deciding when to reconfigure. We then describe a non-greedy algo-
rithm based on metrical task systems [4]. Task systems are general systems that capture
the cost of reconfiguration between two states in addition to the cost of satisfying a
given demand in a given state. By including the reconfiguration cost the system pre-
vents oscillations into states that are sub-optimal in the long run. The distinguishing
part is that task system based algorithms require no statistical modeling or aggregation
of the communication requirements from the service provider. This lack of making any
assumptions about how the communication requirements may change over time allows
the algorithm to provide a minimum level of guarantee of adapting to changes in the
communication requirement. Greedy algorithms on the other hand are heuristic and
provide no theoretical evidence or a systematic way of understanding when to change

Providing Scalable Data Services in Ubiquitous Networks 447

a topology. We evaluate the performance of all algorithms in Section 5 and conclude in
Section 6.

2 Related Work

The topology design problem has received significant interest in large information sys-
tems such as optical networks, data-centric peer-to-peer networks, and more recently
complex networks. In these systems the objective is to design an optimal topology un-
der arbitrary optimality requirements of efficiency, cost, balance of load on the servers
and robustness to failures. The design of an optimal topology is obtained by deriving
these measures from past usage patterns and then using network simulation to obtain an
optimal topology. Such simulations, extensively described in [5], [6], are often based on
neural networks and genetic algorithms and in which optimal topologies are obtained
after executing the software for several hours. The premise is that once an optimal
topology is chosen then it will remain static for the duration of the network operation.

In most adaptive networks such as ubiquitous networks [1] and overlay networks
[7], communication pattens vary so significantly that it is often difficult to obtain an
representative usage pattern to perform a simulation. In the past [6], research proposed
to perform simulation repeatedly to obtain an optimal topology and the system recon-
figures itself. However, in these systems communication patterns are aggregated over
large time scales and the reconfiguration is slow. Recently [8] adaptive networks have
focused on auto-configuration [9] in which systems self-monitor the communication
requirements and reconfigure the topology when communication patterns change dras-
tically. The dynamic topology problem has been recently studied in the context of over-
lay networks in which topologies can be designed either in the favor of native networks,
which improves performance or the ultimate customers which reduces the operation
cost of the whole system [10]. While our problem is similar to theirs, our context and
cost metrics are different: We study the dynamic topology problem in the context of
ubiquitous environment in which nodes and devices have limited resources and com-
munication requirements change arbitrarily.

Given an optimal topology and a stable communication pattern, the problem of de-
termining how to use the edges of the topology such that the cost of using the topology
is minimized is itself an intractable problem. Several versions of the problem have been
studied in computer networks under the class of multi-commodity flow problems [11],
[10]. In this paper, for simplicity, we have restricted ourselves to single commodity
flows [12] which is a suitable model when considering communication requirements
over a set of replica nodes. Our primary focus is to understand how to adaptively move
between optimal topologies when communication patterns change dynamically.

3 Minimizing the Cost of Data Sharing in a UDN

We consider a ubiquitous computing environment established by an application service
provider to provide data sharing services across the network. The provider, strategically,
places replicas on the network to disseminate data. Clients (which can be wired or
wireless) make connections to one of the replicas and send queries to it. The query

448 T. Malik et al.

results in a variable amount of data being transfered from the replica to the client.
Query results are routed according to the topology of the network. The application
service provider pays for the usage of the network, i.e., the total amount of data that
passes through the network per unit of time. The service provider would like to use
those edges of the topology through which the cost of transferring the data is minimized
subject to data flow constraints over the network. We now state the problem formally.

Let the topology, T , be represented by a graph G = (V, E) in which V denotes the
set of all nodes in the network and E denotes the set of all edges. Let there be P replicas
and C clients on the network such that P ∪ C ⊆ V and P ∩ C = ∅. Each edge e ∈ E
in the topology T has a cost ce which is the cost of sending unit data (1 byte) through
each pair of nodes. Let be denote the maximum amount of bytes that can be sent on any
edge. Each client, Ci receives an online sequence of queries σCi = (q1, . . . , qn). The
data requirement of each query, qi, is assumed equivalent to its result size. We denote
the data communication requirements of all clients by σ = (σCi , . . . , σCM).

A topology T is chosen from a feasible set of topologies. Given |V | nodes, theoret-
ically, there are a total of 2|V |(|V |−1)/2 possible topologies. However, not all of these
topologies are desirable in practice. A topology is usually required to be connected so
that every node remains in contact with the rest of the network. In addition a topology
may be either symmetric (regular graph) or scale-free [13]. In a symmetric topology
nodes have nearly identical degree distributions and share uniform load. In scale-free
topologies some of the nodes act as “super nodes” and have a relatively larger load than
other nodes. Scale-free topologies have increasingly been shown to be a better design
choice for peer-to-peer data networks [6], [5]. To take into account the effect of sym-
metric and scale-free topologies, we assign a factor, ρ ∈ [0, 1], for a topology which
measures the skew in degree distribution [6]. ρ is defined as:

ρ = 1− |V | (p̂− p̄)
(|V | − 1)(|V | − 2)

(1)

in which p̂ is the maximum degree in the graph and p̄ is the average degree of the graph.
Thus ρ is 0 for a scale-free topology such as a star and 1 for a symmetric topology such
as a circle. We denote the set of all feasible topologies, which have a given ρ, by 0-1
adjacency matrices Tρ = T1, T2, . . . , TN .

Finally, a topology reconfiguration algorithm is the sequence of topologies T =
(T1, . . . , Tn), Ti ∈ T used by the UDN over time in response to the communication
requirement, σ, changing over time. The total cost is defined as

cost(σ, T) =
n∑

i=1

σ(Ti) +
n−1∑
i=0

d(Ti, Ti+1), (2)

in which the first term is the sum of costs of satisfying data requirement of all clients
σ under the corresponding topology and the second term is the sum of costs of tran-
sitioning between topologies in T . In the first term costs under a given topology are
calculated under the assumption that data communication pattern remains static. The
second term is the cost of reconfiguring a topology. Note, if Ti+1 = Ti there is no real
change in the topology schedule and incurred reconfiguration cost is zero.

Providing Scalable Data Services in Ubiquitous Networks 449

The total cost equation is minimized by an algorithm which generates the best topol-
ogy schedule T . This requires an algorithm to identify when demand characteristics
have changed significantly such that the current physical design is no longer optimal
and choosing a new topology such that excessive costs are not incurred in moving from
the current topology, relative to the benefit. An offline algorithm that knows the en-
tire σ obtains a configuration schedule S with the minimum cost and is optimal. An
adaptive algorithm, determines T = (T0, ..., Tn) without seeing the complete workload
σ = (q1, ..., qn) and works in an online fashion. We first describe the cost estimation
functions which can be used by any algorithm and then describe algorithms which de-
cide when and how to configure.

3.1 The Topology Problem under Static Communication Pattern

When the data communication pattern is static, the system will remain in that topology
that minimizes the cost of satisfying the pattern. We describe a linear-programming
based solution for measuring the cost of satisfying a data communication pattern over
a given topology. Given an edge in a topology T , recall that the cost of flowing a unit
amount of data through that edge is ce and the maximum amount of bytes that can be
sent on any edge is be. If fe is the amount of bytes that flow through this edge in order
to satisfy the communication requirement at a client, then the overall cost to support
communication requirement of all clients is the cost of flowing data through all the
edges which is defined as ∑

e∈E

|fe| .ce (3)

This cost must be minimized to subject to the following constraints:

– The flow in an edge should not exceed its capacity and there is no excess reverse
flow in an edge.

∀e = (u, v) ∈ E : fu,v = −fv,u and |fe| ≤ be (4)

– The replica nodes do not request data.

∀p ∈ P, ∀ u ∈ neighbors of p : fu,p ≤ 0 (5)

– If the communication requirement at each client is static and equals σCi then the
entire requirement is satisfied:

∀c ∈ C :
∑

u∈ neighbors of c

fu,c = σCi (6)

– The skew in the flow of data should correspond to the skew in the topology ρ. For
this, we also restrict the number of bytes passing through each node bu, u ∈ V .

ρ = max(bu)−
∑

u bu

|V | , (7)

where ∀u ∈ V : bu =
∑

v∈neighbor of u|fvu|
2

450 T. Malik et al.

If the data were routed through using minimum-operation-cost paths, the static topol-
ogy design problem is the problem of finding a topology T , under the constraints of
connectivity and degree-bound, that can minimize the cost in Equation 3 for a com-
munication requirement σ that remains constant over time. We term such a topology,
optimal-static topology for σ, and denote it by T ∗(σ). Similar to most other topolog-
ical design problems, the static topology design problem can be modeled as a linear
programming problem and can be solved efficiently in the worst case.

3.2 The Reconfiguration Cost

Every time the system reconfigures its topology to adapt to changes in communica-
tion requirements, a reconfiguration cost is incurred. This cost is the overhead or the
impairment to performance incurred by the transition from one topology to another.
Various costs could be incurred during a topology reconfiguration, depending on the
implementation details of the UDN. For example, establishing and changing links in-
curs control and management overhead which can be translated to energy costs in a
wireless network or costs paid to ISPs in a wired network or a combination of both in
wired/wireless setting [8]. Any fraction of data in transit during topology reconfigura-
tion is subject to routing disturbance leading to a rerouting overhead. Depending on
the UDN implementation, when topologies change, data in transit may wander through
a path with a high operation cost. Finally, rerouting overhead can be magnified at the
end-systems.

