o~
LN
o
O
8]
O
F
—

Radu Sion (Ed.)

Financial Cryptography
and Data Security

14th International Conference, FC 2010
Tenerife, Canary Islands, Spain, January 2010
Revised Selected Papers

—_—

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

6052

Radu Sion (Ed.)

Financial Cryptography
and Data Security

14th International Conference, FC 2010
Tenerife, Canary Islands, Spain
January 25-28, 2010

Revised Selected Papers

@ Springer

Volume Editor

Radu Sion

Stony Brook University
Computer Science Department
Stony Brook, NY 11794, USA
E-mail: sion@cs.stonybrook.edu

Library of Congress Control Number: 2010930773

CR Subject Classification (1998): E.3, D.4.6, K.6.5, K.4.4,C.2,J.1,F2.1-2
LNCS Sublibrary: SL 4 — Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-14576-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14576-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© TFCA/Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume contains the main proceedings of the 14th Financial Cryptograpy
and Data Security International Conference 2010, held in Tenerife, Canary Is-
lands, Spain, January 25-28, 2010.

Financial Cryptography and Data Security is a major international forum for
research, advanced development, education, exploration, and debate regarding
information assurance, with a specific focus on commercial contexts. The con-
ference covers all aspects of securing transactions and systems and especially
encourages original works focusing on both fundamental and applied real-world
deployments on all aspects surrounding commerce security.

Despite the dire economic climate as well as strong competition from other
top-tier related security conferences, the Program Committee received 130 high-
quality submissions and accepted 19 full-length papers (14.6% acceptance rate),
15 short papers (26.1% acceptance rate), 7 posters and 1 panel.

Three workshops were co-located with FC 2010: the Workshop on Real-Life
Cryptographic Protocols and Standardization (RLCPS), the Workshop on Ethics
in Computer Security Research (WECSR), and the Workshop on Lightweight
Cryptography for Resource-Constrained Devices (WLC).

Intimate and colorful by tradition, the high-quality program was not the only
attraction of FC. In the past, FC conferences have been held in highly research-
synergistic locations such as Tobago, Anguilla, Dominica, Key West, Guadelupe,
Bermuda, the Grand Cayman, and Cozumel Mexico. 2010 was the first year that
the conference was held on European soil, on the Spanish Canary Islands, in
Atlantic waters, a few miles across from Morocco. Over 100 researchers from
more than 20 countries were in attendance.

Organizing a conference with such high standards was a true team effort. We
would like to thank all those who made this possible: the International Financial
Cryptography Association, the Program Committee and Proceedings Chair for
their work, the Workshop Chairs, the keynote speakers and panel members, the
local Arrangements Committee, and the authors and participants that made
this such a exhilirating intellectually rich experience. Last but not least, we are
thankful to our sponsors for their valuable support.

Ultimately, we hope this year’s experience and quality research program will
entice you to participate in Financial Cryptography 2011. We look forward to
seeing you in Saint Lucia!

May 2010 Pino Caballero-Gil
Radu Sion

Organizing Committee

General Chair: Pino
Caballero-Gil
Program Chair: Radu Sion
Local Chair: Candelaria
Hernandez-Goya
Proceedings Chair:
Reza Curtmola
Poster Chair: Peter Williams

Organization

University of La Laguna, Spain
Stony Brook University, USA

University of La Laguna, Spain

New Jersey Institute of Technology, USA
Stony Brook University, USA

Local Organizing Committee

Luisa Arranz Chacon
Candido Caballero Gil
Amparo Fuster-Sabater
Felix Herrera Priano
Belen Melian Batista
Jezabel Molina Gil

Jose Moreno Perez
Marcos Moreno Vega
Alberto Peinado Dominguez
Alexis Quesada Arencibia
Jorge Ramio Aguirre
Victoria Reyes Sanchez

Program Committee

Ross Anderson
Lucas Ballard
Adam Barth

Luc Bouganim
Marina Blanton
Bogdan Carbunar
Ivan Damgard
Ernesto Damiani
George Danezis

Sabrina de Capitani di Vimercati

Rachna Dhamija
Sven Dietrich

Alcatel Espana, S.A.

University of La Laguna

Instituto de Fisica Aplicada Madrid
University of La Laguna

University of La Laguna

University of La Laguna

University of La Laguna

University of La Laguna

University of Malaga

University of Las Palmas de Gran Canaria
Polytechnic University of Madrid
University of La Laguna

University of Cambridge, UK
Google Inc., USA

UC Berkeley, USA

INRIA Rocquencourt, France
University of Notre Dame, France
Motorola Labs, USA

Aarhus University, Denmark
University of Milan, Italy
Microsoft Research, USA
University of Milan, Italy
Harvard University, USA

Stevens Institute of Technology, USA

VIII Organization

Roger Dingledine
Josep Domingo-Ferrer
Stefan Dziembowski
Simone Fischer-Hbner
Philippe Golle

Dieter Gollmann

Rachel Greenstadt
Markus Jakobsson

Rob Johnson

Stefan Katzenbeisser
Angelos Keromytis
Lars R. Knudsen
Wenke Lee

Arjen Lenstra

Helger Lipmaa

Javier Lopez

Luigi Vincenzo Mancini
Refik Molva

Fabian Monrose

Steven Murdoch
David Naccache
David Pointcheval

Bart Preneel

Josep Rifa Coma
Ahmad-Reza Sadeghi
Vitaly Shmatikov
Miroslava Sotakova
Angelos Stavrou
Patrick Traynor
Nicholas Weaver

The TOR Project, USA

University of Rovira i Virgili, Spain

University of Rome “La Sapienza”, Italy

Karlstad University, Sweden

Palo Alto Research Center, USA

Technische Universitat Hamburg-Harburg,
Germany

Drexel University, USA

Palo Alto Research Center and Indiana
University, USA

Stony Brook University, USA

Technische Universitdt Darmstadt, Germany

Columbia University, USA

Technical University of Denmark, Denmark

Georgia Tech, USA

EPFL and Alcatel-Lucent Bell Laboratories,
Switzerland

Cybernetica AS, Estonia

University of Malaga, Spain

University of Rome “La Sapienza”, Italy

Eurecom Sophia Antipolis, France

University of North Carolina at Chapel Hill,
USA

University of Cambridge, UK

Ecole Normale Superieure (ENS), France

Ecole Normale Superieure (ENS) and
CNRS, France

Katholieke Universiteit Leuven, Belgium

Autonomous University of Barcelona, Spain

Ruhr University Bochum, Spain

University of Texas at Austin, USA

Aarhus University, Denmark

George Mason University, USA

Georgia Tech, USA

International Computer Science Institute
Berkeley, USA

Table of Contents

Constructive Cryptography — A Primer (Invited Paper) 1
Ueli Maurer

Security Mechanisms with Selfish Players in Wireless Networks
(Invited Paper) 2
Jean-Pierre Hubauz

Users Do the Darndest Things: True Stories from the CyLab Usable
Privacy and Security Laboratory (Invited Paper)..................... 3
Lorrie Faith Cranor

Multichannel Protocols to Prevent Relay Attacks 4
Frank Stajano, Ford-Long Wong, and Bruce Christianson

A Traceability Attack against e-Passports................ 20
Tom Chothia and Vitaliy Smirnov

Secure Computation with Fixed-Point Numbers...................... 35
Octavian Catrina and Amitabh Saxena

Implementing a High-Assurance Smart-Card OS 51
Paul A. Karger, David C. Toll, Elaine R. Palmer,
Suzanne K. Mclntosh, Samuel Weber, and
Jonathan W. Edwards

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 66
Jan Camenisch, Maria Dubovitskaya, and Gregory Neven

Multiple Denominations in E-cash with Compact Transaction Data 82
Sébastien Canard and Aline Gouget

What’s in a Name? Evaluating Statistical Attacks on Personal
Knowledge Questions 98
Joseph Bonneau, Mike Just, and Greg Matthews

Cryptographic Protocol Analysis of AN.ON 114
Benedikt Westermann, Rolf Wendolsky, Lexi Pimenidis, and
Dogan Kesdogan

A CDH-Based Ring Signature Scheme with Short Signatures and
Public Keys ..o 129
Sven Schige and Jorg Schwenk

Practical Private Set Intersection Protocols with Linear Complexity 143
Emiliano De Cristofaro and Gene Tsudik

X Table of Contents

Design and Implementation of a Key-Lifecycle Management System 160
Mathias Bjorkquist, Christian Cachin, Robert Haas, Xiao-Yu Hu,
Anil Kurmus, René Pawlitzek, and Marko Vukoli¢

Measuring the Perpetrators and Funders of Typosquatting 175
Tyler Moore and Benjamin Edelman

A Learning-Based Approach to Reactive Security 192
Adam Barth, Benjamin I.P. Rubinstein, Mukund Sundararajan,
John C. Mitchell, Dawn Song, and Peter L. Bartlett

Embedded SFE: Offloading Server and Network Using Hardware

TOKENS . .t e 207
Kimmo Jarvinen, Viadimir Kolesnikov, Ahmad-Reza Sadeghi, and
Thomas Schneider

The Phish-Market Protocol: Securely Sharing Attack Data between
COmPELILOTS . . ottt et 222
Tal Moran and Tyler Moore

Building Incentives into Tor i 238
Tsuen-Wan “Johnny” Ngan, Roger Dingledine, and Dan S. Wallach

Tree-Homomorphic Encryption and Scalable Hierarchical Secret-Ballot
Elections.o 257
Aggelos Kiayias and Moti Yung

Automatically Preparing Safe SQL Queries.......................... 272
Prithvi Bisht, A. Prasad Sistla, and V.N. Venkatakrishnan

PKI Layer Cake: New Collision Attacks against the Global X.509
Infrastructure 289
Dan Kaminsky, Meredith L. Patterson, and Len Sassaman

Three-Round Abuse-Free Optimistic Contract Signing with Everlasting

Secrecy (Extended Abstract)o o i i i i i, 304
Xiaofeng Chen, Fangguo Zhang, Haibo Tian, Qianhong Wu, Yi Mu,
Jangseong Kim, and Kwangjo Kim

Designing for Audit: A Voting Machine with a Tiny TCB
(Short Paper) 312
Ryan W. Gardner, Sujata Garera, and Aviel D. Rubin

Attacking of SmartCard-Based Banking Applications with

JavaScript-Based Rootkits (Short Paper)............ 320
Daniel Buf$meyer, Felix Grébert, Jorg Schwenk, and
Christoph Wegener

Table of Contents XI

Security Applications of Diodes with Unique Current-Voltage

Characteristics (Short Paper).......o o i i i i i, 328
Ulrich Ruhrmair, Christian Jaeger, Christian Hilgers,
Michael Algasinger, Gyorgy Csaba, and Martin Stutzmann

Verified by Visa and MasterCard SecureCode: or, How Not to Design
Authentication (Short Paper).......... L. 336
Steven J. Murdoch and Ross Anderson

All You Can Eat or Breaking a Real-World Contactless Payment
System (Short Paper)iiiiiiii i 343
Timo Kasper, Michael Silbermann, and Christof Paar

Shoulder-Surfing Safe Login in a Partially Observable Attacker
Model (Short Paper) ... 351
Toni Perkovié, Mario Cagalj, and Nitesh Saxena

Using Sphinx to Improve Onion Routing Circuit Construction
(Extended Abstract) i 359
Aniket Kate and Ian Goldberg

Secure Multiparty AES (Short Paper) 367
Ivan Damgard and Marcel Keller

Modulo Reduction for Paillier Encryptions and Application to Secure
Statistical Analysis (Extended Abstract) 375
Jorge Guajardo, Bart Mennink, and Berry Schoenmakers

On Robust Key Agreement Based on Public Key Authentication
(Short Paper) i 383
Feng Hao

A Formal Approach for Automated Reasoning about Off-Line and
Undetectable On-Line Guessing (Short Paper) 391
Bogdan Groza and Marius Minea

Signatures of Reputation (Extended Abstract) 400
John Bethencourt, Elaine Shi, and Dawn Song

Intention-Disguised Algorithmic Trading (Short Paper) 408
William Yuen, Paul Syverson, Zhenming Liu, and
Christopher Thorpe

When Information Improves Information Security (Short Paper) 416
Jens Grossklags, Benjamin Johnson, and Nicolas Christin

BetterThanPin: Empowering Users to Fight Phishing (Poster) 424
Teik Guan Tan

XII Table of Contents

Certification Intermediaries and the Alternative (Poster)
Pern Hui Chia

SeDiCi: An Authentication Service Taking Advantage of
Zero-Knowledge Proofs
Stawomir Grzonkowski

Poster Abstract: Security in Commercial Applications of Vehicular

Ad-Hoc Networksot e e
Pino Caballero-Gil, Jezabel Molina-Gil, Cdndido Caballero-Gil, and
Candelaria Herndndez-Goya

Domain Engineering for Automatic Analysis of Financial Applications
of Cryptographic Protocols (Poster),
Lilia Georgieva

hPIN/hTAN: Low-Cost e-Banking Secure against Untrusted
COMPUEETS « .« . vttt et et et e e e e e e e e
Shujun Li, Ahmad-Reza Sadeghi, and Roland Schmitz

Author Index

Constructive Cryptography — A Primer

Ueli Maurer

Department of Computer Science
ETH Zurich
CH-8092 Zurich, Switzerland
maurer@inf.ethz.ch

Abstract. A central paradigm in any constructive discipline is the de-
composition of a complex system into simpler component systems or
modules, which each may consist of yet simpler modules, and so on.
This paradigm, sometimes called step-wise refinement, is useful only if
the composition of modules is well-defined and preserves the relevant
properties of the modules. For example, in software design, the compo-
sition operation must preserve correctness of the modules, i.e., a system
consisting of correct modules must itself be correct.

In cryptography, the modules are cryptographic schemes (e.g. an en-
cryption scheme or a message authentication code, MAC) or protocols
(e.g. a zero-knowledge proof), and the composition must preserve the
security of the modules. Surprisingly, for the traditional, game-based
cryptographic security definitions, this composition property is unclear
or at best highly non-trivial. Recall that a game-based security defini-
tion states that an adversary with certain capabilities (e.g. access to a
MAC oracle) cannot win a certain game (e.g. forge a MAC) with non-
negligible probability. One consequence of the lack of composability is
that cryptographic protocols are often complex and lack modularity.

We propose constructive cryptography as a new paradigm, where the
security definition of cryptographic schemes is radically different (though
in many cases can be proved to be equivalent). For example, a message
authentication scheme is defined to be secure if it constructs an authenti-
cated communication channel from an insecure communication channel
and a secret key, for a well-defined, simulation-based notion of “con-
struct” and for well-defined definitions of an insecure and an authenti-
cated channel. Similarly, a symmetric encryption scheme is defined to be
secure if it constructs a secure communication channel from an authenti-
cated communication channel and a secret key. The general composition
property of this theory implies that the combination of a secure MAC
and secure encryption scheme constructs a secure channel from an inse-
cure channel and two secret keys (which can be constructed from a single
secret key using a pseudo-random generator).

The security of public-key cryptosystems and digital signature
schemes can be seen similarly in the constructive cryptography paradigm.
In addition to making composition clear, the constructive cryptography
approach has many other benefits. For example, it allows to investigate
the intrinsic limitations of cryptography.

R. Sion (Ed.): FC 2010, LNCS 6052, p. 1, 2010.
© IFCA/Springer-Verlag Berlin Heidelberg 2010

Security Mechanisms with Selfish Players in
Wireless Networks

Jean-Pierre Hubaux

EPFL
Switzerland
http://people.epfl.ch/jean-pierre.hubaux

Abstract. It is frequently assumed that the parties involved in a secu-
rity mechanism will behave according to everyone’s expectation. How-
ever, some of them might be tempted to depart from the expected (or
canonical) behavior, because such a deviation is more beneficial for them.
As an illustration, we will consider that phenomenon in the framework
of wireless networks. We will briefly introduce some basic background in
game theory and provide an overview of several recent contributions to
that field. Finally, we will consider two examples in more detail, namely
revocation in high-mobility (or “ephemeral”) networks and pseudonym
change in mix zones.

Notes:

— Some of the material of this talk appears in the book “Secu-
rity and Cooperation in Wireless Networks” by L. Buttyan and
J.-P. Hubaux, Cambridge University Press, 2008, available at
http://secowinet.epfl.ch

— A list of applications of game theory to various se-
curity (and cryptography) problems can be found at:
http://lca.epfl.ch/projects/gamesec

R. Sion (Ed.): FC 2010, LNCS 6052, p. 2, 2010.
© IFCA/Springer-Verlag Berlin Heidelberg 2010

http://people.epfl.ch/jean-pierre.hubaux

Users Do the Darndest Things:
True Stories from the CyLab Usable Privacy and
Security Laboratory

Lorrie Faith Cranor

Carnegie Mellon University, Pittsburgh, PA
lorrie@cmu.edu

Abstract. How can we make security and privacy software more usable? The
first step is to study our users. Ideally, we would watch them interacting with
security or privacy software in situations where they face actual risk. But eve-
ryday computer users don't sit around fiddling with security software, and sub-
jecting users to actual security attacks raises ethical and legal concerns. Thus, it
can be difficult to observe users interacting with security and privacy software
in their natural habitat. At the CyLab Usable Privacy and Security Laboratory,
we've conducted a wide variety of studies aimed at understanding how users
think about security and privacy and how they interact with security and
privacy software. In this talk I'll give a behind the scenes tour of some of the
techniques we've used to study users both in the laboratory and in the wild. I'll
discuss the trials and tribulations of designing and carrying out security and pri-
vacy user studies, and highlight some of our surprising observations. Find out
what privacy-sensitive items you can actually get study participants to purchase,
how you can observe users' responses to a man-in-the-middle attack without ac-
tually conducting such an attack, why it's hard to get people to use high tech
cell phones even when you give them away, and what's actually in that box
behind the couch in my office.

R. Sion (Ed.): FC 2010, LNCS 6052, p. 3, 2010.
© IFCA/Springer-Verlag Berlin Heidelberg 2010

Multichannel Protocols to Prevent Relay Attacks*

Frank Stajano!, Ford-Long Wong?, and Bruce Christianson®**
! University of Cambridge Computer Laboratory, Cambridge, United Kingdom
2 DSO National Laboratories, Singapore
3 University of Hertfordshire, School of Computer Science, Hatfield, United Kingdom

Abstract. A number of security systems, from Chip-and-PIN payment
cards to contactless subway and train tokens, as well as secure localiza-
tion systems, are vulnerable to relay attacks.

Encrypting the communication between the honest endpoints does not
protect against such attacks. The main solution that has been offered to
date is distance bounding, in which a tightly timed exchange of challenges
and responses persuades the verifier that the prover cannot be further
away than a certain distance. This solution, however, still won’t say
whether the specific endpoint the verifier is talking to is the intended one
or not—it will only tell the verifier whether the real prover is “nearby”.

Are there any alternatives? We propose a more general paradigm
based on multichannel protocols. Our class of protocols, of which dis-
tance bounding can be modelled as a special case, allows a precise answer
to be given to the question of whether the unknown device in front of
the potential victim is a relaying attacker or the device with which the
victim intended to communicate.

We discuss several instantiations of our solution and point out the
extent to which all these countermeasures rely, often implicitly, on the
alertness of a honest human taking part in the protocol.

1 Introduction

In a relay attack, the victims are two honest parties acting respectively as a
prover (e.g. a door-opening token) and a verifier (e.g. a door-mounted token
reader). In normal operation, when the prover (token) is authenticated by the
verifier (door), the verifier grants some privilege (the door opens).

During a relay attac, a pair of communicating attackers splice themselves in
the communication channel between the two victims. One of the attackers acts as
a fake verifier to the victim prover and the other acts as a fake prover to the victim
verifier. When the victim verifier issues a challenge, the attackers relay it unchanged
to the victim prover; and when the prover issues its response to the original chal-
lenge, the attackers relay that too, unchanged, to the true verifier. The outcome is

* Revision 39 of 2010-02-27 22:23:18 +0100 (Sat, 27 Feb 2010).
** On sabbatical at the University of Cambridge Computer Laboratory while the core
of this research was carried out.
! Sometimes also called a wormhole attack, especially in secure localization contexts.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 4 2010.
© IFCA /Springer-Verlag Berlin Heidelberg 2010

Multichannel Protocols to Prevent Relay Attacks 5

that the victim verifier grants the privilege to the fake prover, who was accepted
thanks to the credentials unknowingly provided by the victim prover.

The honest participante@:

Prover s« = = = s % s s s s # % & &® & Verifier
Peter Victoria

< challenge

response

\/

When a relay attack is taking place:

Man-in-the-middle attackers
(the Moriarty associates)

P ! MV MP v
Prover « « « « .. + Fake verifier + « « = s s a s s s Fake prover: =js s« s s s s s s Verifier
Peter E Morivictoria Moripeter , Victoria

< challenge
response >

Even if the victim prover and verifier share a secret unknown to the attack-
ers, they are still vulnerable: since their messages are relayed unchanged, the
attackers succeed in fooling the verifier regardless of whether they can decrypt
the messages they relay.

This problem has been known for several decades: Conway [6] described the
“chess grandmaster problem”, in which an unskilled player defeats (or at least
draws with) a chess grandmaster by simultaneously challenging two grandmas-
ters at postal chess, one as white and one as black, and countering the moves
of one grandmaster with those of the other. Beth and Desmedt %] revisited the
problem, noting that it matched the scenarios of the “mafia fraud’ly and “terrorist
fraud’ﬂ, both previously described by Desmedt et al. [8], and they introduced

2 We only show the essential core of the protocol here: clearly, in a more realistic
situation, one would expect the protocol to be initiated by a preliminary request from
Peter “hey, please challenge me so I can prove I'm worthy of getting the benefits”.
We omit this and other non-essential messages for brevity and clarity.

In the mafia fraud, P is a customer who is electronically paying his restaurant bill to
MYV. Restaurant owner MV is a member of a mafia gang who alerts his accomplice
MP to go and buy a diamond from jeweller V. Jeweller V challenges M P for his
credentials, but M P and MV relay P’s credentials to V. So P thinks he’s paying
for a meal, whereas he is buying the mafiosi a diamond.

In the terrorist fraud, the verifier V' is an immigration officer of country a and the
fake prover M P is a terrorist who wants to enter the country. The fake prover M P
is helped by P, a sympathetic citizen of a who supplies the correct answers to the
questions of the immigration officer V. The main difference between this case and
the mafia fraud is that the prover P is not a victim of the scam but an accomplice:
he cooperates with the fake prover M P against the verifier V' and therefore there is
no need for a fake verifier MV.

3

6 F. Stajano, F.-L. Wong, and B. Christianson

the defensive technique of measuring the round-trip time, relying on the fact
that the speed of light is finite to detect whether the actual prover is further
away than expected. Brands and Chaum [3] refined that technique into a specific
and more secure low-level protocol, with precomputation of single-bit challenges
and responses that are then exchanged as quickly as the channel allows. More re-
cently, Hancke and Kuhn [T2] developed a distance-bounding protocol optimized
for the resource-constrained RFID environment and, with colleagues [5], studied
a variety of attacks on the timing measurements. Drimer and Murdoch [9] built
electronic circuitry to demonstrate the relay attack against modern Chip-and-
PIN bank cards and implemented the Hancke-Kuhn protocol to demonstrate
its viability as a practical countermeasure. Hancke’s doctoral dissertation [11]
contains a good survey of the distance-bounding protocols in the literature.

The purpose of any distance-bounding protocol in such a context is to convince
the honest verifier that the honest prover she is ultimately interacting with (the
one who can respond to the challenges, whereas the attackers can’t because they
don’t know the shared secret) is, with high probability, the prover currently in
front of her. By construction, the distance bounding protocol can only give a
verdict of the form “the owner of the shared secret just proved that he is no
further away than d metres”. If the verifier is interacting with a prover (whether
genuine or fake) that is less than 1 metre away, but the distance bounding
protocol says that he was unable to prove that he is within 10 metres, then the
verifier should suspect that she is interacting with a relaying attacker.

Still, the distance-bounding solution does not really identify a specific prin-
cipal but only its approximate locatiord. At least theoretically, depending on
the spatial resolution of the distance-bounding protocol, it is still possible for
attackers to go undetected if they stay within the bounds of the error margin,
as in the scenario of multiple adjacent cash machines of which one is fake and
performs a relay attack on another.

In this paper we propose a new paradigm for detecting and preventing relay
attacks that is more general than distance bounding. Our strategy is to use a
multichannel protocol [20/T5J4)T8IT6] in which the traditional challenge-response
between verifier and prover on the regular channel is augmented with an addi-
tional verification on a special channel whose main property is that it cannot be
relayed.

Our multichannel approach includes the distance-bounding solution as a spe-
cial casd]. More importantly, our family of solutions includes ones that give a
clear and definite “yes / no” answer to the question “is the principal in front of
me really the one with whom I share this secret key, or is it just a middleperson
attacker?”, which the distance-bounding protocols can only answer with a less

5 With explicit reference to the “mafia fraud” scenario.

5 Within a sphere, or within the intersection of several spheres in the substantially
more complicated case where one repeats the protocol from several reference points.

7 Insofar as you cannot relay beyond a certain distance the special channel implicitly
defined by the distance-bounding procedure without being noticed by the victim
endpoints.

Multichannel Protocols to Prevent Relay Attacks 7

stringent assurance such as “it probably is, provided there are no other principals
within d metres of Victoria”.

Our approach also models the anti-relay alternative proposed by Damgard et
al. [7] of somehow limiting the bandwidth with which the prover can commu-
nicate to the outside world to a value lower than the one needed in order to
conduct the protocol—their arrangement implicitly relies on unrelayable chan-
nels because, by construction, at least one of the channels used in the protocol
cannot be relayed to third parties outside.

We also highlight the extent to which all these anti-relay protocols, including
both our new ones and the traditional ones based on distance bounding, implic-
itly rely on the presence of an honest human. We discuss whether they are still
secure when the human takes part in the protocol without actively cheating but
without thoroughly investigating all possible suspicious clues.

2 The Core Idea

Our core idea is that, although the man-in-the-middle attackers are usually able
to relay the information between the two honest endpoints over whatever chan-
nels are normally used for the transaction, we might be able to augment the
system with an additional special channel that the attackers won’t be able to
relay. Over that channel, the two endpoints can verify whether they are talking
directly to each other or not.

Traditionally, the authentication problerrﬁ can be framed in the following
terms: “I know I am talking to you; now, prove to me that you know our shared
secret”. Here, instead, we examine the dual problem: “I know I am talking to
someone who knows my shared secret; now, prove to me that you, the principal
in front of me, are that someone”.

The intuition behind the multichannel approach is that the verifier asking
that question should use the special channel to sample some physical aspect of
the prover which the men in the middle are not able to relay, and then ask the
prover (assumed to be honest and cooperative) to say, even over the regular
channel subject to relay, what the correct value should be. Since prover and
verifier already share a secret, they can use standard cryptographic techniques
to protect the integrity (and confidentiality, though generally less relevant here)
of the regular relay-vulnerable channel, thereby preventing the fake prover from
replacing the true prover’s “model answer” with one matching the fake prover’s
own physical aspect.

Since the fake prover can’t reproduce the true prover’s physical aspect (by hy-
pothesis of unrelayability of the special channel) and can’t substitute the prover’s
description with his own (because the regular channel is integrity-protected by the
secret shared between the honest prover and verifier), the verifier can justifiably

8 According to our definition the authentication phase, which takes place repeatedly, is
distinct from the preliminary “enrollment” or “pairing” phase, performed only once
and under more controlled circumstances, in which the two principals establish a
common secret.

8 F. Stajano, F.-L. Wong, and B. Christianson

deduce that the principal in front of it is the genuine prover if and only if the value
sampled directly over the special channel is consistent with the one received over
the integrity-protected channel. That’s the core idea in a nutshell.

Looking at the problem in greater detail, the first issue is to define more
precisely the “unrelayability” property, and the second is to clarify the subtle
interactions between humans and their digital representatives in the course of the
verification process: how much of the verification protocol can run unattended
and how much of it does instead implicitly rely on human vigilance? We wish to
make everything explicit.

Readers should note that using a multichannel protocol (such as acquiring
a 2D barcode from a screen with a cellphone camera, as in the classic “Seeing
Is Believing” protocol [I5]) does not, by itself, prevent relay attacks. Without
elaborate precautions, the auxiliary channel could itself be relayedﬁ, which would
totally negate its purpose. What we need is a multichannel protocol where one
of the channels is by design unrelayable.

3 Unrelayable Channels and Protocols That Use Them

Our investigation of unrelayable channels brings to mind the work by Pappu et
al. on unclonable “physical one-way functions” [17]:

These physical one-way functions are inexpensive to fabricate, prohibitively
difficult to duplicate, admit no compact mathematical representation,
and are intrinsically tamper-resistant.

To implement an unrelayable channel we require similar properties. In the con-
text of a unidirectional channel in which a detector (sink) acquires information
by sampling some physical aspect of an emitter (source), we need:

weak unclonability: it must be prohibitively difficult to produce a copy of a
given sourc@;

strong unclonability: it must be prohibitively difficult to manufacture two
indistinguishable source;

9 For example, the on-screen barcode that Peter acquires with his cellphone could
have been generated by Morivictoria by replicating the one acquired by Moripeter’s
cellphone from Victoria’s screen.

Some will claim that this property is redundant because it is implied by each of the
next two. But it is conceptually different and therefore we mention it as distinct
to clarify the issues involved. By analogy, think of the source as a walnut. Weak
unclonability means the attacker can’t produce another identical walnut. Strong un-
clonability means it’s infeasible for the attacker to produce any two walnuts that are
indistinguishable. Unsimulability means the attacker can’t fool you by just showing
you a photograph of your walnut.

This would be analogous to a cryptographic “collision”. As with collision resistance,
this clonability resistance property is stronger than the previous one, which it im-
plies: if an attacker can’t make two identical sources of his own choice then a fortiori
he can’t make a copy of a designated target source.

10

11

Multichannel Protocols to Prevent Relay Attacks 9

unsimulability: it must be prohibitively difficult to fool the sink by simulating
the response of the genuine source using some other devic;

untransportability: it must be prohibitively difficult to manufacture a “data
pipe” device capable of transporting to another location L the output of the
source with sufficient fidelity that a sink at location L would not be able to
distinguish whether it is sampling the genuine source or the output of the
data pipe.

The unsimulability and untransportability requirements highlight the necessity
of looking at the whole system, not just the source and sink endpoint devices,
and of including the whole verification process in the evaluation. We must in
particular clarify whether we are implicitly relying on the presence of a human
verifier (e.g. to check that what is being sampled is the genuine artifact rather
than, say, a box of electronics that simulates it, or a set of mirrors and prisms
that reproduce its appearance) and the extent to which the overall unrelayabil-
ity property depends on the care with which the human helper supervises the
verification.

To help the reader follow the discussion, we shall now present several examples
of unrelayable channels and associated protocols. They are not meant to be
adopted as they are: take them as illustrations whose purpose is to help us think
about the required properties of an acceptable solution.

To simplify matters, we deal with unidirectional authentication, with one
prover and one Veriﬁe. Prover and verifier are connected by a regular bidirec-
tional channel, subject to relay attacks, and by a special unrelayable channel,
which is unidirectional and goes from prover to verifier. The two principals have
previously performed the pairing phase and therefore share a secret with which,
using well-known cryptographic techniques, they can make the regular channel
confidential and integrity-protected. Notation-wise, in the rest of this paper we
shall say “lock X with K”, written as L (X), to mean “cryptographically protect
both the integrity and the confidentiality of X using K as the key”, for example
with encrypt-then-MAC.

With reference to our earlier figures, prover Peter must prove to verifier Vic-
toria that the principal to whom Victoria is talking (and of whom Victoria can
physically observe/measure/probe some physical aspect over the special chan-
nel) is Peter, i.e. the same principal that shares the secret with her. The attacker
model is still that man-in-the-middle Moriarty has recruited two accomplices,
Moripeter who looks like Peter and will try to fool Victoria, and Morivictoria
who looks like Victoria and will try to fool Peter. Victoria wins if she can distin-
guish whether the principal to whom she is directly talking is Peter (who shares

12 This property, too, implies the first one: if the attacker can’t simulate the designated
source using another device then a fortiori he can’t make a clone of it.

13 We believe that what we really want in most practical applications is mutual au-
thentication. For the moment, ignore possible optimizations and assume you can
achieve mutual authentication by running the unidirectional protocol twice, once
in each direction. Note however that this glosses over some subtle issues about the
incentives of the two parties. We shall discuss them at the end of section [3.11

10 F. Stajano, F.-L. Wong, and B. Christianson

a secret with her) or Moripeter (who doesn’t). Conversely Moriarty wins if, after
placing Moripeter next to Victoria, and Morivictoria next to Peter, he persuades
Victoria that she is talking directly to Peter, even though she really isn’t.

Normally, Victoria would run some kind of challenge-response protocol; she
could for example ask Peter (or Moripeter, since she can’t tell the difference
yet) a question such as: “Here is a random nonce N. What do you obtain if you
lock it with our shared secret K py ?”. But, with a relay attack, Moripeter would
relay the question to Morivictoria, who would ask the same question to Peter,
who would provide the correct answer; then Moripeter would get the correct
answer from Morivictoria and repeat it to Victoria, who would then be fooled
into thinking that Moripeter knew the secret K py, whereas he didn’t (and still
doesn’t).

3.1 Example: Banknote

In this first example, Peter’s unrelayable physical characteristic is a banknote.
The banknote is, by design, prohibitively difficult to duplicate (yielding weak
and strong unclonability), and there are well-established methods for verifying
that it is not a forgery.

Victoria now says, to the principal in front of her (Moripeter if they are
under attack, or Peter under normal circumstances): “Give me a banknote. T
She checks that it’s not a forgery (thereby reassuring herself that it is unclonable
and that no duplicates of it exist) and then reads its serial number S and burns
the banknote, making sure that that particular serial number will never be used
again in any other run of this protoco. Then she asks: “What do you obtain
when you lock S, the serial number of the banknote you gave me, with our shared
secret Kpy?”’

How can Moripeter answer that question? He could tell the serial number
S to Morivictoria if it helped, but Morivictoria must run with Peter the same
protocol as Victoria did with Moripeter (otherwise Peter would not respond), so
she must ask for a banknote of that type from Peter, which will have a different
serial number, say S;. Peter will lock that Se with the shared secret and there
is no way that Morivictoria can persuade him to lock S instead, since

— the banknote is chosen by Peter; and, anyway,
— no other banknote exists with S on it: the only one that did was burnt.

So Moripeter will not be able to answer correctly and Victoria will be able to
tell that she received the banknote from someone who didn’t know the secret.

14 The banknote must be of a well-specified currency, issue and denomination, to avoid
substitution attacks. To minimize the cost of each run of the protocol, it is OK for the
banknote to be almost worthless—e.g. one from a country with runaway inflation—
provided it is still unclonable. Alternatively, one might use the same technology as
banknote printing to create low-value tickets with similar unclonability properties,
as is sometimes done for concert or public transport tickets.

15 Burning the banknote at each protocol run makes S a nonce.

Multichannel Protocols to Prevent Relay Attacks 11

Attack: reverse pickpocketing. Now here is an attack: Moripeter and Moriv-
ictoria take a genuine banknote and make a counterfeit copy of it. The forgery
is as good as it gets, but it is (by hypothesis of weak unclonability) detectable
by someone who runs the proper checks. But, crucial point: Peter is the prover,
not the verifier, so why should he be running any serious checks (UV light,
colour-changing marker etc etc)? Do you do that on the banknotes you get from
your cash machine, or as change from the supermarket? So the scam is for the
Moriarty associates to “give” the forged banknote to Peter (as change in a trans-
action, or by letting him “find” it on the floor, or by reverse pickpocketing him,
or whatever) and ensure that he will use it in the subsequent protocol run (no
guarantee, but still non-negligible probability). The full run then goes as follows.

Victoria asks Moripeter for a banknote. He gives her the genuine banknote,
with serial number S. She asks him to lock S with the shared secret Kpy,
which Moripeter doesn’t know. Morivictoria asks Peter for a banknote. With
some probability, she gets back the forged banknote that has the same serial
number S: Peter didn’t check very carefully and never realized he had a forged
banknotd so he thinks he is handing over a genuine one. Morivictoria asks
Peter to lock with Kpy the serial number of the banknote he just handed over;
he obliges, and Morivictoria obtains L .., (S) which she relays to Moripeter who
can then correctly answer Victoria’s challenge and pass off as Peter.

The lesson here is: who should be verifying the genuineness of the banknote?
The prover or the verifier? And the correct answer is: both! If either of them
doesn’t check with sufficient care, an attack is possible. (NB: if Victoria does
not check that she is receiving a genuine banknote, the dual of the above scam,
where Moripeter gives Victoria the forged banknote, works equally well.)

This attack scenario also highlights another systems issue we mentioned be-
fore: to what extent are we relying on humans to perform additional “implicit”
sanity checks? Is it possible for the protocol to run with one machine talking to
another machine, in unattended fashionl1? Assume the crooked machine might
exhibit a relaying artifact, e.g. a hi-res screen displaying the banknote, rather
than the genuine article. In this case we see that we could in theory run this
variant of the protocol in a machine-to-machine setting, provided that both the
prover and the verifier contained the approved vending-machine-style technolo-
gies for checking that a banknote is not a forgery. Conversely, if we ran this
protocol as person-to-machine (a human entering a high-security facility, or a
human using an ATM), then it would fall upon the human to perform as careful
a check of the authenticity of the banknote as the machine will do. In other
words: we do indeed also need unsimulability and untransportability, as well as
the strong and weak unclonability that we got from using a banknote!

16 And if Peter vaguely suspected it was a forgery, he was probably happy to get rid of
it by using it in a protocol where it will be destroyed and none will be the wiser—
that’s an interesting observation about the role of dishonesty in the psychology of
scam victims [I9] but let’s not get sidetracked for the moment.

17 Imagine for example a car interacting with a barrier, to enter a restricted zone or to
pay a road toll or parking charge.

12 F. Stajano, F.-L. Wong, and B. Christianson

Attack: not burning the banknote. Here is another possible attack. Moriv-
ictoria asks Peter for a banknote, which he gives her. She pretends to burn it
but instead she secretly passes it on to Moripeter. She also asks Peter to lock
the serial number with Kpy, and she gives that answer to Moripeter as well.
Now Moripeter can fool Victoria, using the genuine banknote and the L, (5)
kindly supplied by Peter! To prevent this, we must prevent Morivictoria from
being able to reuse the banknote in other runs of the protocol. For example
we could say she must cut it in half and return it to Pete@, all strictly un-
der Peter’s nosd'. The interesting problem, here, again, is that the strength of
this countermeasure depends on the care with which Peter checks that he re-
ceived the two halves of the same genuine banknote that he originally supplied—
and not, for example, the two halves of a forgery, or of another banknote. But
what’s Peter’s incentive for performing this check? If he is careless and the Mo-
riarty associates succeed in their scam, they are fooling Victoria into opening
her door (or giving away her diamond, or whatever) to Moripeter; does Pe-
ter lose anything? Not straight away, unless there are external liability issues
that penalize Peter for fraudulent use of his authentication credentials. At the
baseline level, though, it is Victoria’s security (not Peter’s) that depends on
the care exercised by Peter, and this should be considered a vulnerability. Even
though Peter is not actively dishonest, he may not go out of his way in order
to protect Victoria, so long as he doesn’t lose anything himself by being slightly
careless.

This attack scenario explains why we might want to develop a mutual au-
thentication protocol in which the fate of the two parties is more closely en-
tangled than it would be by simply running two instances of the unidirectional
authentication protocol one after the other. The reason for wanting a mutual
protocol is not to optimize and save on number of messages but rather to bind
the incentives of the participants, so that if one of them is sloppy and the other
careful then neither gets any benefit from the protocol run (as opposed to the
unfair situation in which the sloppy principal is rewarded/protected because
the other was careful, and the careful principal suffers because the other was

sloppy).

3.2 Example: Accelerometers

In this rather different example, Peter and Victoria have 3D accelerometers that
can record, at suitable resolution, a log of the accelerations to which they are

18 Returning the ashes isn’t as good, because Morivictoria might supply the ashes of
another banknote and Peter would not be able to notice.

19 Otherwise another attack would be for Morivictoria to receive the banknote, go to
the kitchen to fetch some scissors, pass Peter’s note to Moripeter who would then run
the protocol by having it cut by the real Victoria; the two halves would be returned
by Victoria to Moripeter, then to Morivictoria pretending to have just returned from
the kitchen, then to Peter and neither Peter nor Victoria would be the wiser.

Multichannel Protocols to Prevent Relay Attacks 13

subjected. The accelerometers are stuck together and shaken randomly@ and
Victoria checks that the prover could observe the shake. The idea behind this is
that “a random shake is unclonable”. The protocol runs as follows.

Victoria says: “Give me your accelerometer. Here is mine, too. I stick them
together and shake them randomly for x seconds. Now have your accelerometer
back. Please lock its log with our common secret and send it back to me.”

Attack: robotic arm. To comply with this request, Moripeter could observe
Victoria’s shake (the challenge) with his accelerometer, give the precise details
to Morivictoria from the accelerometer’s log and have Morivictoria reproduce
that shake precisely in front of Peter. This last part is practically impossible
for a person to do, hence our claim above that “a random shake is unclonable”.
But what if Morivictoria has a high precision robotic arm that can reproduce
the shake to within the required tolerances? Then Peter’s accelerometer would
record a shake equivalent to that originally performed by Victoria, and Peter
would lock it with the secret, and the Moriarty accomplices would win. So this
highlights an implicit dependency on Peter being an “alert human” who would
spot something amiss if Morivictoria’s arm were not of flesh and bones. (But
would he actually pay attention to that detail? What if the arm were covered in
clothes and appeared to come out of Morivictoria’s shoulder?) Thus a machine-
to-machine version would not prevent relay attacks.

Attack: substituting, or tampering with, the accelerometer. Morivic-
toria could, by sleight of hand, substitute Peter’s accelerometer with one into
which she downloaded the log communicated to her by Moripeter. No need for
robotic arm, but the effect is again that of giving Peter a relayed log instead
of the one of the real performance. To guard against this, Peter must ensure
that the accelerometer he gets back is really his, and also that it hasn’t been
tampered with (otherwise Morivictoria could upload the relayed log into Peter’s
own accelerometer). Once again we raise the warning that we may be relying
implicitly on the vigilance of a human Peter and that substitution or tampering
might be possible in a machine-to-machine transaction.

Cameras instead of accelerometers. An alternative might be to monitor the
shake with cameras, rather than accelerometers, the intention being that Peter’s
cameras will never leave Peter’s trusted computing base and Morivictoria won’t
be able to tamper with them. Victoria would then say, without reference to ac-
celerometers: “T’ll shake the tip of my finger randomly for x seconds. Please lock
the log of the 3D position of my finger with our common secret and send it back to
me.” Setting aside the interesting but not security-critical computational geome-
try problem of comparing shake traces taken from different viewpoints, this solu-
tion would guard against the last two attacks (“substitute Peter’s accelerometer

20 The technique of shaking together two objects instrumented with accelerometers was
first proposed by Holmquist et al. [I3] in the context of device pairing for ubiqui-
tous computing. Later papers [I4] perfected the necessary authentication protocols,
taking into account error correction and so on.

14 F. Stajano, F.-L. Wong, and B. Christianson

with one containing relayed log” and “upload relayed log into Peter’s accelerome-
ter”) but would still be subject to the “Morivictoria uses robotic arm” attack.

3.3 Example: Physical One-Way Functions

For this third example we use an instance of Pappu’s “physical one-way function”
a physical object with submicron features that are difficult to replicate exactly
and that gives unpredictable but consistent “responses” when “challenged” (il-
luminated) with a laser. Peter holds the object (or is the object—think iris
recognition) and Victoria challenges it. The protocol runs as follows.

Victoria shines her laser (in a random way R chosen by her, dictating pa-
rameters such as laser frequency, angle, scanning pattern etc) at Peter’'s POWF
object and she records the outcome Opeter(R). Then she tells Peter: “What is
the response of your object when illuminated with R? Lock the response under
our secret and send it to me.”.

How can Moripeter answer that question? He will also have a POWF object,
but by hypothesis of unclonability it must be different from Peter’s. Victoria
records Onforipeter (R) and expects L (Onroripeter (R)) but the Moriarty asso-
ciates can only produce either Ly (Opeter(R)), which has the wrong plaintext
inside the outer brackets, or L772(Opmoripeter (R)), where the correct plaintext is
known but the correct key to lock it is unknown to Moriarty.

Attack: smoke and mirrors. In practice, the Moriarty associates could try to
fool Victoria by having Moripeter use a more complex smoke-and-mirrors piece of
machinery with its own lasers instead of a regular POWF object. Victoria chooses
the laser parameters R and the Moriarty associates, through relay, use these same
parameters to interrogate Peter’s genuine POWF. They record the response
Opeter(R) and then make Moripeter’s smoke-and-mirrors machine respond with
Opeter(R), rather than with anything physically generated, to Victoria’s laser
challenge. Then Morivictoria asks Peter to lock the response with K, and she
relays that to Moripeter, who convinces Victoria with an L (Opeter(R)) that
matches both the shared secret K and the response observed by Victoria.

The two assumptions upon which this attack is predicated are: first, that the
Moriarty associates can build a smoke-and-mirrors machine capable of returning
arbitrarily chosen laser responses regardless of the laser challenge with which
it is illuminated; and second, that Victoria will just shine her laser in the pre-
scribed way without noticing that she is interacting with a smoke-and-mirrors
machine rather than with a POWF object. The first of these assumptions is fairly
technology-dependent: it concerns the possibility of mounting a specific techni-
cal attack against a specific implementation. The second, instead, is once again
related to the issue of whether a careful human supervisor will be overseeing the
protocol or not?1.

21 Note that “will be overseeing”—or, better, “is responsible for overseeing”—is quite
different from simply “will be present”; in most cases a human will indeed be present,
if nothing else to insert the card in the slot, but what matters here is whether the
strength of the protocol depends on the degree of care that the human will exercise.

Multichannel Protocols to Prevent Relay Attacks 15

It should also be noted that in practice the attack is much harder than we
casually described because Moripeter won’t know Victoria’s laser parameters R
until Victoria actually shines the laser. There is no reason for Victoria to disclose
R to the prover before shining the laser. If Victoria only discloses R after having
received a laser response from the prover, then Moripeter must perform all of
the following difficult tasks:

— figuring out R from the way Victoria shines the laser (instead of being told)
— reproducing those parameters at Morivictoria’s end to challenge Peter

— obtaining Peter’s POWF response

— relaying that back to Moripeter’s smoke-and-mirrors machine

all in real time while Victoria is still operating. If the delay in Moripeter’s an-
swer makes Victoria suspicious then this is reminiscent of distance-bounding
techniques (all essentially based on measuring whether the response takes longer
than would be reasonable), even though conceptually we are still in a different
territory. Note that it is very technology-dependent whether it is possible to (a)
extract R while Victoria operates her laser and (b) relay the response piecemeal
as it unwinds, rather than atomically at the end.

Note that we are now not really discussing the protocol: we are discussing
whether or not the proposed special channel has the required unsimulability

property.

3.4 Example: Quantum Channel (Polarized Photons)

This fourth example is even less practical than the previous ones but it is con-
ceptually interesting, since it is based on the inherent unclonability of quantum
mechanical states. We leave quantum mechanics to theoretical physicists and we
just accept as a black box the assumptions (summarized in the next paragraph)
of the BB84 Quantum Key Exchange protocol [1].

Under the assumptions of BB84, Alice the sender can emit photons at various
polarization angles that are pairwise orthogonal (say 0, 45, 90, 135 degrees).
Her encoding of Os and 1s into these polarizations is important for BB84 but
irrelevant for us. Bob the receiver cannot detect all the potential angles of the
incoming photon: he must first choose one of two bases—either the rectilinear
one that can distinguish between 0 and 90, or the diagonal one that can distin-
guish between 45 and 135. If he measures an incoming photon using a base that
does not match the photon’s polarization (for example measuring a 90-degree
photon using the diagonal base), he will get an incorrect result (either 45 or 135,
randomly). The photon is modified by the measurement; so, if eavesdropper Eve
listens in on a photon with the wrong base, she “spoils” it for Bob.

We emphasize that we are not using (or describing) the BB84 protocol at
all—only its underlying physical transmission medium. The BB84 protocol is for
building a shared key between Alice and Bob, whereas in our scenario Victoria
and Peter already share a key before we even start.

Our protocol runs as follows. Victoria produces a suitably long random string of
the symbols {0, 45, 90, 135} and a matching string of the corresponding

16 F. Stajano, F.-L. Wong, and B. Christianson

polarization bases. She sends the second string (of bases) to Peter, locking it with
the shared secre, and then she sends Peter the actual polarized photons as de-
scribed in the first string, which Peter can decode correctly by using the bases in
the sequence he just received. Then it’s Peter’s job to send Victoria the string of
values he read out, again locked with the shared secret. If Moripeter and Moriv-
ictoria splice themselves in, then when Moripeter listens to Victoria’s photons he
must choose a polarization base to receive each photon, but he won’t know the
right one because he could not unlock the first message, so he’ll get it wrong about
half the time and won’t be able to tell Morivictoria the correct sequence of photons
to retransmit to Peter. Therefore Peter will lock a different sequence of values and,
even if they relay that, Victoria will be able to distinguish Peter from Moripeter.

Attack: relay the photons. An attack here would be for the Moriarty asso-
ciates to run an optical fibre that shipped Victoria’s photons to Peter, without
being detected by either. If this were technically feasible, then the channel would
lack the required property of untransportability and would not be suitable. How-
ever we are as usual assuming that Victoria is sufficiently alert that this attack
cannot be mounted without attracting her attention: she would hopefully notice
that (Mori)Peter has an extra optical fibre sticking out of the back of his coat.

Attack: extract the challenge. An over-elaborate and improbable attack
sees Morivictoria use Peter as an oracle to check Morivictoria’s guess of Victo-
ria’s locked sequence of bases. Victoria sends the locked sequence of bases to
Moripeter. Morivictoria brute-forces it by trying each possible guess on Peter in
turn, as described later. Once she has the correct guess about the bases she gives
it to Moripeter, who uses to decode the real photons from Victoria. Morivicto-
ria then sends the same sequence of photons to Peter, who provides the correct
locked answer that they can relay to Victoria. (To check each guess, Morivic-
toria repeatedly sends Peter the same sequence of photons, polarized along the
guessed base sequence; if the responses differ, then the guess was wrong, else the
guess is shortlisted. She proceeds until only one guess is left.)

This attack relies on (a) the sequence being short enough that brute-forcing
won’t require years or millennia, (b) Victoria being patient enough to wait for the
brute-force to take place between her first and second message, and (c) Peter being
gullible enough to run the protocol as many times as requested without suspecting
anything. It can be thwarted by having Peter include a nonce inside his locked
answer so that it is different every time even if the sequence of values is the samd?d.

3.5 Example: Quantum Channel (Entangled Photons)

The other seminal quantum cryptography protocol, E91 [10], uses a different
underlying mechanism for quantum key establishment: an entangled pair of

22 Note that here we are using confidentiality, not just integrity.

23 Of course this relies on the cryptographic implementation of “locking” not leaking
information about the fact that two ciphertexts might correspond to plaintexts that
share a long common portion.

Multichannel Protocols to Prevent Relay Attacks 17

photons. This mechanism, too, can be used to build another protocol in our
family.

Under the assumptions of E9, some external source can prepare pairs of
entangled photons and send one photon of the pair to Alice and one to Bob.
Each photon can be measured using either a “blue” or a “red” machine and the
outcome will be either 0 or 1. If Alice and Bob measure the two photons of an
entangled pair using same-coloured machines, the outcomes will be the same; if
they measure them with differently-coloured machines, they will be unrelated.
Once again, we are not describing or using the E91 protocol—just its physical
assumptions.

Our protocol runs as follows. Victoria generates n pairs of entangled pho-
tons and sends one photon from each pair to her correspondent (either Peter
or Moripeter—she doesn’t know yet, but with our protocol she will be able to
tell). Then Victoria sends Peter, over the standard channel, a random string of
{red, blue} symbols—one for each of the entangled photons. Peter must then
measure each photon with the machine of the specified colour and communicate
the result to Victoria over the standard channel. Victoria performs the same
measurements on her own photons and checks whether they match, which they
should if there is no man in the middle.

In case of relay attack, Moripeter won’t be able to obtain the “challenge”
string of reds and blues and therefore won’t be able to perform the correct
measurements even though he has the genuine photons that are entangled with
Victoria’s. Meanwhile Peter, who can perform the prescribed measurements,
will be doing so on photons that are entangled with those of Morivictoria, not
of Victoria, and therefore his answers won’t match those of Victoria, who will
detect the difference.

Note how easy it is to specify and describe a protocol that won’t work, even if
we can rely on seemingly all-powerful unclonable features such as entangled pho-
tons. Victoria generates n pairs of entangled photons and sends one from each
pair to Peter. Then she also sends Peter, over the locked channel, a challenge
consisting of a string of randomly chosen red and blue symbols. Peter must mea-
sure the entangled bits using machines of the prescribed colours and then report
the answers to Victoria over the locked channel. But here the Moriarty associates
relay the challenge from Victoria to Peter, let Peter do the measurements, relay
the measurements from Peter to Victoria and appear indistinguishable from the
case in which Peter answered directly.

Could you spot the subtle difference between this (broken) protocol and the
almost identical one that instead works? Stop reading if you haven’t... In the
working protocol, Victoria sends the photons to the guy in front of her; in the
broken one, she sends them to “Peter’.

24 Or rather its simplified description, by Ekert himself, at
http://pass.maths.org.uk/issue35/features/ekert/2pdf/index.html/op.pdf.

25 The broken protocol is thus also impossible to implement: Victoria doesn’t know
which principal is Peter (whole purpose of protocol); so how could she send him the
photons?

http://pass.maths.org.uk/issue35/features/ekert/2pdf/index.html/op.pdf

18 F. Stajano, F.-L. Wong, and B. Christianson

Note that the “relay the photons” attack (cfr B4]) applies to this setting as
well, with the same caveats.

3.6 Why Our Multichannel Approach Works

The key insight of our approach is that the standard channel (think radio) con-
nects Victoria to Peter (even if she doesn’t know where he really is) and that
the special unrelayable channel connects Victoria to the principal in front of her.
Victoria challenges Peter over the standard channel and Peter issues conceptu-
ally the same response over both channels. The Moriarty associates can only
get it right on one channel at a time (they can relay the standard channel or
they can “prove presence” over the unrelayable Channe) but they can’t issue
a consistent response over both. All the protocols shown so far are variations of
this principle.

4 Conclusions and Further Work

We presented a novel paradigm: a family of multichannel protocols featuring a
special channel that is unrelayable. We discussed the properties of unrelayable
channels and illustrated possible channels and protocols with imaginative (if
not always realistic) examples, chosen to explore the subtleties of the possi-
ble attacks, including the crucial role of the human principal in checking for
unexpected hardware. We trust readers will recognize this framework as a con-
ceptually new approach to developing protocols that prevent relay attacks.
What we need next is one or more robust and practical implementations of
the unrelayable channel, using appropriate physical phenomena and transduc-
ers, and suitable protocols from this family to accompany them. Another useful
contribution would be a formal analysis of the properties of these protocols.
We see great potential in this new line of authentication protocol research and
hope that others will join us in bringing it to fruition for real-world applications.

References

1. Bennett, C., Brassard, G.: Quantum cryptography: Public-key distribution and
coin tossing. In: Proc. IEEE ICCSSP (1984)

2. Beth, T., Desmedt, Y.: Identification Tokens — or: Solving the Chess Grandmaster
Problem. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537,
pp. 169-176. Springer, Heidelberg (1991)

3. Brands, S., Chaum, D.: Distance-Bounding Protocols. In: Helleseth, T. (ed.) EU-
ROCRYPT 1993. LNCS, vol. 765, pp. 344-359. Springer, Heidelberg (1994)

4. Christianson, B., Li, J.: Multi-channel Key Agreement using Encrypted Public Key
Exchange. In: Proc. Security Protocols Workshop 2007. LNCS, vol. 5964. Springer,
Heidelberg (2007)

26 which, for all its wonderful properties, does not need to be particularly versatile:

for example, you may not even be able to choose what bits the source will transmit!

(=]

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Multichannel Protocols to Prevent Relay Attacks 19

. Clulow, J., Hancke, G., Kuhn, M., Moore, T.: So Near and Yet So Far: Distance-

Bounding Attacks in Wireless Networks. In: Buttyan, L., Gligor, V.D., Westhoff,
D. (eds.) ESAS 2006. LNCS, vol. 4357, pp. 83-97. Springer, Heidelberg (2006)

. Conway, J.: On numbers and games. Academic Press, London (1976)
. Damgard, 1., Nielsen, J.B., Wichs, D.: Isolated Proofs of Knowledge and Isolated

Zero Knowledge. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
509-526. Springer, Heidelberg (2008)

. Desmedt, Y., Goutier, C., Bengio, S.: Special Uses and Abuses of the Fiat-Shamir

Passport Protocol. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp.
21-39. Springer, Heidelberg (1988)

. Drimer, S., Murdoch, S.: Keep your enemies close: distance bounding against smart-

card relay attacks. In: Proc. USENIX Security 2007 (2007)

Ekert, A.: Quantum cryptography based on Bell’s theorem. Physical Review Let-
ters 67(6), 661 (1991)

Hancke, G.: Security of proximity identification systems. Tech. Rep. 752, University
of Cambridge (2009)

Hancke, G., Kuhn, M.: An RFID Distance Bounding Protocol. In: Proc. IEEE
Securecomm 2005 (2005)

Holmquist, L., Mattern, F., Schiele, B., Alahuhta, P., Beigl, M., Gellersen, H.:
Smart-Its Friends: A Technique for Users to Easily Establish Connections between
Smart Artefacts. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001.
LNCS, vol. 2201, p. 116. Springer, Heidelberg (2001)

Mayrhofer, R., Gellersen, H.: Shake well before use: Intuitive and Secure Pairing
of Mobile Devices. IEEE Trans. Mobile Computing 8(6), 792-806 (2009)
McCune, J., Perrig, A., Reiter, M.: Seeing-Is-Believing: Using Camera Phones for
Human-Verifiable Authentication. In: Proc. IEEE Security and Privacy 2005 (2005)
Nguyen, L., Roscoe, A.: Authentication protocols based on low-bandwidth un-
spoofable channels: a comparative survey (2009) (manuscript)

Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical One-Way Functions.
Science 297(5589), 2026-2030 (2002)

Pavlovic, D., Meadows, C.: Deriving Authentication for Pervasive Security. In:
Proc. ACM ISTPS 2008 (2008)

Stajano, F., Wilson, P.: Understanding scam victims: seven principles for systems
security. Tech. rep. 754, University of Cambridge (2009)

Wong, F., Stajano, F.: Multi-channel Protocols. In: Christianson, B., Crispo, B.,
Malcolm, J.A., Roe, M. (eds.) Security Protocols 2005. LNCS, vol. 4631, pp. 112—
127. Springer, Heidelberg (2007); See also the extended and revised version in IEEE
Pervasive Computing 6(4), 31-39 (2007)

A Traceability Attack against e-Passports

Tom Chothia* and Vitaliy Smirnov

School of Computer Science, University of Birmingham, Birmingham, UK

Abstract. Since 2004, many nations have started issuing “e-passports”
containing an RFID tag that, when powered, broadcasts information. It
is claimed that these passports are more secure and that our data will
be protected from any possible unauthorised attempts to read it. In this
paper we show that there is a flaw in one of the passport’s protocols that
makes it possible to trace the movements of a particular passport, with-
out having to break the passport’s cryptographic key. All an attacker
has to do is to record one session between the passport and a legitimate
reader, then by replaying a particular message, the attacker can distin-
guish that passport from any other. We have implemented our attack
and tested it successfully against passports issued by a range of nations.

1 Introduction

New technologies lead to new threats. Traditionally security protocols have been
analysed for a range of security and authenticity goals, however the introduc-
tion of small, promiscuous Radio Frequency Identifier (RFID) tags have raised
new concerns. For instance, can a person’s movements be traced using the RFID
tags that have been inserted into the items they are carrying? As RFID tags will
respond to any signal broadcast to them, and originally replied with a unique
identifier, Benetton’s proposal to place RFID tag in clothes caused a public out-
cry for precisely this reason [BB]; similar traceability concerns have also affected
the New York area E-Zpass system [Cal]. Now RFID tags are being placed in
passports.

The use of RFID tags in passports was primarily motivated by the desire
to provide storage for bio-metric information such as fingerprints or iris scans
[ICAQ6]. A suite of cryptographic protocols protects the data on the tag. Read
access to the data on the passport is protected by the Basic Access Control
(BAC) protocol. This protocol produces a session key by using another key
derived from the date of birth, date of expiry and the passport number printed
on the document. The aim of this protocol is to ensure that only parties with
physical access to the passport can read the data. All data on the tag is signed
by a document signing key which is in turn signed by a country key from the
state that issued it. The public country verification keys are publicly available
from the International Civil Aviation Organisation (ICAO)Y. This process of

* This work is partly supported by EPSRC grant EP/F033540/1: Verifying Interop-
erability Requirements in Pervasive Systems.
! Currently at https://pkddownloadsg.icao.int

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 20, 2010.
© IFCA/Springer-Verlag Berlin Heidelberg 2010

https://pkddownloadsg.icao.int

A Traceability Attack against e-Passports 21

ensuring the integrity of the data is referred to as Passive Authentication. A
third protocol, Active Authentication, ensures that the passport has not been
copied by signing a nonce (a new random number) from the reader, using a
signing key stored securely on the tag. The verification key, signed by the issuing
country, can then be read from the tag and the passport verified by the reader.
Both BAC and Active Authentication are specified as optional although BAC
seems to be universally used?. We only observed Active Authentication on a few
of the passports we looked at (e.g. the Irish passport).

In 2006 a second generation of e-passports were announced [[CAQ06] which
included a new FEatended Access Control protocol that would establish a session
key based on a longer secret and would authenticate the reader to the tag using
the country signing keys. This protocol would be run after the BAC protocol. A
third generation of e-passport protocols are currently under discussion [BGOS],
although they have not yet been finalised by the ICAO.

The BAC protocol ensures that the data on the e-passport can only be read
by someone who knows the key derived from the date of birth, date of expiry and
number on the passport. Our attack lets someone who does not know this key
trace a passport, i.e., if an attacker can observe a run of a particular passport
then they can build a device that detects whenever the same passport comes into
range of the reader. RFID tags receive their power via a signal from the reader;
FCC regulations [FCC] limit the power of the readers, leading to an effective
range of about 9cm. However, if the attacker disregards these regulations, they
can power up the tag from a much greater distance, Kfir and Wool calculate
that this is possible from a distance of up to 50cm [KWO05]. If another reader
powers the tag up, messages can be sent to and received from a tag to a range
of several meters [Yos04, [Han06]. This would make it easy to eavesdrop on the
required message from someone as they used their passport at, for instance, a
customs post. Furthermore, the RFID tags in passports are “always on” and
give no indication to their owner that they are sending data.

A traceability attack does not lead to the compromise of all data on the tag,
but it does pose a very real threat to the privacy of anyone that carries such
a device. Assuming that the target carried their passport on them, an attacker
could place a device in a doorway that would detect when the target entered
or left a building. Juels et al. [IMWO05] point out, rather melodramatically, that
such an attack would make it possible to program a bomb that would explode in
the presence of a particular person. More benignly, it could also be used to make
a device that would tell a blind person whenever someone they had met before
was close by. Such tracing attacks may also apply to other contactless devices.
However, we believe that a traceability attack against e-passports is particularly
severe because unlike, for instance, Bluetooth devices they cannot be turned off
and also because a passport is a government mandated identity document and
carrying one is compulsory when crossing a border or when resident in certain
countries.

2 Early US and Belgian e-passports did not have BAC, however BAC is now imple-
mented.

22 T. Chothia and V. Smirnov

The BAC protocol was closely based on ISO 11770-2 mech. 6 [[SO96]. It sets
up a secure session key that the reader then uses to access the data. During a
run of the BAC protocol, the passport generates a nonce that the reader must
encrypt using the passport’s unique encryption key. This ensures that messages
are not being replayed to the passport. The reader and passport also generate
Message Authentication Codes (MACs) for each message, using the passport’s
unique MAC key. This guarantees that the messages are received correctly and
the MAC is checked before the nonce is looked at. This protocol protects the
data on the passport, as any replayed or corrupted message will be rejected.

Our examination of actual passports has shown that it is possible to tell the
difference between a message that was rejected because of an incorrect nonce and
a message that was rejected because of a failed message authentication check.
To trace a passport we eavesdrop on a legitimate session between a passport and
a reader, and record the encrypted message that contains the passport’s nonce.
Then, when we want to identify a particular passport, we replay this message.
If this replayed message is rejected because the MAC check failed then we know
this is not the same passport, as the MAC key is unique to each passport. On the
other hand, if the message is rejected because of the nonce check failed, we know
that the MAC check using the unique passport key succeeded and therefore we
have found the same passport again. In the case of the French passport different
error messages are given in response to a failed MAC or an incorrect nonce. In
the case of all other nationalities we tested, the rejection messages are the same
but a failed MAC check is reported noticeably sooner than a failed nonce.

Many authors (e.g. [JMWO05] [CLRPS06, [AKQOS]) have pointed out that the
entropy used to seed the BAC keys is low, and in the case of countries where
passport numbers are partly predictable it may be possible to guess the keys.
However, passports are now being issued with a passport number made up of
letters and numbers, rather than just numbers, which will increase the possible
key entropy. It has also been pointed out that once a reader is given access to a
passport it cannot be revoked [JMWO05]. Richter et al. [RMPO§| showed that the
error messages issued by a passport were different for each country and so it was
possible to uniquely identify the nationality of a passport drawn from a group
of 10 European countries Ours is the only attack on e-passports that allows an
attacker to remotely trace an individual passport, in real-time, for any passport
numbering scheme, without having to know the BAC keys.

Our attack has a relatively simple fix; the error messages issued by the pass-
ports must be standardised and response times must be padded so as to remove
the information leak. One way to do this would be to make e-passports decrypt
messages even if the MAC check fails. For the tens of millions of passports al-
ready issued it is too late, however future passports can be made safe.

In the next section we describe the protocols used by e-passports and discuss
other analysis of these protocols in Section We present a protocol based
attack against the French e-passport in Section [l and extend this to a timing
attack against all e-passports in Section @l We discuss ways in which this attack
may be stopped and conclude in Section

A Traceability Attack against e-Passports 23
2 The e-Passport Protocols

An e—passportﬁ is an identification document combining a traditional passport
with an RFID tag capable of performing cryptographic operations, storing bio-
metric data and other bearer related information. The specification for e-passports
is published by the International Civil Aviation Organization (ICAO) [ICAQG]
and more than 60 states have started issuing their own e-passports based on this
standard.

