

Lecture Notes in Computer Science 6052
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Radu Sion (Ed.)

Financial Cryptography
and Data Security

14th International Conference, FC 2010
Tenerife, Canary Islands, Spain
January 25-28, 2010
Revised Selected Papers

13

Volume Editor

Radu Sion
Stony Brook University
Computer Science Department
Stony Brook, NY 11794, USA
E-mail: sion@cs.stonybrook.edu

Library of Congress Control Number: 2010930773

CR Subject Classification (1998): E.3, D.4.6, K.6.5, K.4.4, C.2, J.1, F.2.1-2

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-14576-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14576-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© IFCA/Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume contains the main proceedings of the 14th Financial Cryptograpy
and Data Security International Conference 2010, held in Tenerife, Canary Is-
lands, Spain, January 25–28, 2010.

Financial Cryptography and Data Security is a major international forum for
research, advanced development, education, exploration, and debate regarding
information assurance, with a specific focus on commercial contexts. The con-
ference covers all aspects of securing transactions and systems and especially
encourages original works focusing on both fundamental and applied real-world
deployments on all aspects surrounding commerce security.

Despite the dire economic climate as well as strong competition from other
top-tier related security conferences, the Program Committee received 130 high-
quality submissions and accepted 19 full-length papers (14.6% acceptance rate),
15 short papers (26.1% acceptance rate), 7 posters and 1 panel.

Three workshops were co-located with FC 2010: the Workshop on Real-Life
Cryptographic Protocols and Standardization (RLCPS), the Workshop on Ethics
in Computer Security Research (WECSR), and the Workshop on Lightweight
Cryptography for Resource-Constrained Devices (WLC).

Intimate and colorful by tradition, the high-quality program was not the only
attraction of FC. In the past, FC conferences have been held in highly research-
synergistic locations such as Tobago, Anguilla, Dominica, Key West, Guadelupe,
Bermuda, the Grand Cayman, and Cozumel Mexico. 2010 was the first year that
the conference was held on European soil, on the Spanish Canary Islands, in
Atlantic waters, a few miles across from Morocco. Over 100 researchers from
more than 20 countries were in attendance.

Organizing a conference with such high standards was a true team effort. We
would like to thank all those who made this possible: the International Financial
Cryptography Association, the Program Committee and Proceedings Chair for
their work, the Workshop Chairs, the keynote speakers and panel members, the
local Arrangements Committee, and the authors and participants that made
this such a exhilirating intellectually rich experience. Last but not least, we are
thankful to our sponsors for their valuable support.

Ultimately, we hope this year’s experience and quality research program will
entice you to participate in Financial Cryptography 2011. We look forward to
seeing you in Saint Lucia!

May 2010 Pino Caballero-Gil
Radu Sion

Organization

Organizing Committee

General Chair: Pino
Caballero-Gil University of La Laguna, Spain

Program Chair: Radu Sion Stony Brook University, USA
Local Chair: Candelaria

Hernandez-Goya University of La Laguna, Spain
Proceedings Chair:

Reza Curtmola New Jersey Institute of Technology, USA
Poster Chair: Peter Williams Stony Brook University, USA

Local Organizing Committee

Luisa Arranz Chacon Alcatel Espana, S.A.
Candido Caballero Gil University of La Laguna
Amparo Fuster-Sabater Instituto de Fisica Aplicada Madrid
Felix Herrera Priano University of La Laguna
Belen Melian Batista University of La Laguna
Jezabel Molina Gil University of La Laguna
Jose Moreno Perez University of La Laguna
Marcos Moreno Vega University of La Laguna
Alberto Peinado Dominguez University of Malaga
Alexis Quesada Arencibia University of Las Palmas de Gran Canaria
Jorge Ramio Aguirre Polytechnic University of Madrid
Victoria Reyes Sanchez University of La Laguna

Program Committee

Ross Anderson University of Cambridge, UK
Lucas Ballard Google Inc., USA
Adam Barth UC Berkeley, USA
Luc Bouganim INRIA Rocquencourt, France
Marina Blanton University of Notre Dame, France
Bogdan Carbunar Motorola Labs, USA
Ivan Damgard Aarhus University, Denmark
Ernesto Damiani University of Milan, Italy
George Danezis Microsoft Research, USA
Sabrina de Capitani di Vimercati University of Milan, Italy
Rachna Dhamija Harvard University, USA
Sven Dietrich Stevens Institute of Technology, USA

VIII Organization

Roger Dingledine The TOR Project, USA
Josep Domingo-Ferrer University of Rovira i Virgili, Spain
Stefan Dziembowski University of Rome “La Sapienza”, Italy
Simone Fischer-Hbner Karlstad University, Sweden
Philippe Golle Palo Alto Research Center, USA
Dieter Gollmann Technische Universität Hamburg-Harburg,

Germany
Rachel Greenstadt Drexel University, USA
Markus Jakobsson Palo Alto Research Center and Indiana

University, USA
Rob Johnson Stony Brook University, USA
Stefan Katzenbeisser Technische Universität Darmstadt, Germany
Angelos Keromytis Columbia University, USA
Lars R. Knudsen Technical University of Denmark, Denmark
Wenke Lee Georgia Tech, USA
Arjen Lenstra EPFL and Alcatel-Lucent Bell Laboratories,

Switzerland
Helger Lipmaa Cybernetica AS, Estonia
Javier Lopez University of Malaga, Spain
Luigi Vincenzo Mancini University of Rome “La Sapienza”, Italy
Refik Molva Eurecom Sophia Antipolis, France
Fabian Monrose University of North Carolina at Chapel Hill,

USA
Steven Murdoch University of Cambridge, UK
David Naccache Ecole Normale Superieure (ENS), France
David Pointcheval Ecole Normale Superieure (ENS) and

CNRS, France
Bart Preneel Katholieke Universiteit Leuven, Belgium
Josep Rifa Coma Autonomous University of Barcelona, Spain
Ahmad-Reza Sadeghi Ruhr University Bochum, Spain
Vitaly Shmatikov University of Texas at Austin, USA
Miroslava Sotakova Aarhus University, Denmark
Angelos Stavrou George Mason University, USA
Patrick Traynor Georgia Tech, USA
Nicholas Weaver International Computer Science Institute

Berkeley, USA

Table of Contents

Constructive Cryptography — A Primer (Invited Paper) 1
Ueli Maurer

Security Mechanisms with Selfish Players in Wireless Networks
(Invited Paper) . 2

Jean-Pierre Hubaux

Users Do the Darndest Things: True Stories from the CyLab Usable
Privacy and Security Laboratory (Invited Paper) . 3

Lorrie Faith Cranor

Multichannel Protocols to Prevent Relay Attacks . 4
Frank Stajano, Ford-Long Wong, and Bruce Christianson

A Traceability Attack against e-Passports . 20
Tom Chothia and Vitaliy Smirnov

Secure Computation with Fixed-Point Numbers . 35
Octavian Catrina and Amitabh Saxena

Implementing a High-Assurance Smart-Card OS . 51
Paul A. Karger, David C. Toll, Elaine R. Palmer,
Suzanne K. McIntosh, Samuel Weber, and
Jonathan W. Edwards

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 66
Jan Camenisch, Maria Dubovitskaya, and Gregory Neven

Multiple Denominations in E-cash with Compact Transaction Data 82
Sébastien Canard and Aline Gouget

What’s in a Name? Evaluating Statistical Attacks on Personal
Knowledge Questions . 98

Joseph Bonneau, Mike Just, and Greg Matthews

Cryptographic Protocol Analysis of AN.ON . 114
Benedikt Westermann, Rolf Wendolsky, Lexi Pimenidis, and
Dogan Kesdogan

A CDH-Based Ring Signature Scheme with Short Signatures and
Public Keys . 129

Sven Schäge and Jörg Schwenk

Practical Private Set Intersection Protocols with Linear Complexity 143
Emiliano De Cristofaro and Gene Tsudik

X Table of Contents

Design and Implementation of a Key-Lifecycle Management System 160
Mathias Björkqvist, Christian Cachin, Robert Haas, Xiao-Yu Hu,
Anil Kurmus, René Pawlitzek, and Marko Vukolić

Measuring the Perpetrators and Funders of Typosquatting 175
Tyler Moore and Benjamin Edelman

A Learning-Based Approach to Reactive Security . 192
Adam Barth, Benjamin I.P. Rubinstein, Mukund Sundararajan,
John C. Mitchell, Dawn Song, and Peter L. Bartlett

Embedded SFE: Offloading Server and Network Using Hardware
Tokens . 207

Kimmo Järvinen, Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and
Thomas Schneider

The Phish-Market Protocol: Securely Sharing Attack Data between
Competitors . 222

Tal Moran and Tyler Moore

Building Incentives into Tor . 238
Tsuen-Wan “Johnny” Ngan, Roger Dingledine, and Dan S. Wallach

Tree-Homomorphic Encryption and Scalable Hierarchical Secret-Ballot
Elections . 257

Aggelos Kiayias and Moti Yung

Automatically Preparing Safe SQL Queries . 272
Prithvi Bisht, A. Prasad Sistla, and V.N. Venkatakrishnan

PKI Layer Cake: New Collision Attacks against the Global X.509
Infrastructure . 289

Dan Kaminsky, Meredith L. Patterson, and Len Sassaman

Three-Round Abuse-Free Optimistic Contract Signing with Everlasting
Secrecy (Extended Abstract) . 304

Xiaofeng Chen, Fangguo Zhang, Haibo Tian, Qianhong Wu, Yi Mu,
Jangseong Kim, and Kwangjo Kim

Designing for Audit: A Voting Machine with a Tiny TCB
(Short Paper) . 312

Ryan W. Gardner, Sujata Garera, and Aviel D. Rubin

Attacking of SmartCard-Based Banking Applications with
JavaScript-Based Rootkits (Short Paper) . 320

Daniel Bußmeyer, Felix Gröbert, Jörg Schwenk, and
Christoph Wegener

Table of Contents XI

Security Applications of Diodes with Unique Current-Voltage
Characteristics (Short Paper) . 328

Ulrich Rührmair, Christian Jaeger, Christian Hilgers,
Michael Algasinger, György Csaba, and Martin Stutzmann

Verified by Visa and MasterCard SecureCode: or, How Not to Design
Authentication (Short Paper) . 336

Steven J. Murdoch and Ross Anderson

All You Can Eat or Breaking a Real-World Contactless Payment
System (Short Paper) . 343

Timo Kasper, Michael Silbermann, and Christof Paar

Shoulder-Surfing Safe Login in a Partially Observable Attacker
Model (Short Paper) . 351

Toni Perković, Mario Čagalj, and Nitesh Saxena

Using Sphinx to Improve Onion Routing Circuit Construction
(Extended Abstract) . 359

Aniket Kate and Ian Goldberg

Secure Multiparty AES (Short Paper) . 367
Ivan Damg̊ard and Marcel Keller

Modulo Reduction for Paillier Encryptions and Application to Secure
Statistical Analysis (Extended Abstract) . 375

Jorge Guajardo, Bart Mennink, and Berry Schoenmakers

On Robust Key Agreement Based on Public Key Authentication
(Short Paper) . 383

Feng Hao

A Formal Approach for Automated Reasoning about Off-Line and
Undetectable On-Line Guessing (Short Paper) . 391

Bogdan Groza and Marius Minea

Signatures of Reputation (Extended Abstract) . 400
John Bethencourt, Elaine Shi, and Dawn Song

Intention-Disguised Algorithmic Trading (Short Paper) 408
William Yuen, Paul Syverson, Zhenming Liu, and
Christopher Thorpe

When Information Improves Information Security (Short Paper) 416
Jens Grossklags, Benjamin Johnson, and Nicolas Christin

BetterThanPin: Empowering Users to Fight Phishing (Poster) 424
Teik Guan Tan

XII Table of Contents

Certification Intermediaries and the Alternative (Poster) 425
Pern Hui Chia

SeDiCi: An Authentication Service Taking Advantage of
Zero-Knowledge Proofs . 426

S�lawomir Grzonkowski

Poster Abstract: Security in Commercial Applications of Vehicular
Ad-Hoc Networks . 427

Pino Caballero-Gil, Jezabel Molina-Gil, Cándido Caballero-Gil, and
Candelaria Hernández-Goya

Domain Engineering for Automatic Analysis of Financial Applications
of Cryptographic Protocols (Poster) . 428

Lilia Georgieva

hPIN/hTAN: Low-Cost e-Banking Secure against Untrusted
Computers . 429

Shujun Li, Ahmad-Reza Sadeghi, and Roland Schmitz

Author Index . 431

Constructive Cryptography – A Primer

Ueli Maurer

Department of Computer Science
ETH Zurich

CH-8092 Zurich, Switzerland
maurer@inf.ethz.ch

Abstract. A central paradigm in any constructive discipline is the de-
composition of a complex system into simpler component systems or
modules, which each may consist of yet simpler modules, and so on.
This paradigm, sometimes called step-wise refinement, is useful only if
the composition of modules is well-defined and preserves the relevant
properties of the modules. For example, in software design, the compo-
sition operation must preserve correctness of the modules, i.e., a system
consisting of correct modules must itself be correct.

In cryptography, the modules are cryptographic schemes (e.g. an en-
cryption scheme or a message authentication code, MAC) or protocols
(e.g. a zero-knowledge proof), and the composition must preserve the
security of the modules. Surprisingly, for the traditional, game-based
cryptographic security definitions, this composition property is unclear
or at best highly non-trivial. Recall that a game-based security defini-
tion states that an adversary with certain capabilities (e.g. access to a
MAC oracle) cannot win a certain game (e.g. forge a MAC) with non-
negligible probability. One consequence of the lack of composability is
that cryptographic protocols are often complex and lack modularity.

We propose constructive cryptography as a new paradigm, where the
security definition of cryptographic schemes is radically different (though
in many cases can be proved to be equivalent). For example, a message
authentication scheme is defined to be secure if it constructs an authenti-
cated communication channel from an insecure communication channel
and a secret key, for a well-defined, simulation-based notion of “con-
struct” and for well-defined definitions of an insecure and an authenti-
cated channel. Similarly, a symmetric encryption scheme is defined to be
secure if it constructs a secure communication channel from an authenti-
cated communication channel and a secret key. The general composition
property of this theory implies that the combination of a secure MAC
and secure encryption scheme constructs a secure channel from an inse-
cure channel and two secret keys (which can be constructed from a single
secret key using a pseudo-random generator).

The security of public-key cryptosystems and digital signature
schemes can be seen similarly in the constructive cryptography paradigm.
In addition to making composition clear, the constructive cryptography
approach has many other benefits. For example, it allows to investigate
the intrinsic limitations of cryptography.

R. Sion (Ed.): FC 2010, LNCS 6052, p. 1, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

Security Mechanisms with Selfish Players in
Wireless Networks

Jean-Pierre Hubaux

EPFL
Switzerland

http://people.epfl.ch/jean-pierre.hubaux

Abstract. It is frequently assumed that the parties involved in a secu-
rity mechanism will behave according to everyone’s expectation. How-
ever, some of them might be tempted to depart from the expected (or
canonical) behavior, because such a deviation is more beneficial for them.
As an illustration, we will consider that phenomenon in the framework
of wireless networks. We will briefly introduce some basic background in
game theory and provide an overview of several recent contributions to
that field. Finally, we will consider two examples in more detail, namely
revocation in high-mobility (or “ephemeral”) networks and pseudonym
change in mix zones.

Notes:
– Some of the material of this talk appears in the book “Secu-

rity and Cooperation in Wireless Networks” by L. Buttyan and
J.-P. Hubaux, Cambridge University Press, 2008, available at
http://secowinet.epfl.ch

– A list of applications of game theory to various se-
curity (and cryptography) problems can be found at:
http://lca.epfl.ch/projects/gamesec

R. Sion (Ed.): FC 2010, LNCS 6052, p. 2, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

http://people.epfl.ch/jean-pierre.hubaux

R. Sion (Ed.): FC 2010, LNCS 6052, p. 3, 2010.
© IFCA/Springer-Verlag Berlin Heidelberg 2010

Users Do the Darndest Things:
True Stories from the CyLab Usable Privacy and

Security Laboratory

Lorrie Faith Cranor

Carnegie Mellon University, Pittsburgh, PA
lorrie@cmu.edu

Abstract. How can we make security and privacy software more usable? The
first step is to study our users. Ideally, we would watch them interacting with
security or privacy software in situations where they face actual risk. But eve-
ryday computer users don't sit around fiddling with security software, and sub-
jecting users to actual security attacks raises ethical and legal concerns. Thus, it
can be difficult to observe users interacting with security and privacy software
in their natural habitat. At the CyLab Usable Privacy and Security Laboratory,
we've conducted a wide variety of studies aimed at understanding how users
think about security and privacy and how they interact with security and
privacy software. In this talk I'll give a behind the scenes tour of some of the
techniques we've used to study users both in the laboratory and in the wild. I'll
discuss the trials and tribulations of designing and carrying out security and pri-
vacy user studies, and highlight some of our surprising observations. Find out
what privacy-sensitive items you can actually get study participants to purchase,
how you can observe users' responses to a man-in-the-middle attack without ac-
tually conducting such an attack, why it's hard to get people to use high tech
cell phones even when you give them away, and what's actually in that box
behind the couch in my office.

Multichannel Protocols to Prevent Relay Attacks�

Frank Stajano1, Ford-Long Wong2, and Bruce Christianson3,��

1 University of Cambridge Computer Laboratory, Cambridge, United Kingdom
2 DSO National Laboratories, Singapore

3 University of Hertfordshire, School of Computer Science, Hatfield, United Kingdom

Abstract. A number of security systems, from Chip-and-PIN payment
cards to contactless subway and train tokens, as well as secure localiza-
tion systems, are vulnerable to relay attacks.

Encrypting the communication between the honest endpoints does not
protect against such attacks. The main solution that has been offered to
date is distance bounding, in which a tightly timed exchange of challenges
and responses persuades the verifier that the prover cannot be further
away than a certain distance. This solution, however, still won’t say
whether the specific endpoint the verifier is talking to is the intended one
or not—it will only tell the verifier whether the real prover is “nearby”.

Are there any alternatives? We propose a more general paradigm
based on multichannel protocols. Our class of protocols, of which dis-
tance bounding can be modelled as a special case, allows a precise answer
to be given to the question of whether the unknown device in front of
the potential victim is a relaying attacker or the device with which the
victim intended to communicate.

We discuss several instantiations of our solution and point out the
extent to which all these countermeasures rely, often implicitly, on the
alertness of a honest human taking part in the protocol.

1 Introduction

In a relay attack, the victims are two honest parties acting respectively as a
prover (e.g. a door-opening token) and a verifier (e.g. a door-mounted token
reader). In normal operation, when the prover (token) is authenticated by the
verifier (door), the verifier grants some privilege (the door opens).

During a relay attack1, a pair of communicating attackers splice themselves in
the communication channel between the two victims. One of the attackers acts as
a fake verifier to the victim prover and the other acts as a fake prover to the victim
verifier.When thevictimverifier issues a challenge, the attackers relay it unchanged
to the victim prover; and when the prover issues its response to the original chal-
lenge, the attackers relay that too, unchanged, to the true verifier. The outcome is

� Revision 39 of 2010-02-27 22:23:18 +0100 (Sat, 27 Feb 2010).
�� On sabbatical at the University of Cambridge Computer Laboratory while the core

of this research was carried out.
1 Sometimes also called a wormhole attack, especially in secure localization contexts.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 4–19, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

Multichannel Protocols to Prevent Relay Attacks 5

that the victim verifier grants the privilege to the fake prover, who was accepted
thanks to the credentials unknowingly provided by the victim prover.
The honest participants2:

When a relay attack is taking place:

Even if the victim prover and verifier share a secret unknown to the attack-
ers, they are still vulnerable: since their messages are relayed unchanged, the
attackers succeed in fooling the verifier regardless of whether they can decrypt
the messages they relay.

This problem has been known for several decades: Conway [6] described the
“chess grandmaster problem”, in which an unskilled player defeats (or at least
draws with) a chess grandmaster by simultaneously challenging two grandmas-
ters at postal chess, one as white and one as black, and countering the moves
of one grandmaster with those of the other. Beth and Desmedt [2] revisited the
problem, noting that it matched the scenarios of the “mafia fraud”3 and “terrorist
fraud”4, both previously described by Desmedt et al. [8], and they introduced
2 We only show the essential core of the protocol here: clearly, in a more realistic

situation, one would expect the protocol to be initiated by a preliminary request from
Peter “hey, please challenge me so I can prove I’m worthy of getting the benefits”.
We omit this and other non-essential messages for brevity and clarity.

3 In the mafia fraud, P is a customer who is electronically paying his restaurant bill to
MV . Restaurant owner MV is a member of a mafia gang who alerts his accomplice
MP to go and buy a diamond from jeweller V . Jeweller V challenges MP for his
credentials, but MP and MV relay P ’s credentials to V . So P thinks he’s paying
for a meal, whereas he is buying the mafiosi a diamond.

4 In the terrorist fraud, the verifier V is an immigration officer of country α and the
fake prover MP is a terrorist who wants to enter the country. The fake prover MP
is helped by P , a sympathetic citizen of α who supplies the correct answers to the
questions of the immigration officer V . The main difference between this case and
the mafia fraud is that the prover P is not a victim of the scam but an accomplice:
he cooperates with the fake prover MP against the verifier V and therefore there is
no need for a fake verifier MV .

6 F. Stajano, F.-L. Wong, and B. Christianson

the defensive technique of measuring the round-trip time, relying on the fact
that the speed of light is finite to detect whether the actual prover is further
away than expected. Brands and Chaum [3] refined that technique into a specific
and more secure low-level protocol, with precomputation of single-bit challenges
and responses that are then exchanged as quickly as the channel allows. More re-
cently, Hancke and Kuhn [12] developed a distance-bounding protocol optimized
for the resource-constrained RFID environment and, with colleagues [5], studied
a variety of attacks on the timing measurements. Drimer and Murdoch [9] built
electronic circuitry to demonstrate the relay attack5 against modern Chip-and-
PIN bank cards and implemented the Hancke-Kuhn protocol to demonstrate
its viability as a practical countermeasure. Hancke’s doctoral dissertation [11]
contains a good survey of the distance-bounding protocols in the literature.

The purpose of any distance-bounding protocol in such a context is to convince
the honest verifier that the honest prover she is ultimately interacting with (the
one who can respond to the challenges, whereas the attackers can’t because they
don’t know the shared secret) is, with high probability, the prover currently in
front of her. By construction, the distance bounding protocol can only give a
verdict of the form “the owner of the shared secret just proved that he is no
further away than d metres”. If the verifier is interacting with a prover (whether
genuine or fake) that is less than 1 metre away, but the distance bounding
protocol says that he was unable to prove that he is within 10 metres, then the
verifier should suspect that she is interacting with a relaying attacker.

Still, the distance-bounding solution does not really identify a specific prin-
cipal but only its approximate location6. At least theoretically, depending on
the spatial resolution of the distance-bounding protocol, it is still possible for
attackers to go undetected if they stay within the bounds of the error margin,
as in the scenario of multiple adjacent cash machines of which one is fake and
performs a relay attack on another.

In this paper we propose a new paradigm for detecting and preventing relay
attacks that is more general than distance bounding. Our strategy is to use a
multichannel protocol [20,15,4,18,16] in which the traditional challenge-response
between verifier and prover on the regular channel is augmented with an addi-
tional verification on a special channel whose main property is that it cannot be
relayed.

Our multichannel approach includes the distance-bounding solution as a spe-
cial case7. More importantly, our family of solutions includes ones that give a
clear and definite “yes / no” answer to the question “is the principal in front of
me really the one with whom I share this secret key, or is it just a middleperson
attacker?”, which the distance-bounding protocols can only answer with a less

5 With explicit reference to the “mafia fraud” scenario.
6 Within a sphere, or within the intersection of several spheres in the substantially

more complicated case where one repeats the protocol from several reference points.
7 Insofar as you cannot relay beyond a certain distance the special channel implicitly

defined by the distance-bounding procedure without being noticed by the victim
endpoints.

Multichannel Protocols to Prevent Relay Attacks 7

stringent assurance such as “it probably is, provided there are no other principals
within d metres of Victoria”.

Our approach also models the anti-relay alternative proposed by Damgård et
al. [7] of somehow limiting the bandwidth with which the prover can commu-
nicate to the outside world to a value lower than the one needed in order to
conduct the protocol—their arrangement implicitly relies on unrelayable chan-
nels because, by construction, at least one of the channels used in the protocol
cannot be relayed to third parties outside.

We also highlight the extent to which all these anti-relay protocols, including
both our new ones and the traditional ones based on distance bounding, implic-
itly rely on the presence of an honest human. We discuss whether they are still
secure when the human takes part in the protocol without actively cheating but
without thoroughly investigating all possible suspicious clues.

2 The Core Idea

Our core idea is that, although the man-in-the-middle attackers are usually able
to relay the information between the two honest endpoints over whatever chan-
nels are normally used for the transaction, we might be able to augment the
system with an additional special channel that the attackers won’t be able to
relay. Over that channel, the two endpoints can verify whether they are talking
directly to each other or not.

Traditionally, the authentication problem8 can be framed in the following
terms: “I know I am talking to you; now, prove to me that you know our shared
secret”. Here, instead, we examine the dual problem: “I know I am talking to
someone who knows my shared secret; now, prove to me that you, the principal
in front of me, are that someone”.

The intuition behind the multichannel approach is that the verifier asking
that question should use the special channel to sample some physical aspect of
the prover which the men in the middle are not able to relay, and then ask the
prover (assumed to be honest and cooperative) to say, even over the regular
channel subject to relay, what the correct value should be. Since prover and
verifier already share a secret, they can use standard cryptographic techniques
to protect the integrity (and confidentiality, though generally less relevant here)
of the regular relay-vulnerable channel, thereby preventing the fake prover from
replacing the true prover’s “model answer” with one matching the fake prover’s
own physical aspect.

Since the fake prover can’t reproduce the true prover’s physical aspect (by hy-
pothesis of unrelayability of the special channel) and can’t substitute the prover’s
description with his own (because the regular channel is integrity-protected by the
secret shared between the honest prover and verifier), the verifier can justifiably
8 According to our definition the authentication phase, which takes place repeatedly, is

distinct from the preliminary “enrollment” or “pairing” phase, performed only once
and under more controlled circumstances, in which the two principals establish a
common secret.

8 F. Stajano, F.-L. Wong, and B. Christianson

deduce that the principal in front of it is the genuine prover if and only if the value
sampled directly over the special channel is consistent with the one received over
the integrity-protected channel. That’s the core idea in a nutshell.

Looking at the problem in greater detail, the first issue is to define more
precisely the “unrelayability” property, and the second is to clarify the subtle
interactions between humans and their digital representatives in the course of the
verification process: how much of the verification protocol can run unattended
and how much of it does instead implicitly rely on human vigilance? We wish to
make everything explicit.

Readers should note that using a multichannel protocol (such as acquiring
a 2D barcode from a screen with a cellphone camera, as in the classic “Seeing
Is Believing” protocol [15]) does not, by itself, prevent relay attacks. Without
elaborate precautions, the auxiliary channel could itself be relayed9, which would
totally negate its purpose. What we need is a multichannel protocol where one
of the channels is by design unrelayable.

3 Unrelayable Channels and Protocols That Use Them

Our investigation of unrelayable channels brings to mind the work by Pappu et
al. on unclonable “physical one-way functions” [17]:

These physical one-way functions are inexpensive to fabricate, prohibitively
difficult to duplicate, admit no compact mathematical representation,
and are intrinsically tamper-resistant.

To implement an unrelayable channel we require similar properties. In the con-
text of a unidirectional channel in which a detector (sink) acquires information
by sampling some physical aspect of an emitter (source), we need:

weak unclonability: it must be prohibitively difficult to produce a copy of a
given source10;

strong unclonability: it must be prohibitively difficult to manufacture two
indistinguishable sources11;

9 For example, the on-screen barcode that Peter acquires with his cellphone could
have been generated by Morivictoria by replicating the one acquired by Moripeter’s
cellphone from Victoria’s screen.

10 Some will claim that this property is redundant because it is implied by each of the
next two. But it is conceptually different and therefore we mention it as distinct
to clarify the issues involved. By analogy, think of the source as a walnut. Weak
unclonability means the attacker can’t produce another identical walnut. Strong un-
clonability means it’s infeasible for the attacker to produce any two walnuts that are
indistinguishable. Unsimulability means the attacker can’t fool you by just showing
you a photograph of your walnut.

11 This would be analogous to a cryptographic “collision”. As with collision resistance,
this clonability resistance property is stronger than the previous one, which it im-
plies: if an attacker can’t make two identical sources of his own choice then a fortiori
he can’t make a copy of a designated target source.

Multichannel Protocols to Prevent Relay Attacks 9

unsimulability: it must be prohibitively difficult to fool the sink by simulating
the response of the genuine source using some other device12;

untransportability: it must be prohibitively difficult to manufacture a “data
pipe” device capable of transporting to another location L the output of the
source with sufficient fidelity that a sink at location L would not be able to
distinguish whether it is sampling the genuine source or the output of the
data pipe.

The unsimulability and untransportability requirements highlight the necessity
of looking at the whole system, not just the source and sink endpoint devices,
and of including the whole verification process in the evaluation. We must in
particular clarify whether we are implicitly relying on the presence of a human
verifier (e.g. to check that what is being sampled is the genuine artifact rather
than, say, a box of electronics that simulates it, or a set of mirrors and prisms
that reproduce its appearance) and the extent to which the overall unrelayabil-
ity property depends on the care with which the human helper supervises the
verification.

To help the reader follow the discussion, we shall now present several examples
of unrelayable channels and associated protocols. They are not meant to be
adopted as they are: take them as illustrations whose purpose is to help us think
about the required properties of an acceptable solution.

To simplify matters, we deal with unidirectional authentication, with one
prover and one verifier13. Prover and verifier are connected by a regular bidirec-
tional channel, subject to relay attacks, and by a special unrelayable channel,
which is unidirectional and goes from prover to verifier. The two principals have
previously performed the pairing phase and therefore share a secret with which,
using well-known cryptographic techniques, they can make the regular channel
confidential and integrity-protected. Notation-wise, in the rest of this paper we
shall say “lock X with K”, written as LK(X), to mean “cryptographically protect
both the integrity and the confidentiality of X using K as the key”, for example
with encrypt-then-MAC.

With reference to our earlier figures, prover Peter must prove to verifier Vic-
toria that the principal to whom Victoria is talking (and of whom Victoria can
physically observe/measure/probe some physical aspect over the special chan-
nel) is Peter, i.e. the same principal that shares the secret with her. The attacker
model is still that man-in-the-middle Moriarty has recruited two accomplices,
Moripeter who looks like Peter and will try to fool Victoria, and Morivictoria
who looks like Victoria and will try to fool Peter. Victoria wins if she can distin-
guish whether the principal to whom she is directly talking is Peter (who shares
12 This property, too, implies the first one: if the attacker can’t simulate the designated

source using another device then a fortiori he can’t make a clone of it.
13 We believe that what we really want in most practical applications is mutual au-

thentication. For the moment, ignore possible optimizations and assume you can
achieve mutual authentication by running the unidirectional protocol twice, once
in each direction. Note however that this glosses over some subtle issues about the
incentives of the two parties. We shall discuss them at the end of section 3.1.

10 F. Stajano, F.-L. Wong, and B. Christianson

a secret with her) or Moripeter (who doesn’t). Conversely Moriarty wins if, after
placing Moripeter next to Victoria, and Morivictoria next to Peter, he persuades
Victoria that she is talking directly to Peter, even though she really isn’t.

Normally, Victoria would run some kind of challenge-response protocol; she
could for example ask Peter (or Moripeter, since she can’t tell the difference
yet) a question such as: “Here is a random nonce N . What do you obtain if you
lock it with our shared secret KPV ?”. But, with a relay attack, Moripeter would
relay the question to Morivictoria, who would ask the same question to Peter,
who would provide the correct answer; then Moripeter would get the correct
answer from Morivictoria and repeat it to Victoria, who would then be fooled
into thinking that Moripeter knew the secret KPV , whereas he didn’t (and still
doesn’t).

3.1 Example: Banknote

In this first example, Peter’s unrelayable physical characteristic is a banknote.
The banknote is, by design, prohibitively difficult to duplicate (yielding weak
and strong unclonability), and there are well-established methods for verifying
that it is not a forgery.

Victoria now says, to the principal in front of her (Moripeter if they are
under attack, or Peter under normal circumstances): “Give me a banknote.”14

She checks that it’s not a forgery (thereby reassuring herself that it is unclonable
and that no duplicates of it exist) and then reads its serial number S and burns
the banknote, making sure that that particular serial number will never be used
again in any other run of this protocol15. Then she asks: “What do you obtain
when you lock S, the serial number of the banknote you gave me, with our shared
secret KPV ?”

How can Moripeter answer that question? He could tell the serial number
S to Morivictoria if it helped, but Morivictoria must run with Peter the same
protocol as Victoria did with Moripeter (otherwise Peter would not respond), so
she must ask for a banknote of that type from Peter, which will have a different
serial number, say S2. Peter will lock that S2 with the shared secret and there
is no way that Morivictoria can persuade him to lock S instead, since

– the banknote is chosen by Peter; and, anyway,
– no other banknote exists with S on it: the only one that did was burnt.

So Moripeter will not be able to answer correctly and Victoria will be able to
tell that she received the banknote from someone who didn’t know the secret.
14 The banknote must be of a well-specified currency, issue and denomination, to avoid

substitution attacks. To minimize the cost of each run of the protocol, it is OK for the
banknote to be almost worthless—e.g. one from a country with runaway inflation—
provided it is still unclonable. Alternatively, one might use the same technology as
banknote printing to create low-value tickets with similar unclonability properties,
as is sometimes done for concert or public transport tickets.

15 Burning the banknote at each protocol run makes S a nonce.

Multichannel Protocols to Prevent Relay Attacks 11

Attack: reverse pickpocketing. Now here is an attack: Moripeter and Moriv-
ictoria take a genuine banknote and make a counterfeit copy of it. The forgery
is as good as it gets, but it is (by hypothesis of weak unclonability) detectable
by someone who runs the proper checks. But, crucial point: Peter is the prover,
not the verifier, so why should he be running any serious checks (UV light,
colour-changing marker etc etc)? Do you do that on the banknotes you get from
your cash machine, or as change from the supermarket? So the scam is for the
Moriarty associates to “give” the forged banknote to Peter (as change in a trans-
action, or by letting him “find” it on the floor, or by reverse pickpocketing him,
or whatever) and ensure that he will use it in the subsequent protocol run (no
guarantee, but still non-negligible probability). The full run then goes as follows.

Victoria asks Moripeter for a banknote. He gives her the genuine banknote,
with serial number S. She asks him to lock S with the shared secret KPV ,
which Moripeter doesn’t know. Morivictoria asks Peter for a banknote. With
some probability, she gets back the forged banknote that has the same serial
number S: Peter didn’t check very carefully and never realized he had a forged
banknote16 so he thinks he is handing over a genuine one. Morivictoria asks
Peter to lock with KPV the serial number of the banknote he just handed over;
he obliges, and Morivictoria obtains LKPV (S) which she relays to Moripeter who
can then correctly answer Victoria’s challenge and pass off as Peter.

The lesson here is: who should be verifying the genuineness of the banknote?
The prover or the verifier? And the correct answer is: both! If either of them
doesn’t check with sufficient care, an attack is possible. (NB: if Victoria does
not check that she is receiving a genuine banknote, the dual of the above scam,
where Moripeter gives Victoria the forged banknote, works equally well.)

This attack scenario also highlights another systems issue we mentioned be-
fore: to what extent are we relying on humans to perform additional “implicit”
sanity checks? Is it possible for the protocol to run with one machine talking to
another machine, in unattended fashion17? Assume the crooked machine might
exhibit a relaying artifact, e.g. a hi-res screen displaying the banknote, rather
than the genuine article. In this case we see that we could in theory run this
variant of the protocol in a machine-to-machine setting, provided that both the
prover and the verifier contained the approved vending-machine-style technolo-
gies for checking that a banknote is not a forgery. Conversely, if we ran this
protocol as person-to-machine (a human entering a high-security facility, or a
human using an ATM), then it would fall upon the human to perform as careful
a check of the authenticity of the banknote as the machine will do. In other
words: we do indeed also need unsimulability and untransportability, as well as
the strong and weak unclonability that we got from using a banknote!

16 And if Peter vaguely suspected it was a forgery, he was probably happy to get rid of
it by using it in a protocol where it will be destroyed and none will be the wiser—
that’s an interesting observation about the role of dishonesty in the psychology of
scam victims [19] but let’s not get sidetracked for the moment.

17 Imagine for example a car interacting with a barrier, to enter a restricted zone or to
pay a road toll or parking charge.

12 F. Stajano, F.-L. Wong, and B. Christianson

Attack: not burning the banknote. Here is another possible attack. Moriv-
ictoria asks Peter for a banknote, which he gives her. She pretends to burn it
but instead she secretly passes it on to Moripeter. She also asks Peter to lock
the serial number with KPV , and she gives that answer to Moripeter as well.
Now Moripeter can fool Victoria, using the genuine banknote and the LKPV (S)
kindly supplied by Peter! To prevent this, we must prevent Morivictoria from
being able to reuse the banknote in other runs of the protocol. For example
we could say she must cut it in half and return it to Peter18, all strictly un-
der Peter’s nose19. The interesting problem, here, again, is that the strength of
this countermeasure depends on the care with which Peter checks that he re-
ceived the two halves of the same genuine banknote that he originally supplied—
and not, for example, the two halves of a forgery, or of another banknote. But
what’s Peter’s incentive for performing this check? If he is careless and the Mo-
riarty associates succeed in their scam, they are fooling Victoria into opening
her door (or giving away her diamond, or whatever) to Moripeter; does Pe-
ter lose anything? Not straight away, unless there are external liability issues
that penalize Peter for fraudulent use of his authentication credentials. At the
baseline level, though, it is Victoria’s security (not Peter’s) that depends on
the care exercised by Peter, and this should be considered a vulnerability. Even
though Peter is not actively dishonest, he may not go out of his way in order
to protect Victoria, so long as he doesn’t lose anything himself by being slightly
careless.

This attack scenario explains why we might want to develop a mutual au-
thentication protocol in which the fate of the two parties is more closely en-
tangled than it would be by simply running two instances of the unidirectional
authentication protocol one after the other. The reason for wanting a mutual
protocol is not to optimize and save on number of messages but rather to bind
the incentives of the participants, so that if one of them is sloppy and the other
careful then neither gets any benefit from the protocol run (as opposed to the
unfair situation in which the sloppy principal is rewarded/protected because
the other was careful, and the careful principal suffers because the other was
sloppy).

3.2 Example: Accelerometers

In this rather different example, Peter and Victoria have 3D accelerometers that
can record, at suitable resolution, a log of the accelerations to which they are

18 Returning the ashes isn’t as good, because Morivictoria might supply the ashes of
another banknote and Peter would not be able to notice.

19 Otherwise another attack would be for Morivictoria to receive the banknote, go to
the kitchen to fetch some scissors, pass Peter’s note to Moripeter who would then run
the protocol by having it cut by the real Victoria; the two halves would be returned
by Victoria to Moripeter, then to Morivictoria pretending to have just returned from
the kitchen, then to Peter and neither Peter nor Victoria would be the wiser.

Multichannel Protocols to Prevent Relay Attacks 13

subjected. The accelerometers are stuck together and shaken randomly20 and
Victoria checks that the prover could observe the shake. The idea behind this is
that “a random shake is unclonable”. The protocol runs as follows.

Victoria says: “Give me your accelerometer. Here is mine, too. I stick them
together and shake them randomly for x seconds. Now have your accelerometer
back. Please lock its log with our common secret and send it back to me.”

Attack: robotic arm. To comply with this request, Moripeter could observe
Victoria’s shake (the challenge) with his accelerometer, give the precise details
to Morivictoria from the accelerometer’s log and have Morivictoria reproduce
that shake precisely in front of Peter. This last part is practically impossible
for a person to do, hence our claim above that “a random shake is unclonable”.
But what if Morivictoria has a high precision robotic arm that can reproduce
the shake to within the required tolerances? Then Peter’s accelerometer would
record a shake equivalent to that originally performed by Victoria, and Peter
would lock it with the secret, and the Moriarty accomplices would win. So this
highlights an implicit dependency on Peter being an “alert human” who would
spot something amiss if Morivictoria’s arm were not of flesh and bones. (But
would he actually pay attention to that detail? What if the arm were covered in
clothes and appeared to come out of Morivictoria’s shoulder?) Thus a machine-
to-machine version would not prevent relay attacks.

Attack: substituting, or tampering with, the accelerometer. Morivic-
toria could, by sleight of hand, substitute Peter’s accelerometer with one into
which she downloaded the log communicated to her by Moripeter. No need for
robotic arm, but the effect is again that of giving Peter a relayed log instead
of the one of the real performance. To guard against this, Peter must ensure
that the accelerometer he gets back is really his, and also that it hasn’t been
tampered with (otherwise Morivictoria could upload the relayed log into Peter’s
own accelerometer). Once again we raise the warning that we may be relying
implicitly on the vigilance of a human Peter and that substitution or tampering
might be possible in a machine-to-machine transaction.

Cameras instead of accelerometers. An alternative might be to monitor the
shake with cameras, rather than accelerometers, the intention being that Peter’s
cameras will never leave Peter’s trusted computing base and Morivictoria won’t
be able to tamper with them. Victoria would then say, without reference to ac-
celerometers: “I’ll shake the tip of my finger randomly for x seconds. Please lock
the log of the 3D position of my finger with our common secret and send it back to
me.” Setting aside the interesting but not security-critical computational geome-
try problem of comparing shake traces taken from different viewpoints, this solu-
tion would guard against the last two attacks (“substitute Peter’s accelerometer

20 The technique of shaking together two objects instrumented with accelerometers was
first proposed by Holmquist et al. [13] in the context of device pairing for ubiqui-
tous computing. Later papers [14] perfected the necessary authentication protocols,
taking into account error correction and so on.

14 F. Stajano, F.-L. Wong, and B. Christianson

with one containing relayed log” and “upload relayed log into Peter’s accelerome-
ter”) but would still be subject to the “Morivictoria uses robotic arm” attack.

3.3 Example: Physical One-Way Functions

For this third example we use an instance of Pappu’s “physical one-way function”:
a physical object with submicron features that are difficult to replicate exactly
and that gives unpredictable but consistent “responses” when “challenged” (il-
luminated) with a laser. Peter holds the object (or is the object—think iris
recognition) and Victoria challenges it. The protocol runs as follows.

Victoria shines her laser (in a random way R chosen by her, dictating pa-
rameters such as laser frequency, angle, scanning pattern etc) at Peter’s POWF
object and she records the outcome OPeter(R). Then she tells Peter: “What is
the response of your object when illuminated with R? Lock the response under
our secret and send it to me.”.

How can Moripeter answer that question? He will also have a POWF object,
but by hypothesis of unclonability it must be different from Peter’s. Victoria
records OMoripeter(R) and expects LK(OMoripeter(R)) but the Moriarty asso-
ciates can only produce either LK(OPeter(R)), which has the wrong plaintext
inside the outer brackets, or L???(OMoripeter(R)), where the correct plaintext is
known but the correct key to lock it is unknown to Moriarty.

Attack: smoke and mirrors. In practice, the Moriarty associates could try to
fool Victoria by having Moripeter use a more complex smoke-and-mirrors piece of
machinery with its own lasers instead of a regular POWF object. Victoria chooses
the laser parameters R and the Moriarty associates, through relay, use these same
parameters to interrogate Peter’s genuine POWF. They record the response
OPeter(R) and then make Moripeter’s smoke-and-mirrors machine respond with
OPeter(R), rather than with anything physically generated, to Victoria’s laser
challenge. Then Morivictoria asks Peter to lock the response with K, and she
relays that to Moripeter, who convinces Victoria with an LK(OPeter(R)) that
matches both the shared secret K and the response observed by Victoria.

The two assumptions upon which this attack is predicated are: first, that the
Moriarty associates can build a smoke-and-mirrors machine capable of returning
arbitrarily chosen laser responses regardless of the laser challenge with which
it is illuminated; and second, that Victoria will just shine her laser in the pre-
scribed way without noticing that she is interacting with a smoke-and-mirrors
machine rather than with a POWF object. The first of these assumptions is fairly
technology-dependent: it concerns the possibility of mounting a specific techni-
cal attack against a specific implementation. The second, instead, is once again
related to the issue of whether a careful human supervisor will be overseeing the
protocol or not21.
21 Note that “will be overseeing”—or, better, “is responsible for overseeing”—is quite

different from simply “will be present”; in most cases a human will indeed be present,
if nothing else to insert the card in the slot, but what matters here is whether the
strength of the protocol depends on the degree of care that the human will exercise.

Multichannel Protocols to Prevent Relay Attacks 15

It should also be noted that in practice the attack is much harder than we
casually described because Moripeter won’t know Victoria’s laser parameters R
until Victoria actually shines the laser. There is no reason for Victoria to disclose
R to the prover before shining the laser. If Victoria only discloses R after having
received a laser response from the prover, then Moripeter must perform all of
the following difficult tasks:

– figuring out R from the way Victoria shines the laser (instead of being told)
– reproducing those parameters at Morivictoria’s end to challenge Peter
– obtaining Peter’s POWF response
– relaying that back to Moripeter’s smoke-and-mirrors machine

all in real time while Victoria is still operating. If the delay in Moripeter’s an-
swer makes Victoria suspicious then this is reminiscent of distance-bounding
techniques (all essentially based on measuring whether the response takes longer
than would be reasonable), even though conceptually we are still in a different
territory. Note that it is very technology-dependent whether it is possible to (a)
extract R while Victoria operates her laser and (b) relay the response piecemeal
as it unwinds, rather than atomically at the end.

Note that we are now not really discussing the protocol: we are discussing
whether or not the proposed special channel has the required unsimulability
property.

3.4 Example: Quantum Channel (Polarized Photons)

This fourth example is even less practical than the previous ones but it is con-
ceptually interesting, since it is based on the inherent unclonability of quantum
mechanical states. We leave quantum mechanics to theoretical physicists and we
just accept as a black box the assumptions (summarized in the next paragraph)
of the BB84 Quantum Key Exchange protocol [1].

Under the assumptions of BB84, Alice the sender can emit photons at various
polarization angles that are pairwise orthogonal (say 0, 45, 90, 135 degrees).
Her encoding of 0s and 1s into these polarizations is important for BB84 but
irrelevant for us. Bob the receiver cannot detect all the potential angles of the
incoming photon: he must first choose one of two bases—either the rectilinear
one that can distinguish between 0 and 90, or the diagonal one that can distin-
guish between 45 and 135. If he measures an incoming photon using a base that
does not match the photon’s polarization (for example measuring a 90-degree
photon using the diagonal base), he will get an incorrect result (either 45 or 135,
randomly). The photon is modified by the measurement; so, if eavesdropper Eve
listens in on a photon with the wrong base, she “spoils” it for Bob.

We emphasize that we are not using (or describing) the BB84 protocol at
all—only its underlying physical transmission medium. The BB84 protocol is for
building a shared key between Alice and Bob, whereas in our scenario Victoria
and Peter already share a key before we even start.

Our protocol runs as follows. Victoria produces a suitably long random string of
the symbols {0, 45, 90, 135} and a matching string of the corresponding

16 F. Stajano, F.-L. Wong, and B. Christianson

polarization bases. She sends the second string (of bases) to Peter, locking it with
the shared secret22, and then she sends Peter the actual polarized photons as de-
scribed in the first string, which Peter can decode correctly by using the bases in
the sequence he just received. Then it’s Peter’s job to send Victoria the string of
values he read out, again locked with the shared secret. If Moripeter and Moriv-
ictoria splice themselves in, then when Moripeter listens to Victoria’s photons he
must choose a polarization base to receive each photon, but he won’t know the
right one because he could not unlock the first message, so he’ll get it wrong about
half the time and won’t be able to tell Morivictoria the correct sequence of photons
to retransmit to Peter. Therefore Peter will lock a different sequence of values and,
even if they relay that, Victoria will be able to distinguish Peter from Moripeter.

Attack: relay the photons. An attack here would be for the Moriarty asso-
ciates to run an optical fibre that shipped Victoria’s photons to Peter, without
being detected by either. If this were technically feasible, then the channel would
lack the required property of untransportability and would not be suitable. How-
ever we are as usual assuming that Victoria is sufficiently alert that this attack
cannot be mounted without attracting her attention: she would hopefully notice
that (Mori)Peter has an extra optical fibre sticking out of the back of his coat.

Attack: extract the challenge. An over-elaborate and improbable attack
sees Morivictoria use Peter as an oracle to check Morivictoria’s guess of Victo-
ria’s locked sequence of bases. Victoria sends the locked sequence of bases to
Moripeter. Morivictoria brute-forces it by trying each possible guess on Peter in
turn, as described later. Once she has the correct guess about the bases she gives
it to Moripeter, who uses to decode the real photons from Victoria. Morivicto-
ria then sends the same sequence of photons to Peter, who provides the correct
locked answer that they can relay to Victoria. (To check each guess, Morivic-
toria repeatedly sends Peter the same sequence of photons, polarized along the
guessed base sequence; if the responses differ, then the guess was wrong, else the
guess is shortlisted. She proceeds until only one guess is left.)

This attack relies on (a) the sequence being short enough that brute-forcing
won’t require years or millennia, (b) Victoria being patient enough to wait for the
brute-force to take place between her first and second message, and (c) Peter being
gullible enough to run the protocol as many times as requested without suspecting
anything. It can be thwarted by having Peter include a nonce inside his locked
answer so that it is different every time even if the sequence of values is the same23.

3.5 Example: Quantum Channel (Entangled Photons)

The other seminal quantum cryptography protocol, E91 [10], uses a different
underlying mechanism for quantum key establishment: an entangled pair of
22 Note that here we are using confidentiality, not just integrity.
23 Of course this relies on the cryptographic implementation of “locking” not leaking

information about the fact that two ciphertexts might correspond to plaintexts that
share a long common portion.

Multichannel Protocols to Prevent Relay Attacks 17

photons. This mechanism, too, can be used to build another protocol in our
family.

Under the assumptions of E9124, some external source can prepare pairs of
entangled photons and send one photon of the pair to Alice and one to Bob.
Each photon can be measured using either a “blue” or a “red” machine and the
outcome will be either 0 or 1. If Alice and Bob measure the two photons of an
entangled pair using same-coloured machines, the outcomes will be the same; if
they measure them with differently-coloured machines, they will be unrelated.
Once again, we are not describing or using the E91 protocol—just its physical
assumptions.

Our protocol runs as follows. Victoria generates n pairs of entangled pho-
tons and sends one photon from each pair to her correspondent (either Peter
or Moripeter—she doesn’t know yet, but with our protocol she will be able to
tell). Then Victoria sends Peter, over the standard channel, a random string of
{red, blue} symbols—one for each of the entangled photons. Peter must then
measure each photon with the machine of the specified colour and communicate
the result to Victoria over the standard channel. Victoria performs the same
measurements on her own photons and checks whether they match, which they
should if there is no man in the middle.

In case of relay attack, Moripeter won’t be able to obtain the “challenge”
string of reds and blues and therefore won’t be able to perform the correct
measurements even though he has the genuine photons that are entangled with
Victoria’s. Meanwhile Peter, who can perform the prescribed measurements,
will be doing so on photons that are entangled with those of Morivictoria, not
of Victoria, and therefore his answers won’t match those of Victoria, who will
detect the difference.

Note how easy it is to specify and describe a protocol that won’t work, even if
we can rely on seemingly all-powerful unclonable features such as entangled pho-
tons. Victoria generates n pairs of entangled photons and sends one from each
pair to Peter. Then she also sends Peter, over the locked channel, a challenge
consisting of a string of randomly chosen red and blue symbols. Peter must mea-
sure the entangled bits using machines of the prescribed colours and then report
the answers to Victoria over the locked channel. But here the Moriarty associates
relay the challenge from Victoria to Peter, let Peter do the measurements, relay
the measurements from Peter to Victoria and appear indistinguishable from the
case in which Peter answered directly.

Could you spot the subtle difference between this (broken) protocol and the
almost identical one that instead works? Stop reading if you haven’t. . . In the
working protocol, Victoria sends the photons to the guy in front of her; in the
broken one, she sends them to “Peter”25.

24 Or rather its simplified description, by Ekert himself, at
http://pass.maths.org.uk/issue35/features/ekert/2pdf/index.html/op.pdf.

25 The broken protocol is thus also impossible to implement: Victoria doesn’t know
which principal is Peter (whole purpose of protocol); so how could she send him the
photons?

http://pass.maths.org.uk/issue35/features/ekert/2pdf/index.html/op.pdf

18 F. Stajano, F.-L. Wong, and B. Christianson

Note that the “relay the photons” attack (cfr 3.4) applies to this setting as
well, with the same caveats.

3.6 Why Our Multichannel Approach Works

The key insight of our approach is that the standard channel (think radio) con-
nects Victoria to Peter (even if she doesn’t know where he really is) and that
the special unrelayable channel connects Victoria to the principal in front of her.
Victoria challenges Peter over the standard channel and Peter issues conceptu-
ally the same response over both channels. The Moriarty associates can only
get it right on one channel at a time (they can relay the standard channel or
they can “prove presence” over the unrelayable channel26) but they can’t issue
a consistent response over both. All the protocols shown so far are variations of
this principle.

4 Conclusions and Further Work

We presented a novel paradigm: a family of multichannel protocols featuring a
special channel that is unrelayable. We discussed the properties of unrelayable
channels and illustrated possible channels and protocols with imaginative (if
not always realistic) examples, chosen to explore the subtleties of the possi-
ble attacks, including the crucial role of the human principal in checking for
unexpected hardware. We trust readers will recognize this framework as a con-
ceptually new approach to developing protocols that prevent relay attacks.

What we need next is one or more robust and practical implementations of
the unrelayable channel, using appropriate physical phenomena and transduc-
ers, and suitable protocols from this family to accompany them. Another useful
contribution would be a formal analysis of the properties of these protocols.

We see great potential in this new line of authentication protocol research and
hope that others will join us in bringing it to fruition for real-world applications.

References

1. Bennett, C., Brassard, G.: Quantum cryptography: Public-key distribution and
coin tossing. In: Proc. IEEE ICCSSP (1984)

2. Beth, T., Desmedt, Y.: Identification Tokens — or: Solving the Chess Grandmaster
Problem. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537,
pp. 169–176. Springer, Heidelberg (1991)

3. Brands, S., Chaum, D.: Distance-Bounding Protocols. In: Helleseth, T. (ed.) EU-
ROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)

4. Christianson, B., Li, J.: Multi-channel Key Agreement using Encrypted Public Key
Exchange. In: Proc. Security Protocols Workshop 2007. LNCS, vol. 5964. Springer,
Heidelberg (2007)

26 . . . which, for all its wonderful properties, does not need to be particularly versatile:
for example, you may not even be able to choose what bits the source will transmit!

Multichannel Protocols to Prevent Relay Attacks 19

5. Clulow, J., Hancke, G., Kuhn, M., Moore, T.: So Near and Yet So Far: Distance-
Bounding Attacks in Wireless Networks. In: Buttyán, L., Gligor, V.D., Westhoff,
D. (eds.) ESAS 2006. LNCS, vol. 4357, pp. 83–97. Springer, Heidelberg (2006)

6. Conway, J.: On numbers and games. Academic Press, London (1976)
7. Damgård, I., Nielsen, J.B., Wichs, D.: Isolated Proofs of Knowledge and Isolated

Zero Knowledge. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
509–526. Springer, Heidelberg (2008)

8. Desmedt, Y., Goutier, C., Bengio, S.: Special Uses and Abuses of the Fiat-Shamir
Passport Protocol. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp.
21–39. Springer, Heidelberg (1988)

9. Drimer, S., Murdoch, S.: Keep your enemies close: distance bounding against smart-
card relay attacks. In: Proc. USENIX Security 2007 (2007)

10. Ekert, A.: Quantum cryptography based on Bell’s theorem. Physical Review Let-
ters 67(6), 661 (1991)

11. Hancke, G.: Security of proximity identification systems. Tech. Rep. 752, University
of Cambridge (2009)

12. Hancke, G., Kuhn, M.: An RFID Distance Bounding Protocol. In: Proc. IEEE
Securecomm 2005 (2005)

13. Holmquist, L., Mattern, F., Schiele, B., Alahuhta, P., Beigl, M., Gellersen, H.:
Smart-Its Friends: A Technique for Users to Easily Establish Connections between
Smart Artefacts. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001.
LNCS, vol. 2201, p. 116. Springer, Heidelberg (2001)

14. Mayrhofer, R., Gellersen, H.: Shake well before use: Intuitive and Secure Pairing
of Mobile Devices. IEEE Trans. Mobile Computing 8(6), 792–806 (2009)

15. McCune, J., Perrig, A., Reiter, M.: Seeing-Is-Believing: Using Camera Phones for
Human-Verifiable Authentication. In: Proc. IEEE Security and Privacy 2005 (2005)

16. Nguyen, L., Roscoe, A.: Authentication protocols based on low-bandwidth un-
spoofable channels: a comparative survey (2009) (manuscript)

17. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical One-Way Functions.
Science 297(5589), 2026–2030 (2002)

18. Pavlovic, D., Meadows, C.: Deriving Authentication for Pervasive Security. In:
Proc. ACM ISTPS 2008 (2008)

19. Stajano, F., Wilson, P.: Understanding scam victims: seven principles for systems
security. Tech. rep. 754, University of Cambridge (2009)

20. Wong, F., Stajano, F.: Multi-channel Protocols. In: Christianson, B., Crispo, B.,
Malcolm, J.A., Roe, M. (eds.) Security Protocols 2005. LNCS, vol. 4631, pp. 112–
127. Springer, Heidelberg (2007); See also the extended and revised version in IEEE
Pervasive Computing 6(4), 31–39 (2007)

A Traceability Attack against e-Passports

Tom Chothia� and Vitaliy Smirnov

School of Computer Science, University of Birmingham, Birmingham, UK

Abstract. Since 2004, many nations have started issuing “e-passports”
containing an RFID tag that, when powered, broadcasts information. It
is claimed that these passports are more secure and that our data will
be protected from any possible unauthorised attempts to read it. In this
paper we show that there is a flaw in one of the passport’s protocols that
makes it possible to trace the movements of a particular passport, with-
out having to break the passport’s cryptographic key. All an attacker
has to do is to record one session between the passport and a legitimate
reader, then by replaying a particular message, the attacker can distin-
guish that passport from any other. We have implemented our attack
and tested it successfully against passports issued by a range of nations.

1 Introduction

New technologies lead to new threats. Traditionally security protocols have been
analysed for a range of security and authenticity goals, however the introduc-
tion of small, promiscuous Radio Frequency Identifier (RFID) tags have raised
new concerns. For instance, can a person’s movements be traced using the RFID
tags that have been inserted into the items they are carrying? As RFID tags will
respond to any signal broadcast to them, and originally replied with a unique
identifier, Benetton’s proposal to place RFID tag in clothes caused a public out-
cry for precisely this reason [BB]; similar traceability concerns have also affected
the New York area E-Zpass system [Cal]. Now RFID tags are being placed in
passports.

The use of RFID tags in passports was primarily motivated by the desire
to provide storage for bio-metric information such as fingerprints or iris scans
[ICA06]. A suite of cryptographic protocols protects the data on the tag. Read
access to the data on the passport is protected by the Basic Access Control
(BAC) protocol. This protocol produces a session key by using another key
derived from the date of birth, date of expiry and the passport number printed
on the document. The aim of this protocol is to ensure that only parties with
physical access to the passport can read the data. All data on the tag is signed
by a document signing key which is in turn signed by a country key from the
state that issued it. The public country verification keys are publicly available
from the International Civil Aviation Organisation (ICAO)1. This process of
� This work is partly supported by EPSRC grant EP/F033540/1: Verifying Interop-

erability Requirements in Pervasive Systems.
1 Currently at https://pkddownloadsg.icao.int

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 20–34, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

https://pkddownloadsg.icao.int

A Traceability Attack against e-Passports 21

ensuring the integrity of the data is referred to as Passive Authentication. A
third protocol, Active Authentication, ensures that the passport has not been
copied by signing a nonce (a new random number) from the reader, using a
signing key stored securely on the tag. The verification key, signed by the issuing
country, can then be read from the tag and the passport verified by the reader.
Both BAC and Active Authentication are specified as optional although BAC
seems to be universally used2. We only observed Active Authentication on a few
of the passports we looked at (e.g. the Irish passport).

In 2006 a second generation of e-passports were announced [ICA06] which
included a new Extended Access Control protocol that would establish a session
key based on a longer secret and would authenticate the reader to the tag using
the country signing keys. This protocol would be run after the BAC protocol. A
third generation of e-passport protocols are currently under discussion [BG08],
although they have not yet been finalised by the ICAO.

The BAC protocol ensures that the data on the e-passport can only be read
by someone who knows the key derived from the date of birth, date of expiry and
number on the passport. Our attack lets someone who does not know this key
trace a passport, i.e., if an attacker can observe a run of a particular passport
then they can build a device that detects whenever the same passport comes into
range of the reader. RFID tags receive their power via a signal from the reader;
FCC regulations [FCC] limit the power of the readers, leading to an effective
range of about 9cm. However, if the attacker disregards these regulations, they
can power up the tag from a much greater distance, Kfir and Wool calculate
that this is possible from a distance of up to 50cm [KW05]. If another reader
powers the tag up, messages can be sent to and received from a tag to a range
of several meters [Yos04, Han06]. This would make it easy to eavesdrop on the
required message from someone as they used their passport at, for instance, a
customs post. Furthermore, the RFID tags in passports are “always on” and
give no indication to their owner that they are sending data.

A traceability attack does not lead to the compromise of all data on the tag,
but it does pose a very real threat to the privacy of anyone that carries such
a device. Assuming that the target carried their passport on them, an attacker
could place a device in a doorway that would detect when the target entered
or left a building. Juels et al. [JMW05] point out, rather melodramatically, that
such an attack would make it possible to program a bomb that would explode in
the presence of a particular person. More benignly, it could also be used to make
a device that would tell a blind person whenever someone they had met before
was close by. Such tracing attacks may also apply to other contactless devices.
However, we believe that a traceability attack against e-passports is particularly
severe because unlike, for instance, Bluetooth devices they cannot be turned off
and also because a passport is a government mandated identity document and
carrying one is compulsory when crossing a border or when resident in certain
countries.

2 Early US and Belgian e-passports did not have BAC, however BAC is now imple-
mented.

22 T. Chothia and V. Smirnov

The BAC protocol was closely based on ISO 11770-2 mech. 6 [ISO96]. It sets
up a secure session key that the reader then uses to access the data. During a
run of the BAC protocol, the passport generates a nonce that the reader must
encrypt using the passport’s unique encryption key. This ensures that messages
are not being replayed to the passport. The reader and passport also generate
Message Authentication Codes (MACs) for each message, using the passport’s
unique MAC key. This guarantees that the messages are received correctly and
the MAC is checked before the nonce is looked at. This protocol protects the
data on the passport, as any replayed or corrupted message will be rejected.

Our examination of actual passports has shown that it is possible to tell the
difference between a message that was rejected because of an incorrect nonce and
a message that was rejected because of a failed message authentication check.
To trace a passport we eavesdrop on a legitimate session between a passport and
a reader, and record the encrypted message that contains the passport’s nonce.
Then, when we want to identify a particular passport, we replay this message.
If this replayed message is rejected because the MAC check failed then we know
this is not the same passport, as the MAC key is unique to each passport. On the
other hand, if the message is rejected because of the nonce check failed, we know
that the MAC check using the unique passport key succeeded and therefore we
have found the same passport again. In the case of the French passport different
error messages are given in response to a failed MAC or an incorrect nonce. In
the case of all other nationalities we tested, the rejection messages are the same
but a failed MAC check is reported noticeably sooner than a failed nonce.

Many authors (e.g. [JMW05, CLRPS06, AKQ08]) have pointed out that the
entropy used to seed the BAC keys is low, and in the case of countries where
passport numbers are partly predictable it may be possible to guess the keys.
However, passports are now being issued with a passport number made up of
letters and numbers, rather than just numbers, which will increase the possible
key entropy. It has also been pointed out that once a reader is given access to a
passport it cannot be revoked [JMW05]. Richter et al. [RMP08] showed that the
error messages issued by a passport were different for each country and so it was
possible to uniquely identify the nationality of a passport drawn from a group
of 10 European countries Ours is the only attack on e-passports that allows an
attacker to remotely trace an individual passport, in real-time, for any passport
numbering scheme, without having to know the BAC keys.

Our attack has a relatively simple fix; the error messages issued by the pass-
ports must be standardised and response times must be padded so as to remove
the information leak. One way to do this would be to make e-passports decrypt
messages even if the MAC check fails. For the tens of millions of passports al-
ready issued it is too late, however future passports can be made safe.

In the next section we describe the protocols used by e-passports and discuss
other analysis of these protocols in Section 2.2. We present a protocol based
attack against the French e-passport in Section 3 and extend this to a timing
attack against all e-passports in Section 4. We discuss ways in which this attack
may be stopped and conclude in Section 5.

A Traceability Attack against e-Passports 23

2 The e-Passport Protocols

An e-passport3 is an identification document combining a traditional passport
with an RFID tag capable of performing cryptographic operations, storing bio-
metric data and other bearer related information. The specification for e-passports
is published by the International Civil Aviation Organization (ICAO) [ICA06]
and more than 60 states have started issuing their own e-passports based on this
standard.

The ICAO specification requires that passports use the contactless card stan-
dard ISO 14443 [ISO01] for hardware level communication. This standard defines
how the reader should power up the card and select a particular tag to communi-
cate with; if more than one tag is present, each card broadcasts a unique ID and
the reader selects one, with which to establish a session. The ICAO specification
recommends that the UID is randomised to avoid the possibility of it being used
to trace a particular passport [ICA08, page 22]. If a country chooses to ignore
this advice, then a passport will be easily traceable. All the passports we have
looked at, so far, use randomised UIDs. ISO 14443 defines two ways in which
radio signals can be used to communicate with the cards (Type A and Type B).
E-passports may implement either method.

On top of the ISO 14443 communication, the ICAO specification states that
the passports should implement some of the commands and error codes defined
in the standard for contact-based smart cards ISO 7816 [ISO95]. As well as
giving a detailed description of the layout of the data on the passport, it spec-
ifies that the passport should support the ISO 7816 commands SELECT FILE
and READ BINARY for accessing the data on the tag. The instructions GET
CHALLENGE, MUTUAL AUTHENTICATION and INTERNAL AUTHEN-
TICATION are used for BAC and Active Authentication. The passports also
use ISO 7816 error codes, such as “6A80: Incorrect parameters” or “6300: No
information given”.

2.1 The Passport Protocols

The data on the passport is organised into 16 data groups, that can be read
using the ISO 7816 SELECT FILE and READ BINARY commands. The ICAO
specification defines what each data group should be used for: DG1 and DG2
are compulsory for all passports and store the machine-readable data printed on
the passport and the passport photo respectively. DG3 to DG16 are for optional
data, such as fingerprints (DG3, which we found on a recent German passport).
The contents of some of these data groups have been defined but are not yet
used in practice, such as iris scans (DG4), holder’s signature (DG7) and the
address of someone to contact in an emergency (DG16). Data groups 11 and 12
are for optional additional information depending on the country, for example,

3 For the rest of this document we will use “passport” to mean “e-passport”, rather than
a passport without an RFID tag, and only use e-passport when we want to underline
the difference between the two.

24 T. Chothia and V. Smirnov

Passport Reader

Get Challenge←−−−−−−−−−
NT ∈R {0, 1}64

NT−−−−−−−−−→
NR, KR ∈R {0, 1}64

{NR,NT ,KR}KE ,MACKM ({NR,NT ,KR}KE)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Verify Mac
Verify NT

KT ∈R {0, 1}64
{NT ,NR,KT }KE ,MACKM ({NT ,NR,KT }KE)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Verify Mac
Verify NR

Kseed = KT ⊕KR Kseed = KT ⊕KR

Fig. 1. The Basic Access Control Protocol

the French passport uses these to store the height4 of the passport holder, their
home address and the address of the police station where the passport was
issued. According to the specification, the data groups are read-only. The hash
of the data groups, which has been signed by the issuing state, is stored on the
passport; checking this ensures that the passport is not forged.

Read access to the data on the passport is protected by the Basic Access Con-
trol protocol (BAC). This protocol uses a key generated from the date of birth,
date of expiry and passport number printed on the passport and establishes a
new session key to protect all following communication with the reader. The aim
of this protocol is to prevent eavesdropping and skimming attacks by ensuring
that only someone who has seen the information page of the passport can access
the data on the tag. While other authors have criticised this design as less secure
than, say, making the reader authenticate to the tag using a certificate, it does
have the advantage of allowing moderately skilled users to see what is on their
own passport.

BAC is a key establishment protocol, as shown in Figure 1. Here { }K denotes
Triple-DES encryption with the key K and MACK () denotes a cryptographic
checksum according to ISO 9797-1 Message Authentication Code Algorithm 3.
The passport stores two keys: KE and KM , and the reader derives these keys
using the machine-readable information on the passport, which has, in theory,
been scanned before the wireless communication begins.

The reader initiates the protocol by sending a challenge to the tag and the tag
replies with a random 64-bit string NT . The reader then creates its own random
nonce and some new random key material, both 64-bits. These are encrypted,

4 We found cases where a French passport overestimated the height of its owner, this
seems to be because the height measurement is not checked by the passport issuing
organisation and so reflects the height that the passport holder would like to think
of themselves as, rather than their true height.

A Traceability Attack against e-Passports 25

along with the tag’s nonce and sent back to the reader. A MAC is computed
using the KM key and sent along with the message, to ensure the message is
received correctly.

The tag receives this message, verifies the MAC, decrypts the message and
checks that its nonce is correct; this guarantees to the tag that the message from
the reader is not a replay of an old message. The tag then generates its own
random 64-bits of key material and sends this back to the reader in a similar
message, except this time the order of the nonces is reversed, in order to stop the
reader’s message being replayed directly back to the reader. The reader checks
the MAC and its nonce, and both the tag and the reader use the xor of the
key material as the seed for a session key, with which to encrypt the rest of the
session.

This protocol guarantees that only parties who know the keys derived from the
machine-readable zone can learn the session key and message freshness is guar-
anteed by the nonces. However, we observe that this protocol does not guarantee
a fresh session key to the reader: as the passport picks its key material after it
sees the reader’s key material, and the material is xor-ed together, the passport
may pick its material in such a way as to force a particular key seed. Although
this does not seem to lead to an attack, concatenating the key material would
have meant that both parties were guaranteed a fresh key.

Active Authentication is an optional protocol designed to prevent cloning at-
tacks. The protocol is based on public key cryptography; the tag proves the
possession of a private key with a straightforward challenge-response protocol.
If the passport supports the Active Authentication protocol, the public key is
stored in Data Group 15, which is signed along with the rest of the passport
data. In 2006, the ICAO proposed a new set of protocols called Extended Ac-
cess Control (EAC). These protocols are commonly used to protect sensitive
biometric data, and require the reader to authenticate itself to the passport us-
ing a certificate signed by a country signing key. We observed EAC on a recent
German passport, where it was used to protect fingerprints, and information on
the EAC parameters was stored in data group 14. Both Active Authentication
and EAC are optional and run after BAC, so, as our attack is against BAC, the
additional security these protocols provide does nothing to stop our attack.

2.2 Related Work

Many papers have been written about the e-passport specification. One of the
most popular themes is the low entropy of the BAC key seed. The original ICAO
documentation points out that the ideal entropy of 73-bits is probably closer to
56-bits due to non-random passport numbers. A series of authors have then
analysed the passport numbers of particular countries. For instance, Juels et al.
[JMW05] pointed out the US passport only offers 54-bits of entropy, Carluccio
et al. [CLRPS06] put the German passport’s entropy at 55-bits, and Avoine et
al. [AKQ08] put the Belgian passport at 38-bits. Most of these authors go on
to assume that the attacker knows the birthday of their victim and so subtract
another 15-bits from the key entropy. We note that all of these calculations are

26 T. Chothia and V. Smirnov

based on the assumption that the random part of the passport numbers only
contain digits. This is no longer true: the passport number on German passports
issued since, at least, 2008 include letters as well as numbers. Therefore, the
entropy is now likely to be much higher than Carluccio et al. estimate.

The Belgian passports have such low entropy because the passport numbers
are mostly numeric and issued sequentially, Avoine et al. show that an eaves-
dropping attack can find the key in about a second, whereas an online attack
against only a passport could take a few weeks, in the worst case. Carluccio et al.
[CLRPS06] and Liu et al. [LKLRP07] both present hardware architectures that
can speed up the cracking process, however they also assume that the attacker
has some previous knowledge about the victim, such as their birthday and has
observed a correct run of the protocol. In contrast to this work, our attack is an
attack on the protocol itself, rather than an attack against the weak key seed.
We do not need to assume that the attacker knows the age of the victim and
our attack works, in real-time against any passport numbering scheme.

Hoepman et al. [HHJ+06] also discuss the low BAC entropy and point out
that a passport would be traceable if it does not randomise its ISO 14443 UID.
All the passports we have looked at do randomise their UIDs, although we have
been told that passports from Italy and New Zealand do not.

Perhaps the most similar work to ours is that of Danev et al. [DHBv09] who
show that a passport can be identified by its hardware characteristics with an
error rate of 2% to 4%. However, to collect their readings they must place the
passport in a specially constructed wood frame, therefore they suggest they that
their method is better suited to detecting counterfeit passports than it is to
tracing people.

2.3 Experimental Framework

To interact with the passports we used an ACR122U reader from Advanced Card
Systems Limited. This is one of the cheapest (∼$50) RFID readers on the market
and while more expensive reader could collect more accurate timing data and
performed tests faster, using such a reader underlines the fact that our attack
does not need specialist hardware.

Adam Laurie’s RFID Input/Output Tools (RFIDiot) project [Lau06] has de-
veloped a number of tools to make interacting with RFID tags easy. We found
these tools very useful when initially experimenting with e-passports, and we
have made use of Laurie’s libraries when writing the code to perform our attack.

We ran our tests with passports volunteered by members of our lab and their
families. We tested 10 passports in total: 3 UK, 2 German, 1 Russian, 2 French,
1 Irish and 1 Greek. We would like to extend our thanks to all of the volunteers
that offered their passports for testing, and we were particularly pleased that no
country had chosen to make their passports lock up after a set number of failed
runs of the BAC protocol.

When taking a large number of time samples from a continuously powered
passport we noticed that after around 100 readings in a row the response times
from the passport would start to slow down by about 1ms every 20 readings. To

A Traceability Attack against e-Passports 27

RFID tag ATR value
UK Passport 3B898001097877D4020000900048
French Passport 3B8E80011177B3A7028091E16577010103FF61
Irish Passport 3B848001043833B1BB
German Passport, (numneric 3B8E8001107833D4020064041101013180FFBD
passport number, no fingerprints),
German Passport (alpha-numeric 3B898001097877C4020000900058
passport number, fingerprints)
Dubai Metro pass 3B8F8001804F0CA0000003060300030000000068
Mifare (e.g. Oyster card, Univ. Id) 3B8F8001804F0CA000000306030001000000006A

Fig. 2. ATR values from various RFID tags

ensure that our sampled data was independent and identically distributed we
powered down the tag between each time measurement.

2.4 Passport FingerPrinting via Answer to Reset

While the ICAO defines the specification for e-passports, all of the countries we
have looked at have built their own implementations. Richter et al. [RMP08]
exploit this fact, to show that it is possible to deduce which country issued a
passport by the error messages it gives. They also mention other possible ways
to detect the issuing country of a passport including the ISO 14443 “Answer to
Select” or “File Control Information” message. We also found that the passports
of different nations gave distinctive error messages, however we received different
error messages to the ones reported by Richter et al., this may have been due to
using different parameters in the ISO 7816 commands.

Contact-based ISO 7816 chips will respond to a reset with an “Answer to Re-
set” (ATR) message, which includes data on the chip’s manufacturer and how
the chip should be read. In the interests of compatibility, the Interface Device
Handler (the firmware and/or drivers) for contactless card readers construct an
ATR message for ISO 14443 tags [Wor07, Sec. 3.1.3.2.3]. These handler con-
structed ATR messages have a standard prefix, followed by the historical data
from the “Answer to Select” for ISO 14443 Type A tags, or the application data
and protocol information for ISO 14443 Type B tags. Furthermore, this con-
structed ATR message is generated when the reader initiates contact with the
tag, and is therefore much easier to find than a complete set of error codes.

Out of the passports we tested, we found that each country had its own unique
constructed ATR value, we also found that a range of mifare classic cards all
issue the same ATR, see Figure 2. The German passport was recently updated to
include an alpha-numeric passport number and the fingerprints of the owner. We
found that these updated passports had a different ATR to the earlier version.
Therefore, the ATR provides an easy way to identify, not just the issuing nation,
but also the version of a passport. This is an additional weakness in the passport
because if it is possible to narrow down the issue date of a passport it becomes
easier to guess the BAC key. Some of the observed ATRs were very close so,

28 T. Chothia and V. Smirnov

Passport Reader

Get C←−−−−
NT ∈R {0, 1}64

NT−−−−→
E,M←−−−

M �= MACKM (E)

6300−−−→

(a) A MAC failure

Passport Reader

Get C←−−−−
NT ∈R {0, 1}64

NT−−−−→
E,M←−−−

M = MACKM (E)
E = {NR, N ′

T , KR}KE

NT �= N ′
T

6A80−−−→

(b) A Nonce Mismatch

Fig. 3. The Basic Access Control Protocol

just as with error messages, there is a possibility of two different tags having the
same profile. Hence, further research is needed before we can be sure that this
is a good identification technique.

3 An Attack against French e-Passports

The ICAO passport specification states that the passport must always respond
to a message, returning an error message if the message was incorrect or un-
expected. The fault in the French passport’s BAC protocol becomes apparent
when we consider the error messages that the passport generates in response to
erroneous messages from the reader.

To find these error messages we power up the passport, according to ISO
14443, we then send a GET CHALLENGE message to initiate the BAC protocol
to which the passport replies with a nonce. The reader should send the tag’s
nonce back to the passport, along with some keying material and its own nonce.
This message should be encrypted with the passport’s unique encryption key
and sent with a MAC generated using the passport’s unique MAC key. To find
the error messages we tried broadcasting a message to the tag with an incorrect
MAC, and found that the French passport replied with a “6300: No information
given” error (Figure 3(a)). Next we formed a message with a correct MAC but
with an incorrect nonce. This message was replied to with a “6A80: Incorrect
parameters” error (Figure 3(b)).

These different error messages can be used to trace a passport, even by an at-
tacker that does not have the passport encryption and MAC keys. First the at-
tacker must observe a run of the passport with a reader that knows the passport
key, for instance, while going through customs. The attacker records the message
from the reader that contains the encrypted and MACed nonces and keying ma-
terial. Later, when the attacker comes across another passport, they can use this
recorded message to test if it is the same passport as they observed before: the

A Traceability Attack against e-Passports 29

(a) UK passport on reader (b) UK passport 5cm from reader

(c) Greek passport on reader (d) German passport on reader

Fig. 4. Sampled Times from Replaying a Message to the Same or a Different Passport

attacker broadcasts a GET CHALLENGE message, to which the tag responses
with a nonce. The attacker then replays the message they recorded from the pre-
vious run. If the tag responds with a 6300 error message then we know that the
MAC check failed, therefore the passport we are currently looking at used a dif-
ferent MAC key from the original passport and is not the same one. If, on the
other hand, we get a 6A80 message then we know that the MAC check must have
succeeded, and so the current passport is the passport we are trying to trace.

4 A Time-Based Traceability Attack

Out of all the passports we tested, only the French passport responded to a
failed MAC check and a mismatched nonce with different error messages; all the
other passports issued the same error code, usually “6300”. So it seemed that
this attack only affected French passports. However, examining the passports
further, we noticed that the time it took for a passport to issue these error
messages was not constant.

Figure 4(a) shows the time it took for a UK passport to issue the error message
(to 4 decimal places). We sent 500 messages we knew would fail the MAC check
(shown in dashed, red) and 500 replayed messages, with the correct MAC key,
but with an incorrect nonce (shown in solid, blue). It is clear from this data that
a failed MAC elicits a reply more quickly than a failed nonce. Looking at the
protocol specification, it seems that this is because the passport rejects a message
with an incorrect MAC straightaway, whereas if the MAC is correct, the MAC

30 T. Chothia and V. Smirnov

check is performed, the message is then decrypted and only after that can the
nonce be checked. The additional time it takes to reply to a replayed message is
the time it takes the passport to decrypt the message and check the nonce. After
checking several passports, we found that the exact time difference depended
mainly on which country issued the passport. For our particular reader, UK
passports took around 2.8 milliseconds longer to respond to a replayed message,
German, Greek and Irish passports took 4ms to 5ms and a Russian passport we
tested took a sluggish 7ms.

We retested a UK passport, this time placing the passport 5cm away from
the reader (Figure 4(b)). This data set clearly shows the time difference between
a message replayed to the passport that generated it and a message replayed
from a different passport. However, placing the passport away from the reader
leads to all the messages taking longer. The time it takes the radio waves to
cross the extra distance is of the order of 10−10 seconds so this slowdown is most
likely explained by less power being supplied to the RFID tag. Such variations
in response times mean that it is not possible to trace a passport with a single
replayed message. Instead, the attacker must send a message they know will
fail the MAC check, then send the replayed message and compare the response
times.

The exact attack could be performed in a number of different ways. If a
passport is known to be stationary then the attacker could send one completely
random message and then replay the message from the passport they wish to
trace. If the time difference is more than some value the attacker could decide
that it is the same passport as before, and if it is less than that value the
attacker could decide that it is a different passport. This test could be repeated
for additional accuracy, the attacker could also use different lower and upper
bounds, or attempt to work out the nationality of the passports via the ATR (as
described in Section 2.4) and then pick the most efficient cutoff for that country.
When the passport is moving it is necessary to send a number of different random
messages interleaved with a number of replayed messages and then take the
average. We find the error rates and efficiencies of these different methods using
a statistical analysis of the response times.

Statistical Analysis of Passport Response Times. The response times in
Figure 4 appear to follow a normal distribution. Due to the limited accuracy of
our measuring framework, we round our data to 4 decimal places. This makes
our data discrete by placing the results into a number of bins, (e.g. all time mea-
surements between 0.66505 and 0.66515 are placed in the 0.6651 bin). Therefore
we can verify that the data is well modelled by a normal distribution using a χ2

goodness of fit test. This test defines a test statistic:

X =
∑

i=1,...,k

(Oi − Ei)2

Ei
(1)

where Oi is the observed number in bin i and Ei is the number predicted by the
distribution. The sampled data is well modelled by a normal distribution if the X
statistic is consistent with a χ2

(k−3) distribution (see e.g. [SC89]). We carried out

A Traceability Attack against e-Passports 31

this test and found that the X statistic was within the 95% confidence interval
for the British, German, Greek and Irish passports, both when the passport is
directly on the reader or when placed 5cm away from it. We note that this does
not mean that the distribution is exactly normal, but rather it means that a
normal distribution is a reasonable model for the sampled data and is therefore
useful in order to estimate the error rates.

The Russian e-passport was not consistent with a normal distribution. The
time graphs for a 100 samples are given in Figure 5 (only 100 samples were taken

Fig. 5. Russian Sample Times

due to limited access to the pass-
port). As well as not following a nor-
mal distribution, the passport would
not let us access any data after we
have performed BAC, which sug-
gests that the passport might not be
fully compatible with the ICAO stan-
dard (EAC, if used, should only pro-
tect bio-metric data). Information on
the Russian passport specification is
sparse, and mostly in Russian (see
e.g. [Min03, Eva05]), so this calls for
further study. The time gap between random and replayed messages was the
biggest we have seen for any passport and with no overlap at all; therefore our
attack would work against Russian passports with a very high degree of certainty.

Looking at the timings that follow a normal distribution, we can calculate
the rates of false positives and false negatives for particular tests. We know that
the difference between a value from a distribution N (m1, v1) and a value from
the distribution N (m2, v2) will come from the distribution N (m1−m2, v1 + v2).
Therefore, the difference in response times in milliseconds, for a random message
and a message replayed to the same UK passport it came from will come from the
distribution N (2.8, 0.63), whereas the difference in response times for a different
passport, one that did not generate the message being replayed, would come
from the distribution N (0, 0.62). The distributions of these differences for all of
the different passports are shown in the first 2 columns of Figure 6.

A false positive occurs when we test a different passport and decide that it is
the one that generated the message we are replaying, whereas a false negative
occurs when we test the passport that generated the message we are replaying

Passport Same Different Prob. False Pos. Prob. False Neg.
Country Passport Passport at 1.7ms at 1.7ms
UK N (2.8, 0.63) N (0, 0.62) 0.015 0.084
German N (3.9, 0.124) N (0, 0.52) 0.009 0.024
Greek N (4.0, 1.57) N (0, 1.21) 0.061 0.033
Irish N (5.2, 0.79) N (0, 1.52) 0.084 0.00004

Fig. 6. Distribution of Time Differences and the Error Rates

32 T. Chothia and V. Smirnov

but fail to identify it as the same passport. The simplest test is for the attacker
to send one random message and one replayed message. Using the distributions
in Figure 6 we calculated that if the attacker decides that it is the same passport
when the time difference is more than 1.7ms and a different passport when the
difference is less than 1.7ms, then the worst false positive probability is 0.084
and the worst false negative rate is 0.084. If the attacker repeats this test, taking
the best out of 3 the false positive and negative probabilities fall to 0.02 and for
the best out of 5 the error rates are 0.005.

If the attacker decides that the passport is the same when the difference is
more than 2.8ms, a different passport when the difference is less than 1.0ms and
runs another test when the difference is in between these values, we find that
the probability of a false negative is 0.011 and a false positive is 0.012 and the
expected number of trials is 4.8. This suggested that, for the passports we tested,
the most efficient test, that balances the false positives and false negative, is to
use 1.7ms as a cutoff and running extra trails to get the accuracy required. We
implemented this test, using the best out three, and wrote a program that tested
a passport against a database of replay messages from each of the 10 passports
we examined, in turn. In 20 tests our program correctly identified every passport
from the time delay of its replay message.

To test the feasibility of our attack against a moving target we tried taking
a number of readings from a passport while it was moved across the reader.
We averaged these readings, and found that some readings would take up to
a few seconds and have a disproportional effect on our averages, therefore we
discarded any time measurements that were more than one second. Used the
single time cutoff, as described above, we found that with just one test the false
positive and negative probabilities where as high as 0.32, however with 50 tests
these probabilities fell to 0.21. With 100 observations, taking less than a minute,
the error probabilities where as low as 0.1, suggesting that this attack is feasible
against a moving target. The reader we used was the cheapest hardware we could
find; we expect that more advanced readers with specialised hardware may be
able to perform these attacks far more quickly and to a higher degree of accuracy.

5 Conclusion

Our work shows the inherent dangers of using RFID tags in personal items. The
e-passport specification was developed by experts over many years and since its
publication has been the subject of dozens of academic studies. During this time
e-passports have been issued to over 30 million people, all of whom may be at risk
of being traced using our attack. As future work we would like to examine more
passports and test our attack against other RFID enabled identity documents.

The fix for our attack is relatively simple. First, all e-passports must standard-
ise their error messages. The required error messages in all possible situations
should be specified by the ICAO (in e.g. [ICA08]). Second, in the BAC protocol,
after a MAC check fails, the passport should try to decrypt the message and
check the nonce anyway before sending the error message. Care must also be

A Traceability Attack against e-Passports 33

taken when implementing new protocols, as our attack might work against any
protocol that requires an RFID tag to first check a MAC before decrypting and
processing some data.

Our attack is only feasible because the e-passports contain an RFID tag. If
e-passports used, for instance, a contact based smart card, then such attacks
would not be possible. The reasons for making the e-passports wireless is not
immediately clear, the ICAO documentation [ICA06] mentions that reasons for
choosing RFID include high data transfer rates, reduced wear and tear on the
document and that contact based readers do not fit the shape of the passport.
However, contact-based smart cards are quite capable of transferring the data
on the card in a reasonable amount of time, and the BAC protocol requires the
contact based reading of the passport number and date of birth and expiry, so
these reasons seem weak.

Worryingly, the protocols that are used in e-passports are also to be used in
some national identity cards, such as the proposed UK ID card scheme [Bog09].
While we have not been able to confirm if these cards will be RFID or contact
based, it is possible that our attack will also work against these. It is quite
possible that, at some point in the future, it will become a legal requirement for
people to carry such an RFID enabled cards and their use will become common
to, for instance, access health care, prove identity at an airport or a bank, prove
age at a bar, etc. The use of our attack in such a possible future would make it
possible for anyone to trace the movements of anyone else.

Acknowledgments. We would like to thank Henryk Plötz for helpful comments
regarding how the Interface Device Handler constructs the ATR message.

References

[AKQ08] Avoine, G., Kalach, K., Quisquater, J.-J.: ePassport: Securing Interna-
tional Contacts with Contactless Chips. In: Tsudik, G. (ed.) FC 2008.
LNCS, vol. 5143, pp. 141–155. Springer, Heidelberg (2008) [cited p. 22, 25]

[BB] Boycott benetton, http://www.boycottbenetton.com/
(retrieved 26/8/2009) [cited p. 20]

[BG08] BSI-Germany. Advanced security mechanisms for machine readable travel
documents. Technical report, Federal Office for Information Security
(2008) [cited p. 21]

[Bog09] Boggan, S.: New id cards are supposed to be unforgeable. Daily Mail
(August 2009), http://www.dailymail.co.uk/news/article-1204641

[cited p. 33]

[Cal] Caldwell, C.: A pass on privacy? The New York Times (July 17, 2005)
[cited p. 20]

[CLRPS06] Carluccio, D., Lemke-Rust, K., Paar, C., Sadeghi, A.-R.: E-passport: The
Global Traceability or How to Feel Like an UPS Package. In: Workshop
on RFID Security – RFIDSec (2006) [cited p. 22, 25, 26]

[DHBv09] Danev, B., Heydt-Benjamin, T.S., Čapkun, S.: Physical-layer Identifica-
tion of RFID Devices. In: Proceedings of the 18th USENIX Security Sym-
posium – USENIX 2009 (2009) [cited p. 26]

http://www.boycottbenetton.com/
http://www.dailymail.co.uk/news/article-1204641

34 T. Chothia and V. Smirnov

[Eva05] Evangeli, A.: Biometric passport: the whole world under control (2005)
(in Russian),
http://www.pcweek.ru/themes/detail.php?ID=69892 [cited p. 31]

[FCC] Title 47–telecommunication, chapter i–federal communications commis-
sion, part 15–radio frequency devices [cited p. 21]

[Han06] Hancke, G.P.: Practical attacks on proximity identification systems. In:
Symposium on Security and Privacy, pp. 328–333 (2006) [cited p. 21]

[HHJ+06] Hoepman, J.-H., Hubbers, E., Jacobs, B., Oostdijk, M., Schreur, R.W.:
Crossing Borders: Security and Privacy Issues of the European e-Passport.
In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura,
S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 152–167. Springer, Heidel-
berg (2006) [cited p. 26]

[ICA06] ICAO. Machine Readable Travel Documents. Doc 9303. Part 1. Technical
report, International Civil Aviation Organization (2006) [cited p. 20, 21, 23,

33]

[ICA08] ICAO. Supplement to doc 9303. Technical report, International Civil Avi-
ation Organization (2008) [cited p. 23, 32]

[ISO95] Information technology – Identification cards – Integrated circuit(s) cards
with contacts – Part 4: Interindustry commands for interchange, ISO/IEC
7816-4 (1995) [cited p. 23]

[ISO96] Information technology – Security techniques – Key management – Part
2: Mechanisms using symmetric techniques, ISO/IEC 11770-2 (1996)
[cited p. 22]

[ISO01] Identification cards – Contactless integrated circuit cards – Proximity
cards, ISO/IEC 14443 (2001) [cited p. 23]

[JMW05] Juels, A., Molnar, D., Wagner, D.: Security and Privacy Issues in E-
passports. In: SecureComm (2005) [cited p. 21, 22, 25]

[KW05] Kfir, Z., Wool, A.: Picking Virtual Pockets Using Relay Attacks on Con-
tactless Smartcard Systems. In: SecureComm. IEEE, Los Alamitos (2005)
[cited p. 21]

[Lau06] Laurie, A.: RFIDIOt (2006), http://rfidiot.org/ [cited p. 26]

[LKLRP07] Liu, Y., Kasper, T., Lemke-Rust, K., Paar, C.: E-Passport: Cracking Basic
Access Control Keys. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part II.
LNCS, vol. 4804, pp. 1531–1547. Springer, Heidelberg (2007) [cited p. 26]

[Min03] Minkin, V.: Myths and realities of biometric passport system (2003) (in
Russian), http://www.elsys.ru/review7.php [cited p. 31]

[RMP08] Richter, H., Mostowski, W., Poll, E.: Fingerprinting Passports. In:
NLUUG Spring Conference on Security (2008) [cited p. 22, 27]

[SC89] Snedecor, G.W., Cochran, W.G.: Statistical Methods, 8th edn. Iowa State
University Press, Iowa (1989) [cited p. 30]

[Wor07] The PC/SC Workgroup. Interoperability Specification for ICCs and Per-
sonal Computer Systems. Part 3 (2007) [cited p. 27]

[Yos04] Yoshida, J.: Tests reveal e-passport security flaw. Electronic Engineering
Times 1336, 1 (2004) [cited p. 21]

http://www.pcweek.ru/themes/detail.php?ID=69892
http://rfidiot.org/
http://www.elsys.ru/review7.php

Secure Computation with Fixed-Point Numbers

Octavian Catrina and Amitabh Saxena

Dept. of Computer Science, University of Mannheim, Germany
{catrina,saxena}@uni-mannheim.de

Abstract. Secure computation is a promising approach to business
problems in which several parties want to run a joint application and
cannot reveal their inputs. Secure computation preserves the privacy of
input data using cryptographic protocols, allowing the parties to obtain
the benefits of data sharing and at the same time avoid the associated
risks. These business applications need protocols that support all the
primitive data types and allow secure protocol composition and efficient
application development. Secure computation with rational numbers has
been a challenging problem. We present in this paper a family of proto-
cols for multiparty computation with rational numbers using fixed-point
representation. This approach offers more efficient solutions for secure
computation than other usual representations.

Keywords: Secure multiparty computation, secure fixed-point arith-
metic, secret sharing.

1 Introduction

Secure computation provides cryptographic protocols that enable a group of
parties to run joint applications and preserve the privacy of their inputs. For
instance, parties P1, P2, . . . , Pn can use these protocols to evaluate a function
f(x1, x2, . . . , xn) = (y1, y2, . . . , yn), where Pi has private input xi and output
yi. Roughly speaking, the protocols ensure that the output is correct and the
computation does not reveal anything else besides the agreed upon output.

Secure computation can solve business problems where input data belongs
to different parties and cannot be revealed or shared with other parties. For
example, information sharing and collaborative decision making can substan-
tially improve supply chain performance. However, the supply chain partners
are not willing to share the necessary sensitive data (e.g., production costs and
capacity), since the risks associated with revealing it exceed the benefits gained.
Secure computation can offer the benefits of data sharing and at the same time
avoid the risks of disclosing private data. Solutions based on secure computation
have been studied for various business problems, including privacy-preserving
supply chain planning [2], different types of auctions [9,4], benchmarking [3],
and collaborative linear programming [20].

A basic requirement of these applications is a protocol family that provides
operations with all primitive data types and allows secure protocol composition

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 35–50, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

36 O. Catrina and A. Saxena

and efficient application development. The protocols proposed so far offer sub-
sets of operations with boolean and integer data or/and specialized solutions
for particular problems. Our goal is to provide practical protocols for secure
computation with rational numbers.

Our contribution. We present a family of protocols for multiparty computation
with rational numbers using fixed-point representation. The protocols are con-
structed using secure computation based on secret sharing and provide perfect
or statistical privacy in the semi-honest model. The protocol family offers arith-
metic and comparison with signed fixed-point numbers and evaluation of boolean
functions. Secure addition, subtraction, and comparison of fixed-point numbers
are trivial extensions of the integer operations. We present new protocols for
scaling, multiplication, and division of fixed-point numbers. We also discuss the
methods used to optimize the building blocks of these protocols, including a
more efficient solution for bit decomposition.

Related Work. We use standard techniques for constructing multiparty compu-
tation protocols based on secret sharing, similar to [7,8,19,6]. However, the so-
lutions presented in [8,19] aim at providing perfect privacy and constant round
complexity, while our goal is to obtain efficient protocols for secure computation
with fixed-point numbers of typical size (≤ 128 bits). For many building blocks
we obtain important performance gains using a combination of techniques that
includes additive hiding with statistical privacy (instead of perfect privacy), pro-
tocols with logarithmic round complexity (instead of constant round complex-
ity), optimized data encoding (especially for binary values), and non-interactive
generation of shared random values.

Related protocols focus on secure computation with field (or ring) elements,
binary values, and integers. Protocols for secure division (the most complex task)
were developed for particular applications and offer only partial solutions. The
division protocol in [15] was designed for two-party computation of statistics and
relies on a particular structure of the inputs. The multiparty reciprocal protocol
in [1] is restricted to positive integers with known range, 2k−1 ≤ x < 2k. This
approach based on the Newton-Raphson method (and its extension to division in
[14]) is closer to ours. However, our goal is a general division protocol for signed
fixed-point numbers. We present a protocol constructed with more accurate and
efficient components and using an algorithm that can better take advantage
of their properties. In particular, the absolute error of our integer truncation
protocol (division by 2m) is |δ| ≤ 0.5 with high probability (rounding to the
nearest integer) and |δ| < 1 in the worst case. The approximate truncation
protocol in [1] has absolute error |δ| ≤ n + 1, where n is the number of parties.

Secure computation with rational numbers has been a challenging problem.
An interesting method was proposed in [13] for addition and multiplication of ra-
tional numbers using Paillier homomorphic encryption. This method works only
for a limited number of consecutive operations (without decryption), depending
on the size of the operands and the modulus of the encryption scheme (e.g., 15
operations for 1024-bit modulus and 32-bit numerator and denominator). Our

Secure Computation with Fixed-Point Numbers 37

approach based on fixed-point representation does not have such limitations and
offers a complete protocol family for arithmetic and comparison.

Protocols for multiplication and reciprocal of fixed-point numbers were first
presented in [5], together with two more general building blocks, reduction mod-
ulo 2m and division by 2m with rounding down. The fixed-point arithmetic
solutions in this paper are more efficient and accurate.

2 Preliminaries

2.1 Secure Computation Framework

Basic framework. Consider a group of n > 2 parties, P1, . . . , Pn, that com-
municate on secure channels. For 1 ≤ i ≤ n, party Pi has private input xi and
output yi, function of all inputs. Multiparty computation based on secret sharing
proceeds as follows. The parties use a linear secret sharing scheme to distribute
their private inputs to the group, creating a distributed state of the computation
where each party has a share of each secret variable. Certain subsets of parties
can reconstruct a secret by pooling together their shares (when needed), while
any other subset cannot learn anything about it. Moreover, the properties of the
secret sharing scheme allow the parties to compute with shared variables. The
protocols used for this purpose take on shared inputs and return shared outputs.
This provides the basis for secure protocol composition.

Let X and Y be random variables with finite sample spaces V and W and
Δ(X, Y) = 1

2

∑
v∈V

⋃
W |Pr(X = v) − Pr(Y = v)| the statistical distance be-

tween them. We say that the distributions are perfectly indistinguishable if
Δ(X, Y) = 0 and statistically indistinguishable if Δ(X, Y) is negligible in some
security parameter κ. Our protocols offer perfect or statistical privacy, in the
sense that the views of protocol execution (consisting of all values learned by an
adversary) can be simulated such that the distributions of real and simulated
views are perfectly or statistically indistinguishable, respectively.

We assume a basic framework that uses Shamir secret sharing over a finite
field F. This framework allows secure arithmetic in F with perfect privacy against
a passive threshold adversary able to corrupt t out of n parties. Essentially, in
this model, the parties do not deviate from the specified protocol and any t + 1
parties can reconstruct a secret, while t or less parties cannot distinguish it from
random uniform values in F. We assume |F| > n, to enable Shamir sharing, and
n > 2t, for multiplication of secret-shared values. We refer the reader to [7] for
a more formal and general presentation of this approach to secure computation.

Complexity metrics. In this framework, the running time of the protocols is
(usually) dominated by the communication between parties. We evaluate proto-
col complexity using two metrics that reflect different aspects of the interaction
between parties. Communication complexity measures the amount of data sent
by each party. For our protocols, a suitable abstract metric of communication
complexity is the number of invocations of a primitive during which every party
sends a share (field element) to the others, e,g., the multiplication protocol.

38 O. Catrina and A. Saxena

Table 1. Secure arithmetic in a finite field F

Operation Purpose Rounds Invocations

[c]F ← [a]F + [b]F Add secrets 0 0
[c]F ← [a]F + b Add secret and public 0 0
[c]F ← [a]Fb Multiply secret and public 0 0
[c]F ← [a]F[b]F Multiply secrets 1 1
a← Output([a]F) Reveal a secret 1 1

Round complexity measures the number of sequential invocations. This metric
is relevant for the inherent network delay, independent of the amount of data
sent. Invocations that can be executed in parallel count as a single round.

We denote [x] a Shamir sharing of x and [x]F a sharing in a particular field
F. Table 1 summarizes the secure arithmetic operations in the basic framework.

2.2 Data Representation

The next step toward secure computation using this approach is to map the
application data to field elements. The reverse mapping is performed to extract
the application data after the computation. We consider the following data types:
boolean values, signed integers, and signed fixed-point numbers.

Fixed-point representation. Fixed-point numbers are rational numbers repre-
sented as a sequence of digits split into integer and fractional parts by a vir-
tual radix point. For binary digits, a fixed-point number can be written x̃ =
s · (de−2 . . . d0.d−1 . . . d−f) and its value is x̃ = s ·∑e−2

i=−f di2i, where s ∈ {−1, 1},
e is the length of the integer part (including the sign bit), and f is the length
of the fractional part. Denote x̄ = s ·∑e+f−2

i=0 di2i and observe that x̃ = x̄ · 2−f ,
hence x̃ is encoded as an integer x̄ scaled by the factor 2−f .

We define a fixed-point data type as follows. Let k, e, and f be integers such
that k > 0, f ≥ 0, and e = k − f ≥ 0. Denote Z〈k〉 = {x ∈ Z | − 2k−1 + 1 ≤
x ≤ 2k−1 − 1}. The fixed-point data type with resolution 2−f and range 2e is
the set Q〈k,f〉 = {x̃ ∈ Q | x̃ = x̄ · 2−f , x̄ ∈ Z〈k〉}. Intuitively, Q〈k,f〉 is obtained
by sampling the range of real values [−2e−1 + 2−f , 2e−1 − 2−f] at 2−f intervals.

We use the following compact notation for a range of integers: [A..B] = {x ∈
Z | A ≤ x ≤ B} and [A..B) = {x ∈ Z | A ≤ x < B}.

Data encoding in a field. Any secret value in a secure computation has a data
type which is public information. Data types are encoded in a field F as follows.

Denote 0F and 1F the additive and multiplicative identities of F. Logical
values false, true and bit values 0, 1 are encoded as 0F and 1F , respectively. F
can be a small binary field F2m or prime field Zq. This encoding allows secure
evaluation of boolean functions using secure arithmetic in F. Encoding in F2m

is more efficient, because XOR is a local operation; we can take m = 8, which is
sufficient for Shamir sharing with n < 256 parties.

Secure Computation with Fixed-Point Numbers 39

Table 2. Complexity of the building blocks (the default field is Zq)

Protocol Rounds Invocations Field

[r]← PRandBit() 1 1 Zq

[r]← PRandBitL() 2 2 Zq1

[r]F28 , [r]← PRandBitD() 2 2 Zq1

[r]← PRandInt(k) 0 0 0

[a]← BitF2MtoZQ([a]F28)
2 2 Zq1

1 1 F28

[ck−1]F, . . . , [c0]F ← PreOR([ak−1]F, . . . , [a0]F) log(k) k
2

log(k) F

[cm−1]F, . . . , [c0]F ← BitAdd(a, [bm−1]F, . . . , [b0]F) log(m) m log(m) F

[am−1]F28 , . . . , [a0]F28 ← BitDec([a], k, m)
1 1 Zq

2 2m Zq1

log(m) m log(m) F28

[s]← LTZ([a], k)
1 1 Zq

2 2k Zq1

log(k) + 1 2k − 3 F28

Signed integers are encoded in Zq using the function fld : Z〈k〉 �→ Zq, fld(x̄) =
x̄ mod q, for q > 2k. For any integers ā, b̄ ∈ Z〈k〉 and operation � ∈ {+,−, ·}
we have ā � b̄ = fld−1(fld(ā) � fld(b̄)). Moreover, if b̄|ā then ā/b̄ = fld−1(fld(ā) ·
fld(b̄)−1). Secure arithmetic with signed integers can thus be computed using
secure arithmetic in Zq.

A secret fixed-point number x̃ of type Q〈k,f〉 is represented as a secret integer
x̄ = x̃2f encoded in Zq and public parameters that specify the resolution and
the range, f and e (or k = e + f). We define the map intf : Q〈k,f〉 �→ Z〈k〉,
intf (x̃) = x̃2f . Note that the fixed-point representation allows very efficient
encoding of a secret rational number, as a single field element.

We also use (when required) a bitwise encoding of integers, where each bit of
the binary representation is encoded and shared in a field F as described above.

We distinguish different representations of a number using the following sim-
plified notation: we denote x̃ a rational number of some fixed-point type Q〈k,f〉
and x̄ = x̃2f ∈ Z〈k〉 the integer value of its fixed-point representation; for secure
computation using secret-sharing we denote x = x̄ mod q ∈ Zq the field element
that encodes x̄ (and hence x̃) and [x] a sharing of x.

2.3 Building Blocks

We provide an overview of several building blocks and techniques used in fixed-
point arithmetic protocols. Their complexity is summarized in Table 2.

Shared random values. The protocols often use secret sharing together with
additive or multiplicative hiding, taking advantage of their combined capabilities
for computing with secret data and efficient conversion methods. For example,
given a shared variable [x] the parties can jointly generate a shared random value

40 O. Catrina and A. Saxena

[r], compute [y] = [x] + [r], and reveal y = x+ r. This is similar to one-time pad
encryption of x with key r.

For a secret x ∈ Zq and random uniform r ∈ Zq we obtain Δ(x+r mod q, r) =
0, hence perfect privacy. Alternatively, for x ∈ [0..2k), random uniform r ∈
[0..2k+κ), and q > 2k+κ+1 we obtain Δ(x + r mod q, r) < 2−κ, hence statistical
privacy with security parameter κ. The variant with statistical privacy can sub-
stantially simplify the protocols by avoiding wraparound modulo q, although it
requires larger q (hence larger shares) for a given data range. Statistical privacy
also holds for other distributions of r that can be generated more efficiently
or/and meet particular requirements: (1) r =

∑
i ri, where ri ∈ [0..2k+κ) are

random uniform integers; (2) r = 2kr′′ + r′, where r′′ =
∑

i r′′i and r′′i ∈ [0..2κ)
and r′ ∈ [0..2k) are random uniform integers.

We use Pseudo-random Replicated Secret Sharing (PRSS) [6] to generate
without interaction shared random values in F with uniform distribution and
random sharings of zero. Also, we use the integer variant of PRSS (RISS) [10]
to generate shared random integers in a given interval, and the ideas in [11] for
bit-share conversions (e.g., BitF2MtoZQ converts bit shares from F28 to Zq).

To enable these techniques, we assume in the remainder of the paper that
numbers are encoded in Zq as specified in Section 2.2 and q > 2k+κ+ν+1, where
k is the required integer bit-length, κ is the security parameter, ν = 	log(

(
n
t

)
)
,

n is the number of parties, and t is the corruption threshold.
Protocol PRandBit generates a random bit shared in Zq by combining the

protocol RandBit in [8] and protocols in [6]. A random uniform integer r ∈ [0..2k)
is constructed from shared random bits as [r] =

∑k−1
i=0 2i[ri]. Note that RandBit

includes an exponentiation that significantly increases the running time when
generating many random bits for large q. PRandBitL generates a shared random
bit in a small field Zq1 to reduce complexity, then converts its shares to the
target field Zq (e.g., 	log(q1)
 = 64). PRandBitD uses a similar technique to
generate a random bit shared in both Zq and F28 . Bits shared in Zq are used to
construct a random uniform integer, while bits shared in F28 are used for binary
computation. PRandInt(k) generates without interaction a shared random integer
r ∈ [0..2k+ν) distributed as sum of

(
n
t

)
random uniform integers in [0..2k).

Bit decomposition. Protocol 2.1, BitDec, is a general tool that provides a bridge
between secure computation with integers shared in Zq and with integers bitwise-
shared in Zq or F28 . The inputs are [a] = [fld(ā)] and the public integers k and
m, where ā ∈ Z〈k〉 and 0 < m ≤ k. The output is an array of shared bits equal
to the m least significant bits of the 2’s complement binary representation of ā.
The protocol follows the idea in [8,18,19] for bit decomposition of Zq elements,
but offers a more efficient solution for bounded integers and statistical privacy.
Protocol 2.1 extracts m bits in log(m) + 3 rounds with m log(m) + 2m + 1 invo-
cations, while the variant with perfect privacy and constant round complexity
[19] extracts k = 	log(q)
 bits in 51 rounds with 56k log(k) + 30k invocations.

Correctness. Let � = k + κ + ν. The protocol generates a random integer 0 ≤
r < 2� and computes c = (2� + 2k + a − r) mod q. For q > 2�+1 we have
(2k +a) mod q = 2k + ā and c = 2� +2k + ā− r. If ā ≥ 0 then (r+ c) mod 2k = ā

Secure Computation with Fixed-Point Numbers 41

and if ā < 0 then (r + c) mod 2k = 2k − |ā|, hence (r + c) mod 2k is equal to
the 2’s complement representation of ā. The protocol computes the m ≤ k least
significant bits of ā using the binary addition protocol BitAdd.

Protocol 2.1. ([am−1]F28 , . . . , [a0]F28) ← BitDec([a], k, m)

foreach i ∈ [0..m − 1] do parallel1

[ri]F28 , [ri] ← PRandBitD();2

[r′] ← ∑m−1
i=0 2i · [ri];3

[r′′] ← PRandInt(κ + k − m);4

[r] ← 2m · [r′′] + [r′];5

c ← Output(2k+κ+ν + 2k + [a] − [r]);6

([am−1]F28 , . . . , [a0]F28) ← BitAdd((cm−1, . . . , c0), ([rm−1]F28 , . . . , [r0]F28));7

return ([am−1]F28 , . . . , [a0]F28);8

Security. Protocol BitDec can leak information in step 6 when it reveals c. The
other building blocks provide perfect privacy or statistical privacy with security
parameter κ. Since Δ(c, r) < 2−κ we conclude that BitDec provides statistical
privacy with security parameter κ.

Complexity. Table 3 shows the complexity of BitDec and its building blocks.
Observe that most of the invocations are in small fields, Zq1 or F28 . The double-
shared random bits can be generated in parallel in 2 rounds and precomputed.
The random integer r is constructed such that to minimize the number of shared
random bits. BitAdd uses standard algorithms and is designed to offer a good
trade-off between round and communication complexity (a variant with minimal
communication needs 2 log(m) rounds).

3 Secure Fixed-Point Arithmetic

The protocols for arithmetic with fixed-point numbers are constructed using
secure integer arithmetic and scaling. Let ã, b̃ be fixed-point numbers. We denote
ã+ b̃, ã− b̃, ã · b̃, ã/b̃ the exact arithmetic operations (the result is a real number).
The output of a protocol may differ from the exact result, either because the
value is truncated to obtain a given fixed-point representation, or because the
algorithm computes an approximation of the result.

We present a secure arithmetic operation in three steps: we first give an algo-
rithm for exact arithmetic; then, we derive an algorithm for inputs and output of
given fixed-point types and limited precision arithmetic, and evaluate its error;
finally, we use this algorithm to obtain a protocol with secret inputs and output.
The second algorithm takes as inputs ā = ã2f , b̄ = b̃2f and computes the result
c̄ = c̃2f using integer arithmetic. For secure computation, fixed-point numbers
are encoded in Zq and secret-shared. Let a = ā mod q, b = b̄ mod q, c = c̄ mod q
the encoded numbers. On input the secret-shared values [a] and [b] the protocol
computes the secret-shared output [c] using secure arithmetic in Zq. Table 3
summarizes the complexity of the protocols presented in this section.

42 O. Catrina and A. Saxena

Table 3. Complexity of the fixed-point arithmetic protocols

Protocol Rounds Invocations Field

[d]← TruncPr([a], k, m) 1 1 Zq

2 2m Zq1

TruncPr after precomputation 1 1 Zq

[c]← FPMul([a], [b], k, f) 2 2 Zq

2 2f Zq1

FPMul after precomputation 2 2 Zq

[y]← FPDiv([a], [b], k, f) 2θ + 8 4θ + 8 Zq

(e = f , k = 2f , θ iterations) 2 2kθ + 6.5k Zq1

3 log(k) + 2 1.5k log(k) + 4k − 2 F28

FPDiv after precomputation 2θ + 8 4θ + 8 Zq

3 log(k) + 2 1.5k log(k) + 4k − 2 F28

[w]← AppRcr([b], k, f) 7 7 Zq

after precomputation 3 log(k) + 2 1.5k log(k) + 4k − 2 F28

3.1 Scaling

The purpose of scaling is to convert a given number to a fixed-point type with
different resolution. Let ã1 = ā12−f1 and suppose we want to convert this value
to ã2 = ā22−f2 . Let m = f2 − f1. We distinguish two cases. If m ≥ 0 we have to
scale up ã1 by computing ā2 = ā12m. We obtain ã2 = ã1 (same value with higher
resolution). If m < 0 we have to scale down (truncate) ã1. Let trunc(x̄, m) =
x̄/2m − δt, where δt is the absolute error of the truncation operation. We scale
down ã1 by computing ā2 = trunc(ā1, m) and obtain ã2 ≈ ã1 with absolute error
δ = ã1− ã2 = δt2−f2 . For example, if trunc(x̄, m) rounds down (discards m bits)
then 0 ≤ δt < 1. If it rounds to the nearest integer then −0.5 < δt ≤ 0.5.

A secret number [a1] is scaled up without interaction by computing [a2] =
[a1]2m. Truncation is more complicated. We present an accurate and efficient
solution. Let ā ∈ Z〈k〉 and 0 < m < k. Protocol 3.1, TruncPr, takes as inputs
[a] and the public integers k and m and returns [d] such that d̄ = ā/2m� + u,
where u is a random bit and Pr(u = 1) = (ā mod 2m)/2m. Therefore, the
protocol rounds ā/2m to the nearest integer with probability 1 − α, where α is
the distance between ā/2m and the nearest integer.

Correctness. A signed integer ā is encoded in Zq as a = fld(ā) = ā mod q. Step
1 maps ā ∈ [−2k−1..2k−1) to b ∈ [0..2k) by computing b = (2k−1 + a) mod q =
2k−1 + ā. Observe that b′ = b mod 2m = ā mod 2m for any 0 < m ≤ k. Denote
� = k + κ + ν. Steps 2-6 generate a random secret r ∈ [0..2�) and reveal c = (b +
r) mod q. For q > 2�+1 we have q > b+ r and hence c = b+ r. Let c′ = c mod 2m

and r′ = r mod 2m. We see that c′ = (b′ + r′) mod 2m = b′ + r′ − u · 2m, where
u ∈ {0, 1}. Therefore, steps 1-9 compute a′ = (ā mod 2m) − u · 2m.

Let d′ = (a−a′) mod q and observe that d′ = (ā−(ā mod 2m)+u·2m) mod q =
(ā/2m� · 2m + u · 2m) mod q. The protocol returns d = d′(2−m mod q) mod q.
We have d = (ā/2m�+u) mod q = fld(ā/2m�+u), hence the output is correct.

Secure Computation with Fixed-Point Numbers 43

Protocol 3.1. [d] ← TruncPr([a], k, m)

[b] ← 2k−1 + [a];1

foreach i ∈ [0..m − 1] do parallel2

[ri] ← PRandBitL();3

[r′] ← ∑m−1
i=0 2i · [ri];4

[r′′] ← PRandInt(q, κ + k − m);5

[r] ← 2m · [r′′] + [r′];6

c ← Output([b] + [r]);7

c′ ← c mod 2m;8

[a′] ← c′ − [r′];9

[d] ← ([a] − [a′])2−m;10

return [d];11

Probabilistic rounding. Observe that b′ + r′ ∈ [0..2m+1 − 2] and that u = 1
if b′ + r′ ≥ 2m and u = 0 if b′ + r′ < 2m − 1. It follows that Pr(u = 1) =
Pr(r′ ≥ 2m − b′). We see that p(b′) = Pr(u = 1) grows with b′ from p(0) = 0
to p(2m − 1) ≈ 1. For example, if r′ is random uniform in [0..2m − 1], we obtain
p(b′) = b′/2m, hence p(0) = 0, p(2m/2) = 1/2, and p(2m − 1) = 1 − 2−m. Note
that deterministic rounding is too expensive because it requires comparisons.

Security. Protocol TruncPr can leak information in step 7 when it reveals c = b+r.
The other building blocks provide perfect privacy or statistical privacy with
security parameter κ. Since Δ(c, r) < 2−κ we conclude that TruncPr provides
statistical privacy with security parameter κ.

Complexity. All random bits are generated in parallel in 1 or 2 rounds depending
on the protocol used, PRandBit or PRandBitL, and can be precomputed. The
construction of r minimizes the number of shared random bits generated by the
protocol. Table 3 shows the complexity of the variant using PRandBitL.

Extensions. Observe that b′ = c′− r′ +u ·2m and that u = 1 if c′ < r′ and u = 0
if c′ ≥ r′. We can compute [u] using a comparison protocol for bitwise-shared
integers and obtain a protocol Trunc([a], k, m) that computes d̄ = ā/2m�, i.e.,
truncates m bits and rounds down. This is the truncation protocol used in [5].
Note that TruncPr is substantially more efficient than Trunc, since it avoids an
expensive bitwise comparison, and at the same time reduces the rounding error
with high probability to |δt| < 0.5.

Furthermore, if ā < 0 then ā/2k−1� = −1 and if ā ≥ 0 then ā/2k−1� = 0.
Therefore, we can determine the sign of a secret integer by computing [s] =
−Trunc([a], k, k − 1). This is the comparison protocol LTZ([a], k) in Table 2.

3.2 Addition, Subtraction, and Comparison

We specify addition and subtraction for values of the same fixed-point type.
Values of different types have to be converted to the same type. Let ã, b̃ ∈ Q〈k,f〉
and c̃ = ã + b̃. Since c̃ = (ā + b̄)2−f , we obtain the representation of c̃ with

44 O. Catrina and A. Saxena

resolution 2−f by computing c̄ = ā + b̄. For secret-shared values we compute
[c] = [a]+ [b] and [c] = a+[b] without interaction. The output is the exact result
and has the same type as the inputs. Subtraction is similar.

Integer comparison operators with secret inputs and output can be con-
structed using the following two protocols: EQZ([a]), that computes ā

?= 0, and

LTZ([a]), that computes ā
?
< 0. For example, EQ([a], [b]) = EQZ([a] − [b]) com-

putes ā
?= b̄ and GE([a], [b]) = 1−LTZ([a]− [b]) computes ā

?≥ b̄. We can also use
these protocols for fixed-point inputs of the same type and obtain exact results.

3.3 Multiplication

We first consider multiplication of two numbers of the same fixed-point type,
ã, b̃ ∈ Q〈k,f〉. Let c̃ = ãb̃. Since c̃ = āb̄2−2f , we obtain the representation of the
exact result c̃ with resolution 2−2f by computing c̄ = āb̄ (if overflow does not
occur). For secret-shared values we compute [c] = [a][b] with complexity 1 round
and 1 invocation. If an input is public then [c] = a[b], without interaction.

The output of a multiplication is usually scaled down to resolution 2−f in order
to obtain a valuewith the same type as the inputs and to limit the size of the integers
that encode the fixed-pointnumbers. Thus, for a typicalmultiplicationwe compute
d̄ = trunc(āb̄, f) and obtain d̃ ≈ ãb̃ with absolute error δ = ãb̃ − d̃ = δt2−f . The
secure computation is shown in Protocol 3.2. Observe that the output overflows
when the intermediate value āb̄ reaches k + f bits. Therefore, Zq must support
integers of at least k + f bits in order to avoid overflow of āb̄ for all valid outputs.

Protocol 3.2. [d] ← FPMul([a], [b], k, f)

[c] ← [a][b];1

[d] ← TruncPr([c], 2k, f);2

return [d];3

Fixed-point multiplication with inputs and outputs of different types can be
computed using similar protocols, with the same complexity and accuracy. For
example, if the inputs are ã = ā2−fa , b̃ = b̄2−fb and the output is d̃ = d̄2−f ,
where f ≤ fa + fb, the computation is d̄ = trunc(āb̄, fa + fb − f). We obtain
d̃ ≈ ãb̃ with absolute error δ = δt2−f . Truncation is not necessary if one input
is an integer and the other one has the same resolution as the output.

We point out two optimizations that improve the efficiency and accuracy of
the protocols by reducing the number of truncations. We assume inputs and
outputs of the same type Q〈k,f〉 and |δt| < 1.

We can evaluate the inner product
∑m

i=1 ãib̃i with error δ = δt2−f by com-
puting d̄ = trunc(

∑m
i=1 āib̄i, f). Computing d̄′ =

∑m
i=1 trunc(āib̄i, f) is both in-

efficient and less accurate, since the cumulated errors can reach |δ′| < m2−f .
A double multiplication ãb̃c̃ can be evaluated with absolute error δ = δt2−f by
computing d̄ = trunc(āb̄c̄, 2f), if the data representation supports integers of
k + 2f bits. On the other hand, if we compute d̄′ = trunc(trunc(āb̄, f)c̄, f), the
error becomes δ′ ≈ δt2�−2f , assuming c̄ ∈ [2�−1..2�).

Secure Computation with Fixed-Point Numbers 45

3.4 Division

Secure division with secret dividend and public divisor follows immediately from
fixed-point multiplication. Let ã, b̃ ∈ Q〈k,f〉, and assume ã is secret and b̃ is
public. We can obtain the secret quotient ỹ ≈ ã/b̃ ∈ Q〈k,f〉 with error δ = δt2−f

by computing the reciprocal x̃ ≈ 1/b̃, x̃ ∈ Q〈k+f,k〉, and then [y] = TruncPr([a] ·
fld(intk(x̃)), k). Therefore, if the divisor is public the division protocol has the
same complexity as the truncation. For example, this protocol may be sufficient
for secure evaluation of statistics like sample mean μ = 1

N

∑N
i=1 xi and variance

σ2 = 1
N−1

∑N
i=1(xi − μ)2 since N is usually public.

The problem becomes difficult when the divisor is secret. The algorithms for
dividing fixed-point numbers follow two main approaches: digit recurrence (sub-
tractive division) and functional iteration (multiplicative division) [12]. Func-
tional iteration is more suitable for secure computation, because the algorithms
converge faster and are simpler to implement with the available building blocks.
These algorithms fall into two main classes: algorithms that use the Newton-
Raphson method for computing the reciprocal and algorithms that use series
expansion, in particular Goldschmidt’s method. Both methods require a suit-
able initial approximation, which is the main hurdle for secure computation.
Moreover, both offer quadratic convergence and the iterations have similar com-
plexity. The Newton-Raphson iterations are self correcting (truncation errors in
an iteration decrease quadratically during next iterations), but the multiplica-
tions are dependent and have to be computed sequentially. For Goldschmidt’s
method, the multiplications can be computed concurrently, but truncation errors
cumulate during the iterations. We developed and evaluated protocols for both
methods. We present in this paper a protocol based on Goldschmidt’s method
that offers better efficiency (for similar accuracy).

Goldschmidt’s method for computing a/b can be described as follows [16].
Let w0 be an initial approximation of 1/b with relative error ε0 < 1, and let
a0 = a, b0 = b. For i ≥ 1 the algorithm computes: ai = ai−1wi−1, bi = bi−1wi−1,
wi = 2 − bi. Denote ri =

∏i
j=0 wj and observe that:

a

b
=

aw0 . . .wi−1

bw0 . . .wi−1
=

ai

bi
=

aiwi

biwi
=

ai+1

bi+1
=

ari

bri
.

The relative error of the initial approximation is ε0 = 1 − bw0. It can be shown
(by induction) that bi = 1 − ε2

i−1

0 and wi = 1 + ε2
i−1

0 . Observe that if ε0 < 1
then bi converges to 1 and hence ai converges to the quotient a/b and ri to the
reciprocal 1/b. Denoting ei = ε2

i

0 , the recurrence relations that approximate the
quotient can be written as follows: a1 = aw0; ai+1 = ai(1 + ei−1), ei = e2

i−1.
After i iterations we obtain ai+1 = (a/b)(1− ε2

i

0), hence ai+1 ≈ a/b with relative
error ε2

i

0 . We can obtain similar recurrence relations for 1/b.

Initial approximation. A critical issue is to determine an initial approximation
that ensures fast convergence. The usual method is to compute a normalized
input c ∈ [0.5, 1) and then find an approximation of 1/c. We use the linear

46 O. Catrina and A. Saxena

approximation w0 = 2.9142 − 2c with relative error ε0 < 0.08578 (3.5 initial
bits) [12]. This approximation offers sufficient accuracy for our purposes and
can be computed without interaction for secret c.

More accurate initial approximations can be obtained by table lookup [17].
For example, a piece-wise linear approximation using a table with 2k entries
offers initial approximations with accuracy of 2k + 2 bits. A reciprocal with 64-
bit accuracy can thus be computed in 2 iterations, with an initial approximation
based on a table with only 128 entries. However, the efficiency gain is reduced
by the additional cost of the table lookup with secret index.

Division algorithm. The division protocol performs the computation described
above using the building blocks in the previous sections. We give an algorithm
for positive inputs and then show how to extend it to signed inputs.

Let ã, b̃ ∈ Q+
〈k,f〉 and assume that 2�−f−1 ≤ ã < 2�−f and 2m−f−1 ≤ b̃ <

2m−f , for some � ≤ k and m ≤ k. Our goal is to compute ỹ ∈ Q+
〈k,f〉 such that

ỹ ≈ ã/b̃ and the maximum absolute error is close to the resolution 2−f of the
output. We describe the exact computation (without truncations) followed by
the computation with limited precision carried out by the protocol:

1. Computation of the initial approximation w̃ ≈ 1/b̃:
Exact arithmetic: Normalize b̃ to obtain c̃ ∈ (0.5, 1). The normalized divisor
is c̃ = b̃2f−m = b̃2u−e, where u = k−m = e+f−m. Let d̃ = 2.9142−2c̃ be the
initial approximation of 1/c̃. The initial approximation of 1/b̃ is w̃ = d̃2u−e.
Approximate arithmetic: Assume b̃ with resolution 2−f , c̃ with resolution
2−k and w̃ with resolution 2−f . Let b̄ = b̃2f , c̄ = c̃2k, w̄ = w̃2f . Compute:
c̄ = b̄2u; d̄ = intk(2.9142)− 2c̄; w̄ = trunc(d̄2u, 2e).