In this paper, we assume reconfiguration costs as the cost of auto-configuring the en-
tire network. Configuring a network involves first establishing basic IP-level parameters
such as IP addresses and addresses of key servers and then automatic distribution of
these IP configuration parameters in the entire network [9]. In the wired networking en-
vironment, protocols such as Dynamic Host Configuration Protocol (DHCP) [14] and
Mobile IP [15] can configure individual hosts. In the pervasive environments, Dynamic
Configuration Distribution Protocol (DCDP) is a popular protocol for auto-configuration
[2]. In DCDP, auto-configuration is done by recursively splitting the address pool down
a spanning tree formed out of the graph topology. Thus the total configuration cost of
the network is essentially proportional to the height of the spanning tree. A general ap-
proximate measure for the reconfiguration cost is the total number of links that need to
be changed during a transition

d(Told, Tnew) =
∑

W.(g(Told) + g(Tnew)) (8)

in which g(·) is the auto-configuration cost and is proportional to the height of the
spanning tree in each topology and W is weight parameter that converts this cost in
terms of operation costs.

4 The Topology Reconfiguration Problem with Dynamic Data
Requirements

In a real-world, client nodes receive a sequence, σ, of queries, in which the size of the
query result differs. Thus the amount of data delivered from the replica to the client

Providing Scalable Data Services in Ubiquitous Networks 451

changes over time. In such a dynamic scenario no one topology remains optimal and
a reconfiguration of topology is needed. In this section, we first describe a greedy al-
gorithm which specifies when the topology should be reconfigured by looking at the
past workload. We consider several variations of this algorithm by considering different
lengths of consideration of the past period. In several environments, request for data is
bursty in that arbitrarily large amounts of data are requested over short periods of time.
For such environments, it is difficult to ascertain the length of the past period precisely.
We describe a more conservative algorithm based on metrical task systems [4]. Algo-
rithms in task systems achieve a minimum level of performance for any workload and
provide guarantees on the total cost of satisfying data demands and making transitions.

Greedy Algorithm: Such an algorithm chooses between neighboring topologies greed-
ily. The current topology ranks its neighboring topologies based on past costs of the
communication requirement in the other topologies. The algorithm keeps track of the
cumulative penalty of remaining in the current topology relative to every other neigh-
boring topology for each incoming data demand. A transition is made once the algo-
rithm observes that the benefit of a new configuration exceeds a threshold. The threshold
is defined as the sum of the costs of the most recent transition and next transition that
needs to be made. There are various policies of choosing the length of the past interval:

– A reactive policy: The system transitions to another topology every time the cost
of satisfying the demand in the current topology is higher than the sum of cost of
transitioning and the cost of satisfying the demand in another topology. Thus the
system may potentially transition on every input of the demand request.

– A lazy policy: The system is slow in transitioning in that it waits for a delta period
before deciding to transition to another topology. Thus the system transitions to
another topology when the total cost of satisfying demand in a δ period is lower
than the cost of transitioning and satisfying it in the current topology. The reactive
and lazy policies are memoryless in that the policy does not take into account the
past demand patterns.

– An averaging policy: This policy remembers the demand pattern by considering a
demand that is averaged over several δ periods using a weighting scheme. The sys-
tem switches to that topology which has the lowest cost of executing the averaged
demand.

A conservative algorithm: Our conservative policy is based on task systems [4]. We
first consider a task system in which there are only two possible toplogies. A conserva-
tive algorithm in such a system works similar to the algorithm for the online ski-rental
problem. A skier, who doesn’t own skis, needs to decide before every skiing trip that she
makes whether she should rent skis for the trip or buy them. If she decides to buy skis,
she will not have to rent for this or any future trips. Unfortunately, she doesn’t know
how many ski trips she will make in future, if any. A well known on-line algorithm for
this problem is rent skis as long as the total paid in rental costs does not match or exceed
the purchase cost, then buy for the next trip. Irrespective of the number of future trips,
the cost incurred by this online algorithm is at most twice of the cost incurred by the
optimal offline algorithm. If there were only two topologies and the cost function d(·)

452 T. Malik et al.

satisfies symmetry, the reconfiguration problem will be nearly identical to online ski
rental. Staying in the current topology corresponds to renting skis and transitioning to
another topology corresponds to buying skis. Since the algorithm can start a ski-rental
in any of the states, it can be argued that this leads to an conservative policy on two
states that costs no more than four times the offline optimal.

When there are more than two topologies the key issue is to decide which topology to
compare with the current one. This will establish a correspondence with the online ski
rental problem. A well-known algorithm for the N -state task system is by Borodin et.
al. [4]. Their algorithm assumes the state space of all topologies to form a metric which
allows them to define a traversal over N topologies. We show that our reconfiguration
function is indeed a metric function and then describe the algorithm.

To form a metric space, the reconfiguration function should satisfy the following
properties:

– d(Ti, Tj) ≥ 0, ∀i = j, Ti, Tj ∈ T (positivity),
– d(Ti, Ti) = 0, ∀i ∈ T (reflexivity),
– d(Ti, Tj) + d(Tj , Tk) ≥ d(Ti, Tk), ∀ Ti, Tj, Tk ∈ T (triangle inequality), and
– d(Ti, Tj) = d(Tj , Ti), ∀ Ti, Tj ∈ T (symmetry).

In our case the reconfiguration function d(·) depends upon the sum of reconfiguration
costs in the old (Ti) and the new topology (Tj). Reconfiguration costs are primarily
determined by the height of spanning tree over the topologies 3.2 and thus satisfy all
the above properties.

When the costs are symmetrical, Borodin et. al. [4] use components instead of
configurations to perform an online ski rental. In particular their algorithm recursively
traverses one component until the query execution cost incurred in that component is
approximately that of moving to the other component, moving to the other component
and traversing it (recursively), returning to the first component (and completing the

Input: Graph: G′(V, E) with weights corresponding to d(·), Query Sequence: σ
Output: Vertex Sequence to process σ(t): u0, u1, . . .
Let B(V, E) be the graph G′ modified s.t. ∀(u, v) ∈ E weight dB(u, v)← d′

G(u, v)

rounded to next highest power of 2;
Let F be a minimum spanning tree on B;
T ← traversal(F);
u← S0;
while there is a query q to process do

c← q(u);
Let v be the node after u in T ;
while c ≥ dB(u, v) do

c← c− dB(u, v);
u← v;
v ← the node after v in T ;

end
Process q in u;

end

Algorithm 1. A Task System-based Algorithm

Providing Scalable Data Services in Ubiquitous Networks 453

Input: Tree: F (V, E)

Output: Traversal for F : T
if E = {} then
T ← {};

else if E = {(u, v)} then
Return T : Start at u, traverse to v, traverse back to u;

else
Let (u, v) be a maximum weight edge in E, with weight 2M ;
On removing (u, v) let the resulting trees be F1(V1, E1) and F2(V2, E2), where
u ∈ V1, and v ∈ V2;
Let maximum weight edges in E1 and E2 have weights 2M1 and 2M2 respectively;
T1 ← traversal(F1);
T2 ← traversal(F2);
Return T : Start at u, follow T1 2M−M1 times, traverse (u, v), follow T2 2M−M2

times, traverse (v, u);
end

Algorithm 2. traversal(F)

cycle) and so on. To determine components, they consider a complete, undirected graph
G′(V, E) on T in which V represents the set of all configurations, E represents the
transitions, and the edge weights are the transition costs. By fixing a minimum span-
ning tree (MST) on G′, components are recursively determined by pick the maximum
weight edge, say (u, v), in the MST, removing it from the MST. This partitions all the
configurations into two smaller components and the MST into two smaller trees. The
traversal is defined in Algorithm 2. In [16], the algorithm is shown to have a perfor-
mance that is atmost 8(N − 1) worse than the performance of an offline algorithm (one
that has complete knowledge of σ).

5 Experiments

Our current objective is to get a validation of our policies and algorithms through a sim-
ulated environment. Thus while our set-up is a representation of a real-world pervasive
environment, doing experiments with real data is part of future work. Our setup simu-
lates a replica environment with 10 replicas and a large number of clients i.e., 40 and
90. Thus the total number of nodes, |V |, is 50 and 100. To determine the feasible set of
topologies that are connected and have a given skew in degree distribution, ρ, we adopt
the following procedure: For a given graph, we fix the maximum node degree p̂ and
the average degree of the graph, p̄. This determines the acceptable skew in the degree
distribution. We input different values of N , p̂, and p̄ as parameters to a random graph
generator and generate a large number of initial graphs. The generated graphs have no
self-loops. In addition, graphs that are disconnected are filtered out as well as graphs
that have nodes with less than p̄ degree. We assign a cost matrix and an edge capacity
matrix with each topology. We choose a set of 100 feasible topologies with a ρ of 0.9.
The cost values and the edge capacity values are random values chosen in the range of
[100,150] and [50,80] respectively.

The clients receive an on-line query sequence in which each query results in d
amount of data from the replica. We are not concerned with the actual syntax of the

454 T. Malik et al.

query but the amount of data it generates on the network. We generate the demand se-
quence at each client from a normal distribution in which the mean changes as a Markov
process. In particular, the change in the value of the mean is done after fixed number
of time steps and the change in the value is done using a standard exponential mov-
ing average. To model the real world pervasive environment, each client also receives a
burst in its demand modeled by a sudden impulse generated randomly for each client.
Finally, a sequence of 20,000 events is generated in which data demand at each client
is random value in the range [0.1, 100].