The ICAO specification requires that passports use the contactless card stan-
dard ISO 14443 [ISO01] for hardware level communication. This standard defines
how the reader should power up the card and select a particular tag to communi-
cate with; if more than one tag is present, each card broadcasts a unique ID and
the reader selects one, with which to establish a session. The ICAO specification
recommends that the UID is randomised to avoid the possibility of it being used
to trace a particular passport [[CAQS| page 22]. If a country chooses to ignore
this advice, then a passport will be easily traceable. All the passports we have
looked at, so far, use randomised UIDs. ISO 14443 defines two ways in which
radio signals can be used to communicate with the cards (Type A and Type B).
E-passports may implement either method.

On top of the ISO 14443 communication, the ICAO specification states that
the passports should implement some of the commands and error codes defined
in the standard for contact-based smart cards ISO 7816 [[SO95]. As well as
giving a detailed description of the layout of the data on the passport, it spec-
ifies that the passport should support the ISO 7816 commands SELECT FILE
and READ BINARY for accessing the data on the tag. The instructions GET
CHALLENGE, MUTUAL AUTHENTICATION and INTERNAL AUTHEN-
TICATION are used for BAC and Active Authentication. The passports also
use ISO 7816 error codes, such as “6A80: Incorrect parameters” or “6300: No
information given”.

2.1 The Passport Protocols

The data on the passport is organised into 16 data groups, that can be read
using the ISO 7816 SELECT FILE and READ BINARY commands. The ICAO
specification defines what each data group should be used for: DG1 and DG2
are compulsory for all passports and store the machine-readable data printed on
the passport and the passport photo respectively. DG3 to DG16 are for optional
data, such as fingerprints (DG3, which we found on a recent German passport).
The contents of some of these data groups have been defined but are not yet
used in practice, such as iris scans (DG4), holder’s signature (DG7) and the
address of someone to contact in an emergency (DG16). Data groups 11 and 12
are for optional additional information depending on the country, for example,

3 For the rest of this document we will use “passport” to mean “e-passport”, rather than
a passport without an RFID tag, and only use e-passport when we want to underline
the difference between the two.

24 T. Chothia and V. Smirnov

Passport Reader

Get Challenge
e

Nr €r {0,1}%

Np
. r

Ngr,Kr €r {0,1}%
{Nr,N7, KR}k E MACKk M ({NR,NT,KR}KE)

Verify Mac
Verify Np
Kr €r {0,1}%
{NT,Ngr, K1}k E MACKk M ({NT,NR,KT}KE)

Verify Mac
Verify Ngr
Kseed :KT@KR Kseed :KT@KR

Fig. 1. The Basic Access Control Protocol

the French passport uses these to store the heigh@ of the passport holder, their
home address and the address of the police station where the passport was
issued. According to the specification, the data groups are read-only. The hash
of the data groups, which has been signed by the issuing state, is stored on the
passport; checking this ensures that the passport is not forged.

Read access to the data on the passport is protected by the Basic Access Con-
trol protocol (BAC). This protocol uses a key generated from the date of birth,
date of expiry and passport number printed on the passport and establishes a
new session key to protect all following communication with the reader. The aim
of this protocol is to prevent eavesdropping and skimming attacks by ensuring
that only someone who has seen the information page of the passport can access
the data on the tag. While other authors have criticised this design as less secure
than, say, making the reader authenticate to the tag using a certificate, it does
have the advantage of allowing moderately skilled users to see what is on their
owl passport.

BAC is a key establishment protocol, as shown in Figure[ll Here { } i denotes
Triple-DES encryption with the key K and MACk() denotes a cryptographic
checksum according to ISO 9797-1 Message Authentication Code Algorithm 3.
The passport stores two keys: KE and KM, and the reader derives these keys
using the machine-readable information on the passport, which has, in theory,
been scanned before the wireless communication begins.

The reader initiates the protocol by sending a challenge to the tag and the tag
replies with a random 64-bit string Np. The reader then creates its own random
nonce and some new random key material, both 64-bits. These are encrypted,

4 We found cases where a French passport overestimated the height of its owner, this
seems to be because the height measurement is not checked by the passport issuing
organisation and so reflects the height that the passport holder would like to think
of themselves as, rather than their true height.

A Traceability Attack against e-Passports 25

along with the tag’s nonce and sent back to the reader. A MAC is computed
using the KM key and sent along with the message, to ensure the message is
received correctly.

The tag receives this message, verifies the MAC, decrypts the message and
checks that its nonce is correct; this guarantees to the tag that the message from
the reader is not a replay of an old message. The tag then generates its own
random 64-bits of key material and sends this back to the reader in a similar
message, except this time the order of the nonces is reversed, in order to stop the
reader’s message being replayed directly back to the reader. The reader checks
the MAC and its nonce, and both the tag and the reader use the xor of the
key material as the seed for a session key, with which to encrypt the rest of the
session.

This protocol guarantees that only parties who know the keys derived from the
machine-readable zone can learn the session key and message freshness is guar-
anteed by the nonces. However, we observe that this protocol does not guarantee
a fresh session key to the reader: as the passport picks its key material after it
sees the reader’s key material, and the material is xor-ed together, the passport
may pick its material in such a way as to force a particular key seed. Although
this does not seem to lead to an attack, concatenating the key material would
have meant that both parties were guaranteed a fresh key.

Active Authentication is an optional protocol designed to prevent cloning at-
tacks. The protocol is based on public key cryptography; the tag proves the
possession of a private key with a straightforward challenge-response protocol.
If the passport supports the Active Authentication protocol, the public key is
stored in Data Group 15, which is signed along with the rest of the passport
data. In 2006, the ICAO proposed a new set of protocols called Extended Ac-
cess Control (EAC). These protocols are commonly used to protect sensitive
biometric data, and require the reader to authenticate itself to the passport us-
ing a certificate signed by a country signing key. We observed EAC on a recent
German passport, where it was used to protect fingerprints, and information on
the EAC parameters was stored in data group 14. Both Active Authentication
and EAC are optional and run after BAC, so, as our attack is against BAC, the
additional security these protocols provide does nothing to stop our attack.

2.2 Related Work

Many papers have been written about the e-passport specification. One of the
most popular themes is the low entropy of the BAC key seed. The original ICAO
documentation points out that the ideal entropy of 73-bits is probably closer to
56-bits due to non-random passport numbers. A series of authors have then
analysed the passport numbers of particular countries. For instance, Juels et al.
[TMWO5] pointed out the US passport only offers 54-bits of entropy, Carluccio
et al. [CLRPS06] put the German passport’s entropy at 55-bits, and Avoine et
al. [AKQOS] put the Belgian passport at 38-bits. Most of these authors go on
to assume that the attacker knows the birthday of their victim and so subtract
another 15-bits from the key entropy. We note that all of these calculations are

26 T. Chothia and V. Smirnov

based on the assumption that the random part of the passport numbers only
contain digits. This is no longer true: the passport number on German passports
issued since, at least, 2008 include letters as well as numbers. Therefore, the
entropy is now likely to be much higher than Carluccio et al. estimate.

The Belgian passports have such low entropy because the passport numbers
are mostly numeric and issued sequentially, Avoine et al. show that an eaves-
dropping attack can find the key in about a second, whereas an online attack
against only a passport could take a few weeks, in the worst case. Carluccio et al.
[CLRPS06] and Liu et al. [LKLRPO7] both present hardware architectures that
can speed up the cracking process, however they also assume that the attacker
has some previous knowledge about the victim, such as their birthday and has
observed a correct run of the protocol. In contrast to this work, our attack is an
attack on the protocol itself, rather than an attack against the weak key seed.
We do not need to assume that the attacker knows the age of the victim and
our attack works, in real-time against any passport numbering scheme.

Hoepman et al. [HHJT06] also discuss the low BAC entropy and point out
that a passport would be traceable if it does not randomise its ISO 14443 UID.
All the passports we have looked at do randomise their UIDs, although we have
been told that passports from Italy and New Zealand do not.

Perhaps the most similar work to ours is that of Danev et al. [DHBv09] who
show that a passport can be identified by its hardware characteristics with an
error rate of 2% to 4%. However, to collect their readings they must place the
passport in a specially constructed wood frame, therefore they suggest they that
their method is better suited to detecting counterfeit passports than it is to
tracing people.

2.3 Experimental Framework

To interact with the passports we used an ACR122U reader from Advanced Card
Systems Limited. This is one of the cheapest (~$50) RFID readers on the market
and while more expensive reader could collect more accurate timing data and
performed tests faster, using such a reader underlines the fact that our attack
does not need specialist hardware.

Adam Laurie’s RFID Input/Output Tools (RFIDiot) project [Lau06] has de-
veloped a number of tools to make interacting with RFID tags easy. We found
these tools very useful when initially experimenting with e-passports, and we
have made use of Laurie’s libraries when writing the code to perform our attack.

We ran our tests with passports volunteered by members of our lab and their
families. We tested 10 passports in total: 3 UK, 2 German, 1 Russian, 2 French,
1 Trish and 1 Greek. We would like to extend our thanks to all of the volunteers
that offered their passports for testing, and we were particularly pleased that no
country had chosen to make their passports lock up after a set number of failed
runs of the BAC protocol.

When taking a large number of time samples from a continuously powered
passport we noticed that after around 100 readings in a row the response times
from the passport would start to slow down by about 1ms every 20 readings. To

A Traceability Attack against e-Passports 27

RFID tag ATR value

UK Passport 3B898001097877D4020000900048

French Passport 3B8E80011177B3A7028091E16577010103FF61
Irish Passport 3B848001043833B1BB

German Passport, (numneric 3B8E8001107833D4020064041101013180FFBD

passport number, no fingerprints),

German Passport (alpha-numeric 3B898001097877C4020000900058

passport number, fingerprints)

Dubai Metro pass 3B8F8001804F0CA0000003060300030000000068
Mifare (e.g. Oyster card, Univ. Id) 3B8F8001804F0CA000000306030001000000006 A

Fig. 2. ATR values from various RFID tags

ensure that our sampled data was independent and identically distributed we
powered down the tag between each time measurement.

2.4 Passport FingerPrinting via Answer to Reset

While the ICAO defines the specification for e-passports, all of the countries we
have looked at have built their own implementations. Richter et al. [RMPOS]
exploit this fact, to show that it is possible to deduce which country issued a
passport by the error messages it gives. They also mention other possible ways
to detect the issuing country of a passport including the ISO 14443 “Answer to
Select” or “File Control Information” message. We also found that the passports
of different nations gave distinctive error messages, however we received different
error messages to the ones reported by Richter et al., this may have been due to
using different parameters in the ISO 7816 commands.

Contact-based ISO 7816 chips will respond to a reset with an “Answer to Re-
set” (ATR) message, which includes data on the chip’s manufacturer and how
the chip should be read. In the interests of compatibility, the Interface Device
Handler (the firmware and/or drivers) for contactless card readers construct an
ATR message for ISO 14443 tags [WorO7, Sec. 3.1.3.2.3]. These handler con-
structed ATR messages have a standard prefix, followed by the historical data
from the “Answer to Select” for ISO 14443 Type A tags, or the application data
and protocol information for ISO 14443 Type B tags. Furthermore, this con-
structed ATR message is generated when the reader initiates contact with the
tag, and is therefore much easier to find than a complete set of error codes.

Out of the passports we tested, we found that each country had its own unique
constructed ATR value, we also found that a range of mifare classic cards all
issue the same ATR, see Figure 2. The German passport was recently updated to
include an alpha-numeric passport number and the fingerprints of the owner. We
found that these updated passports had a different ATR to the earlier version.
Therefore, the ATR provides an easy way to identify, not just the issuing nation,
but also the version of a passport. This is an additional weakness in the passport
because if it is possible to narrow down the issue date of a passport it becomes
easier to guess the BAC key. Some of the observed ATRs were very close so,

28 T. Chothia and V. Smirnov

Passport Reader Passport Reader
Get C Get C
— —
Nr €r {0,1}% Nr €r {0,1}%
N Np
_— _
E,M E,.M
— —
M#MACK]w(E) M:MACKM(E)
E= {NR7N’3"7KR}KE
Nr # N7,
6300 6A80
— —_—
(a) A MAC failure (b) A Nonce Mismatch

Fig. 3. The Basic Access Control Protocol

just as with error messages, there is a possibility of two different tags having the
same profile. Hence, further research is needed before we can be sure that this
is a good identification technique.

3 An Attack against French e-Passports

The ICAO passport specification states that the passport must always respond
to a message, returning an error message if the message was incorrect or un-
expected. The fault in the French passport’s BAC protocol becomes apparent
when we consider the error messages that the passport generates in response to
erroneous messages from the reader.

To find these error messages we power up the passport, according to ISO
14443, we then send a GET CHALLENGE message to initiate the BAC protocol
to which the passport replies with a nonce. The reader should send the tag’s
nonce back to the passport, along with some keying material and its own nonce.
This message should be encrypted with the passport’s unique encryption key
and sent with a MAC generated using the passport’s unique MAC key. To find
the error messages we tried broadcasting a message to the tag with an incorrect
MAC, and found that the French passport replied with a “6300: No information
given” error (Figure . Next we formed a message with a correct MAC but
with an incorrect nonce. This message was replied to with a “6A80: Incorrect
parameters” error (Figure .

These different error messages can be used to trace a passport, even by an at-
tacker that does not have the passport encryption and MAC keys. First the at-
tacker must observe a run of the passport with a reader that knows the passport
key, for instance, while going through customs. The attacker records the message
from the reader that contains the encrypted and MACed nonces and keying ma-
terial. Later, when the attacker comes across another passport, they can use this
recorded message to test if it is the same passport as they observed before: the

A Traceability Attack against e-Passports 29

200 250
180
160 = 200 i
140 L i n
i A
120 T | Other 130 I Other
b T passport n passpart
n
o R \ Same s HI Same
&6 i passport il passport
1 \ (1)
a0 50 t
20 '. \ l \ : “\ J LJL
—
o ¥, N _ ol 4 SNaa
10,6640 10,6650 0,6660 0,6670 0,6680 10,6690 0,7100 07120 0,7140 0,7160 0,7180
(a) UK passport on reader (b) UK passport 5cm from reader
300 300
250 1 250
H
200 ! 200
:" ----- oter | | Y === Other
150 :: passport 150 passport
o I same wo LY ame
:: passport : passport
50 :I '.' 50 ,':
"
NI e
0,0430 0,0450 0,0470 0,0450 0,0510 0,0530 0,1310 0,1360 0,1410 0,1460 0,1510
(c) Greek passport on reader (d) German passport on reader

Fig. 4. Sampled Times from Replaying a Message to the Same or a Different Passport

attacker broadcasts a GET CHALLENGE message, to which the tag responses
with a nonce. The attacker then replays the message they recorded from the pre-
vious run. If the tag responds with a 6300 error message then we know that the
MAC check failed, therefore the passport we are currently looking at used a dif-
ferent MAC key from the original passport and is not the same one. If, on the
other hand, we get a 6A80 message then we know that the MAC check must have
succeeded, and so the current passport is the passport we are trying to trace.

4 A Time-Based Traceability Attack

Out of all the passports we tested, only the French passport responded to a
failed MAC check and a mismatched nonce with different error messages; all the
other passports issued the same error code, usually “6300”. So it seemed that
this attack only affected French passports. However, examining the passports
further, we noticed that the time it took for a passport to issue these error
messages was not constant.

Figure shows the time it took for a UK passport to issue the error message
(to 4 decimal places). We sent 500 messages we knew would fail the MAC check
(shown in dashed, red) and 500 replayed messages, with the correct MAC key,
but with an incorrect nonce (shown in solid, blue). It is clear from this data that
a failed MAC elicits a reply more quickly than a failed nonce. Looking at the
protocol specification, it seems that this is because the passport rejects a message
with an incorrect MAC straightaway, whereas if the MAC is correct, the MAC

30 T. Chothia and V. Smirnov

check is performed, the message is then decrypted and only after that can the
nonce be checked. The additional time it takes to reply to a replayed message is
the time it takes the passport to decrypt the message and check the nonce. After
checking several passports, we found that the exact time difference depended
mainly on which country issued the passport. For our particular reader, UK
passports took around 2.8 milliseconds longer to respond to a replayed message,
German, Greek and Irish passports took 4ms to 5ms and a Russian passport we
tested took a sluggish 7ms.

We retested a UK passport, this time placing the passport 5cm away from
the reader (Figure. This data set clearly shows the time difference between
a message replayed to the passport that generated it and a message replayed
from a different passport. However, placing the passport away from the reader
leads to all the messages taking longer. The time it takes the radio waves to
cross the extra distance is of the order of 10719 seconds so this slowdown is most
likely explained by less power being supplied to the RFID tag. Such variations
in response times mean that it is not possible to trace a passport with a single
replayed message. Instead, the attacker must send a message they know will
fail the MAC check, then send the replayed message and compare the response
times.

The exact attack could be performed in a number of different ways. If a
passport is known to be stationary then the attacker could send one completely
random message and then replay the message from the passport they wish to
trace. If the time difference is more than some value the attacker could decide
that it is the same passport as before, and if it is less than that value the
attacker could decide that it is a different passport. This test could be repeated
for additional accuracy, the attacker could also use different lower and upper
bounds, or attempt to work out the nationality of the passports via the ATR (as
described in Section [Z4]) and then pick the most efficient cutoff for that country.
When the passport is moving it is necessary to send a number of different random
messages interleaved with a number of replayed messages and then take the
average. We find the error rates and efficiencies of these different methods using
a statistical analysis of the response times.

Statistical Analysis of Passport Response Times. The response times in
Figure @l appear to follow a normal distribution. Due to the limited accuracy of
our measuring framework, we round our data to 4 decimal places. This makes
our data discrete by placing the results into a number of bins, (e.g. all time mea-
surements between 0.66505 and 0.66515 are placed in the 0.6651 bin). Therefore
we can verify that the data is well modelled by a normal distribution using a 2
goodness of fit test. This test defines a test statistic:

D m

E,
i=1,...,k v

where O; is the observed number in bin ¢ and E; is the number predicted by the
distribution. The sampled data is well modelled by a normal distribution if the X
statistic is consistent with a X%k—s) distribution (see e.g. [SC89]). We carried out

A Traceability Attack against e-Passports 31

this test and found that the X statistic was within the 95% confidence interval
for the British, German, Greek and Irish passports, both when the passport is
directly on the reader or when placed 5cm away from it. We note that this does
not mean that the distribution is exactly normal, but rather it means that a
normal distribution is a reasonable model for the sampled data and is therefore
useful in order to estimate the error rates.

The Russian e-passport was not consistent with a normal distribution. The
time graphs for a 100 samples are given in Figure[dl (only 100 samples were taken
due to limited access to the pass-
port). As well as not following a nor-
mal distribution, the passport would
not let us access any data after we
have performed BAC, which sug- |,
gests that the passport might not be |,
fully compatible with the ICAO stan- | ,
dard (EAC, if used, should only pro- | » R ; ; l.
tect bio-metric data). Information on | ®*%° e o eame ede e e
the Russian passport specification is
sparse, and mostly in Russian (see Fig. 5. Russian Sample Times
e.g. [Min03, [Eva05]), so this calls for
further study. The time gap between random and replayed messages was the
biggest we have seen for any passport and with no overlap at all; therefore our
attack would work against Russian passports with a very high degree of certainty.

Looking at the timings that follow a normal distribution, we can calculate
the rates of false positives and false negatives for particular tests. We know that
the difference between a value from a distribution N (my,v1) and a value from
the distribution A (mg, ve) will come from the distribution N (m1 —ma, vy +v2).
Therefore, the difference in response times in milliseconds, for a random message
and a message replayed to the same UK passport it came from will come from the
distribution N(2.8,0.63), whereas the difference in response times for a different
passport, one that did not generate the message being replayed, would come
from the distribution N'(0,0.62). The distributions of these differences for all of
the different passports are shown in the first 2 columns of Figure 6l

A false positive occurs when we test a different passport and decide that it is
the one that generated the message we are replaying, whereas a false negative
occurs when we test the passport that generated the message we are replaying

70

60

50

40

i

i A

Passport Same Different Prob. False Pos. Prob. False Neg.

Country Passport Passport at 1.7ms at 1.7ms
UK N(2.8,0.63) N(0,0.62) 0.015 0.084
German N(3.9,0.124) N(0,0.52) 0.009 0.024
Greek N(4.0,1.57) N(0,1.21) 0.061 0.033
Irish N(5.2,0.79) N(0,1.52) 0.084 0.00004

Fig. 6. Distribution of Time Differences and the Error Rates

32 T. Chothia and V. Smirnov

but fail to identify it as the same passport. The simplest test is for the attacker
to send one random message and one replayed message. Using the distributions
in Figure[Gl we calculated that if the attacker decides that it is the same passport
when the time difference is more than 1.7ms and a different passport when the
difference is less than 1.7ms, then the worst false positive probability is 0.084
and the worst false negative rate is 0.084. If the attacker repeats this test, taking
the best out of 3 the false positive and negative probabilities fall to 0.02 and for
the best out of 5 the error rates are 0.005.

If the attacker decides that the passport is the same when the difference is
more than 2.8ms, a different passport when the difference is less than 1.0ms and
runs another test when the difference is in between these values, we find that
the probability of a false negative is 0.011 and a false positive is 0.012 and the
expected number of trials is 4.8. This suggested that, for the passports we tested,
the most efficient test, that balances the false positives and false negative, is to
use 1.7ms as a cutoff and running extra trails to get the accuracy required. We
implemented this test, using the best out three, and wrote a program that tested
a passport against a database of replay messages from each of the 10 passports
we examined, in turn. In 20 tests our program correctly identified every passport
from the time delay of its replay message.

To test the feasibility of our attack against a moving target we tried taking
a number of readings from a passport while it was moved across the reader.
We averaged these readings, and found that some readings would take up to
a few seconds and have a disproportional effect on our averages, therefore we
discarded any time measurements that were more than one second. Used the
single time cutoff, as described above, we found that with just one test the false
positive and negative probabilities where as high as 0.32, however with 50 tests
these probabilities fell to 0.21. With 100 observations, taking less than a minute,
the error probabilities where as low as 0.1, suggesting that this attack is feasible
against a moving target. The reader we used was the cheapest hardware we could
find; we expect that more advanced readers with specialised hardware may be
able to perform these attacks far more quickly and to a higher degree of accuracy.

5 Conclusion

Our work shows the inherent dangers of using RFID tags in personal items. The
e-passport specification was developed by experts over many years and since its
publication has been the subject of dozens of academic studies. During this time
e-passports have been issued to over 30 million people, all of whom may be at risk
of being traced using our attack. As future work we would like to examine more
passports and test our attack against other RFID enabled identity documents.
The fix for our attack is relatively simple. First, all e-passports must standard-
ise their error messages. The required error messages in all possible situations
should be specified by the ICAO (in e.g. [[CA0§]). Second, in the BAC protocol,
after a MAC check fails, the passport should try to decrypt the message and
check the nonce anyway before sending the error message. Care must also be

A Traceability Attack against e-Passports 33

taken when implementing new protocols, as our attack might work against any
protocol that requires an RFID tag to first check a MAC before decrypting and
processing some data.

Our attack is only feasible because the e-passports contain an RFID tag. If
e-passports used, for instance, a contact based smart card, then such attacks
would not be possible. The reasons for making the e-passports wireless is not
immediately clear, the ICAO documentation [ICA06] mentions that reasons for
choosing RFID include high data transfer rates, reduced wear and tear on the
document and that contact based readers do not fit the shape of the passport.
However, contact-based smart cards are quite capable of transferring the data
on the card in a reasonable amount of time, and the BAC protocol requires the
contact based reading of the passport number and date of birth and expiry, so
these reasons seem weak.

Worryingly, the protocols that are used in e-passports are also to be used in
some national identity cards, such as the proposed UK ID card scheme [Bog09).
While we have not been able to confirm if these cards will be RFID or contact
based, it is possible that our attack will also work against these. It is quite
possible that, at some point in the future, it will become a legal requirement for
people to carry such an RFID enabled cards and their use will become common
to, for instance, access health care, prove identity at an airport or a bank, prove
age at a bar, etc. The use of our attack in such a possible future would make it
possible for anyone to trace the movements of anyone else.

Acknowledgments. We would like to thank Henryk P16tz for helpful comments
regarding how the Interface Device Handler constructs the ATR message.

References

[AKQOS8] Avoine, G., Kalach, K., Quisquater, J.-J.: ePassport: Securing Interna-
tional Contacts with Contactless Chips. In: Tsudik, G. (ed.) FC 2008.
LNCS, vol. 5143, pp. 141-155. Springer, Heidelberg (2008) [cited p. 22, 25

oycott benetton, http://www.boycottbenetton.com
BB B b // /
(retrieved 26/8/2009) [cited p. 20]
[BGOS] BSI-Germany. Advanced security mechanisms for machine readable travel

documents. Technical report, Federal Office for Information Security
(2008) [cited p. 21]

[Bog09] Boggan, S.: New id cards are supposed to be unforgeable. Daily Mail
(August 2009), http://www.dailymail.co.uk/news/article-1204641
[cited p. 33]

[Cal] Caldwell, C.: A pass on privacy? The New York Times (July 17, 2005)
[cited p. 20]

[CLRPS06] Carluccio, D., Lemke-Rust, K., Paar, C., Sadeghi, A.-R.: E-passport: The
Global Traceability or How to Feel Like an UPS Package. In: Workshop
on RFID Security — RFIDSec (2006) [cited p. 22, 25, 26]

[DHBv09] Danev, B., Heydt-Benjamin, T.S., Capkun, S.: Physical-layer Identifica-
tion of RFID Devices. In: Proceedings of the 18th USENIX Security Sym-
posium — USENIX 2009 (2009) [cited p. 26]

http://www.boycottbenetton.com/
http://www.dailymail.co.uk/news/article-1204641

34 T. Chothia and V. Smirnov

[Eva05]

[FCC]
[HanO6]

[HHJ T 06]

[ICA06]

[ICA0S]

[1SO95)

[1SO96)

[ISO01]
[IMWO5]
[KW05)
[Lau06]
[LKLRPO07)
[Min03]
[RMPOS]
[SC89]

[Wor07]

[Yos04]

Evangeli, A.: Biometric passport: the whole world under control (2005)
(in Russian),

http://www.pcweek.ru/themes/detail.php?ID=69892 [cited p. 31]

Title 47-telecommunication, chapter i—federal communications commis-
sion, part 15-radio frequency devices [cited p. 21]

Hancke, G.P.: Practical attacks on proximity identification systems. In:
Symposium on Security and Privacy, pp. 328-333 (2006) [cited p. 21]
Hoepman, J.-H., Hubbers, E., Jacobs, B., Oostdijk, M., Schreur, R.W.:
Crossing Borders: Security and Privacy Issues of the European e-Passport.
In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura,
S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 152-167. Springer, Heidel-
berg (2006) [cited p. 26]

ICAO. Machine Readable Travel Documents. Doc 9303. Part 1. Technical
report, International Civil Aviation Organization (2006) [cited p. 20, 21, 23,
33]

ICAO. Supplement to doc 9303. Technical report, International Civil Avi-
ation Organization (2008) [cited p. 23, 32

Information technology — Identification cards — Integrated circuit(s) cards
with contacts — Part 4: Interindustry commands for interchange, ISO/IEC
7816-4 (1995) [cited p. 23]

Information technology — Security techniques — Key management — Part
2: Mechanisms using symmetric techniques, ISO/TEC 11770-2 (1996)
[cited p. 22]

Identification cards — Contactless integrated circuit cards — Proximity
cards, ISO/TEC 14443 (2001) [cited p. 23]

Juels, A., Molnar, D., Wagner, D.: Security and Privacy Issues in E-
passports. In: SecureComm (2005) [cited p. 21, 22, 25]

Kfir, Z., Wool, A.: Picking Virtual Pockets Using Relay Attacks on Con-
tactless Smartcard Systems. In: SecureComm. IEEE, Los Alamitos (2005)
[cited p. 21]

Laurie, A.: RFIDIOt (2006), http://rfidiot.org/| [cited p. 26]

Liu, Y., Kasper, T., Lemke-Rust, K., Paar, C.: E-Passport: Cracking Basic
Access Control Keys. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part II.
LNCS, vol. 4804, pp. 1531-1547. Springer, Heidelberg (2007) [cited p. 26]
Minkin, V.: Myths and realities of biometric passport system (2003) (in
Russian), http://www.elsys.ru/review7.php| [cited p. 31]

Richter, H., Mostowski, W., Poll, E.: Fingerprinting Passports. In:
NLUUG Spring Conference on Security (2008) [cited p. 22, 27]

Snedecor, G.W., Cochran, W.G.: Statistical Methods, 8th edn. lowa State
University Press, Iowa (1989) [cited p. 30]

The PC/SC Workgroup. Interoperability Specification for ICCs and Per-
sonal Computer Systems. Part 3 (2007) [cited p. 27]

Yoshida, J.: Tests reveal e-passport security flaw. Electronic Engineering
Times 1336, 1 (2004) [cited p. 21]

http://www.pcweek.ru/themes/detail.php?ID=69892
http://rfidiot.org/
http://www.elsys.ru/review7.php

Secure Computation with Fixed-Point Numbers

Octavian Catrina and Amitabh Saxena

Dept. of Computer Science, University of Mannheim, Germany
{catrina,saxena}@uni-mannheim.de

Abstract. Secure computation is a promising approach to business
problems in which several parties want to run a joint application and
cannot reveal their inputs. Secure computation preserves the privacy of
input data using cryptographic protocols, allowing the parties to obtain
the benefits of data sharing and at the same time avoid the associated
risks. These business applications need protocols that support all the
primitive data types and allow secure protocol composition and efficient
application development. Secure computation with rational numbers has
been a challenging problem. We present in this paper a family of proto-
cols for multiparty computation with rational numbers using fixed-point
representation. This approach offers more efficient solutions for secure
computation than other usual representations.

Keywords: Secure multiparty computation, secure fixed-point arith-
metic, secret sharing.

1 Introduction

Secure computation provides cryptographic protocols that enable a group of
parties to run joint applications and preserve the privacy of their inputs. For
instance, parties Pi, Py, ..., P, can use these protocols to evaluate a function
flxi, 20, .. x) = (Y1,Y2,---,Yn), where P; has private input x; and output
yi- Roughly speaking, the protocols ensure that the output is correct and the
computation does not reveal anything else besides the agreed upon output.

Secure computation can solve business problems where input data belongs
to different parties and cannot be revealed or shared with other parties. For
example, information sharing and collaborative decision making can substan-
tially improve supply chain performance. However, the supply chain partners
are not willing to share the necessary sensitive data (e.g., production costs and
capacity), since the risks associated with revealing it exceed the benefits gained.
Secure computation can offer the benefits of data sharing and at the same time
avoid the risks of disclosing private data. Solutions based on secure computation
have been studied for various business problems, including privacy-preserving
supply chain planning [2], different types of auctions [0/4], benchmarking [3],
and collaborative linear programming [20].

A basic requirement of these applications is a protocol family that provides
operations with all primitive data types and allows secure protocol composition

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 352010.
© IFCA/Springer-Verlag Berlin Heidelberg 2010

36 O. Catrina and A. Saxena

and efficient application development. The protocols proposed so far offer sub-
sets of operations with boolean and integer data or/and specialized solutions
for particular problems. Our goal is to provide practical protocols for secure
computation with rational numbers.

Our contribution. We present a family of protocols for multiparty computation
with rational numbers using fixed-point representation. The protocols are con-
structed using secure computation based on secret sharing and provide perfect
or statistical privacy in the semi-honest model. The protocol family offers arith-
metic and comparison with signed fixed-point numbers and evaluation of boolean
functions. Secure addition, subtraction, and comparison of fixed-point numbers
are trivial extensions of the integer operations. We present new protocols for
scaling, multiplication, and division of fixed-point numbers. We also discuss the
methods used to optimize the building blocks of these protocols, including a
more efficient solution for bit decomposition.

Related Work. We use standard techniques for constructing multiparty compu-
tation protocols based on secret sharing, similar to [7)RIT9/6]. However, the so-
lutions presented in [S/19] aim at providing perfect privacy and constant round
complexity, while our goal is to obtain efficient protocols for secure computation
with fixed-point numbers of typical size (< 128 bits). For many building blocks
we obtain important performance gains using a combination of techniques that
includes additive hiding with statistical privacy (instead of perfect privacy), pro-
tocols with logarithmic round complexity (instead of constant round complex-
ity), optimized data encoding (especially for binary values), and non-interactive
generation of shared random values.

Related protocols focus on secure computation with field (or ring) elements,
binary values, and integers. Protocols for secure division (the most complex task)
were developed for particular applications and offer only partial solutions. The
division protocol in [15] was designed for two-party computation of statistics and
relies on a particular structure of the inputs. The multiparty reciprocal protocol
in [I] is restricted to positive integers with known range, 2*~1 < z < 2k, This
approach based on the Newton-Raphson method (and its extension to division in
[14]) is closer to ours. However, our goal is a general division protocol for signed
fixed-point numbers. We present a protocol constructed with more accurate and
efficient components and using an algorithm that can better take advantage
of their properties. In particular, the absolute error of our integer truncation
protocol (division by 2™) is |§| < 0.5 with high probability (rounding to the
nearest integer) and |§| < 1 in the worst case. The approximate truncation
protocol in [I] has absolute error 6] < n + 1, where n is the number of parties.

Secure computation with rational numbers has been a challenging problem.
An interesting method was proposed in [13] for addition and multiplication of ra-
tional numbers using Paillier homomorphic encryption. This method works only
for a limited number of consecutive operations (without decryption), depending
on the size of the operands and the modulus of the encryption scheme (e.g., 15
operations for 1024-bit modulus and 32-bit numerator and denominator). Our

Secure Computation with Fixed-Point Numbers 37

approach based on fixed-point representation does not have such limitations and
offers a complete protocol family for arithmetic and comparison.

Protocols for multiplication and reciprocal of fixed-point numbers were first
presented in [5], together with two more general building blocks, reduction mod-
ulo 2™ and division by 2™ with rounding down. The fixed-point arithmetic
solutions in this paper are more efficient and accurate.

2 Preliminaries

2.1 Secure Computation Framework

Basic framework. Consider a group of n > 2 parties, Pi,..., P,, that com-
municate on secure channels. For 1 < ¢ < n, party P; has private input z; and
output y;, function of all inputs. Multiparty computation based on secret sharing
proceeds as follows. The parties use a linear secret sharing scheme to distribute
their private inputs to the group, creating a distributed state of the computation
where each party has a share of each secret variable. Certain subsets of parties
can reconstruct a secret by pooling together their shares (when needed), while
any other subset cannot learn anything about it. Moreover, the properties of the
secret sharing scheme allow the parties to compute with shared variables. The
protocols used for this purpose take on shared inputs and return shared outputs.
This provides the basis for secure protocol composition.

Let X and Y be random variables with finite sample spaces V and W and
AX,Y) = >vevyw | Pr(X =v) = Pr(Y = v)| the statistical distance be-
tween them. We say that the distributions are perfectly indistinguishable if
A(X,Y) = 0 and statistically indistinguishable if A(X,Y) is negligible in some
security parameter k. Our protocols offer perfect or statistical privacy, in the
sense that the views of protocol execution (consisting of all values learned by an
adversary) can be simulated such that the distributions of real and simulated
views are perfectly or statistically indistinguishable, respectively.

We assume a basic framework that uses Shamir secret sharing over a finite
field F. This framework allows secure arithmetic in F with perfect privacy against
a passive threshold adversary able to corrupt ¢ out of n parties. Essentially, in
this model, the parties do not deviate from the specified protocol and any ¢ + 1
parties can reconstruct a secret, while ¢ or less parties cannot distinguish it from
random uniform values in F. We assume |F| > n, to enable Shamir sharing, and
n > 2t, for multiplication of secret-shared values. We refer the reader to [7] for
a more formal and general presentation of this approach to secure computation.

Complexity metrics. In this framework, the running time of the protocols is
(usually) dominated by the communication between parties. We evaluate proto-
col complexity using two metrics that reflect different aspects of the interaction
between parties. Communication complexity measures the amount of data sent
by each party. For our protocols, a suitable abstract metric of communication
complexity is the number of invocations of a primitive during which every party
sends a share (field element) to the others, e,g., the multiplication protocol.

38 O. Catrina and A. Saxena

Table 1. Secure arithmetic in a finite field F

Operation Purpose Rounds Invocations
[cF « [a]F + [b]F Add secrets 0 0
[]f «— [a]f +b Add secret and public 0 0
[« [a]b Multiply secret and public 0 0
[]f — [a]F[b]F Multiply secrets 1 1
a « Output([a]¥) Reveal a secret 1 1

Round complexity measures the number of sequential invocations. This metric
is relevant for the inherent network delay, independent of the amount of data
sent. Invocations that can be executed in parallel count as a single round.

We denote [x] a Shamir sharing of z and [z]" a sharing in a particular field
F. Table [[l summarizes the secure arithmetic operations in the basic framework.

2.2 Data Representation

The next step toward secure computation using this approach is to map the
application data to field elements. The reverse mapping is performed to extract
the application data after the computation. We consider the following data types:
boolean values, signed integers, and signed fixed-point numbers.

Fized-point representation. Fixed-point numbers are rational numbers repre-
sented as a sequence of digits split into integer and fractional parts by a vir-
tual radix point. For binary digits, a fixed-point number can be written & =
$-(de—2...dp.d_1...d_y) and its value is T = S'Zf;zf d;2, where s € {—1,1},
e is the length of the integer part (including the sign bit), and f is the length
of the fractional part. Denote Z = s - Zfioffz d;2" and observe that & =z -2~7,
hence 7 is encoded as an integer Z scaled by the factor 2-7.

We define a fixed-point data type as follows. Let k, e, and f be integers such
that K >0, f >0,ande=k— f > 0. Denote Zy, :{er|—2k_1—|—1 <
x < 28=1 —1}. The fixed-point data type with resolution 2=/ and range 2¢ is
the set Quupy ={7€ Q[T =2 2-fz e Zgy - Intuitively, Qg 5y is obtained
by sampling the range of real values [-2¢71 + 27/ 2¢=1 —2=/] at 2=/ intervals.

We use the following compact notation for a range of integers: [A..B] = {z €
Z|A<xz<B}and [A.B)={zx€Z | A<z < B}.

Data encoding in a field. Any secret value in a secure computation has a data
type which is public information. Data types are encoded in a field F as follows.

Denote O and 1p the additive and multiplicative identities of F. Logical
values false,true and bit values 0,1 are encoded as O and 1g, respectively. F
can be a small binary field Fom or prime field Z,. This encoding allows secure
evaluation of boolean functions using secure arithmetic in F. Encoding in Fom
is more efficient, because XOR is a local operation; we can take m = 8, which is
sufficient for Shamir sharing with n < 256 parties.

Secure Computation with Fixed-Point Numbers 39

Table 2. Complexity of the building blocks (the default field is Z,)

Protocol Rounds Invocations Field
[r] < PRandBit() 1 1 Zq
[r] < PRandBitL() 2 2 Zgq,
[7]F2#, [r] < PRandBitD() 2 2 Zq,
[r] < PRandInt(k) 0 0 0
2 2 Zg,
[a] < BitF2MtoZQ([a]"2®) 1 1 Foe
[ex-1]", ..., [co]" « PreOR([az—1]%, ..., [ao]") log(k) ¥ log(k) F
[Cm— 1} .,[CO]F — BitAdd(a, [bm—1]F, ..., [bo]F) log(m) mlog(m) F
1 1 Zq
[am—1]72%,. .., [a0]">® « BitDec([a], k, m) 2 2m Zqy
log(m) mlog(m) Fas
1 1 Zq
[s] < LTZ([al], k) 2 2k Zg,

Signed integers are encoded in Zg using the function fld : Zy +— Zg, fld(z) =
Zzmod ¢, for ¢ > 2*. For any integers a,b € Zy and operation ® € {+,—,}
we have @ ® b = fld~*(fld(a) © fld(b)). Moreover, if b|a then a/b = fid~*(fld(a) -
fid(b)~1). Secure arithmetic with signed integers can thus be computed using
secure arithmetic in Z,.

A secret fixed-point number Z of type Qi sy is represented as a secret integer
z = 727 encoded in Z4 and public parameters that specify the resolution and
the range, f and e (or k = e + f). We define the map inty : Q. 5y = Z,
inty(Z) = #27. Note that the fixed-point representation allows very efficient
encoding of a secret rational number, as a single field element.

We also use (when required) a bitwise encoding of integers, where each bit of
the binary representation is encoded and shared in a field F as described above.

We distinguish different representations of a number using the following sim-
plified notation: we denote Z a rational number of some fixed-point type Qs
and 7 = 72f € Z)y the integer value of its fixed-point representation; for secure
computation using secret-sharing we denote © = z mod ¢ € Z, the field element
that encodes T (and hence %) and [z] a sharing of x.

2.3 Building Blocks

We provide an overview of several building blocks and techniques used in fixed-
point arithmetic protocols. Their complexity is summarized in Table

Shared random wvalues. The protocols often use secret sharing together with
additive or multiplicative hiding, taking advantage of their combined capabilities
for computing with secret data and efficient conversion methods. For example,
given a shared variable [z] the parties can jointly generate a shared random value

40 O. Catrina and A. Saxena

[r], compute [y] = [z] + [r], and reveal y = x + r. This is similar to one-time pad
encryption of x with key r.

For a secret x € Z, and random uniform r € Z, we obtain A(z+r mod ¢,r) =
0, hence perfect privacy. Alternatively, for 2 € [0..2%), random uniform r €
[0..2%+7%) "and ¢ > 2F+"+1 we obtain A(z +r mod ¢,7) < 27%, hence statistical
privacy with security parameter . The variant with statistical privacy can sub-
stantially simplify the protocols by avoiding wraparound modulo ¢, although it
requires larger g (hence larger shares) for a given data range. Statistical privacy
also holds for other distributions of r that can be generated more efficiently
or/and meet particular requirements: (1) r = >_.7;, where r; € [0..2""%) are
random uniform integers; (2) r = 2% 4+ ¢/, where "/ = 3", 7/ and r} € [0..2%)
and 7’ € [0..2¥) are random uniform integers.

We use Pseudo-random Replicated Secret Sharing (PRSS) [6] to generate
without interaction shared random values in F with uniform distribution and
random sharings of zero. Also, we use the integer variant of PRSS (RISS) [10]
to generate shared random integers in a given interval, and the ideas in [11] for
bit-share conversions (e.g., BitF2MtoZQ converts bit shares from Fos to Zj).

To enable these techniques, we assume in the remainder of the paper that
numbers are encoded in Z, as specified in Section and g > 28Tt +1 where
k is the required integer bit-length, x is the security parameter, v = ﬂog((?)ﬂ,
n is the number of parties, and ¢ is the corruption threshold.

Protocol PRandBit generates a random bit shared in Z, by combining the
protocol RandBit in [§] and protocols in [6]. A random uniform integer r € [0..2%)
is constructed from shared random bits as [r] = Zi:ol 2¢[r;]. Note that RandBit
includes an exponentiation that significantly increases the running time when
generating many random bits for large q. PRandBitL generates a shared random
bit in a small field Z;, to reduce complexity, then converts its shares to the
target field Z, (e.g., [log(¢1)] = 64). PRandBitD uses a similar technique to
generate a random bit shared in both Z, and Fas. Bits shared in Z, are used to
construct a random uniform integer, while bits shared in Fys are used for binary
computation. PRandInt(k) generates without interaction a shared random integer
r € [0..25F) distributed as sum of (7) random uniform integers in [0..2").

Bit decomposition. Protocol 2.1l BitDec, is a general tool that provides a bridge
between secure computation with integers shared in Z, and with integers bitwise-
shared in Z, or Fas. The inputs are [a] = [fld(@)] and the public integers k and
m, where a € Z,y and 0 < m < k. The output is an array of shared bits equal
to the m least significant bits of the 2’s complement binary representation of a.
The protocol follows the idea in [SII8T9] for bit decomposition of Z, elements,
but offers a more efficient solution for bounded integers and statistical privacy.
Protocol ZT] extracts m bits in log(m) 4+ 3 rounds with mlog(m) + 2m + 1 invo-
cations, while the variant with perfect privacy and constant round complexity
[19] extracts k = [log(q)] bits in 51 rounds with 56k log(k) + 30k invocations.

Correctness. Let £ = k 4+ k + v. The protocol generates a random integer 0 <
r < 2° and computes ¢ = (2° + 2F + a — r) mod ¢. For ¢ > 2! we have
(2% +a) mod ¢ = 28 +a@ and ¢ = 2 + 28 4@ —r. If @ > 0 then (r+¢) mod 2% = a

Secure Computation with Fixed-Point Numbers 41

and if @ < 0 then (r + ¢) mod 2¥ = 2% — |a|, hence (r + ¢) mod 2 is equal to
the 2’s complement representation of a. The protocol computes the m < k least
significant bits of @ using the binary addition protocol BitAdd.

Protocol 2.1. ([a,,—1]%*, ..., [ag]F>*) « BitDec([a], k,m)

1 foreach i € [0..m — 1] do parallel

2 [r;]%*, [r;] < PRandBitD();

3 [/} Zm 1 2 [Tz]

a [r"] — PRandInt(/-f +k—m);

s 1] 2 [+ o]

6 ¢« Output(28+Tr+v 4 2k 4 [a] — [r]);

7 ([am—1]"2%, ..., [ao)2®) « BitAdd((cm—1,---,c0), ([rm-1]F2%, ..., [ro]F2*));
8 return ([a,_1]"*,. .., [ag)=®);

Security. Protocol BitDec can leak information in step 6 when it reveals c¢. The
other building blocks provide perfect privacy or statistical privacy with security
parameter k. Since A(c,r) < 27% we conclude that BitDec provides statistical
privacy with security parameter k.

Complexity. Table [B] shows the complexity of BitDec and its building blocks.
Observe that most of the invocations are in small fields, Z,, or Fos. The double-
shared random bits can be generated in parallel in 2 rounds and precomputed.
The random integer r is constructed such that to minimize the number of shared
random bits. BitAdd uses standard algorithms and is designed to offer a good
trade-off between round and communication complexity (a variant with minimal
communication needs 2 log(m) rounds).

3 Secure Fixed-Point Arithmetic

The protocols for arithmetic with fixed-point numbers are constructed using
secure integer arithmetic and scaling. Let a, b be fixed-point numbers. We denote
a+b, a—b, a-b, a/b the exact arithmetic operations (the result is a real number).
The output of a protocol may differ from the exact result, either because the
value is truncated to obtain a given fixed-point representation, or because the
algorithm computes an approximation of the result.

We present a secure arithmetic operation in three steps: we first give an algo-
rithm for exact arithmetic; then, we derive an algorithm for inputs and output of
given fixed-point types and limited precision arithmetic, and evaluate its error;
finally, we use this algorithm to obtain a protocol with secret inputs and output.
The second algorithm takes as inputs @ = @2/, b = 62/ and computes the result
¢ = ¢2/ using integer arithmetic. For secure computation, fixed-point numbers
are encoded in Z, and secret-shared. Let a = @ mod ¢, b = bmod ¢, ¢ =¢mod ¢
the encoded numbers. On input the secret-shared values [a] and [b] the protocol
computes the secret-shared output [c] using secure arithmetic in Z,. Table Bl
summarizes the complexity of the protocols presented in this section.

42 O. Catrina and A. Saxena

Table 3. Complexity of the fixed-point arithmetic protocols

Protocol Rounds Invocations Field
[d] < TruncPr([a], k,m) 1 1 Zq
2 2m Zq,
TruncPr after precomputation 1 1 Zq
[c] < FPMul([a], [b], &, f) 2 2 Zq
2 2f L,
FPMul after precomputation 2 2 Zq
[y] < FPDiv([a], [b], k, f) 20 + 8 40 + 8 Zq
(e=f, k =2f, 0 iterations) 2 2k6 + 6.5k Zg,
3log(k) + 2 1.5k log(k) + 4k — 2 Tys
FPDiv after precomputation 20 + 8 40 + 8 Zq
3log(k) 4+ 2 1.5k log(k) + 4k — 2 Tys
[w] < AppRer([b], k, f) 7 7 Zq
after precomputation 3log(k) + 2 1.5k log(k) + 4k — 2 Tys

3.1 Scaling

The purpose of scaling is to convert a given number to a fixed-point type with
different resolution. Let a; = a;2~ 1 and suppose we want to convert this value
to Gg = @92~ 2. Let m = fo — f1. We distinguish two cases. If m > 0 we have to
scale up a1 by computing as = @12™. We obtain as = a; (same value with higher
resolution). If m < 0 we have to scale down (truncate) a;. Let trunc(Z,m) =
Z/2™ — §;, where §; is the absolute error of the truncation operation. We scale
down a; by computing as = trunc(a;, m) and obtain as &~ a; with absolute error
§ = ay — as = 6;2~%2. For example, if trunc(Z, m) rounds down (discards m bits)
then 0 < §; < 1. If it rounds to the nearest integer then —0.5 < §; < 0.5.

A secret number [aq] is scaled up without interaction by computing [as] =
[a1]2™. Truncation is more complicated. We present an accurate and efficient
solution. Let @ € Z,y and 0 < m < k. Protocol B.11 TruncPr, takes as inputs
[a] and the public integers k and m and returns [d] such that d = |a/2™] + u,
where v is a random bit and Pr(u = 1) = (@ mod 2™)/2™. Therefore, the
protocol rounds a/2™ to the nearest integer with probability 1 — «, where « is
the distance between a/2™ and the nearest integer.

Correctness. A signed integer a is encoded in Z, as a = fld(a) = @ mod ¢. Step
1 maps @ € [-2F"1..2571) to b € [0..2%) by computing b = (2¥! + a) mod ¢ =
2k=1 4 G. Observe that ¥’ = b mod 2™ = @ mod 2™ for any 0 < m < k. Denote
¢ =k + r+v. Steps 2-6 generate a random secret r € [0..2°) and reveal ¢ = (b+
r) mod q. For ¢ > 2+ we have ¢ > b-+7 and hence ¢ = b+7. Let ¢ = ¢ mod 2™
and ' = r mod 2. We see that ¢ = (b' + ') mod 2™ = V' + 7' — u - 2™, where
u € {0,1}. Therefore, steps 1-9 compute a’ = (@ mod 2™) — - 2™.

Let d’ = (a—a’) mod g and observe that d’ = (@a— (@ mod 2"™)+u-2™) mod ¢ =
(la/2™] - 2™ + w - 2™) mod ¢. The protocol returns d = d'(27™ mod ¢) mod gq.
We have d = (|a/2™ | +wu) mod g = fld(|a/2™] 4 u), hence the output is correct.

Secure Computation with Fixed-Point Numbers 43

Protocol 3.1. [d] < TruncPr([a], k&, m)

[b] — 251 + [a];

foreach i € [0..m — 1] do parallel
[ri] < PRandBitL();

[r] = iy 20 [ril;

[r"] « PRandInt(q, k+k—m);

[r] =27 "]+ [F);

¢ < Output([b] + [r]);

¢ «— cmod 2™;

] ¢~]

[d] — (la] = [a'])27™;

return [d];

© 00 N O A W N

e
= o

Probabilistic rounding. Observe that b + 1’ € [0.2™*! — 2] and that u = 1
o+ >2"and u = 0if b +7 < 2™ — 1. It follows that Pr(u = 1) =
Pr(r’ > 2™ — /). We see that p(b') = Pr(u = 1) grows with ¥ from p(0) = 0
to p(2™ — 1) = 1. For example, if 7’ is random uniform in [0..2™ — 1], we obtain
p(d') = b'/2™, hence p(0) = 0, p(2™/2) = 1/2, and p(2™ — 1) = 1 — 27™. Note
that deterministic rounding is too expensive because it requires comparisons.

Security. Protocol TruncPr can leak information in step 7 when it reveals ¢ = b+r.
The other building blocks provide perfect privacy or statistical privacy with
security parameter k. Since A(c,r) < 277 we conclude that TruncPr provides
statistical privacy with security parameter x.

Complexity. All random bits are generated in parallel in 1 or 2 rounds depending
on the protocol used, PRandBit or PRandBitL, and can be precomputed. The
construction of » minimizes the number of shared random bits generated by the
protocol. Table Bl shows the complexity of the variant using PRandBitL.

Extensions. Observe that b/ = ¢ — 7' +u-2™ and that u =1if ¢/ <" and u =0
if ¢ > r'. We can compute [u] using a comparison protocol for bitwise-shared
integers and obtain a protocol Trunc([a], k,m) that computes d = |a/2™], i.e.,
truncates m bits and rounds down. This is the truncation protocol used in [5].
Note that TruncPr is substantially more efficient than Trunc, since it avoids an
expensive bitwise comparison, and at the same time reduces the rounding error
with high probability to |d¢| < 0.5.

Furthermore, if @ < 0 then |a/2¥"!| = —1 and if @ > 0 then |a/2F '] =
Therefore, we can determine the sign of a secret integer by computing [s]
—Trunc([a], k, k — 1). This is the comparison protocol LTZ([a], k) in Table

0.

3.2 Addition, Subtraction, and Comparison

We specify addition and subtraction for values of the same fixed-point type.
Values of different types have to be converted to the same type. Let a,b € Q)

and & = @+ b. Since & = (@ + b)2~f, we obtain the representation of ¢ with

44 O. Catrina and A. Saxena

resolution 27/ by computing ¢ = @ + b. For secret-shared values we compute
[c] = [a] +[b] and [¢] = a+ [b] without interaction. The output is the exact result
and has the same type as the inputs. Subtraction is similar.

Integer comparison operators with secret inputs and output can be con-

structed using the following two protocols: EQZ([a]), that computes a Z 0, and
?
LTZ([a]), that computes a < 0. For example, EQ([a], [b]) = EQZ([a] — [b]) com-
?

putes @ = b and GE([a)], [b]) = 1 — LTZ([a] — [b]) computes @ > b. We can also use
these protocols for fixed-point inputs of the same type and obtain exact results.

3.3 Multiplication

We first consider multiplication of two numbers of the same fixed-point type,
abe Qi,py- Let ¢ = ab. Since ¢ = ab2~2/, we obtain the representation of the
exact result ¢ with resolution 272/ by computing & = ab (if overflow does not
occur). For secret-shared values we compute [c] = [a][b] with complexity 1 round
and 1 invocation. If an input is public then [c] = a[b], without interaction.

The output of a multiplication is usually scaled down to resolution 2~/ in order
to obtain a value with the same type as the inputs and to limit the size of the integers
that encode the fixed-point numbers. Thus, for a typical multiplication we compute
d = trunc(ab, f) and obtain d ~ @b with absolute error § = ab — d = §,2~f. The
secure computation is shown in Protocol 3.2l Observe that the output overflows
when the intermediate value ab reaches k + f bits. Therefore, Zq must support
integers of at least k + f bits in order to avoid overflow of @b for all valid outputs.

Protocol 3.2. [d] < FPMul([a], [0], k, f)
1 [c] — [a][b];

2 [d] < TruncPr([c], 2k, f);

3 return [d];

Fixed-point multiplication with inputs and outputs of different types can be
computed using similar protocols, with the same complexity and accuracy. For
example, if the inputs are @ = a2/, b = b2=/v and the output is d = d2—7,
where f < f, + f, the computation is d = trunc(ab, f, + f» — f). We obtaln
d =~ ab with absolute error § = §,2~/. Truncation is not necessary if one input
is an integer and the other one has the same resolution as the output.

We point out two optimizations that improve the efficiency and accuracy of
the protocols by reducing the number of truncations. We assume inputs and
outputs of the same type Qs sy and |0¢| < 1.

We can evaluate the inner product Zz 1 a;b; with error § = 6,2~/ by com-
puting d = trunc(} i, a@;b;, f). Computing d’ = Y_1" trunc(a;b;, f) is both in-
efficient and less accurate, since the cumulated errors can reach 0’| < m27/.
A double multiplication @bé can be evaluated with absolute error § = 6,2~/ by
computing d = trunc(dl_wé,Qf), if the data representation supports integers of
k + 2f bits. On the other hand, if we compute d’ = trunc(trunc(ab, f)¢, f), the
error becomes ¢’ ~ §;2¢72/ assuming ¢ € [2¢71..2%).

Secure Computation with Fixed-Point Numbers 45

3.4 Division

Secure division with secret dividend and public divisor follows immediately from
fixed-point multiplication. Let ab e Qk,f), and assume a is secret and b is
public. We can obtain the secret quotient g = &/5 € Qqx, sy with error 6 = 62— f
by computing the reciprocal Z ~ 1/b, & € Q(k+ 4.k, and then [y] = TruncPr([a] -
fld(intx(Z)), k). Therefore, if the divisor is public the division protocol has the
same complexity as the truncation. For example, this protocol may be sufficient
for secure evaluation of statistics like sample mean p = 1{[Zfil x; and variance
ot =1, Zf\il(a:z — u)? since N is usually public.

The problem becomes difficult when the divisor is secret. The algorithms for
dividing fixed-point numbers follow two main approaches: digit recurrence (sub-
tractive division) and functional iteration (multiplicative division) [12]. Func-
tional iteration is more suitable for secure computation, because the algorithms
converge faster and are simpler to implement with the available building blocks.
These algorithms fall into two main classes: algorithms that use the Newton-
Raphson method for computing the reciprocal and algorithms that use series
expansion, in particular Goldschmidt’s method. Both methods require a suit-
able initial approximation, which is the main hurdle for secure computation.
Moreover, both offer quadratic convergence and the iterations have similar com-
plexity. The Newton-Raphson iterations are self correcting (truncation errors in
an iteration decrease quadratically during next iterations), but the multiplica-
tions are dependent and have to be computed sequentially. For Goldschmidt’s
method, the multiplications can be computed concurrently, but truncation errors
cumulate during the iterations. We developed and evaluated protocols for both
methods. We present in this paper a protocol based on Goldschmidt’s method
that offers better efficiency (for similar accuracy).

Goldschmidt’s method for computing a/b can be described as follows [16].
Let wo be an initial approximation of 1/b with relative error ¢y < 1, and let
ap = a, bg = b. For 7 > 1 the algorithm computes: a; = a;—1w;—1, b; = b;_1w;_1,
w; = 2 — b;. Denote r; = H;:O w; and observe that:

awqg ... W;—1 a; a; Wy - Aj41 o ar;

b bwo...wi,1 o bZ o bZU)Z o bi+1 o bTi.

The relative error of the initial approximation is ¢g = 1 — bwyg. It can be shown
(by induction) that b; = 1 — €2 and w; = 1 + €2 . Observe that if ¢y < 1
then b; converges to 1 and hence a; converges to the quotient a/b and r; to the
reciprocal 1/b. Denoting e; = e%i, the recurrence relations that approximate the
quotient can be written as follows: a1 = awg; air1 = a;(1 +e;—1), €; = e7_;.
After i iterations we obtain a;+1 = (a/b)(1 — e%i), hence a;+1 &~ a/b with relative
error egi. We can obtain similar recurrence relations for 1/b.

Initial approximation. A critical issue is to determine an initial approximation
that ensures fast convergence. The usual method is to compute a normalized
input ¢ € [0.5,1) and then find an approximation of 1/c. We use the linear

46 O. Catrina and A. Saxena

approximation wg = 2.9142 — 2¢ with relative error ¢g < 0.08578 (3.5 initial
bits) [12]. This approximation offers sufficient accuracy for our purposes and
can be computed without interaction for secret c.

More accurate initial approximations can be obtained by table lookup [17].
For example, a piece-wise linear approximation using a table with 2% entries
offers initial approximations with accuracy of 2k 4 2 bits. A reciprocal with 64-
bit accuracy can thus be computed in 2 iterations, with an initial approximation
based on a table with only 128 entries. However, the efficiency gain is reduced
by the additional cost of the table lookup with secret index.

Division algorithm. The division protocol performs the computation described

above using the building blocks in the previous sections. We give an algorithm

for positive 1nputs and then show how to extend it to signed inputs.
Letabe@ andassumethat?zf1<a<2efand2mf1<b<

2m=f for some K § k and m < k. Our goal is to compute § € Q<k7f> such that

g=~al b and the maximum absolute error is close to the resolution 27 of the
output. We describe the exact computation (without truncations) followed by
the computation with limited precision carried out by the protocol:

1. Computation of the initial approximation @ ~ 1/ b:
Ezact arithmetic: Normalize b to obtain & € (0.5,1). The normalized divisor
is @ = b2/~™ = p2u—¢, where u = k— m=e+f—m. Let d = 2.9142—2¢ be the
initial approximation of 1/¢. The initial approximation of 1/ bis w = d2u—e.
Appro:czmate arithmetic: Assume b with resolution 2~/, ¢ with resolution

~k and @ with resolution 27/, Let b = b2/, ¢ = &2¥, w = w2/. Compute:

¢ = b2%; d = int,(2.9142) — 2¢; w = trunc(d2¥, 2e).

2. Computation of § ~ a/b:
Ezact arithmetic: Let g = aw and g = 1 — b (note that Z(is the relative
error of w and 0 < Ty < 1). For 1 < i < 6 do: §; = Ji—1 + Ji—1Zi—1;
Ti = Ti—1%i—1- Let § = §op = Go—1 + Jo—1Zo—1 (last iteration). We obtain
g ~ a/¢ with relative error ey < ege.
Approzimate arithmetic: Assume a, B, w, g; with resolution 2=f and %;
with resolution 272/, Denote a = a2/, b = v2f, 5, = §;2f, w = w27, and
z; = 7;2%. Let g = intay(1.0) — bw and go = trunc(aw, f). For 1 <i < 0
do: §; = i1 +trunc(§i—1Ti—1,2f); T; = trunc(Ti—1Ti—1,2f). Let § = go—_1+
trunc(yo—1Zo—1,2f) (last iteration).

Correctness. Since 2™~ 1 < p2f < 2™ we have 2F—1 < p2f2k—m < 2k and
271 < p2/=™ < 1, so the normalized divisor is & = b2/ =™ = p2u—¢,

The initial approxm}atlon of 1/¢ is d = 2.9142 — 2. From d ~ 1/(52“:6)
it follows that @ = d2"7¢ =~ 1/b. The relative error of w is & = (1/b —
w)/(1/b) = 1 — biw. For the fixed- point types in the algorithm we obtain:
82k = p2772ue2k = 2% hence ¢ = b2¥; d2F = (int;,(2.9142)27%—2e27%)2* hence
d = int;,(2.9142) — 26, w25 = d27F2%~ e2f = d2“272¢ hence w = trunc(d2¥, 2e);
and 7022/ = (int27(1.0)272/ — b27/w277)2%/ hence zy = intas(1.0) — bw.

Secure Computation with Fixed-Point Numbers 47

The iterations follow the simple recurrence relations presented earlier. Cor-
rectness of the computation with limited precision is easy to verify. Observe that
the two fixed-point multiplications in an iteration can be computed in parallel,
and in the last iteration it is sufficient to compute 7g.

Signed inputs. Since T; + 1 > 0~the division algorithm works for a < 0 without
modification. The extension to b < 0 affects only the initial approximation algo-
rithm, which is modified to return w = 1/l~) with the correct sign. Thus, 59 = aw
is initialized with the correct sign, and the iterations preserve it.

Accuracy. The quotient error has two main components: the approximation error
of the method, which depends on the initial approximation and the number of
iterations, and the truncation error due to computation of the iterations with
limited precision. The accuracy is limited by the resolution 2~/ of the output.

For exact computation of the iterations, the relative error after iteration 6 is
€g < e%e, where € is the relative error of the initial approximation of 1/ b. For
example, we use a linear approximation with ¢y < 0.08578, so the approximation
error of §j5 is €5 < 7.4 1073%. This implies 113 exact quotient bits, hence an
absolute error less than 27/ for k = 2f < 112 bits.

For 6 iterations, the cumulated absolute error 7 due to truncations is upper
bounded by #2~f. This error is essentially caused by truncation of §;, which
adds an error |07, | < 2=/ per iteration. Truncation of #; introduces a negligible
error |07, | < 272/ <« |07, |. Assuming sufficient iterations for an approximation
error 27/, the overall error of the algorithm is bound by (6§ + 1)2~/. The error
bound can be reduced to 27/ by slightly increasing the resolution of ;.

We note that the average accuracy of the truncations is better than the worst
case considered above. The error bound observed in experiments with an imple-
mentation of the division protocol is actually close to 2.

Protocols. Let a,b € Q(x,r) and b # 0. On input [a], [b] the Protocol B3, FPDiv,
computes [y] such that § € Q 5y and g ~ &/E, using the algorithm described
above. Protocol B4l AppRcr, provides the initial approximation of 1/ b. It takes
as input the divisor [b] and returns [w] such that @ € Q¢ and w =~ 1/b.
The linear approximation is computed using the normalized value of the divisor
obtained by Protocol 3.5 Norm.

Correctness. The correctness of FPDiv and AppRer is easy to verify based on
the algorithm description. Protocol Norm takes as input [b], for b € Q5 and
computes the secret integer values [c] and [v'] such that 2F~1 < ¢ < 2% and
¢ = bv'. Suppose that 271 < |b| < 2™, m < k. Observe that |[¢/| = 2F~™
and |¢| = (|b|2/~™)2F. Therefore, ¢ is the representation of the normalized input
b2f—m ¢ [0.5,1) with resolution 27% and ¢’ is the signed scale factor. Steps 1-2
compute the sign of b as a secret integer 5 € {—1, 1} using the protocol LTZ, and
then the absolute value of the input # = 5b = |b|. Steps 3-10 determine the scale
factor 2¥~™ using bit decomposition and the protocol PreOR, which returns all
prefixes [y;] = \/f;i1 [x;], for 0 <4 < k. Finally, steps 11-12 compute (in parallel)
the normalized input é = 2*~™ and the signed scale factor o/ = 52F~"™.

48 O. Catrina and A. Saxena

Protocol 3.3. [y] < FPDiv([a], [b], %, f)

1 (6,a) — ([log 5],ﬂd(intgf(l.O)));
2 [w] < AppRer([b], &, f);

8 [z] «— a — [b][w];

4 [y] < [a][w];

5 [y] < TruncPr([y], 2k, f);

6 foriec[l.0—1] do

7 [yl < [yl(e+ [z]);

8 [z] — [2][z];

9 [y] < TruncPr([y], 2k, 2f);
10 [x] < TruncPr([z], 2k, 2f);
11 [y] < [yl(o + [z]);

12 [y] < TruncPr([y], 2k, 2f);
13 return [yl;

Protocol 3.4. [w] < AppRer([b], k, f)

a « fld(int,(2.9142));

([C]v [U]) — Norm([b}a k, f)a

[d] — o —2[d];

[w] — [d][v];

5 [w] «— TEu?cPr([w},Qk,Q(k -
6 return |w|;

W N =

Protocol 3.5. ([c], [v']) < Norm([?], &, f)
1 [s] «—1—2-LTZ([p], k);
2 [x] — [s][b];
3 ([wr_1]%28, ..., [x0]"2®) < BitDec([z], k, k);
([yk—l}m‘)s’) [yO]F28) — PreOR([xk—l]FQS (R ['TOPFQS);
foreach i € [0..k — 1] do parallel
[yi] < BitF2MtoZQ([y:]"2®);
foreach i € [0..k — 2] do
[2:] = [ws] — [yital;
[2k—1] = [y—1];
[o] — Yoimg 267 el
[e] — [a][v];
T = [s][v];

[v'] < [s]
return ([¢], [v']);

© 0 N O Us

R e e
W N = O

Security. The division algorithm performs the same sequence of operations re-
gardless of the secret values. The loop counters depend on the desired accuracy
of the division operation and the fixed-point representation, which are public
parameters. The three protocols do not reveal any secret-shared variable and

Secure Computation with Fixed-Point Numbers 49

all their sub-protocols provide either perfect or statistical privacy. We conclude
that FPDiv provides statistical privacy.