2. Computation of ỹ ≈ ã/b̃:
Exact arithmetic: Let ỹ0 = ãw̃ and x̃0 = 1− b̃w̃ (note that x̃0 is the relative
error of w̃ and 0 ≤ x̃0 < 1). For 1 ≤ i < θ do: ỹi = ỹi−1 + ỹi−1x̃i−1;
x̃i = x̃i−1x̃i−1. Let ỹ = ỹθ = ỹθ−1 + ỹθ−1x̃θ−1 (last iteration). We obtain
ỹ ≈ ã/c̃ with relative error εθ < ε2

θ

0 .
Approximate arithmetic: Assume ã, b̃, w̃, ỹi with resolution 2−f , and x̃i

with resolution 2−2f . Denote ā = ã2f , b̄ = b̃2f , ȳi = ỹi2f , w̄ = w̃2f , and
x̄i = x̃i22f . Let x̄0 = int2f (1.0) − b̄w̄ and ȳ0 = trunc(āw̄, f). For 1 ≤ i < θ
do: ȳi = ȳi−1 + trunc(ȳi−1x̄i−1, 2f); x̄i = trunc(x̄i−1x̄i−1, 2f). Let ȳ = ȳθ−1+
trunc(ȳθ−1x̄θ−1, 2f) (last iteration).

Correctness. Since 2m−1 ≤ b̃2f < 2m, we have 2k−1 ≤ b̃2f2k−m < 2k and
2−1 ≤ b̃2f−m < 1, so the normalized divisor is c̃ = b̃2f−m = b̃2u−e.

The initial approximation of 1/c̃ is d̃ = 2.9142 − 2c̃. From d̃ ≈ 1/(b̃2u−e)
it follows that w̃ = d̃2u−e ≈ 1/b̃. The relative error of w̃ is x̃ = (1/b̃ −
w̃)/(1/b̃) = 1 − b̃w̃. For the fixed-point types in the algorithm we obtain:
c̃2k = b̄2−f2u−e2k = b̄2u hence c̄ = b̄2u; d̃2k = (intk(2.9142)2−k−2c̄2−k)2k hence
d̄ = intk(2.9142) − 2c̄; w̃2f = d̄2−k2u−e2f = d̄2u2−2e hence w̄ = trunc(d̄2u, 2e);
and x̃022f = (int2f (1.0)2−2f − b̄2−f w̄2−f)22f hence x̄0 = int2f (1.0) − b̄w̄.

Secure Computation with Fixed-Point Numbers 47

The iterations follow the simple recurrence relations presented earlier. Cor-
rectness of the computation with limited precision is easy to verify. Observe that
the two fixed-point multiplications in an iteration can be computed in parallel,
and in the last iteration it is sufficient to compute ỹθ.

Signed inputs. Since x̃i + 1 ≥ 0 the division algorithm works for ã ≤ 0 without
modification. The extension to b̃ < 0 affects only the initial approximation algo-
rithm, which is modified to return w̃ ≈ 1/b̃ with the correct sign. Thus, ỹ0 = ãw̃
is initialized with the correct sign, and the iterations preserve it.

Accuracy. The quotient error has two main components: the approximation error
of the method, which depends on the initial approximation and the number of
iterations, and the truncation error due to computation of the iterations with
limited precision. The accuracy is limited by the resolution 2−f of the output.

For exact computation of the iterations, the relative error after iteration θ is
εθ < ε2

θ

0 , where ε0 is the relative error of the initial approximation of 1/b̃. For
example, we use a linear approximation with ε0 < 0.08578, so the approximation
error of ỹ5 is ε5 < 7.4 10−35. This implies 113 exact quotient bits, hence an
absolute error less than 2−f for k = 2f ≤ 112 bits.

For θ iterations, the cumulated absolute error δT due to truncations is upper
bounded by θ2−f . This error is essentially caused by truncation of ỹi, which
adds an error |δTy | < 2−f per iteration. Truncation of x̃i introduces a negligible
error |δTx | < 2−2f � |δTy |. Assuming sufficient iterations for an approximation
error 2−f , the overall error of the algorithm is bound by (θ + 1)2−f . The error
bound can be reduced to 2−f by slightly increasing the resolution of ỹi.

We note that the average accuracy of the truncations is better than the worst
case considered above. The error bound observed in experiments with an imple-
mentation of the division protocol is actually close to 2−f .

Protocols. Let ã, b̃ ∈ Q〈k,f〉 and b̃ �= 0. On input [a], [b] the Protocol 3.3, FPDiv,
computes [y] such that ỹ ∈ Q〈k,f〉 and ỹ ≈ ã/b̃, using the algorithm described
above. Protocol 3.4, AppRcr, provides the initial approximation of 1/b̃. It takes
as input the divisor [b] and returns [w] such that w̃ ∈ Q〈k,f〉 and w̃ ≈ 1/b̃.
The linear approximation is computed using the normalized value of the divisor
obtained by Protocol 3.5, Norm.

Correctness. The correctness of FPDiv and AppRcr is easy to verify based on
the algorithm description. Protocol Norm takes as input [b], for b̃ ∈ Q〈k,f〉 and
computes the secret integer values [c] and [v′] such that 2k−1 ≤ c̄ < 2k and
c̄ = b̄v̄′. Suppose that 2m−1 ≤ |b̄| < 2m, m ≤ k. Observe that |v̄′| = 2k−m

and |c̄| = (|b̃|2f−m)2k. Therefore, c̄ is the representation of the normalized input
b̃2f−m ∈ [0.5, 1) with resolution 2−k and v̄′ is the signed scale factor. Steps 1-2
compute the sign of b̄ as a secret integer s̄ ∈ {−1, 1} using the protocol LTZ, and
then the absolute value of the input x̄ = s̄b̄ = |b̄|. Steps 3-10 determine the scale
factor 2k−m using bit decomposition and the protocol PreOR, which returns all
prefixes [yi] =

∨k−1
j=i [xi], for 0 ≤ i < k. Finally, steps 11-12 compute (in parallel)

the normalized input c̄ = x̄2k−m and the signed scale factor v̄′ = s̄2k−m.

48 O. Catrina and A. Saxena

Protocol 3.3. [y] ← FPDiv([a], [b], k, f)

(θ, α) ← (log k
3.5
, fld(int2f (1.0)));1

[w] ← AppRcr([b], k, f);2

[x] ← α − [b][w];3

[y] ← [a][w];4

[y] ← TruncPr([y], 2k, f);5

for i ∈ [1..θ − 1] do6

[y] ← [y](α + [x]);7

[x] ← [x][x];8

[y] ← TruncPr([y], 2k, 2f);9

[x] ← TruncPr([x], 2k, 2f);10

[y] ← [y](α + [x]);11

[y] ← TruncPr([y], 2k, 2f);12

return [y];13

Protocol 3.4. [w] ← AppRcr([b], k, f)

α ← fld(intk(2.9142));1

([c], [v]) ← Norm([b], k, f);2

[d] ← α − 2[c];3

[w] ← [d][v];4

[w] ← TruncPr([w], 2k, 2(k − f));5

return [w];6

Protocol 3.5. ([c], [v′]) ← Norm([b], k, f)

[s] ← 1 − 2 · LTZ([b], k);1

[x] ← [s][b];2

([xk−1]F28 , . . . , [x0]F28) ← BitDec([x], k, k);3

([yk−1]F28 , . . . , [y0]F28) ← PreOR([xk−1]F28 , . . . , [x0]F28);4

foreach i ∈ [0..k − 1] do parallel5

[yi] ← BitF2MtoZQ([yi]F28);6

foreach i ∈ [0..k − 2] do7

[zi] ← [yi] − [yi+1];8

[zk−1] ← [yk−1];9

[v] ← ∑k−1
i=0 2k−i−1[zi];10

[c] ← [x][v];11

[v′] ← [s][v];12

return ([c], [v′]);13

Security. The division algorithm performs the same sequence of operations re-
gardless of the secret values. The loop counters depend on the desired accuracy
of the division operation and the fixed-point representation, which are public
parameters. The three protocols do not reveal any secret-shared variable and

Secure Computation with Fixed-Point Numbers 49

all their sub-protocols provide either perfect or statistical privacy. We conclude
that FPDiv provides statistical privacy.

Complexity. The round and communication complexity of the protocols FPDiv
and AppRcr are shown in Table 3 for k = 2f . Observe that most of the invoca-
tions are in a small field, Zq1 or F28 , so their communication and computation
overhead is low. All shared random bits used in FPDiv and its subprotocols can
be generated in parallel in 2 rounds. An iteration is computed in 2 rounds (two
fixed-point multiplications in parallel).

The complexity of FPDiv is clearly dominated by the initial approximation,
especially the normalization step. For example, if k = 112 and θ = 5 (≈ 112 bits
accuracy), steps 3-12 of FPDiv are computed in 12 rounds, and AppRcr adds 29
rounds (27 rounds for Norm), giving a total of 43 rounds. A variant of FPDiv
with positive divisor is sufficient in many applications and can be computed in
33 rounds by skipping the steps 1, 2, and 12 of Norm.

Note that the building blocks in Table 2 are optimized for low communication
complexity. The round complexity of FPDiv can be reduced using building blocks
that trade off higher communication complexity for a lower number of rounds.

4 Conclusions

Business applications of secure computation need a protocol family that provides
operations with all primitive data types and allows secure protocol composition
and efficient application development. We presented a protocol family that fills
an important gap by enabling secure computation with rational numbers.

Fixed-point representation offers the most efficient encoding of rational num-
bers as well as efficient protocols for the most frequent operations: addition,
subtraction, multiplication, and comparison. Division is simple for public divi-
sor, but becomes quite complex when the divisor is secret. On the other hand,
secure arithmetic with floating-point numbers is clearly not practical.

The protocols have been implemented in Java and tested in complex applica-
tions like secure linear programming using Simplex (with a variant of the division
protocol that was optimized for multiple divisions with the same divisor).

On-going work focuses on improving the efficiency of division and adding
protocols for secure evaluation of other mathematical functions.

Acknowledgements. Part of the work presented in this paper was funded by the
European Commission through the grant FP7-213531 to the SecureSCM project.
The authors thank the anonymous reviewers for their helpful comments.

References

1. Algesheimer, J., Camenish, J., Shoup, V.: Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg (2002)

50 O. Catrina and A. Saxena

2. Atallah, M., Blanton, M., Deshpande, V., Frikken, K., Li, J., Schwarz, L.: Se-
cure Collaborative Planning, Forecasting, and Replenishment (SCPFR). In: Multi-
Echelon/Public Applications of Supply Chain Management Conference (2006)

3. Atallah, M., Bykova, M., Li, J., Frikken, K., Topkara, M.: Private Collaborative
Forecasting and Benchmarking. In: Proc. WPES 2004, Washington (2004)

4. Brandt, F.: How to obtain full privacy in auctions. International Journal of Infor-
mation Security 5(4), 201–216 (2006)

5. Catrina, O., Dragulin, C.: Multiparty Computation of Fixed-Point Multiplication
and Reciprocal. In: Proc. 20th International Workshop on Database and Expert
Systems Application (DEXA 2009), pp. 107–111. IEEE Computer Society, Los
Alamitos (2009)

6. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

7. Cramer, R., Damg̊ard, I., Maurer, U.: General Secure Multi-Party Computation
from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

8. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and ex-
ponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
285–304. Springer, Heidelberg (2006)

9. Damg̊ard, I., Nielsen, J., Toft, T., Pagter, J.I., Jakobsen, T., Bogetoft, P., Nielsen,
K.: A Practical Implementation of Secure Auctions Based on Multiparty Integer
Computation. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107,
pp. 142–147. Springer, Heidelberg (2006)

10. Damg̊ard, I., Thorbek, R.: Non-interactive Proofs for Integer Multiplication. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 412–429. Springer, Hei-
delberg (2007)

11. Damgard, I., Thorbek, R.: Efficient Conversion of Secret-shared Values Between
Different Fields. In: Cryptology ePrint Archive, Report 2008/221 (2008)

12. Ercegovac, M.D., Lang, T.: Digital Arithmetic. Morgan Kaufmann, San Francisco
(2003)

13. Fouque, P., Stern, J., Wackers, G.: CryptoComputing with Rationals. In: Blaze,
M. (ed.) FC 2002. LNCS, vol. 2357, pp. 136–146. Springer, Heidelberg (2003)

14. From, S.L., Jakobsen, T.: Secure Multi-Party Computation on Integers. Master’s
thesis, Univ. of Aarhus, Denmark, BRICS, Dep. of Computer Science (2006)

15. Kiltz, E., Leander, G., Malone-Lee, J.: Secure Computation of the Mean and Re-
lated Statistics. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 283–302.
Springer, Heidelberg (2005)

16. Markstein, P.: Software Division and Square Root Using Goldschmidt’s Algorithms.
In: Proc. 6th Conference on Real Numbers and Computers, pp. 146–157 (2004)

17. Masayuki Ito, N.T., Yajima, S.: Efficient Initial Approximation for Multiplicative
Division and Square Root by a Multiplication with Operand Modification. IEEE
Transactions on Computers 46(4) (1997)

18. Nishide, T., Ohta, K.: Multiparty Computation for Interval, Equality, and Com-
parison Without Bit-Decomposition Protocol. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)

19. Toft, T.: Primitives and Applications for Multi-party Computation. PhD disserta-
tion, Univ. of Aarhus, Denmark, BRICS, Dep. of Computer Science (2007)

20. Toft, T.: Solving Linear Programs Using Multiparty Computation. In: Dingledine,
R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 90–107. Springer, Heidelberg
(2009)

Implementing a High-Assurance Smart-Card OS

Paul A. Karger1, David C. Toll1, Elaine R. Palmer1, Suzanne K. McIntosh1,
Samuel Weber1,�, and Jonathan W. Edwards2

1 IBM Thomas J. Watson Research Center,
P.O. Box 704, Yorktown Heights, NY 10598, USA

karger@watson.ibm.com, {toll,erpalmer,skranjac,jone}@us.ibm.com
2 IBM Global Business Services

1500 Aristides Blvd., Lexington, KY 40511, USA

Abstract. Building a high-assurance, secure operating system for mem-
ory constrained systems, such as smart cards, introduces many chal-
lenges. The increasing power of smart cards has made their use feasible
in applications such as electronic passports, military and public sector
identification cards, and cell-phone based financial and entertainment
applications. Such applications require a secure environment, which can
only be provided with sufficient hardware and a secure operating sys-
tem. We argue that smart cards pose additional security challenges when
compared to traditional computer platforms. We discuss our design for a
secure smart card operating system, named Caernarvon, and show that
it addresses these challenges, which include secure application download,
protection of cryptographic functions from malicious applications, resolu-
tion of covert channels, and assurance of both security and data integrity
in the face of arbitrary power losses.

1 Introduction

The design of higher security operating systems has been studied since the 1960s.
However, most of these designs have been for relatively large computer systems.
This paper examines a series of issues that a high-security operating system must
face to be able to run in an extremely memory-limited environment, such as a
smart card, a cell phone, a small PDA, or other constrained pervasive devices.
For a good overview of smart card technology in general, see [11].

As the prime uses of smart cards are identification, authorization and encryp-
tion, it is crucial that sufficient trust be established between different applica-
tions executing on the same card. The lack of a trusted secure operating system
for smart cards has resulted in some users having a “necklace of cards”, each
one hosting a single application. The Caernarvon project was started to create
such a secure smart card operating system. A very high-level overview of the
Caernarvon system can be found here [14]. In contrast, this paper focuses on a

� Now with the National Science Foundation, 4201 Wilson Boulevard, Arlington, Vir-
ginia 22230, samweber@acm.org

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 51–65, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

52 P.A. Karger et al.

number of challenges faced in actually implementing a high-assurance operating
system on a smart card.

Most existing smart card systems have required that all applications be writ-
ten together and loaded onto the card prior to the card being issued, because
smart card processors did not support internal security controls, and all applica-
tions had to be mutually trusting. However, with the development of new smart
card processors with internal security features (see Section 1.1), much stronger
security could be provided. Thus, one primary goal of the Caernarvon project
was to build a smart card operating system capable of supporting the download
of applications that might be actively hostile, both to each other and to the un-
derlying operating system. To be able to protect against such potentially hostile
applications, the Caernarvon security policy was chosen to be mandatory access
controls (MAC), because only such controls can effectively deal with applications
that may contain Trojan horses. (See Section 3.)

This paper will focus on the specific challenges that must be faced to build a
high-assurance operating system for such memory-constrained devices as smart
cards. Sections 4 and 5 examine in detail the following security aspects of the op-
erating system that are particularly different from previously described work on
high-assurance operating systems: a hierarchical file system structure to reduce
memory consumption, elimination of global address space covert channels that
are unique to smart cards, reducing memory consumption of mandatory access
classes, capability-based discretionary access controls, reliable persistent storage
in the presence of power failures and memory write errors, secure application
download, secure cryptographic implementations without trusted applications,
and secure chip initialization without slowing down manufacturing lines.

1.1 Feasibility

The first question in the Caernarvon project was “Would it be feasible at all
to build such a system?”. When IBM Research first considered the project,
the answer was, “No.” Early smart card chips did not have adequate hardware
support for security, such as separate supervisor and user states and memory
protection.

The project only became possible when the Philips (now NXP) SmartXA chip
was introduced as the first smart card processor to meet those needs. Karger,
Toll and McIntosh [9] discuss these hardware requirements in much more depth.
Since then, other vendors have also introduced chips that meet the requirements
to support the Caernarvon operating system. However, as discussed in [9], not
all chips that claim to support memory protection can do so without introducing
covert channel problems.

The current SmartXA2 chip supports a relatively large amount of memory for
a smart card chip: 7 Kbytes of RAM, 256 Kbytes of ROM, and 144 Kbytes of
EEPROM. However, compared to most contemporary secure computer system
projects, that amount of memory is extremely tiny. Note that the numbers are
in kilobytes, not megabytes or gigabytes, and there is no external peripheral
memory, such as a disk. All memory must fit on the single chip.

Implementing a High-Assurance Smart-Card OS 53

2 Applications of the Technology

Many applications could benefit from a high assurance smart card operating sys-
tem. Generally, those applications have data or software from multiple parties
co-residing on the same card, and require some level of data sharing between the
parties. The trust relationship of those parties ranges from friendly to mistrust-
ful to hostile. The threats addressed range from honest mistakes in software to
attacks by financially-motivated cardholders to industrial espionage to compre-
hensive logical and physical attacks by hostile adversaries and insiders. Below is
a list of sample applications:

– an electronic passport issued by one government, with electronic entry/exit
timestamps added by other (possibly hostile) governments, described in [8].

– a corporate/school campus card, with multiple application providers for
copiers, vending machines, public transit, and building access

– an ID card for coalition military forces for building or computer access
– a subscriber identity module for mobile phones to hold credentials for finan-

cial institutions, governments, and phone service providers, etc.

There are roadblocks hindering the commercialization of a high assurance smart
card operating system, such as: significant investment in time and funding is
required by multiple institutions; the skills required cross several domains; some
existing smart card application specifications have mandated protocols that pre-
clude a high level of security. For example, the electronic passports specified
by the International Civil Aviation Authority require the use of weak crypto-
graphic authentication protocols, and the protocols of the Federal Employee
Personal Identity Verification program require some very sensitive information
to be transmitted in unencrypted form. In attempting to resolve these issues, the
Caernarvon development led to a clearer understanding that in order to meet
many security goals, privacy goals must also be met [8] .

3 Background – Security Policy and Authentication

The Caernarvon system builds on previous work on mandatory security poli-
cies to provide multi-level security. Mandatory security was chosen specifically
because a major goal of the Caernarvon system is to support downloading of
multiple applications from multiple application providers, who may be mutually
hostile. Caernarvon system security is enforced using a mandatory security pol-
icy described more completely in [12] that is based on modifications of the Bell
and LaPadula secrecy model [2] and the Biba integrity model [3].

Enforcement of a meaningful security policy requires that there be a secure
mechanism to ensure that the use of the desired access classes is valid and correct.
This authentication must be performed by the smart card’s operating system
itself and not by an application, so that the operating system is guaranteed, and
can guarantee to others, that the authentication has been correctly completed.
The smart card operating system can use this knowledge to safely grant or deny

54 P.A. Karger et al.

the host system access to files and other system objects on the card. Space does
not permit including the full description of this authentication protocol which is
available in [13].

4 Security Design Challenges

4.1 File System

The Caernarvon system implements a smart card file system. Besides the chal-
lenges caused by the specification and hardware restrictions, the file system must
also enforce the system’s security policy. There also must be a quota mechanism
and support for memory-mapped files. The file system is the major repository
of system state, and hence security is crucial to its design and implementation.

Caernarvon implements an ISO 7816-4 File System, with certain security ex-
tensions described in this section. This file system is implemented by two separate
components, namely the Persistent Storage Manager (PSM) and the file system
abstraction layer.

The PSM provides and manages memory objects, that is, blocks of persis-
tent storage. Smart cards can have their power sources removed unexpectedly,
corrupting in-progress memory writes. An important purpose of the PSM is to
maintain the integrity of the memory objects, allowing other system components
to ignore power interruption issues.

The PSM is not exposed to user mode applications. The file system layer sits
on top of the PSM, and it is visible to applications.

File System Structure. The ISO 7816-4 standard defines a hierarchical file
system, which has a single MF (Master File, equivalent to “root” in Unix),
which contains DFs (Dedicated Files, otherwise known as directories) and/or
EFs (Elementary Files). The Caernarvon system extends this model by defining
another file type, an “XF” (Executable File), which are executable programs.

Unlike most other file systems, the Caernarvon MF and DFs have no table of
the files that they contain; instead, each DF and EF (including each XF) in the
system has a pointer to its parent, as shown in Figure 1. This saves the space that
would be occupied by the list of file names and the reference to each file; it also

Fig. 1. Directory Structure Implementation

Implementing a High-Assurance Smart-Card OS 55

means that, when files are created or modified, there is no need to update the
corresponding DF entry for that file. However, this design has the drawback that
file system searches require examining every file in the system. Since the amount
of persistent memory is extremely limited (< 256 Kbytes), there can be only a
small number of files in any given smart card, and this extended search cannot
create a performance problem. Obviously, this space/time tradeoff algorithm
does not scale to large memories with lots of files. Eventually, smart cards will
have much larger persistent memories available. In that case, the highly modular
and layered design of Caernarvon would make switching to a more conventional
directory structure quite easy.

An obvious, but incorrect optimization for the linear search would be to cache
the information about recently opened files. However, such a cache could not fit
in RAM (only 7 kbytes total) and would itself consume the scarce persistent
memory that we are trying to save. Furthermore, the open file table itself serves
as a small cache, as long as the file remains open. Due to the slow communications
speeds of smart cards, switching applications consumes more time than any file
system caching would save.

The MF, each DF, and the headers and data areas of all files, are each held in
a PSM memory object, the size and location of which are defined by the PSM’s
object descriptors, as shown in Figure 2.

Fig. 2. PSM Memory Objects for Files

In general, files are packed so as to minimize the space and number of memory
blocks required for their storage. In the case of most data files, the file header
and the file data area are packed together into a single contiguous memory area.
However, Caernarvon provides a facility for files to be memory mappable - this
is used, in particular, for the code of executable programs. Data that is memory
mappable must lie on a physical memory boundary and have a size granularity
specified by the processor’s memory protection unit. This means that mappable
files have one memory object for the header and another for the data. Figure 2
shows the arrangement of the memory objects for both types of file.

56 P.A. Karger et al.

Global Address Spaces—DFNames. The ISO 7816-4 file system names all
files as numbers. While that simplifies the file system, it makes it difficult for
end users to select an application by name. Remembering the file numbers is
not likely to be acceptable. As a result, ISO 7816-4 defines the concept of a DF
Name that is used to select an executable program from outside the card. A
DF name is a string name assigned to the DF containing the application. The
DF Names are unique to the card, and, (as defined in ISO 7816-4) constitute a
global address space.

Global address spaces cause two different operational problems. First, if two
different application developers happen to choose the same DFName, then the
first such name loaded onto a particular card will win. Since ISO 7816-4 assumed
all applications would be preloaded onto the card, this was never a problem.
Once you have multiple application providers downloading applications to a
card after issuance, the name collision problem can become serious. Second,
such name collisions could be used as a covert channel to bypass mandatory
access controls.

Caernarvon avoids these problems by making the DF Name space into a name
space that is private to the current access class. The ISO 7816-4 rules for DF
Names are then applied within each access class, rather than system wide. Within
an access class, DF Names must be unique, but the same DF Name may be
repeated in a different access class.

Storing Access Classes in the File System. In most previous operating
systems that supported mandatory access controls, the access classes of files
and directories are stored with their associated files and directories, either in file
headers or in the directory branches. Furthermore, Caernarvon access classes are
designed to support multi-organizations, as discussed in [14, Section 3.1]. These
multi-organizational access classes can be quite large to represent, and every file
and directory may have its own unique access class. In a smart card with very
limited amounts of memory, storing large numbers of access classes could be a
severe problem.

To reduce access class memory usage in Caernarvon, two steps have been
taken. First, we note that due to restricted memory for storing applications and
data; no one smart card will need to use more than a small number (< 256)
of distinct access classes. Therefore, the File System only stores each multi-
organizational access class once in a table, and need store only an 8-bit index
into that table with each file or directory.

Caernarvon follows the Multics practice [15] that while a child directory (DF)
may have a different (higher) access class than its parent DF, ordinary files (EFs
and XFs) must have the same access class as their parent DF. This allows us
to save additional memory by requiring that files (EFs and XFs) do not have
associated access classes, while directories (DFs) may but are not required to.
DFs, EFs and XFs without an access class inherit the access class of their nearest
parent DF that does have its own access class.

A program, if it has appropriate access to a file, may change the access class
of that file, for example to raise its secrecy level or to lower its integrity level, but

Implementing a High-Assurance Smart-Card OS 57

doing so may remove the program’s access to the file. In this case, any open file
handles for the file in question are marked, and then the program can perform no
more operations such as read and write using the file handle until it has closed
the file and re-opened it. If the program no longer has access to the file then
the re-open will fail. This re-open approach avoids the kernel complexity of the
Multics revocation approach and originates in the design of the DEC A1-secure
virtual machine monitor [10].

This facility to change the access class of a DF (and hence of all the files
within it) can be used to move data from one access class to another. Thus
if a program at AC a wishes to move a DF (also at AC a) to AC b then the
program must change the DF to the AC a+b. Note that this is quite legitimate
- a program may always change a file to a higher secrecy level. Having done
this, the program, which is still at AC a, no longer has access to the DF. At
this stage, a special guard process must be run; this is an evaluated application
that has been certified as fit to perform the downgrade of secrecy level a+b to b.
This guard program would verify that it is indeed legitimate to downgrade the
secrecy of the DF, and if all is well, change the AC of the DF to b. Note that
moving a DF must also move disk quota as discussed below.

Quota. In order to protect against denial of service attacks when one application
takes all the persistent storage on the card, Caernarvon provides a quota facility.
This also enables the card issuer to control (and charge for) the amount of
space on the card used by each application provider. Covert channels whereby
a Trojan horse could signal by either allocating all memory or freeing some are
prevented.

Most contemporary operating systems use special quota accounts to charge
for file space. However, such quota accounts require a great deal of management
software. Instead, the Caernarvon system uses a very old approach (described
below) from the Multics operating system [15, section 3.7.3.1], that is simpler
to implement. The Multics approach was replaced by quota accounts, because
such accounts were easier for time-sharing system users to manage. However,
Caernarvon quota will be managed by application providers, not end-users, so
the slightly harder management interface should not be a problem.

Each DF may (but need not) have a quota; if the DF does not have its own
quota then that DF and all the files within it are charged against the quota of the
nearest parent DF that does have a quota. When a new top-level DF is created
for an application, then that DF would normally be allocated its own quota. The
application can quite legitimately give some of its quota to a DF below its own
top-level DF. If a DF is moved from one AC to another (as described above),
then the quota occupied by that DF and all the files within it is also moved to the
new parent DF of the DF that has been moved. The combined atomic operation
of moving a DF from one AC to another together with its quota is totally new
and is needed to avoid covert storage channels. Most existing mandatory access
control systems avoid the channels by restricting such moves to human users
through a trusted path, but a smart card has no direct human interface.

58 P.A. Karger et al.

Discretionary Security Policy - Capabilities. As discussed above in Sec-
tion 3, the primary security policy of the Caernarvon system is a mandatory
access controls. This is because mandatory access controls are specifically de-
signed to deal with malicious applications code. However, mandatory access
controls do not provide the very fine-grained control that users can get from
discretionary access controls, such as access control lists or permission bits. As
the Caernarvon design progressed, we became concerned that including both a
powerful mandatory access control mechanism as well as a full access control list
implementation would exceed the very limited amount of memory that can be
committed to the smart card operating system.

As a result, we chose to implement a compromise discretionary access control
system, based on a very restricted form of capabilities [4]. These are discre-
tionary security policy rules that may be associated with an individual exe-
cutable program (an XF). These capabilities take two forms that are based on
our assessment of the most common needs of smart card developers and are easy
to implement in only a small amount of code:

1. a bit array that specifies whether that program is permitted to issue certain
supervisor calls (SVCs). For example, there is a special, evaluated, Admin
Application issued with the system that is used for the administration of (in
particular, the creation of) Access Classes and top-level DFs for applications.
This program uses certain special SVCs for the administration of ACs; the
capability bit for this group of SVCs is unset for every other XF in the
system, so that no other program can issue those SVCs.

2. there can be special access rules to allow or forbid access to individual files
by this program.

It is important to note that these capabilities are not a fully general capabil-
ity system, as defined by Dennis and Van Horn [4]. In particular, Caernarvon
capabilities cannot be passed from one process to another.

4.2 Persistent Storage Manager - PSM

In the Caernarvon system, the physical blocks of storage are managed by the
Persistent Storage Manager (PSM). The principal client of the PSM is the File
System; the PSM is also used by the Access Class Manager and the Key Man-
agement system.

Figure 3 shows how the PSM divides persistent storage. The System Area at
the beginning of EEPROM contains information that the operating system uses
to locate its internal data structures and persistent state. Items in the System
Area are expected to be set up when the initial EEPROM image is built, and
subsequently is never changed. Everything else is held in a memory object; every
object has a unique ID, and is always referenced via this ID. Every memory
object is in turn described (in particular, its location and size) by an object
descriptor; a memory object is located by searching the object descriptors for
the descriptor with the requested ID. This allows for the possibility of either the
memory object and/or its descriptor moving in physical storage.

Implementing a High-Assurance Smart-Card OS 59

Fig. 3. PSM Use of Persistent Storage

Management of Storage Objects. Figure 2 shows how file system objects
are stored in PSM memory objects. In older smart card systems, where the file
system was created during card personalization or initialization, the file system
was effectively static, that is there was no file creation or deletion after issuance.
However, a Caernarvon file system is dynamic—the number of files and/or their
sizes will change since the Caernarvon system allows for the installation or re-
moval of applications, and the creation and deletion of files after the card has
been issued.

This means that the PSM must manage any possible fragmentation of memory
objects. The Caernarvon PSM avoids this completely by always ensuring that any
memory object is stored in a single contiguous area of memory. However, this in
turn causes another problem, in that as files are created, extended (or shrunk), or
deleted, free storage will become fragmented. When a file is to be created, there
may not be a single block of free memory available that is large enough. Alterna-
tively when enlarging a file, there may be no immediately adjacent free memory.

A traditional approach to this problem would be to do a garbage collection:
move in-use objects to contiguous storage and coalesce the free areas. In Caernar-
von, we do not do a complete collection. Instead, when a memory allocation is
attempted but no suitably-sized memory block is available, the PSM determines
the minimal number of occupied blocks that need to be moved to create a large
enough free memory space. After this compaction operation, memory may still
be fragmented, but the number of memory writes will have been kept low in
order to preserve the lifetime of the memory locations. It should be noted that
compaction will certainly require multiple read and write operations to persistent
storage, both of the memory objects and of the descriptors. These operations are
time consuming, so minimizing their number and frequency is also important to
maintain acceptable performance.

Weaknesses of Persistent Storage. Write operations to EEPROM or Flash
memory are slow, usually taking 4 to 6 milliseconds each. Further, the write
block size for EEPROM is limited, for example, to 128 bytes. Thus writing any
significant amount of data to a file is likely to take multiple write operations,
plus additional writes to update the control block information. There is also the
problem that the smart card is powered only when it is in the reader. These
factors mean there is a significant risk of a file write operation being interrupted
and not fully completed.

A solution to the power interruption problem is to ensure that all memory
transactions, for example a request to extend a file and update its contents, be

60 P.A. Karger et al.

treated as a single atomic operation. That is, the entire transaction, including
all of the multiple write operations required, must be completed in its entirety,
or not performed at all. The PSM maintains a backtrace buffer where, when
persistent storage is to be updated, the old values are stored before the new
data is written. This is done for every step of the operation - the backtrace buffer
entries are cleared only when the entire transaction is completed. When the card
is powered-up, if the backtrace buffer is not empty, the items in the backtrace
buffer are restored one-by-one, in the reverse order to which the original steps
were performed. When this is complete, the state of the memory is as if the
transaction had never been started. There is one additional complication, in
that, when powered up, the smart card cannot immediately start these backtrace
operations, but is required to respond to the smart card reader within 40,000
processor clocks. This allows no time to perform the pending backtrace buffer
operations. However, when the reader sends the first command to the card, the
card can request a “waiting time extension” to delay its response to the reader;
this request can be repeated as many times as are necessary to complete the
pending backtrace operations.

Smart card persistent memory, EEPROM or Flash, has a limited number of
write cycles before it starts to fail, for example between 100,000 and 500,000
for EEPROM, and only 10,000 for Flash. The PSM takes two measures to com-
pensate for memory corruption due to the cells wearing out. First, once every
write to persistent memory is completed and before control is returned, the low-
level code that did the write compares the updated contents of memory with
the data in the caller’s buffer (in RAM). If a mismatch is detected, an error is
returned; in this case, the data that was to be written is still available in the
buffer. Second, the PSM places a checksum on every memory object under its
management, including the control blocks or descriptors that define the memory
objects. This checksum is verified on read operations to enable the detection of
memory failures—an attempt is then made to recover the lost data byte(s). Once
a memory error is detected, the memory area in question is marked as bad, and
the data is re-written to a different location.

The backtrace buffer for atomic transactions is well known in data base de-
sign [6], but its use throughout a file system in conjunction with mechanism to
recover from memory wearing out is unprecedented in smart cards. Of course,
the backtrace buffer is itself an area of memory that has frequent write opera-
tions, and hence can wear out. When errors occur within the backtrace buffer,
the PSM will attempt to move the backtrace buffer to a new area of memory.

4.3 Implementing Application Download

A primary aim of the Caernarvon system is to allow for the secure download
of applications in the field. The card issuer can allow or forbid the download of
applications, and when download is permitted, can control which organizations
are allowed to install their applications on the card and how much file quota
they may use. Note that in the context of download, the term “application” is

Implementing a High-Assurance Smart-Card OS 61

not limited to just the XFs; it may also encompass the associated DFs, EFs, file
quota, keys, etc.

The download process can be divided into two main steps, namely the creation
of access classes (with the appropriate file quota) for organizations that currently
are not present on the card, and then the download of application files (including
executable programs) for an organization that is present on the card. Obviously,
download of an application for a new organization requires the completion of
both of these steps.

Creation of Access Classes. The creation of a new access class is a tricky
operation on a smart card, because the card is physically in the possession of an
end user who may not be privileged to create access classes. The smart card also
does not have a system administrator or security officer who can perform such
operations. Requiring the card holder to carry the card back to the card issuer
would be unacceptable to most customers.

Instead, the Caernarvon operating system includes secure cryptographic pro-
tocols to (a) create the Access Class and (b) to create the necessary top-level DF
associated with the new access class, and set its allocated quota. These protocols
will require a full future paper to explain and are not further discussed here.

File Download. Once an organization has been authorized to be present on a
Caernarvon card, that is, once any necessary access class(es) have been created,
then that organization may download such files as it needs, subject to the file
space the quota imposed by the card issuer.

A file is downloaded simply by authenticating at the appropriate access class,
running a program to create any required DFs and EFs, and writing the ap-
propriate data to those files. An executable file, once it is downloaded, must be
“activated” to convert the file from an EF to an XF.

The card issuer may wish to restrict the programs that are run. For example,
only approved applications or Common Criteria evaluated applications might be
allowed. To implement this level of control, the Caernarvon kernel will check for
digital signatures, either from the card issuer or the Common Criteria certifier
or both.

4.4 Cryptographic Challenges

The Caernarvon system includes a cryptographic library to ensure that the cryp-
tographic algorithms, such as DES, triple-DES, AES, RSA, DSA, and ECC are
correctly and securely implemented in a side-channel free fashion. This is dis-
cussed in section 3.6 of [14].

In addition to proper cryptographic algorithm implementation, it is essential
that cryptographic key management also be implemented securely. If the applica-
tion handles the key itself, it may inadvertently leak information (for example,
some bits of the key) by such simple operations as copying the key from one
memory location to another. Further, there is nothing to prevent a malicious
program from deliberately leaking the key to outside the smart card.

62 P.A. Karger et al.

Caernarvon provides secure key management facilities within the kernel. Keys
can be loaded into the card by the kernel, so that the application never sees
the key; the application refers to the key by a name (actually a handle) of
its choosing. The keys are effectively stored in the file system with file IDs for
names and hierarchical file paths, the same as for regular files. This avoids covert
channel problems that could arise in the names of keys, if the keys were stored
in a flat file system. However, the key names are a separate name space from
the file names, and, to ensure security of the key, these key “files” cannot be
accessed as regular files. In addition, keys can be marked by purpose, such as
to be encryption keys or signing keys; the kernel can then prevent a signing key
from being used for encryption, or vice versa. This prevents certain cryptographic
weaknesses where a key is used for more than one purpose.

Unfortunately, some smart card standards (such as the Global Platform
standard [1]) require that the keys be visible to applications (or in the Global
Platform case, the application security domain). To satisfy this requirement,
Caernarvon also supports a “raw” key mode, where the keys are handled entirely
by the application. Access to the crypto co-processor must still be mediated by
the kernel to avoid both object re-use and covert channel issues. While appli-
cations may find this mode a necessity, its use is strongly discouraged, since
Caernarvon cannot ensure any security for these raw keys.

Another problem that can arise is that a program can develop its own cryp-
tographic code, for example to implement an algorithm devised specially for
that application. Running such code on top of a high security kernel provides no
guarantee of the quality of the implementation of the cryptography, in particular
immunity to side channel attacks. Again, the only way to avoid the problem is
to design the application to use only the strong crypto (and secure key manage-
ment) provided by the Caernarvon kernel.

5 Chip Initialization

Smart card chips containing the Caernarvon system are intended to be high secu-
rity devices. Therefore, it is imperative that each individual chip be secure right
from the point of manufacture, with no opportunity for the chip or its contents
to be compromised while in the factory or during delivery. Manufacture and
initialization are the most security-sensitive stages in the chip’s entire lifecycle,
because the chip is in its most vulnerable, exposed state, and it is during these
stages that important roles and security parameters are set for the remainder
of the chip’s lifecycle. A fundamental assumption is that the manufacturing line
is secure, which requires the chip manufacturer to assure that it is safe from
tampering, collusion, theft, and other threats, including those from insiders.

In a typical smart card chip manufacturing facility, manufacturing test soft-
ware is built into each chip to assure the viability of the chip. The test soft-
ware tests the processor, memory subsystem, internal peripherals, and other
subsystems such as cryptographic accelerators. These tests typically destroy the
contents of writable memory. Thus, the chips cannot be initialized with unique

Implementing a High-Assurance Smart-Card OS 63

persistent data until all manufacturing tests are complete. Once the manufac-
turing tests have completed successfully, the test software downloads a copy of
the initial file system for that chip, decrypting it with a strong cryptographic key
held in read-only memory, and used only once (during manufacture). The image
of each chip’s initial file system is pre-calculated by the chip manufacturer by
filling in the values of security-relevant data items in predefined locations. Some
of these items include certificates, private and public keys, Diffie-Hellman [5] key
parameters used for authentication, a chip-unique seed for random number gen-
eration, initial access classes, and uncertified application binary files. Because it
is difficult for the smart card chip’s processor to meet the demanding speed re-
quired by the manufacturing line, these security-relevant items are not typically
generated on-chip. Instead, they must be generated and digitally signed in ad-
vance in hardware security modules such as the IBM 4764 [7], and injected into
each smart card chip at very high speeds. The chip manufacturer also digitally
signs a certificate unique to each chip, thus enabling off-chip applications to ver-
ify (as part of an interactive authentication protocol) that communications come
from an authentic Caernarvon chip, and not an imposter. This chip certificate
includes a serial number and public key unique to each chip, a chip type and
configuration code, the Caernarvon software hash value, version number, and
evaluation assurance level.

The chip makes use of a public key hierarchy to establish identities and public
keys of the actors that set the final configuration of the chip’s software and data.
Actors include the chip manufacturer, the smart card enabler, the smart card
personalizer, the smart card issuer, the application certifying body, and others.
During initialization, some of the public keys and roles of these actors are set
by the chip manufacturer. Others are initialized later in the chip’s lifecycle, and
can only be set by an actor authenticated in a specific role.

After the test code has completed the initialization of a chip, it must securely
disable itself so that it can never be run again, even in the face of physical
attacks on the chip. At this point in the chip’s lifecycle, the OS is fully functional
and secure. Thus, when the chip is first powered up for any purpose outside of
the manufacturing line (for example, for personalization of the smart card for
the end user), the Caernarvon system is in control. In particular, full system
authentication is required to perform any operations such as personalization or
the installation of applications.

6 Conclusion

The Caernarvon operating system project has shown the feasibility of building
smart card systems with much higher levels of security than is common practice.
In particular, it is possible for a smart card to download and execute applica-
tions from multiple mutually-distrusting sources, but still prevent them from
interfering with each other or with the operating system itself.

These goals required reconsideration of many traditional smart card software
practices (see Section 4.1), as well as solving many security problems that are

64 P.A. Karger et al.

not present in larger-scale computers. In particular, new security approaches had
to be developed to deal with the extreme memory constraints of a smart card,
and these new techniques had to be applied throughout the operating system.
Despite these challenges, the Caernarvon operating system was completely free
of covert storage channels.

The present status of the Caernarvon system is discussed in [14, Section 7].
An alpha test version has been implemented and runs on a smart card hardware
emulator. However, commercial viability is still undetermined, because the com-
plete OS has not been released as a product. Several major pieces of the design
have also been transferred to other IBM projects, as discussed in [14, Section 6].

What this paper has shown is how such a high-security system can actually
be implemented in the extremely memory constrained environment of a smart
card, yet still support a very general mandatory access control model that can
protect against essentially arbitrary malware attacks.

Acknowledgements

The Caernarvon project involved work by a number of people in addition to the
authors of this paper, and we wish to acknowledge the contributions of, from
IBM: Vernon Austel, Ran Canetti, Suresh Chari, Vince Diluoffo, Günter Karjoth,
Gaurav Kc, Rosario Gennaro, Hugo Krawczyk, Mark Lindemann, Tal Rabin,
Josyula Rao, Pankaj Rohatgi (now with Cryptography Research),
Helmut Scherzer (now with Giesecke & Devrient), and Michael Steiner; from
atsec: Helmut Kurth; from Philips: Hans–Gerd Albertsen, Christian Brun, Ernst
Haselsteiner, Stefan Kuipers, Thorwald Rabeler, and Thomas Wille; from the
University of Augsberg: Wolfgang Reif, Georg Rock and Gerhard Schellhorn;
from the DFKI: Axel Schairer and Werner Stephan; and from the German BSI:
Stefan Wittmann. We must also thank Wietse Venema for his very useful sug-
gestions on improving the paper.

References

[1] Béguelin, S.Z.: Formalisation and verification of the GlobalPlatform card speci-
fication using the B method. In: Barthe, G., Grégoire, B., Huisman, M., Lanet,
J.-L. (eds.) CASSIS 2005. LNCS, vol. 3956, pp. 155–173. Springer, Heidelberg
(2006)

[2] Bell, D.E., LaPadula, L.J.: Computer Security Model: Unified Exposition and
Multics Interpretation. In: ESD–TR–75–306, The MITRE Corporation, Bedford,
MA, HQ Electronic Systems Division, Hanscom AFB, MA (June 1975),
http://csrc.nist.gov/publications/history/bell76.pdf

[3] Biba, K.J.: Integrity Considerations for Secure Computer Systems. In: ESD–TR–
76–372, The MITRE Corporation, Bedford, MA, HQ Electronic Systems Division,
Hanscom AFB, MA (April 1977), http://handle.dtic.mil/100.2/ADA039324

[4] Dennis, J.B., Van Horn, E.C.: Programming semantics for multiprogrammed com-
putations. ACM Commun. 9(3), 143–155 (1966)

http://csrc.nist.gov/publications/history/bell76.pdf
http://handle.dtic.mil/100.2/ADA039324

Implementing a High-Assurance Smart-Card OS 65

[5] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. on In-
formation Theory IT-22(6), 644–654 (1976)

[6] Gray, J.N.: Notes on Data Base Operating Systems. LNCS, vol. 60, pp. 393–481.
Springer, Berlin (1978)

[7] IBM 4764 Model 001 PCI-X Cryptographic Coprocessor. Data Sheet G221-9091-05,
http://www-03.ibm.com/security/cryptocards/pdfs/

4764-001 PCIX Data Sheet.pdf

[8] Karger, P.A., Kc, G.S., Toll, D.C.: Privacy is essential for secure mobile devices.
IBM Journal of Research and Development 53(2) (2009)

[9] Karger, P.A., Toll, D.C., McIntosh, S.K.: Processor requirements for a high se-
curity smart card operating system. In: Eighth e-Smart Conference, Eurosmart,
Sophia Antipolis, France, September 19-21 (2007), IBM Research Div. Rpt. RC
24219 (W0703-091),
http://domino.watson.ibm.com/library/CyberDig.nsf/Home

[10] Karger, P.A., Zurko, M.E., Bonin, D.W., Mason, A.H., Kahn, C.E.: A retrospec-
tive on the VAX VMM security kernel. IEEE Trans. on Software Eng. 17(11),
1147–1165 (1991)

[11] Rankl, W., Effing, W.: Smart Card Handbook: Third Edition. John Wiley & Sons,
Chichester (2003)

[12] Schellhorn, G., Reif, W., Schairer, A., Karger, P., Austel, V., Toll, D.: Verification
of a formal security model for multiapplicative smart cards. In: Cuppens, F.,
Deswarte, Y., Gollmann, D., Waidner, M. (eds.) ESORICS 2000. LNCS, vol. 1895,
pp. 17–36. Springer, Heidelberg (2000)

[13] Scherzer, H., Canetti, R., Karger, P.A., Krawczyk, H., Rabin, T., Toll, D.C.:
Authenticating Mandatory Access Controls and Preserving Privacy for a High-
Assurance Smart Card. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003.
LNCS, vol. 2808, pp. 181–200. Springer, Heidelberg (2003)

[14] Toll, D.C., Karger, P.A., Palmer, E.R., McIntosh, S.K., Weber, S.: The Caernar-
von secure embedded operating system. Operating Systems Review 42(1), 32–39
(2008)

[15] Whitmore, J., Bensoussan, A., Green, P., Hunt, D., Kobziar, A., Stern, J.: Design
for Multics security enhancements. In: ESD–TR–74–176, Honeywell Information
Systems, Inc., HQ Electronic Systems Division, Hanscom AFB, MA (December
1973), http://csrc.nist.gov/publications/history/whit74.pdf

http://www-03.ibm.com/security/cryptocards/pdfs/4764-001_PCIX_Data_Sheet.pdf
http://www-03.ibm.com/security/cryptocards/pdfs/4764-001_PCIX_Data_Sheet.pdf
http://domino.watson.ibm.com/library/CyberDig.nsf/Home
http://csrc.nist.gov/publications/history/whit74.pdf

Unlinkable Priced Oblivious Transfer with
Rechargeable Wallets

Jan Camenisch1, Maria Dubovitskaya1,2,3, and Gregory Neven1

1 IBM Research – Zurich
2 IBM Russian Systems and Technology Laboratory

3 National Research Nuclear University MEPhI, Russia

Abstract. We present the first truly unlinkable priced oblivious transfer protocol.
Our protocol allows customers to buy database records while remaining fully
anonymous, i.e., (1) the database does not learn who purchases a record, and
cannot link purchases by the same customer; (2) the database does not learn which
record is being purchased, nor the price of the record that is being purchased; (3)
the customer can only obtain a single record per purchase, and cannot spend more
than his account balance; (4) the database does not learn the customer’s remaining
balance. In our protocol customers keep track of their own balances, rather than
leaving this to the database as done in previous protocols. Our priced oblivious
transfer protocol is also the first to allow customers to (anonymously) recharge
their balances. Finally, we prove our protocol secure in the standard model (i.e.,
without random oracles).

1 Introduction

Suppose you want to buy a digital item from a website that charges per purchased item,
and that sells different items at different prices. You have reasons to believe, however,
that the website is making a lucrative parallel business out of selling information about
your shopping behavior to your competitors. For example, you may work for a pharma-
ceutical company and buy information about particular DNA genome sequences from
a database, or you may work for a high-tech company and buy patents from a patent
database. The list of purchased records from either of these databases certainly reveals
precious information about your company’s research strategies. How do you prevent the
database from gathering information about your shopping behavior while still allowing
the database to correctly charge you for the purchased items?

What we need here is a priced oblivious transfer (POT) protocol [1], where cus-
tomers load an initial amount of money into their pre-paid accounts, and can then start
downloading records so that (1) the database does not learn which record is being pur-
chased, nor the price of the record that is being purchased; (2) the customer can only
obtain a single record per purchase, and cannot spend more than his account balance;
and (3) the database does not learn the customer’s remaining balance. All known POT
protocols require the database to maintain customer-specific state information across the
different purchases by the same customer to keep track of his (encrypted or committed)
account balance. Different transactions by the same customer thereby necessarily be-
come linkable. Thus, none of these protocols allows the customer to purchase records

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 66–81, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 67

anonymously: even if an anonymous payment system is used to pre-charge the initial
balance, the customer could be at most pseudonymous, partially defeating the purpose
of protecting the customer’s privacy. For example, the database still learns the number
of records bought by each customer, the time that these records were bought, and their
average price. This clearly reveals information about the customer and might lead to
identification of the customer or of the records she’s buying. To overcome this, we fur-
ther require that the POT additionally guarantees that (4) the database does not learn
any information about who purchases a record.

Existing POT protocols also lack a recharge functionality: once a customer’s balance
does not contain enough credit to buy a record, but is still positive, the customer cannot
use up the balance, but will have to open a new account for further purchases. Even if
the protocol can be extended so that the customer can reveal and reclaim any remaining
credit, he will leak information about his purchases by doing so.

In this paper, we propose the first truly anonymous priced oblivious transfer proto-
col with recharge functionality. Rather than having the database keep track of account
balances, in our protocol the customers maintain their own balance. Of course, precau-
tions are taken to ensure that they cannot tamper with their balance, or rewind it to a
previous state. Furthermore, we offer a protocol that allows customers to recharge their
balances. Lastly, we present an enhanced protocol where records are transferred using
an optimistic fair exchange protocol [2,3], thereby preventing a cheating database from
decreasing a customer’s wallet without sending the desired record.

1.1 Construction Overview

We consider a database where each record may have a different price. The database
provider encrypts each record with a key that is derived from not only its index but also
from its price. It then publishes the entire encrypted database.

To be able to access records, a customer first contacts the provider to create a new,
empty wallet. Customers can load more money into their wallet at any time. The pay-
ment mechanism used to recharge customers’ wallets is outside the scope of this paper;
for full customer anonymity, we advise the use of an anonymous e-cash scheme.

When a customer wants to purchase a record with index σ and price p from the
database, the provider and the customer essentially run a two-party protocol, at the end
of which the customer will have obtained the decryption key for the record σ as well
as an updated wallet with a balance of p units less. This is done is such a way that the
provider does not learn anything about σ or p. More precisely, we model wallets as
one-time-use anonymous credentials with the balance of the wallet being encoded as
an attribute. When the customer buys a record (or recharges her wallet), she basically
uses the credential and gets in exchange a new credential with the updated balance
as an attribute, without the provider learning anything about the wallet’s balance. The
properties of one-time-use credentials ensure that a customer cannot buy records worth
more than what she has (pre-)paid to the provider. We prove our protocol secure in the
standard model (i.e., without random oracles).

68 J. Camenisch, M. Dubovitskaya, and G. Neven

1.2 Related Work

Relative to the enormous body of work that has appeared on oblivious transfer, only
few priced oblivious transfer protocols have been proposed. The concept of POT was
introduced by Aiello et al. [1] who present a scheme based on homomorphic encryp-
tion and symmetrically private information retrieval (SPIR) [24]. The protocol by To-
bias [27] is based on ElGamal, and a recent protocol by Rial et al. [29] builds on the
OT protocol of [15]. The protocols of [1,27] come only with heuristic security con-
siderations, while that of [29] was proved secure in the universal composability (UC)
model [19]. All three of these protocols share a common principle that the database
maintains an encryption or commitment of each customer’s balance that gets updated
at each purchase. Purchases by the same customer are therefore necessarily linkable,
as the database has to know which ciphertext or commitment to use. Neither of these
protocols enables customers to recharge their wallets.

While by itself not being a POT protocol, the recent work by Coull et al. [21] could
be cast into one. They propose an OT scheme where access to records is controlled
by using a state graph. With each access a user transitions from one state to another,
where the allowed records are defined by the possible transitions from the current state.
One could implement a (fully anonymous) POT protocol by defining a separate state
for each possible balance in a customer’s wallet. The allowed transitions between states
b and b′ are those records with price exactly b− b′. When using this approach however,
the size of the encrypted database is O(bmax · N), where bmax is the maximum wallet
balance and N is the number of records in the database, as opposed to O(bmax + N) in
our scheme.

Our paper builds on ideas from recent work by Camenisch et al. [10] who extend the
OT protocol of [15] with anonymous access control. One could in fact combine their and
our ideas to achieve POT with access control. This would allow for price differentiation
among customers while maintaining full customer privacy, e.g., offer a cheaper price to
holders of a loyalty card, without leaking whether the customer has one.

2 Definition of UP-OT

2.1 Syntax

Let κ ∈ N be a security parameter and let ε be the empty string. All algorithms de-
scribed here are probabilistic polynomial-time (PPT); we implicitly assume they all
take an extra input 1κ. A function ν : N → [0, 1] is negligible if for all c ∈ N there
exists a κc ∈ N such that ν(κ) < κ−c for all κ > κc.

An unlinkable priced oblivious transfer (UP-OT) scheme is parameterized by a se-
curity parameter κ ∈ N, a maximum wallet balance bmax ∈ N and a maximum record
price pmax ≤ bmax. We consider a setting with one database and one or more cus-
tomers. A database consists of a list of N couples ((R1, p1), . . . , (RN , pN)), con-
taining database records R1, . . . , RN ∈ {0, 1}∗ and associated prices p1, . . . , pN ∈
{0, . . . , pmax}. A UP-OT scheme is a tuple of polynomial-time algorithms and pro-
tocols UP -OT = (DBSetup, CreateWallet, Recharge, Purchase) run between cus-
tomers C1, . . ., CM and a database provider DB in the following way:

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 69

– DBSetup : DB :
(
DB = (Ri, pi)i=1,...,N

) $→ (
(pkDB,ER1, . . . ,ERN), skDB

)
The database provider executes the randomized DBSetup algorithm to initiate a
database containing records R1, . . . , RN with corresponding prices p1, . . . , pN . It
generates a pair of a secret and corresponding public key (skDB, pkDB) for security
parameter κ, and uses it to encrypt the individual records. The encrypted database
consists of the public key pkDB and the encrypted records ER1, . . . ,ERN . The
encrypted database is made available to all customers, e.g., by publishing it on a
website or by distributing it on DVDs.1 The database provider keeps the secret key
skDB to himself.

– CreateWallet : DB : (pkDB, skDB) → (ε) ; C : (pkDB) → W0 or ⊥
A customer creates an empty wallet with a zero balance, signed by the database
provider, by engaging in the CreateWallet protocol with the database provider. The
provider’s public key pkDB is a common input, the corresponding secret key skDB
is a secret input to the provider. At the end of the protocol, the customer outputs an
empty wallet W0, or ⊥ to indicate failure.

– Recharge : DB : (pkDB, m, skDB) → (ε) ; C : (pkDB, m,Wi) → Wi+1 or ⊥
When the customer wants to add money to her wallet Wi (which may or may not
be her initial wallet W0) she can engage in a Recharge protocol with the database
provider. The database’s public key pkDB and the amount of money m that the
customer wants to add to her balance are common inputs. The database’s secret key
skDB and the customer’s current wallet Wi are private inputs to the database and
the customer, respectively. Eventually the customer outputs the new wallet Wi+1
or ⊥ to indicate failure.

– Purchase : DB : (pkDB, skDB) → (ε) ; C : (pkDB, σ,ERσ, pσ,Wi) → (Rσ,
Wi+1) or (⊥,Wi+1) or (Rσ,⊥) or (⊥,⊥)
To purchase a record from the database, a customer engages in a Purchase protocol
with the database provider. The database’s public key pkDB is a common input. The
customer has as a private input her selection index σ ∈ {1, . . . , N}, the encrypted
record ERσ and its price pσ , and her current wallet Wi. The database provider uses
its secret key skDB as a private input. At the end of the protocol, the customer
outputs the database record Rσ and an updated wallet Wi+1. An output containing
Rσ = ⊥ or Wi+1 = ⊥ indicates that the record transfer or the wallet update failed,
respectively.

We assume that all communication links are private and anonymous, to that cheat-
ing customers cannot eavesdrop on honest customers’ conversations, and so that the
database does not know which customer he’s interacting with.

2.2 Security

We define security of an UP-OT protocol through indistinguishability of a real-world
and an ideal-world experiment reminiscent of the universal-composability (UC)

1 We assume that each customer obtains a copy of the entire encrypted database. It is impossible
to obtain our strong privacy requirements with a single database server without running into
either computation or communication complexity that is linear in the database size. In this
paper we focus on amortizing the complexity of the purchase protocol to keep it constant, i.e.,
independent of N .

70 J. Camenisch, M. Dubovitskaya, and G. Neven

framework [19] and the reactive-systems security model [25,28]. The definitions we
give, however, do not entail all formalities necessary to fit either of these frameworks;
our goal here is solely to prove security of our scheme.

We summarize the ideas underlying these models. In the real world the honest players
and the adversary A who controls the dishonest players run cryptographic protocols with
each other. The environment E provides the inputs to the honest players and receives
their outputs, and interacts arbitrarily with the adversary. In the ideal world, the players
do not run any cryptographic protocols but interact through an ideal trusted party T.
A (set of) cryptographic protocol(s) is said to securely implement a functionality if
for every real-world adversary A and every environment E there exists an ideal-world
simulator A′ (controlling the same parties as A) such that E cannot distinguish with
non-negligible probability whether it is run in the real world while interacting with A
or whether it is run in the ideal world while interacting with A′.

THE REAL WORLD. We first describe how the real world algorithms presented in §2.1
are orchestrated when all participants are honest, i.e., honest real-world customers
C1, . . . CM and an honest database DB. Parties controlled by the real-world adversary
A can arbitrarily deviate from the behavior described below.

Upon receiving (initdb,DB = (Ri, pi)i=1,...,N) from E , the database generates a

key pair and encrypts the records by running ((pkDB,EDB), skDB) $← DBSetup(DB),
and sends (pkDB,EDB , (pi)i=1,...,N) to all customers C1, . . . , CM .

Upon receiving (create wallet) from E , customer Cj obtains an empty wallet
by engaging in a CreateWallet protocol with the database provider on common input
pkDB. The provider uses his secret key skDB as a private input. At the end of the
protocol, the customer obtains the empty wallet W

(j)
0 with zero balance or ⊥ indicating

failure. In the former case Cj returns a bit 1 to E , in the latter it outputs 0. DB does not
return anything to the environment.

Upon receiving (recharge, m) from E customer Cj engages in a Recharge protocol

with DB on common input pkDB, m, using skDB and W (j)
i as private inputs to DB and

Cj , respectively, where W (j)
i is Cj’s current wallet. At the end of the protocol, Cj either

obtains the new wallet W (j)
i+1 or ⊥. In the former case, it returns a bit 1 to E , in the latter

it outputs 0. DB does not return anything to the environment.
Upon receiving (purchase, σ) from E , customer Cj engages in a Purchase protocol

with DB on common input (pkDB), on Cj’s private input σ,ERσ, pσ,W (j)
i , and on

DB’s private input skDB, until Cj obtains the record Rσ and a new wallet W (j)
i+1. The

customer returns two bits to the environment, the first indicating whether the record
transfer succeeded (i.e., 0 if Rσ = ⊥ and 1 otherwise), the second indicating whether
the wallet update succeeded (i.e., 0 if W (j)

i+1 = ⊥ and 1 otherwise). DB does not return
anything to the environment.

THE IDEAL WORLD. In the ideal world all participants communicate through a trusted
party T which implements the functionality of our protocol. We describe the behavior of
T on the inputs of the ideal-world customers C′

1, . . . , C
′
M and the ideal-world database

DB′. The trusted party T maintains the database DB and an array W [·] to keep track of
the balance in customer’s wallets. Initially all entries are unspecified, i.e., DB ← ε and

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 71

W [j] ← ε for j = 1, . . . , N . The trusted party responds to queries from the different
parties as follows.

Upon receiving (initdb, (Ri, pi)i=1,...,N) from DB′, T checks whether 0 ≤ pi ≤
pmax for i = 1, . . . , N . If so, it sets DB ← (Ri, pi)i=1,...,N and sends a message
(initdb, {pi}i=1,...,N)) to all customers.

Upon receiving (create wallet) from C′
j , T sends (create wallet) to DB′ who

sends back a bit b. If b = 1 then T sets W [j] ← 0 and sends 1 to C′
j ; otherwise it simply

sends 0 to C′
j .

Upon receiving (recharge, m) from C′
j , T first checks that W [j] �= ε and W [j] +

m ≤ bmax. If either of these checks fails, it sends back a bit 0 to C′
j , otherwise it proceeds

as follows. T sends (recharge, m) to DB′ who sends back a bit b. If b = 1 then the T
sets W [j] ← W [j] + m and sends a bit 1 to C′

j ; otherwise it simply sends 0 to C′
j .

Upon receiving (purchase, σ) from C′
j , T proceeds as follows. If W [j] < pσ then

T simply returns a pair (⊥, 1) to C′
j . Otherwise, it sends a message (purchase) to DB′,

who sends back a pair of bits (b1, b2) indicating whether or not the record transfer and
the wallet update succeeded. Party T sends a pair (R, b) back to C′

j that is composed
as follows. If b1 = 1 and DB �= ε then it sets R ← Rσ , otherwise it sets R ← ⊥. If
b2 = 1 then T sets W [j] ← W [j] − pσ and b ← 1; else it sets W [j] ← ε and b ← 0.

The honest ideal-world parties C′
1, . . . , C

′
M , DB simply relay inputs and outputs be-

tween the environment E and the trusted party T. Dishonest parties can deviate arbitrar-
ily from this behavior.

Note that in the ideal world the database cannot tell which customer makes a pur-
chase, which record she is querying, or what the price of this record is, therefore guar-
anteeing perfect customer privacy. At the same time, customers in the ideal world can
only purchase records that they can afford, they can only obtain one record per purchase,
and even colluding customers cannot obtain records that they wouldn’t have been able
to afford individually, thereby guaranteeing perfect database security.

3 Preliminaries

Let Pg(1κ) be a pairing group generator that on input 1κ outputs descriptions of mul-
tiplicative groups G, GT of prime order q where q > 2κ. Let G∗ = G \ {1} and let
g ∈ G∗. The generated groups are such that there exists an admissible bilinear map
e : G × G → GT, meaning that (1) for all a, b ∈ Zq it holds that e(ga, gb) = e(g, g)ab;
(2) e(g, g) �= 1; and (3) the bilinear map is efficiently computable.

Definition 1 We say that the decision �-bilinear Diffie-Hellman exponent (�-BDHE)
assumption holds in groups G, GT of order q > 2κ if for all polynomial-time adver-
saries A the advantage AdvBDHE

G,GT
(κ) of, given a tuple (g, h, gα, . . . , gα�−1

, gα�+1
, . . . ,

gα2�

, S), to distinguish whether S = e(g, h)α�

or S
$← G∗

T, is a negligible function in

κ for g, h
$← G∗ and α

$← Zq .

Definition 2 We say that the �-strong Diffie-Hellman (�-SDH) assumption [6] holds in
group G of order q > 2κ if for all polynomial-time adversaries A the advantage is a
negligible function in κ, where g

$← G∗ and x
$← Zq .

72 J. Camenisch, M. Dubovitskaya, and G. Neven

3.1 Modified Boneh-Boyen Signatures

We use the following modification of the weakly-secure signature scheme by Boneh
and Boyen [6]. The scheme uses a pairing generator Pg as defined above.

The signer’s secret key is (xm, xp)
$← Zq , the corresponding public key is (g, ym =

gxm , yp = gxp) where g is a random generator of G. The signature on the tuple of
messages (m, p) is s ← g1/(xm+m+xpp); verification is done by checking whether
e(s , ym · gm · yp

p) = e(g, g) is true.
This signature scheme is the special case for � = 2 of the modified Boneh-Boyen

signature scheme used by Camenisch et al. [10], who also show it to be unforgeable
under weak chosen-message attack if the (N + 1)-SDH assumption holds, where N is
the number of signing queries.

3.2 Zero-Knowledge Proofs and Σ-Protocols

When referring to the zero-knowledge proofs, we will follow the notation introduced
by Camenisch and Stadler [17] and formally defined by Camenisch, Kiayias, and
Yung [12]. For instance, PK{(a, b, c) : y = gahb ∧ ỹ = g̃ah̃c} denotes a “zero-
knowledge Proof of Knowledge of integers a, b, c such that y = gahb and ỹ = g̃ah̃c

holds,” where y, g, h, ỹ, g̃, and h̃ are elements of some groups G = (g) = (h) and
G̃ = (g̃) = (h̃).

Given a protocol in this notation, it is straightforward to derive the actual protocol
implementing the proof. The computational complexities of the proof protocol are also
easily derived from this notation: for each term y = gahb, the prover and the verifier
have to perform an equivalent computation, and to transmit one group element and one
response value for each exponent. We refer to Camenisch et al. [12] for details.

3.3 Wallet Signature Scheme

We use the signature scheme proposed and proved secure by Au et al. [4], which is
based on the schemes of Camenisch and Lysyanskaya [13] and of Boneh et al. [7].

The signer’s secret key is a random element x
$← Zq . The public key contains a

number of random bases g1, h0, . . . , h�, h�+1
$← G, where � ∈ N, and y ← gx

1 . A
signature on messages m0, . . . , m� ∈ Zq is a tuple (A, r, s) where r, s

$← Zq are values
chosen at random by the signer and A = (g1h

m0
0 · · ·hm�

� hr
�+1)

1/(x+s). Such a signature
can be verified by checking whether e(A, gs

1y) = e(g1h
m0
0 · · ·hm�

� hr
�+1, g1) .

Now assume that we are given a signature (A, r, s) on messages m0 . . . , m� ∈ Zq

and want to prove that we indeed possess such a signature. This can be done by aug-
menting the public key with values u, v ∈ G such that logg1

u and logg1
v are not

known, choosing random values t, t′ $← Zq , computing Ã = Aut, B = vtut′ , and
executing the proof of knowledge

PK{(α, β, s, t, t′, m0, . . . , m�, r) : B = vtut′ ∧ 1 = B−svαuβ ∧
e(Ã,y)

e(g1,g1) = e(Ã−suαhr
�+1

∏�
i=0 hmi

i , g1)e(u, y)t} ,

where α = st and β = st′.

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 73

DBSetup
(
DB = (Ri, pi)i=1,...,N

)
:

If bmax > 2κ−1 or ∃i : pi > pmax then abort

(G, GT, q) $← Pg(1κ) ; gt, ht
$← GT

∗ ; g, h, g1, h1, h2, h3
$← G∗ ; xR, xp, xb, xw

$← Zq

H ← e(g, h) ; yR ← gxR ; yp ← gxp ; yb ← gxb ; yw ← gxw
1

For i = 1, . . . , N do Ei ← g
1

xR+i+xp·pi ; Fi ← e(h, Ei) · Ri ; ERi ← (Ei, Fi)
For i = 0, . . . , bmax do y

(i)
b ← g1/(xb+i)

skDB ← (h, xR, xp, xb, xw) ; pkDB ← (g,H, g1, h1, h2, h3, yR, yp, yb, y
(0)
b , . . . , y

(bmax)
b , yw)

Return
(
(pkDB,ER1, . . . ,ERN), skDB

)
Fig. 1. Database setup algorithm

It was proved in [4] that the above signature is unforgeable under adaptively chosen
message attack if the Q-SDH assumption holds, where Q is the number of signature
queries, and that the associated PoK is perfect honest-verifier zero-knowledge.

3.4 Set Membership Scheme

To prove that the customer’s new balance after buying a record remains positive and is
not more than the maximum balance we use a signature-based set membership protocol
suggested by Camenisch, Chaabouni and shelat [9].

They consider a zero-knowledge protocol which allows a prover to convince a veri-
fier that a digitally committed value is an element of a given public set. The verifier signs
the individual elements and sends the signatures to the prover. The prover shows that
he knows a valid signature (by the verifier) on the element that he holds. The scheme
of [9] employs the weak signature scheme by Boneh and Boyen [6]. They prove that
their protocol is a zero-knowledge argument of set membership for a set Φ, if the |Φ|-
SDH assumption holds.

4 Our UP-OT Construction

We now describe our scheme in detail. To issue wallets and update customers’ balances,
we employ the signature scheme presented in Section 3.3. To implement the oblivious
transfer with anonymous payments we extend the OT protocol by Camenisch et al. [15].
We will also use a number of zero-knowledge proofs about discrete logarithms as de-
scribed in Section 3.2.

Initial Setup. In Figure 1 we describe the setup procedure of the database provider, who
also issues wallets to customers. Customers do not have their own setup procedure.

The database provider runs the randomized DBSetup algorithm to initiate a
database containing records R1, . . . , RN with corresponding prices p1, . . . , pN . It gen-
erates a pairing group of prime order q for security parameter κ, a number of random
generators, and four secret keys xR, xp, xb, and xw with corresponding public keys yR,
yp, yb, and yw. Intuitively, xR is used as a randomness seed to encrypt the records, xp
securely links prices to records, xb authenticates all possible balances, and xw authen-
ticates the balance in customers’ wallets.

74 J. Camenisch, M. Dubovitskaya, and G. Neven

CreateWallet() :

C(pkDB) : DB(pkDB, skDB) :

n0, r
′
0

$← Zq

A′
0 ← hn0

1 h
r′
0

3
A′

0 , PK{(n0, r
′
0) : A′

0 = hn0
1 h

r′
0

3 }� s0, r
′′
0

$← Zq

r0 ← r′0 + r′′0 mod q A0, r
′′
0 , s0� A0 ← (g1A

′
0h

b0
2 h

r′′
0

3)
1

xw+s0

If e(A0, g
s0
1 yw) = e(g1h

n0
1 hb0

2 hr0
3 , g1)

Then returnW0 ← (A0, r0, s0, n0, 0)
Else return ⊥ Return ε

Fig. 2. Create wallet protocol

The database provider encrypts each record Ri with its own key to a ciphertext
(Ei, Fi). These keys are in fact signatures on the index i and the price pi of the record
under the database provider’s secret keys xR and xp. The pairs (Ei, Fi) can be seen
as an ElGamal encryption [23] in GT of the record Ri under the public key H . But
instead of using random elements from GT as the first component, our protocol uses

verifiably random [22] values Ei = g
1

xR+i+xp·pi . It is this verifiability that during the
purchase protocol allows the database to check that the customer is indeed asking for
the decryption key of a single record with a price that is within his current balance.

Let pmax ≤ bmax < 2κ−1 < q/2 be the maximal balance that can be stored in
a customer’s wallet. To prove that the customer’s new balance after buying a record
remains positive and is not more than the maximum balance, we use a signature-based
set membership protocol of Section 3.4. Here the set contains all possible balances from
the customer’s wallet {0, . . . , bmax}. So for each possible balance 0 ≤ i ≤ bmax the

database provider uses xb to compute a signature {y(i)
b }. These values are included in

the database’s public key; they will be used by the customer to prove that her balance
remains positive after subtracting the price of the purchased record.

The encrypted database consists of a public key pkDB and the encrypted records
ER1, . . . ,ERN . It is made available to all customers, e.g., by publishing it on a website
or by distributing it on DVDs. The server keeps the database secret key skDB to itself.

Obtaining wallets. Before purchasing any records, customers first need to create an
empty wallet and then charge it with money. To create a wallet, the customer runs the
CreateWallet protocol with the database provider depicted in Figure 2.

The database provider’s public key pkDB is a common input. The database provider
has his secret key skDB as a private input. At the end of the protocol, the customer
obtains a wallet W0 = (A0, r0, s0, n0, b0 = 0) signed by the database provider. Here,
(A0, r0, s0) is essentially a signature as per the scheme of Section 3.3 of a serial number
n0 chosen by the customer and the initial balance of the wallet b0 = 0. Next, the
customer verifies the wallet’s signature and outputs W0 if the check is successful.

Recharge protocol. Customers can recharge the balance of their wallets by engaging
in a Recharge protocol (Figure 3) with the database server. Doing so does not reveal

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 75

Recharge() :

C(pkDB, m,Wi) : DB(pkDB, m, skDB) :

If Wi = ε then return ⊥
Parse Wi as (Ai, ri, si, ni, bi)
bi+1 ← bi + m ; If bi+1 > bmax then return ⊥
ni+1, r

′
i+1

$← Zq ; A′
i+1 ← h

ni+1
1 h

bi+1
2 h

r′
i+1

3

ti, t
′
i

$← Zq ; Ãi ← Aiu
ti ; Bi ← vtiut′i

t′′i
$← Zq ; V ← (y(bi+1)

b)
t′′i ni, Ãi, Bi, A

′
i+1, V �

PK

{
(ri, si, ni+1, bi+1, r

′
i+1, ti, t

′
i, t

′′
i , αi, βi) :

A′
i+1 = h

ni+1
1 h

bi+1
2 h

r′
i+1

3 ∧ e(V, yb) = e(V, g)−bi+1e(g, g)t′′i ∧

Bi = vtiut′i ∧ 1 = B−si
i vαiuβi ∧

e(Ãi, yw)
e(g1h

ni
1 h−m

2 , g1)
= e(u, yw)tie(Ã−si

i uαihri
3 h

bi+1
2 , g1)

}
�

Check ni is fresh

Ai+1 ← (g1A
′
i+1h

r′′
i+1

3)
1

xw+si+1

ri+1 ← r′i+1 + r′′i+1 (mod q) Ai+1, r
′′
i+1, si+1�

If e(Ai+1, ywg
si+1
1) = e(g1h

ni+1
1 h

bi+1
2 h

ri+1
3 , g1)

Then return Wi+1 ← (Ai+1, ri+1, si+1, ni+1, bi+1)
Else return ⊥ Return ε

Fig. 3. Recharge protocol

the remaining balance in the wallet, nor whether this is a freshly created wallet or an
updated wallet obtained after purchasing a record. The common inputs are the database
provider’s public key pkDB and the amount of money m that the customer wants to add
to her balance. The database’s secret key skDB and the customer’s current wallet Wi

are private inputs to the database and the customer, respectively.
If the customer already obtained a wallet earlier (her state is not empty), she up-

dates her balance to bi+1 = bi + m and generates a fresh serial number ni+1 and a
randomizer r′i+1 for the new wallet. Then she chooses from the set of database sig-

natures y
(0)
b , . . . , y

(bmax)
b of possible balances the signature corresponding to her new

balance and blinds it as V = (y(bi+1)
b)t′′i . This allows her to next prove that her new

balance bi+1 is positive and less than bmax with the set membership scheme from [9].
The customer further proves that she correctly increased her balance by the amount m
being deposited. The database provider checks whether the proof is valid and whether
the serial number ni is fresh, i.e., whether it previously saw the number ni. If not, then
the database decides that the customer is trying to overspend and aborts. Otherwise, if
the database provider accepts the proof, it signs the customer’s new wallet with updated
balance and sends it to the customer. The customer checks the validity of the signature
on her new wallet, and if it verifies correctly, outputs an updated state containing the
new wallet Wi+1.

76 J. Camenisch, M. Dubovitskaya, and G. Neven

Purchase() :

C (pkDB, σ, ERσ, pσ,Wi) : DB(pkDB, skDB) :

If Wi = ε then return (⊥,⊥)
Parse Wi as (Ai, ri, si, ni, bi)
If bi < pσ then return (⊥,Wi)
bi+1 ← bi − pσ ; k

$← Zq ; K ← (Eσ)k

ni+1, r
′
i+1

$← Zq ; A′
i+1 ← h

ni+1
1 h

bi+1
2 h

r′
i+1

3

t, t′ $← Zq ; Ãi ← Aiu
t ; Bi ← vtut′

t′′ $← Zq ; V ← (y(bi+1)

b)t′′ V, K, ni, Ãi, Bi, A
′
i+1 �

PK

{
(k, σ, pσ, ri, si, t, t

′, t′′, α, β, ni+1, bi+1, r
′
i+1) :

A′
i+1 = h

ni+1
1 h

bi+1
2 h

r′
i+1

3 ∧ e(V, yb) = e(V −bi+1gt′′ , g) ∧

e(K, yR) = e(K , g−σy−pσ
p)e(g, g)k ∧ Bi = vtut′ ∧ 1 = B−si

i vαuβ ∧

e(Ãi, yb)
e(g1h

ni
1 , g1)

= e(u, yb)te(Ã−si
i uαhri

3 h
(bi+1+pσ)

2 , g1)
}

�
Check ni is fresh

L← e(h, K) ; si+1, r
′′
i+1

$← Zq

Ai+1 ← (g1A
′
i+1h

r′′
i+1

3)
1

xw+si+1

L, Ai+1, r
′′
i+1, si+1�

If PK verifies correctly PK{(h) : H = e(g, h) ∧ L = e(K,h)}�
Then Rσ ← Fσ/(L1/k) else Rσ ← ⊥
ri+1 ← r′i+1 + r′′i+1 (mod q)
If e(Ai+1, ywg

si+1
1) = e(g1h

ni+1
1 h

bi+1
2 h

ri+1
3 , g1)

Then Wi+1 ← (Ai+1, ri+1, si+1, ni+1, bi+1) else Wi+1 ← ε
Return (Rσ,Wi+1) Return ε

Fig. 4. Purchase protocol

Purchase protocol. When the customer wants to purchase a record from the database,
she engages in a Purchase protocol (Figure 4) with the database server. The only com-
mon input is the database’s public key pkDB. The customer has as a private input her
selection index σ ∈ {1, . . . , N}, the encrypted record ERσ and its price pσ , and her
current wallet Wi. The database provider uses its secret key skDB as a private input.

The customer blinds the first part of the chosen encrypted record Eσi and sends this
blinded version K to the database. Note that Eσi is derived from the database provider’s
secret key, the index and the price of the record. Next, the customer updates her balance
to bi+1 = bi − pσi , generates a fresh serial number ni+1 and a randomizer for the
new wallet. Then she chooses from the set of database signatures y

(0)
b , . . . , y

(bmax)
b of

possible balances the signature corresponding to her new balance and blinds it as V =
(y(bi+1)

b)t′′i . This allows her to prove that her new balance bi+1 is positive employing
the set membership scheme from [9]. The customer further proves that K is correctly
formed as a blinding of some Eσi and that she correctly reduced her balance by the

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 77

price of requested record. The database provider checks if the serial number ni is fresh,
i.e., whether it previously saw the number ni. If not, then the database decides that
the customer is trying to double-spend and aborts. Otherwise, if the database provider
accepts the proof, it computes L from h and K , sends L to the customer, and executes
a proof of knowledge of the database secret key h and that L was computed correctly.
In our security proof, this zero-knowledge proof will enable us to extract h and decrypt
the contents of the database. Also database provider signs the customer’s new wallet
with updated balance and sends it to the customer. The customer checks the validity of
the zero-knowledge proof and of the signature on her new wallet. ⊥ as the record; if
the wallet signature is invalid, then it returns ε as the new wallet; if all goes correctly,
she outputs the record Rσ and the new wallet Wi+1. The protocol is easily seen to be
correct by observing that L = e(h, Eσi)k , so therefore Fσ/L1/k = Rσi .

Notice that PK {(h) : H = e(g, h) ∧ L = e(K, h)} can be realized in the standard
way as e(g, ·) is a group (one-way) homomorphism that maps G onto GT.

We finally remark that the database has to calculate a signature of every element in
the set of all possible balances in the customer’s wallet {0, . . . , bmax} and encrypt all
records (1, . . . , N) only once at the setup phase, and the customer has to download the
entire encrypted database and balance signatures only once as well. So the communica-
tion and computation complexity of the protocol depends on a cardinality of a set of all
possible balances in the customer’s wallet and a number of the records in the database
only at the setup phase. The other parts of the protocol (create wallet, recharge and
purchase), however, require only a constant number of group elements to be sent and a
constant number of exponentiations and pairings to be computed.

5 Security Analysis

The security of our protocol is analyzed by proving indistinguishability between adver-
sary actions in the real protocol and in an ideal scenario that is secure by definition.
Given a real-world adversary A, we construct an ideal-world adversary A′ such that no
environment E can distinguish whether it is interacting with A or A′.

Theorem 3 If the (N + 2)-BDHE assumption holds in G, GT and the max(qW,
bmax + 1, N + 1)-SDH assumption holds in G,then the UP -OT protocol depicted
in Figures 1–4 securely implements the UP-OT functionality, where N is the number of
database records, bmax is the maximum possible balance in a customer’s wallet, and
qW is the number of created wallets.

We prove the theorem in two steps: first, we prove the case where the database is cor-
rupted, and next, we prove the case where a subset of the customers are corrupted. We
do not consider the cases where all parties are honest and where all parties are dishonest
as these cases have no practical interest. By lack of space, we only provide sketches of
the construction of the ideal-world adversary A′ below. A detailed proof is available in
the full version of this paper [11].

Corrupted database. We first prove that for all environments E and all real-world ad-
versaries A controlling the database there exists an ideal-world adversary A′ such that
E can distinguish the real world from the ideal world with probability at most 2−κ.

78 J. Camenisch, M. Dubovitskaya, and G. Neven

Since the adversary can always simulate additional customers himself, we can sim-
plify the setting to a single honest customer C. We construct an ideal-world adversary
A′ that plays the role of the database and that runs the real-world adversary A as a
subroutine as follows.

A′ simply relays all messages between the environment E and A. It runs A to obtain
the database’s public key pkDB and the encrypted database EDB = (pkDB, (E1, F1),
. . . , (EN , FN)).

Upon receiving a message (create wallet) from T, it executes the customer’s side
of the CreateWallet protocol with A. If the obtained wallet is valid, A′ returns b = 1 to
T, otherwise it returns b = 0.

Upon receiving (recharge, m) from T, A′ executes the customer’s side of the
Recharge protocol for amount m with A, but replaces the value V with a random ele-
ment from G and simulates the PK protocol. If the protocol returns a valid wallet, then
A′ returns b = 1 to T; if the protocol returns ⊥ then A′ returns b = 0.

At the first purchase message from T, A′ simulates an honest user querying for R1,
but replaces V with a random value from G and simulates the proof of knowledge. Then
it extracts h from A in the last proof of knowledge, uses it to decrypt Ri as Fi/e(h, Ei)
for i = 1, . . . , N and sends (initdb, (Ri, pi)i=1,...,N) to T. A′ sends a pair of bits
(b1, b2) back to T depending whether the obtained record is valid (b1 = 1) or not
(b1 = 0) and whether the updated wallet is valid (b2 = 1) or not (b2 = 0).

Corrupted customers. Next, we prove that for all environments E and all real-world
adversaries A controlling some of the customers, there exists an ideal-world adversary
A′ such that E can distinguish the real from the ideal world with probability at most

2−κ · Q + Advq-SDH
G

(κ) + (N + 1) · Adv(N+2)-BDHE
G,GT

(κ),

where Q is the total number of create wallet, recharge, and purchase queries, q =
max(qW, bmax + 1, N + 1), qW is the total number of create wallet queries, bmax is
the maximum possible balance in a customer’s wallet, and N is the number of records
in the database.

Since the UP-OT functionality prevents colluding customers from pooling their wal-
lets we have to consider multiple customers here, some of which are corrupted, and
some of which are honest. Given a real-world adversary A controlling some of the cus-
tomers, we construct an ideal-world adversary A′ controlling the same customers as
follows.

A′ simply relays all communication between the environment E and A. Upon receiv-
ing (initdb, {pi}i=1,...,N)) from T, A′ creates an encrypted database (EDB , skDB)
encrypting N random records, meaning that F1, . . . , FN are random group elements of
GT.

To simulate A’s CreateWallet, Recharge, and Purchase protocol queries, A′ plays
the role of a real-world database by extracting from A the wallet signatures (Ai, ri, si),
record signatures Eσi and range proof signatures y

(i)
b that it uses in the zero-knowledge

proofs, and aborting if either a forged wallet signature or a forged range proof signature
is detected. When a cheating customer Cj (controlled by A) makes a CreateWallet
query, A′ sends a message (create wallet, j) to T; when Cj makes a Recharge query

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 79

FairPurchase() :

C (pkDB, σi,ERσi , pσi ,Wi) : DB(pkDB, skDB) :

If Wi = ε then return (⊥,⊥)
Parse Wi as (Ai, ri, si, ni, bi)
Compute V, K, Ãi, Bi, A

′
i+1

cmt
$← Commit(ni)

V, K, cmt , Ãi, Bi, A
′
i+1 �

PK{(k, σi, pσi , ri, si, ni+1, bi+1, r
′
i+1, . . .)}�

c← H(n1, . . . , nS)
sig ← SignDB(cmt , c)

Compute L, Ai+1, si+1, r
′′
i+1

c, sig ,VETTP(L, Ai+1, r
′′
i+1, si+1)�

PK{(h) : H = e(g, h) ∧ L = e(h, K)}�
Verify sig ,PK

Open cmt to ni �
Check if ni is fresh

L, Ai+1, r
′′
i+1, si+1�

Compute ri+1, Rσi ,Wi+1

Return (Rσi , (1,Wi+1)) Return ε

Fig. 5. Fair purchase protocol

for amount m, A′ sends a message (recharge, j, m) to T. These never cause C′
j’s

balance to exceed bmax, because that would imply a forgery in the range proof signature,
which we ruled out above.

When a cheating customer Cj makes a Purchase query, A′ extracts the index of
the record being purchased σi and the exponent k, and sends (purchase, j, σi) to T
to obtain the record Rσi . Note that C′

j’s balance is always sufficient to purchase Rσi ,
because otherwise A would have forged one of the signature schemes, which we ruled
out above. Next, A′ computes L ← (Fσi/Rσi)k and simulates the zero-knowledge
proof as in the simulation above.

6 Fair Purchase and Recharge Protocols

In the recharge and purchase protocols of our basic scheme, the customer has to spend
her current wallet (i.e., reveal the serial number ni) before obtaining a new wallet and
the decryption key to the purchased record. A malicious database could abuse this situa-
tion by aborting the transaction after the wallet was spent, thereby leaving the customer
with a spent wallet and without a new wallet and the record that she wanted.

In this section we sketch how to strengthen our recharge and purchase protocols
against this type of attacks by introducing a trusted third party (TTP) who’s only in-
volved in case of conflict. Essentially, we let the customer and the database engage in

80 J. Camenisch, M. Dubovitskaya, and G. Neven

an optimistic fair exchange [2,3] of the serial number ni against the record decryption
key L and updated wallet (Ai+1, r

′′
i+1, si+1) as shown on Figure 5.

Here the customer and the database proceed as in the simple purchase protocol, ex-
cept that instead of sending ni in the clear the customer sends a commitment cmt =
Commit(ni) to the database, and performs the proof of knowledge PK{(ni+1, si, ...)}
based on this commitment. If the proof is accepted, the server sends back a verifiable
encryption [16] of the decryption key and the new wallet (L, Ai+1, r

′′
i+1, si+1) under

the trusted third party’s public key, and performs the proof of knowledge PK{(h) : . . .}
based on this verifiable encryption. The database also computes the hash c of all pre-
viously revealed serial numbers and provides the customer with a signature on cmt , c.
Only after receiving the signature and verifying the PK does the customer reveal the
serial number ni to the database. The database checks if it is fresh serial number, and if
so opens L, Ai+1, r

′′
i+1, si+1 to the customer.

If the database tries to cheat by not sending the decryption key or the new wallet,
then the customer can take ni, the verifiable encryption and the database’s signature to
the TTP. The TTP will contact the database to ask for the list of serial numbers that were
included in the computation of c and checks whether ni appears in this list. If not, then
the database decrypts L, Ai+1, r

′′
i+1, si+1 for the customer. If it does, the TTP decides

that the customer’s complaint was unjustified and does nothing.
If the customer tries to cheat by reusing an old wallet or not opening the commitment

cmt , then the database simply doesn’t reveal L, Ai+1, r
′′
i+1, si+1 to the customer.

Similarly to the FairPurchase protocol sketched above, one could also design a
FairRecharge protocol to ensure that the customer obtains a recharged wallet after a
payment is made. For this to work, the underlying payment system has to provide a
mechanism by which the customer can prove to the TTP that the payment was made.
Details are left to the full version [11].

Acknowledgements

This work was supported in part by the European Community through the Seventh
Framework Programme (FP7/2007-2013) project PrimeLife (agreement no. 216483).

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In:
Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 119. Springer, Heidelberg
(2001)

2. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In: ACM
CCS 1997. ACM Press, New York (1997)

3. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. IEEE
JSAC 18(4), 593–610 (2000)

4. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: De Prisco, R., Yung, M.
(eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (2006)

5. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

6. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

Unlinkable Priced Oblivious Transfer with Rechargeable Wallets 81

7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

8. Brands, S.: Rapid demonstration of linear relations connected by boolean operators. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 318–333. Springer, Heidelberg (1997)

9. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership and range
proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer,
Heidelberg (2008)

10. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control. In:
ACM CCS 2009. ACM Press, New York (2009)

11. Camenisch, J., Dubovitskaya, M., Neven, G.: Unlinkable Priced Oblivious transfer with
Rechargeable Wallets. In: Cryptology ePrint Archive (2010)

12. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr proofs. In:
Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442. Springer, Heidelberg
(2010)

13. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bi-
linear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer,
Heidelberg (2004)

14. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number n is the product of
two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 107. Springer,
Heidelberg (1999)

15. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M.
(ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007)

16. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete loga-
rithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Hei-
delberg (2003)

17. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

18. Camenisch, J.: Group Signature Schemes and Payment Systems Based on the Discrete Log-
arithm Problem. PhD thesis, ETH Zürich, Diss. ETH No. 12520 (1998)

19. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: FOCS 2001. IEEE Computer Society Press, Los Alamitos (2001)

20. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO
1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

21. Coull, S., Green, M., Hohenberger, S.: Controlling access to an oblivious database using
stateful anonymous credentials. In: Jareck, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443,
pp. 501–520. Springer, Heidelberg (2009)

22. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In:
Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)

23. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory 31(4), 469–472 (1985)

24. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private informa-
tion retrieval schemes. In: ACM STOC. ACM Press, New York (1998)

25. Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure reactive sys-
tems. In: ACM CCS 2000. ACM Press, New York (2000)

26. Schnorr, C.P.: Efficient signature generation for smart cards. Journal of Cryptology 4(3),
239–252 (1991)

27. Tobias, C.: Practical oblivious transfer protocols. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS,
vol. 2578, pp. 415–426. Springer, Heidelberg (2003)

28. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its application
to secure message transmission. In: IEEE Symposium on Research in Security and Privacy.
IEEE Computer Society Press, Los Alamitos (2001)

29. Rial,A.,Kohlweiss,M.,Preneel,B.:Universallycomposableadaptivepricedoblivious transfer.
In:Shacham,H. (ed.)Pairing2009.LNCS,vol. 5671,pp.231–247.Springer,Heidelberg(2009)

Multiple Denominations in E-cash with
Compact Transaction Data�

Sébastien Canard1 and Aline Gouget2

1 Orange Labs R&D, 42 rue des Coutures, F-14066 Caen, France
2 Gemalto, 6, rue de la Verrerie, F-92190 Meudon, France

Abstract. We present a new construction of divisible e-cash that makes
use of 1) a new generation method of the binary tree of keys; 2) a
new way of using bounded accumulators. The transaction data sent to
the merchant has a constant number of bits while spending a mone-
tary value 2�. Moreover, the spending protocol does not require complex
zero-knowledge proofs of knowledge such as proofs about double discrete
logarithms. We then propose the first strongly anonymous scheme with
standard unforgeability requirement and realistic generation parameters
while improving the efficiency of the spending phase.

1 Introduction

In e-cash systems, users withdraw coins from a bank and use them to pay mer-
chants (preferably without involving the bank during this protocol). Finally,
merchants deposit coins to the bank. An e-cash system must prevent both a
user from double-spending, and a merchant from depositing twice a coin. The
anonymity of honest users should be protected whereas the identity of cheaters
must be recovered preferably without using a trusted third party.

Divisible e-cash aims at improving the efficiency of both the withdrawal pro-
tocol and the spending of multiple denominations. The underlying idea is to
efficiently withdraw a single divisible coin equivalent to 2L unitary coins. The
user can spend this coin by dividing its monetary value, e.g. by sub-coins of
monetary value 2�, 0 ≤ � ≤ L. In this paper, we revisit the divisible e-cash
approach by targeting the most demanding security model while providing a
realistic parameter generation algorithm and an efficient spending protocol.

1.1 Related Work

A generic construction of divisible e-cash schemes which fulfill the classical prop-
erties of anonymity and strongly unlinkability without using a trusted third party
to revoke the identity of cheaters has been proposed in [9]. The wallet is repre-
sented by a binary tree such that each internal node corresponds to an amount,
i.e. 2L−i if the node’s distance to the root is i, 0 ≤ i ≤ L. Each node in the
� This work has been financially supported by the French Agence Nationale de la

Recherche and the TES Cluster under the PACE project.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 82–97, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

Multiple Denominations in E-cash with Compact Transaction Data 83

tree is related to a key such that the key of a child can be computed from the
key of one of its ascendants. The main efficiency bottleneck of the practical in-
stantiation given in [9] is that the user has to prove during the spending phase
the correctness from the tree root to the target node without revealing none of
the L − � intermediate values. As one node key is derived from its parents us-
ing a modular exponentiation, the user must prove, for each intermediate value
and using proofs about double discrete logarithms, that they satisfy a certain
relation. Each such proof is expensive and requires Ω(k) group elements to be
communicated in order to guarantee 1/2k soundness error. Moreover, the con-
struction of the binary tree used in [9] (and previously used in [11]) is difficult
to instantiate in practice [1]. Indeed, this construction necessitates to manage
L + 2 groups G0, G1, · · · , GL+1 with prime order p0, p1, · · · , pL+1 respectively,
such that for all 1 ≤ i ≤ L+1, Gi+1 is a subgroup of Z∗

pi
. One possibility is to take

pi = 2× pi−1 + 1 for all 1 ≤ i ≤ L +1. Using prime number theory, it is possible
to show that the probability to generate such prime numbers is approximately
2−95 for 1024 bits prime numbers and L = 10, which is unpractical.

A very efficient variant of this scheme based on bounded accumulators has
been proposed in [1]. Its main drawback is that it does not fulfills the classical
security property of unforgeability. Indeed, it is possible for a malicious user to
withdraw a divisible coin of monetary value L2L whereas the legitimate value is
2L by cheating in the construction of the binary tree of keys during the with-
drawal protocol. Next, the user can spend L2L coins without being detected and
identified. The solution proposed by the authors is that the bank will use the
cut-and-choose method during the withdrawal protocol by flipping a coin b and
executing the withdrawal protocol correctly if b = 1 and asking the user to reveal
her binary tree that is finally dropped if b = 0. If the revealed tree is correct, the
user is honest and the withdrawal protocol is repeated again from the beginning.
If the user is a cheater, a fine of value 2L2L is deducted from the user’s account.
This drawback may be considered as unacceptable from the bank point of view
even if the bank should not loose money “on average”.

1.2 Our Contribution

We revisit the divisible e-cash approach by targeting both the most demand-
ing security model and the effective possibility to instantiate an e-cash system
from a theoretical method. We introduce a new construction based on algebraic
objects to generate the binary tree without any previously mentioned problems
(impracticability of the key generation [9] and unusual security model [1]). We
introduce a new technique to prove the validity of the spending. We show that
it is possible to prove that one node key is derived from its father, which is
impossible in the proposal of [1]. This enables us to prove that one node key is
derived from only its father and we do it only once instead of (L−�) times in the
scheme proposed in [9] for spending 2� coins from a divisible coin of 2L coins.
Next, we prove the remainder of the paths from the spent node to the leaves
using a variant of the accumulator technique from [1]. In our construction, the
spender only sends to the merchant a constant number of bits to spend 2� coins.

84 S. Canard and A. Gouget

2 Preliminaries

2.1 Construction of the Binary Tree of Keys

In the following, any divisible coin of monetary value 2L is assigned to a binary
tree with L + 2 levels, as done in [9]. The value of the tree root (at level 0) is
2L. Any other internal node in the tree has a value corresponding to half of the
amount of its parent node. The leaves (at level L + 1) have no monetary value.
For every level i, 0 ≤ i ≤ L + 1, the 2i nodes are assigned keys denoted by ki,j

with 0 ≤ j ≤ 2i − 1. The following rule must be satisfied in order to protect
over-spending (c.f. Definition 3): when a node n is used, none of descendant and
ancestor nodes of n can be used, and no node can be used more than once.

We now describe a new way to generate the binary tree of keys based on
algebraic objects which can be efficiently generated. Let q, p, P be three primes
such that p is of size lp, q is of size lq and divides p − 1, and P = 2p + 1. We
denote by Gq (resp. Gp) the subgroup of Z∗

p (resp. Z∗
P) of order q (resp. p) and

g0, g1 are two generators of Gq. The keys of the tree are computed from the root
to the leaves as follows. Given a key ki,j with 0 ≤ i ≤ L and 0 ≤ j ≤ 2i −1 of an
internal node, the two keys related to its two direct descendants are computed
as follows: ki+1,2j = g

ki,j (mod q)
0 (mod p) and ki+1,2j+1 = g

ki,j (mod q)
1 (mod p).

2.2 Discrete Log Relation Sets

Roughly speaking, a Zero Knowledge Proof of Knowledge (ZKPK) is an inter-
active protocol during which a prover proves to a verifier that he knows a set
of secret values α1, . . . , αq that verify a given relation R, without revealing the
secret values; we denote it by Pok(α1, . . . , αq : R(α1, . . . , αq)). In the following,
the secret values are discrete logarithms in relations constructed over a group ei-
ther of prime or unknown order. These constructions should verify the soundness
and zero-knowledge properties [8,4]. The relation R can be a proof of knowledge
of a discrete logarithm denoted by Pok(α : y = gα), a proof of knowledge of
a representation, denoted by Pok(α1, . . . , αq : y = gα1

1 . . . g
αq
q), or a proof of

equality of discrete logarithms, denoted by Pok(α : y = gα ∧ z = hα). Note
that, contrary to [9], we do not use the complex proof of knowledge of double-
discrete logarithms. We apply the Fiat-Shamir heuristic [10] to turn it into a
signature on some message m: Sok(α1, . . . , αq : R(α1, . . . , αq))(m).

2.3 Signature Schemes with Additional Features

Camenisch and Lysyanskaya [7] have proposed various unforgeable signature
schemes based on Pedersen’s commitment scheme to which they add some spe-
cific protocols. There is first an efficient protocol between a user U and a signer
S that permits U to obtain from S a signature σ of some commitment C on
values (x1, . . . , x�) unknown from S. S computes CLSign(C) and U obtains
σ = Sign(x1, . . . , x�) and second, an efficient proof of knowledge of a signature
of some committed values.

Multiple Denominations in E-cash with Compact Transaction Data 85

The Extended Special Signature (ESS+) scheme introduced in [2,1] is a vari-
ant of the Camenisch-Lysyanskaya (CL) signature scheme that allows to sign
a block of messages, one of them being an element in a cyclic group. The user
obtains a signature σ = Sign(X, x1, . . . , x�) where X is an element of the mul-
tiplicative group while the xi’s are exponents. In our divisible e-cash system, we
may use the signature scheme described in [1] together with the following zero-
knowledge proof of knowledge: Pok(X, x1, · · · , x�, σ : σ = Sign(X, x1, · · · , x�)),
which is unforgeable under the AWSM assumption [2]. Note that any signature
scheme with the same features can also be used.

2.4 Bounded Accumulators

An accumulator scheme Acc is a method which permits to accumulate a large set
of objects in a single short value. It next provides evidence that a given object
is contained in the accumulator by producing a related witness. We denote by
x ∈ Acc or (x, w) ∈ Acc that the value x is accumulated in Acc, possibly with the
witness w. It is possible to prove (in a zero-knowledge manner) that one (secret)
value is truly accumulated in a given accumulator such that the computation and
the verification of the proof do not depend on the number of accumulated values.
The main accumulator schemes are described in [6,12,5]. As noticed in [2], the
proposal given in [12] (and this is also the case for [5]) is bounded in the sense that
it should not be possible to accumulate more than a given number s of objects,
this number being stated at the key generation process. In our scheme, the
payer needs to prove that she knows a secret accumulator Acc certified by some
authorities in which several revealed values x1, · · · , x� are accumulated, that is
Pok(w1, · · · , w�, Acc, σ : (x1, w1) ∈ Acc ∧ · · · ∧ (x�, w�) ∈ Acc ∧ σ = Sign(Acc)),
also denoted Pok(Acc, σ : (x1, · · · , x�) ∈ Acc∧σ = Sign(Acc)). This new feature
obviously not introduce any new flaw in the accumulator scheme. In Appendix A,
we describe a construction such that this proof does not depend on the number
� of revealed values.

3 Model for Divisible E-cash

3.1 Procedures for Divisible E-cash

Three types of actors are involved in a divisible e-cash system: the bank B,
the user U and the merchant M. We denote by λ the security parameter. The
monetary value of a divisible coin is fixed to 2L. A divisible e-cash system S can
be defined by the following polynomial-time procedures:

– Setup(1λ) is a probabilistic algorithm which outputs the parameters of the
system param. In the following, param and 1λ are implicitly in the input of
all algorithms and protocols;

– BKeyGen() is a probabilistic algorithm which outputs (bsk, bpk) as the
secret and public keys of the bank, respectively. A database cdb of all spent
coins is initialized to the empty set ε;

86 S. Canard and A. Gouget

– UKeyGen() is a probabilistic algorithm which outputs (usk, upk) as the
secret and public keys of the user, respectively. Note that the same algorithm
is executed by the merchants to get (msk, mpk);

– Withdraw[B(bsk) ←→ U(usk, bpk)] is a protocol which permits U to with-
draw a divisible coin co, while the bank outputs its view viewW;

– Spend[U(usk, co, bpk, �) ←→ M(msk, bpk)] is a protocol which permits U to
spend a value 2� from the divisible coin co to the merchant M. The user
outputs a new state for co and M outputs the received coin rco;

– Deposit[M(msk, rco, bpk) ←→ B(bsk, mpk, cdb)] is a protocol which per-
mits M to deposit a coin rco to the bank. The bank outputs either 1 and
the monetary value 2�, or executes the algorithm Identify if the database
cdb already contains the serial number in rco. This procedure is sometimes
written Deposit(rco) for simplicity.

– Identify(rco, cdb) (or Identify(rco)) for short) is an algorithm which out-
puts the public key upk of a fraudulent player (either a user or a merchant)
together with a proof πG;

– VerifyGuilt(rco, cdb, upk, πG) is an algorithm which outputs 1 if πG is a
valid proof that the player’s public key upk has made a fraud during the
spending of the coin rco, and 0 otherwise.

In the following, it is assumed that if an honest user runs a Withdraw protocol
with an honest bank, then neither will output an error message. If an honest
user runs a Spend protocol with an honest merchant, then the merchant always
accept the coin.

3.2 Security Properties

The adversary A interacts with a challenger C in order to break a security prop-
erty. The adversary A has access to the procedures of the system and to the
parameters param. In addition, two oracles are defined in order to add and cor-
rupt users: AddU() and CorruptU(j), where j is related to the user public
key uskj . In the following, the execution of A with access to the oracle Xxxx
and with input e is denoted by AXxxx(e).

Unforgeability. It guarantees that no coalition of players can deposit more
coins than they have withdrawn from the bank.

Experiment Expunforge
S,A (λ):

– (param) ←− Setup(λ),
– (bsk, bpk) ←− BKeyGen(), (mpk) ←− A()
– dc ←− 0, sp ←− 0, cont ←− true,
– while (cont == true),

b ←− Withdraw[C(bsk) ←→ A(bpk)]
if (b == 1), then dc ←− dc + 1
(rco, �) ←− A(bpk)
if (Deposit(rco) == 1), then sp ←− sp + 2�

cont ←− A()
– if 2L · dc < sp return 1
– return 0

Multiple Denominations in E-cash with Compact Transaction Data 87

The success probability ofA is definedbySuccunforge
S,A (λ)=Pr

[
Expunforge

S,A (λ)=1
]
.

Definition 1 (Unforgeability). A system S is unforgeable if for any
polynomial-time adversaryA, the success probability Succunforge

S,A (·) is negligible.

Anonymity. It guarantees that the bank, even helped by malicious users, can-
not learn anything about a spending other than what is available from side
information from the environment. In the following experiment, b is a bit.

Experiment Expanon−b
S,A (λ):

– (param) ←− Setup(λ), (bpk) ←− A()
– (upk0, upk1) ←− AWithdraw,Spend,AddU,CorruptU()
– rco ←− Spend[C(uskb) ←→ A()]
– return b′ ←− AWithdraw,Spend,AddU,CorruptU(rco)

The advantage of A for the anonymity experiment is defined by:

Advanon
S,A (λ) = Pr

[
Expanon−1

S,A (λ) = 1
]
− Pr

[
Expanon−0

S,A (λ) = 1
]
.

Definition 2 (Anonymity). A system S is anonymous if for any
polynomial-time adversaryA, the adversary advantage Advanon

S,A (·) is negligible.

Identification of double-spenders. From the bank’s point of view, no col-
lection of users should be able to double-spend a coin without revealing one
of their identities.

Experiment Expidds
S,A(λ):

– (param) ←− Setup(λ), (bsk, bpk) ←− BKeyGen(),
– rco ←− AWithdraw,Spend,AddU,CorruptU(bpk)
– if

(
Deposit(rco) == 0 ∧ VerifGuilt(rco, Identify(rco)) == 0

)
return 1

– return 0

The success probability of A is defined by Succidds
S,A(λ) = Pr

[
Expidds

S,A(λ) = 1
]
.

Definition 3 (Identification of double spender). A system S identifies
double-spender if for any polynomial-time adversary A, the success proba-
bility Succidds

S,A(·) is negligible.

Exculpability. It guarantees that the bank, even cooperating with malicious
users, cannot falsely accuse honest users from having double-spent a coin.
In the experiment, CU is the set of corrupted users.

Experiment Expexculp
S,A (λ):

– (param) ←− Setup(λ), (bpk) ←− A()
– cont ←− true, CU ←− ∅
– while (cont == true),

(j, cont) ←− AWithdraw,Spend,AddU,CorruptU(CU), CU ←− CU ∪ {upkj}
– rco ←− AWithdraw,Spend,AddU,CorruptU()
– if

(
Identify(rco) = (upk, πG) ∧ VerifyGuilt(rco, upk, πG) = 1 ∧ upk /∈ CU)

return 1
– return 0

The success probability of A is defined by Succexculp
S,A (λ)=Pr

[
Expexculp

S,A (λ)=1
]
.

Definition 4 (Exculpability). A system S is exculpable if for any
polynomial-time adversary A, the success probability Succexculp

S,A (·) is negligible.

88 S. Canard and A. Gouget

4 Description of Our Divisible E-cash Construction

4.1 Setup and Key Generation Procedures

A divisible coin has a value set to 2L, where L is a positive integer. As in [9], a
divisible coin in our system is represented by a binary tree of L + 2 levels and
the leaves have no value.

Let λ be the security parameter. Let q, p, P be three primes such that q
divides p − 1 and P = 2p + 1. The size of p (resp. q) is denoted by lp (resp.
lq). We denote by Gq (resp. Gp) the subgroup of Z∗

p (resp. Z∗
P) or order q (resp.

p); g0 and g1 (resp. G and H) are two generators of Gq (resp. Gp). Finally, let
H : {0, 1}∗ −→ Z∗

p be a collision-resistant hash function.
The parameters of L+ 2 bounded accumulators Acc, Acc1, · · · , AccL+1 on the

cyclic group Gp are generated during the Setup procedure (see Appendix A).
The accumulator Acc is bounded to 2L+2−2 in order to accumulate all the keys
of nodes in the tree from level 1 to level L + 1 (and thus the key of the root
is not accumulated in Acc). The accumulator Acci is bounded to 2i in order to
accumulate all the keys of nodes at level i, with i ∈ [1, L + 1]. Then, it is not
possible to accumulate more than 2i keys of value 2L−i (see Figure 1).

σ = Sign(Acc, usk, s)
k0,0

k1,0 = g
k0,0
0

k2,0 = g
k1,0
0 k2,1 = g

k1,0
1 k2,2 = g

k1,1
0

k3,2 k3,3 k3,4 k3,5 k3,6k3,1k3,0

k1,1 = g
k0,0
1

k2,3 = g
k1,1
1

k3,7

Acc1 = Acc(k1,0 , k1,1)

Acc2 = Acc(k2,0 , · · · , k2,3)

Acc3 = Acc(k3,0 , · · · , k3,7)

σ1 = Sign(Acc1, s, 1)

σ2 = Sign(Acc2, s, 2)

σ3 = Sign(Acc3, s, 3)

Acc = Acc(k1,0 , · · · , k3,7)

Fig. 1. Our new binary tree for a coin of monetary value 22 with L = 2

The algorithm BKeyGen is performed by the bank in order to generate a
key pair (bsk, bpk) for the signature scheme ESS+ [1] on the group Gp. The
algorithm UKeyGen is executed by any user and merchant of the system. It
consists in randomly choosing a secret usk ∈ Z∗

p (resp. msk ∈ Z∗
p) and computing

upk = Gusk (resp. mpk = Gmsk). Moreover, any user public key is assumed to
be certified by an authority and the bank can be convinced that it belongs to a
known identified user.

4.2 The Withdrawal Protocol

The withdrawal phase is a protocol between the user U (on input usk and bpk)
and the bank B (on input bsk), which permits U to withdraw a coin of value
2L. In a nutshell, U computes the keys k0,0, · · · , kL+1,2L+1−1 of the binary tree

Multiple Denominations in E-cash with Compact Transaction Data 89

and next the accumulators Acc, Acc1, · · · , AccL+1. Next, B produces L+2 ESS+
signatures on the messages (Acc, usk, s), (Acc1, s, 1), · · · , (AccL+1, s, L+1). These
signatures give a proof of the interaction between the user knowing usk and the
bank. The secret value s is used to link together the L + 2 signatures of a given
withdrawal protocol knowing that the user and bank contribute randomness to
the value s.

An important remark is that it is not necessary for the bank to check if the
tree of keys is well-formed or if the accumulators are well-formed since they
are bounded using appropriate values. As explained in the following, if the user
cheats in the construction of the tree of keys or in the construction of the accu-
mulated values, he won’t be able to correctly execute the spending protocol, as
the merchant will be able to make all validity checks. More formally, the protocol
works as follows:

– U chooses at random the key root k0,0 ∈ Z∗
p and computes the keys of the

full tree: given a key node ki,j with 0 ≤ i ≤ L and 0 ≤ j ≤ 2i − 1, the keys
related to its two direct descendants are ki+1,2j = g

ki,j (mod q)
0 (mod p) and

ki+1,2j+1 = g
ki,j (mod q)
1 (mod p). The keys are stored in a table tr;

– U accumulates the keys ki,j , for all 1 ≤ i ≤ L + 1 and 0 ≤ j ≤ 2i − 1, in Acc
and sends it to B. Next U and B interact using the ESS+ interactive protocol
in order to get a signature σ on (Acc, usk, s), where s ∈ Z∗

p is a secret value
only known by the user and jointly generated by both U and B. For this
purpose, the user commits to the values usk and s′ and the bank modifies
s′ to s = s′ + s′′ (without learning any information about s′), produces the
commitment to Acc, usk and s and signs this commitment. Note that B
can verify that usk is related to a known public key upk (i.e. by making U
produces a proof of knowledge of usk such that upk = Gusk).

– for every i such that 1 ≤ i ≤ L+1, U accumulates in Acci the keys ki,j , with
j ∈ [0; 2i−1]. Next, U sends Acc1, · · · , AccL+1 to B and interacts with B using
the ESS+ interactive protocol in order to get the signatures σ, σ1, · · · , σL+1
on (Acc1, s, 1), · · · , (AccL+1, s, L+1), respectively. For this purpose, the user
commits s′ and proves that this is the same as in the previous step. The bank
verifies the proof, again modifies s′ to s = s′ +s′′, produces the commitment
on Acci, s and i and signs it. Note that one single commitment to s′ by the
user is enough to obtain all the signatures.

At the end of this protocol, U outputs a coin co = {tr, Acc, Acc1, · · · , AccL+1,
σ, σ1, · · · , σL+1, spc}, where spc ← ε will contain information on spent nodes.
Note that tr can be either erased or kept to avoid the re-computation of the key
nodes during the spending phase.

4.3 The Spending Phase

We suppose that a user U , with keys (usk, upk) and with a coin co = {tr, Acc,
Acc1, · · · , AccL+1, σ, σ1, · · · , σL+1, spc} wants to spend a value 2� ≤ 2L to
a merchant M (with input msk and bpk). Informally, U chooses an unspent

90 S. Canard and A. Gouget

node j0 in the tree at level L − � and computes 1) a serial number S as the
concatenation of the keys kL−�+1,2j0 and kL−�+1,2j0+1 of the two descendant
nodes and 2) the security tag using the key kL−�,j0 . In addition, U produces a
proof of validity of the accumulators and the ESS+ signatures coming from the
withdrawal protocol. More formally, the protocol works as follow:

– U receives M’s public key mpk and the proof π that M knows msk. Next,
U and M can compute R = H(mpk‖info) where info is a pre-determined
public information including the monetary value 2� and e.g. current time;

– U chooses in the binary tree an unspent node j0 at level L− � and finds in tr
(or recompute) the corresponding key kL−�,j0 and its two direct descendants
kL−�+1,2j0 and kL−�+1,2j0+1;

– the serial number is then formed as S = kL−�+1,2j0‖kL−�+1,2j0+1 and the
security tag of this spending is T = upk · HR·kL−�,j0 ;

– finally U produces the signature of knowledge:

Π = Sok
(
usk, kL−�,j0 , s, Acc, σ, AccL−�+1, σL−�+1 :

T = Gusk · (HR)kL−�,j0 ∧ kL−�+1,2j0 = g
kL−�,j0
0 ∧ kL−�+1,2j0+1 = g

kL−�,j0
1 ∧

(kL−�+1,2j0 , kL−�+1,2j0+1, . . . , kL+1,2�+1j0 , · · · , kL+1,2�+1(j0+1)−1) ∈ Acc ∧
(kL−�+1,2j0 , kL−�+1,2j0+1) ∈ AccL−�+1 ∧ σ = Sign(Acc, u, s)
σL−�+1 = Sign(AccL−�+1, s, L − � + 1)

)
(mpk‖info‖R‖S‖T)

The spent coin is rco = {�, S, T, Π, R}. Its validity is checked by M by computing
all the descendant keys of S before performing the verification of Π (see below).
Moreover, the merchant, using the parameters used in the proof of knowledge Π ,
can check that the accumulator AccL−�+1 has been signed with the value L−�+1,
that the used parameters correspond to the ones of the right bounded accumu-
lator. The divisible coin of U is updated as co = {tr, Acc, Acc1, · · · , AccL+1, σ,
σ1, · · · , σL+1, spc = spc ∪ {(L − �, j0)}}.

The proof Π is done non-interactively by using usual zero-knowledge proofs of
knowledge (see Appendix B) and the Fiat-Shamir heuristic [10], in the random
oracle model, using m = mpk‖info‖R‖S‖T as a message. It proves that

– the security tag T is correctly computed from usk, R and kL−�,j0 ;
– the serial number S is correctly computed from kL−�,j0 ;
– all the descendants of the node kL−�,j0 are accumulated in Acc;
– kL−�+1,2j0 and kL−�+1,2j0+1 are accumulated in AccL−�+1;
– the values Acc, usk and s (resp. AccL−�+1, s and L − � + 1) are signed by

the bank in σ (resp. σL−�+1).

Note that the spender only needs to prove that kL−�+1,2j0 and kL−�+1,2j0+1 are
correctly derived from kL−�,j0 . This is not necessary for the other descendant
nodes. In fact, the receiver can easily compute all the descendant of kL−�+1,2j0

and kL−�+1,2j0+1. As they are all accumulated into Acc and both kL−�+1,2j0 and
kL−�+1,2j0+1 are accumulated in AccL−�+1, it is enough to prove that the spent
coin is correct.

Multiple Denominations in E-cash with Compact Transaction Data 91

As shown in Appendix B, this proof is done in constant time. It does not
depend on the monetary value 2� which is spent, except when the spender needs
to develop a polynomial of degree 2�, which is quite immediate in practice.
Moreover, as the merchant can compute all the keys from the ones used in the
serial number to the ones of the leaves, the user does not need to send them to
the merchant. Thus, the transaction data sent to the merchant has a constant
number of bits while spending a monetary value of 2�.

4.4 Deposit and Detection of Frauds

The deposit of a coin rco = {�, S, T, Π, R} with value � is done by M which
sends it to B with a signature of the deposit request. First B verifies the cor-
rectness of Π . If it is correct, B computes the keys related to the 2�+1 leaves
of S = kL−�+1,2j0‖kL−�+1,2j0+1 at level L in the tree. If at least one of these
keys is already in its database cdb, B executes the procedure of double-spender
identification. Else, B adds the 2�+1 leaf keys in cdb and outputs 1. B could store
only 2� keys, i.e. it will always store leaves that are “right” (or left) child.

In case of a double-spending detection, the bank B, given two coins rco1 = {�1,
S1, T1, Π1 ,R1} and rco2 = {�2, S2, T2, Π2, R2}, tests if R1 = R2 which means
that M is a cheater since the hash function H is collision-resistant. The proof
of the cheat consists in publishing both deposits (including two signatures of M
on the deposit request for the same coin). Else B will identify a user public key
using the same technique as described in [9]. We distinguish two cases:

1. if �1 = �2 = �, then the same node key kL−�,j0 has been used in both T1 and

T2. Thus, B computes upk =
(
T R2

1 /T R1
2

) 1
R2−R1 ;

2. if �1 �= �2 (e.g. �1 < �2), then from S2, B can compute kL−�1,j0 such that
T1 = upk · HR1·kL−�1,j0 and thus retrieve upk = T1/HR1·kL−�1,j0 ;

Finally, B outputs the proof πG based on the two entries in the database cdb.

4.5 Efficiency Considerations

We compare the efficiency of the strongly anonymous divisible e-cash schemes of
the state-of-the-art [9,1] with our new proposal. We give in Table 1 the computa-
tion cost of the binary tree, the time complexity of the withdrawal and spending
phases and the size of the divisible coin, where Exp is a modular exponentiation,
and Dev(i) is the time needed to develop a polynomial of degree i. We differen-
tiate in our comparison both types of secure divisible e-cash systems depending
on the security model, i.e. classical model with truly unforgeability [9] and un-
usual model with a statistical balance assumption [1]. We do not include the
complexity of the deposit phase and the size of the database which are similar
in the three schemes.

Based on Table 1, we can conclude that our new proposal is significantly more
efficient that the one of Canard-Gouget [9], regarding the spending phase, with
the same security level. Our new proposal is little bit less efficient than the Au
et al. one [1] but with a better security result. We consequently obtain the best
trade off between previous approaches, considering efficiency and security.

92 S. Canard and A. Gouget

Table 1. Efficiency comparison between related work and our proposal

Divisible e-cash scheme Au et al. [1] Canard-Gouget [9] this paper

Model choice Statistical balance Unforgeability

Binary tree (2L+1 − 2)Exp (2L+2 − 2)Exp (2L+2 − 2)Exp

computation (not necessarily computed)

Divisible coin (2L+1 − 2)|p| + (L + 1)Sign 2|p| + (1)Sign (2L+2 − 2)|p| + (L + 2)Sign

storage size +(L + 1)Acc +(L + 2)Acc

Computational complexity (L + 1)Sign (1)Sign (L + 2)Sign

of withdraw +(L + 1)Acc +(L + 2)Acc

Computational complexity Exp + Sok
(
Sign (i + 3)Exp + Sok

(
Sign Exp + Dev(2�)+

of spending 2� +Acc + 2Exp
)

+O((L − �)t)Exp
)

Sok
(
2Sign + 2Acc + 3Exp

)
Spending 2|p| + Sok

(
Sign 3|p| + Sok

(
Sign 2|p| + |P | + Sok

(
2Sign

transfer size +Acc + 2Exp
)

+O((L − �)t)Exp
)

+2Acc + 3Exp
)

4.6 Security Theorem

We give the statement of security for our new proposed scheme.

Theorem 1. In the random oracle model, our divisible e-cash scheme fulfills
(i) the unforgeability under the assumptions that ESS is unforgeable and the
bounded accumulator scheme fulfills the bound property; (ii) the anonymity un-
der the zero-knowledge property of ZKPK and the DDH assumption; (iii) the
identification of double-spender under the unforgeability of ESS and (iv) the ex-
culpability under the one-more discrete logarithm assumption.

Proof. We consider the four properties.
– Anonymity: we use a reduced “game proof technique” from Shoup. We denote
by ε the probability that A succeeds in linking the spending protocol V1 to a
spending or withdrawal protocol.

During V1, A gets a serial number S, a security tag T , a zero-knowledge
proof of knowledge Π and a value R. It is obvious that R does not reveal any
Shannon information on the user identity. Under the zero-knowledge property
of the proof of knowledge Π , in the random oracle model, the value Π does
not help A in winning the anonymity experiment. Thus, V1 is replaced by V2 in
which A gets only S and T . The difference of probability between V1 and V2 is
the probability of success of A in breaking the zero-knowledge property of Π ,
namely Succzk

Π,A(λ).
In V2, we focus on T . The secret key kL−�,j0 is used only in the computation

of T and Π . Indeed, knowing T = upk · HRk and T ′ = upk′ · HR′k′
, A has to

decide if the same upk is embedded in both T and T ′. This is assumed to be
infeasible under the discrete logarithm (DL) assumption. Thus, V2 is replaced
by V3 in which A gets only S. The difference of probability between V2 and V3 is
the probability of success of A in breaking the DL problem, namely Succdl

A(λ).

Multiple Denominations in E-cash with Compact Transaction Data 93

Finally, from S, A needs to decide whether or not two different node keys
k and k′ are related to the same root key k0. This is assumed to be infeasible
under a stronger variant of the Decisional Diffie-Hellman assumption (see [9] for
details). We denote by Advddh

A (λ) the corresponding success probability.
We conclude that Advanon

DCS,A(λ) ≤ Succzk
Π,A(λ) + Advddh

A (λ).

– Unforgeability: we use a reduction to either the unforgeability of the signa-
ture scheme or to the bound property of the accumulator scheme. Let A be an
adversary that breaks the unforgeability property in polynomial time τ with a
probability of success equal to ε. We interact with the black box adversary A by
flipping at random a coin and playing one among two games.

Game 1. We construct a machine M1 that breaks the existential unforgeability
of ESS+ with access to a signing oracle Sign:

– In the Setup procedure, M1 sets the group defined for the signature scheme
as Gp and A is given the public key bpk = spk of the signature scheme.

– when A ask for a withdrawal, dc is incremented by 1 and M1, playing the
role of the bank, interacts with A by interacting with the oracle Sign to
obtain ESS+ signatures. Each time, M1 stores in askdb the signature and
the corresponding messages;

– when A asks for a spending protocol of 2� coins, sp is incremented by 2� and
M1, playing the role of the merchant, rewinds A during its computation of
the zero-knowledge proof of knowledge by using standard techniques (and in
the random oracle model) in order to extract and store in recdb the signatures
and the corresponding messages used by A.

– at any time of the unforgeability experiment, A sets cont = false and with
probability ε, we have 2L ·dc < sp. In case there is one entry in recdb\askdb.
This entity is obviously a forgery.

Game 2. We construct a machine M2 that breaks the bound property of the
accumulator scheme:

– In the Setup procedure, M2 sets the group defined for the signature scheme
as Gp and A is given the public key bpk = spk of the signature scheme.
Next, M2 generates the L+2 accumulators. M2 maintains a database accdb
containing all accumulators generated by A together with the bound of the
corresponding bounded accumulator and the obtained accumulated values;

– when A ask for a withdrawal, M2 plays the role of the bank;
– when A asks for a spending protocol of 2� coins, sp is incremented by 2� and

M2, playing the role of the merchant, rewinds A during its computation
of the zero-knowledge proof of knowledge, using standard technique (and in
the random oracle model) in order to extract the accumulators. Next, M2
stores in accdb the accumulator (if not already present in the database) and
the corresponding accumulated values;

94 S. Canard and A. Gouget

– at any time of the unforgeability experiment, A sets cont = false and with
probability ε, we have 2L · dc < sp. In case there is one entry in accdb such
that there are more accumulated values than the bound for this accumulator,
M2 breaks the bound property of the accumulator scheme.

As a consequence, Succunforge
DCS,A(λ) = 1

2

(
Succunforge

Sign,A(λ) + Succbound
Acc,A(λ)

)
.

– Identification of Double Spender: we use a reduction to the unforgeability
of the signature scheme. Let A be an adversary breaking the identification of
double spender in polynomial time τ with a probability of success ε. We consider
a black box adversary and construct a machine M which breaks the unforge-
ability of the signature scheme. We can access to the group Gp, the public key
spk and interact with a signing oracle:

– In the Setup procedure, M sets the group defined for the signature scheme
as Gp and A is given the public key bpk = spk of the signature scheme.

– when A ask for a withdrawal, dc is incremented by 1 and M1, playing the
role of the bank, interacts with A by interacting with the Sign oracle to
obtain ESS+ signatures. Each time, M stores in askdb the signature and
the corresponding messages;

– when A asks for a spending protocol, M, playing the role of the merchant,
rewinds the adversary A during its computation of the zero-knowledge proof
of knowledge to extract and store in recdb the signatures and the correspond-
ing messages used by A;

– at any time of the experiment, A outputs one spent coin rco and, with prob-
ability ε, the Deposit and the VerifyGuilt procedures output 0. Thus,
M takes on input rco and the other coin with the same serial number and
extracts, in Π ∈ rco and using standard techniques, both signatures and the
corresponding messages. Necessarily, one of the two signatures is not an out-
put of the signing oracle since the signed upk is not detected by the Identify
algorithm. Thus, M has produced a forge on the signature scheme.

We have Succidds
DCS,A(λ) = Succunforge

Sign,A(λ).

– Exculpability: suppose that an adversary A succeeded in breaking the ex-
culpability property. That means that there are two valid spends with the same
serial number S (or, either S can be computed from S′, or S′ can be computed
from S) and two different proofs Π and Π ′ and two different correct randoms
R and R′. As spendings are correct, the proofs include that both T and T ′ are
well formed. Thus, since the user is honest, A has faked T or T ′.

We now use A to break the one-more discrete logarithm problem [3]. Given
l + 1 values, we have to find the discrete logarithm of all these values, and we
can ask a discrete logarithm oracle at most l times. We first associate each value
to the public key of one user (assuming there are at most l users) and we ask
the oracle each time A corrupt a user. It is possible to simulate all withdrawals
and spends using standard techniques (in the random oracle model). A finally
outputs two correctly formed T and T ′ and the associated proofs of validity.
Thus, T and T ′ are both formed from the same public key of a honest user.

Multiple Denominations in E-cash with Compact Transaction Data 95

From the two proofs of validity, we can extract the user secret key and thus
break the one-more discrete logarithm. Indeed, since the user is honest, this
discrete logarithm has not been requested to the oracle. We consequently have
Succexculp

DCS,A(λ) = Succomdl
A (λ), which concludes the proof. ��

5 Conclusion

We have presented the first strongly anonymous and unforgeable e-cash scheme
that can be instantiated in practice since it is possible to efficiently generate
the parameters of the system. This new construction makes use, first, of a new
generation method of the binary tree of keys based on algebraic objects which
can be easily used in practice, and second, of a new technique to use bounded
accumulators in divisible e-cash. The time complexity of the main critical pro-
tocol, which is the spending protocol, is relatively small in time and space for
spending a monetary value 2�.