We use the GAMS [17] software to solve the static optimal topology problem. GAMS
offers an environment to express mathematical constructs of a linear program. It solves
the linear program and returns the optimal flow of data, fu,v, on a topology. We use the
optimal flows returned by GAMS to calculate the operation costs of satisfying a given
set of client demands in a given topology. Reconfigurations costs are calculated by the
topology structure, the height of the spanning tree varies from 40-200 and by choosing
a W parameter that converts reconfiguration cost in terms of operation costs. We choose
W as 200. To perform all these simulations, we developed a Python based system that
acts as both an event driven simulator and also a simulator for performing experiments
on a UDN. The delta period in the greedy algorithm is chosen to be 50. The MST in
the conservative algorithm is implemented using Prim’s algorithm.

5.1 Cost of Reconfiguration

We compute the total cost of satisfying a query sequence under a topology schedule
generated by various policies of the greedy algorithm (Policies P1-P3) and the non-
greedy algorithm P4. We compare the total cost of adaptive policies with a policy,
P5, that does not change its topology at all but remains in a topology that has the
minimum operation cost for the entire demand sequence. We also compare with a static
optimal policy P6 that knows the entire demand sequence in advance. Figure 1(a) and
Figure 1(b) shows the total cost and its division into operational cost and the cost of
transitioning between topologies.
P4 improves on the total cost of P5 by 38%. This is a very encouraging result for per-

vasive environments where devices are resource-constrained and policies that improve
operation costs are needed. However, P3 further improves cost by 42%. This is because
P3 relies on the predictive modeling of the demand. However, the improvement is low
considering that P4 is general and makes no assumptions regarding workload access
patterns. The costs of both P3 and P4 are comparable to the cost of P6. Both P1 and P2
incur high costs. P1 suffers due to being over-reactive making changes even when they
are not required and incurs a very high transition cost. P2, by its nature, incurs lower
transition costs but high operation costs. On the other hand P4 incurs much lower tran-
sition costs than P3. This artifact is due to the conservative nature of P4. It evaluates
only two alternatives at a time and transitions only if it expects significant performance
advantages. On the other hand, P3 responds quicker to workload changes by evaluating
all candidate topologies simultaneously and choosing a topology that benefits the most
recent sequence of queries. This optimism of P3 is tolerable in this workload but can
account for significant transition costs in workloads that change even more rapidly.

Providing Scalable Data Services in Ubiquitous Networks 455

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

1.40E+06

1.60E+06

1.80E+06

P1 P2 P3 P4 P5 P6

Co
st

s

Policies

Total Costs for N = 50,

Reconfiguration Costs Operational Costs

(a) N = 50

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

P1 P2 P3 P4 P5 P6

Co
st

s

Policies

Total Costs for N = 100,

Operational Costs Reconfiguration Costs

(b) N = 100

Fig. 1. Total operational and reconfiguration costs

5.2 Quality of a Schedule

In this experiment, we compare the quality of a schedule generated over the length of the
sequence. We determine the quality of a schedule by comparing the policies with a static
optimal policy P6 that knows the entire demand sequence in advance. For presentation
sake (Figure 2(a)), we omit showing the schedule of P1 as it makes so many transitions
over the sequence that it affects the presentation of other policies. We also omit P5 as
it has only one topology in a schedule. We also show the schedule adopted by a policy
over 1000 requests as showing over the entire demand sequence suppresses interesting
behavior. Results over other demand requests are similar. The experiment is performed
over a 50 node topology with W = 2000 and ρ = 0.9. Figure shows that P4 closely
follows the static optimal policy, which is an artifact of its conservative nature. P3
makes lot more transitions than P4 because it quickly reacts to changes in workload. It
does finally settle on the same states as P4, however at a much higher transition cost.
P2 does not adapt with the demand sequence and produces a poor schedule.

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200

T
o
p
o
l
o
g
y

I
D

Demand Sequence

P2 P3 P4 P6

(a) Quality of a Schedule

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

3.00E+05

3.50E+05

4.00E+05

2 5 10 15

Co
st

s

Maximum Degree Bound

P2 P4

(b) Effect of Degree Bound

Fig. 2. Cost Analysis

456 T. Malik et al.

5.3 Effect of Degree Bound

We are interested in understanding how dynamic topology reconfiguration policies are
affected by the degree bound. We have two observations (Figure 2(b)): First, the cost
of the policies decreases when the degree bound increases. With larger degree bound,
there are more feasible topologies and thus the system is able to find better topologies
with lower operational costs. Larger degree bound may also decrease reconfiguration
costs depending upon the protocol implementation as the system may result in a smaller
height of the spanning tree. While this suggests that in topology design a larger degree
bound should be chosen, increasing the degree bound shows a decrease in the opera-
tional and reconfiguration cost. This is an initial result and we plan to work further on
the effect of degree bound on reconfiguration costs.

6 Conclusion

We have studied the problem of dynamically reconfiguring the topology of a UDN in
response to the changes in the communication requirements. We have considered two
costs of using the network: the operational cost of transferring data between nodes and
the reconfiguration cost. The objective is to find the optimal reconfiguration policies
that can minimize the potential overall cost of using the UDN. Our policies use both
greedy and conservative approaches for adapting to the changes in the communication
requirements. We tested the performance of our policies on a medium-size ubiquitous
data network and observed shown that dynamic overlay topology reconfiguration can
significantly reduce the overall cost of providing a data service over a UDN.

References

1. Saha, D., Mukherjee, A.: Pervasive computing: A paradigm for the 21st century. IEEE Com-
puter 36 (2003)

2. Misra, A., Das, S., McAuley, A., Das, S.: Autoconfiguration, registration, and mobility man-
agement for pervasive computing. IEEE Personal Communications 8 (2001)

3. Saha, D., Mukherjee, A., Bandyopadhyay, S.: Networking infrastructure for pervasive com-
puting: enabling technologies and systems. Kluwer Academic Publishers, Dordrecht (2003)

4. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge Univer-
sity Press, Cambridge (1998)

5. Patil, S.: Towards General Design Principles for Distributed Indices. Technical report, Indian
Institute of Information Technology, Bangalore (2009)

6. Patil, S., Srinivasa, S., Mukherjee, S., Rachakonda, A.R., Venkatasubramanian, V.: Breeding
Diameter-Optimal Topologies for Distributed Indexes. Complex Systems 18 (2009)

7. Peterson, L., Shenker, S., Turner, J.: Overcoming the Internet impasse through virtualization.
In: Proceedings of the Workshop on Hot Topics in Networks (2004)

8. McAuley, A., Manousakis, K., Telcordia, M.: Self-configuring networks. In: Proceedings of
the IEEE Conference on Military Communications (2000)

9. Mcauley, A., Misra, A., Wong, L., Manousakis, K.: Experience with Autoconfiguring a Net-
work with IP addresses. In: Proceedings of the IEEE Conference on Military Communica-
tions (2001)

10. Fan, J., Ammar, M.: Dynamic topology configuration in service overlay networks: A study
of reconfiguration policies. In: Proceedings of the IEEE Conference of INFOCOM (2006)

Providing Scalable Data Services in Ubiquitous Networks 457

11. Awerbuch, B., Leighton, T.: Improved approximation algorithms for the multi-commodity
flow problem and local competitive routing in dynamic networks. In: Proceedings of the
ACM Symposium on Theory of Computing (1994)

12. Ortega, F., Wolsey, L.: A branch-and-cut algorithm for the single-commodity, uncapacitated,
fixed-charge network flow problem. Networks 41 (2003)

13. Barabasi, A.L., Bonabeau, E.: Scale-free networks.. Scientific American 288 (2003)
14. Droms, R.: Automated configuration of TCP/IP with DHCP. IEEE Internet Computing 3

(1999)
15. Perkins, C., Alpert, S., Woolf, B.: Mobile IP; Design Principles and Practices. Addison-

Wesley Longman Publishing Company, Amsterdam (1997)
16. Malik, T., Wang, X., Dash, D., Chaudhary, A., Burns, R., Ailamaki, A.: Adaptive physical

design for curated archives. In: Proccedings of the Conference on Scientific and Statistical
Database Management Systems (2009)

17. Brook, A., Kendrick, D., Meeraus, A.: GAMS, a user’s guide. ACM SIGNUM Newsletter
23 (1988)

On-Demand Data Broadcasting for Data Items with
Time Constraints on Multiple Broadcast Channels

Ta-Chih Su and Chuan-Ming Liu

Department of Computer Science and Information Engineering
National Taipei University of Technology

Taipei, TAIWAN
{t7598023,cmliu}@ntut.edu.tw

Abstract. Data Broadcasting is an effective approach to provide information to
a large group of clients in ubiquitous environments. How to generate the data
broadcast schedule to make the average waiting time short for clients is an im-
portant issue. In particular, when the data access pattern is dynamic and data have
time constraints, such as traffic and stock information, scheduling the broadcast
for such data to fulfill the requests becomes challenging. Since the content of the
broadcast is dynamic and the request deadlines should be met, such data broad-
casting is referred to as on-demand data broadcasting with time constraints. Many
related papers discussed this type of data broadcasting with a single broadcast
channel. In this paper, we investigate how to schedule the on-demand broadcast
for the data with time constraints using multiple broadcast channels and pro-
vide two heuristics to schedule the data broadcast. The objective of the proposed
heuristics is to minimize the miss rate (i.e., ratio of the requests missing deadlines
to all the requests) and latency (i.e., time between issuing and termination of the
request). More discussion about the proposed heuristics is given through exten-
sive simulation experiments. The experimental results validate that the proposed
heuristics achieve the objectives.