Complezity. The round and communication complexity of the protocols FPDiv
and AppRcr are shown in Table Bl for £ = 2f. Observe that most of the invoca-
tions are in a small field, Z,, or Fas, so their communication and computation
overhead is low. All shared random bits used in FPDiv and its subprotocols can
be generated in parallel in 2 rounds. An iteration is computed in 2 rounds (two
fixed-point multiplications in parallel).

The complexity of FPDiv is clearly dominated by the initial approximation,
especially the normalization step. For example, if £ = 112 and § = 5 (=~ 112 bits
accuracy), steps 3-12 of FPDiv are computed in 12 rounds, and AppRcr adds 29
rounds (27 rounds for Norm), giving a total of 43 rounds. A variant of FPDiv
with positive divisor is sufficient in many applications and can be computed in
33 rounds by skipping the steps 1, 2, and 12 of Norm.

Note that the building blocks in Table 2 are optimized for low communication
complexity. The round complexity of FPDiv can be reduced using building blocks
that trade off higher communication complexity for a lower number of rounds.

4 Conclusions

Business applications of secure computation need a protocol family that provides
operations with all primitive data types and allows secure protocol composition
and efficient application development. We presented a protocol family that fills
an important gap by enabling secure computation with rational numbers.

Fixed-point representation offers the most efficient encoding of rational num-
bers as well as efficient protocols for the most frequent operations: addition,
subtraction, multiplication, and comparison. Division is simple for public divi-
sor, but becomes quite complex when the divisor is secret. On the other hand,
secure arithmetic with floating-point numbers is clearly not practical.

The protocols have been implemented in Java and tested in complex applica-
tions like secure linear programming using Simplex (with a variant of the division
protocol that was optimized for multiple divisions with the same divisor).

On-going work focuses on improving the efficiency of division and adding
protocols for secure evaluation of other mathematical functions.

Acknowledgements. Part of the work presented in this paper was funded by the
European Commission through the grant FP7-213531 to the SecureSCM project.
The authors thank the anonymous reviewers for their helpful comments.

References

1. Algesheimer, J., Camenish, J., Shoup, V.: Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417-432. Springer, Heidelberg (2002)

50

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

O. Catrina and A. Saxena

Atallah, M., Blanton, M., Deshpande, V., Frikken, K., Li, J., Schwarz, L.: Se-
cure Collaborative Planning, Forecasting, and Replenishment (SCPFR). In: Multi-
Echelon/Public Applications of Supply Chain Management Conference (2006)
Atallah, M., Bykova, M., Li, J., Frikken, K., Topkara, M.: Private Collaborative
Forecasting and Benchmarking. In: Proc. WPES 2004, Washington (2004)
Brandt, F.: How to obtain full privacy in auctions. International Journal of Infor-
mation Security 5(4), 201-216 (2006)

Catrina, O., Dragulin, C.: Multiparty Computation of Fixed-Point Multiplication
and Reciprocal. In: Proc. 20th International Workshop on Database and Expert
Systems Application (DEXA 2009), pp. 107-111. IEEE Computer Society, Los
Alamitos (2009)

Cramer, R., Damgard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342-362. Springer, Heidelberg (2005)

Cramer, R., Damgard, 1., Maurer, U.: General Secure Multi-Party Computation
from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316-334. Springer, Heidelberg (2000)

Damgard, I., Fitzi, M., Kiltz, E., Nielsen, J., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and ex-
ponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
285-304. Springer, Heidelberg (2006)

Damgard, I., Nielsen, J., Toft, T., Pagter, J.I., Jakobsen, T., Bogetoft, P., Nielsen,
K.: A Practical Implementation of Secure Auctions Based on Multiparty Integer
Computation. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107,
pp. 142-147. Springer, Heidelberg (2006)

Damgard, I., Thorbek, R.: Non-interactive Proofs for Integer Multiplication. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 412-429. Springer, Hei-
delberg (2007)

Damgard, 1., Thorbek, R.: Efficient Conversion of Secret-shared Values Between
Different Fields. In: Cryptology ePrint Archive, Report 2008/221 (2008)
Ercegovac, M.D., Lang, T.: Digital Arithmetic. Morgan Kaufmann, San Francisco
2003

](F‘ouqlie7 P., Stern, J., Wackers, G.: CryptoComputing with Rationals. In: Blaze,
M. (ed.) FC 2002. LNCS, vol. 2357, pp. 136-146. Springer, Heidelberg (2003)
From, S.L., Jakobsen, T.: Secure Multi-Party Computation on Integers. Master’s
thesis, Univ. of Aarhus, Denmark, BRICS, Dep. of Computer Science (2006)
Kiltz, E., Leander, G., Malone-Lee, J.: Secure Computation of the Mean and Re-
lated Statistics. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 283-302.
Springer, Heidelberg (2005)

Markstein, P.: Software Division and Square Root Using Goldschmidt’s Algorithms.
In: Proc. 6th Conference on Real Numbers and Computers, pp. 146-157 (2004)
Masayuki Ito, N.T., Yajima, S.: Efficient Initial Approximation for Multiplicative
Division and Square Root by a Multiplication with Operand Modification. IEEE
Transactions on Computers 46(4) (1997)

Nishide, T., Ohta, K.: Multiparty Computation for Interval, Equality, and Com-
parison Without Bit-Decomposition Protocol. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 343-360. Springer, Heidelberg (2007)

Toft, T.: Primitives and Applications for Multi-party Computation. PhD disserta-
tion, Univ. of Aarhus, Denmark, BRICS, Dep. of Computer Science (2007)

Toft, T.: Solving Linear Programs Using Multiparty Computation. In: Dingledine,
R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 90-107. Springer, Heidelberg
(2009)

Implementing a High-Assurance Smart-Card OS

Paul A. Karger!, David C. Toll', Elaine R. Palmer®, Suzanne K. McIntosh',
Samuel Weber!*, and Jonathan W. Edwards?

1 IBM Thomas J. Watson Research Center,

P.O. Box 704, Yorktown Heights, NY 10598, USA
karger@uwatson.ibm.com, {toll,erpalmer,skranjac,jone}Qus.ibm.com
2 IBM Global Business Services
1500 Aristides Blvd., Lexington, KY 40511, USA

Abstract. Building a high-assurance, secure operating system for mem-
ory constrained systems, such as smart cards, introduces many chal-
lenges. The increasing power of smart cards has made their use feasible
in applications such as electronic passports, military and public sector
identification cards, and cell-phone based financial and entertainment
applications. Such applications require a secure environment, which can
only be provided with sufficient hardware and a secure operating sys-
tem. We argue that smart cards pose additional security challenges when
compared to traditional computer platforms. We discuss our design for a
secure smart card operating system, named Caernarvon, and show that
it addresses these challenges, which include secure application download,
protection of cryptographic functions from malicious applications, resolu-
tion of covert channels, and assurance of both security and data integrity
in the face of arbitrary power losses.

1 Introduction

The design of higher security operating systems has been studied since the 1960s.
However, most of these designs have been for relatively large computer systems.
This paper examines a series of issues that a high-security operating system must
face to be able to run in an extremely memory-limited environment, such as a
smart card, a cell phone, a small PDA, or other constrained pervasive devices.
For a good overview of smart card technology in general, see [T1].

As the prime uses of smart cards are identification, authorization and encryp-
tion, it is crucial that sufficient trust be established between different applica-
tions executing on the same card. The lack of a trusted secure operating system
for smart cards has resulted in some users having a “necklace of cards”, each
one hosting a single application. The Caernarvon project was started to create
such a secure smart card operating system. A very high-level overview of the
Caernarvon system can be found here [I4]. In contrast, this paper focuses on a

* Now with the National Science Foundation, 4201 Wilson Boulevard, Arlington, Vir-
ginia 22230, samweber@acm.org

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 51{65] 2010.
© IFCA/Springer-Verlag Berlin Heidelberg 2010

52 P.A. Karger et al.

number of challenges faced in actually implementing a high-assurance operating
system on a smart card.

Most existing smart card systems have required that all applications be writ-
ten together and loaded onto the card prior to the card being issued, because
smart card processors did not support internal security controls, and all applica-
tions had to be mutually trusting. However, with the development of new smart
card processors with internal security features (see Section [[T]), much stronger
security could be provided. Thus, one primary goal of the Caernarvon project
was to build a smart card operating system capable of supporting the download
of applications that might be actively hostile, both to each other and to the un-
derlying operating system. To be able to protect against such potentially hostile
applications, the Caernarvon security policy was chosen to be mandatory access
controls (MAC), because only such controls can effectively deal with applications
that may contain Trojan horses. (See Section [Bl)

This paper will focus on the specific challenges that must be faced to build a
high-assurance operating system for such memory-constrained devices as smart
cards. Sections @l and [l examine in detail the following security aspects of the op-
erating system that are particularly different from previously described work on
high-assurance operating systems: a hierarchical file system structure to reduce
memory consumption, elimination of global address space covert channels that
are unique to smart cards, reducing memory consumption of mandatory access
classes, capability-based discretionary access controls, reliable persistent storage
in the presence of power failures and memory write errors, secure application
download, secure cryptographic implementations without trusted applications,
and secure chip initialization without slowing down manufacturing lines.

1.1 Feasibility

The first question in the Caernarvon project was “Would it be feasible at all
to build such a system?”. When IBM Research first considered the project,
the answer was, “No.” Early smart card chips did not have adequate hardware
support for security, such as separate supervisor and user states and memory
protection.

The project only became possible when the Philips (now NXP) Smart XA chip
was introduced as the first smart card processor to meet those needs. Karger,
Toll and McIntosh [9] discuss these hardware requirements in much more depth.
Since then, other vendors have also introduced chips that meet the requirements
to support the Caernarvon operating system. However, as discussed in [9], not
all chips that claim to support memory protection can do so without introducing
covert channel problems.

The current Smart XA2 chip supports a relatively large amount of memory for
a smart card chip: 7 Kbytes of RAM, 256 Kbytes of ROM, and 144 Kbytes of
EEPROM. However, compared to most contemporary secure computer system
projects, that amount of memory is extremely tiny. Note that the numbers are
in kilobytes, not megabytes or gigabytes, and there is no external peripheral
memory, such as a disk. All memory must fit on the single chip.

Implementing a High-Assurance Smart-Card OS 53

2 Applications of the Technology

Many applications could benefit from a high assurance smart card operating sys-
tem. Generally, those applications have data or software from multiple parties
co-residing on the same card, and require some level of data sharing between the
parties. The trust relationship of those parties ranges from friendly to mistrust-
ful to hostile. The threats addressed range from honest mistakes in software to
attacks by financially-motivated cardholders to industrial espionage to compre-
hensive logical and physical attacks by hostile adversaries and insiders. Below is
a list of sample applications:

— an electronic passport issued by one government, with electronic entry/exit
timestamps added by other (possibly hostile) governments, described in [g].

— a corporate/school campus card, with multiple application providers for
copiers, vending machines, public transit, and building access

— an ID card for coalition military forces for building or computer access

— a subscriber identity module for mobile phones to hold credentials for finan-
cial institutions, governments, and phone service providers, etc.

There are roadblocks hindering the commercialization of a high assurance smart
card operating system, such as: significant investment in time and funding is
required by multiple institutions; the skills required cross several domains; some
existing smart card application specifications have mandated protocols that pre-
clude a high level of security. For example, the electronic passports specified
by the International Civil Aviation Authority require the use of weak crypto-
graphic authentication protocols, and the protocols of the Federal Employee
Personal Identity Verification program require some very sensitive information
to be transmitted in unencrypted form. In attempting to resolve these issues, the
Caernarvon development led to a clearer understanding that in order to meet
many security goals, privacy goals must also be met [§] .

3 Background — Security Policy and Authentication

The Caernarvon system builds on previous work on mandatory security poli-
cies to provide multi-level security. Mandatory security was chosen specifically
because a major goal of the Caernarvon system is to support downloading of
multiple applications from multiple application providers, who may be mutually
hostile. Caernarvon system security is enforced using a mandatory security pol-
icy described more completely in [I2] that is based on modifications of the Bell
and LaPadula secrecy model [2] and the Biba integrity model [3].

Enforcement of a meaningful security policy requires that there be a secure
mechanism to ensure that the use of the desired access classes is valid and correct.
This authentication must be performed by the smart card’s operating system
itself and not by an application, so that the operating system is guaranteed, and
can guarantee to others, that the authentication has been correctly completed.
The smart card operating system can use this knowledge to safely grant or deny

54 P.A. Karger et al.

the host system access to files and other system objects on the card. Space does
not permit including the full description of this authentication protocol which is
available in [13].

4 Security Design Challenges

4.1 File System

The Caernarvon system implements a smart card file system. Besides the chal-
lenges caused by the specification and hardware restrictions, the file system must
also enforce the system’s security policy. There also must be a quota mechanism
and support for memory-mapped files. The file system is the major repository
of system state, and hence security is crucial to its design and implementation.

Caernarvon implements an ISO 7816-4 File System, with certain security ex-
tensions described in this section. This file system is implemented by two separate
components, namely the Persistent Storage Manager (PSM) and the file system
abstraction layer.

The PSM provides and manages memory objects, that is, blocks of persis-
tent storage. Smart cards can have their power sources removed unexpectedly,
corrupting in-progress memory writes. An important purpose of the PSM is to
maintain the integrity of the memory objects, allowing other system components
to ignore power interruption issues.

The PSM is not exposed to user mode applications. The file system layer sits
on top of the PSM, and it is visible to applications.

File System Structure. The ISO 7816-4 standard defines a hierarchical file
system, which has a single MF (Master File, equivalent to “root” in Unix),
which contains DFs (Dedicated Files, otherwise known as directories) and/or
EFs (Elementary Files). The Caernarvon system extends this model by defining
another file type, an “XF” (Executable File), which are executable programs.
Unlike most other file systems, the Caernarvon MF and DFs have no table of
the files that they contain; instead, each DF and EF (including each XF) in the
system has a pointer to its parent, as shown in Figure[Il This saves the space that
would be occupied by the list of file names and the reference to each file; it also

» File Hdr for MF [*
L File Hdr for DF File Hdr for DF J
Parent mem obj id Parent mem obj id
File Hdr File File Hdr File
Parent mem objid | Data Parent mem objid| Data

Fig. 1. Directory Structure Implementation

Implementing a High-Assurance Smart-Card OS 55

means that, when files are created or modified, there is no need to update the
corresponding DF entry for that file. However, this design has the drawback that
file system searches require examining every file in the system. Since the amount
of persistent memory is extremely limited (< 256 Kbytes), there can be only a
small number of files in any given smart card, and this extended search cannot
create a performance problem. Obviously, this space/time tradeoff algorithm
does not scale to large memories with lots of files. Eventually, smart cards will
have much larger persistent memories available. In that case, the highly modular
and layered design of Caernarvon would make switching to a more conventional
directory structure quite easy.

An obvious, but incorrect optimization for the linear search would be to cache
the information about recently opened files. However, such a cache could not fit
in RAM (only 7 kbytes total) and would itself consume the scarce persistent
memory that we are trying to save. Furthermore, the open file table itself serves
as a small cache, as long as the file remains open. Due to the slow communications
speeds of smart cards, switching applications consumes more time than any file
system caching would save.

The MF, each DF, and the headers and data areas of all files, are each held in
a PSM memory object, the size and location of which are defined by the PSM’s
object descriptors, as shown in Figure

System Area MFE
ptr

Object
Descriptors

ngzln;i%_fg \;l | ‘L_fllijll |

File Hdr| File File Hdr File Hdr Filz Filz
Daia ior DOF ior MF Data Hdr []
— Parent
0bj i FParent Ga-byte Data
Obj I granular Ohj id

Fig. 2. PSM Memory Objects for Files

In general, files are packed so as to minimize the space and number of memory
blocks required for their storage. In the case of most data files, the file header
and the file data area are packed together into a single contiguous memory area.
However, Caernarvon provides a facility for files to be memory mappable - this
is used, in particular, for the code of executable programs. Data that is memory
mappable must lie on a physical memory boundary and have a size granularity
specified by the processor’s memory protection unit. This means that mappable
files have one memory object for the header and another for the data. Figure
shows the arrangement of the memory objects for both types of file.

56 P.A. Karger et al.

Global Address Spaces—DFNames. The ISO 7816-4 file system names all
files as numbers. While that simplifies the file system, it makes it difficult for
end users to select an application by name. Remembering the file numbers is
not likely to be acceptable. As a result, ISO 7816-4 defines the concept of a DF
Name that is used to select an executable program from outside the card. A
DF name is a string name assigned to the DF containing the application. The
DF Names are unique to the card, and, (as defined in ISO 7816-4) constitute a
global address space.

Global address spaces cause two different operational problems. First, if two
different application developers happen to choose the same DFName, then the
first such name loaded onto a particular card will win. Since ISO 7816-4 assumed
all applications would be preloaded onto the card, this was never a problem.
Once you have multiple application providers downloading applications to a
card after issuance, the name collision problem can become serious. Second,
such name collisions could be used as a covert channel to bypass mandatory
access controls.

Caernarvon avoids these problems by making the DF Name space into a name
space that is private to the current access class. The ISO 7816-4 rules for DF
Names are then applied within each access class, rather than system wide. Within
an access class, DF Names must be unique, but the same DF Name may be
repeated in a different access class.

Storing Access Classes in the File System. In most previous operating
systems that supported mandatory access controls, the access classes of files
and directories are stored with their associated files and directories, either in file
headers or in the directory branches. Furthermore, Caernarvon access classes are
designed to support multi-organizations, as discussed in [I4] Section 3.1]. These
multi-organizational access classes can be quite large to represent, and every file
and directory may have its own unique access class. In a smart card with very
limited amounts of memory, storing large numbers of access classes could be a
severe problem.

To reduce access class memory usage in Caernarvon, two steps have been
taken. First, we note that due to restricted memory for storing applications and
data; no one smart card will need to use more than a small number (< 256)
of distinct access classes. Therefore, the File System only stores each multi-
organizational access class once in a table, and need store only an 8-bit index
into that table with each file or directory.

Caernarvon follows the Multics practice [15] that while a child directory (DF)
may have a different (higher) access class than its parent DF, ordinary files (EF's
and XFs) must have the same access class as their parent DF. This allows us
to save additional memory by requiring that files (EFs and XFs) do not have
associated access classes, while directories (DFs) may but are not required to.
DFs, EFs and XFs without an access class inherit the access class of their nearest
parent DF that does have its own access class.

A program, if it has appropriate access to a file, may change the access class
of that file, for example to raise its secrecy level or to lower its integrity level, but

Implementing a High-Assurance Smart-Card OS 57

doing so may remove the program’s access to the file. In this case, any open file
handles for the file in question are marked, and then the program can perform no
more operations such as read and write using the file handle until it has closed
the file and re-opened it. If the program no longer has access to the file then
the re-open will fail. This re-open approach avoids the kernel complexity of the
Multics revocation approach and originates in the design of the DEC Al-secure
virtual machine monitor [I0].

This facility to change the access class of a DF (and hence of all the files
within it) can be used to move data from one access class to another. Thus
if a program at AC a wishes to move a DF (also at AC a) to AC b then the
program must change the DF to the AC a+b. Note that this is quite legitimate
- a program may always change a file to a higher secrecy level. Having done
this, the program, which is still at AC a, no longer has access to the DF. At
this stage, a special guard process must be run; this is an evaluated application
that has been certified as fit to perform the downgrade of secrecy level a+b to b.
This guard program would verify that it is indeed legitimate to downgrade the
secrecy of the DF, and if all is well, change the AC of the DF to b. Note that
moving a DF must also move disk quota as discussed below.

Quota. In order to protect against denial of service attacks when one application
takes all the persistent storage on the card, Caernarvon provides a quota facility.
This also enables the card issuer to control (and charge for) the amount of
space on the card used by each application provider. Covert channels whereby
a Trojan horse could signal by either allocating all memory or freeing some are
prevented.

Most contemporary operating systems use special quota accounts to charge
for file space. However, such quota accounts require a great deal of management
software. Instead, the Caernarvon system uses a very old approach (described
below) from the Multics operating system [I5] section 3.7.3.1], that is simpler
to implement. The Multics approach was replaced by quota accounts, because
such accounts were easier for time-sharing system users to manage. However,
Caernarvon quota will be managed by application providers, not end-users, so
the slightly harder management interface should not be a problem.

Each DF may (but need not) have a quota; if the DF does not have its own
quota then that DF and all the files within it are charged against the quota of the
nearest parent DF that does have a quota. When a new top-level DF is created
for an application, then that DF would normally be allocated its own quota. The
application can quite legitimately give some of its quota to a DF below its own
top-level DF. If a DF is moved from one AC to another (as described above),
then the quota occupied by that DF and all the files within it is also moved to the
new parent DF of the DF that has been moved. The combined atomic operation
of moving a DF from one AC to another together with its quota is totally new
and is needed to avoid covert storage channels. Most existing mandatory access
control systems avoid the channels by restricting such moves to human users
through a trusted path, but a smart card has no direct human interface.

58 P.A. Karger et al.

Discretionary Security Policy - Capabilities. As discussed above in Sec-
tion Bl the primary security policy of the Caernarvon system is a mandatory
access controls. This is because mandatory access controls are specifically de-
signed to deal with malicious applications code. However, mandatory access
controls do not provide the very fine-grained control that users can get from
discretionary access controls, such as access control lists or permission bits. As
the Caernarvon design progressed, we became concerned that including both a
powerful mandatory access control mechanism as well as a full access control list
implementation would exceed the very limited amount of memory that can be
committed to the smart card operating system.

As a result, we chose to implement a compromise discretionary access control
system, based on a very restricted form of capabilities [4]. These are discre-
tionary security policy rules that may be associated with an individual exe-
cutable program (an XF). These capabilities take two forms that are based on
our assessment of the most common needs of smart card developers and are easy
to implement in only a small amount of code:

1. a bit array that specifies whether that program is permitted to issue certain
supervisor calls (SVCs). For example, there is a special, evaluated, Admin
Application issued with the system that is used for the administration of (in
particular, the creation of) Access Classes and top-level DFs for applications.
This program uses certain special SVCs for the administration of ACs; the
capability bit for this group of SVCs is unset for every other XF in the
system, so that no other program can issue those SVCs.

2. there can be special access rules to allow or forbid access to individual files
by this program.

It is important to note that these capabilities are not a fully general capabil-
ity system, as defined by Dennis and Van Horn [4]. In particular, Caernarvon
capabilities cannot be passed from one process to another.

4.2 Persistent Storage Manager - PSM

In the Caernarvon system, the physical blocks of storage are managed by the
Persistent Storage Manager (PSM). The principal client of the PSM is the File
System; the PSM is also used by the Access Class Manager and the Key Man-
agement system.

Figure Bl shows how the PSM divides persistent storage. The System Area at
the beginning of EEPROM contains information that the operating system uses
to locate its internal data structures and persistent state. Items in the System
Area are expected to be set up when the initial EEPROM image is built, and
subsequently is never changed. Everything else is held in a memory object; every
object has a unique ID, and is always referenced via this ID. Every memory
object is in turn described (in particular, its location and size) by an object
descriptor; a memory object is located by searching the object descriptors for
the descriptor with the requested ID. This allows for the possibility of either the
memory object and/or its descriptor moving in physical storage.

Implementing a High-Assurance Smart-Card OS 59

& - & 1‘———____
System Objects, Unallocated Object
Area free mem blocks EEPROM Descriptors

Fig. 3. PSM Use of Persistent Storage

Management of Storage Objects. Figure 2] shows how file system objects
are stored in PSM memory objects. In older smart card systems, where the file
system was created during card personalization or initialization, the file system
was effectively static, that is there was no file creation or deletion after issuance.
However, a Caernarvon file system is dynamic—the number of files and/or their
sizes will change since the Caernarvon system allows for the installation or re-
moval of applications, and the creation and deletion of files after the card has
been issued.

This means that the PSM must manage any possible fragmentation of memory
objects. The Caernarvon PSM avoids this completely by always ensuring that any
memory object is stored in a single contiguous area of memory. However, this in
turn causes another problem, in that as files are created, extended (or shrunk), or
deleted, free storage will become fragmented. When a file is to be created, there
may not be a single block of free memory available that is large enough. Alterna-
tively when enlarging a file, there may be no immediately adjacent free memory.

A traditional approach to this problem would be to do a garbage collection:
move in-use objects to contiguous storage and coalesce the free areas. In Caernar-
von, we do not do a complete collection. Instead, when a memory allocation is
attempted but no suitably-sized memory block is available, the PSM determines
the minimal number of occupied blocks that need to be moved to create a large
enough free memory space. After this compaction operation, memory may still
be fragmented, but the number of memory writes will have been kept low in
order to preserve the lifetime of the memory locations. It should be noted that
compaction will certainly require multiple read and write operations to persistent
storage, both of the memory objects and of the descriptors. These operations are
time consuming, so minimizing their number and frequency is also important to
maintain acceptable performance.

Weaknesses of Persistent Storage. Write operations to EEPROM or Flash
memory are slow, usually taking 4 to 6 milliseconds each. Further, the write
block size for EEPROM is limited, for example, to 128 bytes. Thus writing any
significant amount of data to a file is likely to take multiple write operations,
plus additional writes to update the control block information. There is also the
problem that the smart card is powered only when it is in the reader. These
factors mean there is a significant risk of a file write operation being interrupted
and not fully completed.

A solution to the power interruption problem is to ensure that all memory
transactions, for example a request to extend a file and update its contents, be

60 P.A. Karger et al.

treated as a single atomic operation. That is, the entire transaction, including
all of the multiple write operations required, must be completed in its entirety,
or not performed at all. The PSM maintains a backtrace buffer where, when
persistent storage is to be updated, the old values are stored before the new
data is written. This is done for every step of the operation - the backtrace buffer
entries are cleared only when the entire transaction is completed. When the card
is powered-up, if the backtrace buffer is not empty, the items in the backtrace
buffer are restored one-by-one, in the reverse order to which the original steps
were performed. When this is complete, the state of the memory is as if the
transaction had never been started. There is one additional complication, in
that, when powered up, the smart card cannot immediately start these backtrace
operations, but is required to respond to the smart card reader within 40,000
processor clocks. This allows no time to perform the pending backtrace buffer
operations. However, when the reader sends the first command to the card, the
card can request a “waiting time extension” to delay its response to the reader;
this request can be repeated as many times as are necessary to complete the
pending backtrace operations.

Smart card persistent memory, EEPROM or Flash, has a limited number of
write cycles before it starts to fail, for example between 100,000 and 500,000
for EEPROM, and only 10,000 for Flash. The PSM takes two measures to com-
pensate for memory corruption due to the cells wearing out. First, once every
write to persistent memory is completed and before control is returned, the low-
level code that did the write compares the updated contents of memory with
the data in the caller’s buffer (in RAM). If a mismatch is detected, an error is
returned; in this case, the data that was to be written is still available in the
buffer. Second, the PSM places a checksum on every memory object under its
management, including the control blocks or descriptors that define the memory
objects. This checksum is verified on read operations to enable the detection of
memory failures—an attempt is then made to recover the lost data byte(s). Once
a memory error is detected, the memory area in question is marked as bad, and
the data is re-written to a different location.

The backtrace buffer for atomic transactions is well known in data base de-
sign [6], but its use throughout a file system in conjunction with mechanism to
recover from memory wearing out is unprecedented in smart cards. Of course,
the backtrace buffer is itself an area of memory that has frequent write opera-
tions, and hence can wear out. When errors occur within the backtrace buffer,
the PSM will attempt to move the backtrace buffer to a new area of memory.

4.3 Implementing Application Download

A primary aim of the Caernarvon system is to allow for the secure download
of applications in the field. The card issuer can allow or forbid the download of
applications, and when download is permitted, can control which organizations
are allowed to install their applications on the card and how much file quota
they may use. Note that in the context of download, the term “application” is

Implementing a High-Assurance Smart-Card OS 61

not limited to just the XF's; it may also encompass the associated DFs, EFs, file
quota, keys, etc.

The download process can be divided into two main steps, namely the creation
of access classes (with the appropriate file quota) for organizations that currently
are not present on the card, and then the download of application files (including
executable programs) for an organization that is present on the card. Obviously,
download of an application for a new organization requires the completion of
both of these steps.

Creation of Access Classes. The creation of a new access class is a tricky
operation on a smart card, because the card is physically in the possession of an
end user who may not be privileged to create access classes. The smart card also
does not have a system administrator or security officer who can perform such
operations. Requiring the card holder to carry the card back to the card issuer
would be unacceptable to most customers.

Instead, the Caernarvon operating system includes secure cryptographic pro-
tocols to (a) create the Access Class and (b) to create the necessary top-level DF
associated with the new access class, and set its allocated quota. These protocols
will require a full future paper to explain and are not further discussed here.

File Download. Once an organization has been authorized to be present on a
Caernarvon card, that is, once any necessary access class(es) have been created,
then that organization may download such files as it needs, subject to the file
space the quota imposed by the card issuer.

A file is downloaded simply by authenticating at the appropriate access class,
running a program to create any required DFs and EFs, and writing the ap-
propriate data to those files. An executable file, once it is downloaded, must be
“activated” to convert the file from an EF to an XF.

The card issuer may wish to restrict the programs that are run. For example,
only approved applications or Common Criteria evaluated applications might be
allowed. To implement this level of control, the Caernarvon kernel will check for
digital signatures, either from the card issuer or the Common Criteria certifier
or both.

4.4 Cryptographic Challenges

The Caernarvon system includes a cryptographic library to ensure that the cryp-
tographic algorithms, such as DES, triple-DES, AES, RSA, DSA, and ECC are
correctly and securely implemented in a side-channel free fashion. This is dis-
cussed in section 3.6 of [14].

In addition to proper cryptographic algorithm implementation, it is essential
that cryptographic key management also be implemented securely. If the applica-
tion handles the key itself, it may inadvertently leak information (for example,
some bits of the key) by such simple operations as copying the key from one
memory location to another. Further, there is nothing to prevent a malicious
program from deliberately leaking the key to outside the smart card.

62 P.A. Karger et al.

Caernarvon provides secure key management facilities within the kernel. Keys
can be loaded into the card by the kernel, so that the application never sees
the key; the application refers to the key by a name (actually a handle) of
its choosing. The keys are effectively stored in the file system with file IDs for
names and hierarchical file paths, the same as for regular files. This avoids covert
channel problems that could arise in the names of keys, if the keys were stored
in a flat file system. However, the key names are a separate name space from
the file names, and, to ensure security of the key, these key “files” cannot be
accessed as regular files. In addition, keys can be marked by purpose, such as
to be encryption keys or signing keys; the kernel can then prevent a signing key
from being used for encryption, or vice versa. This prevents certain cryptographic
weaknesses where a key is used for more than one purpose.

Unfortunately, some smart card standards (such as the Global Platform
standard [I]) require that the keys be visible to applications (or in the Global
Platform case, the application security domain). To satisfy this requirement,
Caernarvon also supports a “raw” key mode, where the keys are handled entirely
by the application. Access to the crypto co-processor must still be mediated by
the kernel to avoid both object re-use and covert channel issues. While appli-
cations may find this mode a necessity, its use is strongly discouraged, since
Caernarvon cannot ensure any security for these raw keys.

Another problem that can arise is that a program can develop its own cryp-
tographic code, for example to implement an algorithm devised specially for
that application. Running such code on top of a high security kernel provides no
guarantee of the quality of the implementation of the cryptography, in particular
immunity to side channel attacks. Again, the only way to avoid the problem is
to design the application to use only the strong crypto (and secure key manage-
ment) provided by the Caernarvon kernel.

5 Chip Initialization

Smart card chips containing the Caernarvon system are intended to be high secu-
rity devices. Therefore, it is imperative that each individual chip be secure right
from the point of manufacture, with no opportunity for the chip or its contents
to be compromised while in the factory or during delivery. Manufacture and
initialization are the most security-sensitive stages in the chip’s entire lifecycle,
because the chip is in its most vulnerable, exposed state, and it is during these
stages that important roles and security parameters are set for the remainder
of the chip’s lifecycle. A fundamental assumption is that the manufacturing line
is secure, which requires the chip manufacturer to assure that it is safe from
tampering, collusion, theft, and other threats, including those from insiders.

In a typical smart card chip manufacturing facility, manufacturing test soft-
ware is built into each chip to assure the viability of the chip. The test soft-
ware tests the processor, memory subsystem, internal peripherals, and other
subsystems such as cryptographic accelerators. These tests typically destroy the
contents of writable memory. Thus, the chips cannot be initialized with unique

Implementing a High-Assurance Smart-Card OS 63

persistent data until all manufacturing tests are complete. Once the manufac-
turing tests have completed successfully, the test software downloads a copy of
the initial file system for that chip, decrypting it with a strong cryptographic key
held in read-only memory, and used only once (during manufacture). The image
of each chip’s initial file system is pre-calculated by the chip manufacturer by
filling in the values of security-relevant data items in predefined locations. Some
of these items include certificates, private and public keys, Diffie-Hellman [5] key
parameters used for authentication, a chip-unique seed for random number gen-
eration, initial access classes, and uncertified application binary files. Because it
is difficult for the smart card chip’s processor to meet the demanding speed re-
quired by the manufacturing line, these security-relevant items are not typically
generated on-chip. Instead, they must be generated and digitally signed in ad-
vance in hardware security modules such as the IBM 4764 [7], and injected into
each smart card chip at very high speeds. The chip manufacturer also digitally
signs a certificate unique to each chip, thus enabling off-chip applications to ver-
ify (as part of an interactive authentication protocol) that communications come
from an authentic Caernarvon chip, and not an imposter. This chip certificate
includes a serial number and public key unique to each chip, a chip type and
configuration code, the Caernarvon software hash value, version number, and
evaluation assurance level.

The chip makes use of a public key hierarchy to establish identities and public
keys of the actors that set the final configuration of the chip’s software and data.
Actors include the chip manufacturer, the smart card enabler, the smart card
personalizer, the smart card issuer, the application certifying body, and others.
During initialization, some of the public keys and roles of these actors are set
by the chip manufacturer. Others are initialized later in the chip’s lifecycle, and
can only be set by an actor authenticated in a specific role.

After the test code has completed the initialization of a chip, it must securely
disable itself so that it can never be run again, even in the face of physical
attacks on the chip. At this point in the chip’s lifecycle, the OS is fully functional
and secure. Thus, when the chip is first powered up for any purpose outside of
the manufacturing line (for example, for personalization of the smart card for
the end user), the Caernarvon system is in control. In particular, full system
authentication is required to perform any operations such as personalization or
the installation of applications.

6 Conclusion

The Caernarvon operating system project has shown the feasibility of building
smart card systems with much higher levels of security than is common practice.
In particular, it is possible for a smart card to download and execute applica-
tions from multiple mutually-distrusting sources, but still prevent them from
interfering with each other or with the operating system itself.

These goals required reconsideration of many traditional smart card software
practices (see Section []]), as well as solving many security problems that are

64 P.A. Karger et al.

not present in larger-scale computers. In particular, new security approaches had
to be developed to deal with the extreme memory constraints of a smart card,
and these new techniques had to be applied throughout the operating system.
Despite these challenges, the Caernarvon operating system was completely free
of covert storage channels.

The present status of the Caernarvon system is discussed in [I4] Section 7).
An alpha test version has been implemented and runs on a smart card hardware
emulator. However, commercial viability is still undetermined, because the com-
plete OS has not been released as a product. Several major pieces of the design
have also been transferred to other IBM projects, as discussed in [I4] Section 6].

What this paper has shown is how such a high-security system can actually
be implemented in the extremely memory constrained environment of a smart
card, yet still support a very general mandatory access control model that can
protect against essentially arbitrary malware attacks.

Acknowledgements

The Caernarvon project involved work by a number of people in addition to the
authors of this paper, and we wish to acknowledge the contributions of, from
IBM: Vernon Austel, Ran Canetti, Suresh Chari, Vince Diluoffo, Giinter Karjoth,
Gaurav Kc, Rosario Gennaro, Hugo Krawczyk, Mark Lindemann, Tal Rabin,
Josyula Rao, Pankaj Rohatgi (now with Cryptography Research),
Helmut Scherzer (now with Giesecke & Devrient), and Michael Steiner; from
atsec: Helmut Kurth; from Philips: Hans—Gerd Albertsen, Christian Brun, Ernst
Haselsteiner, Stefan Kuipers, Thorwald Rabeler, and Thomas Wille; from the
University of Augsberg: Wolfgang Reif, Georg Rock and Gerhard Schellhorn;
from the DFKI: Axel Schairer and Werner Stephan; and from the German BSI:
Stefan Wittmann. We must also thank Wietse Venema for his very useful sug-
gestions on improving the paper.

References

[1] Béguelin, S.Z.: Formalisation and verification of the GlobalPlatform card speci-
fication using the B method. In: Barthe, G., Grégoire, B., Huisman, M., Lanet,
J.-L. (eds.) CASSIS 2005. LNCS, vol. 3956, pp. 155-173. Springer, Heidelberg
(2006)

[2] Bell, D.E., LaPadula, L.J.: Computer Security Model: Unified Exposition and
Multics Interpretation. In: ESD-TR-75-306, The MITRE Corporation, Bedford,
MA, HQ Electronic Systems Division, Hanscom AFB, MA (June 1975),
http://csrc.nist.gov/publications/history/bell76.pdf

[3] Biba, K.J.: Integrity Considerations for Secure Computer Systems. In: ESD-TR~
76-372, The MITRE Corporation, Bedford, MA, HQ Electronic Systems Division,
Hanscom AFB, MA (April 1977), http://handle.dtic.mil/100.2/ADA039324

[4] Dennis, J.B., Van Horn, E.C.: Programming semantics for multiprogrammed com-
putations. ACM Commun. 9(3), 143-155 (1966)

http://csrc.nist.gov/publications/history/bell76.pdf
http://handle.dtic.mil/100.2/ADA039324

[5]
[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Implementing a High-Assurance Smart-Card OS 65

Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. on In-
formation Theory 1T-22(6), 644-654 (1976)

Gray, J.N.: Notes on Data Base Operating Systems. LNCS, vol. 60, pp. 393-481.
Springer, Berlin (1978)

IBM 4764 Model 001 PCI-X Cryptographic Coprocessor. Data Sheet G221-9091-05,
http://www-03.ibm.com/security/cryptocards/pdfs/

4764-001 PCIX Data Sheet.pdf

Karger, P.A., Kc, G.S., Toll, D.C.: Privacy is essential for secure mobile devices.
IBM Journal of Research and Development 53(2) (2009)

Karger, P.A., Toll, D.C., McIntosh, S.K.: Processor requirements for a high se-
curity smart card operating system. In: Eighth e-Smart Conference, Eurosmart,
Sophia Antipolis, France, September 19-21 (2007), IBM Research Div. Rpt. RC
24219 (W0703-091),
http://domino.watson.ibm.com/library/CyberDig.nsf/Home

Karger, P.A., Zurko, M.E., Bonin, D.W., Mason, A.H., Kahn, C.E.: A retrospec-
tive on the VAX VMM security kernel. IEEE Trans. on Software Eng. 17(11),
1147-1165 (1991)

Rankl, W., Effing, W.: Smart Card Handbook: Third Edition. John Wiley & Sons,
Chichester (2003)

Schellhorn, G., Reif, W., Schairer, A., Karger, P., Austel, V., Toll, D.: Verification
of a formal security model for multiapplicative smart cards. In: Cuppens, F.,
Deswarte, Y., Gollmann, D., Waidner, M. (eds.) ESORICS 2000. LNCS, vol. 1895,
pp. 17-36. Springer, Heidelberg (2000)

Scherzer, H., Canetti, R., Karger, P.A., Krawczyk, H., Rabin, T., Toll, D.C.:
Authenticating Mandatory Access Controls and Preserving Privacy for a High-
Assurance Smart Card. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003.
LNCS, vol. 2808, pp. 181-200. Springer, Heidelberg (2003)

Toll, D.C., Karger, P.A., Palmer, E.R., McIntosh, S.K., Weber, S.: The Caernar-
von secure embedded operating system. Operating Systems Review 42(1), 32-39
(2008)

Whitmore, J., Bensoussan, A., Green, P., Hunt, D., Kobziar, A., Stern, J.: Design
for Multics security enhancements. In: ESD-TR-74-176, Honeywell Information
Systems, Inc., HQ Electronic Systems Division, Hanscom AFB, MA (December
1973), http://csrc.nist.gov/publications/history/whit74.pdf

http://www-03.ibm.com/security/cryptocards/pdfs/4764-001_PCIX_Data_Sheet.pdf
http://www-03.ibm.com/security/cryptocards/pdfs/4764-001_PCIX_Data_Sheet.pdf
http://domino.watson.ibm.com/library/CyberDig.nsf/Home
http://csrc.nist.gov/publications/history/whit74.pdf

Unlinkable Priced Oblivious Transfer with
Rechargeable Wallets

Jan Camenisch®, Maria Dubovitskaya'-?3, and Gregory Neven'
! IBM Research — Zurich
2 IBM Russian Systems and Technology Laboratory
3 National Research Nuclear University MEPhI, Russia

Abstract. We present the first truly unlinkable priced oblivious transfer protocol.
Our protocol allows customers to buy database records while remaining fully
anonymous, i.e., (1) the database does not learn who purchases a record, and
cannot link purchases by the same customer; (2) the database does not learn which
record is being purchased, nor the price of the record that is being purchased; (3)
the customer can only obtain a single record per purchase, and cannot spend more
than his account balance; (4) the database does not learn the customer’s remaining
balance. In our protocol customers keep track of their own balances, rather than
leaving this to the database as done in previous protocols. Our priced oblivious
transfer protocol is also the first to allow customers to (anonymously) recharge
their balances. Finally, we prove our protocol secure in the standard model (i.e.,
without random oracles).

1 Introduction

Suppose you want to buy a digital item from a website that charges per purchased item,
and that sells different items at different prices. You have reasons to believe, however,
that the website is making a lucrative parallel business out of selling information about
your shopping behavior to your competitors. For example, you may work for a pharma-
ceutical company and buy information about particular DNA genome sequences from
a database, or you may work for a high-tech company and buy patents from a patent
database. The list of purchased records from either of these databases certainly reveals
precious information about your company’s research strategies. How do you prevent the
database from gathering information about your shopping behavior while still allowing
the database to correctly charge you for the purchased items?

What we need here is a priced oblivious transfer (POT) protocol [[1], where cus-
tomers load an initial amount of money into their pre-paid accounts, and can then start
downloading records so that (1) the database does not learn which record is being pur-
chased, nor the price of the record that is being purchased; (2) the customer can only
obtain a single record per purchase, and cannot spend more than his account balance;
and (3) the database does not learn the customer’s remaining balance. All known POT
protocols require the database to maintain customer-specific state information across the
different purchases by the same customer to keep track of his (encrypted or committed)
account balance. Different transactions by the same customer thereby necessarily be-
come linkable. Thus, none of these protocols allows the customer to purchase records

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 66181] 2010.
(© IFCA/Springer-Verlag Berlin Heidelberg 2010

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 67

anonymously: even if an anonymous payment system is used to pre-charge the initial
balance, the customer could be at most pseudonymous, partially defeating the purpose
of protecting the customer’s privacy. For example, the database still learns the number
of records bought by each customer, the time that these records were bought, and their
average price. This clearly reveals information about the customer and might lead to
identification of the customer or of the records she’s buying. To overcome this, we fur-
ther require that the POT additionally guarantees that (4) the database does not learn
any information about who purchases a record.

Existing POT protocols also lack a recharge functionality: once a customer’s balance
does not contain enough credit to buy a record, but is still positive, the customer cannot
use up the balance, but will have to open a new account for further purchases. Even if
the protocol can be extended so that the customer can reveal and reclaim any remaining
credit, he will leak information about his purchases by doing so.

In this paper, we propose the first truly anonymous priced oblivious transfer proto-
col with recharge functionality. Rather than having the database keep track of account
balances, in our protocol the customers maintain their own balance. Of course, precau-
tions are taken to ensure that they cannot tamper with their balance, or rewind it to a
previous state. Furthermore, we offer a protocol that allows customers to recharge their
balances. Lastly, we present an enhanced protocol where records are transferred using
an optimistic fair exchange protocol [2l3]], thereby preventing a cheating database from
decreasing a customer’s wallet without sending the desired record.

1.1 Construction Overview

We consider a database where each record may have a different price. The database
provider encrypts each record with a key that is derived from not only its index but also
from its price. It then publishes the entire encrypted database.

To be able to access records, a customer first contacts the provider to create a new,
empty wallet. Customers can load more money into their wallet at any time. The pay-
ment mechanism used to recharge customers’ wallets is outside the scope of this paper;
for full customer anonymity, we advise the use of an anonymous e-cash scheme.

When a customer wants to purchase a record with index ¢ and price p from the
database, the provider and the customer essentially run a two-party protocol, at the end
of which the customer will have obtained the decryption key for the record o as well
as an updated wallet with a balance of p units less. This is done is such a way that the
provider does not learn anything about o or p. More precisely, we model wallets as
one-time-use anonymous credentials with the balance of the wallet being encoded as
an attribute. When the customer buys a record (or recharges her wallet), she basically
uses the credential and gets in exchange a new credential with the updated balance
as an attribute, without the provider learning anything about the wallet’s balance. The
properties of one-time-use credentials ensure that a customer cannot buy records worth
more than what she has (pre-)paid to the provider. We prove our protocol secure in the
standard model (i.e., without random oracles).

68 J. Camenisch, M. Dubovitskaya, and G. Neven

1.2 Related Work

Relative to the enormous body of work that has appeared on oblivious transfer, only
few priced oblivious transfer protocols have been proposed. The concept of POT was
introduced by Aiello et al. [[1]] who present a scheme based on homomorphic encryp-
tion and symmetrically private information retrieval (SPIR) [24]. The protocol by To-
bias [27] is based on ElGamal, and a recent protocol by Rial et al. [29] builds on the
OT protocol of [15]. The protocols of [[1127] come only with heuristic security con-
siderations, while that of [29] was proved secure in the universal composability (UC)
model [19]. All three of these protocols share a common principle that the database
maintains an encryption or commitment of each customer’s balance that gets updated
at each purchase. Purchases by the same customer are therefore necessarily linkable,
as the database has to know which ciphertext or commitment to use. Neither of these
protocols enables customers to recharge their wallets.

While by itself not being a POT protocol, the recent work by Coull et al. [21] could
be cast into one. They propose an OT scheme where access to records is controlled
by using a state graph. With each access a user transitions from one state to another,
where the allowed records are defined by the possible transitions from the current state.
One could implement a (fully anonymous) POT protocol by defining a separate state
for each possible balance in a customer’s wallet. The allowed transitions between states
band b’ are those records with price exactly b — b’. When using this approach however,
the size of the encrypted database is O(bpax - IV), where by ay is the maximum wallet
balance and N is the number of records in the database, as opposed to O (byax + V) in
our scheme.

Our paper builds on ideas from recent work by Camenisch et al. [10] who extend the
OT protocol of [15] with anonymous access control. One could in fact combine their and
our ideas to achieve POT with access control. This would allow for price differentiation
among customers while maintaining full customer privacy, e.g., offer a cheaper price to
holders of a loyalty card, without leaking whether the customer has one.

2 Definition of UP-OT

2.1 Syntax

Let x € N be a security parameter and let € be the empty string. All algorithms de-
scribed here are probabilistic polynomial-time (PPT); we implicitly assume they all
take an extra input 1%. A function v : N — [0, 1] is negligible if for all ¢ € N there
exists a k. € N such that v(k) < k¢ forall kK > k.

An unlinkable priced oblivious transfer (UP-OT) scheme is parameterized by a se-
curity parameter £ € N, a maximum wallet balance by,,x € N and a maximum record
price pmax < bmax. We consider a setting with one database and one or more cus-
tomers. A database consists of a list of N couples ((R1,p1),-..,(RN,PnN)), con-
taining database records Ri,..., Ry € {0,1}* and associated prices p1,...,pn €
{0, ..., Pmax}. A UP-OT scheme is a tuple of polynomial-time algorithms and pro-
tocols UP-OT = (DBSetup, CreateWallet, Recharge, Purchase) run between cus-
tomers Cy, ..., Cps and a database provider DB in the following way:

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 69

- DBSetup : DB: (DB = (Riapi)izl,...,N) i> ((kaB’ ERl, ey ERN), SkDB)
The database provider executes the randomized DBSetup algorithm to initiate a
database containing records Ry, ..., Ry with corresponding prices p1, ..., pn. It
generates a pair of a secret and corresponding public key (skpp, pkpp) for security
parameter k, and uses it to encrypt the individual records. The encrypted database
consists of the public key pkpp and the encrypted records ER1, ..., ERy. The
encrypted database is made available to all customers, e.g., by publishing it on a
website or by distributing it on DVDs/[] The database provider keeps the secret key
skpp to himself.

— CreateWallet : DB : (pkpg, skps) — (¢); C: (pkpg) — Woor L
A customer creates an empty wallet with a zero balance, signed by the database
provider, by engaging in the CreateWallet protocol with the database provider. The
provider’s public key pkpp is a common input, the corresponding secret key skpp
is a secret input to the provider. At the end of the protocol, the customer outputs an
empty wallet Wy, or L to indicate failure.

- Recharge : DB : (pkpg,m, skps) — (¢); C: (pkpg,m, W;) — Wiy or L
When the customer wants to add money to her wallet W; (which may or may not
be her initial wallet W) she can engage in a Recharge protocol with the database
provider. The database’s public key pkpp and the amount of money m that the
customer wants to add to her balance are common inputs. The database’s secret key
skpp and the customer’s current wallet WW; are private inputs to the database and
the customer, respectively. Eventually the customer outputs the new wallet W,
or L to indicate failure.

— Purchase : DB : (pkpg, skps) — (¢); C : (pkpgp, o, ERs, po, Wi) — (Rs,

Wit1) or (L, Witq)or (R, L)or (L, 1)
To purchase a record from the database, a customer engages in a Purchase protocol
with the database provider. The database’s public key pkpp is a common input. The
customer has as a private input her selection index o € {1,..., N}, the encrypted
record KR, and its price p,, and her current wallet W;. The database provider uses
its secret key skpp as a private input. At the end of the protocol, the customer
outputs the database record R, and an updated wallet ;1. An output containing
R, = 1 or W;;1 = L indicates that the record transfer or the wallet update failed,
respectively.

We assume that all communication links are private and anonymous, to that cheat-
ing customers cannot eavesdrop on honest customers’ conversations, and so that the
database does not know which customer he’s interacting with.

2.2 Security

We define security of an UP-OT protocol through indistinguishability of a real-world
and an ideal-world experiment reminiscent of the universal-composability (UC)

! We assume that each customer obtains a copy of the entire encrypted database. It is impossible
to obtain our strong privacy requirements with a single database server without running into
either computation or communication complexity that is linear in the database size. In this
paper we focus on amortizing the complexity of the purchase protocol to keep it constant, i.e.,
independent of N.

70 J. Camenisch, M. Dubovitskaya, and G. Neven

framework [[19] and the reactive-systems security model [25l28]]. The definitions we
give, however, do not entail all formalities necessary to fit either of these frameworks;
our goal here is solely to prove security of our scheme.

We summarize the ideas underlying these models. In the real world the honest players
and the adversary A who controls the dishonest players run cryptographic protocols with
each other. The environment £ provides the inputs to the honest players and receives
their outputs, and interacts arbitrarily with the adversary. In the ideal world, the players
do not run any cryptographic protocols but interact through an ideal trusted party T.
A (set of) cryptographic protocol(s) is said to securely implement a functionality if
for every real-world adversary A and every environment £ there exists an ideal-world
simulator A’ (controlling the same parties as A) such that £ cannot distinguish with
non-negligible probability whether it is run in the real world while interacting with A
or whether it is run in the ideal world while interacting with A’.

THE REAL WORLD. We first describe how the real world algorithms presented in §2.11
are orchestrated when all participants are honest, i.e., honest real-world customers
Ci,...Cps and an honest database DB. Parties controlled by the real-world adversary
A can arbitrarily deviate from the behavior described below.

Upon receiving (initdb, DB = (R;, pi)i=1,... n) from &, the database generates a
key pair and encrypts the records by running ((pkpg, EDB), skpg) <~ DBSetup(DB),
and sends (pkpg, EDB, (p;i)i=1,... n) to all customers Cy, ..., Cp.

Upon receiving (create wallet) from £, customer C; obtains an empty wallet
by engaging in a CreateWallet protocol with the database provider on common input
pkpp- The provider uses his secret key skpp as a private input. At the end of the
protocol, the customer obtains the empty wallet WO(J) with zero balance or L indicating
failure. In the former case C; returns a bit 1 to £, in the latter it outputs 0. DB does not
return anything to the environment.

Upon receiving (recharge, m) from & customer C; engages in a Recharge protocol

with DB on common input pkpg, m, using skpg and Wi(j)

(

as private inputs to DB and

s C ;’s current wallet. At the end of the protocol, C; either

obtains the new wallet W}_f_)l or _L. In the former case, it returns a bit 1 to £, in the latter

it outputs 0. DB does not return anything to the environment.
Upon receiving (purchase, o) from &, customer C; engages in a Purchase protocol

C;, respectively, where W,

with DB on common input (pkpg), on C;’s private input o, ER,, p,, Wi(j), and on

DB’s private input skpp, until C; obtains the record R, and a new wallet Wl(j)l The
customer returns two bits to the environment, the first indicating whether the record
transfer succeeded (i.e., 0 if R, = L and 1 otherwise), the second indicating whether
the wallet update succeeded (i.e., O if Wl(j)l = | and 1 otherwise). DB does not return
anything to the environment.

THE IDEAL WORLD. In the ideal world all participants communicate through a trusted
party T which implements the functionality of our protocol. We describe the behavior of
T on the inputs of the ideal-world customers C/, ..., C), and the ideal-world database
DB'. The trusted party T maintains the database DB and an array W] to keep track of
the balance in customer’s wallets. Initially all entries are unspecified, i.e., DB « ¢ and

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 71

W(j] < eforj = 1,..., N. The trusted party responds to queries from the different
parties as follows.

Upon receiving (initdb, (R;, pi)i=1.... n) from DB’, T checks whether 0 < p; <
Pmax for i = 1,...,N.If so, it sets DB «— (R;,p;)i=1,...~ and sends a message
(initdb, {p;}i=1,... ~)) to all customers.

Upon receiving (create wallet) from C}, T sends (create wallet) to DB’ who
sends back a bit b. If b = 1 then T sets W[j] < 0 and sends 1 to C’; otherwise it simply
sends 0 to C’.

Upon receiving (recharge, m) from C}, T first checks that W[j] # ¢ and Wj] +
m < bmax. If either of these checks fails, it sends back a bit O to C} , otherwise it proceeds
as follows. T sends (recharge, m) to DB’ who sends back a bit b. If b = 1 then the T
sets W[j] < W[j] + m and sends a bit 1 to C}; otherwise it simply sends O to C.

Upon receiving (purchase, o) from C}, T proceeds as follows. If W[j] < p, then
T simply returns a pair (L, 1) to C’;. Otherwise, it sends a message (purchase) to DB,
who sends back a pair of bits (b1, b2) indicating whether or not the record transfer and
the wallet update succeeded. Party T sends a pair (R, b) back to C; that is composed
as follows. If by = 1 and DB # ¢ then it sets R <+ R,, otherwise it sets R «— L. If
by = 1then T sets W{[j] — W/[j] — p, and b < 1; else it sets Wj] < € and b « 0.

The honest ideal-world parties Cf, . .., C);, DB simply relay inputs and outputs be-
tween the environment £ and the trusted party T. Dishonest parties can deviate arbitrar-
ily from this behavior.

Note that in the ideal world the database cannot tell which customer makes a pur-
chase, which record she is querying, or what the price of this record is, therefore guar-
anteeing perfect customer privacy. At the same time, customers in the ideal world can
only purchase records that they can afford, they can only obtain one record per purchase,
and even colluding customers cannot obtain records that they wouldn’t have been able
to afford individually, thereby guaranteeing perfect database security.

3 Preliminaries

Let Pg(1") be a pairing group generator that on input 1% outputs descriptions of mul-
tiplicative groups G, G of prime order ¢ where ¢ > 2. Let G* = G \ {1} and let
g € G*. The generated groups are such that there exists an admissible bilinear map
e : G x G — Gr, meaning that (1) for all a, b € Z, it holds that e(g?, g°) = e(g, g)**;
(2) e(g, g) # 1; and (3) the bilinear map is efficiently computable.

Definition 1 We say that the decision ¢-bilinear Diffie-Hellman exponent (/-BDHE)
assumption holds in groups G, G of order ¢ > 2" if for all polynomial-time adver-

saries A the advantage Adv(B;%IiE(/@) of, given a tuple (g, h, g%, . .. ,g(’h1 , g“”l, cey

2¢

g¢ ,.S), to distinguish whether S = e(g, h)o‘lZ or S & G, is a negligible function in
K for g,h & G* and a & 7,

Definition 2 We say that the ¢-strong Diffie-Hellman (¢-SDH) assumption [6]] holds in
group G of order ¢ > 2" if for all polynomial-time adversaries A the advantage is a

negligible function in s, where g & Grandz & Zyq.

72 J. Camenisch, M. Dubovitskaya, and G. Neven

3.1 Modified Boneh-Boyen Signatures

We use the following modification of the weakly-secure signature scheme by Boneh
and Boyen [6]. The scheme uses a pairing generator Pg as defined above.

The signer’s secret key is (&,) < Zg, the corresponding public key is (g, ym =
g™, yp = ¢g*») where g is a random generator of G. The signature on the tuple of
messages (m,p) is s «— g/ (zm+m+2pp). verification is done by checking whether
e(s,ym - g™ - yh) = e(g, g) is true.

This signature scheme is the special case for { = 2 of the modified Boneh-Boyen
signature scheme used by Camenisch et al. [10], who also show it to be unforgeable
under weak chosen-message attack if the (/N + 1)-SDH assumption holds, where N is
the number of signing queries.

3.2 Zero-Knowledge Proofs and 3-Protocols

When referring to the zero-knowledge proofs, we will follow the notation introduced
by Camenisch and Stadler [17] and formally defined by Camenisch, Kiayias, and

Yung [12]. For instance, PK{(a,b,c) : y = g*h’* A § = gaif} denotes a “zero-
knowledge Proof of Knowledge of integers a, b, c such that y = g®h and § = §°h¢
holds,” where y, g, h, 7, g, and h are elements of some groups G = (g) = (h) and
G =(3) = (h).

Given a protocol in this notation, it is straightforward to derive the actual protocol
implementing the proof. The computational complexities of the proof protocol are also
easily derived from this notation: for each term 3y = g®h®, the prover and the verifier
have to perform an equivalent computation, and to transmit one group element and one
response value for each exponent. We refer to Camenisch et al. [[12] for details.

3.3 Wallet Signature Scheme

We use the signature scheme proposed and proved secure by Au et al. [4], which is
based on the schemes of Camenisch and Lysyanskaya [[13]] and of Boneh et al. [7]].

The signer’s secret key is a random element x & Z4. The public key contains a
number of random bases g1, hg, - - ., hg, het1 & G, where / € N, and y «— gf. A
signature on messages my, . .., my € Zg is atuple (A, r, s) where r, s & Z4 are values
chosen at random by the signerand A = (g1h(" - -~ hy" hy,) 1/(z+5) Such a signature
can be verified by checking whether e(A, g7y) = e(g91hg™ -+ - hy** hj, 1, 91) -

Now assume that we are given a signature (A, r, s) on messages mg ..., my € Zg
and want to prove that we indeed possess such a signature. This can be done by aug-
menting the public key with values u,v € G such that log,, u and log,, v are not
known, choosing random values ¢, ¢ < Zq, computing A = Aut, B = vtut’, and
executing the proof of knowledge

PK{(a,3,s,t,t',mg,...,mg,r): B=0v'u! A 1=B 5’ A
A i— ¢
ecé;l,;jl)) = e(A Suathrl Hi:O h:n ’ gl)e(uay)t} ’

where o = st and 3 = st’.

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 73

DBSetup(DB = (Ri, pi)i=1,...n) :

If bmax > 271 or 3i : p; > Pmax then abort
(G,Gr,q) & Pg(1%) ; g, he & Gr*; g,h, g1, h1, ho, hs & G*; TR,y Tp, Thy Tw & Zq
H—e(g,h); yr < g™ yp — 9" yb — 9" yw — 91"
Fori=1,...,Ndo E; «— g'“”RJriJlrmP'p1 s By — 6(h, EZ) -Ri; ER; — (El,Fz)
Fori=0,...,bmaz do yl(f) — gt/ @t

) (bmax))

SkDB — (h,ZL‘R,ZL‘p,ZL‘b,ZEW) ;kaB — (g7Haglvh17h27h37yR7yP7yb7y]gO v '7yb y Yw
Return ((kaB, ER1,...,ERN), skDB)

Fig. 1. Database setup algorithm

It was proved in [4] that the above signature is unforgeable under adaptively chosen
message attack if the Q-SDH assumption holds, where @ is the number of signature
queries, and that the associated PoK is perfect honest-verifier zero-knowledge.

3.4 Set Membership Scheme

To prove that the customer’s new balance after buying a record remains positive and is
not more than the maximum balance we use a signature-based set membership protocol
suggested by Camenisch, Chaabouni and shelat [9].

They consider a zero-knowledge protocol which allows a prover to convince a veri-
fier that a digitally committed value is an element of a given public set. The verifier signs
the individual elements and sends the signatures to the prover. The prover shows that
he knows a valid signature (by the verifier) on the element that he holds. The scheme
of [9] employs the weak signature scheme by Boneh and Boyen [6]. They prove that
their protocol is a zero-knowledge argument of set membership for a set @, if the |P|-
SDH assumption holds.

4 Our UP-OT Construction

We now describe our scheme in detail. To issue wallets and update customers’ balances,
we employ the signature scheme presented in Section 3.3l To implement the oblivious
transfer with anonymous payments we extend the OT protocol by Camenisch et al. [15].
We will also use a number of zero-knowledge proofs about discrete logarithms as de-
scribed in Section[3.2)

Initial Setup. In Figure[llwe describe the setup procedure of the database provider, who
also issues wallets to customers. Customers do not have their own setup procedure.
The database provider runs the randomized DBSetup algorithm to initiate a

database containing records R1, ..., Ry with corresponding prices p1, ..., pn. It gen-
erates a pairing group of prime order g for security parameter x, a number of random
generators, and four secret keys zr, xp,, 21, and x,, with corresponding public keys yr,
Yp» Yb, and 4. Intuitively, zr is used as a randomness seed to encrypt the records, z,
securely links prices to records, x1, authenticates all possible balances, and x,, authen-
ticates the balance in customers’ wallets.

74 J. Camenisch, M. Dubovitskaya, and G. Neven

CreateWallet() :

C(pkpg) : DB(pkpg, skps) :
no, 7 = Zq

e poplh Al PK{(no,rh): A = h?ohgé}> sl & 7,
ro < 10 + 73 mod q < Ao, 75, 50 Ao — (g1 ARy hgé/) 0

If e(Ao, g5 yw) = e(g1h{ RS hE°, g1)
Then return Wy «— (Ao, 7o, So, 0, 0)
Else return L Return

Fig. 2. Create wallet protocol

The database provider encrypts each record R; with its own key to a ciphertext
(E;, F;). These keys are in fact signatures on the index ¢ and the price p; of the record
under the database provider’s secret keys xr and x,. The pairs (E;, F;) can be seen
as an ElGamal encryption [23] in Gt of the record R; under the public key H. But
instead of using random elements from G as the first component, our protocol uses
verifiably random [22] values F; = ng“}rmv'Pi . It is this verifiability that during the
purchase protocol allows the database to check that the customer is indeed asking for
the decryption key of a single record with a price that is within his current balance.

Let prazr < bmax < 2n-1 < q/2 be the maximal balance that can be stored in
a customer’s wallet. To prove that the customer’s new balance after buying a record
remains positive and is not more than the maximum balance, we use a signature-based
set membership protocol of Section[3.4] Here the set contains all possible balances from
the customer’s wallet {0, ..., byax}. So for each possible balance 0 < i < byay the
database provider uses xp, to compute a signature {yl(f)}. These values are included in
the database’s public key; they will be used by the customer to prove that her balance
remains positive after subtracting the price of the purchased record.

The encrypted database consists of a public key pkpp and the encrypted records
ERq, ..., ERy.Itis made available to all customers, e.g., by publishing it on a website
or by distributing it on DVDs. The server keeps the database secret key skpp to itself.

Obtaining wallets. Before purchasing any records, customers first need to create an
empty wallet and then charge it with money. To create a wallet, the customer runs the
CreateWallet protocol with the database provider depicted in Figure 2]

The database provider’s public key pkg is a common input. The database provider
has his secret key skpp as a private input. At the end of the protocol, the customer
obtains a wallet Wy = (Ag, 10, S0, 0, bo = 0) signed by the database provider. Here,
(Ao, 70, 80) is essentially a signature as per the scheme of Section[3.3]of a serial number
no chosen by the customer and the initial balance of the wallet by = 0. Next, the
customer verifies the wallet’s signature and outputs W if the check is successful.

Recharge protocol. Customers can recharge the balance of their wallets by engaging
in a Recharge protocol (Figure B)) with the database server. Doing so does not reveal

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 75

Recharge() :
C(pkpg,m, W) : DB(pkpg,m, skpg) :
If W; = € then return L
Parse Wi as (Ai,Ti, Si, nl,bl)
bit1 < bi +m; If bix1 > bmae then return L
ni+1,7"§+1 & Zq; §+1 — hTthgiHh;Hl
ti, & Zyq; A; — Aqubi s By — vtigli
) 1344 A BOA
t;/ (i Zq : V — (yl(qu—l)) v n17A17B17Ai+17V .
PKS (74, SiyMig1, big1, T, bi, 0, 67, i, Bi)

Ajyy = hT"’“hg“'lh;"’“ A e(V,y) = e(V, g) titte(g,)% A
B; =vliut'i A 1= B *iviufi A

e(Ai7 yw) t; T—s; o1 bigl }
n; 1 —m = elu, Yw ‘e Az “u"thsth » 9
e(g1hy"hy™, g1) (el o 2

>
Check n; is fresh

1" 1

Tit1\ owts,;
Ai+1 — (glA;+1h37+)Tw+9b+1

Aiy1,7i01, 8
Tit1 < i1+ 1y (mod q) < b T St

If e(Air1, gugy) = e(grhy T hy T R g1)
Then return Wiyq «— (AiJrl, Tit1, Si+1, Mit1, b¢+1)
Else return L Return e

Fig. 3. Recharge protocol

the remaining balance in the wallet, nor whether this is a freshly created wallet or an
updated wallet obtained after purchasing a record. The common inputs are the database
provider’s public key pkpp and the amount of money m that the customer wants to add
to her balance. The database’s secret key skpp and the customer’s current wallet W;
are private inputs to the database and the customer, respectively.