One may now think of designing a new system with the same features but
additionally with a more efficient withdrawal procedure. It may also be possible
to design a divisible e-cash system in the standard model, using the so-called
Groth-Sahai proofs instead of the Fiat-Shamir heuristic.

Acknowledgements

We are grateful to Déborah Jourdes for her suggestions of improvement, and to
anonymous referees for their valuable comments.

References

1. Au, M.H., Susilo, W., Mu, Y.: Practical anonymous divisible e-cash from bounded
accumulators. In: Financial Cryptography 2008, LNCS. Springer, Heidelberg (2008)
(to appear)

2. Au, M.H., Wu, Q., Susilo, W., Mu, Y.: Compact e-cash from bounded accumu-
lator. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 178–195. Springer,
Heidelberg (2007)

3. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-More-RSA-
Inversion Problems and the Security of Chaum’s Blind Signature Scheme. J. Cryp-
tology 16(3), 185–215 (2003)

4. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (2010)

5. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credential. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. 5443, vol. LNCS, pp. 481–500. Springer, Heidelberg (2009) (to appear)

6. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

96 S. Canard and A. Gouget

7. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

8. Canard, S., Coisel, I., Traoré, J.: Complex zero-knowledge proofs of knowledge are
easy to use. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 122–137. Springer, Heidelberg (2007)

9. Canard, S., Gouget, A.: Divisible e-cash systems can be truly anonymous. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 482–497. Springer, Heidelberg
(2007)

10. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

11. Nakanishi, T., Sugiyama, Y.: Unlinkable divisible electronic cash. In: Okamoto,
E., Pieprzyk, J.P., Seberry, J. (eds.) ISW 2000. LNCS, vol. 1975, pp. 121–134.
Springer, Heidelberg (2000)

12. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

A Bounded Accumulator with Additional Procedure

We give a concrete example of accumulator based on [12]. Let G and G̃ be two
cyclic groups of prime order p, G (resp. G̃) is a generator of G (resp. G̃). Let GT

be a multiplicative group of order p. We refer a bilinear structure for the groups
(G, G̃,GT). Let e be a bilinear map e : G × G̃ −→ GT .

Using [12], the number of values accumulated in a single accumulator is limited
to a fixed number which is here denoted by s. In our construction, we use a new
proof of knowledge, denoted Pok(Acc : (k1, · · · , k�) ∈ Acc), to prove that several
values known by the verifier are accumulated in a secret accumulator.

Let U0 ∈ G, Ṽ0 ∈ G̃, α ∈ Z∗
p, Ui = Uαi

0 for all i ∈ {1, · · · , s} and Ṽ1 = Ṽ α
0 .

The values (k1, · · · , ks) are accumulated in Acc as Acc = U
∏s

i=1(ki+α)
0 . We de-

note by W the value U
∏

j /∈[1,�](kj+α)
0 . Thus, we have Acc = W

∏
j∈[1,�](kj+α).

Let P(α) =
∏

j∈[1,�](kj + α) =
∑�

j1
pjα

j where the pj ’s are product of the
ki’s and the degree of P is �. More precisely, we assume that there exists a
public function F({k1, · · · , k�}) = {p1, · · · , p�}. We need to introduce some ad-
ditional public parameters: Ṽi = Ṽ αi

0 for all i ∈ {2, · · · , s}. Then , we have

e(Acc, Ṽ0) = e(W
∏

j∈[1,�](kj+α), Ṽ0) = e(W, Ṽ
∏

j∈[1,�](kj+α)
0) = e(W, Ṽ0

∏�
j=1 Ṽ

pj

j).
In our setting, the values ki’s are public, and thus it is also the case for the
values pj ’s. Our ZKPK is then: Pok

(
Acc, W : e(Acc, v0) = e(W, Ṽ0

∏�
j=1 Ṽ

pj

j)
)
.

B Proof of Validity of a Spending

The first part of the proof, consisting in proving that one knows usk and kL−�,j0

such that T = Gusk · (HR)kL−�,j0 , kL−�+1,2j0 = g
kL−�,j0
0 and kL−�+1,2j0+1 =

g
kL−�,j0
1 is simply done by using standard discrete logarithm based proof of

Multiple Denominations in E-cash with Compact Transaction Data 97

knowledge. The next part of the proof consists in proving that several values
known by the verifier are accumulated in a secret accumulator which is signed
by the bank, using the ESS+ scheme. We describe the case of AccL−�+1; the
case of Acc is similar.

We first need a proof that the tuple (kL−�+1,2j0 , kL−�+1,2j0+1) ∈ AccL−�+1.
Everyone can compute {p1, p2} = F(kL−�+1,2j0 , kL−�+1,2j0+1). Since there exists
the public relation e(AccL−�+1, Ṽ0) = e(W, P̃) with P̃ = Ṽ0Ṽ

p1
1 Ṽ

p2
2 , the second

part of the proof of knowledge is then Pok
(
s, AccL−�+1, σL−�+1 : σL−�+1 =

Sign(AccL−�+1, u) ∧ e(AccL−�+1, Ṽ0) = e(W, P̃)
)
.

The signature σL−�+1 is an ESS+ signature on the message M = (AccL−�+1,
s, L− �+1). Thus, σL−�+1 is composed by the elements Σ1 = X(AccL−�+1G

a
0)c,

Σ2 =
(
G1G

a
2Gb

3H
s
1HL−�+1

2

) 1
x+c and Σ̃3 = H̃c where a, b, c ∈R Z∗

p and X ,
G0, G1, G2, G3, H1, H2, H̃ are public. These values verify the following re-
lations: e(Σ2, Σ̃3Z̃) = e(G1, H̃)e(G2, H̃)ae(G3, H̃)be(H1, H̃)se(H2, H̃)L−�+1 and
e(Σ1, H̃) = Y e(AccL−�+1G

a
0 , Σ̃3). The second part of the proof is finally

Pok
(
s, AccL−�+1, Σ1, Σ2, Σ̃3 :

e(AccL−�+1, Ṽ0) = e(W, P̃) ∧ e(Σ1, H̃) = Y e(AccL−�+1G
a
0 , Σ̃3) ∧

e(Σ2, Σ̃3Z̃) = e(G1, H̃)e(G2, H̃)ae(G3, H̃)be(H1, H̃)se(H2, H̃)L−�+1).
This proof is generated using standard techniques and the results in [2,1].

What’s in a Name?
Evaluating Statistical Attacks on
Personal Knowledge Questions

Joseph Bonneau1, Mike Just2, and Greg Matthews2

1 University of Cambridge
2 University of Edinburgh

Abstract. We study the efficiency of statistical attacks on human au-
thentication systems relying on personal knowledge questions. We adapt
techniques from guessing theory to measure security against a trawling at-
tacker attempting to compromise a large number of strangers’ accounts.
We then examine a diverse corpus of real-world statistical distributions for
likely answer categories such as the names of people, pets, and places and
find that personal knowledge questions are significantly less secure than
graphical or textual passwords. We also demonstrate that statistics can be
used to increase security by proactively shaping the answer distribution to
lower the prevalence of common responses.

1 Introduction

Secret knowledge stored in human memory remains the most widely deployed
means of human-computer authentication. It is often referred to as something
you know in contrast to biometrics (something you are) or hardware tokens
(something you have). While human memory is limited, the high deployment
costs of alternatives mean we will continue to rely on it for the foreseeable future.

The most common human-memory systems require recalling data specifically
remembered for authentication. Passwords and PINs are the most well-known,
but there exist a variety of graphical and textual schemes to aid in recalling secret
data [31,29,22,6]. Among other problems, passwords are forgotten frequently
enough [31] that many deployed systems also use personal knowledge for backup
authentication. In contrast to passwords, personal knowledge questions such as
“who was my first-grade teacher?” query facts remembered independently of the
system so they are hoped to be recalled successfully when passwords fail.

In the majority of online banking, e-commerce, webmail and social networking
websites, users register a question-answer pair on enrolment which can later be
used to authorise a password reset. These systems can be no more secure than the
difficulty of guessing the answers to these questions. This risk was highlighted in
the past year as hackers exploited personal knowledge questions to compromise
accounts of politician Sarah Palin and top executives at Twitter.

Despite their ubiquity, personal knowledge questions have received relatively
little attention from the security community until recently. User studies have

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 98–113, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

What’s in a Name? 99

demonstrated the ability of friends, family, and acquaintances to guess answers
correctly [26,13,24], while other research has found some questions used in prac-
tice have a tiny set of possible answers [15,25]. Many common questions have
also been shown to have answers readily available in public databases or on-
line social networks [18]. For example, at least 30% of Texas residents’ mothers’
maiden names can be deduced from birth and marriage records [12].

Designers may be able to avoid easily looked-up questions, but it remains
an open question as to how secure typical questions are against a statistical
attacker that attempts to break into a small fraction of anonymous accounts by
guessing the most likely answers. While this threat has been briefly touched on
in previous research [15,26], we contribute a formal security model based on the
information-theoretic model of guessing developed over the past decade. We then
examine a range of public statistics that we collected to bound the efficiency of
statistical attacks. Our results show most questions to be highly insecure, calling
into serious question the continued use of personal knowledge questions.

2 Security Model

2.1 Authentication Protocol

Most deployed systems use personal knowledge questions in a simple challenge-
response protocol. The party seeking access, called the prover or claimant, first
sends its identity i to the verifier. The verifier then responds with a challenge
question q, to which the prover sends back an answer x. Unlike most challenge-
response protocols, the prover’s secret knowledge x is usually revealed to the
verifier. Replay attacks can be partially addressed by having the verifier include
a nonce r along with q, and having the prover respond with H(x, q, r) for some
one-way function H. However, an eavesdropper still gains the ability to perform
offline search for likely values of x using H as an oracle (and as we shall see, few
personal-knowledge questions are resistant to offline search).

Additionally, while the challenge from a verifier is typically a fresh random
nonce for cryptographic challenge-response, the set Q of personal knowledge
questions registered with the verifier is often very small or even a single question.
Some non-traditional question types may increase |Q|, such as “preference-based
authentication” [14], but the upper limit appears low due to the fundamental
requirement of human effort to select and answer questions on enrolment.

Finally, unlike many challenge-response protocols, the verifier must maintain
a counter ti of failed authentication attempts from each prover i to limit the
number of guesses an attacker can make. Such a protocol is said to be online, in
contrast to stateless protocols in which the attacker can make as many guesses
as bandwidth allows. Offline protocols rarely use personal knowledge questions
due to the difficulty of preventing brute-force attacks, though systems have been
proposed for personal password-backup which require simultaneously answering
many questions [8,11].

100 J. Bonneau, M. Just, and G. Matthews

2.2 Threat Model

Our attacker’s goal is to impersonate some legitimate prover i and successfully
complete the protocol. The attacker may only desire to gain access on behalf of
one specific user in a targeted attack, or may be content to gain access on behalf
of any user in a trawling attack. In the former case, the attacker knows the ac-
count i represents some real-world person Peggy, enabling research attacks using
search engines, online social networks, or public records. An active attacker could
conduct more advanced research by dumpster diving, burgling Peggy’s home, or
social engineering to trick Peggy into revealing her answer. Targeted attacks may
also be performed by somebody who knows Peggy personally. Schechter et al.
explored this attack in a laboratory setting and found a high rate of success by
acquaintances at guessing personal knowledge questions [26].

Targeted attacks are powerful but do not scale. Trawling attacks, in contrast,
require little per-user work and can be used to simultaneously attack many
accounts. We assume that a trawling attacker, although they must provide a
value for i when initiating the protocol, has no information about the real-world
person behind i and must guess answers based on population-wide statistics.

A blind attacker guesses without even understanding the question q [15]. This
scenario arises if the question is either not transmitted in the clear [21], is trans-
mitted in a CAPTCHA-ised form, or is user-generated and difficult to auto-
matically process.1 We argue that a more successful attack strategy is to use a
weighted combination of answers to likely questions.

An attacker who is able to correctly understand q but not i is a statistical
attacker (called a focused attacker in [15]), whose strategy is to guess the most
likely answers to q. Our main goal is to evaluate the security of common ques-
tions against statistical attack. While some questions (e.g., “What is my favourite
colour?”) obviously have too few plausible answers to be secure, the most com-
mon classes of answer found repeatedly in practice are the “proper names” of
people, pets, and places, whose security against guessing is not obvious.

The attackers we have identified are not exclusive. While there is a general hi-
erarchy between blind, statistical, and research attacks, an attacker may combine
statistics and targeted research. For example, partial knowledge of an account-
holder’s identity may enable an attacker to refine her statistical tables (see Sec-
tion 5).

3 Quantifying Resistance to Guessing

3.1 Mathematical Formulation of Guessing

We now turn to the mathematical problem of quantifying how secure a personal
knowledge question q is against guessing. This problem has been previously

1 Some users may even purposefully obfuscate their questions, such as “What do I
want to do?” [15].

What’s in a Name? 101

considered abstractly [4,23,3,20] and in the case of PINs [2], graphical pass-
words [6,29,22], and biometrics [1]; we synthesise previous analysis and define
new metrics most applicable to trawling attackers.

Because a statistical attacker will respond equally to “what is my boss’ last
name?” or “who was my kindergarten teacher?” by guessing common surnames,
we seek to measure security of the underlying answer space. We consider the
correct answer to be a random variable X drawn from a finite distribution X
which is known to the attacker, with |X | = N and probability pi = P (X = xi)
for each possible answer xi, for i ∈ [1, N]. We assume that X is arranged as a
monotonically decreasing distribution with p1 ≥ p2 ≥ · · · ≥ pN . Our attacker’s
goal is to guess X using as few queries of the form “is X = xi?” as possible.

Intuitively, we may first think of the Shannon entropy

H1(X) = −
N∑

i=1

pi lg pi (1)

as a measure of the “uncertainty” of X . Introduced by Claude Shannon in 1948,
entropy has entered common cryptographic parlance as a measure of security,
with “high-entropy” secrets being considered advantageous [8,11]. As has been
argued previously [4,23,3,20,2,6,1], H1 is a poor estimator of guessing difficulty
for security purposes, as it quantifies the average number of subset membership
queries of the form “Is X ∈ S?” for arbitrary subsets S ⊆ X . 2

Because cryptographic protocols are specifically designed to require sequential
guessing, a better metric is the expected number of attempts required to correctly
guess X if the attacker takes up the obvious strategy of guessing each possible
event in order of its likeliness, known as the guessing entropy:

G(X) = E
[
#guesses(X

R← X)
]

=
N∑

i=1

pi · i (2)

This measure was introduced by Massey [20] and later named by Cachin [4].

3.2 Marginal Guessing

Guessing entropy models an attacker who will never give up in her search, and
thus it can be skewed by exceedingly unlikely events. A simple thought experi-
ment demonstrates why this is inadequate for our purposes. Suppose Eve must
sequentially guess k challenge questions with answers drawn from X . Some ques-
tions will have uncommon answers, and Eve must make ∼ k · G(X) guesses.

Now consider a second adversary Mallory whose goal is to guess the answers
to k questions from a set of m > k total questions. Her optimal strategy is to first
guess the most likely value for each question in sequence, then the second-most
2 The proof of this is a straightforward consequence of Shannon’s source coding theo-

rem. Symbols X
R← X can be encoded using a Huffman code with average bit length

≤ H1(X) + 1, and the adversary can learn one bit at a time with set queries.

102 J. Bonneau, M. Just, and G. Matthews

likely value for each question, and so on. Mallory’s efficiency will greatly increase
as m increases, as she may never need to guess uncommon answers. Guessing
entropy is inadequate as it doesn’t account for Mallory’s willingness to give up
on the questions which have less probable answers.

To bound an attacker who only requires some probability α of guessing cor-
rectly, we define the marginal guesswork μα:

μα(X) = min

{
j ∈ [1, N]

∣∣∣∣∣
j∑

i=1

pi ≥ α

}
(3)

This function, introduced by Pliam [23], is also referred to as the α-work-factor.
We define a similar metric λβ , the marginal success rate, slightly adapted from
Boztaş [3], as the probability of success after β guesses have been made:

λβ(X) =
β∑

i=1

pi (4)

3.3 Effective Key Length Metrics

While it is important to remember that μα and λβ are not measures of entropy,
we nonetheless find it convenient to convert them into units of bits. This makes
all the metrics H1, G, μα and λβ directly comparable and has an intuitive
interpretation as (logarithmically-scaled) attacker workload. We convert each
metric by calculating the logarithmic size of a discrete uniform distribution UN

of size |UN | = N with pi = 1
N for all 1 ≤ i ≤ N , which has the same value

of the guessing metric. This can be thought of as the “effective key length” as
it represents the size of a randomly-chosen cryptographic key which would give
equivalent security. The guessing entropy of UN is:

G(UN) =
N∑

i=1

pi · i =
1
N

N∑
i=1

i =
1
N

· N(N + 1)
2

=
N + 1

2

The entropy of this distribution is lg N , so given the guessing entropy of an arbi-
trary distribution G(X) we can find the logarithmic size of a uniform distribution
with equivalent guessing entropy as:

G̃(X) = lg[2 · G(X) − 1] (5)

The quantity G̃(X) can then be interpreted as the effective key length of X with
respect to guessing entropy. We can similarly derive formulas for effective key
length with respect to marginal guesswork and marginal success rate:

μ̃α(X) = lg
(

μα(X)
α

)
λ̃β(X) = lg

(
β

λβ(X)

)
(6)

What’s in a Name? 103

Example Calculation. Consider a distribution Z with PZ ={ 1
3 , 1

18 , 1
18 , 1

18 , . . . }.
Regardless of the tail probabilities, an attacker will have a 50% chance of success-
fully guessing a random variable drawn from Z after 4 attempts, so λ4(Z) = 1

2 .
The distribution U8 with eight equally likely events would also have λ4(U8) = 1

2 ,
so these two distributions are equivalent with respect to λ4. Since lg |U8| = lg 8 =
3, we expect λ̃4(Z) = 3, and we can verify that by our formula:

λ̃4(Z) = lg
(

4
λ4(Z)

)
= lg

(
4
1
2

)
= lg 8 = 3

3.4 Relationship between Metrics

A natural question is whether μ̃α and λ̃β are bounded by H1 or G̃; unfortu-
nately this is not the case. The following theorems demontrate the fundamental
incomparability of entropy, guessing entropy, and marginal guesswork:

Theorem 1. (Pliam) Given any m > 0, β > 0 and 0 < α < 1, there exists a
distribution X such that μ̃α(X) < H1(X) − m and λ̃β(X) < H1(X) − m.

Theorem 2. (Boztaş) Given any m > 0, β > 0 and 0 < α < 1, there exists a
distribution X such that μ̃α(X) < G̃(X) − m and λ̃β(X) < G̃(X) − m.

Theorem 3. (new) Given any m > 0, α1 > 0, and α2 > 0 with 0 < α1 < α2 <
1, there exists a distribution X such that μ̃α1(X) < μ̃α1(X) − m.

The first two results were demonstrated previously [23,3] but we combine the
proof techniques here to prove both at once. We construct a pathological distri-
bution X with one likely event and many very-unlikely events. We set p1 = 1

2
and pi = 1

22m+4 for the remaining symbols (|X | = 22m+3 + 1). This gives
H1(X) > m + 3 and G̃(X) > m + 1, following from Massey’s proof that G̃
is bounded from below by (H1 − 2) [20]. But μ̃ 1

2
(X) = λ̃1(X) = 1, proving the

theorem. Note that this construction requires |X | ∈ Θ(4m), the result does not
hold if we impose limits on |X |.

The third theorem, a new result, is proved similarly by setting p1 = α1 and
pn = 1

(α2−α1)·2m for all n > 1. This gives μ̃α1 = lg
(

1
α1

)
= − lgα1, but μ̃α2 =

lg
(

2m+1
α2

)
> lg

(
2m

α1

)
= m − lg α1, giving the desired gap m with |X | ∈ Θ(2m).

These results demonstrate that no measure is adequate for all security pur-
poses, but that context-specific μ̃α and λ̃β must be used which reflect only the
values in the distribution likely to be guessed. A highly-skewed distribution like
human names might have high H and G̃ can be very easy to guess despite having
many unlikely events which inflate its apparent security.

3.5 Applicability to Personal Knowledge Questions

Assuming that a targeted attacker is likely to use victim-specific research, we
are most concerned with a trawling attacker who will never guess uncommon

104 J. Bonneau, M. Just, and G. Matthews

answers, simply trying a new target if common answers fail. The most useful
metric we have is the marginal success rate λβ . Assuming the system imposes
a limit of tmax incorrect guesses for each account, the critical value is the frac-
tion of accounts the attacker can expect to compromise, which is λtmax . In the
limit of an attacker trying only the single most likely answer for multiple ac-
counts, our security is λ̃1(X) = − lg(p1), which is also called the min-entropy
H∞(X).

For offline attacks, λβ is less meaningful because an attacker won’t limit their
guessing nearly as much. In this case, μ̃ 1

2
is a reasonable metric in that it avoids

G̃’s dependence on very unlikely events, while still measuring the cost for an
attacker to compromise a majority of available accounts.

3.6 Estimation from Statistics

A final subtlety is estimating our metrics from publicly available statistics based
on random sampling from X and not on complete knowledge of the distribu-
tion. This, too, strongly favours the use of μα and λβ because they only reflect
the most likely events and are not affected by large uncertainty on the tail
probabilities of X . Estimating μα and λβ from a statistical sample is straight-
forward: we simply take the most likely events from the sample and use them
to compute our metric. It is possible to compute a p-confidence interval for μα

or λβ by computing p-confidence intervals for each individual event probability,
and using all of the minimum (eq. maximum) estimates to compute minimum
estimates μ−

α and λ−
β (eq. μ+

α and λ+
β). This technique strictly overestimates

uncertainty, but in practice we’ve found most of the statistics which influence
μα or λβ have strong enough statistical support that the confidence interval is
quite tight.3

In contrast, since H1 and G̃ depend on the entire distribution, they are much
more difficult to reliably estimate from statistics. If we don’t a priori know |X |, it
is impossible to provide any upper bound because we cannot know the number of
events which haven’t been observed by sampling. As a lower bound for security
purposes, we simply assume no unobserved events exist.

A second problem is that unlikely events are often suppressed for privacy or
brevity in published census data. Again in the name of a lower bound, we simply
take the least-likely observed event and insert copies of it until the probability
space is filled. In the case of surname data, for instance, which is given exactly
for names shared by at least k people but suppressed for less common names, we
repeatedly insert fictitious names shared by k people until the data set contains
as many people as the target population. This crude approximation lowers our
estimates of H1 and G̃, but doesn’t influence μα or λβ .

3 Indeed, for α ≤ 1
2

and β < N
2

we are always able to calculate μα and λ̃β to within
0.1 bit with p > 99%. We expect errors from divergence between the population
distribution and answers which humans actually choose to use to be so much greater
than sampling error that we ignore it in the remainder of this paper.

What’s in a Name? 105

4 Information Sources

4.1 Question Types and Their Use

Based upon recent research into deployed personal knowledge authentication
systems, we focus our analysis on questions that ask for proper names, as sum-
marised in Table 1. Rabkin collected 216 questions used by 11 financial institu-
tions [25], and Schecter et al. collected 29 questions used for webmail services
provided by AOL, Google, Yahoo!, and Microsoft [26]. These provide some hints
at the type of questions used—Rabkin found approximately 1

3 soliciting a per-
son’s name and 1

5 asking for place names, while Schechter et al. found 1
4 solicit-

ing a person’s name and 1
6 asked for a place name. Unfortunately, this research

provides no insight as to which questions users actually select. For example, rel-
atively few questions asked for pet names, though this may be because there is
only one way to phrase this question and not because it is unpopular.

Just and Aspinall collected approximately 500 user-generated challenge ques-
tions and categorised these questions into a small number of types [15], which
we consider to be a more insightful data set. Most notably, they found that
34% of user questions asked for a human name, 15% asked for a pet name and
20% asked for a place name. Of the remainder, 22% asked for a user’s favourite
item amongst films, singers, car brands, etc., 5% asked for a time, date, or num-
ber, and the remainder were ambiguous. Thus, we estimate that a few simple
categories of proper names cover roughly 70% of real-world questions. The re-
mainder, many of which ask for the user’s “favorites,” appear trivially vulnerable
to guessing attacks and we ignore them in our study.

One subtlety with name data is that it is not always clear if users will respond
with a forename (also called a ‘first name’ or ‘given name’), surname (also ‘last
name’), or both. In such cases, a statistical attacker can simply estimate what
probability of users will respond with which, and then combine the two probabil-
ity distributions, scaling each by its sampling frequency. This should slow down
attacks by no more than a factor of two. We also assume that middle names
(though less commonly asked for) are reasonably approximated by forenames.
In reality, middle names probably have slightly higher diversity, but the most
common names are likely the same and an attacker can use a forename table in
an attack without much slowdown.

4.2 Data Collection

To our knowledge, this is the first time a breadth of data has been collected
for analysing personal knowledge questions. We collected data from government
sources where possible, as many developed nations keep near-complete records
of citizens’ names. In some cases the data is not made publicly available but is
acquired and published by media organisations, as in the case of pet registration
lists which are compiled by smaller local government bodies. We were also able
to gather school and city data from official sources.

106 J. Bonneau, M. Just, and G. Matthews

Table 1. Common answer categories

Category Example Questions
Forename What is your grandfather’s first name?

What is your father’s middle name?
Surname What is your mother’s maiden name?

What was the last name of your favourite school teacher?
General Name Who was your childhood best friend?
Pet Name What was your first pet’s name?
Place In what city were you born?

Where did you go for your honeymoon?
What is the name of your high school?

Other What was your grandfather’s occupation?
What is your favourite movie?

Official sources often omit items occurring less than some minimum thresh-
old. As mentioned in Section 3.6, we used estimates of the total population to
overcome the missing data. A complete list of our data sources, as well as scripts
used for calculations on the data, is made available on our project website.4 We
also provide a summarised list of official sources used in Appendix A.

We found no official sources which provide lists of full names, so we collected
names from 269 million randomly-crawled public profiles on the popular online
social network Facebook. The demographic for this data is less clearly delineated,
but can be used to roughly approximate the global Internet user population.

5 Results and Discussion

Our calculations of the metrics defined in Section 3 are displayed in Table 2.5
For online attacks, the marginal success rate λ̃3 models an attacker limited to
3 guesses on each available account. For almost all of our data (exclusive of full
names and primary schools), we have λ̃3 � 8, indicating that the majority of
deployed challenge questions systems are insecure against trawling attackers. If 3
guesses are allowed, an attacker can compromise roughly 1 in 80 accounts. This
may even be an overestimate of security: the most extreme trawling attacker will
make only 1 guess per account, represented by λ̃1 = H∞.

For offline attacks, we mostly find μ̃ 1
2

� 12, meaning an attacker can compro-
mise the majority of accounts with only a few thousand guesses per account.

Our analysis demonstrates weak subspaces in the answer distribution for
most personal knowledge questions which can be directly compared to weak
answer spaces found in other authentication systems. In Figure 1 we plot the
Facebook name distributions against textual passwords [16,28,27], mnemonic
4 http://groups.inf.ed.ac.uk/security/KBA/
5 We also include the Rényi entropy Hα(X) = 1

1−α
lg
(∑N

i=1 pα
i

)
for α ∈ {0, 2,∞}.

As predicted by Boztaş [3], H2 seems to provide a good estimate for μ̃ 1
2
.

http://groups.inf.ed.ac.uk/security/KBA/

What’s in a Name? 107

Table 2. Summary of statistics on real data

H0 H1 G̃ H2 μ̃ 1
2

λ̃3 H∞ x1

♀

♂

♀♂♀♂♀♂♀♂♀♂♀♂

108 J. Bonneau, M. Just, and G. Matthews

passwords [17], the Pass-Go user-drawn password system [22], the Passfaces
graphical PIN system [29], the PassPoints visually-cued clicked password sys-
tem [6] and a handwriting-recognition biometric system [1]. We also include a
recently-leaked dataset of 32 M passwords from the gaming website rockyou.com.
Aside from the badly-broken Passfaces system, personal knowledge questions
compare unfavorably to other methods unless full names are required.

We summarise further interesting trends below:

Diversity effects. The difficulty of guessing surnames correlates with ethnic
diversity. American surnames were the most difficult to guess in our survey, pre-
sumably because the population is a blend of immigrants from many ethnicities.
Facebook provides even more diversity as a blend of users from around the world.
Surnames from Japan and South Korea, which are ethnically homogeneous and
have relatively few immigrants, provide low resistance to guessing.

Naming trends. Given names are a matter of fashion and vary in several in-
teresting dimensions. In the countries studied, female names seem to provide
slightly higher resistance to guessing than male names.6 Over the past 6 decades
in the USA, diversity of forenames has been increasing slowly but steadily. Cu-
riously, pet names are slightly harder to guess than human names.

Ethnic correlations. The Facebook data provides ample evidence that fore-
names and surnames are not independent variables. They are correlated via an
individual’s ethnicity and possibly further in that some name combinations are
considered more pleasing to the ear. Maria Gonzalez and Jose Rodriguez are
the most statistically over-represented names in our data set given the inde-
pendent frequency of the forename and surname component. Each appears with
extremely high statistical significance (p � 0.001 in a χ2 test). Similarly, there
are a number of highly statistically under-represented name pairs, mostly curi-
ous cross-cultural pairings like Francesco Smith or Juan Khan. Frequent names
like Maria Gonzalez appear because both components share a common ethnicity
(Hispanic). A χ2 test on the entire forename distribution given a Spanish sur-
name such as Gonzalez confirms with high significance (p � 0.001) that naming
patterns change amongst individuals of this ethnicity.

This dependence between forenames and surnames indicates that guessing
difficulty will be lower if an attacker knows the target’s ethnicity. To quantify
this, we clustered the names and identified a set of 250 common Spanish sur-
names, which cover 10.1% of all individuals in the dataset. The guessing difficulty
for these 4 million individual’s forenames is shown in Table 2 under “Facebook
(Sp.)”.7 We similarly took 250 common Spanish forenames, representing nearly
22 million people, and computed the guessing difficulty of their surnames. In both
cases μ̃ 1

2
and λ̃3 drop by about a bit, indicating that identifying an individual’s

ethnicity may roughly double a statistical attacker’s efficiency.
6 Security increases, of course, if a question doesn’t specify gender.
7 Note that this is not the difficulty of guessing a typical Spanish forename, it is the

difficulty of guessing the forename of a person with a typically Spanish surname.

What’s in a Name? 109

0.0 0.2 0.4 0.6 0.8 1.0
success rate α

0

5

10

15

20

25

30

35

40
m

ar
gi

n
al

gu
es

sw
or

k
μ̃

α

Surname

Forename

Password [RockYou]

Password [Klein]

Password [Spafford]

Password [Schneier]

Mnemonic [Kuo]

Pass-Go

PassPoints

Passfaces

Handwriting

Fig. 1. Comparison of weak subspaces in name distributions (Facebook dataset) to
those found in other authentication systems [16,28,27,29,22,6,1]

Power-law models. The frequencies of English surnames have previously been
posited to be well-fitted by a discrete Pareto distribution [10], with the proba-
bility that a surname X ’s frequency is f(X) is greater than x being proportional
to x−(c+1). Fox et al. found this to hold for c ≈ 1.4. This is thought to occur be-
cause surnames are inherited but don’t strongly correlate to reproductive fitness,
leading to a Pareto-like distribution through random genetic drift.

We found the Pareto distribution with c ≈ 1 to be a reasonable model for
the Facebook surname dataset, though the head of the distribution skewed
significantly away from the Pareto model, with the most common names be-
ing less popular than expected. Still, support for a power-law model of sur-
name frequency suggests the inappropriateness of this distribution for security
purposes.

Interestingly, our forename and pet name distributions were also approxi-
mated well by the Pareto distribution, with c ≈ 0.8 in the Facebook data
set. The reasons for this fit are less well-understood, though this is close to
the classic Zipf distribution (c = 1) which is known to model many natural-
occurring phenomena such as word frequency in natural languages. If it is true
that humans naturally produce names following the Zipf distribution, this too
suggests that human-provided name spaces will not provide adequate guessing
resistance.

110 J. Bonneau, M. Just, and G. Matthews

0.0 0.2 0.4 0.6 0.8 1.0
Rejection rate r∗

6

8

10

12

14

16

18

20

22

24
E

ff
ec

ti
ve

se
cu

ri
ty

(b
it

s)

μ̃ 1
2

(Surname)

λ̃3 (Surname)

μ̃ 1
2

(Forename)

λ̃3 (Forename)

Fig. 2. Effectiveness of shaping a distribution as a function of r∗

6 Countermeasures

Up to this point, we have assumed a passive enrolment server which accepts
any answers and has no influence on the resulting answer distribution X . If we
assume the server knows X , it is possible to actively shape the answer space into
a more secure distribution X ′ by probabilistically rejecting some users’ answers.
There is a growing literature on proactively encouraging users to select diverse
textual [9] or graphical [5] passwords, Bentley et. al previously considered the
problem of “grooming” a skewed probability distribution to uniform [2].

The process of a user answering is equivalent to randomly drawing X
R← X .

The server can examine the result and if X = xi, reject with probability ri and
force the user to answer a differently-worded question with the same answer-
space, in practice re-drawing X

R← X . We assume the process is recursive: the
user’s second answer xj may also be rejected with some probability rj . This
process results in a modified distribution X ′ of answers which are accepted.

If we are constrained by a maximum-allowable overall rejection probability
r∗, it is simple to find the optimum rejection probabilities r1, . . . rN which will
most increase security. This comes from the observation that, given the ability
to lower any single pi by any fixed Δ, lowering p1 will result in the greatest
increase for each of Hα, G̃, μ̃α and λ̃β . The optimal r1, . . . rN are thus computed

What’s in a Name? 111

by an iterative algorithm. First r1 is increased until p′1 = p′2, namely by setting
r1 = 1 − p2

p1
. Next, we increase r1 and r2 together until p′1 = p′2 = p′3. We

repeatedly increase r1 through rm so that p′1 = · · · = p′m+1, stopping when
r∗ =

∑m
i=0 ri·pi and we have reached our maximum overall rejection probability.8

The m most likely events are equiprobable in X ′. The remaining events are never
rejected; their probabilities each increase by 1

1−r∗ .
Shaping is very effective at increasing λ̃β as the most likely events are greatly

reduced in probability. As shown in Figure 2, shaping the name distributions in
the Facebook corpus drives λ̃3 close to μ̃ 1

2
even for reasonable r∗ < 0.5. Even

relatively mild shaping with r∗ = 0.1 of increases λ̃3 by 3.6 bits for surnames.
Although the overall rejection rate is low, though, it is highly unequal: for r∗ =
0.1 the rejection rate r1 for the surname “Smith” is 94.3%.

7 Concluding Remarks

We have applied marginal guessing metrics to the security analysis of common
personal knowledge questions. We then used a diverse collection of real-world
statistical data to estimate the strength of these questions against a trawling
attacker with a large number of accounts to test. We believe this is an increas-
ingly important attacker model and our methods provide a useful framework for
evaluating human-computer authentication.

We have not assessed a ground-truth answer space; the actual distribution
of surnames provided to a deployed authentication server will vary based on
the precise question wording and specific user population. Still, we have found
strong evidence that across a broad range of cultures and contexts, human-
created names simply don’t have enough diversity to provide serious resistance to
guessing attacks. In combination with recent results demonstrating vulnerability
to targeted attacks, our work casts serious doubt on the continued use of personal
knowledge questions for backup authentication.

Acknowledgements

We thank our anonymous referees and our shepherd Lucas Ballard for their
detailed and helpful comments. We also thank David Aspinall, Claudia Diaz,
Andrew Lewis, and Hyoungshick Kim for assistance drafting our report. Just
and Matthews were funded by UK EPSRC, Grant No. EP/G020760/1.

References

1. Ballard, L., Kamara, S., Reiter, M.K.: The Practical Subtleties of Biometric Key
Generation. In: SS 2008: Proceedings of the 17th Conference on Security, Berkeley,
CA, USA, pp. 61–74. USENIX Association (2008)

8 The algorithm may terminate early if the distribution has reached uniformity, though
this is probably impractical. For example, the Facebook surnames corpus requires a
rejection rate of 95.5% to be shaped to uniformity.

112 J. Bonneau, M. Just, and G. Matthews

2. Bentley, J., Mallows, C.: How Much Assurance Does a PIN Provide? In: Baird, H.S.,
Lopresti, D.P. (eds.) HIP 2005. LNCS, vol. 3517, pp. 111–126. Springer, Heidelberg
(2005)

3. Boztas, S.: Entropies, Guessing, and Cryptography. Technical Report 6, Depart-
ment of Mathematics, Royal Melbourne Institute of Technology (1999)

4. Cachin, C.: Entropy measures and unconditional security in cryptography. PhD
thesis, ETH Zürich (1997)

5. Chiasson, S., Forget, A., Biddle, R., van Oorschot, P.C.: Influencing Users Towards
Better Passwords: Persuasive Cued Click-Points. In: BCS-HCI 2008: Proceedings
of the 22nd British HCI Group Annual Conference on HCI 2008, Swinton, UK,
UK, pp. 121–130. British Computer Society (2008)

6. Davis, D., Monrose, F., Reiter, M.K.: On User Choice in Graphical Password
Schemes. In: SSYM 2004: Proceedings of the 13th Conference on USENIX Security
Symposium, Berkeley, CA, USA, p. 11. USENIX Association (2004)

7. Dragomir, S.S., Boztas, S.: Some estimates of the average number of guesses to
determine a random variable. In: Proceedings of the 1997 IEEE International Sym-
posium on Information Theory, p. 159 (1997)

8. Ellison, C., Hall, C., Milbert, R., Schneier, B.: Protecting Secret Keys with Personal
Entropy. Future Gener. Comput. Syst. 16(4), 311–318 (2000)

9. Forget, A., Chiasson, S., van Oorschot, P.C., Biddle, R.: Improving Text Pass-
words Through Persuasion. In: SOUPS 2008: Proceedings of the 4th Symposium
on Usable Privacy and Security, pp. 1–12. ACM, New York (2008)

10. Fox, W.R., Lasker, G.W.: The Distribution of Surname Frequencies. International
Statistical Review, 81–87 (1983)

11. Frykholm, N., Juels, A.: Error-tolerant password recovery. In: CCS 2001: Proceed-
ings of the 8th ACM Conference on Computer and Communications Security, pp.
1–9. ACM, New York (2001)

12. Griffith, V., Jakobsson, M.: Messin’ with Texas: Deriving Mother’s Maiden Names
Using Public Records. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS
2005. LNCS, vol. 3531, pp. 91–103. Springer, Heidelberg (2005)

13. Haga, W.J., Zviran, M.: Question-and-answer passwords: an empirical evaluation.
Inf. Syst. 16(3), 335–343 (1991)

14. Jakobsson, M., Yang, L., Wetzel, S.: Quantifying the Security of Preference-based
Authentication. In: DIM 2008: Proceedings of the 4th ACM Workshop on Digital
Identity Management, pp. 61–70. ACM, New York (2008)

15. Just, M., Aspinall, D.: Personal choice and challenge questions: A security and
usability assessment. In: Cranor, L. (ed.) SOUPS, ACM International Conference
Proceeding Series. ACM, New York (2009)

16. Klein, D.: “Foiling the Cracker”: A Survey of, and Improvements to, Password
Security. In: Proceedings of the 2nd USENIX Security Workshop, pp. 5–14 (1990)

17. Kuo, C., Romanosky, S., Cranor, L.F.: Human Selection of Mnemonic Phrase-based
Passwords. In: SOUPS 2006: Proceedings of the Second Symposium on Usable
Privacy and Security, pp. 67–78. ACM, New York (2006)

18. Lindamood, J., Kantarcioglu, M.: Inferring Private Information Using Social Net-
work Data. Technical Report UTDCS-21-08, University of Texas at Dallas Com-
puter Science Department (July 2008)

19. Malone, D., Sullivan, W.G.: Guesswork and Entropy. In: Proceedings of the 2004
IEEE International Symposium on Information Theory, vol. 50 (2004)

20. Massey, J.L.: Guessing and Entropy. In: Proceedings of the 1994 IEEE International
Symposium on Information Theory, p. 204 (1994)

What’s in a Name? 113

21. O’Gorman, L., Bagga, A., Bentley, J.L.: Call Center Customer Verification by
Query-Directed Passwords. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 54–
67. Springer, Heidelberg (2004)

22. van Oorschot, P.C., Thorpe, J.: On Predictive Models and User-Drawn Graphical
Passwords. ACM Trans. Inf. Syst. Secur. 10(4), 1–33 (2008)

23. Pliam, J.O.: On the Incomparability of Entropy and Marginal Guesswork in
Brute-Force Attacks. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS,
vol. 1977, pp. 67–79. Springer, Heidelberg (2000)

24. Pond, R., Podd, J., Bunnell, J., Henderson, R.: Word Association Computer Pass-
words: The Effect of Formulation Techniques on Recall and Guessing Rates. Com-
puters & Security 19(7), 645–656 (2000)

25. Rabkin, A.: Personal knowledge questions for fallback authentication: Security
questions in the era of Facebook. In: Cranor, L.F. (ed.) SOUPS, ACM Interna-
tional Conference Proceeding Series, pp. 13–23. ACM, New York (2008)

26. Schechter, S., Brush, A.J.B., Egelman, S.: It’s no secret: Measuring the security and
reliability of authentication via ‘secret’ questions. In: IEEE Security and Privacy.
IEEE, Los Alamitos (2009)

27. Schneier, B.: Real-world passwords (December 2006)
28. Spafford, E.: Observations on Reusable Password Choices. In: Proceedings of the

3rd USENIX Security Workshop (1992)
29. Thorpe, J., van Oorschot, P.C.: Human-Seeded Attacks and Exploiting Hot-Spots

in Graphical Passwords. In: SS 2007: Proceedings of 16th USENIX Security Sym-
posium, Berkeley, CA, USA. USENIX Association (2007)

30. Toomim, M., Zhang, X., Fogarty, J., Landay, J.A.: Access Control by Testing for
Shared Knowledge. In: Czerwinski, M., Lund, A.M., Tan, D.S. (eds.) CHI, pp.
193–196. ACM, New York (2008)

31. Yan, J., Blackwell, A., Anderson, R., Grant, A.: Password Memorability and Se-
curity: Empirical Results. IEEE Security and Privacy Magazine 2(5), 25 (2004)

A Sources of Statistical Data

Below is a summary of statistical data sources used in compiling this paper. Com-
plete information on the data sets is provided on our project website http://
groups.inf.ed.ac.uk/security/KBA/.

– Chile Civil Identification and Registration Service
– Des Moines Register
– Eeski Ekspress
– Euromonitor International
– Finland Population Register Center
– Intellectual Property Australia
– Japanese Surname Dictionary
– Los Angeles Department of Animal Licensing
– San Francisco Animal Licensing Department
– Scottish Government School Education Statistics
– Spanish National Institute of Statistics
– Statistics Belgium
– Statistics Iceland
– Statistics Korea
– Statistics Norway
– United Kingdom Department for Children, Schools, and Families
– United Kingdom Office for National Statistics
– United States Census Bureau
– United States Social Security Administration

http://groups.inf.ed.ac.uk/security/KBA/
http://groups.inf.ed.ac.uk/security/KBA/

Cryptographic Protocol Analysis of AN.ON

Benedikt Westermann1, Rolf Wendolsky2,
Lexi Pimenidis3, and Dogan Kesdogan1,4

1 Q2S�, NTNU, 7491 Trondheim, Norway
2 JonDos GmbH, 93055 Regensburg, Germany

3 iDev GmbH, 50672 Cologne, Germany
4 Chair for IT Security, FB5, University of Siegen, 57068 Siegen, Germany

Abstract. This work presents a cryptographic analysis of AN.ON’s
anonymization protocols. We have discovered three flaws of differing
severity. The first is caused by the fact that the freshness of the session
key was not checked by the mix. This flaw leads to a situation where an
external attacker is able to perform a replay attack against AN.ON. A
second, more severe, error was found in the encryption scheme of AN.ON.
An internal attacker controlling the first mix in a cascade of length two
is able to de-anonymize users with high probability. The third flaw re-
sults from the lack of checks to ensure that a message belongs to the
current session. This enables an attacker to impersonate the last mix in
a cascade.

The flaws we discovered represent errors that, unfortunately, still oc-
cur quite often and show the importance of either using standardized
crytpographic protocols or performing detailed security analyses.

1 Introduction

In recent years anonymous communications have become an important build-
ing block for privacy-preserving systems. Anonymous channels are often an
unconditional requirement for e-voting, e-health or anonymous credential sys-
tems. Many techniques have been proposed in theory, for example Tarzan[1] or
MorphMix[2]. However, only a few systems have been widely deployed. In terms
of number of users, the two major deployed anonymization systems are Tor[3]
and AN.ON/JonDonym1[4].

In general, publications concerning anonymous communications deal with at-
tacks on the network layer, performance improvements or the consolidation of
knowledge with regards to anonymous communication in general. Unfortunately,
the underlying cryptographic protocols have not received the same attention,
despite the fact that anonymity strongly depends on the correct practical com-
bination, usage and implementation of cryptographic primitives.
� “Center for Quantifiable Quality of Service in Communication Systems, Center of

Excellence” appointed by The Research Council of Norway, funded by the Research
Council, NTNU and UNINETT. http://www.q2s.ntnu.no

1 Also known as “JAP”, the name of the client software, or “Java Anon Proxy”.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 114–128, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

http://www.q2s.ntnu.no

Cryptographic Protocol Analysis of AN.ON 115

This paper takes a closer look at the cryptographic protocols used for the
anonymization process of AN.ON, and discovers several vulnerabilities. The fol-
lowing two sections describe the basic concepts of AN.ON, the attacker model
and the underlying assumptions of the system. Section 4 continues with the au-
thentication protocol involving the user and the first server. Section 5 presents
an attack on the general encryption scheme used by AN.ON. Section 6 discusses
a flaw in the mix initialization protocol. The previous work in this area is pre-
sented in Section 7, following a discussion in Section 8 about the reasons for
these flaws. Finally, we present our conclusions.

2 Description of AN.ON

AN.ON, short for Anonymity Online, is a project that provides anonymity on the
network layer. More precisely, it offers sender anonymity against the receiver of
a message and relationship anonymity against a local attacker, such as an eaves-
dropper of an Internet connection. In terms of web browsing, sender anonymity
means that a web server cannot identify a user via their IP address. Relationship
anonymity means that a local attacker cannot identify the sender or receiver of
a message. Thus, an attacker can at most identify the sender or the receiver, but
not both [5].

In order to establish such a service, AN.ON uses the so-called mix servers
otherwise known simply as mixes[6]. A mix is an intermediate entity between a
sender and a receiver of a message. Its task is to establish anonymity for the user.
A mix accomplishes this by hiding the relation between incoming and outgoing
messages. In [4] the authors propose the usage of encryption and reordering of
messages to establish anonymity. However, for performance reasons the reorder-
ing of messages is typically deactivated in AN.ON.

To provide relationship anonymity regarding the operator of a mix, several
mixes are typically chained together. Such a chain is called a cascade (see Figure
1). The order of the mixes is chosen by their operators and cannot be changed by
a user. Every packet which is received by the first mix in the cascade is forwarded

M1

M1

M2

M3

M2 M1 M3 M2 M1 M3

M2

M3

first
mix

second
mix

third
mix

receiver 1

receiver 2

receiver 3

M

M

M : message encrypted with the key of the third mix

: message encrypted with the key of the second mix

: message encrypted with the key of the first mix

sender 3

sender 2

sender 1

Fig. 1. Example for a cascade in AN.ON

116 B. Westermann et al.

to a second mix and so forth. By these mechanisms, AN.ON aims to establish
anonymity for a user under the assumption that not all mix operators collude.

The basic anonymization process works in the following way: a sender encrypts
a message, which includes the final destination, with a symmetric key. The key
is shared between the last mix in a given cascade and the user. The result of
the encryption is again encrypted with a symmetric key that is shared with the
predecessor of the last mix. This procedure is repeated until the first mix in the
cascade is reached and thereby the typical layered encryption is created.

Afterwards the message is sent to the first mix. This mix uses its shared
symmetric key to decrypt the message and forwards the result to the next mix,
which also decrypts the message. When the last mix in cascade is eventually
reached, the mix performs the final decryption of the message and is thus able to
get the destination of the message. Finally, the unencrypted message is forwarded
to the destination.

In addition to senders, receivers and mixes, there is an additional party, the
so-called infoservice. This service, operated by a third party, provides users of
the system with the necessary information about the cascades.

3 Scope, Assumptions and Course

The analysis in this paper looks in detail at the protocols used in the mix server
version 00.08.60 of AN.ON. This was the most recent version at the time of our
analysis and was released in February 2009.

Our analysis focuses on the anonymization process and ignores the protocols
that are involved in the information distribution process, which normally involves
the infoservice. Due to this, we assume that a user knows the public signature
keys of the mixes. Generally, we assume that every mix uses an uncompromised
key pair to sign data.

Our assumed adversary has the capabilities of a local active attacker. Thus,
the attacker is only able to eavesdrop some connections of either the user, the
mixes or the final destination, but not all at the same time. The attacker is also
able to add, modify, replay or drop packets passing an observed link. We further
assume that the attacker can operate a single mix in the cascade. Finally, we
assume that the attacker is not able to break basic cryptographic primitives,
such as AES or RSA, but is assumed to possess all prior private keys that are
no longer used by the mixes. Note that this attacker model is weaker than the
attacker that was originally proposed in [4], in which the authors assume a global
attacker. However, recent publications have shown that AN.ON is not able to
resist this kind of attacker in practise[7,8].

In order to retrieve the information about the protocols we made use of a
technical report describing the anonymization process[9]. We have also examined
the source code in order to find undocumented changes in the protocols. The
results of the analysis were discussed with developers of the AN.ON project, who
also helped us to retrieve the mix authentication protocol, see Section 6.

Cryptographic Protocol Analysis of AN.ON 117

4 Authentication Protocol of the First Mix

Before we describe the protocol it is necessary to take a brief look at the so-called
descriptors that are provided by the infoservice. A descriptor is an XML-based
document which describes the entities of a cascade. It contains general informa-
tion about the cascade, a description for each mix and a signature for the whole
document. The last of these is provided by the first mix in the cascade. The
description of each mix is also signed by the corresponding mix. The signature
aims to prevent a malicious modification of the mixes’ descriptions. The descrip-
tion of a mix includes different public keys, a timestamp and X509 certificates
for the included public keys.

In this section of the paper we assume that when a user receives a descriptor
with a valid signature of a known authority, they possess every public key of the
mixes in the cascade. In addition we assume that all keys are not compromised
by an adversary and that the certificates are up-to-date.

The mix authentication protocol aims to create a session key between the JAP,
which is the client application, and the first mix in a cascade. The preconditions
for the protocol are that a user knows the public signature key of the first
mix. The mix owns the corresponding key pair, which is only used to produce
signatures. In addition to this key pair the mix also possesses a public key pair
that can only be used for encryption. However, the key which is used for the
encryption is not initially known by the JAP.

Figure 2 shows a message sequence chart of the mix authentication protocol
at an abstract level. We assume that the JAP knows the public signing key
KM1 of the first mix. The known relation is represented by the � sign. The mix
holds two key pairs: the first key pair is (K−1

M1 , KM1) which is used only to sign
documents. The second key pair is (K−1

M1
e
, KM1

e
). Its public key can be used by

the JAP to encrypt messages for the mix.
In the first message that is sent by the first mix to the user, a descriptor

for the cascade is transmitted. The descriptor includes, among other data, the
public encryption key KM1

e
of the first mix. In order to simplify the presentation

we represent the remaining information by m. For example, the keys of the other
mixes are included in m. The whole descriptor is signed by the first mix, which
is denoted by {H(m, KM1

e
)}K−1

M1 . After the message is received by the JAP, it
verifies the signature. If this succeeds it also knows the public encryption key of
the first mix. In the next step, the JAP generates a symmetric session key and
sends the key encrypted with the public encryption key KM1

e
to the first mix.

Since the first mix owns the corresponding private key, it is able to decrypt the
message. Thus, it also knows the symmetric session key. Finally, the mix sends
a confirmation to show the possession of the symmetric key to the JAP. The
confirmation is basically a hash of the descriptor, the session key and the public
encryption key of the first mix.

A closer look at the protocol shows that a mix has no guarantee that the mes-
sage containing the session key was created in the current session. An attacker
can send, instead of a new message, a recorded message of an old session. This is
known as a replay. The mix cannot check, in this protocol, whether the session

118 B. Westermann et al.

JAP
J

First Mix
M1

J � KM1 M1 � K−1
M1

e

,KM1
e

,KM1 ,K−1
M1

1 : m,KM1
e

, {H(m,KM1
e

)}K−1
M1

J � KM1
e

KJM1 ∈R {0, 1}∗

2 : {KJM1}KM1
e

M1 � KJM1

3 : {H(m,KJM1 ,KM1
e

)}K−1
M1

msc Authentication Mix Protocol (JAP ↔ First Mix)

Fig. 2. Mix Authentication Protocol

is a replay or not. Thus, the whole anonymization process may be vulnerable to
replay attacks.

As we did not find any replay protection in the other protocols, we tried to
replay the whole session including several HTTP requests. We used the exist-
ing service “Dresden” in order to check if a replay is possible. To this end, we
recorded a session of a short sequence of website queries and their replies. For
testing purposes, we retrieved a website which was hosted on a server under our
control. The second and third website were hosted on foreign servers. The last
website again was located on a server which was under our own control.

To replay the session we simply connected to the mix and sent all the previ-
ously recorded raw packets in the mix. Shortly after the replay was started we
were able to observe HTTP requests on both of our web servers. Both HTTP re-
quests were sent by the last mix of the “Dresden” cascade. Thus, in the version
we evaluated there was no protection against replay2. This lack of protection
leads to various different attacks threatening not only the anonymity of a user
with respect to a global attacker[6]. For instance, an attacker could replay a
post command which modifies data on the web server in order to threaten data
integrity.

The replay attack can be limited to an internal attacker if the mix ensures
that the received key is fresh. The simplest solution seems to be to establish
a TLS connection between the user and the first mix. However, whether this
solution suits AN.ON’s requirements is not within the scope of this paper.

This change only protects against an external attacker. In order to protect
against replay by an internal attacker other countermeasures are necessary, such
as the solution described in [10]. Here the authors try to find a trade-off between

2 Replay protection is under development, but takes place at a higher level.

Cryptographic Protocol Analysis of AN.ON 119

storing every used key in a database, performance and security. Their idea is to
use small parts of a symmetric key to mark a time period. Some parts of the
key are predictable, which subsequently lowers the strength of the symmetric
key. An identifier of every used key is stored in a database during a given time
period. Only keys that are within the current time period, and that are not
already stored in the database, are accepted for a new connection.

5 Attack on AN.ON’s Encryption/Decryption Scheme

In this section we concentrate on the encryption and decryption of exchanged
messages.

5.1 Structure of Mix Packets

As briefly described in Section 2, a user forwards packets along a chain of mixes.
For each hop, the user adds a layer of encryption around the message which is
later removed by the corresponding mix.

To analyse the protocol it is necessary to examine the structure of the packets.
Figure 3 illustrates the structure of a packet which is sent by a user to the first
mix. The first part is the mix packet header. Its size is 6 bytes and it contains
a channel ID and some flags. The remaining part can be used to transfer data
from the user to the last mix in the cascade. It is important to notice that only
the last 992 bytes travel along the whole cascade. The first 6 bytes (channel ID
and flags) can be completely modified at each hop. It is therefore necessary to
encrypt different parts of the packet in different ways with different keys.

Fig. 3. The Structure of a Mix Packet

One encryption layer is added to protect the confidentiality of the channel ID
and the flags during the transmission between adjacent entities. Obviously, the
symmetric key for the encryption is shared by exactly two adjacent parties. For
purposes of speed optimization the whole packet is not encrypted, only the first
16 bytes (128 bit). Thus, this layer of encryption includes the channel ID, the
flags and the remaining 10 bytes of the payload of the message. For encryption,
AES is used in the output feedback mode (OFB, see Section 5.2)).

The structure and the encryption of the payload depend on whether a mix
packet is the first in an anonymous channel, or a packet of an already opened
channel. If a mix receives a packet it checks, based on the channel ID and the

120 B. Westermann et al.

flags, if the packet opens a new stream. Such a packet is called a channel-open
packet. In this case, the mix decrypts the first 128 bytes by using its RSA private
key3. The first part of the decrypted bytes contains a symmetric key (16 bytes).
This is used for decrypting both the remaining 864 bytes of the packet and the
subsequent packets of the anonymous channel. If the mix is an intermediate mix,
the remaining part of the packet is encrypted for the next mix (see Figure 4).
Thus, the mix needs to forward the packet to the next mix. Before the packet
is forwarded, the mix removes its key (16 bytes) from the packet and adds 16
bytes of random data to the end in order to preserve the length of the packet.
Finally, the mix forwards the payload together with a matching header to the
next mix. If the mix is the last mix in a cascade it decrypts the first 128 bytes
with its private RSA key and the remaining bytes with the symmetric key which
is stored in the first 16 bytes of the packet. In addition to the payload a mix
packet for a last mix contains a header field after the key. This field indicates
how many of the 992 bytes for the payload are used for data, as well as the type
of the data. The remaining bytes are random data (see Figure 5).

Fig. 4. The structure of the payload for intermediate mixes for the initial packet

Fig. 5. The structure of the payload for the last mix for the initial packet

In the case of subsequent packets only one encryption scheme is used. The
whole payload is encrypted symmetrically with the key that was sent within the
channel-open packet. Each mix uses its key to decrypt the 992 bytes of payload.
When the packet is decrypted by the last mix, the packet can again be divided
in three parts: the header, the data and random data.

In order to process replies, every mix encrypts the data received by the suc-
cessor mix and forwards it to the predecessor mix. The structure of the mix
packet is equal to the structure a subsequent packet. Thus, the whole packet is
symmetrically encrypted. The same symmetric keys are used by the mixes for
both transmission directions. The algorithm used is AES in OFB-mode.

3 In the case of the first mix, this part is symmetrically encrypted. Since this is not
important for the attack we omit a further explanation.

Cryptographic Protocol Analysis of AN.ON 121

5.2 Output Feedback Mode (OFB)

AN.ON uses AES in OFB mode for its symmetrical encryption operations. The
objective of the OFB mode is to produce a infinite key stream. To this end,
it uses an initialization vector and a key. The initialization vector is encrypted
with AES, which uses the key. The result of this is used twice: first, it is XORed
with the plain text. Second, it is used in the subsequent round instead of the
initialization vector. Figure 6 illustrates the mode of operation of OFB.

Fig. 6. Sketch of the output feedback mode

5.3 The Attack

As mentioned above, a mix uses the same key to decrypt messages in the sending
direction as well as to encrypt the messages in the receiving direction. Moreover,
a mix uses the same initialization vector for both directions. Therefore, a mix
produces the same key stream for both directions.

We denote with km
i the byte of the i-th position in the key stream of mix

m. Let di denote the i − th data byte in the data stream4 and with ci the final
encrypted message byte at position i. To distinguish the sending and receiving
direction we use either the superscript r or s for ci and di respectively.

At first we formalize the receiving situation where a packet travels from the
last mix along the cascade to the user. Let p denote the position of the last
mix that processed the packet and let n be the number of mixes in the cascade.
Thus, if the user receives a packet, p is equal to 1 since the first mix was the
last involved mix. Let i denote the byte position in the byte stream of a packet.
Based on the notation we can describe the ith encrypted byte in the receiving
direction by:

cr
i (p) = dr

i

n⊕
j=p

k
mj

i i ≥ 0 ∧ 1 ≤ p ≤ n (1)

However, if we take a look at the sending direction the situation is slightly
different due to the payload structure of the initial packet in a data stream.
Recall that if an intermediate mix in a cascade receives a channel-open packet in
a data stream, the first 128 bytes are asymmetrically encrypted and the following
bytes symmetrically. During processing, an intermediate mix removes its key
4 The data stream includes the 3 byte header of each packet as well as the padding.

122 B. Westermann et al.

from the payload (and adds 16 bytes to the end). Now the packet is forwarded
to the next mix who expects again that the first 128 bytes of the payload are
encrypted asymmetrically and the remaining bytes are encrypted symmetrically.
Thus, the key streams of the mixes need to be shifted by a user by 16 byte per
hop. The reason for the shift is the symmetric key that is stored in the first 16
bytes of the initial data stream packet.

By formalizing the encryption, we result in:

cs
i+128(p+1) = ds

i+128

n⊕
j=p+1

k
mj

i+(n−j)∗16 0 ≤ p ≤ n−1 ∧ i ≥ (n−p−1)·16 (2)

for the i-th encrypted byte.
The equations 1 and 2 become interesting if we consider the first mix in a

cascade of length 2. By using both formulas we result in:

cr
i (2) = dr

i ⊕ km2
i (3)

cs
i+128(2) = ds

i+128 ⊕ km2
i (4)

The xor of both encrypted values result in:

cr
i (2) ⊕ cs

i+128(2) = ds
i+128 ⊕ dr

i (5)

In case of AN.ON most of the traffic that is transfered over the cascade is normal
HTTP traffic, which includes the HTTP header. Moreover, the content of an
HTTP header is partially known by the adversary. Thus, an attacker can use
the known parts in order to decrypt unknown parts of the HTTP header with
help of Formula 5. This becomes critical in AN.ON if the attacker is able to
reconstruct the request line or the Host field in an HTTP request. The former
includes the requested URL and the latter the queried host. Therefore, if an
attacker is able to reconstruct parts of either the Host field or the request line
he has deanonymized the user.

For a proof of concept, we have recorded the payload parts of the packets
that were either sent from the first mix to the second mix (p = 1) or sent from
the second mix to the first mix (p = 2) in the Dresden-Dresden cascade. We
therefore assume an internal attacker on the first mix. In order to correct the
offset of the sending stream we removed the first 128 bytes of the stream. The
result of this was XORed with the receiving stream. To omit the 3 bytes of the
payload header we removed the first 3 bytes of the result and XORed it with the
most probable HTTP response line “HTTP/1.0 200 OK\r\n”5. This procedure
resulted in the string “st: www.google.de” which is the last part of the Host field
in the original HTTP request header. Thus, we uncovered the destination of the
request simply through the use of two recorded encrypted packets that were sent
and received by the first mix. Since the first mix in the cascade also knows the
IP address of the user, an internal attacker is able to revoke the relationship
5 There are only a few different possibilities for the response line.

Cryptographic Protocol Analysis of AN.ON 123

anonymity without the help of the second mix. Clearly, this contradicts to the
objectives of AN.ON.

For our attack we have assumed a local internal attacker. Nevertheless, an
external attacker is also able to perform the attack, even though it is slightly
more difficult. This difficult is for three reasons: firstly, the attacker does not
know the mapping between incoming and outgoing messages. Thus, they cannot
map directly the IP address of the sender to the uncovered receiver. Secondly, the
attacker cannot use the first 7 bytes of the HTTP response in the payload due
to the channel encryption. Thus, they have less information available. Thirdly,
the attacker cannot easily recognize which received packet belongs to which sent
packet. These constraints are not, in our opinion, a significant challenge. The
mapping can be received due to the fact that the packets are processed in a FIFO
order. The fact that the attacker misses 7 bytes merely lowers the probability of
success slightly. The last challenge can be addressed by probing which received
packet leads to a useful output with respect to a recorded sent packet. If we
assume the external attacker is able to master the first and third challenge, they
are able to deanonymize the user in our example. The attacker is able to retrieve
“.google.de” without any further guesses.

5.4 Discussion of the Attack

The attack presented above is based on several problems. Firstly, the plain text
of the encrypted message is partially known. Secondly, the encryption is a XOR
encryption and therefore an encrypted bit only depends on a single bit of the
plain text as well as the key stream. Thirdly, the same parameters are used for
both directions. The first and the second fact are difficult to avoid due to the
design of AN.ON. Thus neither the cipher feedback (CFB) nor the cipher block
chaining (CBC) mode can be used , due to the processing of the initial packet
in a data stream. The electronic codebook (EBC) mode is also not suitable as it
does not hide data patterns. Thus, it is only possible to change the parameters
of the encryption, preferably the key. The key streams of both stream directions
thus become different. In a conversation with the developer[11] it was mentioned
that AN.ON recently became aware of these risks and that changes had been
made in order to use different keys. This was independent of our analysis. Hence,
the mix software has already been updated to reflect this issue.

6 Attack on the Mix Authentication Protocol

In this section we look at the cascade initialization protocol between mixes. The
protocol aims to exchange a key with adjacent mixes in the cascade. In addition,
it should also mutually authenticate the mixes.

Let m1, . . . , mn the mixes in a cascade. The protocol begins with the estab-
lishment of a TCP connection between the mixes mi and mi+1. Note that mi

initiates the connection to mi+1.
Figure 7 depicts the protocol between two mixes. It starts with the generation

of a nonce (n) and an asymmetric encryption key (K−1
Mi+1

e
) by the mix i + 1.

124 B. Westermann et al.

Mix i

M i

Mix i + 1
M i+1

M i � K−1
Mi

,K−1
Mi

e

,KMi+1 M i+1 � K−1
Mi+1 ,KMi

Generate K−1
M

i+1
e

n ∈R {0, 1}∗

1 : m,K
M

i+1
e

, n, {H(m,K
M

i+1
e

, n)}K−1
Mi+1

M i � K
M

i+1
e

KMiMi+1 ∈R {0, 1}∗

2 : {KMiMi+1}K
M

i+1
e

, {H({KMiMi+1}K
M

i+1
e

, n)}K−1
Mi

M i+1 � KMiMi+1

msc Authentication between Mixes (M i ↔ M i+1)

Fig. 7. Mix Authentication Protocol

Afterwards, mix i + 1 transmits its description (m), its public encryption key
(KMi+1

e
), the generated nonce and a signed hash of the triple (m, KMi+1

e
, n) to

mix i. Mix i checks whether the received signature is valid with respect to the
known key of mix i + 1 or not. In the former case mix i generates a session key
and encrypts the session key with the received key KMi+1

e
. The result is sent

together with a signature of the encrypted key and the nonce to the mix i + 1.
Mix i + 1 checks the validity of the signature with respect to the configured
public key of mix i. If it succeeds mix i + 1 uses the received key as symmetric
key for the channel encryption between the two mixes.

A problem arises when an attacker compromises the private encryption key
of the last mix in the cascade, possibly at a later point in time. In this case the
attacker is able to replace the certified mix with his own mix. To this end, the
attacker needs a recorded session of the authentication protocol in which the
compromised key was used. In order to mount the attack the attacker redirects
the TCP connection from the certified mix to its own mix. Afterwards, the mix
replays the first message of the previous session to the mix i. Due to the fact
that the signing key is usually changed only once a year, the mix i will most
probably accept the signature of the “certified” mix. In correspondence with
the protocol, mix i generates a session key and sends the encrypted session
key together with its signature back to the attacker. The attacker who knows
the private encryption key can now decrypt the session key and is therefore
authenticated in the cascade as certified mix even though he does not possess
the signature key. A user is unable to distinguish the attacker from the certified
mix at a later date via the existing protocols. Therefore, the attacker is able to
eavesdrop on all the outgoing data of the users, which may contain identifying

Cryptographic Protocol Analysis of AN.ON 125

information. However the attacker is not able to deanonymize users solely based
on this attack.

At a first glance, the attack looks impractical due to the fact that an attacker
needs to compromise one of the private encryption keys. However, if we consider,
for example, the recent OpenSSL bug in the Debian Linux distribution6[12], this
attack becomes more practical. The mix software relies on OpenSSL, and thus
any asymmetric encryption key generated by a mix which used a vulnerable
OpenSSL library is potentially compromised. This means that an attacker can
immediately retrieve the private key from a given public key generated by a
vulnerable OpenSSL version. Hence, if an attacker once recorded a session in
which a mix used a vulnerable key, he is able to impersonate the mix with the
attack described above. The only way to circumvent the attack in the current
version is to replace every signature key that has been used with a vulnerable
OpenSSL version. Obviously, the protocol also needs to be fixed to counter the
described attack.

It is worth noting that this protocol is based on the “Key Transport Mecha-
nism 4” of the ISO/IEC 11770-3:2008 standard[13]. The author of the AN.ON
protocol modified it slightly in order to authenticate mixi+1 as well. The author
therefore included a signed version of the mixi+1’s encryption key as well as
the descriptor of the mix. In addition he omitted the identity of mix from the
encrypted secret, which could lead to other attacks. This example shows how
dangerous it is to modify standardized cryptographic protocols to apply them
beyond their intended use.

For the protocol in Section 4 we see no reason why a custom-made or a mod-
ified standard protocol is necessary for the authentication and encryption. TLS
supports client and server authentication via X509 certificates and is addition-
ally able to secure data transmitted later. This protocol should therefore be
suitable for the communication and authentication between the mixes. One rea-
son to choose another protocol might be performance, as some data is encrypted
unnecessarily in this scheme.

7 Related Work

This paper is the first cryptographic protocol analysis of AN.ON’s anonymiza-
tion process. In 2009, Westermann[14] performed a security analysis of AN.ON’s
payment system, but did not take the anonymization process into account.

For I2P7, an anonymously developed anonymization service, there is no pub-
lished description of the anonymisation protocol available and to the best of our
knowledge also no publicly available security analysis.

In contrast to AN.ON and I2P, the cryptographic protocols of the Tor sys-
tem have been analyzed[3] with the NRL protocol analyzer[15]. In 2006 Gold-
berg proved that the Tor authentication protocol is secure in the random oracle
model[16]. In general, this does not guarantee that the implementation has no
6 A vulnerable version can only generate a limited number of keys.
7 http://www.i2p2.de

http://www.i2p2.de

126 B. Westermann et al.

flaws with respect to the implementation of the protocol and the cryptographic
primitives. An examples of this is that, due to the lack of AES in counter mode
in early OpenSSL versions, the Tor developers were forced to implement their
own version. Unfortunately, there was a bug in this implementation that caused
the counter to be reset after 16 bits. This clearly threatened the security of the
system[17].

8 Discussion

In the field of low-latency anonymous communications, the main research fo-
cus seems to be on mechanisms that establish anonymity or improve perfor-
mance. Many publications deal only with the general mechanisms for establish-
ing anonymity by using idealized underlying protocols, and omit a clear and
detailed cryptographic protocol description. However, most mechanisms are not
implemented and thus this lack of detail is a minor problem. As soon as a pro-
tocol is implemented, however, it is crucial to publish and analyse the protocols
that are composed or invented by the authors.

Tor is a good example of the right way to achieve this. The developers de-
scribed and analysed the cryptographic protocols in a early stage of the project.
Possible changes to the cryptographic protocols are published before they are
implemented in Tor. In [18] the authors propose a more efficient way to establish
circuits, however to the best of our knowledge this is not implemented yet, but
is in discussion to be introduced in a later version.

In general, it is almost always a good idea to use standard cryptographic pro-
tocols for a product. However, building an anonymity network solely on stan-
dardized protocols, while possible, introduces a number of constraints[19]. In the
case of high-latency anonymity networks, with regard to the protocols and mech-
anisms proposed so far, it seems almost unavoidable to compose cryptographic
primitives and invent cryptographic protocols for novel, specific purposes. How-
ever, it seems that this area enjoys a stronger focus on proving the correctness
of protocols compared to the field of low-latency networks.

Our analysis shows that referring to a technical report for cryptographic pro-
tocols is risky. We claim that a technical report is mostly read by developers, who
are not necessarily cryptographic protocol experts. As a consequence, weaknesses
in the protocols are more likely to be overlooked.

9 Conclusion

In this paper we have analysed the cryptographic protocols of AN.ON and dis-
covered three flaws of differing severity. The first flaw is caused by the fact that
the freshness of the session key was not checked by the mix. This flaw leads to a
situation where an external attacker is able to perform a replay attack against
AN.ON. However, when the replay detection techniques that are currently un-
der development are integrated, the internal as well as the external attacker will

Cryptographic Protocol Analysis of AN.ON 127

no longer able to replay a session. Nevertheless, the flaw in the authentication
protocol must be addressed.

A second, more severe, error was found in the encryption scheme of AN.ON.
An internal attacker controlling the first mix in a cascade of length two is able to
de-anonymize users with high probability. The error was introduced by the reuse
of keys with the same initialization vector. As of November 15, 2009, this error
is fixed in version 00.08.84 by a slight protocol change. Due to compatibility
reasons with older clients, some mix operators have still not updated, but plan
to do so soon.

The third flaw discovered is, at a first glance, more theoretical than practical.
It does, however, have practical relevance due to the OpenSSL flaw in Debian.
The missing check for a message to belong to the current session enables an
attacker to impersonate the last mix in a cascade. However, this can only be
done if the attacker has compromised a private encryption key of the mix that
was signed by the last mix in an older session.

The flaws we discovered represent errors that, unfortunately, still occur quite
often. This again shows the importance of using standardized cryptographic
protocols. As discussed in Section 8 it is not always possible to use a standard
cryptographic protocol due to special requirements. In this case, a composition
of cryptographic protocols and primitives becomes necessary. This does not nec-
essarily lead to a secure system, as various examples and attacks in the past
have shown[20,21]. Therefore, a proof or detailed analysis should be provided,
as it has been given by Tor or by Sphinx[22].

References

1. Freedman, M.J., Morris, R.: Tarzan: a peer-to-peer anonymizing network layer. In:
Atluri, V. (ed.) ACM Conference on Computer and Communications Security, pp.
193–206. ACM, New York (2002)

2. Rennhard, M., Plattner, B.: Introducing MorphMix: Peer-to-Peer based Anony-
mous Internet Usage with Collusion Detection. In: Proceedings of the Workshop
on Privacy in the Electronic Society (WPES 2002), Washington, DC, USA (Novem-
ber 2002)

3. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. In: USENIX Security Symposium, pp. 303–320. USENIX (2004)

4. Berthold, O., Federrath, H., Köpsell, S.: Web MIXes: A system for anonymous and
unobservable Internet access. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 115–129. Springer, Heidelberg (2001)

5. Pfitzmann, A., Hansen, M.: Anonymity, unlinkability, undetectability, unobserv-
ability, pseudonymity, and identity management - a consolidated proposal for ter-
minology, vol. 0.31 (February 2008)

6. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 4(2), 84–88 (1981)

7. Kesdogan, D., Agrawal, D., Pham, V., Rautenbach, D.: Fundamental limits on the
anonymity provided by the mix technique. In: SP 2006: Proceedings of the 2006
IEEE Symposium on Security and Privacy, Washington, DC, USA, pp. 86–99.
IEEE Computer Society, Los Alamitos (2006)

128 B. Westermann et al.

8. Berthold, S., Böhme, R., Köpsell, S.: Data retention and anonymity services -
introducing a new class of realistic adversary models. In: The Future of Identity
in the Information Society. IFIP Advances in Information and Communication
Technology, vol. 298, pp. 92–106 (2009)

9. Köpsell, S.: AnonDienst - Design und Implementierung. Technical report, TU Dres-
den University (2004)

10. Köpsell, S.: Vergleich der Verfahren zur Verhinderung von Replay-angriffen der
Anonymisierungsdienste AN.ON und Tor. In: Dittmann, J. (ed.) Sicherheit. LNI,
vol. 77, pp. 183–187, GI (2006)

11. Köpsell, S.: Private discussion with the developer (May 2009)
12. Common Vulnerability and Exposure: CVE-2008-0166 (2008),

http://www.cve.mitre.org (last visited: 15.12.2009)
13. ISO/IEC 11770-3:2008: Information technology – Security techniques – Key man-

agement – Part 3: Mechanisms using asymmetric techniques. ISO, Geneva, Switzer-
land

14. Westermann, B.: Security analysis of AN.ON’s payment scheme. In: Jøsang, A.,
Maseng, T., Knapskog, S.J. (eds.) NordSec 2009. LNCS, vol. 5838, pp. 255–270.
Springer, Heidelberg (2009)

15. Meadows, C.: The NRL protocol analyzer: An overview. The Journal of Logic
Programming 26(2), 113–131 (1996)

16. Goldberg, I.: On the security of the Tor authentication protocol. In: Danezis, G.,
Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 316–331. Springer, Heidelberg
(2006)

17. Dingledine, R.: Security and Anonymity Vulnerabilities in Tor: Past, Present, and
Future. Talk at DefCon 16 (August 2008)

18. Øverlier, L., Syverson, P.: Improving efficiency and simplicity of Tor circuit estab-
lishment and hidden services. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS,
vol. 4776, pp. 134–152. Springer, Heidelberg (2007)

19. Panchenko, A., Westermann, B., Pimenidis, L., Andersson, C.: Shalon: Lightweight
anonymization based on open standards. In: Proceedings of 18th Internatonal Con-
ference on Computer Communications and Networks, San Francisco, CA, USA
(August 2009)

20. Simmons, G.J.: Cryptanalysis and protocol failures. Communications of the
ACM 37(11), 56–65 (1994)

21. Gligoroski, D., Andova, S., Knapskog, S.J.: On the importance of the key separation
principle for different modes of operation. In: Chen, L., Mu, Y., Susilo, W. (eds.)
ISPEC 2008. LNCS, vol. 4991, pp. 404–418. Springer, Heidelberg (2008)

22. Danezis, G., Goldberg, I.: Sphinx: A compact and provably secure mix format. In:
IEEE Symposium on Security and Privacy, pp. 269–282. IEEE Computer Society,
Los Alamitos (2009)

http://www.cve.mitre.org

A CDH-Based Ring Signature Scheme with
Short Signatures and Public Keys

Sven Schäge and Jörg Schwenk

Horst Görtz Institute for IT-Security, Ruhr-Universität Bochum, Germany
{sven.schaege,joerg.schwenk}@rub.de

Abstract. In this work we present a new CDH-based ring signature
scheme with some striking advantages. On the one hand it is secure with-
out random oracles, perfectly anonymous, and unforgeable solely under
the CDH assumption in bilinear groups. This makes the security of our
ring signature schemes rely on weaker (and less) assumptions than all
previous (full) ring signature schemes secure without random oracles.
On the other hand the scheme is very space efficient; a public key con-
sists of just a single group element and a ring signature accounts for
only n + 1 group elements, where n is the size of the ring. This is only
about half the number of components when compared to other ring sig-
nature schemes that do not exploit ring re-use. As all computations are
in groups of prime order, we do not need a trusted setup procedure. All
these features do not come for free. The main drawback of our scheme is
that it only provides security against chosen subring attacks where the
attacker is not allowed to query private keys.

Keywords: CDH assumption, bilinear group, ring signature scheme,
programmable hash function.

1 Introduction

The CDH assumption became practical for standard model signature schemes
with the introduction of bilinear pairings into cryptography. In 2005, Waters
showed the existence of a hash-and-sign signature scheme that is secure under
the CDH assumption in the standard model [31]. Since then several signature
schemes, including ring signature schemes [27], sequential aggregate signature
schemes, multisignature schemes, and verifiably encrypted signature schemes [23]
have been proposed that are secure in the standard model. In this work we
develop a new and efficient ring signature schemes without random oracles that
is solely based on the CDH assumption in symmetric bilinear groups.

A ring signature scheme allows a signer to sign on behalf of a group of users,
the so-called ring; the only condition is that the signer must also be part of this
ring. Technically, a ring is represented by the set of public keys that correspond to
the identities of the ring members. Using his private key, the signer can now sign
a message such that anyone can check whether the signature has been generated
by one of the ring members. At the same time, there exists no possibility to

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 129–142, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

130 S. Schäge and J. Schwenk

discover the actual signer. Ring signatures provide signer anonymity in a very
strong sense. In contrast to group signature schemes [14], the anonymity of the
signer cannot be revoked. What makes ring signature schemes very flexible is
that no central management is needed and that the signer can freely choose the
public keys in the ring even without their owners’ consent. Direct applications
for ring signature schemes include designated verifier signatures [22] and secret
leaking [26], but ring signature schemes are in general useful in applications
where signer anonymity is desired.

1.1 Related Work

The first (explicit) ring signature scheme by Rivest, Shamir and Tauman [26] was
proven secure in the random oracle/ideal cipher model [2, 16]. Since then, sev-
eral ring signature schemes have been proposed in the random oracle model. In
1998, Canetti, Goldreich and Halevi showed the existence of a signature scheme
that is provably secure in the random oracle model but insecure when instanti-
ated with any hash function [12], thus raising serious doubts on the usefulness
of the random oracle model for real world protocols. Since then, research on
cryptographic primitives that are secure in the standard model has gained much
attention. However, today only a handful of ring signature schemes proven secure
without random oracles exist.

While the scheme of Chow et al. [15] published in 2006 provides unconditional
anonymity, unforgeability is based on a new strong assumption that is given with-
out any evidence for its validity. In the same year, Bender, Katz and Morselli
proposed a ring signature scheme based on trapdoor permutations, but since it
uses generic ZAPs for NP it is impractical for real world applications [4]. In the
same work the authors also presented two 2-user ring signature schemes without
random oracles that are secure under the CDH and the LRSW assumption. Dis-
advantageously, these schemes only allow to issue signatures on rings of maximal
size 2. This is security critical since in a ring signature scheme the provided level
of signer anonymity is primarily determined by the number of ring members.
Thus, dependent on the application and his requirements on an appropriate se-
curity level the user should decide on the size of the ring. In 2007, Shacham and
Waters presented a ring signature scheme [27] that is full key-exposure anony-
mous, a strong security notion stemming from [4], under the Subgroup Decision
assumption [5]. Unfortunately, this assumption relies on groups with composite
order such that a trusted setup procedure is necessary in the setup phase. Also,
the representation of group elements is rather large (about 1024 bits). Unforge-
ability is based on the CDH assumption and the signature size is 2n + 2 group
elements, where n is the size of the ring. In the same year, Boyen presented a
new signature scheme with perfect anonymity [7]. Unforgeability of this scheme
is based on a new complexity assumption, the Pluri-SDH assumption, while ev-
idence for its usefulness is provided by a security analysis in the generic group
model. The signature size consist of n group elements and n integers (of 160 bits)
while each public key consists of at least three group elements. Recently, Chan-
dran, Groth and Sahai proposed a new signature scheme with perfect anonymity

A CDH-Based Ring Signature Scheme 131

that is secure under the Subgroup Decision assumption and the Strong Diffie-
Hellman assumption [13]. Since the above remarks concerning the trusted setup
of [27] also hold here, the authors present two variants of their ring signature
scheme. The second variant accounts for maliciously generated common refer-
ence strings by heuristically guaranteeing (by using a factorization algorithm)
that the composite group order output by the setup algorithm is hard to factor.

Except for the schemes by Chandran et al. [13] and Dodis et al. [17] (in
the random oracle model), all existing ring signature schemes offer signature
sizes that are at least linear in the ring size. Both, [13] and [17] provide better
(asymptotic) efficiency when several messages are signed using the same ring.

1.2 Contribution

In this work we present a new ring signature scheme for rings of arbitrary size.
Anonymity is perfect, unforgeability solely relies on the CDH assumption in
bilinear groups. Security is proven in the fully untrusted common reference string
model. The signature size is very small, accounting for only n+1 group elements.
Since we use programmable hash functions [20], a drawback of our scheme is that
we require relatively large global parameters, consisting of around 160 group
elements. However, these parameters can be re-used for all instantiations of the
scheme that use the same bilinear group. Advantageously, in our ring signature
scheme, each public key consists of a single group element such that for large
groups (e.g. >1000), the public parameters only account for a small portion of
the data required for signature generation and verification. Finally we provide
a new proof technique for Waters-like signature schemes which is very clean
and compact at the same time. The main drawback of our scheme is that it only
provides security under chosen subring attacks, where the attacker is not allowed
to query secret keys of honest ring members. We stress that our ring signature
scheme is much more practical than the CDH-based scheme by Bender, Katz,
and Morselli that is also secure under the CDH assumption. First, our scheme
can be used to sign messages for rings of arbitrary length, not only for 2-user
rings. Second, in our scheme a public key contains only a single group element
whereas in the Bender et al. scheme a public key consists of a complete group
hash function.

2 Preliminaries

Before presenting our constructions we briefly review the necessary preliminaries.

2.1 Ring Signature Scheme

A ring signature scheme RSIG consists of three algorithms. Given the secu-
rity parameter 1κ, the probabilistic polynomial time (PPT) algorithm KeyGen
generates a secret and public key (SK, PK). The PPT algorithm Sign takes
as input a tuple of public keys R = (PK1, . . . , PKn), a secret key SKi with

132 S. Schäge and J. Schwenk

i ∈ {1, . . . , n} and a message m and outputs a signature σ. Finally, the de-
terministic polynomial time algorithm Verify processes R, a message m and
a signature σ to check whether σ is a legitimate signature on m signed by a
holder of a secret key corresponding to one of the public keys in R. Accordingly,
the algorithm outputs 1 to indicate a successful verification and 0 otherwise.
Note that for simplicity, we do not assume an explicit setup algorithm. In the
following, all global parameters depend on 1κ. We stress that we do not rely on
a trusted setup authority.

2.2 Ring Unforgeability

In our paper, we concentrate on unforgeability against chosen subring attacks
that is formalized in the following attack game between a challenger and an
adversary.
Setup. The challenger runs KeyGen n times to obtain the key pairs (SK1, PK1),

. . . , (SKn, PKn). Next, R = (PK1, PK2, . . . , PKn) is given to the adver-
sary.

Adaptive signature queries. The adversary adaptively sends q signature
queries to the challenger. For i ∈ {1, . . . , q}, each query Qi consists of
a message mi, a set Ri ⊆ R of public keys and an index ei ∈ {1, . . . , n}.
When the challenger receives the i’th query Qi = (mi, Ri, ei), he computes
σi = Sign(Ri, SKei , mi) and sends it to the adversary.

Output. The attacker outputs (m∗, R∗, σ∗) with m∗ /∈ {m1, . . . , mq}.1
We denote the success probability of an adversaryA (taken over the random coins
of the challenger and the adversary) to win the above game as AdvRSIG,A,unf.

Definition 1 (Ring unforgeability). We say that a ring signature scheme is
(t, ε, q)-secure, if no t-time attacker has success probability at least ε in the above
attack game after making q signature queries.

2.3 Ring Anonymity

The strongestnotion of anonymity for ring signature schemes is perfect anonymity.
Formally, we consider the following attack game between a challenger and an un-
bounded adversary.
Setup. The challenger runs KeyGen n times to obtain the key pairs (SK1, PK1),

. . . , (SKn, PKn). The set of the so computed public keys R = (PK1, PK2,

. . . , PKn) is given to the adversary.
Adaptive signature and corrupt queries. The adversary adaptively sends q

signature queries Q1, . . . Qq to the challenger and receives the correspond-
ing answers σ1, . . . , σq. At the same time, the adversary may adaptively
query up to n secret keys SKi with i ∈ {1, . . . , n}.

1 We note that a ring signature scheme which is secure under this security definition
can easily be adapted to meet the slightly stronger security notion in [4] which solely
requires (m∗, R∗) /∈ {(m1, R1), . . . , (mq, Rq)}: given message m and subring R we
simply sign m̄ = h(h(m)||h(R)) instead of m where h is a collision-resistant hash
function. For any new (m∗, R∗), m̄∗ will now be distinct from all previous values.

A CDH-Based Ring Signature Scheme 133

Output. Finally, the attacker outputs a message m∗, a set of public keys R∗ ⊆ R
and two distinct indices i0, i1 ∈ {1, . . . , n} such that PKi0 , PKi1 ∈ R∗. The
challenger randomly chooses b ∈ {0, 1}, computes σ∗=Sign(m∗, R∗, SKib

),
and sends σ∗ to the attacker. The attacker then outputs b′, indicating his
guess for b.

We denote the advantage of an adversary A (taken over the random coins of the
challenger and the adversary) to win the above game as

AdvRSIG,A,ano = |Pr[A outputs b′ = b] − Pr[A outputs b′ �= b]| .

Definition 2 (Perfect ring anonymity). We call a ring signature scheme
perfectly anonymous, if even an unbounded adversary has no advantage
(AdvRSIG,A,ano = 0) in winning the above game.

2.4 Complexity Assumptions

Definition 3 (Computational Diffie-Hellman problem). Let G be a group
of prime order. The computational Diffie-Hellman problem (CDH) in G is, given
g, ga, gb ∈ G, to compute gab ∈ G.

We say that algorithm A (t, ε)-solves the CDH problem in G when, in time t, A
has success probability at least ε in breaking the CDH problem such that

Pr
[
gab ← A (

g, ga, gb
)] ≥ ε,

where the probability is over g, a, b and the random coin tosses of A.

Definition 4. We say that the (t, ε)-CDH assumption holds, if no attacker can
(t, ε)-solve the CDH problem.

2.5 Bilinear Groups

In the following, we briefly recall some of the basic properties of bilinear groups.
Definitions 6 and 7 help to support the intuition behind our security proof. In [6],
Boneh, Mironov and Shoup use a similar approach to describe their tree-based
signature scheme. However, in contrast to [6], we focus on proving security under
the classical CDH assumption, where the challenge and the solution consist of
elements from a single group G. We therefore concentrate on symmetric bilinear
groups. We stress that, after some minor modifications, we can base our signature
schemes on asymmetric bilinear maps e : G1 × G2 → GT with an efficient
homomorphism Φ : G1 → G2. However, security is then based on the co-CDH
assumption.

Definition 5 (Bilinear group). Let G and GT be groups of prime order p.
Let g be a generator of G. The function

e : G × G → GT

134 S. Schäge and J. Schwenk

is a bilinear map (pairing) if it holds that ∀a, b ∈ G ∀x, y ∈ Z : e(ax, by) =
e(a, b)xy (bilinearity), e(g, g) �= 1GT is a generator of GT (non-degeneracy),
and e is efficiently computable (efficiency). We call (G, g, GT , p, e) a symmetric
bilinear group.

Definition 6 (Secure bilinear map). A bilinear map e : G × G → GT is
(t, ε)-secure if for all t-time adversaries A it holds that

Pr [e(g, g′) = e(h,A(g, g′, h)) | g, g′, h ∈R G, h �= 1G] ≤ ε,

where the probability is taken over the random coin tosses of A and the random
choices of g, g′, and h.

One can easily see that in symmetric bilinear groups, breaking the security of a
bilinear map is equivalent to breaking the CDH assumption.

Lemma 1. Let (G, g, GT , p, e) be a symmetric bilinear group. Then, e is (t, ε)-
secure if and only if the (t, ε)-CDH assumption holds in G.

The proof is straight-forward. For completeness, a proof of Lemma 1 can be
found in Appendix A. Let again (G, g, GT , p, e) be a bilinear group with a secure
bilinear map e.

Definition 7 (Collision generator for bilinear groups). A collision gener-
ator for e is a polynomial time algorithm that on input two elements g, h ∈ G
outputs a collision (g′, h′) ∈ G such that

e(g, g′) = e(h, h′).

For symmetric pairings there exists an efficient collision generator that can out-
put all possible collisions: given g, h randomly choose r ∈ Zp and compute
g′ = hr and h′ = gr.

2.6 Multi-generator Programmable Hash Function

In our (ring) signature schemes we use the multi-generator programmable hash
function by Hofheinz and Kiltz in groups with known prime order [20] which in
turn is based on the CDH-based signature scheme by Waters [31].

Definition 8 (Multi-Generator PHF). The multi-generator programmable
hash function consists of four algorithms.

1. Given 1κ, l = l(κ) and a group G of prime order p, GHGen returns l + 1
random group generators u0, u1, . . . , ul ∈ G.

2. Given the ui and a message m ∈ {0, 1}l, GHEval outputs

u(m) = u0

l∏
i=1

umi

i ,

where (ml, . . . , m1) is the binary representation of m: m =
∑l

i=1 mi2i−1.
The pair (GHGen,GHEval) is called a group hash function.

A CDH-Based Ring Signature Scheme 135

3. On input 1κ, l and generators g, h ∈ G, the algorithm PHTrapGen ran-
domly chooses a′

0, a1, . . . , al ∈ {−1, 0, 1} and b0, b1, . . . , bl ∈ Zp. Next, it sets
a0 = a′

0 − 1 and outputs l + 1 group elements ui = gaihbi for i = 0, 1, . . . , l
and the trapdoor (a0, a1, . . . , al, b0, b1, . . . , bl).

4. Now, given (a0, a1, . . . , al, b0, b1, . . . , bl) and a message m, the algorithm
PHTrapEval outputs a(m) = a0 +

∑l
i=1 aimi and b(m) = b0 +

∑l
i=1 bimi.

Note that when the ui have been computed by PHTrapGen it clearly holds
that u(m) = u0

∏l
i=1 umi

i = ga(m)hb(m).

Hofheinz and Kiltz showed that for every fixed polynomial q = q(κ) the multi-
generator programmable hash function is (1, q, 0, Pq,l)-programmable where

Pq,l = O
(

1
q
√

l

)
. This means, that the group elements output by GHGen and

PHTrapGen are equally distributed. Furthermore it holds for all possible input
parameters to PHTrapGen and all M1, . . . , Mq+1 ∈ {0, 1}l with Mq+1 �= Mi

for i ≤ q that

Pr[a(Mq+1) = 0 ∧ a(M1), . . . , a(Mq) �= 0] ≥ Pq,l.

The corresponding proof and further details on programmable hash functions can
be found in the original paper [20]. A similar but weaker result (Pq,l = 1

8(l+1)q)
was implicitly given by Waters in [31].

3 Efficient Ring Signature Scheme RS
In this section we present our ring signature scheme RS that allows for very
short public keys and signatures. In RS, the global parameters consist of l + 2
random elements h, u0, u1, . . . , ul ∈ G that give rise to a group hash function
u(m) = u0

∏l
j=1 u

mj

j and a symmetric bilinear group (G, g, GT , p, e) with a se-
cure bilinear map.
KeyGen(1κ). Each user i chooses a random element xi ∈ Zp as his secret key

SKi. The corresponding public key is PKi = gxi .
Sign(PK1, . . . , PKn, SKt, m). Given a ring of n public keys, the holder of secret

key SKt with t ∈ {1, . . . , n} can sign a message m ∈ {0, 1}l in the following
way: for all i ∈ {1, . . . , n + 1} \ {t} he chooses ri ∈R Zp and sets

si = gri .

Then, he computes

st =

⎛⎜⎝h ·
n∏

i=1
i�=t

PK−ri

i ·
⎛⎝u0

l∏
j=1

u
mj

j

⎞⎠−rn+1
⎞⎟⎠

1/xt

.

The final signature is σ = (s1, . . . , sn+1).

136 S. Schäge and J. Schwenk

Verify(PK1, . . . , PKn, m, σ). Given a set of n public keys, a message m, and a
ring signature σ = (s1, . . . , sn+1), verify the following equation:

n∏
i=1

e(si, PKi) · e
⎛⎝sn+1, u0

l∏
j=1

u
mj

j

⎞⎠ ?= e(g, h) .

4 Security

In this section, we show that RS provides ring unforgeability and perfect ring
anonymity according to Definition 1 and 2 (correctness can easily be verified by
inspection).

4.1 Ring Unforgeability

Theorem 1. Suppose the (tCDH, εCDH)-CDH assumption holds in the group G.
Then the ring signature scheme RS is (t, ε, q)-secure against chosen subring
attacks provided that

ε ≤ εCDH/Pq,l, t ≈ tCDH.

Proof. By contradiction. Assume there exists an adversary A that breaks the
security of the ring signature scheme in time t with probability ε after q signature
queries. Then, one can construct an algorithm B that uses A as a black box to
solve the CDH assumption. We assume that B is given a random challenge for the
CDH-problem:

(
ḡ, ḡa, ḡb

) ∈ G3. The main idea behind our proof is the following.
Recall Definition 7 and Lemma 1. Given two group elements g, h ∈ G, it is easy
to generate all pairs (g′, h′) ∈ G2 such that e(g, g′) = e(h, h′).

On the other hand, given three group elements g, g′, h, the problem of finding
a corresponding h′ is as hard as solving the CDH problem. Our aim is to transfer
this situation to the unforgeability game of our ring signature scheme: the sim-
ulator has to choose the input parameters for the attacker such that answering
signature queries is as easy as computing collisions and computing a forgery is
as hard as breaking the CDH assumption.

In the following, we provide a proof of security that proceeds in a sequence
of games [28,3]. Let Pr[Si] denote the success probability for an attacker to suc-
cessfully forge signatures in Game i.

Game0. This is the original attack game. By assumption, attacker A (t, ε, q)-
breaks RS when interacting with the challenger. We have,

Pr[S0] = ε (1)

Game1. This game is like the previous one except that B constructs the global
parameters and the secret and public keys using the algorithms of the program-
mable hash function and the CDH challenge. First, B randomly chooses: n ele-
ments xi ∈R Zp for i = 1, . . . , n, l + 1 elements a′

0, a1, . . . , al ∈R {−1, 0, 1}, and

A CDH-Based Ring Signature Scheme 137

l + 1 elements b0, b1, . . . , bl ∈R Zp. Let a0 = a′
0 − 1. Then, for all i ∈ {1, . . . , n}

and j ∈ {0, . . . , l} B computes

g := ḡa, h := ḡb, PKi := ḡxi, uj := haj ḡbj .

using the CDH challenge. Due to the properties of the multi-generator program-
mable hash function the distribution of the so computed values is equal to the
distribution in the previous game. Thus,

Pr[S1] = Pr[S0] . (2)

Game2. Now, B simulates the challenger in the attack game by answering A’s
signature queries (mj , Rj , ej). For convenience, let a(m) = a0 +

∑l
i=1 aimi and

b(m) = b0+
∑l

i=1 bimi. Let I[j] ⊂ {1, . . . , n} be the set of all indices i ∈ {1, . . . , n}
such that PKi is a component of Rj . When receiving a signature query, B at first
tests whether a(mj) = 0. In this case, B outputs the failure signal F1 and aborts.
Otherwise B chooses r ∈R Zp and computes a collision (dḡ , dh) as dḡ = hr and
dh = ḡr. Note that by construction e(dḡ, ḡ) = e(dh, h).

The aim of B is to compute sn+1 ∈ G and |I[j]| values si ∈ G (for all i ∈ I[j])
such that ∏

i∈I[j]

e(si, PKi) · e(sn+1, u(mj)) = e(g, h)

or equivalently

e

⎛⎝s
b(mj)
n+1 ·

∏
i∈I[j]

sxi

i , ḡ

⎞⎠ = e
(
gs

−a(mj)
n+1 , h

)
.

In the next step, B chooses y ∈R I[j] and for all i ∈ I[j] \ {y} si ∈R G. The
values sy and sn+1 are computed in the following way:

sn+1 =
(
gd−1

h

)1/a(mj)
, sy =

⎛⎝dḡ · s−b(mj)
n+1 ·

∏
i∈I[j]\{y}

s−xi

i

⎞⎠1/xy

.

B outputs the ring signature σ = (s1, s2, . . . , sn, sn+1). The probability for B to
win this game is

Pr[S2] = Pr[S1 ∧ F̄1] . (3)

Game3. In this game B uses A’s forgery (m∗, R∗, σ∗ = (s∗1, s
∗
2, . . . , s

∗
n+1)) to

break the CDH assumption. Adversary B at first checks whether a(m∗) = 0. If
not, B outputs the failure signal F2 and aborts. We get that

Pr[S3] = Pr[S2 ∧ F̄2] . (4)

Otherwise, B computes the solution to the CDH problem as follows. Since
a(m∗) = 0, we get that

138 S. Schäge and J. Schwenk

e

⎛⎝(s∗n+1)
b(m∗) ·

∏
i∈I[∗]

(s∗i)
xi , ḡ

⎞⎠ = e(g, h) ⇔ ḡab = (s∗n+1)
b(m∗) ·

∏
i∈I[∗]

(s∗i)
xi

what constitutes a solution to the CDH challenge.
We finally have

Pr[S3] = εCDH . (5)

Now, let us analyze the probabilities for an abort, i.e. for one of the events F1 or
F2 to occur. Surely, the probability that both failure events do not occur depends
on the number of signature queries q and the bit size l of the messages. Since,
u(m) is generated by the multi-generator programmable hash function as defined
in Sect. 2.6, we can directly apply the results from [20] to show that

Pr[F̄1 ∧ F̄2] ≥ Pq,l .

Putting (1-5) together, we get that

εCDH = Pr[S0 ∧ F̄1 ∧ F̄2] = Pr[S0|F̄1 ∧ F̄2] · Pr[F̄1 ∧ F̄2] ≥ ε · Pq,l

which proves Theorem 1.

4.2 Ring Anonymity

Theorem 2. The ring signature scheme RS is perfectly secure.

We give an information theoretic argument. Given a ring signature, we have
to show that each ring member could possibly have created it. Consider a ring
signature on message m, that has been created using SKz. We show that with
the same probability it could have been created using SKy with y �= z. The
proof is straight-forward.

Proof. Fix an arbitrary ring R of n public keys and choose two indices y, z ∈R

{1, . . . , n}. Next, fix a random m ∈ {0, 1}l and n − 1 random values ri with
i ∈ {1, . . . , n + 1} \ {y, z}. We show that for any ry there exists an rz such that
the final signatures generated by Sign with either (ry , SKz) or (rz , SKy) are
equal. Since G is a cyclic group with prime order p, there exists t ∈ Zp and
b(M) = b0 +

∑l
i=1 Mibi with bi ∈ Zp such that h = gt and u(M) = gb(M) for all

M ∈ {1, . . . , n}.
Let the ring signature consist of all si = gri with i ∈ {1, . . . , n} \ {y, z}. Then,
the remaining sy, sz are computed using SKz and the Sign algorithm as

sy = gry , sz =

⎛⎜⎝h ·
n∏

i=1
i�=z

PK−ri

i ·
⎛⎝u0

l∏
j=1

u
mj

j

⎞⎠−rn+1
⎞⎟⎠

1/xz

.

A CDH-Based Ring Signature Scheme 139

Now, let rz =
t−∑n

i=1,i�=z rixi−rn+1b(m)
xz

. Using SKy we get sz = grz and

sy =

⎛⎜⎝h ·
n∏

i=1
i�=y

PK−ri

i ·
⎛⎝u0

l∏
j=1

u
mj

j

⎞⎠−rn+1
⎞⎟⎠

1/xy

= gry

with ry =
t−∑n

i=1,i�=y rixi−rn+1b(m)
xy

what concludes the proof of Theorem 2.

4.3 Digital Signature Schemes

Our new proof technique can also be applied to other CDH based signature
schemes. For example, we can surprisingly easy obtain as a special case (n = 1)
of our ring signature scheme a variant S of the Waters signature scheme that has
distinct setup and sign algorithms but the same verification equation. We briefly
compare it with the original scheme by Waters in Table 1. For completeness,
we also describe a third variant S0 where the group hash function constitutes
the public key of the user. Both schemes can easily be proven secure under
the standard notion of security for digital signatures by Goldwasser, Micali and
Rivest [18] by adapting the proof of Theorem 1.

Table 1. Comparison of the Waters signature scheme and S and S0. Unless not stated
otherwise, all values are elements of G. We set u(m) = u0

∏l
i=1 umi

i and x(m) =
x0 +

∑l
i=1 ximi.

Waters [31] S S0

publ. params. g0, h, u0, . . . , ul g, h, u0, . . . , ul g0, g, h

SK hx x ∈ Zp x0, . . . , xl ∈ Zp

PK g = gx
0 g0 = gx u0 = gx0 , . . . , ul = gxl

s1 hx · (u(m))r (h · (u(m))r)
1
x g−r

s2 g−r
0 g−r (hgr

0)
1

x(m)

verification e(s1, g0) · e(s2, u(m)) ?= e(g, h)

5 Conclusion

In this work, we presented an efficient and perfectly anonymous ring signature
scheme that is secure under chosen subring attacks in symmetric bilinear groups
with a secure bilinear map. Additionally, we developed a new technique for prov-
ing Waters-like signature schemes secure that uses (1, poly)-programmable hash
functions and results in very clean and compact security proofs. In our ring
signature scheme, each public key consists of a single group element, while the
signature size only accounts for n + 1 group elements, where n is the size of the
ring. When compared to all other ring signature schemes that are proven secure
in the standard model and do not assume ring re-use, this is extremely efficient.

140 S. Schäge and J. Schwenk

Finally, we stress that using the generic transformation by Huang, Wong and
Zhao [21] all presented schemes can be made strongly unforgeable, meaning that
we also consider new signatures on previously queried messages as forgeries in
the attack game. The overhead of this transformation is very small; the signature
is extended by just a public key and an one-time signature, while no additional
key material is required.

Acknowledgements. We would like to thank Tibor Jager and Maike Ritzen-
hofen for helpful comments on earlier versions of this work.

References

1. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

3. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay (ed.) [29], pp. 409–426

4. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Halevi, Rabin (eds.) [19], pp. 60–79

5. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

6. Boneh, D., Mironov, I., Shoup, V.: A secure signature scheme from bilinear maps.
In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 98–110. Springer, Heidelberg
(2003)

7. Boyen, X.: Mesh signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 210–227. Springer, Heidelberg (2007)

8. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Atluri,
V., Pfitzmann, B., McDaniel, P.D. (eds.) ACM Conference on Computer and Com-
munications Security, pp. 132–145. ACM, New York (2004)

9. Camenisch, J., Van Herreweghen, E.: Design and implementation of the demix
anonymous credential system. In: Atluri, V. (ed.) ACM Conference on Computer
and Communications Security, pp. 21–30. ACM, New York (2002)

10. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

11. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M.K. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

12. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology. In: STOC,
pp. 209–218 (1998), revisited (preliminary version)

13. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007)

A CDH-Based Ring Signature Scheme 141

14. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

15. Chow, S.S.M., Wei, V.K.-W., Liu, J.K., Yuen, T.H.: Ring signatures without ran-
dom oracles. In: Lin, F.-C., Lee, D.-T., Lin, B.-S., Shieh, S., Jajodia, S. (eds.)
ASIACCS, pp. 297–302. ACM, New York (2006)

16. Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner (ed.) [30], pp. 1–20

17. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad
hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

18. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

19. Halevi, S., Rabin, T. (eds.): TCC 2006. LNCS, vol. 3876. Springer, Heidelberg
(2006)

20. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner (ed.) [30], pp. 21–38

21. Huang, Q., Wong, D.S., Zhao, Y.: Generic transformation to strongly unforgeable
signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 1–17.
Springer, Heidelberg (2007)

22. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their appli-
cations. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154.
Springer, Heidelberg (1996)

23. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay (ed.) [29],
pp. 465–485

24. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: Halevi, Rabin (eds.) [19], pp. 80–99

25. Persiano, G., Visconti, I.: An efficient and usable multi-show non-transferable
anonymous credential system. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp.
196–211. Springer, Heidelberg (2004)

26. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

27. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer,
Heidelberg (2007)

28. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs,
November 30 (2004) (manuscript); Revised ersion from January 18 (2006/2004)

29. Vaudenay, S. (ed.): EUROCRYPT 2006. LNCS, vol. 4004. Springer, Heidelberg
(2006)

30. Wagner, D. (ed.): CRYPTO 2008. LNCS, vol. 5157. Springer, Heidelberg (2008)
31. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,

R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

142 S. Schäge and J. Schwenk

A Proof of Lemma 1

Proof. By contradiction. Let (G, g, GT , p, e) be our bilinear group. First, assume
attacker A can break the security of the bilinear map in time t with advantage
at least ε. Then, algorithm B can solve the CDH assumption in G in time t with
advantage ε by using A as a black-box. Let ḡ, ḡa, ḡb be B’s CDH challenge in
group G. B sets g̃ = ḡa, g̃′ = ḡb, and h̃ = ḡ and runs attacker A on (g̃, g̃′, h̃). As
a result, A outputs h̃′ such that e(g̃, g̃′) = e(h̃, h̃′). Since equivalently e(ḡa, ḡb) =
e(ḡ, h̃′), h̃′ is a solution to the CDH problem.

Now, assume adversaryA (t, ε)-breaks the CDH assumption in G. Let g̃, g̃′, h̃ ∈
G, h̃ �= 1G be B’s challenge against the security of the bilinear map. Since h̃ is
a generator, there exist a, b ∈ Zp such that h̃a = g̃, and h̃b = g̃′. B runs A on
h̃, g̃, g̃′. Because A outputs h̃ab, we have that e(g̃, g̃′) = e(h̃, h̃ab), and thus A’s
output is a correct solution to B’s challenge.

Practical Private Set Intersection Protocols
with Linear Complexity

Emiliano De Cristofaro and Gene Tsudik

University of California, Irvine�

Abstract. The constantly increasing dependence on anytime-anywhere avail-
ability of data and the commensurately increasing fear of losing privacy motivate
the need for privacy-preserving techniques. One interesting and common prob-
lem occurs when two parties need to privately compute an intersection of their
respective sets of data. In doing so, one or both parties must obtain the intersec-
tion (if one exists), while neither should learn anything about other set elements.
Although prior work has yielded a number of effective and elegant Private Set
Intersection (PSI) techniques, the quest for efficiency is still underway. This pa-
per explores some PSI variations and constructs several secure protocols that are
appreciably more efficient than the state-of-the-art.

1 Introduction

In today’s increasingly electronic world, privacy is an elusive and precious commodity.
There are many realistic modern scenarios where private data must be shared among
mutually suspicious entities. Consider the following examples:

1. A government agency needs to make sure that employees of its industrial contrac-
tor have no criminal records. Neither the agency nor the contractor are willing to
disclose their respective data-sets (list of convicted felons and employees, respec-
tively) but both would like to know the intersection, if any.

2. Two national law enforcement bodies (e.g., USA’s FBI and UK’s MI5) want to
compare their respective databases of terrorist suspects. National privacy laws pre-
vent them from revealing bulk data, however, by treaty, they are allowed to share
information on suspects of common interest.

3. Two real estate companies would like to identify customers (e.g., homeowners)
who are double-dealing, i.e., have signed exclusive contracts with both companies
to assist them in selling their houses.

4. Federal tax authority wants to learn whether any suspected tax evaders have any
accounts with a certain foreign bank and, if so, obtain their account records and
details. The bank’s domicile forbids wholesale disclosure of account holders and
the tax authority clearly can not reveal its list of suspects.

5. Department of homeland security (DHS) wants to check its list of terrorist suspects
against the passenger manifest of a flight operated by a foreign air carrier. Nei-
ther party is willing to reveal its information, however, if there is a (non-empty)
intersection, DHS will not give the flight permission to land.

� This research was supported by the U.S. Intelligence Advanced Research Projects Activity
(IARPA) under grant #: FA8750-09-2-0071.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 143–159, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

144 E. De Cristofaro and G. Tsudik

Such scenarios provide with interesting examples that motivate the need for privacy-
preserving set operations, in particular, set intersection protocols. Such protocols are
especially useful whenever one or both parties who do not fully trust each other must
compute an intersection of their respective sets (or some function thereof). As discussed
in Section 4 below, prior work has yielded a number of interesting techniques. As usu-
ally happens in applied cryptography, the next step (and the current quest) is to improve
efficiency. To this end, this paper’s main goal is to consider several flavors of Private
Set Intersection (PSI) and construct provably secure protocols that are more efficient
than the state-of-the-art.

2 PSI Flavors

Generally speaking, Private Set Intersection (PSI) is a cryptographic protocol that
involves two players, Alice and Bob, each with a private set. Their goal is to compute
the intersection of their respective sets, such that minimal information is revealed in
the process. In other words, Alice and Bob should learn the elements (if any) common
to both sets and nothing (or as little as possible) else. This can be a mutual process
where, ideally, neither party has any advantage over the other. Examples 1-3 above
require mutual PSI. In a one-way version of PSI, Alice learns the intersection the two
sets, however, Bob learns (close to) nothing. Examples 4 and 5 correspond to one-way
PSI.

Since mutual PSI can be easily obtained by two instantiations of one-way PSI (as-
suming that no player aborts the protocol prematurely), in the remainder of this paper
we focus on the latter. Hereafter, the term PSI denotes the one-way version and, instead
of proverbial Alice and Bob, we use client (C, i.e., the entity receiving the intersection)
and server (S) to refer to the protocol participants.

One natural extension is what we call PSI with Data Transfer or PSI-DT. In this
setting, one or both parties have data associated with each element in the set e.g., a
database record. In PSI-DT, data associated with each element in the intersection must
be transferred to one or both parties, depending whether mutual or one-way version of
PSI is used. Example 4 corresponds to PSI-DT. It is also easy to see that PSI-DT is
quite appealing in terms of actual database (rather than plain set) applications.

Another twist on PSI is the authorized version – APSI – where each element in
the client set must be authorized (signed) by some recognized and mutually trusted
authority. This requirement could be applicable to Examples 2 and 4. In the former,
one or both agencies might want to make sure that names of terrorist suspects held
by its counterpart are duly authorized by the country’s top judiciary. In example 4,
the bank could demand that each suspected tax cheat be pre-vetted by some interna-
tional body, e.g., Interpol. In general, the main difference between PSI and APSI is
that, in the former, the inputs of one or both parties might be arbitrarily chosen, i.e.,
frivolous.

Clearly, other more interesting or more exotic variations are possible, e.g., the notion
of group PSI with its many types of possible outputs. However, we limit the scope of
this paper to the PSI flavors described above.

Practical Private Set Intersection Protocols with Linear Complexity 145

3 Roadmap

In contrast to prior work, we do not start with constructing PSI protocols and piling
on extra features later. Instead, somewhat counter-intuitively, we begin with prior work
on a specific type of protocols – called Privacy-preserving Policy-based Information
Transfer (PPIT) – that provide APSI-DT (one-way authorized private set intersection
with data transfer) for the case where one party has a set of size one. PPIT matches a
typical database query scenario where client has a single keyword or a record identifier
and server has a database.

We start by seeing how some previously-proposed PPIT protocols can be trivially
extended into inefficient PSI and APSI protocols, with and without data transfer. We
then construct several efficient (and less trivial) provably secure PSI and APSI proto-
cols that incur linear computation and communication overhead. Concretely, this work
makes several contributions:

1. We evaluate and compare existing PSI and APSI protocols in terms of efficiency
(computation and communication overhead), security model (random oracle vs
standard) and adversary type (honest-but-curious vs malicious).

2. We investigate whether APSI protocols can yield (efficient) PSI counterparts.
3. We present an APSI protocol and its PSI more efficient than prior work.
4. We construct another PSI protocol geared for scenarios where the server can per-

form some pre-computation and/or the client is computationally weak.

4 Prior Work

This section overviews relevant prior results, which fall into several categories: (1) PSI
protocols, (2) OPRF constructs, and (3) APSI variations. Also, we note that most PSI
variations can be realized via general secure multi-party techniques. However, it is usu-
ally far more efficient to have dedicated protocols; which is the direction we pursue in
this paper.

PSI Protocols. The work by Freedman, et Al. (FNP) [15] addressed the problem of
private set intersection by means of Oblivious Polynomial Evaluation (OPE). In [15],
the idea is to represent of a set as a polynomial, and the elements of the set as its roots.
Specifically, a client C represents elements in its private set, C = (c1, · · · , cv), as the
roots of a v-degree polynomial over a ring R, i.e. f =

∏v
i=1(t − ci) =

∑k
i=0 αit

i.
Then, assuming pkC to be C’s public key of any additively homomorphic cryptosystem
(such as Paillier [22]), C encrypts the coefficients with pkC , and sends them to server
S. S’s private set is denoted with S = (s1, · · · , sw). S evaluates f at each sj ∈ S
homomorphically. Note that f(sj) = 0 if and only if sj ∈ C ∩ S. Hence S, for each
sj ∈ S = (s1, · · · , sw) returns uj = E(rjf(sj) + sj) to C (where rj is chosen at
random). If sj ∈ C ∩ S then C learns sj upon decrypting. If sj /∈ C ∩ S then uj

decrypts to a random value. Therefore, the number of server’s operations is related to
the evaluation of client’s encrypted polynomial, with v coefficients, on w points in S.
Using Horner’s rule (and assuming Paillier encryption) this would take O(vw) of m-bit
mod 2048-bit exponentiations, where m is the number of bits needed for representing

146 E. De Cristofaro and G. Tsudik

each entry. On the other hand, the number of client operations is O(v + w), i.e., 1024-
bit exponentiations mod 2048 bits. However, certain optimizations can be applied to
reduce the total number of server’s exponentiations to O(w log(log(v))). Such protocol
is proved secure against an Honest-but-Curious (HbC) adversary in the standard model,
and can be extended for malicious adversaries in the Random Oracle Model (ROM),
with an increased cost.

Subsequently, the work by Kissner and Song (KS) [20] has proposed OPE-based
protocols that apply to several set operations (e.g., union, intersection, etc.) and may
involve more than two players. [20] contributes constructions secure in the standard
model against HbC (with similar complexity to [15]) and also malicious adversaries.
The latter incurs into quadratic computation overhead, i.e., O(wv), and involves expen-
sive zero-knowledge proofs, whereas a more efficient construction has been recently
proposed by [9], specifically to O(wk2 log2(v)) communication and to O(wvk log(v)+
wk2 log2(v)) computation complexity—being k the security parameter.

Protocols based on Oblivious Pseudo Random Functions. Other constructs rely on
so-called Oblivious Pseudo-Random Functions (OPRFs), introduced in [14]. An OPRF
is a two-party protocol (between a sender and a receiver) that securely computes a
pseudorandom function fk(·) on key k contributed by the sender and input x contributed
by the receiver, such that the former learns nothing from the interaction and the latter
learns only the value fk(x).

OPRF-based PSI protocols work as follows: Server S holds a secret random key k.
For each sj ∈ S (of size w), S precomputes uj = fk(sj), and publishes (sends to
client) the set U = {u1, · · · , uw}. Then, C and S engage in an OPRF computation of
fk(ci) for each ci ∈ C (of size v), such that S learns nothing about C (except the size)
and C learns fk(ci). Finally, C learns that ci ∈ C ∩ S if and only if fk(ci) ∈ U .

The idea of using OPRFs for PSI protocols is due to Hazay and Lindell [16]. Their
protocol is secure in the standard model in the presence of a malicious server and an
HbC client. It has been since improved by Jarecki and Liu [18], who proposed a pro-
tocol secure in the standard model against both malicious parties, based on the Deci-
sional q-Diffie-Hellman Inversion assumption, in the Common Reference String (CRS)
model, where a safe RSA modulus must be pre-generated by a trusted party. Encryp-
tion operations are performed using an additively homomorphic encryption scheme,
such as the one presented by Camenisch and Shoup, CS for short [7]. As pointed out
in [18], such solution can be further optimized, inspiring to the concurrent work by Be-
lenkiy, et Al. [1]. In fact, the OPRF construction could work on groups with a 160-bit
prime order unrelated to the RSA modulus, instead of the more expensive composite
order groups. Assuming such improved construction, [18] incurs in the following com-
putational complexity. The server S needs to perform O(w) PRF evaluations with w
inputs, more precisely O(w) modular exponentiations of m-bit exponents (where m is
the number of bits needed to represent each entry) mod n2 (e.g., 2048 bits). Moreover,
the client C needs to compute O(v) CS encryptions (i.e., O(v) m-bit exponentiations
mod 2048 bits, plus O(v) 1024-bit exponentiations mod 1024 bits). Whereas, S com-
putes (online) O(v) CS decryptions, (i.e., O(v) 1024-bit exponentiations mod 2048
bits). As discussed in [18], complexity in the malicious model grows by a factor of 2.

Practical Private Set Intersection Protocols with Linear Complexity 147

Finally, the work-in-progress in [19] leverages an idea similar to the OPRF, namely
the Unpredictable Function (UPF) fk(x) = (H(x))k in the Random Oracle Model.
Authors construct a two-party computation of this function, with a server S contribut-
ing the key k and a client C the argument x: C picks a random exponent α and sends
y = (H(x))α to S, that replies with z = yk, so that C recovers fk(x) = z1/α. Note
that random exponents, given that the hash functions are carefully chosen, can be taken
from a subgroup (e.g., they can be 160-bits long). Similarly to OPRF-based solutions,
the UPF can then be used to implement the secure computation of Adaptive Set In-
tersection, under the One-More-Gap-DH assumption in ROM [2]. We remark that this
solution is similar to the ones given before by [17] and [13]. However, in such works, se-
curity is only superficially analyzed and no proof is provided, whereas [19] provides se-
curity also against malicious players. The computational complexity of the UPF-based
PSI (in presence of honest-but-curious adversaries) amounts to O(w + v) (resp. O(v))
exponentiations with short exponents (e.g., 160-bit mod 1024-bit).

APSI Protocols. We now briefly review related work in Authorized Private Set Inter-
section protocols. Recently, a new PSI-related concept was introduced, called Privacy-
preserving Policy-based Information Transfer (PPIT) [11]. It is targeted for scenarios
where a client holding an authorization (i.e., a signature by a trusted authority) on some
identifier needs to retrieve information matching that identifier from a server, such that:
(1) the client only gets the information it is entitled to, and (2) the server knows that
the client is duly authorized to obtain information but does not learn what informa-
tion is retrieved. Besides requiring the client to be authorized, PPIT is focused on the
situation where the client holds a single identifier, i..e, PPIT offers APSI where Al-
ice (client) has a set of size one. [11] gives three PPIT protocols, based respectively
on: RSA [23], Schnorr [24], and Identity-based Encryption (IBE) [4]. In this paper, we
only discuss RSA-PPIT since it serves as a starting point for the work in this paper.
In RSA-PPIT, client’s authorizations are essentially RSA signatures on a set of record
identifiers. As shown in [11], it is easy to extend PPIT to support the case of the client
holding multiple authorizations and thus obtain a full-blown APSI protocol. The result
is also secure in ROM for honest-but-curious parties. However, the complexity (both
communication and computation) becomes quadratic. We will review such construc-
tion in Section 5.3.

Another recent result [6] has addressed a problem similar to PPIT, by means of an
IBE-based technique inspired by Public-Key Encryption with Keyword Search (PEKS)
[3]. It enhances PEKS by introducing a Committed Blind Anonymous IBE scheme. With
such a scheme, the client privately obtains trapdoors from the CA, hence not revealing
anything about its inputs to the CA (unlike PPIT). Nevertheless, the client commits
to the inputs, so that the CA can later ask the client to prove statements on them. Al-
though this scheme does not require the Random Oracle Model, its efficiency is much
lower than PPIT. First, whereas IBE-PPIT uses Boneh-Franklin IBE [4], the underlying
IBE scheme is a modification of Boyen-Waters (BW) IBE [5] which is less time and
space efficient. The server has to compute O(w) (BW) encryptions (each requiring 6
exponentiations and a representation of 6 group elements). Furthermore, the client has
to test each O(w) PEKS against its O(v) trapdoors, hence performing O(vw) (BW)
decryptions (each requiring 5 bilinear map operations).

148 E. De Cristofaro and G. Tsudik

Finally, Camenisch and Zaverucha [8] have introduced the notion of Certified Sets to
the private set intersection problem. This allows a trusted third party to ensure that all
protocol inputs are valid and bound to each protocol participant. The proposed proto-
col builds upon oblivious polynomial evaluation and achieves asymptotic computation
(quadratic) and communication overhead similar to that of FNP [15] and KS [20].

5 Towards Efficient PSI and APSI Protocols

In this section, we explore the design of efficient PSI and APSI. Before proceeding to
the actual protocols, we provide some definitions and assumptions.

5.1 Preliminaries

Recall that PSI involves two parties: client and server.

Definition 1. PSI consists of two algorithms: {Setup, Interaction}. Setup: a pro-
cess wherein all global/public parameters are selected. Interaction: a protocol be-
tween client and server that results in the client obtaining the intersection of two sets.

APSI involves three parties: client, server and (off-line) CA.

Definition 2. APSI is a tuple of three algorithms: {Setup, Authorize, Interaction}.
Setup: a process wherein all global/public parameters are selected. Authorize : a
protocol between client and CA resulting in client committing to its input set and CA
issuing authorizations (signatures), one for each element of the set. Interaction: a
protocol between client and server that results in the client obtaining the intersection
of two sets.

The following assumptions are made throughout. In APSI, we assume that CA does
not behave maliciously. Also, server is honest-but-curious, however, client might not
have authorizations for all elements in its set. Finally, in PSI we assume that both
client and server are honest-but-curious, leaving modified constructions and proofs in
the malicious model as part of future work.

5.2 Security Properties

We now informally describe security requirements for PSI and APSI.
Correctness. A PSI scheme is correct if, at the end of Interaction, client outputs the
exact (possibly empty) intersection of the two respective sets.
Server Privacy. Informally, a PSI scheme is server-private if the client learns no infor-
mation (except the upper bound on size) about the subset of elements on the server that
are NOT in the intersection of their respective sets.
Client Privacy. Informally, client privacy (in either PSI or APSI) means that no in-
formation is leaked about client’s set elements to a malicious server, except the upper
bound on the client’s set size.
Client Unlinkability (optional). Informally, client unlinkability means that a malicious
server cannot tell if any two instances of Interaction are related, i.e., executed on the
same inputs by the client.

Practical Private Set Intersection Protocols with Linear Complexity 149

Table 1. Notation

a ← A variable a is chosen uniformly at random from set A
τ security parameter

n, e, d RSA modulus, public and private exponents
g group generator; exact group depends on context

p, q large primes, where q = k(p − 1) for some integer k
H() full-domain hash function

H′() regular cryptographic hash function: H′ : {0, 1}∗ → {0, 1}τ

C,S client’s and server’s sets, respectively
v, w sizes of C and S, respectively

i ∈ [1, v], j ∈ [1, w] indices of elements of C and S, respectively
ci, sj i-th and j-th elements of C and S, respectively

hci, hsj H(ci) and H(sj), respectively
Rc:i, Rs:j i-th and j-th random value generated by client and server, respectively

Server Unlinkability (optional). Informally, server unlinkability means that a mali-
cious client cannot tell if any two instances of Interaction are related, i.e., executed
on the same inputs by the server.
For APSI, the Correctness and Server Privacy requirements are amended as follows:
Correctness (APSI). An APSI scheme is correct if, at the end of Interaction, client
outputs the exact (possibly empty) intersection of the two respective sets and each ele-
ment in that intersection has been previously authorized by CA via Authorize.
Server Privacy (APSI). Informally, an APSI scheme is server-private if the client
learns no information (except the upper bound on size) about the subset of elements
on the server that are NOT in the intersection of their respective sets (where client’s set
contains only authorizations obtained via Authorize).

5.3 Baseline: APSI from RSA-PPIT

The starting point for our design is an APSI protocol derived from RSA-PPIT [11].
This protocol is only sketched out in [11]; since our new protocols are loosely based
on it, we specify it in Fig.1. Actually, the protocol in [11] is APSI-DT; however, for
ease of illustration we omit the data transfer component at this point. Also, all PSI
and APSI protocols in this paper include only the Interaction component; Setup and
Authorize (if applicable) are both intuitive and trivial. Our notation is reflected in Table
1. It is easy to see that this protocol is correct, since: for any (σi, ci) held by the client
and sj held by the server, if: (1) σi is a genuine CA’s signature on ci, and (2) ci = sj

(hence, hci = hsj):

Kc:i = (Z)Rc:i = geRs· Rc:i

Ks:i,j = (μi)
eRs · (hsj)

−2Rs = (σ2
i · gRc:i)eRs · (hsj)

−2Rs =

= ((hci)
d2 · g

Rc:i)eRs · (hsj)
−2Rs = hc

2Rs
i · g

eRs· Rc:i · hs
−2Rs
j = g

eRs· Rc:i

We point out that the protocol in Fig.1 incurs in quadratic computation overhead by the
server and quadratic communication.

It is possible to reduce the number of on-line exponentiations on the server to O(v)
by precomputing all values (hsj)−2Rs in Step 3. Nonetheless, the number of multipli-
cations needed to compute all Ks:i,j would still remain quadratic, i.e., O(vw), as would
the communication overhead.