1 Introduction

Advanced technologies in wireless communications, information systems, and hand-
held devices make it possible for mobile clients to access different kinds of information
services ubiquitously, such as electronic news information, traffic information, stock
price information, etc. In such an environment, the bandwidth between server and client
is asymmetric [1]. That is, the downlink bandwidth is much greater than the uplink
bandwidth. The conventional client-server model hence is a poor match with the wire-
less mobile environment when the group of mobile clients is large due to the bottleneck
of the uplink. Data broadcasting is an attractive solution to this condition and provides
an efficient way to disseminate the information to a large pool of clients.

In general, data broadcasting can be classified into two types [3]: push-based broad-
cast and on-demand broadcast. In push-based broadcast, the server periodically broad-
casts data items on a broadcast channel. Most of the schedule algorithms in this type
consider stable data access patterns. In on-demand broadcast, the clients send the requests
via an uplink channel. The server then broadcasts the requested data. The on-demand
broadcast can be used more widely for dynamic and large-scale data dissemination.

M. Yoshikawa et al. (Eds.): DASFAA 2010, LNCS 6193, pp. 458–469, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On-Demand Data Broadcasting for Data Items 459

In some information services, data may have temporality, such as traffic information
and stock quotes. To ensure the data is timely useful, the clients usually request the data
with deadlines and the server then broadcasts the on-demand data. The requested data
become invalid when the deadlines are passed. Thus, how to schedule the on-demand
broadcast for the data with time constraints becomes an important topic. Many papers
discuss this topic and most of them consider a single broadcast channel. For a server,
using multiple channels to provide information makes the broadcast cycle shorter than
using one channel.

In this paper, we discuss the problem to schedule the on-demand broadcast for data
with time constraints in multi-channel environments. We consider each request has its
own deadline and has multiple data items associated with it. Such requests will raise
an important problem, data overlap problem, when multiple channels are used. That is,
the requested data items for a request may appear in different channels at the same time
and only one channel can be tuned into at a give time instance. More details about the
data overlap problem will be given in the next section. The objective of this work is to
provide on-demand broadcast schedules that have more requests meet their deadlines
and reduce the waiting time for the clients.

After giving the related work and preliminaries in Section 2, we describe the system
model in Section 3. The formal definition of the problem in Section 4. Then, we pro-
pose two heuristics, MPHH and MPLH, in Section 5. The simulation is presented in
Section 6. Section 7 concludes this paper.

2 Related Work

Many papers about data broadcasting have been proposed in the past decade. Part of
these papers focused on how to schedule the broadcast in order to achieve a short la-
tency. The latency is the time elapsed between issuing and termination of the query
and can be used to indicate the Quality of Service(QoS). To reduce the latency, the
broadcast schedules considered the data access probabilities and/or dependency. Fur-
thermore, people consider to use multiple broadcast channels to have more deduction
on the latency [9,10,11,12,13]. With multiple broadcast channels, the assumption that
only one channel can be tuned into at a time instance is usually made. Under such an
assumption, the data overlap problem happens when the requested data for a query are
broadcast at the same time [10]. In this case, only one requested datum can be accessed
and the client needs to wait until the next broadcast cycle for the other requested data,
thus leading to a longer latency.

The papers related to on-demand data broadcasting considered the urgency and pro-
ductivity of data to ensure the service quality where each request has a time constraint.
For such papers, the miss rate is used to be the main measurement to evaluate the ser-
vice quality. Miss rate is the ratio of requests missing the deadlines to all the requests.
In [2], the authors applied the earliest deadline first (EDF) policy to schedule the broad-
cast. For a request with multiple related data items, all the related data items should be
received before the deadline of the request; otherwise, the request is not fully served. To
solve this kind of problem, the slack time of request is defined to indicate the urgency
of request when scheduling the broadcast [3,4,5,6,7,8]. The authors in [4,5,6] observed

460 T.-C. Su and C.-M. Liu

that the scheduling algorithms which consider data items independently may cause the
request to be unserved with only one or two data items missed, thus deteriorating the
service quality. Their solutions improve the productivity of data by considering the data
dependently.

To the extent of our knowledge, most of the papers about on-demand broadcasting
work on a single broadcast channel. The authors in [6] consider multiple channels but do
not consider the time constraint of requests. In our work, we consider on-demand data
broadcasting using multiple broadcast channels. Each request has its own deadline and
multiple related data. The basic idea of our proposed approach is to derive the result by
converting the optimal schedule when enough channels are available. This differentiates
our work from [6]. When the data overlap problem occurs, it becomes hard to predict
when the desired data are broadcast. This will lead to a higher miss rate. In order to
minimize the miss rate, our work also focuses on reducing the impact caused by the
data overlap problem.

3 System Model

Our system model is shown in Figure 1. The clients send the requests to the server via an
uplink channel. Each request contains multiple related data items and has its deadline.
Each requested data item has a unique id. The server receives the requests and inserts
them into a request queue. When the request queue is not empty, the server schedules
the data according to the requests in the queue and broadcasts the scheduled data items
to serve the requests. To generate the broadcast data items at each time instance, the
server will check all of the unserved requests. If the request will miss its deadline, the
server removes the request from the request queue.

In order to direct the clients to retrieve the relevant data items, we use an additional
channel, index channel, to broadcast an index. The rest of the channels are referred
to as data channels. The index consists of the id’s of the data items which will be
broadcast on the data channels in the next time slot. For instance, the index i1 in Figure 1
contains the id’s of data items broadcast in time slot 2. After a client sends the request,
it immediately tunes into the index channel to retrieve the index. When a client finds
the relevant data items from the index, it tunes into one of the relevant data channels
to get the data item. Each data item in the data channels also contains an index. The
clients hence can retrieve the relevant data items continuously without tuning back into
the index channel. If the client retrieves all the related data items before the deadline of
the request, we say that the request is served.

4 Problems

We suppose that there are c channels and n data items, d1, d2, · · · , dn, in data set D.
Each of data items is of the same size and takes 1 time slot to be broadcast. On the client
side, we assume that there are m clients. Each client i, 1 ≤ i ≤ m, sends a request Qi

with a deadline dli. Request Qi consists of k data items, {di(1), di(2), · · · , di(k)}, where
di(j) ∈ D. We denote the number of requests for a data item du as Ndu , 1 ≤ u ≤ n.
Ui indicates the set of unserved data items in the request Qi at current time. If Ui is not

On-Demand Data Broadcasting for Data Items 461

Fig. 1. The architecture of on-demand data broadcasting with 3 broadcast channels; the solid
squares presenting the broadcast slots; the dashed squares standing for the indexing channel

empty, the request Qi is unserved. UR is the set of unserved requests at current time.
Let tc be the current time. The slack time of the request Qi is defined as dli − tc − |Ui|
and denoted by slacki. If |Ui| > 0 and slacki < 0, request Qi will miss its deadline
because the remaining time slots are not enough to broadcast the unserved data items
in Ui. The miss rate after the data items broadcast at tc is

R(tc−t0) =
|miss(Q{tc−t0})|
|Q{tc−t0}|

, (1)

where Q{tc−t0} is the set of the requests received by the server from the time slot t0
to tc, |miss(Q{tc−t0})| is the number of requests missed their deadlines after the data
items broadcasted at time slot tc in the set Q{tc−t0}.

This paper discusses how to generate a broadcast schedule on multiple channels
from time t0 to ti which has the minimum miss rate as in Equation 1. We refer to such
a problem as the On-demand Broadcasting with Minimum Miss rate (OBMM) Problem
and give a formal definition as below.

Definition 1. (OBMM Problem)
Suppose all the notations are defined as above and the set RD(ti) consists of the un-
served data items of all the requests in Q{ti−t0} at ti. The On-demand Broadcasting
with Minimum Miss rate Problem is to find a mapping M : RD(t) → {1, 2, · · · , c},
t ∈ {t0, · · · , ti} such that

∑
R(ti−t0) is minimized.

5 Heuristics

The main idea of our proposed heuristics is to put the broadcast data into c channels
as compact as possible. Consider that there are c channels and the number of unserved
requests is m where c < m. In our proposed approaches, we first assume that there are
m channels and the optimal broadcast schedule can be obtained easily. Then, we convert
the resulting m-channel broadcast into another broadcast with c channels and keep a
low miss rate and latency. The first heuristic, Most Popular First Heuristic(MPFH),

462 T.-C. Su and C.-M. Liu

first aggregates data items associated with requests efficiently and then selects c data
items to be broadcast using current condition. Such a broadcast schedule may not be
optimal in terms of miss rate due to the data redundancy in the generated broadcast. As
for the second heuristic Most Popular Last Heuristic(MPLH), the idea is to postpone
the time to broadcast hot data in order to server more requests in the same time slot.

5.1 Most Popular First Heuristic

With multiple broadcast channels, the data overlap problem is inevitable. In order to
reduce the impact caused by the data overlap problem, some data items are repeated
broadcast before their deadlines.