If the customer already obtained a wallet earlier (her state is not empty), she up-
dates her balance to b;+1 = b; + m and generates a fresh serial number n,,1 and a
randomizer rj_ ; for the new wallet. Then she chooses from the set of database sig-

(O) (bmaX)

natures ¥, ", ..., Yy of possible balances the signature corresponding to her new
balance and blinds it as V' = (y,gbi“))ti/. This allows her to next prove that her new

balance b; 41 is positive and less than b,,,, with the set membership scheme from [9].
The customer further proves that she correctly increased her balance by the amount m
being deposited. The database provider checks whether the proof is valid and whether
the serial number n; is fresh, i.e., whether it previously saw the number n;. If not, then
the database decides that the customer is trying to overspend and aborts. Otherwise, if
the database provider accepts the proof, it signs the customer’s new wallet with updated
balance and sends it to the customer. The customer checks the validity of the signature
on her new wallet, and if it verifies correctly, outputs an updated state containing the
new wallet W, 1.

76 J. Camenisch, M. Dubovitskaya, and G. Neven

Purchase() :
C(kaBvav ERUapvv W’L) : DB(kaB,SkDB) :
If W; = ¢ thenreturn (L, 1)
Parse Wl as (Al, T4y Siy N, bz)
If b; < po then return (L, W)
biv1 —bi—poi k<& Ze; K — (Eo)*
iy, iy & Zgs Apyy = By hy g
tt & Zy A — At By — viut

82, Ve () V,K,ni, A;, Bi, Aj 44
PKS (k,0,p0,7i, 85,6, 8" oy Bymi1, b1, Tig1)
Ajpr = h?i“hgiﬂh;é“ A e(Vigy) =e(V kgt g) A
e(K,yr) = e(K, g_”y];p”)e(g,g)’C A B =vtut’ A 1= B;Sivauﬁ A

e(Ai, yn)
e(giht*, g1)

7

= e(u,yp) e(A; “u®hy hgb”ﬁp”) , 91)}

-
Check n; is fresh
L —e(h,K); Sz‘+1/,/7“§/+1 ‘il Zq
A1 (rAjp byt mrei
-« L7Ai+177“7/;/+175i+1
If PK verifies correctly }jK{(h) tH =e(g,h) AL =e(K, h)}
Then R, «— F,/(L'/*)else Ry — L
Titl < 7"§+1 + 7"§/+1 (mod q)
Ife(Ait1, ywg, ™) = e(glh?“hgi“h;i“ ,91)
Then Wi+1 — (AiJrl, Ti+1,y Si4+1,Ni41, b¢+1) else W¢+1 — £
Return (Ry, Wit1) Return e

Fig. 4. Purchase protocol

Purchase protocol. When the customer wants to purchase a record from the database,
she engages in a Purchase protocol (Figure) with the database server. The only com-
mon input is the database’s public key pkpp. The customer has as a private input her
selection index o € {1,..., N}, the encrypted record ER, and its price p,, and her
current wallet WW;. The database provider uses its secret key skpp as a private input.
The customer blinds the first part of the chosen encrypted record E,,, and sends this
blinded version K to the database. Note that I, is derived from the database provider’s
secret key, the index and the price of the record. Next, the customer updates her balance

to b;+1 = b; — ps,, generates a fresh serial number n;;1 and a randomizer for the

new wallet. Then she chooses from the set of database signatures yl()o), ey y]gb“‘“") of

possible balances the signature corresponding to her new balance and blinds itas V' =
(yl()b”l))t:’,. This allows her to prove that her new balance b, is positive employing
the set membership scheme from [9]]. The customer further proves that K is correctly
formed as a blinding of some E,, and that she correctly reduced her balance by the

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 77

price of requested record. The database provider checks if the serial number n; is fresh,
i.e., whether it previously saw the number n;. If not, then the database decides that
the customer is trying to double-spend and aborts. Otherwise, if the database provider
accepts the proof, it computes L from h and K, sends L to the customer, and executes
a proof of knowledge of the database secret key h and that L was computed correctly.
In our security proof, this zero-knowledge proof will enable us to extract h and decrypt
the contents of the database. Also database provider signs the customer’s new wallet
with updated balance and sends it to the customer. The customer checks the validity of
the zero-knowledge proof and of the signature on her new wallet. | as the record; if
the wallet signature is invalid, then it returns € as the new wallet; if all goes correctly,
she outputs the record R, and the new wallet W, ;. The protocol is easily seen to be
correct by observing that L = e(h, E,,)*, so therefore F,,/L'/* = R,,,.

Notice that PK{(h) : H = e(g,h) A L = e(K, h)} can be realized in the standard
way as e(g,) is a group (one-way) homomorphism that maps G onto Gr.

We finally remark that the database has to calculate a signature of every element in
the set of all possible balances in the customer’s wallet {0, . . ., b4, } and encrypt all
records (1, ..., N) only once at the setup phase, and the customer has to download the
entire encrypted database and balance signatures only once as well. So the communica-
tion and computation complexity of the protocol depends on a cardinality of a set of all
possible balances in the customer’s wallet and a number of the records in the database
only at the setup phase. The other parts of the protocol (create wallet, recharge and
purchase), however, require only a constant number of group elements to be sent and a
constant number of exponentiations and pairings to be computed.

5 Security Analysis

The security of our protocol is analyzed by proving indistinguishability between adver-
sary actions in the real protocol and in an ideal scenario that is secure by definition.
Given a real-world adversary A, we construct an ideal-world adversary A’ such that no
environment & can distinguish whether it is interacting with A or A’.

Theorem 3 If the (N + 2)-BDHE assumption holds in G,Gr and the maz(qw,
bmax + 1, N + 1)-SDH assumption holds in G,then the UP-OT protocol depicted
in Figures 1—4 securely implements the UP-OT functionality, where N is the number of
database records, by,ax is the maximum possible balance in a customer’s wallet, and
qw is the number of created wallets.

We prove the theorem in two steps: first, we prove the case where the database is cor-
rupted, and next, we prove the case where a subset of the customers are corrupted. We
do not consider the cases where all parties are honest and where all parties are dishonest
as these cases have no practical interest. By lack of space, we only provide sketches of
the construction of the ideal-world adversary A’ below. A detailed proof is available in
the full version of this paper [L1].

Corrupted database. We first prove that for all environments £ and all real-world ad-
versaries A controlling the database there exists an ideal-world adversary A’ such that
& can distinguish the real world from the ideal world with probability at most 27".

78 J. Camenisch, M. Dubovitskaya, and G. Neven

Since the adversary can always simulate additional customers himself, we can sim-
plify the setting to a single honest customer C. We construct an ideal-world adversary
A’ that plays the role of the database and that runs the real-world adversary A as a
subroutine as follows.

A’ simply relays all messages between the environment £ and A. It runs A to obtain
the database’s public key pkpp and the encrypted database EDB = (pkpg, (E1, F1),
.., (En, FN)).

Upon receiving a message (create wallet) from T, it executes the customer’s side
of the CreateWallet protocol with A. If the obtained wallet is valid, A’ returns b = 1 to
T, otherwise it returns b = 0.

Upon receiving (recharge,m) from T, A’ executes the customer’s side of the
Recharge protocol for amount m with A, but replaces the value V' with a random ele-
ment from G and simulates the PK protocol. If the protocol returns a valid wallet, then
A’ returns b = 1 to T; if the protocol returns L then A’ returns b = 0.

At the first purchase message from T, A’ simulates an honest user querying for Ry,
but replaces V' with a random value from G and simulates the proof of knowledge. Then
it extracts h from A in the last proof of knowledge, uses it to decrypt R; as F;/e(h, E;)
fori = 1,..., N and sends (initdb, (R;, pi)i=1,...n) to T. A’ sends a pair of bits
(b1,b2) back to T depending whether the obtained record is valid (b = 1) or not
(b1 = 0) and whether the updated wallet is valid (be = 1) or not (by = 0).

Corrupted customers. Next, we prove that for all environments £ and all real-world
adversaries A controlling some of the customers, there exists an ideal-world adversary
A’ such that £ can distinguish the real from the ideal world with probability at most

9=k, Q + AdV(?}_SDH(K,) + (N + 1) . Adv((G,ltIgj)-BDHE(/ﬁ?),

where () is the total number of create wallet, recharge, and purchase queries, ¢ =
max(qw, bmax + 1, N 4+ 1), gqw is the total number of create wallet queries, byax iS
the maximum possible balance in a customer’s wallet, and NV is the number of records
in the database.

Since the UP-OT functionality prevents colluding customers from pooling their wal-
lets we have to consider multiple customers here, some of which are corrupted, and
some of which are honest. Given a real-world adversary A controlling some of the cus-
tomers, we construct an ideal-world adversary A’ controlling the same customers as
follows.

A’ simply relays all communication between the environment £ and A. Upon receiv-
ing (initdb, {p;}i=1,...n)) from T, A’ creates an encrypted database (EDB, skpp)
encrypting [N random records, meaning that F, . .., Fiy are random group elements of
Gr.

To simulate A’s CreateWallet, Recharge, and Purchase protocol queries, A’ plays
the role of a real-world database by extracting from A the wallet signatures (A;,7;, $;),
record signatures E,;, and range proof signatures y]gl) that it uses in the zero-knowledge
proofs, and aborting if either a forged wallet signature or a forged range proof signature
is detected. When a cheating customer C; (controlled by A) makes a CreateWallet
query, A’ sends a message (create wallet, j) to T; when C; makes a Recharge query

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 79

FairPurchase() :
C(kaBvo—ivERUivam W’L) : DB(kaB,SkDB) :
If W; = ¢ then return (L, 1)
Parse WZ as (Al, Ty Siy Mg,y bl)
Compute V, K, A;, B;, Aj 41
emt & Commit(n;)
V, K, cmt, A;, By, Aj 44

PK{(k7 OiyPo;yTiy Siy Mit+1, bi+17 T’/i+17 >)}
c+—H(ni,...,ns)
sig «— Signpg(cmt, c)
Compute L, Ait+1, Sit1, 7“2/_;,_1
- c, Sigv VETTP(L7 Ai+17 r;/-‘rh Si+1)
PK{(h): H=-e(g,h) N\L=e(h,K)}
-«
Verify sig, PK
Open cmt to n;
Check if n; is fresh
- L, Az‘+1,7’§/+1, Si+1
Compute 7541, Ro;, Wit1
Return (Ro,, (1, Wit1)) Return &

Fig. 5. Fair purchase protocol

for amount m, A" sends a message (recharge, j,m) to T. These never cause C’’s
balance to exceed by, ax, because that would imply a forgery in the range proof signature,
which we ruled out above.

When a cheating customer C; makes a Purchase query, A’ extracts the index of
the record being purchased o; and the exponent k, and sends (purchase, j,0;) to T
to obtain the record R,,. Note that C}’s balance is always sufficient to purchase R,,,
because otherwise A would have forged one of the signature schemes, which we ruled
out above. Next, A’ computes L «+ (F,,/R,,)* and simulates the zero-knowledge
proof as in the simulation above.

6 Fair Purchase and Recharge Protocols

In the recharge and purchase protocols of our basic scheme, the customer has to spend
her current wallet (i.e., reveal the serial number n;) before obtaining a new wallet and
the decryption key to the purchased record. A malicious database could abuse this situa-
tion by aborting the transaction after the wallet was spent, thereby leaving the customer
with a spent wallet and without a new wallet and the record that she wanted.

In this section we sketch how to strengthen our recharge and purchase protocols
against this type of attacks by introducing a trusted third party (TTP) who’s only in-
volved in case of conflict. Essentially, we let the customer and the database engage in

80 J. Camenisch, M. Dubovitskaya, and G. Neven

an optimistic fair exchange [2l3]] of the serial number n; against the record decryption
key L and updated wallet (A; 11,77, ,,5:+1) as shown on Figure[3l

Here the customer and the database proceed as in the simple purchase protocol, ex-
cept that instead of sending n; in the clear the customer sends a commitment cmt =
Commit(n;) to the database, and performs the proof of knowledge PK { (141, si,...)}
based on this commitment. If the proof is accepted, the server sends back a verifiable
encryption [16] of the decryption key and the new wallet (L, Aj; 1,7} 1, 5i4+1) under
the trusted third party’s public key, and performs the proof of knowledge PK{(h) : ...}
based on this verifiable encryption. The database also computes the hash c of all pre-
viously revealed serial numbers and provides the customer with a signature on cmt, c.
Only after receiving the signature and verifying the PK does the customer reveal the
serial number n; to the database. The database checks if it is fresh serial number, and if
soopens L, A 11,771,541 to the customer.

If the database tries to cheat by not sending the decryption key or the new wallet,
then the customer can take n;, the verifiable encryption and the database’s signature to
the TTP. The TTP will contact the database to ask for the list of serial numbers that were
included in the computation of ¢ and checks whether n; appears in this list. If not, then
the database decrypts L, A; 11, r;’H, si+1 for the customer. If it does, the TTP decides
that the customer’s complaint was unjustified and does nothing.

If the customer tries to cheat by reusing an old wallet or not opening the commitment
cmt, then the database simply doesn’t reveal L, A;; 1,7} 1, si41 to the customer.

Similarly to the FairPurchase protocol sketched above, one could also design a
FairRecharge protocol to ensure that the customer obtains a recharged wallet after a
payment is made. For this to work, the underlying payment system has to provide a
mechanism by which the customer can prove to the TTP that the payment was made.
Details are left to the full version [[L1].

Acknowledgements

This work was supported in part by the European Community through the Seventh
Framework Programme (FP7/2007-2013) project PrimeLife (agreement no. 216483).

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In:
Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 119. Springer, Heidelberg
(2001)

2. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In: ACM
CCS 1997. ACM Press, New York (1997)

3. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. IEEE
JSAC 18(4), 593-610 (2000)

4. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: De Prisco, R., Yung, M.
(eds.) SCN 2006. LNCS, vol. 4116, pp. 111-125. Springer, Heidelberg (2006)

5. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390-420. Springer, Heidelberg (1993)

6. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56-73. Springer, Heidelberg (2004)

11.

12.

13.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 81

. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO

2004. LNCS, vol. 3152, pp. 41-55. Springer, Heidelberg (2004)

. Brands, S.: Rapid demonstration of linear relations connected by boolean operators. In: Fumy,

W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 318-333. Springer, Heidelberg (1997)

. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership and range

proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234-252. Springer,
Heidelberg (2008)

. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control. In:

ACM CCS 2009. ACM Press, New York (2009)

Camenisch, J., Dubovitskaya, M., Neven, G.: Unlinkable Priced Oblivious transfer with
Rechargeable Wallets. In: Cryptology ePrint Archive (2010)

Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr proofs. In:
Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425-442. Springer, Heidelberg
(2010)

Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bi-
linear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56-72. Springer,
Heidelberg (2004)

. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number n is the product of

two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 107. Springer,
Heidelberg (1999)

. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M.

(ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573-590. Springer, Heidelberg (2007)
Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete loga-
rithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126-144. Springer, Hei-
delberg (2003)

Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410-424. Springer, Heidelberg (1997)
Camenisch, J.: Group Signature Schemes and Payment Systems Based on the Discrete Log-
arithm Problem. PhD thesis, ETH Ziirich, Diss. ETH No. 12520 (1998)

Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: FOCS 2001. IEEE Computer Society Press, Los Alamitos (2001)

Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO
1992. LNCS, vol. 740, pp. 89-105. Springer, Heidelberg (1993)

Coull, S., Green, M., Hohenberger, S.: Controlling access to an oblivious database using
stateful anonymous credentials. In: Jareck, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443,
pp- 501-520. Springer, Heidelberg (2009)

Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In:
Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416—431. Springer, Heidelberg (2005)
ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory 31(4), 469—472 (1985)

Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private informa-
tion retrieval schemes. In: ACM STOC. ACM Press, New York (1998)

Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure reactive sys-
tems. In: ACM CCS 2000. ACM Press, New York (2000)

Schnorr, C.P.: Efficient signature generation for smart cards. Journal of Cryptology 4(3),
239-252 (1991)

Tobias, C.: Practical oblivious transfer protocols. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS,
vol. 2578, pp. 415-426. Springer, Heidelberg (2003)

Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its application
to secure message transmission. In: IEEE Symposium on Research in Security and Privacy.
IEEE Computer Society Press, Los Alamitos (2001)

Rial, A., Kohlweiss, M., Preneel, B.: Universally composable adaptive priced oblivious transfer.
In: Shacham, H. (ed.) Pairing 2009. LNCS, vol. 5671, pp. 231-247. Springer, Heidelberg (2009)

Multiple Denominations in E-cash with
Compact Transaction Data*

Sébastien Canard! and Aline Gouget?

! Orange Labs R&D, 42 rue des Coutures, F-14066 Caen, France
2 Gemalto, 6, rue de la Verrerie, F-92190 Meudon, France

Abstract. We present a new construction of divisible e-cash that makes
use of 1) a new generation method of the binary tree of keys; 2) a
new way of using bounded accumulators. The transaction data sent to
the merchant has a constant number of bits while spending a mone-
tary value 2°. Moreover, the spending protocol does not require complex
zero-knowledge proofs of knowledge such as proofs about double discrete
logarithms. We then propose the first strongly anonymous scheme with
standard unforgeability requirement and realistic generation parameters
while improving the efficiency of the spending phase.

1 Introduction

In e-cash systems, users withdraw coins from a bank and use them to pay mer-
chants (preferably without involving the bank during this protocol). Finally,
merchants deposit coins to the bank. An e-cash system must prevent both a
user from double-spending, and a merchant from depositing twice a coin. The
anonymity of honest users should be protected whereas the identity of cheaters
must be recovered preferably without using a trusted third party.

Divisible e-cash aims at improving the efficiency of both the withdrawal pro-
tocol and the spending of multiple denominations. The underlying idea is to
efficiently withdraw a single divisible coin equivalent to 2¥ unitary coins. The
user can spend this coin by dividing its monetary value, e.g. by sub-coins of
monetary value 2¢, 0 < ¢ < L. In this paper, we revisit the divisible e-cash
approach by targeting the most demanding security model while providing a
realistic parameter generation algorithm and an efficient spending protocol.

1.1 Related Work

A generic construction of divisible e-cash schemes which fulfill the classical prop-
erties of anonymity and strongly unlinkability without using a trusted third party
to revoke the identity of cheaters has been proposed in [9]. The wallet is repre-
sented by a binary tree such that each internal node corresponds to an amount,
i.e. 2877 if the node’s distance to the root is ¢, 0 < i < L. Each node in the

* This work has been financially supported by the French Agence Nationale de la
Recherche and the TES Cluster under the PACE project.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 82-197.]2010.
© IFCA/Springer-Verlag Berlin Heidelberg 2010

Multiple Denominations in E-cash with Compact Transaction Data 83

tree is related to a key such that the key of a child can be computed from the
key of one of its ascendants. The main efficiency bottleneck of the practical in-
stantiation given in [9] is that the user has to prove during the spending phase
the correctness from the tree root to the target node without revealing none of
the L — ¢ intermediate values. As one node key is derived from its parents us-
ing a modular exponentiation, the user must prove, for each intermediate value
and using proofs about double discrete logarithms, that they satisfy a certain
relation. Each such proof is expensive and requires 2(k) group elements to be
communicated in order to guarantee 1/2¥ soundness error. Moreover, the con-
struction of the binary tree used in [9] (and previously used in [I1]) is difficult
to instantiate in practice [1]. Indeed, this construction necessitates to manage
L + 2 groups Gy, G1, -+ ,G 41 with prime order pg,pi1,- - ,pr+1 respectively,
such that for all 1 < ¢ < L+1, G;41 is a subgroup of Z;i. One possibility is to take
pi =2Xxpj—1+1foralll <i< L+ 1. Using prime number theory, it is possible
to show that the probability to generate such prime numbers is approximately
279 for 1024 bits prime numbers and L = 10, which is unpractical.

A very efficient variant of this scheme based on bounded accumulators has
been proposed in [I]. Its main drawback is that it does not fulfills the classical
security property of unforgeability. Indeed, it is possible for a malicious user to
withdraw a divisible coin of monetary value L2% whereas the legitimate value is
2% by cheating in the construction of the binary tree of keys during the with-
drawal protocol. Next, the user can spend L2% coins without being detected and
identified. The solution proposed by the authors is that the bank will use the
cut-and-choose method during the withdrawal protocol by flipping a coin b and
executing the withdrawal protocol correctly if b = 1 and asking the user to reveal
her binary tree that is finally dropped if b = 0. If the revealed tree is correct, the
user is honest and the withdrawal protocol is repeated again from the beginning.
If the user is a cheater, a fine of value 212" is deducted from the user’s account.
This drawback may be considered as unacceptable from the bank point of view
even if the bank should not loose money “on average”.

1.2 Our Contribution

We revisit the divisible e-cash approach by targeting both the most demand-
ing security model and the effective possibility to instantiate an e-cash system
from a theoretical method. We introduce a new construction based on algebraic
objects to generate the binary tree without any previously mentioned problems
(impracticability of the key generation [9] and unusual security model [I]). We
introduce a new technique to prove the validity of the spending. We show that
it is possible to prove that one node key is derived from its father, which is
impossible in the proposal of [I]. This enables us to prove that one node key is
derived from only its father and we do it only once instead of (L —¢) times in the
scheme proposed in [9] for spending 2¢ coins from a divisible coin of 2& coins.
Next, we prove the remainder of the paths from the spent node to the leaves
using a variant of the accumulator technique from [I]. In our construction, the
spender only sends to the merchant a constant number of bits to spend 2¢ coins.

84 S. Canard and A. Gouget

2 Preliminaries

2.1 Construction of the Binary Tree of Keys

In the following, any divisible coin of monetary value 2” is assigned to a binary
tree with L + 2 levels, as done in [9]. The value of the tree root (at level 0) is
2. Any other internal node in the tree has a value corresponding to half of the
amount of its parent node. The leaves (at level L + 1) have no monetary value.
For every level i, 0 <4 < L+ 1, the 2’ nodes are assigned keys denoted by k; ;
with 0 < j < 2 — 1. The following rule must be satisfied in order to protect
over-spending (c.f. Definition Bl): when a node n is used, none of descendant and
ancestor nodes of n can be used, and no node can be used more than once.

We now describe a new way to generate the binary tree of keys based on
algebraic objects which can be efficiently generated. Let g, p, P be three primes
such that p is of size I, ¢ is of size [; and divides p — 1, and P = 2p + 1. We
denote by G, (resp. G,) the subgroup of Z; (resp. Z}) of order ¢ (resp. p) and
9o, g1 are two generators of G,. The keys of the tree are computed from the root
to the leaves as follows. Given a key k; ; with 0 <i < Land 0 < j < 2t —1 of an
internal node, the two keys related to its two direct descendants are computed

4,5 (mod q) (i,j (mod q) (

as follows: kij1,25 = gg mod p) and kiy12j41 = gf mod p).

2.2 Discrete Log Relation Sets

Roughly speaking, a Zero Knowledge Proof of Knowledge (ZKPK) is an inter-
active protocol during which a prover proves to a verifier that he knows a set
of secret values a,...,a, that verify a given relation R, without revealing the
secret values; we denote it by POK(a1, ..., aq : R(ai,. .., aq)). In the following,
the secret values are discrete logarithms in relations constructed over a group ei-
ther of prime or unknown order. These constructions should verify the soundness
and zero-knowledge properties [§4]. The relation R can be a proof of knowledge
of a discrete logarithm denoted by PoK(« : y = ¢g%), a proof of knowledge of
a representation, denoted by POK(a1,...,aq 1 y = g7 ...gq%), or a proof of
equality of discrete logarithms, denoted by Pok(« : y = ¢g* A z = h®). Note
that, contrary to [9], we do not use the complex proof of knowledge of double-
discrete logarithms. We apply the Fiat-Shamir heuristic [T0] to turn it into a
signature on some message m: SOK(a1,...,aq : R(ai, ..., aq))(m).

2.3 Signature Schemes with Additional Features

Camenisch and Lysyanskaya [7] have proposed various unforgeable signature
schemes based on Pedersen’s commitment scheme to which they add some spe-
cific protocols. There is first an efficient protocol between a user U and a signer
S that permits U to obtain from S a signature o of some commitment C' on
values (z1,...,2¢) unknown from S. § computes CLSIGN(C) and U obtains
o = SIGN(z1,...,x¢) and second, an efficient proof of knowledge of a signature
of some committed values.

Multiple Denominations in E-cash with Compact Transaction Data 85

The Extended Special Signature (ESS+) scheme introduced in [2/1] is a vari-
ant of the Camenisch-Lysyanskaya (CL) signature scheme that allows to sign
a block of messages, one of them being an element in a cyclic group. The user
obtains a signature ¢ = SIGN(X, z1,...,z,) where X is an element of the mul-
tiplicative group while the x;’s are exponents. In our divisible e-cash system, we
may use the signature scheme described in [I] together with the following zero-
knowledge proof of knowledge: POK(X, x1,- -+ , 24,0 : 0 = SIGN(X, 21, ,x¢)),
which is unforgeable under the AWSM assumption [2]. Note that any signature
scheme with the same features can also be used.

2.4 Bounded Accumulators

An accumulator scheme Acc is a method which permits to accumulate a large set
of objects in a single short value. It next provides evidence that a given object
is contained in the accumulator by producing a related witness. We denote by
x € Accor (z,w) € Acc that the value z is accumulated in Acc, possibly with the
witness w. It is possible to prove (in a zero-knowledge manner) that one (secret)
value is truly accumulated in a given accumulator such that the computation and
the verification of the proof do not depend on the number of accumulated values.
The main accumulator schemes are described in [GII2I5]. As noticed in [2], the
proposal given in [I2] (and this is also the case for [5]) is bounded in the sense that
it should not be possible to accumulate more than a given number s of objects,
this number being stated at the key generation process. In our scheme, the
payer needs to prove that she knows a secret accumulator Acc certified by some

authorities in which several revealed values x1,--- ,xy are accumulated, that is
Pok(wi, -+ ,we, Acc, 0 : (z1,w1) € Acc A -+ - A (z¢, w) € Acc A o = SIGN(Acc)),
also denoted POk (Acc, o : (z1,- -+ ,x¢) € AccAo = SIGN(Acc)). This new feature

obviously not introduce any new flaw in the accumulator scheme. In Appendix[A]
we describe a construction such that this proof does not depend on the number
¢ of revealed values.

3 Model for Divisible E-cash

3.1 Procedures for Divisible E-cash

Three types of actors are involved in a divisible e-cash system: the bank B,
the user U and the merchant M. We denote by A the security parameter. The
monetary value of a divisible coin is fixed to 2. A divisible e-cash system S can
be defined by the following polynomial-time procedures:

— SETUP(1%) is a probabilistic algorithm which outputs the parameters of the
system param. In the following, param and 1* are implicitly in the input of
all algorithms and protocols;

— BKEYGEN() is a probabilistic algorithm which outputs (bsk, bpk) as the
secret and public keys of the bank, respectively. A database cdb of all spent
coins is initialized to the empty set ¢;

86 S. Canard and A. Gouget

— UKEYGEN() is a probabilistic algorithm which outputs (usk,upk) as the
secret and public keys of the user, respectively. Note that the same algorithm
is executed by the merchants to get (msk, mpk);

— WITHDRAW[B(bsk) «— U (usk, bpk)] is a protocol which permits & to with-
draw a divisible coin co, while the bank outputs its view viewW;

— SPEND|U (usk, co, bpk, £) «—— M (msk, bpk)] is a protocol which permits U to
spend a value 2¢ from the divisible coin co to the merchant M. The user
outputs a new state for co and M outputs the received coin rco;

— DEPOSIT[M (msk, rco, bpk) «— B(bsk, mpk, cdb)] is a protocol which per-
mits M to deposit a coin rco to the bank. The bank outputs either 1 and
the monetary value 2¢, or executes the algorithm IDENTIFY if the database
cdb already contains the serial number in rco. This procedure is sometimes
written DEPOSIT(rco) for simplicity.

— IDENTIFY(rco, cdb) (or IDENTIFY(rco)) for short) is an algorithm which out-
puts the public key upk of a fraudulent player (either a user or a merchant)
together with a proof 7g;

— VERIFYGUILT(rco, cdb, upk, 7g) is an algorithm which outputs 1 if 7 is a
valid proof that the player’s public key upk has made a fraud during the
spending of the coin rco, and 0 otherwise.

In the following, it is assumed that if an honest user runs a WITHDRAW protocol
with an honest bank, then neither will output an error message. If an honest
user runs a SPEND protocol with an honest merchant, then the merchant always
accept the coin.

3.2 Security Properties

The adversary A interacts with a challenger C in order to break a security prop-
erty. The adversary A has access to the procedures of the system and to the
parameters param. In addition, two oracles are defined in order to add and cor-
rupt users: ADDU() and CORRUPTU(j), where j is related to the user public
key usk;. In the following, the execution of A with access to the oracle XXxx
and with input e is denoted by AXXX(e).

Unforgeability. It guarantees that no coalition of players can deposit more
coins than they have withdrawn from the bank.

Experiment Eng‘fir‘ge (A):

(param) «— SETUP(]),
(bsk, bpk) «— BKEYGEN(), (mpk) «— A()
dc «— 0, sp «—— 0, cont «—— true,
while (cont == true),
b «— WITHDRAW[C (bsk) «— A(bpk)]
if (b == 1), then dc «+— dc+1
(rco, £) «—— A(bpk)
if (DEPOSIT(rco) == 1), then sp «— sp + 2°
cont «— A()
— if 2% . dc < sp return 1
— return 0

Multiple Denominations in E-cash with Compact Transaction Data 87

The success probability of A is defined by S ucc”mcorge (A\)=Pr E:Ep“"forge ()\):1} .
Definition 1 (Unforgeability). A system S is unforgeable if for any

polynomial-time adversary A, the success probability S uccg'jfirge(-) is negligible.

Anonymity. It guarantees that the bank, even helped by malicious users, can-
not learn anything about a spending other than what is available from side
information from the environment. In the following experiment, b is a bit.

anon—b

Experiment Exp3)~ (A):

— (param) «— SETUPE\%\), (bgk2 <—\A‘(T)C -
_ (upko, upkl) « AWITHDRAW,SPEND, ADDU, CORRUPT (

— rco «— SPEND[C (uskp) «—— A()]

— return b’ «—— A\\ITHDRAW,SPEND,ADDL,CORRUPTL(rco)

The advantage of A for the anonymity experiment is defined by:
AdvSY (N) = Pr | ExpS9~) =] Pr {Expa""” o\ = 1} .

Definition 2 (Anonymity). A system S is anonymous if for any
polynomial-time adversary A, the adversary advantage Adva”""() is negligible.

Identification of double-spenders. From the bank’s point of view, no col-
lection of users should be able to double-spend a coin without revealing one
of their identities.

Experiment Ewp'gdsA (A):

— (param) «— SETUP()), (bsk, bpk) «— BKEYGEN(),

— rco AW! THDRAW ,SPEND, ADDU, CORRUPTU bpk
— if (DEPOSIT(rco) == 0 A VERIFGUILT(rco, IDENTIFY(rco)) == 0) return 1
— return 0

The success probability of A is defined by Succ'dds S(A) =Pr [E:Ep'dds (A) =1].

Definition 3 (Identification of double spender). A system S identifies
double-spender if for any polynomial-time adversary A, the success proba-
bility Succ’dds () is negligible.

Exculpability. It guarantees that the bank, even cooperating with malicious
users, cannot falsely accuse honest users from having double-spent a coin.
In the experiment, CU is the set of corrupted users.

Experiment Ezpf;aj‘p()\):

— (param) «— SETUP(), (bpk) «— A()
— cont «—— true, CU «— 0
— while (cont == true),)

(j, cont) - A*]THDRA\’V,SPEND,ADDL,CORRUPTU(Cu)7cu — CUU {Upkj}

V /,SPE! 7,C o1 U
— rco A\\UHDR;M ,SPEND,ADDU, CORRUPTU (

— if (IDENTIFY(rco) = (upk, 7a) A VERIFYGUILT(rco, upk,) = 1 A upk ¢ CU) return 1
— return 0

The success probability of A is defined by SucceXCUIp()\)—Pr [Empexcmp()\):l} .

Definition 4 (Exculpability). A system S is exculpable if for any

polynomial-time adversary A, the success probability Succhjz/p(-) is negligible.

88 S. Canard and A. Gouget

4 Description of Our Divisible E-cash Construction

4.1 Setup and Key Generation Procedures

A divisible coin has a value set to 2%, where L is a positive integer. As in [9], a
divisible coin in our system is represented by a binary tree of L + 2 levels and
the leaves have no value.

Let A be the security parameter. Let ¢,p, P be three primes such that ¢
divides p — 1 and P = 2p + 1. The size of p (resp. ¢) is denoted by I, (resp.
lg). We denote by G, (resp. G,) the subgroup of Z;, (resp. Z}) or order g (resp.
p); go and g1 (resp. G and H) are two generators of G, (resp. Gp). Finally, let
H :{0,1}* — Z; be a collision-resistant hash function.

The parameters of L + 2 bounded accumulators Acc, Accy, - -+ , Accr41 on the
cyclic group G, are generated during the SETUP procedure (see Appendix [Al).
The accumulator Acc is bounded to 2512 — 2 in order to accumulate all the keys
of nodes in the tree from level 1 to level L + 1 (and thus the key of the root
is not accumulated in Acc). The accumulator Acc; is bounded to 2! in order to
accumulate all the keys of nodes at level 4, with ¢ € [1, L + 1]. Then, it is not
possible to accumulate more than 2¢ keys of value 2£~% (see Figure [I]).

k0,0 Acc = Acc(kq g, - 5 Kk3,7)

o = SIGN(Acc, usk, s

Accy = Acc(ky g, k1.1)
o1 = SIGN(Accy, s, 1)

Accg = Acc(kg g, , k2 3)
oo = SIGN(Accy, s, 2)

Accg = Acc(kz g, -, k3.7)
o3 = SIGN(Accg), s, 3) ’

Fig. 1. Our new binary tree for a coin of monetary value 2% with L = 2

The algorithm BKEYGEN is performed by the bank in order to generate a
key pair (bsk,bpk) for the signature scheme ESS+ [I] on the group G,. The
algorithm UKEYGEN is executed by any user and merchant of the system. It
consists in randomly choosing a secret usk € Z; (resp. msk € Z;) and computing
upk = GYk (resp. mpk = G™*). Moreover, any user public key is assumed to
be certified by an authority and the bank can be convinced that it belongs to a
known identified user.

4.2 The Withdrawal Protocol

The withdrawal phase is a protocol between the user & (on input usk and bpk)
and the bank B (on input bsk), which permits ¢ to withdraw a coin of value
2% In a nutshell, 2 computes the keys ko0, -+ ykp41,20+1_1 of the binary tree

Multiple Denominations in E-cash with Compact Transaction Data 89

and next the accumulators Acc, Accy, - -+ , Accp41. Next, B produces L+ 2 ESS+
signatures on the messages (Acc, usk, s), (Accy, s,1), - -+, (Accp+1, 8, L+1). These
signatures give a proof of the interaction between the user knowing usk and the
bank. The secret value s is used to link together the L + 2 signatures of a given
withdrawal protocol knowing that the user and bank contribute randomness to
the value s.

An important remark is that it is not necessary for the bank to check if the
tree of keys is well-formed or if the accumulators are well-formed since they
are bounded using appropriate values. As explained in the following, if the user
cheats in the construction of the tree of keys or in the construction of the accu-
mulated values, he won’t be able to correctly execute the spending protocol, as
the merchant will be able to make all validity checks. More formally, the protocol
works as follows:

— U chooses at random the key root koo € Z, and computes the keys of the
full tree: given a key node k; ; with 0 <¢ < L and 0 < j < 2¢ — 1, the keys

related to its two direct descendants are k;112; = ggi"" (mod q) (mod p) and
kivi9j41 = gh (mod) (mod p). The keys are stored in a table tr;

— U accumulates the keys k; j, forall 1 <i < L+1and 0 < j < 2¢ — 1, in Acc
and sends it to B. Next U/ and B interact using the ESS+ interactive protocol
in order to get a signature o on (Acc, usk, s), where s € Z is a secret value
only known by the user and jointly generated by both U and B. For this
purpose, the user commits to the values usk and s’ and the bank modifies
s’ to s = s’ + s” (without learning any information about s’), produces the
commitment to Acc, usk and s and signs this commitment. Note that B
can verify that usk is related to a known public key upk (i.e. by making U
produces a proof of knowledge of usk such that upk = GUS¥).

— for every 4 such that 1 <¢ < L 41, U accumulates in Acc; the keys k; ;, with
j € [0;2¢—1]. Next, U sends Accy, - - - , Accr, 41 to B and interacts with B using
the ESS+ interactive protocol in order to get the signatures 0,01, ,0041
on (Accy, s, 1), -+, (Accr41, 8, L+1), respectively. For this purpose, the user
commits s’ and proves that this is the same as in the previous step. The bank
verifies the proof, again modifies s’ to s = s’ + s”, produces the commitment
on Acc;, s and 4 and signs it. Note that one single commitment to s’ by the
user is enough to obtain all the signatures.

At the end of this protocol, U outputs a coin co = {tr, Acc,Accy, -+ ,Accr 41,
o, 01, ***, OL+1, SPC}, where spc < e will contain information on spent nodes.
Note that tr can be either erased or kept to avoid the re-computation of the key
nodes during the spending phase.

4.3 The Spending Phase

We suppose that a user U, with keys (usk, upk) and with a coin co = {tr, Acc,
Accy, -+, Accpy1, 0, 01, <+, OL4+1, SPC} wants to spend a value 2t < 2L to
a merchant M (with input msk and bpk). Informally, &/ chooses an unspent

90 S. Canard and A. Gouget

node jo in the tree at level L — ¢ and computes 1) a serial number S as the
concatenation of the keys kr_s41,25, and kr_¢41,2j,+1 of the two descendant
nodes and 2) the security tag using the key kr_g j,. In addition, & produces a
proof of validity of the accumulators and the ESS+ signatures coming from the
withdrawal protocol. More formally, the protocol works as follow:

— U receives M’s public key mpk and the proof 7 that M knows msk. Next,
U and M can compute R = H(mpk||info) where info is a pre-determined
public information including the monetary value 2¢ and e.g. current time;

— U chooses in the binary tree an unspent node jg at level L — ¢ and finds in tr
(or recompute) the corresponding key kr—¢ j, and its two direct descendants
kr—ev1,25, and kp_py1,2j0+1;

— the serial number is then formed as S = kr_¢t+1,2j0 || kL—e+1,2jo+1 and the
security tag of this spending is 7' = upk - H*r—tj0;

— finally U produces the signature of knowledge:

IT = Sox (usk, kr_¢,j,, 5, Acc, 0, ACCL 41, 0L —41
k Rykr_q,; kr—c,; kr—c,;
T =G (HT)" 00 Akp—ev12j0 = 9o " ARL—t4125041 =91 7° A

(KL —041,250> KL—041,2j0415 - -y KL 41,264 1505 5 kg1 2641 (jo+1)—1) € AcC A
(kL—041,2j0» KL—041,2jo+1) € AcCr,—¢41 A 0 = SIGN(Acc, u, 5)
or—e+1 = SIGN(Accr,_gy1,8, L — 0+ 1))(mpk||z'nf0\|RHSHT)

The spent coin is rco = {¢, S, T, IT, R}. Its validity is checked by M by computing
all the descendant keys of S before performing the verification of IT (see below).
Moreover, the merchant, using the parameters used in the proof of knowledge 17,
can check that the accumulator Accy, 41 has been signed with the value L—¢+1,
that the used parameters correspond to the ones of the right bounded accumu-
lator. The divisible coin of U is updated as co = {tr, Acc,Accy, - ,Accr41, 0,
o1, -, 0L41, SPC = spc U {(L — £, jo)} }.

The proof II is done non-interactively by using usual zero-knowledge proofs of
knowledge (see Appendix [B]) and the Fiat-Shamir heuristic [I0], in the random
oracle model, using m = mpk||info|| R||S||T as a message. It proves that

— the security tag 71" is correctly computed from usk, R and kr—g j,;

the serial number S is correctly computed from kr_¢ j,;

— all the descendants of the node kr_¢ j, are accumulated in Acc;

— kr—r41,25, and kr_py1 2j,+1 are accumulated in Accr_gq1;

— the values Acc, usk and s (resp. Accr_¢4+1, s and L — ¢ + 1) are signed by
the bank in o (resp. or,—¢y1).

Note that the spender only needs to prove that kr_¢41,25, and kr_g41,25,+1 are
correctly derived from kr_g j,. This is not necessary for the other descendant
nodes. In fact, the receiver can easily compute all the descendant of kr_¢1 25,
and kr_¢4+1,2j0+1- As they are all accumulated into Acc and both kr_/11 25, and
kr—ey1,2jo+1 are accumulated in Accr_gy1, it is enough to prove that the spent
coin is correct.

Multiple Denominations in E-cash with Compact Transaction Data 91

As shown in Appendix [Bl this proof is done in constant time. It does not
depend on the monetary value 2¢ which is spent, except when the spender needs
to develop a polynomial of degree 2¢, which is quite immediate in practice.
Moreover, as the merchant can compute all the keys from the ones used in the
serial number to the ones of the leaves, the user does not need to send them to
the merchant. Thus, the transaction data sent to the merchant has a constant
number of bits while spending a monetary value of 2¢.

4.4 Deposit and Detection of Frauds

The deposit of a coin rco = {¢,5,T,II, R} with value ¢ is done by M which
sends it to B with a signature of the deposit request. First B verifies the cor-
rectness of IT. If it is correct, B computes the keys related to the 2! leaves
of S = kr—e4+1,2j0l|kL—r+1,2jo+1 at level L in the tree. If at least one of these
keys is already in its database cdb, B executes the procedure of double-spender
identification. Else, B adds the 2¢+1 leaf keys in cdb and outputs 1. B could store
only 2¢ keys, i.e. it will always store leaves that are “right” (or left) child.

In case of a double-spending detection, the bank B, given two coins rco; = {/,
Sy, Ty, II1 ,R1} and rcog = {la, Sa, To, Il2, Ro}, tests if Ry = Ro which means
that M is a cheater since the hash function H is collision-resistant. The proof
of the cheat consists in publishing both deposits (including two signatures of M
on the deposit request for the same coin). Else B will identify a user public key
using the same technique as described in [9]. We distinguish two cases:

1. if 44 = {5 = ¢, then the same node key k., j, has been used in both 77 and
T5. Thus, B computes upk = (TlRQ/Tle) Ra= R :

2. if &1 # {5 (e.g. €1 < {l3), then from S», B can compute kr_¢, j, such that
Ty = upk - HfFr—t140 and thus retrieve upk = Ty /HF-kr—e1.0;

Finally, B outputs the proof g based on the two entries in the database cdb.

4.5 Efficiency Considerations

We compare the efficiency of the strongly anonymous divisible e-cash schemes of
the state-of-the-art [9I] with our new proposal. We give in Table[Tlthe computa-
tion cost of the binary tree, the time complexity of the withdrawal and spending
phases and the size of the divisible coin, where EXP is a modular exponentiation,
and DEV(4) is the time needed to develop a polynomial of degree i. We differen-
tiate in our comparison both types of secure divisible e-cash systems depending
on the security model, i.e. classical model with truly unforgeability [9] and un-
usual model with a statistical balance assumption [I]. We do not include the
complexity of the deposit phase and the size of the database which are similar
in the three schemes.

Based on Table[Il we can conclude that our new proposal is significantly more
efficient that the one of Canard-Gouget [9], regarding the spending phase, with
the same security level. Our new proposal is little bit less efficient than the Au
et al. one [I] but with a better security result. We consequently obtain the best
trade off between previous approaches, considering efficiency and security.

92 S. Canard and A. Gouget

Table 1. Efficiency comparison between related work and our proposal

Divisible e-cash scheme Au et al. [I] Canard-Gouget [J] this paper
Model choice Statistical balance Unforgeability
Binary tree 2L+1 — 2)Exe 2L+2 _ 2ypxe (2L+2 _ 2)Exe
computation (not necessarily computed)
Divisible coin 2L+ — 2)p| + (L + 1)Sien 2|p| + (1)Siex 2L+2 _ 2)|p| + (L + 2)Sien
storage size +(L + 1)Acc +(L + 2)Acc
Computational complexity (L + 1)Si6N (1)S1eN (L + 2)S16N
of withdraw +(L + 1)Acc +(L + 2)Acc
Computational complexity Exp + Sok(SieN (i + 3)ExP + Sok(SIGN Exp + Dr;v(2€)+
of spending 2t +Acc + 2Exp) +O((L — £)t)Exp) SOK(2SIGN + 2Acc + 3Exp)
Spending 2|p| + Sok(SieN 3|p| + Sok(SieN 2|p| + | P| + Sok(2SicN
transfer size +Acc + 2Exp) +O((L — £)t)Exp) +2Acc + 3Exp)

4.6 Security Theorem
We give the statement of security for our new proposed scheme.

Theorem 1. In the random oracle model, our divisible e-cash scheme fulfills
(i) the unforgeability under the assumptions that ESS is unforgeable and the
bounded accumulator scheme fulfills the bound property; (i) the anonymity un-
der the zero-knowledge property of ZKPK and the DDH assumption; (iii) the
identification of double-spender under the unforgeability of ESS and (iv) the ex-
culpability under the one-more discrete logarithm assumption.

Proof. We consider the four properties.

— Anonymity: we use a reduced “game proof technique” from Shoup. We denote
by e the probability that A succeeds in linking the spending protocol Vi to a
spending or withdrawal protocol.

During Vi, A gets a serial number S, a security tag T, a zero-knowledge
proof of knowledge IT and a value R. It is obvious that R does not reveal any
Shannon information on the user identity. Under the zero-knowledge property
of the proof of knowledge II, in the random oracle model, the value IT does
not help A in winning the anonymity experiment. Thus, V; is replaced by V5 in
which A gets only S and T'. The difference of probability between V; and V3 is
the probability of success of A in breaking the zero-knowledge property of II,
namely SuccfliA()\).

In V3, we focus on T'. The secret key kg j, is used only in the computation
of T and II. Indeed, knowing T = upk - HF* and T" = upk’ - HE'¥"| A has to
decide if the same upk is embedded in both T and 7”. This is assumed to be
infeasible under the discrete logarithm (DL) assumption. Thus, V5 is replaced
by V3 in which A gets only S. The difference of probability between V5 and V3 is
the probability of success of A in breaking the DL problem, namely Succ’i{()\).

Multiple Denominations in E-cash with Compact Transaction Data 93

Finally, from S, A needs to decide whether or not two different node keys
k and k' are related to the same root key kqo. This is assumed to be infeasible
under a stronger variant of the Decisional Diffie-Hellman assumption (see [9] for
details). We denote by Advf‘fh()\) the corresponding success probability.

We conclude that AdvEgs 4(A) < Succ§§7A(A) + Advddh ().

— Unforgeability: we use a reduction to either the unforgeability of the signa-
ture scheme or to the bound property of the accumulator scheme. Let A be an
adversary that breaks the unforgeability property in polynomial time 7 with a
probability of success equal to e. We interact with the black box adversary .4 by
flipping at random a coin and playing one among two games.

Game 1. We construct a machine M that breaks the existential unforgeability
of ESS+ with access to a signing oracle SIGN:

— In the SETUP procedure, M sets the group defined for the signature scheme
as G, and A is given the public key bpk = spk of the signature scheme.

— when A ask for a withdrawal, dc is incremented by 1 and M, playing the
role of the bank, interacts with A by interacting with the oracle SIGN to
obtain ESS+ signatures. Each time, M; stores in askdb the signature and
the corresponding messages;

— when A asks for a spending protocol of 2¢ coins, sp is incremented by 2¢ and
My, playing the role of the merchant, rewinds A during its computation of
the zero-knowledge proof of knowledge by using standard techniques (and in
the random oracle model) in order to extract and store in recdb the signatures
and the corresponding messages used by A.

— at any time of the unforgeability experiment, A sets cont = false and with
probability €, we have 2©-dc < sp. In case there is one entry in recdb\ askdb.
This entity is obviously a forgery.

Game 2. We construct a machine My that breaks the bound property of the
accumulator scheme:

— In the SETUP procedure, M sets the group defined for the signature scheme
as G, and A is given the public key bpk = spk of the signature scheme.
Next, My generates the L+ 2 accumulators. My maintains a database accdb
containing all accumulators generated by A together with the bound of the
corresponding bounded accumulator and the obtained accumulated values;

— when A ask for a withdrawal, M plays the role of the bank;

— when A asks for a spending protocol of 2¢ coins, sp is incremented by 2¢ and
M, playing the role of the merchant, rewinds A during its computation
of the zero-knowledge proof of knowledge, using standard technique (and in
the random oracle model) in order to extract the accumulators. Next, My
stores in accdb the accumulator (if not already present in the database) and
the corresponding accumulated values;

94 S. Canard and A. Gouget

— at any time of the unforgeability experiment, A sets cont = false and with
probability €, we have 2% - dc < sp. In case there is one entry in accdb such
that there are more accumulated values than the bound for this accumulator,
M breaks the bound property of the accumulator scheme.

As a consequence, Succggf;()\) = (Succ;:fgof’;()\) + Succuy (V).

— Identification of Double Spender: we use a reduction to the unforgeability
of the signature scheme. Let A be an adversary breaking the identification of
double spender in polynomial time 7 with a probability of success e. We consider
a black box adversary and construct a machine M which breaks the unforge-
ability of the signature scheme. We can access to the group G, the public key
spk and interact with a signing oracle:

— In the SETUP procedure, M sets the group defined for the signature scheme
as Gp and A is given the public key bpk = spk of the signature scheme.

— when A ask for a withdrawal, dc is incremented by 1 and M1, playing the
role of the bank, interacts with A by interacting with the SI1GN oracle to
obtain ESS+ signatures. Each time, M stores in askdb the signature and
the corresponding messages;

— when A asks for a spending protocol, M, playing the role of the merchant,
rewinds the adversary A during its computation of the zero-knowledge proof
of knowledge to extract and store in recdb the signatures and the correspond-
ing messages used by A;

— at any time of the experiment, A outputs one spent coin rco and, with prob-
ability €, the DEPOSIT and the VERIFYGUILT procedures output 0. Thus,
M takes on input rco and the other coin with the same serial number and
extracts, in IT € rco and using standard techniques, both signatures and the
corresponding messages. Necessarily, one of the two signatures is not an out-
put of the signing oracle since the signed upk is not detected by the IDENTIFY
algorithm. Thus, M has produced a forge on the signature scheme.

idd _ unforge
We have SuccpEs 4(A) = Succg, 4 (M)

— Exculpability: suppose that an adversary A succeeded in breaking the ex-
culpability property. That means that there are two valid spends with the same
serial number S (or, either S can be computed from S’; or S’ can be computed
from S) and two different proofs IT and I’ and two different correct randoms
R and R'. As spendings are correct, the proofs include that both T and 7" are
well formed. Thus, since the user is honest, A has faked T or T".

We now use A to break the one-more discrete logarithm problem [3]. Given
[+ 1 values, we have to find the discrete logarithm of all these values, and we
can ask a discrete logarithm oracle at most [times. We first associate each value
to the public key of one user (assuming there are at most [users) and we ask
the oracle each time A corrupt a user. It is possible to simulate all withdrawals
and spends using standard techniques (in the random oracle model). A finally
outputs two correctly formed T and 7" and the associated proofs of validity.
Thus, T and T" are both formed from the same public key of a honest user.

Multiple Denominations in E-cash with Compact Transaction Data 95

From the two proofs of validity, we can extract the user secret key and thus
break the one-more discrete logarithm. Indeed, since the user is honest, this
discrete logarithm has not been requested to the oracle. We consequently have

exculp omdl

Sucepes 4(A) = Suecy"(A), which concludes the proof. O

5 Conclusion

We have presented the first strongly anonymous and unforgeable e-cash scheme
that can be instantiated in practice since it is possible to efficiently generate
the parameters of the system. This new construction makes use, first, of a new
generation method of the binary tree of keys based on algebraic objects which
can be easily used in practice, and second, of a new technique to use bounded
accumulators in divisible e-cash. The time complexity of the main critical pro-
tocol, which is the spending protocol, is relatively small in time and space for
spending a monetary value 2°¢.

One may now think of designing a new system with the same features but
additionally with a more efficient withdrawal procedure. It may also be possible
to design a divisible e-cash system in the standard model, using the so-called
Groth-Sahai proofs instead of the Fiat-Shamir heuristic.

Acknowledgements

We are grateful to Déborah Jourdes for her suggestions of improvement, and to
anonymous referees for their valuable comments.

References

1. Au, M.H., Susilo, W.; Mu, Y.: Practical anonymous divisible e-cash from bounded
accumulators. In: Financial Cryptography 2008, LNCS. Springer, Heidelberg (2008)
(to appear)

2. Au, M.H., Wu, Q., Susilo, W., Mu, Y.: Compact e-cash from bounded accumu-
lator. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 178-195. Springer,
Heidelberg (2007)

3. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-More-RSA-
Inversion Problems and the Security of Chaum’s Blind Signature Scheme. J. Cryp-
tology 16(3), 185-215 (2003)

4. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425-442.
Springer, Heidelberg (2010)

5. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credential. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. 5443, vol. LNCS, pp. 481-500. Springer, Heidelberg (2009) (to appear)

6. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442 pp. 61-76. Springer, Heidelberg (2002)

96 S. Canard and A. Gouget

7. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56-72. Springer, Heidelberg (2004)

8. Canard, S., Coisel, 1., Traoré, J.: Complex zero-knowledge proofs of knowledge are
easy to use. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 122-137. Springer, Heidelberg (2007)

9. Canard, S., Gouget, A.: Divisible e-cash systems can be truly anonymous. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 482-497. Springer, Heidelberg
(2007)

10. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186-194. Springer, Heidelberg (1987)

11. Nakanishi, T., Sugiyama, Y.: Unlinkable divisible electronic cash. In: Okamoto,
E., Pieprzyk, J.P., Seberry, J. (eds.) ISW 2000. LNCS, vol. 1975, pp. 121-134.
Springer, Heidelberg (2000)

12. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275-292. Springer, Heidelberg (2005)

A Bounded Accumulator with Additional Procedure

We give a concrete example of accumulator based on [I2]. Let G and C; be two
cyclic groups of prime order p, G (resp. G) is a generator of G (resp. G). Let Gp
be a multiplicative group of order p. We refer a bilinear structure for the groups
(Q,Q,QT). Let e be a bilinear map e : G x G — Gr.

Using [12], the number of values accumulated in a single accumulator is limited
to a fixed number which is here denoted by s. In our construction, we use a new
proof of knowledge, denoted POK(Acc : (k1,--- , k¢) € Acc), to prove that several
values known by the verifier are accumulated in a secret accumulator.

Let Uy € G, Vo € G, a € Z;, Uy = U foralli e {1,---,s} and Vi = V.
The values (ky,--- ,ks) are accumulated in Acc as Acc = Uglj:l(kﬁa). We de-

: k; .
note by W the value Ug[]e“’”(e Thus, we have Acc = Wllienakite),
Let P(a) = [lep,q(k; —|—.a) = Zfl pjaj. where the p;’s are product gf the
k;’s and the degree of P is . More precisely, we assume that there exists a

public function F({k1, -+ ,k¢}) = {py, - ,p,}. We need to introduce some ad-

ditional public parameters: V; = f/oal for all i« € {2,---,s}. Then , we have
e(Ace, Vo) = e(WTlieo.a), Gy — e, 1000y — (W, Vo T, V7).

In our setting, the values k;’s are public, and thus it is also the case for the
values p;’s. Our ZKPK is then: POK(Acc, W : e(Acc, vg) = e(W, Vg Hﬁ:l Vjpj)).

B Proof of Validity of a Spending

The first part of the proof, consisting in proving that one knows usk and kr,_¢_j,

) kr_e,j
such that T = Gusk. (HR)kL*’Z’JD, kiL_g_;,_szO = gOL “9 and k‘L_g+172j0+1 =
kr—z¢,jo

91 is simply done by using standard discrete logarithm based proof of

Multiple Denominations in E-cash with Compact Transaction Data 97

knowledge. The next part of the proof consists in proving that several values
known by the verifier are accumulated in a secret accumulator which is signed
by the bank, using the ESS+ scheme. We describe the case of Accp_s41; the
case of Acc is similar.

We first need a proof that the tuple (kr—_s11,2j0, kL—r41,2jo+1) € ACCL_g41.
Everyone can compute {py, o} = F(kr—¢41,2j0, KL—¢41,2j0+1)- Since there exists
the public relation e(Accr,_gy1, Vo) = e(W, P) with P = VOVp1V2p2, the second
part of the proof of knowledge is then POK(s AcCr—¢41,0L—¢41 : OL—p+1 =
SI1GN(Accr,—r41,u) A e(Accr—pt1, VO) =e(W,]5))

The signature or,_¢+1 is an ESS+ signature on the message M = (Accr_¢41,
s, L—{¢+1). Thus, or,_¢41 is composed by the elements X} = X (Accp_r+1GE)C,
XYy = (GlGaGleHL_“l) she and 23 = H¢ where a,b,c €g Z* and X,
Go, G1, G2, Gs, H1, Ha, H are public. These values verify the followmg re-
lations: e(Xy, X3Z) = e(Gy,) (Go, H)%(G3, H) e(Hy, H)%e(H,, H)“~*+1 and
e(%1, H) = Ye(Accr_¢11GE, 3). The second part of the proof is finally

POK (s, AccL 11, X1, X2, X5 :
e(Accr 41, Vo) = e(W, P)Ae(Z1, H) =Ye(Accr,_111GE, 53) A
(2, X37) = e(Gy1, H)e(Ga, H)"e(Gs, H) e(Hy, H)*e(Ha, H)*).

This proof is generated using standard techniques and the results in [2/T].

What’s in a Name?

Evaluating Statistical Attacks on
Personal Knowledge Questions

Joseph Bonneau', Mike Just?, and Greg Matthews?

! University of Cambridge
2 University of Edinburgh

Abstract. We study the efficiency of statistical attacks on human au-
thentication systems relying on personal knowledge questions. We adapt
techniques from guessing theory to measure security against a trawling at-
tacker attempting to compromise a large number of strangers’ accounts.
We then examine a diverse corpus of real-world statistical distributions for
likely answer categories such as the names of people, pets, and places and
find that personal knowledge questions are significantly less secure than
graphical or textual passwords. We also demonstrate that statistics can be
used to increase security by proactively shaping the answer distribution to
lower the prevalence of common responses.

1 Introduction

Secret knowledge stored in human memory remains the most widely deployed
means of human-computer authentication. It is often referred to as something
you know in contrast to biometrics (something you are) or hardware tokens
(something you have). While human memory is limited, the high deployment
costs of alternatives mean we will continue to rely on it for the foreseeable future.

The most common human-memory systems require recalling data specifically
remembered for authentication. Passwords and PINs are the most well-known,
but there exist a variety of graphical and textual schemes to aid in recalling secret
data [31129)22l6]. Among other problems, passwords are forgotten frequently
enough [31] that many deployed systems also use personal knowledge for backup
authentication. In contrast to passwords, personal knowledge questions such as
“who was my first-grade teacher?” query facts remembered independently of the
system so they are hoped to be recalled successfully when passwords fail.

In the majority of online banking, e-commerce, webmail and social networking
websites, users register a question-answer pair on enrolment which can later be
used to authorise a password reset. These systems can be no more secure than the
difficulty of guessing the answers to these questions. This risk was highlighted in
the past year as hackers exploited personal knowledge questions to compromise
accounts of politician Sarah Palin and top executives at Twitter.

Despite their ubiquity, personal knowledge questions have received relatively
little attention from the security community until recently. User studies have

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 9813} 2010.
© IFCA /Springer-Verlag Berlin Heidelberg 2010

What’s in a Name? 99

demonstrated the ability of friends, family, and acquaintances to guess answers
correctly [26JI324], while other research has found some questions used in prac-
tice have a tiny set of possible answers [I525]. Many common questions have
also been shown to have answers readily available in public databases or on-
line social networks [I8]. For example, at least 30% of Texas residents’ mothers’
maiden names can be deduced from birth and marriage records [12].

Designers may be able to avoid easily looked-up questions, but it remains
an open question as to how secure typical questions are against a statistical
attacker that attempts to break into a small fraction of anonymous accounts by
guessing the most likely answers. While this threat has been briefly touched on
in previous research [I5l26], we contribute a formal security model based on the
information-theoretic model of guessing developed over the past decade. We then
examine a range of public statistics that we collected to bound the efficiency of
statistical attacks. Our results show most questions to be highly insecure, calling
into serious question the continued use of personal knowledge questions.

2 Security Model

2.1 Authentication Protocol

Most deployed systems use personal knowledge questions in a simple challenge-
response protocol. The party seeking access, called the prover or claimant, first
sends its identity ¢ to the wverifier. The verifier then responds with a challenge
question g, to which the prover sends back an answer x. Unlike most challenge-
response protocols, the prover’s secret knowledge x is usually revealed to the
verifier. Replay attacks can be partially addressed by having the verifier include
a nonce r along with ¢, and having the prover respond with H(z, g, r) for some
one-way function H. However, an eavesdropper still gains the ability to perform
offline search for likely values of using H as an oracle (and as we shall see, few
personal-knowledge questions are resistant to offline search).

Additionally, while the challenge from a verifier is typically a fresh random
nonce for cryptographic challenge-response, the set) of personal knowledge
questions registered with the verifier is often very small or even a single question.
Some non-traditional question types may increase |Q|, such as “preference-based
authentication” [14], but the upper limit appears low due to the fundamental
requirement of human effort to select and answer questions on enrolment.

Finally, unlike many challenge-response protocols, the verifier must maintain
a counter t; of failed authentication attempts from each prover i to limit the
number of guesses an attacker can make. Such a protocol is said to be online, in
contrast to stateless protocols in which the attacker can make as many guesses
as bandwidth allows. Offline protocols rarely use personal knowledge questions
due to the difficulty of preventing brute-force attacks, though systems have been
proposed for personal password-backup which require simultaneously answering
many questions [S11].

100 J. Bonneau, M. Just, and G. Matthews

2.2 Threat Model

Our attacker’s goal is to impersonate some legitimate prover ¢ and successfully
complete the protocol. The attacker may only desire to gain access on behalf of
one specific user in a targeted attack, or may be content to gain access on behalf
of any user in a trawling attack. In the former case, the attacker knows the ac-
count ¢ represents some real-world person Peggy, enabling research attacks using
search engines, online social networks, or public records. An active attacker could
conduct more advanced research by dumpster diving, burgling Peggy’s home, or
social engineering to trick Peggy into revealing her answer. Targeted attacks may
also be performed by somebody who knows Peggy personally. Schechter et al.
explored this attack in a laboratory setting and found a high rate of success by
acquaintances at guessing personal knowledge questions [26].

Targeted attacks are powerful but do not scale. Trawling attacks, in contrast,
require little per-user work and can be used to simultaneously attack many
accounts. We assume that a trawling attacker, although they must provide a
value for ¢ when initiating the protocol, has no information about the real-world
person behind 7 and must guess answers based on population-wide statistics.

A blind attacker guesses without even understanding the question ¢ [I5]. This
scenario arises if the question is either not transmitted in the clear [21], is trans-
mitted in a CAPTCHA-ised form, or is user-generated and difficult to auto-
matically process We argue that a more successful attack strategy is to use a
weighted combination of answers to likely questions.

An attacker who is able to correctly understand ¢ but not i is a statistical
attacker (called a focused attacker in [I5]), whose strategy is to guess the most
likely answers to g. Our main goal is to evaluate the security of common ques-
tions against statistical attack. While some questions (e.g., “What is my favourite
colour?”) obviously have too few plausible answers to be secure, the most com-
mon classes of answer found repeatedly in practice are the “proper names” of
people, pets, and places, whose security against guessing is not obvious.

The attackers we have identified are not exclusive. While there is a general hi-
erarchy between blind, statistical, and research attacks, an attacker may combine
statistics and targeted research. For example, partial knowledge of an account-
holder’s identity may enable an attacker to refine her statistical tables (see Sec-

tion [).

3 Quantifying Resistance to Guessing

3.1 Mathematical Formulation of Guessing

We now turn to the mathematical problem of quantifying how secure a personal
knowledge question ¢ is against guessing. This problem has been previously

! Some users may even purposefully obfuscate their questions, such as “What do I
want to do?” [15].

What’s in a Name? 101

considered abstractly [A23/3J20] and in the case of PINs [2], graphical pass-
words [6l2922], and biometrics [I]; we synthesise previous analysis and define
new metrics most applicable to trawling attackers.

Because a statistical attacker will respond equally to “what is my boss’ last
name?” or “who was my kindergarten teacher?” by guessing common surnames,
we seek to measure security of the underlying answer space. We consider the
correct answer to be a random variable X drawn from a finite distribution X’
which is known to the attacker, with |[X| = N and probability p;, = P(X = x;)
for each possible answer z;, for i € [1, N]. We assume that X is arranged as a
monotonically decreasing distribution with p; > ps > -+ > py. Our attacker’s
goal is to guess X using as few queries of the form “is X = x;7” as possible.

Intuitively, we may first think of the Shannon entropy

N
Hy(X) ==Y pilgp; (1)
i=1

as a measure of the “uncertainty” of X. Introduced by Claude Shannon in 1948,
entropy has entered common cryptographic parlance as a measure of security,
with “high-entropy” secrets being considered advantageous [SIIT]. As has been
argued previously [223[BI2012I6/T], H; is a poor estimator of guessing difficulty
for security purposes, as it quantifies the average number of subset membership
queries of the form “Is X € S§?” for arbitrary subsets S C X.

Because cryptographic protocols are specifically designed to require sequential
guessing, a better metric is the expected number of attempts required to correctly
guess X if the attacker takes up the obvious strategy of guessing each possible
event in order of its likeliness, known as the guessing entropy:

N
G(X) =F #guesses(X ‘E X):| = Zpi) (2)
i=1
This measure was introduced by Massey [20] and later named by Cachin [4].