150 E. De Cristofaro and G. Tsudik

– Common input: n, g, e, H(), H ′()
– Client’s input: C = {σ1, · · · , σv}, where: σi = (hci)d mod n, and hci = H(ci)
– Server’s input: S = {hs1, · · · , hsw}, where: hsj = H(sJ)

1. Client:
– ∀i, Rc:i ← Zn/4,
– ∀i, μi = σ2

i · gRc:i mod n

2. Client � Server: {μ1, .., μv}
3. Server:

– Rs ← Zn/4 and Z = geRs mod n
– ∀i,∀j, compute: Ks:i,j = (μi)eRs · (hsj)−2Rs mod n, and ti,j = H ′(Ks:i,j)

4. Server � Client: Z, {t1,1, .., tv,w}
5. Client:

– ∀i, Kc:i = (Z)Rc:i mod n, and t′i = H ′(Kc:i)
– OUTPUT: {t′1, .., t′v} ∩ {t1,1, .., tv,w}

Fig. 1. APSI Protocol derived from RSA-PPIT

5.4 APSI with Linear Costs

Although the trivial realization of APSI obtained from RSA-PPIT is relatively ineffi-
cient, we now show how to use it to derive an efficient protocol, shown in Fig.2.

– Common input: n, g, e, H(), H ′()
– Client’s input: C = {σ1, · · · , σv}, where: σi = (hci)d mod n, and hci = H(ci)
– Server’s input: S = {hs1, · · · , hsw}, where: hsj = H(sj)

1. Client:
– PCH =

∏v
i=1 hci and PCH∗ =

∏v
i=1(σi) =

∏v
i=1(hci

d)
– Rc ← Z∗

n and X = PCH∗ · gRc

– ∀i, PCH∗
i = PCH∗/σi, and Rc:i ← Z∗

n, yi = PCH∗
i · gRc:i

2. Client � Server: X, {y1, .., yv}
3. Server:

– Rs ← Z∗
n and Z = geRs mod n

– ∀ j, compute: Ks:j = (Xe/hsj)Rs , and tj = H ′(Ks:j)
– ∀ i, compute: y′

i = (yi)eRs

4. Server � Client: Z, {y′
1, ..., y

′
v}, {t1, .., tw}

5. Client:
– ∀i, Kc:i = y′

i · ZRc · Z−Rc:i , and t′i = H ′(Kc:i)
– OUTPUT: {t′1, .., t′v} ∩ {t1, .., tw}

Fig. 2. APSI Protocol with linear complexity

This protocol incurs linear computation (for both parties) and communication com-
plexity. Specifically, the client performs O(v) exponentiations and the server – O(v +
w). Communication is dominated by server’s reply in Step 4 – O(v + w). To see that

Practical Private Set Intersection Protocols with Linear Complexity 151

the protocol is correct, observe that, for any (σi, ci) held by the client and sj held by the
server, if: (1) σi is a genuine CA’s signature on ci, and (2) ci = sj , hence, hci = hsj :

Kc:i = y′
i · ZRc · Z−Rc:i = (PCH∗

i)eRs · gRc:ieRs · geRsRc · g−eRsRc:i =

= (PCHi)
Rs · geRcRs = (PCHi)

Rs · geRcRs

Ks:j = (Xe
/hsj)

Rs = [(PCH
∗ · g

Rc)e
/hsj]

Rs =

= (PCH/hsj · geRc)Rs = (PCHi)
Rs · geRcRs

Note that: (PCH∗)e =
∏v

i=1(σ
e
i) = PCH and: (PCH∗

i)e = PCHi

We claim that the APSI Protocol in Fig. 2 is a: (1) Server-Private (APSI), (2) Client-
Private, (3) Client-Unlinkable, and (4) Server-Unlinkable APSI. (See Appendix B).

5.5 Deriving Efficient PSI

We now convert the above APSI protocol into a PSI variant, shown in Fig.3. In do-
ing so, the main change is the obviated need for the RSA setting. Instead, the protocol
operates in Zp where p is a large prime and q is a large divisor of p − 1. This change
makes the protocol more efficient, especially, because of smaller (|q|-size) exponents.
Nonetheless, the basic complexity remains the same: linear communication overhead –
O(v + w), and linear computation – O(v + w) for the server and O(v) for the client.
However, we note that, in Step 3b, the server can precompute all values of the form:
(hsj)−Rs . Thus, the cost of computing all Ks:j values can be reduced to O(w) mul-
tiplications (from O(w) exponentiations). In fact, the same optimization applies to the
protocol in Fig.2. Correctness of the protocol is self-evident, since its essential opera-
tion is very similar to that of the APSI variant.

– Common input: p, q, g, H(),H ′()
– Client’s input: C = {hc1, · · · , hcv}, where: hci = H(ci)
– Server’s input: S = {hs1, · · · , hsw}, where: hsj = H(sj)

1. Client:
– PCH =

∏v
i=1 hci

– Rc ← Zq and X = PCH · gRc

– ∀i, PCHi = PCH/hci, and Rc:i ← Zq, yi = PCHi · gRc:i

2. Client � Server: X, {y1, .., yv}
3. Server:

– Rs ← Zq and Z = gRs

– ∀ j, compute: Ks:j = (X/hsj)Rs , and tj = H ′(Ks:j)
– ∀ i, compute: y′

i = (yi)Rs

4. Server � Client: Z, {y′
1, ..., y

′
v}, {t1, .., tw}

5. Client:
– ∀i, Kc:i = y′

i · ZRc · Z−Rc:i , and t′i = H ′(Kc:i)
– OUTPUT: {t′1, .., t′v} ∩ {t1, .., tw}

Fig. 3. PSI Protocol with linear complexity

152 E. De Cristofaro and G. Tsudik

We defer formal proofs for the above PSI protocol to extended version of the pa-
per [12]. Proofs basically mirror the proofs of the protocol constructed in the next sec-
tion (see Appendix C). Simulations of the two schemes follow the same approach, ex-
cept that, while proofs in Appendix C rely on the One-More-RSA assumption, privacy
of protocol in Fig. 3 is based on the One-More-Gap-DH assumption. With the exception
of authorization, security and privacy features of this protocol are the same as that of its
APSI counterpart described above.

Note that the our work-in-progress proofs against fully malicious players for pro-
tocols in Figures 2 and 3 seem to depend on the product of hashes, i.e., the PCH
structure. However, for HbC adversaries these protocols can be described in a simpli-
fied version reported in Appendix D, for the sake of completeness. We present only the
PSI version, since the description of its APSI counterpart is straightforward.

5.6 More Efficient PSI

Although efficient in principle, the PSI protocol in Fig.3 is sub-optimal for application
scenarios where the client is a resource-poor device, e.g., a PDA or a cell-phone. In
other words, O(v) exponentiations might still represent a fairly heavy burden. Also, if
the server’s set is very large, overhead incurred by O(w) modular multiplications might
be substantial.

To this end, we present an even more efficient PSI protocol (see Fig. 4) where the
client does not perform any modular exponentiations on-line. Instead, it only needs
O(v) on-line modular multiplications (Step 7). Also, server’s on-line computation over-
head is reduced to O(v) exponentiations in Step 5. Server precomputation in Step 1

– Common input: n, e, H(),H ′()
– Client’s input: C = {hc1, · · · , hcv}, where: hci = H(ci)
– Server’s input: d,S = {hs1, · · · , hsw}, where: hsj = H(sj)

OFF-LINE:

1. Server:
– ∀j, compute: Ks:j = (hsj)d mod n and tj = H ′(Ks:j)

2. Client:
– ∀ i, compute: Rc:i ← Z∗

n and yi = hci · (Rc:i)e mod n

ON-LINE:

3. Client � Server: {y1, .., yv}
4. Server:

– ∀ i, compute: y′
i = (yi)d mod n

5. Server � Client: {y′
1, ..., y

′
v}, {t1, .., tw}

6. Client:
– ∀i, compute: Kc:i = y′

i/Rc:i and t′i = H ′(Kc:i)
– OUTPUT: {t′1, .., t′v} ∩ {t1, .., tw}

Fig. 4. Blind RSA-based PSI Protocol with linear complexity

Practical Private Set Intersection Protocols with Linear Complexity 153

amounts to w exponentiations – RSA signatures. Client precomputation in Step 2 in-
volves O(v) multiplications, since, as is well-known that, e can be a small integer.

The main idea behind this protocol comes from the Ogata and Kurosawa’s adaptive
Oblivious Keyword Search [21]. However, we adapt it for the PSI scenario: instead of
encrypting a string of 0’s the server reveals the key as the hash of the signature for all
elements in her set. We show that the resulting protocol in Fig. 4 is a: (1) Server-Private,
(2) Client-Private, and (3) Client-Unlinkable PSI (see Appendix C).

Although this protocol uses the RSA setting, RSA parameters are initialized a priori
by the server. This is in contrast to the protocol in Fig.2 where the CA sets up RSA
parameters. To see that the present protocol is correct, consider that: Ks:j = (hsj)d in
Step 1, and, in Step 6:

Kc:i = y
′
i/Rc:i = (hci · (Rc:i)

e)d
/Rc:i = (hci)

d =⇒ Kc:i = Ks:j iff hci = hsj

Drawbacks: although very efficient, this PSI protocol has some issues. First, it is un-
clear how to convert it into an APSI version. Second, if precomputation is somehow
impossible, its performance becomes worse than that of the PSI protocol in Fig.3, since
the latter uses much shorter exponents at the server side. Privacy features of this protocol
also differ from others discussed above. In particular, it lacks server unlinkability. (Re-
call that this feature is relevant only if the protocol is run multiple times.) We note that,
in Step 1 the server computes tags of the form tj = H ′(hsj)d. Consequently, running
the protocol twice allows the client to observe any and all changes in the server’s set.

There are several ways of patching the protocol to provide this missing feature. One
is for the server to select a new set of RSA parameters for each protocol instance.
This would be a time-consuming extra step at the start of the protocol; albeit, with
precomputation, no extra on-line work would be required from the server. On the other
hand, the client would need to be informed of the new RSA public key (e, n) before Step
2, which means that, at the very least (using e = 3), v multiplications in Step 2 would
have to be done on-line. Also, two additional initial messages would be necessary: one
from the client – to “wake up” the server, and the other – from the server to the client
bearing the new RSA public key and (perhaps) {t1, .., tw}, thus saving space in the last
message. Another simple way of providing server unlinkability is to change the hash
function H() for the server each protocol instance. If we assume that the client and
server maintain either a common protocol counter (monotonically increasing and non-
wrapping) or sufficiently synchronized clocks, it is easy to select/index a distinct hash
function based on such unique and common values. One advantage of this approach is
that we no longer need the two extra initial messages.

5.7 From PSI (APSI) to PSI-DT (APSI-DT)

It is easy to add data transfer functionality to the protocols in Fig. 1, 2, 3 and 4, and
provide APSI-DT and PSI-DT. Following the approach outlined in [11], we assume
that an additional secure cryptographic hash function H ′′ : {0, 1}∗ → {0, 1}τ is chosen
during setup. In all aforementioned protocols, we then use H ′′ to derive a symmetric
key for a semantically secure symmetric cipher, such as AES [10]. For every j, server
computes ks:j = H ′′(Ks:j) and encrypts associated data using a distinct key ks:j . For
its part, the client, for every i, computes kc:i = H ′′(Kc:i) and decrypts ciphertexts

154 E. De Cristofaro and G. Tsudik

corresponding to the matching tag. (Note that ks:j = kc:i iff sj = ci and so tj = ti). As
long as the underlying encryption scheme is semantically secure, this extension does
not affect the security or privacy arguments for any protocol discussed thus far.

5.8 Evaluation

We now highlight the differences between existing PSI techniques and protocols pro-
posed in this paper. We focus on performance in terms of server and client computation
and communication complexities. We use w and v to denote the number of elements
in the server’s and client’s sets, respectively. Let m be the number of bits needed to
represent each element. We count only the number of online operations. The results are
summarized in Table 2 and compared choosing parameters that achieve similar degrees
of security. The Table also includes communication overhead, for completeness.

Table 2. Performance Comparison of PSI and APSI protocols

Protocol Model Adv Commun. Server Prec Server Ops Client Ops Mod Bits

APSI [6] Std Mal O(w) - O(w) encrs in [5] O(vw) decrs in [5]
APSI Fig.1 ROM HbC O(vw) O(w) 1024-bit exps O(v) 1024-bit exps O(v) 1024-bit exps 1024

O(vw) mults
APSI Fig.2 ROM HbC O(v+w) O(w) 1024-bit exps O(v) 1024-bit exps O(v) 1024-bit exps 1024

PSI [15] Std HbC O(v+w) - O(vw) m-bit exps O(v + w) 1024-bit exps 2048
PSI [18] Std HbC O(v+w) O(w) 1024-bit exps O(v) 1024-bit exps O(v) 1024 mod 1024-bit 1024/

mod 1024 exps mod 2048 exps m-bit mod 2048-bit exps 2048
PSI [19] ROM HbC O(v+w) O(w) 160-bit exps O(v) 160-bit exps O(v) 160-bit exps 1024
PSI Fig.3 ROM HbC O(v+w) O(w) 160-bit exps O(v) 160-bit exps O(v) 160-bit exps 1024

O(w) mults
PSI Fig.4 ROM HbC O(v+w) O(w) 1024-bit exps O(v) 1024-bit exps O(v)1024-bit mults 1024

We remark that: (1), each encryption in [5] (i.e., Boyen-Waters’ IBE) requires 6 expo-
nentiations and a representation of 6 group elements, and each decryption requires 5
bilinear map operations, and (2), the complexity for the PSI solution against Malicious
model in [18] and [19] grows by a factor of 2. All protocols proposed in this paper have
been implemented in ANSI C (using the well-known OpenSSL library) and tested on a
Dell Precision PC on a 2.33GHz CPU and 8GB RAM. The prototype’s code is avail-
able upon request. To confirm the claimed efficiency of our protocols, we compared
on-line run-times of our protocols to those of prior work. In case a solution provides
security both against HbC and malicious adversary, we implement the former. We omit
run-times for operations that can be precomputed. We also do not measure all prior
techniques discussed in Section 4, whereas we pick only the three that offer the best
performance: the APSI adaptation of RSA-PPIT [11] in Fig.1, and PSI’s from [18]
and [19]. We remark that since the efficiency of [18] is influenced by records’ length,
we assume a conservative stance and we choose items to be 160-bits long, similar to the
output of a hash function.

Measured online computation overhead for the tested protocols is reflected in Ta-
ble 3. As the results illustrate, among APSI protocols, the one in Fig.2 performs no-
ticeably better than its PPIT-based counterpart from [11] when both server and client
have sets of size 5, 000 (and this advantage accelerates for larger set sizes). Looking at

Practical Private Set Intersection Protocols with Linear Complexity 155

Table 3. On-line computation overhead (in ms)

Player Server Client Server Client Server Client
Set size 5,000 1 1 5,000 5,000 5,000

APSI Fig.1 20 5 12,710 24,407 99,118 24,159
APSI Fig.2 23 10 12,228 25,769 12,037 25,959

PSI [18] 5 24 27,654 118,676 27,862 118,947
PSI [19] 0 1 2,029 4,227 2,108 4,249
PSI Fig.3 19 1 2,145 5,502 2,072 5,344
PSI Fig.4 1 0 4,651 1,407 4,662 1,422

PSI protocols, the toss-up is between protocols in Fig. 3 and 4; the choice of one or
the other depends on whether client or server overhead is more important. If client is a
weak device, the blind-RSA-based protocol in Fig.4 is a better bet. Otherwise, if server
burden must be minimized, we opt for the protocol of Fig.3.

6 Conclusions

In this paper, we proposed efficient protocols for plain and authorized private set in-
tersection (PSI and APSI). Proposed protocols offer appreciably better efficiency than
prior results. The choice between them depends on whether there is a need for client
authorization and/or server unlinkability, as well as on server’s ability to engage in pre-
computation. Our efficiency claims are supported by experiments with prototype imple-
mentations. Future work includes analysis of our protocols against malicious parties, as
well as extensions to a group setting.

Acknowledgements. We would like to thank Nikita Borisov, Stanislaw Jarecki, Xi-
aomin Liu, Markulf Kohlweiss, and Jihye Kim for the helpful discussion.

References

1. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.:
Randomizable Proofs and Delegatable Anonymous Credentials. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)

2. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion
problems and the security of Chaum’s blind signature scheme. Journal of Cryptology 16(3),
185–215 (2008)

3. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key Encryption with Key-
word Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 506–522. Springer, Heidelberg (2004)

4. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM Journal
of Computing 32(3), 586–615 (2003)

5. Boyen, X., Waters, B.: Anonymous Hierarchical Identity-Based Encryption (Without Ran-
dom Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer,
Heidelberg (2006)

6. Camenisch, J., Kohlweiss, M., Rial, A., Sheedy, C.: Blind and Anonymous Identity-Based
Encryption and Authorised Private Searches on Public Key Encrypted Data. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 196–214. Springer, Heidelberg (2009)

156 E. De Cristofaro and G. Tsudik

7. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete loga-
rithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Hei-
delberg (2003)

8. Camenisch, J., Zaverucha, G.: Private intersection of certified sets. In: Financial Cryptogra-
phy and Data Security 2009 (2009)

9. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient Robust Private Set Inter-
section. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009.
LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009)

10. Daeman, J., Rijmen, V.: AES proposal: Rijndael (1999)
11. De Cristofaro, E., Jarecki, S., Kim, J., Tsudik, G.: Privacy-Preserving Policy-Based Informa-

tion Transfer. In: Goldberg, I., Atallah, M.J. (eds.) Privacy Enhancing Technologies. LNCS,
vol. 5672, pp. 164–184. Springer, Heidelberg (2009)

12. De Cristofaro, E., Tsudik, G.: Practical Private Set Intersection Protocols. In: Cryptology
ePrint Archive (2009), http://eprint.iacr.org/2009/491.pdf

13. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy preserving data
mining. In: PODS 2003, pp. 211–222 (2003)

14. Freedman, M., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudo-
random functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer,
Heidelberg (2005)

15. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer,
Heidelberg (2004)

16. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with
security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS,
vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

17. Huberman, B., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic communi-
ties. In: ACM Conference on Electronic Commerce, pp. 78–86 (1999)

18. Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications to Adap-
tive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

19. Jarecki, S., Liu, X.: Fast Secure Computation of Set Intersection. Manuscript available from
the authors (2009)

20. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

21. Ogata, W., Kurosawa, K.: Oblivious keyword search. Journal of Complexity 20(2-3), 356–
371 (2004)

22. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg
(1999)

23. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

24. Schnorr, C.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–
174 (1991)

A: Cryptographic Assumptions

RSA assumption. Let RSASetup(τ) be an algorithm that outputs so-called RSA in-
stances, i.e., pairs (N, e)where N =pq, e is a small prime that satisfiesgcd(e, φ(N))= 1,

http://eprint.iacr.org/2009/491.pdf

Practical Private Set Intersection Protocols with Linear Complexity 157

and p, q are randomly generated τ -bit primes. We say that the RSA problem is (τ, t)-hard
on τ -bit RSA moduli, if for every algorithm A that runs in time t we have:

Pr[(N, e) ← RSASetup(τ), α ← Z∗
N : A(n, e, α) = β s.t. βe = α (mod N)] ≤ τ

One-More-RSA assumption. Informally, the One-More-RSA assumption [2] indi-
cates that the RSA problem is hard even if the adversary is given access to an RSA
oracle. Formally, let (N, e, d) ← KeyGen(τ) the RSA Key-Generation algorithm, and
let αj ← Z∗

N (for j = 1, · · · , ch), we say that the One-More-RSA problem is (τ, t)-
hard on τ -bit RSA moduli, if for every algorithm A that runs in time t we have

Pr
[
{(αi, (αi)d)}i=1,···v+1 ← A(·)d mod N

(N, e, τ, α1, · · · , αch)
]
≤ τ

where A made at most v queries to the RSA oracle (·)d mod N .

B: APSI Protocol in Fig. 2

We now consider security and privacy properties of the protocol in Fig. 2.
Client Privacy. Recall that APSI is client-private if no information is leaked to the
server about client’s private inputs. It is easy to show that client’s inputs are polynomi-
ally indistinguishable from a random distribution. This is because, in Step 1, the client
selects all values uniformly and at random, i.e., [Rc, {Rc:1, ..., Rc:v}] ← Z∗

n. Thus,
X = PCH · gRc and {yi = PCH∗

i · gRc:i} form a random sequence. We defer the
formal proof to the extended version of the paper.
Server privacy. To claim server privacy, we need to show that no efficient A has a
non-negligible advantage over 1/2 against a challenger Ch in the following game. Our
proof works in the random oracle model (ROM) under the RSA assumption.

1. Ch executes (PK, SK) ← Setup(1τ) and gives PK to A.
2. A invokes Authorize on ci of its choice and obtains the corresponding signature

σi.
3. A generates elements c∗0, c∗1 different from every ci mentioned above.
4. A participates in the protocol as the client with messages X∗ and y∗

0 , y∗
1 .

5. Ch picks one record pair by selecting a random bit b and executes the server’s part
of the interaction on public input PK and private input (c∗b) with message (Z, y′, t)
as described in the protocol.

6. A outputs b′ and wins if b = b′.

Let HQuery be an event that A ever queried H ′ on input K∗, where K∗ is defined (as
the combination of message X∗ sent by A and message Z sent by Ch), as follows:
K∗ = (X∗)eRs · (h∗)−Rs mod N , where Z = (g)eRs and h∗ = H(c∗). In other
words, HQuery is an event that A computes (and invoked hash function H ′ on input of)
the key-material K∗ for the challenging protocol.

Unless HQuery happens, A’s view of interaction with Ch on bit b = 0 is indistin-
guishable from A’s view of the interaction with Ch on bit b = 1.

Since the distribution of Z = geRs is independent from (cb), it reveals no infor-
mation about which cb is related in the protocol. Also, since y∗

0 , y∗
1 are not related to

158 E. De Cristofaro and G. Tsudik

H(c0)
d nor H(c1)

d, y′ = (yb)
eRs reveals no information about which cb is related in

the protocol (y′ is similar to an RSA encryption). Finally, assuming that H ′ is mod-
eled as a random oracle, the distribution with b = 0 is indistinguishable from that with
b = 1, unless A computes k∗ = H ′(K∗), in the random oracle model, by querying H ′,
i.e., HQuery happens.

If event HQuery happens with non-negligible probability, then A can be used to
violate the RSA assumption.

We construct a reduction algorithm called RCh using a modified challenger algo-
rithm. Given the RSA challenge (N, e, α), RCh simulates signatures on each ci by as-
signing H(ci) as σe

i mod N for some random value σi. This way, RCh can present the
authorization on ci as σi. RCh embeds α to each H query, by setting H(ci) = α(ai)e

for random ai ∈ ZN . Note that, given (H(ci))d for any ci, the simulator can extract
αd = (H(ci))d/ai.

RCh responds to A and computes (H(ci))d(for some ci) as follows: On A’s input
message X∗, y∗

0 , y
∗
1 , RCh picks a random m ← ZN , computes Z = g(1+em), and

sends Z and y′ = (yb)
1+em. We see that g1+em = ge(d+m). On the HQuery event,

RCh gets K∗ = (X∗)e(d+m)(h∗)−(d+m) from A. Since RCh knows X∗, h∗, e, and
m, it can compute (h∗)d.

C: PSI Protocol in Fig. 4

We now consider privacy properties of the protocol in Fig. 4.
Client Privacy. As in Appendix B, we claim it is easy to show that client’s inputs to
the protocol are statistically close to random distribution. We defer formal proof to the
extended version of the paper.
Server Privacy. We present a concise construction of an ideal (adaptive) world SIMc

from a honest-but-curious real-world client C∗, and show that the views of C∗ in the
real game with the real world server and in the interaction with SIMc are indistinguish-
able, under the One-More-RSA assumption (presented in Appendix A) in the random
oracle model.

First, SIMc runs (N, e, d) ← RSA-Keygen(τ) and gives (N, e) to C∗. SIMc models
the hash function H and H ′ as random oracles. A query to H is recorded as (q, h =
H(q)), a query to H ′ as (k, h′ = H ′(k)), where q and h′ are random values. Finally,
SIMc creates two empty sets A, B. During interaction, SIMc publishes the set T =
{t1, · · · , tw}, where tj is taken at random. Also, for every yi ∈ {y1, · · · , yv} received
from C∗ (recall that yi = H(ci) ·(Rc:i)e), SIMc answers according to the protocol with
(yi)

d.
We now describe how SIMc answers to queries to H ′. On query k to H ′, SIMc

checks whether it has recorded a value h s.t. h = ke (i.e., hd = k).
If !∃h s.t. h = ke, SIMc answers a random value h′ and record (k, h′) as mentioned
above.
If ∃h s.t. h = ke, SIMc can recover the q s.t. h = H(q) and h = ke. Then, it checks
whether it has previously been queried on the value k.

If ∃k s.t. k has already been queried, then SIMc checks whether q ∈ A. If q /∈ A, it
means that C∗ queried q to H (which returned h), and also made an independent query

Practical Private Set Intersection Protocols with Linear Complexity 159

k to H ′ s.t. h = ke. In this case SIMc aborts the protocol. However, it easy to see that
this happens with negligible probability. Instead, if q ∈ A, SIMc returns the value h′

previously stored for k.
If !∃k s.t. k has already been queried, this means that SIMc is learning one of C∗’s

outputs. Hence, A = A ∪ {q}. Then, SIMc checks if |A| > v.
If |A| <= v, then SIMc checks if q ∈ C ∩S by playing the role of the client with the

real world server. If q ∈ C ∩S, SIMc answers to the query on k with a value tj ∈ T \B,
records the answer (k, tj) and sets B = B ∪ {tj}. If q /∈ C ∩ S, SIMc answers with a
random value h′ and records the answer.

If |A| > v, then we can construct a reduction Red breaking the One-More-RSA
assumption.
The reduction Red can be constructed as follows. Red answers to C∗’s queries to
H with RSA challenges (α1, · · · , αch). During interaction, on C∗’s messages yi ∈
{y1, · · · , yv}, Red answers (yi)

d by querying the RSA Oracle. Finally, if the case de-
picted above happens, it means that at the end of the protocol the set B will contain
at least (v + 1) elements, where v is the number of RSA challenges, thus breaking the
One-More-RSA assumption. As a result, we have shown that the views of C∗ in the real
game with the real world server and in the interaction with SIMc are indistinguishable.

We remark that the structure of the above proof has been inspired from the one based
on the UPF secure under the One-More-Gap-DH assumption from [19], as well as the
notion of adaptiveness. The adaptiveness allows the client to adaptively make queries,
i.e., she does not need to specify all her inputs at once. In fact, we argue that the signing
algorithm of unique signature is indeed an unpredictable function, hence its hash in the
random oracle model results in a PRF.

D: Simplified Description of PSI in Fig. 3

– Common input: p, q, g, H(),H ′()
– Client’s input: C = {hc1, · · · , hcv}, where: hci = H(ci)
– Server’s input: S = {hs1, · · · , hsw}, where: hsj = H(sj)

1. Client:
– Rc ← Zq and X = gRc

– ∀i, Rc:i ← Zq, yi = hci · gRc:i

2. Client � Server: X, {y1, .., yv}
3. Server:

– Rs ← Zq and Z = gRs

– ∀ j, compute: Ks:j = (X · hsj)Rs , and tj = H ′(Ks:j)
– ∀ i, compute: y′

i = (yi)Rs

4. Server � Client: Z, {y′
1, ..., y

′
v}, {t1, .., tw}

5. Client:
– ∀i, Kc:i = y′

i · ZRc · Z−Rc:i , and t′i = H ′(Kc:i)
– OUTPUT: {t′1, .., t′v} ∩ {t1, .., tw}

Fig. 5. PSI Protocol with linear complexity

Design and Implementation of a Key-Lifecycle
Management System

Mathias Björkqvist, Christian Cachin, Robert Haas, Xiao-Yu Hu, Anil Kurmus,
René Pawlitzek, and Marko Vukolić

IBM Research - Zurich

Abstract. Key management is the Achilles’ heel of cryptography. This work
presents a novel Key-Lifecycle Management System (KLMS), which addresses
two issues that have not been addressed comprehensively so far.

First, KLMS introduces a pattern-based method to simplify and to automate
the deployment task for keys and certificates, i.e., the task of associating them
with endpoints that use them. Currently, the best practice is often a manual pro-
cess, which does not scale and suffers from human error. Our approach eliminates
these problems and specifically takes into account the lifecycle of keys and certifi-
cates. The result is a centralized, scalable system, addressing the current demand
for automation of key management.

Second, KLMS provides a novel form of strict access control to keys and
realizes the first cryptographically sound and secure access-control policy for a
key-management interface. Strict access control takes into account the crypto-
graphic semantics of certain key-management operations (such as key wrapping
and key derivation) to prevent attacks through the interface, which plagued earlier
key-management interfaces with less sophisticated access control.

Moreover, KLMS addresses the needs of a variety of different applications
and endpoints, and includes an interface to the Key Management Interoperability
Protocol (KMIP) that is currently under standardization.

1 Introduction

Cryptography is used to secure many information-technology systems, ranging from
encrypting data on storage and establishing virtual private networks to protecting com-
munication with mobile devices and using SSL certificates for e-commerce over the
Internet. All uses of cryptography rely on the proper keys being present. Key manage-
ment deals with the lifecycle of cryptographic keys, with operations for creating, im-
porting, storing, reading, updating, exporting, and deleting them, and with distributing
keys before they are used in cryptographic functions. An important aspect is to manage
the attributes of keys that govern their usage and their relation to other keys.

Complications with key distribution are seen as the source of most operational prob-
lems with secure systems using cryptography. A key-management system must provi-
sion the appropriate keys and deploy them to endpoints, the entities that consume keys
and use them for cryptographic functions. Managing a large number of keys manually
does not scale, suffers from human error, and is prohibitively expensive. As a result,
there is a great demand for automated key-management today, provided by centralized,
scalable systems.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 160–174, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

Design and Implementation of a Key-Lifecycle Management System 161

In an enterprise context, multiple users associated with many endpoints access the
key-management system and perform operations on the objects that it maintains. These
objects include symmetric keys, public keys, private keys, and certificates. A key-
management system focuses on attribute handling rather than on cryptographic func-
tions. But a comprehensive key-management system will also support a small set of
cryptographic operations, including creating a key, issuing a certificate, to derive a new
key (a deterministic operation that creates a symmetric key from an existing one), and
to wrap or unwrap a key with another key (wrapping means to encrypt a target key with
another key for export and transfer to another system).

In this paper, we describe the design and implementation of a prototype Key-Lifecycle
Management System (KLMS). It unifies key management for local and remote endpoints
and handles many different types of cryptographic objects in a flexible way. KLMS
addresses enterprise-level key management and covers many endpoints that require cryp-
tographic keys, from heterogeneous applications, servers, and network devices to stor-
age devices and media (e.g., tape cartridges). The system can provision keys to any
application that can receive keys through the Java KeyStore (JKS) interface, as for ex-
ample, file-based keystores in several formats, and it provides a prototype server for the
Key Management Interoperability Protocol (KMIP), which is under standardization by
OASIS [16].

KLMS introduces two novel features of a key-management system: first, the notion
of deployment patterns to automate the administration and the deployment tasks for
keys and certificates; and second, a strict implementation of access control to keys,
which takes into account the cryptographic semantics of certain key-management op-
erations and realizes the first cryptographically sound access-control policy for a key-
management interface. We now briefly describe these two contributions.

Automated deployment. Often multiple related keys must be administered by the man-
agement system. To simplify this task, several keys can be grouped and deployed together
to one or more endpoints. Such deployments can be structured according to certain pat-
terns. In the example of a TLS-protected web server connected to the Internet, which is
clustered for high availability, the same private key and certificate should be deployed
to all nodes in the cluster. On the other hand, for a communication setup where multiple
servers identify each other using their client-certificates through TLS-connections, every
server should receive its own private key plus the public keys of all servers.

For supporting such scenarios, KLMS provides a novel pattern-based method for
automated key and certificate deployment. A flexible deployment manager (DM) auto-
mates deployment and shields the system administrator from the lower-level key cre-
ation and distribution tasks. Once a suitable pattern and the supporting policies for
a particular application are defined, KLMS automatically generates, distributes, and
maintains as many keys or key pairs as necessary, and responds dynamically to changes
of the topology, when new endpoints are added to the application.

KLMS also takes care of automatically managing the lifecycle of keys. It may create
keys ahead of time and only maintain them internally, provisioned for a certain applica-
tion. At the time of activation of a key, KLMS automatically deploys it to endpoints for
the duration of its active life-time, and withdraws the key again from all endpoints when
it expires. The key-lifecycling logic is tightly coupled with the deployment manager.

162 M. Björkqvist et al.

Strict access control. Every key-management system serves keys to users, the prin-
cipals that invoke its operations. In the usual basic form of access control, the system
decides about access to a key only by consulting an access-control list (ACL) associated
with the key. But because the operations of the system allow users to create complex
relationships between keys, through key derivation and key wrapping, basic access con-
trol may have security problems. For example, if there exists a key k1 that some user
is not allowed to read, but the user may wrap k1 under another key k2 and export the
wrapped representation, the user may nevertheless obtain the bits of k1. Another exam-
ple is a key that was derived from a parent key; when a user reads the parent key, the
user implicitly also obtains the cryptographic material of the derived key.

In general, a cryptographic interface that manages keys and allows the creation of
such dependencies among keys poses the problem that access to one key may give a
user access to many another keys. This issue has been identified in the APIs of several
cryptographic modules [2, 7, 9, 11] and may lead to serious security breaches when one
does not fully understand all implications of an API.

Therefore, KLMS provides a strict mode of access control, in which decisions take
the semantics of the key-management API into account, and implements a cryptograph-
ically sound access-control policy on all symmetric keys and private keys. The above
issues with basic access control are eliminated with strict access control. Our strict
access-control policy builds on the work of Cachin and Chandran [8], which describes a
secure cryptographic token interface and introduces a cryptographically strong security
policy. A strict access-control decision not only depends on the ACL of the correspond-
ing key, but also takes into account the ACLs of related keys and the history of past
operations executed on them. It prevents any unauthorized disclosure of a symmetric
key or a private key.

Related Work. The need for building enterprise-scope key management systems has
been widely recognized [5], and the US National Institute of Standards and Technology
(NIST) has issued a general recommendation for key management [4]. Several commer-
cial enterprise key-management systems are on the market, including HP StorageWorks
Secure Key Manager, IBM Distributed Key Management System (DKMS), IBM Tivoli
Key Lifecycle Manager, NetApp Lifetime Key Management, Sun StorageTek Crypto
Key Management System, and Thales/nCipher keyAuthority.

In order to integrate these proprietary solutions, multiple efforts are currently under-
way to build and standardize key-management standards for open networks: the W3C
XML Key Management Specification (XKMS), the IEEE P1619.3 Key Management
Project, and the Key Management Interoperability Protocol (KMIP) standardization un-
der the auspieces of OASIS are some of the most prominent ones. Cover [10] gives an
up-to-date summary of the current developments.

There is a rich literature on using patterns in software engineering and in systems
management. One representative work that links this area with deployment on a system
are the deployment patterns for a service-oriented architecture of Arnold et al. [3]; these
patterns distribute applications to servers automatically by an algorithm that is available
with the IBM Rational Software Architect product.

Access control and management of cryptographic keys are related in many ways.
One prominent line of research, starting with Akl and Taylor [1], has concentrated on

Design and Implementation of a Key-Lifecycle Management System 163

Fig. 1. Key-Lifecycle Management System architecture (see text)

representing a hierarchy (modeled as a partially ordered set) of users and their access
privileges in a directed graph of keys, where a user inherits the privileges of all users
below; this and subsequent work focuses on minimizing the number of keys stored by
a user.

Because the key-management server provides the above-mentioned cryptographic
functions, it represents a cryptographic security API accessible over a network. Secu-
rity APIs stand at the boundary between untrusted code and trusted modules capable of
maintaining internal state. Cryptographic security APIs are typically provided by cryp-
tographic tokens [2], hardware-security modules (HSM) like IBM’s 4764 cryptoproces-
sor that supports the IBM CCA interface [13,15] and generic PKCS #11-compliant [17]
modules, smartcards, or the Trusted Platform Module [18]. The study of cryptographic
security APIs has so far been limited to programming APIs and to libraries; this paper
extends their study to protocols for open networks.

Organization of the Paper. Section 2 describes the architecture of KLMS and its data
model, and motivates some design choices. The main contributions, automated deploy-
ment and strict access control, are described in Sections 3 and 4, respectively. We con-
clude the paper in Section 5 by describing the implementation and the evaluation.

2 Model

System Architecture. The architecture of KLMS is shown in Figure 1. It is foreseen
that the server is implemented in Java and runs on a web-application server. The KLMS
server interacts with the clients (endpoints) through several types of interfaces, as de-
scribed below. Administrators use a different interface than the clients to access the
server. The server itself is structured in four layers; bottom-up, these are a data layer, a
manager layer, a service layer, and an interface layer, as described next.

164 M. Björkqvist et al.

Data Layer. The data layer stores all information in a persistent Database (DB). In-
ternally, DB accesses a standard SQL database through the JDBC interface. All state
information of KLMS is maintained by DB, so that KLMS does not lose any data be-
cause of a system crash. Meta-data about keys and certificates is stored in DB, as well as
the cryptographic material itself. Some corporate security policies mandate that certain
keys exist in cleartext only in a hardware-security module (HSM); the architecture sup-
ports this feature, by including a master key stored in an HSM and using it to encrypt
all cryptographic material in DB.

Manager Layer. KLMS contains three components that provide low-level functional-
ities: an Object Manager (OM), a Deployment Manager (DM), and an Endpoint Man-
ager (EPM).

First, OM provides a simple interface to manipulate the cryptographic objects sup-
ported by KLMS. OM can add new objects, read, modify, search, and delete them in the
DB, and maintains an in-memory object cache that is used to speed up read operations.

Second, DM takes care of administering deployments and deployment bundles. A de-
ployment is an association between an object and an endpoint in the sense that KLMS
provisions the object for use in cryptographic operations by the endpoint. The deploy-
ment policy realized by the DM dictates when and under which condition a deployed
object finally becomes available to an endpoint through an interface; the deployment
policy is described in Section 3. A deployment bundle is a set of deployments, which
are grouped to support a given application.

Finally, EM controls the endpoints in the interface layer of the server, registering
them in KLMS, potentially creating new file-backed JKS endpoints, and listening to
protocol ports to which KMIP clients connect. EM unifies the different types of end-
points towards the rest of the server.

Service Layer. The service layer provides two modules: a Key-Lifecycle Service (KLS),
which is used by endpoints and by an administrator, and an Admin Service, which is
only accessed by the administrator.

KLS represents the core of the server. It implements all operations related to keys and
certificates that are available to endpoints and to users, drives automated deployment
and lifecycle operations in conjunction with DM, and enforces access control. KLS
can distinguish between different users, the principals that access it; every invocation
of an operation occurs in the context of a session, which represents a user that has
been securely authenticated by KLMS. The data model and the operations of KLS are
described in the next section.

The Admin Service controls the allocation of endpoints and deployments through
EPM and DM, respectively. Access to its operations also occurs in the context of a
session, but is restricted to users with the corresponding permission. The Admin Ser-
vice also allows archive and recovery operations for individual keys and for the whole
database. Both modules, KLS and Admin Service, generate audit events.

Interface Layer. Three types of endpoint interfaces interact with the clients. The Virtual
Keystore (VKS) interface emulates the provider of a Java KeyStore, for applications that
are hosted by the same application server as KLMS. The client reads and writes keys

Design and Implementation of a Key-Lifecycle Management System 165

via VKS by issuing the “get” and “set” operations of the Java KeyStore interface. VKS
is a pull-style synchronous interface, i.e., KLS can forward client calls to VKS directly
to OM and DM.

The Java Keystore (JKS) interface accesses a named Java KeyStore as a client. A
Java KeyStore is usually passive and its default implementation is a file, but depending
on the installed Java Cryptography Extension (JCE) provider, many different entities
may receive key material through the JKS interface (in particular, such clients need not
be implemented in Java). JKS is a push-style asynchronous interface, because KLS calls
the Java KeyStore interface and clients may retrieve keys from JKS at a later time.

A protocol interface provides an experimental implementation of the Key Manage-
ment Interoperability Protocol (KMIP) draft standard [16]. KMIP is mostly a client-to-
server protocol that offers rich functionality to manipulate keys and certificates. Many
of its operations can be forwarded directly to KLS, but other operations are realized by
an adapter module inside the KMIP interface. Ignoring the (optional) server-to-client
operations in KMIP, the protocol interface is again pull-style and synchronous, similar
to VKS. Clients connecting through KMIP need not be implemented in Java.

For the two keystore-based interfaces (JKS and VKS), EPM statically configures the
user with which KLS is accessed. For the protocol-based interface (KMIP), it is possible
to take the user from the client context. For the pull-style interfaces (VKS and KMIP),
access control occurs when the client calls KLS. On the other hand, for the push-style
JKS interface, access control must be enforced at the time when the deployment occurs.

Administrators access KLMS through a web-based Graphical User Interface (GUI)
(built using the Hamlets framework [14]) or through a Command-Line Interface (CLI);
they both provide operations to deal with endpoints and to manage deployments. Note
that clients who access the system through one of the endpoint interfaces cannot deploy
keys or certificates in KLMS.

Data Model and Operations. KLMS manages symmetric keys, public keys, private keys,
and certificates, which we summarily call cryptographic objects or simply objects. All
key formats supported by the underlying Java platform and the JCE are available, in-
cluding RSA, Diffie-Hellman, ElGamal, DSA, and EC-variants for public-key algo-
rithms and symmetric keys of arbitrary length. Objects are composed of attributes and
(possibly) cryptographic material. Attributes contain meta-data about the use of the
cryptographic material, and they are the main concern of key management. Attributes
may be read and sometimes also modified by clients in KLMS. KLMS also provides
templates that simplify the handling of attributes for multiple objects, but we do not
describe them in detail here, as they are not our primary concern.

KLMS currently supports close to 50 different object attributes. Rather than listing
them all, we focus on the subset that is relevant for lifecycle operations, for automated
deployment, and for access control (see Table 1). Every object has a unique identifier.
A crucial attribute is the state of an object in its lifecycle. Objects in KLMS follow a
lifecycle according to NIST [4, Section 7]. NIST distinguishes between using a key for
protect purposes when applying cryptographic armor (through encryption, wrapping,
signing, and so on), and process purposes when consuming previously protected data
(through decryption, unwrapping, verification, and so on). A key may at certain times be
used for one or both purposes, or for none at all. The lifecycle of a cryptographic object

166 M. Björkqvist et al.

Table 1. Object attributes relevant for key lifecycle and access-control features

Key lifecycle Access control

State Deactivation time Usage Creator
Initialization time Compromise time Digest Dependents
Activation time Destroy time Strict Ancestors

ACL Readers

progresses from a Pre-Active state, where it is not to be used for any cryptographic
operation, through an Active state, where it may be used to protect and to process data, to
a Deactivated state, where it may only be used to process data (see [4]). State transitions
may be triggered directly by modifications to the lifecycle-relevant attributes, such as
state, activation time, and deactivation time, or indirectly, as a side-effect of operations
(e.g., when destroying an object). State transitions may cause actions by the automated
deployment mechanism, as described in Section 3.

The operations of KLMS fall in two categories: those that manipulate objects, pro-
vided by KLS, and those that affect deployments, provided by Admin Service.

The most important operations on objects are: (1) create, which generates a new
key or certificate and stores it, with attributes supplied by the client; (2) store, which
stores a key or certificate and uses the cryptographic material supplied by the client in
cleartext; (3) import, which stores a key and uses the cryptographic material supplied
by the client in wrapped form (i.e., encrypted with another key); (4) derive, which cre-
ates a new symmetric key from an existing symmetric key; (5) read, which returns the
key or certificate with a given identifier to the client, including attributes and crypto-
graphic material in cleartext; (6) export, which returns the key with a given identifier
to the client, including attributes and cryptographic material in wrapped form; (7) read
attributes, which is the same as read, except that it omits the cryptographic material;
(8) set attributes, which modifies the attributes of an object; (9) search, which locates
all objects matching a given search condition and returns their identifiers; (10) destroy,
which deletes the cryptographic material of an object, but leaves its attributes intact;
(11) delete, which deletes the entire object; (12) archive, for writing some objects to
off-line storage; and (13) recover, for reading objects back from off-line storage.

Fig. 2. Key states and transitions [4]. Transitions are triggered when an appropriate attribute is set
or at the time specified by a time-related attribute.

Design and Implementation of a Key-Lifecycle Management System 167

Fig. 3. Deployment patterns

The relevant operations of Admin Service on deployments are: (1) specify, which cre-
ates a deployment or a deployment bundle; (2) activate, which executes a deployment or
a deployment bundle and distributes all objects to the specified endpoints; (3) withdraw,
which reverses the effects of activate on a deployment or on a deployment bundle; and
(4) remove, which removes a deployment or a deployment bundle from the system.

3 Automated Deployment

This section describes the pattern-based automated deployment in KLMS and the inter-
action between key-lifecycle management and key deployment. Recall that a deploy-
ment is an association between an object and an endpoint and that a deployment bundle
is a set of deployments.

3.1 Deployment Patterns

A deployment pattern is a rule for generating deployment bundles with a defined struc-
ture. A deployment pattern is described in terms of an object list, an ordered set of keys
and/or certificates to be deployed, and an endpoint list, an ordered set of endpoints,
to which the objects are to be deployed. The pattern defines how the objects relate to
the endpoints. Given an object list and an endpoint list, a deployment pattern yields a
unique deployment bundle that complies with the pattern. Deployment patterns enable
an administrator to focus on the requirements of an application, without having to worry
about deploying individual keys and certificates.

We now describe four different deployment patterns, depicted in Figure 3.

Secret-shared: This pattern associates each element of the object list with every el-
ement of the endpoint list. For example, it is used to deploy a (set of) symmetric
key(s) to multiple endpoints, such that they all share the same key(s).
When KLMS instantiates a secret-shared pattern, only the endpoint list is a manda-
tory input. The object list may be left out and a desired number n of symmetric
keys can be given instead. In this case, KLMS generates n symmetric keys on the
fly, taking their attributes from a template that is also included, and deploys all keys
to each endpoint. (The generated keys are also stored in the DB.)

Private/certificate-shared: This pattern associates each private-key/public-key pair or
private-key/certificate pair in the object list with every element of the endpoint list.

168 M. Björkqvist et al.

It is similar to the secret-shared pattern, but applies to asymmetric key pairs only
(where public keys and certificates are used interchangeably).
A typical use-case for this pattern arises in a cluster of nodes that implement the
same service, using replication and/or a fail-over strategy for increasing throughput
and fault-tolerance. For example, when the cluster nodes serve web content over
HTTPS for multiple domains, one private-key/certificate pair for TLS per domain
must be available to every cluster node.

Secret-unique: This pattern associates the i-th key of the object list (containing only
symmetric keys) with the i-th endpoint in the endpoint list, for i = 1, . . . , n. When
KLMS instantiates a secret-unique pattern, the object list can be omitted and a
template describing attributes for the keys can be given; KLMS then generates as
many keys automatically as there are endpoints in the list, and deploys them. This
pattern can be used for generating unique master keys for a range of secure devices,
each of which is identified by a symmetric master key.

Private-unique/certificate-shared: This pattern takes an object list of n asymmetric
key pairs (i.e., private key/public key or private key/certificate pairs) and a list of
n endpoints as inputs, and associates the i-th private key with the i-th endpoint,
for i = 1, . . . , n and each public key/certificate with every endpoint. As with other
patterns, when KLMS instantiates the pattern and the object set is omitted, then
KLMS automatically generates the necessary key pairs from the attributes given in
a template (such automatically generated certificates can only be self-signed).
This pattern addresses a typical infrastructure key-distribution model, where every
entity is identified by a private key/public key pair, and every entity must know the
public keys of all others. This could be a cluster of J2EE servers, whose communi-
cation is secured using those keys. Since the certificates are self-signed, all servers
must have a copy of every other server’s self-signed certificate in their keystore.

Note that the above list of four patterns is not exhaustive: one can define more patterns
analogously, for example, a private-unique/certificate-unique pattern similar to secret-
unique, by extending the generic association rules between object list and endpoint list
above.

3.2 Administering Deployments

Recall that deployments are specified by an administrator using the Admin Service.
Information on all objects deployed to endpoints is kept in a deployment table. Every
deployment has a state that is either OnHold or Active.

When a deployment is in state OnHold, the deployment information is present in
the deployment table, but the deployment should not yet or no longer take effect. Only
during the time when a deployment is in Active state should the object be distributed to
the endpoint and available to clients at the endpoint.

The administrator schedules the transition of a deployment from OnHold to Active
state and vice versa by invoking the activate and withdraw operations of the Admin
Service, respectively. After such a state change has been registered in the deployment
table, it is the responsibility of a distribution process in DM to move or remove objects
to or from the affected endpoints. Because its operations take time and may fail because

Design and Implementation of a Key-Lifecycle Management System 169

of network failures, the distribution process operates asynchronously in the background.
This design shields the administrator from the different semantics of the endpoints.
When DM distributes deployed objects to endpoints, it respects a deployment policy
that affects its operation as described in Section 3.3.

In order to fully realize the power of automated deployment, the Admin Service
allows dynamic modification of all pattern-based deployment bundles even after they
have been created and activated. It is possible to add and to delete objects and endpoints
to and from an existing deployment bundle. For example, when a deployment bundle
d has been created by instantiating a pattern p, then an endpoint e can be added to it,
and this will specify and activate a new deployment in d that affects e according to
p. Likewise, when an endpoint e is deleted from d, this will withdraw and remove all
deployments from d that contain e. Hence, the operator can manipulate deployments in
a convenient way.

Note that a deployment of an object o to an endpoint e may be created through mul-
tiple ways, through individual deployments, deployment bundles, and pattern-based de-
ployments. In this case, DM regards the deployment (o, e) to be in Active state whenever
at least one of the sources is in Active state.

3.3 Deployment Policy

The policy followed by DM is called the key-lifecycle deployment policy and affects
the behavior of the distribution process. The policy distinguishes state-aware endpoints
that can interpret the state attribute of an object (such as those connecting through the
KMIP interface) from state-oblivious endpoints that are not capable of expressing the
notion of a lifecycle state (those connecting via VKS and JKS interfaces). The policy
acts as follows. When DM distributes a deployment that associates an object o with an
endpoint e, and when e is state-aware, then DM always distributes o to e; on the other
hand, when e is state-oblivious, then DM only distributes o to e if o is in Active state.
This ensures that a state-oblivious endpoint never uses a key in Pre-Active state for a
cryptographic operation, as this undermines the idea of managing the lifecycle of keys.

In order to support this policy, DM includes a key lifecycle scheduler, which executes
the time-triggered state changes that can be specified by setting certain object attributes,
like activation time or deactivation time. For example, a key with an activation time in
the future can already be deployed to a state-oblivious endpoint; but the key is not
distributed to the endpoint until the activation time is reached, when the key lifecycle
scheduler executes that action.

Moreover, the policy involves access control when the deployment specifies the
push-style endpoint, as explained in Section 2.

4 Strict Access Control

The difficulty of enforcing strict access control comes from relations between keys,
which are introduced through wrapping and key derivation, such that a simple ACL no
longer adequately represents a permission on a key. This section explains the basics of
our strict access-control policy implemented in KLMS, which is based on the theoretical
model by Cachin and Chandran [8]. For lack of space, we give only a summary here.

170 M. Björkqvist et al.

In short, strict access control guarantees that a user may only retrieve the information
she is authorized to, i.e., that she cannot abuse the API to violate the access control pol-
icy. To achieve this, traditional access control (with ACLs independent among different
objects) is not sufficient, since the interdependencies among different keys, arising from
key wrapping and key derivation operations, may open security holes in cryptographic
APIs [2, 7, 9, 11].

The KLMS server supports key wrapping (encrypting a target key under a different
key, called wrapping key) through the export and import operations of KLS. To enforce
strict access control, only key wrapping schemes are allowed that also provide strong
authenticity, such as authenticated symmetric-key encryption in CCM [19] or GCM [12]
padding mode. Through key derivation, a new symmetric key is generated from a parent
key. Multiple keys derived from each other form a hierarchy, where knowledge of one
key implies knowledge of all keys below in the hierarchy. Our system supports key
derivation through the derive operation of KLS.

The KLS module authenticates users and distinguishes between different users who
may execute its operations. The access-control policy is described by the attributes of
the affected object. For some operations, which do not refer to any existing object (e.g.,
create), the access-control policy is governed by a list of permissions associated with
every user.

Every object contains an ACL attribute, containing pairs of users and permissions.
These permissions are: Admin (permits all operations), Derive (permits key derivation
using the key as a parent key), Destroy (permits destroy and delete operations), Export
(permits a key to be exported in a wrapped form), Read (permits reading the key in
cleartext), ReadAttributes (permits gaining knowledge about key attributes), Unwrap
(permits a key to be used for unwrapping in the import operation), and Wrap (permits a
key to be used for wrapping in the export operation).

The system ensures for every ACL that the Admin permission always implies every
other permission, that the Export and Read permissions imply permission to read the
attributes, and that the Read permission implies the Export permission.

There is a boolean attribute strict for every symmetric key and every private key,
which determines whether the object falls under the strict access-control policy and
benefits from its guarantees.

For the implementation of strict access control, the server maintains three special
attributes for every object. First, the dependents attribute contains the identifers of those
objects whose cleartext value can be computed from knowledge of the cleartext value of
the object itself. Conversely, the ancestors attribute contains the set identifiers of those
objects on which the given object depends, i.e., all objects whose dependents attribute
contain the given object. Third, the readers attribute contains the set of users who have,
or may potentially have, obtained the cleartext value of the given object. This may arise
because they have either executed a read operation for the given object and obtained its
cleartext value or because they have executed a read operation for another object that is
contained in the dependents attribute of the other object.

Whenever the server has to authorize an operation executed by user u on a object o, it
checks that the operation is allowed at least by the basic access-control policy, which is
determined directly by the presence of a corresponding permission in the ACL attribute

Design and Implementation of a Key-Lifecycle Management System 171

of o. When o.strict = true, however, the server additionally verifies that the operation
is permitted under the strict access-control policy. This takes the dependencies between
cryptographic objects into account, and the server examines the dependents, ancestors,
and readers attributes of o and possibly of further objects.

To give an example, consider the read operation. It returns the attributes of an ob-
ject o and its cryptographic material in cleartext. For the operation to be permitted,
user u must at least have the Read permission for o; furthermore, if o.strict = true,
then u must also have the Read permission for all objects k that are contained in
o.dependents. This ensures that no key dependent on o is inadvertently leaked to a user
that does not have sufficient privileges.

During all operations that change the dependencies between objects, the server must
update the corresponding attributes, which adds some complexity to the implementa-
tion. For example, if an export operation creates an external representation of an ob-
ject o wrapped with a symmetric key w using a secure key-wrapping method, then o
becomes dependent on w; the server adds o to the dependents attribute of w and adds
the identifier of w to the ancestors attribute of o.

The detailed description of all operations can be found in the full version [6].

5 Implementation and Evaluation

Implementation. Our implementation of the KLMS server, together with the prototype
support for KMIP, measures over 70k lines of Java code. Out of this, the core of the
server (below the Interface layer) takes roughly 20k lines of Java code, with automated
deployment taking slightly over 5.5k lines, and strict access control support around 1.5k
lines. Currently, KLMS supports the four automated deployment patterns presented in
Section 3.1, yet additional patterns can be added in a modular manner. The implemen-
tation of strict access control takes into account the possible size of the object attributes
dependents and readers; these grow with the system’s age and may pose performance
issues if implemented sub-optimally. To cope with this, our implementation uses two
separate global tables in the DB layer for these two attributes. For the readers table,
as for the representation of ACL, DB maintains the identity of a user determined from
an LDAP directory server in the form of the string representation of the user’s LDAP
Distinguished Name.

KLMS support for hardware-security modules (HSM) is foreseen by the architecture,
but has not been implemented yet. Currently, the DB layer is based on a small-footprint
Apache Derby database. The experimental integration of support for KMIP includes the
portable portion of KMIP client/server code (around 28.5k lines of Java code) and the
KMIP/KLMS adapter code (slightly over 4k lines). With this architecture, the support
for KMIP can be easily transferred to a different key server core.

Evaluation. We have measured the performance difference between operations under
the strict access-control policy and operations under the basic access-control policy, to
determine the cost of the additional protection.

The benchmarking server is an IBM x345/6 system with two hyper-threaded Intel
Xeon CPUs running at 3.06GHz and 2GB RAM. It runs our Java prototype of KLMS
on an IBM J9 JVM (build 2.3, J2RE 1.5.0) with Apache Derby 10.3 as the database.

172 M. Björkqvist et al.

Table 2. The table shows the average times taken by four representative operations and the cor-
responding 95%-confidence intervals, in milliseconds

Operation Policy Average latency 95%-confidence interval

Create
basic 4.81 [4.44; 5.19]
strict 5.10 [4.69; 5.51]

Search
basic 2.50 [2.39; 2.61]
strict 2.61 [2.50; 2.72]

Read
basic 2.64 [2.60; 2.69]
strict 3.75 [3.67; 3.83]

Delete
basic 9.38 [8.97; 9.79]
strict 9.97 [9.49; 10.44]

The first experiment consists of running 100 create operations and measuring the
elapsed time or latency. The operations are executed and measured at the service layer
(in KLS). The created keys are then used to separately measure 100 search, 100 read
and 100 delete operations. Because each operation takes only a few milliseconds, mea-
surements are done over 100 operations. Each measurement was also performed 100
times (i.e. a total of 100 × 100 operations each, for strict and for basic access control).
Table 2 summarizes the average time taken by one operation.

Our second experiment measures the scalability of the implementation of the strict
access-control policy in KLMS, when a tree of dependencies grows deeper. The exper-
iment starts by creating a new key and deriving from it a linear hierarchy of 10 keys,
yielding 11 keys in total. We measure the time taken by the derive operation to derive
one key, depending on the depth where this occurs. We chose maximal depth 10 because
it is the maximum depth allowed by certain key-management products; in particular, the
IBM CCA interface [15] allows maximal derivation depth 10. As the latencies are small
(a few dozens of milliseconds), each data point is obtained by taking an average over
100 identical successive operations, and a total of 100 data points are collected per
derivation level (10× 100× 100 derivations in total). Then the ACL of every key in the
hierarchy is modified by adding the read permission for a fixed user, starting from the
deepest key in the hierarchy up to the initial key. We measure the time taken by the set
attributes operation. The measurements are done as previously for the derive operation.

Table 2 shows the overhead of the strict access-control policy for the four operations
in the first experiment. One can see that most operations perform comparably except for
read, which takes on average about 41% longer with strict access control. The reason
is that, unlike with basic access control, the strict policy requires the read operation
to modify the Readers attribute of an object. This explains the extra time taken by the
operation.

Figure 4 shows the results of the second experiment. The measurements demonstrate
that the strict policy scales well with the depth of the derivation tree for the derive
operation, showing, roughly, a constant twofold overhead with respect to basic access
control, with a slight increase for derivation trees deeper than six levels. For the set
attributes operation, we observe a increasing overhead for modifying the ACL of those
keys that have six or more dependent keys.

Design and Implementation of a Key-Lifecycle Management System 173

 5

 10

 15

 20

 25

 30

 2 4 6 8 10

A
ve

ra
ge

 la
te

nc
y

(m
s)

Number of ancestor keys

strict
basic

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 2 4 6 8 10

A
ve

ra
ge

 la
te

nc
y

(m
s)

Number of dependent keys

strict
basic

Fig. 4. The graphs show the average times for the derive operations (left) and the set attributes
operations (right), for varying tree depth

References

[1] Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in a hierarchy.
ACM Transactions on Computer Systems 1(3), 239–248 (1983)

[2] Anderson, R., Bond, M., Clulow, J., Skorobogatov, S.: Cryptographic processors — a sur-
vey. Proceedings of the IEEE 94(2), 357–369 (2006)

[3] Arnold, W., Eilam, T., Kalantar, M.H., Konstantinou, A.V., Totok, A.: Pattern based SOA
deployment. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 1–12. Springer, Heidelberg (2007)

[4] Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key manage-
ment. NIST special publication 800-57, National Institute of Standards and Technology,
NIST (2007)

[5] BITS Security Working Group, Enterprise key management. Whitepaper, BITS Financial
Services Roundtable (2008)

[6] Björkqvist, M., Cachin, C., Haas, R., Hu, X.-Y., Kurmus, A., Pawlitzek, R., Vukolić, M.:
Design and implementation of a key-lifecycle management system. In: Research Report
RZ 3739, IBM Research (June 2009)

[7] Bond, M.: Attacks on cryptoprocessor transaction sets. In: Koç, Ç.K., Naccache, D., Paar,
C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 220–234. Springer, Heidelberg (2001)

[8] Cachin, C., Chandran, N.: A secure cryptographic token interface. In: Proc. Computer Se-
curity Foundations Symposium (CSF-22). IEEE, Los Alamitos (2009)

[9] Clulow, J.: On the security of PKCS#11. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES
2003. LNCS, vol. 2779, pp. 411–425. Springer, Heidelberg (2003)

[10] Cover pages: Cryptographic key management (2009),
http://xml.coverpages.org/keyManagement.html

[11] Delaune, S., Kremer, S., Steel, G.: Formal analysis of PKCS#11. In: Proc. Computer Secu-
rity Foundations Symposium (CSF-21). IEEE, Los Alamitos (2008)

[12] Dworkin, M.: Recommendation for block cipher modes of operation: Galois/Counter Mode
(GCM) and GMAC. In: NIST special publication 800-38D, National Institute of Standards
and Technology, NIST (2003)

[13] Dyer, J.G., Lindemann, M., Perez, R., Sailer, R., van Doorn, L., Smith, S.W., Weingart, S.:
Building the IBM 4758 secure coprocessor. IEEE Computer 34(10), 57–66 (2001)

[14] Hamlets, http://hamlets.sourceforge.net

http://xml.coverpages.org/keyManagement.html
http://hamlets.sourceforge.net

174 M. Björkqvist et al.

[15] International Business Machines Corp., CCA Basic Services Reference and Guide for the
IBM 4758 PCI and IBM 4764 PCI-X Cryptographic Coprocessors (2008)

[16] OASIS Key Management Interoperability Protocol Technical Committee, Key Manage-
ment Interoperability Protocol (2009)

[17] RSA Laboratories, PKCS #11 v2.20: Cryptographic Token Interface Standard (2004),
http://www.rsa.com/rsalabs/

[18] Trusted Computing Group, “Trusted platform module specifications (2008),
http://www.trustedcomputinggroup.org

[19] Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). RFC 3610
(2003)

http://www.rsa.com/rsalabs/
http://www.trustedcomputinggroup.org

Measuring the Perpetrators and
Funders of Typosquatting

Tyler Moore1 and Benjamin Edelman2

1 Harvard School of Engineering and Applied Sciences
tmoore@seas.harvard.edu
2 Harvard Business School

bedelman@hbs.edu

Abstract. We describe a method for identifying “typosquatting”, the
intentional registration of misspellings of popular website addresses. We
estimate that at least 938 000 typosquatting domains target the top 3 264
.com sites, and we crawl more than 285 000 of these domains to analyze
their revenue sources. We find that 80% are supported by pay-per-click
ads, often advertising the correctly spelled domain and its competitors.
Another 20% include static redirection to other sites. We present an auto-
mated technique that uncovered 75 otherwise legitimate websites which
benefited from direct links from thousands of misspellings of competing
websites. Using regression analysis, we find that websites in categories
with higher pay-per-click ad prices face more typosquatting registra-
tions, indicating that ad platforms such as Google AdWords exacerbate
typosquatting. However, our investigations also confirm the feasibility
of significantly reducing typosquatting. We find that typosquatting is
highly concentrated: Of typo domains showing Google ads, 63% use one
of five advertising IDs, and some large name servers host typosquatting
domains as much as four times as often as the web as a whole.

1 Introduction

At the dawn of commercial Internet activity, aggressive website registrants dis-
covered that they could profit by registering domain names matching others’
company names, product names, and trademarks – “cybersquatting,” as the
practice came to be known. Initially, cybersquatting promoted competitors, as
in Princeton Review’s 1994 registration of kaplan.com to divert Internet traffic
intended for a competing test preparation service. Once domain names started
requiring annual renewals, squatters raced to grab domain names when the prior
registrant failed to renew [3]. By 1999, squatters began “typosquatting” – inten-
tionally registering misspellings of popular websites in anticipation that users
mistype those domains and reach squatters’ sites [5].

Cybersquatters have employed several strategies to profit from their regis-
trations. After grabbing particularly valuable domains, some squatters sought
small ransoms from the organizations that most wanted those domains. In one
notorious case [3], a squatter redirected thousands of expired domains to adult

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 175–191, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

176 T. Moore and B. Edelman

websites, making it all the less palatable to leave the domains with the squatter,
and all the more tempting to pay to get the domains back. Separately, following
in Princeton Review’s footsteps, other squatters redirected squatting domains to
direct competitors of the sites users expected. Through such redirects, a squat-
ter could either profit directly (if the squatter also operated the destination site)
or indirectly (through marketing commissions paid by the destination site). Fi-
nally, a growing share of squatters found profits through advertising – typically,
showing pay-per-click ads through the web’s top ad networks.

As the Internet matured, cybersquatting domain registrations came to be
viewed as both disruptive and improper. In 1999, countermeasures to squat-
ting were introduced, including an arbitration procedure (the UDRP) and a
new federal law (the ACPA), both discussed in Section 7.1. The subsequent
decade featured more than 45 000 UDRP disputes and more than $40 million of
ACPA damage awards. Yet our paper shows that cybersquatting and especially
typosquatting remain widespread.

In this article, we explore modern typosquatting. Our methodological con-
tribution is the development of a software system that effectively identifies ty-
posquatting using telltale patterns in domain registrations and configurations.
Our substantive contribution is a characterization of the typosquatting problem,
including estimating its size, assessing who is responsible, and identifying factors
that put some brands, marks, and domains at heightened risk of typosquatting.1

2 Structure and Strategy of the Domaining Business

Most large domain registrants present themselves as “domain parkers” or do-
mainers. Figure 1 outlines the relationship between domainers, advertisers and
Internet authorities. Domainers submit registration requests to registrars (e.g.,
GoDaddy), which provide domain names after confirming availability with reg-
istries (e.g., VeriSign), which in turn are authorized by the Internet Corporation
for Assigned Names and Numbers (ICANN) which coordinates certain Internet
identifiers under contract with the United States Department of Commerce. At
each step, money changes hands: domainers pay registrars which pay registries,
and both registrars and registries pay fees to ICANN.

As Figure 1 depicts, the domaining business can feature numerous variations.
For example, a large domainer may elect to become a registrar – simplifying re-
lationships and eliminating an intermediary. In 2006 litigation, Neiman Marcus
alleged exactly that in a 155-page complaint claiming that Dotster (a large do-
main registrar) hoarded typosquatting domains for its own benefit, failed to dis-
close domain ownership via Whois records, and improperly extracted fees from
companies wanting domains Dotster had collected [9]. There is also variation
in the structure of domainers’ relationships with ad platforms (e.g., Google Ad-
Sense): Large domainers typically work directly with ad platforms, while smaller
domainers typically work through traffic aggregators (e.g., information.com)
that combine traffic from many domainers.
1 http://www.benedelman.org/typosquatting/ details data collected for the paper.

http://www.benedelman.org/typosquatting/

Measuring the Perpetrators and Funders of Typosquatting 177

Department of
CommerceICANN

Registry Registry

Registrar Registrar Registrar

Domainer Domainer Domainer

Ad Platform

Ad i

Ad Platform

Ad i Ad i Ad i Ad i

Traffic Aggregator
integrated registrar domainer

Advertiser Advertiser Advertiser Advertiser Advertiser

Fig. 1. Diagram of relationships

The domain parking business is premised on users arriving at parking sites.
But why do users go to parking sites? Some users seem to type in domain names
randomly, rather than using search engines to find the materials that meet their
requirements – requesting a site like discounthoteldeals.com when seeking
“discount hotel deals.” Such users might end up at domain parking sites match-
ing the generic keywords that embody their requests. But there is another way
for users to arrive at parked domains: misspelling the address of a more popular
site. This practice, typosquatting, is the focus of our paper.

3 Measuring Typosquatting

3.1 Identifying Typosquatting Domains

The first step in studying typosquatting is to identify which domains are similar
enough be deemed typos. We start by gathering a list of popular domains that
could tempt a squatter to register many typo domains. For this paper, we decided
to study the 3 264 .com domains at least 5 characters long appearing in the most
popular 6 000 domains according to Alexa’s June 29, 2009 ranking. We focus on
the most popular sites because, all else equal, popular sites are more likely to
be targeted for typosquatting: The more users seek to visit a domain, the more
users are likely to mistype the domain’s address. (Section 5 empirically examines
the factors affecting typosquatting prevalence.) We excluded very short domains
(4 characters or less) because even one-letter variations may reflect intentional
requests for other short domains, rather than typos of a popular site. Finally,
we only consider .com domains due to .com’s ubiquity and because the zone file
listing all .com domains is publicly available.

Next, we generated a list of plausible misspellings of the 3 264 popular domains.
To identify plausible misspellings, we rely on the Damerau-Levenshtein distance
[2,6]: the minimum number of insertions, deletions, substitutions or transpositions
required to transform one string into another. For example, faceboolk, facebok,
faceboik, and faceboko each have a Damerau-Levenshtein distance of 1 from
facebook. Damerau found that 80% of spelling errors are caused by one such op-
eration. We also created a list of typos with www and com appended to the start

178 T. Moore and B. Edelman

5 6 7 8 9 10 11 12 13 14 15
popular domain length

%
 ty

po
 d

om
ai

ns
0

20
40

60
80

10
0

fat−finger
 distance 1

Levenshtein
 distance 1

fat−finger
 distance 2

Levenshtein
 distance 2

Fig. 2. Typosquatting classification accuracy

and end of the strings, respectively. These appendages help recognize frequent mis-
takes arising out of omitting a ‘.’ when typing a URL.

We also devised a new measure of string distance useful for keyboard mis-
spellings, called fat-finger distance: the minimum number of insertions, deletions,
substitutions or transpositions using letters adjacent on a QWERTY keyboard
to transform one string into another. For example, facebojk has a fat-finger
distance of one from facebook, since ‘j’ is next to ‘k’ on a standard keyboard.

To identify typosquatting domains, we enumerated all strings with a Damerau-
Levenshtein (and fat-finger) distance of up to 2 from each of the 3 264 popular
domains. This captured all plausible one- and two-letter typos of popular do-
mains. We next intersected this set with the nearly 81 million registered .com
domains (according to the .com zone file). This process yielded 1 910 738 regis-
tered .com domains as candidate typo domains of the 3 264 popular domains.

We manually checked a sample of 2 195 domains randomly selected from the
list of 1.9 million candidates. To form this sample, we selected candidate domains
targeting popular domains of length 5–15, allowing variations of Levenshtein
distances of 1 and 2 and with fat-finger distances of 1 and 2. Figure 2 plots the
results with 95% confidence intervals. (In particular, we have 95% confidence
that the true number of .com domains up to a Levenshtein-Damerau distance of
two from the popular domain lie between the numbers posted in the table. Of
course, our analysis omits typo domains of distance≥3 and also typos in other
top-level domains such as .cm.) No matter the length of the popular domain,
typo domains within Levenshtein or fat-finger distance 1 of popular domains
were overwhelmingly confirmed as typos. When we consider typos of distance 2
from popular domains, false positives become more frequent. However, domains
within fat-finger distance 2 of popular domains are more likely to be typos than
domains within only Levenshtien distance of 2. Furthermore, for increasingly
lengthy popular domains, it is increasingly likely that domains with a fat-finger
or Levenshtein distance of 2 are in fact typo domains.

Measuring the Perpetrators and Funders of Typosquatting 179

Table 1. Selected domains highly targeted by typosquatting

candidate point estimate
popular site typo domains typo domains 95% confidence interval

google.com 5 731 2 537 (1 728, 3 252)
youtube.com 3 616 2 069 (1 589, 2 534)
myspace.com 3 482 1 960 (1 457, 2 440)
freecreditreport.com 1 904 1 904 (1 904, 1 904)
hotels.com 4 465 1 865 (1 207, 2 442)
total for 3 264 domains 1 910 738 937 918 (710 872, 1 236 924)

With false positive estimates from our manual checks, we estimated the num-
ber of .com typo domains targeting the popular sites we identified. To do so, we
added up the number of candidate typos matching each popular site; then we
adjusted each candidate’s weight based on our confidence in its accuracy in light
of the typographical distance between the typo domain and the popular domain.
By this methodology, we estimate that approximately 938 000 typo domains tar-
get variations of the 3 264 popular domains we studied. On average, each popular
site is targeted by 281 typo domains, but some sites attract more typosquatting
than others. Table 1 lists the sites that are most targeted by typosquatting.
Topping the list is google.com, for which we found an estimated 2 537 typo do-
mains. That said, as we show in Section 4.1, Google also supports typo domains
by providing both technical assistance and advertisement payments.

3.2 Crawling Typosquatting Websites

We cannot easily visit all 938 000 typo domains without also visiting many sites
that are not typos. Because we wish to learn more about only typosquatting
websites, we decided to crawl only a subset of the typo domains where we know
the vast majority are in fact typos. To that end, we developed a crawler to visit
the 284 914 typo domains where the Damerau-Levenshtein distance between typo
and popular domains is at most one for popular domains between five and nine
characters in length, and a distance of up to two for popular domains at least
ten characters long. Consequently, the totals discussed in the subsequent sections
should be interpreted as a sample of the larger typosquatting population.

The crawler explored each typo site and its links to determine how a given site
is being used, and the crawler recorded all HTML and headers that it received.
The results of our crawl are presented in Sections 4.1 and 4.2.

We designed the crawler to avoid burdening websites or advertisers. The
crawler follows three randomly-selected links on each page, up to (at most)
a depth of three links. Since indiscriminately following pay-per-click links and
redirects could yield unwarranted cost to advertisers and unearned revenues to
squatters, the crawler only invokes a link after comparing that link to a list
of known ad servers. If a link references a known advertising domain, the site
is marked as containing advertisements, the link is recorded, and the crawler

google.com

180 T. Moore and B. Edelman

Table 2. How typo domains are used

classification typo domains %

pay-per-click ads 74 024 79.4
Google 53 364 57.2
Yahoo!/Overture 19 145 20.5
Ask.com 555 0.6
Miva 541 0.6
Enhance 297 0.3

domain redirection/link 19 227 20.6
self-registration 4 133 4.4
affiliate marketing 10 215 11.0
redirect or link to competing site 4 879 5.2

blocked 124 211 –
unclassified 70 729 –

proceeds no further at that site. The same logic is used whenever the crawler
encounters a HTTP redirect. The crawler assures that at most one of its threads
visits a single server (at a single IP address) at a time.

Although our crawler could not retrieve and classify all the typo domains it
identified, we believe the classified domains provide appropriate insight into the
usage of the other domains. For one, 131 637 of the 194 940 blocked or unclassified
domains share the same IP address and name server with domains where we
confirmed the presence of PPC ads.

Our crawler found that 124 211 domains blocked its efforts at inspection.
Some servers host tens of thousands of typo domains. Despite our crawler’s best
efforts, such servers may notice after a machine from a single IP address tries
to visit several links on thousands of domains. In manual tests, we confirmed
that a few of these domains were truly unreachable. But often these “blocked”
domains reside on IP addresses that had previously responded as expected, and
often these “blocked” domains loaded as expected when tested from another IP
address. We therefore conclude that at least some typosquatting hosts recognized
our crawler’s examinations and took steps to prevent our analysis.

In addition to sites that affirmatively blocked our analysis, our crawler was
unable to classify a further 70 729 domains. Many of these domains included
JavaScript links, which our crawler could not reliably follow.

4 How Typosquatting Domains Are Used

From crawling typosquatting pages, we confirmed two main uses for traffic di-
verted to typo domains: placing pay-per-click ads and redirecting to other (often
competing) domains. We discuss our findings for each strategy in turn.

4.1 Squatter Strategy 1: Pay-Per-Click Ads

By far the most common use for typo domains is displaying pay-per-click ad-
vertisements. Of the typo domains our crawler could classify, Table 2 reports

Measuring the Perpetrators and Funders of Typosquatting 181

self-advertising rate popular sites examples

≥75% 18 papajohns (90%), saksfifthavenue (88%)
50%≤. . . <75% 58 expedia (50%), t-mobile (70%)
25%≤. . . <50% 106 wellsfargo (43%), businessweek (48%)
<25% 81 findlaw (21%), tigerdirect (22%)
overall: 36% 263

Fig. 3. wwwexpendia.com shows ads for expedia.com and competitors (top); self-
advertisement prevalence for 263 popular sites buying ads (bottom)

that 80% – over 74 000 – included pay-per-click ads. Most of these websites –
at least 53 364 – partnered with Google to sell ad space to advertisers, select
which ads to display, track clicks, and collect payments, among other functions.
Google’s prevalence in part reflects Google’s large market share in pay-per-click
advertising, and Google further benefits from its development of an advertis-
ing service dedicated to placing ads onto parked domains.2 Next-largest after
Google is Yahoo; we found Yahoo ads on at least 19 145 typo domains. We de-
tected three additional PPC ad providers also being used, but with dramatically
lower prevalence, as detailed in Table 2.

Figure 3 (top) shows PPC ads on wwwexpendia.com. The top advertisement
promotes expedia.com, the same domain misspelled in the user’s request. The
Expedia ad appears because Expedia pays Google to advertise on websites with
“relevant” content, and Google’s algorithm select wwwexpendia.com as a suitable
place for those ads. Consequently, Expedia pays Google whenever a user mis-
spells Expedia and clicks the sponsored link to Expedia [4]. Meanwhile, immedi-
ately below Expedia are advertisements for competitors Orbitz and CheapTick-
ets. Had Expedia chosen not to pay Google to place ads on parked domains,
Google would have shown links only to competing sites.

We found self-advertisements on typo domains targeting 263 popular sites that
bought ads (Figure 3 (bottom)). Sometimes, nearly all typo domains included
ads to the popular site (e.g., 90% for typos of papajohns.com). For others, self-
advertising occured less often (e.g., 22% for tigerdirect.com). Overall, we saw
ads corresponding to the popular site on 36% of typo domains.

2 See Google AdSense for Domains, http://www.google.com/domainpark.

http://www.google.com/domainpark

182 T. Moore and B. Edelman

1 5 10 50 500

0
20

40
60

80
10

0

Google client IDs observed

%
 ty

po
 d

om
ai

ns
 c

ov
er

ed
Google client ID values domains

ca-dp-highlands* 7 14 724
ca-dp-godaddy* 37 7 949
ca-dp-sedo* 14 4 583
ca-dp-sphere* 7 3 809
ca-dp-dopa* 5 1 402
ca-dp-namedrive* 12 489
ca-afdo-pub* 447 1 299
others 721 4 969
total 1 250 39 238

Fig. 4. Advertising client IDs matching typo domains

While stopping so many typo domains may seem like a Sisyphean task, we
found considerable concentration upon closer inspection of PPC ad links. An ad
provider needs to know who to pay for a given advertisement placement, so a
partner ID is passed as a parameter in an ad’s click URL. For example, in the
link http://domains.googlesyndication.com/apps/domainpark/results.cgi?client=ca-dp-mborin&...

on cartoonntewrok.com, the client parameter is set to ca-dp-mborin – indi-
cating Google will pay the corresponding partner if a user clicks that ad link. On
other domains, these parameters appear in HTML entity encoding, in redirects,
and/or in JavaScript variables.

We found partner ID codes for 74% of typo domains showing Google ads.
While 1 250 different codes were found, some turned up disproportionately of-
ten. Figure 4 (left) plots the cumulative distribution of typo domains by partner
ID (note the logarithmic x-axis). The top 5 partner IDs cover 63% of the Google
typo domains we explored, and the top 10 cover 76%. The most frequent part-
ner ID was ca-dp-highlands19 3ph xml, appearing in ad links on 13 542 typo
domains. The table in Figure 4 lists specific partner ID we observed particularly
frequently on typo domains. Large domainers and traffic aggregators often have
recognizable Google IDs, such as ca-dp-godaddy (GoDaddy), ca-dp-namedrive
(NameDrive), ca-dp-sedo (Sedo) and ca-dp-namesphere (NameSphere).

Unfortunately, we could not identify partners from Yahoo ads, since the ads
use a single parameter xargs presenting a lengthy obfuscated string apparently
combining ad destination, partner, and more. While we cannot determine which
Yahoo partner receives credit for a given placement, we can still demonstrate
high concentration among Yahoo partners. For example, one typosquatter passed
Yahoo PPC links as a parameter within redirect URLs with the distinctive pa-
rameter provider set to 1200. This same pattern is found on 10 446 typo do-
mains, nearly all using the same name server and IP address.

4.2 Squatter Strategy 2: Redirection and Linked Domains

Rather than showing pay-per-click ads, other typo domains redirect or link
to predetermined destination domains. We saw three practices in this vein:

Measuring the Perpetrators and Funders of Typosquatting 183

(i) self-registrations/defensive registrations, (ii) affiliate marketing and (iii) redi-
rect or link to competing site.

Self-registrations / defensive registrations. In some instances, a company will
“self-register” misspellings of its key domains. Often, requests for these typo do-
mains redirect a user to the company’s main site, where the user likely intended
to go. Through self-registrations, a company can avoid unwarranted market-
ing expense, such as paying for ads on typo sites, as shown in Figure 3. Self-
registrations also help users reach their intended destinations without extra clicks
or delays. We found 4 133 typo domains that match this profile, in that they share
the same name servers as the popular sites of which they are variants.

Affiliate marketing. Through merchants’ affiliate marketing programs, some ty-
posquatters send users to the sites users intended to visit – but charge the
merchants a fee for providing these referrals.

In affiliate marketing, advertisers pay for referrals on a performance basis:
Send a user to Dell and Dell will pay a commission of 2% or more. Because
affiliate merchants generally only pay when a user makes a purchase, many
merchants fail to supervise their affiliates’ specific promotional methods. Few
affiliate merchants affirmatively allow typosquatting, and most disallow it when
it comes to their attention. But to date, few merchants have uncovered affiliates
engaged in typosquatting. (In a rare exception, Lands’ End sued several squatters
who registered typosquatting domains and redirected resulting traffic to Lands’
End affiliate links [7].)

We saw 10 215 typosquatting domains that linked or redirected to the corre-
sponding popular site, where the name server used by the squatting site and the
popular site differed. We checked all redirections from the misspelled domain
name, looking for redirections to the popular site via an affiliate marketing net-
work. We confirmed 2,697 domains redirected to affiliate marketing networks,
including 905 typo domains promoting Commission Junction merchants, 652
promoting LinkShare merchants, and 290 promoting Performics (Google Af-
filiate Network) merchants. Another 4 629 redirected to the legitimate domain,
either as a result of defensive registration or for directly managing affiliates (e.g.,
bookihng.com redirects to booking.com/?aid=311266;label=11-booking-promo).

Redirects or links to competing site. When users attempt to visit a popular site,
some typosquatters instead forward the users to a competing site – often in the
same industry, but a notch less popular. For example, pict.com is a relatively
little-known document sharing site (Alexa rank 8 581 as of Aug 27, 2009). But
pict.com is redirected to by typos of 128 competing, more popular sharing sites
– 24 typos of depositfiles.com (Alexa rank 167), 22 typos of picoodle.com
(Alexa rank 5 040), 18 typos of sharebee.com (Alexa rank 1 673), and more.
These redirects take users directly to pict.com with no link codes or partner IDs
of any kind – suggesting that pict.com itself registered these domains and that,
in any event, pict.com is probably not paying partners for this traffic.Similarly,
we found 156 typo domains that are variations of yellowpages.com, which all
redirect to the website yellowpagesoftheworld.com.

pict.com
depositfiles.com
picoodle.com
sharebee.com
pict.com
pict.com
pict.com
yellowpages.com
yellowpagesoftheworld.com

184 T. Moore and B. Edelman

Table 3. Example domains linked to by typo variations of competing domains

yellowpagesoftheworld.com: 158 typo domains
yellowpages.com: yellopasges, yeollwpages, yelkowpages & 153 more
whitepages.com: whigtepages & whitepagecom

bet365.com: 367 typo domains
sportsbook.com: saportsbook, sxportsbook, sportszbook & 325 more
betclic.com: betclico, betclicm, betclicj & 7 more
fulltiltpoker.com: fulltilt6poker, fuylltiltpoker, fulltiltpoke4r & 5 more

pict.com: 128 typo domains
depositfiles.com: dopsktfiles, depositfimes, depositciles & 21 more
picoodle.com: picoodke, picoodme, piciodle & 19 more
sharebee.com: shaerbee, shafebee, shatebee & 15 more

movietheatertickets.biz: 85 typo domains
movietickets.com: movietikits, mpvietickets, muvietickets & 19 more
rottentomatoes.com: rottentomaos, rottentmoatoes, rotentomatoe & 10 more
fandango.com: fandsango, fandnango, faneango & 9 more

total: 75 beneficiary domains on 4 879 typo domains targeting
668 competing popular sites

We developed a simple heuristic to identify typo domains linking to compet-
ing domains. First, we group typo domains that all link to the same beneficiary
domain (e.g., pict.com, a domain benefiting from this group of typo domains).
Next, we consider only those beneficiary domains that are linked by typo do-
mains targeting a small number of popular sites. By focusing on beneficiary
domains receiving traffic from typos on a small number of popular sites, we
identify beneficiary domains that are targeting typosquatting on specific popu-
lar sites (typically, in the same sector), rather than aggregating typo traffic more
generally. Through testing, we adjusted the parameters, and we elected to focus
on beneficiary domains linked by at least 75 typo domains that target no more
than 40 popular sites. Using this criteria, we identified 75 beneficiary domains
that are linked from 4 879 distinct typo domains, which collectively target 668
competing popular sites.

Table 3 lists selected beneficiary domains identified using our heuristic. No-
tably, every beneficiary domain is linked by typos in the same category: ty-
pos of popular casino websites link to bet365.com, popular movie sites link to
movietheatertickets.biz, and so on. This trend is consistent for all benefi-
ciary domains. It is not always clear whether the beneficiary domain directly
registered and configured the typo domains; affiliate marketing and similar re-
lationships can motivate partners to register typo domains.

5 Do Pay-Per-Click Ads Promote Typosquatting?

Table 1 reveals that some popular sites are targeted by typosquatting far more
than others. Why? We initially hypothesized that typosquatting disproportion-
ately afflicts domains that are difficult to spell. To check, we regressed number

pict.com
bet365.com
movietheatertickets.biz

Measuring the Perpetrators and Funders of Typosquatting 185

0 50 100 150 200
typo domains (residual controlling for site popularity)

G
oo

gl
e

P
P

C
 p

ric
e

in
de

x

$0
.2

0

$0
.5

0

$1

$2

$5

Business

World

Shopping

Recreation

Regional

Health

Society
Sports

Arts
Home

Games

Adult

Computers

Kids

Science

Fig. 5. Scatter plot comparing typosquatting incidence to amount paid out by pay-
per-click ads

of typos on popular sites spelling difficulty (with controls for various measures of
popularity of the popular site). We found no effect of spelling difficulty as mea-
sured by number of double letters or presence of adjacent i/e tuples – perhaps
reflecting that these top popular sites have limited variation in spelling difficulty
(as measured by these proxies).

However, we do find significant differences across website categories. To assign
popular sites to categories, we used Alexa’s listings of the top 500 websites for 15
different categories (e.g., Kids and Teens, Business, News). 1 075 of the popular
sites we studied also appeared in one or more of Alexa’s top 500 categories. In a
regression controlling for each popular site’s popularity and number of category
listings, we included a fixed effect for each category, and we noted the coefficient
associated with each category variable. These coefficients form the x coordinates
in Figure 5. For example, the average popular site Alexa places in “Shopping” is
targeted by 143 more typo domains than the average popular site Alexa places
in “Science.”

Because most typo domains are funded by pay-per-click ads, we examined
patterns in PPC pricing across Alexa categories. For each popular site Alexa
listed in each category, we extracted META keywords, and we identified the ten
most frequent keywords in each category. Using the Google Traffic Estimator,
we obtained minimum and maximum PPC price estimates for each frequent
keyword. We formed a Google PPC price index for each category, given by the
average of 1) the median of the minimum PPC prices for keywords in that
category, and 2) the median of the maximum PPC prices in that category.

Combining Alexa’s categorizations with our PPC price index yields the result
shown in Figure 5. Notice the positive association: In categories with higher
PPC prices, parkers registered more typosquatting domains. We interpret this

186 T. Moore and B. Edelman

relationship as evidence that high PPC prices spur typosquatting registrations
in the corresponding categories.

6 Estimating Visitors and Advertising Costs

It is difficult to know precisely how many people visit typo sites. However, even
a rough approximation helps confirm the impact on consumers and advertisers.
Using the estimates in preceding sections plus public site traffic data, in this
section we form an estimate of the number of visitors reaching typo sites, as well
as the fees advertisers pay to Google, the ad platform which most frequently
funds typo sites.

For site traffic data, we look to Alexa, which estimates the popularity of
selected websites. For a sufficiently popular site, even the site’s typosquatting
misspellings receive enough traffic for Alexa to estimate their popularity. How-
ever, less popular sites receive too little traffic at their typosquatting variants
for Alexa to report a rank for those typo sites. We therefore begin our analysis
by considering Alexa’s estimates of the number of daily visitors browsing close
typos of the 50 most popular .com websites. On average, visitors to a site’s typo
domains total 0.7% of visits to the genuine site. Extrapolating with this percent-
age to consider all 3 264 popular sites studied in this paper, we estimate that
typo domains collectively receive at least 22.1 million daily visitors. If these typo
domains were treated as a single website, that site would be ranked by Alexa as
the 36th most popular website in the world.

Expanding to the top 100 000 sites, and retaining the 0.7% estimated ratio
of typosquatting visitors per popular site, we estimate that typo domains col-
lectively receive at least 68.2 million daily visitors. If these typo domains were
treated as a single website, that site would be ranked by Alexa as the 10th most
popular website in the world. It would be more popular, in unique daily visitors,
than twitter.com, myspace.com, or amazon.com!

How much do advertisers pay for this traffic? Table 2 reports that 57% of typo
domains include Google pay-per-click ads. But prices and click-through rates
vary across Google partners, and to our knowledge Google has never publicly
reported its revenues from domain parking sites. To estimate Google’s charges,
we turn to Forbes coverage of a Trefis analyst report3 based on Google’s recent
SEC filings, concluding that Google’s revenue per search is 3.5 cents. Meanwhile,
Google’s AdSense for Domains case study4 indicates that Google’s domain park-
ing prices are comparable to other Google prices, letting us use Google’s search
prices to estimate prices on typosquatting sites. Combining these factors, and
extrapolating across the top 100 000 sites with the other values estimated above,
we estimate that Google’s revenue from typosquatting on the top 100 000 sites
is $497 million per year. In fact, comparing domain parking sites to ordinary
3 http://blogs.forbes.com/greatspeculations/2010/01/29/

google-spending-less-to-make-more/
4 http://www.google.com/adwords/casestudies/EfficientFrontierAFDCaseStudy.

pdf

http://blogs.forbes.com/greatspeculations/2010/01/29/google-spending-less-to-make-more/
http://blogs.forbes.com/greatspeculations/2010/01/29/google-spending-less-to-make-more/
http://www.google.com/adwords/casestudies/EfficientFrontierAFDCaseStudy.pdf
http://www.google.com/adwords/casestudies/EfficientFrontierAFDCaseStudy.pdf

Measuring the Perpetrators and Funders of Typosquatting 187

search results, we expect that the parking sites (including typo sites) have a
higher click-through rate (because they typically show only ads, and no other
links) and a higher conversion rate (Google’s case study suggests that twice the
conversion rate of search). If so, advertisers’ costs for typosquatting placements
could easily exceed our estimate by a factor of two or more.

7 Countering Typosquatting

7.1 Existing Efforts to Regulate Typosquatting

The rise of typosquatting in the 1990’s prompted a series of regulations intended
to put a check on abusive domain registrations. Initially, domain registrations
were challenged primarily under trademark law, common law, and the arbitra-
tion procedures specified under domain registration agreements. For example, in
arbitration arising out of Princeton Review’s 1994 registration of kaplan.com,
a panel held that Princeton Review had obtained the domain in bad faith with
the objective of confusing consumers and harming Kaplan’s reputation, and the
panel ordered that the domain be transfered to Kaplan pursuant to the regis-
tration agreement Princeton Review had accepted upon registering the domain.
In the subsequent MTV Networks v. Curry [8], a federal court noted similari-
ties between domain names and mnemonic telephone numbers, suggesting that
existing trademark law could apply to domain names.

After half a decade chasing cybersquatters, repeat plaintiffs offered three ma-
jor complaints. First, it was increasingly burdensome to pursue many infringing
domains; tens of thousands of dollars of attorney time to resolve each dispute
compares unfavorably to tens of dollars for squatters to register new domains.
In response, ICANN developed the Uniform Domain-Name Dispute-Resolution
Policy (UDRP). For a relatively small filing fee of $1 300 to $4 000, complainants
could seek electronic adjudication of an allegedly-infringing domains.

Second, plaintiffs faced cybersquatters who failed to disclose their true names
and addresses, making a traditional lawsuit hard. The 1998 Anti-cybersquatting
Consumer Protection Act (ACPA) (15 USC §1125(d)) offered an alternative,
allowing a plaintiff to sue a domain in rem – suing the domain itself, rather than
the domain’s registrant. Domains were found to be at the location of the relevant
registrar, registry, or other domain name authority. A plaintiff could petition a
court in that jurisdiction for transfer or cancellation of a disputed domain.

Finally, plaintiffs worried that cybersquatters faced skewed incentives that
invited infringements. Previously, after registering an infringing domain, a ty-
posquatter could profit from its use until a court or arbitrator ordered the domain
transferred or canceled. Cybersquatters therefore faced little real downside – at
most, the forfeiture of the initial registration fee and litigation costs (minimal if
the cybersquatter ignored litigation). The ACPA added the threat of significant
statutory damages – $1 000 to $100 000 per domain name (15 USC §1117(d)).
The threat of such damages were to deter would-be cybersquatters.

Private plaintiffs pursued these new mechanisms to put a check on cyber-
squatting. Between 1999 and August 2009, complainants invoked the UDRP

188 T. Moore and B. Edelman

Table 4. Name servers with the most typosquatted domains

Name servers > 100 000 domains Name servers > 1 000 domains
name server % typo typos name server % typo typos

dnsnameserver.org 4.75 19 217 moniker.com 61.65 910
trellian.com 4.47 11 962 ipmanagerinc.net 55.63 787
hitfarm.com 3.76 17 073 citizenhawk.net 31.88 1 766
dsredirection.com 3.60 59 845 dexner.com 18.85 375
linkz.com 2.98 3 765 aphost.com 17.96 4 244
fastpark.net 2.77 7 715 freeredirection.net 17.94 1 438
above.com 2.77 16 691 ehostinginc.com 17.89 181
sedoparking.com 2.51 35 216 nnw.net 17.10 250
parked.com 2.48 13 993 onlinednsservice.net 15.09 2 844

bottom 5
...

... plus 97 name servers above 5% typo domains
ipowerweb.net 0.32 569
ipowerdns.com 0.30 522
123-reg.co.uk 0.26 860
abac.com 0.14 248
vpweb.com 0.12 127

arbitration procedure more than 45 000 times, reclaiming domains in over 85% of
disputes [1]. Meanwhile, some companies pursued ACPA claims in court. Neiman
Marcus filed lawsuits against typosquatters including Dotster, Name.com, and
Spot Domains. Verizon sued Chinese registrar OnlineNIC, which ignored the
proceedings and suffered a $33 million default judgment for 633 typo domains
of Verizon marks [10]. Microsoft sued OnlineNIC, Maltuzi, and others, and sent
hundreds of subpoenas to identify typosquatters. Meanwhile, as early as 2005,
Microsoft Research documented 8 923 typo domains (Internet-wide, not just for
Microsoft marks) and noted how many typo domains showed PPC ads [12].

Despite thousands of complaints against typosquatting, the problem remains.
45 000 UDRP complaints represents less than 5% of the currently active ty-
posquatting sites we found. Remarkably, even vigilant companies remain highly
targeted. Months after its widely-reported judgment, Verizon still suffers at least
767 typo domains on its verizonwireless.com and verizon.com domains. For
Neiman Marcus, we still see 65 typo domains, and for Microsoft 437. It seems the
current approach of individual trademark holders pursuing individual squatters
has not been effective in preventing or discouraging typosquatting by others.
Therefore, we next consider methods to influence companies that distinctively
benefit from typosquatting: domain aggregators and advertising platforms.

7.2 Identifying Servers That Distinctively Host Typo Domains

Large domainers typically host their domains on a single set of name servers. By
comparing the incidence of typo domains across name servers, we assess which
name servers host disproportionately many typo domains.

Our analysis found 937 918 typo domains out of 80 988 864 .com domains;
consequently, any name server with over 1.16% typo domains is above average.
Table 4 (left) shows the incidence of typosquatting at large name servers. Many
large parking companies identified in Section 4.1 have disproportionately many

verizonwireless.com
verizon.com

Measuring the Perpetrators and Funders of Typosquatting 189

typo domains: 2.5% of domains resolved by sedoparking.com are typos, over
twice the rate on the web as a whole. On smaller name servers, typo domains
can be even more frequent. Table 4 (right) considers name servers hosting at
least 1 000 names. Topping the list is moniker.com, with 62% typo domains.

At the same time, other name servers feature disproportionately infrequent
typo domains. For example, the bottom of Table 4 (left) shows large name servers
with typo domains as infrequent as 0.12%, one tenth the Internet-wide average.

7.3 The Role and Responsibility of Ad Platforms

We pause for an important disclosure: One of the authors (Edelman) is co-counsel
in litigation seeking to hold Google liable for using typosquatting domains to dis-
play advertising [11]. However, we now write not as lawyers but as engineer and
economist seeking to address typosquatting in the most efficient way possible.

As shown in Section 3.1 and Table 2, of the typo domains we successfully
crawled, nearly 80% showed pay-per-click advertisements that came from the
ad platforms operated by the web’s top search engines, principally Google and
(to a significantly lesser extent) Yahoo. Because ad platforms are the primary
or sole source of revenue for these typo domains, we believe ad platforms are
well-positioned to substantially reduce typosquatting. Among other responses,
ad platforms could select partners more carefully, select only partners with a
demonstrated record of avoiding typosquatting, and/or sever ties to partners who
are found to engage in typosquatting. Furthermore, ad platforms could require
that new partners showing ads on many domains post a bond that is forfeited
upon typosquatting, or deduct penalties from payments to any partners found
to engage in typosquatting. To the best of our knowledge, ad platforms have
taken none of these steps.

Ad platforms typically claim that a website or trademark owner targeted by
typosquatting should address its complaint directly to the typosquatter, not to
the ad platform that pays the typosquatter. For example, Google’s AdSense for
Domains complaint page argues that “Google is not in any way involved with the
selection or registration of these domain names, and is not in a position to arbi-
trate trademark disputes between the registrants, our partners, and trademark
owners. Accordingly, we encourage trademark owners to resolve their disputes
directly with the registrants or registrars.”5 By stepping out of disputes between
sites and typosquatters, ad platforms’ preferred approach simplifies disputes (to
entail two parties rather than three) and, of course, limits ad platforms’ potential
liability.

Despite the simplification resulting from ad platforms’ preferred approach,
we see multiple problems with ad platforms disclaiming all responsibility for the
typosquatting they fund. For one, our analysis confirms that payments from ad
platforms are the sole force behind most typosquatting registrations. Further-
more, ad platforms are least-cost avoiders – able to prevent typosquatting with

5 http://adwords.google.com/support/aw/bin/answer.py?

answer=50003&topic=26

http://adwords.google.com/support/aw/bin/answer.py?answer=50003&topic=26
http://adwords.google.com/support/aw/bin/answer.py?answer=50003&topic=26

190 T. Moore and B. Edelman

less effort than any other party. In particular, thanks to the semantic analysis
capabilities and spelling correction skills search engines gained through their
principal businesses, ad platforms are well equipped to identify typosquatting
registrations. (Consider Google’s well-known and strikingly accurate “Did you
mean?” function.) Indeed, search engines already receive information about the
domains users visit (necessary to target ads accordingly). It would be straightfor-
ward to compare these requests to a list of top trademarks, and disallow parking
ads from appearing on domains that are misspellings of popular sites.

The dynamics of the typosquatting business give ad platforms a particularly
powerful opportunity to undermine typosquatting. Suppose a site owner pursued
a few large typosquatters. The associated typo domains would tend to scatter to
numerous smaller typosquatters who could not be identified, located, or pursued
cost-effectively (as has already happened to Microsoft, Verizon and others). In
contrast, ad platforms enjoy unique positions of authority, buttressed by their
relationships with advertisers. Consequently, ad platforms can authoritatively
undermine typosquatting, in a way that no individual site owner can.

8 Conclusions

We are struck by the scale of the problem of typosquatting – at least many
hundreds of thousands of typo domains, and probably millions – despite sub-
stantial public and private efforts to discourage such registrations. Yet with such
strong economics supporting typosquatting – payments from Google and others
– perhaps it is no surprise that typosquatting is as prevalent as ever.

We suspect typosquatting will continue so long as advertisers and ad networks
continue to fuel and fund these practices. But let no one suggest identifying
typo domains is impossible: The overwhelming majority of typos are easy to
recognize, by hand or using straightforward automation. At the same time, with
typo domains highly concentrated at a few large domainers and ad platforms,
intermediaries could significantly discourage the registration and use of typo
domains if they were so inclined.

References

1. Brand Owners Could Have Prevented $220 Millio. In: Domain Name Recovery By
Spending $1 Million. Corporation Service Company (August 24, 2009)

2. Damerau, F.J.: A Technique for Computer Detection and Correction of Spelling
Errors. Communications of the ACM 7(3), 171–176 (1964)

3. Edelman, B.: Domains Reregistered for Distribution of Unrelated Content: A
Case Study of Tina’s Free Live Webcam (2002), http://cyber.law.harvard.edu/
people/edelman/renewals/

4. Edelman, B.: How Google and Its Partners Inflate Measured Conversion Rates and
Increase Advertisers’ Costs (2009),
http://www.benedelman.org/news/051309-1.html

5. Edelman, B.: Large-Scale Registration of Domains with Typographical Errors
(2003), http://cyber.law.harvard.edu/people/edelman/typo-domains/

http://cyber.law.harvard.edu/people/edelman/renewals/
http://cyber.law.harvard.edu/people/edelman/renewals/
http://www.benedelman.org/news/051309-1.html
http://cyber.law.harvard.edu/people/edelman/typo-domains/

Measuring the Perpetrators and Funders of Typosquatting 191

6. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals. Soviet Physics Doklady (1966)

7. Lands’ End, Inc. v. Eric Remy, et al, W.D.Wis (2006)
8. MTV Networks v. Curry, 867 F.Supp. 202. SDNY (1994)
9. The Neiman Marcus Group Inc., et al., v. Dotster Inc., et al, W.D.Wa (2006)

10. Perez, M.: Verizon wins $33 Million In Cybersquatting Case. Information Week
(December 30, 2008)

11. Vulcan Golf, LLC, et al., v. Google, Inc., et al. N.D.Ill. Case No 1:2007cv03371
12. Wang, Y., Beck, D., Wang, J., Verbowski, C., Daniels, B.: Strider Typo-Patrol:

Discovery and Analysis of Systematic Typo-Squatting. In: 2nd USENIX Workshop
on Steps to Reducing Unwanted Traffic on the Internet (SRUTI) (July 2006)

A Learning-Based Approach to Reactive Security

Adam Barth1, Benjamin I.P. Rubinstein1, Mukund Sundararajan3,
John C. Mitchell4, Dawn Song1, and Peter L. Bartlett1,2

1 Computer Science Division
2 Department of Statistics, UC Berkeley

3 Google Inc., Mountain View, CA
4 Department of Computer Science, Stanford University

Abstract. Despite the conventional wisdom that proactive security is
superior to reactive security, we show that reactive security can be com-
petitive with proactive security as long as the reactive defender learns
from past attacks instead of myopically overreacting to the last attack.
Our game-theoretic model follows common practice in the security lit-
erature by making worst-case assumptions about the attacker: we grant
the attacker complete knowledge of the defender’s strategy and do not
require the attacker to act rationally. In this model, we bound the com-
petitive ratio between a reactive defense algorithm (which is inspired by
online learning theory) and the best fixed proactive defense. Additionally,
we show that, unlike proactive defenses, this reactive strategy is robust
to a lack of information about the attacker’s incentives and knowledge.

1 Introduction

Many enterprises employ a Chief Information Security Officer (CISO) to man-
age the enterprise’s information security risks. Typically, an enterprise has many
more security vulnerabilities than it can realistically repair. Instead of declaring
the enterprise “insecure” until every last vulnerability is plugged, CISOs typi-
cally perform a cost-benefit analysis to identify which risks to address, but what
constitutes an effective CISO strategy? The conventional wisdom [28,21] is that
CISOs ought to adopt a “forward-looking” proactive approach to mitigating se-
curity risk by examining the enterprise for vulnerabilities that might be exploited
in the future. Advocates of proactive security often equate reactive security with
myopic bug-chasing and consider it ineffective. We establish sufficient conditions
for when reacting strategically to attacks is as effective in discouraging attackers.

We study the efficacy of reactive strategies in an economic model of the CISO’s
security cost-benefit trade-offs. Unlike previously proposed economic models of
security (see Section 7), we do not assume the attacker acts according to a
fixed probability distribution. Instead, we consider a game-theoretic model with
a strategic attacker who responds to the defender’s strategy. As is standard in
the security literature, we make worst-case assumptions about the attacker. For
example, we grant the attacker complete knowledge of the defender’s strategy
and do not require the attacker to act rationally. Further, we make conservative

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 192–206, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

A Learning-Based Approach to Reactive Security 193

assumptions about the reactive defender’s knowledge and do not assume the
defender knows all the vulnerabilities in the system or the attacker’s incentives.
However, we do assume that the defender can observe the attacker’s past actions,
for example via an intrusion detection system or user metrics [4].

In our model, we find that two properties are sufficient for a reactive strategy
to perform as well as the best proactive strategies. First, no single attack is
catastrophic, meaning the defender can survive a number of attacks. This is
consistent with situations where intrusions (that, say, steal credit card numbers)
are regrettable but not business-ending. Second, the defender’s budget is liquid,
meaning the defender can re-allocate resources without penalty. For example, a
CISO can reassign members of the security team from managing firewall rules
to improving database access controls at relatively low switching costs.

Because our model abstracts many vulnerabilities into a single graph edge, we
view the act of defense as increasing the attacker’s cost for mounting an attack
instead of preventing the attack (e.g., by patching a single bug). By making
this assumption, we choose not to study the tactical patch-by-patch interaction
of the attacker and defender. Instead, we model enterprise security at a more
abstract level appropriate for the CISO. For example, the CISO might allocate a
portion of his or her budget to engage a consultancy, such as WhiteHat or iSEC
Partners, to find and fix cross-site scripting in a particular web application or
to require that employees use SecurID tokens during authentication. We make
the technical assumption that attacker costs are linearly dependent on defense
investments locally. This assumption does not reflect patch-by-patch interaction,
which would be better represented by a step function (with the step placed at the
cost to deploy the patch). Instead, this assumption reflects the CISO’s higher-
level viewpoint where the staircase of summed step functions fades into a slope.

We evaluate the defender’s strategy by measuring the attacker’s cumulative
return-on-investment, the return-on-attack (ROA), which has been proposed
previously [8]. By studying this metric, we focus on defenders who seek to “cut
off the attacker’s oxygen,” that is to reduce the attacker’s incentives for attack-
ing the enterprise. We do not distinguish between “successful” and “unsuccessful”
attacks. Instead, we compare the payoff the attacker receives from his or her ne-
farious deeds with the cost of performing said deeds. We imagine that sufficiently
disincentivized attackers will seek alternatives, such as attacking a different or-
ganization or starting a legitimate business.

In our main result, we show sufficient conditions for a learning-based reactive
strategy to be competitive with the best fixed proactive defense in the sense that
the competitive ratio between the reactive ROA and the proactive ROA is at
most 1 + ε, for all ε > 0, provided the game lasts sufficiently many rounds (at
least Ω(1/ε)). To prove our theorems, we draw on techniques from the online
learning literature. We extend these techniques to the case where the learner
does not know all the game matrix rows a priori, letting us analyze situations
where the defender does not know all the vulnerabilities in advance. Although
our main results are in a graph-based model with a single attacker, our results
generalize to a model based on Horn clauses with multiple attackers. Our results

194 A. Barth et al.

Fig. 1. An attack graph representing an enterprise data center

are also robust to switching from ROA to attacker profit and to allowing the
proactive defender to revise the defense allocation a fixed number of times.

Although myopic bug chasing is most likely an ineffective reactive strategy, we
find that in some situations a strategic reactive strategy is as effective as the opti-
mal fixed proactive defense. In fact, we find that the natural strategy of gradually
reinforcing attacked edges by shifting budget from unattacked edges “learns” the
attacker’s incentives and constructs an effective defense. Such a strategic reactive
strategy is both easier to implement than a proactive strategy—because it does
not presume that the defender knows the attacker’s intent and capabilities—and
is less wasteful than a proactive strategy because the defender does not expend
budget on attacks that do not actually occur. Based on our results, we encourage
CISOs to question the assumption that proactive risk management is inherently
superior to reactive risk management.

Organization. Section 2 formalizes our model. Section 3 shows that perimeter
defense and defense-in-depth arise naturally in our model. Section 4 presents our
main results bounding the competitive ratio of reactive versus proactive defense
strategies. Section 5 outlines scenarios in which reactive security out-performs
proactive security. Section 6 generalizes our results to Horn clauses and multiple
attackers. Section 7 relates related work. Section 8 concludes.

2 Formal Model

In this section, we present a game-theoretic model of attack and defense. Unlike
traditional bug-level attack graphs, our model is meant to capture a managerial
perspective on enterprise security. The model is somewhat general in the sense
that attack graphs can represent a number of concrete situations, including a
network (see Figure 1), components in a complex software system [9], or an
Internet Fraud “Battlefield” [13].

System. We model a system using a directed graph (V, E), which defines the
game between an attacker and a defender. Each vertex v ∈ V in the graph
represents a state of the system. Each edge e ∈ E represents a state transition the
attacker can induce. For example, a vertex might represent whether a particular
machine in a network has been compromised by an attacker. An edge from one
machine to another might represent that an attacker who has compromised the

A Learning-Based Approach to Reactive Security 195

first machine might be able to compromise the second machine because the two
are connected by a network. Alternatively, the vertices might represent different
components in a software system. An edge might represent that an attacker
sending input to the first component can send input to the second.

In attacking the system, the attacker selects a path in the graph that be-
gins with a designated start vertex s. Our results hold in more general models
(e.g., based on Horn clauses), but we defer discussing such generalizations until
Section 6. We think of the attack as driving the system through the series of
state transitions indicated by the edges included in the path. In the networking
example in Figure 1, an attacker might first compromise a front-end server and
then leverage the server’s connectivity to the back-end database server to steal
credit card numbers from the database.

Incentives and Rewards. Attackers respond to incentives. For example, at-
tackers compromise machines and form botnets because they make money from
spam [20] or rent the botnet to others [32]. Other attackers steal credit card
numbers because credit card numbers have monetary value [10]. We model the
attacker’s incentives by attaching a non-negative reward to each vertex. These
rewards are the utility the attacker derives from driving the system into the state
represented by the vertex. For example, compromising the database server might
have a sizable reward because the database server contains easily monetizable
credit card numbers. We assume the start vertex has zero reward, forcing the
attacker to undertake some action before earning utility. Whenever the attacker
mounts an attack, the attacker receives a payoff equal to the sum of the rewards
of the vertices visited in the attack path: payoff(a) =

∑
v∈a reward(a). In the

example from Figure 1, if an attacker compromises both a front-end server and
the database server, the attacker receives both rewards.

Attack Surface and Cost. The defender has a fixed defense budget B > 0,
which the defender can divide among the edges in the graph according to a
defense allocation d: for all e ∈ E, d(e) ≥ 0 and

∑
e∈E d(e) ≤ B.

The defender’s allocation of budget to various edges corresponds to the de-
cisions made by the Chief Information Security Officer (CISO) about where to
allocate the enterprise’s security resources. For example, the CISO might allo-
cate organizational headcount to fuzzing enterprise web applications for XSS
vulnerabilities. These kinds of investments are continuous in the sense that the
CISO can allocate 1/4 of a full-time employee to worrying about XSS. We denote
the set of feasible allocations of budget B on edge set E by DB,E .

By defending an edge, the defender makes it more difficult for the attacker
to use that edge in an attack. Each unit of budget the defender allocates to an
edge raises the cost that the attacker must pay to use that edge in an attack.
Each edge has an attack surface [19] w that represents the difficulty in defending
against that state transition. For example, a server that runs both Apache and
Sendmail has a larger attack surface than one that runs only Apache because
defending the first server is more difficult than the second. Formally, the attacker
must pay the following cost to traverse the edge: cost(a, d) =

∑
e∈a d(e)/w(e).

Allocating defense budget to an edge does not “reduce” an edge’s attack surface.

196 A. Barth et al.

For example, consider defending a hallway with bricks. The wider the hallway
(the larger the attack surface), the more bricks (budget allocation) required to
build a wall of a certain height (the cost to the attacker).

In this formulation, the function mapping the defender’s budget allocation to
attacker cost is linear, preventing the defender from ever fully defending an edge.
Our use of a linear function reflects a level of abstraction more appropriate to
a CISO who can never fully defend assets, which we justify by observing that
the rate of vulnerability discovery in a particular piece of software is roughly
constant [29]. At a lower level of detail, we might replace this function with a step
function, indicating that the defender can “patch” a vulnerability by allocating
a threshold amount of budget.

Objective. To evaluate defense strategies, we measure the attacker’s incentive
for attacking using the return-on-attack (ROA) [8], which we define as follows:

ROA(a, d) =
payoff(a)
cost(a, d)

We use this metric for evaluating defense strategy because we believe that if
the defender lowers the ROA sufficiently, the attacker will be discouraged from
attacking the system and will find other uses for his or her capital or industry.
For example, the attacker might decide to attack another system. Analogous
results hold if we quantify the attacker’s incentives in terms of profit (e.g., with
profit(a, d) = payoff(a) − cost(a, d)), but we focus on ROA for simplicity.

A purely rational attacker will mount attacks that maximize ROA. However,
a real attacker might not maximize ROA. For example, the attacker might not
have complete knowledge of the system or its defense. We strengthen our results
by considering all attacks, not just those that maximize ROA.

Proactive Security. We evaluate our learning-based reactive approach by com-
paring it against a proactive approach to risk management in which the defender
carefully examines the system and constructs a defense in order to fend off future
attacks. We strengthen this benchmark by providing the proactive defender com-
plete knowledge about the system, but we require that the defender commit to a
fixed strategy. To strengthen our results, we state our main result in terms of all
such proactive defenders. In particular, this class of defenders includes the ratio-
nal proactive defender who employs a defense allocation that minimizes the max-
imum ROA the attacker can extract from the system: argmind maxa ROA(a, d).

3 Case Studies

In this section, we describe instances of our model to build the reader’s intu-
ition. These examples illustrate that some familiar security concepts, including
perimeter defense and defense in depth, arise naturally as optimal defenses in our
model. These defenses can be constructed either by rational proactive attackers
or converged to by a learning-based reactive defense.

A Learning-Based Approach to Reactive Security 197

Fig. 2. Attack graph representing a simplified data center network

Perimeter Defense. Consider a system in which the attacker’s reward is non-
zero at exactly one vertex, t. For example, in a medical system, the attacker’s
reward for obtaining electronic medical records might well dominate the value of
other attack targets such as employees’ vacation calendars. In such a system, a
rational attacker will select the minimum-cost path from the start vertex s to the
valuable vertex t. The optimal defense limits the attacker’s ROA by maximizing
the cost of the minimum s-t path. The algorithm for constructing this defense
is straightforward [7]:

1. Let C be the minimum weight s-t cut in (V, E, w).
2. Select the following defense:

d(e) =

{
Bw(e)/Z if e ∈ C

0 otherwise
, where Z =

∑
e∈C

w(e) .

Notice that this algorithm constructs a perimeter defense: the defender allocates
the entire defense budget to a single cut in the graph. Essentially, the defender
spreads the defense budget over the attack surface of the cut. By choosing the
minimum-weight cut, the defender is choosing to defend the smallest attack
surface that separates the start vertex from the target vertex. Real defenders
use similar perimeter defenses, for example, when they install a firewall at the
boundary between their organization and the Internet because the network’s
perimeter is much smaller than its interior.

Defense in Depth. Many experts in security practice recommend that defend-
ers employ defense in depth. Defense in depth rises naturally in our model as an
optimal defense for some systems. Consider, for example, the system depicted
in Figure 2. This attack graph is a simplified version of the data center net-
work depicted in Figure 1. Although the attacker receives the largest reward
for compromising the back-end database server, the attacker also receives some
reward for compromising the front-end web server. Moreover, the front-end web
server has a larger attack surface than the back-end database server because
the front-end server exposes a more complex interface (an entire enterprise web
application), whereas the database server exposes only a simple SQL interface.
Allocating defense budget to the left-most edge represents trying to protect sen-
sitive database information with a complex web application firewall instead of
database access control lists (i.e., possible, but economically inefficient).

The optimal defense against a rational attacker is to allocate half of the de-
fense budget to the left-most edge and half of the budget to the right-most
edge, limiting the attacker to a ROA of unity. Shifting the entire budget to the

198 A. Barth et al.

right-most edge (i.e., defending only the database) is disastrous because the
attacker will simply attack the front-end at zero cost, achieving an unbounded
ROA. Shifting the entire budget to the left-most edge is also problematic because
the attacker will attack the database (achieving an ROA of 5).

4 Reactive Security

To analyze reactive security, we model the attacker and defender as playing
an iterative game, alternating moves. First, the defender selects a defense, and
then the attacker selects an attack. We present a learning-based reactive defense
strategy that is oblivious to vertex rewards and to edges that have not yet been
used in attacks. We prove a theorem bounding the competitive ratio between
this reactive strategy and the best proactive defense via a series of reductions
to results from the online learning theory literature. Other applications of this
literature include managing stock portfolios [26], playing zero-sum games [12],
and boosting other machine learning heuristics [11]. Although we provide a few
technical extensions, our main contribution comes from applying results from
online learning to risk management.

Repeated Game. We formalize the repeated game between the defender and
the attacker as follows. In each round t from 1 to T :

1. The defender chooses defense allocation dt(e) over the edges e ∈ E.
2. The attacker chooses an attack path at in G.
3. The path at and attack surfaces {w(e) : e ∈ at} are revealed to the defender.
4. The attacker pays cost(at, dt) and gains payoff(at).

In each round, we let the attacker choose the attack path after the defender
commits to the defense allocation because the defender’s budget allocation is not
a secret (in the sense of a cryptographic key). Following the “no security through
obscurity” principle, we make the conservative assumption that the attacker can
accurately determine the defender’s budget allocation.

Defender Knowledge. Unlike proactive defenders, reactive defenders do not
know all of the vulnerabilities that exist in the system in advance. (If defend-
ers had complete knowledge of vulnerabilities, conferences such as Black Hat
Briefings would serve little purpose.) Instead, we reveal an edge (and its attack
surface) to the defender after the attacker uses the edge in an attack. For exam-
ple, the defender might monitor the system and learn how the attacker attacked
the system by doing a post-mortem analysis of intrusion logs. Formally, we define
a reactive defense strategy to be a function from attack sequences {ai} and the
subsystem induced by the edges contained in

⋃
i ai to defense allocations such

that d(e) = 0 if edge e �∈ ⋃
i ai. Notice that this requires the defender’s strategy

to be oblivious to the system beyond the edges used by the attacker.

A Learning-Based Approach to Reactive Security 199

Algorithm 1. A reactive defense strategy for hidden edges.
– Initialize E0 = ∅
– For each round t ∈ {2, ..., T}
• Let Et−1 = Et−2 ∪E(at−1)
• For each e ∈ Et−1, let

St−1(e) =

{
St−2(e) + M(e, at−1) if e ∈ Et−2

M(e, at−1) otherwise.

P̃t(e) = β
St−1(e)

t−1

Pt(e) =
P̃t(e)∑

e′∈Et
P̃t(e′)

,

where M(e, a) = −1 [e ∈ a] /w(e) is a matrix with |E| rows and a column for
each attack.

Algorithm. Algorithm 1 is a reactive defense strategy based on the multiplica-
tive update learning algorithm [6,12]. The algorithm reinforces edges on the
attack path multiplicatively, taking the attack surface into account by allocat-
ing more budget to easier-to-defend edges. When new edges are revealed, the
algorithm re-allocates budget uniformly from the already-revealed edges to the
newly revealed edges. We state the algorithm in terms of a normalized defense
allocation Pt(e) = dt(e)/B. Notice that this algorithm is oblivious to unattacked
edges and the attacker’s reward for visiting each vertex. An appropriate setting
for the algorithm parameters βt ∈ [0, 1) will be described below.

The algorithm begins without any knowledge of the graph whatsoever, and so
allocates no defense budget to the system. Upon the tth attack on the system,
the algorithm updates Et to be the set of edges revealed up to this point, and
updates St(e) to be a weight count of the number of times e has been used in an
attack thus far. For each edge that has ever been revealed, the defense allocation
Pt+1(e) is chosen to be β

St(e)
t normalized to sum to unity over all edges e ∈ Et. In

this way, any edge attacked in round t will have its defense allocation reinforced.
The parameter β controls how aggressively the defender reallocates defense

budget to recently attacked edges. If β is infinitesimal, the defender will move
the entire defense budget to the edge on the most recent attack path with the
smallest attack surface. If β is enormous, the defender will not be very agile and,
instead, leave the defense budget in the initial allocation. For an appropriate
value of β, the algorithm will converge to the optimal defense strategy. For
instance, the min cut in the example from Section 3.

Theorems. To compare this reactive defense strategy to all proactive defense
strategies, we use the notion of regret from online learning theory. The following
is an additive regret bound relating the attacker’s profit under reactive and
proactive defense strategies.

200 A. Barth et al.

Theorem 1. The average attacker profit against Algorithm 1 converges to the
average attacker profit against the best proactive defense. Formally, if defense
allocations {dt}T

t=1 are output by Algorithm 1 with parameter sequence βs =(
1 +

√
2 log |Es|/(s + 1)

)−1
on any system (V, E, w, reward, s) revealed online

and any attack sequence {at}T
t=1, then

1
T

T∑
t=1

profit(at, dt) − 1
T

T∑
t=1

profit(at, d
�) ≤ B

√
log |E|

2T
+

B(log |E| + w−1)
T

,

for all proactive defense strategies d� ∈ DB,E where w−1 = |E|−1 ∑
e∈E w(e)−1,

the mean of the surface reciprocals.

Remark 2. We can interpret Theorem 1 as establishing sufficient conditions
under which a reactive defense strategy is within an additive constant of the best
proactive defense strategy. Instead of carefully analyzing the system to construct
the best proactive defense, the defender need only react to attacks in a principled
manner to achieve almost the same quality of defense in terms of attacker profit.

Reactive defense strategies can also be competitive with proactive defense strate-
gies when we consider an attacker motivated by return on attack (ROA). The
ROA formulation is appealing because (unlike with profit) the objective function
does not require measuring attacker cost and defender budget in the same units.
The next result considers the competitive ratio between the ROA for a reactive
defense strategy and the ROA for the best proactive defense strategy.

Theorem 3. The ROA against Algorithm 1 converges to the ROA against best
proactive defense. Formally, consider the cumulative ROA:

ROA
({at}T

t=1, {dt}T
t=1

)
=

∑T
t=1 payoff(at)∑T
t=1 cost(at, dt)

(We abuse notation slightly and use singleton arguments to represent the cor-
responding constant sequence.) If defense allocations {dt}T

t=1 are output by Al-

gorithm 1 with parameters βs =
(
1 +

√
2 log |Es|/(s + 1)

)−1
on any system

(V, E, w, reward, s) revealed online, such that |E| > 1, and any attack sequence
{at}T

t=1, then for all α > 0 and proactive defense strategies d� ∈ DB,E

ROA
({at}T

t=1, {dt}T
t=1

)
ROA

({at}T
t=1, d

�
) ≤ 1 + α ,

provided T is sufficiently large.1

Remark 4. Notice that the reactive defender can use the same algorithm re-
gardless of whether the attacker is motivated by profit or by ROA. As discussed
in Section 5 the optimal proactive defense is not similarly robust.

1 To wit: T ≥
(

13√
2

(
1 + α−1

) (∑
e∈inc(s) w(e)

))2

log |E|.

A Learning-Based Approach to Reactive Security 201

We present proofs of these theorems in the full version [3]. We first prove the
theorems in the simpler setting where the defender knows the entire graph.
Second, we remove the hypothesis that the defender knows the edges in advance.

Lower Bounds. In the full version [3], we use a two-vertex, two-edge graph
to establish a lower bound on the competitive ratio of the ROA for all reactive
strategies. The lower bound shows that the analysis of Algorithm 1 is tight and
that Algorithm 1 is optimal given the information available to the algorithm. The
proof gives an example where the best proactive defense (slightly) out-performs
every reactive strategy, suggesting the benchmark is not unreasonably weak.

5 Advantages of Reactivity

In this section, we examine some situations in which a reactive defender out-
performs a proactive defender. Proactive defenses hinge on the defender’s model
of the attacker’s incentives. If the defender’s model is inaccurate, the defender
will construct a proactive defense that is far from optimal. By contrast, a reactive
defender need not reason about the attacker’s incentives directly. Instead, the
reactive defender learns these incentives by observing the attacker in action.

Learning Rewards. One way to model inaccuracies in the defender’s estimates
of the attacker’s incentives is to hide the attacker’s rewards from the defender.
Without knowledge of the payoffs, a proactive defender has difficulty limiting the
attacker’s ROA. Consider, for example, the star system whose edges have equal
attack surfaces, as depicted in Figure 3. Without knowledge of the attacker’s
rewards, a proactive defender has little choice but to allocate the defense budget
equally to each edge (because the edges are indistinguishable). However, if the
attacker’s reward is concentrated at a single vertex, the competitive ratio for
attacker’s ROA (compared to the rational proactive defense) is the number of
leaf vertices. (We can, of course, make the ratio worse by adding more vertices.)
By contrast, the reactive algorithm we analyze in Section 4 is competitive with
the rational proactive defense because the reactive algorithm effectively learns
the rewards by observing which attacks the attacker chooses.

Robustness to Objective. Another way to model inaccuracies in the de-
fender’s estimates of the attacker’s incentives is to assume the defender mis-
takes which of profit and ROA actually matter to the attacker. The defense
constructed by a rational proactive defender depends crucially on whether the
attacker’s actual incentives are based on profit or based on ROA, whereas the re-
active algorithm we analyze in Section 4 is robust to this variation. In particular,
consider the system depicted in Figure 4, and assume the defender has a budget
of 9. If the defender believes the attacker is motivated by profit, the rational
proactive defense is to allocate the entire defense budget to the right-most edge
(making the profit 1 on both edges). However, this defense is disastrous when
viewed in terms of ROA because the ROA for the left edge is infinite (as opposed
to near unity when the proactive defender optimizes for ROA).

202 A. Barth et al.

Fig. 3. Star-shaped attack graph
with rewards concentrated in an
unknown vertex

Fig. 4. An attack graph that separates the
minimax strategies optimizing ROA and at-
tacker profit

Catachresis. The defense constructed by the rational proactive defender is op-
timized for a rational attacker. If the attacker is not perfectly rational, there is
room for out-performing the rational proactive defense. There are a number of
situations in which the attacker might not mount “optimal” attacks:

– The attacker might not have complete knowledge of the attack graph. Con-
sider, for example, a software vendor who discovers five equally severe vulner-
abilities in one of their products via fuzzing. According to proactive security,
the defender ought to dedicate equal resources to repairing these five vul-
nerabilities. However, a reactive defender might dedicate more resources to
fixing a vulnerability actually exploited by attackers in the wild. We can
model these situations by making the attacker oblivious to some edges.