There are two phases in our proposed algorithms: Aggregation Phase and Conver-
sion Phase. In aggregation phase, for each request Qj , 1 ≤ j ≤ m, we select data
item di which has the largest number of requests among all the data associated with
Qj . We refer to di as the candidate for serving request Qj and denote it as caj . Each
candidate has its own slack time and number of unserved data items. All the candi-
dates are then aggregated into a set CA by union. During the aggregation, if two can-
didates are the same data item, the new candidate will retain the smaller slack time
and the smaller number of unserved data items. For example, there are four candidates,
ca1 = d1, ca2 = d2, ca3 = d2, ca4 = d3 for four requests. After aggregation, the
set CA is {d1, d2, d3} and the data items in the CA are unique. If the number of of
data item in CA is smaller than or equal to c, we just put the data item in the broadcast
channels directly. Otherwise, the process moves on to Conversion phase.

In Conversion phase, we select c candidates from CA to broadcast. The selection
depends on the slack time. The data item in CA having the smallest slack time will be
selected first. If there is a tie, the one with a smaller number of unserved data items
will be selected. If exactly one data item can not be selected, we select the one having
the most number of requests. After a data item is selected, it is removed from CA. The
process repeats until c candidates are selected. Thus, we can have exactly c data items
to be broadcast. Besides, if candidate cai is selected to be broadcast, cai is removed
from the associated set of unserved data items, Ui. Notice that only one data item can
be removed from each Ui in the process. If candidates cai and caj are selected to be
broadcast in time slot tc and Ui contains both cai and caj , we only remove cai form
Ui. Recall the data overlap problem, cai and caj are overlapped for Qi at time tc.
Our process leaves caj in the Ui and caj will be selected as a candidate for Qi in the
following time slots. The data overlap problem is thus resolved. The MPFH continues
selecting data items to be broadcast at each time slot until the set of unserved requests,
UR, is empty. The algorithm MPFH shows in Figure 2.

We now use the example in Figure 3 to illustrate how MPFH works. There are two
channels and three requests, Q1, Q2, and Q3, in the beginning. As shown in Figure 3(a),
Q1 requests three data items, d1, d2, and d3, with the deadline dl1 = 6; Q2 requests
four data items, d2, d3, d4, and d5, with the deadline dl2 = 9; Q3 requests two data
items, d3 and d4, with the deadline dl3 = 3. The numbers of requests for the data
items, Nd1 , Nd2 , Nd3 , Nd4 , and Nd5 , are 1, 2, 3, 2, and 1, respectively. We first decide
the data items to be broadcast at time slot t = 1. Data item d3 will be selected as the
candidate in Q1, Q2, and Q3. Then we aggregate these three candidates into set CA.

On-Demand Data Broadcasting for Data Items 463

Input: c channels and m unserved requests.
Output: at most c data items.
(1) find the candidate of each request;
(2) aggregate the candidates into the set CA;
(3) if |CA| < c then /* |CA| is the number of CA */

return the data items in CA;
else

go to step (4)
(4) for n=1 to c do

select the candidate cai with minimun slacki

if more than one candidate be selected then
select the candidate cai with the least number of Ui

if more than one candidate be selected then
select the candidate cai with the most number of Ncai

remove cai from CA
else
remove cai from CA

else
remove cai from CA

return c selected candidates

Fig. 2. The high-level description of Most Popular First Heuristic

There is only one data item d3 in CA after aggregation. The slack time of data item d3

is dl3−|U3| = 1. Because |CA| ≤ 2, we can directly broadcast d3 at time slot t = 1. In
the meanwhile, the process also receives a new request Q4 consisting of 2 data items,
d3 and d6, with deadline dl4 = 6. As show in Figure 3(b), the set of unserved data items
for each request at time slot t = 2 is U1 = {d1, d2}, U2 = {d2, d4, d5}, U3 = {d4}, and
U4 = {d3, d6} respectively. Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , and Nd6 now become 1, 2, 1, 2,
1, and 1 respectively. According to the approach, d2 is selected as the candidate of Q1

because Nd2 is larger than Nd1 . In Q2, because Nd2 = Nd4 = Nd5 , we can select any
one of d2, d4, and d5 as the candidate. In this case, we select the one has the smallest
id. So, d2 is selected as the candidate of Q2. Similarly, we select d4 and d3 in Q3 and
Q4, respectively. We then aggregate the candidates, ca1(= d2), ca2(= d2), ca3(= d4),
and ca4(= d3) into CA. In particular, ca1 and ca2 have the same data item. We make a
new candidate ca{1,2} with slack time slack{1,2} = slack1 and the number of unserved
data items being |U1|. Hence, after aggregation, CA becomes {ca{1,2}, ca3, ca4}.

Since |CA| = 3 > c = 2, the process moves to Conversion phase. The candi-
date with the minimum slack time, ca3(= d4), is first selected to be broadcast and
then deleted from CA. Then the process continues to select the second data item to
be broadcast. CA now becomes {ca{1,2}, ca4} and slack{1,2} and slack4 are both 3.
We then select the one having the least |Ui|. Because |U1| = |U4| = 2, we can select
either ca{1,2} or ca4. Again, we select the one with the smaller id. Hence, ca{1,2} is
selected. So, at time t = 2, ca3(= d4) and ca{1,2}(= d2) will be broadcast. Figure 3(c)
shows the result after d2 and d4 are broadcast and the process at time slot t = 3. The
unserved data items in each request now are U1 = {d1}, U2 = {d4, d5}, U3 = {�},
and U4 = {d3, d6}, respectively. Because U3 is empty, we remove Q3 from the set of

464 T.-C. Su and C.-M. Liu

(a) at time slot t = 1 (b) at time slot t = 2 (c) at time slot t = 3

(d) resulting broadcast at time slot t = 6

Fig. 3. An example of the execution of MPFH at time slots 1, 2, and 3 and the resulting broadcast

requests. The same process continues until UR is empty. Figure 3(d) shows the result
if there are no other requests received.

5.2 Most Popular Last Heuristic

Algorithm MPFH considers the request urgency and service productivity. Consider the
example in Figure 4. The broadcast schedule in Figure 4 is generated by MPFH. Data
item d3 is broadcast two times at time slot t = 1 and t = 2. To server Q1 and Q2 before
their deadlines, it is sufficient to broadcast data item d3 at time slot t = 2 once. In this
case, d3 is redundant in the broadcast at time slot t = 1. By the above observation, we
propose the Most Popular Last Heuristic, MPLH, which postpones the time to broadcast
popular data in order to server more requests in the same time slot.

(a) at time slot t = 1 (b) at time slot t = 2

Fig. 4. A broadcast schedule generated by MPFH that can be improved by accumulating more
requests for a data item

On-Demand Data Broadcasting for Data Items 465

In order to postpone the time to broadcast popular data, the popular data items will
not be selected as candidates in aggregation phase in algorithm MPLH. A popular data
item has a higher probability to be requested by the other clients in future, so we accu-
mulate more requests for that data item by postponing the time to broadcast it. Hence,
the non-popular data items will be selected as the candidates. The rest of algorithm
MPLH is the same as MPFH.

We again use Figure 3 to illustrate how MPLH works. Data items d1, d5, and d4 will
be selected as the candidates for Q1, Q2, and Q3, respectively. Then we aggregate these
three candidates into set CA and CA now has three data items. Because |CA| = 3 >
c = 2, the process moves to Conversion phase. With minimal slack time, candidates
ca3(= d4) and ca1(= d1) are selected to be broadcast. In the unserved data items for
each request in Figure 5(a), d4 is removed from Q2 because ca2(= d5) is not selected to
be broadcast and no data items in Q2 are removed before. At time slot t = 2, candidates
ca3(= d3) and ca1(= d2) will be broadcast. Figure 5(b) shows the result after d3 and d2

are broadcast and the process at time slot t = 3. Notice that, candidates ca2(= d5) and
ca4(= d6) are not broadcast at time slot t = 2, so we can remove a data item di from Q2

and Q4 if di is broadcast at time slot t = 2. We remove d3 from Q4. For Q2, one of d2

and d3 can be removed and d2 is removed in this case. The unserved data items in each
request now are U1 = {d3}, U2 = {d3, d5}, U3 = {�}, and U4 = {d6}, respectively.
Because U3 is empty, we remove Q3 from request queue. The same process continues
until UR is empty. Figure 5(c) shows the result if there is no more request received.

(a)at time slot t = 2 (b)at time slot t = 3 (c)at time slot t = 5

Fig. 5. An example of the execution of MPFH at time slots 2 and 3 and the resulting broadcast at
time slot 5 for the case in Figure 3

6 Simulations

This section presents the simulation results and our findings. All the parameters used
in our simulation environment are shown in Table 1. In the simulations, we process the
requests in batch. When the server broadcasts data items in a time slot, it also collects
the new requests. Then, the server processes the new requests and the old unserved
requests together. The arrival rate of requests in one time slot is uniformly distributed
in the range of [10, 15]. The number of data items associated with each request ranges
uniformly from 7 to 14. The deadline of a request is given by: tc +(α× request length),

466 T.-C. Su and C.-M. Liu

Table 1. Different parameters and values in our simulation

Parameter Value
Database Size 100, 200, 500, 1000

Size of the data item Needs one time slot to broadcast
Number of channels 2 ∼ 10

Arrival rate (# of requests/time slot) Uniform distribution [10, 15]
Number of data items associated with a request Uniform distribution [7, 14]
Deadline of a request tc + (α× request length), α =uniform[2,10]
Data items access pattern Uniform, Zipf=0.8

(a)Database Size=100 (b)Database Size=200

(c)Database Size=500 (d)Database Size=1000

Fig. 6. Miss rates for the MPFH, MPLH, EDF, and MSF, when the size of database is (a) 100, (b)
200, (c) 500, and (d) 1000, with different number of channels

where tc is the current time, request length is the number of associated data items of a
request, and α is selected uniformly from the range of [2, 10]. The access pattern of data
items is uniform distribution or Zipf distribution [14] with parameter Zipf = 0.8. In
Zipf distribution, data item d1 is the most frequently accessed data item, while the last

On-Demand Data Broadcasting for Data Items 467

data item is the least frequently accessed. We assume that the time spent to process the
data items to be broadcast for each time slot is less than one time slot. For each number
of channels, we execute 10,000 requests in a round. The reported result is the average
of 100 rounds. Two metrics, miss rate and latency, are used to evaluate the performance
of our proposed heuristics, MPFH and MPLH. The latency is measured only when the
deadline of the request is satisfied.