3.2 Marginal Guessing

Guessing entropy models an attacker who will never give up in her search, and
thus it can be skewed by exceedingly unlikely events. A simple thought experi-
ment demonstrates why this is inadequate for our purposes. Suppose Eve must
sequentially guess k challenge questions with answers drawn from X'. Some ques-
tions will have uncommon answers, and Eve must make ~ k - G(X) guesses.
Now consider a second adversary Mallory whose goal is to guess the answers
to k questions from a set of m > k total questions. Her optimal strategy is to first
guess the most likely value for each question in sequence, then the second-most

2 The proof of this is a straightforward consequence of Shannon’s source coding theo-

rem. Symbols X & X can be encoded using a Huffman code with average bit length
< Hi(X) + 1, and the adversary can learn one bit at a time with set queries.

102 J. Bonneau, M. Just, and G. Matthews

likely value for each question, and so on. Mallory’s efficiency will greatly increase
as m increases, as she may never need to guess uncommon answers. Guessing
entropy is inadequate as it doesn’t account for Mallory’s willingness to give up
on the questions which have less probable answers.

To bound an attacker who only requires some probability a of guessing cor-
rectly, we define the marginal guesswork piy:

fia(X) = min {.7 € [1,N]

sz‘ ZCY} (3)

This function, introduced by Pliam [23], is also referred to as the a-work-factor.
We define a similar metric Ag, the marginal success rate, slightly adapted from
Boztag [3], as the probability of success after 3 guesses have been made:

Ag(X) = Zpi (4)

3.3 Effective Key Length Metrics

While it is important to remember that u, and Ag are not measures of entropy,
we nonetheless find it convenient to convert them into units of bits. This makes
all the metrics Hi, G, po and Ag directly comparable and has an intuitive
interpretation as (logarithmically-scaled) attacker workload. We convert each
metric by calculating the logarithmic size of a discrete uniform distribution Uy
of size [Uy| = N with p; =]{, for all 1 < ¢ < N, which has the same value
of the guessing metric. This can be thought of as the “effective key length” as
it represents the size of a randomly-chosen cryptographic key which would give
equivalent security. The guessing entropy of Uy is:

N N

1L 1 NN+ N4l
G(UN):Epi"L:NEZZN' 9 =

=1 i1

The entropy of this distribution is 1g IV, so given the guessing entropy of an arbi-
trary distribution G(X) we can find the logarithmic size of a uniform distribution
with equivalent guessing entropy as:

G(X) = 1g[2- G(X) — 1] ®)

The quantity G (X) can then be interpreted as the effective key length of X with
respect to guessing entropy. We can similarly derive formulas for effective key
length with respect to marginal guesswork and marginal success rate:

o) =1 (") S =, 7)))

[e%

What’s in a Name? 103
Example Calculation. Consider a distribution Z with Pz = { é, 118, 118, 118, .t
Regardless of the tail probabilities, an attacker will have a 50% chance of success-
fully guessing a random variable drawn from Z after 4 attempts, so \4(Z) = 1.
The distribution Ug with eight equally likely events would also have A\4(Us) = ,,
so these two distributions are equivalent with respect to A4. Since lg [Us| = 1g8 =
3, we expect 5\4(2) = 3, and we can verify that by our formula:

M(Z) :1g</\4zlz)> :1g<;11> —1g8 =3

3.4 Relationship between Metrics

A natural question is whether fi, and 5\5 are bounded by H; or é; unfortu-
nately this is not the case. The following theorems demontrate the fundamental
incomparability of entropy, guessing entropy, and marginal guesswork:

Theorem 1. (Pliam) Given any m >0, 3 > 0 and 0 < o < 1, there ewists a
distribution X such that fio(X) < H1(X) —m and A\g(X) < H1(X) —m.

Theorem 2. (Boztas) Given any m >0, 8 >0 and 0 < a < 1, there ewists a
distribution X such that i, (X) < G(X) —m and A\g(X) < G(X) —m.

Theorem 3. (new) Given any m > 0,1 > 0, and ag > 0 with 0 < oy < ag <
1, there exists a distribution X such that fia, (X) < fia, (X) —m.

The first two results were demonstrated previously [23I3] but we combine the
proof techniques here to prove both at once. We construct a pathological distri-
bution X with one likely event and many very-unlikely events. We set p; = %
and p; = 227,1&4 for the remaining symbols (|X| = 22m*3 4 1). This gives
Hi(X) > m + 3 and G(X) > m + 1, following from Massey’s proof that G
is bounded from below by (Hy — 2) [20]. But fi; (X) = A1(X) = 1, proving the
theorem. Note that this construction requires |X| € ©(4™), the result does not
hold if we impose limits on |X|.

The third theorem, a new result, is proved similarly by setting p; = a1 and

Pn = (a27a11)~2m for all n > 1. This gives fio, = lg (all) = —lgag, but fig, =

lg <2Zjl) > lg (2;17) =m — lgaq, giving the desired gap m with |X| € ©(2™).

These results demonstrate that no measure is adequate for all security pur-
poses, but that context-specific fi, and 5\,@ must be used which reflect only the
values in the distribution likely to be guessed. A highly-skewed distribution like
human names might have high H and G can be very easy to guess despite having

many unlikely events which inflate its apparent security.

3.5 Applicability to Personal Knowledge Questions

Assuming that a targeted attacker is likely to use victim-specific research, we
are most concerned with a trawling attacker who will never guess uncommon

104 J. Bonneau, M. Just, and G. Matthews

answers, simply trying a new target if common answers fail. The most useful
metric we have is the marginal success rate Ag. Assuming the system imposes
a limit of ¢,,x incorrect guesses for each account, the critical value is the frac-
tion of accounts the attacker can expect to compromise, which is A, . In the
limit of an attacker trying only the single most likely answer for multiple ac-
counts, our security is 5\1()() = —lg(p1), which is also called the min-entropy
Ho(X).

For offline attacks, Ag is less meaningful because an attacker won’t limit their
guessing nearly as much. In this case, ,&; is a reasonable metric in that it avoids

G’s dependence on very unlikely events, while still measuring the cost for an
attacker to compromise a majority of available accounts.

3.6 Estimation from Statistics

A final subtlety is estimating our metrics from publicly available statistics based
on random sampling from X and not on complete knowledge of the distribu-
tion. This, too, strongly favours the use of i, and Az because they only reflect
the most likely events and are not affected by large uncertainty on the tail
probabilities of X. Estimating p, and A\g from a statistical sample is straight-
forward: we simply take the most likely events from the sample and use them
to compute our metric. It is possible to compute a p-confidence interval for p,
or A\g by computing p-confidence intervals for each individual event probability,
and using all of the minimum (eq. maximum) estimates to compute minimum
estimates p, and Ag (eq. pt and)\IJ@F) This technique strictly overestimates
uncertainty, but in practice we’ve found most of the statistics which influence
1o Or Ag have strong enough statistical support that the confidence interval is
quite tightE

In contrast, since H; and G depend on the entire distribution, they are much
more difficult to reliably estimate from statistics. If we don’t a priori know |X|, it
is impossible to provide any upper bound because we cannot know the number of
events which haven’t been observed by sampling. As a lower bound for security
purposes, we simply assume no unobserved events exist.

A second problem is that unlikely events are often suppressed for privacy or
brevity in published census data. Again in the name of a lower bound, we simply
take the least-likely observed event and insert copies of it until the probability
space is filled. In the case of surname data, for instance, which is given exactly
for names shared by at least k people but suppressed for less common names, we
repeatedly insert fictitious names shared by & people until the data set contains
as many people as the target population. This crude approximation lowers our
estimates of H; and G, but doesn’t influence Ha OF Ag.

3 Indeed, for o < 21! and (8 <]; we are always able to calculate po and 5\5 to within
0.1 bit with p > 99%. We expect errors from divergence between the population
distribution and answers which humans actually choose to use to be so much greater

than sampling error that we ignore it in the remainder of this paper.

What’s in a Name? 105

4 Information Sources

4.1 Question Types and Their Use

Based upon recent research into deployed personal knowledge authentication
systems, we focus our analysis on questions that ask for proper names, as sum-
marised in Table [l Rabkin collected 216 questions used by 11 financial institu-
tions [25], and Schecter et al. collected 29 questions used for webmail services
provided by AOL, Google, Yahoo!, and Microsoft [26]. These provide some hints
at the type of questions used—Rabkin found approximately é soliciting a per-
son’s name and é asking for place names, while Schechter et al. found 411 solicit-
ing a person’s name and é asked for a place name. Unfortunately, this research
provides no insight as to which questions users actually select. For example, rel-
atively few questions asked for pet names, though this may be because there is
only one way to phrase this question and not because it is unpopular.

Just and Aspinall collected approximately 500 user-generated challenge ques-
tions and categorised these questions into a small number of types [I5], which
we consider to be a more insightful data set. Most notably, they found that
34% of user questions asked for a human name, 15% asked for a pet name and
20% asked for a place name. Of the remainder, 22% asked for a user’s favourite
item amongst films, singers, car brands, etc., 5% asked for a time, date, or num-
ber, and the remainder were ambiguous. Thus, we estimate that a few simple
categories of proper names cover roughly 70% of real-world questions. The re-
mainder, many of which ask for the user’s “favorites,” appear trivially vulnerable
to guessing attacks and we ignore them in our study.

One subtlety with name data is that it is not always clear if users will respond
with a forename (also called a ‘first name’ or ‘given name’), surname (also ‘last
name’), or both. In such cases, a statistical attacker can simply estimate what
probability of users will respond with which, and then combine the two probabil-
ity distributions, scaling each by its sampling frequency. This should slow down
attacks by no more than a factor of two. We also assume that middle names
(though less commonly asked for) are reasonably approximated by forenames.
In reality, middle names probably have slightly higher diversity, but the most
common names are likely the same and an attacker can use a forename table in
an attack without much slowdown.

4.2 Data Collection

To our knowledge, this is the first time a breadth of data has been collected
for analysing personal knowledge questions. We collected data from government
sources where possible, as many developed nations keep near-complete records
of citizens’ names. In some cases the data is not made publicly available but is
acquired and published by media organisations, as in the case of pet registration
lists which are compiled by smaller local government bodies. We were also able
to gather school and city data from official sources.

106 J. Bonneau, M. Just, and G. Matthews

Table 1. Common answer categories

Category Example Questions
Forename What is your grandfather’s first name?
What is your father’s middle name?
Surname What is your mother’s maiden name?

What was the last name of your favourite school teacher?
General Name Who was your childhood best friend?
Pet Name What was your first pet’s name?
Place In what city were you born?
Where did you go for your honeymoon?
What is the name of your high school?
Other What was your grandfather’s occupation?
What is your favourite movie?

Official sources often omit items occurring less than some minimum thresh-
old. As mentioned in Section 3.6, we used estimates of the total population to
overcome the missing data. A complete list of our data sources, as well as scripts
used for calculations on the data, is made available on our project website[] We
also provide a summarised list of official sources used in Appendix [Al

We found no official sources which provide lists of full names, so we collected
names from 269 million randomly-crawled public profiles on the popular online
social network Facebook. The demographic for this data is less clearly delineated,
but can be used to roughly approximate the global Internet user population.

5 Results and Discussion

Our calculations of the metrics defined in Section [are displayed in Table
For online attacks, the marginal success rate A3 models an attacker limited to
3 guesses on each available account. For almost all of our data (exclusive of full
names and primary schools), we have A3 < 8, indicating that the majority of
deployed challenge questions systems are insecure against trawling attackers. If 3
guesses are allowed, an attacker can compromise roughly 1 in 80 accounts. This
may even be an overestimate of security: the most extreme trawling attacker will
make only 1 guess per account, represented by \; = H,.

For offline attacks, we mostly find ﬂé < 12, meaning an attacker can compro-
mise the majority of accounts with only a few thousand guesses per account.

Our analysis demonstrates weak subspaces in the answer distribution for
most personal knowledge questions which can be directly compared to weak
answer spaces found in other authentication systems. In Figure [I] we plot the
Facebook name distributions against textual passwords [16J28/27], mnemonic

4 http://groups.inf.ed.ac.uk/security/KBA/
® We also include the Rényi entropy Ha(X) = ! g (Zf\;pf‘> for a € {0,2,00}.

11—«

As predicted by Boztag [3], H2 seems to provide a good estimate for ﬂ% .

http://groups.inf.ed.ac.uk/security/KBA/

What’s in a Name?

Table 2. Summary of statistics on real data

Source Hy H, G Ho» ﬂ% A3 Hso T
Full Names
Facebook 269 252 260 211 243 140 139 John Smith
Surnames

South Korea
Chile

75 46 45 35 33 27 22 Kim
68 66 63 63 60 49 45 Gonzélez

Spain 96 89 91 76 88 54 50 Garcia
Japan 145 113 120 90 92 62 60 Sato
Finland 138 122 123 105 105 79 78 Virtanen
England 174 133 146 102 110 67 64 Smith
Estonia 119 117 117 113 116 79 76 Ivanov
Australia 186 141 153 109 118 74 68 Smith
Norway 137 125 130 99 119 65 64 Hansen
USA 191 149 169 109 123 72 69 Smith
Facebook (Sp) 203 135 166 95 104 64 64 Rodriguez
Facebook 231 166 192 123 140 83 80 Smith
Forenames, Mixed
Spain 97 90 89 81 79 60 59 Jose
Iceland 89 85 83 79 77 59 58 Jon
Belgium 150 102 103 88 87 61 57 Maria
USA 167 112 140 87 86 62 59 Michael
Facebook (Sp) 195 114 149 85 87 58 57 Maria
Facebook 227 136 178 107 107 76 75 David
Forenames, Female (Q)
Spain 83 79 78 73 71 53 51 Maria
Iceland 79 75 73 69 68 51 49 Gudran
Belgium 152 101 109 81 82 55 49 Maria
USA 151 109 129 87 83 65 63 Jennifer
Forenames, Male (J")
Spain 86 78 78 69 66 49 48 Jose
Iceland 79 75 73 69 68 50 48 Jon
USA 152 94 120 72 69 52 50 Michael
Belgium 150 97 104 82 78 61 57 Jean
Forenames by Birth Decade
USA, 1950 (9) 118 86 91 71 68 52 50 Mary
USA, 1950 (5') 117 7T 83 62 58 46 46 James
USA, 1960 (9) 119 91 95 76 71 56 52 Lisa
USA, 1960 (d") 119 79 86 64 59 47 46 Michael
USA, 1970 (9) 121 97 103 77 76 55 48 Jennifer
USA, 1970 (5) 121 84 93 67 63 50 46 Michael
USA, 1980 (9) 122 97 104 77 76 54 53 Jessica
USA, 1980 (o) 122 86 96 69 64 51 49 Michael
USA, 1990 (9) 123 103 108 84 83 61 60 Jessica
USA, 1990 (5') 123 93 100 75 71 57 55 Michael
USA, 2000 (9) 124 108 111 91 90 66 65 Emily
USA, 2000 (&) 122 99 104 82 78 64 62 Jacob

Pet Names

Los Angeles
Des Moines
San Francisco

158 117 131 92 94 65 64 Lucky
136 116 124 94 97 65 62 Buddy
137 116 120 96 98 67 67 Buddy

Place Names

UK Primary Schools 140 138 135 136 133 121 121 Essex
UK High Schools 87 85 82 83 80 74 73 Holyrood
School Mascots (US) 118 81 93 62 57 45 41 Eagles

UK Cities

92 85 88 59 87 44 30 London

Tourist Destinations 130 120 125 95 124 63 59 London

107

108 J. Bonneau, M. Just, and G. Matthews

passwords [I7], the Pass-Go user-drawn password system [22], the Passfaces
graphical PIN system [29], the PassPoints visually-cued clicked password sys-
tem [0] and a handwriting-recognition biometric system [I]. We also include a
recently-leaked dataset of 32 M passwords from the gaming website rockyou. com.
Aside from the badly-broken Passfaces system, personal knowledge questions
compare unfavorably to other methods unless full names are required.

We summarise further interesting trends below:

Diversity effects. The difficulty of guessing surnames correlates with ethnic
diversity. American surnames were the most difficult to guess in our survey, pre-
sumably because the population is a blend of immigrants from many ethnicities.
Facebook provides even more diversity as a blend of users from around the world.
Surnames from Japan and South Korea, which are ethnically homogeneous and
have relatively few immigrants, provide low resistance to guessing.

Naming trends. Given names are a matter of fashion and vary in several in-
teresting dimensions. In the countries studied, female names seem to provide
slightly higher resistance to guessing than male names[§ Over the past 6 decades
in the USA, diversity of forenames has been increasing slowly but steadily. Cu-
riously, pet names are slightly harder to guess than human names.

Ethnic correlations. The Facebook data provides ample evidence that fore-
names and surnames are not independent variables. They are correlated via an
individual’s ethnicity and possibly further in that some name combinations are
considered more pleasing to the ear. Maria Gonzalez and Jose Rodriguez are
the most statistically over-represented names in our data set given the inde-
pendent frequency of the forename and surname component. Each appears with
extremely high statistical significance (p < 0.001 in a x? test). Similarly, there
are a number of highly statistically under-represented name pairs, mostly curi-
ous cross-cultural pairings like Francesco Smith or Juan Khan. Frequent names
like Maria Gonzalez appear because both components share a common ethnicity
(Hispanic). A x? test on the entire forename distribution given a Spanish sur-
name such as Gonzalez confirms with high significance (p < 0.001) that naming
patterns change amongst individuals of this ethnicity.

This dependence between forenames and surnames indicates that guessing
difficulty will be lower if an attacker knows the target’s ethnicity. To quantify
this, we clustered the names and identified a set of 250 common Spanish sur-
names, which cover 10.1% of all individuals in the dataset. The guessing difficulty
for these 4 million individual’s forenames is shown in Table 2] under “Facebook
(Sp.)”E We similarly took 250 common Spanish forenames, representing nearly
22 million people, and computed the guessing difficulty of their surnames. In both
cases [l ! and A3 drop by about a bit, indicating that identifying an individual’s
ethnicity may roughly double a statistical attacker’s efficiency.

6 Security increases, of course, if a question doesn’t specify gender.
" Note that this is not the difficulty of guessing a typical Spanish forename, it is the
difficulty of guessing the forename of a person with a typically Spanish surname.

What’s in a Name? 109

40 T

- - Surname

301 © 1 --- Forename

— Password [RockYou]
[Klein]

[

[

[}
ot
[}

Password
Spafford]

Password [Schneier]

Password

marginal guesswork /i,
Do
(=)
o e o
o e

e o Mnemonic [Kuo]
15 A A Pass-Go
> » PassPoints
10 v Vv Passfaces
* * Handwriting
] . M 1
*
%.0 0.2 0.4 0.6 0.8 1.0

success rate o

Fig. 1. Comparison of weak subspaces in name distributions (Facebook dataset) to
those found in other authentication systems [T6128)27I2912216/T]

Power-law models. The frequencies of English surnames have previously been
posited to be well-fitted by a discrete Pareto distribution [10], with the proba-
bility that a surname X’s frequency is f(X) is greater than = being proportional
to 2~ (¢t Fox et al. found this to hold for ¢ ~ 1.4. This is thought to occur be-
cause surnames are inherited but don’t strongly correlate to reproductive fitness,
leading to a Pareto-like distribution through random genetic drift.

We found the Pareto distribution with ¢ =~ 1 to be a reasonable model for
the Facebook surname dataset, though the head of the distribution skewed
significantly away from the Pareto model, with the most common names be-
ing less popular than expected. Still, support for a power-law model of sur-
name frequency suggests the inappropriateness of this distribution for security
purposes.

Interestingly, our forename and pet name distributions were also approxi-
mated well by the Pareto distribution, with ¢ ~ 0.8 in the Facebook data
set. The reasons for this fit are less well-understood, though this is close to
the classic Zipf distribution (¢ = 1) which is known to model many natural-
occurring phenomena such as word frequency in natural languages. If it is true
that humans naturally produce names following the Zipf distribution, this too
suggests that human-provided name spaces will not provide adequate guessing
resistance.

110 J. Bonneau, M. Just, and G. Matthews

24

22

20

= —
D oo

—
IS

Effective security (bits)

—_
[\

1 (Surname)

H
o
T
~N
\
\
I
|
%
w

3 (Surname)

(Forename)

- - A3 (Forename)

%.0 0.2 0.4 0.6 0.8 1.0

Reiection rater.

Fig. 2. Effectiveness of shaping a distribution as a function of r.

6 Countermeasures

Up to this point, we have assumed a passive enrolment server which accepts
any answers and has no influence on the resulting answer distribution X. If we
assume the server knows X, it is possible to actively shape the answer space into
a more secure distribution X’ by probabilistically rejecting some users’ answers.
There is a growing literature on proactively encouraging users to select diverse
textual [9] or graphical [5] passwords, Bentley et. al previously considered the
problem of “grooming” a skewed probability distribution to uniform [2].

The process of a user answering is equivalent to randomly drawing X &
The server can examine the result and if X = z;, reject with probability r; and
force the user to answer a differently-worded question with the same answer-

space, in practice re-drawing X & X. We assume the process is recursive: the
user’s second answer z; may also be rejected with some probability r;. This
process results in a modified distribution X’ of answers which are accepted.

If we are constrained by a maximum-allowable overall rejection probability
T, it is simple to find the optimum rejection probabilities r1,...rNy which will
most increase security. This comes from the observation that, given the ability
to lower any single p; by any fixed A, lowering p; will result in the greatest
increase for each of Hy,, é, 1o, and 5\,@. The optimal rq,...rx are thus computed

What’s in a Name? 111

by an iterative algorithm. First r; is increased until pj = p}, namely by setting
rr = 1-— Z?. Next, we increase r1 and ro together until pj = p, = pi. We
repeatedly increase r through 7, so that pj = --- = pj, ., stopping when
e = Y it o Ti-p; and we have reached our maximum overall rejection probabilityﬁ
The m most likely events are equiprobable in X’. The remaining events are never
rejected; their probabilities each increase by 1_1“.

Shaping is very effective at increasing ;\5 as the most likely events are greatly
reduced in probability. As shown in Figure 2] shaping the name distributions in
the Facebook corpus drives A3 close to [L% even for reasonable r, < 0.5. Even
relatively mild shaping with 7, = 0.1 of increases A3 by 3.6 bits for surnames.
Although the overall rejection rate is low, though, it is highly unequal: for r, =
0.1 the rejection rate ry for the surname “Smith” is 94.3%.

7 Concluding Remarks

We have applied marginal guessing metrics to the security analysis of common
personal knowledge questions. We then used a diverse collection of real-world
statistical data to estimate the strength of these questions against a trawling
attacker with a large number of accounts to test. We believe this is an increas-
ingly important attacker model and our methods provide a useful framework for
evaluating human-computer authentication.

We have not assessed a ground-truth answer space; the actual distribution
of surnames provided to a deployed authentication server will vary based on
the precise question wording and specific user population. Still, we have found
strong evidence that across a broad range of cultures and contexts, human-
created names simply don’t have enough diversity to provide serious resistance to
guessing attacks. In combination with recent results demonstrating vulnerability
to targeted attacks, our work casts serious doubt on the continued use of personal
knowledge questions for backup authentication.

Acknowledgements

We thank our anonymous referees and our shepherd Lucas Ballard for their
detailed and helpful comments. We also thank David Aspinall, Claudia Diaz,
Andrew Lewis, and Hyoungshick Kim for assistance drafting our report. Just
and Matthews were funded by UK EPSRC, Grant No. EP/G020760/1.

References

1. Ballard, L., Kamara, S., Reiter, M.K.: The Practical Subtleties of Biometric Key
Generation. In: SS 2008: Proceedings of the 17th Conference on Security, Berkeley,
CA, USA, pp. 61-74. USENIX Association (2008)

8 The algorithm may terminate early if the distribution has reached uniformity, though
this is probably impractical. For example, the Facebook surnames corpus requires a
rejection rate of 95.5% to be shaped to uniformity.

112

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

J. Bonneau, M. Just, and G. Matthews

Bentley, J., Mallows, C.: How Much Assurance Does a PIN Provide? In: Baird, H.S.,
Lopresti, D.P. (eds.) HIP 2005. LNCS, vol. 3517, pp. 111-126. Springer, Heidelberg
(2005)

. Boztas, S.: Entropies, Guessing, and Cryptography. Technical Report 6, Depart-

ment of Mathematics, Royal Melbourne Institute of Technology (1999)

. Cachin, C.: Entropy measures and unconditional security in cryptography. PhD

thesis, ETH Ziirich (1997)

. Chiasson, S., Forget, A., Biddle, R., van Oorschot, P.C.: Influencing Users Towards

Better Passwords: Persuasive Cued Click-Points. In: BCS-HCI 2008: Proceedings
of the 22nd British HCI Group Annual Conference on HCI 2008, Swinton, UK,
UK, pp. 121-130. British Computer Society (2008)

. Davis, D., Monrose, F., Reiter, M.K.: On User Choice in Graphical Password

Schemes. In: SSYM 2004: Proceedings of the 13th Conference on USENIX Security
Symposium, Berkeley, CA, USA, p. 11. USENIX Association (2004)

. Dragomir, S.S., Boztas, S.: Some estimates of the average number of guesses to

determine a random variable. In: Proceedings of the 1997 IEEE International Sym-
posium on Information Theory, p. 159 (1997)

. Ellison, C., Hall, C., Milbert, R., Schneier, B.: Protecting Secret Keys with Personal

Entropy. Future Gener. Comput. Syst. 16(4), 311-318 (2000)

. Forget, A., Chiasson, S., van Oorschot, P.C., Biddle, R.: Improving Text Pass-

words Through Persuasion. In: SOUPS 2008: Proceedings of the 4th Symposium
on Usable Privacy and Security, pp. 1-12. ACM, New York (2008)

Fox, W.R., Lasker, G.W.: The Distribution of Surname Frequencies. International
Statistical Review, 81-87 (1983)

Frykholm, N., Juels, A.: Error-tolerant password recovery. In: CCS 2001: Proceed-
ings of the 8th ACM Conference on Computer and Communications Security, pp.
1-9. ACM, New York (2001)

Griffith, V., Jakobsson, M.: Messin’ with Texas: Deriving Mother’s Maiden Names
Using Public Records. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS
2005. LNCS, vol. 3531, pp. 91-103. Springer, Heidelberg (2005)

Haga, W.J., Zviran, M.: Question-and-answer passwords: an empirical evaluation.
Inf. Syst. 16(3), 335-343 (1991)

Jakobsson, M., Yang, L., Wetzel, S.: Quantifying the Security of Preference-based
Authentication. In: DIM 2008: Proceedings of the 4th ACM Workshop on Digital
Identity Management, pp. 61-70. ACM, New York (2008)

Just, M., Aspinall, D.: Personal choice and challenge questions: A security and
usability assessment. In: Cranor, L. (ed.) SOUPS, ACM International Conference
Proceeding Series. ACM, New York (2009)

Klein, D.: “Foiling the Cracker”: A Survey of, and Improvements to, Password
Security. In: Proceedings of the 2nd USENIX Security Workshop, pp. 5-14 (1990)
Kuo, C., Romanosky, S., Cranor, L.F.: Human Selection of Mnemonic Phrase-based
Passwords. In: SOUPS 2006: Proceedings of the Second Symposium on Usable
Privacy and Security, pp. 67-78. ACM, New York (2006)

Lindamood, J., Kantarcioglu, M.: Inferring Private Information Using Social Net-
work Data. Technical Report UTDCS-21-08, University of Texas at Dallas Com-
puter Science Department (July 2008)

Malone, D., Sullivan, W.G.: Guesswork and Entropy. In: Proceedings of the 2004
IEEE International Symposium on Information Theory, vol. 50 (2004)

Massey, J.L.: Guessing and Entropy. In: Proceedings of the 1994 IEEE International
Symposium on Information Theory, p. 204 (1994)

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

A

What’s in a Name? 113

O’Gorman, L., Bagga, A., Bentley, J.L.: Call Center Customer Verification by
Query-Directed Passwords. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 54—
67. Springer, Heidelberg (2004)

van Qorschot, P.C., Thorpe, J.: On Predictive Models and User-Drawn Graphical
Passwords. ACM Trans. Inf. Syst. Secur. 10(4), 1-33 (2008)

Pliam, J.O.: On the Incomparability of Entropy and Marginal Guesswork in
Brute-Force Attacks. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS,
vol. 1977, pp. 67-79. Springer, Heidelberg (2000)

Pond, R., Podd, J., Bunnell, J., Henderson, R.: Word Association Computer Pass-
words: The Effect of Formulation Techniques on Recall and Guessing Rates. Com-
puters & Security 19(7), 645-656 (2000)

Rabkin, A.: Personal knowledge questions for fallback authentication: Security
questions in the era of Facebook. In: Cranor, L.F. (ed.) SOUPS, ACM Interna-
tional Conference Proceeding Series, pp. 13-23. ACM, New York (2008)
Schechter, S., Brush, A.J.B., Egelman, S.: It’s no secret: Measuring the security and
reliability of authentication via ‘secret’ questions. In: IEEE Security and Privacy.
IEEE, Los Alamitos (2009)

Schneier, B.: Real-world passwords (December 2006)

Spafford, E.: Observations on Reusable Password Choices. In: Proceedings of the
3rd USENIX Security Workshop (1992)

Thorpe, J., van Oorschot, P.C.: Human-Seeded Attacks and Exploiting Hot-Spots
in Graphical Passwords. In: SS 2007: Proceedings of 16th USENIX Security Sym-
posium, Berkeley, CA, USA. USENIX Association (2007)

Toomim, M., Zhang, X., Fogarty, J., Landay, J.A.: Access Control by Testing for
Shared Knowledge. In: Czerwinski, M., Lund, A.M., Tan, D.S. (eds.) CHI, pp.
193-196. ACM, New York (2008)

Yan, J., Blackwell, A.,; Anderson, R., Grant, A.: Password Memorability and Se-
curity: Empirical Results. IEEE Security and Privacy Magazine 2(5), 25 (2004)

Sources of Statistical Data

Below is a summary of statistical data sources used in compiling this paper. Com-
plete information on the data sets is provided on our project website http://
groups.inf.ed.ac.uk/security/KBA/.

Chile Civil Identification and Registration Service
Des Moines Register

Eeski Ekspress

Euromonitor International

Finland Population Register Center

Intellectual Property Australia

Japanese Surname Dictionary

Los Angeles Department of Animal Licensing

San Francisco Animal Licensing Department
Scottish Government School Education Statistics
Spanish National Institute of Statistics

Statistics Belgium

Statistics Iceland

Statistics Korea

Statistics Norway

United Kingdom Department for Children, Schools, and Families
United Kingdom Office for National Statistics
United States Census Bureau

United States Social Security Administration

http://groups.inf.ed.ac.uk/security/KBA/
http://groups.inf.ed.ac.uk/security/KBA/

Cryptographic Protocol Analysis of AN.ON

Benedikt Westermann®, Rolf Wendolsky?,
Lexi Pimenidis®, and Dogan Kesdogan'*

1 Q2S*, NTNU, 7491 Trondheim, Norway
2 JonDos GmbH, 93055 Regensburg, Germany
3 iDev GmbH, 50672 Cologne, Germany
4 Chair for IT Security, FB5, University of Siegen, 57068 Siegen, Germany

Abstract. This work presents a cryptographic analysis of AN.ON’s
anonymization protocols. We have discovered three flaws of differing
severity. The first is caused by the fact that the freshness of the session
key was not checked by the mix. This flaw leads to a situation where an
external attacker is able to perform a replay attack against AN.ON. A
second, more severe, error was found in the encryption scheme of AN.ON.
An internal attacker controlling the first mix in a cascade of length two
is able to de-anonymize users with high probability. The third flaw re-
sults from the lack of checks to ensure that a message belongs to the
current session. This enables an attacker to impersonate the last mix in
a cascade.

The flaws we discovered represent errors that, unfortunately, still oc-
cur quite often and show the importance of either using standardized
crytpographic protocols or performing detailed security analyses.

1 Introduction

In recent years anonymous communications have become an important build-
ing block for privacy-preserving systems. Anonymous channels are often an
unconditional requirement for e-voting, e-health or anonymous credential sys-
tems. Many techniques have been proposed in theory, for example Tarzan[l] or
MorphMix[2]. However, only a few systems have been widely deployed. In terms
of number of users, the two major deployed anonymization systems are Tor[3]
and AN.ON/JonDonym].

In general, publications concerning anonymous communications deal with at-
tacks on the network layer, performance improvements or the consolidation of
knowledge with regards to anonymous communication in general. Unfortunately,
the underlying cryptographic protocols have not received the same attention,
despite the fact that anonymity strongly depends on the correct practical com-
bination, usage and implementation of cryptographic primitives.

* “Center for Quantifiable Quality of Service in Communication Systems, Center of
FEzxcellence” appointed by The Research Council of Norway, funded by the Research
Council, NTNU and UNINETT. http://www.q2s.ntnu.no

1 Also known as “JAP”, the name of the client software, or “Java Anon Proxy”.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 114{128] 2010.
© IFCA/Springer-Verlag Berlin Heidelberg 2010

http://www.q2s.ntnu.no

Cryptographic Protocol Analysis of AN.ON 115

This paper takes a closer look at the cryptographic protocols used for the
anonymization process of AN.ON, and discovers several vulnerabilities. The fol-
lowing two sections describe the basic concepts of AN.ON, the attacker model
and the underlying assumptions of the system. Section [l continues with the au-
thentication protocol involving the user and the first server. Section [l presents
an attack on the general encryption scheme used by AN.ON. Section [@ discusses
a flaw in the mix initialization protocol. The previous work in this area is pre-
sented in Section [following a discussion in Section [§ about the reasons for
these flaws. Finally, we present our conclusions.

2 Description of AN.ON

AN.ON, short for Anonymity Online, is a project that provides anonymity on the
network layer. More precisely, it offers sender anonymity against the receiver of
a message and relationship anonymity against a local attacker, such as an eaves-
dropper of an Internet connection. In terms of web browsing, sender anonymity
means that a web server cannot identify a user via their IP address. Relationship
anonymity means that a local attacker cannot identify the sender or receiver of
a message. Thus, an attacker can at most identify the sender or the receiver, but
not both [5].

In order to establish such a service, AN.ON uses the so-called miz servers
otherwise known simply as mizes[6]. A mix is an intermediate entity between a
sender and a receiver of a message. Its task is to establish anonymity for the user.
A mix accomplishes this by hiding the relation between incoming and outgoing
messages. In [4] the authors propose the usage of encryption and reordering of
messages to establish anonymity. However, for performance reasons the reorder-
ing of messages is typically deactivated in AN.ON.

To provide relationship anonymity regarding the operator of a mix, several
mixes are typically chained together. Such a chain is called a cascade (see Figure
). The order of the mixes is chosen by their operators and cannot be changed by
a user. Every packet which is received by the first mix in the cascade is forwarded

M2 -
. receiver 1
second third

mix

=

a

M: :message encrypted with the key of the first mix _

receiver 3

receiver 2

1 :message encrypted with the key of the second mix

: message encrypted with the key of the third mix

sender 3

Fig. 1. Example for a cascade in AN.ON

116 B. Westermann et al.

to a second mix and so forth. By these mechanisms, AN.ON aims to establish
anonymity for a user under the assumption that not all mix operators collude.

The basic anonymization process works in the following way: a sender encrypts
a message, which includes the final destination, with a symmetric key. The key
is shared between the last mix in a given cascade and the user. The result of
the encryption is again encrypted with a symmetric key that is shared with the
predecessor of the last mix. This procedure is repeated until the first mix in the
cascade is reached and thereby the typical layered encryption is created.

Afterwards the message is sent to the first mix. This mix uses its shared
symmetric key to decrypt the message and forwards the result to the next mix,
which also decrypts the message. When the last mix in cascade is eventually
reached, the mix performs the final decryption of the message and is thus able to
get the destination of the message. Finally, the unencrypted message is forwarded
to the destination.

In addition to senders, receivers and mixes, there is an additional party, the
so-called infoservice. This service, operated by a third party, provides users of
the system with the necessary information about the cascades.

3 Scope, Assumptions and Course

The analysis in this paper looks in detail at the protocols used in the mix server
version 00.08.60 of AN.ON. This was the most recent version at the time of our
analysis and was released in February 2009.

Our analysis focuses on the anonymization process and ignores the protocols
that are involved in the information distribution process, which normally involves
the infoservice. Due to this, we assume that a user knows the public signature
keys of the mixes. Generally, we assume that every mix uses an uncompromised
key pair to sign data.

Our assumed adversary has the capabilities of a local active attacker. Thus,
the attacker is only able to eavesdrop some connections of either the user, the
mixes or the final destination, but not all at the same time. The attacker is also
able to add, modify, replay or drop packets passing an observed link. We further
assume that the attacker can operate a single mix in the cascade. Finally, we
assume that the attacker is not able to break basic cryptographic primitives,
such as AES or RSA, but is assumed to possess all prior private keys that are
no longer used by the mixes. Note that this attacker model is weaker than the
attacker that was originally proposed in [4], in which the authors assume a global
attacker. However, recent publications have shown that AN.ON is not able to
resist this kind of attacker in practise[7S].

In order to retrieve the information about the protocols we made use of a
technical report describing the anonymization process[d]. We have also examined
the source code in order to find undocumented changes in the protocols. The
results of the analysis were discussed with developers of the AN.ON project, who
also helped us to retrieve the mix authentication protocol, see Section [6l

Cryptographic Protocol Analysis of AN.ON 117

4 Authentication Protocol of the First Mix

Before we describe the protocol it is necessary to take a brief look at the so-called
descriptors that are provided by the infoservice. A descriptor is an XML-based
document which describes the entities of a cascade. It contains general informa-
tion about the cascade, a description for each mix and a signature for the whole
document. The last of these is provided by the first mix in the cascade. The
description of each mix is also signed by the corresponding mix. The signature
aims to prevent a malicious modification of the mixes’ descriptions. The descrip-
tion of a mix includes different public keys, a timestamp and X509 certificates
for the included public keys.

In this section of the paper we assume that when a user receives a descriptor
with a valid signature of a known authority, they possess every public key of the
mixes in the cascade. In addition we assume that all keys are not compromised
by an adversary and that the certificates are up-to-date.

The mix authentication protocol aims to create a session key between the JAP,
which is the client application, and the first mix in a cascade. The preconditions
for the protocol are that a user knows the public signature key of the first
mix. The mix owns the corresponding key pair, which is only used to produce
signatures. In addition to this key pair the mix also possesses a public key pair
that can only be used for encryption. However, the key which is used for the
encryption is not initially known by the JAP.

Figure 2] shows a message sequence chart of the mix authentication protocol
at an abstract level. We assume that the JAP knows the public signing key
Ky of the first mix. The known relation is represented by the > sign. The mix
holds two key pairs: the first key pair is (K';;1 , K1) which is used only to sign
documents. The second key pair is (KA}ll,KMg). Its public key can be used by
the JAP to encrypt messages for the mix.

In the first message that is sent by the first mix to the user, a descriptor
for the cascade is transmitted. The descriptor includes, among other data, the
public encryption key K1 of the first mix. In order to simplify the presentation
we represent the remaining information by m. For example, the keys of the other
mixes are included in m. The whole descriptor is signed by the first mix, which
is denoted by {H (m, KMg)}KA}ll. After the message is received by the JAP, it
verifies the signature. If this succeeds it also knows the public encryption key of
the first mix. In the next step, the JAP generates a symmetric session key and
sends the key encrypted with the public encryption key K1 to the first mix.
Since the first mix owns the corresponding private key, it is able to decrypt the
message. Thus, it also knows the symmetric session key. Finally, the mix sends
a confirmation to show the possession of the symmetric key to the JAP. The
confirmation is basically a hash of the descriptor, the session key and the public
encryption key of the first mix.

A closer look at the protocol shows that a mix has no guarantee that the mes-
sage containing the session key was created in the current session. An attacker
can send, instead of a new message, a recorded message of an old session. This is
known as a replay. The mix cannot check, in this protocol, whether the session

118 B. Westermann et al.

msc Authentication Mix Protocol (JAP « First Mix)

JAP First Mix
J > Ky > <Ml 5 Ky Ky K K

| 1om, Ky, {H(m, Kppn) FIC
< JBKAQ >
Ky €r {0, 1}

-1
M?

2: {KJ]\]l}K]\]é

< M's K n >

3 {H(m, Ky, Ka)} K

-1
M1

Fig. 2. Mix Authentication Protocol

is a replay or not. Thus, the whole anonymization process may be vulnerable to
replay attacks.

As we did not find any replay protection in the other protocols, we tried to
replay the whole session including several HT'TP requests. We used the exist-
ing service “Dresden” in order to check if a replay is possible. To this end, we
recorded a session of a short sequence of website queries and their replies. For
testing purposes, we retrieved a website which was hosted on a server under our
control. The second and third website were hosted on foreign servers. The last
website again was located on a server which was under our own control.

To replay the session we simply connected to the mix and sent all the previ-
ously recorded raw packets in the mix. Shortly after the replay was started we
were able to observe HT'TP requests on both of our web servers. Both HTTP re-
quests were sent by the last mix of the “Dresden” cascade. Thus, in the version
we evaluated there was no protection against replay@. This lack of protection
leads to various different attacks threatening not only the anonymity of a user
with respect to a global attacker[d]. For instance, an attacker could replay a
post command which modifies data on the web server in order to threaten data
integrity.

The replay attack can be limited to an internal attacker if the mix ensures
that the received key is fresh. The simplest solution seems to be to establish
a TLS connection between the user and the first mix. However, whether this
solution suits AN.ON’s requirements is not within the scope of this paper.

This change only protects against an external attacker. In order to protect
against replay by an internal attacker other countermeasures are necessary, such
as the solution described in [10]. Here the authors try to find a trade-off between

2 Replay protection is under development, but takes place at a higher level.

Cryptographic Protocol Analysis of AN.ON 119

storing every used key in a database, performance and security. Their idea is to
use small parts of a symmetric key to mark a time period. Some parts of the
key are predictable, which subsequently lowers the strength of the symmetric
key. An identifier of every used key is stored in a database during a given time
period. Only keys that are within the current time period, and that are not
already stored in the database, are accepted for a new connection.

5 Attack on AN.ON’s Encryption/Decryption Scheme

In this section we concentrate on the encryption and decryption of exchanged
messages.

5.1 Structure of Mix Packets

As briefly described in Section 2] a user forwards packets along a chain of mixes.
For each hop, the user adds a layer of encryption around the message which is
later removed by the corresponding mix.

To analyse the protocol it is necessary to examine the structure of the packets.
Figure Bl illustrates the structure of a packet which is sent by a user to the first
mix. The first part is the mix packet header. Its size is 6 bytes and it contains
a channel ID and some flags. The remaining part can be used to transfer data
from the user to the last mix in the cascade. It is important to notice that only
the last 992 bytes travel along the whole cascade. The first 6 bytes (channel ID
and flags) can be completely modified at each hop. It is therefore necessary to
encrypt different parts of the packet in different ways with different keys.

1 2 3 4 5 6 7 8[9 1011 12 13 14 15 16]17 18 19 20 21 22 23 2425 26 27 28 29 30 31 32

1.32
3. 64 Payload (992 Bytes)
966 .. 998

| [payload of amix packet | [sym. channel encryption

Fig. 3. The Structure of a Mix Packet

One encryption layer is added to protect the confidentiality of the channel ID
and the flags during the transmission between adjacent entities. Obviously, the
symmetric key for the encryption is shared by exactly two adjacent parties. For
purposes of speed optimization the whole packet is not encrypted, only the first
16 bytes (128 bit). Thus, this layer of encryption includes the channel ID, the
flags and the remaining 10 bytes of the payload of the message. For encryption,
AES is used in the output feedback mode (OFB, see Section [£.2])).

The structure and the encryption of the payload depend on whether a mix
packet is the first in an anonymous channel, or a packet of an already opened
channel. If a mix receives a packet it checks, based on the channel ID and the

120 B. Westermann et al.

flags, if the packet opens a new stream. Such a packet is called a channel-open
packet. In this case, the mix decrypts the first 128 bytes by using its RSA private
keyﬁ. The first part of the decrypted bytes contains a symmetric key (16 bytes).
This is used for decrypting both the remaining 864 bytes of the packet and the
subsequent packets of the anonymous channel. If the mix is an intermediate mix,
the remaining part of the packet is encrypted for the next mix (see Figure [).
Thus, the mix needs to forward the packet to the next mix. Before the packet
is forwarded, the mix removes its key (16 bytes) from the packet and adds 16
bytes of random data to the end in order to preserve the length of the packet.
Finally, the mix forwards the payload together with a matching header to the
next mix. If the mix is the last mix in a cascade it decrypts the first 128 bytes
with its private RSA key and the remaining bytes with the symmetric key which
is stored in the first 16 bytes of the packet. In addition to the payload a mix
packet for a last mix contains a header field after the key. This field indicates
how many of the 992 bytes for the payload are used for data, as well as the type
of the data. The remaining bytes are random data (see Figure [H).

123456 7 8|9 101112131415161718192021222324\2526272829303132
Symmetric Key (K) for Mix
Encrypted data for the next Mix (976 Bytes)

1..32

960 .. 992

Fig. 4. The structure of the payload for intermediate mixes for the initial packet

123456789101112131415161718192021222324‘2526272829303132
1.32 Symmetric Key (K) for Mix
% Data of the user (Len Bytes)
960 .. 992

Fig. 5. The structure of the payload for the last mix for the initial packet

In the case of subsequent packets only one encryption scheme is used. The
whole payload is encrypted symmetrically with the key that was sent within the
channel-open packet. Each mix uses its key to decrypt the 992 bytes of payload.
When the packet is decrypted by the last mix, the packet can again be divided
in three parts: the header, the data and random data.

In order to process replies, every mix encrypts the data received by the suc-
cessor mix and forwards it to the predecessor mix. The structure of the mix
packet is equal to the structure a subsequent packet. Thus, the whole packet is
symmetrically encrypted. The same symmetric keys are used by the mixes for
both transmission directions. The algorithm used is AES in OFB-mode.

3 In the case of the first mix, this part is symmetrically encrypted. Since this is not
important for the attack we omit a further explanation.

Cryptographic Protocol Analysis of AN.ON 121

5.2 Output Feedback Mode (OFB)

AN.ON uses AES in OFB mode for its symmetrical encryption operations. The
objective of the OFB mode is to produce a infinite key stream. To this end,
it uses an initialization vector and a key. The initialization vector is encrypted
with AES, which uses the key. The result of this is used twice: first, it is XORed
with the plain text. Second, it is used in the subsequent round instead of the
initialization vector. Figure [(] illustrates the mode of operation of OFB.

Keystream [T T T T T T T T T T TTT T TTTTTTTTTTTT]
B B E:)

Plainext [T T T T T T T T T T TTTTTTTTTTTITTTTT]

Fig. 6. Sketch of the output feedback mode

5.3 The Attack

As mentioned above, a mix uses the same key to decrypt messages in the sending
direction as well as to encrypt the messages in the receiving direction. Moreover,
a mix uses the same initialization vector for both directions. Therefore, a mix
produces the same key stream for both directions.

We denote with k[the byte of the i-th position in the key stream of mix
m. Let d; denote the i — th data byte in the data streaml] and with ¢; the final
encrypted message byte at position ¢. To distinguish the sending and receiving
direction we use either the superscript r or s for ¢; and d; respectively.

At first we formalize the receiving situation where a packet travels from the
last mix along the cascade to the user. Let p denote the position of the last
mix that processed the packet and let n be the number of mixes in the cascade.
Thus, if the user receives a packet, p is equal to 1 since the first mix was the
last involved mix. Let ¢ denote the byte position in the byte stream of a packet.
Based on the notation we can describe the ith encrypted byte in the receiving
direction by:

n
Cg(p):d?@k:nj 120 AN 1<p<n (1)
Jj=p

However, if we take a look at the sending direction the situation is slightly
different due to the payload structure of the initial packet in a data stream.
Recall that if an intermediate mix in a cascade receives a channel-open packet in
a data stream, the first 128 bytes are asymmetrically encrypted and the following
bytes symmetrically. During processing, an intermediate mix removes its key

4 The data stream includes the 3 byte header of each packet as well as the padding.

122 B. Westermann et al.

from the payload (and adds 16 bytes to the end). Now the packet is forwarded
to the next mix who expects again that the first 128 bytes of the payload are
encrypted asymmetrically and the remaining bytes are encrypted symmetrically.
Thus, the key streams of the mixes need to be shifted by a user by 16 byte per
hop. The reason for the shift is the symmetric key that is stored in the first 16
bytes of the initial data stream packet.

By formalizing the encryption, we result in:

s+ = diios P Ky 0<p<n—1Ai>(n—p-1)-16 (2)
Jj=p+1

for the i-th encrypted byte.
The equations [1l and] become interesting if we consider the first mix in a
cascade of length 2. By using both formulas we result in:

¢ (2) = di © k™ 3)

Cir128(2) = diy108 © K™ (4)

The xor of both encrypted values result in:
i (2) @ i y108(2) = df 195 B df (5)

In case of AN.ON most of the traffic that is transfered over the cascade is normal
HTTP traffic, which includes the HTTP header. Moreover, the content of an
HTTP header is partially known by the adversary. Thus, an attacker can use
the known parts in order to decrypt unknown parts of the HTTP header with
help of Formula [Bl This becomes critical in AN.ON if the attacker is able to
reconstruct the request line or the Host field in an HTTP request. The former
includes the requested URL and the latter the queried host. Therefore, if an
attacker is able to reconstruct parts of either the Host field or the request line
he has deanonymized the user.

For a proof of concept, we have recorded the payload parts of the packets
that were either sent from the first mix to the second mix (p = 1) or sent from
the second mix to the first mix (p = 2) in the Dresden-Dresden cascade. We
therefore assume an internal attacker on the first mix. In order to correct the
offset of the sending stream we removed the first 128 bytes of the stream. The
result of this was XORed with the receiving stream. To omit the 3 bytes of the
payload header we removed the first 3 bytes of the result and XORed it with the
most probable HTTP response line “HTTP/1.0 200 OK\r\n’ﬁ. This procedure
resulted in the string “st: www.google.de” which is the last part of the Host field
in the original HTTP request header. Thus, we uncovered the destination of the
request simply through the use of two recorded encrypted packets that were sent
and received by the first mix. Since the first mix in the cascade also knows the
IP address of the user, an internal attacker is able to revoke the relationship

5 There are only a few different possibilities for the response line.

Cryptographic Protocol Analysis of AN.ON 123

anonymity without the help of the second mix. Clearly, this contradicts to the
objectives of AN.ON.

For our attack we have assumed a local internal attacker. Nevertheless, an
external attacker is also able to perform the attack, even though it is slightly
more difficult. This difficult is for three reasons: firstly, the attacker does not
know the mapping between incoming and outgoing messages. Thus, they cannot
map directly the IP address of the sender to the uncovered receiver. Secondly, the
attacker cannot use the first 7 bytes of the HT'TP response in the payload due
to the channel encryption. Thus, they have less information available. Thirdly,
the attacker cannot easily recognize which received packet belongs to which sent
packet. These constraints are not, in our opinion, a significant challenge. The
mapping can be received due to the fact that the packets are processed in a FIFO
order. The fact that the attacker misses 7 bytes merely lowers the probability of
success slightly. The last challenge can be addressed by probing which received
packet leads to a useful output with respect to a recorded sent packet. If we
assume the external attacker is able to master the first and third challenge, they
are able to deanonymize the user in our example. The attacker is able to retrieve
“.google.de” without any further guesses.

5.4 Discussion of the Attack

The attack presented above is based on several problems. Firstly, the plain text
of the encrypted message is partially known. Secondly, the encryption is a XOR
encryption and therefore an encrypted bit only depends on a single bit of the
plain text as well as the key stream. Thirdly, the same parameters are used for
both directions. The first and the second fact are difficult to avoid due to the
design of AN.ON. Thus neither the cipher feedback (CFB) nor the cipher block
chaining (CBC) mode can be used , due to the processing of the initial packet
in a data stream. The electronic codebook (EBC) mode is also not suitable as it
does not hide data patterns. Thus, it is only possible to change the parameters
of the encryption, preferably the key. The key streams of both stream directions
thus become different. In a conversation with the developer[T1] it was mentioned
that AN.ON recently became aware of these risks and that changes had been
made in order to use different keys. This was independent of our analysis. Hence,
the mix software has already been updated to reflect this issue.

6 Attack on the Mix Authentication Protocol

In this section we look at the cascade initialization protocol between mixes. The
protocol aims to exchange a key with adjacent mixes in the cascade. In addition,
it should also mutually authenticate the mixes.

Let mq,...,m, the mixes in a cascade. The protocol begins with the estab-
lishment of a TCP connection between the mixes m; and m;,1. Note that m;
initiates the connection to m;41.

Figure[7 depicts the protocol between two mixes. It starts with the generation
of a nonce (n) and an asymmetric encryption key (K;/[EH) by the mix 7 + 1.

124 B. Westermann et al.

msc Authentication between Mixes (M? « Mit1)

Mix ¢ Mix i+ 1
M3 K;IluK;jan]\/IH»l M3 Kzrfl“rl’KM"

—1
Generate KM%Jr|

ner {0, 1}*

1:m, Ky, {H(m, K, i, n)}Kﬂ}hl

M3 Ky

Kppiarier € {0,1}F

2 {Kppagon YKy, {H{ Kpiaper JK e, n) PG

MY S Kypippin

- -

Fig. 7. Mix Authentication Protocol

Afterwards, mix ¢ + 1 transmits its description (m), its public encryption key
(K ypi+1), the generated nonce and a signed hash of the triple (m, K i+1,n) to
mix ¢. Mix 4 checks whether the received signature is valid with respect to the
known key of mix ¢ 4+ 1 or not. In the former case mix i generates a session key
and encrypts the session key with the received key K i+1. The result is sent
together with a signature of the encrypted key and the nonce to the mix i + 1.
Mix i + 1 checks the validity of the signature with respect to the configured
public key of mix 4. If it succeeds mix ¢ + 1 uses the received key as symmetric
key for the channel encryption between the two mixes.

A problem arises when an attacker compromises the private encryption key
of the last mix in the cascade, possibly at a later point in time. In this case the
attacker is able to replace the certified mix with his own mix. To this end, the
attacker needs a recorded session of the authentication protocol in which the
compromised key was used. In order to mount the attack the attacker redirects
the TCP connection from the certified mix to its own mix. Afterwards, the mix
replays the first message of the previous session to the mix 7. Due to the fact
that the signing key is usually changed only once a year, the mix ¢ will most
probably accept the signature of the “certified” mix. In correspondence with
the protocol, mix ¢ generates a session key and sends the encrypted session
key together with its signature back to the attacker. The attacker who knows
the private encryption key can now decrypt the session key and is therefore
authenticated in the cascade as certified mix even though he does not possess
the signature key. A user is unable to distinguish the attacker from the certified
mix at a later date via the existing protocols. Therefore, the attacker is able to
eavesdrop on all the outgoing data of the users, which may contain identifying

Cryptographic Protocol Analysis of AN.ON 125

information. However the attacker is not able to deanonymize users solely based
on this attack.

At a first glance, the attack looks impractical due to the fact that an attacker
needs to compromise one of the private encryption keys. However, if we consider,
for example, the recent OpenSSL bug in the Debian Linux distributiorﬁ[l?], this
attack becomes more practical. The mix software relies on OpenSSL, and thus
any asymmetric encryption key generated by a mix which used a vulnerable
OpenSSL library is potentially compromised. This means that an attacker can
immediately retrieve the private key from a given public key generated by a
vulnerable OpenSSL version. Hence, if an attacker once recorded a session in
which a mix used a vulnerable key, he is able to impersonate the mix with the
attack described above. The only way to circumvent the attack in the current
version is to replace every signature key that has been used with a vulnerable
OpenSSL version. Obviously, the protocol also needs to be fixed to counter the
described attack.

It is worth noting that this protocol is based on the “Key Transport Mecha-
nism 4” of the ISO/IEC 11770-3:2008 standard[I3]. The author of the AN.ON
protocol modified it slightly in order to authenticate mixz;, 1 as well. The author
therefore included a signed version of the miz;y1’s encryption key as well as
the descriptor of the mix. In addition he omitted the identity of mix from the
encrypted secret, which could lead to other attacks. This example shows how
dangerous it is to modify standardized cryptographic protocols to apply them
beyond their intended use.

For the protocol in Section @l we see no reason why a custom-made or a mod-
ified standard protocol is necessary for the authentication and encryption. TLS
supports client and server authentication via X509 certificates and is addition-
ally able to secure data transmitted later. This protocol should therefore be
suitable for the communication and authentication between the mixes. One rea-
son to choose another protocol might be performance, as some data is encrypted
unnecessarily in this scheme.

7 Related Work

This paper is the first cryptographic protocol analysis of AN.ON’s anonymiza-
tion process. In 2009, Westermann[I4] performed a security analysis of AN.ON’s
payment system, but did not take the anonymization process into account.

For I2Pl], an anonymously developed anonymization service, there is no pub-
lished description of the anonymisation protocol available and to the best of our
knowledge also no publicly available security analysis.

In contrast to AN.ON and I2P, the cryptographic protocols of the Tor sys-
tem have been analyzed[3] with the NRL protocol analyzer[I5]. In 2006 Gold-
berg proved that the Tor authentication protocol is secure in the random oracle
model[16]. In general, this does not guarantee that the implementation has no

5 A vulnerable version can only generate a limited number of keys.
" http://www.i2p2.de

http://www.i2p2.de

126 B. Westermann et al.

flaws with respect to the implementation of the protocol and the cryptographic
primitives. An examples of this is that, due to the lack of AES in counter mode
in early OpenSSL versions, the Tor developers were forced to implement their
own version. Unfortunately, there was a bug in this implementation that caused
the counter to be reset after 16 bits. This clearly threatened the security of the
system[I7].

8 Discussion

In the field of low-latency anonymous communications, the main research fo-
cus seems to be on mechanisms that establish anonymity or improve perfor-
mance. Many publications deal only with the general mechanisms for establish-
ing anonymity by using idealized underlying protocols, and omit a clear and
detailed cryptographic protocol description. However, most mechanisms are not
implemented and thus this lack of detail is a minor problem. As soon as a pro-
tocol is implemented, however, it is crucial to publish and analyse the protocols
that are composed or invented by the authors.

Tor is a good example of the right way to achieve this. The developers de-
scribed and analysed the cryptographic protocols in a early stage of the project.
Possible changes to the cryptographic protocols are published before they are
implemented in Tor. In [I8] the authors propose a more efficient way to establish
circuits, however to the best of our knowledge this is not implemented yet, but
is in discussion to be introduced in a later version.

In general, it is almost always a good idea to use standard cryptographic pro-
tocols for a product. However, building an anonymity network solely on stan-
dardized protocols, while possible, introduces a number of constraints[19]. In the
case of high-latency anonymity networks, with regard to the protocols and mech-
anisms proposed so far, it seems almost unavoidable to compose cryptographic
primitives and invent cryptographic protocols for novel, specific purposes. How-
ever, it seems that this area enjoys a stronger focus on proving the correctness
of protocols compared to the field of low-latency networks.

Our analysis shows that referring to a technical report for cryptographic pro-
tocols is risky. We claim that a technical report is mostly read by developers, who
are not necessarily cryptographic protocol experts. As a consequence, weaknesses
in the protocols are more likely to be overlooked.

9 Conclusion

In this paper we have analysed the cryptographic protocols of AN.ON and dis-
covered three flaws of differing severity. The first flaw is caused by the fact that
the freshness of the session key was not checked by the mix. This flaw leads to a
situation where an external attacker is able to perform a replay attack against
AN.ON. However, when the replay detection techniques that are currently un-
der development are integrated, the internal as well as the external attacker will

Cryptographic Protocol Analysis of AN.ON 127

no longer able to replay a session. Nevertheless, the flaw in the authentication
protocol must be addressed.

A second, more severe, error was found in the encryption scheme of AN.ON.
An internal attacker controlling the first mix in a cascade of length two is able to
de-anonymize users with high probability. The error was introduced by the reuse
of keys with the same initialization vector. As of November 15, 2009, this error
is fixed in version 00.08.84 by a slight protocol change. Due to compatibility
reasons with older clients, some mix operators have still not updated, but plan
to do so soon.

The third flaw discovered is, at a first glance, more theoretical than practical.
It does, however, have practical relevance due to the OpenSSL flaw in Debian.
The missing check for a message to belong to the current session enables an
attacker to impersonate the last mix in a cascade. However, this can only be
done if the attacker has compromised a private encryption key of the mix that
was signed by the last mix in an older session.

The flaws we discovered represent errors that, unfortunately, still occur quite
often. This again shows the importance of using standardized cryptographic
protocols. As discussed in Section [§ it is not always possible to use a standard
cryptographic protocol due to special requirements. In this case, a composition
of cryptographic protocols and primitives becomes necessary. This does not nec-
essarily lead to a secure system, as various examples and attacks in the past
have shown[20/21]. Therefore, a proof or detailed analysis should be provided,
as it has been given by Tor or by Sphinx[22].

References

1. Freedman, M.J., Morris, R.: Tarzan: a peer-to-peer anonymizing network layer. In:
Atluri, V. (ed.) ACM Conference on Computer and Communications Security, pp.
193-206. ACM, New York (2002)

2. Rennhard, M., Plattner, B.: Introducing MorphMix: Peer-to-Peer based Anony-
mous Internet Usage with Collusion Detection. In: Proceedings of the Workshop
on Privacy in the Electronic Society (WPES 2002), Washington, DC, USA (Novem-
ber 2002)

3. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. In: USENIX Security Symposium, pp. 303-320. USENIX (2004)

4. Berthold, O., Federrath, H., Kopsell, S.: Web MIXes: A system for anonymous and
unobservable Internet access. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 115-129. Springer, Heidelberg (2001)

5. Pfitzmann, A., Hansen, M.: Anonymity, unlinkability, undetectability, unobserv-
ability, pseudonymity, and identity management - a consolidated proposal for ter-
minology, vol. 0.31 (February 2008)

6. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 4(2), 84-88 (1981)

7. Kesdogan, D., Agrawal, D., Pham, V., Rautenbach, D.: Fundamental limits on the
anonymity provided by the mix technique. In: SP 2006: Proceedings of the 2006
IEEE Symposium on Security and Privacy, Washington, DC, USA, pp. 86-99.
IEEE Computer Society, Los Alamitos (2006)

128

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

B. Westermann et al.

Berthold, S., Béhme, R., Kopsell, S.: Data retention and anonymity services -
introducing a new class of realistic adversary models. In: The Future of Identity
in the Information Society. IFIP Advances in Information and Communication
Technology, vol. 298, pp. 92-106 (2009)

. Kopsell, S.: AnonDienst - Design und Implementierung. Technical report, TU Dres-

den University (2004)

Kopsell, S.: Vergleich der Verfahren zur Verhinderung von Replay-angriffen der
Anonymisierungsdienste AN.ON und Tor. In: Dittmann, J. (ed.) Sicherheit. LNI,
vol. 77, pp. 183-187, GI (2006)

Kopsell, S.: Private discussion with the developer (May 2009)

Common Vulnerability and Exposure: CVE-2008-0166 (2008),
http://www.cve.mitre.org| (last visited: 15.12.2009)

ISO/IEC 11770-3:2008: Information technology — Security techniques — Key man-
agement — Part 3: Mechanisms using asymmetric techniques. ISO, Geneva, Switzer-
land

Westermann, B.: Security analysis of AN.ON’s payment scheme. In: Jgsang, A.,
Maseng, T., Knapskog, S.J. (eds.) NordSec 2009. LNCS, vol. 5838, pp. 255-270.
Springer, Heidelberg (2009)

Meadows, C.: The NRL protocol analyzer: An overview. The Journal of Logic
Programming 26(2), 113-131 (1996)

Goldberg, I.: On the security of the Tor authentication protocol. In: Danezis, G.,
Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 316-331. Springer, Heidelberg
(2006)

Dingledine, R.: Security and Anonymity Vulnerabilities in Tor: Past, Present, and
Future. Talk at DefCon 16 (August 2008)

Overlier, L., Syverson, P.: Improving efficiency and simplicity of Tor circuit estab-
lishment and hidden services. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS,
vol. 4776, pp. 134-152. Springer, Heidelberg (2007)

Panchenko, A., Westermann, B., Pimenidis, L., Andersson, C.: Shalon: Lightweight
anonymization based on open standards. In: Proceedings of 18th Internatonal Con-
ference on Computer Communications and Networks, San Francisco, CA, USA
(August 2009)

Simmons, G.J.: Cryptanalysis and protocol failures. Communications of the
ACM 37(11), 56-65 (1994)

Gligoroski, D., Andova, S., Knapskog, S.J.: On the importance of the key separation
principle for different modes of operation. In: Chen, L., Mu, Y., Susilo, W. (eds.)
ISPEC 2008. LNCS, vol. 4991, pp. 404-418. Springer, Heidelberg (2008)

Danezis, G., Goldberg, I.: Sphinx: A compact and provably secure mix format. In:
IEEE Symposium on Security and Privacy, pp. 269-282. IEEE Computer Society,
Los Alamitos (2009)

http://www.cve.mitre.org

A CDH-Based Ring Signature Scheme with
Short Signatures and Public Keys

Sven Schige and Jorg Schwenk

Horst Gortz Institute for IT-Security, Ruhr-Universitdt Bochum, Germany
{sven.schaege, joerg.schwenk}@rub.de

Abstract. In this work we present a new CDH-based ring signature
scheme with some striking advantages. On the one hand it is secure with-
out random oracles, perfectly anonymous, and unforgeable solely under
the CDH assumption in bilinear groups. This makes the security of our
ring signature schemes rely on weaker (and less) assumptions than all
previous (full) ring signature schemes secure without random oracles.
On the other hand the scheme is very space efficient; a public key con-
sists of just a single group element and a ring signature accounts for
only n + 1 group elements, where n is the size of the ring. This is only
about half the number of components when compared to other ring sig-
nature schemes that do not exploit ring re-use. As all computations are
in groups of prime order, we do not need a trusted setup procedure. All
these features do not come for free. The main drawback of our scheme is
that it only provides security against chosen subring attacks where the
attacker is not allowed to query private keys.

Keywords: CDH assumption, bilinear group, ring signature scheme,
programmable hash function.

1 Introduction

The CDH assumption became practical for standard model signature schemes
with the introduction of bilinear pairings into cryptography. In 2005, Waters
showed the existence of a hash-and-sign signature scheme that is secure under
the CDH assumption in the standard model [31]. Since then several signature
schemes, including ring signature schemes [27], sequential aggregate signature
schemes, multisignature schemes, and verifiably encrypted signature schemes [23]
have been proposed that are secure in the standard model. In this work we
develop a new and efficient ring signature schemes without random oracles that
is solely based on the CDH assumption in symmetric bilinear groups.