– The attacker might not have complete knowledge of the defense allocation.
For example, an attacker attempting to invade a corporate network might
target computers in human resources without realizing that attacking the
customer relationship management database in sales has a higher return-on-
attack because the database is lightly defended.

By observing attacks, the reactive strategy learns a defense tuned for the actual
attacker, causing the attacker to receive a lower ROA.

6 Generalizations

Horn Clauses. Thus far, we have presented our results using a graph-based
system model. Our results extend, however, to a more general system model
based on Horn clauses. Datalog programs, which are based on Horn clauses, have
been used in previous work to represent vulnerability-level attack graphs [27]. A
Horn clause is a statement in propositional logic of the form p1∧p2∧· · ·∧pn → q.
The propositions p1, p2, . . . , pn are called the antecedents, and q is called the

A Learning-Based Approach to Reactive Security 203

consequent. The set of antecedents might be empty, in which case the clause
simply asserts the consequent. Notice that Horn clauses are negation-free. In
some sense, a Horn clause represents an edge in a hypergraph where multiple
pre-conditions are required before taking a certain state transition.

In the Horn model, a system consists of a set of Horn clauses, an attack surface
for each clause, and a reward for each proposition. The defender allocates defense
budget among the Horn clauses. To mount an attack, the attacker selects a valid
proof : an ordered list of rules such that each antecedent appears as a consequent
of a rule earlier in the list. For a given proof Π ,

cost(Π, d) =
∑
c∈Π

d(c)/w(e) payoff(Π) =
∑

p∈[[Π]]

reward(p) ,

where [[Π]] is the set of propositions proved by Π (i.e., those propositions that
appear as consequents in Π). Profit and ROA are computed as before.

Our results generalize to this model directly. Essentially, we need only replace
each instance of the word “edge” with “Horn clause” and “path” with “valid proof.”
For example, the rows of the matrix M used throughout the proof become the
Horn clauses, and the columns become the valid proofs (which are numerous,
but no matter). The entries of the matrix become M(c, Π) = 1/w(c), analogous
to the graph case. The one non-obvious substitution is inc(s), which becomes
the set of clauses that lack antecedents.

Multiple Attackers. We have focused on a security game between a single
attacker and a defender. In practice, a security system might be attacked by
several uncoordinated attackers, each with different information and different
objectives. Fortunately, we can show that a model with multiple attackers is
mathematically equivalent to a model with a single attacker with a randomized
strategy: Use the set of attacks, one per attacker, to define a distribution over
edges where the probability of an edge is linearly proportional to the number
of attacks which use the edge. This precludes the interpretation of an attack as
an s-rooted path, but our proofs do not rely upon this interpretation and our
results hold in such a model with appropriate modifications.

Adaptive Proactive Defenders. A simple application of an online learning
result [18], omitted due to space constraints, modifies our regret bounds for
a proactive defender who re-allocates budget a fixed number of times. In this
model, our results remain qualitatively the same.

7 Related Work

Anderson [1] and Varian [31] informally discuss (via anecdotes) how the design
of information security must take incentives into account. August and Tunca [2]
compare various ways to incentivize users to patch their systems in a setting
where the users are more susceptible to attacks if their neighbors do not patch.

Gordon and Loeb [15] and Hausken [17] analyze the costs and benefits of secu-
rity in an economic model (with non-strategic attackers) where the probability

204 A. Barth et al.

of a successful exploit is a function of the defense investment. They use this
model to compute the optimal level of investment. Varian [30] studies various
(single-shot) security games and identifies how much agents invest in security at
equilibrium. Grossklags [16] extends this model by letting agents self-insure.

Miura et al. [24] study externalities that appear due to users having the
same password across various websites and discuss pareto-improving security
investments. Miura and Bambos [25] rank vulnerabilities according to a random-
attacker model. Skybox and RedSeal offer practical systems that help enterprises
prioritize vulnerabilities based on a random-attacker model. Kumar et al. [22]
investigate optimal security architectures for a multi-division enterprise, taking
into account losses due to lack of availability and confidentiality. None of the
above papers explicitly model a truly adversarial attacker.

Fultz [14] generalizes [16] by modeling attackers explicitly. Cavusoglu et al. [5]
highlight the importance of using a game-theoretic model over a decision theo-
retic model due to the presence of adversarial attackers. However, these models
look at idealized settings that are not generically applicable. Lye and Wing [23]
study the Nash equilibrium of a single-shot game between an attacker and a de-
fender that models a particular enterprise security scenario. Arguably this model
is most similar to ours in terms of abstraction level. However, calculating the
Nash equilibrium requires detailed knowledge of the adversary’s incentives, which
as discussed in the introduction, might not be readily available to the defender.
Moreover, their game contains multiple equilibria, weakening their prescriptions.

8 Conclusions

Many security experts equate reactive security with myopic bug-chasing and ig-
nore principled reactive strategies when they recommend adopting a proactive
approach to risk management. In this paper, we establish sufficient conditions for
a learning-based reactive strategy to be competitive with the best fixed proactive
defense. Additionally, we show that reactive defenders can out-perform proac-
tive defenders when the proactive defender defends against attacks that never
actually occur. Although our model is an abstraction of the complex interplay
between attackers and defenders, our results support the following practical ad-
vice for CISOs making security investments:

– Employ monitoring tools that let you detect and analyze attacks against your
enterprise. These tools help focus your efforts on thwarting real attacks.

– Make your security organization more agile. For example, build a rigorous
testing lab that lets you roll out security patches quickly once you detect
that attackers are exploiting these vulnerabilities.

– When determining how to expend your security budget, avoid overreacting
to the most recent attack. Instead, consider all previous attacks, but discount
the importance of past attacks exponentially.

In some situations, proactive security can out-perform reactive security. For
example, reactive approaches are ill-suited for defending against catastrophic

A Learning-Based Approach to Reactive Security 205

attacks because there is no “next round” in which the defender can use infor-
mation learned from the attack. We hope our results will lead to a productive
discussion of the limitations of our model and the validity of our conclusions.

Instead of assuming that proactive security is always superior to reactive
security, we invite the reader to consider when a reactive approach might be
appropriate. For the parts of an enterprise where the defender’s budget is liquid
and there are no catastrophic losses, a carefully constructed reactive strategy can
be as effective as the best proactive defense in the worst case and significantly
better in the best case.

Acknowledgments. We would like to thank Elie Bursztein, Eu-Jin Goh, and
Matt Finifter for their thoughtful comments and helpful feedback. We gratefully
acknowledge the support of the NSF through the TRUST Science and Tech-
nology Center and grants DMS-0707060, CCF-0424422, 0311808, 0448452, and
0627511, and the support of the AFOSR through the MURI Program, and the
support of the Siebel Scholars Foundation.

References

1. Anderson, R.: Why information security is hard—An economic perspective. In:
17th Annual Computer Security Applications Conference, pp. 358–365 (2001)

2. August, T., Tunca, T.I.: Network software security and user incentives. Manage-
ment Science 52(11), 1703–1720 (2006)

3. Barth, A., Rubinstein, B.I.P., Sundararajan, M., Mitchell, J.C., Song, D., Bartlett,
P.L.: A learning-based approach to reactive security (2009),
http://arxiv.org/abs/0912.1155

4. Beard, C.: Introducing Test Pilot (March 2008),
http://labs.mozilla.com/2008/03/introducing-test-pilot/

5. Cavusoglu, H., Raghunathan, S., Yue, W.: Decision-theoretic and game-theoretic
approaches to IT security investment. Journal of Management Information Sys-
tems 25(2), 281–304 (2008)

6. Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D.P., Schapire, R.E., War-
muth, M.K.: How to use expert advice. Journal of the Association for Computing
Machinery 44(3), 427–485 (1997)

7. Chakrabarty, D., Mehta, A., Vazirani, V.V.: Design is as easy as optimization.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4051, pp. 477–488. Springer, Heidelberg (2006)

8. Cremonini, M.: Evaluating information security investments from attackers per-
spective: the return-on-attack (ROA). In: Fourth Workshop on the Economics of
Information Security (2005)

9. Fisher, D.: Multi-process architecture (July 2008), http://dev.chromium.org/
developers/design-documents/multi-process-architecture

10. Franklin, J., Paxson, V., Perrig, A., Savage, S.: An inquiry into the nature and
causes of the wealth of internet miscreants. In: Proceedings of the 2007 ACM
Conference on Computer and Communications Security, pp. 375–388. ACM, New
York (2007)

11. Freund, Y., Schapire, R.: A short introduction to boosting. Journal of the Japanese
Society for Artificial Intelligence 14(5), 771–780 (1999)

http://arxiv.org/abs/0912.1155
http://labs.mozilla.com/2008/03/introducing-test-pilot/
http://dev.chromium.org/developers/design-documents/multi-process-architecture
http://dev.chromium.org/developers/design-documents/multi-process-architecture

206 A. Barth et al.

12. Freund, Y., Schapire, R.E.: Adaptive game playing using multiplicative weights.
Games and Economic Behavior 29, 79–103 (1999)

13. Friedberg, J.: Internet fraud battlefield (April 2007), http://www.ftc.gov/bcp/
workshops/proofpositive/Battlefield_Overview.pdf

14. Fultz, N., Grossklags, J. (eds.): Blue versus Red: Towards a model of distributed
security attacks. Proceedings of the Thirteenth International Conference Financial
Cryptography and Data Security (February 2009)

15. Gordon, L.A., Loeb, M.P.: The economics of information security investment. ACM
Transactions on Information and System Security 5(4), 438–457 (2002)

16. Grossklags, J., Christin, N., Chuang, J.: Secure or insure?: A game-theoretic anal-
ysis of information security games. In: Proceeding of the 17th International Con-
ference on World Wide Web, pp. 209–218. ACM, New York (2008)

17. Hausken, K.: Returns to information security investment: The effect of alternative
information security breach functions on optimal investment and sensitivity to
vulnerability. Information Systems Frontiers 8(5), 338–349 (2006)

18. Herbster, M., Warmuth, M.K.: Tracking the best expert. Machine Learning 32(2),
151–178 (1998)

19. Howard, M.: Attack surface: Mitigate security risks by minimizing the code you
expose to untrusted users. MSDN Magazine (November 2004),
http://msdn.microsoft.com/en-us/magazine/cc163882.aspx

20. Kanich, C., Kreibich, C., Levchenko, K., Enright, B., Voelker, G.M., Paxson, V.,
Savage, S.: Spamalytics: An empirical analysis of spam marketing conversion. In:
Proceedings of the 2008 ACM Conference on Computer and Communications Se-
curity, pp. 3–14. ACM, New York (2008)

21. Kark, K., Penn, J., Dill, A.: 2008 CISO priorities: The right objectives but the
wrong focus. Le Magazine de la Sécurité Informatique (April 2009)

22. Kumar, V., Telang, R., Mukhopadhyay, T.: Optimal information security architec-
ture for the enterprise, http://ssrn.com/abstract=1086690

23. Lye, K.W., Wing, J.M.: Game strategies in network security. In: Proceedings of
the Foundations of Computer Security Workshop, pp. 13–22 (2002)

24. Miura-Ko, R.A., Yolken, B., Mitchell, J., Bambos, N.: Security decision-making
among interdependent organizations. In: Proceedings of the 21st IEEE Computer
Security Foundations Symposium, pp. 66–80. IEEE Computer Society, Washington
(2008)

25. Miura-Ko, R., Bambos, N.: SecureRank: A risk-based vulnerability management
scheme for computing infrastructures. In: Proceedings of IEEE International Con-
ference on Communications, pp. 1455–1460 (June 2007)

26. Ordentlich, E., Cover, T.M.: The cost of achieving the best portfolio in hindsight.
Mathematics of Operations Research 23(4), 960–982 (1998)

27. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gener-
ation. In: Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security, pp. 336–345 (2006)

28. Pironti, J.P.: Key elements of an information security program. Information Sys-
tems Control Journal 1 (2005)

29. Rescorla, E.: Is finding security holes a good idea? IEEE Security and Privacy 3(1),
14–19 (2005)

30. Varian, H.: System reliability and free riding (2001)
31. Varian, H.R.: Managing online security risks, June 1. New York Times (2000)
32. Warner, B.: Home PCs rented out in sabotage-for-hire racket. Reuters (July 2004)

http://www.ftc.gov/bcp/workshops/proofpositive/Battlefield_Overview.pdf
http://www.ftc.gov/bcp/workshops/proofpositive/Battlefield_Overview.pdf
http://msdn.microsoft.com/en-us/magazine/cc163882.aspx
http://ssrn.com/abstract=1086690

Embedded SFE: Offloading Server and Network
Using Hardware Tokens

Kimmo Järvinen1, Vladimir Kolesnikov2,
Ahmad-Reza Sadeghi3, and Thomas Schneider3

1 Dep. of Information and Comp. Science, Aalto University, Finland
kimmo.jarvinen@tkk.fi�

2 Alcatel-Lucent Bell Laboratories, Murray Hill, NJ 07974, USA
kolesnikov@research.bell-labs.com

3 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{ahmad.sadeghi,thomas.schneider}@trust.rub.de��

Abstract. We consider Secure Function Evaluation (SFE) in the client-
server setting where the server issues a secure token to the client. The
token is not trusted by the client and is not a trusted third party.

We show how to take advantage of the token to drastically reduce the
communication complexity of SFE and computation load of the server.

Our main contribution is the detailed consideration of design deci-
sions, optimizations, and trade-offs, associated with the setting and its
strict hardware requirements for practical deployment. In particular, we
model the token as a computationally weak device with small constant-
size memory and limit communication between client and server.

We consider semi-honest, covert, and malicious adversaries. We show
the feasibility of our protocols based on a FPGA implementation.

1 Introduction

Secure and efficient evaluation of arbitrary functions on private inputs has been
subject of cryptographic research for decades. In particular, the following sce-
nario appears in a variety of practical applications: a service provider (server
S) and user (client C) wish to compute a function f on their respective private
data, without incurring the expense of a trusted third party. This can be solved
interactively using Secure Function Evaluation (SFE) protocols, for example us-
ing the very efficient garbled circuit (GC) approach [26]. However, GC protocols
potentially require a large amount of data to be transferred between S and C.
This is because f needs to be encrypted (garbled) as f̃ and transferred from S
to C. In fact, the communication complexity of GC-based SFE protocols is dom-
inated by the size of the GC, which can reach Megabytes or Gigabytes even for
relatively small and simple functions (e.g., the GC for AES has size 0.5 MBytes
[23]). Further, if security against more powerful adversaries is required, the use

� Supported by EU FP7 project CACE.
�� Supported by EU FP6 project SPEED, EU FP7 project CACE and ECRYPT II.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 207–221, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

208 K. Järvinen et al.

of the standard cut-and-choose technique implies transfer of multiple GCs. (For
covert adversaries, the transfer of only one GC is sufficient [7].)

While transmission of this large amount of data is possible for exceptional
occurrences, in most cases, the network will not be able to sustain the resulting
traffic. This holds especially for larger-scale deployment of secure computations,
e.g., by banks or service providers, with a large number of customers. Additional
obstacles include energy consumption required to transmit/receive the data, and
the resulting reduced battery life in mobile clients, such as smartphones.1

Further, computational load on S (computing f̃) is also a significant problem,
especially in the case of large-scale deployment of SFE.

Our setting, goals and approach. Motivated by the possibility of large-scale
and decentralized SFE deployment we aim to remove the expensive communica-
tion requirement, and to shift some of S’s computation to C. To this end, we note
that in SFE protocols, and, in particular, in GC, the role of the server can be
split between two entities, with the introduction of a new entity – secure token
T , which is placed in client C’s possession, but executes S’s code thus offload-
ing S. Further, it is possible to eliminate most of the communication between C
and S and replace this with local communication between C and T . A number
of technical issues arises in this setting, which we address in this work.

More specifically, we discuss and analyze hardware-supported SFE, where
the service provider S issues a secure (see below) hardware token T to C. C
communicates locally with T , and remotely with S. There is no direct channel
between T and S, but of course C can pass (and potentially interfere with)
messages between T and S. T is created by S, so S trusts T ; however, as C does
not trust S, she also does not trust the token T to behave honestly.2

Attack model. We consider all three standard types of adversaries: semi-honest
(follows protocol but analyzes the transcript), malicious (arbitrary behavior,
cheating is always caught), and covert (cheating is caught with a certain deter-
rence probability, e.g., 1/2).

Hardware assumption. We assume T is tamper-proof or tamper-resistant. We
argue that this assumption is reasonable. Indeed, while every token can likely
be broken into, given sufficient resources, we are motivated by the scenarios
where the payoff of the break is far below the cost of the break. This holds
for relatively low-value transactions such as cell phone or TV service, where
the potential benefit of the attack (e.g., free TV for one user) is not worth the
investment of thousands or tens of thousands of dollars to break into the card.
For higher-value applications one could raise the cost of the attack by using a
high-end token T , e.g., a smart card certified at FIPS 140-2, level 3 or 4.

1 In some cases, the impact can be mitigated by creating and transferring GCs in the
precomputation phase. However, this is not fully satisfactory. Firstly, even more data
needs to be transferred since demand cannot be perfectly predicted. Further, this
creates other problems, such as requiring large long-term storage on client devices.

2 Note, if C in fact trusts T to behave honestly, then there exists a trivial solution,
where C would let T compute the function on her inputs [11].

Embedded SFE: Offloading Server and Network Using Hardware Tokens 209

Hardware restrictions. As we assume the token to be produced in large quan-
tities, we try to minimize its costs (e.g., chip surface) and make the assumptions
on it as weak as possible. In particular our token requires only restricted compu-
tational capabilities (no public-key operations) and small constant secure RAM.
We consider T with and without small constant secure non-volatile storage.

Envisioned Applications. As mentioned above, we aim to bring SFE closer
to a large-scale deployment. The need to minimize communication forces us
to rely on tokens, the issuance of which requires certain logistical capabilities.
Therefore, we believe client-server applications are most likely to be the early
adopters of SFE. Further, the natural trust model (semi-honest or covert server
and malicious client) allow for efficient GC protocols. Finally, many client-server
application scenarios naturally include financial and other transactions which
involve sensitive, in particular privacy-sensitive, information.

Today, many service providers already distribute trusted tokens to their users.
Examples include SIM cards in users’ cell phones, and smart cards in users’ TV
set-top boxes. Bank- and credit cards often contain embedded secure chips. Spe-
cial purpose (e.g., diagnostic) medical devices, which need to be monitored and
controlled, are often issued to users at home. In these settings, it is natural to
use the existing infrastructure to enhance the security and privacy guarantees
of the offered products, and to offer new products previously impossible due to
privacy violation concerns. We expand this discussion and consider other appli-
cations, such as privacy protection in targeted advertisement, content delivery,
and remote medical diagnostics, in the full version [13].

1.1 Our Contributions and Outline

Our main contribution is architecture design, implementation, a number of op-
timizations, and detailed analysis of two-party SFE aided by a server-issued
low-cost tamper-proof token. The communication complexity of our protocols is
linear in the size of the input, and is independent of the size of the evaluated
functionality. Further, most of the work of S can be offloaded to T .

We use GC techniques of [15] and offer no-cost XOR gates. We rely on cheap
hardware – the token T only executes symmetric-key operations (e.g., SHA and
AES). T has small constant-size RAM (much smaller than the size of the circuit),
but we do not resort to implementing expensive secure external RAM.

We provide two solutions; in one, T keeps state in secure non-volatile storage
(a monotonic counter), while in the other, T maintains no long-term state.

We consider semi-honest, covert [7], and malicious [16] adversaries; our corre-
sponding communication improvements are shown in Table 1.

Outline. We start with outlining our model and architecture in §3. We describe
the protocols for both stateful and stateless T , and state the security claim in
§4. In §5, we discuss technical details of our FPGA prototype implementation,
present timings and measurements, and show practicality of our solution.

210 K. Järvinen et al.

Table 1. Communication between server S and client C for secure evaluation of func-
tion f with n inputs, statistical security parameter s, and deterrence probability 1−1/r

Security Previous Work This Work
semi-honest [26] O(|f |+ n) O(n)

covert [7] O(|f |+ sn + r) O(sn + r)
malicious [16] O(s|f |+ s2n) O(s2n)

1.2 Related Work

Related work on using tokens for secure computations falls in the following three
categories, summarized in Table 2.

Table 2. Secure Protocols using Hardware Tokens. Columns denote the number of
tokens, who trusts the token(s), if token(s) are stateful or stateless, and perform public-
key operations. Properties more desired for practical applications in bold font.

Type Reference Functionality # Tokens Trusted by Stateful PK ops
A) [10] UC commitment 2 both yes yes

[14,4] UC commitment 2 issuer yes yes
[3] UC commitment 2 issuer no yes
[19] UC commitment 1 issuer yes no

B) [9] Set Intersection, ODBS 1 both yes no
[8] Non-Interact. OT 1 both yes yes
[25] Verif. Enc., Fair Exch. 1 both yes yes

C) [6] SFE 2 both yes yes
[11] SFE 1 both yes yes

This Work SFE 1 issuer yes / no no

A) Setup assumptions for the universal composability (UC) framework. As
shown in [1], UC SFE protocols can be constructed from UC commitments. In
turn, UC commitments can be constructed from signature cards trusted by both
parties [10], or from tamper-proof tokens created and trusted only by the issuing
party [14,19,3,4]. Here, [3] consider stateless tokens, and [19] require only one
party to issue a token. This line of research mainly addresses the feasibility of UC
computation based on tamper-proof hardware and relies on expensive primitives
such as generic zero-knowledge proofs. Our protocols are far more practical.

B) Efficiency Improvements for Specific Functionalities. Efficient protocols
with a tamper-proof token trusted by both players have been proposed for
specific functionalities such as set intersection and oblivious database search
(ODBS) [9], non-interactive oblivious transfer (OT) [8], and verifiable encryp-
tion and fair exchange [25]. In contrast, we solve the general SFE problem.

C) Efficiency Improvements for Arbitrary Functionalities. Clearly, SFE is effi-
cient if aided by a trusted third party (TTP), who simply computes the function.
SFE aided by hardware TTP was considered, e.g., in [6,11]. In contrast, we do
not use TTP; our token is only trusted by its issuer.

Embedded SFE: Offloading Server and Network Using Hardware Tokens 211

2 Preliminaries

Notation. We denote symmetric security parameter by t (e.g., t = 128), and
pseudo-random function (PRF) keyed with k and evaluated on x by PRFk(x).
PRF can be instantiated with a block cipher, e.g., AES, or a cryptographic hash
function H, e.g., SHA-256, which we model as a Random Oracle (RO). AES is
preferable if PRF is run repeatedly with same k as AES’s key schedule amortizes.
Message authentication code (MAC) keyed with k and evaluated on message m
is denoted by MACk(m). We use a MAC that does not need to store the entire
message, but can operate “online” on small blocks, e.g., AES-CMAC [24].

2.1 Garbled Circuits (GC)

Yao’s Garbled Circuit approach [26] is the most efficient method for secure eval-
uation of a boolean circuit C. We summarize its ideas in the following. The
circuit constructor (server S) creates a garbled circuit C̃: for each wire wi of the
circuit, he randomly chooses two garblings w̃0

i , w̃1
i , where w̃j

i is the garbled value
of wi’s value j. (Note: w̃j

i does not reveal j.) Further, for each gate Gi, S creates
a garbled table T̃i with the following property: given a set of garbled values of
Gi’s inputs, T̃i allows to recover the garbled value of the corresponding Gi’s out-
put, but nothing else. S sends these garbled tables, called garbled circuit C̃ to
the evaluator (client C). Additionally, C obliviously obtains the garbled inputs w̃i

corresponding to inputs of both parties: the garbled inputs ỹ corresponding to
the inputs y of S are sent directly and x̃ are obtained with a parallel 1-out-of-2
oblivious transfer (OT) protocol [20]. Now, C can evaluate the garbled circuit C̃

on the garbled inputs to obtain the garbled outputs by evaluating C̃ gate by gate,
using the garbled tables T̃i. Finally, C determines the plain values corresponding
to the obtained garbled output values using an output translation table received
by S. Correctness of GC follows from the way garbled tables T̃i are constructed.

Improved Garbled Circuit with free XOR [15]. An efficient method for
creating garbled circuits which allows “free” evaluation of XOR gates was pre-
sented in [15]. More specifically, a garbled XOR gate has no garbled table (no
communication) and its evaluation consists of XORing the its garbled input val-
ues (negligible computation) – details below. The other gates, called non-XOR
gates, are evaluated as in Yao’s GC construction [26] with a point-and-permute
technique (as used in [18]): The garbled values w̃i = 〈ki, πi〉 ∈ {0, 1}t′ consist of a
symmetric key ki ∈ {0, 1}t and a random permutation bit πi ∈ {0, 1} (recall, t is
the symmetric security parameter). The entries of the garbled table are permuted
such that the permutation bits πi of a gate’s garbled input wires can be used
as index into the garbled table to directly point to the entry to be decrypted.
After decrypting this entry using the garbled input wires’ t-bit keys ki, evaluator
obtains the garbled output value of the gate. The encryption is done with the
symmetric encryption function Encs

k1,...,kd
(m), where d is the number of inputs

of the gate and s is a unique identifier used once. Enc can be instantiated with
m⊕H(k1|| . . . ||kd||s), where H is a RO. We note that the RO assumption can be

212 K. Järvinen et al.

avoided or weakened at small additional computation cost – see full version [13].
The main observation of [15] is, that the constructor S chooses a global key
difference Δ ∈R {0, 1}t which remains unknown to evaluator C and relates the
garbled values as k0

i = k1
i ⊕ Δ. Clearly, the usage of such garbled values allows

for free evaluation of XOR gates with input wires w1, w2 and output wire w3 by
computing w̃3 = w̃1 ⊕ w̃2 (no communication and negligible computation).

3 Architecture, System and Trust Model

We present in detail our setting, players, and hardware and trust assumptions.
As shown in Fig. 1, there are three parties – client C, server S and tamper-

resistant token T , issued and trusted by S. Our goal is to let C and S securely
evaluate a public function f on their respective private inputs x and y.

T C S

k

f

k

x y

z = f(x, y)

Fig. 1. Model Overview

Communication. C ↔ S: We view this as an expensive channel. Communica-
tion C ↔ S flows over the Internet, and may include a wireless or cellular link.
This implies small link bandwidth and power consumption concerns of mobile
devices. We wish to minimize the utilization of this channel.

T ↔ C: As T is held locally by C, this is a cheap channel (both in terms of
bandwidth and power consumption), suitable for transmission of data linear in
the size of f , or even greater.

T ↔ S: There is no direct channel between T and S, but, of course, C can
pass (and potentially interfere with) messages between T and S.
Trust. C ↔ S: As in the standard SFE scenario, C and S don’t trust each other.
We address semi-honest, covert, and malicious C and S.

S ↔ T : T is fully trusted by S, since T is tamper-resistant. S and T share a
secret key k, used to establish a secure channel and to derive joint randomness.

T ↔ C: C does not trust T , as T is the agent of S, and may communicate
with S through covert channels.

Storage, computation and execution. C and S are computationally strong
devices which can perform both symmetric- and asymmetric-key operations.3

Both have sufficient memory, linear in the size of f . C has control over T , and
can reset it, e.g., by interrupting its power supply. As justified in §1, T is a cheap

3 If needed, C’s capabilities may be enhanced by using a trusted hardware accelerator.

Embedded SFE: Offloading Server and Network Using Hardware Tokens 213

special purpose hardware with minimum chip surface: T has circuitry only for
evaluating symmetric-key primitives in hardware (no public-key or true random
number generator) and has a small secure RAM. It may (§4.3) or may not (§4.4)
have small non-volatile secure storage4, unaffected by the resets by C.

4 Token-Assisted Garbled Circuit Protocols

In our presentation, we assume reader’s familiarity with the GC technique, in-
cluding free XORs of [15] (cf. §2.1), and concentrate on the aspects specific to
the token setting. We start with a high-level description of our protocol. Then, in
§4.2 - §4.4, we present the technical details of our construction – efficient circuit
representation, and GC generation by stateful and stateless tokens.

4.1 Protocols Overview, Security Intuition and Claim

Our constructions are a natural (but technically involved) modification of stan-
dard GC protocols, so as to split the actions of the server into two parts – now
executed by S and T – while maintaining provable security. We offload most of
the work (notably, GC generation and output) to T , thus achieving important
communication savings, and partially offloading S’s computation to T .

We start our discussion with the solution in the semi-honest model. However,
our modification of the basic GC is secure against malicious actions, and our
protocols are easily and efficiently extendible to covert and malicious settings.

At the high level, our protocols work as shown in Fig. 2: C obtains the garbled
inputs x̃, ỹ from S, and the garbled circuit f̃ corresponding to the function f
from T . Then, C evaluates f̃ on x̃, ỹ and obtains the result z = f(x, y).

It is easy to see that the introduction of T and offloading to it some of the
computation does not strengthen S, and thus does not bring security concerns
for C (as compared to standard two-party GC). On the other hand, separating

sid,mac, ỹ

x

z = f(x, y)

C

decrypt

eval
z̃ = f̃(x̃, ỹ)

k
sid, f

f̃

mac

d

T

mac′

check

S

k

f
y

OT: x̃

Fig. 2. Protocols Overview

4 T ’s key k is a fixed part of its circuit, and is kept even without non-volatile storage.

214 K. Järvinen et al.

the states of S and T , placing C in control of their communication, and C’s
ability to reset T introduces attack opportunities for C. We show how to address
these issues with the proper synchronization and checks performed by S and T .

Our main tool is the use of a unique session id sid for each GC evaluation.
From sid and the shared secret key k, S and T securely derive a session key K,
which is then used to derive the randomness used in GC generation. Jumping
ahead (details in §4.3), we note that sid uniqueness is easily achieved if T is
stateful simply by setting sid equal to the value of the strictly monotonic session
counter ctr maintained by T . However, if T is stateless, C can always replay S’s
messages. In §4.4 we show how to ensure that replays do not help C.

Since S and T derive the same randomness for each session, the (same) garbled
circuit f̃ can be generated by T . Unfortunately, the weak T cannot store the
entire f . Instead, C provides the circuit corresponding to function f gate-by-
gate to T , and obtains the corresponding garbled gate of f̃ . The garbled gate
can immediately be evaluated by C and needs not to be stored. C is prevented
from providing a wrong f to T , as follows. First, S issues a MAC of f , e.g.,
mac = MACk(sid, f), where f is the agreed circuit representation of the evaluated
function (cf. §4.2). Further, T computes its version of the above MAC, mac′, as it
answers C’s queries in computing f̃ . Finally, T reveals the decryption information
d that allows C to decrypt the output wires only if C provides the matching mac.

Garbled Inputs. The garbled input ỹ of S can be computed by S and sent
to C, requiring |y| · t bits communication, where t is the security parameter.
Alternatively, if T is stateful, S can establish a secure channel with T , e.g.,
based on session key K, send y over the channel, and have T output ỹ to C. This
achieves the optimal communication between S and C of |y| bits.

The garbling x̃ of C’s input can be transferred from S to C with a parallel
OT protocol which requires O(|x|t) bits of communication. Alternatively, the
efficient OT extension of [12] which reduces many OTs to a small number of
OTs (depending on security parameter t) can be adopted to our token-based
scenario as described in the full version [13, §C]. This reduces the communication
between S and C to O(t2) which is independent of the size of the input x.

Extension to Covert and Malicious Parties. Standard GC protocols for
covert [7] or malicious [16] adversaries rely on the following cut-and-choose tech-
nique. S creates multiple GCs C̃i, deterministically derived from random seeds
si, and commits to each, e.g., by sending C̃i or H(C̃i) to C. In covert case, C asks
S to open all but one garbled circuit I by revealing the corresponding si�=I . For
all opened circuits, C computes C̃i and checks that they match the commitments.
The malicious case is similar, but C asks S to open half of the circuits, evaluates
the remaining ones and chooses the majority of their results.

These protocols similarly benefit from our token-based separation of the server
into S and T . As in the semi-honest protocol, the GC generation can be nat-
urally offloaded to T , achieving corresponding computation and communica-
tion relief on the server and network resources. GC correctness verification is
achieved by requesting S to reveal the generator seeds si�=I . (Of course, these

Embedded SFE: Offloading Server and Network Using Hardware Tokens 215

”opened” circuits are not evaluated.) Note that requirements on T are the same
as in the semi-honest setting. Further, in both covert and malicious cases, the
communication between C and S is independent of the size of f . The resulting
communication complexity of these protocols is summarized in Table 1.

Security Claim. For the lack of space, in this work we present our protocols
implicitly, by describing the modifications to the base protocols of [15]. We in-
formally argue the security of the modifications as they are described. Formal
proofs can be naturally built from proofs of [15] and our security arguments.
At the very high level, security against S/T follows from the underlying GC
protocols, since S is not stronger here than in the two-party SFE setting. The
additional power of C to control the channel between S and stateful T is negated
by establishing a secure channel (§4.3). C’s power to reset stateless T is addressed
by ensuring that by replaying old messages C gets either what he already knows,
or completely unrelated data (§4.4).

Theorem 1. Assuming T is tamper-proof, protocols described throughout this
section are secure in the semi-honest, covert, and malicious models respectively.

4.2 Circuit Representation

We now describe our circuit representation format. Our criteria are compactness,
the ability to accommodate free XOR gates of [15], and ability of T to process
the encoding “online”, i.e., with small constant memory. Recall, our T operates
in request-response fashion. C incrementally, gate-by-gate, “feeds” the circuit
description to T which responds with the corresponding garbled tables.

We consider circuits with two-input boolean gates. We note that our tech-
niques can be naturally generalized to general circuits.

Our format is derived from standard representations, such as that of Fairplay
[18], with the necessary changes to support our requirements. For readability, we
describe the format using a simple example circuit shown in Fig. 3. This circuit
computes z1 = x1 ∧ (y1 ⊕ y2), where x1 is the input bit of C and y1, y2 are two
input bits of S. The corresponding circuit representation shown on the right is
composed from the description of the inputs, gates, and outputs as follows.

Inputs and wires: The wires wi of the circuit are labeled with their index
i = {0, 1, ...} (wires with a larger fan-out are viewed as a single wire). The first X
wires are associated with the input of C, the following Y wires are associated with
the input of S, and the internal wires are labeled in topological order starting

Circuit Representation:
1 2
3 [0] [1 2] [0001]
3

w0

w1

w2

x1

y1

y2

∧
z1

w3

Fig. 3. Example for Circuit Representation

216 K. Järvinen et al.

from index X + Y (output wires of XOR gates are not labeled, as XOR gates
are incorporated into their successor gates as described in the next paragraph).
The first line of the circuit description specifies X and Y (Fig. 3: X = 1, Y = 2).

Gates are labeled with the index of their outgoing wire; each gate description
specifies its input wires. XOR gates do not have gate tables and are omitted from
the description. Rather, non-XOR gates, instead of pointing to two input wires,
include two input wire lists. If the input list contains more than one wire, these
wire values are to be XORed to obtain the corresponding gate input. Gate’s
description concludes with its truth table. In Fig. 3, the second line describes
the AND gate, which has index 3, and inputs w0 and w1 ⊕ w2.

Outputs: The circuit description concludes with Z lines which contain the
indices of the Z output wires (Fig. 3: the only (Z = 1) output wire is w3).

Large XOR sub-circuits. In this representation, XOR gates with fan-out > 1
occur multiple times in the description of their successor gates. In the worst case,
this results in a quadratic increase of the circuit description. To avoid this cost,
we insert an identity gate after each XOR gate with a large fan-out.

4.3 GC Creation with Stateful Token Using Secure Counter

The main idea of our small-RAM-footprint GC generation is having T generate
garbled tables “on the fly”. This is possible, since each garbled table can be
generated only given the garblings of input and output wires. In our implemen-
tation, we pseudorandomly derive the wire garbling from the session key and
wire index. The rest of this section contains relevant details.

Session Initialization. SFE proceeds in sessions, where one session is used to
securely evaluate a function once. T has a secure monotonic session counter ctr
which is (irreversibly) incremented at the beginning of each session. The session
id sid is set to the incremented state of ctr. (We omit the discussion of synchro-
nization of ctr between T and S which may happen due to communication and
other errors.) Then, the session key is computed by S and T as K = PRFk(sid)
and subsequently used to provide fresh randomness to create the GC.

As required by the construction of [15] (cf. §2.1), the two garbled values of
the same wire differ by a global difference offset Δ. This offset is derived from
K at session initialization and kept in RAM throughout the session.

Subsequently, garbled wire values wi are derived on-the-fly from K as

w̃0
i = PRFK(i), w̃1

i = w̃0
i ⊕ Δ. (1)

Garbled Gates. T receives the description of the circuit, line by line, in the format
described in §4.2, and generates and outputs to C corresponding garbled gates,
using only small constant memory. T first verifies that the gate with the same
label had not been processed before. (Otherwise, by submitting multiple gate
tables for the same gate, C may learn the real wire values). This is achieved by
keeping the monotonically increasing processed gate counter gctr, verifying that
gate’s label glabel > gctr, and setting gctr = glabel. T then derives and stores
garblings of the gate’s input and output wires according to (1). (For input lists,
the wire’s garbling w̃0 is computed as the XOR of garblings of the listed wires,

Embedded SFE: Offloading Server and Network Using Hardware Tokens 217

and w̃1 is set to w̃0 ⊕Δ. Note that this requires constant RAM.) Finally, based
on these garblings, gate’s garbled table is computed and output to C.

Garbled Outputs. Recall, T must verify circuit correctness by checking mac gen-
erated by S. Thus, T does not release the output decryption tables to C until
after the successful check. At the same time, the check is not complete until the
entire circuit had been fed to T . To avoid having T store the output decryption
tables or involving S at this stage, T simply encrypts the output tables using a
fresh key K ′, and outputs the key only upon a successful MAC verification.

4.4 GC Creation with Stateless Token (no Counter)

As discussed above, while non-volatile secure storage (the counter ctr) is essential
in our protocol of §4.3, in some cases, it may be desired to avoid its cost. We
now discuss the protocol amendments required to maintain security of SFE with
the support of a token whose state can be reset by, e.g., a power interruption.

First, we observe that S is still able to maintain state, and choose unique
counters. However, T can no longer be assured that sid claimed by C is indeed
fresh. Further, T does not have a source of independent randomness, and thus
cannot establish a secure channel with S, e.g., by running a key exchange.

We begin with briefly describing a replay vulnerability of our protocol of §4.3,
when T is executed with same sid. First, C properly executes SFE. Second time
he runs T with the same sid, but feeds T an incorrect circuit, receiving valid
garbled tables for each of the gates, generated for the same wire garblings. Now,
even though T will not accept mac and will not decrypt the output wires, C had
already received them in the first execution. It is easy to see that C “wins”.

Our solution is to ensure that C does not benefit from replaying T with the
same sid. To achieve this, we require that each wire garblings are derived from
the (hash of the) entire gate description (i.e., id, truth table, and list of inputs),
as described below. If C replays and gives a different gate description, she will
not be able to relate the produced garbled table with a previous output of T .

We associate with each wire wi a (revealed to C) hash value hi. For input wires,
hi is the empty string. For each other wire i, hi is derived (e.g., via Random
Oracle) from the description of the gate i (which includes index, truth table,
and list of inputs; cf. §4.2) that emits that wire: hi = H(〈gate description〉).
The garbled value of wire wi now depends on its hash value hi: w̃0

i = PRFK(hi)
and w̃1

i = w̃0
i ⊕ Δ. Finally, to enable the computation of the garbled tables, C

must feed back to T the hashes hi of the input wires, and receive from T and
keep for future use the hash of the output wire. As noted above, C’s attempts to
feed incorrect values result in the output of garbled tables that are unrelated to
previous outputs of T , and thus do not help C.

5 Proof-of-Concept Implementation

We have designed a proof-of-concept implementation to show the practicabil-
ity of our token-assisted GC protocols of §4. In the following we describe our

218 K. Järvinen et al.

architecture for the stateful token case of §4.3. Extension to the stateless case
is straightforward. We instantiate PRF with AES-128, H and H with SHA-256,
and MAC with AES-CMAC.

5.1 Architecture

Fig. 4 depicts the high level architecture of our design consisting of a two-stage
pipeline and a MAC core. Stage 1 of the pipeline creates the garbled input and
output values of a gate using an AES core and stage 2 computes the garbled table
with a SHA core. The two-stage pipeline increases performance as two gates can
be processed concurrently. The MAC core computes the authentication message
mac′ of the circuit provided by C (cf. §4.1).

Design Principle. To achieve maximum speed with minimum hardware resources,
we followed a general guideline exploiting parallelism as long as it can be done
without using several instances of the same algorithm. For example, we opted
to compute the four entries of a garbled table with a single SHA core instead of
using four parallel SHA cores which would have increased performance, but only
with a significant increase in area. As the only exception, we included a separate

I/O buffer

I/O buffer

FIFOAES-128

SHA-256

AES-CMAC

Control

Control

Stage 1

Stage 2

MAC

i, Ti

i, Ti

L̃0

i

L̃0

i

R̃0

i

R̃0

i

w̃0

i

w̃0

i

eL
0
i

eR
0
i ew

0
i

eL
1
i

eR
1
i ew

1
i

Δ, 1 k

k

K ′

k1

k2

ctr

K

0 0

f

f̃

Fig. 4. Simplified architectural diagram of our proof-of-concept implementation. Selec-
tors of multiplexers and write enables of registers are set by additional control logics.

Embedded SFE: Offloading Server and Network Using Hardware Tokens 219

MAC core rather than reusing the AES core of stage 1, because it would have
severely complicated the control of the pipeline.
Description of Operation. In the session initialization (cf. §4.4), the SHA core
in stage 2 derives session key K and output encryption key K ′ from key k and
current counter value ctr = sid which is used as key for the AES core. Then,
the key difference Δ is derived with the AES core and stored in a register. The
circuit is provided gate-by-gate into the input buffer in the format described in
§4.2 (gate table denoted by Ti in Fig. 4). Stage 1 starts to process a gate by
deriving the garbled output value w̃0

i . Then, the two garbled inputs of the gate
(L̃0

i , R̃
1
i in Fig. 4) are derived by XORing the garblings listed in the input wire

lists one-by-one (see §4.3). When all garblings are derived they are forwarded to
stage 2 and stage 1 processes the next gate. Stage 2 computes the garbled table
and the encrypted output decryption tables and writes them into the output
buffer. The MAC core operates independently from the two-stage pipeline.

5.2 Prototype Implementation

We implemented our architecture in VHDL.

Implementation Details. For the AES core we chose an iterative design of AES-
128 with a latency of 10 clock cycles per encryption. The core includes an online
key scheduling unit. The S-boxes are implemented as suggested in [2]; otherwise,
the core is a straightforward implementation of the standard [21]. The SHA core
implements SHA-256 with a latency of 67 clock cycles per 512-bit block. The core
is a straightforward iterative design of the standard [22]. The MAC core includes
an AES core implemented as above; otherwise the core is a straightforward
implementation of AES-CMAC [24]. As the subkeys, k1 and k2, depend only on
the key k they were precomputed and hardwired in the design.

FPGAs. We compiled the VHDL code for a low-end FPGA, the Altera Cyclone II
EP2C20F484C7 FPGA, with Quartus II, version 8.1 (2008). We emphasize that
this FPGA is for prototyping only, as it lacks secure embedded non-volatile
memory for storing ctr (e.g., the Xilinx Spartan-3AN FPGAs has integrated
Flash memory for this). The resulting area and memory requirements are listed
in Table 3. The design occupies 60% of logic cells and 21% of memory blocks
available on the device and runs at 66MHz (the critical path for clock frequency
is in the AES core). These results show that the design is, indeed, feasible for a
low-cost implementation, for example, with low-cost FPGAs which, in turn, is
mandatory for the practicability of the token-based scheme.
Smart Cards. In particular, we note that the requirements are sufficiently low
also for contemporary smart card technologies, because AES-128 and SHA-256
require only about 3,400 and 11,000 gates, respectively [5]. As our protocol
requires no public-key operations on the token, small smart cards are sufficient.

Performance. We determined the latency of our implementation with Model-
Sim, version 6.3g (2008). Overall, the latency is given as #clock cycles = 158G1+
312G2 + 154O + 150, where G1, G2 is the number of 1-input gates respectively

220 K. Järvinen et al.

Table 3. Results on an Altera Cyclone II FPGA (the hierarchy is as shown in Fig. 4)

Entity Stage 1 Stage 2 MAC IO Total
Area (Logic cells) 3317 (30%) 4539 (40 %) 3059 (27%) 263 (3%) 11231 (60 %)
Memory (M4K) 0 (0%) 8 (73 %) 1 (9%) 2 (18%) 11 (21 %)

2-input gates and O is the number of outputs, assuming that each gate has at
most 21 inputs in its input lists (if more, stage 2 needs to wait for stage 1) and
that data I/O does not introduce additional delays.

Example 1. Our implementation generates a GC for 16-bit comparison (G1 =
0, G2 = 16, O = 1) in 5,296 clock cycles (≈80μs with 66MHz clock). In Software,
this takes roughly 0.5 s on an Intel Core 2 6420 at 2.13GHz [17].

Example 2. Generating a GC for AES-128 encryption (G1 = 12614, G2 = 11334,
O = 128) takes 5,549,082 clock cycles (≈84ms with 66MHz clock). In Software,
this takes approximately 1 s on an Intel Core 2 Duo at 3.0GHz [23].

Acknowledgements. We would like to thank Wilko Henecka for preparing test
circuits, and Ivan Damg̊ard and reviewers of FC’10 for their helpful comments.

References

1. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: STOC 2002, pp. 494–503 (2002)

2. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

3. Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation
using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 545–562. Springer, Heidelberg (2008)

4. Damg̊ard, I., Nielsen, J.B., Wichs, D.: Universally composable multiparty com-
putation with partially isolated parties. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 315–331. Springer, Heidelberg (2009)

5. Feldhofer, M., Wolkerstorfer, J.: Strong crypto for RFID tags — a comparison
of low-power hardware implementations. In: IEEE Symp. Circuits and Systems
(ISCAS 2007), pp. 1839–1842 (2007)

6. Fort, M., Freiling, F.C., Penso, L.D., Benenson, Z., Kesdogan, D.: Trustedpals:
Secure multiparty computation implemented with smart cards. In: Gollmann, D.,
Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 34–48. Springer,
Heidelberg (2006)

7. Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computa-
tion against covert adversaries. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 289–306. Springer, Heidelberg (2008)

8. Gunupudi, V., Tate, S.: Generalized non-interactive oblivious transfer using count-
limited objects with applications to secure mobile agents. In: Tsudik, G. (ed.) FC
2008. LNCS, vol. 5143, pp. 98–112. Springer, Heidelberg (2008)

9. Hazay, C., Lindell, Y.: Constructions of truly practical secure protocols using stan-
dard smartcards. In: Proc. ACM CCS, pp. 491–500. ACM, New York (2008)

Embedded SFE: Offloading Server and Network Using Hardware Tokens 221

10. Hofheinz, D., Müller-Quade, J., Unruh, D.: Universally composable zero-knowledge
arguments and commitments from signature cards. In: Central European Confer-
ence on Cryptology (MoraviaCrypt 2005) (2005)

11. Iliev, A., Smith, S.: More efficient secure function evaluation using tiny trusted
third parties. Technical Report TR2005-551, Dartmouth College, Computer Sci-
ence, Hanover, NH (July 2005)

12. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

13. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Embedded SFE: Of-
floading server and network using hardware tokens. In: Cryptology ePrint Archive,
Report 2009/591 (2009), http://eprint.iacr.org/

14. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007)

15. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

16. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

17. Lindell, Y., Pinkas, B., Smart, N.: Implementing two-party computation efficiently
with security against malicious adversaries. In: Ostrovsky, R., De Prisco, R., Vis-
conti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg (2008)

18. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party compu-
tation system. In: USENIX Security Symposium 2004. USENIX Association (2004)

19. Moran, T., Segev, G.: David and goliath commitments: UC computation for asym-
metric parties using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008)

20. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2001), pp. 448–457. SIAM, Philadelphia
(2001)

21. NIST, U.S. National Institute of Standards and Technology. Federal Information
Processing Standards (FIPS 197). Advanced Encryption Standard (AES) (Novem-
ber 2001), http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

22. NIST, U.S. National Institute of Standards and Technology. Federal Information
Processing Standards (FIPS 180-2). Announcing the Secure Hash Standard (Au-
gust 2002),
http://csrc.nist.gov/publications/fips/fips180-2/fips-180-2.pdf

23. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

24. Song, J.H., Poovendran, R., Lee, J., Iwata, T.: The AES-CMAC Algorithm. RFC
4493 (Informational) (June 2006), http://tools.ietf.org/html/rfc4493

25. Tate, S., Vishwanathan, R.: Improving cut-and-choose in verifiable encryption and
fair exchange protocols using trusted computing technology. In: Gudes, E., Vaidya,
J. (eds.) Data and Applications Security XXIII. LNCS, vol. 5645, pp. 252–267.
Springer, Heidelberg (2009)

26. Yao, A.C.: How to generate and exchange secrets. In: IEEE Symposium on Founda-
tions of Computer Science (FOCS 1986), pp. 162–167. IEEE, Los Alamitos (1986)

http://eprint.iacr.org/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips-180-2.pdf
http://tools.ietf.org/html/rfc4493

The Phish-Market Protocol:
Securely Sharing Attack Data between

Competitors

Tal Moran and Tyler Moore

Center for Research on Computation & Society, Harvard University
{talm,tmoore}@seas.harvard.edu

Abstract. A key way in which banks mitigate the effects of phishing is
to remove fraudulent websites or suspend abusive domain names. This
‘take-down’ is often subcontracted to specialist firms. Prior work has
shown that these take-down companies refuse to share ‘feeds’ of phishing
website URLs with each other, and consequently, many phishing websites
are not removed because the firm with the take-down contract remains
unaware of their existence. The take-down companies are reticent to
exchange feeds, fearing that competitors with less comprehensive lists
might ‘free-ride’ off their efforts by not investing resources to find new
websites, as well as use the feeds to poach clients. In this paper, we
propose the Phish-Market protocol, which enables companies with less
comprehensive feeds to learn about websites impersonating their own
clients that are held by other firms. The protocol is designed so that
the contributing firm is compensated only for those websites affecting its
competitor’s clients and only those previously unknown to the receiving
firm. Crucially, the protocol does not reveal to the contributing firm
which URLs are needed by the receiver, as this is viewed as sensitive
information by take-down firms. Using complete lists of phishing URLs
obtained from two large take-down companies, our elliptic-curve-based
implementation added a negligible average 5 second delay to securely
share URLs.

1 Introduction

Phishing is the criminal activity of enticing people into visiting websites that
impersonate genuine bank1 websites, and to dupe them into revealing passwords
and other credentials to carry out fraudulent activities. One of the key coun-
termeasures to phishing is the prompt removal of the imitation bank websites.
Removal may be achieved by erasing the web pages from the hosting machine,
or by contacting a registrar to suspend a domain name from the DNS so the
fraudulent host can no longer be resolved.

1 Although a wide range of companies have been subject to phishing attacks, the vast
majority are financial institutions; for simplicity, we use the term ‘banks’ for firms
being attacked.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 222–237, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

The Phish-Market Protocol 223

Although some banks deal with phishing website removal exclusively ‘in-
house’, most hire specialist ‘take-down’ companies to carry out the task. Take-
down companies — typically divisions of brand-protection firms or information
security service providers — perform two key services for banks. First, they are
good at getting phishing websites removed quickly, having developed relation-
ships with ISPs and registrars across the globe and deployed multi-lingual teams
at 24x7 operations centers. Second, they collect a more timely and comprehensive
listing of phishing URLs than banks normally gather.

Most take-down companies view their URL feeds as a key competitive ad-
vantage over banks and other take-down providers. However, recent work has
shown that the feeds compiled by take-down companies suffer from large gaps in
coverage that significantly prolong the time taken to remove phishing websites.
Moore and Clayton examined six months of aggregated URL feeds from many
sources, including two major take-down companies [12]. They found that up to
40% of the phishing websites impersonating banks hired by take-down compa-
nies were known to others but not by the company with the take-down contract.
Another 29% of websites were discovered by the responsible take-down company
only after others had identified the sites. By measuring the substantially longer
lifetimes of these missed websites, Moore and Clayton estimated that at least
$330 million per year is being put at risk by the failure to share proprietary feeds
of URLs for just the two companies they studied.

But is sharing the answer, and, if so, then how should an effective sharing
mechanism be designed? Moore and Clayton appealed to the security indus-
try’s sense of responsibility and argued that URL feeds should be shared freely
between take-down companies and banks, pointing to the precedent of sharing
in the anti-virus industry. However, there are some reasonable objections to a
sharing free-for-all. First, competition between take-down companies may drive
investment into better techniques for identifying new phishing websites faster,
and mandated sharing might undermine the incentive to innovate. Unsurpris-
ingly, most take-down companies would rather see banks purchase the services
of several take-down providers to overcome gaps in coverage.

In this paper, we describe the Phish-Market protocol, which addresses the
competitive concerns of take-down companies so that widespread sharing can
take place. To bolster the incentive to share, our protocol enables sharing of
URLs where the net contributors are compensated without revealing the sensi-
tive details of what is shared to competitors. At a high level, the Phish-Market
protocol does the following:

1. shares only those URLs that the receiving party wants (i.e., the banks the
receiving party works for);

2. does not reveal to the providing party which URLs are given to the receiving
party;

3. securely tallies the number of URLs given to the receiving party;
4. does not count URLs the receiving party already has.

Timing is critical when it comes to distributing URL feeds — the longer a phish-
ing website remains online, the more customer credentials may be at risk. While

224 T. Moran and T. Moore

in theory generic multiparty computation protocols can be used to implement
this mechanism, in practice they are very inefficient and would introduce signif-
icant delays in processing the many thousands of phishing websites. In contrast,
our custom protocol is extremely efficient (and still provably secure).

To demonstrate the feasibility of our mechanism, we have implemented an
elliptic-curve-based version of the protocol in Java. Using the feeds from two
take-down companies during the first two weeks of April 2009, we tested pro-
tocol performance in a real-world scenario. We found that our sharing protocol
introduces an average delay of 5 seconds to the processing and transmission per
phishing URL. In exchange for this very short delay, information on new phishing
websites is exchanged between take-down companies so that the overall lifetime
of phishing websites may be halved [12] while crediting the contributing firm.

2 The Phish-Market Protocol

We now describe the Phish-Market protocol, where companies with more com-
prehensive feeds of phishing URLs are compensated for sharing with those who
learn most from sharing. The protocol deals with a number of constraints in
order to satisfy the exchanging parties without relying on a trusted third party.
While we formalize the security properties guaranteed in Section 2.2, it is helpful
to first mention the requirements affecting the protocol’s design. In particular,
each company is only interested in a subset of their competitors’ feeds, namely
those URLs that affect their own customers. As an added complexity, take-down
companies keep their list of client banks secret from competitors. Hence, we
need a way to share only those URLs that the other party is interested in, with-
out revealing which URLs are being shared. Note that our mechanism does not
directly compensate contributors; instead, it tallies the total number of useful
URLs exchanged in a way that cannot be manipulated by either party.

An Optimal Ideal-World Protocol. We describe the task our protocol performs
by first explaining how it could be done if we used a trusted third party (TTP)
— someone who was entirely trusted by both the contributor (or Seller) and
the receiver (or Buyer). To share data in this ideal scenario, both the Buyer
and the Seller would send the data to the TTP; the Buyer’s data consists of
the URLs she already knows and her list of client banks, while the Seller’s data
consists of the URLs he is attempting to sell and their classification (i.e., which
bank each URL is attempting to impersonate). The TTP could then send the
Buyer only those URLs that both impersonate her clients and that she did not
already know. The TTP would send the Seller the number of URLs sent to the
Buyer. This number would then be used to compute the compensation owed to
the Seller. Since the TTP only sends the new “interesting” URLs to the Buyer,
she will not learn anything about URLs she was not interested in (and would
not have to pay for them). On the other hand, the TTP sends the Seller only
the number of URLs sold, not the URLs themselves. Consequently, the Seller
will not gain additional information about the Buyer’s client list.

The Phish-Market Protocol 225

Our protocol is intended to provide this functionality, maintaining its privacy
properties, but without requiring a third party. Using powerful results from the-
oretical cryptography, it is known how to convert any task that can be performed
with the aid of a TTP to one that does not require third parties. However, these
techniques are usually inefficient. In our case, even the most efficient implemen-
tations of general techniques (such as the Fairplay system [10]) would be orders
of magnitude too slow for practical use.

We give an efficient protocol for executing a single ‘transaction’ of the follow-
ing form: the Seller first sends a ‘tag’ to the Buyer. The tag can be, for example,
the name of the bank associated with the URL to be sold. The Buyer uses the
tag to decide whether or not she is interested in learning the corresponding URL.
She also commits in advance to the set of URLs she already knows. If the Buyer
was interested in the tag and did not already know the corresponding URL, the
Seller receives a ‘payment’. Otherwise, the Seller receives a ‘counterfeit payment’
(the Seller should not be able to tell whether or not a payment is counterfeit —
otherwise he would be able to tell whether or not the Buyer was interested in
the URL, and thus discover the Buyer’s client list).

At the end of some previously agreed period (or number of transactions),
the Buyer reveals to the Seller how many ‘real’ payments were sent, and proves
that this is indeed the case (without revealing which of the payments were real).
In practice, we envision each pair of take-down companies executing the basic
protocol in both directions: when one of the companies acquires a new URL, it
would execute the protocol as the Seller, with the other company playing the
Buyer. When the second company acquires a new URL, it would execute an
instance of the protocol in the other direction, with the first party as Buyer and
the second as Seller.

Note that, even when using a trusted third party, some attacks are still pos-
sible. For example, there is no guarantee that the URLs sold will be useful or
correctly tagged. A malicious Seller could send random strings instead of URLs,
forcing the Buyer to ‘pay’ for garbage URLs (since they would not appear in
the Buyer’s database). A malicious Seller can also attack the Buyer’s privacy:
if he uses the same tag for all the URLs in a certain period, the Seller can tell
whether or not the Buyer is interested in the tag by whether or not a payment
was made at the end of the period.

Since these attacks can be carried out in the ideal world, any protocol im-
plementing this type of exchange is also vulnerable. For the situations in which
we anticipate our protocol will be used, however, there are mitigating strategies.
First, the Buyer can evaluate the URLs she learns and set the price she is willing
to pay for each URL based on the quality of URLs she received in the past. If she
determines that the Seller is providing low-quality URLs, the Buyer can request
a lower dollar price per URL or refuse to do business with that Seller in the
future. This would mitigate the “garbage URL” attack. Defending against the
privacy breach attack is harder — the payment will always leak some informa-
tion about which tags the Buyer is interested in. We can help the Buyer detect
this type of attack by compromising a little on the Seller’s privacy: if we give the

226 T. Moran and T. Moore

Buyer all the tags the Seller uses (without the corresponding URLs), the Buyer
can verify that no set of tags is overly represented.

Finally, in a two-party protocol, unlike a protocol that uses a trusted third
party, each side can decide to abort the protocol prematurely. This affects the
security of our protocol if the Buyer decides to abort after learning a URL but
before making the payment. However, the same problem exists in many remote
transactions (e.g., when purchasing physical goods over the phone, the seller can
refuse to send the goods after receiving payment). The same legal frameworks
can be used to handle a refusal to pay in this case.

Below, we describe the protocol as well as the precise security guarantees we
make.

2.1 Protocol Overview

Payment Commitments. Before we describe the protocol itself, we must clarify
what we mean by ‘real’ and ‘counterfeit’ payments. Our protocol uses crypto-
graphic commitments as payment tokens. Loosely speaking, a commitment to a
value x can be thought of as a public-key encryption of x, for which only the
Buyer knows the secret key; the Seller can’t tell what x is from the commitment,
but the Buyer can ‘open’ a commitment and prove to the Seller that the commit-
ment is to a specific value. In our protocol, a ‘real’ payment is a cryptographic
commitment to the number 1, while a ‘counterfeit’ payment is a commitment to
the number 0.

The payment commitments used by the protocol have a special property that
allows them to be efficiently aggregated, even in encrypted form (they are homo-
morphic). Thus, the Seller can take the ‘payments’ from multiple executions of
the basic protocol and compute a commitment to the total payment (the number
of URLs actually ‘sold’).

The Buyer will eventually open the aggregated commitment. At this point,
the Seller will learn only the total number number of ‘real’ payments received
(and not which individual payments were real). This value can be used as the
basis for a monetary transaction between the two parties.

Protocol Construction. One of the more difficult challenges to solve efficiently is
that the Buyer should not have to pay for URLs she already knew, while simul-
taneously protecting the privacy of the Buyer’s client list. The known techniques
for general secure computation of a function require an expensive public-key op-
eration for each input (or even each bit of the input). In our case, the input
would have to include the set of previously known URLs, which may be very
large: A typical take-down company could learn an excess of 10 000 URLs per
month, making existing systems impractical.

To solve this problem, we let the Buyer perform the database search locally,
after learning the URL. If she discovers the URL in the database, she must then
prove to the Seller that the URL existed in the database before the start of the
transaction. However, this proof cannot use the URL itself, since that would
reveal to the Seller that the Buyer was interested in it (thus exposing one of

The Phish-Market Protocol 227

the Buyer’s clients). The main idea behind the protocol is to split the proof into
two:

1. The first proof is a ‘proof of payment’. The payment in this case is a commit-
ment to the value 1; the proof of payment proves that the Buyer can open
the commitment she sent to the value 1.

2. The second proof is a ‘proof of previous knowledge’. This proof convinces
the Seller that the Buyer knew the URL before the start of the protocol.

The essence of the protocol is that we allow the Buyer to ‘fake’ a proof if she
knows a corresponding secret key. The protocol is set up so that the Buyer
initially knows a single secret key: she can fake the first proof or the second
proof, but not both. Once the Buyer learns the tag, she must make a choice:
she can either learn the corresponding URL, or learn the second secret key (but
not both). Thus, if she chooses not to learn the URL, the Buyer can send a
counterfeit payment (a commitment to 0), and fake both proofs. If she chooses
to learn the URL and did not already know it, she is forced to fake the second
proof, and therefore cannot fake the first (so she must send a real payment).
The proofs we use are Zero-Knowledge (ZK) proofs: the Seller learns nothing
from the proof except the validity of its statement. This protects the privacy of
the Buyer (the Seller cannot tell whether or not the Buyer was interested in the
URL or whether she previously knew it).

Fig. 1 shows a graphical overview of the protocol. We split the second proof
into the boxes labeled ZK Proof #2 and Proof #3 in the figure. Before the
protocol begins, the Buyer sends the Seller a commitment to her set of previously
known URLs. ZK Proof #2 proves the Buyer holds a commitment for the URL
(this part can be faked using a secret key). Proof #3 proves the Buyer knew the
commitment before the protocol began (this part cannot be faked; however, if
the Buyer faked ZK Proof #2 she can choose an arbitrary commitment and prove
she knew that). The reason for the split is that Proof #3 can be performed very
efficiently, while Proof #2 requires public-key type operations. The numbers on
the left and right-hand sides of the figure reference the corresponding lines in
the full protocol listing (on the left these are the lines in Prot. 1a, and on the
right in Protocols 1b and 2).

To simplify the presentation, the protocol in Fig. 1 omits two steps present
in the full protocol:

1. The Buyer must prove that the payment is valid (either a commitment to 0
or a commitment to 1). Otherwise, if the Buyer fakes the first proof she could
send a commitment to a negative number instead of a zero commitment (in
which case the aggregate commitment would be opened to a lower value than
the actual payment due).

2. The use of a Merkle tree as a set commitment (Proof #3) is not completely
secure if the same Merkle tree is used for multiple transactions. This is
because every execution of the protocol requires the Buyer to reveal a path
from some leaf in the tree to the root. If the Seller sees the same leaf twice,
he will learn that in at least one of the transactions the Buyer was using

228 T. Moran and T. Moore

Fig. 1. Simplified Phish-Market protocol overview

a “fake”. To prevent this attack, the Buyer must make sure the tree also
contains “chaff” commitments. When a fake commitment is needed, the
Buyer uses one of the chaff commitments. The Buyer makes sure to use
each chaff commitment at most once.

2.2 Security Properties

Unlike errors in most computer algorithms, protocols with faulty security may
perform flawlessly — often by definition a failure in security is one that is un-
detected. Thus, an important part of the specification for any secure protocol
is a formal definition of its security properties and an analysis of the conditions
under which they are guaranteed.

We make separate security guarantees for the Seller and for the Buyer in each
transaction (execution of the basic protocol).

Buyer’s Security. The Buyer in our protocol has as input a set of tags in
which she is interested, T (e.g., the list of banks she has as clients) and a set of
previously known URLs, U . The security guarantee for the Buyer is that a ma-
licious Seller does not learn anything about T or U , beyond what he can deduce
from the payment amount. This is important because competitors naturally do
not wish to reveal weaknesses (in terms of gaps in URL coverage). On the other
hand, the Seller does not want to reveal URLs to the Buyer that the Buyer is
unaware of without compensation. Finally, the Buyer does not want to reveal
its client list to the Seller.

The Phish-Market Protocol 229

More formally:

Theorem 1 (Buyer’s Security). For any two sets of inputs (T0, U0) and
(T1, U1), such that |U0| = |U1|, the Seller’s view of a protocol execution when
the Buyer is given input (T0, U0) is statistically indistinguishable from its view
when the Buyer is given input (T1, U1).

Note that the Seller’s view of the protocol does not include the opening of the
aggregate payment: the Seller will obviously gain some information about T and
U from the payment amount — what the theorem implies is that this is all the
Seller learns.

Due to limited space, we defer the proof this theorem to the full version of
the paper.

Seller’s Security. Essentially, the Seller needs to ensure that he is being justly
compensated for each URL that the Buyer learns from him. We define the se-
curity of the Seller by formally comparing our protocol to an ‘ideal world’ in
which there exists a completely trusted third party (the ‘ideal Phish-Market
functionality’). The protocol in the ideal world is much simpler than that in the
real world, hence its security guarantees are easier to understand intuitively. We
prove our protocol’s security by showing that any attacks by the Buyer on the
protocol in the real world (without the trusted third party) can be performed in
the ideal world as well. Hence, our intuitions for the ideal world must hold for
the real world too (this is the ideal/real simulation paradigm).

Below, we describe the ideal-world protocol for a single transaction. In both
the real and the ideal world, the Buyer’s inputs consist of T , a set of tags in
which the Buyer is interested, and U , a set of previously known URLs. The
Seller’s inputs consist of a tag t and a URL u. The output of the protocol,
on the Buyer’s side, is the tag t, and optionally the URL u (if the Buyer was
interested in it). On the Seller’s side, the output is a payment commitment. We
denote Compk∗(x) a commitment to a value x.2

The protocol in the ideal world proceeds as follows:
1: The ideal functionality waits for the Buyer to send U and the Seller to send

t, u.
2: The functionality then sends t to the Buyer and waits for the Buyer to

respond.
3: if The Buyer responds with 0 (she’s interested in t) then
4: The functionality sends u to the Buyer.
5: if u /∈ U then
6: The functionality sends e = Compk∗(1) to the Seller.
7: else // u ∈ U
8: The functionality sends e = Compk∗(0) to the Seller.

(The functionality will allow a corrupt Buyer to send e = Compk∗(1) in
this case as well)

2 For clarity, we’re ignoring the fact that the commitments are randomized — the
commitment function is actually Compk∗(x, r), where r is the commitment’s ran-
domizer).

230 T. Moran and T. Moore

9: else // The Buyer is not interested in t
10: The functionality sends e = Compk∗(0) to the Seller.

We allow a corrupt party to abort the computation at any point, in which case
the other party will receive a special ⊥ symbol from the ideal functionality (this
corresponds to a cheating party being detected). This ideal-world protocol is
very similar to the optimal ideal-world protocol described in the beginning of
this section. However, in this protocol the ideal party always sends the tag to the
Buyer, and if the Buyer is interested, always sends the URL to the Buyer (rather
than only sending those URLs that were both interesting and not previously
known). This extra ‘information leakage’ (compared to the optimal protocol) is
the result of allowing the Buyer to perform the database lookup on her own.

Formally, the Seller’s security is defined as follows:

Theorem 2 (Seller’s Security). For any set of inputs to the Buyer and Seller,
and for every (probabilistic polynomial-time) adversary A that corrupts the Buyer
in the real world, there exists a simulator S who corrupts the Buyer in the ideal
world such that the outputs of both parties in the ideal world (the ideal-world Seller
and S) are computationally indistinguishable from the outputs of both parties in the
real world (the real-world Seller and A), under the assumption that the underlying
cryptographic primitives are secure.

Due to limited space, we defer the proof this theorem to the full version of the
paper.

Side-Channel Attacks. As with every ‘provably secure’ system, the proof of
security only holds as long as certain assumptions are met. For example, it may
be possible to break the security of the protocol if the parties receive information
outside the ‘legitimate’ channels specified by the protocol (these unanticipated
information channels are called side channels).

The Phish-Market protocol is potentially vulnerable to a timing side-channel
attack: the Seller can measure the time it takes the Buyer to complete a trans-
action. If this time depends on whether or not she was interested in the tag, or
on whether or not she already knew the URL, the Seller will gain information
about the Buyer’s client list or coverage rate. This particular attack can be foiled
with relatively little effort by adding artificial delays to the code to ensure all
code paths on the Buyer’s side take the same time3. Of course, as in the case
of any secure protocol, the Phish-Market protocol may be vulnerable to other
side-channel attacks that we did not anticipate.

2.3 Formal Protocol Definition

We give a full protocol listing (in pseudocode) below. We describe separately the
pseudocode for the Sellers’ and Buyers’ sides of the protocol. To make the pro-
tocol listing easier to read, we divide it into a number of smaller subprotocols
3 Note that the delays are not random noise — the delay on each code path must be

computed so that the total time taken by the Buyer does not depend on her input.

The Phish-Market Protocol 231

(called as subroutines from the top-level protocol, Prot. 1). Prot. 1a specifies
the top-level protocol run by the Seller and Prot. 1b that run by the Buyer.
Prot. 2 is called by the Buyer when she is interested in the tag sent by the Seller
(the Seller’s side of the protocol looks the same whether or not the Buyer was
interested). Prot. 3 is used to prove knowledge of a given commitment value;
this protocol has three “sides”: Prot. 3a is the Seller’s view of the proof (ver-
ification), Prot. 3b is the Buyer’s view when performing a “real” proof, and
Prot. 3c is the Buyer’s view when performing a “fake” proof (using the trapdoor
key).

Pedersen commitments are based on the hardness of discrete log in a group G
of prime order p (plaintext values are in the group Zp). The commitment public-
key is a pair of generators g, h ∈ G. The commitment is binding iff it is hard
to compute the discrete log of g with respect to h. Throughout the protocol,
we denote a Pedersen commitment under public-key pk to a value x and with
randomizer r by Compk(x, r).

A party that knows sk = logg h can open a commitment to any value (thus,
this value acts as a trapdoor for the commitment). The Phish-Market protocol
requires a key-generation protocol with special properties: it must generate a pair
of commitment-keys such that the Buyer knows only one of the corresponding
trapdoors, but the Seller does not know which (the Seller is allowed to learn
both). This is easily done using standard techniques; we leave the details to the
full version.

We assume the two parties have previously agreed on a Pedersen public-
key pk∗ that is binding to both parties (i.e., neither party knows its trapdoor
key).

3 Performance Evaluation

3.1 Theoretical Efficiency

The advantage of this protocol over a generic secure-computation is its efficiency.
We measure efficiency in terms of both computation and communication over-
head. In Section 3.2, we describe our implementation of the protocol, which is
instantiated using Pedersen commitments and the Naor-Pinkas OT protocol. To
get a theoretical estimate of the protocol’s efficiency we count the most expensive
operations — those that dominate the protocol’s overall cost.

Exponentiations are the most expensive computation required, while the main
communications requirement is the exchange of group elements and hashes.
For each URL transmitted, the Seller must compute 34 exponentiations, while
transmitting 10 group elements and 2 hashes to the Buyer. Meanwhile, the
Buyer’s computation load is a bit lighter but the communications requirements
are slightly higher. The Buyer computes just 24 exponentiations, in addition
to sending 39 group elements and log |U | + 1 hashes to the Seller. The com-
plete costs, broken down according to each protocol component, are given in
Table 2.

232 T. Moran and T. Moore

Protocol 1a. Phish-Market Protocol: Seller
Input: Commitment public-key, pk∗, such that Buyer does not know corresponding secret key.
Input: A URL, u, with tag, t
1: Perform Commitment Key Generation.

The Seller learns the new commitment public keys (pk0, pk1) and the secret k = sk0+sk1 (where
(sk0, sk1) are the corresponding trapdoors) // Learning k will allow Buyer to compute both
trapdoors if given one

2: Perform Commitment Key Generation.
Denote the resulting commitment keys (pk2, pk3) (discard the secret).

3: Wait to receive Merkle root cU from Buyer // Root of a Merkle hash tree whose leaves are
commitments to known URLs

4: Choose r ∈R Zp.
Send (t, Compk∗ (H(u), r)) to Buyer.

5: Perform OT protocol as sender (Buyer as receiver) with input strings s0 = (u, r) and s1 = k.
6: Wait to receive commitment e from Buyer. // ‘payment’ commitment

Verify that e ∈ C.
7: Wait to receive bit b from Buyer. // Payment proof based on binding of Compkb

8: Verify that e = Compk∗ (1) using Compkb
for coin-flipping (Prot. 3a). // Proves that Buyer can

either open e to 1 or knows skb

9: Wait to receive bit b′ ∈ {2, 3} from Buyer. // Payment validity proof based on binding of
Compkb′

10: Verify that e = Compk∗ (1) using Compk
b′ for coin-flipping (Prot. 3a).

11: Verify that e = Compk∗ (0) using Compk5−b′ for coin-flipping (Prot. 3a). // Together with

previous step proves that Buyer can open e to either 0 or 1
12: Wait to receive commitment cu from Buyer // Buyer’s ‘previously known commitment’ to u

Verify that cu ∈ C.

13: Let ctest ← Compk∗ (H(u),r)

cu
.

Verify that ctest = Compk∗ (0) using Compk1−b
for coin-flipping (Prot. 3a) // Proves that either

Buyer can open cu to H(u) or that Buyer knows sk1−b

14: Verify proof that cu is in set committed to by cU (e.g. verify a Merkle path from cu to cU).

Protocol 1b. Phish-Market Protocol: Buyer
Input: Commitment public-key, pk∗

Input: Set of commitments to known URLs: U ={
cu1 = Compk∗ (H(u1), r1), . . . , cu|U| = Compk∗ (H(u|U|), r|U|)

}
Input: Set of wanted tags, T
1: Perform Commitment-Generation with input bit b.

The Buyer learns the new commitment keys pk0, pk1 and trapdoor skb.
2: Perform Commitment-Generation with input bit b′ ∈ {2, 3}.

Denote the resulting commitment keys pk2, pk3 and trapdoor skb′ .
3: Generate a ‘chaff’ commitment: cchaff ∈R C.

Let U ′ ← U ∪ {cchaff}.
Send Comset(U ′) to Seller (e.g. the root of a Merkle hash tree with elements of U ′ as the leaves)
// Commitment to set of already known URLs

4: Wait to receive (t, cu′) from Seller // Tag and commitment to URL
5: if t ∈ T then // Buyer is interested in tag
6: Run Subprotocol 2
7: else // Buyer is not interested in tag
8: Perform OT protocol as receiver (Seller as sender) with choice bit 1.

Denote result sk0, sk1
9: Choose re ∈R Zp.

Send e = Compk∗ (0, re) to Seller // ‘Fake’ payment
10: Send b to Seller // Use Compkb

for payment proof

11: ‘Prove’ that e = Compk∗(1) using Compkb
and skb (Prot. 3c).

12: Send b′ to Seller // Use Compk
b′ for payment validity proof

13: ‘Prove’ that e = Compk∗(1) using Compk
b′ and skb′ (Prot. 3c).

14: Prove that e = Compk∗ (0) using Compk5−b′ and re (Prot. 3b).
15: Choose a ‘chaff’ commitment cu ∈ U

Send cu to Seller.
16: Let ctest ← c

u′
cu

.
‘Prove’ that ctest = Compk∗ (0) using Compk1−b

and sk1−b (Prot. 3c).
17: Prove that cu is in set committed to by Comset(U) (e.g. show a Merkle path from cu to cU).

The Phish-Market Protocol 233

Protocol 2. Phish-Market Subprotocol: Buyer is Interested in t
1: Perform OT protocol as receiver (Seller as sender) with choice bit 0.

Denote result u, r′

2: if cu′ = Compk∗ (H(u), r′) and ∃i : cui
∈ U and ui = u then // Buyer already knows u

3: Choose re ∈R Zp.
Send e = Compk∗ (0, re) to Seller // ‘Fake’ payment

4: Send b to Seller // Use Compkb
for payment proof

5: ‘Prove’ that e = Compk∗ (1) using Compkb
and skb (Prot. 3c).

6: Send b′ to Seller // Use Compkb′ for payment validity proof

7: ‘Prove’ that e = Compk∗ (1) using Compk
b′ and skb′ (Prot. 3c).

8: Prove that e = Compk∗ (0) using Compk5−b′ and re (Prot. 3b).

9: Let cu = Compk∗ (H(u), r) such that cu ∈ U .
Send cu to Seller.

10: Let ctest ← c
u′

cu
= Compk∗ (0, r′ − r).

Prove that ctest = Compk∗ (0) using Compk1−b
and r′ − r (Prot. 3b).

11: else // Buyer did not know u or Seller is cheating
12: Choose re ∈R Zp.

Send e = Compk∗ (1, re) to Seller // ‘Real’ payment
13: Send 1 − b to Seller // Use Compk1−b

for payment proof

14: Prove that e = Compk∗ (1) using Compk1−b
and re (Prot. 3b).

15: Send 5 − b′ to Seller // Use Compk5−b′ for payment validity proof

16: Prove that e = Compk∗ (1) using Compk5−b′ and re (Prot. 3b).

17: ‘Prove’ that e = Compk∗(0) using Compkb′ and skb′ (Prot. 3c).
18: Send cchaff to Seller.
19: Let ctest ← c

u′
cchaff

.
‘Prove’ that ctest = Compk∗ (0) using Compkb

and skb (Prot. 3c).

Protocol 3a. Proof of Committed Value: Seller
Input: Commitment c and claimed value x // Commitment uses public key pk∗

Input: Trapdoor Commitment public key pk // Used for coin flipping
1: Wait to receive cchal from Buyer.
2: Wait to receive (b, cb) from Buyer.

Verify that cb ∈ C.
3: Choose chal1 ∈R Zp

Send chal1 to Buyer.
4: Wait to receive (chal0, rchal) from Buyer.

Verify that cchal = Compk (chal0, rchal).
5: Wait to receive r′ from Buyer.

Let chal ← chal0 + chal1.
Verify that cchal · cb = Compk∗ (chal · x + b, r′).

3.2 Implementation Performance

We implemented an elliptic-curve (EC) based version of the protocol in Java,
using the Bouncy Castle Crypto API4 for basic EC operations. In our implemen-
tation the Merkle hash-tree was kept entirely in memory. This is feasible even
for moderately large URL lists (e.g., in one of the experiments the tree consisted
of about 18 000 URLs).

Our experiments used the NIST-recommended EC curve P-256 [14] for the
group underlying both the Pedersen commitments and Naor-Pinkas OT, and
SHA-1 in place of a “random oracle”. Both sides of the protocol were simulated
on a single server with one dual-core 2.4GHz Intel Xeon processor and 2GB of

4 http://www.bouncycastle.org/

http://www.bouncycastle.org/

234 T. Moran and T. Moore

Protocol 3b. Proof of Committed Value: Buyer
Input: Commitment c = Compk∗(x, rx), rx and claimed value x // Commitment uses public key

pk∗

Input: Trapdoor Commitment public key pk // Used for coin flipping
1: Choose chal0 ∈R Zp and rchal ∈R Zp.

Send Compk (chal0, rchal) to Seller.
2: Choose b ∈R Zp and rb ∈R Zp

Send (b, Compk∗ (b, rb)) to Seller
3: Wait to receive chal1 from Seller.
4: Send (chal0, rchal) to Seller.
5: Let chal ← chal0 + chal1.

Compute r′ such that cchal · Compk∗ (b, rb) = Compk∗ (chal · x + b, r′). // r′ can be efficiently
computed using rb and rx.
Send r′ to Seller.

Protocol 3c. Fake Proof of Committed Value: Buyer
Input: Commitment c and claimed value x // Commitment uses public key pk∗

Input: Trapdoor Commitment public and secret keys pk, sk // Used to fake coin flipping
1: Choose r′

chal ∈R Zp.
Let cchal ← Compk (0, r′

chal).
Send cchal to Seller. // Using sk and r′

chal, Buyer can open cchal to any value
2: Choose chal ∈R Zp, b ∈R Zp and r′ ∈R Zp.

Let ctarget ← Compk∗ (chal · x + b, r′).
Let cb ← ctarget

cchal .
Send (b, cb) to Seller. // Buyer does not know how to open cb

3: Wait to receive chal1 from Seller.
4: Let chal0 ← chal − chal1.

Compute rchal s.t. cchal = Compk (chal0, rchal). // rchal can be efficiently computed using sk

and r′
chal

Send (chal0, rchal) to Seller.
5: Send r′ to Seller. // cb and b were computed at step 2 such that cchal ·cb = Compk∗ (chal·x+b, r′)

memory (the protocol is CPU bound — one transaction requires less than 3kB
of communication — so running both sides on one server would only cause us
to overestimate the running time).

To test the protocol’s performance under real-world conditions, we used the
URL feeds from two large take-down companies during the first two weeks of
April 2009. We assigned one of the take-down companies to be the Seller, while
making the other the Buyer (we ran experiments using both assignments). For
the two-week sample period, one company found 8 582 unique URLs while the
other discovered 17 721 URLs. The first company was interested in obtaining
phishing URLs for 59 banks, and the second for 54 banks, according to the
client lists shared with the authors.

The primary metric we use to measure the performance of our implemen-
tation is the time required to process and transmit each phishing URL from
the seller to the buyer. On average, each URL faced a very acceptable delay of
5.13 seconds to complete the exchange (3.19 second median). Two main factors
affect the total delay. First is the processing time required to execute the pro-
tocol. This computational time was very consistent, taking an average of 2.37
seconds, but never more than 4.02 seconds. The other, less predictable, rea-
son for delay happens whenever many URLs are discovered around the same
time. When this occured, some URLs had to wait for other URLs to be pro-
cessed, leading to a longer delay. While a multi-threaded implementation could

The Phish-Market Protocol 235

comp. cost communication cost
protocol exponentiations group elements hashes

Seller
Keygen 2 2 0
OT 4 2 2
3a 24 4 0
1a 4 2 0

Seller total 34 10 2

Buyer
Keygen 2 2 0
OT 2 1 0
3b/3c 16 24 0
1a 4 2 log |U |+ 1

Buyer total 24 39 log |U |+ 1

Fig. 2. Theoretical computation and communication costs of the Phish-Market proto-
col (left); observed cumulative distribution function of the time required to share each
phishing URL (right)

minimize these ‘queue delays’ (by utilizing more CPU cores), we chose to im-
plement the protocol using a single thread to demonstrate its feasibility even
with modest hardware. Moreover, note that the protocol implementation was
optimized for clarity and generality of the source code rather than speed. The
average queue delay caused by waiting on other URLs to finish processing was
2.76 seconds, while the longest delay was 34.6 seconds.

To get a better feel for how the processing time varies, Figure 2 (right) plots
the cumulative distribution functions for the time taken to process each URL,
the time that URL spent waiting in the Seller’s queue, and the total delay
between the time the URL entered the Seller’s queue and the time the Buyer
received it. 48.4% of URLs were processed in under 3 seconds, yet 9.7% took more
than 10 seconds. Despite the variation, no URL took more than 37 seconds to
process. Given that phishing website removal requires human intervention, a 37
second delay is negligible, and certainly much better than the many days longer
unknown sites currently take to be removed!

In addition to the total delay (red dash-dot line), Figure 2 (right) plots the two
key components of delay. The green dash line appears nearly vertical around 2 sec-
onds, suggesting that the per-URL processing time is very consistent. Meanwhile,
the blue solid line plots the queue delay, which accounts for the stretched tail of the
overall delay. Hence, if the queue delay were reduced by using multiple processors
or threads, the total delay might approach the consistently shorter processing time.

4 Related Work

Sharing Attack Data. The academic work on phishing has been diverse, with a
useful starting point being Jakobsson and Myers’ book [9]. However, there has
been only limited examination of the take-down process employed by the banks

236 T. Moran and T. Moore

and specialist companies, even though it is the primary defense employed today.
Moore and Clayton estimated the number and lifetimes of phishing websites and
demonstrated that timely removal reduced user exposure [11]. Subsequently, they
presented evidence (repeated in Section 1) showing that take-down companies
do not share data on phishing websites with each other, and they calculated
that website lifetimes might be halved if companies shared their URL feeds.
They appealed to the greater good in advocating that take-down companies
voluntarily exchange URL feeds with each other at no charge. By contrast, this
paper proposes a mechanism for sharing where net contributors are compensated
by net receivers of phishing URLs.

Information sharing has long been recognized as necessary for improving in-
formation security. Gordon and Ford discussed early forms of sharing in the
anti-virus industry and contrasted it with sharing when disclosing vulnerabili-
ties [8]. Some have worried that firms might free-ride off the security expenditures
of other firms by only ‘consuming’ shared information (e.g., phishing feeds) and
never providing any data of their own [7], while others have argued that there
can also be positive economic incentives for sharing security information [5].

Cryptographic Protocols. The Phish-Market protocol is an instance of secure
multiparty computation (MPC). MPC has been a major area of work in theo-
retical cryptography, and general techniques are known for securely computing
any functionality [15,6,3,1].

These techniques, however, are not practical for computing functions that
have large input size (e.g., an optimized implementation of Yao’s protocol for
general two-party computation can take seconds to evaluate a simple function
with 32-bit inputs [10]). In our case, one of the inputs to the function is a
database of previously-known URLs containing thousands of entries, making
general techniques completely impractical.

For many specific functionalities, efficient protocols are known. We use some
of these as subroutines in our protocol. We make use of the Naor-Pinkas OT
protocol [13], which is itself a more efficient version of the Bellare-Micali OT
protocol [2]. We also use a generalization of the Chaum-Pedersen protocol for
proving in zero-knowledge the value of a commitment [4].

5 Concluding Remarks

Security mechanisms are becoming increasingly data-driven, from identifying
malware hosts to blocking spam and shutting down phishing websites. Conse-
quently, sharing data is now essential as no single defender has a complete view
of attacker behavior.

In this paper, we have devised a mechanism to make it easier for take-down
companies to interact: by compensating net contributors of phishing URLs, we
can bolster the incentive to share while rewarding investment into better discov-
ery techniques. As a bonus, our protocol has the desirable property of being prov-
ably secure and allowing parties to share data without relying on a trusted third
party to mediate. Crucially, the protocol is also efficient: our implementation

The Phish-Market Protocol 237

easily processed the phishing URLs in a two-week sample from two take-down
companies while introducing average delays of 5 seconds before sharing.

Of course, to cut phishing website lifetimes in half and reduce the annual
financial exposure due to phishing by several hundred million dollars, we must
still convince the take-down companies that sharing is a good idea. We feel that
the security guarantees our protocol provides will make it easier for companies
to at least explore the idea of sharing data with their competitors. At present,
many companies still cling to the view that their feed is best. Our protocol offers
companies the chance to put their claims to the test while avoiding the potential
for public embarrassment if they happen to find that sharing can indeed help.

References

1. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In:
STOC 1990, pp. 503–513. ACM Press, New York (1990)

2. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, Heidelberg
(1990)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryp-
tographic fault-tolerant distributed computations. In: STOC 1988, pp. 1–10. ACM
Press, New York (1988)

4. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

5. Gal-Or, E., Ghose, A.: The economic incentives for sharing security information.
Information Systems Research 16(2), 186–208 (2005)

6. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game — A
completeness theorem for protocols with honest majority. In: ACM (ed.) STOC
1987, pp. 218–229. ACM Press, New York (1987)

7. Gordon, L., Loeb, M., Lucyshyn, W.: Sharing information on computer systems
security: An economic analysis. Journal of Accounting and Public Policy 22(6),
461–485 (2003)

8. Gordon, S., Ford, R.: When worlds collide: information sharing for the security and
anti-virus communities, IBM research paper (1999)

9. Jakobsson, M., Myers, S. (eds.): Phishing and Countermeasures: Understanding
the Increasing Problem of Electronic Identity Theft. Wiley, New York (2006)

10. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party com-
putation system. In: USENIX Security Symposium, pp. 287–302 (2004)

11. Moore, T., Clayton, R.: Examining the impact of website take-down on phishing.
In: Anti-Phishing Working Group eCrime Researchers Summit (APWG eCrime),
pp. 1–13 (2007)

12. Moore, T., Clayton, R.: The consequence of non-cooperation in the fight against
phishing. In: Anti-Phishing Working Group eCrime Researchers Summit (APWG
eCrime), pp. 1–14 (2008)

13. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA 2001, pp.
448–457. Society for Industrial and Applied Mathematics, Philadelphia (2001)

14. NIST. Digital signature standard (DSS). FIPS 186-2 (January 2000),
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf

15. Yao, A.C.-C.: How to generate and exchange secrets. In: FOCS 1986, pp. 162–167.
IEEE Computer Society, Los Alamitos (1986)

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf

Building Incentives into Tor�

Tsuen-Wan “Johnny” Ngan1, Roger Dingledine2, and Dan S. Wallach3

1 Google Inc.
2 The Tor Project

3 Department of Computer Science, Rice University

Abstract. Distributed anonymous communication networks like Tor de-
pend on volunteers to donate their resources. However, the efforts of Tor
volunteers have not grown as fast as the demands on the Tor network.
We explore techniques to incentivize Tor users to relay Tor traffic too; if
users contribute resources to the Tor overlay, they should receive faster
service in return. In our design, the central Tor directory authorities mea-
sure performance and publish a list of Tor relays that should be given
higher priority when establishing circuits. Simulations of our proposed
design show that conforming users receive significant improvements in
performance, in some cases experiencing twice the network throughput
of selfish users who do not relay traffic for the Tor network.

1 Introduction

Anonymizing networks such as Tor [16] and Mixminion [11] aim to protect users
from traffic analysis on the Internet. That is, they help defeat attempts to catalog
who is talking to whom, who is using which websites, and so on. These anonymity
systems have a broad range of users: ordinary citizens who want to avoid being
profiled for targeted advertisements, corporations who do not want to reveal
information to their competitors, and law enforcement and government agencies
who need to interact with the Internet without being noticed.

These systems work by bouncing traffic around a network of relays operated
around the world, and strong security comes from having a large and diverse
network. To this end, Tor has fostered a community of volunteer relay operators.
This approach can provide sustainability (the network doesn’t shut down when
the money runs out) and diversity (many different groups run relays for many
different reasons), but it can also be a weakness if not enough people choose to
operate relays to support the network’s traffic.

In fact, the number of Tor users keeps growing [30], while a variety of factors
discourage more people from setting up relays; some want to save their band-
width for their own use, some can’t be bothered to configure port forwarding on
their firewall, and some worry about the possible consequences from running a
relay. This growing user-to-relay ratio in turn hurts the service received by all
users, leading to a classic “tragedy of the commons” situation [24].
� This research was funded, in part, by NSF grants CNS-0524211, CNS-0509297, and

CNS-0959138. The first author did part of this work while at Rice University.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 238–256, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

Building Incentives into Tor 239

Worse, not all users are equal. While Tor was designed for web browsing, in-
stant messaging, and other low-bandwidth communication, an increasing number
of Internet users are looking for ways to anonymize high-volume communications.
We did an informal measurement study by running a Tor exit relay at our in-
stitution, and we confirmed McCoy et al.’s results [32]: the median connection
coming out of our relay looked like web browsing traffic, but the median byte
looked like file-sharing traffic.

The Tor designers argued in 2005 [17] that having too much load on the Tor
network should be self-correcting, since low bandwidth and poor performance
would drive away users until the users that remain have acceptable performance.
Instead, performance has remained bad for many users. We suggest this disparity
is because different activities have different tolerance for bad performance: users
of interactive applications like web browsing give up before the file-sharers, who
are less sensitive to waiting hours for their work to complete.

How can we get more users to relay traffic? There are three common ap-
proaches to encouraging people to offer service in the p2p design space: building
community, making it easier to run relays, and providing improved performance
in exchange for service. So far Tor has focused most on the first two approaches,
attracting people who believe in the need for anonymous communications to
run relays. Tor now has over 1500 relays pushing over 1GBit/s of aggregate
traffic [31], but it still has not kept up with demand. On the other hand, an
accounting scheme for tracking nodes’ performance and rewarding nodes who
perform well would seem to be at odds with preserving anonymity.

This paper shows how to strike a balance between these seemingly conflicting
goals. We propose a solution where the central Tor directory authorities measure
the performance of each relay and construct a list of well-behaving relays. Relays
obtain this list from the authorities during normal updates. To allow relays to
be treated differently, traffic from relays in the list is marked as high priority by
other relays and receives better treatment along the whole circuit.

The rest of the paper is organized as follows. Sect. 2 provides background on
Tor. Sect. 3 investigates exactly which behaviors we need to incentivize. Sect. 4
describes our proposed design, and Sect. 5 presents simulation results showing
our design improves performance for listed relays, even as traffic from other users
increases. We discuss the results in Sect. 6, and evaluate the new risks our design
introduces, the most notable of which is that we end up with two anonymity sets:
the group of well-behaving relays and the group of other users and relays. We
review related works in Sect. 7, and conclude in Sect. 8.

2 Background

The Tor network is an overlay network of volunteers running Tor relays that relay
TCP streams for Tor clients. Tor lets its users connect to Internet destinations
like websites while making it hard for 1) an attacker on the client side to learn the
intended destination, 2) an attacker on the destination side to learn the client’s
location, and 3) any small group of relays to link the client to her destinations.

240 T.-W. “Johnny” Ngan, R. Dingledine, and D.S. Wallach

To connect to a destination via Tor, the client software incrementally creates
a private pathway or circuit of encrypted connections through several Tor relays,
negotiating a separate set of encryption keys for each hop along the circuit. The
circuit is extended one hop at a time, and each relay along the way knows only
the immediately previous and following relay in the circuit, so no single Tor
relay knows the complete path that each fixed-sized data packet (or cell) will
take. Thus, neither an eavesdropper nor a compromised relay can see both the
connection’s source and destination. Clients periodically rotate to a new circuit
to complicate long-term linkability between different actions by a single user.

The client learns which relays it can use by fetching a signed list of Tor
relays from the directory authorities. Each authority lists the available relays
along with opinions on whether each relay is considered reliable, fast, and so
on. Clients base their decisions on the consensus (i.e. the majority of authority
opinions). Each authority’s signing key comes with the Tor software, so Tor
clients can’t be tricked into using an alternate network run by an attacker.
Authorities also provide a way for Tor users to synchronize their behavior; since
anonymity loves company, users that make decisions based on similar information
will blend together better [15]. A more detailed description of the Tor design can
be found in its original design document [16] and its specifications [14].

Anonymity designs can be divided into two classes based on their goals: high-
latency and low-latency. High-latency designs like Mixmaster [34] and Mixmin-
ion [11] can take hours to deliver messages, but because messages mix with each
other they can withstand quite powerful attackers. These designs are not suitable
for web surfing, which would be untenable with long latencies.

Tor chooses to build a practical and useful network, then try to achieve good
security within these constraints. To that end, Tor doesn’t batch or reorder
messages at each hop. This choice means that Tor circuits are vulnerable to end-
to-end correlation attacks : an attacker who can measure traffic at both ends of
the circuit can link them [10,28]. A variety of other anonymity-breaking attacks
become possible because of Tor’s requirement to remain useful for low-latency
communications [26,29,35,36,41,44].

Because Tor aims to resist traffic analysis attacks (attacks that try to pick
the communicants out of a large set of participants) but does not aim to protect
against correlation attacks (attacks that watch two suspected endpoints to con-
firm the link), we have some flexibility in what design changes we can propose.
As long as we don’t introduce any attacks that are worse than the correlation
attacks, we are still within Tor’s threat model.

3 Incentive Goals

Relayed traffic is traffic forwarded from a Tor client or Tor relay to another
relay within the network. Choosing to relay traffic can provide better anonymity
in some cases: an attacker who controls the user’s next hop would not be able
to know whether the connection originated at the user or was relayed from
somebody else. But the exact details of the potential anonymity improvement

Building Incentives into Tor 241

are not well-understood even by the research community. Therefore they are
hard to communicate to users, so any potential perceived gains do not outweigh
the costs of setting up relaying and providing bandwidth to others.

Tor relays may also opt to serve as exit relays. Exit traffic is forwarded from
a Tor relay to somewhere outside the Tor network, as well as return traffic
from outside back into Tor. While there are theoretical anonymity improvements
similar to those for relaying traffic, as well as potential legal advantages for the
relay operator from not necessarily being the originator of all traffic coming from
the relay’s IP address [20], in practice the destination website and the user’s ISP
have no idea that Tor exists, and so they assume all connections are from the
operator. Some ISPs tolerate abuse complaints better than others. This hassle
and legal uncertainty may drive users away from running as an exit relay.

Beyond creating incentives to relay traffic inside the Tor network and to allow
connections to external services, we also need to consider the quality of the traffic
(e.g., the latency and throughput provided, and the reliability and consistency
of these properties). Since Tor circuits pass over several relays, the slowest relay
in the circuit has the largest impact.

4 Design

Our solution is to give a “gold star” in the directory listing to relays that provide
good service to others. A gold star relay’s traffic is given higher priority by other
relays, i.e., they always get relayed ahead of other traffic. Furthermore, when a
gold star relay receives a high priority connection from another gold star relay,
it passes on the gold star status so the connection remains high priority on the
next hop. All other traffic gets low priority. If a low priority node relays data
through a gold star relay, the traffic is still relayed but at low priority. Traffic
priority is circuit-based. Once a circuit is created, its priority remains the same
during its entire lifetime.

We can leverage Tor’s existing directory authorities to actively measure the
performance of each individual relay [42] and only grant those with satisfactory
performance the gold star status. This measurement can include bandwidth and
latency of the relayed traffic for that relay. By measuring the bandwidth through
the Tor network itself, the directory authorities can hide their identity and intent
from the Tor relays. This method of anonymously auditing nodes’ behavior is
similarly used in other systems [19,38,45].

Due to variations of the network conditions and the multi-hop nature of Tor,
it may take multiple measurements to get accurate results. Therefore, we use a
“k out of n” approach, where a relay has to have satisfactory performance for k
times out of the last n measurements to be eligible for gold star status. At that
point, it becomes a policy issue of who gets a gold star. We assign a gold star
to the fastest 7/8 of the nodes, following the current Tor design in which the
slowest one-eighth of Tor relays are not used to relay traffic at all. Of course,
relays may choose not to give priority to gold star traffic. But in this case, they
would most likely become the slowest nodes in the measurements and would

242 T.-W. “Johnny” Ngan, R. Dingledine, and D.S. Wallach

not earn a gold star. The directory authorities can then distribute the gold star
status labels along with the network information they presently distribute.

The behaviors we most need to encourage will vary based on the demands
facing the Tor network. Since there are enough exit relays currently, the design
and analysis in this paper focuses on incentives for relayed traffic. However, our
approach of giving priority to traffic from the most useful relays means that we
can adapt the definition of “useful” as needed: e.g. we could vary the required
threshold in the measurement tests above or require new tests such as verifying
that exit traffic is handled correctly. We would then only need to publish the
desired policy; users desiring higher priority for their traffic would then decide
whether to follow the policy. We consider exit traffic testing more in Section 6.2.

The effectiveness of this design depends on the accuracy of the measurements,
which in turn depends on the measurement frequency. Frequent measurements
increase our confidence, but they also place a burden on the network and limit the
scalability of the measuring nodes. Snader and Borisov [46] suggest an alternate
approach to learning bandwidth, where every relay reports its own observations
about the other relays, and the directory authorities use the median vote. If we
used this approach, gold stars could then be assigned based on having a high
enough median vote; but we note that active measurements would still be needed
for verifying other properties such as exit traffic.

5 Experiments

Here we show simulations of the effectiveness of our “gold star” incentive scheme
against different scenarios, including varying amounts of load on the Tor network,
and varying strategies taken by simulated nodes (e.g., selfish vs. cooperative).

5.1 Experimental Apparatus

We built a packet-level discrete event simulator that models a Tor overlay net-
work. The simulator, written in Java, was executed on 64-bit AMD Opteron 252
dual processor servers with 4GB of RAM and running RedHat Enterprise Linux
(kernel version 2.6.9) and Sun’s JVM, version 1.5.0.

We simulate every cell at every hop. Each node, particularly simulated Bit-
Torrent clients, can easily have hundreds of outstanding cells in the network at
any particular time. Simulating 20 BitTorrent clients and 2000 web clients con-
sumes most of the available memory. To keep the client-to-relay ratio realistic,
we could only simulate Tor networks with around 150 relays.

For simplicity, we assumed the upstream and downstream bandwidth for all
relays is symmetric, since the forwarding rate of any relay with asymmetric
bandwidth will be limited by its lower upstream throughput. We also simplify
relays by assuming they take no processing time. The cooperative relays (which
reflect the altruists in the current Tor network) have a bandwidth of 500KB/s.
The latency between any two nodes in the network is fixed at 100ms.

Our simulations use different numbers of simplified web and BitTorrent clients
to generate background traffic. Our web traffic is based on Hernández-Campos

Building Incentives into Tor 243

et al. [25]’s “Data Set 4,” collected in April 2003 [48]. Our simplified BitTorrent
clients always maintain four connections, and upload and download data at
the maximum speed Tor allows. They also periodically replace their slowest
connection with a new one, following BitTorrent’s standard policy. We assume
that the external web or BitTorrent servers have unlimited bandwidth. The
different relay traffic types are:

Cooperative. These nodes use their entire 500KB/s bandwidth to satisfy the
needs of their peers, and give priority to “gold star” traffic when present.
(If sufficient gold star traffic is available to fill the entire pipe, regular traffic
will be completely starved for service.)

Selfish. These nodes never relay traffic for others. They are freeloaders on the
Tor system with 500KB/s of bandwidth.

Cooperative slow. These nodes follow the same policy as cooperative nodes,
but with only 50KB/s of bandwidth.

Cooperative reserve. These nodes have 500KB/s bandwidth, just like coop-
erative nodes, but cap their relaying at 50KB/s, saving the remainder for
traffic that they originate.

Adaptive. These nodes are cooperative until they get a gold star. After this,
they are selfish until they lose the gold star.

All of our simulations use ten directory authorities. To assign the gold star status,
every minute each directory authority randomly builds a circuit with three Tor
relays and measures its bandwidth by downloading a small, known 40KB file from
an external server. The bandwidth measurement is recorded and attributed to
only the middle relay in the circuit. (In a genuine deployment, the entry and
exit nodes would be able to determine that they were being measured by virtue
of being connected to known measurement nodes and could thus change their
behavior in response.) To obtain a gold star, we require Tor relays to successfully
relay traffic at least two times out of the last five measurements (i.e. k = 2 and
n = 5 from Section 4). A relay is defined as successful if the directory authority
can receive the correct file within a reasonable amount of time.

For our results, we describe the observed network performance in terms of
“download time” and “ping time.” Download time describes the time for nodes
to download a 100KB file from an external server. Ping time describes the round-
trip latency for that same external server. (This external server is assumed to
have infinite bandwidth and introduce zero latency of its own.) Both measures
are important indicators of how a Tor user might perceive Tor’s quality when web
surfing. For contrast, a Tor user downloading large files will be largely insensitive
to ping times, caring only about throughput.

5.2 Experiment 1: Unincentivized Tor

First, we want to understand how Tor networks behave when demand for the
network’s resources exceeds its supply. We simulated 50 cooperative relays, 50
selfish relays, and 50 cooperative reserve relays with heavy background traffic
(20 BitTorrent clients and 2000 web clients).

244 T.-W. “Johnny” Ngan, R. Dingledine, and D.S. Wallach

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 200 400 600 800 1000 1200 1400

D
ow

nl
oa

d
tim

e
(s

ec
on

ds
)

Simulation time (minutes)

Cooperative
Selfish

Cooperative reserve

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000 1200 1400

P
in

g
tim

e
(s

ec
on

ds
)

Simulation time (minutes)

Cooperative
Selfish

Cooperative reserve

Fig. 1. Average download and ping time over time when no incentive scheme is in
place and heavy traffic (20 BitTorrent clients and 2000 web clients). Both download
and ping time show significant variation, regardless of relay type.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 10 5 2 1 0.5

C
um

ul
at

iv
e

fr
ac

tio
n

Download time (seconds)

Cooperative
Selfish

Cooperative reserve
 0

 0.2

 0.4

 0.6

 0.8

 1

 20 10 5 2 1 0.5

C
um

ul
at

iv
e

fr
ac

tio
n

Ping time (seconds)

Cooperative
Selfish

Cooperative reserve

Fig. 2. Cumulative download and ping time when no incentive scheme is in place and
heavy traffic (20 BitTorrent clients and 2000 web clients). Performance for all relay
types is similar, although selfish relays do somewhat better in the worst case.

Figure 1 plots the average download and ping time for each relay type. Each
plotted point is the average for 50 raw samples. Despite this, the variation among
the data points suggests that the network performance is highly variable.

To get a better view of the distribution of download times and ping times, we
use cumulative distribution functions (CDFs). Figure 2 represents the same data
as Fig. 1, albeit without any of the data-point averaging. The x-axis represents
download time or ping time and the y-axis represents the percentage of nodes
who experienced that particular download or ping time or less.

While the ideal download time for all relay types in this experiment is 0.8
seconds (six network roundtrip hops plus transmission time), all relay types
rarely achieve anywhere close to this number. Figure 2 shows that roughly 80%
of the attempted downloads take more than two seconds, regardless of a node’s
policy. Approximately 10% of cooperative relays take longer than ten seconds.
Selfish nodes, in general, do better in the worst case than cooperative nodes, but
observe similar common-case performance.

Building Incentives into Tor 245

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 10 5 2 1 0.5

C
um

ul
at

iv
e

fr
ac

tio
n

Download time (seconds)

Cooperative
Selfish

Cooperative slow
Adaptive

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 5 2 1 0.5

C
um

ul
at

iv
e

fr
ac

tio
n

Ping time (seconds)

Cooperative
Selfish

Cooperative slow
Adaptive

Fig. 3. Cumulative download and ping time with the gold star scheme and no back-
ground traffic.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 10 5 2 1 0.5

C
um

ul
at

iv
e

fr
ac

tio
n

Download time (seconds)

Cooperative
Selfish

Cooperative slow
Adaptive

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 5 2 1 0.5

C
um

ul
at

iv
e

fr
ac

tio
n

Ping time (seconds)

Cooperative
Selfish

Cooperative slow
Adaptive

Fig. 4. Cumulative download and ping time with the gold star scheme and heavy
background traffic (20 BitTorrent clients and 2000 web clients). Cooperative nodes
maintain their performance, while selfish and adaptive nodes suffer.

5.3 Experiment 2: Gold Stars

Our first experiment represents the present-day situation in the Tor network and
is clearly unsatisfactory. This second experiment measures the effectiveness of
our “gold star” mechanism in addressing this concern. This time, our simulation
consists of 40 cooperative relays, 40 selfish relays, 40 cooperative slow relays, and
40 adaptive relays. These variations, relative to the first experiment, also allow us
to see whether slower cooperative nodes still get the benefits of a gold star, and
whether adaptive nodes can be more effective than purely selfish nodes. Figures 3
and 4 show the cumulative download and ping time with no background traffic
and heavy background traffic, respectively.

Our results are striking. Cooperative nodes maintain their performance, re-
gardless of the level of background traffic in the overlay. When there is no back-
ground traffic, they slightly outperform the selfish and adaptive nodes, but once
the traffic grows, the cooperative nodes see clear improvements. For example, un-
der heavy background traffic, 80% of the cooperative nodes see download times
under two seconds, versus roughly 2.5 seconds for the selfish and adaptive nodes.

246 T.-W. “Johnny” Ngan, R. Dingledine, and D.S. Wallach

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 10 5 2 1 0.5

C
um

ul
at

iv
e

fr
ac

tio
n

Download time (seconds)

Cooperative
Selfish

Cooperative reserve
Adaptive

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 5 2 1 0.5

C
um

ul
at

iv
e

fr
ac

tio
n

Ping time (seconds)

Cooperative
Selfish

Cooperative reserve
Adaptive

Fig. 5. Cumulative download and ping time with the gold star scheme and heavy
background traffic (20 BitTorrent clients and 2000 web clients). Cooperative reserve
relays, which replaced the cooperative slow relays, have similar performance to fully
cooperative relays.

Our experiment also shows that the adaptive policy does not defeat the gold
star mechanism. Adaptive nodes will experience better performance while they
have a gold star, but their benefit only splits the difference between the cooper-
ative and selfish policies, roughly in proportion to the effort they are spending
to maintain their gold star.

Cooperative slow nodes are always relatively slow due to their limited avail-
able bandwidth. However, like their fast counterparts, they experience stable
performance as the background load on the Tor network increases. This demon-
strates that the gold star policy can effectively reward good behavior, regardless
of a node’s available bandwidth.

We conducted a further experiment, replacing the cooperative slow nodes with
cooperative reserve nodes, representing a possible rational response to the gold
star mechanism. These nodes use 10% of their bandwidth for relaying and earning
a gold star, reserving 90% of their bandwidth for their own needs. Figure 5 shows
the results of this experiment. Both kinds of cooperative nodes observe identical
distributions of bandwidth and latency. Selfish and adaptive nodes suffer as
the background traffic increases. This experiment shows, unsurprisingly, that
nodes need not be “fully” cooperative to gain a gold star. In an actual Tor
deployment, it would become a policy matter, perhaps an adaptive process based
on measuring the Tor network, to determine a suitable cutoff for granting gold
stars (see Sect. 6.1).

5.4 Experiment 3: Alternating Relays

This experiment considers a variation on the adaptive strategy used in the pre-
vious experiments. Alternating nodes will toggle between the cooperative and
the selfish strategies on a longer timescale—four hours per switch. This experi-
ment uses 50 such alternating relays with 50 cooperative relays and with heavy
background traffic (20 BitTorrent clients and 2000 web clients).

Building Incentives into Tor 247

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400

D
ow

nl
oa

d
tim

e
(s

ec
on

ds
)

Simulation time (minutes)

Cooperative
Alternating

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000 1200 1400

P
in

g
tim

e
(s

ec
on

ds
)

Simulation time (minutes)

Cooperative
Alternating

Fig. 6. Average download and ping time with relays that alternate between being
cooperative and selfish. This experiment is with the gold star scheme in place and heavy
background traffic (20 BitTorrent clients and 2000 web clients). Dotted lines show the
times at which the alternating relays switch. The performance of alternating relays gets
worse whenever they switch to being selfish, while performance for cooperative relays
only suffers a little.

Figure 6 shows the average download and ping time for both relay types
over time. During the periods where the alternating relays are cooperative, they
receive service of a similar quality as the full-time cooperative nodes. However,
once the alternating relays switch to become selfish, their download times quickly
increase, representing the same quality of service that would be observed by a
selfish node. Note that while the cooperative nodes do observe lower quality of
service (after all, fully half of the Tor nodes stopped relaying any data), they still
do much better than their selfish peers. Our gold star system robustly responds
to changes in node behavior.

5.5 Experiment 4: Pair-Wise Reputation

Last, we investigated a variation on our gold star design where individual circuits
are not labelled as being low or high priority. Rather, each circuit inherits its
priority from the status of the previous relay. That is, a low-priority node routing
traffic through a gold-star node will experience delays getting the gold-star node
to accept the traffic, but the traffic will have high priority in its subsequent
hops. This alternative design has significant improvements from an anonymity
perspective, because traffic at a given hop does not give any hint about whether
it originated from a low-priority or high-priority node. However, our experiment
showed selfish nodes clearly outperforming their cooperative peers. The results
are shown in Appendix A.

6 Discussion

Our experiments show that our “gold star” technique is effective at giving higher
priority to users who contribute to the Tor network. Nonetheless, a variety of

248 T.-W. “Johnny” Ngan, R. Dingledine, and D.S. Wallach

questions remain about the policy that should be used for assigning gold stars
and how the policy may affect the behavior of strategic Tor users.

6.1 Strategic Users

Our proposed incentive scheme is not perfectly strategy-proof, in the sense that
users can earn a gold star without providing all of their network capacity for
the use of the Tor network (as in the “cooperative reserve” policy discussed in
Sect. 5.3). This balance creates a variety of possible strategic behaviors.

Provide borderline or spotty service. A relay needs to provide only the
minimal amount of bandwidth necessary to gain the gold star. Of course, if every
user provided this amount, Tor would still have vastly greater resources than it
does today. Next, because the bandwidth policies are determined centrally, the
required minimum bandwidth for obtaining a gold star could be adjusted in
response to network congestion. Strategic nodes would then adjust the capacity
they offer, making more bandwidth available whenever they are needed.

Only relay at strategic times. Strategic users might provide relay services
only when the “local” user is away, and thus not making demands on the Tor
network. Such behavior is not disincentivized by our approach, as it still provides
scalable resources to the Tor network. However, any users following such behavior
may be partially compromising their anonymity, as their presence or absence will
be externally observable.

Share a relay among several users. Several users could share a single entry
relay into the Tor network, thus inheriting its gold star benefits without providing
any additional bandwidth to the Tor network. In fact, we may even want to
support this design, so users can run a fast relay at a colocation facility and then
reap the rewards from their slower cable-modem or DSL Tor client. To allow the
client to inherit the reputation of the server, the relay could be configured to
give high priority to connections from a given set of IP addresses or Tor identity
keys. On the other hand, multiple users that use a shared entry point must be
able to trust one another. Lacking such trust, their desire for personal anonymity
would incentivize them to run individual Tor relays.

Accept traffic only from known relays. In our design the directory author-
ities do their measurements anonymously via Tor, so all audits will come from
other listed Tor relays. Thus a strategic relay could get away with giving poor
performance (or no performance at all!) to connections from IP addresses not
listed in the directory. One answer is that some of the measurements should be
done through unlisted relays, perhaps by gathering a large pool of volunteer Tor
users to help diversify the audit sources. Another answer is to turn this vulner-
ability around and call it a feature—another reason that users should want to
get listed as a good relay.

Forward high-priority traffic as low-priority. A relay who correctly for-
wards traffic can still cheat by changing the priority on incoming traffic. The

Building Incentives into Tor 249

measuring authorities should build high-priority test circuits back to a trusted
relay, to see if the circuit arrives with the expected high-priority status.

6.2 The Audit Arms Race

Some attacks outlined above involve relays that provide some level of service but
not quite as much as we might prefer. The response in each case is a smarter
or more intensive measurement algorithm so the directory authorities can more
precisely distinguish uncooperative behavior.

To see why this won’t be an arms race between increasingly subtle cheating
and increasingly sophisticated audits, we need to examine the incentives for or-
dinary users. Based on informal discussions with Tor relay operators, the most
challenging part of setting up a Tor relay is configuring the software, enabling
port forwarding in the firewall, etc. Compared to this initial barrier, the incre-
mental cost of providing a bit more bandwidth is low for most users. As long as
our audit mechanism correctly judges whether the user relays any traffic at all,
we’re verifying that the user has performed the most personally costly step in
setting up a relay. We expect that the diminishing returns a strategic relay gets
in saving bandwidth as we progress down the arms race will limit the complexity
required for the auditing mechanism.

Measuring whether a relay is forwarding traffic adequately within the net-
work is only one step. We could also extend our auditing techniques to measure
whether an exit relay is in fact correctly forwarding exit traffic. We could thus
incentivize exit traffic in the same way we incentivize relay traffic.

One concern in any measurement scheme over Tor is that the anonymity of Tor
hides which node in an overlay route may have been responsible for degrading
the quality of service. We could potentially “charge” all of the nodes in the
route, but this could lead to “collateral reputation damage” for innocent nodes.
An adversary may even strategically target a node for such damage. This ability
to influence reputation can assist in anonymity-breaking attacks [6,19].

6.3 Anonymity Implications

Anonymity metrics like entropy [12,43] apply to high-latency systems like Mixmin-
ion, where a global attacker aims to narrow the set of suspects to a small anonymity
set (or to a probability distribution that has low entropy). With low-latency sys-
tems like Tor, most attacks either fail or reduce the entropy to zero. Thus these
systems instead measure their security by the probability that a non-global at-
tacker will be in the right positions in the network to launch an attack [47]. One
key factor in this metric is the number of relays in the network.

Assuming the Tor network starts out with a small number of gold star relays,
whenever a Tor relay receives a high priority cell, it knows with absolute certainty
that the cell must have originated from a relay having a gold star. With so few
gold star relays, the presence of high priority traffic greatly reduces the number
of possible sources for that traffic. Worse, the set of users with a gold star is
made public, further simplifying the attack.

250 T.-W. “Johnny” Ngan, R. Dingledine, and D.S. Wallach

We believe this tradeoff would still attract many gold star relays, though.
First, altruists who don’t use Tor as a client would still be the early adopters, as
predicted by Acquisti et al. [1] and as observed in the current Tor network. Low-
sensitivity users would come next; many users who care more about performance
than anonymity would be enticed into running Tor relays. The number of gold
star nodes in the system should therefore increase over time, reducing the extent
to which the presence of prioritized traffic gives away information to an attacker.
We speculate that the growing anonymity set of gold star relays, along with the
improved performance from being in the group getting priority traffic, would
ultimately be enough to push many mainstream users into setting up relays.

We leave one major obstacle for future work: even if the anonymity set of
gold-star users is large, changes in the set over time allow intersection attacks
on anonymity. That is, if an attacker can link connections by a gold-star user
(for example by tracking cookies or logins to a website), this attacker can narrow
down which relay is running and has a gold star whenever such a connection
occurs. One solution might be to make the gold star status persist a while after
the relay stops offering service, to dampen out fluctuations in the anonymity sets.
Depending on the rate of churn in the Tor network, this period might need to be
a week or more, which means we then need to reevaluate the balance questions
from this section. A more radical change would be to move to an ecash based
service where getting high priority is less related to whether you’re running a
good relay at the time [2] – but we note that even in these more complex designs
where there are multiple plausible reasons for a given user to get higher priority,
users that earn their priority by relaying traffic can still be attacked [33].

6.4 The Economics of Attracting More Relays

The experiments in Section 5 show that our design creates significant incentives
for users to run Tor relays. As we attract more relays, the Tor network grows
larger. Thus the anonymity that can be achieved increases for both the relays and
the clients. As we attract more relays, the overall capacity in the network grows
too. In fact, if we get a large enough network, the performance will improve
compared to the currently deployed Tor network not only for the users who
choose to run relays, but also for the users who don’t!

If enough users do choose to run relays that there is excess network capacity,
then the observable performance difference between high priority traffic and
regular traffic might be insufficient to get more relays, or even to keep all of
the current relays. If such a problem were to occur, one additional possibility
would be to reserve bandwidth for high-priority traffic [40], effectively throttling
low-priority traffic and creating a larger incentive for users to get a gold star.
The downside to such an approach, of course, is that Tor performance would
“needlessly” suffer for low-priority Tor users.

This discussion of the economics of our incentive strategy leaves out many
details. We should start by analyzing the various equilibria and deriving utility
functions for various user classes. We leave this investigation to future work.

Building Incentives into Tor 251

7 Related Work

7.1 Incentives in Anonymous Communication Networks

Real-world anonymizing networks have operated on three incentive approaches:
community support, payment for service, and government support. (Discussion
of the funding approaches for research and development of anonymity designs,
while related, is outside the scope of this paper.) The Tor network right now
is built on community support: a group of volunteers from around the Internet
donate their resources because they want the network to exist.

Zero-Knowledge Systems’ Freedom network [7] on the other hand was a com-
mercial anonymity service. They collected money from their users, and paid
commercial ISPs to relay traffic. While that particular company failed to make
its business model work, the more modest Anonymizer [3] successfully operates
a commercial one-hop proxy based on a similar approach. PAR [2] proposes a
micropayment model where clients pay coins for each circuit, and relays can use
these coins for service of their own or convert them into actual payments; how-
ever, its dependency on an ecash bank means it remains a theoretical design.
Lastly, the AN.ON project’s cascade-based network was directly funded by the
German government as part of a research project [4]. Unfortunately, the funding
ended in 2007, so they are exploring the community support approach (sev-
eral of their nodes are now operated by other universities) and the pay-for-play
approach (setting up commercial cascades that provide more reliable service).

Other incentive approaches have been discussed as well. Acquisti et al. [1]
argued that high-needs users (people who place a high value on their anonymity)
will opt to relay traffic in order to attract low-needs users — and that some level
of free riding is actually beneficial because it provides cover traffic. It is unclear
how well that argument transitions from the high-latency systems analyzed in
that paper to low-latency systems like Tor.

7.2 Incentives in Other Peer-to-Peer Networks

Incentives for applications. Incentive schemes have been proposed for several
p2p applications. BitTorrent [8], one of the pioneers, facilitates large numbers
of nodes sharing the effort of downloading very large files. Every node will have
acquired some subset of the file and will trade blocks with other nodes until it has
the rest. Nodes will preferentially trade blocks with peers that give them better
service (“tit-for-tat” trading). Scrivener [37] addresses a more general problem,
where nodes are interested in sharing a larger set of smaller files.

In a storage network, nodes share spare disk capacity for applications such as
distributed backup systems. Ngan et al. [38] proposed an auditing mechanism,
allowing cheaters to be discovered and evicted from the system. Samsara [9]
enforced fairness by requiring an equal exchange of storage space between peers
and by challenging peers periodically to prove that they are actually storing
the data. Tangler [50] required users to provide resources for a probation period
before they are allowed to consume resources.

252 T.-W. “Johnny” Ngan, R. Dingledine, and D.S. Wallach

Reputation systems. Resource allocation and accountability problems are fun-
damental to p2p systems. Dingledine et al. [13] survey many schemes for tracking
nodes’ reputations. In particular, if obtaining a new identity is cheap and posi-
tive reputations have value, negative reputation could be shed easily by leaving
the system and rejoining with a new identity. Friedman and Resnick [21] also
study the case of cheap pseudonyms, and argue that suspicion of strangers is
costly. EigenTrust [27] is a distributed algorithm for nodes to securely compute
global trust values based on their past performance. Blanc et al. [5] suggest a
reputation system for incentivizing routing in peer-to-peer networks that uses a
trusted authority to manage the reputation values for all peers, comparable to
our use of directory authorities.

Trading and payments. SHARP [22] is a framework for distributed resource
management, where users trade resources with trusted peers. KARMA [49] and
SeAl [39] rely on auditor sets to track the resource usage of each node in the
network. Golle et al. [23] considered p2p systems with micro-payments, analyzing
how various user strategies reach equilibrium within a game theoretic model.

Tradeoff between anonymity and performance. If the number of gold star
relays in the network is small, sending gold star traffic may result in reduced
anonymity, albeit better performance. This introduces another dimension of traf-
fic control. In our design a gold star relay is not required to send its own traffic
at high priority; it may choose to send it at a low priority for better anonymity.
This tradeoff is similar to the idea in Alpha-mixing [18], where the sender can
use a parameter to choose between better anonymity and lower latency.

8 Conclusions

This paper proposes an incentive scheme to reward Tor users who relay traffic.
Our simulations show that we can correctly identify nodes who cooperate with
our desired policies, and they achieve sizable performance improvements, partic-
ularly in Tor’s current situation where the Tor network is saturated with traffic.
While we reduce anonymity for cooperative (“gold star”) nodes because any high
priority traffic must have originated from a gold star node, we create significant
performance incentives for many users to join the Tor network as relays, which
improves both performance and anonymity.

Once our technique is ready to be deployed on the live Tor network, both
pragmatic and theoretical concerns remain. For example, we cannot predict fu-
ture demand on the Tor network, nor can we predict the extent to which firewalls
or ISP bandwidth policies might interfere with Tor or otherwise disincentivize
users from relaying Tor traffic. We should also investigate the extent to which
the centralized Tor management nodes might be able to coordinate their net-
work measurements and agree on optimal incentivization policies as network
conditions evolve.