In the simulation, we compare our proposed algorithms with the other two algo-
rithms, EDF and MSF. Recall that, EDF and MSF are the scheduling algorithms using
on a single broadcast channel. In order to use these algorithms on multiple broadcast
channels, we modify them to reduce the impact caused by data overlap problem. In
EDF and MSF, all the data items associated with the selected requests are placed on the
channel having the minimum length.

Figure 6 shows the miss rates using algorithms MPFH, MPLH, EDF, and MSF to
process 10,000 requests with different size of database, respectively, on different num-
bers of channels. Two different access patterns are included. The results using uniform
access patterns are presented by MPFH-uni, MPLH-uni, EDF-uni, and MSF-uni, re-
spectively and shown in dashed lines. The results show that our algorithms MPFH and

(a)Database size=100 (b)Database size=200

(c)Database Size=500 (d)Database Size=1000

Fig. 7. Latencies for algorithms MPFH, MPLH, EDF, and MSF, when the size of database is (a)
100, (b) 200, (c) 500, and (d) 1000, with different number of channels

468 T.-C. Su and C.-M. Liu

MPLH perform better than EDF and MSF in term of miss rate, especially when the
size of database is small. The MPFH and MPLH can almost serve all of the requests
before their deadlines. When the data access pattern is Zipf distribution, MPFH and
MPLH have a lower miss rate than in uniform distribution. Because the similarity of
the associated data items between requests is higher in Zipf distribution, our broadcast
schedules can serve more requests due to the aggregation of the requests when schedul-
ing the data items.The trend is opposite in EDF and MSF because they don’t aggregate
the requests.

We now discuss MPLH and MPFH. With a small number of channels, MPLH per-
forms better than MPFH when the database size is small. Recall that, MPLH postpones
the time to broadcast hot data in order to server more requests in the same time slot.
However, we observe that, as the database size increases, MPFH will do better instead.
We conjecture that the similarity between requests is too low, so the effectiveness of
postponement disappears. When the number of channels increases, more data items can
be broadcast in a time slot. The postponement leads to broadcast fewer redundant data
items. Thus, MPLH has a better performance.

Figure 7 presents the results of latencies for algorithms MPFH, MPLH, EDF, and
MSF. We only discuss the data access pattern in Zipf distribution because the data ac-
cess pattern in uniform distribution shows the similar trends. When the size of database
is small, the latencies of MPFH and MPLH are almost the same and shorter than the
ones of EDF and MSF with a lower miss rate. MPFH performs better than MPLH when
the size of database increases. Because the miss rate is high and the similarity between
each requests is low, more requests can be served in an earlier stage by the broadcast
generated by MPFH without postponement. Thus, MPFH has a shorter latency.

7 Conclusions

In this paper, we discuss how to generate the broadcast schedule for on-demand data
broadcast with time constraint on multiple channels. We propose two heuristics, MPFH
and MPLH. MPFH aggregates data items associated with requests efficiently. MPLH
tries to serve more requests by postponing the popular data items. Both heuristics have
good performance in terms of miss rate and latency. The experimental results show that
each heuristic has a better performance than other in some specific conditions. MPLH
generates a broadcast schedule with lower miss rate when the number of channels and
the size of database are both either small or large. When database size is large, the
broadcast schedule generated by MPFH has a shorter latency than MPLH, but the miss
rate is higher. We conjecture that the ratio of the number of channels and the size of
database may affect the performance of our heuristics.

References

1. Acharya, S., Alonso, R., Franklin, M., Zdonik, S.: Broadcast Disks: Data Management for
Asymmetric Communication environments. In: Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, pp. 199–210 (1995)

On-Demand Data Broadcasting for Data Items 469

2. Xuan, P., Sen, S., Gonzalez, O., Fernandez, J., Ramamritham, K.: Broadcast on Demand:
Efficient and Timely Dissemination of Data in Mobile Environments. In: Proceedings of the
Third IEEE Symposium on Real-Time Technology and Applications, pp. 38–48 (1997)

3. Xu, J., Tang, X., Lee, W.-C.: Time-critical On-demand Data Broadcast: Algorithms, Anal-
ysis, and Performance Evaluation. IEEE Transactions on Parallel and Distributed Sys-
tems 17(1), 3–14 (2006)

4. Lam, K.-W., Lee, V.C.S., Wu, X.: On-demand Broadcast for Bobile Real-time Multi-item
requests. In: Proceedings of the Int’l Conference on Computing & Informatics (2006)

5. Chen, J., Huang, G., Lee, V.C.S.: Scheduling Algorithm for Multi-item Requests with Time
Constraints in Mobile Computing Environments. In: Proceedings of the International Con-
ference on Parallel and Distributed Systems, pp. 1–7 (2007)

6. Liu, K., Lee, V.C.S., Leung, K.R.P.H.: Data scheduling for multi-item requests in multi-
channel on-demand broadcast environments. In: Proceedings of the 7th ACM International
Workshop on Data Engineering for Wireless and Mobile Access (2008)

7. Hu, C.-L.: On-Demand Real-Time Information Dissemination: A General Approach with
Fairness, Productivity and Urgency. In: Proceedings of the 21st International Conference on
Advanced Information Networking and Applications, pp. 362–369 (2007)

8. Udgata, S.K.: A dynamic, Real-time and On-demand Heuristic Broadcasting Scheme for
Multiple Data-item Transactions in Wireless Environment. In: Proceedings of the 4th Inter-
national Conference on Wireless Communication and Sensor Networks, pp. 40–44 (2008)

9. Lin, K.-F., Liu, C.-M.: Broadcasting Dependent Data with Minimized Access Latency in a
Multi-channel Environment. In: Proceedings of the 2006 International Conference on Wire-
less Communications and Mobile Computing, pp. 809–814 (2006)

10. Fu, S.-Y., Liu, C.-M.: Broadcast Schedules and Query Processing for k Nearest Neighbors
Search on Multi-dimensional Index Trees in a Multi-Channel Environment. In: Proceedings
of the IEEE International Conference on Systems, Man and Cybernetics (2006)

11. Peng, W.-C., Chen, M.-S.: Dynamic Generation of Data Broadcasting Programs for a Broad-
cast Disk Array in a Mobile Computing Environment. In: Proceedings of the 9th International
Conference on Information and Knowledge Management, pp. 38–45 (2000)

12. Yee, W.G., Navathe, S.B., Omiecinski, E., Jermaine, C.: Efficient Data Allocation over Mul-
tiple Channels at Broadcast Servers. IEEE Transactions on Computers 51(10), 1231–1236
(2002)

13. Yi, S.-Y., Nam, S., Jung, S.: Effective Generation of Data Broadcast Schedules with Different
Allocation Numbers for Multiple Wireless Channels. IEEE Transactions on Knowledge and
Data Engineering 20(5), 668–677 (2008)

14. Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison-Wesley,
Massachusetts (1949)