A ring signature scheme allows a signer to sign on behalf of a group of users,
the so-called ring; the only condition is that the signer must also be part of this
ring. Technically, a ring is represented by the set of public keys that correspond to
the identities of the ring members. Using his private key, the signer can now sign
a message such that anyone can check whether the signature has been generated
by one of the ring members. At the same time, there exists no possibility to

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 129-[42;2010.
© IFCA/Springer-Verlag Berlin Heidelberg 2010

130 S. Schége and J. Schwenk

discover the actual signer. Ring signatures provide signer anonymity in a very
strong sense. In contrast to group signature schemes [14], the anonymity of the
signer cannot be revoked. What makes ring signature schemes very flexible is
that no central management is needed and that the signer can freely choose the
public keys in the ring even without their owners’ consent. Direct applications
for ring signature schemes include designated verifier signatures [22] and secret
leaking [26], but ring signature schemes are in general useful in applications
where signer anonymity is desired.

1.1 Related Work

The first (explicit) ring signature scheme by Rivest, Shamir and Tauman [26] was
proven secure in the random oracle/ideal cipher model [2,[I6]. Since then, sev-
eral ring signature schemes have been proposed in the random oracle model. In
1998, Canetti, Goldreich and Halevi showed the existence of a signature scheme
that is provably secure in the random oracle model but insecure when instanti-
ated with any hash function [I2], thus raising serious doubts on the usefulness
of the random oracle model for real world protocols. Since then, research on
cryptographic primitives that are secure in the standard model has gained much
attention. However, today only a handful of ring signature schemes proven secure
without random oracles exist.

While the scheme of Chow et al. [I5] published in 2006 provides unconditional
anonymity, unforgeability is based on a new strong assumption that is given with-
out any evidence for its validity. In the same year, Bender, Katz and Morselli
proposed a ring signature scheme based on trapdoor permutations, but since it
uses generic ZAPs for NP it is impractical for real world applications [4]. In the
same work the authors also presented two 2-user ring signature schemes without
random oracles that are secure under the CDH and the LRSW assumption. Dis-
advantageously, these schemes only allow to issue signatures on rings of maximal
size 2. This is security critical since in a ring signature scheme the provided level
of signer anonymity is primarily determined by the number of ring members.
Thus, dependent on the application and his requirements on an appropriate se-
curity level the user should decide on the size of the ring. In 2007, Shacham and
Waters presented a ring signature scheme [27] that is full key-exposure anony-
mous, a strong security notion stemming from [4], under the Subgroup Decision
assumption [5]. Unfortunately, this assumption relies on groups with composite
order such that a trusted setup procedure is necessary in the setup phase. Also,
the representation of group elements is rather large (about 1024 bits). Unforge-
ability is based on the CDH assumption and the signature size is 2n + 2 group
elements, where n is the size of the ring. In the same year, Boyen presented a
new signature scheme with perfect anonymity [7]. Unforgeability of this scheme
is based on a new complexity assumption, the Pluri-SDH assumption, while ev-
idence for its usefulness is provided by a security analysis in the generic group
model. The signature size consist of n group elements and n integers (of 160 bits)
while each public key consists of at least three group elements. Recently, Chan-
dran, Groth and Sahai proposed a new signature scheme with perfect anonymity

A CDH-Based Ring Signature Scheme 131

that is secure under the Subgroup Decision assumption and the Strong Diffie-
Hellman assumption [I3]. Since the above remarks concerning the trusted setup
of [27] also hold here, the authors present two variants of their ring signature
scheme. The second variant accounts for maliciously generated common refer-
ence strings by heuristically guaranteeing (by using a factorization algorithm)
that the composite group order output by the setup algorithm is hard to factor.
Except for the schemes by Chandran et al. [I3] and Dodis et al. [I7] (in
the random oracle model), all existing ring signature schemes offer signature
sizes that are at least linear in the ring size. Both, [I3] and [I7] provide better
(asymptotic) efficiency when several messages are signed using the same ring.

1.2 Contribution

In this work we present a new ring signature scheme for rings of arbitrary size.
Anonymity is perfect, unforgeability solely relies on the CDH assumption in
bilinear groups. Security is proven in the fully untrusted common reference string
model. The signature size is very small, accounting for only n+1 group elements.
Since we use programmable hash functions [20], a drawback of our scheme is that
we require relatively large global parameters, consisting of around 160 group
elements. However, these parameters can be re-used for all instantiations of the
scheme that use the same bilinear group. Advantageously, in our ring signature
scheme, each public key consists of a single group element such that for large
groups (e.g. >1000), the public parameters only account for a small portion of
the data required for signature generation and verification. Finally we provide
a new proof technique for Waters-like signature schemes which is very clean
and compact at the same time. The main drawback of our scheme is that it only
provides security under chosen subring attacks, where the attacker is not allowed
to query secret keys of honest ring members. We stress that our ring signature
scheme is much more practical than the CDH-based scheme by Bender, Katz,
and Morselli that is also secure under the CDH assumption. First, our scheme
can be used to sign messages for rings of arbitrary length, not only for 2-user
rings. Second, in our scheme a public key contains only a single group element
whereas in the Bender et al. scheme a public key consists of a complete group
hash function.

2 Preliminaries

Before presenting our constructions we briefly review the necessary preliminaries.

2.1 Ring Signature Scheme

A ring signature scheme RSZG consists of three algorithms. Given the secu-
rity parameter 1%, the probabilistic polynomial time (PPT) algorithm KeyGen
generates a secret and public key (SK, PK). The PPT algorithm Sign takes
as input a tuple of public keys R = (PK3,...,PK,), a secret key SK; with

132 S. Schéige and J. Schwenk

i € {1,...,n} and a message m and outputs a signature o. Finally, the de-
terministic polynomial time algorithm Verify processes R, a message m and
a signature o to check whether o is a legitimate signature on m signed by a
holder of a secret key corresponding to one of the public keys in R. Accordingly,
the algorithm outputs 1 to indicate a successful verification and 0 otherwise.
Note that for simplicity, we do not assume an explicit setup algorithm. In the
following, all global parameters depend on 1%. We stress that we do not rely on
a trusted setup authority.

2.2 Ring Unforgeability

In our paper, we concentrate on unforgeability against chosen subring attacks
that is formalized in the following attack game between a challenger and an
adversary.

Setup. The challenger runs KeyGenn times to obtain the key pairs (SK1, PK1),
..., (SK,, PK,). Next, R = (PK;,PK>,..., PK,) is given to the adver-
sary.

Adaptive signature queries. The adversary adaptively sends ¢ signature
queries to the challenger. For i € {1,...,q}, each query @Q; consists of
a message m;, a set R; C R of public keys and an index e, € {1,...,n}.
When the challenger receives the i’th query Q; = (m;, R;, e;), he computes
o; = Sign(R;, SK.,,m;) and sends it to the adversary.

Output. The attacker outputs (m*, R*,o*) with m* & {m, ... ,mq}

We denote the success probability of an adversary A (taken over the random coins

of the challenger and the adversary) to win the above game as Advrszg, A, un-

Definition 1 (Ring unforgeability). We say that a ring signature scheme is
(t, €, q)-secure, if no t-time attacker has success probability at least € in the above
attack game after making q signature queries.

2.3 Ring Anonymity

The strongest notion of anonymity for ring signature schemes is perfect anonymity.
Formally, we consider the following attack game between a challenger and an un-
bounded adversary.

Setup. The challenger runs KeyGenn times to obtain the key pairs (SK7, PK1),
.., (SK,, PK,). The set of the so computed public keys R = (PK7, PK»,
..., PK,) is given to the adversary.

Adaptive signature and corrupt queries. The adversary adaptively sends ¢
signature queries @1, ... Q4 to the challenger and receives the correspond-
ing answers o1, ...,04. At the same time, the adversary may adaptively
query up to n secret keys SK; with ¢ € {1,...,n}.

1 'We note that a ring signature scheme which is secure under this security definition
can easily be adapted to meet the slightly stronger security notion in [4] which solely
requires (m*, R*) ¢ {(m1, R1),...,(mq, Rq)}: given message m and subring R we
simply sign m = h(h(m)||h(R)) instead of m where h is a collision-resistant hash
function. For any new (m”*, R*), m* will now be distinct from all previous values.

A CDH-Based Ring Signature Scheme 133

Output. Finally, the attacker outputs a message m*, a set of public keys R* C R
and two distinct indices ig, i1 € {1,...,n} such that PK,,, PK;, € R*. The
challenger randomly chooses b € {0, 1}, computes o* = Sign(m™*, R*, SK;,),
and sends o* to the attacker. The attacker then outputs &', indicating his
guess for b.

We denote the advantage of an adversary A (taken over the random coins of the

challenger and the adversary) to win the above game as

Advrszg, Aan0 = |Pr[A outputs b = b] — Pr[A outputs b’ # b]|.

Definition 2 (Perfect ring anonymity). We call a ring signature scheme
perfectly anonymous, if even an unbounded adversary has no advantage
(Advrszg, A, an0 = 0) in winning the above game.

2.4 Complexity Assumptions

Definition 3 (Computational Diffie-Hellman problem). Let G be a group
of prime order. The computational Diffie-Hellman problem (CDH) in G is, given
g,9% g° € G, to compute g** € G.

We say that algorithm A (¢, €)-solves the CDH problem in G when, in time ¢, A
has success probability at least € in breaking the CDH problem such that

Pr[g® — A(g,9%9")] > e,

where the probability is over g, a, b and the random coin tosses of A.

Definition 4. We say that the (t,€)-CDH assumption holds, if no attacker can
(t, €)-solve the CDH problem.

2.5 Bilinear Groups

In the following, we briefly recall some of the basic properties of bilinear groups.
Definitions [and [help to support the intuition behind our security proof. In [6],
Boneh, Mironov and Shoup use a similar approach to describe their tree-based
signature scheme. However, in contrast to [6], we focus on proving security under
the classical CDH assumption, where the challenge and the solution consist of
elements from a single group G. We therefore concentrate on symmetric bilinear
groups. We stress that, after some minor modifications, we can base our signature
schemes on asymmetric bilinear maps e : Gy x Gy — Gp with an efficient
homomorphism @ : G; — Gs. However, security is then based on the co-CDH
assumption.

Definition 5 (Bilinear group). Let G and Gr be groups of prime order p.
Let g be a generator of G. The function

G:GXGHGT

134 S. Schége and J. Schwenk

is a bilinear map (pairing) if it holds that Ya,b € G Vx,y € Z : e(a®,b¥) =
e(a,b)™ (bilinearity), e(g,g) # lc, is a generator of Gr (non-degeneracy),
and e is efficiently computable (efficiency). We call (G, g,Gr,p,e) a symmetric
bilinear group.

Definition 6 (Secure bilinear map). A bilinear map e : G x G — Gr is
(t, €)-secure if for all t-time adversaries A it holds that

Prle(g.g') = e(h, Alg,9'.h))| 9,9, h €r G, h # 1g] <,

where the probability is taken over the random coin tosses of A and the random
choices of g, g', and h.

One can easily see that in symmetric bilinear groups, breaking the security of a
bilinear map is equivalent to breaking the CDH assumption.

Lemma 1. Let (G,g,Gr,p,e) be a symmetric bilinear group. Then, e is (t,€)-
secure if and only if the (t,e)-CDH assumption holds in G.

The proof is straight-forward. For completeness, a proof of Lemma [I] can be
found in Appendix[Al Let again (G, g, G, p, €) be a bilinear group with a secure
bilinear map e.

Definition 7 (Collision generator for bilinear groups). A collision gener-
ator for e is a polynomial time algorithm that on input two elements g,h € G
outputs a collision (¢',h') € G such that

e(gv g/) = e(hv h/)

For symmetric pairings there exists an efficient collision generator that can out-
put all possible collisions: given g, h randomly choose r € Z, and compute
g =h"and b = g".

2.6 Multi-generator Programmable Hash Function

In our (ring) signature schemes we use the multi-generator programmable hash
function by Hofheinz and Kiltz in groups with known prime order [20] which in
turn is based on the CDH-based signature scheme by Waters [31].

Definition 8 (Multi-Generator PHF). The multi-generator programmable
hash function consists of four algorithms.

1. Given 17, 1 =l(k) and a group G of prime order p, GHGen returns | + 1
random group generators ug,ui,...,u; € G.
2. Given the u; and a message m € {0,1}}, GHEwval outputs

u(m) = ug H uy',

where (my, ..., m1) is the binary representation of m: m = 22:1 m; 2L,
The pair (GHGen, GHEwal) is called a group hash function.

A CDH-Based Ring Signature Scheme 135

3. On input 1%, | and generators g,h € G, the algorithm PHTrapGen ran-
domly chooses ajy,a1,...,a; € {—1,0,1} and by, b1,...,b; € Z,. Next, it sets

ao = ay — 1 and outputs | + 1 group elements u; = g**h® fori=0,1,...,1
and the trapdoor (ag,a1,...,a;,bo,b1,...,b;).
4. Now, given (ag,ai,...,a;,bo,b1,...,b;) and a message m, the algorithm

PHTrapFEval outputs a(m) = ag + 22:1 a;m; and b(m) = by + 22:1 bim;.
Note that when the u; have been computed by PHTrapGen it clearly holds
that u(m) = ug Hézl ul" = gtm)pbim),

Hofheinz and Kiltz showed that for every fixed polynomial ¢ = ¢(x) the multi-
generator programmable hash function is (1,q,0, P, ;)-programmable where

P, =0 (q\l/l) This means, that the group elements output by GHGen and

PHTrapGen are equally distributed. Furthermore it holds for all possible input
parameters to PHTrapGen and all My, ..., M1 € {0,1} with M,1 # M;
for ¢ < g that

Pria(My4+1) =0 A a(M),...,a(My) #0] > Py,.

The corresponding proof and further details on programmable hash functions can
be found in the original paper [20]. A similar but weaker result (P,; = 8(H1_1)q)
was implicitly given by Waters in [31].

3 Efficient Ring Signature Scheme RS

In this section we present our ring signature scheme RS that allows for very

short public keys and signatures. In RS, the global parameters consist of [+ 2

random elements h,ug,u,...,u; € G that give rise to a group hash function

u(m) = ug H;Zl u;” and a symmetric bilinear group (G, g, Gr,p,e) with a se-

cure bilinear map.

KeyGen(1"). Each user i chooses a random element z; € Z, as his secret key
SK;. The corresponding public key is PK; = g*:.

Sign(PK, ..., PK,,SK;,m). Given a ring of n public keys, the holder of secret
key SK; witht € {1,...,n} can sign a message m € {0, l}l in the following
way: for all s € {1,...,n 4+ 1} \ {¢} he chooses r; €r Z, and sets

si=g".

Then, he computes

—Tn41 /@

n l
- hHPKZ—w UOHU;nj
i=1 j=1
it ’

The final signature is 0 = (s1,...,Spt1)-

136 S. Schége and J. Schwenk

Verify(PKi,...,PK,,m,o). Given a set of n public keys, a message m, and a
ring signature o = (81, ..., Sn41), verify the following equation:

n

!
my ?
[T e, PE:) e | spin,uo [Ju) | =elg,h) .
j=1

i=1

4 Security

In this section, we show that RS provides ring unforgeability and perfect ring
anonymity according to Definition [Il and 2] (correctness can easily be verified by
inspection).

4.1 Ring Unforgeability

Theorem 1. Suppose the (tcpm, ecpm)-CDH assumption holds in the group G.
Then the ring signature scheme RS is (t,€,q)-secure against chosen subring
attacks provided that

e <ecpu/Pyi, t=tepn.

Proof. By contradiction. Assume there exists an adversary A that breaks the
security of the ring signature scheme in time ¢ with probability e after ¢ signature
queries. Then, one can construct an algorithm B that uses A as a black box to
solve the CDH assumption. We assume that B is given a random challenge for the
CDH-problem: (g, g%, gb) € G3. The main idea behind our proof is the following.
Recall Definition [and Lemma [Il Given two group elements g, h € G, it is easy
to generate all pairs (¢’, h’') € G? such that e(g,g’) = e(h, h').

On the other hand, given three group elements g, ¢’, h, the problem of finding
a corresponding A’ is as hard as solving the CDH problem. Our aim is to transfer
this situation to the unforgeability game of our ring signature scheme: the sim-
ulator has to choose the input parameters for the attacker such that answering
signature queries is as easy as computing collisions and computing a forgery is
as hard as breaking the CDH assumption.

In the following, we provide a proof of security that proceeds in a sequence
of games [28/[3]. Let Pr[S;] denote the success probability for an attacker to suc-
cessfully forge signatures in Game 1.

Gameg. This is the original attack game. By assumption, attacker A (¢, q)-
breaks RS when interacting with the challenger. We have,

Pr(S,] = € (1)

Game;. This game is like the previous one except that B constructs the global
parameters and the secret and public keys using the algorithms of the program-
mable hash function and the CDH challenge. First, B randomly chooses: n ele-
ments z; €g Z, for i = 1,...,n, 1+ 1 elements ay, a1,...,a; €g {—1,0,1}, and

A CDH-Based Ring Signature Scheme 137

1+ 1 elements bg, b1,...,b €r Zp. Let ag = af, — 1. Then, for all i € {1,...,n}
and j € {0,...,l} B computes

g = gav h = gba PKZ = g$i7 u] = hajgbj

using the CDH challenge. Due to the properties of the multi-generator program-
mable hash function the distribution of the so computed values is equal to the
distribution in the previous game. Thus,

Pr[S,] =Pr[S,] . (2)

Game,. Now, B simulates the challenger in the attack game by answering A’s
signature queries (m;, R;, e;). For convenience, let a(m) = ag + 2221 a;m; and
b(m) = bo—i—Zi.:l bim;. Let I[j] C {1,...,n} bethesetofallindicesi € {1,...,n}
such that PKj is a component of R;. When receiving a signature query, B at first
tests whether a(m;) = 0. In this case, B outputs the failure signal F; and aborts.
Otherwise B chooses r €r Z, and computes a collision (dg, dp) as dz = h" and
dp, = g". Note that by construction e(dz,) = e(dy, h).

The aim of B is to compute s,,+1 € G and |I[j]| values s; € G (for all ¢ € I[j])
such that

I e(si. PE:) - e(sni1,ulmy)) = e(g, h)
i€I[j]

or equivalently

n—:-nlj) H Sz g = (gsni(lmj)’h>'
iel[g]

In the next step, B chooses y €g I[j] and for all i € I[j] \ {y} s; €r G. The
values s, and s,41 are computed in the following way:

1/zy

—1\/a(m;) 7b (m; —x;
Snt+1 = (gdhl) o sy=|dg s . H 55
ieI[j\{y}

B outputs the ring signature o = (s1, $2, - ., $n, Sn+1). The probability for B to

win this game is
Pr[S,] = Pr[S, AFq] . (3)

Games. In this game B uses A’s forgery (m*, R*,0* = (s],85,...,55,1)) to
break the CDH assumption. Adversary B at first checks whether a(m*) = 0. If
not, B outputs the failure signal F5 and aborts. We get that

Pr[S,] = Pr[S, AFq] . (4)

Otherwise, B computes the solution to the CDH problem as follows. Since
a(m*) =0, we get that

138 S. Schége and J. Schwenk

e (sne)") - I D)7eg) =elg.h) & g = (si)™™ - T (D)™
€I [x] 1€ 1[*]

what constitutes a solution to the CDH challenge.
We finally have

Pr[Ss] = €CDH - (5)

Now, let us analyze the probabilities for an abort, i.e. for one of the events F; or
Fy to occur. Surely, the probability that both failure events do not occur depends
on the number of signature queries ¢ and the bit size [of the messages. Since,
u(m) is generated by the multi-generator programmable hash function as defined
in Sect. [Z.6] we can directly apply the results from [20] to show that

I’r[Fﬁ W\FE] EE-FZ,Z~
Putting (IHD) together, we get that
€CDH = PT[SO A F71 AN FTQ} = Pr[So‘FH A\ FTQ] . PT[FH N FTQ} >e€- Pq’l

which proves Theorem [I1

4.2 Ring Anonymity
Theorem 2. The ring signature scheme RS is perfectly secure.

We give an information theoretic argument. Given a ring signature, we have
to show that each ring member could possibly have created it. Consider a ring
signature on message m, that has been created using SK,. We show that with
the same probability it could have been created using SK, with y # z. The
proof is straight-forward.

Proof. Fix an arbitrary ring R of n public keys and choose two indices y,z €r
{1,...,n}. Next, fix a random m € {0,1}! and n — 1 random values r; with
ie{l,...,n+1}\{y, z}. We show that for any r, there exists an r, such that
the final signatures generated by Sign with either (r,,SK.) or (r,,SK,) are
equal. Since G is a cyclic group with prime order p, there exists ¢t € Z, and
b(M) = by + Y, Mb; with b; € Z, such that h = g* and u(M) = g™ for all
Me{l,...,n}.

Let the ring signature consist of all s; = g™ with ¢ € {1,...,n}\ {y, z}. Then,
the remaining sy, s, are computed using SK, and the Sign algorithm as

1/z,

—Tn+1

n l
—gv, s.= | h-J[PK;" ™3
Sy =97, Sz = . i | Uo Uj
=1 =1
£z J

A CDH-Based Ring Signature Scheme 139

E=> 211 i TiTi— T 1b(mn)

Now, let r, = v, . Using SK, we get s, = g"* and
n ! —Tn41 1y
sy=|h- H PK; " | uo H u;ﬁj =g
i=1 j=1
i#y

E=32 0 iy TiTi— Tt 1b(m)
Ty

with r, = what concludes the proof of Theorem

4.3 Digital Signature Schemes

Our new proof technique can also be applied to other CDH based signature
schemes. For example, we can surprisingly easy obtain as a special case (n = 1)
of our ring signature scheme a variant S of the Waters signature scheme that has
distinct setup and sign algorithms but the same verification equation. We briefly
compare it with the original scheme by Waters in Table [l For completeness,
we also describe a third variant Sy where the group hash function constitutes
the public key of the user. Both schemes can easily be proven secure under
the standard notion of security for digital signatures by Goldwasser, Micali and
Rivest [I8] by adapting the proof of Theorem [II

Table 1. Comparison of the Waters signature scheme and S and Sp. Unless not stated
otherwise, all values are elements of G. We set u(m) = uo [[_, u)"" and z(m) =

l
o + Zi:l TiM.

Waters [31] S So
publ. params. go, b, uo,...,u; g,h, U, ..., u go, g, h
SK h* x € Ly 20,...,%1 € Zp
PK g=g06 go=g" up = g*°, ..., u = g™
st (u(m)” (b (u(m)")s a7
52 9" 9" (hgg) =™
verification e(s1,g0) - e(s2,u(m)) < e(g,h)

5 Conclusion

In this work, we presented an efficient and perfectly anonymous ring signature
scheme that is secure under chosen subring attacks in symmetric bilinear groups
with a secure bilinear map. Additionally, we developed a new technique for prov-
ing Waters-like signature schemes secure that uses (1, poly)-programmable hash
functions and results in very clean and compact security proofs. In our ring
signature scheme, each public key consists of a single group element, while the
signature size only accounts for n + 1 group elements, where n is the size of the
ring. When compared to all other ring signature schemes that are proven secure
in the standard model and do not assume ring re-use, this is extremely efficient.

140 S. Schége and J. Schwenk

Finally, we stress that using the generic transformation by Huang, Wong and
Zhao [2]] all presented schemes can be made strongly unforgeable, meaning that
we also consider new signatures on previously queried messages as forgeries in
the attack game. The overhead of this transformation is very small; the signature
is extended by just a public key and an one-time signature, while no additional
key material is required.

Acknowledgements. We would like to thank Tibor Jager and Maike Ritzen-
hofen for helpful comments on earlier versions of this work.

References

1. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic ¥ TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111-125. Springer, Heidelberg
(2006)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62-73 (1993)

3. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay (ed.) [29], pp. 409-426

4. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Halevi, Rabin (eds.) [19], pp. 60-79

5. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325-341. Springer, Heidelberg
(2005)

6. Boneh, D., Mironov, I., Shoup, V.: A secure signature scheme from bilinear maps.
In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 98-110. Springer, Heidelberg
(2003)

7. Boyen, X.: Mesh signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 210-227. Springer, Heidelberg (2007)

8. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Atluri,
V., Pfitzmann, B., McDaniel, P.D. (eds.) ACM Conference on Computer and Com-
munications Security, pp. 132-145. ACM, New York (2004)

9. Camenisch, J., Van Herreweghen, E.: Design and implementation of the demizx
anonymous credential system. In: Atluri, V. (ed.) ACM Conference on Computer
and Communications Security, pp. 21-30. ACM, New York (2002)

10. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268—289.
Springer, Heidelberg (2003)

11. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M.K. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56-72. Springer, Heidelberg (2004)

12. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology. In: STOC,
pp. 209-218 (1998), revisited (preliminary version)

13. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random oracles. In: Arge, L., Cachin, C., Jurdziiski, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 423—-434. Springer, Heidelberg (2007)

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

A CDH-Based Ring Signature Scheme 141

Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257-265. Springer, Heidelberg (1991)

Chow, S.S.M., Wei, V.K.-W., Liu, J.K., Yuen, T.H.: Ring signatures without ran-
dom oracles. In: Lin, F.-C., Lee, D.-T., Lin, B.-S., Shieh, S., Jajodia, S. (eds.)
ASTACCS, pp. 297-302. ACM, New York (2006)

Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner (ed.) [30], pp. 1-20

Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad
hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609-626. Springer, Heidelberg (2004)

Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. STAM J. Comput. 17(2), 281-308 (1988)
Halevi, S., Rabin, T. (eds.): TCC 2006. LNCS, vol. 3876. Springer, Heidelberg
(2006)

Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner (ed.) [30], pp. 21-38

Huang, Q., Wong, D.S., Zhao, Y.: Generic transformation to strongly unforgeable
signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 1-17.
Springer, Heidelberg (2007)

Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their appli-
cations. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143-154.
Springer, Heidelberg (1996)

Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay (ed.) [29],
pp. 465-485

Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: Halevi, Rabin (eds.) [19], pp. 80-99

Persiano, G., Visconti, I.: An efficient and usable multi-show non-transferable
anonymous credential system. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp.
196-211. Springer, Heidelberg (2004)

Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552-565. Springer, Heidelberg (2001)
Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166-180. Springer,
Heidelberg (2007)

Shoup, V.: Sequences of games: a tool for taming complexity in security proofs,
November 30 (2004) (manuscript); Revised ersion from January 18 (2006/2004)
Vaudenay, S. (ed.): EUROCRYPT 2006. LNCS, vol. 4004. Springer, Heidelberg
(2006)

Wagner, D. (ed.): CRYPTO 2008. LNCS, vol. 5157. Springer, Heidelberg (2008)
Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114-127. Springer, Heidelberg
(2005)

142 S. Schége and J. Schwenk

A Proof of Lemma [

Proof. By contradiction. Let (G, g, Gr, p, €) be our bilinear group. First, assume

attacker A can break the security of the bilinear map in time ¢ with advantage

at least €. Then, algorithm B can solve the CDH assumption in G in time ¢ with

advantage € by using A as a black box. Let g, g%, g° be B’s CDH challenge in

group G. Bsets § = g%, §' = g’, and h = g and runs attacker A on (9,4, h) As

a result, A outputs i such that (g, §’) = e(h, h’). Since equivalently e(g®, g*) =
e(g, R), I is a solution to the CDH problem.

Now, assume adversary A (¢, €)-breaks the CDH assumption in G. Let g, §’, he
G, h # 1g be B’s challenge against the security of the bilinear map Since h is
a generator there exist a,b € Z, such that h* = g, and hb = g’. B runs A on
h,§,7 . Because A outputs h®, we have that e(g, ') = e(h, h®?), and thus A’s
output is a correct solution to B s challenge.

Practical Private Set Intersection Protocols
with Linear Complexity

Emiliano De Cristofaro and Gene Tsudik

University of California, Irvine*

Abstract. The constantly increasing dependence on anytime-anywhere avail-
ability of data and the commensurately increasing fear of losing privacy motivate
the need for privacy-preserving techniques. One interesting and common prob-
lem occurs when two parties need to privately compute an intersection of their
respective sets of data. In doing so, one or both parties must obtain the intersec-
tion (if one exists), while neither should learn anything about other set elements.
Although prior work has yielded a number of effective and elegant Private Set
Intersection (PSI) techniques, the quest for efficiency is still underway. This pa-
per explores some PSI variations and constructs several secure protocols that are
appreciably more efficient than the state-of-the-art.

1 Introduction

In today’s increasingly electronic world, privacy is an elusive and precious commodity.
There are many realistic modern scenarios where private data must be shared among
mutually suspicious entities. Consider the following examples:

1. A government agency needs to make sure that employees of its industrial contrac-
tor have no criminal records. Neither the agency nor the contractor are willing to
disclose their respective data-sets (list of convicted felons and employees, respec-
tively) but both would like to know the intersection, if any.

2. Two national law enforcement bodies (e.g., USA’s FBI and UK’s MIS) want to
compare their respective databases of terrorist suspects. National privacy laws pre-
vent them from revealing bulk data, however, by treaty, they are allowed to share
information on suspects of common interest.

3. Two real estate companies would like to identify customers (e.g., homeowners)
who are double-dealing, i.e., have signed exclusive contracts with both companies
to assist them in selling their houses.

4. Federal tax authority wants to learn whether any suspected tax evaders have any
accounts with a certain foreign bank and, if so, obtain their account records and
details. The bank’s domicile forbids wholesale disclosure of account holders and
the tax authority clearly can not reveal its list of suspects.

5. Department of homeland security (DHS) wants to check its list of terrorist suspects
against the passenger manifest of a flight operated by a foreign air carrier. Nei-
ther party is willing to reveal its information, however, if there is a (non-empty)
intersection, DHS will not give the flight permission to land.

* This research was supported by the U.S. Intelligence Advanced Research Projects Activity
(IARPA) under grant #: FA8750-09-2-0071.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 143 2010.
(© IFCA/Springer-Verlag Berlin Heidelberg 2010

144 E. De Cristofaro and G. Tsudik

Such scenarios provide with interesting examples that motivate the need for privacy-
preserving set operations, in particular, set intersection protocols. Such protocols are
especially useful whenever one or both parties who do not fully trust each other must
compute an intersection of their respective sets (or some function thereof). As discussed
in Section 4 below, prior work has yielded a number of interesting techniques. As usu-
ally happens in applied cryptography, the next step (and the current quest) is to improve
efficiency. To this end, this paper’s main goal is to consider several flavors of Private
Set Intersection (PSI) and construct provably secure protocols that are more efficient
than the state-of-the-art.

2 PSI Flavors

Generally speaking, Private Set Intersection (PSI) is a cryptographic protocol that
involves two players, Alice and Bob, each with a private set. Their goal is to compute
the intersection of their respective sets, such that minimal information is revealed in
the process. In other words, Alice and Bob should learn the elements (if any) common
to both sets and nothing (or as little as possible) else. This can be a mutual process
where, ideally, neither party has any advantage over the other. Examples 1-3 above
require mutual PSI. In a one-way version of PSI, Alice learns the intersection the two
sets, however, Bob learns (close to) nothing. Examples 4 and 5 correspond to one-way
PSI.

Since mutual PSI can be easily obtained by two instantiations of one-way PSI (as-
suming that no player aborts the protocol prematurely), in the remainder of this paper
we focus on the latter. Hereafter, the term PSI denotes the one-way version and, instead
of proverbial Alice and Bob, we use client (C, i.e., the entity receiving the intersection)
and server (S) to refer to the protocol participants.

One natural extension is what we call PSI with Data Transfer or PSI-DT. In this
setting, one or both parties have data associated with each element in the set e.g., a
database record. In PSI-DT, data associated with each element in the intersection must
be transferred to one or both parties, depending whether mutual or one-way version of
PSI is used. Example 4 corresponds to PSI-DT. It is also easy to see that PSI-DT is
quite appealing in terms of actual database (rather than plain set) applications.

Another twist on PSI is the authorized version — APSI — where each element in
the client set must be authorized (signed) by some recognized and mutually trusted
authority. This requirement could be applicable to Examples 2 and 4. In the former,
one or both agencies might want to make sure that names of terrorist suspects held
by its counterpart are duly authorized by the country’s top judiciary. In example 4,
the bank could demand that each suspected tax cheat be pre-vetted by some interna-
tional body, e.g., Interpol. In general, the main difference between PSI and APSI is
that, in the former, the inputs of one or both parties might be arbitrarily chosen, i.e.,
frivolous.

Clearly, other more interesting or more exotic variations are possible, e.g., the notion
of group PSI with its many types of possible outputs. However, we limit the scope of
this paper to the PSI flavors described above.

Practical Private Set Intersection Protocols with Linear Complexity 145
3 Roadmap

In contrast to prior work, we do not start with constructing PSI protocols and piling
on extra features later. Instead, somewhat counter-intuitively, we begin with prior work
on a specific type of protocols — called Privacy-preserving Policy-based Information
Transfer (PPIT) — that provide APSI-DT (one-way authorized private set intersection
with data transfer) for the case where one party has a set of size one. PPIT matches a
typical database query scenario where client has a single keyword or a record identifier
and server has a database.

We start by seeing how some previously-proposed PPIT protocols can be trivially
extended into inefficient PSI and APSI protocols, with and without data transfer. We
then construct several efficient (and less trivial) provably secure PSI and APSI proto-
cols that incur linear computation and communication overhead. Concretely, this work
makes several contributions:

1. We evaluate and compare existing PSI and APSI protocols in terms of efficiency
(computation and communication overhead), security model (random oracle vs
standard) and adversary type (honest-but-curious vs malicious).

2. We investigate whether APSI protocols can yield (efficient) PSI counterparts.

We present an APSI protocol and its PSI more efficient than prior work.

4. We construct another PSI protocol geared for scenarios where the server can per-
form some pre-computation and/or the client is computationally weak.

et

4 Prior Work

This section overviews relevant prior results, which fall into several categories: (1) PSI
protocols, (2) OPRF constructs, and (3) APSI variations. Also, we note that most PSI
variations can be realized via general secure multi-party techniques. However, it is usu-
ally far more efficient to have dedicated protocols; which is the direction we pursue in
this paper.

PSI Protocols. The work by Freedman, et Al. (FNP) [15] addressed the problem of
private set intersection by means of Oblivious Polynomial Evaluation (OPE). In [13],
the idea is to represent of a set as a polynomial, and the elements of the set as its roots.

Specifically, a client C represents elements in its private set, C = (¢1,- - ,¢y), as the
roots of a v-degree polynomial over a ring R, ie. f = [[/_;(t — ¢;) = Zf:o a;t?,
Then, assuming pk¢ to be C’s public key of any additively homomorphic cryptosystem

(such as Paillier [22]]), C' encrypts the coefficients with pk¢, and sends them to server

S. S’s private set is denoted with S = (s1,--- , Sw). S evaluates f at each s; € S
homomorphically. Note that f(s;) = 0 if and only if s; € C N'S. Hence S, for each
s; € S = (s1,--,8y) returns u; = E(r;f(s;) + s;) to C (where r; is chosen at

random). If s, € C N S then C learns s; upon decrypting. If s; ¢ C N S then u,
decrypts to a random value. Therefore, the number of server’s operations is related to
the evaluation of client’s encrypted polynomial, with v coefficients, on w points in S.
Using Horner’s rule (and assuming Paillier encryption) this would take O(vw) of m-bit
mod 2048-bit exponentiations, where m is the number of bits needed for representing

146 E. De Cristofaro and G. Tsudik

each entry. On the other hand, the number of client operations is O(v + w), i.e., 1024-
bit exponentiations mod 2048 bits. However, certain optimizations can be applied to
reduce the total number of server’s exponentiations to O(w log(log(v))). Such protocol
is proved secure against an Honest-but-Curious (HbC) adversary in the standard model,
and can be extended for malicious adversaries in the Random Oracle Model (ROM),
with an increased cost.

Subsequently, the work by Kissner and Song (KS) [20] has proposed OPE-based
protocols that apply to several set operations (e.g., union, intersection, etc.) and may
involve more than two players. [20] contributes constructions secure in the standard
model against HbC (with similar complexity to [15]) and also malicious adversaries.
The latter incurs into quadratic computation overhead, i.e., O(wv), and involves expen-
sive zero-knowledge proofs, whereas a more efficient construction has been recently
proposed by [0, specifically to O(wk? log? (v)) communication and to O (wvk log(v)+
wk? log? (v)) computation complexity—being k the security parameter.

Protocols based on Oblivious Pseudo Random Functions. Other constructs rely on
so-called Oblivious Pseudo-Random Functions (OPRFs), introduced in [14]. An OPRF
is a two-party protocol (between a sender and a receiver) that securely computes a
pseudorandom function f(-) on key & contributed by the sender and input x contributed
by the receiver, such that the former learns nothing from the interaction and the latter
learns only the value fi(x).

OPRF-based PSI protocols work as follows: Server S holds a secret random key k.
For each s; € S (of size w), S precomputes u; = fi(s;), and publishes (sends to
client) the set i = {uy, - ,uy}. Then, C and S engage in an OPRF computation of
fx(ci) for each ¢; € C (of size v), such that S learns nothing about C (except the size)
and C learns fy(c;). Finally, C learns that ¢; € C N S if and only if f(c;) € U.

The idea of using OPRFs for PSI protocols is due to Hazay and Lindell [[16]. Their
protocol is secure in the standard model in the presence of a malicious server and an
HbC client. It has been since improved by Jarecki and Liu [18]], who proposed a pro-
tocol secure in the standard model against both malicious parties, based on the Deci-
sional g-Diffie-Hellman Inversion assumption, in the Common Reference String (CRS)
model, where a safe RSA modulus must be pre-generated by a trusted party. Encryp-
tion operations are performed using an additively homomorphic encryption scheme,
such as the one presented by Camenisch and Shoup, CS for short [[7]. As pointed out
in [[18]], such solution can be further optimized, inspiring to the concurrent work by Be-
lenkiy, et Al. [lL]. In fact, the OPRF construction could work on groups with a 160-bit
prime order unrelated to the RSA modulus, instead of the more expensive composite
order groups. Assuming such improved construction, [18] incurs in the following com-
putational complexity. The server S needs to perform O(w) PRF evaluations with w
inputs, more precisely O(w) modular exponentiations of 1-bit exponents (where m is
the number of bits needed to represent each entry) mod n? (e.g., 2048 bits). Moreover,
the client C' needs to compute O(v) CS encryptions (i.e., O(v) m-bit exponentiations
mod 2048 bits, plus O(v) 1024-bit exponentiations mod 1024 bits). Whereas, S com-
putes (online) O(v) CS decryptions, (i.e., O(v) 1024-bit exponentiations mod 2048
bits). As discussed in [[18]], complexity in the malicious model grows by a factor of 2.

Practical Private Set Intersection Protocols with Linear Complexity 147

Finally, the work-in-progress in [[19] leverages an idea similar to the OPRF, namely
the Unpredictable Function (UPF) fy(x) = (H(x))* in the Random Oracle Model.
Authors construct a two-party computation of this function, with a server S contribut-
ing the key k£ and a client C the argument x: C' picks a random exponent « and sends
y = (H(x))™ to S, that replies with z = y*, so that C recovers f(z) = z'/*. Note
that random exponents, given that the hash functions are carefully chosen, can be taken
from a subgroup (e.g., they can be 160-bits long). Similarly to OPRF-based solutions,
the UPF can then be used to implement the secure computation of Adaptive Set In-
tersection, under the One-More-Gap-DH assumption in ROM [2]. We remark that this
solution is similar to the ones given before by [[17] and [[13]]. However, in such works, se-
curity is only superficially analyzed and no proof is provided, whereas [[19] provides se-
curity also against malicious players. The computational complexity of the UPF-based
PSI (in presence of honest-but-curious adversaries) amounts to O(w + v) (resp. O(v))
exponentiations with short exponents (e.g., 160-bit mod 1024-bit).

APSI Protocols. We now briefly review related work in Authorized Private Set Inter-
section protocols. Recently, a new PSl-related concept was introduced, called Privacy-
preserving Policy-based Information Transfer (PPIT) [11]). It is targeted for scenarios
where a client holding an authorization (i.e., a signature by a trusted authority) on some
identifier needs to retrieve information matching that identifier from a server, such that:
(1) the client only gets the information it is entitled to, and (2) the server knows that
the client is duly authorized to obtain information but does not learn what informa-
tion is retrieved. Besides requiring the client to be authorized, PPIT is focused on the
situation where the client holds a single identifier, i..e, PPIT offers APSI where Al-
ice (client) has a set of size one. [11] gives three PPIT protocols, based respectively
on: RSA [23]], Schnorr [24]], and Identity-based Encryption (IBE) [4]. In this paper, we
only discuss RSA-PPIT since it serves as a starting point for the work in this paper.
In RSA-PPIT, client’s authorizations are essentially RSA signatures on a set of record
identifiers. As shown in [[L1], it is easy to extend PPIT to support the case of the client
holding multiple authorizations and thus obtain a full-blown APSI protocol. The result
is also secure in ROM for honest-but-curious parties. However, the complexity (both
communication and computation) becomes quadratic. We will review such construc-
tion in Section[3.3]

Another recent result [6] has addressed a problem similar to PPIT, by means of an
IBE-based technique inspired by Public-Key Encryption with Keyword Search (PEKS)
[3]. It enhances PEKS by introducing a Committed Blind Anonymous IBE scheme. With
such a scheme, the client privately obtains trapdoors from the CA, hence not revealing
anything about its inputs to the CA (unlike PPIT). Nevertheless, the client commits
to the inputs, so that the CA can later ask the client to prove statements on them. Al-
though this scheme does not require the Random Oracle Model, its efficiency is much
lower than PPIT. First, whereas IBE-PPIT uses Boneh-Franklin IBE [4], the underlying
IBE scheme is a modification of Boyen-Waters (BW) IBE [3] which is less time and
space efficient. The server has to compute O(w) (BW) encryptions (each requiring 6
exponentiations and a representation of 6 group elements). Furthermore, the client has
to test each O(w) PEKS against its O(v) trapdoors, hence performing O(vw) (BW)
decryptions (each requiring 5 bilinear map operations).

148 E. De Cristofaro and G. Tsudik

Finally, Camenisch and Zaverucha [8]] have introduced the notion of Certified Sets to
the private set intersection problem. This allows a trusted third party to ensure that all
protocol inputs are valid and bound to each protocol participant. The proposed proto-
col builds upon oblivious polynomial evaluation and achieves asymptotic computation
(quadratic) and communication overhead similar to that of FNP [15] and KS [20].

5 Towards Efficient PSI and APSI Protocols

In this section, we explore the design of efficient PSI and APSI. Before proceeding to
the actual protocols, we provide some definitions and assumptions.

5.1 Preliminaries
Recall that PSI involves two parties: client and server.

Definition 1. PS/ consists of two algorithms: {Setup, Interaction}. Setup: a pro-
cess wherein all global/public parameters are selected. Interaction: a protocol be-
tween client and server that results in the client obtaining the intersection of two sets.

APSI involves three parties: client, server and (off-line) CA.

Definition 2. APS! is a tuple of three algorithms: {Setup, Authorize, Interaction}.
Setup: a process wherein all global/public parameters are selected. Authorize : a
protocol between client and CA resulting in client committing to its input set and CA
issuing authorizations (signatures), one for each element of the set. Interaction: a
protocol between client and server that results in the client obtaining the intersection
of two sets.

The following assumptions are made throughout. In APSI, we assume that CA does
not behave maliciously. Also, server is honest-but-curious, however, client might not
have authorizations for all elements in its set. Finally, in PSI we assume that both
client and server are honest-but-curious, leaving modified constructions and proofs in
the malicious model as part of future work.

5.2 Security Properties

We now informally describe security requirements for PSI and APSI.

Correctness. A PS| scheme is correct if, at the end of Interaction, client outputs the
exact (possibly empty) intersection of the two respective sets.

Server Privacy. Informally, a PSI scheme is server-private if the client learns no infor-
mation (except the upper bound on size) about the subset of elements on the server that
are NOT in the intersection of their respective sets.

Client Privacy. Informally, client privacy (in either PSI or APSI) means that no in-
formation is leaked about client’s set elements to a malicious server, except the upper
bound on the client’s set size.

Client Unlinkability (optional). Informally, client unlinkability means that a malicious
server cannot tell if any two instances of Interaction are related, i.e., executed on the
same inputs by the client.

Practical Private Set Intersection Protocols with Linear Complexity 149

Table 1. Notation

a «— A variable a is chosen uniformly at random from set A
T security parameter
n, e, d RSA modulus, public and private exponents
g group generator; exact group depends on context
p, q large primes, where ¢ = k(p — 1) for some integer k
H() full-domain hash function
H'() regular cryptographic hash function: H’ : {0,1}* — {0,1}"
C, S client’s and server’s sets, respectively
v, w sizes of C and S, respectively
i € [1,v], j € [1,w] indices of elements of C and S, respectively
c;, s; i-th and j-th elements of C and S, respectively
hei, hsj H(c;)and H(s;), respectively
Re.i, Rs.; i-th and j-th random value generated by client and server, respectively

Server Unlinkability (optional). Informally, server unlinkability means that a mali-
cious client cannot tell if any two instances of Interaction are related, i.e., executed
on the same inputs by the server.

For APSI, the Correctness and Server Privacy requirements are amended as follows:
Correctness (APSI). An APSI scheme is correct if, at the end of Interaction, client
outputs the exact (possibly empty) intersection of the two respective sets and each ele-
ment in that intersection has been previously authorized by CA via Authorize.
Server Privacy (APSI). Informally, an APSI scheme is server-private if the client
learns no information (except the upper bound on size) about the subset of elements
on the server that are NOT in the intersection of their respective sets (where client’s set
contains only authorizations obtained via Authorize).

5.3 Baseline: APSI from RSA-PPIT

The starting point for our design is an APSI protocol derived from RSA-PPIT [LI].
This protocol is only sketched out in [[11]]; since our new protocols are loosely based
on it, we specify it in Fig{Il Actually, the protocol in [11]] is APSI-DT; however, for
ease of illustration we omit the data transfer component at this point. Also, all PSI
and APSI protocols in this paper include only the Interaction component; Setup and
Authorize (if applicable) are both intuitive and trivial. Our notation is reflected in Table
[l It is easy to see that this protocol is correct, since: for any (o;, ¢;) held by the client
and s; held by the server, if: (1) o; is a genuine CA’s signature on ¢;, and (2) ¢; = s;
(hence, hc; = hs;):

Kei = (2)Tei = gofte fea
Ko = ()7 - (hsy) 720 = (07 - gFlest) o (hsj) T2 =
_ ((hci)dQ 'gRC:i)eRS . (h,Sj)_2RS _ hchS . g°Rs Rezi ~hs_7._2RS = g°Rs" Rei
We point out that the protocol in Fig[Ilincurs in quadratic computation overhead by the
server and quadratic communication.

It is possible to reduce the number of on-line exponentiations on the server to O(v)
by precomputing all values (hs;) =2 in Step 3. Nonetheless, the number of multipli-
cations needed to compute all K.; ; would still remain quadratic, i.e., O(vw), as would
the communication overhead.

150 E. De Cristofaro and G. Tsudik
— Common input: n, g,e, H(), H'()
— Client’s input: C = {071, --- , 04}, where: 0; = (hc;)* mod n, and he; = H(c;)
- Server’sinput: S = {hs1,- - , hsw}, where: hs; = H(sy)
1. Client:
- Vl, Rc:i — Zn/4»
- Vi, i = o2 - gt mod n
2. Client » Server: {1, .., o }
3. Server:
-~ Ry« Zy 4 and Z = g°* mod n
- Vi, V7, compute: Ks:i,j = (,u,»;)ER5 . (th)izR“ mod n, and ti,j = H/(KS;i,j)
4. Server » Client: Z, {t1,1,.,tv,w}
5. Client:
- Vi, Kei = (Z) mod n, and t; = H'(K..;)
— OUTPUT: {tll, . t;} N{ti,1, . tow}
Fig. 1. APSI Protocol derived from RSA-PPIT
5.4 APSI with Linear Costs

Although the trivial realization of APSI obtained from RSA-PPIT is relatively ineffi-
cient, we now show how to use it to derive an efficient protocol, shown in Fig 2l

Common input: n, g, e, H(), H'()
Client’s input: C = {01, , 00}, where: o; = (hc;)® mod n, and he; = H(c;)
Server’s input: S = {hs1, -+ , hsw }, where: hs; = H(s;)

1. Client:

- PCH =1["_, he; and PCH" =[['_,(o:) = [1_, (hc;i)

- R.—Z%and X = PCH* - gf*

- Vi, PCH; = PCH" /oy, and Re.; — Z%, y; = PCH;} - gRei
2. Client » Server: X, {y1,..,Yv}
3. Server:

- R, — 7} and Z = ¢g°fs mod n

-V j, compute: K.; = (X°/hs;)T, and t; = H' (K..;)

— Vi, compute: v} = (y;)*"**
4. Server » Client: Z, {y1,...,yu}, {t1, s tw}
5. Client:

— Vi, Koy = y) - Z8e - Z7Bei and] = H' (Keii)
— OUTPUT: {t}, .., th } N {t1, .., tw}

Fig. 2. APSI Protocol with linear complexity

This protocol incurs linear computation (for both parties) and communication com-
plexity. Specifically, the client performs O(v) exponentiations and the server — O(v +
w). Communication is dominated by server’s reply in Step 4 — O(v + w). To see that

Practical Private Set Intersection Protocols with Linear Complexity 151

the protocol is correct, observe that, for any (o, ¢;) held by the client and s ; held by the
server, if: (1) o; is a genuine CA’s signature on ¢;, and (2) ¢; = s;, hence, he; = hs;:
Koy = yi . gBRe z=Reu _ (PCH;)ERS .gRC:ieRs .geRSRC 'g—eRSRC:i _
(PC’Hi)RS .geRCRS _ (PCHi)RS .geRCRS
Ko = (X /hsy) ™ = [(PCH" - g")" /hs;] ™ =
= (PCH/hs; - g*¢)fs = (PCH;)Rs . g#Fels

Note that: (PCH*)¢ =[],_,(¢¢) = PCH and: (PCH})® = PCH,
We claim that the APSI Protocol in Fig.Rlis a: (1) Server-Private (APSI), (2) Client-
Private, (3) Client-Unlinkable, and (4) Server-Unlinkable APSI. (See Appendix B).

5.5 Deriving Efficient PSI

We now convert the above APSI protocol into a PSI variant, shown in Fig[3l In do-
ing so, the main change is the obviated need for the RSA setting. Instead, the protocol
operates in Z,, where p is a large prime and ¢ is a large divisor of p — 1. This change
makes the protocol more efficient, especially, because of smaller (|g|-size) exponents.
Nonetheless, the basic complexity remains the same: linear communication overhead —
O(v + w), and linear computation — O(v + w) for the server and O(v) for the client.
However, we note that, in Step 3b, the server can precompute all values of the form:
(hs;)~ . Thus, the cost of computing all K;.; values can be reduced to O(w) mul-
tiplications (from O(w) exponentiations). In fact, the same optimization applies to the
protocol in Figl Correctness of the protocol is self-evident, since its essential opera-
tion is very similar to that of the APSI variant.

— Common input: p, q, g, H(), H ()
- Client’s input: C = {hci, - - , hey }, where: he; = H(c;)
- Server’sinput: S = {hs1,- - , hsw}, where: hs; = H(s;)

1. Client:

- PCH = H?:l hci

- R, Zyand X = PCH - g"e

- Vi, PCH; = PCH/hci,and Re.; — Z,, yi = PCH; - gfei
2. Client » Server: X, {y1,..,Yv}
3. Server:

- Ry — Zyand Z = g**=

— V4, compute: K.; = (X/hs;)B, and t; = H'(Ks.;)

- V4, compute: y; = (y;)™
4. Server » Client: Z, {y1,..,yo}, {1, tw}
5. Client:

— Vi, Koy =y - 2% - Z7 e and t) = H'(Ke.)

— OUTPUT: {t1, .., t,} N {t1, .., tw}

Fig. 3. PSI Protocol with linear complexity

152 E. De Cristofaro and G. Tsudik

We defer formal proofs for the above PSI protocol to extended version of the pa-
per [12]]. Proofs basically mirror the proofs of the protocol constructed in the next sec-
tion (see Appendix C). Simulations of the two schemes follow the same approach, ex-
cept that, while proofs in Appendix C rely on the One-More-RSA assumption, privacy
of protocol in Fig.[3lis based on the One-More-Gap-DH assumption. With the exception
of authorization, security and privacy features of this protocol are the same as that of its
APSI counterpart described above.

Note that the our work-in-progress proofs against fully malicious players for pro-
tocols in Figures [2] and [3] seem to depend on the product of hashes, i.e., the PCH
structure. However, for HbC adversaries these protocols can be described in a simpli-
fied version reported in Appendix D, for the sake of completeness. We present only the
PSI version, since the description of its APSI counterpart is straightforward.

5.6 More Efficient PSI

Although efficient in principle, the PSI protocol in Fig[lis sub-optimal for application
scenarios where the client is a resource-poor device, e.g., a PDA or a cell-phone. In
other words, O(v) exponentiations might still represent a fairly heavy burden. Also, if
the server’s set is very large, overhead incurred by O(w) modular multiplications might
be substantial.

To this end, we present an even more efficient PSI protocol (see Fig. @) where the
client does not perform any modular exponentiations on-line. Instead, it only needs
O(v) on-line modular multiplications (Step 7). Also, server’s on-line computation over-
head is reduced to O(v) exponentiations in Step 5. Server precomputation in Step 1

— Common input: n, e, H(), H'()
- Client’s input: C = {hci, -+ , hey }, where: he; = H(c;)
- Server’sinput: d,S = {hs1,--- , hsw}, where: hs; = H(s;)

OFF-LINE:

1. Server:

— V3, compute: K.; = (hs;)? mod n and t; = H'(Ks.;)
2. Client:

— Vi, compute: Re.; < Zy, and y; = hc; - (Re:)® mod n
ON-LINE:

3. Client » Server: {y1,..,Yv}
4. Server:
- V4, compute: y; = (y;)* mod n
5. Server » Client: {y1,...,y0}, {t1,- tw}
6. Client:
— Vi, compute: Ke.; = v /Re.; and t; = H'(Kc.;)
— OUTPUT: {t}, .. t,} N {t1, ., tw}

Fig. 4. Blind RSA-based PSI Protocol with linear complexity

Practical Private Set Intersection Protocols with Linear Complexity 153

amounts to w exponentiations — RSA signatures. Client precomputation in Step 2 in-
volves O(v) multiplications, since, as is well-known that, e can be a small integer.

The main idea behind this protocol comes from the Ogata and Kurosawa’s adaptive
Oblivious Keyword Search [21]]. However, we adapt it for the PSI scenario: instead of
encrypting a string of 0’s the server reveals the key as the hash of the signature for all
elements in her set. We show that the resulting protocol in Fig.dlis a: (1) Server-Private,
(2) Client-Private, and (3) Client-Unlinkable PSI (see Appendix C).

Although this protocol uses the RSA setting, RSA parameters are initialized a priori
by the server. This is in contrast to the protocol in Fig2] where the CA sets up RSA
parameters. To see that the present protocol is correct, consider that: K.; = (hs;)? in
Step 1, and, in Step 6:

Kei = yi/Reii = (hei - (Reii))?/Resi = (hei)? = Koy = K. iff he; = hs;

Drawbacks: although very efficient, this PSI protocol has some issues. First, it is un-
clear how to convert it into an APSI version. Second, if precomputation is somehow
impossible, its performance becomes worse than that of the PSI protocol in Fig[3] since
the latter uses much shorter exponents at the server side. Privacy features of this protocol
also differ from others discussed above. In particular, it lacks server unlinkability. (Re-
call that this feature is relevant only if the protocol is run multiple times.) We note that,
in Step 1 the server computes tags of the form ¢; = H’(hs;)%. Consequently, running
the protocol twice allows the client to observe any and all changes in the server’s set.

There are several ways of patching the protocol to provide this missing feature. One
is for the server to select a new set of RSA parameters for each protocol instance.
This would be a time-consuming extra step at the start of the protocol; albeit, with
precomputation, no extra on-line work would be required from the server. On the other
hand, the client would need to be informed of the new RSA public key (e, n) before Step
2, which means that, at the very least (using e = 3), v multiplications in Step 2 would
have to be done on-line. Also, two additional initial messages would be necessary: one
from the client — to “wake up” the server, and the other — from the server to the client
bearing the new RSA public key and (perhaps) {t1, .., t,, }, thus saving space in the last
message. Another simple way of providing server unlinkability is to change the hash
function H() for the server each protocol instance. If we assume that the client and
server maintain either a common protocol counter (monotonically increasing and non-
wrapping) or sufficiently synchronized clocks, it is easy to select/index a distinct hash
function based on such unique and common values. One advantage of this approach is
that we no longer need the two extra initial messages.

5.7 From PSI (APSI) to PSI-DT (APSI-DT)

It is easy to add data transfer functionality to the protocols in Fig. [Il 2] 3 and [and
provide APSI-DT and PSI-DT. Following the approach outlined in [11]], we assume
that an additional secure cryptographic hash function H” : {0,1}* — {0, 1} is chosen
during setup. In all aforementioned protocols, we then use H” to derive a symmetric
key for a semantically secure symmetric cipher, such as AES [10]. For every j, server
computes k,.; = H "(Ks, ;) and encrypts associated data using a distinct key k. ;. For
its part, the client, for every i, computes k.., = H"(K,;) and decrypts ciphertexts

154 E. De Cristofaro and G. Tsudik

corresponding to the matching tag. (Note that k,.; = k..; iff s; = ¢; andso t; = t;). As
long as the underlying encryption scheme is semantically secure, this extension does
not affect the security or privacy arguments for any protocol discussed thus far.

5.8 Evaluation

We now highlight the differences between existing PSI techniques and protocols pro-
posed in this paper. We focus on performance in terms of server and client computation
and communication complexities. We use w and v to denote the number of elements
in the server’s and client’s sets, respectively. Let m be the number of bits needed to
represent each element. We count only the number of online operations. The results are
summarized in Table[2]and compared choosing parameters that achieve similar degrees
of security. The Table also includes communication overhead, for completeness.

Table 2. Performance Comparison of PSI and APSI protocols

Protocol Model Adv Commun. Server Prec Server Ops Client Ops Mod Bits
APSI[6] Std Mal O(w) - O(w) encrs in 3] O(vw) decrs in [3]]
APSIFig.1 ROM HbC O(vw) O(w) 1024-bitexps O(v) 1024-bitexps O(v) 1024-bit exps 1024
O(vw) mults
APSI Figll ROM HbC O(v+w) O(w) 1024-bitexps O(v) 1024-bitexps ~ O(v) 1024-bit exps 1024

PSI[I5] Std HbC O(v+w) - O(vw) m-bitexps O(v + w) 1024-bitexps 2048
PSI[I8] Std HbC O(v+w) O(w) 1024-bitexps O(v) 1024-bit exps O(v) 1024 mod 1024-bit 1024/
mod 1024 exps mod 2048 exps m-bit mod 2048-bit exps 2048

PSI[I9] ROM HbC O(v+w) O(w) 160-bitexps O(v) 160-bitexps O(v) 160-bit exps 1024
PSIFighl ROM HbC O(v+w) O(w) 160-bitexps O(v) 160-bitexps O(v) 160-bit exps 1024
O(w) mults

PSIFigll ROM HbC O(v+w) O(w) 1024-bitexps O(v) 1024-bitexps ~ O(v)1024-bit mults 1024

We remark that: (1), each encryption in [5] (i.e., Boyen-Waters’ IBE) requires 6 expo-
nentiations and a representation of 6 group elements, and each decryption requires 5
bilinear map operations, and (2), the complexity for the PSI solution against Malicious
model in [[18]] and [[19] grows by a factor of 2. All protocols proposed in this paper have
been implemented in ANSI C (using the well-known OpenSSL library) and tested on a
Dell Precision PC on a 2.33GHz CPU and 8GB RAM. The prototype’s code is avail-
able upon request. To confirm the claimed efficiency of our protocols, we compared
on-line run-times of our protocols to those of prior work. In case a solution provides
security both against HbC and malicious adversary, we implement the former. We omit
run-times for operations that can be precomputed. We also do not measure all prior
techniques discussed in Section] whereas we pick only the three that offer the best
performance: the APSI adaptation of RSA-PPIT [11] in Fig{ll and PSI’s from [18]
and [19]]. We remark that since the efficiency of [18] is influenced by records’ length,
we assume a conservative stance and we choose items to be 160-bits long, similar to the
output of a hash function.

Measured online computation overhead for the tested protocols is reflected in Ta-
ble Bl As the results illustrate, among APSI protocols, the one in FigQl performs no-
ticeably better than its PPIT-based counterpart from [11] when both server and client
have sets of size 5, 000 (and this advantage accelerates for larger set sizes). Looking at

Practical Private Set Intersection Protocols with Linear Complexity 155

Table 3. On-line computation overhead (in ms)

Player Server Client Server Client Server Client
Set size 5,000 1 1 5000 5,000 5,000

APSI Figll 20 5 12,710 24,407 99,118 24,159
APSI FigDl 23 10 12,228 25,769 12,037 25,959

PSI 18] 5 24 27,654 118,676 27,862 118,947
PSI [19] 0 1 2,029 4227 2,108 4,249
PSI Fig[3l 19 1 2,145 5502 2,072 5,344
PSI Figdl 1 0 4,651 1,407 4,662 1422

PSI protocols, the toss-up is between protocols in Fig. Bl and [} the choice of one or
the other depends on whether client or server overhead is more important. If client is a
weak device, the blind-RSA-based protocol in FigHlis a better bet. Otherwise, if server
burden must be minimized, we opt for the protocol of Fig[3l

6 Conclusions

In this paper, we proposed efficient protocols for plain and authorized private set in-
tersection (PSI and APSI). Proposed protocols offer appreciably better efficiency than
prior results. The choice between them depends on whether there is a need for client
authorization and/or server unlinkability, as well as on server’s ability to engage in pre-
computation. Our efficiency claims are supported by experiments with prototype imple-
mentations. Future work includes analysis of our protocols against malicious parties, as
well as extensions to a group setting.

Acknowledgements. We would like to thank Nikita Borisov, Stanislaw Jarecki, Xi-
aomin Liu, Markulf Kohlweiss, and Jihye Kim for the helpful discussion.

References

1. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.:
Randomizable Proofs and Delegatable Anonymous Credentials. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 108—-125. Springer, Heidelberg (2009)

2. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion
problems and the security of Chaum’s blind signature scheme. Journal of Cryptology 16(3),
185-215 (2008)

3. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key Encryption with Key-
word Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp- 506-522. Springer, Heidelberg (2004)

4. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM Journal
of Computing 32(3), 586-615 (2003)

5. Boyen, X., Waters, B.: Anonymous Hierarchical Identity-Based Encryption (Without Ran-
dom Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290-307. Springer,
Heidelberg (2006)

6. Camenisch, J., Kohlweiss, M., Rial, A., Sheedy, C.: Blind and Anonymous Identity-Based
Encryption and Authorised Private Searches on Public Key Encrypted Data. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 196-214. Springer, Heidelberg (2009)

156

7.

10.
11.

12.

13.

15.

16.

20.
21.

22.

23.

24.

A:

E. De Cristofaro and G. Tsudik

Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete loga-
rithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126-144. Springer, Hei-
delberg (2003)

Camenisch, J., Zaverucha, G.: Private intersection of certified sets. In: Financial Cryptogra-
phy and Data Security 2009 (2009)

Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient Robust Private Set Inter-
section. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009.
LNCS, vol. 5536, pp. 125-142. Springer, Heidelberg (2009)

Daeman, J., Rijmen, V.: AES proposal: Rijndael (1999)

De Cristofaro, E., Jarecki, S., Kim, J., Tsudik, G.: Privacy-Preserving Policy-Based Informa-
tion Transfer. In: Goldberg, 1., Atallah, M.J. (eds.) Privacy Enhancing Technologies. LNCS,
vol. 5672, pp. 164—184. Springer, Heidelberg (2009)

De Cristofaro, E., Tsudik, G.: Practical Private Set Intersection Protocols. In: Cryptology
ePrint Archive (2009), http://eprint.iacr.org/2009/491.pdf

Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy preserving data
mining. In: PODS 2003, pp. 211-222 (2003)

Freedman, M., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudo-
random functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303-324. Springer,
Heidelberg (2005)

Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1-19. Springer,
Heidelberg (2004)

Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with
security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS,
vol. 4948, pp. 155-175. Springer, Heidelberg (2008)

. Huberman, B., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic communi-

ties. In: ACM Conference on Electronic Commerce, pp. 78—-86 (1999)

. Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications to Adap-

tive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 577-594. Springer, Heidelberg (2009)

Jarecki, S., Liu, X.: Fast Secure Computation of Set Intersection. Manuscript available from
the authors (2009)

Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 241-257. Springer, Heidelberg (2005)

Ogata, W., Kurosawa, K.: Oblivious keyword search. Journal of Complexity 20(2-3), 356—
371 (2004)

Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238. Springer, Heidelberg
(1999)

Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM 21(2), 120-126 (1978)

Schnorr, C.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161—
174 (1991)

Cryptographic Assumptions

RSA assumption. Let RSASetup(T) be an algorithm that outputs so-called RSA in-
stances, i.e., pairs (N, e) where N = pq, e is a small prime that satisfies gcd(e, ¢(N)) = 1,

http://eprint.iacr.org/2009/491.pdf

Practical Private Set Intersection Protocols with Linear Complexity 157

and p, ¢ are randomly generated 7-bit primes. We say that the RSA problem s (7, ¢)-hard
on 7-bit RSA moduli, if for every algorithm A that runs in time ¢ we have:

Pr{(N,e) <« RSASetup(r),a — Zy : A(n,e,a) = fs.t. 6 =a (mod N)] <7t

One-More-RSA assumption. Informally, the One-More-RSA assumption [2] indi-
cates that the RSA problem is hard even if the adversary is given access to an RSA
oracle. Formally, let (N, e,d) < KeyGen(7) the RSA Key-Generation algorithm, and
let o «— Zj (for j = 1,---,ch), we say that the One-More-RSA problem is (7, t)-
hard on 7-bit RSA moduli, if for every algorithm .4 that runs in time ¢ we have

Pr [{(aiv (i) izt — Al

.yd mod N

(N,€7T,Ol1,"' 7ach)] <rT

where A made at most v queries to the RSA oracle ()¢ ™mod V.

B: APSI Protocol in Fig.

We now consider security and privacy properties of the protocol in Fig.[2l

Client Privacy. Recall that APSI is client-private if no information is leaked to the
server about client’s private inputs. It is easy to show that client’s inputs are polynomi-
ally indistinguishable from a random distribution. This is because, in Step 1, the client
selects all values uniformly and at random, i.e., [Rc, {Rc:1, ..., Reww}] — Z%. Thus,
X = PCH - g and {y; = PCH} - g¥=i} form a random sequence. We defer the
formal proof to the extended version of the paper.

Server privacy. To claim server privacy, we need to show that no efficient A has a
non-negligible advantage over 1/2 against a challenger C'h in the following game. Our
proof works in the random oracle model (ROM) under the RSA assumption.