Building Incentives into Tor 253

References

1. Acquisti, A., Dingledine, R., Syverson, P.: On the economics of anonymity. In:
Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 84–102. Springer, Heidelberg
(2003)

2. Androulaki, E., Raykova, M., Srivatsan, S., Stavrou, A., Bellovin, S.M.: PAR: Pay-
ment for anonymous routing. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS,
vol. 5134, pp. 219–236. Springer, Heidelberg (2008)

3. The Anonymizer, http://www.anonymizer.com/
4. Berthold, O., Federrath, H., Köpsell, S.: Web MIXes: A system for anonymous and

unobservable Internet access. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, p. 115. Springer, Heidelberg (2001)

5. Blanc, A., Liu, Y.-K., Vahdat, A.: Designing incentives for peer-to-peer routing.
In: Proceedings of the 24th IEEE INFOCOM, Miami, FL (March 2005)

6. Borisov, N., Danezis, G., Mittal, P., Tabriz, P.: Denial of service or denial of se-
curity? How attacks on reliability can compromise anonymity. In: Proceedings of
CCS 2007 (October 2007)

7. Boucher, P., Shostack, A., Goldberg, I.: Freedom systems 2.0 architecture. White
paper, Zero Knowledge Systems, Inc. (December 2000), http://osiris.978.org/
~brianr/crypto-research/anon/www.freedom.net/products/whitepapers/

Freedom_System_2_Architecture.pdf

8. Cohen, B.: Incentives build robustness in BitTorrent. In: Proceedings of the Work-
shop on Economics of Peer-to-Peer Systems, Berkeley, CA (June 2003)

9. Cox, L.P., Noble, B.D.: Samsara: Honor among thieves in peer-to-peer storage.
In: Proc. 19th ACM Symp. on Operating System Principles (SOSP 2003), Bolton
Landing, NY (October 2003)

10. Danezis, G.: The traffic analysis of continuous-time mixes. In: Martin, D., Serjan-
tov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 35–50. Springer, Heidelberg (2005)

11. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design of a type III anony-
mous remailer protocol. In: Proceedings of the IEEE Symposium on Security and
Privacy, Oakland, CA (May 2003)

12. Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In:
Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68.
Springer, Heidelberg (2003)

13. Dingledine, R., Freedman, M.J., Molnar, D.: Accountability measures for peer-to-
peer systems. In: Peer-to-Peer: Harnessing the Power of Disruptive Technologies.
O’Reilly and Associates, Sebastopol (November 2000)

14. Dingledine, R., Mathewson, N.: Tor protocol specification,
https://www.torproject.org/svn/trunk/doc/spec/tor-spec.txt

15. Dingledine, R., Mathewson, N.: Anonymity loves company: Usability and the net-
work effect. In: Proceedings of the Fifth Workshop on the Economics of Information
Security (WEIS 2006), Cambridge, UK (June 2006)

16. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proceedings of 13th USENIX Security Symposium, San Diego, CA (Au-
gust 2004), Project web site, https://www.torproject.org/

17. Dingledine, R., Mathewson, N., Syverson, P.: Challenges in deploying low-latency
anonymity. Technical Report 5540-265, Center for High Assurance Computer Sys-
tems, Naval Research Laboratory (2005)

18. Dingledine, R., Serjantov, A., Syverson, P.: Blending different latency traffic with
alpha-mixing. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp.
245–257. Springer, Heidelberg (2006)

http://www.anonymizer.com/
http://osiris.978.org/~brianr/crypto-research/anon/www.freedom.net/products/whitepapers/Freedom_System_2_Architecture.pdf
http://osiris.978.org/~brianr/crypto-research/anon/www.freedom.net/products/whitepapers/Freedom_System_2_Architecture.pdf
http://osiris.978.org/~brianr/crypto-research/anon/www.freedom.net/products/whitepapers/Freedom_System_2_Architecture.pdf
https://www.torproject.org/svn/trunk/doc/spec/tor-spec.txt
https://www.torproject.org/

254 T.-W. “Johnny” Ngan, R. Dingledine, and D.S. Wallach

19. Dingledine, R., Syverson, P.: Reliable MIX cascade networks through reputation.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 253–268. Springer, Heidelberg
(2003)

20. Electronic Frontier Foundation. Tor: Legal FAQ for Tor server operators,
https://www.torproject.org/eff/tor-legal-faq.html

21. Friedman, E., Resnick, P.: The social cost of cheap pseudonyms. Journal of Eco-
nomics and Management Strategy 10(2), 173–199 (2001)

22. Fu, Y., Chase, J.S., Chun, B.N., Schwab, S., Vahdat, A.: SHARP: An architec-
ture for secure resource peering. In: Proc. 19th ACM Symp. on Operating System
Principles (SOSP 2003), Bolton Landing, NY (October 2003)

23. Golle, P., Leyton-Brown, K., Mironov, I., Lillibridge, M.: Incentives for sharing in
peer-to-peer networks. In: Proceedings of the 3rd ACM Conference on Electronic
Commerce, Tampa, FL (October 2001)

24. Hardin, G.: The tragedy of the commons. Science 162 (1968), Alternate location,
http://dieoff.com/page95.htm

25. Hernández-Campos, F., Jeffay, K., Smith, F.D.: Tracking the evolution of web
traffic: 1995–2003. In: Proceedings of the 11th IEEE/ACM International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), Orlando, FL (October 2003)

26. Hopper, N., Vasserman, E.Y., Chan-Tin, E.: How much anonymity does network
latency leak? In: Proceedings of the 14th ACM Conference on Computer and Com-
munication Security, Alexandria, VA (October 2007)

27. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The EigenTrust algorithm for
reputation management in p2p networks. In: Proceedings of the 12th International
World Wide Web Conference, Budapest, Hungary (May 2003)

28. Levine, B.N., Reiter, M.K., Wang, C., Wright, M.K.: Timing attacks in low-latency
mix-based systems. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 251–265.
Springer, Heidelberg (2004)

29. Liberatore, M., Levine, B.N.: Inferring the Source of Encrypted HTTP Connec-
tions. In: Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security (CCS 2006), Alexandria, VA, pp. 255–263 (October 2006)

30. Loesing, K.: Evaluation of client requests to the directories to determine total
numbers and countries of users. Technical report, The Tor Project (June 2009),
https://torproject.org/projects/metrics

31. Loesing, K.: Measuring the Tor network from public directory information. Tech-
nical report, 2nd Hot Topics in Privacy Enhancing Technologies (HotPETs 2009),
Seattle, WA, USA (August 2009)

32. McCoy, D., Bauer, K., Grunwald, D., Kohno, T., Sicker, D.: Shining light in dark
places: Understanding the Tor network. In: Borisov, N., Goldberg, I. (eds.) PETS
2008. LNCS, vol. 5134, pp. 63–76. Springer, Heidelberg (2008)

33. McLachlan, J., Hopper, N.: On the risks of serving whenever you surf: Vulnerabili-
ties in Tor’s blocking resistance design. In: Proceedings of the Workshop on Privacy
in the Electronic Society (WPES 2009). ACM, New York (November 2009)

34. Möller, U., Cottrell, L., Palfrader, P., Sassaman, L.: Mixmaster protocol — version
2. IETF Internet Draft (July 2003),
http://www.abditum.com/mixmaster-spec.txt

35. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of Tor. In: Proc. IEEE Sym-
posium on Security and Privacy, Oakland, CA (May 2005)

36. Murdoch, S.J., Zieliński, P.: Sampled traffic analysis by Internet-exchange-level
adversaries. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 167–
183. Springer, Heidelberg (2007)

https://www.torproject.org/eff/tor-legal-faq.html
http://dieoff.com/page95.htm
https://torproject.org/projects/metrics
http://www.abditum.com/mixmaster-spec.txt

Building Incentives into Tor 255

37. Nandi, A., Ngan, T.-W.J., Singh, A., Druschel, P., Wallach, D.S.: Scrivener: Pro-
viding incentives in cooperative content distribution systems. In: Alonso, G. (ed.)
Middleware 2005. LNCS, vol. 3790, pp. 270–291. Springer, Heidelberg (2005)

38. Ngan, T.-W.J., Wallach, D.S., Druschel, P.: Enforcing fair sharing of peer-to-peer
resources. In: Proceedings of the 2nd International Workshop on Peer-to-Peer Sys-
tems (IPTPS), Berkeley, CA (February 2003)

39. Ntarmos, N., Triantafillou, P.: SeAl: Managing accesses and data in peer-to-peer
sharing networks. In: Proceedings of the 4th IEEE International Conference on
P2P Computing, Zurich, Switzerland (August 2004)

40. Odlyzko, A.M.: Paris metro pricing for the Internet. In: ACM Conference on Elec-
tronic Commerce, pp. 140–147 (1999)

41. Øverlier, L., Syverson, P.: Locating hidden servers. In: Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, CA (May 2006)

42. Perry, M.: TorFlow: Tor Network Analysis. Technical report, 2nd Hot Topics in Pri-
vacy Enhancing Technologies (HotPETs 2009), Seattle, WA, USA (August 2009)

43. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity.
In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53.
Springer, Heidelberg (2003)

44. Shmatikov, V., Wang, M.-H.: Timing analysis in low-latency mix networks: Attacks
and defenses. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006.
LNCS, vol. 4189, pp. 18–33. Springer, Heidelberg (2006)

45. Singh, A., Ngan, T.-W.J., Druschel, P., Wallach, D.S.: Eclipse attacks on overlay
networks: Threats and defenses. In: Processings of IEEE INFOCOM, Barcelona,
Spain (April 2006)

46. Snader, R., Borisov, N.: A tune-up for Tor: Improving security and performance
in the Tor network. In: Proceedings of the Network and Distributed Security Sym-
posium - NDSS 2008. Internet Society, San Diego (February 2008)

47. Syverson, P., Tsudik, G., Reed, M., Landwehr, C.: Towards an Analysis of Onion
Routing Security. In: Federrath, H. (ed.) Designing Privacy Enhancing Technolo-
gies. LNCS, vol. 2009, pp. 96–114. Springer, Heidelberg (2001)

48. The Distributed and Real-Time Systems Research Group, UNC. Data for the UNC
HTTP traffic model, http://www.cs.unc.edu/Research/dirt/proj/http-model/

49. Vishnumurthy, V., Chandrakumar, S., Sirer, E.G.: KARMA: A secure economic
framework for p2p resource sharing. In: Proceedings of the Workshop on Economics
of Peer-to-Peer Systems, Berkeley, CA (June 2003)

50. Waldman, M., Mazières, D.: Tangler: A censorship resistant publishing system
based on document entanglements. In: Proceedings of the 8th ACM Conference on
Computer and Communication Security (CCS 2001), Philadelphia, Pennsylvania
(November 2001)

http://www.cs.unc.edu/Research/dirt/proj/http-model/

256 T.-W. “Johnny” Ngan, R. Dingledine, and D.S. Wallach

A Experiment 4: Pair-Wise Reputation

In this experiment, we investigated a variation on our gold star design, where
individual circuits are not labelled as being low or high priority. In this variation,
a low-priority node routing traffic through a gold-star node will experience delays
getting the gold-star node to accept the traffic, but the traffic will have the
gold-star priority in its subsequent hops. This alternative design has significant
improvements from an anonymity perspective, because traffic at a given hop
doesn’t give any hint about whether it originated from a low-priority or high-
priority node. However, this design might fail from an incentives perspective,
since there is less incentive for a node to earn its own gold star.

In this experiment, we again simulate a network with 40 relays for each relay
type: cooperative, selfish, cooperative reserve, and adaptive. For clarity, Fig. 7
only shows the download and ping time for cooperative and selfish relays, as the
performance for cooperative reserve and adaptive relays is very close to that for
cooperative relays.

This experiment shows selfish nodes clearly outperforming their cooperative
peers. This indicates that the gold star strategy requires a transitive property,
i.e., each hop of a circuit must inherit the gold star status of the previous hop.
Otherwise, selfish nodes will outperform their cooperative peers and there will
be no incentive for cooperation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 100 50 20 10 5 2 1 0.5

C
um

ul
at

iv
e

fr
ac

tio
n

Download time (seconds)

Cooperative
Selfish

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 50 20 10 5 2 1 0.5

C
um

ul
at

iv
e

fr
ac

tio
n

Ping time (seconds)

Cooperative
Selfish

Fig. 7. Cumulative download and ping time with the pair-wise reputation design and
heavy traffic (20 BitTorrent clients and 2000 web clients). Four relay types (cooperative,
selfish, cooperative reserve, and adaptive) are simulated, although only the performance
of the former two are shown, as the latter two behave similarly to cooperative relays.

Tree-Homomorphic Encryption and
Scalable Hierarchical Secret-Ballot Elections

Aggelos Kiayias1 and Moti Yung2

1 University of Athens, Dept. of Informatics�, Athens, Greece
aggelos@di.uoa.gr

2 Google Inc. and Computer Science, Columbia University, New York, NY, USA
moti@cs.columbia.edu

Abstract. In this work we present a new paradigm for trust and work dis-
tribution in a hierarchy of servers that aims to achieve scalability of work
and trust simultaneously. The paradigm is implemented with a decryption
capability which is distributed and forces aworkflow along a tree structure,
enforcing distribution of the workload as well as fairness and partial disclo-
sure (privacy) properties. We call the method “tree-homomorphic” since
it extends traditional homomorphic encryption and we exemplify its usage
within a large scale election scheme, showinghow it contributes to the prop-
erties that such a scheme needs. We note that existing design models over
which e-voting schemes have been designed for, do not adapt to scale with
respect to a combination of privacy and trust (fairness); thus we present
a model emphasizing the scaling of privacy and fairness in parallel to the
growth and distribution of the election structure. We present two instanti-
ations of e-voting schemes that are robust, publicly verifiable, and support
multiple candidate ballot casting employing tree-homomorphic encryption
schemes. We extend the scheme to allow the voters in a smallest adminis-
trated election unit to employ a security mechanism that protects their
privacy even if all authorities are corrupt.

1 Introduction

While many secure ballot election schemes have been offered in the literature,
the issue of scalability of e-voting schemes is typically not addressed in a direct
manner.

By a scalable design we mean the task of organizing an election which can
be state-wide or county-wide or local, based on the same underlying mecha-
nism which has to adapt to scale. In such scalable design, election officials and
voters are organized to vote and to manage and tally the results, respectively.
In contrast, most of secure election papers deal with a single location process
(e.g. [CF85, Ben87, BY81, SK33, CFSY96, Oka97, CGS97, Sch99, KY01, DJ02,
KY04, G04]). As a matter of fact it is a wide belief that these schemes can be
generalized to handle large-scale elections, and as a result scalability issues are
� Research partly performed at the University of Connecticut, partly supported by

NSF Awards CNS-0447808,0831304,0831306.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 257–271, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

258 A. Kiayias and M. Yung

not dealt with explicitly in the previous work, under the assumption that the
cryptographic component and the distributed computing component can be de-
ployed in a totally disjoint manner, provided that the cryptographic component
is robust, in the sense that it tolerates faulty participants (see e.g. [BFPPS01]).

As we will see this assumption is not true in its entirety and not all proper-
ties of the above schemes can adapt to scale. In the era where the distributed
computing paradigm includes cloud computing and P2P overlay networks, we
advocate here a cryptographic protocol that incorporates trust and load con-
straints into the intra-server relationships. We demonstrate its usefulness within
the context of a scalable e-voting scheme (though we note that other applications
are possible).

Consider the paradigm for homomorphic encryption based elections. Every
voter publishes his/her vote encrypted along with a proof of “ballot validity”
which ensures that the submitted ciphertext encrypts a properly encoded vote.
Then using the homomorphic property of the encryption scheme the ballots are
pooled together into a single ciphertext and finally a set of authorities that share
the decryption privileges recover the final tally in a publicly verifiable manner. Is
the above design scalable? It is tempting to say yes, however caution needs to be
applied. How can the election be organized to follow some given administrative
tree structure? and, further how can we withstand failures of sub-election trees?
These are important questions for the applicability of an election scheme in the
large scale, and as we will see, they can be dealt with satisfactorily based on the
homomorphic properties of the underlying encryption function.

For sharing the load of preparing the ciphertext, ciphertexts along the tree
can be multiplied (generating the encryption of their sum) helping in the tally
process. This seems easy, but there are crucial properties where the standard
paradigm above fails to adapt to scale: this is the privacy of the voters and the
fairness of the election. Scaling the number of voters and precincts as we will see
is doable based on the standard paradigm. Nevertheless privacy does not scale in
the same manner. This is because the enlargement of the set of authorities that
share decryption privileges both in terms of numbers as well as in geographic
proximity can be quite problematic as the underlying threshold cryptographic
mechanisms are quite expensive to implement compared to the remaining com-
ponents of the election protocol. Simply put, an efficient implementation of a
scheme for a 1,000 voters and 5 authorities would not scale well to the case of
1 million voters and 5000 authorities, since it would be extremely cumbersome
to initialize a threshold cryptosystem with this number of participating author-
ities (due to a quadratic total complexity overhead). If votes are communicated
along a tree, a hierarchical organization of the trust structure makes sense. On
top of that it is not only the privacy of the voters that is at stake: the fairness of
the election procedure (prevention of premature partial tally disclosure) is also
conditioned on the same threshold properties out of which the election satisfies
the secrecy of the ballots.

Of course one might argue that the scaling factor of the election scheme need
not apply evenly to voters and authorities (and therefore, e.g., a voting scheme

Tree-Homomorphic Encryption 259

with 100 million voters and 5 authorities would be acceptable). Still we believe
there are situations where exactly the opposite applies: privacy of the voters (or
at least their ability to choose privacy if they wish with minimal trust in the
election system) and fairness of the election procedure seem to be fundamental
ingredients of a democratic system and as such they are important to pursue as
part of the design requirements. If large scale e-voting would be applied without
taking into account the scalability of privacy and fairness this would have po-
tentially disastrous long term effects. Simply put, regarding the secrecy of the
ballots: when one votes using one of the existing systems he/she knows that
his privacy does not depend on whether BigCorp, GiantCorp and some Gov-
ernmental agency do not collaborate. He knows that he is alone in the booth
and that the cost of, say, installing cameras in all booths across the country is
sufficiently high and such act would require such large scale coordination that it
would be detected; therefore with minimal trust in the system the voter knows
that his/her choices are private. In the e-voting domain privacy is not upheld as
it is in the real world elections. And ultimately it is disturbing not to be able
to offer efficient e-voting systems that support comparable privacy and fairness
properties as such that can be achieved by trusting traditional infrastructures.

A skepticist might further ask: what is the point of scaling the authorities
in parallel to the growth of the size of the elections, since there are not so
many authorities out there? after all there is only BigCorp and GiantCorp and
a few others. Well, this is an ill-perceived perspective of the electronic world.
In real world elections, people are used to thousands of authorities that are
collaboratively responsible for the election: at every level of an election procedure
there exist a number of audit authorities, typically one from each party, and even
international observers that participate in the protocol to ensure that the election
runs smoothly. It is by the sheer number of these participants that present
elections systems have the potential of offering privacy and fairness convincingly.
The emerging social network and P2P computing can serve as infrastructure in
an election scheme without relying on a few big brother entities.

Finally one may argue that privacy and fairness is just a localized property
that is only relevant in the context of a small district or group of people and
need not be spread across the organizational structure. This type of thinking
lowers the bar for security design as after the very first level of input collection
only integrity is required. This localized view of privacy and fairness has actu-
ally served us in the past but we argue that it increasingly becomes a precarious
design paradigm. This is so as the ability of using algorithms for statistical infer-
ence and correlation opens new opportunities for privacy and fairness violations
if one has access to fine-grained aggregate data.

The above advocates collaborative effort along the administration tree where
the authorities making up the tree need to collaborate and are all involved in
maintaining privacy and fairness in a scalable way.

Following these lines, in this work, not only do we discuss how the above
problem of scalability of privacy and fairness can be solved but furthermore we
propose a security mechanism that further allows a set of voters to protect the

260 A. Kiayias and M. Yung

privacy of their votes even in the case where all authorities are malicious. This,
combined with the applicability of our designs in the large scale setting as well
as their versatility with respect to arbitrary elections structures, make our main
design paradigm, which we call “Scalable Secret Ballot Elections”, a realistic
large-scale secure elections paradigm.

What one can observe when looking at large scale election schemes in real life,
is that they are a hierarchically-organized distributed application. In the most
general setting an election can be viewed as a collection of secure subtrees,
within which ballots are tallied and accumulated securely, distributedly in a
bottom-up fashion. The roots of the secure subtrees announce the accumulated
sub-tally of the trees, and then there is a non-private distributed tree process
which collects the various open sub-tallies into the final tally. A scalable design
should be able to arrange the election in trees of any level (depth) and structure.
It should deal with how the election officials in a secure subtree get organized for
the election and how users at a “voting location” are organized to vote. (More
generally, scale and flexibility like we advocate may apply to other protocols).

Ultimately a design with scalable privacy and fairness should take into account
issues of “locality” i.e. there should not exist components with direct global
scope, e.g. a large distributed entity responsible for the privacy of all the voters.
Every entity should be clearly assigned to a component and each component
should have minimal interaction restricted to other proximate components, and
as a result the responsibility of each entity should be limited in a certain locality.
However, at the same time, security and privacy will be achieved in a global sense,
but not directly, but rather than as a synthesis of the local security properties
satisfied by the design.

A number of other useful conditions and properties have been achieved in the
traditional secure election literature. For example, the notion of public verifi-
ability which assures that all actions are done as specified, and the notion of
robustness which assures that the election cannot be disrupted due to misbe-
havior of a few individual voters or authorities. In a scalable design we would
like to preserve these properties while arranging the distributed organization of
election officials. Due to the scaling and global nature of a large-scale voting
scheme, there are additional new issues which arise and require novel solutions.
For example it is important to deal with global time management, where lower
level authorities have to pass their partial tally on time, and results have to
be announced by a certain time. Robustness needs to be extended to election
sub-trees (faults should be isolated and dealt with in a distributed fashion in the
locale they occur).

Let us summarize our results:
First, regarding the secrecy of the ballot, we make the point that in order to

achieve scalability of privacy it should hold that the privacy of the ballots should
scale across the hierarchical structure of the elections. To this end, we introduce
and achieve a new notion of granular secrecy that spreads the capability of
opening the ballots across all levels of the governmental hierarchy. This suggests
that voters are not expected to trust a single distributed governmental entity (as

Tree-Homomorphic Encryption 261

it is the case in all previous solutions) but rather trust at least one distributed
governmental entity in a sequence of such authorities at all levels of the election
hierarchical structure.

Additionally, we emphasize that voters should be given the option to strengthen
further the security of their ballot within the group of people they vote with,
so that their privacy is maintained even if all officials are corrupt. We call this
(optional) strong privacy measure paranoid security. The decision to employ
such a measure should be localized and transparent to higher governmental levels
without the need for global coordination for its employment in a certain locale. It
should be emphasized that the existence of an optional “paranoid security” mech-
anism enhances the trust of voters in the election system and is intended to emu-
late security as it is perceived in real-life elections where “paranoid security” can
be ensured via physical means (e.g. private voting booths). It should be noted that
the mechanism would require extra work from the voters (in particular the ability
to be active in more than a single round of computation) something that we deem
acceptable under the maxim that users interested in self-regulating their privacy
should be de facto willing to invest more resources.

Second relevant issue when adapting to scale is that of fairness. The secure
subtree roots officials, should be the ones who are able to announce the results
of their subtree and no one else. This assures that one can organize the election
under a global clock so that all secure subtrees are to announce the results
according to a predetermined schedule, assuming the voting process ends at
some time and enough time is given for tallying within subtrees. It should not
be the case that a part of the election gets revealed ahead of time (say by officials
at a lower level of the subtree). The implications of premature announcement
of results, may bias the on-going election process. The design should take into
account that such fairness may be mandated by law.

Third requirement is granularity and arbitrary architecture. It means that
given any hierarchical structure in the form of a tree, an election community
(officials and voters), can implement the protocol over the arbitrary structure.
Additionally it should be possible for each individual election instance to decide
on a level that will serve as the root of secure subtrees for secrecy. The granularity
of security and fairness should be determined on the global structure, and it
should be changeable from one instantiation of the voting scheme to another.
It should be required that the fault (e.g. delay) in a subtree, should not affect
the rest of the tallying process. More specifically if the deadline passes for a
certain sub-election tree the local partial tally may be canceled or invalidated by
the parent authorities who should be capable of continuing the secure election
protocol without interruption or additional administrative costs. Such timely
management may be mandated by law.

A preliminary version of the ideas of this paper were presented in [Yu04].

2 Model and Definitions

A voting-scheme needs to fulfill a variety of requirements to become useful. A
brief presentation of these requirements follows:

262 A. Kiayias and M. Yung

Secrecy. Ensures the security of the contents of ballots. This is typically achieved
by relying on the honesty of some of the active participating authorities and at the
same time on some cryptographic intractability assumption.
Universal-Verifiability. Ensures that any party, including a casual observer,
can be convinced that all valid votes have been included in the final tally.
Robustness. Ensures that the system can tolerate a certain number of faulty
participants. Robustness is typically antagonistic to the secrecy property and
typically some trade-off based solution should be employed (see also [KY01]).
Fairness. It should be ensured that no partial results become known prior to
the end of the election procedure.
Dispute-Freeness. The fact that participants follow the protocol at any phase
can be publicly verified by any casual third party.
Receipt-Freeness. The voter cannot provide a receipt that reveals in which way
he/she voted [BT94]. Note that we do not deal explicitly with receipt freeness
in this abstract, nevertheless standard techniques that use re-randomizers (see
e.g. [BFPPS01]) can be readily employed in both of our schemes.

2.1 The Model

It is natural to model a practical large-scale election scheme in a multi-level way
following closely the way actual nation-wide elections are performed. In such a
case there could be a nation-level, a state-level, a city-level, a county-level and
a precinct-level. In order to achieve scalability we can divide the eligible voters
in a hierarchy of regional levels. We would call the smallest such component
a microprecinct — the smallest administrated unit in which a batch of voters
is assigned. Up to a certain level the results of the election should be private
and from this level and upwards the partial tallying should be open for public
reading. Such a secure subtree will be called a sub-election; the authority at the
top of such subtree will be called the top-level authority. In the remaining we will
concentrate on how the system operates in each sub-election. The hierarchical
structure of a sub-election is illustrated in figure 1.

Every regional level has an authority associated with it. In a k-level partition
an authority at the �-th level will be denoted by Ai1,...,i�

whereas the top-level
authority will be denoted by Atop. Each microprecinct authority Ai1,...,ik

corre-
sponds to a leaf in the tree of authorities and is preceded by k authorities in the
path from root (the top-level authority Atop) to leaf. This path will be called
the “active microprecinct path.”

In order to achieve fault-tolerance and other distributed security properties
each authority Ai1,...,i�

is divided into t sub-authorities denoted by A
(1)
i1,...,i�

,

. . . , A
(t)
i1,...,i�

. We consider the parameter t to be the same throughout but this
choice is merely done for brevity. A parameter t′ < t denotes the minimum
number of authorities that are required to act in order to perform some task
that is expected from the authority Ai1,...,i�

. The division of each regional au-
thority to a set of sub-authorities that are equally responsible for carrying out
the election procedure is natural as it parallels the way regional committees in

Tree-Homomorphic Encryption 263

Voters

Top-Level
Authority

Microprecinct Level

Sub-election:

Fig. 1. The Hierarchy of the Authorities

traditional elections are formed by representatives of parties and other bodies
who are present at all levels in the hierarchy.

Each authority possesses a “bulletin board” ([CF85]) which is used for all nec-
essary communication, unless stated otherwise. The bulletin board is a public-
broadcast channel with memory. Any party (even third-parties) can read infor-
mation from the bulletin board. Writing on the bulletin board by the active
parties is done in the form of appending data in a specially designed area for
each party. Erasing from the bulletin board is not possible, and appending is
verified so that any third party can be sure of the communication transcript.

In our protocols, each authority may engage in “server-based ciphertext pro-
cessing.” This helps in reducing the computations of other participants. All com-
putation performed in this manner will be publicly verifiable (e.g., by repeating
the computation whenever not trusted).

2.2 Overview of Our Election Paradigm

Initialization. The hierarchical structure of the election is given and the divi-
sion to sub-elections is decided. Let us denote by V the set of eligible voters in
a certain sub-election. Each voter has a publicly known unique identity string.
The same is true for all other active participants of the election scheme. Global
parameters are decided and published. Additionally we assume that all parties
can consult a global clock for synchronicity purposes.
Sub-Election Set-up. Following the given hierarchical structure each authority
Ai1,...,i�

which is comprised by t sub-authorities A
(1)
i1,...,i�

, . . . , A
(t)
i1,...,i�

executes
a key generation phase that results in a public-key to be used later on in the
procedure. Deadlines for reporting at each level in the hierarchy are set and
timers are initialized.
Voter Registration. Each voter comes to his assigned microprecinct. His iden-
tity (or pseudonym) and eligibility to vote is verified by the microprecinct au-
thority and he gains access to the local bulletin board (note that authorization
methods are outside the scope of the current presentation).

264 A. Kiayias and M. Yung

Online Phase. The “on-line phase” involves the active participation of the
voters.

– Microprecinct Level Blinding (for Paranoid Security). If it is de-
cided by the microprecinct, the voters execute a “0-sharing phase” that will
be intended to hide each voter’s ballot among the other votes in each mi-
croprecinct. We note that such 0-sharing techniques are typical in various
settings, e.g. in re-randomization of individual keys in proactive protocols
[OY91].

– Ballot-Casting. A voter in the microprecinct Ai1,...,ik
executes the ballot-

casting procedure which combines the public-keys of all the authorities in the
active microprecinct path. The vote is cast from a set of possible choices C :=
{1, M, . . . , M c−1} where c is the number of candidates and M = 2	log |V |
.
We call this technique candidate packing as it suggests that the sum of all
individual votes in a single (c log M)-bit-long register will reveal the number
of votes given to each candidate (due to the choice of M , no overflow can
occur in each of the c distinct (log M)-bit-long regions of the summation
register).

– Corrective stage for Microprecinct level blinding (Paranoid Secu-
rity). Active voters cancel out shares of faulty voters in order to enable
tallying.

Peeling Phase. When the local deadline is reached, the microprecinct author-
ity pools votes together to form the encryption of the partial tally and “peels
off” its encryption in a publicly verifiable manner. The microprecinct author-
ity might also engage in server-based ciphertext processing (a publicly verifiable
procedure that does not involve private data). The encrypted partial tally and
other necessary information is passed upwards to the parent authority by writ-
ing to its bulletin board. The procedure continues recursively until the top-level
authority is reached. Lower level authorities that do not report by the deadline
are ignored (if needed they can be processed at a later time).
Tallying Phase. A tallying authority receives the output of the top-level au-
thority and computes and publishes the final sub-election result. The computa-
tion of the tallying authority does not involve private data and can be repeated
if needed (to ensure correct execution). Given the sum T of all votes, the num-
ber of votes μi that the i-th candidate received is revealed immediately due to
candidate packing: T = μ1 + M · μ2 + . . . M c−1μc (by the choice of M it holds
that M > μ1, . . . , μc).

Remark: The sub-election setup phase with the peeling and tallying processes
constitute the “tree-homomorphic” encryption scheme.

2.3 Security Properties of Our Model and Objectives for Protocol
Design

Granular Secrecy. The security of the ballot of a voter that belongs to a certain
microprecinct can only be violated if at least t′ of the t sub-authorities in each
level of the active microprecinct path are malicious.

Tree-Homomorphic Encryption 265

Paranoid Security. In addition to granular secrecy, the voters in a microprecint
may choose to execute the microprecinct level blinding stage (which is an op-
tional procedure). This step blinds the casted ballots in the microprecint level in
such a way so that only their sum is accessible to the authorities. This provides
security against authorities since even if all authorities in an active microprecinct
path are malicious it will be impossible to reveal the ballot of a voter since it
will be hidden in the partial sum of all votes casted in the microprecinct.
Granular Fairness. Even if t′ out of the t sub-authorities are malicious in
an authority Ai1,...,i�

the partial tally that corresponds to the authority cannot
be revealed ahead of time unless t′ out of t sub-authorities are malicious in all
preceding authorities in the path from Ai1,...,i�

to the top-level authority.
Scalable Complexity. We require that the time/space complexity of the com-
putation of each authority in a sub-election is linear in the number of children of
the authority (which in the case of a microprecinct it corresponds to the number
of voters assigned to the particular microprecinct).
Localized Faults. For any two disjoint sub-trees in a sub-election the (malicious
or faulty) behavior of participants in one sub-tree does not have any effect in
the protocol execution and security properties of the election procedure in the
other sub-tree.

2.4 Non Interactive Zero Knowledge Proofs

Non-interactive zero knowledge proofs are very important cryptographic tools in
the design of voting schemes. We will use the following notation for such proofs of
knowledge: PKname(variables : algebraic expression). This notation corresponds
to a transcript of a non-interactive zero knowledge proof that can be verified by
any interested third party and is convincing that the issuer knows a value for
each of the variables so that the given algebraic expression is satisfied. All the
proofs that we use in our protocols are listed in the appendix.

2.5 The Number Theoretic Assumptions

We use standard cryptographic assumptions in our two schemes. The first in-
stantiation of our model employs the assumption of secure ElGamal encryp-
tion which is equivalent to the Decisional Diffie Hellman assumption, see e.g.
[TY98]. Our second scheme employs additionally the security assumption of the
Paillier encryption function, see [Pai99]. The zero-knowledge proofs are made
non-interactive by employing a random oracle, [FS87].

3 The Granular Voting Schemes

We present two instantiations of our election model. The first of our voting
schemes involves more efficient on-line procedures (constant ballot-casting com-
plexity) but an intensive tallying phase which is exponential in the number of

266 A. Kiayias and M. Yung

candidates. As a result it applies to settings with a small number of candi-
dates where the tally belongs in a “modest range” of values. Our second voting
scheme requires more computation by voters and authorities (proportional to
the number of authorities in the active microprecinct path) but it possesses a
very efficient tallying phase that is polynomial in the number of candidates and
can be applied to the case where the number of candidates is large (and as a
result the tally belongs in a “wide range” of values).

3.1 The Modest Range Tally Voting Scheme

Global Parameters: a large prime p so that p = 2q + 1 where q is also a prime.
Elements g, h, f ∈ Z∗

p of order q with unknown relative discrete-logs. The group
G := 〈g〉 is a cyclic multiplicative sub-group of Z∗

p of order q that corresponds to
the sub-group of quadratic residues modulo p.
Sub-Election Set Up. In each authority Ai1,...,i�

, the t sub-authorities A
(1)
i1,...,i�

,

. . . , A
(t)
i1,...,i�

execute the key-generation for threshold ElGamal encryption as de-
scribed in [GJKR99] (based on [Ped91]). This procedure will result in a pri-
vate share sj for each sub-authority A

(j)
i1,...,i�

that will be publicly committed
and a publicly known generator hi1,...,i�

:= gαi1,...,i� for G. The pair 〈g, hi1,...,i�
〉

will serve as the public-key of the authority. We note here that a message en-
crypted in ElGamal fashion under the public-key of the authority can be de-
crypted by any t′ of the t sub-authorities in a publicly verifiable manner (see
e.g. [FGY96]). Finally each authority multiplies its public-key with the com-
bined public key of the parent authority (available through the bulletin board
of the parent authority) and publishes the local combined public key defined as
ĥi1,...,i�

= hi1,...,i�
· ĥi1,...,i�−1(modp) (note that the top-level authority merely

sets ĥtop = htop). Note that for the microprecinct that corresponds to the au-
thority Ai1,...,ik

it will hold that ĥi1,...,ik
= htop · hi1 · hi1,i2 · . . . · hi1,...,ik

(modp).
Microprecinct Level Blinding (paranoid security). Suppose that the vot-
ers in the l-th microprecinct that corresponds to the authority Ai1,...,ik

are
denoted by V

[l]
1 , . . . , V

[l]
n . Each voter V

[l]
j publishes a personal generator for

G denoted by hj := hα
[l]
j . Each voter V

[l]
i generates n additive shares that

sum up to 0: si,1 + . . . + si,n = 0(modq); subsequently he publishes the pairs
〈Ri,j , R

′
i,j〉 := 〈gsi,j , h

si,j

j 〉 for j = 1, . . . , n, together with PKEQDL(α : (Ri,j =
gα)∧(R′

i,j = hα
j)). The microprecinct authority calculates for each j ∈ {1, . . . , n},

the values R′
j :=

∏n
i=1 R′

i,j (this step is a server-based ciphertext processing, that
is publicly verifiable).
Ballot-Casting. A voter V

[l]
j in the l-th microprecinct controlled by Ai1,...,ik

prepares his vote U
[l]
j := fv

[l]
j mod p where v

[l]
j ∈ C = {1, M, M2, . . . , M c−1};

note that if the microprecinct level blinding phase has also been performed the
vote is set to U

[l]
j := fvj (R′

j)
(α[l]

j)−1
mod p. Then, the voter publishes his en-

crypted ballot

〈W [l]
j , B

[l]
j 〉 := 〈gr

[l]
j mod p, (ĥi1,...,ik

)r
[l]
j · U [l]

j mod p〉

Tree-Homomorphic Encryption 267

where r
[l]
j is selected at random from Zq. Finally the voter publishes the proof

of ballot-validity depending on the following two cases:
(i) PKENC1(r : (W [l]

j = gr) ∧ (∨v∈C(B[l]
j = (ĥi1,...,ik

)rfv))) when microprecinct
level blinding phase is omitted.
(ii) PKENC2(α′, r : (h = hα′

j)∧(W [l]
j = gr)∧(∨v∈C(B[l]

j = (ĥi1,...,ik
)r(R′

j)
α′

fv)))
when the microprecinct level blinding is performed.
Microprecinct Level Blinding Corrective Phase (optional). Suppose that
some voters in the l-th microprecinct controlled by Ai1,...,ik

did not cast a ballot
when the deadline is reached. If the optional microprecinct level blinding phase
for paranoid security was executed this would cause problems in the tallying
phase. The microprecinct authority signals to the active voters the identities of
the voters that did not cast a ballot. Subsequently the remaining active voters
cancel out the shares that they issued by the inactive voters as well as the shares
that they computed for them. Denote the set of voters that did not cast a ballot
by S′, and the set of remaining voters by S′. Each voter V

[l]
κ , κ ∈ S′, publishes

(i) The sum of the shares that V
[l]
κ issued for the inactive voters, eκ :=

∑
j∈S′ sκ,j ,

and (ii) The product of the received shares from the inactive voters: Φκ :=
(
∏

j∈S′ R′
j,κ)α−1

κ .
The value eκ can be universally verified by checking that geκ =

∏
j∈S′ Rκ,j for

all κ ∈ S′. The correctness of the value Φκ can be universally verified by having
the voter V

[l]
κ publish the non-interactive proof of knowledge PKEQDL[α′ : (h =

hα′
κ) ∧ (Φκ = (

∏
j∈S′ R′

j,κ)α′
)]. After the completion of this corrective round the

microprecinct authority modifies the published ballots B
[l]
κ for κ ∈ S′ as follows:

B
[l]
κ := B

[l]
κ heκ(Φκ)−1(modp).

Peeling Phase. When the local deadline is reached, the microprecinct authority
Ai1,...,ik

in the l-th microprecint forms the products 〈W [l], B[l]〉 := 〈g
∑n

j=1 r
[l]
j ,

(ĥi1,...,ik
)
∑ n

j=1 r
[l]
j f

∑n
j=1 v

[l]
j 〉 (note that the microprecint-level blinding is cancelled

out since it is merely a 0-sharing). Subsequently t′ out of the t sub-authorities of
the microprecinct peel-off their encryption (in a publicly verifiable manner) by
computing distributively 〈W [l], B[l] ·(W [l])−αi1,...,ik 〉. The new pair is propagated
upwards by writing to the bulletin board of the parent authority.

Peeling continues recursively as follows: suppose that the authority Ai1,...,i�
gets

report by n child authorities in the sub-election tree when the local deadline is
reached. Suppose that each child authority reports the value 〈Wi, Bi〉 for i = 1, . . . ,
n; the authority pools these values to compute 〈W, B〉 := 〈∏n

i=1 Wi,
∏n

i=1 Bi〉
and writes 〈W, B〉 to the local bulletin board. Then t′ of the t sub-authorities of
Ai1,...,i�

“peel-off” their encryption in a publicly verifiable manner to compute
〈W, B(W)−αi1,...,i� 〉 and this value is written to the bulletin board of the parent
authority as well as in the local bulletin board.
Tallying Phase. The tallying authority reads fT as the output of the top-level
authority from its bulletin board, where T =

∑
l,j v

[l]
j (where l runs through all

microprecincts and j runs through all voters in the l-th microprecinct). Given fT

it is possible to compute T in a brute-force manner in |V|c−1 steps where c = |C|

268 A. Kiayias and M. Yung

is the number of candidates and |V| is the number of voters (this is because T
belongs in a space of possible values of this size). Using the baby-step giant-step
method, [Sha71], it is possible to reduce the time-complexity to O(

√|V|c−1
)

using equal amount of additional memory.

3.2 The Wide Range Tally Voting Scheme

Global Parameters: Let ν ∈ IN be a security parameter, with ν > 2c log |V|. Also
a large prime p so that p = 2q + 1 where q is also a prime with the property
q > 24ν |V|. Elements g, h ∈ Z∗

p of order q with unknown relative discrete-logs.

Sub-Election Set Up. For each authority Ai1,...,i�
, the t sub-authoritiesA

(1)
i1,...,i�

,

. . . , A
(t)
i1,...,i�

execute the key-generation for threshold Paillier encryption as
described in [FPS00].This procedurewill result in a private share for each authority
A

(j)
i1,...,i�

that will be publicly committed and a joint public-key 〈Ni1,...,i�
, gi1,...,i�

〉,
where Ni1,...,i�

> 24ν |V| is a safe composite1.
We note here that a message encrypted following the Paillier first encryption

function ([Pai99]) under the public-key of the authority can be decrypted by any
t′ of the t sub-authorities in a publicly verifiable manner (see [FPS00, DJ03]).
Paranoid Security. The optional microprecinct level blinding phase for para-
noid security is omitted here due to lack of space but it follows the same logic
as the previous section.
Ballot-Casting. A voter V

[l]
j in the l-th microprecinct controlled by authority

Ai1,...,ik
generates the additive shares v

[l]
0,j + . . . + v

[l]
k,j = v

[l]
j (mod2ν) so that

each v
[l]
i,j < 2ν and v

[l]
j ∈ C corresponds to the private choice of the voter. Let

〈N(0), g(0)〉, . . . , 〈N(k), g(k)〉 be the public-keys of all the authorities in the active
microprecinct path (including the microprecint authority) for the voter V

[l]
j . The

voter publishes the tuples for i = 0, . . . , k,

〈C [l]
i,j , B

[l]
i,j〉 := 〈gv

[l]
i,j · hr

[l]
i,j mod p, g

v
[l]
i,j

(i) · yN(i)

(i) mod N2
(i)〉

together with the proofs of knowledge PKEQCOMENC1(v, r, y : (v < 24ν) ∧
(C [l]

i,j = gv · hr) ∧ (B[l]
i,j = gv

i yNi)) and PKSUMSET(r : ∨v∈Cext

∏
i Ci,j = gvhr).

We define Cext := {Mθ + δ2ν | θ = 0, 1, . . . , c − 1; δ := 0, . . . , k + 1}.
To conclude the description of the ballot-casting procedure, we give a brief

overview of the above: during ballot-casting each voter publishes in the bulletin
board a 2-column “ballot-matrix” of the following form:

C
[l]
0,j B

[l]
0,j

...
...

C
[l]
k,j B

[l]
k,j

1 A safe composite is defined as the product of two large primes p, q for which it holds
that p = 2p′ + 1, q = 2q′ + 1 where p′, q′ are also prime.

Tree-Homomorphic Encryption 269

Each row contains two encryptions of the additive share v
[l]
i,j , the left being a

commitment to v
[l]
i,j whereas the right is an encryption of v

[l]
i,j (using Paillier’s first

encryption function, [Pai99]). The commitments are used in conjunction with the
non-interactive zero knowledge proof PKSUMSET in order to show that the sum
of the shares belongs in the proper range (i.e. to show that

∑k
i=0 v

[l]
i,j(mod2ν) ∈

C). The encryptions are to be used in the peeling phase for the purpose of pooling
ballots together.
Peeling Phase. Suppose that the l-th microprecinct is controlled by authority
Ai1,...,ik

and involves the voters V
[l]
1 , . . . , V

[l]
n . The microprecinct authority multi-

plies all encryption columns of the published ballot-matrices in the local bulletin
board (in a point-wise manner). This results in a combined encryption column
of the form E [l] := 〈∏n

j=1 B
[l]
0,j , . . . ,

∏n
j=1 B

[l]
k,j〉T . By the format of the ballots it

holds that
∏n

j=1 B
[l]
k,j = g

∑
v
[l]
k,j

(k) (Y)multiple(N(k))(modN2
(k)) where 〈N(k), g(k)〉 is

the public-key of the microprecinct authority. This is a valid encryption of the
sum

∑n
j=1 v

[l]
k,j . Then, t′ of the t sub-authorities of the microprecinct authority

pool their shares together to decrypt in a publicly verifiable manner and obtain
(
∑

v
[l]
k,j)(modN(k)) which is equal to

∑
v
[l]
k,j due to the choice of N(k) and the

restrictions imposed on the shares v
[l]
k,j . The microprecinct authority substitutes

the k-th cell of E [l] by
∑

v
[l]
k,j(mod2ν) and the cell is marked as “open.” Subse-

quently the microprecinct authority writes the column E [l] in the bulletin board
of the parent authority as well as in the local bulletin board.

Peeling continues recursively as follows: suppose that the authority Ai1,...,i�
has

n child authorities in the sub-election tree that report before the local deadline.
Suppose that the i-th child authority reports the column Ei for i = 1, . . . , n; it
holds that in each column the cells �+1, . . . , s are open (and contain partial sums of
voters’ additive shares) and the cells 0, . . . , � contain encryptions of partial sums.
The authority pools all columns by multiplying point-wise the cells that contain
encryptions, whereas it sums up modulo 2ν the cells that are open. This results in
a combined encryption column E . Then, t′ of the t sub-authorities of Ai1,...,i�

pool
their shares to decrypt the �-th cell of E in a publicly verifiable manner. As in the
case ofmicroprecinct operation the partial sum is reduced modulo 2ν and the result
iswritten in the �-th cellwhich ismarked as “open.”The resulting column iswritten
in the bulletin board of the parent authority as well as in the local bulletin board.
Tallying Phase. The tallying authority receives the encryption column from
the top-level authority Atop where all partial sums are open. Summing all cells
modulo 2ν reveals the final result of the election T =

∑
l,j v

[l]
j (mod 2ν) =

∑
l,j v

[l]
j

– due to the choice of ν (where l runs through all microprecincts and j runs
through all voters in the l-th microprecinct).

3.3 Security Properties

Let us conclude with the discussion of the properties achieved by our two elec-
tions protocols.

270 A. Kiayias and M. Yung

Claim. (1) The Modest Range Tally Voting Scheme, assuming the security of
ElGamal encryption and a random oracle, (i) satisfies universal verifiability, (ii)
granular secrecy, (iii) granular fairness, (iv) dispute-freeness with the exception of
the sub-election set up phase (v) security for paranoids, (vi) scalable complexity,
(vii) tallying phase with exponential dependency on the number of candidates,
(viii) robustness, (ix) ballot-casting with constant time/space complexity in the
number of active parties.

Claim. (2) The Wide Range Tally Voting Scheme, assuming the security of Pail-
lier encryption, ElGamal encryption and a random oracle, (i) satisfies universal
verifiability, (ii) granular secrecy, (iii) granular fairness, (iv) dispute-freeness with
the exception of the sub-election set up phase and the security for paranoids
phase (v) security for paranoids, (vi) scalable complexity, (vii) tallying phase
with polynomial dependency to the number of candidates, (viii) robustness, (ix)
ballot-casting with time/space complexity proportional to the number of levels
in the active microprecinct path.

References

[BFPPS01] Baudron, O., Fouque, P.-A., Pointcheval, D., Poupard, G., Stern, J.: Prac-
tical Multi-Candidate Election system. In: The Proceedings of the ACM
Symposium on Principles of Distributed Computing, PODC (2001)

[Ben87] Benaloh, J.: Verifiable Secret-Ballot Elections, PhD Thesis, Yale University
(1987)

[BY81] Benaloh, J., Yung, M.: Distributing the Power of a Government to Enhance
the Privacy of Voters. In: The Proceedings of the ACM Symposium on
Principles of Distributed Computing, PODC (1986)

[BT94] Benaloh, J., Tuinstra, D.: Receipt-Free Secret-Ballot Elections. In: STOC
1994 (1994)

[CF85] Cohen (Benaloh), J.D., Fischer, M.G.: A Robust and Verifiable Crypto-
graphically Secure Election Scheme. In: FOCS 1985 (1985)

[CGS97] Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Effi-
cient Multi-Authority Election Scheme. In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

[CDS94] Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proofs of Partial Knowledge
and Simplified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

[CFSY96] Cramer, R., Franklin, M.K., Qchoenmakers, B., Yung, M.: Multi-Autority
Secret-Ballot Elections with Linear Work. In: Maurer, U.M. (ed.) EURO-
CRYPT 1996. LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996)

[DJ00] Damg̊ard, I., Jurik, M.: A Generalisation, a Simplification and Some Ap-
plications of Paillier’s Probabilistic Public-Key System. In: Public Key
Cryptography 2001, pp. 169–136 (2001)

[DJ02] Damg̊ard, I., Jurik, M.: Client/Server Tradeoffs for Online Elections. In:
Public Key Cryptography 2002, pp. 125–140 (2002)

[DJ03] Damg̊ard, I., Jurik, M.: A Length-Flexible Threshold Cryptosystem with
Applications. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS,
vol. 2727, pp. 350–364. Springer, Heidelberg (2003)

Tree-Homomorphic Encryption 271

[DLM82] DeMillo, R.A., Lynch, N.A., Merritt, M.: Cryptographic Protocols. In:
STOC 1982, pp. 383–400 (1982)

[DDPY94] De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: On Monotone
Formula Closure of SZK. In: FOCS 1994 (1994)

[FS87] Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identi-
fication and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

[FPS00] Fouque, P.-A., Poupard, G., Stern, J.: Sharing Decryption in the Context
of Voting or Lotteries. In: The Proceedings of Financial Cryptography 2000
(2000)

[FGY96] Frankel, Y., Gemmell, P., Yung, M.: Witness-Based Cryptographic Pro-
gram Checking and Robust Function Sharing. In: STOC 1996 (1996)

[GJKR99] Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure Distributed
Key Generation for Discrete-Log Based Cryptosystems. In: Eurocrypt 1991
(1991)

[G04] Groth, J.: Efficient Maximal Privacy in Boardroom Voting and Anonymous
Broadcast. In: Financial Cryptography 2004, pp. 90–104 (2004)

[KY01] Kiayias, A., Yung, M.: Self-Tallying Elections and Perfect Ballot Secrecy.
In: Proceedings of Public Key Cryptography 2002 (2002)

[KY04] Kiayias, A., Yung, M.: The Vector Ballot e-Voting Approach. In: Financial
Cryptography 2004, pp. 72–89 (2004)

[Mer83] Merrit, M.: Cryptographic Protocols, Ph.D. Thesis, Georgia Institute of
Technology (1983)

[Oka97] Okamoto, T.: Receipt-Free Electronic Voting Schemes for Large Scale Elec-
tions. In: Workshop on Security Protocols (1997)

[OY91] Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: The
Proceedings of the ACM Symposium on Principles of Distributed Com-
puting (PODC), vol. 1291, pp. 51–21

[Pai99] Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Resid-
uosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p.
223. Springer, Heidelberg (1999)

[Ped91] Pedersen, T.P.: A threshold Cryptosystem without a Trusted Third Party.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526.
Springer, Heidelberg (1991)

[SK33] Sako, K., Kilian, J.: Receipt-Free Mix-Type Voting Scheme - A Practi-
cal Solution to the Implementation of a Voting Booth. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995)

[Sch99] Schoenmakers, B.: A Simple Publicly Verifiable Secret Sharing Scheme and
its Applications to Electronic Voting. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, p. 148. Springer, Heidelberg (1999)

[Sha71] Shanks, D.: Class number, a theory of factorization and genera. In: Proc.
Symp. Pure Math., vol. 50, pp. 240–415. AMS, Providence (1971)

[TY98] Tsiounis, Y., Yung, M.: On the Security of ElGamal Based Encryption. In:
Public Key Cryptography (1998)

[Yu04] Yung, M.: Tree-Homomorphic Encryption. In: DIMACS Workshop on Elec-
tronic Voting – Theory and Practice (2004)

Automatically Preparing Safe SQL Queries

Prithvi Bisht, A. Prasad Sistla, and V.N. Venkatakrishnan

Department of Computer Science
University of Illinois, Chicago, USA

{pbisht,sistla,venkat}@cs.uic.edu

Abstract. We present the first sound program source transformation approach
for automatically transforming the code of a legacy web application to employ
PREPARE statements in place of unsafe SQL queries. Our approach therefore
opens the way for eradicating the SQL injection threat vector from legacy web
applications.

Keywords: Static program transformation, Security by construction, Symbolic
evaluation, SQL injection.

1 Introduction

In the last decade, the Web has rapidly transitioned to an attractive platform, and web
applications have significantly contributed to this growth. Unfortunately, this transition
has resulted in serious security problems that target web applications. A recent survey
by the security firm Symantec suggests that malicious content is increasingly being de-
livered by Web based attacks [2], of which SQL injection attacks (SQLIA) have been of
widespread prevalence. For instance, the SQLIA based Heartland data breach1 allegedly
resulted in information theft of 130 millions credit/debit cards.

SQL injection attacks are a prime example of malicious input that change the be-
havior of a program by sly introduction of query structure into the input strings. An
application that does not perform input validation (or employs error-prone validation)
is vulnerable to SQL injection attacks. Although useful as a first layer of defense, input
validation often is hard to get right [3,28,14]. The absence of proper input validation
has been cited as the number one cause of vulnerabilities in web applications [24].

There is an emerging consensus in the software industry that using PREPARE state-
ments, a facility provided by many database platforms, to construct SQL queries con-
stitutes a robust defense against SQL injections. PREPARE statements are objects that
contain precompiled SQL query structures (without data). This allows a programmer
to easily isolate and confine the “data” portions of the SQL query from its “code”,
avoiding the need for (error-prone) sanitization of user inputs. In addition, they are ef-
ficient because they do not require any runtime tracking, and provide opportunities to
the DBMS server for query optimization [1,9].

The existing practice to transform an existing application to make use of PREPARE
statements requires extensive manual effort. The programmer needs to obtain a detailed
understanding of the program that includes identification of all inter-procedural control

1 http://www.wired.com/threatlevel/2009/08/tjx-hacker-charged-with-heartland

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 272–288, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

Automatically Preparing Safe SQL Queries 273

and data flows that generate vulnerable SQL queries. Furthermore, these flows have to
be analyzed to obtain the equivalent code for PREPARE statement generation. Each such
control flow needs to be carefully transformed while ensuring that the changes do not
alter semantics of the program in any undesirable fashion. Furthermore, additional man-
ual verification may be needed to ensure that the semantics of the transformed program
on non-attack inputs is the same as the original program. This process could be tedious,
sometimes error-prone, and certainly expensive for large-scale web applications.

The objective of this paper is to develop a sound method to automate the above
transformation to PREPARE statements. This will overcome the deficiencies of man-
ual approach, and would result in considerable savings of program development costs.
However, designing a sound method is extremely challenging because a completely au-
tomated method needs to replicate the human understanding of the program logic that
constructs SQL queries. Quite often, this understanding of program logic is guided by
additional documentation such as high-level system designs, flow charts and low level
program comments. An automated method that aims to eliminate / minimize human
effort cannot depend on the availability or use of any such additional specifications.
The web application code is, therefore, the only specification available to our method,
from which an understanding of the program logic needs to be automatically extracted
to guide the transformation.

This main contribution of this paper is to address this challenge by developing the first
automated sound program transformation approach that retrofits an existing (legacy)
web application to make use of PREPARE statements. We develop a new method that
constructs a high-level understanding of a program’s logic directly from its low-level
string operations. This method relies on a novel insight that a program’s low-level string
operations along any particular control path can be viewed as a derivation of a symbolic
SQL query that is parametrized by its inputs. Our method directly uses this derivation to
identify and isolate any unsafe string operations that may otherwise result in injection
attacks. The isolated operations are then rewritten using PREPARE statements, effec-
tively eliminating the SQL injection attack vector from the web application.

Our approach is implemented in a tool called TAPS (Tool for Automatically Preparing
SQL queries) which is the first reported sound tool in the literature to perform this trans-
formation. TAPS has been successfully applied to several real world applications, in-
cluding one with over 22,000 lines of code. In addition, some of these applications were
vulnerable to widely publicized SQL injection attacks present in the CVE database, and
our transformation renders them safe by construction.

As a concluding remark to the introduction, we note that there is a rich body of lit-
erature on SQL injection detection and prevention (see the next section). Our objective
is to not propose “one more defense” to this problem. Instead, our contribution is quite
the opposite: to develop an automatic method that will assist developers and system
administrators to automatically retrofit their programs with the “textbook defense” for
SQL injection.

This paper is organized as follows: Section 3 presents the problem description along
with a running example. Section 4 describes our approach in detail. Section 5 presents
evaluation of TAPS over several open source PHP applications. We conclude in
Section 6.

274 P. Bisht, A.P. Sistla, and V.N. Venkatakrishnan

2 Related Work

There has been extensive work on detecting SQL injection vulnerabilities as well as
approaches for defending attacks. Due to space limitations, we briefly summarize them
here (see [28] for a detailed discussion).

Defenses based on static analysis. There has been extensive research on static anal-
ysis to detect whether an application is vulnerable [21,33,3,11,22,32,10,30]. The most
common theme of detection approaches is to reason about sources (user inputs) and
their influence on query strings issued at sinks (sensitive operations) or intermediate
points (sanitization routines). Our approach provides means for fixing such vulnerabil-
ities through PREPARE statements.

Defenses based on dynamic analysis. Dynamic prevention of SQLIA is fairly well
researched area and has a large body of well understood prevention techniques: taint
based [23,34,12,17], learning based [29,28,25,19,26,5,6,4,31], proxy based [27,20].

At a high level, all these techniques track use of untrusted inputs through a reference
monitor to prevent exploits. Unlike the above approaches, the high-level goal of TAPS
is not to monitor the program – the goal here is to modify the program to eliminate the
root causes of vulnerabilities – isolation of program generated queries from user data
while avoiding any monitoring costs.

Automated PREPARE statement generation. [8] investigates the problem of automat-
ically converting programs to generate PREPARE statements. This approach assumes
that the entire symbolic query string is directly available at the sinks. This assumption
does not hold in many typical applications that construct queries dynamically.

3 Background and Problem Statement

We use the following running example: a program that computes a SELECT query with
a user input $u:
1. $u = input();
2. $q1 = "select * from X where uid LIKE ’%";
3. $q2 = f($u); // f - filter function
4. $q3 = "%’ order by Y";
5. $q = $q1.$q2.$q3;
6. sql.execute($q);

The above code applies a (filter) function (f) on the input ($u) and then combines it
with constant strings to generate a query ($q). This query is then executed by a SQL
sink (query execution statement) at line 6.

The running example is vulnerable to SQL injection if input $u can be injected with
malicious content and the filter function f fails to eliminate it. For example, the user
input ’ OR 1=1 -- provided as $u in the above example can break out of the ex-
pected string literal context and add an additional OR clause to the query. Typically, user
inputs such as $u are expected to contribute as literals in the parse structure of any query,
specifically, in one of the two literal data contexts: (a) a string literal context which is
enclosed by program supplied string delimiters (single quotes) (b) in a numeric literal
context. SQL injection attacks violate this expectation by introducing input strings that

Automatically Preparing Safe SQL Queries 275

do not remain confined to these literal data contexts and directly influence the structure
of the generated queries [6,28].

PREPARE statement confines all query arguments to the expected data contexts. These
statements allow a programmer to declare (and finalize) the structure of every SQL
query in the application. Once constructed, the parse structure of a PREPARE statement
is frozen and cannot be altered by malformed inputs. The following is an equivalent
PREPARE statement based program for the running example.
1. $q = "select * from X where uid LIKE ? order by Y";

2. $stmt = prepare($q).bindParam(0, "s", "%".f($u)."%");

3. $stmt.execute();

The question mark in the query string $q is a “place-holder” for the query argument
%f($u)%. In the above example, providing the malicious input u = ’ or 1=1 -- to
the prepared query will not result in a successful attack. This is because the actual query
is parsed with these placeholders (prepare instruction generates PREPARE statement),
and the actual binding to placeholders happens after the query structure is finalized
(bindParam instruction). Therefore, the malicious content from $u cannot influence
the structure of query.

The Transformation Problem: In this paper, we aim to replace all queries generated
by a web application with equivalent PREPARE statements. A web application can be
viewed as a SQL query generator, that combines constant strings supplied by the pro-
gram with computations over user inputs.

Given a large web application, making a change to PREPARE statements, is chal-
lenging and tedious to achieve through manual transformation. To make the change, a
developer must consider each SQL query execution location (sink) of the program and
queries that it may execute. Depending on the control path a program may generate and
execute different SQL queries at a sink. Looping behavior may be used to introduce a
variety of repeated operations, such as construction of conditional clauses that involve
user inputs. Sinks that can execute multiple queries need to be transformed such that
each control path gets its corresponding PREPARE statement. This requires a developer
to consider all control flows together. Also, each such control flow may span multi-
ple procedures and modules and thus requires an analysis spanning several procedures
across the source code.

A second issue in making this change is : for each control flow, a developer must
extract query arguments from the original program statements. This requires reasoning
about the data contexts. In the running example, the query argument %f($u)% is gener-
ated at line 5, and three statements provide its value: f($u) from line 3, and enclosing
character (%) from line 2 and 4, respectively. The above mentioned issues make the
problem of isolating user input data from the original program query quite challenging.

4 Our Approach

We will use the running example from the previous section. This application takes a
user input $u and constructs a query in the partial query string variable $q. A partial
query string variable is a variable that holds a query fragment consisting of some string

276 P. Bisht, A.P. Sistla, and V.N. Venkatakrishnan

constants supplied by the program code together with user inputs. Our approach makes
the following assumption about partial query strings.

Main Assumption: We require the web application to be transformed, to not perform
content processing or inspection of partial query string variables.

To guarantee the correctness of our approach, we require this assumption to hold. To
explain this assumption for the running example, we require that once the query string
$q is formed in line 5 of the application by concatenating filtered user input f($u) with
program generated constant strings in variables $q1 and $q3, it does not undergo deep
string processing (i.e., splitting, character level access, etc.,) further en route to the
sink. To ensure that this assumption holds, our approach and implementation checks
that the program code only performs the following operations on partial query string
variables: (a) append with other program generated constant strings or program vari-
ables (b) perform output operations (such as writing to a log file) that are independent
of query construction and (c) equality comparison with string constant null. Checking
the above three conditions is sufficient to guarantee that our main assumption holds.

The above conditions are in fact conservative and can be relaxed by the developer,
but we believe that the above assumption is not very limiting based on our experimental
evaluation of many real world open source applications. In fact, the above assumption
has been implicitly held by many prior approaches for SQL injection defense. Defenses
such as SQLRand [5], SQLCheck [28] are indeed applicable to real world programs
because this assumption holds for their target applications. We note that all of these ap-
proaches change the original program’s data values. SQLRand randomizes the program
generated keywords, SQLCheck encloses the original program’s inputs with marker
tags. These approaches then require that programs do not manipulate their partial query
strings in arbitrary ways. For instance, if a program splits and acts on a partial query
string after its SQL keywords has been randomized, it introduces the possibility of los-
ing the effect of randomization. A small minority of query generation statements in
some programs may not conform to our main criteria; in this case, our tool reports a
warning and requires programmer involvement as discussed in section 4.5.

4.1 Intuitions behind Our Approach

As mentioned earlier, user inputs are expected to contribute to SQL queries in string
and numeric data literal contexts. Our approach aims to isolate these (possibly unsafe)
inputs from the query by replacing existing query locations in the source code with
PREPARE statements, and replacing the unsafe inputs in them with safe placeholder
strings. These placeholders will be bound to the unsafe inputs during program execution
(at runtime).

In order to do this, we first observe that the original program’s instructions already
contain the programmatic logic (in terms of string operations) to build the structure
of its SQL queries. This leads to the crucial idea behind our approach: if we can pre-
cisely identify the program data variable that contributes a specific argument to a query,

Automatically Preparing Safe SQL Queries 277

then replacing this variable with a safe placeholder string (?) will enable the program
to programmatically compute the PREPARE statement at runtime. The above approach
will work correctly if our main assumption is satisfied. We indeed can ensure that the
resulting string with placeholders at the original SQL sink will have (at runtime) the
body of a corresponding PREPARE statement.

The problem therefore reduces to precisely identifying query arguments that are
computed through program instructions. In our approach, we solve this problem through
symbolic execution [18], a well-known technique in program verification. Intuitively,
during any run, the SQL query generated by a program can be represented as a sym-
bolic expression over a set of program inputs (and functions over those inputs) and
program-generated string constants. For instance, by symbolically executing our run-
ning example program, we obtain the following symbolic query expression :

SELECT ... WHERE uid LIKE ’%f($u)%’ ORDER by Y

Notice that the query is expressed completely by constant strings generated by the
program, and (functions over) user inputs. (We will define these symbolic expressions
formally later.)

Once we obtain the symbolic expression, we analyze its parse structure to identify
data arguments for the PREPARE statement. In our running example, the only argument
obtained from user input is the string %f($u)% .

Our final step is to traverse the program backwards to the program statements that
generate these arguments, and modify them to generate placeholder (?) instead. Now,
we have changed a data variable of a program, such that the program can compute the
body of the PREPARE statement at runtime.

In our running example, after replacing contributions of program statements that
generated the query data argument %f($u)%with a placeholder (?), $q at line 5 contains
the following PREPARE statement body at runtime:

SELECT ... WHERE uid LIKE ? ORDER by Y, %$q2%

The corresponding query argument is the value %$q2%. Note that the query argument
includes contributions from program constants (such as %) as well as user input (through
$q2) .

Approach overview. Figure 1 gives an overview of our approach for the running ex-
ample. For each path in the web application that leads to a query, we generate a deriva-
tion tree that represents the structure of the symbolic expression for that query. For our
example, $q is the variable that holds the query, and step 1 of this figure shows the
derivation tree rooted at $q that captures the query structure. The structure of this tree
is analyzed to identify the contributions of user inputs and program constants to data
arguments of the query, as shown in steps 2 and 3. In particular, we want to identify
the subtree of this derivation tree that confines the string and numeric literals, which we
call the data subtree. In step 4, we transform this derivation tree to introduce the place-
holder value, and isolate the data arguments. This change corresponds to a change in the
original program instructions and data values. In the final step 5, the rewritten program
is regenerated. The transformed program programmatically computes the body of the
PREPARE statement in variable $q and the associated argument in variable $t.

278 P. Bisht, A.P. Sistla, and V.N. Venkatakrishnan

Fig. 1. TAPS: step (1) generates symbolic queries, steps (2-3) separate data reaching the queries,
step (4) removes data from symbolic queries, and steps (5-6) generate the transformed program

4.2 Handling Straight Line Programs

We give a more precise description using a simple well defined programming language.
We assume that all the variables in the language are string variables. Let · denote string
concatenation operator. The allowed statements in the language are of the following
forms: x = f(), x = y, x = y1 · y2 where x is a variable and y is a variable or a
constant, y1, y2 are variables or constants with the constraint that at most one of them
is a constant, and f() is any function including the input function that accepts inputs
from the user. Here we describe our approach for straight line programs. Processing of
more complex programs, that include conditional statements and certain type of simple
loops, is presented later in this section. The approach for such complex programs uses
the procedure for straight line programs as a building block.

Derivation Trees. Now consider a straight line program P involving the above type
of statements. Assume that P has l number of statements. We let Si denote the ith

statement in P . With each i, 1 ≤ i ≤ l, we define a labeled binary tree Ti as follows.
Let x = e be the statement Si. Intuitively, Ti shows the derivation tree for the symbolic
value of x immediately after execution of Si. The root node ri of Ti is labeled with the
pair 〈i, x〉 and its left and right children (Tl, Tr) are defined as follows.

(Tl , Tr) =

⎧⎪⎪⎨⎪⎪⎩
((label = x) ,) if e = f()
((label = c) ,) if e = c
(Tj ,) if e = y
(Tj , Tk) if e = y · z

⎫⎪⎪⎬⎪⎪⎭
Here c is a constant, Tj and Tk

are the derivation trees of last
statements j and k before i
that update y and z, respectively.

The derivation tree Ti has two sub-trees only when e is y · z. Note that if y (or z)
is a constant then the left (or right) sub-tree is a leaf node labeled with the constant,
otherwise it is a copy of of some T as defined above. Figure 2 gives a program and the
tree T6 for this program.

Automatically Preparing Safe SQL Queries 279

Symbolic strings. For the program P , we construct the trees Ti, for 1 ≤ i ≤ l. For
each tree Ti, we define a symbolic string, called the string generated by Ti, as the string
obtained by concatenating the labels of leaves of Ti from left to right. If Si is of the form
x = e, then we define the symbolic value of x after Si to be the symbolic string gener-
ated by Ti. For the program given in Figure 2, the symbolic value of q after statement 6
is the string select * from employee where salary = x1 + x2

Data sub-strings. Assume that the last statement of P is sql.execute(q) and that this
is the only SQL statement in P . Also assume that statement i is the last statement that
updated q. We obtain the symbolic value s of q after statement i from the tree Ti and
parse it using the SQL parser. If it is not successfully parsed then we reject the program.
Otherwise, we do as follows. From the parse tree for s, we identify the sub-strings of s
that correspond to data portions. We call these sub-strings as data sub-strings. For each
data sub-string u, we identify the smallest sub-tree τu, called data sub-tree, of Ti that
generated u. Note that τu is a copy of Tj for some j ≤ i. Clearly, u is a sub-string
of the string generated by τu. Now, we consider the case when the following property
(*) is satisfied. (If (*) is not satisfied we transform P into an equivalent program P ′

that satisfies (*) and we invoke the following procedure on P ′; this transformation is
described later).
Property (*): For each data sub-string u, u is equal to the string generated by τu.

Program Transformation: We modify the program so that data sub-strings in sym-
bolic strings are replaced by “?” (Rule1) and all such data sub-strings are gathered
into argument lists (Rule1 and Rule2). We achieve this as follows. For each relevant
variable x, we introduce a new variable args(x) that contains its list of arguments and
initialize it to the empty lists in the beginning.

Let the root node of Ti be ri and the root node of sub-tree τu in Ti be ru. We traverse
the tree Ti from node ru to its root and let t1, . . . , tk be the nodes on this path in that
order. Note that t1 = ru and tk = ri. For each j, 1 ≤ j ≤ k, let the label of node tj
be given by 〈j, varj〉 where varj represents the variable being updated at the node tj
(note that tj cannot be a leaf node).

Rule1: Eliminating data subtrees Let j′ be the smallest integer such that 1 < j′ ≤ k
and tj′ has two children. Clearly, the statement Sj′ is of the form varj′ = y′ · z′. If
varj′−1 = y′ i.e., τu appears in the left subtree of tj′ . We replace Sj′ : varj′ = y′.z′

Fig. 2. Labeled derivation tree for symbolic values of q after execution of statement 6

280 P. Bisht, A.P. Sistla, and V.N. Venkatakrishnan

by the following two statements.

args(varj′) =
{

[y′] if z′ is a constant
[y′] # args(z′) if z′ is a variable

}
varj′ = “?” · z′

Note that the second statement above introduces “?” in the query and the first one adds
corresponding data sub-string to the argument list. Here [y′] represents a list consisting
of the single variable y′ and operator # represents a list concatenation operation. The
operation [y′] # args(z′) computes a list by concatenating the list [y′] and the list
args(z′) in that order. If tj′−1 is a right child of tj′ then Rule1 is applied in a symmetric
fashion i.e., varj′ = y′·′′?′′, variable z′ is used in place of y′, args(y′) is used in place
of args(z′), and z′ is added at the end of the list args(y′). This rule is applied to
transform the lines 4 and 5 of the Figure 2.

Rule2: Propagating arguments For each j′′, j′ < j′′ ≤ k, the following rule adds an
additional statement immediately before the Sj′′ to propagate the argument introduced
by Rule1.

args(varj′′) =
{

args(z′′) if Sj
′′ : varj′′ = z′′

args(y1
′′) # args(y2

′′) if Sj
′′ : varj′′ = y1

′′ · y2
′′

}
The argument lists for varj′′ is obtained by concatenating the lists args(y1

′′) and
args(y2

′′) in that order. If either one of y1
′′ or y2

′′ is a constant string, the above rule
sets the argument list to be the argument list of the non-constant variable. Note that z′′

cannot be a constant string. This rule is used to transform the line 6 in the Figure 2.

Ensuring property (*): Now we consider the case when property (*) is not satisfied.
In this case, we transform the program P into another equivalent program for which the
property (*) is satisfied. Let Δ be the set of all data sub-strings u of the query string
s such that property (*) is violated for them, i.e., u is a strict sub-string of the string
generated by τu.

Now, observe that ru has two children, otherwise τu will not be the smallest sub-tree
that generated u. Let the label of ru be 〈m, y〉. Clearly Sm is of the form y = z1 · z2.
Observe that each leaf node of Ti is labeled with a constant string or the name of a
variable. For each u ∈ Δ, we transform P as follows. Fix any such u. Chose a new
variable xu and add a new statement at the beginning of P initializing xu to the empty
string.

The transformation outlined below removes part of u that was computed in z1 and
stores it in xu. Let v be a leaf node of τu such that the left most element of u falls in the
label of v. The label of v can be written as s′ · s′′ such that s′′ is the part that falls in u.
Let t1, . . . , tk be the sequence of nodes in τu from the parent of v to ru where ru is the
root node of τu. For 1 ≤ j < k, replace Sj by New(Sj) as defined below.

New(Sj)=
{{xu =s′′ · xu; varj =s′} if j = 1 & S1 : varj = s′ · s′′
{xu =xu · z; varj =varj−1} if 1<j<k & Sj : varj =varj−1 · z

}
After this, we identify the leaf node w of τu such that the right most element of u falls
in the label of w. P is modified in a symmetric fashion updating variable xu. Finally,
we replace Sm (root of the τu) by the following two statements — xu = z1 · xu;
y = xu · z2.

Automatically Preparing Safe SQL Queries 281

The above transformation is done for each u ∈ Δ. We say that changes correspond-
ing to two different strings in Δ are conflicting if both of them require different changes
to the same statement of P . Our handling of the cases of conflicting changes is explained
in the next section. Here we assume that changes required by different strings in Δ are
non-conflicting; Let P ′ be the resulting program after changes corresponding to data
strings in Δ have been carried out. It can be easily shown that P ′ is equivalent to P ,
i.e., the query string generated in the variable q by P ′ is same as the one generated by
P . Further more, P ′ can be shown to satisfy the property (*).

4.3 Handling of Conditionals and Procedures

In this section, we discuss our approach and implementation for programs that include
branching statements, function invocations and loops.

Let us first consider branching statements. For programs that include these con-
structs, TAPS performs inter-procedural slicing of system dependency graphs (SDGs)
[13]. Intuitively, for all queries that a SQL sink may receive, the corresponding SDG
captures all program statements that construct these queries (data dependencies) and
control flows among these statements. TAPS then computes backward slices for SQL
sinks such that each slice represents a unique control path to the sink. Each of these
control paths is indeed a straight line program, and is transformed according to our ap-
proach described in the previous section. A key issue here is the possibility of conflicts:
when path P1 and P2 of a program share an instruction (statement) I that contributes
to the data argument, then instruction I may not undergo the same transformation
along both paths, and TAPS detects such conflicts. Conflict detection and resolution is
described in more detail in Section 4.5. Also note that the inter-procedural slicing seg-
regates unique sequences of procedures invoked to construct SQL queries. Such se-
quences may have multiple intra-procedural flows e.g., conditionals. These SDGs are
then split further for each procedure in above construction such that each slice contains
a unique control flow within a procedure.

The above discussion captures loop-free programs. Handling loops is challenging as
loops in an application can result in an arbitrary number of control paths and therefore
we cannot use the above approach of enumerating paths.

4.4 Loop Handling

First of all, let us consider programs that construct and execute the entire query inside
a single iteration of the loop. Let us call the query so constructed a loop independent
query. In this case, the body of the loop does not contain any intervening loops. To
ensure whether a query location is loop independent, our approach checks for the fol-
lowing sufficient conditions: (1) the query sink is in the loop body and (2) every variable
used in the loop whose value flows into the sink does not depend on any other variable
from a previous iteration. Once these conditions are satisfied, our approach handles loop
independent queries as described in Section 4.2.

282 P. Bisht, A.P. Sistla, and V.N. Venkatakrishnan

However, there may be other instances where loop bodies do not generate entire
queries. The most common example are query clauses that are generated by loop itera-
tions. Consider the following example:

1. $u1 = input(); $u2 = input();
2. $q1 = "select * from X where Y =".$u1;
3. while (--$u2 > 0){
4. $u1 = input();
5. $q2 = $q2." OR Y=".$u1;
6. }
7. $q = $q1.$q2;
8. sql.execute($q);

In this case, our approach aims to summarize the contributions of the loop using the
symbolic regular expressions. In the above case, at the end of the loop, our objective
is to summarize the contribution of $q2 as (OR Y=$u1)∗, so that the symbolic query
expression can now be expressed as select * from X where Y = $u1(OR Y=$u1)∗ .

The goal of summarization is essentially to check whether we can introduce place-
holders in loop bodies. Once we obtain a summary of the loop, if it is indeed the case
that the loop contribution is present in a “repeatable” clause in the SQL grammar, we
can introduce placeholders inside the loop. In the above example, since each iteration of
the loop produces an OR clause in SQL, we could introduce the placeholder in statement
at line 5, and generate the corresponding PREPARE statement at runtime.

Previous work [22] has shown that the body of a loop can be viewed as a grammar
that represents a language contributing to certain parts of the SQL query, and a gram-
mar can be automatically extracted from the loop body as explained there. We will need
to check whether the language generated by this grammar is contained in the language
spawned by the repeatable (pumped) strings generated by the SQL grammar. Note that
this containment problem is not the same as the undecidable general language contain-
ment problem for CFGs, as the SQL grammar is a fixed grammar. However, a decision
procedure specific to the SQL grammar needs to be built.

We instead take an alternative approach for this problem by ensuring that the loop
operations produce regular structures. To infer this we check whether each statement
in the body of the loop conforms to the following conditions: (1) the statement is of
the form q → x where x is a constant or an input OR (2) it is left recursive of the
form q → qx, where x itself is not recursive, i.e., resolves to a variable or a constant in
each loop iteration. It can be shown that satisfaction of these conditions yields a regular
language. The symbolic parser is now augmented to see if the regular structure only
generates repeatable strings in the SQL language. If this condition holds, we introduce
placeholders as described earlier. We find our strategy for loops quite acceptable in
practice, as shown in the next section.

4.5 Implementation

We implemented TAPS to assess our approach on PHP applications by leveraging ear-
lier work Pixy [15,16] and extending it with algorithms to convert programs to Static

Automatically Preparing Safe SQL Queries 283

Single Assignment(SSA) format [7], and then implementation of the transformation
described earlier. We briefly discuss some key points below.

We used an off-the-shelf SQL parser and augmented it to recognize symbolic ex-
pressions in query strings. The only minor change we had to make was to recog-
nize query strings with associative array references. An associate array access such
as $x[’member’] contains single quotes and may conflict with parsing of string con-
texts. To avoid premature termination of the data parsing context, TAPS ensures that
unescaped string delimiters do not appear in any symbolic expression.

Limitations and Developer Intervention. TAPS requires developer intervention if ei-
ther one of the following conditions hold: (i) the main assumption is violated (Section 4)
(ii) a well-formed SQL query cannot be constructed statically (e.g., use of reflection,
library callbacks) (iii) the SQL query is malformed because of infeasible paths that can-
not be determined statically (iv) conflicts are detected along various paths (v) query is
constructed in a loop that cannot be summarized.

TAPS implements static checks for all of the above and generates reports for all
untransformed control flows along with program statements that caused the failure. A
developer needs to qualify a failure as: (a) generated by an infeasible path and ignore or
(b) re-write of violating statements possible. The number of instances of type (a) can be
reduced by more sophisticated automated analysis using decision procedures. In case
of (b), TAPS can be used after making appropriate changes to the program. In certain
cases, the violating statements can be re-written to assist TAPS e.g., a violating loop
can be re-written to adhere to a regular structure as described earlier. The remaining
cases can either be addressed manually or be selectively handled through other means
e.g., dynamic prevention techniques.

In case of failures, TAPS can also be deployed to selectively transform the pro-
gram such that control paths that are transformed will generate prepared queries, and
those untransformed paths will continue to generate the original program’s (unsafe)
SQL queries. The sufficient condition to do this in a sound manner is that the variables
in untransformed part be not dependent (either directly or transitively) on the variables
of the transformed paths. In this case, the transformation can be done selectively on
some paths. All sinks will be transformed to PREPARE statements, and any untrans-
formed paths will make use of the PREPARE statements (albeit with unsafe strings) to
issue SQL queries with an empty argument list.

5 Evaluation

Our evaluation aimed to assess TAPS on two dimensions: (a) effectiveness of the ap-
proach in transforming real world applications, and (b) performance impact of transfor-
mation induced changes.

5.1 Effectiveness

Test suite. Table 1 column 1 lists SQLIA vulnerable applications from another re-
search project on static analysis [32] and applications with known SQLIA exploits from
Common Vulnerabilities and Exposures (CVE 2009) repository. This table lists their

284 P. Bisht, A.P. Sistla, and V.N. Venkatakrishnan

Table 1. Effectiveness suite applications, transformed SQL sinks and control flows: TAPS trans-
formed over 93% and 99% of the analyzed control flows for the two largest applications

Application Size CVE Analyzed Analyzed Transfor- Transfor- Human
(LOC) Vulnerability SQL Control med SQL med Control Intervention

(prefix CVE-) Sinks Flows Sinks Flows Flows

WarpCMS 22,773 - 14 200 14 186 14
Utopia NewsPro 7,323 - 2 336 2 333 3

AlmondSoft 6,633 2009-3226 22 33 17 27 6
PortalXP TE 5,121 2009-3148 122 122 122 122 0

Gravity Board 2,422 2009-1277 62 62 62 62 0
MyNews 1,792 2009-0739 1 34 1 34 0

Auth 284 2009-0738 1 5 1 5 0
BlueBird 288 2009-0740 1 5 1 5 0
Yap Blog 264 2009-1038 2 6 2 6 0

codebase sizes in lines of code and any known CVE vulnerability identifiers (column
2 and 3), number of analyzed SQL sinks and control flows that execute queries at SQL
sinks (column 4 and 5), transformed SQL sinks and control flows (column 6 and 7)
and number of control flows that required developer intervention (column 8). In this
test suite, the larger applications invoked a small number of functions to execute SQL
queries. This caused the number of analyzed sinks and control flows to vary across
applications.

Transformed control flows. For the three largest applications, TAPS transformed
93%, 99% and 81% of the analyzed control flows. Although smaller in LOC size, the
Utopia news pro application had a greater fraction of code involving complex database
operations and required analyzing more control flows than any other application. For the
remaining applications, TAPS achieved a transformation rate of 100%. This table sug-
gests that TAPS was effective in handling the many diverse ways that were employed
by these applications to construct queries.

TAPS did not find any partial query string variables used in operations other than
append, null checks and output generation / logging (supports main assumption from
Section 4). Further, TAPS did not encounter conflicts while combining changes to pro-
gram statements required for transformed control flows.

Untransformed control flows. The last column of the Table 1 indicates that TAPS
requires human intervention to transform some control flows.

As TAPS depends on symbolic evaluation, it did not transform flows that obtained
queries at run time e.g., the Warp CMS application used SQL queries from a file to
restore the application’s database. In two other instances, it executed query specified in
a user interface. In both these cases, no meaningful PREPARE statement is possible as
external input contributes to the query structure. If the source that supplies the query is
trusted, then these flows can be allowed by the developer. The limitations of the SQL
parser implementation were responsible for two of the three failures in the Utopia news
pro application and the rest are discussed below.

Automatically Preparing Safe SQL Queries 285

Table 2. Transformation changed less than 5% lines for large applications

Application Statements Args Functions SSA Flow Static Transf-
changed extracted traversed conversion enumeration checks ormation

(%) Avg (max) Avg (max) time (%) time (%) time (%) time (%)

WarpCMS 438 (1.9%) 6.6 (27) 2.2 (3) 98.6 0.4 0.4 0.6
Utopia News Pro 333 (4.5%) 1.1 (8) 2.9 (6) 86.9 5.3 6.7 1.1

AlmondSoft 46 (0.7%) 1.3 (4) 1.3 (2) 61.3 12.2 0.1 26.4
PortalXP TE 332 (6.5%) 1.5 (9) 1.0 (1) 96.7 1.0 2.2 0.1

Gravity Board 172 (7.1%) 1.5 (15) 1.0 (1) 94.8 1.3 3.3 0.6
MyNews 56 (3.1%) 2.4 (5) 2.5 (3) 80.7 10.8 2.2 6.3

Auth 17 (6.1%) 3.0 (4) 2.0 (2) 23.4 37.3 8.9 30.4
BlueBird 17 (6.0%) 3.0 (4) 2.0 (2) 23.5 34.6 12.4 29.5
Yap Blog 8 (3.0%) 4.0 (7) 2.0 (2) 53.5 14.2 16.8 15.5

Queries computed in loops. A total of 18 control flows used loops that violated re-
strictions imposed by TAPS and were not transformed (11 - Warp CMS, 1 - Utopia
news pro, 6 - AlmondSoft). These control flows generated queries in loop bodies that
used conditional statements or nested loops. We also found 23 instances of queries com-
puted in loops, including a summarization of implode function, that were successfully
transformed. In all such cases queries were either completely constructed and executed
in each iteration of the loop or loop contributed a repeatable partial query.

For untransformed flows TAPS precisely identified statements to be analyzed e.g.,
the Warp CMS application required 195 LOC to be manually analyzed instead of com-
plete codebase of 22K LOC. This is approximately two orders of magnitude reduction
in LOC to be analyzed.

Changes to applications. As shown in the second column of Table 2 a small fraction
of original LOC was modified during transformation. The columns 3 and 4 of this table
show average (maximum) number of data arguments extracted from symbolic queries
and functions traversed to compute them, respectively. 2% of changes in LOC were
recorded for Warp CMS - the largest application, whereas approximately 5% of lines
changed for database intensive Utopia news pro application. We noticed that a sig-
nificant portion of code changes only managed propagation of the data arguments to
PREPARE statements. Some of these changes can be eliminated by statically optimiz-
ing propagation of arguments list e.g., for all straight line flows that construct a single
query, PREPARE statement can be directly assigned the argument list instead of propa-
gating it through the partial queries. Overall, this small percentage of changes points to
TAPS’s effectiveness in locating and extracting data from partial queries.

Further, as columns 3 and 4 suggest, TAPS extracted a large number of data argu-
ments from symbolic queries constructed in several non-trivial inter-procedural flows.
For a manual transformation both of these vectors may lead to increased effort and
human mistakes and may require substantial application domain expertise. For success-
fully transformed symbolic queries the deepest construction spanned 6 functions in the
Utopia news pro application and a maximum of 27 arguments (in a single query) were
extracted for the Warp CMS application, demonstrating robust identification of argu-
ments.

286 P. Bisht, A.P. Sistla, and V.N. Venkatakrishnan

5.2 Performance Experiment

Performance of transformed applications. TAPS was assessed for performance over-
head on a microbench that consisted of an application to issue an insert query. This
application did not contain tasks that typically interleave query executions e.g., HTML
generation, formatting. Further, the test setup was over a LAN and lacked typical Inter-
net latencies. Overall, the microbench provided a worst case scenario for performance
measurement.

We measured end-to-end response times for 10 iterations each with TAPS trans-
formed and original application and varied sizes of data arguments to insert queries
from 256B to 2KB. In some instances TAPS transformed application outperformed the
original application. However, we did not find any noteworthy trend in such differences
and both applications showed same response times in most cases. It is important to note
here that dynamic approaches typically increase this overhead by 10-40%. Whereas,
TAPS transformed application’s performance did not show any differences in response
times. Overall, this experiment suggested that TAPS transformed applications do not
have any overheads.

Performance of the tool. We profiled TAPS to measure the time spent in the follow-
ing phases of transformation: conversion of program to SSA format, enumeration of
control flows, static checks for violations described earlier, derivation tree generation
and changing the program. The time taken by each phase is summarized in the last four
columns of Table 2. The largest application took around 2 hours to transform whereas
the rest took less than an hour. The smallest three applications were transformed in less
than 5 seconds. For large applications TAPS spent a majority of time in the SSA con-
version. The only exception to this case occurred for AlmondSoft application which had
smaller functions in comparison to other applications and hence SSA conversion took
lesser time. We wish to note here that TAPS is currently not optimized. A faster SSA
conversion implementation may improve performance of the tool and by summarizing
basic blocks some redundant computations can be removed. For a static transformation
these numbers are acceptable.

6 Conclusion

In this paper, we presented TAPS, a static program transformation tool that modifies
web applications to make use of PREPARE statements. We presented experimental re-
sults with several open-source applications to assess the effectiveness of TAPS. Our
approach provides evidence that it is possible to successfully design retrofitting tech-
niques that guarantee security (by construction) in legacy applications, and eliminate
well known attacks.

Acknowledgments

This work was supported in part by National Science Foundation grants CNS-0716584,
CNS-0551660, CNS-0845894, CNS-0917229, ITR-0716498, CCF-0916438 and CCF-
0742686. Thanks are due to Mike Ter Louw and Kalpana Gondi for their suggestions
on improving the draft. Finally, we thank the anonymous referees for their feedback.

Automatically Preparing Safe SQL Queries 287

References

1. JDBC: Using a prepared statements,
http://java.sun.com/docs/books/tutorial/jdbc/basics/
prepared.html

2. Symantec Internet Security Threat Report, vol. XI. Technical report, Symantec (March 2007)
3. Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.:

Saner: Composing static and dynamic analysis to validate sanitization in web applications.
In: IEEE Symposium on Security and Privacy, Oakland, California, pp. 387–401 (2008)

4. Bandhakavi, S., Bisht, P., Madhusudan, P., Venkatakrishnan, V.N.: Candid: preventing sql
injection attacks using dynamic candidate evaluations. In: ACM Conference on Computer
and Communications Security, Alexandria, Virginia, USA, pp. 12–24 (2007)

5. Boyd, S.W., Keromytis, A.D.: SQLrand: Preventing SQL Injection Attacks. In: Jakobsson,
M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 292–302. Springer, Heidel-
berg (2004)

6. Buehrer, G., Weide, B.W., Sivilotti, P.A.G.: Using parse tree validation to prevent sql in-
jection attacks. In: 5th International Workshop on Software Engineering and Middleware,
Lisbon, Portugal, pp. 106–113 (2005)

7. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently computing
static single assignment form and the control dependence graph. ACM Transactions on Pro-
gramming Languages and Systems 13(4), 451–490 (1991)

8. Dysart, F., Sherriff, M.: Automated fix generator for sql injection attacks. In: ISSRE 2008:
Proceedings of the 2008 19th International Symposium on Software Reliability Engineering,
Seattle, WA, pp. 311–312 (2008)

9. Flak, H.: MYSQL prepared statements,
http://dev.mysql.com/tech-resources/articles/4.1/
prepared-statements.html

10. Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., Tao, L.: A static analysis framework for
detecting sql injection vulnerabilities. In: International Computer Software and Applications
Conference, Beijing, China, pp. 87–96 (2007)

11. Halfond, W.G.J., Orso, A.: AMNESIA: Analysis and Monitoring for NEutralizing SQL-
Injection Attacks. In: IEEE/ACM international Conference on Automated Software Engi-
neering, Long Beach, CA, USA, pp. 174–183 (2005)

12. Halfond, W.G.J., Orso, A., Manolios, P.: Using positive tainting and syntax-aware evaluation
to counter sql injection attacks. In: ACM SIGSOFT International Symposium on Foundations
of Software Engineering, Portland, Oregon, USA, pp. 175–185 (2006)

13. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs. In: ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementation, At-
lanta, Georgia, pp. 35–46 (1988)

14. Howard, M., Leblanc, D.: Writing Secure Code. Microsoft Press, Redmond (2001)
15. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A static analysis tool for detecting web appli-

cation vulnerabilities (short paper). In: IEEE Symposium on Security and Privacy, Oakland,
California, pp. 258–263 (2006)

16. Jovanovic, N., Kruegel, C., Kirda, E.: Precise alias analysis for static detection of web appli-
cation vulnerabilities. In: PLAS 2006: Proceedings of the 2006 Workshop on Programming
Languages and Analysis for Security, Ottawa, Ontario, Canada, pp. 27–36 (2006)

17. Kieyzun, A., Guo, P.J., Jayaraman, K., Ernst, M.D.: Automatic creation of sql injection
and cross-site scripting attacks. In: IEEE International Conference on Software Engineer-
ing, Vancouver, Canada, pp. 199–209 (2009)

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html
http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html
http://dev.mysql.com/tech-resources/articles/4.1/prepared-statements.html
http://dev.mysql.com/tech-resources/articles/4.1/prepared-statements.html

288 P. Bisht, A.P. Sistla, and V.N. Venkatakrishnan

18. King, J.C.: Symbolic execution and program testing. Communications of the ACM 19(7),
385–394 (1976)

19. Kosuga, Y., Kono, K., Hanaoka, M., Hishiyama, M., Takahama, Y.: Sania: Syntactic and
semantic analysis for automated testing against sql injection. In: Computer Security Appli-
cations Conference, Annual, pp. 107–117 (2007)

20. Liu, A., Yuan, Y., Wijesekera, D., Stavrou, A.: Sqlprob: a proxy-based architecture towards
preventing sql injection attacks. In: ACM Symposium on Applied Computing, Honolulu,
Hawaii, pp. 2054–2061. ACM, New York (2009)

21. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java applications with static
analysis. In: USENIX Security Symposium, Baltimore, MD, p. 18 (2005)

22. Minamide, Y.: Static approximation of dynamically generated web pages. In: International
Conference on World Wide Web, Chiba, Japan, pp. 432–441 (2005)

23. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically hard-
ening web applications using precise tainting. In: IFIP International Information Security
Conference, Chiba, Japan, pp. 295–308 (2005)

24. OWASP. The ten most critical web application security vulnerabilities,
http://www.owasp.org

25. Pietraszek, T., Berghe, C.V.: Defending Against Injection Attacks through Context-Sensitive
String Evaluation. In: Recent Advances in Intrusion Detection, Seattle, Washington (Septem-
ber 2005)

26. Rietta, F.S.: Application layer intrusion detection for sql injection. In: Annual Southeast
Regional Conference, Melbourne, Florida, pp. 531–536. ACM, New York (2006)

27. Sekar, R.: An efficient black-box technique for defeating web application attacks. In: Net-
work and Distributed Systems Symposium, San Diego, CA (2009)

28. Su, Z., Wassermann, G.: The essence of command injection attacks in web applications. In:
ACM Symposium on Principles of Programming Languages, Charleston, South Carolina,
USA, pp. 372–382 (2006)

29. Thomas, S., Williams, L., Xie, T.: On automated prepared statement generation to remove
sql injection vulnerabilities. Inf. Softw. Technol. 51(3), 589–598 (2009)

30. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: Taj: effective taint analysis of
web applications. In: PLDI 2009: Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, Dublin, Ireland, pp. 87–97 (2009)

31. Valeur, F., Mutz, D., Vigna, G.: A Learning-Based Approach to the Detection of SQL At-
tacks. In: Conference on Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA), Vienna, Austria, pp. 123–140 (July 2005)

32. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injection vul-
nerabilities. In: ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, San Diego, California, USA, pp. 32–41 (2007)

33. Xie, Y., Aiken, A.: Static detection of security vulnerabilities in scripting languages. In:
USENIX-SS 2006: Proceedings of the 15th Conference on USENIX Security Symposium,
Vancouver, BC, Canada (2006)

34. Xu, W., Bhatkar, S., Sekar, R.: Taint-enhanced policy enforcement: a practical approach to
defeat a wide range of attacks. In: USENIX-SS 2006: Proceedings of the 15th Conference
on USENIX Security Symposium, Vancouver, BC, Canada (2006)

http://www.owasp.org

PKI Layer Cake: New Collision Attacks against
the Global X.509 Infrastructure

Dan Kaminsky1, Meredith L. Patterson1, and Len Sassaman2

1 IOActive, Inc.
2 Katholieke Universiteit Leuven

1 Introduction

Research unveiled in December of 2008 [15] showed how MD5’s long-known flaws
could be actively exploited to attack the real-world Certification Authority infras-
tructure. In this paper, we demonstrate two new classes of collision, which will be
somewhat trickier to address than previous attacks against X.509: the applicabil-
ity of MD2 preimage attacks against the primary root certificate for Verisign, and
the difficulty of validating X.509 Names contained within PKCS#10 Certificate
Requests. We also draw particular attention to two possibly unrecognized vectors
for implementation flaws that have been problematic in the past: the ASN.1 BER
decoder required to parse PKCS#10, and the potential for SQL injection from text
contained within its requests. Finally, we explore why the implications of these at-
tacks are broader than some have realized — first, because Client Authentication
is sometimes tied to X.509, and second, because Extended Validation certificates
were only intended to stop phishing attacks from names similar to trusted brands.
As per the work of Adam Barth and Collin Jackson [4], EV does not prevent an
attacker who can synthesize or acquire a “low assurance” certificate for a given
name from acquiring the “green bar” EV experience.

The attacks we will discuss in this paper fall into the following categories:

1. MD2RSA Signature Transfer: Verisign’s MD2 root can be exploited by
creating a malicious intermediate with the same MD2 hash as its parent and
transfering the signature from the root to the malicious intermediate.

2. Subject Name Confusion: Inconsistent interpretation of the SubjectX.509
Name in a PKCS#10 request can cause a CA to emit a certificate for an unau-
thorized Common Name. Existing PKCS APIs vary in their handling of Com-
mon Names and Subject Names, and these differences can be exploited in a
number of ways which we will explore in detail.

3. PKCS#10-Tunneled SQL Injection: Certificate Authorities inserting
PKCS#10 Subject Names into a database do not necessarily employ com-
prehensive string validation for the BMPString, UTF8String and Universal-
String types, which allows SQL injection attacks. Given the special trust
that a CA’s database backend presupposes for the rest of the Internet, SQL
injection is especially problematic.

4. PKCS#10-Tunneled ASN.1 Attacks: Certificate Authorities exposing
a PKCS#10 receiver may be exposing unhardened ASN.1 BER listeners.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 289–303, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

290 D. Kaminsky, M.L. Patterson, and L. Sassaman

ASN.1 BER is tricky to parse, with many possibilities for consistent and
predictably exploitable attack surfaces. The PROTOS project [12] found a
large number of vulnerabilities via the SNMP consumer, but it is possible
that some of the ASN.1 BER parsers found in commercial CA implemen-
tations were not covered in the 2002 PROTOS lockdown and thus are still
vulnerable.

5. Generic SSL Client Authentication Bypass: The MD2 attacks in this
paper may have larger implications in certain deployments. An attacker with
the ability to directly issue certificates — rather than just the ability to
get an arbitrary X.509 Subject Name past a validator — gets access to the
“Client Authentication” EKU (Extended Key Usage) attribute that controls
whether a certificate allows for authenticating a client to a server. Since
Root CAs do not normally issue certificates with “Client Authentication”
set, some systems may not test for what would happen if such a certificate
arrived. This may create a generic authentication bypass in some systems. A
similar bypass may be extended from Stevens and Sotirov’s MD5 collisions,
in situations where the Client Authentication EKU (which is not present in
the root certificate they attacked) is insufficiently validated.

6. EV Hijacking: EV certs were designed to address phishing attacks where a
bank at www.bankoffoo.com is suffering attacks from the owner of
www.bank-of-foo.com or www.bankofoo.com. They were specifically not de-
signed to deal with the case where an attacker has a certificate, even a low
assurance certificate, for www.bankoffoo.com, and the attacker has a DNS
or other route manipulation attack, e.g. DNS cache poisoning [19]. Barth and
Jackson have shown that browsers do not enforce a scripting barrier between
https://www.bankoffoo.com (EV certified) and https://www.bankoffoo.
com (Low Assurance certified). Thus, an attacker need simply proxy enough
of an SSL session to get the main HTML of a page loaded in EV (thus caus-
ing the green bar), then kill the TCP session. After that, the attacker can
host any script from the Low Assurance cert, and that script will inevitably
be merged with the real site with no negative impact on the EV experience.

We will summarize the recent history of attacks against the CA infrastructure;
describe the methodology used to discover the attacks listed above; investigate
these attacks in greater detail; outline a principled approach for remediating
these issues and what steps browser manufacturers, cryptographic API manu-
facturers and certificate authorities need to take; and finally, identify directions
for future work.

2 Background

The SSL protocol [2] is used for encrypting reliable data flows from one endpoint
to another. But encryption without authentication is worthless: one can easily
end up encrypting information with the key of an attacker! SSL manages au-
thentication via certificates — assertions of identity that are cryptographically

PKI Layer Cake: New Collision Attacks 291

signed by mutually trusted third parties known as Certificate Authorities, or
CAs. Verisign is probably the Internet’s most well known CA, but the CA in-
frastructure includes over 200 issuers, all of whom handle edge cases in slightly
different ways [3]. During 2008, the CA system weathered a series of shocks.
Mike Zusman of Intrepidus Research was able to bypass whois validation at
one CA by claiming his desired certificate — for Microsoft’s www.live.com —
was to be used “for internal servers only”. The CA Startcom also discovered a
competing CA that entirely failed to check whether a certificate requester was a
legitimate representative for the domain in question.

Beyond these implementation flaws, Kaminsky [19] exposed the basic design
of CA validation via both whois email and HTTPS-via-IP-in-DNS as faulty
by means of DNS cache poisoning attacks. If DNS is compromised at the CA,
both the email and the HTTPS connection can easily be subverted. While DNS
has been remediated at all known CAs, other route manipulation mechanisms,
such as Pilosov’s BGP attacks [11], create some continuing exposure (though the
BGP stream is small enough, and logged enough, for firms such as Renesys to
know immediately if such an attack took place).

The most widely publicized attack against CAs in some time occurred in De-
cember 2008, with Stevens and Sotirov’s applied work against CAs that still used
MD5 as their hash algorithm for certificate signing. MD5 had been known to be
insecure since at least 1996, with a regular stream of findings against the algo-
rithm, punctuated in particular by the generation of MD5 collisions in 2004 [20]
and the extension of these attacks to chosen prefix attacks in 2007 [14]. Stevens
and Sotirov demonstrated a real-world application of the chosen-prefix attack
by finding a CA, RapidSSL, that used MD5 and generated entirely predictable
certificates (in particular, the Serial Number and Signing/Expiration time fields)
and giving it a PKCS#10 request that forced it to generate a certificate that had
the same MD5 hash as an intermediate certificate they had already generated.
They then transferred RapidSSL’s signature to their intermediate certificate,
creating a forged certificate that could issue certificates for www.bank.com.

Luckily, very few CAs used MD5 at that time, and since then they have
switched to SHA-1. However, the use of SHA-1 does not prevent the attacks we
describe below.

2.1 Current Status of These Vulnerabilities

In this paper, we discuss the vulnerabilities we have discovered as they pertain
to versions of X.509 certificate vendors and browser software in early 2009, prior
to our disclosure of these attacks to the affected parties. Many of the attacks we
describe have been patched or mitigated through our collaboration with vendors,
prior to our public disclosure in August 2009. In particular, the Verisign MD2
root certificate has been superseded in Internet Explorer, Mozilla, Chrome, An-
droid, Safari, Opera, and NSS; Postfix has remediated the early null termination
issue; and Microsoft’s CryptoAPI has remediated early null termination and the
integer-overflow inefficient encoding issue.

292 D. Kaminsky, M.L. Patterson, and L. Sassaman

However, due to the issue of legacy code persisting long after security updates
have become available, the potential for attacks executed using malicious X.509
certificates issued prior to the discovery of these flaws, and the impossibility
of evaluating every X.509 infrastructure in use (especially those used internally
to organizations whose CAs are not exposed to the greater Internet), these at-
tacks remain relevant today. We refer the reader to the individual vendors for
comprehensive attack resistance information.

3 Methodology

Although ASN.1 is a well-established standard, not all ASN.1 parsers are created
equal. It is a complicated format, requiring a context-sensitive parser. Context-
free grammars can easily be converted to parsers using a parser generator such
as yacc or bison, but generating a context-sensitive parser is difficult in main-
stream (i.e., strictly evaluated) languages [8]. Moreover, the ASN.1 specification
is not written in a fashion conducive to implementing an ASN.1 parser with a
parser generator. Thus, in practice, the ASN.1 parsers that X.509 implementa-
tions rely on are handwritten, and the likelihood that the parse trees generated1

by two separate implementations will vary (in other words, that they implement
slightly different grammars) is high. The context-free equivalence problem —
“given two CFGs, F and G, determine whether L(F) = L(G)” — is known to
be undecidable, and thus the context-sensitive equivalence problem is as well.

Therefore, since there can be no guarantee that two ASN.1 parsers that were
not generated from a CSG specification actually parse the exact same language,
we examined subtle differences in the ways that different ASN.1 parsers handle
X.509 certificates. We also deliberately focused on unusual representations of
key components of an X.509 certificate, such as OIDs and Common Names:
if one implementation can be tricked into misinterpreting a sequence, S, as a
desired sequence, S′, we can get a CA using an implementation which does not
misinterpret S to sign a certificate containing S, and any browser using the first
implementation will treat the certificate as a valid, signed certificate containing
S′. All of our Subject Name confusion attacks rely on this strategy, and until
ASN.1 implementations can agree on a consistent, well-defined grammar from
which to generate their parsers, it is certain that similar attacks will emerge.

4 Attacks

4.1 MD2RSA Signature Transfer

As late as 1998, Verisign was still issuing certificates using a predecessor of
MD5, the MD2 algorithm [3]. Historically, in the choice between MD2, MD4,
and MD5, MD2 offered the highest security level at the expense of speed [6].

1 This is a simplification; most ASN.1 parsers do not explicitly generate parse trees
that can be recovered, but mathematically a tree structure exists.

PKI Layer Cake: New Collision Attacks 293

However, ten years after RFC 2313 advocated MD2, a 273 preimage attack was
published [18]. Although 273 is well outside the bounds of trivial computation,
given that the previous attack was on the order of 297 [9], this can be considered
one mathematical advance away from a distributed-computation work effort.

Given that MD2RSA has not been used to sign certificates for over a decade, it
is reasonable to ask whether it would matter if MD2 fell. Unfortunately, the an-
swer is yes. Verisign’s primary root certificate — which is trusted by all browsers,
and required to validate certificates from sites such as https://www.amazon.com
— is signed with MD2RSA. Anything that this certificate signs is fully trusted.
However, signatures are only valid across hashes, and Verisign has signed its
own root certificate’s MD2 hash. Thus, if we can generate an intermediate CA
certificate with the same MD2 hash as Verisign’s root, we can transfer the RSA
signature from the root to the intermediate, and the signature will still be valid.
Like Stevens and Sotirov, this attack transfers a signature from a legitimate cer-
tificate to a forged one, using the preimage to keep the signature valid. However,
this attack can be performed entirely offline: there is no need to trick a CA server
into signing something it ought not to.

As of August 2009, Verisign has reissued its root certificate using SHA-1 as
the signature hash. The MD2-signed certificate cannot be revoked, but as the
new certificate replaces the old one in shipped browsers, the number of browsers
still using the MD2 certificate will dwindle, rendering this attack obsolete. We
informed Verisign of our discovery early in our work, and their SHA-1 reissue
was a direct response to this.

4.2 Subject Name Confusion

Acquiring a certificate involves submitting a public key and a claimed identity
to a certification authority, generally via an ASN.1 BER-encoded PKCS#10
request2 submitted through a web form. RFC 2986 describes the full schema of
PKCS#10 requests; however, due to the nature of ASN.1, the encoding reflects
as little of the schema as possible, instead trusting that a decoder will have the
schema compiled into it.

We focus on the Subject X.509 Name because it is at the heart of the trust
model in certificates. An X.509 Name is an ASN.1 Sequence of Sets of Se-
quences of OID/String pairs. These pairs can represent many descriptors, in-
cluding Country, Organization, and Organizational Unit, but in the context of
web browsers, the only name that matters is the Common Name, since the
name of the website being secured is compared against the Common Name. The
Common Name is thus the one element that a CA must validate correctly, or

2 In an ideal world, the ASN.1-based protocols mentioned in this paper would use
DER rather than BER. Unfortunately, thanks to Postel’s robustness principle —
“be conservative in what you send, be liberal in what you accept” — real-world
encoders are willing to accept loosely-encoded BER bytestreams when called upon
to parse. As we shall see, this practice paves the way for subtle variations between
what different CAs will accept, and therein lies substantial danger.

294 D. Kaminsky, M.L. Patterson, and L. Sassaman

else it will issue a certificate granting rights for names that the user does not
legitimately represent.

There are thus two classes of consumer for the same sequence of bytes: CAs
and browsers. If a CA and a browser parse the same sequence differently, a
CA may grant rights incorrectly, or a browser may misinterpret what entity a
certificate represents. We now examine several real-world cases of this problem.

Multiple Common Names in one X.509 Name are handled differently
by different APIs. Consider an X.509 Name where 2.5.4.3 is an OID paired
with a String, and this pair constitutes a Sequence (embedded in a Set) rep-
resenting the Common Name. If the Name contains more than one Common
Name Sequence, and each Sequence has the OID 2.5.4.3, which one will be in-
terpreted as the Common Name? Unfortunately, this behavior turns out to be
implementation-dependent. We identified four possible policies:

1. First: The Sets comprising the Name are scanned for Sequences with an OID
of 2.5.4.3. The first one that qualifies returns the associated String.

2. All-Inclusive: Each Sequence that matches the OID has its associated String
added to a list, which is returned to the caller.

3. Last: The Sets of the Sequence are scanned, and whenever a Sequence is
found that matches the desired OID, the planned response is updated to
contain only the associated String. The last Sequence to match has its String
returned.

4. Subject: No filtering is done. The entire X.509 subject is returned, either
as a string or as a list, and the caller must extract the CNs in which it is
interested. In other words, this is a client-side policy.

OpenSSL’s command-line tools use the Subject policy, and require callers to
implement text parsers, which must themselves implement one of the above
policies. The OpenSSL API provides functions which can be used to extract
Common Names; in a few lines of code, one can retrieve a list and iterate through
it. However, we discovered that many open-source projects only retrieve the first
matching CN — in fact, we could find no examples of open-source projects that
process this list properly [17,1,21,16,10].

We next consider browsers. Internet Explorer, which uses Microsoft’s Cryp-
toAPI, follows the All-Inclusive policy: if any CN in the X.509 Subject Name
matches the domain being browsed, then IE assumes that that CN has been
validated by the issuing CA. This technically allows an attacker to shoehorn as
many CNs into a Subject Name as he wants — the specification never mentions
a limit — though in practice CAs limit the size of certificates they will generate.
Still, this allows for a degree of parallelization in attack generation against IE.

NSS, the cryptographic library behind Mozilla Firefox, respects only the last
CN in the Subject Name. This would limit an attacker to one malicious name
per certificate — except that the name may be a wildcard, which NSS does not
restrict against. As such, one successful breach against one CA will allow SSL
bypass against all names under Firefox.

PKI Layer Cake: New Collision Attacks 295

Inefficient BER encodings of OIDs can lead to some APIs recognizing
the OID of Common Names. Validating the X.509 Subject Name in a cer-
tificate request against the (somehow) validated identity of the user requesting a
certificate is the task of the CA. In practice, we found that validation is limited to
the Common Name; all other fields, e.g., Country, Organization Name, etc., are
ignored. This leads to an even more hazardous source of disagreement between
a browser and a CA: what happens when they disagree on what constitutes a
Common Name in the first place?

As we know, a CN is an ASN.1 BER Sequence consisting of the OID 2.5.4.3
followed by a String containing the name of the website being authorized. How-
ever, BER’s flexibility with respect to byte-level encoding means that more than
one possible encoding can be interpreted as 2.5.4.3, whether that behavior is
desired or not. We have identified two ambiguities in the ASN.1 Basic Encoding
Rules which can lead to this condition.

Leading-Zero Padding. An OID is not encoded using the textual representation
of its digits and ‘.’ separating nodes; rather, the encoding uses base-128. Extra
0x80 bytes can be introduced to add leading zeroes to a node, e.g. 2.5.4.0003.
OpenSSL’s OID resolver catches leading-zero padding — it does not interpret
2.5.4.03 and the like as the Common Name OID — but its textual representa-
tion of 2.5.4.03 is 2.5.4.3. Any implementation which mistakenly operates on this
representation instead of the parsed OID is in for a nasty surprise. Worse, how-
ever, is CryptoAPI, whose OID parser happily strips off leading-zero padding,
interprets 2.5.4.{0}∗3 as 2.5.4.3, and resolves it to Common Name. Assuming
the CA passes 2.5.4.3 (the textual form) into the final certificate as yet another
unrecognized element of the X.509 Subject Name, IE will allow an attacker full
access to any name he wants.

Integer Overflow. Since an OID is encoded as a base-128 integer, which is then
converted to a native form, an ASN.1 parser which fails to take into account the
fact that these integers are unbounded may fall victim to integer-overflow at-
tacks. This is as simple as passing 2.5.4.18446744073709551619 as an OID, since
18446744073709551619 = 264 +3. OpenSSL wisely uses a bignum library, and is
not susceptible, but until recently, CryptoAPI expected integers to be no larger
than a 64-bit unsigned long, and mistakenly recognized anything congruent to
n in a field modulo 264 as n. Thus, IE was easily tricked into accepting anything
as a CN, simply by passing an OID that overflows.

Early null terminators in an X.509 Name can cause some APIs to rec-
ognize different Common Name values. 3 Having explored the semantics
of the CN field itself and how OIDs are recognized, we now turn to the parsing
of the CN string. Since ASN.1 BER encodes its strings “Pascal-style”, with an
explicit length field, rather than “C-style”, with a string ending at the first 0x00
value, a string with one or more null values is still valid BER as long as its
length field is correct. Two problems arise from this: first, an incorrect length

3 This attack was independently and simultaneously discovered by Moxie Marlinspike,
who presented it at Black Hat 2009 the same day that we did.

296 D. Kaminsky, M.L. Patterson, and L. Sassaman

field can force reading or writing of data outside the blob being parsed, and sec-
ond, once the binary data has been resolved to a string, C-style interpretation
can cause unexpected behavior.

Consider an X.509 SN containing CN=www.bank.com[NULL].badguy.com.
OpenSSL parses this as CN=www.bank.com\x00.badguy.com. Perl’s
Crypt::OpenSSL::X509 module goes even further, eliding the null to read
CN=www.bank.com.badguy.com. And OpenSSL’s own
X509 NAME get text by NID function terminates on the null. However, be-
fore we get ahead of ourselves, what do the CAs attempt to validate?

Validation typically occurs either by checking the whois for the domain in
question or by attempting to retrieve a selected file from the server identified
by DNS. In both cases, with our example, the CA is being asked to validate a
strangely named server under badguy.com. The technical contact listed in the
whois for badguy.com will presumably approve any request sent by the CA. But
what if a DNS query is actually issued for www.bank.com\x00.badguy.com? If
the client resolver strips the slash, the query becomes a lookup for
www.bank.comx00.badguy.com, which the attacker simply hosts. If the DNS
query contains a null byte, it will likely be rejected by the nameserver, since
null is an invalid character in DNS. If the slash is not stripped, the query
propagates to the attacker, who can then reply with an IP address.

Unfortunately, neither Firefox nor IE handle nulls in the CN either; both
interpret our malicious example above as CN=www.bank.com.

OpenSSL’s mechanisms for emitting X.509 Subject Names are vul-
nerable to injection attacks. Although OpenSSL provides many scriptable
command-line operations which can automate many aspects of PKI, it cannot
automate the process of validating an identity. However, it can and does emit
the X.509 Subject Name at various places from the command line, specifically to
make it possible to audit the name as necessary. The CA need only write code to
parse the text from OpenSSL’s command line, rather than linking to OpenSSL’s
function calls or having to implement its own ASN.1 parser. While this approach
is much easier, it does beg the question: Will the X.509 Subject Name parsed
by the CA’s text parser, after OpenSSL has munged it through its text filters,
match the X.509 Subject Name ultimately contained with the PKCS#10 re-
quest, embedded within the generated X.509 Certificate, and delivered to the
user’s browser for validation?

If OpenSSL’s default “compat” mode is used to emit X.509 Subject Names,
not necessarily. (Three other modes, not enabled by default, are safe against the
following attack.)

There are three points at which output from OpenSSL’s command line inter-
face might be parsed by a CA, looking to validate an X.509 Subject Name before
certificate delivery to a client. The first, and easiest, is while signing a PKCS#10
Certificate Request, as the CN is emitted in a line that begins with “subject=”.
The client could also dump the PKCS#10 request to text and parse that. Or,
the CA might sign the certificate no matter what, but suppress returning it to

PKI Layer Cake: New Collision Attacks 297

the user unless it is successfully validated. In this case, the generated certificate
can be dumped and the Subject Name extracted.

In all three cases, however, the CA is parsing ASCII characters, rather than
the actual ASN.1 tree the browser will ultimately validate. What the CA knows
of that structure, it extracts from the ASCII, by splitting on the presence of
commas, slashes, and other so-called “escape characters” in the text. But what
if the value of one of the non-validated elements in the X.509 Subject Name
— OrganizationName (O), perhaps — itself contained escape characters? This
constitutes yet another form of injection attack, directly akin to SQL injection
(causing a variable in a SQL query to appear to be something more) or cross-
site scripting (causing a variable in an HTML page to appear to be something
more).

And, indeed, using an organizationName of Badguy Inc/
CN=www.badguy.com with an actual CN of www.bank.com results in a situa-
tion where the request and generated certificate appear, to a simple regular-
expression match on the emitted ASCII, to have multiple CNs, with the first
being www.badguy.com — and no way to tell that the actual CN, as denoted by
OID, is www.bank.com. The CA’s business logic is the only line of defense, and
as we have noted, many CAs do not employ manual review.

Textual CN injection is, however, probably the simplest of all the vulnerabil-
ities listed in this paper to ameliorate. OpenSSL’s nameopt command-line flag
prepends fields with their field names, which disambiguates the situation for
both human readers and scripts. This option should be used in any automated
CA system which relies on the OpenSSL command line.

A non-exploitable flaw exists in all of the filtering modes for OpenSSL <
0.9.8a, when a two– or four–byte–wide character set is filtered. The flaw is in
the do buf handler in A strex.c, and involves the assumption that ASN.1 strings
that contain 2– or 4–byte characters will be a multiple of 2 or 4 bytes. This is
true for legitimate strings, but we can craft malicious ones for which it is not
true; providing the handler with a string that thwarts its assumption causes the
handler to fail. However, the pointer that OpenSSL uses to keep track of its
place in the string is never actually written to; thus, what in any other codebase
might be a trivial exploit merely becomes a denial of service.

4.3 PKCS#10-Tunneled SQL Injection

As mentioned earlier, ASN.1 allows many string types, with BMPString (UTF-
16, supposedly minus certain characters) and UTF8String being the most flexi-
ble, but UniversalString is also worthy of analysis. This is a problem of insecurity
through obscurity: since these encodings are rather abstruse, strings which use
them may be injected into backend CA databases without sufficient validation.
Unicode-based database injection attacks also come into play here. SQL injec-
tion into a CA’s database backend would be distinctly problematic, due to the
special trust this particular data store has to the rest of the Internet.

298 D. Kaminsky, M.L. Patterson, and L. Sassaman

4.4 PKCS#10-Tunneled ASN.1 Attacks

ASN.1 BER is tricky to parse, with many, many possibilities for consistent and
predictably exploitable attack surfaces. The PROTOS project found a large
number of vulnerabilities, via the SNMP consumer, but it is possible that some
of the ASN.1 BER parsers found in commercial CA implementations were not
covered in the 2002 PROTOS lockdown and thus are still vulnerable.

4.5 SSL Client Authentication Bypass

Many of the attacks in this paper have centered on vagaries with X.509 Subject
Name validation. Bypassing the checks yields a certificate for somebody else’s
name. But what does it mean to have a certificate? For what purposes can it
be used? In practice, most X.509 implementations support checking of a field
called “Extended Key Usage”, or EKU. EKUs come from two different sources.
First, an EKU can show up in a leaf node as an explicit X.509 extension. In this
context, a CA asserts the trustworthiness of a certificate. Second, an EKU can
be applied out of band to a CA’s root certificate, when the CA’s root certificate
is added to the browser’s trust store. In this context, the browser manufacturer
is limiting the trust semantics that a particular CA is allowed to express.

The most commonly used EKU is “Server Authentication”, which states that
a certificate may be used to validate a server to a client. But there are others,
as we see specifically in the MD2 certificate we discussed transferring the self-
signature: specifically, we are more interested in Client Authentication.

Most web sites use SSL certificates to authenticate the server to the client,
followed by passwords to authenticate the client to the server. It is possible to use
certificates to authenticate the client to the server as well, but this has a signifi-
cant deployment and usability cost and is avoided by all but the most security-
sensitive implementations. For these implementations, the user goes through the
same CA experience as the server — except the X.509 Subject Name refers to
him, not a website. A certificate-bearing SSL client, after authenticating the
server, can then present his own certificate. If the certificate validates on the
server — meaning that it chains back to a root trusted for Client Authentica-
tion — then some mapping will occur between the X.509 Subject Name and the
application’s own user database, and the user will be logged in.

These systems can fail in several major ways. First, one of the root certificates,
used by the server to identify the client, might have its certificate compromised.
For example, the MD2 attack discussed earlier would yield access to a VeriSign
root cert with the Client Authentication EKU set in most trust stores. In the
real world circa 2009, most systems are not intended to accept Client Authen-
tication as asserted by a public CA. Instead, private CAs issue certificates to
internal X.509 Subject Names, and those certs are accepted by servers in the
infrastructure. However, this was not how SSL or X.509 was supposed to work.
What was supposed to happen was that every user of the Internet would acquire
strong cryptographic credentials from global CAs, which could be presented on
demand in lieu of passwords. Through this path, a user at Microsoft could log

PKI Layer Cake: New Collision Attacks 299

into a server at Yahoo, and neither Microsoft nor Yahoo would have to interact
with each other’s private CAs. To this day, there are systems that accept not
only certificates from their own private CA, but any CA in their certificate store
with the Client Authentication EKU. They even broadcast their list of accepted
CAs, as part of the SSL client certificate exchange.

Thus, if we compromise this VeriSign cert, we may end up with an authen-
tication bypass for some systems. (Since SSL client certificate use is generally
limited to extremely secure systems, this is of particular concern, since the lim-
ited exposure to the vulnerability is in exactly the most sensitive systems.) There
is solid evidence that this bug is exposed in the field, as per a quirk of SSL. The
SSL protocol, in order to support client authentication, will not simply accept
whatever client certificate a client intends to transmit. It instead provides exten-
sive hints — on Windows, by emitting the list of all root certificate X.509 Issuer
Names that have the “Client Authentication” bit set in the trust store. This
CTL, or Certificate Trust List, appears to be extensive, as per the “global PKI”
model that was originally hoped for. However, the server set up as described at
[13] to allow one private key to enter, actually allows by default may CAs to
express arbitrary X.509 Subject Names and thus gain access to the server.

Theoretically, Stevens and Sotirov, in their 2008 attack against MD5, were
not actually capable of similar damage; the root certificate they compromised
did not have the Client Authentication root set on it. Supposedly, this should
mean that any certificate signed by Stevens and Sotirov’s intermediate certificate
should be unable to operate as a client certificate. In practice, actual behavior
is subject to implementation quirks. The actual certificate they signed includes
an EKU of “Digital Signature, Non-Repudiation, Certificate Sign, CRL Sign”.
As per specification, this should not matter, as in-band EKU’s are only sup-
posed to be respected on leaf certificates that authenticate a given node, not on
intermediates. What actually happens is murkier.

In order to prevent their malicious certificate from being respected, Stevens
and Sotirov set the expiration date on their cert to late 2004. While this worked
for many browsers, they found applications (a chat client, in their case) that did
not realize it was important to check the expiration date. For these applications,
their false intermediate worked perfectly. EKUs are an even more obscure part
of the X.509 system. It is likely there are systems that ignore them too.

4.6 EV Hijacking

One of the more pernicious problems the web faces is the rise of phishing attacks.
Put simply, which is the real Bank of America? Is it www.bankofamerica.com?
www.bofa.com? www.bofabank.com? www.bank-of-america.com? Banks, in the
real world, use physical trappings of wealth and police authority to regulate the
abuse of their brand. Regulating the international DNS upon which the web
is built is a much trickier problem. To deal with this pressing issue — widely
exploited by phishers impersonating major banking establishments — Extended
Validation certificates were developed. It was intended that EV certificates would
simply not be issued without a thorough, manual validation of the IP behind the

300 D. Kaminsky, M.L. Patterson, and L. Sassaman

claimed name. In return, the browser UI would be updated to herald the fully
validated identity of the brand. Thus, even an attacker who could legitimately
obtain a certificate for https://www.bank-of-america.com (since he was the
owner, as per DNS), would not be able to emit the same trustworthy user inter-
face, and his phishing attack would be foiled. This is what EV was designed to
do, and it succeeds reasonably well.

When Stevens and Sotirov presented their research on using MD5 to generate
certificate collisions, they admitted that the EV program was not vulnerable to
their attacks. As they pointed out, Extended Validation certificates must, at all
points in their validation chain, avoid MD5. Since Stevens and Sotirov were only
able to generate attacks against certificate signatures executed with MD5 —
and since their attack depended on automatic issuance of certificates, something
that EV is specifically designed to avoid — they were technically correct in their
assertion. The intermediate certificate they generated could not actually expose
the correct bits to force the address bar green for an arbitrary domain.

However, EV was never actually designed to stop their attack, or any of the
attacks described throughout this paper. The threat being mitigated was the $12
registration of www.bank-of-america.com combined with the $20 certificate,
not the comparatively exotic MD5 or ASN.1 collision attack combined with the
once-obscure DNS cache poisoning attack. EV offers no such defense. As Adam
Barth and Collin Jackson wrote in “Beware of Finer Grained Origins”:

The browser’s scripting policy does not distinguish between HTTPS con-
nections that use an Extended Validation (EV) certificate from those
that use non-EV certificates. For example, PayPal serves
https://www.paypal.com/ using an EV certificate, but a principal who
has a non-EV certificate for www.paypal.com can inject script into the
PayPal login page without disrupting the browser’s Extended Validation
security indicators.

An attacker who can synthesize a DV certificate for www.bank.com and DNS
cache poison www.bank.com can act as a man in the middle, using port for-
warding to negotiate EV certification with the actual server while allowing the
attacker to both read the traffic flowing between a user and www.bank.com and to
inject arbitrary data into that stream. This will work on effectively all browsers
that have implemented EV SSL. It is difficult to impossible to imagine a defense
that would not involve breaking the limited number of EV sites out there. EV
was designed to stop phishing attacks, not failure of DV certificates.

5 Remediation

5.1 Immediate Steps

The following table summarizes immediate steps which browser manufacturers,
cryptographic API maintainers, and certificate authorities should take to address
the issues we have raised:

PKI Layer Cake: New Collision Attacks 301

Browser
Manufacturers

Cryptographic API
Manufacturers

Certificate
Authorities

MD2RSA Possibly, to support
Cryptographic API
changes

Yes, to change vali-
dation rules

Yes, to agree to res-
olution plan

Multiple Common
Names

Possibly, to deter-
mine policy and
measure exposure

Yes Possibly, to deter-
mine policy and
measure exposure

Inefficient ASN.1
bypass

Possibly, to deter-
mine policy and
measure exposure

Yes Possibly, to deter-
mine policy and
measure exposure

Null terminator by-
pass

Possibly, to deter-
mine policy and
measure exposure

Yes Possibly, to deter-
mine policy and
measure exposure

OpenSSL “com-
pat” bypass

No Yes, definitely for
SSL, possibly for
others

Yes, to determine if
commercial CA im-
plementations have
similar string pars-
ing layers

PKCS#10 SQL in-
jection

No Possibly, to add
support for filtering
at the API layer

Yes

PKCS#10 ASN.1
exploitation

No for the major
browsers, since pre-
sumably they’ve al-
ready had to lock
down their ASN.1
engine

Possibly, to
make sure that
PKCS#10 is being
parsed with a post-
PROTOS hardened
library

Possibly, to
make sure that
PKCS#10 is being
parsed with a post-
PROTOS hardened
library

Client certificate
bypass

No Yes, to control the
list of certificates
that a web server
will insert into the
CTL

No

EV bypass Yes, to manage
PR/understanding
around the purpose
of EV

No Possibly, to man-
age PR, and to
perhaps create a
“blacklist” of EV
certified names for
which CAs will not
issue a certificate

5.2 EV Remediation

Although the EV attack we describe is particularly pernicious, there are two
defenses that might be worth considering. A “httpev://” scheme could be de-
veloped, which would force content to only be loaded from an EV certificate.

302 D. Kaminsky, M.L. Patterson, and L. Sassaman

However, this would require modifications at the crypto layer to support a new
X.509 element, declaring that a certificate could only emit the “green bar” pos-
itive feedback experience when the httpev://method was used. Otherwise, an
attacker could simply use Moxie Marlinspike’s method of forwarding a user from
http:// to https:// instead of httpev:// and acquire 99% of the positive
feedback while still being able to use his compromised DV certificate [7].

Another defense that might be interesting to explore would be a blacklist of
names that, once issued via EV, should never be issued via DV. This paper
describes many ways around the CA system. It might be interesting to have an
emergency check, just for EV, before a certificate is sent to a user that might
have the same X.509 Subject Name as an issued EV certificate.

6 Future Work

We continue to investigate certificate chain validation. It has not gone unnoticed
that X.509, which was supposed to be a fully delegatable system, never actually
found a safe way to delegate signing authority across chunks of DNS namespace.
However, we believe we can still attack chain validation. There are multiple ways
to find an issuer in X.509, and we have ways of creating valid certificates with
near-arbitrary subject names. If we can find a validation path that confuses
our certificate (which we do have the key for, but does not have any special
capabilities) with another certificate (which we do not have the key for, but does
have special capabilities) due to them sharing the exact same X.509 Subject
Name, then we believe we can generate fully Root CA equivalent certificates
without the still-temporarily-impractical MD2 attacks.

Another area we are investigating are the three Issuer paths: Authority In-
formation Access, Authority Key Identifier, and the actual X.509 Issuer Name.
Any and all of these can be used to generate collisions.

The wide array of string and length encodings available in ASN.1 also provides
a rich attack surface. We suspect that it is possible to cause two encoders to read
two entirely different ASN.1 trees by cleverly manipulating length fields, but have
not yet developed a proof of concept.

Finally, there may be interesting attacks down the path of Internationalized
Domain Names. For the most part, IDNs are blocked at major CAs due to the
homograph attacks of Eric Johanson and the Shmoo Group in 2005 [5]. However,
Moxie Marlinspike showed in early 2009 that wildcards in certificates allow IDN
characters to pass validation [7]. We must consider new attacks down this path,
particularly with alternate representations that may collapse back to wildcards.