Aida, Kento 57

Amagasa, Toshiyuki 81

Appel, Stefan 203

Ariyoshi, Yusuke 365

Asano, Yasuhito 20

Awad, Ahmed 33

Bača, Radim 179

Brezany, Peter 69

Buchmann, Alejandro 203

Chaudhary, Amitabh 445

Cheng, Jiefeng 2

Cheng, Reynold C.K. 2

Ciglan, Marek 45

Demura, Hirohide 58

Deng, Ke 117

Ding, Guohui 143

Dokulil, Jǐŕı 168

Elsayed, Ibrahim 69

Fox, Geoffrey 57

Fujimoto, Kazunori 296

Fujisaka, Tatsuya 374

Gao, Ming 422

Giannakidou, Eirini 252

Guoqing, Dong 156

Hall, David 191

Haruyama, Jun’ichi 58

Hattori, Fumio 353

Hayashi, Yoshi-Yuki 93

Hijikata, Yoshinori 239, 308, 346

Hirata, Naru 58

Hong, Neil Chue 57

Horiike, Toshihiko 338

Horinouchi, Takeshi 93, 105

Huang, Zhiqiu 118

Ichikawa, Yoshihiko 274

Ikeda, Kaori 346

Isamoto, Yuka 105

Jaakkola, Hannu 434

Kamahara, Junzo 365

Kawashima, Hideyuki 81

Kidawara, Yutaka 385

Kim, K.-S. 410

Kitagawa, Hiroyuki 81

Kitamura, Yoshinobu 240

Kiyoki, Y. 410

Kodama, Shinsuke 58

Kojima, Isao 57

Koshiro, Tsuyoshi 93

Kounev, Samuel 203

Krátký, Michal 179

Kumamoto, Tadahiko 285

Lee, Ryong 374

Li, Ki-Joune 385

Li, Yueting 316

Liang, Wenxin 316, 327

Liu, Chuan-Ming 458

Lu, Jiaheng 170

MahmoudiNasab, Hooran 215

Malik, Tanu 445

Ma, Qiang 386

Martin, Ester 398

Matsui, Yuuki 274

Matsunaga, Tsuneo 58

Mizoguchi, Riichiro 240

Mlýnková, Irena 168, 227

Nakamura, Ryosuke 58

Nakamura, Yushi 338

Nakanishi, Takafumi 434

Nečaský, Martin 168

Nishida, Shogo 308, 346

Nishizawa, Seiya 93, 105

Nørv̊ag, Kjetil 45

Ogawa, Yoshiko 58

Ohishi, Masatoshi 57

Ohtake, Makiko 58

472 Author Index

Okada, Naoki 308

Oku, Kenta 353

Oshino, Taihei 20

Otsuka, Shigenori 93, 105

Patil, Sanket 445

Pawlas, Martin 179

Prasad, Raghvendra 445

Qian, Weining 398

Qing, Kong 156

Rantanen, Petri 434

Sachs, Kai 203

Sadiq, Shazia 117

Sakamoto, Hiroshi 338

Sakr, Sherif 1, 33, 215

Sasajima, Munehiko 240

Schejbal, Jǐŕı 227

Sha, Chaofeng 422

Shu, Yanfeng 130

Sillberg, Pekka 434

Sochna, Jan 227

Stampouli, Anastasia 252

Stárka, Jakub 227

Strömbäck, Lena 191

Sumiya, Kazutoshi 264, 374

Su, Ta-Chih 458

Svoboda, Martin 227

Taira, Yoshimasa 338

Takagi, Takashi 81

Tanaka, Katsumi 385

Tanaka, Minoru 274

Tanikawa, Kyohei 308

Terazono, Junya 58

Tomobayashi, Akinori 93, 105

Vakali, Athena 252

Venkatasubramanian, Venkat 445

Walder, Jǐŕı 179

Wang, Bin 143

Wang, Guoren 143

Wang, Hua 130

Wang, Wei 1

Wang, Xiaoling 386, 398, 422

Watanabe, Chiemi 93, 105

Xu, Guandong 239

Xu, Wen 327

Yamamoto, Naotaka 58

Yang, Xiaochun 117

Yongqing, Zheng 156

Yoshikawa, Masatoshi 20

Yu, Jeffrey Xu 2

Yuan, Peisen 422

Yumoto, Takayuki 264

Zhang, Chenjing 386

Zhang, Ji 130

Zhang, Xianchao 316, 327

Zhao, Xiaofei 118

Zhou, Aoying 386, 398, 422

Zhou, Xiaofang 117

	Title Page
	Preface
	DASFAA 2010 Workshop Organization
	Table of Contents
	1st International Workshop on Graph Data Management: Techniques and Applications (GDM 2010)
	GDM2010 Workshop Organizers’ Message
	On-Line Preferential Nearest Neighbor Browsing in Large Attributed Graphs
	Introduction
	Problem Statement
	Pairwise Processing
	Center-Based Processing
	Indexing All-Pairs Distances by Centers
	The Implementation for a Compact Index

	Performance Evaluation
	The Large Sets
	The Middle Sets and the Small Sets

	Related Work
	Conclusion
	References

	Mining Useful Time Graph Patterns on Extensively Discussed Topics on the Web (Position Paper)
	Introduction
	Related Work
	Analysis of the Web Using Time-Series Data
	Graph Patterns
	Applications of Graph Mining
	Frequent Graph Pattern Mining Algorithm

	Our Method to Mine Time Graph Patterns
	Construct Web Graph Sets
	Analyzing Time-Series Data for the Labeling Method
	Mining Time Graph Patterns

	Experiments and Analysis
	Choosing Topics
	Discovering Patterns
	Information Retrieval Using Mined Patterns

	Conclusion
	References

	Querying Graph-Based Repositories of Business Process Models
	Introduction
	BPMN-Q
	Relational Processing of BPMN-Q Queries
	Relational Encoding of Process Models
	BPMN-Q Query Evaluation

	Experiments
	Related Work
	Conclusion
	References

	SGDB – Simple Graph Database Optimized for Activation Spreading Computation
	Introduction
	Related Work
	Preliminaries
	Modeled Data Structure
	Spreading Activation Algorithm
	Activation Vector Spreading

	Storage Model
	Spreading Activation Queries
	SGDB Architecture
	Implementation

	Evaluation
	Conclusion
	References

	Data Intensive e-Science Workshop (DIEW2010)
	Introduction to the Data Intensive e-Science Workshop (DIEW) 2010
	WISE-CAPS: Web-Based Interactive Secure Environment for Collaborative Analysis of Planetary Science
	Introduction
	System Design
	Open-Source Based System
	Limitation of Access Method to Servers
	Security Awareness
	Capability of Large Data Handling

	The System
	Hardware
	Software

	Mapping Data
	Security Integration
	Policy of Security Control
	GridSite Security Module

	Current Implementation Issues
	Future Prospective
	Conclusion
	References

	Towards Large-Scale Scientific Dataspaces for e-Science Applications
	Introduction
	Related Systems
	jSpace Architecture
	e-Science Life Cycle Composer
	RDF Store
	Scientific Dataspace
	Dataspace Indexer
	Search and Query Processor
	Dataspace Browser

	Implementation Status
	Discussion
	Conclusions and Future Work
	References

	Providing Constructed Buildings Information by ASTER Satellite DEM Images and Web Contents
	Introduction
	GEO Grid
	MODIS Optical Sensor
	ASTER Optical Sensor

	Proposed System
	Event Detection Module
	Calibration of ASTER DEM

	Web Contents Selection Module
	Evaluation
	Evaluation of Event Detection Module
	Evaluation of Web Contents Collection Module

	Related Work
	Conclusions and Future Work
	References

	Gfdnavi, Web-Based Data and Knowledge Server Software for Geophysical Fluid Sciences, Part I: Rationales, Stand-Alone Features, and Supporting Knowledge Documentation Linked to Data
	Introduction
	Design Rationales
	Overview of Gfdnavi as a Data Server
	Scientific Data and Metadata Database
	Browser User Interface

	Supporting a Knowledge Archiving System in a Data Server
	Conclusions
	References

	Gfdnavi, Web-Based Data and Knowledge Server Software for Geophysical Fluid Sciences, Part II: RESTful Web Services and Object-Oriented Programming Interface
	Introduction
	Design of Gfdnavi Web Services
	Motivating Scenario
	Web Services and Client Library
	Use of Multiple Servers

	Implementation of Gfdnavi Web Services
	URL Syntax
	Resource Path

	GfdnaviData
	Delayed Execution and Caching

	Use of Multiple Servers
	Cross Search

	Concluding Remarks
	References

	3rd International Workshop on Managing Data Quality in Collaborative Information Systems (MCIS2010)
	MCIS2010 Workshop Organizers’ Message
	Checking Structural Integrity for Metadata Repository Systems by Means of Description Logics
	Introduction
	Related Work
	The Description Logic DL$_id$
	Formalization of Different Levels in Repository System
	Formalization of Meta-levels M$_n+1$
	Formalization of Levels M$_n$

	Structural Integrity Checking
	Performance Evaluation
	Conclusion
	References

	On Memory and I/O Efficient Duplication Detection for Multiple Self-clean Data Sources
	Introduction
	Our Duplication Detection Algorithms
	In-Memory Duplication Detection Algorithm
	External Memory Duplication Detection Algorithms
	Duplication Labeling

	Experimental Results
	Efficiency of In-Memory Duplication Detection Algorithm
	Efficiency of External-Memory Duplication Detection Algorithm

	Conclusions and Future Work
	References

	Top-K Generation of Mediated Schemas over Multiple Data Sources
	Introduction
	Preliminaries
	Attribute Correspondences
	The Graphs of Concepts

	Top-K Generation of Mediated Schemas
	Merging the Concept Graphs
	Assignment and Scoring Function
	Top-K Ranking Algorithm
	Concept Similarity

	Performance Evaluation
	Related Work
	Conclusions
	References

	A Graphical Method for Reference Reconciliation
	Introduction
	Problem Description
	Notation
	Computing Similarity Values between References
	Similarity Matrix
	Similarity Association Graph
	Expansion of the Similarity Association Graphs
	Combination of Associate Similarity and the Attribute Values Similarity

	Clustering Algorithm
	Experimental Results
	DBLP-SUB
	Artificial Dataset s-dblp

	Related Work
	Conclusion
	References

	2nd International Workshop on Benchmarking of Database Management Systems and Data-Oriented Web Technologies (BenchmarX’10)
	BenchmarX’10 Workshop Organizers’ Message
	Benchmarking Holistic Approaches to XML Tree Pattern Query Processing (Extended Abstract of Invited Talk)
	Research Problem
	XML Tree Pattern Matching Algorithms
	Benchmarking Holistic Algorithms
	Query Class Q/,//,*

	Conclusion
	References

	Benchmarking the Compression of XML Node Streams
	Introduction
	XML Model
	Stream ADT
	Persistent Stream Array
	Compressed Stream Array

	Variable-Length Codes and Fast Decoding Algorithms
	An Overview of Universal Codes
	Fast Decoding Algorithms

	Compression of XML Node Streams
	Fixed-Length and Variable-Length Tuple Methods
	Common Prefix Compression
	Variable-Length Code Compression
	Variable-Length Code Compression with Reference Item

	Experimental Results
	Results for Containment Labeling Scheme
	Results for Dewey Order Labeling Scheme