1. Chexecutes (PK,SK) « Setup(17) and gives PK to A.

2. A invokes Authorize on ¢; of its choice and obtains the corresponding signature

;.

A generates elements ¢}, c¢j different from every ¢; mentioned above.

A participates in the protocol as the client with messages X * and yg, y;.

5. Ch picks one record pair by selecting a random bit b and executes the server’s part
of the interaction on public input PK and private input (c;) with message (Z,y', t)
as described in the protocol.

6. A outputs b’ and wins if b = ¥'.

> w

Let HQuery be an event that A ever queried H' on input K*, where K* is defined (as
the combination of message X™* sent by .A and message Z sent by C'h), as follows:
K* = (X*)*f . (h*)~Bs mod N, where Z = (g)*f*s and h* = H(c*). In other
words, HQuery is an event that A computes (and invoked hash function H’ on input of)
the key-material K* for the challenging protocol.

Unless HQuery happens, A’s view of interaction with Ch on bit b = 0 is indistin-
guishable from A’s view of the interaction with C'h on bit b = 1.

Since the distribution of Z = g% is independent from (c), it reveals no infor-
mation about which ¢ is related in the protocol. Also, since ¥, y] are not related to

158 E. De Cristofaro and G. Tsudik

H(co)" nor H(c1), y' = (yp)°"™* reveals no information about which ¢, is related in
the protocol (y’ is similar to an RSA encryption). Finally, assuming that H’ is mod-
eled as a random oracle, the distribution with b = 0 is indistinguishable from that with
b = 1, unless A computes k* = H'(K*), in the random oracle model, by querying H’,
i.e., HQuery happens.

If event HQuery happens with non-negligible probability, then A can be used to
violate the RSA assumption.

We construct a reduction algorithm called RC'h using a modified challenger algo-
rithm. Given the RSA challenge (N, e, @), RC'h simulates signatures on each ¢; by as-
signing H (¢;) as of mod N for some random value o;. This way, RC'h can present the
authorization on ¢; as 0;. RC'h embeds « to each H query, by setting H(¢;) = a(a;)°
for random a; € Zy. Note that, given (H(c;))? for any ¢;, the simulator can extract
ot = (H(e,))"/a

RCh responds to .A and computes (H (c;))%(for some ¢;) as follows: On A’s input
message X*,y5,y;, RCh picks a random m « Zy, computes Z = g(tem) and
sends Z and i’ = ()" "™, We see that g*+em = ge(d+m) On the HQuery event,
RCh gets K* = (X*)e(d+m) (p*)=(d+m) from A. Since RCh knows X*, h*, e, and
m, it can compute (h*)%.

C: PSI Protocol in Fig.d

We now consider privacy properties of the protocol in Fig. 4l

Client Privacy. As in Appendix B, we claim it is easy to show that client’s inputs to
the protocol are statistically close to random distribution. We defer formal proof to the
extended version of the paper.

Server Privacy. We present a concise construction of an ideal (adaptive) world SIM,.
from a honest-but-curious real-world client C*, and show that the views of C* in the
real game with the real world server and in the interaction with SIM,. are indistinguish-
able, under the One-More-RSA assumption (presented in Appendix A) in the random
oracle model.

First, SIM, runs (N, e, d) < RSA-Keygen(7) and gives (N, e) to C*. SIM. models
the hash function H and H’ as random oracles. A query to H is recorded as (¢, h =
H(q)), a query to H' as (k,h’ = H'(k)), where g and I’ are random values. Finally,
SIM,. creates two empty sets A, B. During interaction, SIM.. publishes the set 7' =

{t1,--- ,tw}, where t; is taken at random. Also, for every y; € {y1,--- , ¥} received
from C* (recall that y; = H(c;) - (Re::)¢), SIM, answers according to the protocol with
(yz‘)d~

We now describe how SIM. answers to queries to H'. On query k to H', SIM,
checks whether it has recorded a value h s.t. h = k€ (i.e., h% = k).
If 13h s.t. h = k°, SIM,. answers a random value k' and record (k, ') as mentioned
above.
If 3h s.t. h = k¢, SIM, can recover the g s.t. h = H(q) and h = k°. Then, it checks
whether it has previously been queried on the value k.

If 3k s.t. k has already been queried, then SIM,.. checks whether ¢ € A. If g ¢ A, it
means that C* queried ¢ to H (which returned h), and also made an independent query

Practical Private Set Intersection Protocols with Linear Complexity 159

k to H' s.t. h = k°. In this case SIM, aborts the protocol. However, it easy to see that
this happens with negligible probability. Instead, if ¢ € A, SIM, returns the value A’
previously stored for k.

If 13k s.t. k has already been queried, this means that SIM,. is learning one of C*’s
outputs. Hence, A = A U {q}. Then, SIM, checks if |A| > v.

If |A| <= v, then SIM,, checks if ¢ € C NS by playing the role of the client with the
real world server. If ¢ € CNS, SIM, answers to the query on k with a value t; € T\ B,
records the answer (k,¢;) and sets B = BU {t;}.If ¢ ¢ C NS, SIM, answers with a
random value h’ and records the answer.

If |A] > v, then we can construct a reduction Red breaking the One-More-RSA

assumption.
The reduction Red can be constructed as follows. Red answers to C*’s queries to
H with RSA challenges (1, -, acp). During interaction, on C*’s messages y; €

{y1, " ,Yv}, Red answers (yi)d by querying the RSA Oracle. Finally, if the case de-
picted above happens, it means that at the end of the protocol the set B will contain
at least (v + 1) elements, where v is the number of RSA challenges, thus breaking the
One-More-RSA assumption. As a result, we have shown that the views of C* in the real
game with the real world server and in the interaction with SIM, are indistinguishable.

We remark that the structure of the above proof has been inspired from the one based
on the UPF secure under the One-More-Gap-DH assumption from [19], as well as the
notion of adaptiveness. The adaptiveness allows the client to adaptively make queries,
i.e., she does not need to specify all her inputs at once. In fact, we argue that the signing
algorithm of unique signature is indeed an unpredictable function, hence its hash in the
random oracle model results in a PRF.

D: Simplified Description of PSI in Fig.

— Common input: p, q, g, H(), H'()
- Client’s input: C = {hci, - - , hey }, where: he; = H(c;)
- Server’sinput: § = {hs1,- - , hsw}, where: hs; = H(s;)
1. Client:
- R, < Zgand X = gt
= Vi, Re:i <+ Zq, yi = hc; -ch“i
2. Client » Server: X, {y1,..,Yv}
3. Server:
- R, — Zgand Z = g™+
-V j, compute: K,.; = (X - hs;)™, and t; = H' (Ks.;)
— V4, compute: y] = (y;)™
4. Server » Client: Z, {y1, ...y}, {t1, o tw}
5. Client:
— Vi, Kei = yi- Z% . Z7Bei and t;, = H'(Ke.)
— OUTPUT: {t1, ..., } N {t1, .., tw}

Fig. 5. PSI Protocol with linear complexity

Design and Implementation of a Key-Lifecycle
Management System

Mathias Bjorkqvist, Christian Cachin, Robert Haas, Xiao-Yu Hu, Anil Kurmus,
René Pawlitzek, and Marko Vukolié

IBM Research - Zurich

Abstract. Key management is the Achilles’ heel of cryptography. This work
presents a novel Key-Lifecycle Management System (KLMS), which addresses
two issues that have not been addressed comprehensively so far.

First, KLMS introduces a pattern-based method to simplify and to automate
the deployment task for keys and certificates, i.e., the task of associating them
with endpoints that use them. Currently, the best practice is often a manual pro-
cess, which does not scale and suffers from human error. Our approach eliminates
these problems and specifically takes into account the lifecycle of keys and certifi-
cates. The result is a centralized, scalable system, addressing the current demand
for automation of key management.

Second, KLMS provides a novel form of strict access control to keys and
realizes the first cryptographically sound and secure access-control policy for a
key-management interface. Strict access control takes into account the crypto-
graphic semantics of certain key-management operations (such as key wrapping
and key derivation) to prevent attacks through the interface, which plagued earlier
key-management interfaces with less sophisticated access control.

Moreover, KLMS addresses the needs of a variety of different applications
and endpoints, and includes an interface to the Key Management Interoperability
Protocol (KMIP) that is currently under standardization.

1 Introduction

Cryptography is used to secure many information-technology systems, ranging from
encrypting data on storage and establishing virtual private networks to protecting com-
munication with mobile devices and using SSL certificates for e-commerce over the
Internet. All uses of cryptography rely on the proper keys being present. Key manage-
ment deals with the lifecycle of cryptographic keys, with operations for creating, im-
porting, storing, reading, updating, exporting, and deleting them, and with distributing
keys before they are used in cryptographic functions. An important aspect is to manage
the attributes of keys that govern their usage and their relation to other keys.

Complications with key distribution are seen as the source of most operational prob-
lems with secure systems using cryptography. A key-management system must provi-
sion the appropriate keys and deploy them to endpoints, the entities that consume keys
and use them for cryptographic functions. Managing a large number of keys manually
does not scale, suffers from human error, and is prohibitively expensive. As a result,
there is a great demand for automated key-management today, provided by centralized,
scalable systems.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 160-174.]2010.
(© IFCA/Springer-Verlag Berlin Heidelberg 2010

Design and Implementation of a Key-Lifecycle Management System 161

In an enterprise context, multiple users associated with many endpoints access the
key-management system and perform operations on the objects that it maintains. These
objects include symmetric keys, public keys, private keys, and certificates. A key-
management system focuses on attribute handling rather than on cryptographic func-
tions. But a comprehensive key-management system will also support a small set of
cryptographic operations, including creating a key, issuing a certificate, to derive a new
key (a deterministic operation that creates a symmetric key from an existing one), and
to wrap or unwrap a key with another key (wrapping means to encrypt a target key with
another key for export and transfer to another system).

In this paper, we describe the design and implementation of a prototype Key-Lifecycle
Management System (KLMS). It unifies key management for local and remote endpoints
and handles many different types of cryptographic objects in a flexible way. KLMS
addresses enterprise-level key management and covers many endpoints that require cryp-
tographic keys, from heterogeneous applications, servers, and network devices to stor-
age devices and media (e.g., tape cartridges). The system can provision keys to any
application that can receive keys through the Java KeyStore (JKS) interface, as for ex-
ample, file-based keystores in several formats, and it provides a prototype server for the
Key Management Interoperability Protocol (KMIP), which is under standardization by
OASIS [16].

KLMS introduces two novel features of a key-management system: first, the notion
of deployment patterns to automate the administration and the deployment tasks for
keys and certificates; and second, a strict implementation of access control to keys,
which takes into account the cryptographic semantics of certain key-management op-
erations and realizes the first cryptographically sound access-control policy for a key-
management interface. We now briefly describe these two contributions.

Automated deployment. Often multiple related keys must be administered by the man-
agement system. To simplify this task, several keys can be grouped and deployedtogether
to one or more endpoints. Such deployments can be structured according to certain pat-
terns. In the example of a TLS-protected web server connected to the Internet, which is
clustered for high availability, the same private key and certificate should be deployed
to all nodes in the cluster. On the other hand, for a communication setup where multiple
servers identify each other using their client-certificates through TLS-connections, every
server should receive its own private key plus the public keys of all servers.

For supporting such scenarios, KLMS provides a novel pattern-based method for
automated key and certificate deployment. A flexible deployment manager (DM) auto-
mates deployment and shields the system administrator from the lower-level key cre-
ation and distribution tasks. Once a suitable pattern and the supporting policies for
a particular application are defined, KLMS automatically generates, distributes, and
maintains as many keys or key pairs as necessary, and responds dynamically to changes
of the topology, when new endpoints are added to the application.

KLMS also takes care of automatically managing the lifecycle of keys. It may create
keys ahead of time and only maintain them internally, provisioned for a certain applica-
tion. At the time of activation of a key, KLMS automatically deploys it to endpoints for
the duration of its active life-time, and withdraws the key again from all endpoints when
it expires. The key-lifecycling logic is tightly coupled with the deployment manager.

162 M. Bjorkqyvist et al.

Strict access control. Every key-management system serves keys to users, the prin-
cipals that invoke its operations. In the usual basic form of access control, the system
decides about access to a key only by consulting an access-control list (ACL) associated
with the key. But because the operations of the system allow users to create complex
relationships between keys, through key derivation and key wrapping, basic access con-
trol may have security problems. For example, if there exists a key k; that some user
is not allowed to read, but the user may wrap k; under another key k5 and export the
wrapped representation, the user may nevertheless obtain the bits of k1. Another exam-
ple is a key that was derived from a parent key; when a user reads the parent key, the
user implicitly also obtains the cryptographic material of the derived key.

In general, a cryptographic interface that manages keys and allows the creation of
such dependencies among keys poses the problem that access to one key may give a
user access to many another keys. This issue has been identified in the APIs of several
cryptographic modules [2,7,9L/11]] and may lead to serious security breaches when one
does not fully understand all implications of an API.

Therefore, KLMS provides a strict mode of access control, in which decisions take
the semantics of the key-management API into account, and implements a cryptograph-
ically sound access-control policy on all symmetric keys and private keys. The above
issues with basic access control are eliminated with strict access control. Our strict
access-control policy builds on the work of Cachin and Chandran [8], which describes a
secure cryptographic token interface and introduces a cryptographically strong security
policy. A strict access-control decision not only depends on the ACL of the correspond-
ing key, but also takes into account the ACLs of related keys and the history of past
operations executed on them. It prevents any unauthorized disclosure of a symmetric
key or a private key.

Related Work. The need for building enterprise-scope key management systems has
been widely recognized [3]], and the US National Institute of Standards and Technology
(NIST) has issued a general recommendation for key management [4]]. Several commer-
cial enterprise key-management systems are on the market, including HP StorageWorks
Secure Key Manager, IBM Distributed Key Management System (DKMS), IBM Tivoli
Key Lifecycle Manager, NetApp Lifetime Key Management, Sun StorageTek Crypto
Key Management System, and Thales/nCipher keyAuthority.

In order to integrate these proprietary solutions, multiple efforts are currently under-
way to build and standardize key-management standards for open networks: the W3C
XML Key Management Specification (XKMS), the IEEE P1619.3 Key Management
Project, and the Key Management Interoperability Protocol (KMIP) standardization un-
der the auspieces of OASIS are some of the most prominent ones. Cover [10] gives an
up-to-date summary of the current developments.

There is a rich literature on using patterns in software engineering and in systems
management. One representative work that links this area with deployment on a system
are the deployment patterns for a service-oriented architecture of Arnold et al. [3]]; these
patterns distribute applications to servers automatically by an algorithm that is available
with the IBM Rational Software Architect product.

Access control and management of cryptographic keys are related in many ways.
One prominent line of research, starting with Akl and Taylor [1]], has concentrated on

Design and Implementation of a Key-Lifecycle Management System 163

Java Generic| | KMIP
Client Client Client

Client(s)

Server / \

Interface |VKS | | JKS | |KM|P| GUI | CLI |
N I / . 7
Service KLS Admin Serv.
|
Manager oM I DM I I EPM |

I
Data Eullié.h./l. .E m
Fig. 1. Key-Lifecycle Management System architecture (see text)

representing a hierarchy (modeled as a partially ordered set) of users and their access
privileges in a directed graph of keys, where a user inherits the privileges of all users
below; this and subsequent work focuses on minimizing the number of keys stored by
a user.

Because the key-management server provides the above-mentioned cryptographic
functions, it represents a cryptographic security API accessible over a network. Secu-
rity APIs stand at the boundary between untrusted code and trusted modules capable of
maintaining internal state. Cryptographic security APIs are typically provided by cryp-
tographic tokens [2], hardware-security modules (HSM) like IBM’s 4764 cryptoproces-
sor that supports the IBM CCA interface [13l/15] and generic PKCS #11-compliant [[17]]
modules, smartcards, or the Trusted Platform Module [18]]. The study of cryptographic
security APIs has so far been limited to programming APIs and to libraries; this paper
extends their study to protocols for open networks.

Organization of the Paper. Section 2] describes the architecture of KLMS and its data
model, and motivates some design choices. The main contributions, automated deploy-
ment and strict access control, are described in Sections 3] and [} respectively. We con-
clude the paper in Section [5]by describing the implementation and the evaluation.

2 Model

System Architecture. The architecture of KLMS is shown in Figure [1l It is foreseen
that the server is implemented in Java and runs on a web-application server. The KLMS
server interacts with the clients (endpoints) through several types of interfaces, as de-
scribed below. Administrators use a different interface than the clients to access the
server. The server itself is structured in four layers; bottom-up, these are a data layer, a
manager layer, a service layer, and an interface layer, as described next.

164 M. Bjorkqyvist et al.

Data Layer. The data layer stores all information in a persistent Database (DB). In-
ternally, DB accesses a standard SQL database through the JDBC interface. All state
information of KLMS is maintained by DB, so that KLMS does not lose any data be-
cause of a system crash. Meta-data about keys and certificates is stored in DB, as well as
the cryptographic material itself. Some corporate security policies mandate that certain
keys exist in cleartext only in a hardware-security module (HSM); the architecture sup-
ports this feature, by including a master key stored in an HSM and using it to encrypt
all cryptographic material in DB.

Manager Layer. KLMS contains three components that provide low-level functional-
ities: an Object Manager (OM), a Deployment Manager (DM), and an Endpoint Man-
ager (EPM).

First, OM provides a simple interface to manipulate the cryptographic objects sup-
ported by KLMS. OM can add new objects, read, modify, search, and delete them in the
DB, and maintains an in-memory object cache that is used to speed up read operations.

Second, DM takes care of administering deployments and deployment bundles. A de-
ployment is an association between an object and an endpoint in the sense that KLMS
provisions the object for use in cryptographic operations by the endpoint. The deploy-
ment policy realized by the DM dictates when and under which condition a deployed
object finally becomes available to an endpoint through an interface; the deployment
policy is described in Section Bl A deployment bundle is a set of deployments, which
are grouped to support a given application.

Finally, EM controls the endpoints in the interface layer of the server, registering
them in KLMS, potentially creating new file-backed JKS endpoints, and listening to
protocol ports to which KMIP clients connect. EM unifies the different types of end-
points towards the rest of the server.

Service Layer. The service layer provides two modules: a Key-Lifecycle Service (KLS),
which is used by endpoints and by an administrator, and an Admin Service, which is
only accessed by the administrator.

KLS represents the core of the server. It implements all operations related to keys and
certificates that are available to endpoints and to users, drives automated deployment
and lifecycle operations in conjunction with DM, and enforces access control. KLS
can distinguish between different users, the principals that access it; every invocation
of an operation occurs in the context of a session, which represents a user that has
been securely authenticated by KLMS. The data model and the operations of KLS are
described in the next section.

The Admin Service controls the allocation of endpoints and deployments through
EPM and DM, respectively. Access to its operations also occurs in the context of a
session, but is restricted to users with the corresponding permission. The Admin Ser-
vice also allows archive and recovery operations for individual keys and for the whole
database. Both modules, KLS and Admin Service, generate audit events.

Interface Layer. Three types of endpoint interfaces interact with the clients. The Virtual
Keystore (VKS) interface emulates the provider of a Java KeyStore, for applications that
are hosted by the same application server as KLMS. The client reads and writes keys

Design and Implementation of a Key-Lifecycle Management System 165

via VKS by issuing the “get” and “set” operations of the Java KeyStore interface. VKS
is a pull-style synchronous interface, i.e., KLS can forward client calls to VKS directly
to OM and DM.

The Java Keystore (JKS) interface accesses a named Java KeyStore as a client. A
Java KeyStore is usually passive and its default implementation is a file, but depending
on the installed Java Cryptography Extension (JCE) provider, many different entities
may receive key material through the JKS interface (in particular, such clients need not
be implemented in Java). JKS is a push-style asynchronous interface, because KLS calls
the Java KeyStore interface and clients may retrieve keys from JKS at a later time.

A protocol interface provides an experimental implementation of the Key Manage-
ment Interoperability Protocol (KMIP) draft standard [16]. KMIP is mostly a client-to-
server protocol that offers rich functionality to manipulate keys and certificates. Many
of its operations can be forwarded directly to KLS, but other operations are realized by
an adapter module inside the KMIP interface. Ignoring the (optional) server-to-client
operations in KMIP, the protocol interface is again pull-style and synchronous, similar
to VKS. Clients connecting through KMIP need not be implemented in Java.

For the two keystore-based interfaces (JKS and VKS), EPM statically configures the
user with which KLS is accessed. For the protocol-based interface (KMIP), it is possible
to take the user from the client context. For the pull-style interfaces (VKS and KMIP),
access control occurs when the client calls KLS. On the other hand, for the push-style
JKS interface, access control must be enforced at the time when the deployment occurs.

Administrators access KLMS through a web-based Graphical User Interface (GUI)
(built using the Hamlets framework [[14]) or through a Command-Line Interface (CLI);
they both provide operations to deal with endpoints and to manage deployments. Note
that clients who access the system through one of the endpoint interfaces cannot deploy
keys or certificates in KLMS.

Data Model and Operations. KLMS manages symmetric keys, public keys, private keys,
and certificates, which we summarily call cryptographic objects or simply objects. All
key formats supported by the underlying Java platform and the JCE are available, in-
cluding RSA, Diffie-Hellman, ElGamal, DSA, and EC-variants for public-key algo-
rithms and symmetric keys of arbitrary length. Objects are composed of attributes and
(possibly) cryptographic material. Attributes contain meta-data about the use of the
cryptographic material, and they are the main concern of key management. Attributes
may be read and sometimes also modified by clients in KLMS. KLMS also provides
templates that simplify the handling of attributes for multiple objects, but we do not
describe them in detail here, as they are not our primary concern.

KLMS currently supports close to 50 different object attributes. Rather than listing
them all, we focus on the subset that is relevant for lifecycle operations, for automated
deployment, and for access control (see Table[I). Every object has a unique identifier.
A crucial attribute is the state of an object in its lifecycle. Objects in KLMS follow a
lifecycle according to NIST [4, Section 7]. NIST distinguishes between using a key for
protect purposes when applying cryptographic armor (through encryption, wrapping,
signing, and so on), and process purposes when consuming previously protected data
(through decryption, unwrapping, verification, and so on). A key may at certain times be
used for one or both purposes, or for none at all. The lifecycle of a cryptographic object

166 M. Bjorkqyvist et al.
Table 1. Object attributes relevant for key lifecycle and access-control features

Key lifecycle Access control

State Deactivation time Usage Creator

Initialization time Compromise time Digest Dependents

Activation time Destroy time Strict Ancestors
ACL Readers

progresses from a Pre-Active state, where it is not to be used for any cryptographic
operation, through an Active state, where it may be used to protect and to process data, to
a Deactivated state, where it may only be used to process data (see [4]). State transitions
may be triggered directly by modifications to the lifecycle-relevant attributes, such as
state, activation time, and deactivation time, or indirectly, as a side-effect of operations
(e.g., when destroying an object). State transitions may cause actions by the automated
deployment mechanism, as described in Section[3

The operations of KLMS fall in two categories: those that manipulate objects, pro-
vided by KLS, and those that affect deployments, provided by Admin Service.

The most important operations on objects are: (1) create, which generates a new
key or certificate and stores it, with attributes supplied by the client; (2) store, which
stores a key or certificate and uses the cryptographic material supplied by the client in
cleartext; (3) import, which stores a key and uses the cryptographic material supplied
by the client in wrapped form (i.e., encrypted with another key); (4) derive, which cre-
ates a new symmetric key from an existing symmetric key; (5) read, which returns the
key or certificate with a given identifier to the client, including attributes and crypto-
graphic material in cleartext; (6) export, which returns the key with a given identifier
to the client, including attributes and cryptographic material in wrapped form; (7) read
attributes, which is the same as read, except that it omits the cryptographic material;
(8) set attributes, which modifies the attributes of an object; (9) search, which locates
all objects matching a given search condition and returns their identifiers; (10) destroy,
which deletes the cryptographic material of an object, but leaves its attributes intact;
(11) delete, which deletes the entire object; (12) archive, for writing some objects to
off-line storage; and (13) recover, for reading objects back from off-line storage.

» Destroyed
activation time deactivation time T ¥
reached Active reached
. Deactivated Destroyed
—» Pre-Active - (protect and L. :
process) (process only. [Compromised|

!

J ICompromised|
(process only

Fig. 2. Key states and transitions [4]]. Transitions are triggered when an appropriate attribute is set
or at the time specified by a time-related attribute.

Design and Implementation of a Key-Lifecycle Management System 167

99

Secret-shared Private/certificate-shared Secret-unique Private-unique/certificate-shared

<> Secret key O Endpoint /\ Privatekey (O Certificate

Fig. 3. Deployment patterns

The relevant operations of Admin Service on deployments are: (1) specify, which cre-
ates a deployment or a deployment bundle; (2) activate, which executes a deployment or
a deployment bundle and distributes all objects to the specified endpoints; (3) withdraw,
which reverses the effects of activate on a deployment or on a deployment bundle; and
(4) remove, which removes a deployment or a deployment bundle from the system.

3 Automated Deployment

This section describes the pattern-based automated deployment in KLMS and the inter-
action between key-lifecycle management and key deployment. Recall that a deploy-
ment is an association between an object and an endpoint and that a deployment bundle
is a set of deployments.

3.1 Deployment Patterns

A deployment pattern is a rule for generating deployment bundles with a defined struc-
ture. A deployment pattern is described in terms of an object list, an ordered set of keys
and/or certificates to be deployed, and an endpoint list, an ordered set of endpoints,
to which the objects are to be deployed. The pattern defines how the objects relate to
the endpoints. Given an object list and an endpoint list, a deployment pattern yields a
unique deployment bundle that complies with the pattern. Deployment patterns enable
an administrator to focus on the requirements of an application, without having to worry
about deploying individual keys and certificates.
We now describe four different deployment patterns, depicted in Figure Bl

Secret-shared: This pattern associates each element of the object list with every el-

ement of the endpoint list. For example, it is used to deploy a (set of) symmetric
key(s) to multiple endpoints, such that they all share the same key(s).
When KLMS instantiates a secret-shared pattern, only the endpoint list is a manda-
tory input. The object list may be left out and a desired number n of symmetric
keys can be given instead. In this case, KLMS generates n symmetric keys on the
fly, taking their attributes from a template that is also included, and deploys all keys
to each endpoint. (The generated keys are also stored in the DB.)

Private/certificate-shared: This pattern associates each private-key/public-key pair or
private-key/certificate pair in the object list with every element of the endpoint list.

168 M. Bjorkqyvist et al.

It is similar to the secret-shared pattern, but applies to asymmetric key pairs only
(where public keys and certificates are used interchangeably).

A typical use-case for this pattern arises in a cluster of nodes that implement the
same service, using replication and/or a fail-over strategy for increasing throughput
and fault-tolerance. For example, when the cluster nodes serve web content over
HTTPS for multiple domains, one private-key/certificate pair for TLS per domain
must be available to every cluster node.

Secret-unique: This pattern associates the i-th key of the object list (containing only
symmetric keys) with the ¢-th endpoint in the endpoint list, for ¢ = 1,..., n. When
KLMS instantiates a secret-unique pattern, the object list can be omitted and a
template describing attributes for the keys can be given; KLMS then generates as
many keys automatically as there are endpoints in the list, and deploys them. This
pattern can be used for generating unique master keys for a range of secure devices,
each of which is identified by a symmetric master key.

Private-unique/certificate-shared: This pattern takes an object list of n asymmetric
key pairs (i.e., private key/public key or private key/certificate pairs) and a list of
n endpoints as inputs, and associates the i-th private key with the i-th endpoint,
fort =1,...,n and each public key/certificate with every endpoint. As with other
patterns, when KLMS instantiates the pattern and the object set is omitted, then
KLMS automatically generates the necessary key pairs from the attributes given in
a template (such automatically generated certificates can only be self-signed).
This pattern addresses a typical infrastructure key-distribution model, where every
entity is identified by a private key/public key pair, and every entity must know the
public keys of all others. This could be a cluster of J2EE servers, whose communi-
cation is secured using those keys. Since the certificates are self-signed, all servers
must have a copy of every other server’s self-signed certificate in their keystore.

Note that the above list of four patterns is not exhaustive: one can define more patterns
analogously, for example, a private-unique/certificate-unique pattern similar to secret-
unique, by extending the generic association rules between object list and endpoint list
above.

3.2 Administering Deployments

Recall that deployments are specified by an administrator using the Admin Service.
Information on all objects deployed to endpoints is kept in a deployment table. Every
deployment has a state that is either OnHold or Active.

When a deployment is in state OnHold, the deployment information is present in
the deployment table, but the deployment should not yet or no longer take effect. Only
during the time when a deployment is in Active state should the object be distributed to
the endpoint and available to clients at the endpoint.

The administrator schedules the transition of a deployment from OnHold to Active
state and vice versa by invoking the activate and withdraw operations of the Admin
Service, respectively. After such a state change has been registered in the deployment
table, it is the responsibility of a distribution process in DM to move or remove objects
to or from the affected endpoints. Because its operations take time and may fail because

Design and Implementation of a Key-Lifecycle Management System 169

of network failures, the distribution process operates asynchronously in the background.
This design shields the administrator from the different semantics of the endpoints.
When DM distributes deployed objects to endpoints, it respects a deployment policy
that affects its operation as described in Section[3.3

In order to fully realize the power of automated deployment, the Admin Service
allows dynamic modification of all pattern-based deployment bundles even after they
have been created and activated. It is possible to add and to delete objects and endpoints
to and from an existing deployment bundle. For example, when a deployment bundle
d has been created by instantiating a pattern p, then an endpoint e can be added to it,
and this will specify and activate a new deployment in d that affects e according to
p. Likewise, when an endpoint e is deleted from d, this will withdraw and remove all
deployments from d that contain e. Hence, the operator can manipulate deployments in
a convenient way.

Note that a deployment of an object o to an endpoint e may be created through mul-
tiple ways, through individual deployments, deployment bundles, and pattern-based de-
ployments. In this case, DM regards the deployment (o, €) to be in Active state whenever
at least one of the sources is in Active state.

3.3 Deployment Policy

The policy followed by DM is called the key-lifecycle deployment policy and affects
the behavior of the distribution process. The policy distinguishes state-aware endpoints
that can interpret the state attribute of an object (such as those connecting through the
KMIP interface) from state-oblivious endpoints that are not capable of expressing the
notion of a lifecycle state (those connecting via VKS and JKS interfaces). The policy
acts as follows. When DM distributes a deployment that associates an object o with an
endpoint e, and when e is state-aware, then DM always distributes o to e; on the other
hand, when e is state-oblivious, then DM only distributes o to e if o is in Active state.
This ensures that a state-oblivious endpoint never uses a key in Pre-Active state for a
cryptographic operation, as this undermines the idea of managing the lifecycle of keys.

In order to support this policy, DM includes a key lifecycle scheduler, which executes
the time-triggered state changes that can be specified by setting certain object attributes,
like activation time or deactivation time. For example, a key with an activation time in
the future can already be deployed to a state-oblivious endpoint; but the key is not
distributed to the endpoint until the activation time is reached, when the key lifecycle
scheduler executes that action.

Moreover, the policy involves access control when the deployment specifies the
push-style endpoint, as explained in Section 2l

4 Strict Access Control

The difficulty of enforcing strict access control comes from relations between keys,
which are introduced through wrapping and key derivation, such that a simple ACL no
longer adequately represents a permission on a key. This section explains the basics of
our strict access-control policy implemented in KLMS, which is based on the theoretical
model by Cachin and Chandran [8]. For lack of space, we give only a summary here.

170 M. Bjorkqyvist et al.

In short, strict access control guarantees that a user may only retrieve the information
she is authorized to, i.e., that she cannot abuse the API to violate the access control pol-
icy. To achieve this, traditional access control (with ACLs independent among different
objects) is not sufficient, since the interdependencies among different keys, arising from
key wrapping and key derivation operations, may open security holes in cryptographic
APIs [2l[7LOL11].

The KLMS server supports key wrapping (encrypting a target key under a different
key, called wrapping key) through the export and import operations of KLS. To enforce
strict access control, only key wrapping schemes are allowed that also provide strong
authenticity, such as authenticated symmetric-key encryptionin CCM [[19] or GCM [12]
padding mode. Through key derivation, a new symmetric key is generated from a parent
key. Multiple keys derived from each other form a hierarchy, where knowledge of one
key implies knowledge of all keys below in the hierarchy. Our system supports key
derivation through the derive operation of KLS.

The KLS module authenticates users and distinguishes between different users who
may execute its operations. The access-control policy is described by the attributes of
the affected object. For some operations, which do not refer to any existing object (e.g.,
create), the access-control policy is governed by a list of permissions associated with
every user.

Every object contains an ACL attribute, containing pairs of users and permissions.
These permissions are: Admin (permits all operations), Derive (permits key derivation
using the key as a parent key), Destroy (permits destroy and delete operations), Export
(permits a key to be exported in a wrapped form), Read (permits reading the key in
cleartext), ReadAttributes (permits gaining knowledge about key attributes), Unwrap
(permits a key to be used for unwrapping in the import operation), and Wrap (permits a
key to be used for wrapping in the export operation).

The system ensures for every ACL that the Admin permission always implies every
other permission, that the Export and Read permissions imply permission to read the
attributes, and that the Read permission implies the Export permission.

There is a boolean attribute strict for every symmetric key and every private key,
which determines whether the object falls under the strict access-control policy and
benefits from its guarantees.

For the implementation of strict access control, the server maintains three special
attributes for every object. First, the dependents attribute contains the identifers of those
objects whose cleartext value can be computed from knowledge of the cleartext value of
the object itself. Conversely, the ancestors attribute contains the set identifiers of those
objects on which the given object depends, i.e., all objects whose dependents attribute
contain the given object. Third, the readers attribute contains the set of users who have,
or may potentially have, obtained the cleartext value of the given object. This may arise
because they have either executed a read operation for the given object and obtained its
cleartext value or because they have executed a read operation for another object that is
contained in the dependents attribute of the other object.

Whenever the server has to authorize an operation executed by user u on a object o, it
checks that the operation is allowed at least by the basic access-control policy, which is
determined directly by the presence of a corresponding permission in the ACL attribute

Design and Implementation of a Key-Lifecycle Management System 171

of 0. When o.strict = true, however, the server additionally verifies that the operation
is permitted under the strict access-control policy. This takes the dependencies between
cryptographic objects into account, and the server examines the dependents, ancestors,
and readers attributes of o and possibly of further objects.

To give an example, consider the read operation. It returns the attributes of an ob-
ject o and its cryptographic material in cleartext. For the operation to be permitted,
user v must at least have the Read permission for o; furthermore, if o.strict = true,
then u must also have the Read permission for all objects k that are contained in
o.dependents. This ensures that no key dependent on o is inadvertently leaked to a user
that does not have sufficient privileges.

During all operations that change the dependencies between objects, the server must
update the corresponding attributes, which adds some complexity to the implementa-
tion. For example, if an export operation creates an external representation of an ob-
ject o wrapped with a symmetric key w using a secure key-wrapping method, then o
becomes dependent on w; the server adds o to the dependents attribute of w and adds
the identifier of w to the ancestors attribute of o.

The detailed description of all operations can be found in the full version [6].

5 Implementation and Evaluation

Implementation. Our implementation of the KLMS server, together with the prototype
support for KMIP, measures over 70k lines of Java code. Out of this, the core of the
server (below the Interface layer) takes roughly 20k lines of Java code, with automated
deployment taking slightly over 5.5k lines, and strict access control support around 1.5k
lines. Currently, KLMS supports the four automated deployment patterns presented in
Section3.]] yet additional patterns can be added in a modular manner. The implemen-
tation of strict access control takes into account the possible size of the object attributes
dependents and readers; these grow with the system’s age and may pose performance
issues if implemented sub-optimally. To cope with this, our implementation uses two
separate global tables in the DB layer for these two attributes. For the readers table,
as for the representation of ACL, DB maintains the identity of a user determined from
an LDAP directory server in the form of the string representation of the user’s LDAP
Distinguished Name.

KLMS support for hardware-security modules (HSM) is foreseen by the architecture,
but has not been implemented yet. Currently, the DB layer is based on a small-footprint
Apache Derby database. The experimental integration of support for KMIP includes the
portable portion of KMIP client/server code (around 28.5k lines of Java code) and the
KMIP/KLMS adapter code (slightly over 4k lines). With this architecture, the support
for KMIP can be easily transferred to a different key server core.

Evaluation. We have measured the performance difference between operations under
the strict access-control policy and operations under the basic access-control policy, to
determine the cost of the additional protection.

The benchmarking server is an IBM x345/6 system with two hyper-threaded Intel
Xeon CPUs running at 3.06GHz and 2GB RAM. It runs our Java prototype of KLMS
on an IBM J9 JVM (build 2.3, J2RE 1.5.0) with Apache Derby 10.3 as the database.

172 M. Bjorkqyvist et al.

Table 2. The table shows the average times taken by four representative operations and the cor-
responding 95%-confidence intervals, in milliseconds

Operation Policy Average latency 95%-confidence interval

Creare DS 4.81 [4.44; 5.19]
strict 5.10 [4.69; 5.51]
Search basic 2.50 [2.39; 2.61]
strict 2.61 2.50; 2.72]
basic 2.64 [2.60; 2.69]
Read strict 3.75 3.67; 3.83]
Delere | PASIC 9.38 [8.97; 9.79]
strict 9.97 [9.49; 10.44]

The first experiment consists of running 100 create operations and measuring the
elapsed time or latency. The operations are executed and measured at the service layer
(in KLS). The created keys are then used to separately measure 100 search, 100 read
and 100 delete operations. Because each operation takes only a few milliseconds, mea-
surements are done over 100 operations. Each measurement was also performed 100
times (i.e. a total of 100 x 100 operations each, for strict and for basic access control).
Table 2] summarizes the average time taken by one operation.

Our second experiment measures the scalability of the implementation of the strict
access-control policy in KLMS, when a tree of dependencies grows deeper. The exper-
iment starts by creating a new key and deriving from it a linear hierarchy of 10 keys,
yielding 11 keys in total. We measure the time taken by the derive operation to derive
one key, depending on the depth where this occurs. We chose maximal depth 10 because
it is the maximum depth allowed by certain key-management products; in particular, the
IBM CCA interface [15] allows maximal derivation depth 10. As the latencies are small
(a few dozens of milliseconds), each data point is obtained by taking an average over
100 identical successive operations, and a total of 100 data points are collected per
derivation level (10 x 100 x 100 derivations in total). Then the ACL of every key in the
hierarchy is modified by adding the read permission for a fixed user, starting from the
deepest key in the hierarchy up to the initial key. We measure the time taken by the set
attributes operation. The measurements are done as previously for the derive operation.

Table2]shows the overhead of the strict access-control policy for the four operations
in the first experiment. One can see that most operations perform comparably except for
read, which takes on average about 41% longer with strict access control. The reason
is that, unlike with basic access control, the strict policy requires the read operation
to modify the Readers attribute of an object. This explains the extra time taken by the
operation.

Figuredshows the results of the second experiment. The measurements demonstrate
that the strict policy scales well with the depth of the derivation tree for the derive
operation, showing, roughly, a constant twofold overhead with respect to basic access
control, with a slight increase for derivation trees deeper than six levels. For the set
attributes operation, we observe a increasing overhead for modifying the ACL of those
keys that have six or more dependent keys.

Design and Implementation of a Key-Lifecycle Management System

173

Average latency (ms)

stri

ot ——
basic --x—

Average latency (ms)

strict ——
basic --x--+

Lo

Number of ancestor keys

Number of dependent keys

Fig. 4. The graphs show the average times for the derive operations (left) and the set attributes
operations (right), for varying tree depth

References

(1]
(2]

(3]

(4]

(51

(6]

(71
(8]
(9]
[10]
[11]

[12]

[13]

[14]

AKl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in a hierarchy.
ACM Transactions on Computer Systems 1(3), 239-248 (1983)

Anderson, R., Bond, M., Clulow, J., Skorobogatov, S.: Cryptographic processors — a sur-
vey. Proceedings of the IEEE 94(2), 357-369 (2006)

Arnold, W., Eilam, T., Kalantar, M.H., Konstantinou, A.V., Totok, A.: Pattern based SOA
deployment. In: Krdmer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 1-12. Springer, Heidelberg (2007)

Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key manage-
ment. NIST special publication 800-57, National Institute of Standards and Technology,
NIST (2007)

BITS Security Working Group, Enterprise key management. Whitepaper, BITS Financial
Services Roundtable (2008)

Bjorkqvist, M., Cachin, C., Haas, R., Hu, X.-Y., Kurmus, A., Pawlitzek, R., Vukoli¢, M.:
Design and implementation of a key-lifecycle management system. In: Research Report
RZ 3739, IBM Research (June 2009)

Bond, M.: Attacks on cryptoprocessor transaction sets. In: Kocg, C.K., Naccache, D., Paar,
C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 220-234. Springer, Heidelberg (2001)
Cachin, C., Chandran, N.: A secure cryptographic token interface. In: Proc. Computer Se-
curity Foundations Symposium (CSF-22). IEEE, Los Alamitos (2009)

Clulow, J.: On the security of PKCS#11. In: Walter, C.D., Kog, C.K., Paar, C. (eds.) CHES
2003. LNCS, vol. 2779, pp. 411-425. Springer, Heidelberg (2003)

Cover pages: Cryptographic key management (2009),
http://xml.coverpages.org/keyManagement .html

Delaune, S., Kremer, S., Steel, G.: Formal analysis of PKCS#11. In: Proc. Computer Secu-
rity Foundations Symposium (CSF-21). IEEE, Los Alamitos (2008)

Dworkin, M.: Recommendation for block cipher modes of operation: Galois/Counter Mode
(GCM) and GMAC. In: NIST special publication 800-38D, National Institute of Standards
and Technology, NIST (2003)

Dyer, J.G., Lindemann, M., Perez, R., Sailer, R., van Doorn, L., Smith, S.W., Weingart, S.:
Building the IBM 4758 secure coprocessor. IEEE Computer 34(10), 57-66 (2001)
Hamlets, http: //hamlets.sourceforge.net

http://xml.coverpages.org/keyManagement.html
http://hamlets.sourceforge.net

174

[15]
[16]
[17]
(18]

[19]

M. Bjorkqyvist et al.

International Business Machines Corp., CCA Basic Services Reference and Guide for the
IBM 4758 PCI and IBM 4764 PCI-X Cryptographic Coprocessors (2008)

OASIS Key Management Interoperability Protocol Technical Committee, Key Manage-
ment Interoperability Protocol (2009)

RSA Laboratories, PKCS #11 v2.20: Cryptographic Token Interface Standard (2004),
http://www.rsa.com/rsalabs/

Trusted Computing Group, “Trusted platform module specifications (2008),
http://www.trustedcomputinggroup.org

Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). RFC 3610
(2003)

http://www.rsa.com/rsalabs/
http://www.trustedcomputinggroup.org

Measuring the Perpetrators and
Funders of Typosquatting

Tyler Moore! and Benjamin Edelman?

! Harvard School of Engineering and Applied Sciences
tmoore@seas.harvard.edu
2 Harvard Business School
bedelman@hbs.edu

Abstract. We describe a method for identifying “typosquatting”, the
intentional registration of misspellings of popular website addresses. We
estimate that at least 938 000 typosquatting domains target the top 3 264
.com sites, and we crawl more than 285000 of these domains to analyze
their revenue sources. We find that 80% are supported by pay-per-click
ads, often advertising the correctly spelled domain and its competitors.
Another 20% include static redirection to other sites. We present an auto-
mated technique that uncovered 75 otherwise legitimate websites which
benefited from direct links from thousands of misspellings of competing
websites. Using regression analysis, we find that websites in categories
with higher pay-per-click ad prices face more typosquatting registra-
tions, indicating that ad platforms such as Google AdWords exacerbate
typosquatting. However, our investigations also confirm the feasibility
of significantly reducing typosquatting. We find that typosquatting is
highly concentrated: Of typo domains showing Google ads, 63% use one
of five advertising IDs, and some large name servers host typosquatting
domains as much as four times as often as the web as a whole.

1 Introduction

At the dawn of commercial Internet activity, aggressive website registrants dis-
covered that they could profit by registering domain names matching others’
company names, product names, and trademarks — “cybersquatting,” as the
practice came to be known. Initially, cybersquatting promoted competitors, as
in Princeton Review’s 1994 registration of kaplan.com to divert Internet traffic
intended for a competing test preparation service. Once domain names started
requiring annual renewals, squatters raced to grab domain names when the prior
registrant failed to renew [3]. By 1999, squatters began “typosquatting” — inten-
tionally registering misspellings of popular websites in anticipation that users
mistype those domains and reach squatters’ sites [5].

Cybersquatters have employed several strategies to profit from their regis-
trations. After grabbing particularly valuable domains, some squatters sought
small ransoms from the organizations that most wanted those domains. In one
notorious case [3], a squatter redirected thousands of expired domains to adult

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 1754191, 2010.
© IFCA/Springer-Verlag Berlin Heidelberg 2010

176 T. Moore and B. Edelman

websites, making it all the less palatable to leave the domains with the squatter,
and all the more tempting to pay to get the domains back. Separately, following
in Princeton Review’s footsteps, other squatters redirected squatting domains to
direct competitors of the sites users expected. Through such redirects, a squat-
ter could either profit directly (if the squatter also operated the destination site)
or indirectly (through marketing commissions paid by the destination site). Fi-
nally, a growing share of squatters found profits through advertising — typically,
showing pay-per-click ads through the web’s top ad networks.

As the Internet matured, cybersquatting domain registrations came to be
viewed as both disruptive and improper. In 1999, countermeasures to squat-
ting were introduced, including an arbitration procedure (the UDRP) and a
new federal law (the ACPA), both discussed in Section [[.Il The subsequent
decade featured more than 45000 UDRP disputes and more than $40 million of
ACPA damage awards. Yet our paper shows that cybersquatting and especially
typosquatting remain widespread.

In this article, we explore modern typosquatting. Our methodological con-
tribution is the development of a software system that effectively identifies ty-
posquatting using telltale patterns in domain registrations and configurations.
Our substantive contribution is a characterization of the typosquatting problem,
including estimating its size, assessing who is responsible, and identifying factors
that put some brands, marks, and domains at heightened risk of typosquatting

2 Structure and Strategy of the Domaining Business

Most large domain registrants present themselves as “domain parkers” or do-
mainers. Figure [[] outlines the relationship between domainers, advertisers and
Internet authorities. Domainers submit registration requests to registrars (e.g.,
GoDaddy), which provide domain names after confirming availability with reg-
istries (e.g., VeriSign), which in turn are authorized by the Internet Corporation
for Assigned Names and Numbers (ICANN) which coordinates certain Internet
identifiers under contract with the United States Department of Commerce. At
each step, money changes hands: domainers pay registrars which pay registries,
and both registrars and registries pay fees to ICANN.

As Figure [l depicts, the domaining business can feature numerous variations.
For example, a large domainer may elect to become a registrar — simplifying re-
lationships and eliminating an intermediary. In 2006 litigation, Neiman Marcus
alleged exactly that in a 155-page complaint claiming that Dotster (a large do-
main registrar) hoarded typosquatting domains for its own benefit, failed to dis-
close domain ownership via Whois records, and improperly extracted fees from
companies wanting domains Dotster had collected [9]. There is also variation
in the structure of domainers’ relationships with ad platforms (e.g., Google Ad-
Sense): Large domainers typically work directly with ad platforms, while smaller
domainers typically work through traffic aggregators (e.g., information.com)
that combine traffic from many domainers.

! http://www.benedelman. org/typosquatting/ details data collected for the paper.

http://www.benedelman.org/typosquatting/

Measuring the Perpetrators and Funders of Typosquatting 177

Department of

| ICANN T Commerce
| Registry | | Registry |
—
Registrar Registrar ;] Registrar

I I H I
I Domainer I | Domainer | | Domainer |

|_Traffic Aggregator | ='.iv$95:9ﬁ}.f?ﬁ.sE'.a.'.-sip.rp.a.ir.'s.n-'
| Ad Platform | Ad Platform |

| Advertiser || Advertiser || Adver‘tiser—ll Advertiser || Advertiser |

Fig. 1. Diagram of relationships

The domain parking business is premised on users arriving at parking sites.
But why do users go to parking sites? Some users seem to type in domain names
randomly, rather than using search engines to find the materials that meet their
requirements — requesting a site like discounthoteldeals.com when seeking
“discount hotel deals.” Such users might end up at domain parking sites match-
ing the generic keywords that embody their requests. But there is another way
for users to arrive at parked domains: misspelling the address of a more popular
site. This practice, typosquatting, is the focus of our paper.

3 Measuring Typosquatting

3.1 Identifying Typosquatting Domains

The first step in studying typosquatting is to identify which domains are similar
enough be deemed typos. We start by gathering a list of popular domains that
could tempt a squatter to register many typo domains. For this paper, we decided
to study the 3264 .com domains at least 5 characters long appearing in the most
popular 6 000 domains according to Alexa’s June 29, 2009 ranking. We focus on
the most popular sites because, all else equal, popular sites are more likely to
be targeted for typosquatting: The more users seek to visit a domain, the more
users are likely to mistype the domain’s address. (Section [empirically examines
the factors affecting typosquatting prevalence.) We excluded very short domains
(4 characters or less) because even one-letter variations may reflect intentional
requests for other short domains, rather than typos of a popular site. Finally,
we only consider . com domains due to .com’s ubiquity and because the zone file
listing all .com domains is publicly available.

Next, we generated a list of plausible misspellings of the 3 264 popular domains.
To identify plausible misspellings, we rely on the Damerau-Levenshtein distance
[206]: the minimum number of insertions, deletions, substitutions or transpositions
required to transform one string into another. For example, faceboolk, facebok,
faceboik, and faceboko each have a Damerau-Levenshtein distance of 1 from
facebook. Damerau found that 80% of spelling errors are caused by one such op-
eration. We also created a list of typos with www and com appended to the start

178 T. Moore and B. Edelman

fat-finger
distance 1

100
|
T
——
HH
]
]

80
|

Levenshtein
@ distance 1

fat-finger
O distance 2

60
|

Levenshtein
O distance 2

% typo domains
20"
|

o - L - - - - L - -

5 6 7 8 9 10 11 12 13 14 15
popular domain length

Fig. 2. Typosquatting classification accuracy

and end of the strings, respectively. These appendages help recognize frequent mis-
takes arising out of omitting a ‘.” when typing a URL.

We also devised a new measure of string distance useful for keyboard mis-
spellings, called fat-finger distance: the minimum number of insertions, deletions,
substitutions or transpositions using letters adjacent on a QWERTY keyboard
to transform one string into another. For example, facebojk has a fat-finger
distance of one from facebook, since ‘j’ is next to ‘k’ on a standard keyboard.

To identify typosquatting domains, we enumerated all strings with a Damerau-
Levenshtein (and fat-finger) distance of up to 2 from each of the 3264 popular
domains. This captured all plausible one- and two-letter typos of popular do-
mains. We next intersected this set with the nearly 81 million registered .com
domains (according to the .com zone file). This process yielded 1910738 regis-
tered .com domains as candidate typo domains of the 3264 popular domains.

We manually checked a sample of 2195 domains randomly selected from the
list of 1.9 million candidates. To form this sample, we selected candidate domains
targeting popular domains of length 5-15, allowing variations of Levenshtein
distances of 1 and 2 and with fat-finger distances of 1 and 2. Figure [2 plots the
results with 95% confidence intervals. (In particular, we have 95% confidence
that the true number of . com domains up to a Levenshtein-Damerau distance of
two from the popular domain lie between the numbers posted in the table. Of
course, our analysis omits typo domains of distance>3 and also typos in other
top-level domains such as .cm.) No matter the length of the popular domain,
typo domains within Levenshtein or fat-finger distance 1 of popular domains
were overwhelmingly confirmed as typos. When we consider typos of distance 2
from popular domains, false positives become more frequent. However, domains
within fat-finger distance 2 of popular domains are more likely to be typos than
domains within only Levenshtien distance of 2. Furthermore, for increasingly
lengthy popular domains, it is increasingly likely that domains with a fat-finger
or Levenshtein distance of 2 are in fact typo domains.

Measuring the Perpetrators and Funders of Typosquatting 179

Table 1. Selected domains highly targeted by typosquatting

candidate point estimate

popular site typo domains typo domains 95% confidence interval
google.com 5731 2537 (1728, 3252)
youtube. com 3616 2069 (1589, 2534)
myspace.com 3482 1960 (1457, 2440)
freecreditreport.com 1904 1904 (1904, 1904)
hotels.com 4465 1865 (1207, 2442)
total for 3264 domains 1910738 937918 (710872, 1236 924)

With false positive estimates from our manual checks, we estimated the num-
ber of .com typo domains targeting the popular sites we identified. To do so, we
added up the number of candidate typos matching each popular site; then we
adjusted each candidate’s weight based on our confidence in its accuracy in light
of the typographical distance between the typo domain and the popular domain.
By this methodology, we estimate that approximately 938 000 typo domains tar-
get variations of the 3 264 popular domains we studied. On average, each popular
site is targeted by 281 typo domains, but some sites attract more typosquatting
than others. Table [lists the sites that are most targeted by typosquatting.
Topping the list is google.com, for which we found an estimated 2537 typo do-
mains. That said, as we show in Section .1l Google also supports typo domains
by providing both technical assistance and advertisement payments.

3.2 Crawling Typosquatting Websites

We cannot easily visit all 938 000 typo domains without also visiting many sites
that are not typos. Because we wish to learn more about only typosquatting
websites, we decided to crawl only a subset of the typo domains where we know
the vast majority are in fact typos. To that end, we developed a crawler to visit
the 284 914 typo domains where the Damerau-Levenshtein distance between typo
and popular domains is at most one for popular domains between five and nine
characters in length, and a distance of up to two for popular domains at least
ten characters long. Consequently, the totals discussed in the subsequent sections
should be interpreted as a sample of the larger typosquatting population.

The crawler explored each typo site and its links to determine how a given site
is being used, and the crawler recorded all HTML and headers that it received.
The results of our crawl are presented in Sections 1] and

We designed the crawler to avoid burdening websites or advertisers. The
crawler follows three randomly-selected links on each page, up to (at most)
a depth of three links. Since indiscriminately following pay-per-click links and
redirects could yield unwarranted cost to advertisers and unearned revenues to
squatters, the crawler only invokes a link after comparing that link to a list
of known ad servers. If a link references a known advertising domain, the site
is marked as containing advertisements, the link is recorded, and the crawler

google.com

180 T. Moore and B. Edelman

Table 2. How typo domains are used

classification typo domains %
pay-per-click ads 74024 79.4
Google 53 364 57.2
Yahoo!/Overture 19145 20.5
Ask.com 555 0.6
Miva 541 0.6
Enhance 297 0.3
domain redirection/link 19 227 20.6
self-registration 4133 4.4
affiliate marketing 10215 11.0
redirect or link to competing site 4879 5.2
blocked 124211 -
unclassified 70729 -

proceeds no further at that site. The same logic is used whenever the crawler
encounters a HTTP redirect. The crawler assures that at most one of its threads
visits a single server (at a single IP address) at a time.

Although our crawler could not retrieve and classify all the typo domains it
identified, we believe the classified domains provide appropriate insight into the
usage of the other domains. For one, 131 637 of the 194 940 blocked or unclassified
domains share the same IP address and name server with domains where we
confirmed the presence of PPC ads.

Our crawler found that 124211 domains blocked its efforts at inspection.
Some servers host tens of thousands of typo domains. Despite our crawler’s best
efforts, such servers may notice after a machine from a single IP address tries
to visit several links on thousands of domains. In manual tests, we confirmed
that a few of these domains were truly unreachable. But often these “blocked”
domains reside on IP addresses that had previously responded as expected, and
often these “blocked” domains loaded as expected when tested from another IP
address. We therefore conclude that at least some typosquatting hosts recognized
our crawler’s examinations and took steps to prevent our analysis.

In addition to sites that affirmatively blocked our analysis, our crawler was
unable to classify a further 70729 domains. Many of these domains included
JavaScript links, which our crawler could not reliably follow.

4 How Typosquatting Domains Are Used

From crawling typosquatting pages, we confirmed two main uses for traffic di-
verted to typo domains: placing pay-per-click ads and redirecting to other (often
competing) domains. We discuss our findings for each strategy in turn.

4.1 Squatter Strategy 1: Pay-Per-Click Ads

By far the most common use for typo domains is displaying pay-per-click ad-
vertisements. Of the typo domains our crawler could classify, Table Bl reports

Measuring the Perpetrators and Funders of Typosquatting 181

=1olx|
Bl Edt Vew Favorites Tods Heb & |
Qack » 3 - A 2] o | Adress [€] nttp: fuwexpendia.com/ = B
Sponsored Listings (0.455266 seconds) I
HOteI Related Searches
Hotel Photos, Info & Virtual Tours Save up to 50% on hotels at Expedia Travel
www.Expedia.com Hotel
. i Air Travel Deals
ORBITZ - Official Site Budget Motels
Plan Your Trips with ORBITZ. Save on Flights, Hotels, Cars & Cruises! New York Hotel
www.ORBITZ com Vacation
Pet Friendly Motels
CheapTickets® Lowest Airline Tickets
Search Great Rates on Airfares. Low Priced Way to Travel. Book Now Mmhﬁ
www CheapTickets.com ' Cheap Air Tickets
self-advertising rate popular sites examples
>75% 18 papajohns (90%), saksfifthavenue (88%)
50%<...<75% 58 expedia (50%), t-mobile (70%)
25%<...<50% 106 wellsfargo (43%), businessweek (48%)
<25% 81 findlaw (21%), tigerdirect (22%)

overall: 36% 263

Fig. 3. wwwexpendia.com shows ads for expedia.com and competitors (top); self-
advertisement prevalence for 263 popular sites buying ads (bottom)

that 80% — over 74000 — included pay-per-click ads. Most of these websites —
at least 53364 — partnered with Google to sell ad space to advertisers, select
which ads to display, track clicks, and collect payments, among other functions.
Google’s prevalence in part reflects Google’s large market share in pay-per-click
advertising, and Google further benefits from its development of an advertis-
ing service dedicated to placing ads onto parked domains P Next-largest after
Google is Yahoo; we found Yahoo ads on at least 19145 typo domains. We de-
tected three additional PPC ad providers also being used, but with dramatically
lower prevalence, as detailed in Table

Figure [(top) shows PPC ads on wwwexpendia.com. The top advertisement
promotes expedia.com, the same domain misspelled in the user’s request. The
Expedia ad appears because Expedia pays Google to advertise on websites with
“relevant” content, and Google’s algorithm select wwwexpendia. comas a suitable
place for those ads. Consequently, Expedia pays Google whenever a user mis-
spells Expedia and clicks the sponsored link to Expedia [4]. Meanwhile, immedi-
ately below Expedia are advertisements for competitors Orbitz and CheapTick-
ets. Had Expedia chosen not to pay Google to place ads on parked domains,
Google would have shown links only to competing sites.

We found self-advertisements on typo domains targeting 263 popular sites that
bought ads (Figure Bl (bottom)). Sometimes, nearly all typo domains included
ads to the popular site (e.g., 90% for typos of papajohns.com). For others, self-
advertising occured less often (e.g., 22% for tigerdirect.com). Overall, we saw
ads corresponding to the popular site on 36% of typo domains.

2 See Google AdSense for Domains, http://www.google . com/domainpark.

http://www.google.com/domainpark

182 T. Moore and B. Edelman

190

Google client ID values domains

337 ca-dp-highlands* 7 14724
B ca-dp-godaddy* 37 7949
é 8 ca-dp-sedox* 14 4583
% o ca-dp-spherex 7 3809
I ca-dp-dopax* 5 1402
;\?8* ca-dp-namedrive* 12 489
ca-afdo-pubx* 447 1299

o others 721 4969

i 510 s ' 500 total 1250 39238

Google client IDs observed

Fig. 4. Advertising client IDs matching typo domains

While stopping so many typo domains may seem like a Sisyphean task, we
found considerable concentration upon closer inspection of PPC ad links. An ad
provider needs to know who to pay for a given advertisement placement, so a
partner ID is passed as a parameter in an ad’s click URL. For example, in the
link http://domains.googlesyndication.com/apps/domainpark/results.cgi?client=ca-dp-mborin&. ..
on cartoonntewrok.com, the client parameter is set to ca-dp-mborin — indi-
cating Google will pay the corresponding partner if a user clicks that ad link. On
other domains, these parameters appear in HT'ML entity encoding, in redirects,
and/or in JavaScript variables.

We found partner ID codes for 74% of typo domains showing Google ads.
While 1250 different codes were found, some turned up disproportionately of-
ten. Figure M (left) plots the cumulative distribution of typo domains by partner
ID (note the logarithmic x-axis). The top 5 partner IDs cover 63% of the Google
typo domains we explored, and the top 10 cover 76%. The most frequent part-
ner ID was ca-dp-highlands19 3ph xml, appearing in ad links on 13542 typo
domains. The table in Figure [lists specific partner ID we observed particularly
frequently on typo domains. Large domainers and traffic aggregators often have
recognizable Google IDs, such as ca-dp-godaddy (GoDaddy), ca-dp-namedrive
(NameDrive), ca-dp-sedo (Sedo) and ca-dp-namesphere (NameSphere).

Unfortunately, we could not identify partners from Yahoo ads, since the ads
use a single parameter xargs presenting a lengthy obfuscated string apparently
combining ad destination, partner, and more. While we cannot determine which
Yahoo partner receives credit for a given placement, we can still demonstrate
high concentration among Yahoo partners. For example, one typosquatter passed
Yahoo PPC links as a parameter within redirect URLs with the distinctive pa-
rameter provider set to 1200. This same pattern is found on 10446 typo do-
mains, nearly all using the same name server and IP address.

4.2 Squatter Strategy 2: Redirection and Linked Domains

Rather than showing pay-per-click ads, other typo domains redirect or link
to predetermined destination domains. We saw three practices in this vein:

Measuring the Perpetrators and Funders of Typosquatting 183

(i) self-registrations/defensive registrations, (ii) affiliate marketing and (iii) redi-
rect or link to competing site.

Self-registrations / defensive registrations. In some instances, a company will
“self-register” misspellings of its key domains. Often, requests for these typo do-
mains redirect a user to the company’s main site, where the user likely intended
to go. Through self-registrations, a company can avoid unwarranted market-
ing expense, such as paying for ads on typo sites, as shown in Figure Bl Self-
registrations also help users reach their intended destinations without extra clicks
or delays. We found 4 133 typo domains that match this profile, in that they share
the same name servers as the popular sites of which they are variants.

Affiliate marketing. Through merchants’ affiliate marketing programs, some ty-
posquatters send users to the sites users intended to visit — but charge the
merchants a fee for providing these referrals.

In affiliate marketing, advertisers pay for referrals on a performance basis:
Send a user to Dell and Dell will pay a commission of 2% or more. Because
affiliate merchants generally only pay when a user makes a purchase, many
merchants fail to supervise their affiliates’ specific promotional methods. Few
affiliate merchants affirmatively allow typosquatting, and most disallow it when
it comes to their attention. But to date, few merchants have uncovered affiliates
engaged in typosquatting. (In a rare exception, Lands’ End sued several squatters
who registered typosquatting domains and redirected resulting traffic to Lands’
End affiliate links [7].)

We saw 10215 typosquatting domains that linked or redirected to the corre-
sponding popular site, where the name server used by the squatting site and the
popular site differed. We checked all redirections from the misspelled domain
name, looking for redirections to the popular site via an affiliate marketing net-
work. We confirmed 2,697 domains redirected to affiliate marketing networks,
including 905 typo domains promoting Commission Junction merchants, 652
promoting LinkShare merchants, and 290 promoting Performics (Google Af-
filiate Network) merchants. Another 4 629 redirected to the legitimate domain,
either as a result of defensive registration or for directly managing affiliates (e.g.,
bookihng.com redirects to booking.com/?7aid=311266;1abel=11-booking-promo).

Redirects or links to competing site. When users attempt to visit a popular site,
some typosquatters instead forward the users to a competing site — often in the
same industry, but a notch less popular. For example, pict.com is a relatively
little-known document sharing site (Alexa rank 8581 as of Aug 27, 2009). But
pict.com is redirected to by typos of 128 competing, more popular sharing sites
— 24 typos of depositfiles.com (Alexa rank 167), 22 typos of picoodle.com
(Alexa rank 5040), 18 typos of sharebee.com (Alexa rank 1673), and more.
These redirects take users directly to pict.com with no link codes or partner IDs
of any kind — suggesting that pict.com itself registered these domains and that,
in any event, pict.com is probably not paying partners for this traffic.Similarly,
we found 156 typo domains that are variations of yellowpages.com, which all
redirect to the website yellowpagesoftheworld.com.

pict.com
depositfiles.com
picoodle.com
sharebee.com
pict.com
pict.com
pict.com
yellowpages.com
yellowpagesoftheworld.com

184 T. Moore and B. Edelman

Table 3. Example domains linked to by typo variations of competing domains

yellowpagesoftheworld.com: 158 typo domains
yellowpages.com: yellopasges, yeollupages, yelkowpages & 153 more
whitepages.com: whigtepages & whitepagecom
bet365.com: 367 typo domains
sportsbook.com: saportsbook, sxportsbook, sportszbook & 325 more
betclic.com: betclico, betclicm, betclicj & 7 more
fulltiltpoker.com: fulltilt6poker, fuylltiltpoker, fulltiltpokedr & 5 more
pict.com: 128 typo domains
depositfiles.com: dopsktfiles, depositfimes, depositciles & 21 more
picoodle.com: picoodke, picoodme, piciodle & 19 more
sharebee.com: shaerbee, shafebee, shatebee & 15 more
movietheatertickets.biz: 85 typo domains
movietickets.com: movietikits, mpvietickets, muvietickets & 19 more
rottentomatoes.com: rottentomaos, rottentmoatoes, rotentomatoe & 10 more
fandango.com: fandsango, fandnango, faneango & 9 more

total: 75 beneficiary domains on 4 879 typo domains targeting
668 competing popular sites

We developed a simple heuristic to identify typo domains linking to compet-
ing domains. First, we group typo domains that all link to the same beneficiary
domain (e.g., pict.com, a domain benefiting from this group of typo domains).
Next, we consider only those beneficiary domains that are linked by typo do-
mains targeting a small number of popular sites. By focusing on beneficiary
domains receiving traffic from typos on a small number of popular sites, we
identify beneficiary domains that are targeting typosquatting on specific popu-
lar sites (typically, in the same sector), rather than aggregating typo traffic more
generally. Through testing, we adjusted the parameters, and we elected to focus
on beneficiary domains linked by at least 75 typo domains that target no more
than 40 popular sites. Using this criteria, we identified 75 beneficiary domains
that are linked from 4 879 distinct typo domains, which collectively target 668
competing popular sites.