References

1. Open1x IEEE 802.1x open source implementation,
http://open1x.sourceforge.net/

2. Dierks, T., Rescorla, E.: The transport layer security (tls) protocol (August 2008),
http://tools.ietf.org/html/rfc5246

http://open1x.sourceforge.net/
http://tools.ietf.org/html/rfc5246

PKI Layer Cake: New Collision Attacks 303

3. Gutmann, P.: X.509 style guide (October 2000),
http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt

4. Jackson, C., Barth, A.: Beware of finer-grained origins. In: Web 2.0 Security and
Privacy, W2SP 2008 (2008)

5. Johanson, E.: The state of homograph attacks (2005),
http://www.shmoo.com/idn/homograph.txt

6. Kaliski, B.: Pkcs #1: Rsa encryption (March 1998),
http://tools.ietf.org/html/rfc2313

7. Marlinspike, M.: New tricks for defeating ssl in practice (July 2009),
http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/

BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf

8. Marlow, S.: Happy user guide (2001),
http://www.haskell.org/happy/doc/html/sec-AttributeGrammar.html

9. Muller, F.: The md2 hash function is not one-way. In: Lee, P.J. (ed.) ASIACRYPT
2004. LNCS, vol. 3329, pp. 214–229. Springer, Heidelberg (2004)

10. neon HTTP and WebDAV client library, http://www.webdav.org/neon/
11. Pilosov, A., Kapela, T.: Stealing the internet: An internet-scale man-in-the-middle

attack. In: DEFCON, vol. 16 (August 2008)
12. Rning, J., Laakso, M., Takanen, A., Kaksonen, R.: Protos - systematic approach

to eliminate software vulnerabilities (2002)
13. Singh, S.: Certificate trust list not being honored by iis 5.0/6.0/7.0 (December

2007),
http://blogs.msdn.com/saurabh singh/archive/2007/12/07/

certificate-trust-list-not-being-honored-by-iis-5-0-6-0-7-0.aspx

14. Stevens, M., Lenstra, A., Weger, B.: Chosen-prefix collisions for md5 and colliding
x.509 certificates for different identities. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007)

15. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A., de
Weger, B.: Short chosen-prefix collisions for md5 and the creation of a rogue ca
certificate. In: Cryptology ePrint Archive, Report 2009/111 (2009),
http://eprint.iacr.org/

16. Bacula the open source network backup software solution,
http://www.bacula.org/en/

17. Claws Mail: the user-friendly lightweight and fast email client,
http://www.claws-mail.org/

18. Thomsen, S.S.: An improved preimage attack on md2. In: Cryptology ePrint
Archive, Report 2008/089 (2008), http://eprint.iacr.org/

19. US-CERT. Vulnerability note vu#800113: Multiple dns implementations vul-
nerable to cache poisoning. US-CERT Vulnerability Notes Database (2008),
http://www.kb.cert.org/vuls/id/800113

20. Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for hash functions md4, md5, haval-
128 and ripemd. In: Cryptology ePrint Archive, Report 2004/199 (2004),
http://eprint.iacr.org/

21. GNU Wget, http://www.gnu.org/software/wget/

http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt
http://www.shmoo.com/idn/homograph.txt
http://tools.ietf.org/html/rfc2313
http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
http://www.haskell.org/happy/doc/html/sec-AttributeGrammar.html
http://www.webdav.org/neon/
http://blogs.msdn.com/saurabh_singh/archive/2007/12/07/certificate-trust-list-not-being-honored-by-iis-5-0-6-0-7-0.aspx
http://blogs.msdn.com/saurabh_singh/archive/2007/12/07/certificate-trust-list-not-being-honored-by-iis-5-0-6-0-7-0.aspx
http://eprint.iacr.org/
http://www.bacula.org/en/
http://www.claws-mail.org/
http://eprint.iacr.org/
http://www.kb.cert.org/vuls/id/800113
http://eprint.iacr.org/
http://www.gnu.org/software/wget/

Three-Round Abuse-Free Optimistic Contract
Signing with Everlasting Secrecy

(Extended Abstract)

Xiaofeng Chen1, Fangguo Zhang2, Haibo Tian2, Qianhong Wu3,4,
Yi Mu5, Jangseong Kim6, and Kwangjo Kim6

1 Key Laboratory of Computer Networks and Information Security,
Ministry of Education, Xidian University, P.R. China

2 School of Information Science and Technology, Sun Yat-sen University, P.R. China
3 Department of Computer Engineering and Mathematics,

UNESCO Chair in Data Privacy, Universitat Rovira i Virgili, Catalonia
4 Key Laboratory of Aerospace Information Security and Trusted Computing,

Ministry of Education, Wuhan University, P.R. China
5 School of Computer Science and Software Engineering,

University of Wollongong, Australia
6 Department of Computer Science, Kaist, Korea

Abstract. We introduce the novel notion of Verifiable Encryption of
Chameleon Signatures (VECS), and then use it to design a three-round
abuse-free optimistic contract signing protocol.

Keywords: Verifiable encryption, Chameleon signatures, Contract
signing.

1 Introduction

Contract signing is an important part of business transactions. Fairness is a basic
requirement for contract signing. However, most of the existing contract signing
protocols only focus on the fairness while ignoring the privacy of the players. We
argue that the privacy of the players is close related to the fairness. For example,
if one player or the trusted third party can reap profits at the expense of the
other player by intentionally releasing some useful information related to the
contract, then the contract signing protocols cannot achieve the true fairness.

Garay et al. [9] first introduced the notion of abuse-free contract signing,
which ensures neither party can prove to others that he is capable of choosing
whether to validate or invalidate the contract in any stage of the protocol. To
illustrate by example, suppose Bob and Carol are two potential competitors who
will sign a contract with Alice. If Alice can convince Carol that Bob would like
to sign a contract m with her, she may obtain a better contract m′ from Carol.
In this sense, a contract signing protocol without the property of abuse-free can-
not ensure the fairness for both parties. However, it seems that all the efficient

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 304–311, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

Three-Round Abuse-Free Optimistic Contract Signing 305

contract signing [1,2,4,7] based on the state-of-the-art technique of verifiable en-
cryption of digital signatures (VEDS) are not abuse-free since VEDS is universal
verifiable.

On the other hand, we should consider the misbehavior of the trusted third
party in contract signing protocols. Although the third party is (by definition)
trusted, it is difficult to find a fully trusted third party in the internet. Asokan et
al. [3] and Garay et al. [9] introduced the property of accountability in contract
signing, i.e., it can be detected and proven if the third party misbehaved. How-
ever, all of the existing contract signing protocols do not consider the following
misbehavior of the third party: if the third party can know all the information
related a contract such as the contract content and the corresponding signatures
of two parties, he may sell this associated commercial secret to an interested
party. In this sense, it is unfair for both parties, though the contract signing
protocol is fair as defined.

In this paper, we first introduce a novel notion named Verifiable Encryption of
Chameleon Signatures (VECS), which can be referred to as a special instance of
VEDS. Meanwhile, we use this notion to design an efficient optimistic contract
signing protocol, which enjoys the properties of completeness, fairness, abuse-
freeness, accountability, and invisibility of the third party. The distinguishing
property of our signing protocol is the everlasting secrecy about the contract
against the third party. That is, the third party cannot know any useful infor-
mation of the contract in any stage of the protocol, which prevents him from
illegally selling the commercial secret to any interested party. Moreover, our ex-
change protocol is only three-pass in the normal situation and thus much efficient
for practical use.

2 Verifiable Encryption of Chameleon Signatures

2.1 Formal Definition

Definition 1. (Verifiable Encryption of Chameleon Signatures) A secure VECS
scheme consists of a five tuple (PG,KG,SG,VE ,SR).

– System Parameters Generation PG: An efficient probabilistic algorithm
that, on input a security parameter k, outputs the system parameters SP .

– Key Generation KG : An efficient algorithm that, on input the system
parameters SP , outputs a secret/public key pair (sk, pk) for each user.

– Signature Generation SG: An efficient probabilistic algorithm that, on
input a label L, the public key pkV of the verifier V , the secret key skP of
the prover P , a message m, and an auxiliary random element r, outputs a
signature σ on the chameleon hash value h = Hash(L, m, r, pkV).

– Verifiable Encryption VE: A non-interactive protocol between the prover
P and the verifier V . Let (E, D) be the encryption/decryption algorithm as
well as the public/secret key of a secure public key encryption system. Let
VP (E, σ, r) denote the output of V when interacting with P on input (E, σ, r).

306 X. Chen et al.

– Signature Recovery SR: An efficient deterministic algorithm that, on
input the decryption algorithm D and the ciphertext VP (E, σ, r), outputs a
chameleon signature (σ, r) on message m with respect to the public key pkV .

2.2 A Concrete Construction from RSA Signatures

Ateniese has proposed various efficient VEDS schemes [4]. Since a chameleon sig-
nature scheme is a general construction, it can naturally be used in the Ateniese’s
VEDS schemes, which results in various VECS schemes. Note that we should use
the key-exposure-freeness chameleon signature schemes [5,6,8] in order to avoid
the key exposure problem of chameleon hashing.

There are three parties, a prover P , a verifier V , and a trusted third party T
in our scheme.

– System Parameters Generation PG: Let t and k be security parameters.
For i = 1, 2, define ni = piqi with the two safe primes pi = 2p′i + 1 and
qi = 2q′i + 1 in the set {2k−1, · · · , 2k − 1}, where p′i, q

′
i are primes. Let

H1 : {0, 1}∗ → {0, · · · , 22k − 1} and H2 : {0, 1}∗ → {0, · · · , 2τ} and H3 :
{0, 1}∗ → Zn1 be three collision-resistant hash functions.

– Key Generation KG: For i = 1, 2, choose a random prime integer ei > 2t

which is relatively prime to φ(ni) = (pi − 1)(qi − 1), and compute di such
that eidi = 1 mod p′iq

′
i. The public key of P is (n1, e1) and his secret key is

(p1, q1, d1). The public key of V is (n2, e2) and his secret key is (p2, q2, d2).
T randomly chooses an element g̃ ∈ Zn1 and computes g = g̃2 mod n1. The
public key of T is (g, y = gx mod n1) and his secret key is x.

– Signature Generation SG: Let L be a label, define J = H1(L). To sign
a message m, P chooses a random integer u ∈R Z∗

n2
and computes the

chameleon hash value M = JH2(m)ue2 mod n2. He then computes the sig-
nature σ = H3(M)d1 mod n1 on message M .

– Verifiable Encryption VE: P and V perform the following protocol:
1. P computes C1 = (m||u)2e2 mod n2, where || denotes concatenation.
2. P randomly chooses an integer r and encrypts the chameleon signature

σ via the ElGamal encryption scheme with T ’s public key y. That is,
P computes C2 = (K1, K2, c, s), where K1 = σ2yr mod n1, K2 = gr

mod n1, c = H3(M ||ye1r||gr||ye1 ||g||(ye1)t||gt), and s = t − cr.
3. P sends the ciphertext (C1, C2) to V .

V firstly decrypts C1 to obtain the pair (m, u), and then computes M =
JH2(m)ue2 mod n2, W = Ke1

1 H3(M)−2 mod n1, and

c′ = H3(M ||W ||K2||ye1 ||g||(ye1)sW c||gsKc
2).

If c′ = c, V accepts the fact that C2 is a valid T -verifiable encryption of P ’s
chameleon signature on message m.

– Signature Recovery SR: In case of dispute, T can compute σ2 = K1/Kx
2

mod n1 and then get σ.

Three-Round Abuse-Free Optimistic Contract Signing 307

3 Secret Abuse-Free Contract Signing

3.1 Security Model

Asokan et al. [2] presented a formal security model for fair signature exchange,
which is also suitable for contract signing. In the optimistic two-party contract
signing, there are two players A and B, and a trusted third party T that acts as
a server: it receives a request from a client, updates its internal state and sends
a response back to the client. We assume that all participants have secret/public
keys which will be specified later.

We assume that communication channels between any two participants are
confidential, which means that eavesdroppers will not be able to determine the
contents of messages in these channels. Moreover, we assume that the commu-
nication channel between any player and T is resilient. The resilient channel as-
sumption leads to an asynchronous communication model without global clocks,
where messages can be delayed arbitrarily but with finite amount of time.

Since the misbehavior of dishonest participants could lead to a loss of fairness,
we consider the possible misbehavior of the participants in the contract signing.
Firstly, although T is by definition trusted, T may collude with one party to
weaken the fairness, or gain some benefits by selling the commercial secret of
the contract. Therefore, T must be accountable for his dishonest actions, i.e., it
can be detected and proven if T misbehaves. Secondly, A or B may reap benefits
at the expense of the other party. The abuse-freeness contract signing protocol
can only partially solve this problem. For example, a dishonest A can execute
the Abort protocol after correctly executing the Exchange protocol with B
[10]. As a result, B obtains A’s signature while A obtains B’s signature and the
abort-token. Trivially, the output of the protocol violates the original definition
of fairness. This means that Asokan et al.’s security model is not perfect. The
reason is that it does not consider the misbehavior of A and B. Therefore, we
should define the accountability of A and B, i.e., it can be detected and proven
if A and B misbehaves. Moreover, It can be a part of the agreed contract content
for how to punish the dishonest party.

The security properties of contract signing are defined in term of completeness,
fairness, abuse-freeness, accountability, T invisibility [2,9]. Besides, we define a
new property named T secrecy. We argue that a contract and the corresponding
signatures of two players should be a commercial secret and T cannot reveal it
to outsiders for some benefits in any stage of the protocol.

– Completeness: It is infeasible for the adversary to prevent honest A and B
from successfully obtaining a valid signature (or the non-repudiation token)
of each other. The adversary has the signing oracles that can be queried
on any message except the contract. The adversary can interact with T ,
but cannot interfere with the interaction of A and B, except insofar as the
adversary still has the power to schedule the messages from A and B to T.

– Fairness: We consider a game between an adversary and an honest party.
Generally, we let the adversary play the role of the corrupt party, who com-
pletely controls the network, arbitrarily interacts with T , and arbitrarily

308 X. Chen et al.

delays the honest party’s requests to T . We argue that the misbehavior of
the adversary may weaken the fairness. So, if the honest party can provide
a proof that the adversary misbehaves, then he has the power to validate or
invalidate the contract for the punishment of the adversary. In this sense,
the fairness means that it is infeasible for the adversary to obtain the honest
party’s signature on a contract, while without allowing the honest party to
obtain the adversary’s signature or a proof that the adversary misbehaves.

– Abuse-freeness: It is infeasible for one party at any point in the protocol
to be able to prove an outside party that he has the power to terminate
(abort) or successfully complete the contract.

– Accountability: It can be detected and proven if any participant misbe-
haves.

– T invisibility: It is infeasible to determine whether T has been involved in
the protocol or not.

– T secrecy: It is infeasible for T to obtain any useful information about the
contract in any stage of the protocol.

3.2 Our Protocol

In this section, we use the proposed VECS to present an efficient abuse-free
contract signing protocol. We first give some notations. Let H be a key expo-
sure free chameleon hash function. Denote by Sig(SKX , M) the signature on
message M with the secret key SKX of the party X ∈ {A, B, T}; Denote by
OB(E, σA, PKT) a verifiable encryption of A’s signature σA under T ’s public
key PKT . Our abuse-free contract signing protocol has three sub-protocols: Ex-
change, Abort, and Resolve. In the normal case, only the exchange protocol
is executed.

Suppose A and B have agreed on a message M = (m, rA, rB), where m is
a common contract and (rA, rB) are two random integers. We do not describe
this agreement in details here and it may require a number of rounds of com-
munication between A and B through an authenticated channel. Moreover, this
agreement should not achieve the non-repudiation property, i.e., neither party
should generate any non-repudiation token on the agreed message.

Exchange Protocol

1. A computes the chameleon hash value hA = H(m, rA, PKB) and the signa-
ture σ∗

A = Sig(SKA, hA||T), where || denotes concatenation. A then com-
putes the ciphertext C = OB(E, σ∗

A, PKT) and sends it to B.
2. IfC is invalid,B quits.Otherwise,B computes the signatureσB=Sig(SKB, hB)

on the chameleon hash value hB = H(m, rB , PKA) and then sends σB to A.
3. If σB is invalid, A runs the Abort protocol. Otherwise, A computes the

signature σA = Sig(SKA, hA) and sends it to B. If σA is not valid, B runs
the Resolve protocol.

Three-Round Abuse-Free Optimistic Contract Signing 309

Abort Protocol

1. A computes the signature Sig(SKA, abort||C) on message “abort||C” and
then sends (C, Sig(SKA, abort||C)) to T . If the signature is valid and B has
not resolved, T issues an abort-token AT = Sig(SKT , Sig(SKA, abort||C))
to A and stores it. The abort token is not a proof that the exchange has
been aborted, but a guarantee by T that it has not and will not execute the
Resolve protocol.

2. If B has resolved, T sends A the stored value σ̂B in the Resolve protocol.

Resolve Protocol

1. B firstly sends T the triple (C, hA, σ̂B), where σ̂B =Sig(SKB, resolve||A||hA)
denotes the resolved signature of B. Generally, it is no difference with an or-
dinary signature Sig(SKB, resolve||A||hA) of B on message “resolve||A||hA”.
Additionally, it also denotes Sig(SKB, m) on condition that only A can pro-
vide a pair (m, rA) which satisfies hA = H(m, rA, PKB).

2. If A has aborted, T then sends the abort-token AT to B. Else, if C is a valid
T -verifiable encryption of A’s signature on message hA and σ̂B is valid, T
decrypts C to obtain σ∗

A and sends it to B.
3. T stores the value σ̂B.

3.3 Misbehavior in the Protocol

Since the set of the possible output for A and B is {σB,σ̂B,AT} and {σA, σ∗
A,AT },

respectively. Therefore, the possible output of our proposed protocol is as follows:

– Case 1: A obtains σB and B obtains σA. This means that both parties are
honest.

– Case 2: A obtains σB and B obtains σ∗
A. This means that B successfully

runs the Resolve protocol at some point after sending σB.
– Case 3: A obtains σ̂B and B obtains σ∗

A. This means that A has already sent
C to B, and then B runs the Resolve protocol before A aborted.

– Case 4: Both A and B obtain AT . This means that A has already sent C to
B, and then runs the Abort protocol at some point before B resolved.

– Case 5: A obtains σB and B obtains AT . This means that A has received σB

and then runs the Abort protocol before B resolved. If this case happens,
we claim that A misbehaves in the protocol.

– Case 6: A obtains AT and B obtains σA. This means that A runs the Abort
protocol after sending σA to B. If this case happens, we also claim that A
misbehaves.

– Case 7: A obtains AT and B obtains σ∗
A. This means that both A and B

successfully runs the Abort and Resolve protocol, respectively. If this case
happens, we claim that the T misbehaves.

– Case 8: A obtains σ̂B and B obtains AT . Due to the fact that B obtains the
abort-token only when A has obtained the abort-token, this case will not
happen if the T is honest. Therefore, we also claim that the T misbehaves
in this case.

310 X. Chen et al.

– Case 9: A obtains σ̂B and B obtains σA. If this case happens, we claim
that A misbehaves because B cannot obtain σA unless A has obtained σB

successfully.

If the first four cases occur, the protocol achieves the fairness since both parties
obtain either the signature of each other, or the abort token. Since the chameleon
signature is not universal verifiable, σB means nothing if B does not perform the
denial protocol of chameleon signatures. On the other hand, A is not allowed to
run the Abort protocol after having received σB . Similarly, A is not allowed to
run the Abort protocol after sending σA to B. Moreover, A should never send
σA to B unless A has obtained σB successfully. That is, if the case 5, or case 6,
or case 9 occurs, it is a proof that A misbehaves. If the case 7 or 8 occurs, then
T must be accountable for his misbehavior.

4 Security Analysis of the Contract Signing Protocol

Due to the properties of non-repudiation and non-transferability of chameleon
signatures, the proposed contract signing protocol satisfies the completeness and
abuse-freeness, respectively. Also, as discussed in section 3.3, it is trivial that the
proposed contract signing protocol satisfies the accountability. Due to the space
consideration, we only focus on the fairness, T invisibility and T secrecy.

Theorem 1. The proposed contract signing protocol satisfies the property of
fairness.

Proof. We first prove the fairness for A. Consider an honest A playing against
a dishonest B. We say that B wins the game if and only if either B obtains σA

while A does not obtain σB, or B obtains σ∗
A while A obtains neither σB nor

σ̂B. Assume A does not obtain σB, A must run the Abort protocol at some
point after sending C to B and thus B cannot obtain σA. If B does not run the
Resolve protocol before A aborted, then both parties obtain the abort-token
AT . Else, B can obtain σ∗

A from the T . However, it ensures that A can also
obtain σ̂B from T . Therefore, the successful probability for B to win the game
is negligible.

We then prove the fairness for B. Consider an honest B playing against a
dishonest A. We say that A wins the game if and only if either A obtains σB

while B obtains neither σA nor σ∗
A, or A obtains σ̂B while B does not obtain

σ∗
A. Firstly, we argue if A obtains σ̂B, then B must obtain σ∗

A unless the T is
dishonest. Secondly, assume B does not obtain σA, so B must run the Resolve
protocol at some point after sending σB to A. If A does not run the Abort
protocol before B resolved, then B can obtain σ∗

A from the T . Else, B can obtain
the abort-token AT . However, it is a proof that A misbehaves in the protocol
and A must be accountable for this. Therefore, the successful probability for A
to win the game is negligible. �

Theorem 2. The proposed contract signing protocol satisfies the property of T
invisibility and T secrecy.

Three-Round Abuse-Free Optimistic Contract Signing 311

Proof. Note that the distribution of σA and σ∗
A is computationally indistinguish-

able. Similarly, the distribution of σB and σ̂B is also computationally indistin-
guishable. Therefore, it is impossible to determine whether T has been invoked in
the protocol or not. On the other hand, note that the message M = (m, rA, rB)
is agreed beforehand and never revealed in any stage of the protocol. Moreover,
the chameleon signature is not universal verifiable. Therefore, T cannot obtain
any useful information about the contract in the protocol. �

5 Conclusions

In this paper, we first introduce the notion of Verifiable Encryption of Chameleon
Signatures (VECS). We then use the notion to design a secret abuse-free opti-
mistic contract signing protocol, which is only three-pass in the normal situation.
Moreover, we prove that our protocol achieves the desired security properties.

Acknowledgement

This work is supported by the National Natural Science Foundation of China
(No. 60970144, 60773202, 60970114, 60970115, 60970116), Guangdong Natural
Science Foundation (No. 8451027501001508), Program of the Science and Tech-
nology of Guangzhou, China (No. 2008J1-C231-2).

References

1. Asokan, N., Shoup, V., Waidner, M.: Asynchronous protocols for optimistic fair
exchange. In: IEEE Symposium on Security and Privacy, pp. 86–99 (1998)

2. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer,
Heidelberg (1998)

3. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
IEEE Journal on Selected Areas in Communications 18(4), 593–610 (2000)

4. Ateniese, G.: Verifiable encryption of digital signatures and applications. ACM
Transaction on Information and System Security 7(1), 1–20 (2004)

5. Ateniese, G., de Medeiros, B.: Identity-based chameleon hash and applications. In:
Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 164–180. Springer, Heidelberg (2004)

6. Ateniese, G., de Medeiros, B.: On the key-exposure problem in chameleon hashes.
In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 165–179.
Springer, Heidelberg (2005)

7. Bao, F., Deng, R., Mao, W.: Efficient and practical fair exchange protocols with
off-Line TTP. In: IEEE Symposium on Security and Privacy, pp. 77–85 (1998)

8. Chen, X., Zhang, F., Kim, K.: Chameleon hashing without key exposure. In: Zhang,
K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 87–98. Springer, Heidelberg
(2004)

9. Garay, J.A., Jakobsson, M., MacKenzie, P.: Abuse-free optimistic contract signing.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer,
Heidelberg (1999)

10. Shmatikov, V., Mitchell, J.C.: Analysis of abuse-free contract signing. In: Frankel,
Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 174–191. Springer, Heidelberg (2001)

Designing for Audit: A Voting Machine with a
Tiny TCB

(Short Paper)

Ryan W. Gardner, Sujata Garera, and Aviel D. Rubin

Johns Hopkins University, Baltimore MD 21218, USA

Abstract. Thoroughly auditing voting machine software has proved to
be difficult, and even efforts to reduce its complexity have relied on signif-
icant amounts of external code. We design and implement a device that
allows a voter to confirm and cast her vote while trusting only 1,034 lines
of ARM assembly. The system, which we develop from scratch, supports
visually (and hearing) impaired voters and ensures the privacy of the
voter as well as the integrity of the tally under some common assump-
tions. We employ several techniques to increase the readability of our
code and make it easier to audit.

1 Introduction

Electronic voting has become the instrument of democracy in many parts of the
world as a result of historic dilemmas stemming from the paper ballot and a
perceived voter preference for touch-screen machines [16]. However, in the last
6 years, a multitude of studies have analyzed the security of electronic voting
devices used in elections [10,4], and each has found significant security flaws
in every revision of their software. Consequently, it has become clear that it
is extremely difficult to exhaustively audit or ensure security guarantees of the
voting software used in current elections.

Several researchers have made significant progress toward designing voting
systems that may provide increased assurances that the software is free of vul-
nerabilities and backdoors. Two of the most notable works are those of Yee
et al. [20,19] and Sastry et al. [13]. Yee et al. reduce the complexity of voting
software by prerendering the electronic ballot design [20] and write a full voting
machine application, Pvote, in only 460 lines of original Python code [19]. It is
clearly more feasible to audit and ensure the robustness of such a small piece of
software than that of the Diebold AccuVote-TSX, for example, which contains
over 65,000 lines of C++ [4], or the Sequoia Edge, which consists of over 124,000
lines of C [1]. Sastry et al. physically separate modules of a voting system in
hardware to allow security properties to be verified more easily by examining
the individual components [13]. Their prototype contains only 5,085 lines of
trusted code. While both of these studies make significant advances in the state
of voting machine software, they also rely on the integrity of several large pieces
of critical, external code, including libraries, operating systems, compilers, and
interpreters, and 5085 lines remains a fairly large number for audit.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 312–319, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

Designing for Audit: A Voting Machine with a Tiny TCB 313

Voter

Voter

Voter

Auditor

Auditor

Auditor

Ballot Casting
Device

Source Code

Ballot Definition
Creation Software

Input from
Election
Officials

Ballot
Selection
Device

Ballot
Casting
Device

Ballot Casting
Software

Storage
Unit

Cast
Votes

Ballot
Selection
Software

Ballot Display
Format and

Audio Sounds

Voter

Voter

Voter

Public

...

Public

......

Tally

Trusted Code

Fig. 1. Flow of data through an election. Hexagons represent reviews by a large number
of parties.

Carefully auditing all components that contribute to the development and
execution of a piece of software that casts votes is essential. Consider pygame,
for example, a multimedia library used by Pvote. It contains 28,660 lines of code
and numerous bugs have been reported on it including possible inappropriate
memory accesses, which may allow exploitation of Pvote itself1 . Similarly, along
with operating systems and code interpreters, the use of a compiler enables
potential attack vectors to the voting application as the compiler could create a
vulnerable or malicious executable [17].

In this work, we create a new vote casting system that drastically decreases
the amount of software that must be trusted. Utilizing the idea of Frogs [3],
we separate the device that voters use to confirm and cast their votes from
the hardware they use to select the votes. Then, we build the code for the
confirmation and casting device from the foundation up. That is, we compose
every byte of code or data that is written to the device, and we eliminate the need
to rely on the integrity of a compiler by writing purely in assembly language.
We significantly reduce the complexity of this confirmation device by pushing
non-sensitive and verifiable functions to stages before and after the ballot is cast.
Our device supports visually impaired voters, prevents tampering with stored
ballots, and ensures that voters can only cast one ballot, under some common
assumptions. In total, its code is written in 1,034 lines of ARM assembly. Here
we summarize the architecture and a few aspects of the implementation of our
vote casting system with a more complete description and details in the full
version of the paper [7].

2 High-Level Approach

One of the primary objectives of our work is to reduce the amount of code that
needs to be trusted for voters to electronically cast votes. We take an approach
of reducing trust by redundantly dividing it among many entities.

The basic flow of data in our architecture is illustrated in Figure 1. Many
months before the election, the source code for the vote casting device is
1 http://pygame.motherhamster.org/bugzilla/

http://pygame.motherhamster.org/bugzilla/

314 R.W. Gardner, S. Garera, and A.D. Rubin

published or, if preferable [8], made available to a large but select group of
auditors. Then, auditing on a wide variety of systems is encouraged. The idea
is that even if a number of systems have compromised components, at least one
system will not and can perform an impartial audit. Finally, auditors or other
individuals assemble the code. Because assembling is (mainly) a one-to-one pro-
cess, binaries can be compared and analyzed until consensus is reached on a
correct image for the device. Hence, we eliminate trust in any single system or
component by distributing the auditing and binary generation in this way.

In addition to enabling verification of a correct binary, redundantly dividing
trust also provides us with a means of drastically simplifying the sensitive vote
casting process without significantly increasing threats to the other steps of an
election. This is the general technique used by Bruck et al. with Frogs [3] and
Yee et al. with prerendered user interfaces [20,19] and allows us to remove the
vast majority of vote processing from the ballot casting device.

Several months prior to the election, the display format for the ballot is stan-
dardized and publicized. This specification includes not only the exact visual
appearance and sounds of the ballot as they are presented to the user but also
their raw format as it is sent directly to the display and audio hardware of the
casting device. The public can review the format and ensure that it is clear and
accurate. Then, on the day of the election, each voter is given a memory card for
storing her vote when she enters the polls. She selects her votes using a ballot
selection device, and her ballot is recorded to her card in its raw format. She
then passes her card on to the ballot casting machine, and the card’s data is
sent directly to the display and audio hardware of the device so she may view
it and confirm her selections. This step also allows the voter to detect any dis-
honest behavior of the ballot selection device, and in aggregate, the review of
large numbers of voters minimizes the probability of undetected malicious ac-
tivity. From this point, if the voter chooses to cast, the same, unprocessed data
that was displayed is anonymously recorded to non-volatile ballot storage along
with some authentication information. Again, because an abundance of people
can independently interpret and process the information, the anonymous ballots
can be made public by disclosing the storage data exactly as it is, in raw form.
Despite the data’s increased complexity, the risk of undetected error or dishon-
esty is minimal due to the extensive number of people potentially reviewing it.
By moving all the untrusted processing to before and after the point when the
ballot is cast in this way, we greatly simplify this critical point in the election
process.

3 Our Voting System

We now outline the functionality of our voting system and describe aspects of the
implementation of our ballot casting device on an LPC2148 ARM microcontroller
interfacing with additional hardware2.

2 All of our code is available at http://cs.jhu.edu/~ryan/min_tcb_voting/

http://cs.jhu.edu/~ryan/min_tcb_voting/

Designing for Audit: A Voting Machine with a Tiny TCB 315

3.1 Functionality Overview

The voting process involves 3 primary components: an authentication device, a
ballot selection device, and a ballot casting device. Prior to the election, each
political party generates a set of authentication and encryption keys. These keys
are transferred to the ballot casting device via a smart card the morning of the
election and stored in the device’s RAM. An alternative approach could keep
the keys exclusively on the smart cards and compute cryptographic operations
on the cards themselves [3] although it requires more smart-card interfacing
hardware. We compute all cryptographic operations on the ballot casting device
to make the device’s code easy to adapt to either approach.

On election day, each voter first obtains a voter card from a poll worker who
authenticates the card using the authentication device. An authenticated card,
which we implement using a memory smart card, contains a unique, encrypted
authenticator that acts as the voter’s ticket to vote. (Here, encryption prevents
the voter from potentially obtaining her authenticator and selling her vote by
identifying the authenticator and her corresponding vote during tallying.) Next,
the voter takes her card to vote as described in Section 2. She selects her votes on
the ballot selection device, which writes her ballot to her voter card. As she then
transfers her card to the ballot casting device, that device presents visual and
audio versions of the ballots and gives the option to cast. If the voter casts her
ballot, the raw data that was presented is written to a randomly chosen, empty
location on the device’s non-volatile storage along with the voter’s decrypted
authenticator. The device also updates a counter of cast votes and signs all
data written for the vote using a key from each political party. Unfortunately
computing the decryptions and all the signatures takes several minutes on our
device with its 60 MHz processor and 20 MHz memory bus, but faster or more
specialized hardware could preclude this problem. Lastly, the device erases the
voter’s card, which is returned for reuse.

3.2 Structure and Readability

We organize our code into 4 distinct layers to simplify the task of auditing. Our
basic approach is to compact security-sensitive functionality and common syntax
abstractions and functions into small portions of code at the lowest layers. Then
we write the larger, higher layers using these tools so that their implementa-
tion utilizes fewer, and more familiar constructs. This structure also contributes
significantly to a shorter code length by maximizing code reuse.

The structure of our code is illustrated in Figure 2. Each layer is only per-
mitted to use a subset of the instructions and functions that are used by the
layer below it. In turn each layer exports functionality and syntax in the form of
macros to those above it. We explain the function and privileges of each layer
briefly below.

Syntax tools: This is the lowest layer of code and is designed to provide syntax
for control flow and functions to enable simpler macro design and processor-state
management at higher levels. It is the only layer allowed to access the stack or

316 R.W. Gardner, S. Garera, and A.D. Rubin

Syntax
Tools

Memory
Access

Drivers

Application

Processor state management
Basic control flow

Low level I/O
Variables

Hardware access

System functionality
Cryptography

Primary Purpose

S
en

si
ti

v
it

y

Lines of Code

423

421

133

57

Fig. 2. Structure of our code

Our Code Comment or Equivalent Java/C Style Syntax
declare var empty array buff, 256 @declare buff, 256 byte array or 256/4=64 int array
declare var empty array sum, 4 @declare sum, 4 byte array or 1 int array
... @... (any code, changes buff and sum)
mov r2, #0 @r2=0
for checksum buff, r0, #V intlen buff @for(r0=0; r0<buff.length; r0++) {

read int array buff, r0, r1 @ r1=buff[r0]
add r2, r2, r1 @ r2=r2+r1

end for checksum buff @}
write int array sum, #0, r2 @sum[0]=r2

Fig. 3. Example code for computing the 32-bit, 2’s complement addition checksum
over the data in buff and writing the result to sum. Uses constructs from the syntax
tools and memory access layers. (r0, r1, and r2 are ARM registers.)

process status (cpsr or spsr). Constructs provided by this layer include tools for
preserving and changing state during macro instantiations and interrupts and
syntax for basic for-loops.

Memory access: The primary function of the memory access layer is to pro-
vide user-friendly interfaces for declaring and accessing variables and conduct-
ing hardware I/O. It also implements a weak form of type safety, discussed in
Section 3.3. No code above the memory access layer is allowed to use memory
accessing or I/O instructions. Our code currently supports two basic types of
variables, byte arrays and integer (32-bit element) arrays because these struc-
tures are flexible and all that we require. One example of code for computing a
checksum that can be written above the syntax tools and memory access layers
is given in Figure 3.

Drivers: Drivers provide application friendly interfaces to the hardware. Note
that they do not actually directly access hardware themselves but rather use
the I/O constructs provided by the memory access layer, and layers above the
drivers are prohibited from accessing the hardware using anything but the func-
tions provided by the drivers. This layer provides tools for writing to the display,
accessing flash memory cards, accessing smart cards, playing audio clips (using
the timer and D/A converter), determining button state, and reading from the
A/D converter. One of our primary techniques for simplifying drivers is to care-
fully limit error checking (discussed in the full version of the paper [7]).

Designing for Audit: A Voting Machine with a Tiny TCB 317

Application: The highest layer implements the actual functionality of the vote
casting device. A significant portion of the code at this layer implements cryp-
tographic operations.

3.3 Type Safety

One of the features we implement into our code is a weak form of type safety. The
term “type safety” generally refers to the restriction that “the only operations
that can be performed on data in a language are those sanctioned by the type
of data” [12]. It helps reduce the risk of many common exploits such as stack
and heap overflows by preventing data intended to be written to one variable
from being written elsewhere. We do not have true type-safe code but rather
achieve a weak form of type safety because we rely on auditors to enforce the
simple restrictions of each code layer as discussed in Section 3.23. Specifically,
type safety has meaning only in the context of a language, and as we refer to
it here, we consider it in the “language” allowed for the drivers and application
layers of our code. However, if we assume that the simple “language” allowed
at that layer is enforced, we implement a form of what is often referred to as
“dynamic type safety”, where the code performs run-time checks to ensure that
the operations performed on given data are allowed for that data.

Our code has only two essential data types, static variable arrays, and device
I/O registers. When an array is statically declared, our code defines metadata
that describes its position and size, which is associated with its name. Then,
whenever the variable is read from or written to using one of the data access
macros, the assembler expands a series of code around the access to verify that
the resulting memory address is actually associated with that variable before
the access occurs. If, at run-time, the check determines otherwise, the device
displays an error and halts.

One unfortunate side-effect of dynamic address checking, however, is that it
is slow. This does not matter for the vast majority of our vote casting device’s
functions and hence, through nearly all of the code, every time data is accessed,
the operation is first verified as described above. However, when it comes to
public-key cryptographic operations, speed is important. For this reason, we also
implement some specific type-safe arithmetic operations in the memory access
layer of code. These include large number addition, subtraction, and shifting.
Because everything about these operations and their parameters is known at
assemble time, the loops that iterate through the large number arrays are actu-
ally unrolled. This way addresses can easily be checked statically and execution
speed is also maximized.

3.4 Cryptographic Operations

We utilize several cryptographic operations to help our vote casting device pre-
serve voters’ privacy and ensure the authenticity of cast votes. Implementations
3 Recall that enforcing these restrictions only involves verifying that certain instruc-

tions are not used at specific layers.

318 R.W. Gardner, S. Garera, and A.D. Rubin

of cryptographic tools are often quite long and complex, however, so we take
several approaches to keeping them as simple as possible.

Our primary approach to minimizing the complexity of our code’s cryptog-
raphy is to utilize constructs all based on the same operations, namely basic
modular arithmetic and exponentiation. We use Schnorr signatures [14] to au-
thenticate data written to the flash card and ElGamal encryption [6] for pre-
serving the privacy of unique voter authenticators. With an appropriate hash
function, both of these fit our criteria nicely and require a relatively minimal
number of operations.

A hash function is required to compute Schnorr signatures as is the case
for nearly all other signatures. Since typical hash functions are rather complex,
we chose to use a discrete logarithm hash, computed as hash(x) = gx mod n
for n = pq with large, unknown primes p, q [9]. The function is very simple,
albeit inefficient, and is provably collision-resistant assuming the hardness of
factoring [9]. To compress the result of the function, we xor blocks of 160 bits
as suggested by Senderek [15].

Furthermore, the ElGamal decryption for a ciphertext (c1, c2) with secret key
x and modulus m is classically described as p = c2

cx
1

mod m. We clarify that
to avoid the need to include (and thus audit) code for the extended Euclidean
algorithm, we send z = −x mod q to the vote casting device on the key smart
cards (where q is the order of the relevant group). Then our code computes the
ElGamal decryption as p = c2c

z
1.

Our ballot casting device requires random numbers for several operations.
Random number generation is performed by sampling our microcontroller’s ana-
log to digital converter (ADC). We leave the ADC disconnected as suggested by
Eastlake et al. to pick up electrical noise in the air [5] and use the Von Neu-
mann transition mapping technique [18] followed by parity computation [5] to
eliminate skew from the samples. This method allows us to generate all the
randomness needed for one voter very quickly. We used NIST’s test suite for
random number generation [11] to verify that the values obtained are statisti-
cally indistinguishable from random. We could use Blum Blum Shub [2] as a
pseudo-random number generator (PRNG) with minimal additional code. How-
ever, since we would still need the ability to generate a seed and the hardware
RNG is sufficiently fast, we use it for all of our random number generation.

We avoid authentication operations, such as authenticator or signature veri-
fications, entirely by pushing them to the public, tallying phase of the election
as outlined in Section 2. This also increases election transparency.

4 Conclusion

The security-sensitive functions of a voting machine can be simple, and simplicity
reduces oversight and error. We have presented a voting system on which one
can cast her vote while trusting only 1,034 lines of code. Reducing this trusted
code base eases the task of verification and may thereby provide higher voting
assurances.

Designing for Audit: A Voting Machine with a Tiny TCB 319

References

1. Blaze, M., Cordero, A., Engle, S., Karlof, C., Sastry, N., Sherr, M., Stegers, T.,
Yee, K.-P.: Source code review of the Sequoia voting system. Technical report,
California Secretary of State (July 2007)

2. Blum, L., Blum, M., Shub, M.: Comparison of two pseudo-random number gener-
ators. In: CRYPTO 1982: Advances in Cryptology (1982)

3. Bruck, S., Jefferson, D., Rivest, R.L.: A modular voting architecture (“Frogs”). In:
WOTE 2001: Workshop on Trustworthy Elections (2001)

4. Calandrino, J.A., Feldman, A.J., Halderman, J.A., Wagner, D., Yu, H., Zeller,
W.P.: Source code review of the Diebold voting system. Technical report, California
Secretary of State (July 2007)

5. Eastlake, D.E., Crocker, S.D., Schiller, J.I.: RFC1750 - randomness recommenda-
tions for security, http://www.faqs.org/rfcs/rfc1750.html

6. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

7. Gardner, R.W., Garera, S., Rubin, A.D.: Designing for audit: A voting machine
with a tiny TCB (full version) (2009),
http://cs.jhu.edu/~ryan/min_tcb_voting/

8. Hall, J.L.: Transparency and access to source code in electronic voting. In: EVT
2006: USENIX/ACCURATE Electronic Voting Technology Workshop (2006)

9. Gibson, J.J.K.: Discrete logarithm hash function that is collision free and one way.
In: IET Computers and Digital Techniques, vol. 138(6) (November 1991)

10. Kohno, T., Stubblefield, A., Rubin, A.D., Wallach, D.S.: Analysis of an electronic
voting system. In: IEEE Symposium on Security and Privacy (2004)

11. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M.,
Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for the
validation of random number generators and pseudo random number generators
for cryptographic applications. In: NIST Special Publication 800-22 (2001)

12. Saraswat, V.: Java is not type-safe. Technical report, AT&T Research (August
1997)

13. Sastry, N., Kohno, T., Wagner, D.: Designing voting machines for verification. In:
USENIX Security Symposium (2006)

14. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

15. Senderek, R.: A discrete logarithm hash function for RSA signatures,
http://senderek.com/SDLH/discrete-logarithm-hash-for-RSA-signatures.ps

16. Stein, R.M., Vonnahme, G., Byrne, M., Wallach, D.: Voting technology, election
administration, and voter performance. Election Law Journal: Rules, Politics and
Policy 7(2) (June 2008)

17. Thompson, K.: Reflections on trusting trust. Communications of the ACM 27(8)
(1984)

18. von Neumann, J.: Various techniques used in connection with random digits. Na-
tional Bureau of Standards Applied Mathematics Series, vol. 12 (1951)

19. Yee, K.-P.: Extending prerendered-interface voting software to support accessibility
and other ballot features. In: EVT 2007: USENIX/ACCURATE Electronic Voting
Technology Workshop (2007)

20. Yee, K.-P., Wagner, D., Hearst, M., Bellovin, S.M.: Prerendered user interfaces
for higher-assurance electronic voting. In: EVT 2006: USENIX/ACCURATE Elec-
tronic Voting Technology Workshop (2006)

http://www.faqs.org/rfcs/rfc1750.html
http://cs.jhu.edu/~ryan/min_tcb_voting/
http://senderek.com/SDLH/discrete-logarithm-hash-for-RSA-signatures.ps

Attacking of SmartCard-Based Banking
Applications with JavaScript-Based Rootkits

(Short Paper)

Daniel Bußmeyer, Felix Gröbert, Jörg Schwenk, and Christoph Wegener

Horst Görtz Institute for IT Security
Chair for Network and Data Security

Ruhr-University Bochum
{daniel.bussmeyer,felix.groebert,joerg.schwenk,christoph.wegener}@rub.de

Abstract. Due to recent attacks on online banking systems and conse-
quent soaring losses through fraud, different methods have been devel-
oped to ensure a secure connection between a bank and its customers.
One method is the inclusion of smart card readers into these schemes,
which come along with different benefits, e.g., convenience and costs, and
endangerments, especially on the security side.

We give a review on a security concept and its implementation deployed
as an online banking solution, which consists of a USB smart card reader
and a customized browser. We propose a thread model and an attack vec-
tor exploiting the limited capabilities of the class one smart card reader.
Furthermore a proof of concept malware is presented, which utilizes the
primary vulnerability, i.e., class one reader, and otherwise supporting vul-
nerabilities, to show how transactions may be manipulated.

1 Introduction

Recent developments have shown that the endusers’ environment must be con-
sidered as vulnerable and insecure. In order to provide secure banking, a lot of
precautionary measures have been developed. Most aim to establish a secure
communication channel, which supplies confidentiality, integrity and authentic-
ity for transactions made between an enduser and the bank. A common method
is the deployment of a class one, two, three or four smart card reader and sup-
porting software at the enduser.

Invoking smart card readers from online banking software offers the possibility
to encrypt and sign messages independent of the endusers’ computer system.
Thereby several differences between the smart card reader classes exist, which
mainly vary in their equipped hardware:

Class 1. reader without pin pad
Class 2. reader with pin pad
Class 3. reader with pin pad and display
Class 4. reader with class 3 properties, RSA functionality and a bytecode VM

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 320–327, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

Attacking of SmartCard-Based Banking Applications 321

A class one reader thus only guarantees the lowest security level: The crypto-
graphic primitives, e.g., signatures or encryption, are still executed on the host
system which might be infected by malware. Besides the possibility to use a
physical device for signing, the class one reader does not increase the attack
complexity for a malware author, who infected an endusers machine.

Smart card readers of class two and higher, in contrast, offer a pin pad on-
board. The pin code for the smart card entered into the reader does not leave
the reader and thus is not readable by malware on the host system.

Furthermore class three readers are equipped with a display that is able to
show the data to be signed or encrypted. This gives extra security to the signature
data, because the user can actually see what he or she is about to sign. This
follows the important principle only sign what you see.

Preceding security features can only be exceeded by the highest category of
smart card reader classes, security class four. These readers also support RSA
functionality and come with a virtual machine making it possible to run small
software components. It is a clear advantage for the security of software to run
in a virtual machine that cannot be accessed by the host system. Intercepting
messages or manipulating procedures running in the virtual machine are very
hard to conceal and expend a lot of effort to stay undetected.

In this paper we take a closer look on a deployed solution for internet banking
on the basis of a USB device containing the banking software and a smart card
reader class one. As shown before, it is difficult for malware to intercept and
modify messages undetected, if an online banking system includes smart card
readers. But if we consider the man in the box scenario, in which the host system
is infected by a malware, a smart card reader satisfying only class one standards
is not sufficient. As already mentioned before, readers of security class one do
not offer the possibility of entering the pin on the device itself. The pin is always
processed within the host system. Hence malware does not need to launch attacks
on the reader’s hardware since all important data is located in the machine’s
memory it is plugged into.
We discuss the prerequisites in Section 2, propose the attack vector and threat
model for the scenario in Section 3.1 and present a proof of concept attack on
the implementation in Section 3.2. We conclude in Section 6 on the basis of the
related work in Section 4 and mitigation potentialities in Section 5.

2 Prerequisites

In this section we describe the audited solution and its intended usage. Further-
more we describe and discuss a typical usage environment for the application.

2.1 Target Solution

The targeted solution consists of a USB smart card reader including a USB flash
drive. The flash drive comes with a customized Firefox web browser, which is run
once the device has been inserted into a host system. The solution is used by a
large German, a Turkish, and a Swiss financial institution for internet banking.

322 D. Bußmeyer et al.

This paper focuses on the German version with a release date in spring 2009.
When the USB device is inserted into a Windows-based machine the flash drive
and the smart card reader are recognized by the operating system and (if en-
abled) autorun launches the application from the flash drive.

At first, the launcher application is started, which is responsible for the cre-
ation of other processes and temporary execution directories under %TEMP%
in which the processes are executed. A dedicated application and a batch job
ensures that if the enduser unplugs the device no temporary files, e.g., cookies
or caches, of the internet banking session are left and then terminates the main
application.

Next, the launcher application starts an update client which communicates
with a server to download updates for the flash drive. The update mechanism
might be an attack vector itself, for example by redirecting network traffic and
emulating the update server to introduce malicious, infected software on the
flash drive. We did not further analyze this vector, because the updates were
signed and infecting the web browser is a more direct approach when assuming
a man in the box threat model.

Third, the web browser is launched. The customized Firefox is the main appli-
cation for the enduser and when it terminates, the launcher application conducts
the removal of temporary files and then finally removes the flash drive.

The browser is based on Firefox 1.5.0.9 and is customized to interact with
the USB smart card class one reader and includes a Java plugin. It also contains
some code integrity checks:

– Every two seconds a thread checks whether the addresses of SSL_∗(), PR_∗()
and other essential functions have changed.

– Every 42 seconds a thread checks if isDebuggerPresent() returns true and if
any other Firefox extensions are installed.

Besides the primary, conceptual vulnerability of using a class one reader, we
found several secondary vulnerabilities concerning the concrete implementation:

– Timing is done using Sleep() and time(). By hooking theses functions an
adversary is able to disable the integrity checks of the application. In general,
the reverse engineering process is not very complex as no code obfuscation is
done. The code even contains debug strings and OutputDebugString() gives
numerous error messages. A code protector, e.g., Themida, might increase
the effort to analyze the application.

– Due to the class one reader a keylogger is capable of reading the smart card
PIN using GetAsyncKeyState(). No countermeasures exist to prohibit this
simple attack.

– The used Firefox version (1.5.0.9) and Java version are obsolete and may be
attacked from the network using exploits already publicly known. This way
the operating system can be compromised.

– The domain restriction for the user may be circumvented via the menu Extras
→ Themes → Download Themes. Originally the browser is restricted to the
SSL server of the bank.

Attacking of SmartCard-Based Banking Applications 323

– The SSL implementation is flawed, so the Null-Byte-X.509-Attack [4] is pos-
sible.

– The certificate authorities are obsolete, so the MD5-Signing-Attack [5] is
possible.

– No Certificate-Revocation-Lists are included.

2.2 Target Environment

A normal usage environment presumes a login, a password, and a PIN for the
smart card. As the primary customers are corporate users, a main advantage
of using a class one reader is the possibility of mass signing of transactions.
Rather than signing each transaction separately by checking the display and
entering a pin on a class three reader, it is possible to sign several hundreds of
transactions with a small user effort. In our correspondence with one affected
bank this feature outweighed the security disadvantages. Nevertheless we think
this is a design decision with too much drawbacks on the security properties of
the solution, which we explain in detail in the next section.

3 Proof of Concept Attack

In this section we determine the attack preconditions and present the proof of
concept implementation.

3.1 Attack Vector and Threat Model

The adversary’s goal is to trigger signed transactions without the user perceiving
it. We demarcate the set of manipulations an adversary may introduce to only
system-level software, commonly known as the man in the box threat model.
Software which runs on the external device and on remote (banking) servers, can
be considered well secured: the private key is generated with strong parameters
and is properly saved on the smart card. The main attack assumption is that
the security of the enduser’s system is compromised by malware.
Thus, three technical attack vectors to manipulate the user interface arise:

– Operating system level: peripheral manipulation (keyboard, screen, etc.)
– Application level: browser manipulation
– Web application level: client-side JavaScript manipulation

The web application level attack vector poses less effort, but most flexible attack
surface. JavaScript may be ported to other operating systems and the attack may
be reconstructed for other commercial browser-based banking solutions.

The attack is divided into two stages: at first we modify the running applica-
tion to include our malicious procedures in any webpage (see Figure 1). Secondly,
we conduct the malicious manipulation of transaction using dynamically loaded
JavaScript from external sources (see Figure 2).

324 D. Bußmeyer et al.

Banking
HTTPS
Server

Banking

HTML
Javascript

IsDebuggerPresent() { return 0; }

Sleep / time / ExitThread

Malware Memory Patch
Modified Firefox

Code
Check

SSL_* /
PR_Recv
Functions

JS_EvaluateUCSc
riptForPrinciples

Function

Malware
Function

Hook

JavaScript
Function
from the
banking

webpage

JavaScript

document.write
('<script src=...

Fig. 1. Overview of stage one of the proof of concept attack

3.2 Implementation

The implementation of stage one is done using the Immunity Debugger 1 and its
Python-based scripting interface. Although a real world rootkit would certainly
not use a debugger to hook and modify the relevant functions, we choose this
technique because we only wanted to demonstrate the general feasibility.

To circumvent the code integrity checks and to manipulate the JavaScript
processing functions, we first patch the IsDebuggerPresent() function to remain
undetected. We therefore let it return zero for any call, as displayed in Figure 1.

1 function = imm.getAddress("kernel32.IsDebuggerPresent")
2 imm.writeMemory(function , imm.Assemble("xor eax , eax\n ret"))

Listing 1.1. IsDebuggerPresent always returns zero.

To introduce the malicious JavaScript code, we hook the Firefox function
JS_EvaluateUCScriptForPrinciples() from js3250. dll , which processes any Java-
Script found in the originally legitimate HTML received via SSL from the banking
1 For details see: http://www.immunityinc.com/products-immdbg.shtml

http://www.immunityinc.com/products-immdbg.shtml

Attacking of SmartCard-Based Banking Applications 325

window.onload

register EventListner
for transaction

submission

save original
input

substitue input
with malicious

input

visually hide
modification from

the enduser

submit malicious
transaction

find text with
modification

originalmanipulated

substitute text
with original

document.location ==
transaction form?

yes

no

Fig. 2. Overview of stage two of the proof of concept attack

server. We then modify the legitimate JavaScript to include a remote script loaded
from the adversary’s page.

1 document.write(
2 ’<script src="http :// example.com/malicious.js"></script >’)

Listing 1.2. Injection of malicious JavaScript.

This way every page viewed in the secure SSL banking context includes mali-
cious and remote JavaScript rootkit which may modify every in- and output on
the webpage.

The second stage, displayed in Figure 2, is implemented in the loaded file
malicious. js . First, when the window.onload event fires, the document.location
is checked whether we are on a banking webpage where the user enters a new
transaction destination. If this is the case an event handler is registered for the
submit button which in addition to the transfer of specific crucial content of
the banking transactions also modifies these values, e.g., the destination account
or the amount of money to be transferred. To graphically hide the replacement
after the user has clicked the submit button, the text color changes to white.
The original input by the user is saved to a cookie for later use. The form is then
submitted to the banking server, which expects a transaction to the manipulated
account.

326 D. Bußmeyer et al.

If we then land on a webpage which summarizes the transaction, or other-
wise displays content, we have to make sure that the manipulated transaction
is substituted with the original transaction. We therefore evaluate a regular ex-
pression on all text fields, which replaces the manipulated transaction values
with the saved original values from the submission above. This way the enduser
never sees the manipulated transaction, because the transaction is only shown
in the document object model over which the JavaScript rootkit has full control.

The advantages of implementing the main malicious routines using JavaScript
is that the adversary may dynamically react on the content of the target victim
site. This is enabled by the dynamic loading of the JavaScript each time a website
is rendered and eliminates the need for a malware update function.

4 Related Work

Several approaches exist, e.g. [7], to leverage USB devices towards secure trans-
action signature devices.

Vulnerabilities of transaction signature software has been shown before [3,6,2].
The main attack against class one readers is the keylogger attack, although
the modification of signature text has been demonstrated for common banking
software.

Several frameworks exist to modify a running application to inject our ma-
licious payload into the webpage. Although we also leverage code modification
techniques to inject JavaScript code, the main rootkit functionality is imple-
mented in JavaScript. Besides [1] this is one of the first attacks on internet
software using JavaScript as a main rootkit environment.

5 Mitigation

As already mentioned, the usage of a class one smart card device is a conceptual
problem. By using this hardware device further security features are useless.

Because the enduser has no extra control over data signed with his or her
private key, all malware attacks can take place on his or her computer. Due to
a missing display on the USB device or the possibility of entering the PIN code
at the smart card reader itself, the enduser has to rely on the data shown on his
or her screen. An additional check whether the signed and actually shown data
differ is not a valid option.

All security features that smart cards are capable of, do not apply to the
concept considered here, because all software is running on the enduser’s system.
A good approach to provide more security within this concept is the usage of
an at least class two smart card reader. When integrating this hardware, the
smart card’s PIN does not leave the reader. A smart card reader class three, in
contrast, is one step ahead by showing the data to be signed or encrypted on an
extra display. In this case the user is able to actually see the data and track the
corresponding data flow.

Attacking of SmartCard-Based Banking Applications 327

If strong security requirements are defined, as for example for online banking
software, concepts have to be considered thoroughly. Just adding extra hardware
to the solution neither makes it more secure nor bulletproof. Only a well designed
scheme has good chances to win the arms-race between upcoming advancing
malware attacks and a feasible usability.

6 Conclusion

In this paper we have shown how a class one smart card reader implementation
can be attacked under the man in the box model. Although this has been common
knowledge for years and attacks on these systems have occurred in the past, there
are still commercially available products building their security concept on the
basis of a class one reader. To conduct the proof of vulnerability, we used a
JavaScript-based attack vector and could successfully manipulate the content of
the financial transaction without being visible for the user. In summary it turns
out that a class one security model is not sufficient when transaction security is
demanded. Whenever transaction authenticity is required, at least a class three
reader has to be used which allows a check of the transaction details on a trusted
display. But it is also clear that some application scenarios exist where a class
one reader is the only choice as a result of the business constraints. In this case a
classic threat model analysis has to show which transaction mechanism satisfies
the required process security.

References

1. Adida, B., Barth, A., Berkeley, U., Jackson, C.: Rootkits for JavaScript Environ-
ments. In: 3rd USENIX Workshop on Offensive Technologies, WOOT 2009 (2009)

2. Drimer, S., Murdoch, S., Anderson, R.: Thinking inside the box: system-level failures
of tamper proofing. In: IEEE Symposium on Security and Privacy, SP 2008, pp.
281–295 (2008)

3. Langweg, H., Langweg, H., Snekkenes, E.: A Classification of Malicious Software
Attacks. In: Proceedings of 23rd IEEE International Performance, Computing, and
Communications Conference (2004)

4. Marlinspike, M.: More Tricks For Defeating SSL In Practice. Blackhat USA (2009)
5. Sotirov, A., Stevens, M., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D., de

Weger, B.: MD5 considered harmful today: Creating a rogue CA certificate. In:
25th Chaos Communications Congress, Berlin, Germany (December 2008)

6. Spalka, A., Cremers, A., Langweg, H.: The Fairy Tale of What You See Is What
You Sign. Trojan Horse Attacks on Software for Digital Signatures. In: Proceedings
of the IFIP WG, vol. 9 (2001)

7. Weigold, T., Kramp, T., Hermann, R., Horing, F., Buhler, P., Baentsch, M.:
The Zurich Trusted Information Channel–An Efficient Defence against Man-in-the-
Middle and Malicious Software Attacks. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M.
(eds.) Trust 2008. LNCS, vol. 4968, pp. 75–91. Springer, Heidelberg (2008)

Security Applications of Diodes with Unique
Current-Voltage Characteristics

(Short Paper)

Ulrich Rührmair1,�, Christian Jaeger2, Christian Hilgers1, Michael Algasinger1,
György Csaba3, and Martin Stutzmann1

1 Computer Science Department
2 Walter Schottky Institute

3 Institute for Nanoelectronics
TU München, Germany

ruehrmai@in.tum.de, christian.hilgers@mytum.de, csaba@tum.de,
{christian.jaeger,michael.algasinger,stutz}@wsi.tum.de

http://www.pcp.in.tum.de

Abstract. Diodes are among the most simple and inexpensive electric compo-
nents. In this paper, we investigate how random diodes with irregular I(U) curves
can be employed for crypto and security purposes. We show that such diodes
can be used to build Strong Physical Unclonable Functions (PUFs), Certificates
of Authenticity (COAs), and Physically Obfuscated Keys (POKs), making them
a broadly usable security tool. We detail how such diodes can be produced by
an efficient and inexpensive method known as ALILE process. Furthermore, we
present measurement data from real systems and discuss prototypical implemen-
tations. This includes the generation of helper data as well as efficient signature
generation by elliptic curves and 2D barcode generation for the application of the
diodes as COAs.

Keywords: Physical Cryptography, Physical Unclonable Functions, Certificates
of Authenticity, Random Diodes, ALILE Crystallization, SHIC PUFs.

1 Introduction

The use of physical systems with an irregular, at least partly random finestructure re-
cently has gained strong attention in the security and crypto community. In lack of
an established, common term, one might call the related field physical cryptography,
distinguishing it from quantum cryptography or DNA-based approaches. As has been
shown in a number of publications starting as early as in the 1980s [1], such disor-
dered physical systems can lead to security applications with enhanced cost efficiency
and/or security. Classes of systems that are useful in the area include Strong Physical
Unclonable Functions (PUFs) [2] [3] [4], Certificates of Authenticity (COAs) [5] [6],
or Physically Obfuscated Keys (POKs) [7] (also called Weak PUFs in [4]).

� Corresponding author.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 328–335, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

http://www.pcp.in.tum.de

Security Applications of Diodes with Unique Current-Voltage Characteristics 329

In this paper, we are concerned with the security applications of diodes with irregular
I(U) curves. Such diodes have been prepared in our group by a special, crystallization-
based fabrication method known as ALILE process [8] [9]. As we are going to show,
they can be employed as building blocks for all three named systems, i.e. both for
Strong PUFs, COAs and POKs. Furthermore, they are cheap, take very small chip area,
and have a good temperature stability. Therefore, so we argue, they have the potential
to become a useful and broadly applicable tool in physical cryptography.

The paper is organized as follows. In section 2, we explain the ALILE fabrication
process for our diodes. Section 3 describes the use of the diodes as COAs or unforgeable
labels, and Section 4 discusses their employment as POKs. In Section 5, we illustrate
how our diodes can help us to realize a special type of Strong PUF with high infor-
mation content, which is naturally immune against machine learning attacks. Section 6
concludes the paper.

2 Sample Preparation

For the preparation of the random diodes we use the aluminum-induced layer exchange
(ALILE) process [8] [9], which is known to result in polycrystalline films with p-type
conduction [10]. This process is used to crystallize amorphous silicon (a-Si) layers ex-
ploiting the catalytic effect of aluminum. Here, an Al/oxide/a-Si layer stack is annealed
at temperatures below the eutectic temperature of the Al-Si system. Annealing of the
sample leads to diffusion of the Si atoms into the Al layer. Crystallite formation occurs
where local supersaturation of the Al with Si is achieved. In addition to that, atomic-
scale irregularities and defects, e.g. grain boundaries in the Al, can serve as crystalliza-
tion sites. Thus, the actual crystallization sites can neither be predicted nor controlled,
in particular not by the manufacturer of the structure. The same holds for the irregular
crystallite growth.

To illustrate the natural randomness of the process, Fig. 1 a depicts the first step of
crystallization recorded by an optical microscope, showing the random distribution of
the initial crystallization sites. Fig. 1 b illustrates the random crystallite development
in later states of the process. In the ALILE-based fabrication of our random diodes, we
chose n-type crystalline silicon wafers as the substrate (see Fig. 1 c) [11].

Medium rectification rates of the diodes are observed for diodes prepared on highly
doped wafers (e.g. ρ = 0.003 − 0.007 Ωcm). Such diodes, which exhibit random

100 m�

a)
c)b)

Fig. 1. (a) First crystallites (dark spots) appearing in the Al-matrix during the ALILE process. (b)
Irregular growth of the crystallites. (c) Schematic sketch of the diodes’ structure.

330 U. Rührmair et al.

I(U) characteristics over the whole current-voltage range (see Fig. 2 a), are ideally
suited for applications such as electrical COAs (Sec. 3) or POKs (Sec. 4). A very high
rectification ratio of the diodes (up to 2 × 107) is obtained for using low doped wafers
(e.g. ρ = 1−10 Ωcm); see Fig. 3 a. This high rectification allows the application of the
diodes in large crossbars structures with high information density, i.e. as Strong PUFs
(see Sec. 5). Further details of the fabrication of ALILE layers and the diode fabrication
can be found in [10] [11].

3 Electrically Readable Certificates of Authenticity

The use of a disordered physical structure as unforgeable label in connection with an
accompanying digital signature has first been proposed in [1], and was termed Certifi-
cate of Authenticity (COA) in [5] [6]. COAs require a unique structure that generates a
non-imitable analog measurement signal, which must be measured by an external mea-
surement device. (Note that in opposition to that, most PUFs generate a digital output
and have an integrated measurement device.)

Due to the complex and varying I(U) curves, ALILE-diodes can be employed for
said task. They can form cheap COAs whose electrical read-out allows very inexpensive
readers.

Prototypical Implementation. To test how many different diodes can be distinguished
reliably and repeatedly, we collected measurement data of 16 different individual diodes
on one chip (Figure 2 a). For 10 out of 16 diodes we repeated every measurement 5
times, and determined the average I(U) curves by taking the arithmetic mean. We also
calculated the maximum deviation and the average deviation from the average I(U)
curve. In Figure 2 b, the deviation is given in per cent of the respective average value.
We observe a decreasing deviations for higher positive voltages, whereas the deviation
is slightly lower in the forward direction of the diodes (negative voltages).

Fig. 2. a) Characteristic I(U)-curves of various diodes. b) Average and maximum deviation of
the current values upon multiple measurements.

Security Applications of Diodes with Unique Current-Voltage Characteristics 331

As straightforward helper data for reliable diode identification, the average curves
were tabbed at the fixed voltages -1.3 V, -0.65 V, 0.65 V and 1.3 V. An obvious condition
for reliable identification is that the average current values at each supporting point must
at least allow a deviation as large as the maximum deviation shown in Figure 2 b. The
maximum deviation values for our supporting points are as follows: 1.60 at -1.3 V; 2.95
at -0.65 V; 5.67 at 0.65 V; 3.96 at 1.3 V.

The data gathered by us shows that even at a (hypothetical) variance of up to 27%
all the 16 diodes could still be distinguished reliably. At the same time, the diodes only
showed deviation values of up to 6% in our experiments. This confirms the possibility
for realiable identification.

Along the same lines, we executed a first estimation of the overall number of diodes
that can be distinguished with the four supporting points at said voltage levels. We as-
sumed a maximal, practically occurring measurement variance of 10% in our calcula-
tion, and obtained roughly 160 distinguishable diodes within the broad band, and around
200 distinguishable diodes in the whole current range. To further increase the complex-
ity of the unique, analog COA-signal, experiments are on the way in our group to inves-
tigate the frequency spectra arising from networks of 10 to 100 random diodes. Such
periodic networks of non-linear components can exhibit rich, complex spectra [12].

To collect additional support for the applicability of random diodes as unforgeable
labels, we carried out a prototypical COA implementation on the basis of 2D barcodes.
Parameters of interest here are the resulting barcode sizes and longterm security.

We started by selecting a suitable 2D-barcode, choosing the widely used Data Ma-
trix Code, and implemented it by use of the libdmtx library [13]. Due to the limited
storage capacity of barcodes, shorter signatures than RSA are preferred in the gener-
ation of COAs; our implementation is based on the bilinear pairing based scheme by
Zhang, Safavi-Naini und Susilo (ZSS) [14], which allows signatures of only 160 bits.
For the implementation we chose the PBC library [15] with the elliptic curve type F .
We assumed that a single waver with 20 diodes is applied as unique object, and that the
following information must be stored on the product: Manufacturer ID, product related
information (16+48 bit); helper data (20 x 14 bit); digital signature (160 bit). Using a
barcode module width 0.25 mm, this leads to a barcode of size 0.81 cm2. We succesfully
generated such a barcode with data from our real measurement data and for exemplary
product related data.

Our diode-based approach to COAs therefore leads to inexpensive labels with bar-
code sizes of less than 1 cm2. It allows one of the first electrical COAs with high security
and complex analog output; previous COAs were mainly based on optical structures or
radiowave scatterers. According to the estimate given in [16], the employed 160-bit el-
liptic curve signature will be secure until 2019. Signature security until the year 2050
is possible, again on the basis of elliptic curves, with key bitlength around 206 [16] and
barcode sizes of still around 1 cm2.

4 Physically Obfuscated Keys from Random Diodes

Random physical structures can also be used as a non-volatile storage for secret binary
keys. Due to their disordered and/or tamper sensitive nature, they may be harder to

332 U. Rührmair et al.

extract invasively than binary keys stored in EEPROM, for example. This concept has
been termed a Physically Obfuscated Key (POK) [7], a Weak PUF [4] or also an ob-
fuscating PUF [3]. Applications of POKs naturally include any cryptographic protocols
based on secret binary keys, including hardware identification schemes of all sort. They
are particularly well suited to store keys safely in small, inexpensive mobile systems,
where effective key protection is otherwise difficult to achieve. As we are going to show,
random ALILE-diodes can also be used as cheap, stable POKs with remarkably high
information density.

Reliable Key Extraction. In the application of ALILE-diodes as POKs, our focus lies on
the highly robust extraction of a string (the later key) from the I(U) curves in Fig. 2a).
In opposition to COAs, our helper data furthermore should not reveal any information
about the binary key which it helps to extract from the POK (see also [17]), since the
key must remain secret. We applied ideas taken from Linnartz et. al [18], where the
y-axis of the verification measurement is split in equal sections, and the measured data
points are shifted towards the arithmetic mean of these sections (i.e. away from the
section borders in order to avoid bit flips) by the helper data.

Our data base were the I(U)-curves of the 16 diodes that we already used in section
3. Once more, we set the four supporting points at -1.3 V, -0.65 V, 0.65 V and 1.3 V. Our
aim is to extract one bit from the current value at each of the four supporting points,
four bits in total per I(U)-curve. Inspired by [18], we proceeded as follows: Firstly,
we calculated at each supporting point k (k = 1, . . . , 4) the median ck of the current
values of all diodes at this supporting point. Secondly, for each supporting point k, we
divided the current-axis into 8 sections. Each section i (i = 1, . . . , 8) its determined by
its lower border bk

i and upper border bk
i+1, where bk

i = ((p + 1)/(1 − p))i−4 · ck for
i = 1, . . . , 8. In other words, the sections are of equal length on a logarithmic scale,
and center around bk

4 = ck. We choose p = 0.5 to compensate measurement errors of
up to +/-50%. We further denote the arithmetic mean of the section i (with the borders
bk
i and bk

i+1) as mk
i,i+1. As is supported by our measurement data, we assume that the

measurement points are distributed approximately uniformly over all sections. Under
these circumstances, the helper data leaks few/none information about the extracted bit;
see also [18].

During the enrollment phase of the POK at the manufacturer, we generate for every
measurement sk at the supporting point k helper data hk in the following way:

hk =
mk

i,i+1

sk
for the unique i ∈ {1, . . . , 8} that satisfies bk

i ≤ sk < bk
i+1 (1)

During the verification the extracted bit x(k) can be computed with a verification mea-
surement vk at supporting point k:

x(k) =

{
0 if bk

2i ≤ hkvk < bk
2i+1

1 if bk
2i+1 ≤ hkvk < bk

2i+2
(2)

With p = 0.5 we could obtain 11 different bit strings out of the 16 diodes, while the
helper data leaks less information about the bit strings. This means that at least 3 bits

Security Applications of Diodes with Unique Current-Voltage Characteristics 333

per diode can be extracted in a stable manner and at an error compensation rate of 50%
measurement deviation. Our results suggest the usability of one of the simplest and
smallest electrical components – namely diodes – as POKs.

5 Machine Learning Resistant Strong PUFs via Crossbar
Structures

A Strong PUF is a physical system S which meets the following requirements: (i) S
can be excited with external stimuli or challenges Ci, upon which it reacts with cor-
responding responses RCi . (ii) It is infeasible, even for the original manufacturer of
S, to produce a second system S′ which has the same challenge-response-behavior as
S. (iii) It is difficult for an adversary to correctly predict an unknown response RC to
a randomly chosen challenge C numerically, without conducting an actual measure-
ment on S. This security feature shall hold even if many other challenge-response pairs
(Ci, RCi) are known to the adversary, or if he had previous physical access to S for
a limited period, during which he could conduct any physical measurement on S. In
theory, these properties can be met due to the high disorder/information content and/or
the complex internal model of S.

Applications of Strong PUFs include identification and key establishment between
central authorities and mobile decentral systems [2] [19]. Their complex challenge-
response behavior is sufficient to guarantee security in such applications. No execution
of costly asymmetric schemes in the mobile systems is necessary.

Current candidates for electrical Strong PUFs contain only a relatively small (max.
several hundreds) of interacting components. Thus, relatively few (again some hun-
dred) internal parameters completely determine their behavior. This is one of the main
reasons why basically all of them have been attacked successfully by machine learning
techniques [3] [20]. An alternative design route to Strong PUFs, that has been suggested
by our group in [21], is to employ as many (up to billions), densely packed random sub-
units as possible, which are read out individually and independently of each other. Our
principle is comparable to a read-only memory with maximal size, random information
content, and intrinsically limited read-out rate. We showed in [21] that large, mono-
lithic, memory-like crossbar structures (Fig. 3b) based on random diodes are very well
suited to realize this approach. Due to their simple and regular geometry, they can reach
optimal information densities (up to 1010 to 1011 bits per cm2). The crossbars can be
designed in such a way that (i) parallel read-out of different memory units (i.e. diodes)
is impossible; (ii) faster read-out than a preset limit leads to overloading and immediate
destruction of the wiring, rendering the remaining structure unreadable. Note that the
slow read-out rate is not enforced by an artificially slow access module or the like, but
by the inductive and resistive capacitances of the structure itself [22].

The resulting Crossbar PUFs are provably immune against machine learning attacks:
Their security merely depends on the access time of the adversary, and on the ratio of
the already read-out bits vs. the number of overall bits stored in the structure. Modeling
attacks subsequent to the read-out are fruitless, since all components are independent
of each other. The exact security properties of Crossbar PUFs thereby depend on the
employed circuit technology. With a 30nm technology, for example, Crossbar PUFs

334 U. Rührmair et al.

Bit lines

Word lines

Forward biased

Reverse biased

Zero biased

Zero / Reverse biased

+ V /2
dd

- V /2
dd + V /2

dd

- V /2
dd

b)a)

Fig. 3. a) I(U) curves of diodes with high rectification rates; b) schematics of a crossbar structure

of size 1 cm2 could achieve security of up to 3 years of continuous, uninterrupted ad-
versarial access, while enabling read-out rates of 103 bits per second [21]. They could
easily be implemented in plug-in devices and on chipcards. Note that all current Arbiter
PUFs and variants that run at a 1 MHz CRP frequency become susceptible to modeling
attacks after less than a second of uninterrupted adversarial read-out [3] [20].

One prerequisite left open in [21] was whether random diodes with a rectification
ratio of at least 105 could be produced by inexpensive techniques. Such high rectifica-
tion rates are necessary to realize stable read-out and to limit parasitic current paths in
the monolithic, large crossbar [21] [22] . We have now been able to fabricate diodes
with even higher rectification by use of the ALILE process (Fig. 3 a). They indeed en-
able the first electrical PUFs that remain secure in the face of adversarial access of up
to years and against machine learning attacks, further illustrating the security potential
of random diodes. We suggest the term SHIC PUFs (pronounce as “chique PUFs”)
for this new type of PUF, where the acronym SHIC stands for Super High Information
Content.

6 Summary

We have argued on the basis of real measurement data and prototypical implementations
that random, irregular diodes can be applied for the construction of COAs, POKs and
Strong PUFs at the same time. They have the advantage of being one of the smallest and
simplest electrical components, and that they can be produced by inexpensive methods.
This gives them a strong potential for physical cryptography applications.

Acknowledgements

The presented work was conducted within the Physical Cryptography Project at the TU
München. We acknowledge financial support by the International Graduate School of
Science and Engineering (IGSSE) and the Institute for Advanced Study (IAS) at the TU
München. We thank Michael Scholz and Matthias Bator for useful discussions.

Security Applications of Diodes with Unique Current-Voltage Characteristics 335

References

1. Bauder, D.W.: An Anti-Counterfeiting Concept for Currency Systems. Research report PTK-
11990. Sandia National Labs, Albuquerque, NM (1983)

2. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical One-Way Functions. Science 297,
2026–2030 (2002)

3. Rührmair, U., Sölter, J., Sehnke, F.: On the Foundations of Physical Unclonable Functions,
http://eprint.iacr.org

4. Tuyls, P., Schrijen, G.J., Skoric, B., van Geloven, J., Verhaegh, N., Wolters, R.: Read-Proof
Hardware from Protective Coatings. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

5. Vijaywargi, D., Lewis, D., Kirovski, D.: Optical DNA. In: Financial Cryptography 2009, pp.
222–229 (2009)

6. DeJean, G., Kirovski, D.: RF-DNA: Radio-Frequency Certificates of Authenticity. In: Pail-
lier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 346–363. Springer, Hei-
delberg (2007)

7. Gassend, B.: Physical Random Functions, MSc Thesis, MIT (2003)
8. Nast, O., Wenham, S.R.: Elucidation of the layer exchange mechanism in the formation of

polycrystalline silicon by aluminum-induced crystallization. Journal of Applied Physics 88,
124–132 (2000)

9. Nast, O., Hartmann, A.J.: Influence of interface and Al structure on layer exchange during
aluminum-induced crystallization of amorphous silicon. Journal of Applied Physics 88, 716–
724 (2000)

10. Antesberger, T., Jaeger, C., Scholz, M., Stutzmann, M.: Structural and electronic properties
of ultrathin polycrystalline Si layers on glass prepared by aluminum-induced layer exchange.
Appl. Phys. Lett. 91, 201909 (2007)

11. Jaeger, C., Algasinger, M., Rührmair, U., Csaba, G., Stutzmann, M.: Random pn-junctions
for physical cryptography. Appl. Phys. Lett. 96, 172103 (2010)

12. Berkemeier, J., Dirksmeyer, T., Klempt, G., Purwins, H.-G.: Pattern Formation on a Non-
linear Periodic Electrical Network. In: Zeitschrift für Physik B Condensed Matter. Springer,
Heidelberg (1986)

13. Laughton, M.: (2009), http://www.libdmtx.org/documentation.php
14. Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings

and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
277–290. Springer, Heidelberg (2004)

15. Lynn, B., et al. (2009), http://crypto.stanford.edu/pbc/
16. Lenstra, A.K.: Selecting cryptographic key sizes. Journal of Cryptology (2001)
17. Guajardo, J., Kumar, S., Schrijen, G., Tuyls, P.: FPGA Intrinsic PUFs and Their Use for IP

Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80.
Springer, Heidelberg (2007)

18. Linnartz, J.P., Tuyls, P.: New Shielding Functions to Enhance Privacy and Prevent Misuse of
Biometric Templates. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp.
393–402. Springer, Heidelberg (2003)

19. Suh, G.E., Devadas, S.: Physical Unclonable Functions for Device Authentication and Secret
Key Generation. In: DAC 2007, pp. 9–14 (2007)

20. Rührmair, U., Sehnke, F., Soelter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling At-
tacks on Physical Unclonable Functions, http://eprint.iacr.org

21. Rührmair, U., Jaeger, C., Bator, M., Stutzmann, M., Lugli, P., Csaba, G.: Applications of
High-Capacity Crossbar Memories in Crypotography. Accepted at IEEE Transactions on
Nanotechnology (to appear)

22. Csaba, G., Lugli, P.: Read-out design rules for molecular cross bar architectures. IEEE Trans-
actions on Nanotechnology 8(3), 369–374 (2009)

http://eprint.iacr.org
http://www.libdmtx.org/documentation.php
http://crypto.stanford.edu/pbc/
http://eprint.iacr.org

Verified by Visa and MasterCard SecureCode:
Or, How Not to Design Authentication

(Short Paper)

Steven J. Murdoch and Ross Anderson

Computer Laboratory, University of Cambridge, UK
http://www.cl.cam.ac.uk/users/{sjm217,rja14}

Abstract. Banks worldwide are starting to authenticate online card
transactions using the ‘3-D Secure’ protocol, which is branded as Veri-
fied by Visa and MasterCard SecureCode. This has been partly driven
by the sharp increase in online fraud that followed the deployment of
EMV smart cards for cardholder-present payments in Europe and else-
where. 3-D Secure has so far escaped academic scrutiny; yet it might be
a textbook example of how not to design an authentication protocol. It
ignores good design principles and has significant vulnerabilities, some
of which are already being exploited. Also, it provides a fascinating les-
son in security economics. While other single sign-on schemes such as
OpenID, InfoCard and Liberty came up with decent technology they got
the economics wrong, and their schemes have not been adopted. 3-D Se-
cure has lousy technology, but got the economics right (at least for banks
and merchants); it now boasts hundreds of millions of accounts. We sug-
gest a path towards more robust authentication that is technologically
sound and where the economics would work for banks, merchants and
customers – given a gentle regulatory nudge.

1 Introduction

Card-not-present transactions take place over the Internet, phone, or post, where
the merchant and point-of-sale are not in the same physical location as the card
and its holder. Fraudulent transactions of this type now account for a large
proportion of bank fraud losses. In the UK, for example, it increased 118% from
2003 to 2008, when it accounted for £328.4m of losses to banks and merchants
– over half the £610m total for all bank card fraud [3].

This rapid increase has been driven by the deployment of smart cards based on
the EMV (Europay, MasterCard, Visa) framework [7] (branded in the English-
speaking world as ‘Chip & PIN’). The UK started this in 2003 and completed it
around 2006; most of Europe has now finished the rollout and other countries,
such as Canada, are starting. Figure 1 shows the effects on the UK fraud figures.
Chips reduced fraud via lost and stolen cards, and made card counterfeiting
harder for a while (until crooks learned to use the cards overseas), but card-not-
present fraud rose dramatically.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 336–342, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

Verified by Visa and MasterCard SecureCode 337

Year

Lo
ss

es
 (

£m
)

2004 2005 2006 2007 2008
Total (£m) 563.1 503 491.2 591.4 704.3

0
50

10
0

15
0

20
0

25
0

30
0

Card−not−present
Counterfeit

Lost and stolen

ID theft

Mail non−receipt

Online banking

Cheque fraud

Chip & PIN deployment period

Fig. 1. Fraud totals in the UK [3]

The industry’s response to this surge has been 3-D Secure (3DS), known un-
der its brand names ‘Verified by Visa’ and ‘MasterCard SecureCode’ [1]. In its
initial form, 3DS would pop up a password entry form to a bank customer who
attempted an online card payment; she would enter a password and, if it was
correct, would be returned to the merchant website to complete the transaction.
Difficulties arose with pop-up blockers and now the recommended mode of op-
eration uses inline-frames (‘iframe’). The merchant passes the card number to
Visa or Mastercard, and gets back a URL to embed in an iframe to display to
the customer. If the customer executes the protocol successfully, the merchant
gets an authorisation code to submit to his bank.

2 Security Weaknesses

The primary purpose of 3DS is to allow a merchant to establish whether a cus-
tomer controls a particular card number. It is essentially a single-sign on system,
operated by Visa and MasterCard, and it differs in two main ways from existing
schemes such as OpenID or InfoCard. First, its use is encouraged by contractual
terms on liability: merchants who adopt 3DS have reduced liability for disputed
transactions. Previous single sign-on schemes lacked liability agreements, which
hampered their take-up. Few organizations are willing to trust a third-party ser-
vice provider to authenticate users when they have no recourse in the event of
error or attack. (In any case, security economics teaches that you’re unlikely to
get a secure system if Alice guards it while Bob pays the cost of failure.) Second,
in other respects 3DS does not adopt the lessons learned from single-sign on,
and breaks many established security rules.

338 S.J. Murdoch and R. Anderson

2.1 Confusing the User – Hiding Security Cues

The standard advice given to customers to prevent phishing attacks is that they
should only enter their bank password in TLS secured sites, and where they have
verified the domain name matches what they expect. Browsers have introduced
measures to help customers, such as changing the colour of the address bar if
TLS is enabled, and making it clearer who the domain name belongs to (e.g.
through extended validation certificates). Because the 3DS form is an iframe
or pop-up without an address bar, there is no easy way for a customer to ver-
ify who is asking for their password. This not only makes attacks against 3DS
easier, but undermines other anti-phishing initiatives by contradicting previous
advice (as do emails from banks containing clickable URLs). In fact, when one
of the authors first encountered 3DS, he established that the iframe came from
securesuite.co.uk and called his bank, who informed him that this was a
phishing site. Actually this domain name belongs to Cyota (owned by RSA),
the company to which many UK banks have outsourced the 3DS authentication
process.

2.2 Activation During Shopping

Before 3DS can be used to authenticate transactions, cardholders must register
a password with their bank. A reasonably secure method would be to send a
password to the customer’s registered address, but to save money the typical
bank merely solicits a password online the first time the customer shops online
with a 3DS enabled card – known as activation during shopping (ADS). To
confirm that the customer is the authorized cardholder, the ADS form may ask
for some weak authenticators (e.g. date of birth), although not all banks do
even this. From the customer’s perspective, an online shopping website is asking
for personal details. This further undermines customers’ security usability and
trust experience; and it is being exploited by criminals, as phishing websites
impersonating the ADS form to ask for banking details [8] (see Figure 2).

2.3 Informed Consent and Password Choice

By setting up a 3DS password, the customer is deemed to have accepted new
terms and conditions. But ADS is not an effective way to obtain informed con-
sent: at the time the terms and conditions are presented, the customer’s primary
task is to complete the online purchase, so she will not pay much attention to
contract terms. Also, because setting a password is a secondary task, they are
more likely to choose a poor password, or one they use elsewhere. While Visa
requires that customers can opt out at least the first three times, banks may try
to force 3DS activation after this stage by preventing the purchase. One of the
authors attempted to opt out of using 3DS with a Maestro product; the issuer,
the NatWest Bank (now majority-owned by the UK Government), did not allow
even one card use without activating 3DS for the account.

securesuite.co.uk

Verified by Visa and MasterCard SecureCode 339

Fig. 2. Examples of phishing sites targeting 3DS

2.4 Liability Shifting

As few customers object to terms and conditions, banks are free to set terms that
shift liability to customers. For example, the Royal Bank of Scotland says [2]:
“You understand that you are financially responsible for all uses of RBS Secure.”
So despite the bank having made many poor security choices, the customer must
accept the losses – a clear example of misplaced incentives. The use of passwords
also harms customer interests because they no longer have the statutory protec-
tion afforded by signatures where, in the UK at least, the law makes a forged
signature void and thus prevents banks from using their terms and conditions to
make customers liable for forged cheques. It has already been documented that
many banks used the move away from manuscript signatures to make customers
liable for fraud [4].

2.5 Mutual Authentication

3DS may help the customer verify that she’s talking to her actual bank by
displaying a memorable phrase she chooses during the ADS process. But first,
customers are unlikely to choose a good phrase, given that their goal during
ADS is not security but shopping; and second, the memorable phrase is trivially
vulnerable to a man-in-the-middle attack.

2.6 Inconsistent Authentication Methods

The 3DS specification only covers the communication between the merchant, is-
suer, acquirer and payment scheme, not how customer verification is performed.
This is left to the issuer, and some have made extremely unwise choices. For in-
stance, one bank asks for the cardholder’s ATM PIN. It’s bad enough that EMV

340 S.J. Murdoch and R. Anderson

has trained cardholders to enter ATM PINs at terminals in shops; training them
to enter PINs at random e-commerce sites is just grossly negligent. (Phishermen
are also asking for ATM PINs on bogus ADS forms.)

Another issuer-specific choice is how to reset the password when a customer
forgets it; here again corners are cut. Some banks respond to one or two failed
password attempts by prompting an online password reset using essentially the
same mechanisms as ADS. In a number of cases the bank requires only the
cardholder’s date of birth, which is easily available from public records; with one
(UK-government-owned) bank, two wrong password attempts simply lead to an
invitation to set a new password.

A third variable factor is whether the 3DS implementation asks for a whole
password or for some subset of its letters. The idea behind asking for a subset
is that a single-round keyboard logging attack does not compromise the whole
password. However this compels users to select relatively simple passwords, and
probably to write them down. (Thereby they will be in breach of the bank’s
terms and conditions, and can be refused a refund in case of fraud; so asking for
a subset may actually be a rational design choice for the bank.)

2.7 Privacy

An early single sign-on system (Microsoft Passport) was criticised on privacy
grounds; modern technologies such as Credentica’s U-Prove (being built into
the Microsoft InfoCard framework) prevent customers being profiled, even by
their authentication provider. 3DS, by contrast, requires that for the cardholder
to be shown a description of the transaction, this must be sent to the issuer.

With interbank payment systems, the issuer is told which merchant the cus-
tomer is dealing with, but the online payment protocol SET (Secure Electronic
Transactions) at least arranged things so that the merchant and the bank each
got only the transaction data they needed; the bank did not get a description
of the goods. So 3DS provides less privacy than either the SET proposal or the
existing legacy systems. Furthermore, most banks outsource 3DS authentication
and their contractors (e.g. Cyota) see detailed information on more transactions
than any individual bank. As these contractors are vulnerable to compulsion
(e.g. by FBI National Security Letters), the same tension may arise between
U.S. ‘anti-terror’ law and European privacy law as arose with SWIFT.

3 The Way Forward

3-D Secure has received little public scrutiny despite the fact that with 250
million users of Verified by Visa alone, it’s probably the largest single sign-on
system ever deployed. What’s more, Visa is introducing ‘original credits’, a pay-
ment system based on it, that can support person-to-person money transfer [9];
and EU banks are about to start implementing the Single European Payment
Area E-mandate, which will work somewhat like 3DS (a customer will fill out a

Verified by Visa and MasterCard SecureCode 341

bank transfer form at a supplier’s website, but using her e-banking password).
So it’s important to understand what’s wrong with 3DS, and how to fix it.

This paper has shown that while previous systems, such as InfoCard and
OpenID, had good engineering, they had no incentives for adoption. 3DS fixes
the economics, at least for merchants and banks: merchants who adopt it get
transactions treated as cardholder-present transactions with much less risk of
repudiation, while banks get to shift liability in turn to customers. (In fact
the ‘3D’ stands for three domains – the bank, the merchant and the payment
network; the customer seems not to have been considered at design time.) Visa’s
marketing emphasises VbV’s ‘global liability shift’ and claims that it ‘addresses’
73% of merchant chargebacks [9].

But 3DS ignores the other lessons learnt from earlier systems. The result is
that customers receive little benefit in security, while suffering a huge increase in
their liability for fraud. They are also trained in unsafe behaviour online. Now our
experience in recent years is that when attacks can be profitably industrialised,
they will be; the growth of man-in-the-middle attacks and malware will ensure
that 3DS is not sustainable in its present form.

What should be done technically? We believe that single sign-on is the wrong
model. What’s needed is transaction authentication. The system should ask the
customer, “You’re about to pay $X to merchant Y. If this is OK, enter the
auth code”. This could be added to 3DS using SMS messaging, or systems like
Cronto [5] or CAP (Chip Authentication Program) [6] as a stopgap. In the long
term we need to move to a trustworthy payment device. This is not rocket science;
rather than spending $10 per customer to issue CAP calculators, banks should
spend $20 to issue a similar device but with a USB interface and a trustworthy
display.

What must be done to make it happen? As this paper should bring home,
incentives are the key. Visa and MasterCard have managed to get 3DS deployed
by arranging so that merchants and banks benefit (at least in the short term)
while consumers lose out. What’s needed now is for regulators to intervene on
behalf of the consumer. The EU already has the Electronic Signature Direc-
tive, which contemplates shifting the liability for electronic transactions to bank
customers if they are equipped with a secure electronic signature creation de-
vice. The missing word is ‘only’. If the liability shift is permitted only once the
technology actually empowers the customer to decide what transactions she will
authorise, then the incentives will line up and finally we might start to move
toward a sustainable infrastructure for cardholder-not-present payments.

Acknowledgements

We thank the anonymous reviewers for their comments, Saar Drimer for his
contributions to discussions, and John Henderson for his description of the SEPA
E-mandate system. Steven Murdoch is funded by the Tor Project and employed
part-time by Cronto Ltd.

342 S.J. Murdoch and R. Anderson

References

1. 3-D Secure system overview,
https://partnernetwork.visa.com/vpn/global/

retrieve document.do?documentRetrievalId=119

2. RBS Secure Terms of Use (December 2009),
https://www.rbssecure.co.uk/rbs/tdsecure/terms_of_use.jsp

3. APACS. 2008 fraud figures announced by APACS (March 2009),
http://www.ukpayments.org.uk/media_centre/press_releases/-/page/685/

4. Bohm, N., Brown, I., Gladman, B.: Electronic commerce: Who carries the risk of
fraud? The Journal of Information, Law and Technology 2000(3) (2000)

5. Cronto, http://www.cronto.com/download/Cronto_Products_Datasheet.pdf
6. Drimer, S., Murdoch, S.J., Anderson, R.: Optimised to fail: Card readers for online

banking. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 184–200.
Springer, Heidelberg (2009)

7. EMVCo, LLC. EMV 4.1 (June 2004), http://www.emvco.com/
8. Internet Retailer. Verified by Visa security program used as bait in phishing scams

(January 6, 2005),
http://www.internetretailer.com/dailyNews.asp?id=13764

9. Varco, J.: Verified by Visa update,
http://www.barclaycardbusiness.co.uk/information zone/customer forum/

pdf/1315 jon varco visa.pdf

https://www.rbssecure.co.uk/rbs/tdsecure/terms_of_use.jsp
http://www.ukpayments.org.uk/media_centre/press_releases/-/page/685/
http://www.cronto.com/download/Cronto_Products_Datasheet.pdf
http://www.emvco.com/
http://www.internetretailer.com/dailyNews.asp?id=13764

All You Can Eat
or

Breaking a Real-World
Contactless Payment System�

(Short Paper)

Timo Kasper, Michael Silbermann, and Christof Paar

Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany
{Timo.Kasper,Michael.Silbermann,Christof.Paar}@rub.de

Abstract. We investigated a real-world contactless payment application
based on mifare Classic cards. In order to analyze the security of the
payment system, we combined previous cryptanalytical results and im-
plemented an improved card-only attack with customized low-cost tools,
that is to our knowledge the most efficient practical attack to date. We
found several flaws implying severe security vulnerabilities on the sys-
tem level that allow for devastating attacks including identity theft and
recharging the amount of money on the cards. We practically verify and
demonstrate the attacks on the commercial system.

1 Introduction

A growing number of payment systems incorporate contactless technology, as it
offers additional benefits in terms of flexibility and convenience over its contact-
based counterpart. With the recent trend towards issuing contactless smartcards
in large companies, universities and government entities, a number of privacy-
and security-related concerns have been raised.

The “ID-Card” analyzed in the following is, according to the manufacturer,
used by more than a million people in Germany. The multi-purpose electronic ID
and payment card is based on a dual-interface smartcard, i.e., both contact-based
and contactless interfaces are provided. Besides the use for payments, e.g., for
food, printing services and washing machine, the functionality of the contactless
part includes access control to workplace and apartment, and automatic record-
ing of the working hours of employees. The ID-Card can be charged at dedicated
charging terminals with a maximum amount of e 150. The wireless technology
implies new threats compared with contact-based systems, for instance, a card
could be read out from the pocket or wallet without the owner taking note of it.
Thus, we examine the security of the ID-Card as an example for a widespread

� The work described in this paper has been supported in part by the European Com-
mission through the ICT programme under contract ICT-2007-216676 ECRYPT II.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 343–350, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

344 T. Kasper, M. Silbermann, and C. Paar

payment system and intend to answer the question: How secure are today’s elec-
tronic payment systems really? We thereby focus on a realization of the ID-Card
e-cash system that is operational since fall 2006 at a large enterprise in Germany.

Through interacting with the card we identified it as a mifare Classic from
NXP, for which a number of attacks have been published recently, as summarized
in Sect. 2. We then used our custom-built radio-frequency identification (RFID)
hardware described in Sect. 3.1 to implement the most efficient practical attack
on mifare Classic known to date and to extract the secret keys from the card.
During the subsequent analysis of the system we discovered severe flaws that
enable a variety of real-world attacks, as practically evaluated in Sect. 3. The
dramatic implications of the attacks are finally described in Sect. 4.

Contactless Payment Systems. A typical contactless payment system con-
sists of RFID readers at the points of sales, and contactless smartcards in the
field that operate as electronic wallets and supposedly store the current balance
safely. A reader generates a strong electro-magnetic (EM) field at a frequency
of 13.56MHz for supplying a card with energy for its operation and starts the
communication. Contactless smartcards, as standardized in ISO 14443 [6], get
activated from up to 25 cm [8], while the communication can be passively eaves-
dropped from a distance of several meters [11].

To allow for rapid operation, the cash registers typically work autonomously
without an on-line connection to a database in the back-end, and synchronize
their data, for instance, blocked cards or the balance on the account of the cash
register, only infrequently, e.g., once per day. This scenario also applies to the
payment system analyzed in this paper. For some systems, so-called “shadow
accounts” exist for each card that contain the amount of money stored at the
instant of the last synchronization and could be used for detecting fraud or
functional errors in the system.

MIFARE Classic. Basically, the contactless mifare Classic cards are memory
cards, i.e., the information is stored in an internal non-volatile memory with an
integrated digital control unit to handle the communication with a reader. Fur-
thermore, the interchanged bitstreams can be encrypted. The cards generally
comply to Parts 1-3 of the ISO/IEC 14443A [6], but are using a higher-level
communication protocol that diverges from Part 4 of the standard. This propri-
etary protocol for authentication and subsequent data encryption promises to
prevent replay attacks, cloning, and eavesdropping by means of the proprietary
“CRYPTO1”cipher. The stream cipher is based on a 48-bit linear feedback shift
register and six non-linear filter functions. In addition to the small key space, its
cryptanalysis revealed several security vulnerabilities, hence CRYPTO1 is com-
monly regarded as cryptographically weak. A more detailed description of the
cipher and its operation principle can be found in [5].

The memory of a mifare Classic 1K chip is partitioned into 16 sectors, each
consisting of four 16-byte blocks. The read-only block 0 of the first sector contains
the factory-programmed Unique Identifier (UID) of the card and the fourth block
of each sector contains amongst others two 48-bit keys for the authentication to
that sector.

All You Can Eat 345

2 Previous Attacks on mifare Classic

Since its invention in 1995 by Philips [10], all details of the mifare Classic chip
had been kept secret until 2007, when the cipher was reverse-engineered [9].
Afterwards, the research on mifare Classic revealed numerous security-relevant
vulnerabilities, providing the basis for our system break.

Keystream Recovery. The first discovered weakness [9] is that a random nonce
nC generated by the card depends on the time elapsed between the power-up of
the card and the issuing of the authentication command by the reader. Hence,
the authors are able to reproduce the same nonce with a certain probability by
controlling the timing.

A first consequence of this weakness is a keystream recovery attack [3] requir-
ing a recorded authentication session between a genuine reader and a mifare
Classic card. Afterwards, several queries to the card are issued by a specially
prepared reader. Altogether, all 16 bytes of keystream for sector 0 and up to 12
keystream bytes for higher sectors can be recovered. The attack does not enable
card cloning, as the cryptographic keys remain secret. However, it is possible to
read or modify the whole sector 0 and partially the higher sectors.

Key Recovery from Genuine Authentications The possibility to recover parts
of the keystream led to an improved attack [4] that allows to extract a secret
key from just two eavesdropped authentications between a card and a genuine
reader. No precomputation is required and, after recording the two authentica-
tion sessions, it takes only 0.1 s to recover the secret key of one sector, using
ordinary computers.

The attack further exploits another weakness of mifare Classic cards: Instead
of computing parity bits from the actual (encrypted) bits transmitted, the parity
is derived from the plaintext. In addition, the same bit of the keystream that is
used to encrypt the parity bit of byte N is again used to encrypt the first bit of
the next byte N + 1 sent.

Card-Only Key Recovery. In a card-only scenario, an attacker only needs to be
close enough to the targeted mifare Classic card to activate it and communicate
with it by means of a special-purpose reader, in order to recover a secret key.
Garcia et al. [5] propose four different attacks to obtain the secret key of one
sector. Their most time-effective approach requires a precomputed table with a
size of 384GB. On average 4096 authentication attempts are required, thereby
keeping the nonce of the reader nR constant while varying nC , to obtain one
secret key in about two minutes. In addition, if one sector key is known to
the attacker, an authentication to that sector can be decrypted to obtain the
corresponding nC . Due to a weakness of the random number generator in the
card, the subsequent nC that is used for authenticating to another sector can be
predicted, to recover 32 bit of the keystream generated by the secret key of the
new sector. After three authentication attempts 64 bit of keystream are obtained
and used in an offline computation step to find the correct key in less than 1 s on

346 T. Kasper, M. Silbermann, and C. Paar

a standard PC. The authors make use of the fact that the card answers with an
encrypted NACK = 0x5 command under certain conditions. This known plaintext
allows to establish a side-channel to recover four bits of the keystream with a
probability of 1/256 per authentication attempt.

The latest and most efficient card-only attack [1] requires only 300 queries
to the card on average and a few seconds of off-line computation to find the
sector key. It exploits a mathematical vulnerability of the filter functions used
in CRYPTO1 to mount a differential attack on the cipher. The off-line compu-
tations are negligible, as on average only 248−32 = 216 key candidates need to
be tested in order to recover a secret key. Note, that the authors of the above
summarized papers report difficulties in fixing the card nonce nC in practice.

3 Tampering with a Real-World System

Analyzing the security of the payment system, we observed that the ID-Card
replies with ATQA = 00 04 and SAK = 08, indicating that it contains mifare
Classic chip [12]. Hence, we performed a practical key-recovery, as detailed in
the following.

3.1 Hardware and Software Set-Up

For the security analyses we use a self-built, freely programmable device termed
“RFID Tool”[7]. In contrast to commercially available products, our RFID reader
allows to fully control the communication and the RF field with a high timing ac-
curacy. This includes arbitrary chosen challenges for the authentication protocol,
intentionally wrong calculated checksums and modified parity bits.

The microcontroller of the RFID Tool was programmed to support the full
mifare Classic authentication protocol described in Sect. 1, and to allow com-
fortable reading, writing, and cloning of mifare Classic cards. The software for
the key-recovery is subdivided into two parts: During an on-line step, the embed-
ded part, running on the RFID Tool, emulates a mifare Classic reader which
collects the data needed for the attack. The data acquisition can be performed
in the field by powering the RFID Tool from a battery and storing the acquired
information internally. The data is afterwards sent via USB to a desktop PC,
where the second part of the software computes the sector keys off-line.

3.2 Recovering the Secret Keys

We implemented our attack based on a combination of the existing attacks [1,5],
as described in Sect. 2, and an open-source implementation of the CRYPTO1
cipher [2]. During a normal protocol run, the response times of the mifare
card vary. Hence, using commercial readers, the same card nonce nC can only
be reproduced with a relatively low probability during an authentication. In
order to precisely fix the timing, we use the capability of our reader to wait a
fixed multiple of 75 ns between the power-up of the card and the authentication

All You Can Eat 347

command. As a result, we can force the card to generate exactly the same nC in
every attempt, which highly improves the efficiency of our key-recovery attack.
We found that the EM field has to be turned off for approx. 70ms to ensure a
complete reset of the card — smaller time windows did not allow to fix nC to
one value. This defines a new practical lower bound for the time required for an
attack and questions some theoretical estimations in the literature.

With our current hardware setup it takes less than 30 s to perform the required
authentication runs for revealing one sector key of the card. Once the data is
collected, it takes less than 3 s to recover the key on a standard PC. To extract
all 16 sector keys from the card we need less than 16 · (30 + 3) = 528 s ≈ 9 min,
which is by a factor eight faster than the 80min for 16 sectors proposed in [1].
No precomputation or other data storage is needed for our attack.

We tested our implementation on an ID-Card and successfully revealed all
its secret keys, thereby noticing that the revealed keys differ from the factory-
programmed default keys of mifare Classic. When analyzing a second card, we
found that identical secret keys are used for all sectors. We conjectured that
all ID-Cards in the system might have the same keys. By analyzing a dozen
more cards we verified the hypothesis: All ID-Cards in the payment system have
identical sector keys.

From comparing the content of several ID-Cards, before and after carrying
out charges and payments, we learned which data the smartcard contains apart
from the read-only UID and where it is stored in the memory. We revealed that
only some bytes of the first three sectors (0, 1, and 2) are affected by monetary
transactions, while most parts of the memory remain unused. In more detail,
sector 0 contains a card number, which is for some ID-Cards also printed on the
card, and a checksum that is calculated as a XOR over all bytes of blocks 1 and
2. The credit value is stored twice in the value blocks 4 and 5 of sector 1 on the
card and is not secured by any checksum or other means. Sector 2 contains some
information about the last charging and payment process, e.g., a time stamp, a
transaction number, and the ID of the last terminal used.

3.3 Practical System-Level Tests

To determine which threats emerge from the vulnerabilities of the system, we
carried out a number of tests as detailed in the following. First, we charged an
empty ID-Card with, e.g., e 5. We copied it to a blank card — which natu-
rally has a different UID — and then pay with this (almost) cloned card: The
cloned card behaves exactly as a genuine one, and the money is withdrawn (e.g.,
e 5 → e 2.70), implying that no checks of the UID are performed.

Three hours later, we paid again with the cloned card to see whether it
is now detected or blacklisted. Still, we were able to carry out our payment
(e.g., e 2.70 → e 2). Afterwards, we inserted the original ID-Card still charged
with, e.g., e 5 and the cloned one (e.g., with e 2 balance) into the charging ma-
chine: The existence of two cards with identical card numbers but different credit
amounts is not detected, one card shows e 5, the other one e 2.

348 T. Kasper, M. Silbermann, and C. Paar

Four days later we tried to pay with the original ID-Card charged with e 5.
The money was withdrawn (e.g., e 5 → e 2.20), indicating that shadow accounts
are not used or at least no action is taken based on inconsistencies.

Finally, we changed the card number, created some fake credit value (e.g.,
e 2.30) and wrote the content to a blank card, thereby taking the check byte at
the end of block 2 into account. Even this newly produced card was recognized
as genuine and accepted for payments.

3.4 Summary of the Vulnerabilities

We conclude that the security of the analyzed ID-Card payment system is ex-
tremely low based on today’s cryptanalytical knowledge, since it relies solely on
weak mifare Classic cards with identical keys. Once the secret keys are extracted
from one card, all cards of the system can be read and written to wirelessly from
up to 25 cm [8] in less than a second. According to our practical results, the
one-time key-extraction is easily performed in minutes. All data on the cards is
stored in plaintext and almost no integrity checks are performed. Neither the
UID of cloned cards is verified, nor are cards with the same card number but a
different balance detected. Seemingly, no additional checks are performed, nei-
ther in the front-end, nor in the back-end of the system, allowing for various
attacks as illustrated in the following.

4 Resulting Attacks and Their Implications

The implications of the security flaws described in Sect. 3 are dramatic. Once
the secret keys are recovered from one card, a variety of devastating attacks
can be mounted for any card in the system. The adversary does not need to
be an employee to gain access to a card, as an anonymous ID-Card can be
obtained at any cashpoint for a deposit of e 10. Blank mifare Classic cards
can be purchased for less than e 0.50 on the Internet. All our attacks, including
the one-time key extraction, require no special knowledge, but can be performed
by any attacker who possesses our public-domain reader and the corresponding
software. In court, the actions would be difficult to prove, because no physical
traces are left when wirelessly modifying cards.

Impersonation. An adversary needs about 40ms to covertly extract the card
number, and the credit value from the ID-Card of a victim from a distance.
Then she has two options: For digital pickpocketing, she will lower the money on
the card of the victim (requiring another 40ms) and produce a new card with the
same card number and the “stolen” amount of money on it. The adversary can
now pay with an ID-Card that is known to the system, using the money of the
victim. Hence, the fraud will not be detected in the back-end. This option would
harm only the victim, while no damage is caused for the issuing institution.

As a second option, the attacker impersonates the victim by generating a new
card with the extracted card number and the extracted credit value, to obtain a

All You Can Eat 349

duplicate. In addition, she can now increase the amount of money on her card,
which will (according to our tests in Sect. 3) still not be noticed by the current
realization of the payment system. This time, the card of the victim remains
unchanged, and all losses are on the side of the issuing institution.

Trafficking ID-Cards An adversary can produce counterfeit ID-Cards with a
new, random card number and a fake credit value of, e.g., e 100, and sell them
to others. It is also conceivable that a criminal offers a service to charge the
cards of other users. Both option imply high losses for the issuing institution.

Denial of Service For a Denial of Service (DoS) attack, we assume an attacker
who wirelessly resets credit balances of ID-Cards in the field to a zero value, while
leaving the rest of the data unchanged. Performing this attack would harm and
confuse all affected legitimate card owners, and result in considerable costs for
the customer service and loss of credibility for the contactless payment system.

Distributed All-You-Can-Eat In contrast to a DoS attack, an attacker can wire-
lessly set credit balances of ID-Cards in the field to a high value, e.g., e 100.
For both DoS and this rather anarchistic “all-you-can-eat”attack, modifying the
two value blocks storing the credit value takes again just about 40ms. Hence,
the attacks can be carried out easily in practice, e.g., by setting up a disguised
reader device near a waiting line of the point of sales that modifies the balance
of anyone who gets close enough to it accordingly. It is unlikely that a legitimate
user of the payment system complains about having too much money on his
card, hence the fraud might be detected very late and the financial losses for the
institution would be dramatic. In the long term, the attack would render the
payment system inoperative.

Emulation of Arbitrary Cards Employing an electronic device that can emulate
a mifare card, e.g., the“fake tag”developed in [7], an adversary can emulate any
ID-Card including its UID, e.g., to behave like an exact clone of a card. Thus,
the fake tag can be used (hidden in the wallet) to pretend the presence of a new
card with a random UID, a random card number and a random credit value for
every payment, thus making detection of fraud and blacklisting impossible. For
criminals, selling this device could be very profitable, since it allows for unlimited
payments.

5 Conclusion

We summarized the existing attacks on the mifare Classic and implemented the
most efficient practical card-only attack to date using our custom-built equip-
ment at a cost of below e 40. Testing it at hand of the widespread ID-Card
payment system we show that recovering the relevant secret keys takes less than
2min. Once the keys are compromized, the security of the whole system collapses
instantaneously, as it turns out that no additional cryptographic mechanisms or
other checks are implemented.

350 T. Kasper, M. Silbermann, and C. Paar

Our subsequent analysis of the ID-Card payment application reveals obvious
vulnerabilities that pose a great threat to its overall security. An adversary can,
in 40ms and imperceptibly for the victim, read out a card or write to it, increase
or decrease its credit balance, impersonate the victim or simply clone his card.
Furthermore, a criminal can sell counterfeit cards or electronic devices that em-
ulate a new random card, and hence permit an unlimited amount of payments.
Prosecution of the adversary or the victims is not promising. Since the attacks
leave no physical traces, it is difficult (or in some cases impossible) to prove that
a crime has been committed.

The security flaws do not rely solely on weaknesses of the contactless smart-
cards used, but are mainly caused by the realization on the system level. The
demonstrated attacks, that can be performed by non-specialists, would become
a lot harder or even infeasible in practice, if the system integrator would address
the problems detailed in this paper. Using basic cryptographic knowledge, coun-
termeasures could be implemented to obtain a higher security level that would
probably be sufficient in the context of micropayments, even on the basis of the
weak mifare Classic cards.

References

1. Courtois, N.: The Dark Side of Security by Obscurity - and Cloning MiFare Classic
Rail and Building Passes, Anywhere, Anytime. In: SECRYPT, INSTICC, pp. 331–
338 (2009)

2. Crapto1. Open Implementation of CRYPTO1 (2008),
http://code.google.com/p/crapto1/

3. de Koning Gans, G., Hoepman, J.-H., Garcia, F.D.: A Practical Attack on the
MIFARE Classic. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 267–282. Springer, Heidelberg (2008)

4. Garcia, F.D., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R.,
Schreur, R.W., Jacobs, B.: Dismantling MIFARE Classic. In: Jajodia, S., Lopez, J.
(eds.) ESORICS 2008. LNCS, vol. 5283, pp. 97–114. Springer, Heidelberg (2008)

5. Garcia, F.D., van Rossum, P., Verdult, R., Schreur, R.W.: Wirelessly Pickpocketing
a Mifare Classic Card. In: IEEE Symposium on Security and Privacy, pp. 3–15.
IEEE, Los Alamitos (2009)

6. ISO/IEC 14443-A. Identification Cards - Contactless Integrated Circuit(s) Cards
- Proximity Cards - Part 1-4, (2001), http://www.iso.ch

7. Kasper, T., Carluccio, D., Paar, C.: An Embedded System for Practical Security
Analysis of Contactless Smartcards. In: Sauveron, D., Markantonakis, K., Bilas,
A., Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 150–160. Springer,
Heidelberg (2007)

8. Kirschenbaum, I., Wool, A.: How to Build a Low-Cost, Extended-Range RFID
Skimmer. In: USENIX Security Symposium (2006)

9. Nohl, K., Evans, D., Starbug, Plötz, H.: Reverse-Engineering a Cryptographic
RFID Tag. In: USENIX Security Symposium, pp. 185–194 (2008)

10. NXP. Mifare Classic (1995), http://www.nxp.com
11. NXP. AN200701: ISO/IEC 14443 Eavesdropping and Activation Distance. Techni-

cal report (2007)
12. NXP. Mifare Classic 1K MF1 IC S50 Functional Specification (2008), www.nxp.com

http://code.google.com/p/crapto1/
http://www.iso.ch
http://www.nxp.com
www.nxp.com

Shoulder-Surfing Safe Login in a Partially Observable
Attacker Model

(Short Paper)

Toni Perković1, Mario Čagalj1, and Nitesh Saxena2

1 FESB, University of Split
2 Polytechnic Institute of New York University

Abstract. Secure login methods based on human cognitive skills can be classi-
fied into two categories based on information available to a passive attacker: (i)
the attacker fully observes the entire input and output of a login procedure, (ii) the
attacker only partially observes the input and output. Login methods secure in the
fully observable model imply very long secrets and/or complex calculations. In
this paper, we study three simple PIN-entry methods designed for the partially
observable attacker model. A notable feature of the first method is that the user
needs to perform a very simple mathematical operation, whereas, in the other
two methods, the user performs a simple table lookup. Our usability study shows
that all the methods have reasonably low login times and minimal error rates.
These results, coupled with low-cost hardware requirements (only earphones),
are a significant improvement over existing approaches for this model [9,10]. We
also show that side-channel timing attacks present a real threat to the security of
login schemes based on human cognitive skills.

1 Introduction

Personal Identification Numbers (PINs) are widely used in modern information sys-
tems to authenticate users. Unfortunately, classical PIN-entry methods (via keyboards,
keypads and alike) are all vulnerable to observation attacks [1]. Many proposals aimed
at countering the threat require the user to perform some form of cognitive tasks - so
called cognitive authentication schemes. The problem of designing a usable cognitive
PIN-entry method secure against eavesdroppers is truly challenging. Indeed, it was re-
cently shown in [4] that the cognitive scheme proposed in [12] and all its variants are
fundamentally vulnerable to attacks based on SAT solvers.

We can roughly divide existing PIN-entry methods in two classes based on informa-
tion available to a passive adversary: (i) the adversary fully observes the entire input
and output of a PIN-entry procedure, and (ii) the adversary can only partially observe
the input and/or output. For example, the PIN-entry method [5] belongs to the first class
(fully observable). In this class of methods, all information exchanged between the user
and the interrogator is available to the adversary. Unfortunately, this fact significantly
increases the amount of cognitive effort for the user; a 15 digit long PIN required 166
seconds on average [5].

On the other hand, PIN-entry methods [9,10] belong to the second class (partially
observable). In this method, the user first receives a challenge via a protected channel,
and enters the response through a public keypad. In this class of methods, a passive

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 351–358, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

352 T. Perković, M. Čagalj, and N. Saxena

adversary eavesdrops on all public communication between the user and the end sys-
tem. In another solution described in US patent [13], the user receives a challenge in
form of a random number from {0, 1, . . . , 9}, adds modulo 10 each digit of his PIN
to the digits of the random challenge, and finally enters back the outcome via a public
keypad. We term this scheme the Mod10 method.

In this paper, we design a novel Simple Table Lookup (STL) login method aimed at
improving the Mod10 method [13]. Unlike Mod10, our method does not require users
to perform any mathematical or mentally demanding operations. It requires the user to
perform nothing more than a simple table lookup. Our usability study shows that both
Mod10 and STL login methods are user-friendly and have reasonably low login times.
The obtained results reveal that Mod10 has slightly lower login time at the cost of a
higher error rate compared to the STL. Interestingly, the major source of errors with the
Mod10 method are cases in which the sum of a challenge and the PIN digit exceeds 10,
which indicates that non-math oriented people might need additional assistance when
using the Mod10 method. Indeed, by extending this method with a simple lookup table
(referred to as Mod10-table) the usability study reveals that older people prefer to use
the Mod10-table method rather than Mod10.

All the methods analyzed in this paper essentially implement the “one-time pad”
paradigm. As such they are all perfectly secure against passive observation attacks.
However, this is conditional on the fact that proper mechanisms for preventing side-
channel timing attacks are put in place. Indeed, we show that side-channel timing at-
tacks have to be considered seriously in the context of cognitive authentication schemes.

Other “partially observable” solutions that involve a protected challenge channel, as
proposed in [9] and [10], require a fairly sophisticated, non-standard and potentially ex-
pensive hardware. In contrast, our methods only require a headset, which are commonly
available or can be added with little extra cost (e.g. to ATMs).

2 Shoulder-Surfing Safe Login Based on Table Look-ups

Secure PIN-entry with the STL method. STL implements the challenge-response
paradigm and comprises three major components: (i) a protected channel ensuring se-
crecy and integrity of challenge values, (ii) a simple lookup table - a table of digits from
1 to 9 organized in such a way that each digit i is an immediate neighbor to the other
8 digits from the set {1, . . . , 9} (Figure 1(a)) and (iii) a set of response buttons (Fig-
ure 1(b)). The STL method works as follows. The computer will display the STL table
on its screen as shown in Figure 1(a). Let us assume that a user wants to authenticate
to a computer using the following PIN: 465481. Let us denote PIN digits as d0 = 4,
d1 = 6, d2 = 5, d3 = 4 and d4 = 8. At time instant t0, the user receives a random
challenge (one digit long) c0 selected from {1, . . . , 9}, c0 = 9 in our example. The
user will receive the challenge over a protected channel (e.g., over earphones plugged
into the computer). The user looks in the darker area of the STL table (Figure 1(a)) and
locates (visually) the PIN digit, d0 = 4. The user then locates (visually) the challenge
c0 = 9 in the immediate (one-hop) neighborhood of previously located digit d0 = 4.

1 With STL method every PIN digit can take one out of 9 values compared with one out of 10
in Mod10 and classical methods; note that 95 > 104.

Shoulder-Surfing Safe Login in a Partially Observable Attacker Model 353

(a) (b) (c) (d)

Fig. 1. User interface: (a) In the STL table each digit i is an immediate neighbor to the other 8
digits from the set {1, 2, . . . , i− 1, i + 1, . . . , 9}; (b) A user enters his/her response via 8 arrow
buttons and one center button; (c) Strengthening Passfaces graphical password system against
shoulder-surfing attacks; (d) The Mod10 lookup table

Finally, the user answers the challenge by clicking a response button (Figure 1(b)) that
shows the relative position of the challenge c0 with respect to the corresponding PIN
digit d0. In our example, the user clicks the “south-west” arrow, that is, he/she responds
with r0 = ⇓. It is easily seen that the response r0 unambiguously links the challenge
with the corresponding PIN digit. This procedure repeats for all the remaining PIN dig-
its. For example, for d1 = 6 the user receives c1 = 6 and responds with r1 = ◦.
Note that the STL method does not require any numerical computation on the part of
the human user. Moreover, the number of challenge-response rounds equals to the size
of the PIN. It is these two features that make the STL method highly usable (Section 3).

Passfaces. While there are many forms of graphical passwords, Passfaces [8] is perhaps
the simplest and the most attractive solution in this category. However, Passfaces is
particularly vulnerable to shoulder surfing attacks [11]. In Figure 1(c) we show that
STL naturally complements Passfaces. Using STL, the threat of observation attacks
against Passfaces can be mitigated.

Secure PIN-entry with the Mod10-table method.In order to assist non-
mathematically oriented people, we propose to extend the Mod10 method with a
simple lookup table. The Mod10 lookup table is shown in Figure 1(d). Let us assume
that a user wants to enter PIN digit 4 and that she received random challenge 7. The
user first looks up (visually) the digit 4 in the first column of the lookup table. Note
that number 4 marks the beginning of the sixth row. Then the user looks for challenge
7 in the sixth row and moves up along the corresponding column (the column nine).
The top number in this column, number 3, corresponds to the public response she has
to enter back into the system2. Note that Mod10-table (Figure 1(d)) does not involve
mathematical operations.

3 Usability Evaluation

We carried out experiments in order to study different usability aspects of the Mod10,
STL and Mod10-table login methods. The usability test is divided into STL vs Mod10
and a Mod10 vs Mod10-table study. Each study took 90 minutes per user (30 minutes

2 Note that if we order the digits in the top row as 0, 1, . . . , 9 we get responses that are consistent
with the Mod10 additions; hence the name Mod10-table.

354 T. Perković, M. Čagalj, and N. Saxena

5 10 15 20 25 30
0

5

10

15

20

25

30

Number of logins

L
o
g
in

 d
u
ra

ti
o
n
 (

s
)

Mod10 - average login

STL-average login

Mod10 - average response

STL- average response

5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

Mod10 - average login
Mod10-table -average login

Number of logins

L
o
g
in

 d
u
ra

ti
o
n
 (

s
)

Mod10 - average response
Mod10-table - average response

Fig. 2. The average login times and the average user’s response time per PIN digit from the
experiment with (left) 20 STL and Mod10 users and (right) 38 Mod10 and Mod10-table users

Table 1. Summary of the users’ demographics

Age Using PC (hours/week) Using web (hours/week)
18-25 26-40 >40 ≥ 30 15-30 6-15 ≤5 ≥ 30 15-30 6-15 ≤ 5

STL vs Mod10 18 2 0 11 6 2 1 7 7 4 2

Mod10 vs Mod10 table 22 8 8 6 18 4 10 8 5 15 10

per method). The users would take a break, of about half an hour in between the tested
methods. In the first usability study, we tested both the STL and the Mod10 methods. In
Mod10 vs Mod10-table study we wanted to test whether non-mathematically oriented
people find easier to use the lookup table compared to the basic Mod10 method. In both
STL vs Mod10 and Mod10 vs Mod10-table study the given tests were randomized. A
total of 58 participants took part in the usability study: 20 (13 males, 7 females) in the
STL vs Mod10 and 38 (26 males, 12 females) in the Mod10 vs Mod10-table study.
Table 1 summarizes user’s demographics. The test was voluntary and the users were
recruited via flyers. No one of the participants have taken part in any of our tests before.

Implementation and Test Procedure. We implemented the STL, Mod10 and Mod10-
table methods as a web application. For each participant, the same test statistics (overall
login time, error rates) were collected and stored in a central database. The usability
evaluation for each of the PIN entry methods consisted of two phases: A training phase
and an authentication phase. In the training phase participants learned how to use the
respective methods (five successful logins per method). The authentication phase served
as the actual test authentication methods. The participants were asked to successfully
login 30 times per method; there have been no other incentives on the part of the testers
(e.g. to achieve faster login times). At the end of each usability test for each login
method, the users were asked to complete a post-test questionnaire. The System Usabil-
ity Scale (SUS) [2] test was used to numerically express the usability of each method.
The System Usability Scale (SUS) is a ten-item (Likert) scale giving a global view of
subjective assessments of usability [2].

3.1 STL vs. Mod10 Evaluation Study

Login Time. In Figure 2(left), we plot the average login times taken by the 20 partici-
pants over 30 successful logins. Already after the first few successful logins, the login
time decreases quickly. The overall login times are only 12.5 (std = 7.41) and 9.5 (std
= 2.54) seconds on average for STL and Mod10 methods, respectively. Higher login

Shoulder-Surfing Safe Login in a Partially Observable Attacker Model 355

PIN login rates

E
rr

o
r

ra
te

s
 (

%
)

1-10 11-20 21-30
0

5

10

15

20

25

c+d>=10

ic+d<10i

i i

PIN login rates

E
rr

o
r

ra
te

s
 (

%
)

0

5

10

15

20

1-10 11-20 21-30 0

15

30

45

60

75

STL Mod10
0

5

10

15

20

25

30
SU-score

Error rates

E
rr

o
r

ra
te

s
 (

%
)

90

Fig. 3. The average PIN-entry error rates (%) for 20 users using (left) STL and (middle) Mod10
method. (right) The average PIN-entry error rate (%) and SU-score for 20 users.

time with STL can be explained through the size of the PIN (5 digit PIN). The average
user response time per PIN digit for both STL and Mod10 are given in Figure 2(left).
Towards the end of the testing session, the average user response time for STL and
Mod10 is 2.25 (std = 1.17) and 1.8 (std = 0.54) seconds, respectively.

Error Rates. Figure 3 shows average PIN-entry error rates for STL (Figure 3(left)) and
Mod10 (Figure 3(middle)) methods over the period of 30 consecutive successful logins.
The error rates are shown for 3 equal subsequent periods (10 successful logins per
period). In the first period, the error rates are approximately the same for both methods.
For the two subsequent periods, Mod10 has a higher error rate than STL. This difference
is better seen in Figure 3(right). It is very interesting to observe from Figure 3(middle)
that the major source of errors with the Mod10 method are cases in which the sum of
the challenge and the respective PIN digit exceeds 10. This type of errors accounts for
more than 70% of all errors with Mod10.

Usability score. The SU-scores are shown in Figure 3(right). The average SU-score for
STL and Mod10 is 73 and 78 (out of 100). The participants evaluated Mod10 as slightly
more usable because of the shorter login time (9.5 vs 12.5 seconds). The majority of
participants considered both methods easy-to-use as well as secure (Table 2(left)).

Within User Analysis. Paired t-tests [7] reveal that users achieve significantly higher
error rates (p = 0.0892) and significantly faster login time (p = 0.0023) using the
Mod10 method as compared with the STL method. However, users did not consider
this method to be significantly more usable than the STL method (p = 0.1068).

3.2 Mod10 vs. Mod10-table Evaluation Study

Login Time. In Figure 2(right), we plot average login times for 38 participants over 30
successful logins. Already after the first few successful logins the login time decreases.
The overall login times are only 10 (std = 3.92) and 12.5 (std = 3.76) seconds on
average for Mod10 and Mod10-table methods, respectively. The average user response
time per PIN digit for Mod10 and Mod10-table (Figure 2(right)) is 2 seconds (std =
0.69), and 2.7 seconds (std = 0.72), respectively.

Error Rates. Figure 4 shows average PIN-entry error rates for Mod10 (Figure 4(left))
and Mod10-table(Figure 4(middle)) methods. Similarly to the results of error rates from
STL vs Mod10 evaluation, Mod10 method achieves larger error rates due to the fact that
Mod10-table requires only a simple table lookup operations.

356 T. Perković, M. Čagalj, and N. Saxena

PIN login rates

E
rr

o
r

ra
te

s
 (

%
)

0

5

10

15

20

1-10 11-20 21-30

25

PIN login rates

E
rr

o
r

ra
te

s
 (

%
)

1-10 11-20 21-30
0

5

10

15

20

25

S
U

-s
c
o

re

0

10

20

30

40

50

60

70

Mod10-table Mod10
0

5

10

15

20

25

30
SU-score

Error rates

E
rr

o
r

ra
te

s
 (

%
)

35 80

Fig. 4. The average PIN-entry error rates (%) for 38 users using (left) Mod10 and (middle)
Mod10-table method. (right) The average PIN-entry error rate (%) and SU-score for 38 users.