	Conclusion
	References

	Generation of Synthetic XML for Evaluation of Hybrid XML Systems
	Introduction
	Motivation
	Current Benchmarks and Data Generators
	Generating Synthetic Data
	Skeleton Model
	Random Data
	Flat Elements
	Recursive Elements

	Evaluation
	Discussion and Future Work
	Conclusion
	References

	Benchmarking Publish/Subscribe-Based Messaging Systems
	Introduction
	Background
	Message-Oriented Middleware
	SPECjms2007
	Related Work

	jms2009-PS – A Pub/Sub Benchmark
	Configuration Parameters

	Case Study
	Introduction
	Test Scenarios
	Experimental Results

	Conclusions
	References

	An Experimental Evaluation of Relational RDF Storage and Querying Techniques
	Introduction
	Relational RDF Query Engines: State-of-the-Art
	Vertical (Triple) Stores
	Property Table Stores
	Horizontal Stores

	SP2Bench Performance Benchmark
	Experimental Evaluation
	Settings
	Performance Metrics
	Experimental Results

	Concluding Remarks
	References

	$Analyzer$: A Framework for File Analysis
	Introduction
	Related Work
	Analyses Proposal
	Implementation
	Plugins
	Experiments
	Conclusion
	References

	Workshop on Social Networks and Social Media Mining on the Web (SNSMW2010)
	SNSMW 2010 Workshop Organizers’ Message
	Task-Oriented User Modeling Method and Its Application to Service Navigation on the Web
	Introduction
	Task-Oriented Menu for Mobile Service Navigation
	Issues on Building Real-Scale Task Oriented Menu
	Prototyping Real-Scale Task-Oriented Menu
	Analysis of User Activities
	Development of New Prototype System
	Separation of Prevention and Solution Tasks
	Process of Mobile Service Navigation
	Design Review by Experts

	Social Network Services as a Knowledge Resource
	Related Work
	Conclusion and Future Work
	References

	Tag Disambiguation through Flickr and Wikipedia
	Introduction
	Mashups
	Framework Description
	Experimentation
	Conclusions
	References

	Measuring Attention Intensity to Web Pages Based on Specificity of Social Tags
	Introduction
	Related Work
	Specificity of Social Tags
	Overview of Specificity
	Local Specificity
	Global Specificity
	Combination of Two Specificities

	Measuring Attention Intensity to Web Page
	Relative Quantity of Social Bookmarks
	Discovering Related Pages

	Evaluation
	Evaluation on Specificity
	Evaluation of Relative Quantity of Web Pages

	Conclusions
	References

	SQL as a Mashup Tool: Design andI mplementation of a Web Service Integration Approach Based on the Concept of Extensible Relational Database Management Systems
	Introduction
	Target Web Services
	Pg/WAFL and Its Translator
	Sample Applications
	Conclusion
	References

	Design of Impression Scales for Assessing Impressions of News Articles
	Introduction
	Related Work
	Collection of Impression-Estimation Data
	Design of Impression Scales
	Analysis of Basic Statistics
	Factor Analysis
	Cluster Analysis
	Design of Impression Scales

	Conclusion
	References

	An Evaluation Framework for Analytical Methods of Integrating Electronic Word-of-Mouth Information: Position Paper
	Introduction
	Communicating Subjective Probabilities
	Basic Idea
	Two Evaluation Measures

	Communication Based on Logical Statements
	Encoding in Logical Conditions with Verbal Expressions
	Decoding of Logical Conditions with Verbal Expressions

	Examples
	Belief Source and eWOM Messages
	Evaluation

	Discussion and Future Work
	References

	A Framework for Finding Community in Complex Networks
	Introduction
	Related Work
	Proposed Framework
	Step 1. Enumeration of Dense Subgraphs
	Summary of Our Framework
	Step 2. Conversion to the Intersection Graph
	Step 3. Calculation of the Weight of Edges
	Step 4. Clustering Based on the Modularity
	Expectation to the Friend Recommendation System

	Application to SNS Network
	Dataset
	Implementation
	Result of Experiment
	Consideration

	Conclusion and Future Work
	References

	C&C: An Effective Algorithm for Extracting Web Community Cores
	Introduction
	Backgrounds
	Link Analysis
	Trawling
	Discussion on Trawling

	C&C Algorithm
	Unit Cores Extraction
	Cores Consolidation

	Experiments
	Dataset
	Results

	Conclusion and Future Work
	References

	Extracting Local Web Communities Using Lexical Similarity
	Introduction
	Related Work
	Maximum Flow Algorithm
	Community Extraction Based on the Maximum Flow Algorithm

	Method
	Assignment of Edge Capacities Using the Lexical Similarity
	Optimization of Similarity Computing
	Improved Algorithm Based on the Maximum Flow

	Experiments
	Data Collecting and Pruning
	Experimental Results and Discussion

	Conclusions and Future Work
	References

	An Improved Algorithm for Extracting Research Communities from Bibliographic Data
	Introduction
	Research Community by Max-Flow Algorithm
	Proposed Method and Experimental Results
	Conclusion
	References

	Proposal of Deleting Plots from the Reviews to the Items with Stories
	Introduction
	Related Work
	Approach
	Detecting Plots
	Assigning Scores to Phrases
	Interface

	Conclusion
	References

	UDM2010Workshop Organizers' Message
	Basic Study on a Recommendation Method Considering Region-Restrictedness of Spots
	Introduction
	Related Work
	Recommendation Method Considering Region-Restrictedness
	Acquire Home Spots and Destination Spots
	Extract Phrases from Text Data of Each Destination Spot
	Calculate Region- estrictedness Score of Extracted Phrase
	Recommend Spots Based on Region- estrictedness Score

	Basic Experiments
	Data Set
	Qualitative Analysis of Region- estrictedness Score
	Discussion of Phrases Depending on Destination Areas
	Discussion of Phrases Depending on Home Areas

	Conclusion
	References

	A Hybrid Recommendation Method with Double SVD Reduction
	Introduction
	Existing Methods
	Latent Semantic Indexing (LSI)
	Content-Based Filtering with SVD (SVD-CBF)
	Soboroff’s Hybrid Method
	Collaborative Filtering with SVD (SVD-CF)

	Proposed Hybrid Method Using SVD
	Reducing the Number of Documents
	Reducing the Number of Terms and Predicting User Ratings

	Experimental Evaluation
	Experimental Data
	Results

	Conclusions
	References

	FVC: A Feature-Vector-Based Classification for XML Dissemination
	Introduction
	Related Work
	XML Classification Methods
	Preliminaries
	XRules+: Extending XRules to Handle Content
	FVC: A Feature-Vector-Based Classification Approach

	Experiments
	Experimental Setting
	Performance of Classification Methods

	Conclusion

	Monitoring Geo-social Activities through Micro-logging Sites
	Introduction
	Human Sensor Network over Micro-blogging Sites
	Human B eings a s S ensors
	Related Work

	Acquiring Mass Higher-Resolution Buzzes
	Analyzing Influence Regions of Social Events
	Experiment
	D iscussion
	Conclusion
	References

	The 2nd International Workshop on Ubiquitous Data Management(UDM2010)
	UDM2010 Workshop Organizer's Message
	Distributed SLCA-Based XML Keyword Search by Map-Reduce
	Introduction
	Problem Definition
	Distributed SLCA-Based XML Keyword Search
	System Architecture
	Algorithms

	Experiments
	Impact of Query Features
	Scalability for Query Number
	Scalability for Data Size

	Related Work
	Conclusions and Future Work
	References

	FVC: A Feature-Vector-Based Classification for XML Dissemination
	Introduction
	Related Work
	XML Classification Methods
	Preliminaries
	XRules+: Extending XRules to Handle Content
	FVC: A Feature-Vector-Based Classification Approach

	Experiments
	Experimental Setting
	Performance of Classification Methods

	Conclusion
	References

	An Object-Field Perspective Data Model for Moving Geographic Phenomena
	Introduction
	Related Work
	Problem Definition
	Conceptual Modeling of Moving Fields
	Moving Fields
	Field Operations

	Representing Moving Fields
	Conclusion
	References

	GRAMS3: An Efficient Framework for XML Structural Similarity Search
	Introduction
	Preliminaries
	XML Model and pq-Gram
	Locality Sensitive Hashing and Random Projection

	Observations and TGF-IGF Model
	Observations
	TGF-IGF

	System Architecture and Algorithms
	System Architecture
	Algorithms

	Experiments
	Experiments Setup
	Search Quality
	Performance

	Related Work
	Conclusion
	References

	An Asynchronous Message-Based Knowledge Communication in a Ubiquitous Environment
	Introduction
	Why Asynchronous Message-Based Communication?
	IP-Based Knowledge Delivery System
	Asynchronous Communication for a Knowledge-Based System
	Knowledge Grid
	Grid Access Gateway
	Message Server

	Implementation and Usage Scenarios
	Usage Scenarios

	Summary
	References

	Providing Scalable Data Services in Ubiquitous Networks
	Introduction
	Related Work
	Minimizing the Cost of Data Sharing in a UDN
	The Topology Problem under Static Communication Pattern
	The Reconfiguration Cost

	The Topology Reconfiguration Problem with Dynamic Data Requirements
	Experiments
	Cost of Reconfiguration
	Quality of a Schedule
	Effect of Degree Bound

	Conclusion
	References

	On-Demand Data Broadcasting for Data Items with Time Constraints on Multiple Broadcast Channels
	Introduction
	Related Work
	System Model
	Problems
	Heuristics
	Most Popular First Heuristic
	Most Popular Last Heuristic

	Simulations
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