Table 3] lists selected beneficiary domains identified using our heuristic. No-
tably, every beneficiary domain is linked by typos in the same category: ty-
pos of popular casino websites link to bet365.com, popular movie sites link to
movietheatertickets.biz, and so on. This trend is consistent for all benefi-
ciary domains. It is not always clear whether the beneficiary domain directly
registered and configured the typo domains; affiliate marketing and similar re-
lationships can motivate partners to register typo domains.

5 Do Pay-Per-Click Ads Promote Typosquatting?

Table [l reveals that some popular sites are targeted by typosquatting far more
than others. Why? We initially hypothesized that typosquatting disproportion-
ately afflicts domains that are difficult to spell. To check, we regressed number

pict.com
bet365.com
movietheatertickets.biz

Measuring the Perpetrators and Funders of Typosquatting 185

@¥Business|
5&‘0
x
()
,E & @ Health @ Recreation
8
&
i Computers .
g & ®Science ¢ oHome @ Shopping
=y OKids %Ag?)ons @Regional @ World
(% OGames @ Society
S
Y
€ Adult
N
v
Sl T T T T T
0 50 100 150 200

typo domains (residual controlling for site popularity)

Fig. 5. Scatter plot comparing typosquatting incidence to amount paid out by pay-
per-click ads

of typos on popular sites spelling difficulty (with controls for various measures of
popularity of the popular site). We found no effect of spelling difficulty as mea-
sured by number of double letters or presence of adjacent i/e tuples — perhaps
reflecting that these top popular sites have limited variation in spelling difficulty
(as measured by these proxies).

However, we do find significant differences across website categories. To assign
popular sites to categories, we used Alexa’s listings of the top 500 websites for 15
different categories (e.g., Kids and Teens, Business, News). 1075 of the popular
sites we studied also appeared in one or more of Alexa’s top 500 categories. In a
regression controlling for each popular site’s popularity and number of category
listings, we included a fixed effect for each category, and we noted the coefficient
associated with each category variable. These coefficients form the x coordinates
in Figure [l For example, the average popular site Alexa places in “Shopping” is
targeted by 143 more typo domains than the average popular site Alexa places
in “Science.”

Because most typo domains are funded by pay-per-click ads, we examined
patterns in PPC pricing across Alexa categories. For each popular site Alexa
listed in each category, we extracted META keywords, and we identified the ten
most frequent keywords in each category. Using the Google Traffic Estimator,
we obtained minimum and maximum PPC price estimates for each frequent
keyword. We formed a Google PPC' price index for each category, given by the
average of 1) the median of the minimum PPC prices for keywords in that
category, and 2) the median of the maximum PPC prices in that category.

Combining Alexa’s categorizations with our PPC price index yields the result
shown in Figure Bl Notice the positive association: In categories with higher
PPC prices, parkers registered more typosquatting domains. We interpret this

186 T. Moore and B. Edelman

relationship as evidence that high PPC prices spur typosquatting registrations
in the corresponding categories.

6 Estimating Visitors and Advertising Costs

It is difficult to know precisely how many people visit typo sites. However, even
a rough approximation helps confirm the impact on consumers and advertisers.
Using the estimates in preceding sections plus public site traffic data, in this
section we form an estimate of the number of visitors reaching typo sites, as well
as the fees advertisers pay to Google, the ad platform which most frequently
funds typo sites.

For site traffic data, we look to Alexa, which estimates the popularity of
selected websites. For a sufficiently popular site, even the site’s typosquatting
misspellings receive enough traffic for Alexa to estimate their popularity. How-
ever, less popular sites receive too little traffic at their typosquatting variants
for Alexa to report a rank for those typo sites. We therefore begin our analysis
by considering Alexa’s estimates of the number of daily visitors browsing close
typos of the 50 most popular .com websites. On average, visitors to a site’s typo
domains total 0.7% of visits to the genuine site. Extrapolating with this percent-
age to consider all 3264 popular sites studied in this paper, we estimate that
typo domains collectively receive at least 22.1 million daily visitors. If these typo
domains were treated as a single website, that site would be ranked by Alexa as
the 36th most popular website in the world.

Expanding to the top 100000 sites, and retaining the 0.7% estimated ratio
of typosquatting visitors per popular site, we estimate that typo domains col-
lectively receive at least 68.2 million daily visitors. If these typo domains were
treated as a single website, that site would be ranked by Alexa as the 10th most
popular website in the world. It would be more popular, in unique daily visitors,
than twitter.com, myspace.com, or amazon.com!

How much do advertisers pay for this traffic? TableRlreports that 57% of typo
domains include Google pay-per-click ads. But prices and click-through rates
vary across Google partners, and to our knowledge Google has never publicly
reported its revenues from domain parking sites. To estimate Google’s charges,
we turn to Forbes coverage of a Trefis analyst reportﬁ based on Google’s recent
SEC filings, concluding that Google’s revenue per search is 3.5 cents. Meanwhile,
Google’s AdSense for Domains case study@ indicates that Google’s domain park-
ing prices are comparable to other Google prices, letting us use Google’s search
prices to estimate prices on typosquatting sites. Combining these factors, and
extrapolating across the top 100000 sites with the other values estimated above,
we estimate that Google’s revenue from typosquatting on the top 100000 sites
is $497 million per year. In fact, comparing domain parking sites to ordinary

3 http://blogs.forbes.com/greatspeculations/2010/01/29/
google-spending-less-to-make-more/

4 http://www.google.com/adwords/casestudies/EfficientFrontierAFDCaseStudy.
pdf

http://blogs.forbes.com/greatspeculations/2010/01/29/google-spending-less-to-make-more/
http://blogs.forbes.com/greatspeculations/2010/01/29/google-spending-less-to-make-more/
http://www.google.com/adwords/casestudies/EfficientFrontierAFDCaseStudy.pdf
http://www.google.com/adwords/casestudies/EfficientFrontierAFDCaseStudy.pdf

Measuring the Perpetrators and Funders of Typosquatting 187

search results, we expect that the parking sites (including typo sites) have a
higher click-through rate (because they typically show only ads, and no other
links) and a higher conversion rate (Google’s case study suggests that twice the
conversion rate of search). If so, advertisers’ costs for typosquatting placements
could easily exceed our estimate by a factor of two or more.

7 Countering Typosquatting

7.1 Existing Efforts to Regulate Typosquatting

The rise of typosquatting in the 1990’s prompted a series of regulations intended
to put a check on abusive domain registrations. Initially, domain registrations
were challenged primarily under trademark law, common law, and the arbitra-
tion procedures specified under domain registration agreements. For example, in
arbitration arising out of Princeton Review’s 1994 registration of kaplan.com,
a panel held that Princeton Review had obtained the domain in bad faith with
the objective of confusing consumers and harming Kaplan’s reputation, and the
panel ordered that the domain be transfered to Kaplan pursuant to the regis-
tration agreement Princeton Review had accepted upon registering the domain.
In the subsequent MTV Networks v. Curry [8], a federal court noted similari-
ties between domain names and mnemonic telephone numbers, suggesting that
existing trademark law could apply to domain names.

After half a decade chasing cybersquatters, repeat plaintiffs offered three ma-
jor complaints. First, it was increasingly burdensome to pursue many infringing
domains; tens of thousands of dollars of attorney time to resolve each dispute
compares unfavorably to tens of dollars for squatters to register new domains.
In response, ICANN developed the Uniform Domain-Name Dispute-Resolution
Policy (UDRP). For a relatively small filing fee of $1 300 to $4 000, complainants
could seek electronic adjudication of an allegedly-infringing domains.

Second, plaintiffs faced cybersquatters who failed to disclose their true names
and addresses, making a traditional lawsuit hard. The 1998 Anti-cybersquatting
Consumer Protection Act (ACPA) (15 USC §1125(d)) offered an alternative,
allowing a plaintiff to sue a domain in rem — suing the domain itself, rather than
the domain’s registrant. Domains were found to be at the location of the relevant
registrar, registry, or other domain name authority. A plaintiff could petition a
court in that jurisdiction for transfer or cancellation of a disputed domain.

Finally, plaintiffs worried that cybersquatters faced skewed incentives that
invited infringements. Previously, after registering an infringing domain, a ty-
posquatter could profit from its use until a court or arbitrator ordered the domain
transferred or canceled. Cybersquatters therefore faced little real downside — at
most, the forfeiture of the initial registration fee and litigation costs (minimal if
the cybersquatter ignored litigation). The ACPA added the threat of significant
statutory damages — $1000 to $100000 per domain name (15 USC §1117(d)).
The threat of such damages were to deter would-be cybersquatters.

Private plaintiffs pursued these new mechanisms to put a check on cyber-
squatting. Between 1999 and August 2009, complainants invoked the UDRP

188 T. Moore and B. Edelman

Table 4. Name servers with the most typosquatted domains

Name servers > 100000 domains Name servers > 1000 domains
name server % typo typos name server % typo typos
dnsnameserver.org 4.75 19217 moniker.com 61.65 910
trellian.com 4.47 11962 ipmanagerinc.net 55.63 787
hitfarm.com 3.76 17073 citizenhawk.net 31.88 1766
dsredirection.com 3.60 59845 dexner.com 18.85 375
linkz.com 2.98 3765 aphost.com 17.96 4244
fastpark.net 2.77 7715 freeredirection.net 17.94 1438
above.com 2.77 16691 ehostinginc.com 17.89 181
sedoparking.com 2.51 35216 nnw.net 17.10 250
parked.com 248 13993 onlinednsservice.net 15.09 2844
bottom 5 plus 97 name servers above 5% typo domains

ipowerweb.net 0.32 569

ipowerdns.com 0.30 522

123-reg.co.uk 0.26 860

abac.com 0.14 248

vpweb.com 0.12 127

arbitration procedure more than 45000 times, reclaiming domains in over 85% of
disputes [I]. Meanwhile, some companies pursued ACPA claims in court. Neiman
Marcus filed lawsuits against typosquatters including Dotster, Name.com, and
Spot Domains. Verizon sued Chinese registrar OnlineNIC, which ignored the
proceedings and suffered a $33 million default judgment for 633 typo domains
of Verizon marks [I0]. Microsoft sued OnlineNIC, Maltuzi, and others, and sent
hundreds of subpoenas to identify typosquatters. Meanwhile, as early as 2005,
Microsoft Research documented 8923 typo domains (Internet-wide, not just for
Microsoft marks) and noted how many typo domains showed PPC ads [12].
Despite thousands of complaints against typosquatting, the problem remains.
45000 UDRP complaints represents less than 5% of the currently active ty-
posquatting sites we found. Remarkably, even vigilant companies remain highly
targeted. Months after its widely-reported judgment, Verizon still suffers at least
767 typo domains on its verizonwireless.com and verizon.com domains. For
Neiman Marcus, we still see 65 typo domains, and for Microsoft 437. It seems the
current approach of individual trademark holders pursuing individual squatters
has not been effective in preventing or discouraging typosquatting by others.
Therefore, we next consider methods to influence companies that distinctively
benefit from typosquatting: domain aggregators and advertising platforms.

7.2 Identifying Servers That Distinctively Host Typo Domains

Large domainers typically host their domains on a single set of name servers. By
comparing the incidence of typo domains across name servers, we assess which
name servers host disproportionately many typo domains.

Our analysis found 937918 typo domains out of 80988864 .com domains;
consequently, any name server with over 1.16% typo domains is above average.
Table [(left) shows the incidence of typosquatting at large name servers. Many
large parking companies identified in Section] have disproportionately many

verizonwireless.com
verizon.com

Measuring the Perpetrators and Funders of Typosquatting 189

typo domains: 2.5% of domains resolved by sedoparking.com are typos, over
twice the rate on the web as a whole. On smaller name servers, typo domains
can be even more frequent. Table @ (right) considers name servers hosting at
least 1000 names. Topping the list is moniker.com, with 62% typo domains.
At the same time, other name servers feature disproportionately infrequent
typo domains. For example, the bottom of Table[] (left) shows large name servers
with typo domains as infrequent as 0.12%, one tenth the Internet-wide average.

7.3 The Role and Responsibility of Ad Platforms

We pause for an important disclosure: One of the authors (Edelman) is co-counsel
in litigation seeking to hold Google liable for using typosquatting domains to dis-
play advertising [11]. However, we now write not as lawyers but as engineer and
economist seeking to address typosquatting in the most efficient way possible.

As shown in Section Bl and Table 2l of the typo domains we successfully
crawled, nearly 80% showed pay-per-click advertisements that came from the
ad platforms operated by the web’s top search engines, principally Google and
(to a significantly lesser extent) Yahoo. Because ad platforms are the primary
or sole source of revenue for these typo domains, we believe ad platforms are
well-positioned to substantially reduce typosquatting. Among other responses,
ad platforms could select partners more carefully, select only partners with a
demonstrated record of avoiding typosquatting, and/or sever ties to partners who
are found to engage in typosquatting. Furthermore, ad platforms could require
that new partners showing ads on many domains post a bond that is forfeited
upon typosquatting, or deduct penalties from payments to any partners found
to engage in typosquatting. To the best of our knowledge, ad platforms have
taken none of these steps.

Ad platforms typically claim that a website or trademark owner targeted by
typosquatting should address its complaint directly to the typosquatter, not to
the ad platform that pays the typosquatter. For example, Google’s AdSense for
Domains complaint page argues that “Google is not in any way involved with the
selection or registration of these domain names, and is not in a position to arbi-
trate trademark disputes between the registrants, our partners, and trademark
owners. Accordingly, we encourage trademark owners to resolve their disputes
directly with the registrants or registrars.”ﬁ By stepping out of disputes between
sites and typosquatters, ad platforms’ preferred approach simplifies disputes (to
entail two parties rather than three) and, of course, limits ad platforms’ potential
liability.

Despite the simplification resulting from ad platforms’ preferred approach,
we see multiple problems with ad platforms disclaiming all responsibility for the
typosquatting they fund. For one, our analysis confirms that payments from ad
platforms are the sole force behind most typosquatting registrations. Further-
more, ad platforms are least-cost avoiders — able to prevent typosquatting with

® http://adwords. google . com/support/aw/bin/answer. py?
answer=50003&topic=26

http://adwords.google.com/support/aw/bin/answer.py?answer=50003&topic=26
http://adwords.google.com/support/aw/bin/answer.py?answer=50003&topic=26

190 T. Moore and B. Edelman

less effort than any other party. In particular, thanks to the semantic analysis
capabilities and spelling correction skills search engines gained through their
principal businesses, ad platforms are well equipped to identify typosquatting
registrations. (Consider Google’s well-known and strikingly accurate “Did you
mean?” function.) Indeed, search engines already receive information about the
domains users visit (necessary to target ads accordingly). It would be straightfor-
ward to compare these requests to a list of top trademarks, and disallow parking
ads from appearing on domains that are misspellings of popular sites.

The dynamics of the typosquatting business give ad platforms a particularly
powerful opportunity to undermine typosquatting. Suppose a site owner pursued
a few large typosquatters. The associated typo domains would tend to scatter to
numerous smaller typosquatters who could not be identified, located, or pursued
cost-effectively (as has already happened to Microsoft, Verizon and others). In
contrast, ad platforms enjoy unique positions of authority, buttressed by their
relationships with advertisers. Consequently, ad platforms can authoritatively
undermine typosquatting, in a way that no individual site owner can.

8 Conclusions

We are struck by the scale of the problem of typosquatting — at least many
hundreds of thousands of typo domains, and probably millions — despite sub-
stantial public and private efforts to discourage such registrations. Yet with such
strong economics supporting typosquatting — payments from Google and others
— perhaps it is no surprise that typosquatting is as prevalent as ever.

We suspect typosquatting will continue so long as advertisers and ad networks
continue to fuel and fund these practices. But let no one suggest identifying
typo domains is impossible: The overwhelming majority of typos are easy to
recognize, by hand or using straightforward automation. At the same time, with
typo domains highly concentrated at a few large domainers and ad platforms,
intermediaries could significantly discourage the registration and use of typo
domains if they were so inclined.

References

1. Brand Owners Could Have Prevented $220 Millio. In: Domain Name Recovery By
Spending $1 Million. Corporation Service Company (August 24, 2009)

2. Damerau, F.J.: A Technique for Computer Detection and Correction of Spelling
Errors. Communications of the ACM 7(3), 171-176 (1964)

3. Edelman, B.: Domains Reregistered for Distribution of Unrelated Content: A
Case Study of Tina’s Free Live Webcam (2002), http://cyber.law.harvard.edu/
people/edelman/renewals/

4. Edelman, B.: How Google and Its Partners Inflate Measured Conversion Rates and
Increase Advertisers’ Costs (2009),
http://www.benedelman. org/news/051309-1.html

5. Edelman, B.: Large-Scale Registration of Domains with Typographical Errors
(2003), http://cyber.law.harvard.edu/people/edelman/typo-domains/

http://cyber.law.harvard.edu/people/edelman/renewals/
http://cyber.law.harvard.edu/people/edelman/renewals/
http://www.benedelman.org/news/051309-1.html
http://cyber.law.harvard.edu/people/edelman/typo-domains/

Measuring the Perpetrators and Funders of Typosquatting 191

. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions, and

Reversals. Soviet Physics Doklady (1966)

. Lands’ End, Inc. v. Eric Remy, et al, W.D.Wis (2006)

. MTV Networks v. Curry, 867 F.Supp. 202. SDNY (1994)

. The Neiman Marcus Group Inc., et al., v. Dotster Inc., et al, W.D.Wa (2006)

. Perez, M.: Verizon wins $33 Million In Cybersquatting Case. Information Week

(December 30, 2008)

. Vulcan Golf, LL.C, et al., v. Google, Inc., et al. N.D.Ill. Case No 1:2007cv03371
. Wang, Y., Beck, D., Wang, J., Verbowski, C., Daniels, B.: Strider Typo-Patrol:

Discovery and Analysis of Systematic Typo-Squatting. In: 2nd USENIX Workshop
on Steps to Reducing Unwanted Traffic on the Internet (SRUTI) (July 2006)

A Learning-Based Approach to Reactive Security

Adam Barth!, Benjamin I.P. Rubinstein!, Mukund Sundararajan?,
John C. Mitchell?, Dawn Song!, and Peter L. Bartlett!:?

! Computer Science Division
2 Department of Statistics, UC Berkeley
3 Google Inc., Mountain View, CA
4 Department of Computer Science, Stanford University

Abstract. Despite the conventional wisdom that proactive security is
superior to reactive security, we show that reactive security can be com-
petitive with proactive security as long as the reactive defender learns
from past attacks instead of myopically overreacting to the last attack.
Our game-theoretic model follows common practice in the security lit-
erature by making worst-case assumptions about the attacker: we grant
the attacker complete knowledge of the defender’s strategy and do not
require the attacker to act rationally. In this model, we bound the com-
petitive ratio between a reactive defense algorithm (which is inspired by
online learning theory) and the best fixed proactive defense. Additionally,
we show that, unlike proactive defenses, this reactive strategy is robust
to a lack of information about the attacker’s incentives and knowledge.

1 Introduction

Many enterprises employ a Chief Information Security Officer (CISO) to man-
age the enterprise’s information security risks. Typically, an enterprise has many
more security vulnerabilities than it can realistically repair. Instead of declaring
the enterprise “insecure” until every last vulnerability is plugged, CISOs typi-
cally perform a cost-benefit analysis to identify which risks to address, but what
constitutes an effective CISO strategy? The conventional wisdom [2821] is that
CISOs ought to adopt a “forward-looking” proactive approach to mitigating se-
curity risk by examining the enterprise for vulnerabilities that might be exploited
in the future. Advocates of proactive security often equate reactive security with
myopic bug-chasing and consider it ineffective. We establish sufficient conditions
for when reacting strategically to attacks is as effective in discouraging attackers.

We study the efficacy of reactive strategies in an economic model of the CISO’s
security cost-benefit trade-offs. Unlike previously proposed economic models of
security (see Section [7), we do not assume the attacker acts according to a
fixed probability distribution. Instead, we consider a game-theoretic model with
a strategic attacker who responds to the defender’s strategy. As is standard in
the security literature, we make worst-case assumptions about the attacker. For
example, we grant the attacker complete knowledge of the defender’s strategy
and do not require the attacker to act rationally. Further, we make conservative

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 192 2010.
© IFCA /Springer-Verlag Berlin Heidelberg 2010

A Learning-Based Approach to Reactive Security 193

assumptions about the reactive defender’s knowledge and do not assume the
defender knows all the vulnerabilities in the system or the attacker’s incentives.
However, we do assume that the defender can observe the attacker’s past actions,
for example via an intrusion detection system or user metrics [4].

In our model, we find that two properties are sufficient for a reactive strategy
to perform as well as the best proactive strategies. First, no single attack is
catastrophic, meaning the defender can survive a number of attacks. This is
consistent with situations where intrusions (that, say, steal credit card numbers)
are regrettable but not business-ending. Second, the defender’s budget is liguid,
meaning the defender can re-allocate resources without penalty. For example, a
CISO can reassign members of the security team from managing firewall rules
to improving database access controls at relatively low switching costs.

Because our model abstracts many vulnerabilities into a single graph edge, we
view the act of defense as increasing the attacker’s cost for mounting an attack
instead of preventing the attack (e.g., by patching a single bug). By making
this assumption, we choose not to study the tactical patch-by-patch interaction
of the attacker and defender. Instead, we model enterprise security at a more
abstract level appropriate for the CISO. For example, the CISO might allocate a
portion of his or her budget to engage a consultancy, such as WhiteHat or iSEC
Partners, to find and fix cross-site scripting in a particular web application or
to require that employees use SecurID tokens during authentication. We make
the technical assumption that attacker costs are linearly dependent on defense
investments locally. This assumption does not reflect patch-by-patch interaction,
which would be better represented by a step function (with the step placed at the
cost to deploy the patch). Instead, this assumption reflects the CISO’s higher-
level viewpoint where the staircase of summed step functions fades into a slope.

We evaluate the defender’s strategy by measuring the attacker’s cumulative
return-on-investment, the return-on-attack (ROA), which has been proposed
previously [8]. By studying this metric, we focus on defenders who seek to “cut
off the attacker’s oxygen,” that is to reduce the attacker’s incentives for attack-
ing the enterprise. We do not distinguish between “successful” and “unsuccessful”
attacks. Instead, we compare the payoff the attacker receives from his or her ne-
farious deeds with the cost of performing said deeds. We imagine that sufficiently
disincentivized attackers will seek alternatives, such as attacking a different or-
ganization or starting a legitimate business.

In our main result, we show sufficient conditions for a learning-based reactive
strategy to be competitive with the best fixed proactive defense in the sense that
the competitive ratio between the reactive ROA and the proactive ROA is at
most 1 + ¢, for all € > 0, provided the game lasts sufficiently many rounds (at
least £2(1/¢€)). To prove our theorems, we draw on techniques from the online
learning literature. We extend these techniques to the case where the learner
does not know all the game matrix rows a priori, letting us analyze situations
where the defender does not know all the vulnerabilities in advance. Although
our main results are in a graph-based model with a single attacker, our results
generalize to a model based on Horn clauses with multiple attackers. Our results

194 A. Barth et al.

Database

Servers

Appication

Servers

Fig. 1. An attack graph representing an enterprise data center

are also robust to switching from ROA to attacker profit and to allowing the
proactive defender to revise the defense allocation a fixed number of times.

Although myopic bug chasing is most likely an ineffective reactive strategy, we
find that in some situations a strategic reactive strategy is as effective as the opti-
mal fixed proactive defense. In fact, we find that the natural strategy of gradually
reinforcing attacked edges by shifting budget from unattacked edges “learns” the
attacker’s incentives and constructs an effective defense. Such a strategic reactive
strategy is both easier to implement than a proactive strategy—because it does
not presume that the defender knows the attacker’s intent and capabilities—and
is less wasteful than a proactive strategy because the defender does not expend
budget on attacks that do not actually occur. Based on our results, we encourage
CISOs to question the assumption that proactive risk management is inherently
superior to reactive risk management.

Organization. Section [formalizes our model. Section Bl shows that perimeter
defense and defense-in-depth arise naturally in our model. Section [presents our
main results bounding the competitive ratio of reactive versus proactive defense
strategies. Section [l outlines scenarios in which reactive security out-performs
proactive security. Section [0l generalizes our results to Horn clauses and multiple
attackers. Section [] relates related work. Section [§] concludes.

2 Formal Model

In this section, we present a game-theoretic model of attack and defense. Unlike
traditional bug-level attack graphs, our model is meant to capture a managerial
perspective on enterprise security. The model is somewhat general in the sense
that attack graphs can represent a number of concrete situations, including a
network (see Figure [I), components in a complex software system [9], or an
Internet Fraud “Battlefield” [13].

System. We model a system using a directed graph (V, E), which defines the
game between an attacker and a defender. Each vertex v € V in the graph
represents a state of the system. Each edge e € F represents a state transition the
attacker can induce. For example, a vertex might represent whether a particular
machine in a network has been compromised by an attacker. An edge from one
machine to another might represent that an attacker who has compromised the

A Learning-Based Approach to Reactive Security 195

first machine might be able to compromise the second machine because the two
are connected by a network. Alternatively, the vertices might represent different
components in a software system. An edge might represent that an attacker
sending input to the first component can send input to the second.

In attacking the system, the attacker selects a path in the graph that be-
gins with a designated start vertexr s. Our results hold in more general models
(e.g., based on Horn clauses), but we defer discussing such generalizations until
Section [l We think of the attack as driving the system through the series of
state transitions indicated by the edges included in the path. In the networking
example in Figure[Il an attacker might first compromise a front-end server and
then leverage the server’s connectivity to the back-end database server to steal
credit card numbers from the database.

Incentives and Rewards. Attackers respond to incentives. For example, at-
tackers compromise machines and form botnets because they make money from
spam [20] or rent the botnet to others [32]. Other attackers steal credit card
numbers because credit card numbers have monetary value [I0]. We model the
attacker’s incentives by attaching a non-negative reward to each vertex. These
rewards are the utility the attacker derives from driving the system into the state
represented by the vertex. For example, compromising the database server might
have a sizable reward because the database server contains easily monetizable
credit card numbers. We assume the start vertex has zero reward, forcing the
attacker to undertake some action before earning utility. Whenever the attacker
mounts an attack, the attacker receives a payoff equal to the sum of the rewards
of the vertices visited in the attack path: payoff(a) = >_ ., reward(a). In the
example from Figure[I] if an attacker compromises both a front-end server and
the database server, the attacker receives both rewards.

Attack Surface and Cost. The defender has a fixed defense budget B > 0,
which the defender can divide among the edges in the graph according to a
defense allocation d: for all e € E, d(e) > 0 and) ., d(e) < B.

The defender’s allocation of budget to various edges corresponds to the de-
cisions made by the Chief Information Security Officer (CISO) about where to
allocate the enterprise’s security resources. For example, the CISO might allo-
cate organizational headcount to fuzzing enterprise web applications for XSS
vulnerabilities. These kinds of investments are continuous in the sense that the
CISO can allocate 1/4 of a full-time employee to worrying about XSS. We denote
the set of feasible allocations of budget B on edge set E by Dp .

By defending an edge, the defender makes it more difficult for the attacker
to use that edge in an attack. Each unit of budget the defender allocates to an
edge raises the cost that the attacker must pay to use that edge in an attack.
Each edge has an attack surface [I9] w that represents the difficulty in defending
against that state transition. For example, a server that runs both Apache and
Sendmail has a larger attack surface than one that runs only Apache because
defending the first server is more difficult than the second. Formally, the attacker
must pay the following cost to traverse the edge: cost(a,d) = > ., d(e)/w(e).
Allocating defense budget to an edge does not “reduce” an edge’s attack surface.

196 A. Barth et al.

For example, consider defending a hallway with bricks. The wider the hallway
(the larger the attack surface), the more bricks (budget allocation) required to
build a wall of a certain height (the cost to the attacker).

In this formulation, the function mapping the defender’s budget allocation to
attacker cost is linear, preventing the defender from ever fully defending an edge.
Our use of a linear function reflects a level of abstraction more appropriate to
a CISO who can never fully defend assets, which we justify by observing that
the rate of vulnerability discovery in a particular piece of software is roughly
constant [29]. At a lower level of detail, we might replace this function with a step
function, indicating that the defender can “patch” a vulnerability by allocating
a threshold amount of budget.

Objective. To evaluate defense strategies, we measure the attacker’s incentive
for attacking using the return-on-attack (ROA) [8], which we define as follows:

payoff(a)
A =
ROA(a,d) cost(a, d)

We use this metric for evaluating defense strategy because we believe that if
the defender lowers the ROA sufficiently, the attacker will be discouraged from
attacking the system and will find other uses for his or her capital or industry.
For example, the attacker might decide to attack another system. Analogous
results hold if we quantify the attacker’s incentives in terms of profit (e.g., with
profit(a, d) = payoft(a) — cost(a, d)), but we focus on ROA for simplicity.

A purely rational attacker will mount attacks that maximize ROA. However,
a real attacker might not maximize ROA. For example, the attacker might not
have complete knowledge of the system or its defense. We strengthen our results
by considering all attacks, not just those that maximize ROA.

Proactive Security. We evaluate our learning-based reactive approach by com-
paring it against a proactive approach to risk management in which the defender
carefully examines the system and constructs a defense in order to fend off future
attacks. We strengthen this benchmark by providing the proactive defender com-
plete knowledge about the system, but we require that the defender commit to a
fixed strategy. To strengthen our results, we state our main result in terms of all
such proactive defenders. In particular, this class of defenders includes the ratio-
nal proactive defender who employs a defense allocation that minimizes the max-
imum ROA the attacker can extract from the system: argmin, max, ROA(a, d).

3 Case Studies

In this section, we describe instances of our model to build the reader’s intu-
ition. These examples illustrate that some familiar security concepts, including
perimeter defense and defense in depth, arise naturally as optimal defenses in our
model. These defenses can be constructed either by rational proactive attackers
or converged to by a learning-based reactive defense.

A Learning-Based Approach to Reactive Security 197

‘ wil @ wil/9 @

Internet Front End Database

Fig. 2. Attack graph representing a simplified data center network

Perimeter Defense. Consider a system in which the attacker’s reward is non-
zero at exactly one vertex, ¢t. For example, in a medical system, the attacker’s
reward for obtaining electronic medical records might well dominate the value of
other attack targets such as employees’ vacation calendars. In such a system, a
rational attacker will select the minimum-cost path from the start vertex s to the
valuable vertex ¢t. The optimal defense limits the attacker’s ROA by maximizing
the cost of the minimum s-t path. The algorithm for constructing this defense
is straightforward [7]:

1. Let C be the minimum weight s-t cut in (V, E, w).
2. Select the following defense:

d(e) = {Bw(e)/Z ifecd , where Z = Z w(e) .

0 otherwise vt

Notice that this algorithm constructs a perimeter defense: the defender allocates
the entire defense budget to a single cut in the graph. Essentially, the defender
spreads the defense budget over the attack surface of the cut. By choosing the
minimum-weight cut, the defender is choosing to defend the smallest attack
surface that separates the start vertex from the target vertex. Real defenders
use similar perimeter defenses, for example, when they install a firewall at the
boundary between their organization and the Internet because the network’s
perimeter is much smaller than its interior.

Defense in Depth. Many experts in security practice recommend that defend-
ers employ defense in depth. Defense in depth rises naturally in our model as an
optimal defense for some systems. Consider, for example, the system depicted
in Figure @l This attack graph is a simplified version of the data center net-
work depicted in Figure [l Although the attacker receives the largest reward
for compromising the back-end database server, the attacker also receives some
reward for compromising the front-end web server. Moreover, the front-end web
server has a larger attack surface than the back-end database server because
the front-end server exposes a more complex interface (an entire enterprise web
application), whereas the database server exposes only a simple SQL interface.
Allocating defense budget to the left-most edge represents trying to protect sen-
sitive database information with a complex web application firewall instead of
database access control lists (i.e., possible, but economically inefficient).

The optimal defense against a rational attacker is to allocate half of the de-
fense budget to the left-most edge and half of the budget to the right-most
edge, limiting the attacker to a ROA of unity. Shifting the entire budget to the

198 A. Barth et al.

right-most edge (i.e., defending only the database) is disastrous because the
attacker will simply attack the front-end at zero cost, achieving an unbounded
ROA. Shifting the entire budget to the left-most edge is also problematic because
the attacker will attack the database (achieving an ROA of 5).

4 Reactive Security

To analyze reactive security, we model the attacker and defender as playing
an iterative game, alternating moves. First, the defender selects a defense, and
then the attacker selects an attack. We present a learning-based reactive defense
strategy that is oblivious to vertex rewards and to edges that have not yet been
used in attacks. We prove a theorem bounding the competitive ratio between
this reactive strategy and the best proactive defense via a series of reductions
to results from the online learning theory literature. Other applications of this
literature include managing stock portfolios [26], playing zero-sum games [12],
and boosting other machine learning heuristics [11]. Although we provide a few
technical extensions, our main contribution comes from applying results from
online learning to risk management.

Repeated Game. We formalize the repeated game between the defender and
the attacker as follows. In each round ¢ from 1 to T':

. The defender chooses defense allocation d¢(e) over the edges e € E.

. The attacker chooses an attack path a; in G.

. The path a; and attack surfaces {w(e) : e € a;} are revealed to the defender.
. The attacker pays cost(at, d;) and gains payoff(a;).

= W N =

In each round, we let the attacker choose the attack path after the defender
commits to the defense allocation because the defender’s budget allocation is not
a secret (in the sense of a cryptographic key). Following the “no security through
obscurity” principle, we make the conservative assumption that the attacker can
accurately determine the defender’s budget allocation.

Defender Knowledge. Unlike proactive defenders, reactive defenders do not
know all of the vulnerabilities that exist in the system in advance. (If defend-
ers had complete knowledge of vulnerabilities, conferences such as Black Hat
Briefings would serve little purpose.) Instead, we reveal an edge (and its attack
surface) to the defender after the attacker uses the edge in an attack. For exam-
ple, the defender might monitor the system and learn how the attacker attacked
the system by doing a post-mortem analysis of intrusion logs. Formally, we define
a reactive defense strategy to be a function from attack sequences {a;} and the
subsystem induced by the edges contained in (J; a; to defense allocations such
that d(e) = 0 if edge e & |J, a;. Notice that this requires the defender’s strategy
to be oblivious to the system beyond the edges used by the attacker.

A Learning-Based Approach to Reactive Security 199

Algorithm 1. A reactive defense strategy for hidden edges.
— Initialize Eq = 0
— For each round ¢ € {2,...,T}
o Let By 1 = FE; o U E(atfl)
e For each e € E;_1, let

Sir(e) = Si—2(e) + M(e,ai—1) ife € Ei_o
. M(e,ai—1) otherwise.

Pi(e) = 57

P,
YOI
Ze’eEt Py (6)
where M(e,a) = —1[e € a] /w(e) is a matrix with |E| rows and a column for

each attack.

Algorithm. Algorithm [Mlis a reactive defense strategy based on the multiplica-
tive update learning algorithm [6J12]. The algorithm reinforces edges on the
attack path multiplicatively, taking the attack surface into account by allocat-
ing more budget to easier-to-defend edges. When new edges are revealed, the
algorithm re-allocates budget uniformly from the already-revealed edges to the
newly revealed edges. We state the algorithm in terms of a normalized defense
allocation P;(e) = d;(e)/B. Notice that this algorithm is oblivious to unattacked
edges and the attacker’s reward for visiting each vertex. An appropriate setting
for the algorithm parameters 3; € [0,1) will be described below.

The algorithm begins without any knowledge of the graph whatsoever, and so
allocates no defense budget to the system. Upon the ' attack on the system,
the algorithm updates E; to be the set of edges revealed up to this point, and
updates Si(e) to be a weight count of the number of times e has been used in an
attack thus far. For each edge that has ever been revealed, the defense allocation
P,y1(e) is chosen to be ﬁtst(e) normalized to sum to unity over all edges e € E;. In
this way, any edge attacked in round t will have its defense allocation reinforced.

The parameter 3 controls how aggressively the defender reallocates defense
budget to recently attacked edges. If § is infinitesimal, the defender will move
the entire defense budget to the edge on the most recent attack path with the
smallest attack surface. If § is enormous, the defender will not be very agile and,
instead, leave the defense budget in the initial allocation. For an appropriate
value of (3, the algorithm will converge to the optimal defense strategy. For
instance, the min cut in the example from Section [Bl

Theorems. To compare this reactive defense strategy to all proactive defense
strategies, we use the notion of regret from online learning theory. The following
is an additive regret bound relating the attacker’s profit under reactive and
proactive defense strategies.

200 A. Barth et al.

Theorem 1. The average attacker profit against Algorithm [converges to the
average attacker profit against the best proactive defense. Formally, if defense
allocations {d;}I_, are output by Algorithm [with parameter sequence (s =

-1
(1 +/2log |Es|/(s + 1)) on any system (V, E,w,reward, s) revealed online

and any attack sequence {a;}1_,, then

log|E| B(log|E|+w™1)
rofit(as, dy) rofit(a;, d*) < B \/ + ,
;P t, dt ;P t,d") oT T

for all proactive defense strategies d* € Dp, i where w=' = |E|7' Y pw(e)™?,
the mean of the surface reciprocals.

Remark 2. We can interpret Theorem [as establishing sufficient conditions
under which a reactive defense strategy is within an additive constant of the best
proactive defense strategy. Instead of carefully analyzing the system to construct
the best proactive defense, the defender need only react to attacks in a principled
manner to achieve almost the same quality of defense in terms of attacker profit.

Reactive defense strategies can also be competitive with proactive defense strate-
gies when we consider an attacker motivated by return on attack (ROA). The
ROA formulation is appealing because (unlike with profit) the objective function
does not require measuring attacker cost and defender budget in the same units.
The next result considers the competitive ratio between the ROA for a reactive
defense strategy and the ROA for the best proactive defense strategy.

Theorem 3. The ROA against Algorithm [l converges to the ROA against best
proactive defense. Formally, consider the cumulative ROA:

> i payoff(a:)
ST, cost(az, dy)

(We abuse notation slightly and use singleton arguments to represent the cor-
responding constant sequence.) If defense allocations {d;}_, are output by Al-

ROA ({ar}{_y, {de}izy) =

—1
gorithm [with parameters Bs = (1 +/2log |Es|/(s + 1)) on any system

(V, E,w,reward, s) revealed online, such that |E| > 1, and any attack sequence
{a:}L_,, then for all a > 0 and proactive defense strategies d* € Dp g

ROA ({a:}{2,,{d:}{2)) <l+ta
ROA ({as}] ;. d*) ’

provided T is sufficiently large

Remark 4. Notice that the reactive defender can use the same algorithm re-
gardless of whether the attacker is motivated by profit or by ROA. As discussed
in Section [A the optimal proactive defense is not similarly robust.

' To wit: T > (;32 (1+a™) (Zeemc<s> w(e)>>210g |E|.

A Learning-Based Approach to Reactive Security 201

We present proofs of these theorems in the full version [3]. We first prove the
theorems in the simpler setting where the defender knows the entire graph.
Second, we remove the hypothesis that the defender knows the edges in advance.

Lower Bounds. In the full version [3], we use a two-vertex, two-edge graph
to establish a lower bound on the competitive ratio of the ROA for all reactive
strategies. The lower bound shows that the analysis of Algorithm [I]is tight and
that Algorithm[Ilis optimal given the information available to the algorithm. The
proof gives an example where the best proactive defense (slightly) out-performs
every reactive strategy, suggesting the benchmark is not unreasonably weak.

5 Advantages of Reactivity

In this section, we examine some situations in which a reactive defender out-
performs a proactive defender. Proactive defenses hinge on the defender’s model
of the attacker’s incentives. If the defender’s model is inaccurate, the defender
will construct a proactive defense that is far from optimal. By contrast, a reactive
defender need not reason about the attacker’s incentives directly. Instead, the
reactive defender learns these incentives by observing the attacker in action.

Learning Rewards. One way to model inaccuracies in the defender’s estimates
of the attacker’s incentives is to hide the attacker’s rewards from the defender.
Without knowledge of the payoffs, a proactive defender has difficulty limiting the
attacker’s ROA. Consider, for example, the star system whose edges have equal
attack surfaces, as depicted in Figure Bl Without knowledge of the attacker’s
rewards, a proactive defender has little choice but to allocate the defense budget
equally to each edge (because the edges are indistinguishable). However, if the
attacker’s reward is concentrated at a single vertex, the competitive ratio for
attacker’s ROA (compared to the rational proactive defense) is the number of
leaf vertices. (We can, of course, make the ratio worse by adding more vertices.)
By contrast, the reactive algorithm we analyze in Section [l is competitive with
the rational proactive defense because the reactive algorithm effectively learns
the rewards by observing which attacks the attacker chooses.

Robustness to Objective. Another way to model inaccuracies in the de-
fender’s estimates of the attacker’s incentives is to assume the defender mis-
takes which of profit and ROA actually matter to the attacker. The defense
constructed by a rational proactive defender depends crucially on whether the
attacker’s actual incentives are based on profit or based on ROA, whereas the re-
active algorithm we analyze in Section @l is robust to this variation. In particular,
consider the system depicted in Figure @] and assume the defender has a budget
of 9. If the defender believes the attacker is motivated by profit, the rational
proactive defense is to allocate the entire defense budget to the right-most edge
(making the profit 1 on both edges). However, this defense is disastrous when
viewed in terms of ROA because the ROA for the left edge is infinite (as opposed
to near unity when the proactive defender optimizes for ROA).

202 A. Barth et al.

reward:0 reward:0

@ w:l ‘ w:l w

Satellite Office Internet Headquarters
Fig. 3. Star-shaped attack graph Fig. 4. An attack graph that separates the
with rewards concentrated in an minimax strategies optimizing ROA and at-
unknown vertex tacker profit

Catachresis. The defense constructed by the rational proactive defender is op-
timized for a rational attacker. If the attacker is not perfectly rational, there is
room for out-performing the rational proactive defense. There are a number of
situations in which the attacker might not mount “optimal” attacks:

— The attacker might not have complete knowledge of the attack graph. Con-
sider, for example, a software vendor who discovers five equally severe vulner-
abilities in one of their products via fuzzing. According to proactive security,
the defender ought to dedicate equal resources to repairing these five vul-
nerabilities. However, a reactive defender might dedicate more resources to
fixing a vulnerability actually exploited by attackers in the wild. We can
model these situations by making the attacker oblivious to some edges.

— The attacker might not have complete knowledge of the defense allocation.
For example, an attacker attempting to invade a corporate network might
target computers in human resources without realizing that attacking the
customer relationship management database in sales has a higher return-on-
attack because the database is lightly defended.

By observing attacks, the reactive strategy learns a defense tuned for the actual
attacker, causing the attacker to receive a lower ROA.

6 Generalizations

Horn Clauses. Thus far, we have presented our results using a graph-based
system model. Our results extend, however, to a more general system model
based on Horn clauses. Datalog programs, which are based on Horn clauses, have
been used in previous work to represent vulnerability-level attack graphs [27]. A
Horn clause is a statement in propositional logic of the form p; ApaA-+-Ap, — q.
The propositions pi1,pa,...,p, are called the antecedents, and ¢ is called the

A Learning-Based Approach to Reactive Security 203

consequent. The set of antecedents might be empty, in which case the clause
simply asserts the consequent. Notice that Horn clauses are negation-free. In
some sense, a Horn clause represents an edge in a hypergraph where multiple
pre-conditions are required before taking a certain state transition.

In the Horn model, a system consists of a set of Horn clauses, an attack surface
for each clause, and a reward for each proposition. The defender allocates defense
budget among the Horn clauses. To mount an attack, the attacker selects a valid
proof: an ordered list of rules such that each antecedent appears as a consequent
of a rule earlier in the list. For a given proof II,

cost(II,d) = Z d(c)/w(e) payoff (1) = Z reward(p) ,

cell pe[II]

where [I] is the set of propositions proved by IT (i.e., those propositions that
appear as consequents in I7). Profit and ROA are computed as before.

Our results generalize to this model directly. Essentially, we need only replace
each instance of the word “edge” with “Horn clause” and “path” with “valid proof.”
For example, the rows of the matrix M used throughout the proof become the
Horn clauses, and the columns become the valid proofs (which are numerous,
but no matter). The entries of the matrix become M(c¢, IT) = 1/w(c), analogous
to the graph case. The one non-obvious substitution is inc(s), which becomes
the set of clauses that lack antecedents.

Multiple Attackers. We have focused on a security game between a single
attacker and a defender. In practice, a security system might be attacked by
several uncoordinated attackers, each with different information and different
objectives. Fortunately, we can show that a model with multiple attackers is
mathematically equivalent to a model with a single attacker with a randomized
strategy: Use the set of attacks, one per attacker, to define a distribution over
edges where the probability of an edge is linearly proportional to the number
of attacks which use the edge. This precludes the interpretation of an attack as
an s-rooted path, but our proofs do not rely upon this interpretation and our
results hold in such a model with appropriate modifications.

Adaptive Proactive Defenders. A simple application of an online learning
result [I8], omitted due to space constraints, modifies our regret bounds for
a proactive defender who re-allocates budget a fixed number of times. In this
model, our results remain qualitatively the same.

7 Related Work

Anderson [I] and Varian [31] informally discuss (via anecdotes) how the design
of information security must take incentives into account. August and Tunca [2]
compare various ways to incentivize users to patch their systems in a setting
where the users are more susceptible to attacks if their neighbors do not patch.

Gordon and Loeb [15] and Hausken [17] analyze the costs and benefits of secu-
rity in an economic model (with non-strategic attackers) where the probability

204 A. Barth et al.

of a successful exploit is a function of the defense investment. They use this
model to compute the optimal level of investment. Varian [30] studies various
(single-shot) security games and identifies how much agents invest in security at
equilibrium. Grossklags [I6] extends this model by letting agents self-insure.

Miura et al. [24] study externalities that appear due to users having the
same password across various websites and discuss pareto-improving security
investments. Miura and Bambos [25] rank vulnerabilities according to a random-
attacker model. Skybox and RedSeal offer practical systems that help enterprises
prioritize vulnerabilities based on a random-attacker model. Kumar et al. [22]
investigate optimal security architectures for a multi-division enterprise, taking
into account losses due to lack of availability and confidentiality. None of the
above papers explicitly model a truly adversarial attacker.

Fultz [14] generalizes [16] by modeling attackers explicitly. Cavusoglu et al. [5]
highlight the importance of using a game-theoretic model over a decision theo-
retic model due to the presence of adversarial attackers. However, these models
look at idealized settings that are not generically applicable. Lye and Wing [23]
study the Nash equilibrium of a single-shot game between an attacker and a de-
fender that models a particular enterprise security scenario. Arguably this model
is most similar to ours in terms of abstraction level. However, calculating the
Nash equilibrium requires detailed knowledge of the adversary’s incentives, which
as discussed in the introduction, might not be readily available to the defender.
Moreover, their game contains multiple equilibria, weakening their prescriptions.

8 Conclusions

Many security experts equate reactive security with myopic bug-chasing and ig-
nore principled reactive strategies when they recommend adopting a proactive
approach to risk management. In this paper, we establish sufficient conditions for
a learning-based reactive strategy to be competitive with the best fixed proactive
defense. Additionally, we show that reactive defenders can out-perform proac-
tive defenders when the proactive defender defends against attacks that never
actually occur. Although our model is an abstraction of the complex interplay
between attackers and defenders, our results support the following practical ad-
vice for CISOs making security investments:

— Employ monitoring tools that let you detect and analyze attacks against your
enterprise. These tools help focus your efforts on thwarting real attacks.

— Make your security organization more agile. For example, build a rigorous
testing lab that lets you roll out security patches quickly once you detect
that attackers are exploiting these vulnerabilities.

— When determining how to expend your security budget, avoid overreacting
to the most recent attack. Instead, consider all previous attacks, but discount
the importance of past attacks exponentially.

In some situations, proactive security can out-perform reactive security. For
example, reactive approaches are ill-suited for defending against catastrophic

A Learning-Based Approach to Reactive Security 205

attacks because there is no “next round” in which the defender can use infor-
mation learned from the attack. We hope our results will lead to a productive
discussion of the limitations of our model and the validity of our conclusions.

Instead of assuming that proactive security is always superior to reactive
security, we invite the reader to consider when a reactive approach might be
appropriate. For the parts of an enterprise where the defender’s budget is liquid
and there are no catastrophic losses, a carefully constructed reactive strategy can
be as effective as the best proactive defense in the worst case and significantly
better in the best case.

Acknowledgments. We would like to thank Elie Bursztein, Eu-Jin Goh, and
Matt Finifter for their thoughtful comments and helpful feedback. We gratefully
acknowledge the support of the NSF through the TRUST Science and Tech-
nology Center and grants DMS-0707060, CCF-0424422, 0311808, 0448452, and
0627511, and the support of the AFOSR through the MURI Program, and the
support of the Siebel Scholars Foundation.

References

1. Anderson, R.: Why information security is hard—An economic perspective. In:
17th Annual Computer Security Applications Conference, pp. 358-365 (2001)

2. August, T., Tunca, T.I.: Network software security and user incentives. Manage-
ment Science 52(11), 1703-1720 (2006)

3. Barth, A., Rubinstein, B.I.P., Sundararajan, M., Mitchell, J.C., Song, D., Bartlett,
P.L.: A learning-based approach to reactive security (2009),
http://arxiv.org/abs/0912.1155

4. Beard, C.: Introducing Test Pilot (March 2008),
http://labs.mozilla.com/2008/03/introducing-test-pilot/

5. Cavusoglu, H., Raghunathan, S., Yue, W.: Decision-theoretic and game-theoretic
approaches to IT security investment. Journal of Management Information Sys-
tems 25(2), 281-304 (2008)

6. Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D.P., Schapire, R.E., War-
muth, M.K.: How to use expert advice. Journal of the Association for Computing
Machinery 44(3), 427-485 (1997)

7. Chakrabarty, D., Mehta, A., Vazirani, V.V.: Design is as easy as optimization.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4051, pp. 477-488. Springer, Heidelberg (2006)

8. Cremonini, M.: Evaluating information security investments from attackers per-
spective: the return-on-attack (ROA). In: Fourth Workshop on the Economics of
Information Security (2005)

9. Fisher, D.: Multi-process architecture (July 2008), http://dev.chromium.org/
developers/design-documents/multi-process-architecture

10. Franklin, J., Paxson, V., Perrig, A., Savage, S.: An inquiry into the nature and
causes of the wealth of internet miscreants. In: Proceedings of the 2007 ACM
Conference on Computer and Communications Security, pp. 375-388. ACM, New
York (2007)

11. Freund, Y., Schapire, R.: A short introduction to boosting. Journal of the Japanese
Society for Artificial Intelligence 14(5), 771-780 (1999)

http://arxiv.org/abs/0912.1155
http://labs.mozilla.com/2008/03/introducing-test-pilot/
http://dev.chromium.org/developers/design-documents/multi-process-architecture
http://dev.chromium.org/developers/design-documents/multi-process-architecture

206

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.
30.

31.
32.

A. Barth et al.

Freund, Y., Schapire, R.E.: Adaptive game playing using multiplicative weights.
Games and Economic Behavior 29, 79-103 (1999)

Friedberg, J.: Internet fraud battlefield (April 2007), http://www.ftc.gov/becp/
workshops/proofpositive/Battlefield_Overview.pdf

Fultz, N., Grossklags, J. (eds.): Blue versus Red: Towards a model of distributed
security attacks. Proceedings of the Thirteenth International Conference Financial
Cryptography and Data Security (February 2009)

Gordon, L.A., Loeb, M.P.: The economics of information security investment. ACM
Transactions on Information and System Security 5(4), 438-457 (2002)
Grossklags, J., Christin, N., Chuang, J.: Secure or insure?: A game-theoretic anal-
ysis of information security games. In: Proceeding of the 17th International Con-
ference on World Wide Web, pp. 209-218. ACM, New York (2008)

Hausken, K.: Returns to information security investment: The effect of alternative
information security breach functions on optimal investment and sensitivity to
vulnerability. Information Systems Frontiers 8(5), 338-349 (2006)

Herbster, M., Warmuth, M.K.: Tracking the best expert. Machine Learning 32(2),
151-178 (1998)

Howard, M.: Attack surface: Mitigate security risks by minimizing the code you
expose to untrusted users. MSDN Magazine (November 2004),
http://msdn.microsoft.com/en-us/magazine/cc163882.aspx

Kanich, C., Kreibich, C., Levchenko, K., Enright, B., Voelker, G.M., Paxson, V.,
Savage, S.: Spamalytics: An empirical analysis of spam marketing conversion. In:
Proceedings of the 2008 ACM Conference on Computer and Communications Se-
curity, pp. 3-14. ACM, New York (2008)

Kark, K., Penn, J., Dill, A.: 2008 CISO priorities: The right objectives but the
wrong focus. Le Magazine de la Sécurité Informatique (April 2009)

Kumar, V., Telang, R., Mukhopadhyay, T.: Optimal information security architec-
ture for the enterprise, http://ssrn.com/abstract=1086690

Lye, K.W., Wing, J.M.: Game strategies in network security. In: Proceedings of
the Foundations of Computer Security Workshop, pp. 13-22 (2002)

Miura-Ko, R.A., Yolken, B., Mitchell, J., Bambos, N.: Security decision-making
among interdependent organizations. In: Proceedings of the 21st IEEE Computer
Security Foundations Symposium, pp. 66-80. IEEE Computer Society, Washington
(2008)

Miura-Ko, R., Bambos, N.: SecureRank: A risk-based vulnerability management
scheme for computing infrastructures. In: Proceedings of IEEE International Con-
ference on Communications, pp. 1455-1460 (June 2007)

Ordentlich, E., Cover, T.M.: The cost of achieving the best portfolio in hindsight.
Mathematics of Operations Research 23(4), 960-982 (1998)

Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gener-
ation. In: Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security, pp. 336-345 (2006)

Pironti, J.P.: Key elements of an information security program. Information Sys-
tems Control Journal 1 (2005)

Rescorla, E.: Is finding security holes a good idea? IEEE Security and Privacy 3(1),
14-19 (2005)

Varian, H.: System reliability and free riding (2001)

Varian, H.R.: Managing online security risks, June 1. New York Times (2000)
Warner, B.: Home PCs rented out in sabotage-for-hire racket. Reuters (July 2004)

http://www.ftc.gov/bcp/workshops/proofpositive/Battlefield_Overview.pdf
http://www.ftc.gov/bcp/workshops/proofpositive/Battlefield_Overview.pdf
http://msdn.microsoft.com/en-us/magazine/cc163882.aspx
http://ssrn.com/abstract=1086690

Embedded SFE: Offloading Server and Network
Using Hardware Tokens

Kimmo Jarvinen', Vladimir Kolesnikov?,
Ahmad-Reza Sadeghi®, and Thomas Schneider®

! Dep. of Information and Comp. Science, Aalto University, Finland
kimmo.jarvinen@tkk.fi*
2 Alcatel-Lucent Bell Laboratories, Murray Hill, NJ 07974, USA
kolesnikov@research.bell-labs.com
Horst Gortz Institute for IT-Security, Ruhr-University Bochum, Germany
{ahmad.sadeghi,thomas.schneider}@trust.rub.de*”

Abstract. We consider Secure Function Evaluation (SFE) in the client-
server setting where the server issues a secure token to the client. The
token is not trusted by the client and is not a trusted third party.

We show how to take advantage of the token to drastically reduce the
communication complexity of SFE and computation load of the server.

Our main contribution is the detailed consideration of design deci-
sions, optimizations, and trade-offs, associated with the setting and its
strict hardware requirements for practical deployment. In particular, we
model the token as a computationally weak device with small constant-
size memory and limit communication between client and server.

‘We consider semi-honest, covert, and malicious adversaries. We show
the feasibility of our protocols based on a FPGA implementation.

1 Introduction

Secure and efficient evaluation of arbitrary functions on private inputs has been
subject of cryptographic research for decades. In particular, the following sce-
nario appears in a variety of practical applications: a service provider (server
S) and user (client C) wish to compute a function f on their respective private
data, without incurring the expense of a trusted third party. This can be solved
interactively using Secure Function Evaluation (SFE) protocols, for example us-
ing the very efficient garbled circuit (GC) approach [26]. However, GC protocols
potentially require a large amount of data to be transferred between S and C.
This is because f needs to be encrypted (garbled) as f and transferred from S
to C. In fact, the communication complexity of GC-based SFE protocols is dom-
inated by the size of the GC, which can reach Megabytes or Gigabytes even for
relatively small and simple functions (e.g., the GC for AES has size 0.5 MBytes
[23]). Further, if security against more powerful adversaries is required, the use

* Supported by EU FP7 project CACE.
** Supported by EU FP6 project SPEED, EU FP7 project CACE and ECRYPT II.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 2074221}, 2010.
© IFCA/Springer-Verlag Berlin Heidelberg 2010

208 K. Jarvinen et al.

of the standard cut-and-choose technique implies transfer of multiple GCs. (For
covert adversaries, the transfer of only one GC is sufficient [7].)

While transmission of this large amount of data is possible for exceptional
occurrences, in most cases, the network will not be able to sustain the resulting
traffic. This holds especially for larger-scale deployment of secure computations,
e.g., by banks or service providers, with a large number of customers. Additional
obstacles include energy consumption required to transmit/receive the data, and
the resulting reduced battery life in mobile clients, such as smartphones

Further, computational load on S (computing f) is also a significant problem,
especially in the case of large-scale deployment of SFE.

Our setting, goals and approach. Motivated by the possibility of large-scale
and decentralized SFE deployment we aim to remove the expensive communica-
tion requirement, and to shift some of §’s computation to C. To this end, we note
that in SFE protocols, and, in particular, in GC, the role of the server can be
split between two entities, with the introduction of a new entity — secure token
T, which is placed in client C’s possession, but executes S’s code thus offload-
ing S. Further, it is possible to eliminate most of the communication between C
and S and replace this with local communication between C and 7. A number
of technical issues arises in this setting, which we address in this work.

More specifically, we discuss and analyze hardware-supported SFE, where
the service provider S issues a secure (see below) hardware token 7 to C. C
communicates locally with 7', and remotely with S. There is no direct channel
between 7 and S, but of course C can pass (and potentially interfere with)
messages between 7 and S. 7 is created by S, so S trusts 7'; however, as C does
not trust S, she also does not trust the token 7 to behave honestlyE

Attack model. We consider all three standard types of adversaries: semi-honest
(follows protocol but analyzes the transcript), malicious (arbitrary behavior,
cheating is always caught), and covert (cheating is caught with a certain deter-
rence probability, e.g., 1/2).

Hardware assumption. We assume 7 is tamper-proof or tamper-resistant. We
argue that this assumption is reasonable. Indeed, while every token can likely
be broken into, given sufficient resources, we are motivated by the scenarios
where the payoff of the break is far below the cost of the break. This holds
for relatively low-value transactions such as cell phone or TV service, where
the potential benefit of the attack (e.g., free TV for one user) is not worth the
investment of thousands or tens of thousands of dollars to break into the card.
For higher-value applications one could raise the cost of the attack by using a
high-end token 7, e.g., a smart card certified at FIPS 140-2, level 3 or 4.

! In some cases, the impact can be mitigated by creating and transferring GCs in the
precomputation phase. However, this is not fully satisfactory. Firstly, even more data
needs to be transferred since demand cannot be perfectly predicted. Further, this
creates other problems, such as requiring large long-term storage on client devices.

2 Note, if C in fact trusts 7 to behave honestly, then there exists a trivial solution,
where C would let 7 compute the function on her inputs [11].

Embedded SFE: Offloading Server and Network Using Hardware Tokens 209

Hardware restrictions. As we assume the token to be produced in large quan-
tities, we try to minimize its costs (e.g., chip surface) and make the assumptions
on it as weak as possible. In particular our token requires only restricted compu-
tational capabilities (no public-key operations) and small constant secure RAM.
We consider 7 with and without small constant secure non-volatile storage.

Envisioned Applications. As mentioned above, we aim to bring SFE closer
to a large-scale deployment. The need to minimize communication forces us
to rely on tokens, the issuance of which requires certain logistical capabilities.
Therefore, we believe client-server applications are most likely to be the early
adopters of SFE. Further, the natural trust model (semi-honest or covert server
and malicious client) allow for efficient GC protocols. Finally, many client-server
application scenarios naturally include financial and other transactions which
involve sensitive, in particular privacy-sensitive, information.

Today, many service providers already distribute trusted tokens to their users.
Examples include SIM cards in users’ cell phones, and smart cards in users’ TV
set-top boxes. Bank- and credit cards often contain embedded secure chips. Spe-
cial purpose (e.g., diagnostic) medical devices, which need to be monitored and
controlled, are often issued to users at home. In these settings, it is natural to
use the existing infrastructure to enhance the security and privacy guarantees
of the offered products, and to offer new products previously impossible due to
privacy violation concerns. We expand this discussion and consider other appli-
cations, such as privacy protection in targeted advertisement, content delivery,
and remote medical diagnostics, in the full version [13].

1.1 Owur Contributions and Outline

Our main contribution is architecture design, implementation, a number of op-
timizations, and detailed analysis of two-party SFE aided by a server-issued
low-cost tamper-proof token. The communication complexity of our protocols is
linear in the size of the input, and is independent of the size of the evaluated
functionality. Further, most of the work of S can be offloaded to 7.

We use GC techniques of [15] and offer no-cost XOR gates. We rely on cheap
hardware — the token 7" only executes symmetric-key operations (e.g., SHA and
AES). T has small constant-size RAM (much smaller than the size of the circuit),
but we do not resort to implementing expensive secure external RAM.

We provide two solutions; in one, 7 keeps state in secure non-volatile storage
(a monotonic counter), while in the other, 7 maintains no long-term state.

We consider semi-honest, covert [7], and malicious [16] adversaries; our corre-
sponding communication improvements are shown in Table [I1

Outline. We start with outlining our model and architecture in 3l We describe
the protocols for both stateful and stateless 7, and state the security claim in
g4 In g5 we discuss technical details of our FPGA prototype implementation,
present timings and measurements, and show practicality of our solution.

210 K. Jarvinen et al.

Table 1. Communication between server S and client C for secure evaluation of func-
tion f with n inputs, statistical security parameter s, and deterrence probability 1—1/r

Security Previous Work ~ This Work
semi-honest [26] O(|f| + n) O(n)
covert [0 O(|f|+sn+71)O(sn+r)
malicious [I6] O(s|f| + s*n) O(s%n)

1.2 Related Work

Related work on using tokens for secure computations falls in the following three
categories, summarized in Table 2l

Table 2. Secure Protocols using Hardware Tokens. Columns denote the number of
tokens, who trusts the token(s), if token(s) are stateful or stateless, and perform public-
key operations. Properties more desired for practical applications in bold font.

Type Reference Functionality # Tokens Trusted by Stateful PK ops
A) [10] UC commitment 2 both yes yes
[1414] UC commitment 2 issuer yes yes
3 UC commitment 2 issuer no yes
[19] UC commitment 1 issuer yes no
B))] Set Intersection, ODBS 1 both yes no
8] Non-Interact. OT 1 both yes yes
[25] Verif. Enc., Fair Exch. 1 both yes yes
C) [6] SFE 2 both yes yes
[11] SFE 1 both yes yes
This Work SFE 1 issuer yes /no no

A) Setup assumptions for the universal composability (UC) framework. As
shown in [I], UC SFE protocols can be constructed from UC commitments. In
turn, UC commitments can be constructed from signature cards trusted by both
parties [10], or from tamper-proof tokens created and trusted only by the issuing
party [T4T9314]. Here, [3] consider stateless tokens, and [I9] require only one
party to issue a token. This line of research mainly addresses the feasibility of UC
computation based on tamper-proof hardware and relies on expensive primitives
such as generic zero-knowledge proofs. Our protocols are far more practical.

B) Efficiency Improvements for Specific Functionalities. Efficient protocols
with a tamper-proof token trusted by both players have been proposed for
specific functionalities such as set intersection and oblivious database search
(ODBS) [@], non-interactive oblivious transfer (OT) [8], and verifiable encryp-
tion and fair exchange [25]. In contrast, we solve the general SFE problem.

C) Efficiency Improvements for Arbitrary Functionalities. Clearly, SFE is effi-
cient if aided by a trusted third party (TTP), who simply computes the function.
SFE aided by hardware TTP was considered, e.g., in [6/T1]. In contrast, we do
not use TTP; our token is only trusted by its issuer.

Embedded SFE: Offloading Server and Network Using Hardware Tokens 211

2 Preliminaries

Notation. We denote symmetric security parameter by ¢ (e.g., t = 128), and
pseudo-random function (PRF) keyed with k and evaluated on = by PRF(z).
PRF can be instantiated with a block cipher, e.g., AES, or a cryptographic hash
function H, e.g., SHA-256, which we model as a Random Oracle (RO). AES is
preferable if PRF is run repeatedly with same k as AES’s key schedule amortizes.
Message authentication code (MAC) keyed with k and evaluated on message m
is denoted by MAC(m). We use a MAC that does not need to store the entire
message, but can operate “online” on small blocks, e.g., AES-CMAC [24].

2.1 Garbled Circuits (GC)

Yao’s Garbled Circuit approach [26] is the most efficient method for secure eval-
uation of a boolean circuit €. We summarize its ideas in the following. The
circuit constructor (server S) creates a garbled circuit C: for each wire w; of the
circuit, he randomly chooses two garblings w9, w;, where @] is the garbled value
of w;’s value j. (Note: @ff does not reveal j.) Further, for each gate G;, S creates
a garbled table T; with the following property: given a set of garbled values of
G;’s inputs, T; allows to recover the garbled value of the corresponding G;’s out-
put, but nothing else. S sends these garbled tables, called garbled circuit C to
the evaluator (client C). Additionally, C obliviously obtains the garbled inputs w;
corresponding to inputs of both parties: the garbled inputs y corresponding to
the inputs y of S are sent directly and Z are obtained with a parallel 1-out-of-2
oblivious transfer (OT) protocol [20]. Now, C can evaluate the garbled circuit C
on the garbled inputs to obtain the garbled outputs by evaluating C gate by gate,
using the garbled tables T;. Finally, C determines the plain values corresponding
to the obtained garbled output values using an output translation table received
by S. Correctness of GC follows from the way garbled tables T; are constructed.

Improved Garbled Circuit with free XOR [15]. An efficient method for
creating garbled circuits which allows “free” evaluation of XOR gates was pre-
sented in [I5]. More specifically, a garbled XOR gate has no garbled table (no
communication) and its evaluation consists of XORing the its garbled input val-
ues (negligible computation) — details below. The other gates, called non-XOR
gates, are evaluated as in Yao’s GC construction [26] with a point-and-permute
technique (as used in [18]): The garbled values @; = (k;, 7;) € {0,1}* consist of a
symmetric key k; € {0,1}" and a random permutation bit 7; € {0,1} (recall, ¢ is
the symmetric security parameter). The entries of the garbled table are permuted
such that the permutation bits m; of a gate’s garbled input wires can be used
as index into the garbled table to directly point to the entry to be decrypted.
After decrypting this entry using the garbled input wires’ t-bit keys k;, evaluator
obtains the garbled output value of the gate. The encryption is