Table 2. The table summarizes the responses from users about how acceptable and secure they
found using the Mod10 vs Mod10-table and STL vs Mod10 methods (5-strongly agree, 1-strongly
disagree), and which method (Mod10 or Mod10-table) they prefer the most

Using Feel secure
5 4 3 2 1 5 4 3 2 1

STL vs 10 4 6 0 0 11 5 4 0 0
Mod10 9 4 7 0 0 9 9 0 0 0

Mod10 vs 11 10 13 3 1 14 12 4 4 4
Mod10-table 9 7 12 6 4 16 13 9 2 3

Prefer Mod10 or Mod10-table
18-25 26-40 over 40 Overall

Mod10 19 6 4 29
Mod10-table 3 2 4 9

Usability score. The average SU-score for Mod10-table and Mod10 is 72 and 78 (Fig-
ure 4(right)). Thus, in spite of higher error rates, the participants evaluated Mod10 as
slightly more usable perhaps because of the shorter login time (10 seconds vs 12.5
seconds). The post-test questionnaire results in Table 2(left) show that majority of par-
ticipants considered both of the methods easy-to-use and secure. The results in Ta-
ble 2(right) also indicate that young participants (age 18-25 years) tend to prefer the
Mod10 method (87%). However, older participants (over 40 years), are likely to prefer
(50%) the login method with a simple lookup table (Mod10-table).

Within User Analysis. Paired t-tests [7] revealed that users achieve significantly higher
error rates (p = 0.0035), significantly faster login time (p = 0.000021) and signif-
icantly higher SU-score (p = 0.01674) using the Mod10 method as compared with
the Mod10-table method. From paired t-tests we conclude that users belonging to the
age group 18-25 consider the Mod10 method significantly more usable (p = 0.0409)
due to the faster login times (p = 0.001) achieved with this method despite the higher
(p = 0.001) error rate. On the other hand, the users belonging to the age group 26-40
and above 40 years do not consider the Mod10 method significantly more usable than
the Mod10-table method.

Between User Analysis. For the Mod10 method, unpaired t-tests revealed that users
belonging to the age group above 40 take significantly longer time to login compared
to the users belonging to the 18-25 group (p = 0.032). The means of login times were
9.9756 and 8.9264 seconds, respectively, corresponding to the two age groups. For the
Mod10-table method, unpaired t-tests revealed that users belonging to the age group
18-25 years achieve significantly lower error rates to complete the task compared to
the users belonging to the group 26-40 years (p = 0.00117) and above 40 years (p =
0.00891). The means of the error rates are 13.033, 24.663 and 22.994, corresponding to
the age groups 18-25, 26-40 and above 40 years.

Shoulder-Surfing Safe Login in a Partially Observable Attacker Model 357

1 2 3 4 5 6 7 8 90
0

0.1

0.2

1 2 3 4 5 6 7 8 90
0

0.1

0.2
Digit4

1 2 3 4 5 6 7 8 90
0

0.1

0.2

1 2 3 4 5 6 7 8 90
0

0.1

0.2
Digit8

Response digit Response digit

R
e

l.
 f

re
q

.
R

e
l.
 f

re
q

.

1 2 3 4 5 6 7 8 9 10
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

A
v
e

ra
g

e
 e

n
tr

o
p

y

Uncertainty set size

Random attack

Side-channel attack

Fig. 5. (left) Relative frequency with which a given response digit appears within � = 4 fastest
response digits, for PIN digits: 2, 4, 6 and 8, (right) Reduction in the average entropy due to the
side-channel timing attack

4 Side-Channel Timing Attacks

As we stated before, Mod10, STL and Mod10-table PIN-entry schemes implement the
one-time pad paradigm. As such they are all perfectly secure against passive observation
attacks. However, this is conditionally on the fact that proper mechanisms for preventing
side-channel timing attacks are put in place. Side-channel timing attack represents an in-
teresting vector of attacks on cognitive authentication schemes. A classical timing attack
is a side channel attack in which an attacker attempts to compromise a given cryptosystem
by analyzing the time it takes to execute different cryptographic operations [6]. In this
section, we analyze the possibility of reducing the entropy of PINs by simply observing
the user’s reaction time. We consider a passive attacker capable of recording the user’s
reaction time during the course of the Mod10 procedure (e.g. by using key-logging mal-
ware or a simple camera). The attacker records the user’s response time (the difference
between the moment at which the user receives the challenge value and the moment at
which the user enters his/her response. We saw earlier (Figure 3(middle)) that the major
source of errors in Mod10 scheme are the cases when the sum of two numbers exceeds
10. Consequently, we hypothesize that these additions (over 10) have longer average re-
sponse times. To verify this hypothesis, for each user (out of 38)we recorded 30 successful
logins and calculated the response time taken for entering a given PIN digit. Since there
are only 10 different challenge values and they are generated uniformly at random, each
challenge has been generated approximately 3 times on average for the fixed PIN digit.
For the fixed PIN digit we count how many users (with this PIN digit) have a given re-
sponse digit within their � “fastest” response digits3. We plot the corresponding relative
frequency in Figure 5(left) for the PIN digits 2, 4, 6, 8 and for � = 4. As shown, the shortest
response time (large bars in Figure 5(left)) for the respective PIN digit occurs in cases in
which the users receive challenges from the set {0, 1, or 2}; i.e. for “easy” additions with
challenge 0, 1 and 2. Based on these observations, we constructed a set of unique features
for each PIN digit. Then, we applied standardized pattern matching techniques (k-nearest
neighbor [3]) to a test group of users to classify their PIN digits. The designed algorithm
outputs a reduced set of most likely PIN digits. As can be seen from Figure 5(right), with
this method we can reduce the entropy from log2 10 ≈ 3.3 bits to 2.55 bits. Similarly,
in the STL method the attacker can also observe the correlation between two (or more)
equal PIN digits of the respective user and thereby reduce the entropy of the PIN digit.

3 Here we refer to � response digits of the corresponding user, which have shortest response times.

358 T. Perković, M. Čagalj, and N. Saxena

It is important to emphasize that the side-channel timing attack is not specific to Mod10
and STL only. It is common to any cognitive authentication scheme.

5 Conclusion

We made several contributions in this paper. We studied three simple PIN-entry meth-
ods – Mod 10, STL and Mod10-table – designed for the partially observable attacker
model. All methods are challenge-response protocols that allow a user to login securely
in the presence of an adversary who can observe user input (the response values). A
notable feature of the Mod10 method is that the user needs to perform a very simple
mathematical operation, whereas, in the other two methods, STL and Mod10-table, the
user performs a simple table lookup. Our usability evaluation indicates that all meth-
ods have reasonably low login times and minimal error rates. Although Mod10 method
is slightly faster compared to STL and Mod10-table, it exhibits slightly higher error
rates, and was found to be most suitable for younger users. We showed that the threat
of side-channel timing attacks has to be considered seriously in the context of cognitive
authentication schemes.

Acknowledgment. We would like to thank our shepherd Philippe Golle, and our anony-
mous reviewers for their thorough reviews and helpful suggestions.

References

1. Backes, M., Drmuth, M., Unruh, D.: Compromising Reflections - or - How to Read LCD
Monitors Around the Corner. In: IEEE Symposium on Security and Privacy (May 2008)

2. Brooke, J.: SUS: A Quick and Dirty Usability Scale. In: Usability Evaluation in Industry
(1996)

3. Cover, T., Hart, P.: Nearest Neighbor Pattern Classification. IEEE Transactions on Informa-
tion Theory 13, 21–27 (1967)

4. Golle, P., Wagner, D.: Cryptanalysis of a Cognitive Authentication Scheme (Extended Ab-
stract). In: Proc. IEEE Symposium on Security and Privacy (2007)

5. Hopper, N., Blum, M.: Secure Human Identification Protocols. In: Boyd, C. (ed.) ASI-
ACRYPT 2001. LNCS, vol. 2248, p. 52. Springer, Heidelberg (2001)

6. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer,
Heidelberg (1996)

7. O’Rourke, N., Hatcher, L., Stepanski, E.J.: A Step-by-Step Approach to Using SAS for Uni-
variate and Multivariate Statistics, 2nd edn. SAS Institute Inc. (2005)

8. The Science Behind Passfaces, http://www.realuser.com/
9. Kuber, R., Yu, W.: Authentication Using Tactile Feedback. In: Interactive Experiences, HCI,

London, UK (2006)
10. Sasamoto, H., Christin, N., Hayashi, E.: Undercover: Authentication Usable in Front of Pry-

ing Eyes. In: ACM Conference on Human Factors in Computing Systems (2008)
11. Tari, F., Ant Ozok, A., Holden, S.H.: A Comparison of Perceived and Real Shoulder-surfing

Risks Between Alphanumeric and Graphical Passwords. In: SOUPS (2006)
12. Weinshall, D.: Cognitive Authentication Schemes Safe Against Spyware (Short Paper). In:

Proc. IEEE Symposium on Security and Privacy (2006)
13. Wilfong, G.T.: Method and Appartus for Secure PIN Entry. Lucent Technologies, Inc., Mur-

ray Hill, NJ, U. S. Patent, Ed. United States (1999)

http://www.realuser.com/

Using Sphinx to Improve Onion Routing
Circuit Construction

(Extended Abstract)�

Aniket Kate and Ian Goldberg

University of Waterloo, ON, Canada
{akate,iang}@cs.uwaterloo.ca

Abstract. This paper presents compact message formats for onion rout-
ing circuit construction using the Sphinx methodology developed for
mixes. We significantly compress the circuit construction messages for
three onion routing protocols that have emerged as enhancements to
the Tor anonymizing network; namely, Tor with predistributed Diffie-
Hellman values, pairing-based onion routing, and certificateless onion
routing. Our new circuit constructions are also secure in the universal
composability framework, a property that was missing from the original
constructions. Further, we compare the performance of our schemes with
their older counterparts as well as with each other.

1 Introduction

Goldschlag, Reed and Syverson [2] proposed onion routing to achieve low-latency
anonymous communication on public networks, which motivated the original
Onion Routing project [3] and many other anonymous communication construc-
tions [4,5,6]. Among these, with its hundreds of thousands of users, the second
generation onion routing project—Tor [7]—has turned out to be a huge success.
However, with its latency times of a few seconds, users find Tor to be very slow
for their usual communication over the Internet, and employ it only in situa-
tions where their anonymity is indispensable to them. Efficiency is essential for
widespread use of anonymity networks; therefore, defining an efficient practical
onion routing protocol forms the motivation of this work.

An onion routing (OR) network consists of a set of onion routers (OR nodes)
that relay traffic, a large set of users and a directory server that provides routing
information of the OR nodes to the users. A user constructs a circuit choosing a
small ordered subset of OR nodes, where the chosen nodes route the user’s traffic
over the path formed. The key property is that it is difficult for any OR node in
a circuit to determine the circuit nodes other than its predecessor and successor.
Further, the task must also be difficult for a powerful but not global observer. The
user achieves this by sending the first OR node an onion—a message wrapped in
multiple layers of encryption (one layer per selected node). A user includes the
identifier of the next node and a random symmetric session key in each onion
layer, and uses nodes’ public keys to encrypt their respective layers. A node
� See [1] for the full version of this paper.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 359–366, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

360 A. Kate and I. Goldberg

decrypts a received onion using its private key, forwards the remaining onion to
the next node, and uses the random symmetric session key for the rest of the
session. However, this single-pass circuit construction is not forward secret; if an
adversary corrupts a node and obtains its private key, then the adversary can
decrypt all of its past communication. The adversary could then successively
compromise all the nodes in a circuit to break the anonymity of a user’s past
communications. Although changing the the public/private key pairs for all OR
nodes after a predefined interval (forward secrecy phase) is a possible solution,
it is not scalable. Every system user now has to download a new set of public
keys for all the nodes at the start of every forward secrecy phase.

Observing the above issue with forward secrecy, Dingledine, Mathewson and
Syverson [5] used an interactive and incremental telescoping approach while de-
signing Tor. In the Tor authentication protocol (TAP), which is used to negotiate
the session keys in this multi-pass circuit construction, a node’s public key is only
used to initiate the construction and its compromise does not void the security of
the session keys once the randomness used in the protocol is erased. Øverlier and
Syverson [8] improved the efficiency of Tor using a half-certified Diffie-Hellman
(DH) key agreement [9, §12.6].

However, in Tor, Θ(ν2) messages are required to create a circuit of length ν,
as compared to Θ(ν) required in a single-pass circuit construction. To solve the
scalability issue in single-pass circuit constructions, Kate, Zaverucha and Gold-
berg [10] suggested the use of an identity-based setting and defined a pairing-
based onion routing protocol (PB-OR). Catalano, Fiore and Gennaro [11] sug-
gested the use of a certificateless setting instead and defined two certificate-
less onion routing protocols (CL-OR and 2-CL-OR). Øverlier and Syverson [8]
have also suggested a single-pass circuit construction that provides forward se-
crecy eventually. However, an extensive comparison between all these schemes is
not available yet. In terms of security, none of these practical protocols achieve
security in the universal composability (UC) framework [12]. Camenisch and
Lysyanskaya [13] presented a framework for UC-secure OR circuit construction,
but their protocol is not practical enough for realistic use.
Contributions. In this paper, we present a practical generic onion routing
circuit construction protocol that achieves security in the UC model. We apply
our protocol to Tor-preDH, PB-OR, CL-OR and 2-CL-OR to define their UC-
secure versions. Importantly, the circuit construction messages for these new
protocols are significantly smaller than those in the original protocol and there
is no addition to a user’s computational cost. We achieve this using Sphinx, an
efficient message format for mix networks, defined by Danezis and Goldberg [14].

2 Preliminaries

The Sphinx Message Format. Mix message formats have been a point of
interest in research on mix networks (see references in [14]). Recently, Danezis
and Goldberg [14] proposed Sphinx as the most compact, efficient and UC-secure
cryptographic mix message format.

Using Sphinx to Improve Onion Routing Circuit Construction 361

In Sphinx, an adversary is computationally bounded by a security parameter
κ. For a prime q of size 2κ bits, let G be a cyclic group of order q that satisfies
the decisional Diffie-Hellman (DDH) assumption. Sphinx makes the circuit con-
struction message size independent of the length of the circuit, ν; we denote the
maximum length of a circuit as r. Node identifiers are κ-bit strings. Each node
has a public/private key pair. Further, Sphinx assumes a message authentication
code (MAC) μ, a pseudo-random generator (PRG) ρ and corresponding random
oracle hash functions hμ, hρ : G∗ → {0, 1}κ, where G∗ is the set of non-identity
elements of G. It also needs a random oracle hash function hb : G∗ × G∗ → Z∗

q .
Cryptographically, the most elegant feature of the Sphinx message format

is its session key derivation technique based on a repeatedly modified random
element of G. We call this technique Sphinx’s blinding logic. The mentioned
random element (α) and its repeated modified forms are called pseudonyms since
each of these random elements is a temporary public key whose private key is
held by the user. In the Sphinx blinding logic, each mix node uses a pseudonym
supplied by its predecessor and its own private key to compute the session key
with the user. To improve the unlinkability, a pseudonym must not remain the
same across the circuit. In the onion routing literature, this is done by including
separate random pseudonyms in a construction message for each node in the
circuit. In Sphinx’s blinding logic, this is achieved using a single repeatedly
changing pseudonym. At every node, a blinding factor is extracted from the
current pseudonym and the newly computed session key. The pseudonym is
then exponentiated with the blinding factor to generate the next pseudonym.
In other words, αi+1 = α

hb(αi,si)
i . The session key is computed by node ni as

si = αxi

i , where xi is the node’s private key, and by the user as explained in §3.
To send an anonymous message, a sender first chooses her mix nodes and

obtains their public keys. She then computes αi and si and wraps the message
in multiple layers of encryption using the PRG ρ to generate ciphertext values
βi. To check the integrity of the message header, she calculates and includes a
MAC γi at each mixing stage. Upon receiving a message header (αi, βi, γi), each
mix node ni extracts session keys using its private key xi and the pseudonym αi

received from the predecessor. It uses those to verify the MAC γi and to decrypt
a layer of encryption of βi. It also extracts the routing information, computes
the pseudonym αi+1 for the next node and forwards the message to ni+1.
Tor Circuit Construction and Recent Enhancements. In Tor circuit con-
struction [5], a user performs a DH key agreement with each successive node in
her circuit over a secure tunnel formed using the already-agreed session keys.
This ensures the forward secrecy of the communication immediately after these
session keys are deleted. In TAP, a user extends a circuit to node ni by gener-
ating a random xi ∈R Z∗

q and sending a DH value (that is, a pseudonym) gxi

encrypted using the (RSA) public key of node ni. Node ni decrypts the message
and responds by sending gyi , where yi ∈R Z∗

q , and a hash of gxiyi . It is important
that the user herself generates and encrypts the DH value gxi; if an intermediate
adversary OR node (nj for 0 < j < i) derives gxi , it can launch a man-in-the-
middle attack. In Sphinx’s blinding logic, node ni−1 uses the received pseudonym

362 A. Kate and I. Goldberg

gxi−1 to generate and send pseudonym gxi to node ni unencrypted. Therefore,
it is not possible to directly apply the compact Sphinx message format to Tor.

Øverlier and Syverson [8], Kate et al. [10], and Catalano et al. [11] sug-
gested improvements to Tor circuit construction. These schemes use a one-way
anonymous key agreement [10] strategy in the public-key cryptography (PKC),
identity-based cryptography (IBC) and certificateless cryptography (CLC) set-
tings respectively. Here, a user chooses a random element of Z∗

q per circuit
node and computes an associated pseudonym. A session key is computed us-
ing the node’s public key and the random element at the user end, and using the
pseudonym received and the node’s private key at the node’s end; the precise
session-key computation and the cryptographic assumption vary with the OR
circuit construction protocol. Most importantly, unlike Tor, the user does not
encrypt the pseudonyms in these schemes, which is a direct result of the inclu-
sion of the private key of an OR node in the session key generation. Therefore,
it is possible to incorporate Sphinx’s blinding logic into these schemes.

3 Using Sphinx in OR Circuit Construction

In this section, we first present the generic design of OR circuit construction
using the Sphinx methodology. We then implement the generic Sphinx format
into three OR circuit constructions. Our design goals and threat model are the
same as those of Tor. Refer to the full version of this paper [1] for details.
Generic Design. In Sphinx, a pseudonym αi+1 for node ni+1 is generated
using the pseudonym αi and the session key si generated at node ni. As discussed
above, we can use the Sphinx methodology in an OR circuit construction protocol
where a node can create or observe a pseudonym for the next node in the circuit.

To create an OR circuit construction message, we use Sphinx’s mix header
creation algorithm ([14, §3.2]) with a generalization of the session key genera-
tion. The original Sphinx message format is based on the half-certified DH key
agreement [9, §12.6], where a session key si is generated as si = y

xb0b1···bi−1
i at

the user’s end and as si = αxi

i at node ni, where (yi, xi) is the public/private
key pair for ni, αi is a pseudonym for node ni, x is the session-specific ran-
domness and b0, . . . , bi−1 are the blinding factors, bi = hb(αi, si). The different
OR circuit construction protocols use different session key generation meth-
ods, so we generalize this session key generation step. At the user end, we set
si = fU (yi, xb0b1 · · · bi−1), and at node ni, si = fN (xi, yi, αi). The other tech-
nical details of Sphinx remain exactly the same. Refer to [14, §3.2] for circuit
construction message creation and to [14, §3.6] for message processing at a node.

Note that, although Sphinx is defined for single-pass constructions, its blinding
logic is also useful in multi-pass constructions, where it can avoid the transfer of
pseudonyms in circuit extension messages. However, we concentrate on single-
pass constructions as the applicability of Sphinx is more evident there.
Security Analysis. Camenisch and Lysyanskaya [13] design a UC-secure frame-
work for onion routing. They define onion-correctness, onion-integrity and onion-
security properties for an OR scheme and prove Theorem 1.

Using Sphinx to Improve Onion Routing Circuit Construction 363

Theorem 1 (Theorem 1 [13]). An onion routing scheme satisfying onion-
correctness, integrity and security, when combined with secure point-to-point se-
cure channels, yields a UC-secure OR scheme.

Danezis and Goldberg [14] separate a wrap-resistance property from onion-
security to simplify the onion-security definition and prove the resulting four
security properties of the Sphinx message format using random oracles. We use
their security discussion to define the security requirements for our generic OR
circuit design. Refer to [1] for details.

We next apply the above generic design to three OR circuit constructions.
Tor with Predistributed DH Values (Tor-preDH). The half-certified DH
key agreement scheme [9, §12.6] is a one-pass protocol with unilateral key authen-
tication of the receiver to the sender, assuming that the sender has an authentic
copy of the receiver’s public key. Øverlier and Syverson [8] define an enhancement
to the Tor circuit construction using this technique.

Let xi ∈ Z∗
q be the private key for node ni and let yi = gxi be its public

key, where g ∈ G is a chosen generator. In the half-certified DH key agreement
scheme, a user generates a random ri ∈R Z∗

q and sends a pseudonym αi = gri to
node ni over the already formed circuit (tunnel), if any. The user generates the
session key as si = yri

i and node ni generates si = αxi

i . Øverlier and Syverson
used this to present a single-pass protocol (their second protocol).

Using the generic Sphinx design, we can not only make their eventual forward
secret protocol more efficient but also prove its security in the UC model. Here,
except for the entry node, the user is not required to send αi to node ni in
the circuit. Node ni−1 generates the pseudonym αi = α

hb(αi−1,si−1)
i−1 . All other

computation remains the same as the half-certified DH key agreement and the
message format remains the same as that of Sphinx.
Pairing-Based Onion Routing. Kate et al. [10] observe that the public-key
management issue while achieving forward secrecy in single-pass onion routing
circuit constructions can be solved using IBC. They develop an anonymous key
agreement protocol modifying Sakai-Ohgishi-Kasahara key agreement [15] and
use that to define a construction called pairing-based onion routing (PB-OR).

We choose three cyclic groups G, Ĝ, and GT (all of which we shall write
multiplicatively) of prime order q and a bilinear pairing e : G × Ĝ → GT . We
refer the readers to [16] for a detailed discussion of pairings. In the BF-IBE setup,
given (e : G × Ĝ → GT , g ∈ G, ĝ ∈ Ĝ), a (possibly distributed) private-key
generator (PKG) generates a master key s ∈ Z∗

q and an associated public key y =
gs ∈ G∗, and derives private keys di for nodes using their well-known identities
and s. A node with identity IDi receives the private key di = (hID(IDi))s ∈ Ĝ∗,
where hID : {0, 1}∗ → Ĝ∗ is a cryptographic hash function.

In PB-OR, a user generates a random ri ∈R Z∗
q and sends a pseudonym

αi = gri to node ni over the already-formed circuit (if any). The session key si

is generated at the user end as si = e(y, hID(IDi))ri and at the node ni as si =
e(αi, di). Using our generic design, αi can be generated as αi = α

hb(αi−1,si−1)
i−1 ,

while the computation of si remains the same as that of the original PB-OR,
except here ri = xb0b1 · · · bi−1 for an x ∈R Z∗

q chosen by the user.

364 A. Kate and I. Goldberg

Certificateless Onion Routing. Catalano et al. [11] recently introduced the
concept of certificateless onion routing and presented two protocols (CL-OR
and 2-CL-OR) for it. Their motivation is to avoid pairings and to eliminate
the interactions between a PKG (or key generation centre—KGC) and nodes in
PB-OR using CLC introduced by Al-Riyami and Paterson [17].

In certificateless onion routing, the KGC chooses a random generator g ∈R G,
two hash functions hCL : {0, 1}∗ → Zq and hπ : G × G → {0, 1}κ, and a master
key s ∈R Zq. It then computes y = gs and publishes (G, g, y, hCL, hπ) as the pub-
lic key. When a node ni with identity IDi asks for its partial private key, the KGC
first generates a random ki ∈R Zq, computes ωi = gki and zi = ki+hCL(IDi, ωi)s
and returns di = (ωi, zi) to node ni. Each node also generates a random ti ∈R Zq

and computes ui = gti . The public key for a node ni with identity IDi is (ωi, ui)
and its private key is (zi, ti). In CL-OR, a user generates a random ri ∈R Z∗

q and
sends the corresponding pseudonym αi = gri to node ni. The user generates the
session key si = (zi1, zi2) such that zi1 = (ωiy

hCL(IDi,ωi))ri and zi2 = uri

i and
upon receiving pseudonym αi, node ni generates zi1 = αzi

i and zi2 = αti

i .
While incorporating the generic Sphinx design, only the computation of the

pseudonym αi changes in the above certificateless key agreement protocol. As
above, the pseudonym αi is generated as αi = α

hb(αi−1,si−1)
i−1 .

4 Performance Comparison

Message Sizes. Message compactness is an important advantage of using Sphinx.
The major savings in the length of a circuit construction message comes from reuse
of a pseudonym to which blinding is added at each circuit node.

Following the Sphinx notation, p is the size of a public key element in group
G and r is the maximum length of the circuit. We aim at κ = 128-bit security
and use the elliptic curve (ECC) setting with points (compressed form) of size
p = 256 bits, such as provided by Dan Bernstein’s Curve 25519 [18] used by
Sphinx. For the finite field setting (F), as higher values amplify our advantage,
we consider a DH modulus of size just p = 2048 bits to model 128-bit security.
To mitigate a recent attack on Tor by Evans, Dingledine and Grothoff [19], the
maximum circuit length for recent versions of Tor is set as 8. Therefore, we
set r = 8 for our Sphinx-based design. However, while comparing, we give an
advantage to the other protocols by using Tor’s default circuit size ν = 3 for
them; using r = 3 in our design will only increase our advantage. Additionally,
see [8] for a discussion of the effect of Tor’s “CREATE FAST” mechanism.

In the Sphinx-based OR construction, the user sends the tuple (α0, β0, γ0)
to node n0. The lengths of the elements in this tuple are p, (2r − 1)κ and κ
respectively. The total length, therefore, is equal to p + 2rκ. In the chosen ECC
setting, this is equal to 1280 bits, while for the chosen finite field setting, this is
equal to 3072 bits. The message size does not depend upon a specific OR design.

In the original Tor-preDH, PB-OR and CL-OR protocols, this cost is equal
to r(p + 2κ) as each layer of onion in those constructions requires p bits for a
pseudonym, κ bits for identity of the nodes and κ bits for message integrity.
With κ = 128 and ν = 3, this length is equal to 1536 bits in the ECC setting

Using Sphinx to Improve Onion Routing Circuit Construction 365

Table 1. Comparison between lengths (in bits) of various single-pass OR circuit con-
struction messages for 128-bit security (κ = 128)

Scheme Circuit Size UC Security Message Size F ECC
(bits) (p = 2048) (p = 256)

Tor-preDH [8] ν = 3 × ν(p + 2κ) 6912 1536
PB-OR [10] ν = 3 × ν(p + 2κ) –a 1536
CL-OR [11] ν = 3 × ν(p + 2κ) 6912 1536
CL05 [13] ν = 3

√
ν(p + κ) 6528 1920b

Sphinx-OR r = 8
√

p + 2rκ 3072 1280

a With the necessity of pairings in the PB-OR protocol, we do not consider the finite
field setting for it. b As we use an Elgamal ciphertext in ECC, p′ = 2p = 512.

and 6912 bits in the finite field setting. These values are significantly larger than
those in our generic format that can make circuits of any length up to 8.

We also consider Camenisch and Lysyanskaya’s design in [13] that is secure in
the UC model. The message length there is r(p + κ). In the ECC computation,
we use an Elgamal ciphertext of two G elements of length p′ = 2p = 512 instead
of p. For ν = 3, the message sizes are 1920 bits and 6528 bits respectively.
Therefore, our Sphinx-based design achieves the same security guarantees with
much smaller messages. Table 1 provides a succinct representation of the above
discussion. As Tor generates a circuit in a telescoping form, we do not compare
it with the single-pass protocols.
Computational Cost. Compact messages and security in the UC model do
not come without some additional computational cost. However, importantly,
there is no addition to the computations done by users (possibly hundreds of
thousands of them), while the increase is easily manageable for OR nodes. Each
node in a circuit has to perform an additional exponentiation in G as it prepares
the pseudonym for the next node. However, one exponentiation in G costs around
1 ms on a desktop machine. This does not affect the overall circuit construction
cost in practice, which is in seconds due to the network latency.
Comparison between the Three OR Constructions. In our full version [1],
we also compare the Tor-preDH, PB-OR and CL-OR protocols with Tor as well
as with each other in terms of their computational and infrastructural costs. We
observed that in multi-pass constructions, Tor-preDH is the most efficient. How-
ever, in the absence of a clearly optimal scheme, the choice among the single-pass
circuit constructions has to be made based on the size of a prospective anonymity
network and availability of a PKG infrastructure. For smaller networks, Tor-
preDH and CL-OR are better suited than PB-OR. However, the choice between
those two is tricky. In Tor-preDH, the directory server and users have to verify
OR nodes’ public key certificates once per forward secrecy phase. In CL-OR,
for every circuit construction of length ν a user has to perform ν additional
exponentiations and every circuit node has to perform one additional exponen-
tiation. For large anonymity networks, we find PB-OR to be more usable. The
public-key downloads saved there are more than compensate for the infrastruc-
ture cost incurred by a (distributed) PKG. Further, using the CLC setting, it

366 A. Kate and I. Goldberg

may be possible to avoid the public-key scalability and key escrow issues at the
same time and it is an interesting future work to design such a scheme.

Acknowledgements. We thank D. Fiore for providing the camera-ready version
of his certificateless onion routing paper [11] with D. Catalano and R. Gennaro.
We also thank R. Dingledine, G. Zaverucha, and the anonymous reviewers for
providing valuable feedback. This work is supported by NSERC, MITACS, and
a David R. Cheriton Graduate Scholarship.

References

1. Kate, A., Goldberg, I.: Using Sphinx to Improve Onion Routing Circuit Construc-
tion. Technical Report CACR 2009-33 (2009),
http://www.cacr.math.uwaterloo.ca/techreports/2009/cacr2009-33.pdf

2. Goldschlag, D.M., Reed, M., Syverson, P.: Hiding Routing Information. In: Infor-
mation Hiding: First International Workshop, pp. 137–150 (1996)

3. Reed, M., Syverson, P., Goldschlag, D.: Anonymous Connections and Onion Rout-
ing. IEEE J-SAC 16(4), 482–494 (1998)

4. Dai, W.: PipeNet 1.1 (1998), www.weidai.com/pipenet.txt (accessed November
2009)

5. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion
Router. In: 13th USENIX Security Symposium, pp. 303–320 (2004)

6. Freedman, M.J., Morris, R.: Tarzan: A Peer-to-Peer Anonymizing Network Layer.
In: CCS 2002, pp. 193–206. ACM, New York (2002)

7. The Tor Project: (2003), https://www.torproject.org/ (accessed November 2009)
8. Øverlier, L., Syverson, P.: Improving Efficiency and Simplicity of Tor Circuit Es-

tablishment and Hidden Services. In: PETS 2007, pp. 134–152 (2007)
9. Menezes, A., Oorschot, P.V., Vanstone, S.: Handbook of Applied Cryptography,

1st edn. CRC Press, Boca Raton (1997)
10. Kate, A., Zaverucha, G.M., Goldberg, I.: Pairing-Based Onion Routing. In: PETS

2007, pp. 95–112 (2007)
11. Catalano, D., Fiore, D., Gennaro, R.: Certificateless Onion Routing. In: CCS 2009,

pp. 151–160 (2009)
12. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic

Protocols. In: FOCS 2001, pp. 136–145 (2001)
13. Camenisch, J., Lysyanskaya, A.: A Formal Treatment of Onion Routing. In: Shoup,

V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 169–187. Springer, Heidelberg (2005)
14. Danezis, G., Goldberg, I.: Sphinx: A Compact and Provably Secure Mix Format.

In: IEEE Symposium on Security and Privacy, pp. 269–282 (2009)
15. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems Based on Pairing. In: Sym-

posium on Cryptography and Information Security (SCIS 2000), Japan (2000)
16. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for Cryptographers. Discrete

Applied Mathematics 156(16), 3113–3121 (2008)
17. Al-Riyami, S.S., Paterson, K.G.: Certificateless Public Key Cryptography. In: Laih,

C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

18. Bernstein, D.J.: Curve25519: New Diffie-Hellman Speed Records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006)

19. Evans, N.S., Dingledine, R., Grothoff, C.: A Practical Congestion Attack on Tor
Using Long Paths. In: 18th USENIX Security Symposium, pp. 33–50 (2009)

http://www.cacr.math.uwaterloo.ca/techreports/2009/cacr2009-33.pdf
www.weidai.com/pipenet.txt
https://www.torproject.org/

Secure Multiparty AES
(Short Paper)

Ivan Damg̊ard and Marcel Keller

Dept. of Computer Science, Aarhus University, Denmark
{ivan,mkeller}@cs.au.dk

Abstract. We propose several variants of a secure multiparty compu-
tation protocol for AES encryption. The best variant requires 2200+ 400

255

expected elementary operations in expected 70 + 20
255

rounds to encrypt
one 128-bit block with a 128-bit key. We implemented the variants using
VIFF, a software framework for implementing secure multiparty compu-
tation (MPC). Tests with three players (passive security against at most
one corrupted player) in a local network showed that one block can be
encrypted in 2 seconds. We also argue that this result could be improved
by an optimized implementation.

1 Introduction and Motivation

In secure multiparty computation (MPC), a number of players each supply a
private input and then compute an agreed function on these inputs securely, i.e.,
even if an adversary corrupts some of the players, honest players obtain correct
results, and the intended outputs is the only new information released about the
inputs. Several general feasibility results for MPC are known, for instance, given
secure point to point channels, any function can be computed securely against
an honest but curious adversary corrupting any minority of the players, and
securely against a malicious adversary corrupting strictly less than one third of
the players [1, 4].

Although MPC has been a topic in cryptographic research for many years,
and despite the obvious potential for applications, implementations have evolved
only recently [9,2,6]. Some of them have even been used to solve real-world tasks,
such as privacy-preserving auctions [3].

In this paper, we present several variants of an MPC protocol for computing
AES encryption [11]. We assume that key and plaintext are byte-wise secret
shared among the players; the same holds for the outputted ciphertext.

Apart from the general motivation of investigating how far we can take MPC
in practice, there is also a more direct motivation for looking at such a “threshold-
approach” to symmetric encryption. An example: suppose a set of players hold
some secret shared data and wish to communicate this data to an external party.
A trivial solution is for each player to send his shares securely to the receiver,
who can then reconstruct the data. But this will mean that the receiver must be
aware of the fact that the data is secret shared and must apply a non-standard
algorithm to get the data. In addition, his work is linear in the number of players.
From this point of view it would be a more attractive solution if the players could

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 367–374, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

368 I. Damg̊ard and M. Keller

cooperate to generate a ciphertext for the receiver in standard form, which would
typically be an encryption of an AES key K under the receivers public key,
followed by the data encrypted under K. Note that a similar solution used in
the opposite direction could be used for a party to supply encrypted inputs to a
multiparty computation, even if that party is not aware of the number of players,
or the concrete MPC protocol they execute. He only needs to know a public key
for the system, where the players share the private key. This could be useful in
any application of MPC, e.g. for secure auctions, procurement or benchmarking.
In practice, this would mean that parties submitting data to the system can use
completely standard client software for sending data securely protected under
a public key. Moreover, the back-end of the system can be updated with new
MPC protocols or migrate a to a new set of players with no change on the client
side, as long as the public key remains the same.

Another application could be the following: Analogously to encrypted hard
disks, one could imagine to store data encrypted in a place with weak security
compliance (e.g., a cloud), whereas the key is secret shared between different
secured machines. Those machines then can run multiparty AES to read and
write data together with further MPC to process it. The secret sharing of the
key reduces the risk of leakage, as well as the risk of loosing the key. A more
naive solution, where one reconstructs the key and encrypts/decrypts data in the
normal way, would create a single point of attack from where the entire data-set
can be stolen even if one only meant to read a small part.

Whereas choosing a random key K and encrypting it under a public key is easy
using known techniques, there is virtually no previous work considering specif-
ically MPC for symmetric encryption (except for an existing 2-player solution,
see next section).

Our work on AES exploits the fact that AES is based on arithmetic in GF
(
28

)
.

Therefore, our protocol can be based on any general MPC protocol that is based
on Shamir secret sharing [12] and implements secure multiplication and addi-
tion in GF

(
28

)
. With respect to security threshold and type of adversary (pas-

sive/active), our protocol will be as secure as the underlying MPC protocol we
use. We can, for instance, use the classic passively secure protocol from [1] tol-
erating a dishonest majority, or the actively secure protocol from [6] tolerating
less then one third corrupted players.

The non-trivial problem we need solve is to implement the AES S-box effi-
ciently, since this is the only non-linear part of the algorithm, and essentially
requires us to securely compute a multiplicative inverse of an element in GF

(
28

)
where 0 should be mapped to 0. The naive solution to this is to raise to the
power of 254. We propose several alternative solutions that improve on this by
reducing the number of elementary operations, or the number of rounds, or both.

We have implemented our protocol in VIFF, a software framework for im-
plementing secure multiparty computation [6]. Tests for three players running
a passively secure protocol on a local network show that an AES block can be
encrypted in 2 seconds, and tests also confirm that our methods for reducing
the number of rounds lead to better performance when network delays are large

Secure Multiparty AES 369

enough to influence speed. Since our implementation uses a general framework
based on the high-level interpreted language Python, much better performance
can certainly be obtained using a dedicated C implementation. We therefore be-
lieve our results demonstrate that MPC for symmetric encryption is definitely a
possibility in practice.

2 Related Work

MPC protocols can be divided into two categories. The first consist of protocols
computing an arithmetic circuit over a suitable field. These are usually related to
a secret-sharing scheme [12]. Other protocols can be used to compute any binary
circuit. These are mostly based on Yao’s garbled circuits [13]. An optimized
implementation by Pinkas et al. was recently used for secure two-party AES [10].
Their protocol differs from ours, which is of the first category. Their protocol
requires one party to know the key, the other to know the cleartext, and outputs
the ciphertext to the latter one. Our protocol works for the multiparty case, it
takes a secret shared key and cleartext as input and outputs a secret shared
ciphertext. The communication complexity of our protocol is smaller, due to
the utilization of the arithmetic properties of AES. Our implementation is also
faster than that of [10], as detailed later. However, Yao’s garbled circuits lead
to constant-round protocols, contrary to ours, in the sense that if one increases
the number of AES rounds, our number of rounds increase as well.

Since the original proposal of MPC there have been several improvements to
make it more efficient. On of those is pseudorandom secret sharing [5], which
allows to generate a secret shared random number without any communication
at all. Another improvement is an MPC protocol providing active security which
allows preprocessing, i.e., performing some computations without knowing the
input to reduce the online time [6]. We will use both techniques in the following.

3 Preliminaries

The Finite Field GF
(
28

)
. AES treats bytes mostly as elements in GF

(
28

)
be-

cause there exists a bijective mapping from the set of bytes to the field: {0, 1}8 →
GF

(
28

) ∼= GF(2)[x]/(p), a = a7 . . . a0 �→ ∑7
i=0 ai · xi, where GF(2)[x]/(p) is the

field of polynomials over GF(2) modulo an irreducible polynomial p. Note that
GF

(
28

)
has characteristic 2, i.e. subtraction is the same as addition.

Secure Multiparty Computation. based on Shamir secret sharing over a field pro-
vides the following operations: Addition and multiplication can be done locally,
multiplication in general and opening of shared values requires communication.
We will refer to the latter two as elementary operations. Throughout the paper,
we will use square brackets to denote secret shared values: [x].

Pseudorandom Secret Sharing. allows the distributed generation of random val-
ues without communication. For fields with characteristic 2, generation of ran-
dom bits is also possible. We refer to Section 4.2 of [6] for details.

370 I. Damg̊ard and M. Keller

Bit Decomposition. of an element in GF
(
28

)
is required for the S-box of AES.

Since GF
(
28

)
has characteristic 2, this can be done by masking with a bit-wise

random secret shared value. If the random bits are generated using PRSS, the
communication cost is one opening. We refer to the full version for details [7].

4 The AES Protocol

AES encryption and decryption are round-based, with each round consisting of
some operations on the internal state. This is a matrix of 4×4 bytes, correspond-
ing to a block size of 128 bits. Initial state is the input, final state the output.
A typical encryption round looks as follows: SubBytes, ShiftRows, MixColumns,
AddRoundKey. The only exceptions are an additional AddRoundKey at the
beginning of encryption, and that MixColumns is skipped in the last round.

We now describe how to compute all operations using MPC. Both cleartext
and key are assumed to be byte-wise secret shared over GF

(
28

)
. The internal

state and so the output will be as well.

4.1 SubBytes

In SubBytes, an S-box is applied to every byte of the input. Because the S-box
is defined arithmetically, we can compute it relatively efficiently with multiparty
computation. This is the only part of the protocol requiring communication,
everything else can be done locally. The S-box consists of two steps: an inversion
on GF

(
28

)
and an affine linear transformation on GF(2)8.

Inversion. The field element represented by the byte is inverted in GF
(
28

)
,

except 0, which is mapped to 0. There are several possibilities of doing this with
multiparty computation.

Square-and-multiply. We raise the field element to the power of ord
(
GF

(
28

)∗)−
1 = 254 using some square-and-multiply variant. This costs 11 multiplications in
9 rounds per byte, using the addition chain (1, 2, 4, 8, 9, 18, 19, 36, 55, 72, 127,
254). This is optimal regarding the number of multiplications. Since the number
of rounds is the lowest possible for the number of multiplications, we will refer to
this variant as square-and-multiply with shortest addition chain and least number
of rounds. Another multiplication chain, (1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64,
127, 254) requires 13 multiplications in 8 rounds, which is optimal regarding the
number of rounds. We will refer to this as square-and-multiply with least rounds.
Standard square-and-multiply costs 13 multiplications in 13 rounds.

Masked Exponentiation. This method uses the fact that (x+y)2 = x2+2xy+y2 =
x2 + y2 for fields with characteristic 2. By a simple induction, it follows that
(x+y)2

i

= ((x+y)2
i−1

)2 = (x2i−1
+x2i−1

)2 = x2i

+y2i

for i ≥ 2. We exploit this
property to split up the computation in a preprocessing and an online phase,

Secure Multiparty AES 371

which saves some rounds because the preprocessing operations for all S-boxes of
the protocol can be executed in parallel.

In the preprocessing phase, we generate a random shared [r] ∈ GF
(
28

)
and

square [r] 7 times. This costs 7 multiplications in 7 rounds if pseudorandom
secret sharing is used:

[
r2

]
= [r] · [r], [r4

]
=

[
r2

] · [r2
]
, . . . ,

[
r128

]
=

[
r64

] · [r64
]
.

To invert [x], we mask [x] by [r], open it, and exponentiate locally:

open ([x] + [r]) = (x + r) (x + r)2, (x + r)4, (x + r)8, . . . , (x + r)128.

Finally, we unmask the powers of [x] and multiply them to get
[
x254

]
:

(x + r)2
i

+
[
r2i]

=
[
x2i] ∀ i = 1, . . . , 7,

∏7
i=1

[
x2i]

=
[
x

∑ 7
i=1 2i]

=
[
x254

]
.

The online operations cost 7 elementary operations (1 opening and 6 multipli-
cations) in 4 rounds.

Masking. Here we exploit that the inversion is a homomorphism with respect
to multiplication. The field element [a] ∈ GF

(
28

)
can be masked by multiplying

with some shared random number [r] ∈R GF
(
28

)
. We open the masked value,

invert it and unmask the result to get a sharing of the inverted element:

open ([a] · [r]) = ar, (ar)−1 · [r] =
[
a−1r−1r

]
=

[
a−1].

This method would leak whether a is 0 because ar = 0 for all r ∈ GF
(
28

)
if

a = 0. Therefore, if a = 0, we add 1 before doing the inversion, and subtract
1 after it. This guarantees that 0 is mapped to 0 without leaking it. Let b be
0 if a �= 0, and 1 if a = 0. It can be computed by decomposing a into bits
ai, a = a7 . . . a0, and then letting [b] := 1 − ∏7

i=0 (1 − [ai]). The inversion is
computed as follows:

open (([a] + [b]) · [r]) = (a + b) · r, ((a + b) · r)−1 · [r] =
[
(a + b)−1

]
[
(a + b)−1] − [b] =

{[
(a + 0)−1 − 0

]
=

[
a−1], a �= 0, b = 0[

(0 + 1)−1 − 1
]

= [0], a = 0, b = 1.

If (a + b)r is now 0, we know that r = 0. In that case, we just choose another
random r and repeat the masking.

The computation of [b] costs 1 opening operation for bit decomposition, and
7 multiplications in 3 rounds afterwards. The computation of (a + b)r costs 1
multiplication and 1 opening, again assuming that the random shared number [r]
can be generated locally. Since r might be zero, we require expected 2

1−1/256 =
2+ 2

255 elementary operations until (a+b)r is non-zero. The rest can be computed
locally, so we get expected 10 + 2

255 elementary operations in 6 + 2
255 expected

rounds overall.

Affine Linear Transformation. Here, the byte a =
∑7

i=0 ai · xi is considered
as a bit vector (a0, . . . , a7) ∈ GF(2)8, which is multiplied with a fixed invertible
matrix and then added to a constant vector. To do so, we decompose the input
into bits (cost: 1 opening if PRSS is used), and then we compute the rest locally
because the matrix and the vector are fixed.

372 I. Damg̊ard and M. Keller

Communication Cost. The computation of one S-box costs at least 12 ele-
mentary operations in 10 rounds or 14 elementary operations in 9 rounds using
square-and-multiply and expected 11 + 2

255 elementary operations in 7 + 2
255

rounds using masking. For masked exponentiation, preprocessing requires 7 ele-
mentary operations in 7 rounds, and online computation requires 8 elementary
operations in 5 rounds, both per S-box.

4.2 Other Operations

ShiftRows, MixColumns, and AddRoundKey consist only of byte permutations
and linear operations on GF

(
28

)
, which can be executed locally. Key expansion

uses the same S-box as SubBytes and local operations.

5 Security

The security of our protocol relies mainly on the security of the MPC scheme
used. The only information that is revealed additionally to the leakage of the
MPC scheme are openings of masked values, i.e. either of x + r or of y · r for
a random r and y �= 0. It is easy to see that both openings do not reveal
information about x and y, respectively.

It follows that a simulator, e.g., in the UC framework, can generate those val-
ues with the same distribution as in the real execution if there exists a simulator
for the MPC scheme.

6 Analysis

Since the S-box is the only part which requires communication, it suffices to
count the number of S-boxes computed. 16 S-boxes are computed in parallel in
every SubBytes operation and thus in every AES round. The key expansion can
be computed in parallel with the AES rounds. Putting all together, the total
number of elementary operations is the number of S-boxes times the number
of elementary operations per S-box, and the the total number of rounds is the
number of AES rounds times the number of rounds per S-box.

Table 1 describes the different possibilities for inversion. From the AES spec-
ification, one can deduce that the encryption of one block in AES-128 requires
200 S-boxes (including key expansion). So, one can calculate that using inver-
sion by masking, it takes 2200+ 400

255 expected elementary operations in 70+ 20
255

expected rounds. See the full version for the analysis of the other AES flavors [7].
Masked exponentiation only gives an advantage over the other methods if

all the preprocessing is done before the encryption of a block. In this way, one
can calculate with only 7 / (number of AES rounds) rounds per S-box, i.e., 0.7
rounds in the case of AES-128.

Secure Multiparty AES 373

Table 1. One S-box in different inversion protocols

El. operations Rounds

Masking 11 + 2
255

7 + 2
255

Standard square-and-multiply 14 14
S-a-m with shortest add. chain and least rounds 12 10
S-a-m with least rounds 14 9
Masked exponentiation 15 5 + 7

#AES rounds

7 Implementation

Our implementation is based on the Virtual Ideal Functionality Framework
(VIFF), a Python-based framework for secure multiparty computation [8]. VIFF
was developed to implement efficient MPC for asynchronous networks, i.e., every
local computation is executed as soon as the needed input values are present.
It provides protocols with passive security as well as protocols secure against
active adversaries. Shamir secret sharing is used for protocols with at least three
parties, and two-party MPC can be done based on the Paillier cryptosystem.

7.1 Benchmarks

The implementation of the encryption was tested on a local gigabit-network (ping
0.1 ms) with modern hardware: Dual-Core AMD Opteron Processor with 2.4
GHz per core, 2 GB RAM, Red Hat 5.2, Linux Kernel 2.6.18, Python 2.6.1. Using
three machines and passive security against one opponent, the encryption of one
block with AES-128 took about 2 seconds on average including key expansion
when encrypting 10 blocks in parallel. This was achieved using inversion by
exponentiation, which turned out to be faster than inversion by masking in the
given setting. This is contradictory to our analysis. The reason is that masking
needs more local computation (more pseudorandom secret sharing used for bit
decomposition), which has a higher impact if the network latency is low and the
bandwidth is high. However, the benchmarks behave as expected with a network
delay of 40 ms or the bandwidth limited to 800 kbit/s, see the full version [7].

Our method is faster than two-party AES by Pinkas et al. [10] which takes
7 seconds with passive security. Note that their implementation is optimized,
whereas ours uses Python, a high-level interpreted language. We observed that
local computation is the main bottleneck in our implementation, so this gives
the possibility for better results using an implementation in a low-level language
with less overhead, such as C.

Moreover, in a setting with four players and active security against one ma-
licious adversary our protocol takes about 7 seconds. This is considerably less
than the solution by Pinkas et al. which requires 1148 seconds to encrypt one
block with security against a malicious adversary. We used the PRSS-based vari-
ant of an actively secure MPC scheme by Damg̊ard et al. [6]. The scheme allows
to generate so-called multiplication triples in a preprocessing phase, i.e., before

374 I. Damg̊ard and M. Keller

knowing any input. By using that, the online time can be reduced to less than 4
seconds per block for masked exponentiation, which uses preprocessing also for
AES inversion, as described in Section 4.1.

8 Conclusion

We have presented a secure multiparty computation protocol for AES together
with benchmarking results of an implementation: roughly 2 seconds per block.
Our results can not be applied directly to other algorithms (including ciphers)
because we made use of the arithmetic properties of AES, namely of the fact
that the S-box is not just a “random” substitution.

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1–10. ACM, New York (1988)

2. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

3. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M.I., Toft,
T.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.)
FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

4. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC, pp. 11–19. ACM, New York (1988)

5. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

6. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty
computation: Theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009)

7. Damg̊ard, I., Keller, M.: Secure multiparty AES (full paper). In: Cryptology ePrint
Archive, Report 2009/614 (2009), http://eprint.iacr.org/

8. Geisler, M.: VIFF: Virtual ideal functionality framework. Homepage (2007),
http://viff.dk/

9. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation
system. In: USENIX Security Symposium, pp. 287–302. USENIX (2004)

10. Pinkas, B., Schneider, T., Smart, N., Williams, S.: Secure two-party computation
is practical. In: Cryptology ePrint Archive, Report 2009/314 (2009),
http://eprint.iacr.org/

11. FIPS Publications. Advanced Encryption Standard. Technical Report FIPS PUB
197, National Institute of Standards and Technology (November 2001)

12. Shamir, A.: How to share a secret. ACM Commun. 22(11), 612–613 (1979)
13. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,

pp. 162–167. IEEE, Los Alamitos (1986)

http://eprint.iacr.org/
http://viff.dk/
http://eprint.iacr.org/

Modulo Reduction for Paillier Encryptions and
Application to Secure Statistical Analysis

(Extended Abstract)

Jorge Guajardo1, Bart Mennink2,�, and Berry Schoenmakers3,�

1 Information and System Security Group
Philips Research, Eindhoven, The Netherlands

jorge.guajardo@philips.com
2 Dept. Electrical Engineering, ESAT/COSIC and IBBT

Katholieke Universiteit Leuven, Belgium
bart.mennink@esat.kuleuven.be

3 Dept. of Mathematics and Computer Science
Technische Universiteit Eindhoven, The Netherlands

berry@win.tue.nl

Abstract. For the homomorphic Paillier cryptosystem we construct a
protocol for secure modulo reduction, that on input of an encryption
�x� with x of bit length �x and a public ‘modulus’ a of bit length �a

outputs an encryption �x mod a�. As a result, a protocol for computing
an encrypted integer division �xdiv a� is obtained. Surprisingly, efficiency
of the protocol is independent of �x: the broadcast complexity of the
protocol varies between O(nk�a) and O(n2k�a), for n parties and security
parameter k, and it is very efficient in case of small �a (in practical
cases �a often is much smaller than �x). Our protocol allows for efficient
multiparty computation of statistics such as the mean, the variance and
the median, and it is therefore very applicable to surveys for the benefit
of statistical analysis.

1 Introduction

We consider the problem of integer division with remainder in the setting of
secure multiparty computation. In its full generality, the problem is to evaluate
securely the integer function (x, y) �→ (xdiv y, x mod y), where x = (xdiv y)y +
x mod y and 0 ≤ x mod y < y. Whereas integer multiplication commonly allows
for secure protocols for which the performance is independent of the bit length
of the multiplicands, this is not true for known protocols for integer division.
Typically, secure integer division protocols use the binary decomposition of the
inputs x and/or y, and consequently these protocols are generally much more
elaborate than secure multiplication protocols. To a certain extent, this is to
be expected because integer comparison (which generally also requires bitwise-
represented inputs) reduces to equality testing given integer division: x < y if
and only if x = x mod y.
� Work done partly while visiting Philips Research Labs.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 375–382, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

376 J. Guajardo, B. Mennink, and B. Schoenmakers

In this paper we will focus on the computation of x mod a for a public mod-
ulus a. We observe that in many applications, particularly in secure statistical
analysis, division is used with a public modulus only. For example, for the mean
x̄ = (x1 + · · ·+ xL) div L of a set of L values, it suffices to divide by the publicly
known L. A similar observation can be made for the computation of the vari-
ance. Hence, efficient protocols for the case of public a are clearly of interest, and
we will show how to achieve efficient solutions. Although our results apply to a
broad range of approaches in secure multiparty computation, we will present our
protocols mostly for the framework based on threshold homomorphic cryptosys-
tems (THCs) [11, 5, 22]. This framework allows n parties, n ≥ 2, to securely and
privately evaluate a given function f : given encrypted inputs �x1�, . . . , �xL�, it
will be ensured that the output is an encryption �f(x1, . . . , xL)�, without leaking
any further information on the values x1, . . . , xL. In general, one may construct
a Boolean or arithmetic circuit for f , consisting of basic gates such as NAND
gates or addition/multiplication gates, and then evaluate this circuit securely.
For performance reasons, however, specific protocols are needed to obtain more
practical solutions.

The advantage of our THC-based protocols is that the malicious case can
be treated without efficiency loss (asymptotically) compared to the semi-honest
case. Our protocols can also be translated to the framework based on verifiable
secret sharing (cf. [6]). In this case, however, the malicious case will be (asymp-
totically) more expensive than the semi-honest case. The technical reason is
that some of the particularly efficient zero-knowledge interval proofs used in the
THC-based approach do not carry over to the VSS-based approach. Our proto-
cols can be seen as a generalization of the bit decomposition protocols of [23]. As
observed in [23], the problem of evaluating x �→ x mod 2 is already non-trivial as
it cannot be solved when ElGamal is used as the underlying (additively) homo-
morphic cryptosystem: an efficient protocol for computing the least significant
bit �x mod 2� for given �x� would imply efficient computation of a hard-core bit
(of the one-way function x �→ gx), contradicting the discrete log assumption.
Therefore, we will use a sufficiently strong homomorphic cryptosystem for our
protocols, concretely the Paillier cryptosystem. An immediate application of in-
teger division is to securely access arbitrary bits of a given input �x� efficiently.
For an �x-bit integer x, the work to access the i-th least significant bit will be
proportional to i, as xi = (xdiv 2i) mod 2. Our protocols actually simplify con-
siderably for the case that a is a power of 2, such that the overall work is much
less than one would need using the bit decomposition protocol of [23].

1.1 Our Contributions

For a set of n participants jointly sharing the decryption key of the Paillier
cryptosystem, we construct a protocol which, on input �x� with x < 2x and
a public ‘modulus’ a such that 2a−1 < a ≤ 2a , outputs an encryption of the
modulo reduction of x with respect to a, �x mod a�. Consequently, this implies
a protocol for computing an encrypted integer division �xdiv a�. The efficiency
of the protocol relies on the fact that a is known and, in particular, its length

Modulo Reduction for Paillier Encryptions and Application 377

is known. The protocol has a broadcast complexity varying between O(nk�a)
and O(n2k�a) (with corresponding round complexities O(n) and O(1)), where k
is a security parameter, and the variation depends on the building blocks used
(e.g., for random bit generation several protocols are known, which differ in
complexities). In [16, Sect. 5], the protocol is proven statistically secure in the
framework of Cramer et al. [5].

As an interesting application, this protocol can be used for secure and efficient
statistical analysis on encrypted data. In [16, Sect. 8], a protocol for the compu-
tation of the variance of L inputs is constructed in detail. Other statistics can be
implemented similarly. The possibility to securely evaluate statistics allows for
a broad range of applications, like (medical) surveys. In medical surveys, many
users release medical data to some institute which analyzes the data and outputs
some result (a diagnostic, a result of statistical analysis, etc.). However, medical
data are privacy sensitive and users might be unwilling to reveal these data in
plaintext. Using secure multiparty computation, the institute is represented by
a set of multiparty computation servers and the users can input their medical
data in encrypted form. The servers then use the modulo reduction protocol for
secure statistical analysis. We end by noticing that the protocol can easily be
carried over to a client/server setting [16, Sect. 7], and that it has many other
practical applications, for instance in the area of secure face recognition [10],
packing of encrypted values [2] and auctions [7, 12]. In particular, a modulo re-
duction protocol allows for easily obtaining packed encrypted values out of one
encryption.

1.2 Related Work

The relation with the bit decomposition protocols of [23] has already been dis-
cussed. For the unconditional setting using verifiable secret sharing, Algesheimer
et al. [1] constructed a modulo reduction protocol which works for encrypted
modulus a. The protocol relies on approximating 1/a (for which also a proto-
col by Kiltz et al. [18] can be used). This protocol is only of theoretical in-
terest1: instead of x mod a, the value x mod a + ia is computed, with |i| <
(n + 1)(5 + 24+x−a−′) for some additional security parameter �′ (the num-
ber of correctly approximated bits of 1/a). The value x mod a is then computed
after O(n2x−a−′) executions of a comparison protocol, which makes the proto-
col inefficient. We note that our protocol does not rely on approximations. More
comparable to ours is the VSS-based protocol by Damg̊ard et al. [6], which opts
for constant rounds. Unlike ours, their scheme does not make use of the form
of a. In particular, in the THC-setting their protocol has a broadcast complex-
ity varying between O(nk�x(log �x + �a)) and O(nk�x(n + log �x + �a)), where
�x ≥ �a. In many practical applications the value �a is even much smaller than
�x, as exemplified in Sect. 5. Using ideas of [1], their protocol can also be ex-
tended to secret a. We stress that for our purposes the protocol with public a

1 We note that From and Jakobsen [13, Ch. 8] discuss the efficiency of the protocol
of [1]. They conclude that the performance is generally low, particularly for a large
number of participants. See also [24, Sect. 4.6].

378 J. Guajardo, B. Mennink, and B. Schoenmakers

suffices. In [4], Catrina and Dragulin independently introduce a modulo reduc-
tion protocol similar to ours. However, unlike ours, their protocol is constructed
for secure computation based on secret sharing and considers modulo reduction
by powers of two only. Our protocol works for general a, and in particular relies
on efficient ways for generating random values from [0, a) securely. Moreover, [4]
provides security against semi-honest adversaries only, while our protocol covers
the malicious case.

Although our main concern is the modulo reduction protocol, we also consider
related work with respect to statistical multiparty computation, which is used
as motivational example. Many works on privacy-preserving statistical analysis
(e.g., [9, 18]) focus only on techniques other than THC-based secure multiparty
computation. In [17], computation of moments is considered for Paillier encryp-
tions and used to compute statistics like the mean and the variance. The authors
circumvent the need for a modulo reduction protocol by applying division on the
decrypted moments only. This protocol is not of practical interest: if for instance∑L

i=1 xi is decrypted rather than (
∑L

i=1 xi) div L, the protocol unintentionally
leaks information about the inputs, namely (

∑L
i=1 xi) mod L2. Moreover, the

protocol of [17] cannot be integrated as a sub-protocol with encrypted output,
while this would be desirable in many applications like packing of encrypted val-
ues. In this sense the construction of the modulo protocol offers a new approach
for privacy-preserving statistical computation.

2 Preliminaries

Throughout, we denote [A, B) := {A, A+1, . . . , B−1}. By ‘random’ we implicitly
mean ‘uniformly randomly and independently distributed’, and we denote by
x ∈R V the event that x is taken at random from V .

Paillier cryptosystem. Our protocol relies on the additively homomorphic
cryptosystem by Paillier [20], but we consider its generalization and its threshold
variant by Damg̊ard and Jurik [8]. On input of a security parameter k, the public
key consists of an RSA modulus N = pq of length k, for p = 2p′+1 and q = 2q′+1
safe primes, and a positive integer s. We define m := p′q′. The secret key is a
value d coprime to Ns satisfying d = 0 mod m. The message space is the ring
ZNs , and a message x is encrypted by taking an r ∈R Z∗

Ns+1 and computing
c = (N + 1)xrNs

mod Ns+1. For the threshold decryption, d is polynomially
shared among the n participants, each participant has a share di, and at least
t participants are required to correctly decrypt a ciphertext. This decryption
protocol operates in constant rounds and has broadcast complexity O(nk). A
more detailed specification of the cryptosystem can be found in [8]. Encryptions
are denoted by �x�.

Proofs of knowledge. Our modulo reduction protocol involves zero-know-
ledge proofs of knowledge in order to achieve security against malicious adver-
saries. We use standard Σ-protocols, which can be made non-interactive using
2 Otherwise, if the value x mod a is computed, the value xdiv a would leak.

Modulo Reduction for Paillier Encryptions and Application 379

the Fiat-Shamir heuristic and are provably secure in the random oracle model.
In particular, our protocol involves interval proofs in which a prover shows that
a published encryption �x� encrypts a value x ∈ [A, B). For this, one can use the
protocol by Boudot [3] (refined in [19, 15]). This protocol operates in constant
rounds and has broadcast complexity O(k).

2.1 Multiparty Computation Gates

The proposed protocol requires several efficient gates, which will be introduced
in this section. Using efficient Σ-protocols, these gates handle the malicious case
efficiently. We recall that the Paillier cryptosystem is additively homomorphic,
which means that given encryptions �x�, �y� and a public a, the encryptions
�x + y� = �x��y� and �ax� = �x�a can be computed non-interactively.

Multiplication. Cramer et al. [5] constructed a constant round protocol for n
participants to securely compute �xy� given �x�, �y�. This protocol has broadcast
complexity O(nk).
Random bit generation. Several multiparty protocols for generating random
bits are known, varying between an O(n2k) broadcast complexity protocol in con-
stant rounds [5], and an O(nk) broadcast complexity protocol in O(n) rounds [23].
Comparison gate. On input of two encrypted bit representations (�x0�, . . . ,
�x−1�) and (�y0�, . . . , �y−1�), a comparison gate outputs an encrypted bit �[x <
y]�. An O(lg �) round complexity protocol [14], as well as a constant round
protocol [6] are known, but the latter has a considerably higher hidden constant.
Both protocols have broadcast complexity O(nk�).

3 Random Bitwise Value Generation

The modulo reduction protocol introduced in Sect. 4 requires a sub-protocol to
generate a value r ∈R [0, a) in a bitwise manner. We refer to this gate as the
random bitwise value generation protocol and we discuss such a protocol in this
section. Other protocols for securely generating random values from a restricted
domain are known as well [21].

Protocol 1 (Random bitwise value generation). Given a publicly known
value a such that 2a−1 < a ≤ 2a, the following protocol generates an encrypted
bit representation (�r0�, . . . , �ra−1�) of r such that r ∈R [0, a). The participants
Pi (i = 1, . . . , n) perform the following steps:

1. For j = 0, . . . , �a−1, the participants jointly generate random bit encryptions
�rj� for rj ∈R {0, 1};

2. Using a comparison gate, �[r < a]� is computed and jointly decrypted. If
[r < a] = 0, the protocol is restarted.

Notice that in case a �= 2a, the number of restarts of the protocol is 2a/a < 2
on average. Using this observation, we conclude that Prot. 1 has broadcast com-
plexity varying between O(nk�a) (with round complexity O(n)) and O(n2k�a)
(in constant rounds). Correctness and security are proven in [16, Propositions 1
and 3].

380 J. Guajardo, B. Mennink, and B. Schoenmakers

4 Multiparty Modulo Reduction

We consider input �x� with x ∈ {0, 1}x and a public value a such that 2a−1 <
a ≤ 2a for some �a, and construct a protocol for the computation of �x mod a�.
Without loss of generality, we assume that �a ≤ �x: clearly, if �a > �x then
certainly a > x, in which case x mod a = x. The protocol relies on the fact
that it is unnecessary to compute the �x bits of x if the modulus a ≤ 2a is
known for some �a ≤ �x. As in many cases �a is relatively small compared to �x

(cf. Sect. 5), this reduces the costs. We recall that we have n participants (t, n)-
threshold sharing the secret key for Paillier decryption, and that the public key
for the cryptosystem is (N, s). We introduce a security parameter �s, which we
require to satisfy an2x+s < Ns.

Protocol 2 (Modulo reduction). Given �x� for x ∈ {0, 1}x and a publicly
known value a, the following protocol outputs an encryption �x mod a�. The
participants Pi (i = 1, . . . , n) perform the following steps:

1. The participants jointly generate a random encrypted bit representation
(�r0�, . . . , �ra−1�) of r such that r ∈R [0, a), using Prot. 1. In parallel, each
participant takes si ∈R {0, 1}x+s and publishes Si = �si� together with an
interval proof of knowledge for relation {(Si; si) | Si = �si�∧si ∈ [0, 2x+s)};

2. Each participant individually computes

�x̃� = �x��r�−1

(
n∏

i=1

�si�

)a

=

�

x − r + a

n∑
i=1

si

�

;

3. Using threshold decryption the participants obtain x̃, and compute x̄ =
x̃ mod a;

4. Using a comparison gate the participants compute �c� = �[a − 1 − x̄ < r]�;
5. Each participant individually computes

mod(�x�, a) = �x̄��r��c�−a = �x̄ + r − ca�.

Notice that in phase 4 the comparison gates of Sect. 2.1 can be used, as a−1−x̄ is
known in plaintext, and the participants know the encrypted bit representation
of r. Correctness and security are proven in [16, Propositions 2 and 4].

5 Efficiency Analysis

The modulo reduction protocol has average broadcast complexity varying be-
tween O(nk�a) (in O(n) rounds) and O(n2k�a) (in constant rounds). The ab-
solute number of rounds highly depends on the gates used. In [6], Damg̊ard et
al. also construct a modulo reduction gate, although for verifiable secret sharing.
The THC-analogue of this gate is less efficient than the one proposed here. Their
protocol has a broadcast complexity varying between O(nk�x(log �x + �a)) and
O(nk�x(n + log �x + �a)) (with round complexities O(n + �x) and O(1), respec-
tively). More importantly, in many practical applications the value �a is rather

Modulo Reduction for Paillier Encryptions and Application 381

small compared to �x: consider for example a scenario where 100 millionaires
want to securely compute an encryption of their average fortune. In this case
�a = 7, while �x = 37 but needs to be extended to 47 to cover billionaires as
well3. Note that Damg̊ard et al.’s construction needs to compute the complete
bit representation of x, while the idea of the proposed scheme relies on knowledge
of the form of a.

Acknowledgments

This work has been funded in part by the European Community’s Sixth Frame-
work Programme under grant number 034238, SPEED project - Signal Process-
ing in the Encrypted Domain, in part by the IAP Program P6/26 BCRYPT of
the Belgian State (Belgian Science Policy), and in part by the European Com-
mission through the ICT program under contract ICT-2007-216676 ECRYPT
II. The work reported reflects only the authors views; the European Community
is not liable for any use that may be made of the information contained herein.

References

[1] Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg
(2002)

[2] Bianchi, T., Piva, A., Barni, M.: Efficient pointwise and blockwise encrypted op-
erations. In: MM&Sec 2008, pp. 85–90. ACM, New York (2008)

[3] Boudot, F.: Efficient proofs that a committed number lies in an interval. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer,
Heidelberg (2000)

[4] Catrina, O., Dragulin, C.: Multiparty computation of fixed-point multiplication
and reciprocal. In: DEXA 2009, pp. 107–111. IEEE Computer Society, Los Alami-
tos (2009)

[5] Cramer, R., Damg̊ard, I., Nielsen, J.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 280–300. Springer, Heidelberg (2001)

[6] Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and ex-
ponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
285–304. Springer, Heidelberg (2006)

[7] Damg̊ard, I., Geisler, M., Krøigaard, M.: Efficient and secure comparison for on-
line auctions. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 416–430. Springer, Heidelberg (2007)

[8] Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

3 For simplicity we assume that the fortune of a millionaire is upper bounded by one
billion.

382 J. Guajardo, B. Mennink, and B. Schoenmakers

[9] Du, W., Atallah, M.: Privacy-preserving cooperative statistical analysis. In: AC-
SAC 2001, pp. 102–112. IEEE Computer Society, Los Alamitos (2001)

[10] Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.:
Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS
2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009)

[11] Franklin, M., Haber, S.: Joint encryption and message-efficient secure computa-
tion. Journal of Cryptology 9(4), 217–232 (1996)

[12] Franklin, M., Reiter, M.: The design and implementation of a secure auction
service. IEEE Transactions on Software Engineering 22(5), 302–312 (1996)

[13] From, S., Jakobsen, T.: Secure multi-party computation on integers. Master’s
thesis, University of Århus, Århus (2006),
http://www.cs.au.dk/~tpj/uni/thesis/report.pdf

[14] Garay, J., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer
comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp.
330–342. Springer, Heidelberg (2007)

[15] Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioannidis, J.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482.
Springer, Heidelberg (2005)

[16] Guajardo, J., Mennink, B., Schoenmakers, B.: Modulo reduction for Paillier en-
cryptions and application to secure statistical analysis. Full version of this paper,
available from the authors (2009)

[17] Kiayias, A., Yener, B., Yung, M.: Privacy-preserving information markets for
computing statistical data. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS,
vol. 5628, pp. 32–50. Springer, Heidelberg (2009)

[18] Kiltz, E., Leander, G., Malone-Lee, J.: Secure computation of the mean and re-
lated statistics. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 283–302.
Springer, Heidelberg (2005)

[19] Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer,
Heidelberg (2003)

[20] Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

[21] Schoenmakers, B., Sidorenko, A.: Distributed generation of uniformly random
bounded integers (October 1, 2007) (unpublished manuscript)

[22] Schoenmakers, B., Tuyls, P.: Practical two-party computation based on the condi-
tional gate. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 119–136.
Springer, Heidelberg (2004)

[23] Schoenmakers, B., Tuyls, P.: Efficient binary conversion for Paillier encrypted
values. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537.
Springer, Heidelberg (2006)

[24] SecureSCM. Secure computation models and frameworks. Technical Report D9.1,
SecureSCM (July 2008), http://www.securescm.org

http://www.cs.au.dk/~tpj/uni/thesis/report.pdf
http://www.securescm.org

On Robust Key Agreement Based on Public Key
Authentication

(Short Paper)

Feng Hao

Thales E-Security, Cambridge, UK
feng.hao@thales-esecurity.com

Abstract. We describe two new attacks on the HMQV protocol. The
first attack raises a serious question on the basic definition of “authentica-
tion” in HMQV, while the second attack is generally applicable to many
other protocols. In addition, we present a new authenticated key agree-
ment protocol called YAK. Our approach is to depend on well-established
techniques such as Schnorr’s signature. Among all the related protocols,
YAK appears to be the simplest so far. We believe simplicity is an im-
portant engineering principle.

1 Introduction

There are two categories of authenticated two-party key agreement protocols:
Password Authenticated Key Exchange (PAKE) and Authenticated Key Ex-
change (AKE) [9]. The former realizes authentication based on a shared pass-
word, while the latter based on public key certificates [2,5,4,1,6]. In this paper,
we focus on discussing the second category. To better differentiate it from the first
category, we will call it Public Key Authenticated Key Exchange (PK-AKE).

2 Past Work

Many PK-AKE protocols claim to be provably secure in a formal model. Among
them, the HMQV scheme is perhaps the most well-known example [2]. In this
section, we will show two new attacks on HMQV.

The HMQV protocol is modified from MQV [6] with the primary aim for
provable security [2]. The most signficant change is that HMQV drops some
mandated verification steps in MQV, including the Proof of Possession (PoP)
check during the CA registration and the prime-order validation check of the
ephemeral public key.

Dropping the public key validations is highly controversial, despite that HMQV
has formal security proofs. In one attack, Menezes et al. demonstrated disclosing
the user’s private key without violating the HMQV model definition [8, 7]. This
attack indicates a flaw in the original design of HMQV.

In acknowledgement of the missing public key validation, Krawczyk revised
HMQV in the submission to IEEE P1363 Standards committee [3]. He added
the following validation: Alice checks the term Y Be has the correct prime order

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 383–390, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

384 F. Hao

and Bob does the same for XAd (see [2], p. 548, for the definition of symbols.)
This change prevents the small subgroup attack in [8], but decreases the claimed
efficiency. However, instead of validating the static and ephemeral public keys
separately as in MQV, the revision chooses to optimize efficiency by mixing the
two operations together. This causes the problem as below.

We now report a new “invalid public key attack” on HMQV. For illustration,
we follow the same symbols used in the original description of HMQV (see [2],
p. 548). In both the original and revised versions of HMQV, the CA is only
required to check the submitted public key is not 0. The attack works as follows.
Assume Bob (attacker) registers a small subgroup element s ∈ Gw as the public
key where w|p − 1. Bob chooses an arbitrary value z ∈ Zq. Let Y = gz · s′

where s′ is an element in the same small subgroup Gw. Exhaustively, Bob tries
every element s′ in Gw such that Y Be = gz · s′ · se = gz. In other words, the
small subgroup elements s and s′ cancel each other out. Suppose H̄ works like
a random oracle as assumed in HMQV. Then, for each try of s′, the probability
of finding s′ · se = 1 is 1/w. It will be almost certain to find such s′ after
searching all w elements in Gw (if not then change a different z and repeat
the procedure). Following the HMQV protocol, Bob sends Y = gz · s′ to Alice.
Alice checks Y Be has the correct prime order and computes the session key
κ = H((Y Be)x+da) = H(gz·(x+da)). Because Bob knows z, he can compute the
same session key κ and successfully authenticate himself to Alice.

The fact that an obviously invalid public key is totally undetected by all flows
in HMQV is unsettling. This raises a serious question on the basic definition of
“authentication” in HMQV – Bob does not even have a private key, yet he is able
to successfully pass all authentication checks. In fact, anyone can do the same
pre-computation as above and authenticate to Alice as “Bob”. In one attacking
scenario, Bob (the attacker) may at any time suddenly repudiate all previous
authenticated transactions with Alice by telling the judge that his public key is
invalid, so anyone can impersonate him. (Bob’s certificate is publicly available.)
In comparison, MQV does not have this problem.

The other attack on HMQV happens when two parties use the same certifi-
cate during self-communication [2]. Self-communication is a useful application
in practice. For example, a mobile user and the desktop computer may hold
the same static private key (registering two public key certificates costs more).
Krawczyk formally proved that self-communication is “secure” in HMQV [2].
However, the formal model in [2] only considers the user talking to one copy
of self, but neglects the possibility that the user may talk to multiple copies of
self at the same time. This deficiency is common among other formal models
too [11, 4, 1]. The attack works as follows (also see Figure 1):

1. Alice initiates the connection to a copy of herself by sending gx. The connection is
intercepted by Mallory who pretends to be Alice-1.

2. Mallory starts a separate session by pretending to be Alice-2. He initiates the
connection by sending to Alice gx (this is possible because HMQV does not require
the sender to know the exponent).

3. Alice responds to Alice-2 by sending gy.

On Robust Key Agreement Based on Public Key Authentication 385

Fig. 1. Wormhole attack on HMQV

4. Mallory replays gy to Alice as Alice-1.
5. Alice derives a session key and sends an encrypted message to Alice-1, say: “Transfer

to me $1m”.
6. Mallory replays the encrypted message to Alice. (After receiving money from Alice,

Mallory disconnects both connections.)

In the above attack, we only demonstrated the attack against the two-pass
HMQV (implicit authentication). For the three-pass HMQV (explicit authenti-
cation), the attack works exactly the same. Also, we have omitted the identities
in the message flows, because they are all identical according to the HMQV
specification [2].

This attack is essentially an unknown key sharing attack. Alice thinks she
is communicating to a mobile user with the same certificate, but she is actu-
ally communicating to herself. The attacker does not hold the private key, but
he manages to establish two fully authenticated channels with Alice (server).
The same attack also applies to other PK-AKE schemes, including NAXOS [4],
KEA+ [5], CMQV [11], MQV [6], and SIG-DH [1] etc, despite that many of
them have formal security proofs.

3 The YAK Protocol

In this section, we propose a new PK-AKE protocol called YAK1. Let G denote
a subgroup of Z∗

p with prime order q in which the Computational Diffie-Hellman
problem (CDH) is intractable. Let g be a generator in G. The two communicating
parties, Alice and Bob, both agree on (G, g).

3.1 Stage 1: Public Key Registration

In stage 1, Alice and Bob register static public keys from a Certificate Authority
(CA). Alice selects a random secret a ∈R Zq as her private key. Similarly, Bob
selects b ∈R Zq as his private key.
1 The yak lives in the Tibetan Plateau where environmental conditions are extremely

adverse.

386 F. Hao

CA-Registration. Alice sends to the CA ga with a knowledge proof for a.
Similarly, Bob sends to the CA gb with a knowledge proof for b.

The sender needs to produce a valid knowledge proof to demonstrate the Proof
of Possession (PoP) of the private key. As an example, we can use Schnorr’s
signature, which is provably secure in the random oracle model [9]. Let H be a
secure hash function. To prove the knowledge of the exponent for X = gx, one
sends {SignerID, OtherInfo, V = gv, r = v − x ·h} where SignerID is the unique
user identifier (also called Distinguished Name [10]), OtherInfo includes auxiliary
information to indicate this is a request for certifying a static public key and
may include other practical information such as the name of the algorithm etc,
v ∈R Zq and h = H(g, V, X, SignerID, OtherInfo). The CA checks that X has
prime order q and verifies that V = grXh (computing grXh requires roughly
one exponentiation using the simultaneous computation technique [9]).

3.2 Stage 2: Key Agreement

Alice and Bob execute the following protocol to establish a session key. For
simplicity of discussion, we explain the case that Alice and Bob have different
certificates (a �= b) and will cover self-communication later.

YAK-protocol. Alice selects x ∈R Zq and sends out gx with a knowledge proof
for x. Similarly, Bob selects y ∈ Zq and sends out gy with a knowledge proof
for y.

When this round of communication finishes, Alice and Bob verify the received
knowledge proof to ensure the other party possesses the ephemeral private key.
They also need to ensure the identity (i.e., SignerID) in the knowledge proof
must match the one in the public key certificate.

Upon successful verification, Alice computes a session key κ=H((gy ·gb)x+a)=
H(g(x+a)(y+b)). And Bob computes the same session key: κ = H((gx · ga)y+b) =
H(g(x+a)(y+b)).

In YAK, Alice needs to perform the following exponentiations: one to compute
an ephemeral public key (i.e., gx), one to compute the knowledge proof for x
(i.e., gvx), two to verify the knowledge proof for the exponent of Y = gy (i.e.,
Y q and gryY hy) and finally one to compute the session key (Y · B)x+a. Thus,
that is five in total: {gx, gvx , Y q, gryY hy , (Y · B)x+a}.

Among the above operations, some are merely repetitions. To explain this, let
the bit length of the exponent be L = log2 q. Then, computing gx alone would
require roughly 1.5L multiplications which include L square operations and 0.5L
multiplications of the square terms. However, the same square operations need
not be repeated for other items with the common base. If we factor this in, it will
take (1+0.5×3)L = 2.5L to compute {gx, gvx , gry}, and another (1+0.5×2)L =
2L to compute {Y q, Y hy} and finally 1.5L to compute (Y · B)x+a. Hence, that
is in total 6L, which is equivalent to 6L/1.5L = 4 usual exponentiations. This
is quite comparable to the 3.5 exponentiations in MQV (which cannot reuse the
square terms since the bases are different).

On Robust Key Agreement Based on Public Key Authentication 387

Fig. 2. The oracle diagrams in YAK. Alice is honest.

4 Security Analysis

We formulate the following requirements for the PK-AKE protocol.

1. Private key security: An attacker cannot learn any useful information
about the user’s static private key even if he is able to learn all session
specific secrets in any session.

2. Full forward secrecy: Session keys that were securely established in the
past uncorrupted sessions will remain incomputable in the future even when
both users’ static private keys are disclosed.

3. Session key security: An attacker cannot compute the session key if he
impersonates a user but has no access to the user’s private key.

The first requirement is generally not covered by a formal model, but we think it
is crucially important. For example, both the SIG-DH [1] and (original) HMQV
[2] protocols have been formally proven secure in the CK model. Yet attacks
reported in [4] and [8] show that in both protocols, an attacker is able to disclose
the user’s private key. In the second requirement, we use “full” to distinguish it
from the “half” forward secrecy, which only allows one user’s private key to be
revealed (e.g., KEA+ [5]). The third requirement has already covered the Key
Compromise Impersonation (KCI) attack [6]. The “invalid public key” attack in
Section 2 indicates that HMQV does not satisfy this property.

The goal of our design is to make the best use of well-established techniques
such as Schnorr’s signature. This strategy allows us to leverage upon the provable
results of Schnorr’s signature (see [9]), and thus greatly simplify the security
analysis. In the following, we will provide a simple and intuitive analysis, while
leaving detailed proofs to a full paper.

First, let us discuss the private key security. Without loss of generality, we
assume Alice is honest. As shown in Figure 2 (1), Mallory totally controls Bob’s
static and ephemeral private keys. Additionally, he has the extreme power that
allows him to learn Alice’s transient secrets in an arbitrary session. The only
power that he does not have is the access to Alice’s private key.

388 F. Hao

A sketch of the proof goes as follows. The knowledge proofs defined in YAK
prove that Mallory (the attacker) knows the value of y and b. He also knows
Alice’s public key ga. By revealing Alice’s transient secrets (i.e., x and K) in a
session, he learns x and K = g(a+x)(b+y). But learning K does not give Mallory
any information, because he can compute it by himself from {x, y, b, ga}. Effec-
tively, Mallory can actually simulate the attack all by himself through defining
arbitrary values of x, y, and b. Clearly, he does not learn any useful information
about Alice’s private key through his own simulations.

Next, we discuss the full forward secrecy requirement. The definition (see
Section 2) specifies that the past sessions must be “uncorrupted”, namely the
session-specific transient secrets must remain unknown to the attacker. In YAK,
this means x, y and K must remain unknown to the attacker. Obviously, knowing
K would have trivially broken the past session. Also, if Mallory can learn any
ephemeral exponent x or y in the past session in addition to knowing both
parties’ static private keys, he has possessed the power to trivially compromise
any PK-AKE. Therefore, as shown in Figure 2 (2), we assume the attacker
knows both Alice and Bob’s private keys, but not any transient secrets in the
past session.

We explain the YAK’s fulfillment of the full forward secrecy under the Compu-
tational Diffie-Hellman (CDH) assumption. To obtain a contradiction, we assume
the attacker can compute K = g(a+x)(b+y). The attacker knows the values of a
and b (see Figure 2 (2)). The ephemeral public keys gx and gy are public in-
formation. Therefore, Mallory can compute gab, gay and gbx. Now, we can solve
the CDH problem as follows: given gx and gy where x, y ∈R Zq, we use Mallory
as an oracle to compute gxy = K/(gab · gay · gbx). This, however, contradicts the
CDH assumption.

Finally, we discuss the session key security requirement. As shown in Figure
2 (3), Mallory does not hold Bob’s private key but he tries to impersonate Bob.
We assume the powerful Mallory even knows Alice’s private key a. The only
power he does not have is the access to Alice and Bob’s session states. If Mallory
can access Alice’s session state, he can impersonate anyone to Alice – he just
needs to “steal” the session key that Alice computes in the transient memory.
Similarly, if Mallory can access Bob’s session state, he can impersonate Bob to
anybody by waiting until Bob computes the session key and then stealing it.

In this case, the assumed attacker is less powerful than the one described
in the “private key security” argument. Previously, the attacker was able to
corrupt an arbitrary session of Alice’s or Bob’s. He however had learned no useful
information than what he can simulate. On discussing the session key security,
we assume the attacker no longer has access to either user’s session state. This
change is necessary, and is consistent with the extreme-adversary principle [4]:
the only powers that an attacker does not have are those that would allow him
to trivially break any PK-AKE protocol.

The YAK protocol satisfies the session key security requirement under the
CDH assumption. As shown in Figure 2 (3), Mallory does not possess Bob’s
static private key, or have access to either Alice or Bob’s session state. To obtain

On Robust Key Agreement Based on Public Key Authentication 389

a contradiction, we assume Mallory is able to compute K = g(a+x)(b+y). Bob’s
public key gb is public information. Mallory knows Alice’s private key a. The
knowledge proof in the protocol proves that Mallory also knows the value y.
Hence, he can compute gab, gay and gxy. Now, we can solve the CDH problem as
follows: given gb and gx where x, b ∈R Zq, we use Mallory as an oracle to compute
gbx = Z/(gab · gay · gxy). This, however, contradicts the CDH assumption, which
shows YAK satisfies the session key security requirement.

5 Self-communication

The user identity is an important parameter in the protocol definition. In the
past literature, almost all PK-AKE protocols use the Distinguished Name (DN)
in the user’s X.509 certificate as the user identity [1,2,5,6,4]. This practice also
carries over to the self-communication mode [2], which causes the “wormhole
attack” (see Section 2). In the self-communication mode, the two parties are still
distinct entities and hence, naturally require different identities.

To enable self-communication in YAK, we need to ensure the SignerID in
the Schnorr’s signature remains unique. This is to prevent Bob from replaying
Alice’s signature back to Alice and vice versa. One solution is to simply attach
an additional identifier to the mobile stations using the same certificate. For
example, when Alice (server) is communicating to the nth copy of herself (mobile
station), Alice uses “Alice” as her SignerID to generate the Schnorr’s signature
and the nth copy uses “Alice-n” as its SignerID. Thus, Alice-n cannot replay
Alice’s signature back to Alice and vice versa. This solution is also generically
applicable to fix the self-communication problem in past protocols [1, 2, 5, 6, 4].

Though self-communication is considered a useful feature [2], one should be
careful to enable this feature only when it is really needed. This is because, when
enabled, it may have negative impact on the theoretical security. In Section 4,
under the “private key security”, we have explained that, under normal operations
(using different certificates a �= b), an attacker cannot learn ga·a from a corrupted
session. However, if self-communication is enabled in YAK, we essentially allow
a = b, hence the attacker can learn ga·a from a corrupted session. This implies we
would need a stronger assumption than CDH to prove the “session key security”.
This is undesirable, but to our best knowledge, no PK-AKE protocol is reducible
to the CDH assumption with the self-communication enabled. In comparison,
in HMQV [2], the attacker can learn ga·a from a corrupted session regardless
whether the self-communication is enabled.

6 Conclusion

In this paper, we report two new attacks on the HMQV protocol. In addition, we
present a new authenticated key agreement protocol called YAK, and analyze
its robustness in an extremely adverse condition: the only powers that an at-
tacker does not have are those that would allow him to trivially break any other

390 F. Hao

protocols. Overall, YAK demonstrates robust security under the Computational
Diffie-Hellman assumption in the random oracle model.

Acknowledgment

We thank Alfred Menezes and Berkant Ustaoglu for their generous advice and
invaluable comments. We thank Lihong Yang for helping improve the readability.

References

1. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

2. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005), http://eprint.iacr.org/2005/176.pdf

3. Krawczyk, H.: HMQV in IEEE P1363. Submission to the IEEE P1363 Standard-
ization Working Group (2006),
http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/
krawczyk-hmqv-spec.pdf

4. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key
Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

5. Lauter, K., Mityagin, A.: Security Analysis of KEA Authenticated Key Exchange
Protocol. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 378–394. Springer, Heidelberg (2006)

6. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An Efficient Protocol For
Authenticated Key Agreement. Designs, Codes and Cryptography 28(2), 119–134
(2003)

7. Menezes, A.: Another Look At HMQV. J. of Mathematical Cryptology 1(1), 47–64
(2007)

8. Menezes, A., Ustaoglu, B.: On The Importance of Public-Key Validation in the
MQV and HMQV Key Agreement Protocols. In: Barua, R., Lange, T. (eds.) IN-
DOCRYPT 2006. LNCS, vol. 4329, pp. 133–147. Springer, Heidelberg (2006)

9. Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

10. Mitchell, C.: Security For Mobility. The Institution of Electrical Engineers (2004)
11. Ustaoglu, B.: Obtaining A Secure And Efficient Key Agreement Protocol For

(H)MQV And NAXOS. Designs, Codes and Cryptography 46(3), 329–342 (2008)

http://eprint.iacr.org/2005/176.pdf
http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/krawczyk-hmqv-spec.pdf
http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/krawczyk-hmqv-spec.pdf

A Formal Approach for Automated Reasoning
about Off-Line and Undetectable On-Line

Guessing
(Short Paper)

Bogdan Groza and Marius Minea

Politehnica University of Timişoara and Institute e-Austria Timişoara�

bogdan.groza@aut.upt.ro, marius@cs.upt.ro

Abstract. Starting from algebraic properties that enable guessing low-
entropy secrets, we formalize guessing rules for symbolic verification. The
rules are suited for both off-line and on-line guessing and can distinguish
between them. We add our guessing rules as state transitions to protocol
models that are input to model checking tools. With our proof-of-concept
implementation we have automatically detected guessing attacks in sev-
eral protocols. Some attacks are especially significant since they are un-
detectable by protocol participants, as they cause no abnormal protocol
behavior, a case not previously addressed by automated techniques.

1 Motivation and Related Work

As password-based authentication continues to be used in practice and weak
passwords are still chosen by users, detecting protocols subject to guessing at-
tacks is a topic of high interest in security. In this paper we address the problem
of formalizing a previously introduced approach to detect guessing attacks in
a manner suitable for implementation in an automated verification toolset. We
use IF (Intermediate Format), a specification language that can be handled by
model checkers such as OFMC (Open Source Fixedpoint Model-Checker) [3] and
SATMC (SAT-based Model Checker) [2] from the AVISPA toolset.

A previous intention of integrating guessing rules in OFMC exists in [9], which
gives a formalization for off-line guessing attacks. In comparison, our contribu-
tion proposes a different formalism (with guessing rules based on a different rea-
soning), which allows us to handle both on-line and off-line attacks. Our guessing
rules are implemented at the level of the protocol description language, without
requiring the modification of the back-end model checkers. Other concrete imple-
mentations of guessing detection rules are by Corin et al. [7], Lowe [13] who used
Casper/FDR and Blanchet [5] in ProVerif, a verifier based on Prolog rules. Our
implementation is based on IF, a specification language which can be handled
by several back-end model checkers, notably OFMC and SATMC, which thus
gain the ability of detecting guessing attacks. Other theoretical foundations for
� This work is supported in part by FP7-ICT-2007-1 project 216471, AVANTSSAR:

Automated Validation of Trust and Security of Service-oriented Architectures.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 391–399, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

392 B. Groza and M. Minea

reasoning about guessing attacks exist. Abadi et al. [1] use indistinguishability of
two terms, deduced by static equivalence, to formalize guessing. Equational the-
ories for the applied pi-calculus are used by Corin et al. in [6], while Baudet [4]
uses a constraint solving algorithm for an equational theory.

Our guessing rules are based on the pseudo-randomness properties of one-way
functions. We consider two cases of guessing: first, when the adversary knows
the image of a one-way function computed on the secret and other known input;
second, when the adversary knows the image of a trapdoor function (encryption)
with a key that depends on the secret, and can establish relations on its input.
As one-way functions are pseudo-random, the output for a wrong secret cannot
match any previously known value, thus a correct guess can be verified.

Most prior work addresses only off-line guessing, considering the low-entropy
secret large enough to prevent guessing, or that unsuccessful attempts can be
blocked. However, in some on-line attacks the protocol behavior is indistinguish-
able from normal. These attacks are undetectable by participants and especially
dangerous. They are also realistic, as one of our case studies, a Norwegian ATM
system, illustrates. Undetectable on-line attacks have also been the focus of Ding
and Horster [8], but without a formalization or automated detection.

2 Formalization of Guessing Rules

To express the feasibility of guessing, we use, as in [10], the concept of strongly
distinguishing functions, which cannot give the same output for two different
secrets when these are paired with sufficiently many input choices.

Definition 1. Given σ ∈ {0, 1}k, we call a function f(σ, x) strongly distin-
guishing in the first argument after q queries, if given any q distinct values
{x1, x2, ..., xq}, ∀s1 �= s2 the probability that f(s1, xi) = f(s2, xi) for all i = 1 .. q
is at most 2−k, i.e., ∀s1 �= s2 . P r[f(s1, xi) = f(s2, xi), i = 1 .. q] ≤ 2−k.

Using strongly distinguishing functions, we have characterized the conditions
for an intruder’s guess in a guessing lemma [10]. However, due to its algebraic
rather than symbolic formulation, it cannot be directly implemented in a formal
verification tool. Therefore, we will link the concept of strongly distinguishing
function (in one query) with a symbolic protocol description.

Protocol descriptions contain terms, which are either atomic or composed. Atomic
terms are variables, constants or numbers ; composed terms are formed by apply-
ing pair, crypt, inv and other predefined operators on atomic terms. Facts are
predicates defined over terms, such as iknows, state, contains, etc.

Definition 2. We call a symbolic protocol description P a triple composed
of an initial state, a set of transition rules and a set of attack states, i.e.,
P = (InitialState,TransitionRule∗,AttackState∗), where: i) the initial state is
a conjunction of ground facts, ii) a transition rule has the form LHS ⇒ RHS
where LHS and RHS are conjunctions of facts, and LHS may also contain a
negated fact and a condition (a conjunction of term equalities and inequalities),
iii) an attack state is a conjunction of facts with a condition (like a LHS).

Formal Automated Reasoning 393

To reason about guessing, we define derivation rules P �r T , denoting that
term T can be derived from term set P using rule r. Rule �ihears T denotes that
a term T has been overheard by the intruder during protocol execution.

Denote the set of symbols (constants or variables) appearing in term T by
S(T). If s ∈ S(T) is such a symbol, we also write T �part s.

Let T �s←gen(s′) T ′ denote that term T ′ is obtained by substituting any
occurrence of the symbol s in T with a fresh symbol s′ �∈ S(T). For instance,
crypt(s, m) �s←gen(s′) crypt(s′, m). As a special case, we write T �s←igen(s′) T ′

if s is substituted by a fresh value chosen by the intruder.

Consider a valuation function v defined on atomic terms with algebraic values,
and extended to composed terms through function and operator application. We
now relate our symbolic reasoning to the algebraic properties of the protocol.

Definition 3. A symbolic protocol description P is called algebraically dependent
on symbol s, denoted P dep s if for any term T such that �ihears T and T �part s,
and considering T ′ such that T �s←gen(s′) T ′, for any valuation v with v(s) �=
v(s′), we have v(T) �= v(T ′).

Given s ∈ S(T), denote by OT
s (·) the oracle corresponding to the function ob-

tained by making s a variable in T and keeping other parts of it constant, e.g.,
O

crypt(s,m)
s (·) is the oracle corresponding to f(s) = crypt(s, m).

Lemma 1. The symbolic protocol description P is algebraically dependent on s,
i.e., P dep s, if and only if any function f obtained as OT

s (·) where s ∈ S(T)
and �ihears T is strongly distinguishing in one query.

Lemma 1 relates a symbolic protocol description with the algebraic notion of
strongly distinguishing function. Since injective functions are strongly distin-
guishing in one query, any symbolic protocol description in which a symbol s oc-
curs only in the body of a injective (bijective) function is algebraically dependent
on s. In practice, this covers a large class of protocols, since most cryptographic
functions are bijective (as are hash functions, if assumed collision-free).

Definition 4. An adversary observes an oracle for a secret s if it hears a term
that contains s. The adversary controls an oracle for secret s if by replacing s
in a term with a fresh s′ (rule �s←igen(s′)) the adversary knows the new term.

�ihears T ∧ T �part s ⇒ observes(OT
s (·)) (1)

�ihears T ∧ T �s←igen(s′) T ′ ∧ �iknows T ′ ⇒ controls(OT
s (·)) (2)

Lemma 2. Consider a symbolic protocol description P such that P dep s. If an
adversary observes and controls an oracle for a low-entropy secret s then the
adversary can guess the secret s, i.e.,

observes(Of
s (·)) ∧ controls(Of

s (·)) ⇒ guess(s) (3)

This first guessing case involves observing and controlling a one-way function
(oracle) that is strongly distinguishing in the secret. A second case uses invertible
functions. The adversary can also guess if he or she observes messages encrypted

394 B. Groza and M. Minea

with a key computed as a strongly distinguishing function on the secret, controls
the corresponding decryption oracle, and can establish a relation to one or several
parts of the encrypted messages. We formalize this case as follows:

Definition 5. We call s-dependent an encryption or decryption oracle that uses
a key containing s. An adversary that hears the encryption of some message
with a key that contains s is said to observe an s-dependent encryption oracle.
Moreover, we say that he controls the corresponding s-dependent decryption
oracle if by replacing s in the encryption key with a fresh s′ known to him the
adversary can decrypt arbitrary messages encrypted with the new key, i.e.,

�ihears {M}K ∧ K �part s ⇒ observes(O{M}K
s (·)) (4)

{M}K �s ← igen(s′)
M ← gen(M′)

{M ′}K′ ∧ �iknows M ′ ⇒ controls(O{M}K−1
s (·)) (5)

Here, {M}K is the encryption of message M with key K. To keep relation (5)
simple, we’ve left implicit that the adversary must overhear the term {M}K and
the encryption key must contain s, i.e., �ihears {M}K ∧ K �part s as a premise.
This is of course needed for the question of controlling the oracle to make sense.

To express a relation between encrypted inputs we employ a derivation rule
Fact �M

concat T to produce all distinct messages M that satisfy a property
Fact(M), by concatenating them into term T . For example, (�ihears M) �M

concat T
yields a term T that is the concatenation of all distinct terms for which �ihears M
holds. Similarly, (�ihears {M}K ∧ K �part s) �M

concat T produces the concate-
nation of all distinct messages that are encrypted with a key that contains s.
Also, let T �split 〈T ′.T ′′〉 denote that T ′ and T ′′ are derived by splitting T into
disjoint subsets of terms (at least one of them non-empty).

The second guessing rule provides powerful capabilities: to find a relation be-
tween two terms (the relates fact) the adversary can use any available operators:
pair, crypt, etc., as well as his Dolev-Yao abilities, fake, overhear, etc. Thus, for
deciding relates the adversary can perform any transition allowed by the symbolic
protocol description P . The following definition models this intuition.

Definition 6. An adversary can relate two terms T ′ and T ′′ of a symbolic protocol
description P if by adding T ′ to the adversary knowledge he can derive T ′′

(denoted T ′�DY (P) T
′′) using all his abilities over P .

T ′ �DY (P) T ′′ ⇒ relates(T ′, T ′′) (6)

Lemma 3. Let P be a symbolic protocol description such that P dep s. If the
adversary observes one or more s-dependent encryption oracles for which he or
she controls the corresponding decryption oracles and can relate parts of the
encrypted messages then the adversary can guess the secret, i.e.,

observes(O{M}K
s (·)) ∧ controls(O{M}K−1

s (·)) �M
concat T

∧T �split 〈T ′.T ′′〉 ∧ relates(T ′, T ′′) ⇒ guess(s) (7)

Formal Automated Reasoning 395

3 Implementation and Experimental Results

Our formalization of the guessing calculus makes it amenable to an implemen-
tation where states are sets of terms, and transitions are given as rewrite rules,
as in the IF protocol specification language. Derivations such as �ihears , �part,
�s←gen(s′), �split yield corresponding IF facts. These are combined into rules to
establish the relations observes and controls, and ultimately, guessing.

We use an adversary model with standard Dolev-Yao abilities: the adversary
can fake new messages, intercept sent messages or overhear them. Moreover, the
adversary has the standard computational abilities: he can encrypt and decrypt
if he knows the corresponding key, and he can pair and decompose messages.

Based on this model we want to express rules for the adversary’s ability to
observe and control oracles. To decide whether a composed term represents
an oracle, we need to determine if it contains the secret to be guessed. By
overhearing such a term, the adversary observes the oracle. Further, to decide
controls, we start from terms containing the secret, construct new terms in which
the secret is replaced by a different value and test if the adversary knows them,
and thus controls the oracle for the function derived from the term.

For secret containment (the derivation �part in our theory) we define the
containsSec fact, which is true for all terms containing the secret. For secret
replacement (derivation �s←gen(s′)), we define the replaceSec fact which re-
places any secret from the guessableSecrets set with a replacement secret.

With these helper facts defined, the observes and controls abilities are easily
derived. Observing an oracle is modeled as ihears(T).containsSec(T, SList),
where SList is the list of guessable secrets, while controlling an oracle is specified
as replaceSec(T, Tnew).iknows(TNew) (where pairing with . means fact con-
junction in IF). Explicit observes and controls predicates are not necessary; for
efficiency, the above expressions are directly embedded into the guessing rules.
Guessing multiple secrets. To enable guessing in such scenarios, secrets al-
ready guessed must be used in subsequent guesses. However, this cannot be
expressed by a simple chaining of the guesses, since adding new knowledge to
the intruder cannot be done dynamically in the attack condition. Our simple
and effective solution expresses the guessing rule (based on the observes and
controls abilities) as transition of the protocol itself. As a result, any guessed
value is added to iknows. Being protocol-independent, this rule can be inserted
in any protocol specification and enables chaining multiple guesses.
Distinguishing detectable from undetectable on-line attacks. As a first
intuition, if guessing takes place after a participant has reached a final state,
then guessing goes undetected for that participant. This intuition is wrong, as
the same participant may have another instance still running. To distinguish
undetectable from detectable on-line guessing attacks, we need to express that
all participant instances have successfully completed. We can do this by adding
the PIDs of all started instances to a set, adding their termination to the intruder
knowledge and checking the match in the attack condition. Alternatively, simply
matching the count of started and finished instances suffices.

396 B. Groza and M. Minea

MS-CHAP v2

1. A→B : A
2. B→A : NB

3. A→B : NA, H(kAB, NA, NB , A)
4. B→A : H(kAB, NA)

NTLMv2-Session

1. B→A : NB

2. A→B : NA, H(kAB), H ′(NA, NB))
3. B→A : H(kAB, H ′(NA, NB)),H ′(NA, NB)

(a,1)→ i: a
i→ (b,1): a
(b,1)→ i: Nb(2)
i→ (a,1): Nb(2)
(a,1)→ i: Na(3).h(kab.Na(3).Nb(2).a)
i→ (b,1): Na(3).h(kab.Na(3).Nb(2).a)
(b,1)→ i: h(kab.Na(3))
i→ (a,1): h(kab.Na(3))
i→ (i,1): h(kab rpl.Na(3))
i→ (i,1): kab.snull
i→ (i,17): kab

Fig. 1. MS-CHAP and NTLMv2-Session protocols and OFMC attack trace

MS-CHAP and NTLM. These are two simple, well known protocols from
Microsoft, vulnerable but still frequent in practice even today. MS-CHAP is used
for remote user authentication and has two versions. NTLM is used with SMB
to access remote printers, files etc. and has three versions: NTLMv1, NTLMv2
and NTLMv2-Session. Figure 1 presents MS-CHAP v2 and NTLM v2-Session.

We have augmented the MS-CHAP v2 protocol model with guessing rules. As
expected, OFMC found the attack in Figure 1; a similar attack can be traced for
NTLM. The intruder acts as man-in-the-middle. Guessing is possible because the
intruder hears h(kab.Na(3)), and knowing Na(3) can compute h(kab rpl .Na(3))
for arbitrary replacements kab rpl of kab. By Lemma 2 this means that the
intruder observes and controls the oracle Of

s (·), where f = h(s,Na(3)). The last
three trace steps are intruder reasoning; they reflect the fact that additions to
intruder knowledge are modeled in the same way as message receipts.

The guessing attacks on MS-CHAP and NTLM are known and simple, but
the results serve as basic proof that our approach can automate their detection.
The role of an automatic verification tool is to be used on large, complex systems
or services that cannot be handled by hand and where such a protocol is only
a small foundational component. Thus, the ability of detecting flaws in such a
protocol becomes crucial in the discovery of new flaws in the overall system.
The Norwegian ATM. A second test for our implementation was a Norwegian
ATM protocol (Fig. 2), known as flawed [11]. A bank issues ATM cards with
the user PIN encrypted as EBKey(PIN) with a secret bank key BKey . The
question is if an adversary, having a stolen card, can guess the user PIN from
the encrypted value. One can argue that testing on-line against an ATM with all
possible PINs is not feasible since the ATM will lock, e.g., after the first three
wrong guesses. However, imagine that the adversary has a card issued by the
same bank, with EBKey(PIN Adv) on it and that each card owner may change its
PIN at an ATM. Now, the adversary can break the PIN on the stolen card by
using an on-line attack in which he legally changes its own PIN and then verifies
the encrypted value from his card against the one from the stolen card. This is a
simplified example, since the PIN is usually not encrypted alone, but with some
card-specific information. However, it justifies the concern for on-line attacks.

Formal Automated Reasoning 397

Card Issuing Stage: 1. Bank→User : �DESBKey(PIN)�16,PIN
PIN Change Procedure: 1. User→ATM : �DESBKey(PIN old)�16,PIN old,PIN new

2. ATM→User : �DESBKey(PIN new)�16
First attack trace

1. i → (i,3): stolenPIN rplBKey rpl

2. i → (i,3): BKey.stolenPIN
3. i → (i,17): stolenPIN

Second attack trace
1. i → (i,1): PIN(1)BKey.PIN(1)
2. i → (i,2): PIN(1)BKey.PIN(1).stolenPINBKey

3. i → (i,2): stolenPIN

Fig. 2. The Norwegian ATM protocol (modified) and OFMC attack traces

The first attack trace produced by OFMC (Fig. 2) was rather unexpected.
If an adversary obtains DESBKey(PIN), he can compute DESk(m) for any key
and message, thus he observes and controls the oracle ODES (·)(·) and can perform
guessing. This is an off-line attack and the trace represents intruder deductions:
controlling the oracle with replaced values (1), the intruder deduces both PIN
and BKey (2), and thus the PIN (3). In practice this is impossible because every
PIN would match for some DES key; moreover, only 16 bits of the result are
stored, yielding a huge number of potential values for BKey and PIN. To test
our calculus, we restricted the adversary from trying replacements for BKey .
Thus, the adversary no longer controls the oracle ODES (·)(·).

OFMC found the second trace, where the adversary, being issued a legal card
(1) uses the PIN change procedure against the ATM in order to control the
oracle ODESBKey(·), where BKey is constant. Matching the terms for legal and
stolen cards in the intruder knowledge (2) produces the PIN (3). The attack is
realistic assuming that the DES encryption is done directly on the PIN.
The Lomas et al. protocol [12] is an interesting case study for guessing at-
tacks. The protocol is illustrated in Figure 3. With respect to our theory it
is relevant as it fits the second guessing case (Lemma 3). Lowe [13] found an
attack by choosing the constant 0 as timestamp, which allows a replay attack
that lets the adversary recover the nonce from two different responses of the
server, thus allowing the verification of a correct password. Using OFMC we
found a different attack, based again on the weakness of the timestamp. We
used a nonce encrypted with pwdA as the arbitrary timestamp, in order to
avoid Lowe’s attack. Quite unexpectedly, OFMC produced the following attack
trace: instead of replaying the message from session 1 (Lowe’s attack) the in-
truder lets the protocol run normally between A and B and from this run he
obtains {Na1, k ⊕Na2}pwdA. Now the intruder initiates a new protocol session,
impersonating A and sending {A, B,Na1′,Na2′, Ca, {Na1, k⊕Na2}pwdA}pkS in
step 1 to the server. Indeed {Na1, k ⊕ Na2}pwdA besides the length (which is

1. A→S : {A, B,Na1,Na2, Ca, {Ta}pwdA}pkS 5. S→B : {Nb1, k ⊕Nb2}pwdB

2. S→B : A,B 6. B→A : {Rb}k
3. B→S : {B, A,Nb1,Nb2, Cb, {Tb}pwdB}pkS 7. A→B : {f(Rb), Ra}k
4. S→A : {Na1, k ⊕ Na2}pwdA 8. B→A : {f(Ra)}k

Fig. 3. The Lomas et al. protocol

398 B. Groza and M. Minea

mainly an implementation issue) is just a random value (indistinguishable from a
nonce) encrypted with the correct password of A. Further on, the server answers
in step 4 with {Na1′, k⊕Na2′}pwdA, but now Na1′ is known to the adversary as
he has forged the message in step 1 and thus he can make a correct guess. This
attack is not based on a replay, as the message in step 1 was never received by
S before. To the best of our knowledge, this attack is new.

4 Conclusions

We have formalized rules for detecting guessing attacks, linking their underly-
ing algebraic properties to the context of symbolic protocol descriptions. Stated
as conditional rewrite rules in the description language IF, they can be added
to any protocol model, and used with the usual Dolev-Yao intruder deduc-
tions. Thus, guessing attacks can be automatically detected without change to
the model-checker back-ends. Our implementation automatically distinguishes
between detectable and undetectable on-line attacks and can guess multiple
secrets.

Using OFMC we have found attacks on several protocols; of these, the at-
tacks on the simplified Norwegian ATM (using the PIN change procedure) and
on the Lomas et al. protocol are new to the best of our knowledge. We be-
lieve this shows our automation of guessing attack detection to be practically
relevant, especially in its support for undetectable on-line attacks. Future work
involves integrating this proof-of-concept implementation into a stable release of
the AVANTSSAR verification toolset or potentially with a high-level specifica-
tion language.

Acknowledgments. We thank Sebastian Mödersheim and Roberto Carbone
for valuable answers on using the OFMC and SATMC model checkers.

References

1. Abadi, M., Baudet, M., Warinschi, B.: Guessing attacks and the computational
soundness of static equivalence. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS
2006. LNCS, vol. 3921, pp. 398–412. Springer, Heidelberg (2006)

2. Armando, A., Compagna, L.: SAT-based model-checking for security protocols
analysis. International Journal of Information Security 7(1), 3–32 (2008)

3. Basin, D.A., Mödersheim, S., Viganò, L.: OFMC: A symbolic model checker for
security protocols. Internat. Journal of Information Security 4(3), 181–208 (2005)

4. Baudet, M.: Deciding security of protocols against off-line guessing attacks. In:
12th ACM Conf. on Computer and Communications Security, pp. 16–25 (2005)

5. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: 14th IEEE Computer Security Foundations Workshop, pp. 82–96 (2001)

6. Corin, R., Doumen, J.M., Etalle, S.: Analysing password protocol security against
off-line dictionary attacks. In: 2nd W. Secur. Issues Petri Nets, pp. 47–63 (2004)

7. Corin, R., Malladi, S., Alves-Foss, J., Etalle, S.: Guess what? Here is a new tool
that finds some new guessing attacks. In: W. Issues Theory Sec., pp. 62–71 (2003)

Formal Automated Reasoning 399

8. Ding, Y., Horster, P.: Undetectable on-line password guessing attacks. Operating
Systems Review 29(4), 77–86 (1995)

9. Drielsma, P.H., Mödersheim, S., Viganò, L.: A formalization of off-line guessing for
security protocol analysis. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS
(LNAI), vol. 3452, pp. 363–379. Springer, Heidelberg (2005)

10. Groza, B., Minea, M.: A calculus to detect guessing attacks. In: Samarati, P.,
Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp.
59–67. Springer, Heidelberg (2009)

11. Hole, K.J., Moen, V., Klingsheim, A.N., Tande, K.M.: Lessons from the Norwegian
ATM system. IEEE Security and Privacy 5(6), 25–31 (2007)

12. Lomas, T.M.A., Gong, L., Saltzer, J.H., Needham, R.M.: Reducing risks from
poorly chosen keys. In: 12th ACM Symp. on Oper. Sys. Princip., pp. 14–18 (1989)

13. Lowe, G.: Analysing protocols subject to guessing attacks. Journal of Computer
Security 12(1), 83–98 (2004)

Signatures of Reputation
(Extended Abstract)

John Bethencourt1, Elaine Shi2, and Dawn Song1

1 UC Berkeley
{bethenco,dawnsong}@cs.berkeley.edu

2 PARC
eshi@parc.com

Abstract. Reputation systems have become an increasingly important
tool for highlighting quality information and filtering spam within online
forums. However, the dependence of a user’s reputation on their history of
activities seems to preclude any possibility of anonymity. We show that
useful reputation information can, in fact, coexist with strong privacy
guarantees. We introduce and formalize a novel cryptographic primitive
we call signatures of reputation which supports monotonic measures of
reputation in a completely anonymous setting. In our system, a user can
express trust in others by voting for them, collect votes to build up her
own reputation, and attach a proof of her reputation to any data she
publishes, all while maintaining the unlinkability of her actions.

1 Introduction

In various forms, reputation has become a ubiquitous tool for improving the
quality of online discussions. For example, a user may mark a product review on
Amazon or a business review on Yelp as “useful”, and these ratings allow others
to more easily identify the best reviews and reviewers. Most web message boards
also include a means of providing feedback to help highlight quality content, an
early example being Slashdot’s “karma” system.

Unfortunately, in all such systems, a user is linked by their pseudonym to a
history of their messages or other activities. In many online communities (e.g., a
support group for victims of abuse), users may hope that the use of a pseudonym
allows them to remain anonymous. However, recent work has shown that very
little prior information about an individual is necessary to match them to their
pseudonym [1,2,3]. Building a truly private forum requires abandoning the notion
of persistent identities.

We raise the question of whether it is possible to gain all the utility of ex-
isting reputation systems while maintaining the unlinkability and anonymity of
individual user actions, thus avoiding the histories of activity which threaten
privacy. Such a system would enable a number of intriguing applications. For
example, we might imagine an anonymous message board in which every post
stands alone – not even associated with a pseudonym. Users would rate posts
based on whether they are helpful or accurate, collect reputation from other
users’ ratings, and annotate or sign new posts with the collected reputation.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 400–407, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

Signatures of Reputation 401

Other users could then judge new posts based on the author’s reputation while
remaining unable to identify the earlier posts from which it was derived. Such
a forum would allow effective filtering of spam and highlighting of quality infor-
mation while providing an unprecedented level of user privacy.
Our approach. To build toward this goal, we propose signatures of reputation
as a new cryptographic framework enabling the counter-intuitive combination
of reputation and anonymity. In a conventional signature scheme, a signature
is associated with a public key and convinces the verifier that the signer knows
the corresponding private key. Based on the public key, a verifier could then
retrieve the reputation of the signer. Through signatures of reputation, we aim
to eliminate the middle step of identifying the signer: instead, verification of the
signature directly reveals the signer’s reputation. With such a tool, a user may
apply their reputation to any data that they wish to publish online, without
risking their privacy. By formally defining this setting, we hope to spur further
research into techniques for its realization.

As a first step, we introduce a construction for signatures of reputation that
supports monotonic aggregation of reputation. That is, we assume that addi-
tional feedback cannot decrease a user’s reputation. While a user’s misbehavior
cannot damage reputation they have already accumulated, such a system is suf-
ficient to prevent more casual attackers who, for example, wish to post spam
without taking the time to obtain reputation first. Although some existing rep-
utation systems are monotonic (e.g., Google’s PageRank algorithm), one would
ultimately hope to support non-monotonic reputation as well. We leave this as
a primary open problem for future work.

In our construction, the reputation feedback takes the form of cryptographic
“votes” that users construct and send to one another, and a user’s reputation is
simply the number of votes they have collected from distinct users. Each user
stores the votes they have collected, and to anonymously sign a message with
their reputation, the user constructs a non-interactive zero-knowledge (NIZK)
proof of knowledge which demonstrates possession of some number of votes.

The ability of a reputation system to limit the influence of any single user is
crucial in enabling applications to control abuse. To this end, our construction
ensures that each user can cast at most one valid vote for another user (or up to
k for any fixed k ≥ 1). Enforcing this property is a major technical problem due
to the tension with the desired unlinkability properties. In Section 4, we give a
high-level overview of the techniques our construction uses to address this and
other technical challenges. For details of the construction, proofs, and additional
material, we refer the reader to the full version of this paper [4].
Related work. While we are not aware of any work directly comparable to our
proposed signatures of reputation, others have explored the conflict between
reputation and unlinkability [5,6,7]. E-cash schemes also attempt to maintain
the unlinkability of individual user interactions, and in several cases [8,9,10] they
have been applied for reputation or incentive purposes. The work of Androulaki
et al. [10] is particularly close to ours in its aims. However, this and all other
e-cash based approaches are incapable of supporting the type of abuse resistance
provided by our scheme because they allow a single user to give multiple coins

402 J. Bethencourt, E. Shi, and D. Song

(a) A user anonymously posts two one-time
pseudonyms, each of which receives a vote.

(b) The user may sign a message while proving
they have votes from two distinct users.

Fig. 1. One-time pseudonyms, votes, and signatures of reputation

to another, inflating their reputation. In our scheme, it is possible to prove that
a collection of votes came from distinct users. This ability to prove distinctness
while maintaining the mutual anonymity of both voters and vote receivers is the
key technical achievement of our construction.

Anonymous credentials schemes [11,12,13] may also be considered an effort
toward the goal of “trust without identity”. There are two key distinctions,
however. First, anonymous credentials are concerned with the setting of access
control based on trust derived from explicit authorities, whereas this work aims
to support trust derived from a very different source: the aggregate opinions of
other users. Second, like e-cash based approaches, existing anonymous creden-
tial schemes lack a mechanism for proving that votes or credentials come from
distinct users while simultaneously hiding the identities of those users.

Finally, our setting superficially resembles that of e-voting (e.g., [14]), in that
it allows the casting of votes while maintaining privacy properties. However,
e-voting schemes are designed for an election scenario in which the candidates
have no need to receive votes and prove possession of votes anonymously, among
other differences, and cannot be used to achieve the properties we require.

2 Defining Signatures of Reputation

We now introduce our formulation of signatures of reputation within the vote
counting scenario, then define the algorithms which constitute such a scheme.
Overview. In the system illustrated in Fig. 1, we refer to each user as a vote
receiver, voter, signer, or verifier depending on their role in the specific algo-
rithm being discussed. To ensure receiver anonymity, a vote receiver invokes the
GenNym algorithm to compute a “one-time pseudonym” called a nym, which
they attach to some content that they publish and wish to receive credit for.
A voter can then use the Vote algorithm on a nym to produce a vote which
hides their identity, even from the recipient (referred to as voter anonymity).
The voter posts the vote online where the recipient can later retrieve it. After
collecting some votes, a signer runs the SignRep algorithm on a given message
to construct a signature of reputation, which must not reveal the signer’s iden-
tity (signer anonymity). We also ensure that a malicious signer cannot inflate
its reputation (reputation soundness).

Signatures of Reputation 403

To participate in the system, each user must contact a registration authority
(RA) which generates the user’s private credentials, just as the key generating
server does within IBE schemes. Although our construction requires trust in the
RA for both privacy and reputation soundness, it need only be trusted when
registering users and may thereafter go offline. As with typical IBE schemes,
it is also possible to reduce the trust necessary in the RA by distributing it
amongst multiple parties [15]. Devising a scheme which maintains privacy in the
presence of a malicious RA is an interesting problem for future work. On the
other hand, relying on the honesty of the RA for reputation soundness seems
inevitable, since a malicious RA could always register additional phony users
(i.e., Sybil identities) to arbitrarily create votes and inflate reputations.

At this point, one might raise the concern that, if each user has received a
unique number of votes, the reputation value itself is identifying. Clearly, there
is an inherent tradeoff between the precision of a measure of reputation and the
anonymity of a user with any specific value, as pointed out by Steinbrecher [6].
The solution is to use a sufficiently coarse-grained reputation. When producing a
signature in our construction, a user may prove any desired lower bound on their
reputation instead of revealing the actual value. In this way, our construction
allow users to implement their own policies for the precision of their reputations.
For example, one policy would be to always round down to a power of two.
Algorithms. We now list and define the algorithms that constitute a scheme for
signatures of reputation. All but VerifyRep may be randomized.

Setup(1λ) → (params, authkey): The Setup algorithm is run once on security
parameter 1λ to establish the public parameters of the system params and a
key authkey for the registration authority.

GenCred(params, authkey) → cred: To register a user, the registration author-
ity runs GenCred and returns the user’s credential cred.

GenNym(params, cred) → nym: The GenNym algorithm produces a one-time
pseudonym nym from a user’s credential.

Vote(params, cred, nym) → vt or ⊥: Given the credentials cred of some user
and a one-time pseudonym nym, Vote outputs a vote from that user for the
owner of nym, or ⊥ in case of failure (e.g., if nym is invalid).

SignRep(params, cred, V, msg) → Σ or ⊥: Given the credentials cred of some
user, the SignRep algorithm constructs a signature of reputation Σ on a
message msg using a collection of c votes V = {vt1, vt2, . . . , vtc} for that user.
The signature corresponds to a reputation c′ ≤ c, where c′ is the number of
distinct users who generated votes in V . The SignRep algorithm outputs
⊥ on failure, specifically, when V contains an invalid vote or one whose
recipient is not the owner of cred.

VerifyRep(params, msg, Σ) → c or ⊥: The VerifyRep algorithm checks a
purported signature of reputation on msg and outputs the corresponding
reputation c, or ⊥ if the signature is invalid.

The most basic property required of the above algorithms is correctness ; we omit
this definition for brevity. In the following section, we explore the other desired
properties.

404 J. Bethencourt, E. Shi, and D. Song

3 Privacy and Security Properties

The full version of this paper provides rigorous definitions for the four privacy
and security properties [4]; here, we describe them at an intuitive level and
discuss some of the subtleties in defining them appropriately.
Signer anonymity. First, we would like to ensure that a user may produce
signatures of reputation anonymously. Furthermore, it should be impossible to
determine whether two different signatures were produced by the same user.
This may be defined by the following game. The challenger begins by gener-
ating the public parameters and a list of user credentials cred1, . . . , credn. An
adversary A is given access to all the credentials and may use them to generate
pseudonyms and votes before eventually printing a message msg, 1 ≤ i0, i1 ≤ n,
and two sets of votes V0, V1. The challenger flips a coin b ∈ {0, 1} and returns
Σb = SignRep(params, credib

, Vb, msg) to A, which then prints a guess b′. We
say that A has won the game if b = b′ and VerifyRep(params, msg, Σ0) =
VerifyRep(params, msg, Σ1). That is, the value of b should affect neither the
reputation values of the resulting signatures nor their validity. If the advantage
(that is, the probability of winning the game minus one-half) of every PPT A is
negligible in the security parameter, we say that the scheme is signer anonymous.
Receiver anonymity. Complementing the ability to produce a signature of rep-
utation anonymously is the ability to receive the necessary votes anonymously.
In this case, we require that a pseudonym generated by the GenNym algorithm
reveal nothing about its owner in the absence of that user’s credential. An ad-
versary A playing the corresponding game will select two users 1 ≤ i0, i1 ≤ n
and must guess which produced the challenge nym∗ = GenNym(params, credib

).
Since we allow users to identify their own pseudonyms, we cannot provide all
the credentials to A in this case. Instead, we provide A with access to an oracle
which will reveal individual credentials on demand (a “corrupt” query) or use
them to produce pseudonyms, votes, and signatures as requested. Then, to win
the game, we require that A not corrupt either i0 or i1. We also require that
A not request a signature from i0 or i1 using a vote that was cast for nym∗,
since the reply would immediately reveal b (the signer is ib iff the reply is not
⊥). If the advantage of every PPT A in this game is negligible in the security
parameter, the scheme is receiver anonymous.

Astute readers may note that we have not properly defined what it means for
a vote to have been “cast for nym∗”, since we have no information about how the
adversary may have constructed it. To resolve this definitional issue, in the full
version of this paper, we define opening algorithms which reveal the creator of a
pseudonym and the voter and recipient of a given vote. To operate, they require
a special opening key which may be generated during setup, just as in group
signature schemes. However, while this tracing is an explicit feature of group
signatures, here we use it only to establish a “ground truth” for definitional
purposes. In an actual implementation, the opening key would not be generated.
Voter anonymity. We wish to define the voter anonymity property to encompass
the strongest form of unlinkability compatible with the general semantics of the
scheme, as we did in the case of receiver anonymity. Doing so is more subtle in

Signatures of Reputation 405

this case, however, due to the necessity of detecting duplicate votes. Because we
require a SignRep algorithm to demonstrate the number of votes from distinct
users, such an algorithm can be used by a vote receiver to determine whether
two votes cast for any of their pseudonyms were produced by the same voter
(duplicates). That is, the receiver can try to use the two votes to produce a
signature and then check the reputation of the result with VerifyRep.

In defining voter anonymity, we allow precisely this type of duplicate detec-
tion, but nothing more. While initially this may seem like an “exception” to the
unlinkability of votes, in actuality, it is not only inevitable,1 but also unlikely to
be a practical concern. Although a vote receiver must be able to detect duplicate
votes, we can still avoid the voting histories we originally set out to eliminate. In
particular, our definition ensures that in the following cases it is not possible to
determine whether two votes were cast by the same user (i.e., to link the votes):

1. A user cannot link a vote for one of their pseudonyms with a vote for a
pseudonym of another user, nor can they link two votes for distinct
pseudonyms of another user (or two different users).

2. A colluding group of users cannot link votes between their pseudonyms,
provided the pseudonyms correspond to different credentials. Furthermore,
they are not able to link the numbers of duplicates they have observed. For
example, if a user determines that they have received two votes from one
user and three votes from another, they will have no way of matching these
totals up with those of another colluding user.

In the corresponding game, A selects 1 ≤ i0, i1 ≤ n and nym and is given
vt∗ = Vote(params, credib

, nym) as a challenge. As before, they are given access
to the oracle and must make a guess b′. In this case, we require that if A requests
through the oracle that the user corresponding to nym produce a signature using
vt∗, then votes from both i0 and i1 must be included. Otherwise, the number of
distinct votes in the resulting signature would directly reveal b. Additionally, we
disqualify A if they both corrupt the user corresponding to nym and request a
vote on nym from either i0 or i1. This is necessary because the status of such a
vote as a duplicate of vt∗ (or lack thereof) would reveal b. If every PPT A has
negligible advantage in this game, the scheme is voter anonymous.
Reputation soundness. To define the soundness of a scheme for signatures of
reputation, we use a computational game in which an adversary A must forge a
signature of reputation Σ on some message msg. We disqualify A if Σ was the
reply to one of its oracle queries, and we require that Σ have reputation strictly
greater than what it could if the adversary had used the scheme normally. The
value of the best such legitimately obtainable reputation will depend on several
things: the number of users the adversary has corrupted (since the adversary
may use their credentials to produce votes), the number of votes received from
honest users via oracle queries, and how those votes were distributed amongst
1 Allowing proofs of vote distinctness while eliminating the ability to identify du-

plicates could only be possible if the notion of discrete votes is abandoned. This
approach would require all votes in the system to be aggregated into a indivisible
block before they can be used to produce signatures, a vastly impractical solution.

406 J. Bethencourt, E. Shi, and D. Song

the corrupted users. More precisely, let �1 be the number of corrupted users
and �2 be the greatest number of distinct honest users that voted for a single
corrupt user. Then we require that VerifyRep(params, msg, Σ) > �1 + �2 for
the adversary to succeed. If, for every PPT A, the probability of winning this
game is negligible in the security parameter, then the scheme is sound.

In some applications, a weaker version of soundness may suffice and may be
desirable for greater efficiency. One natural way to relax the definition is to
specify an additional security parameter ε ∈ (0, 1) as a multiplicative bound on
the severity of cheating we wish to prevent. Specifically, we say that a scheme
is ε-sound if it satisfies the above definition, but using the requirement that
(1 − ε) ·VerifyRep(params, msg, Σ) > �1 + �2.

4 Highlights of Our Construction

Our scheme for signatures of reputation can produce sound signatures of repu-
tation c of size O(c) or ε-sound signatures of size O(1

ε log c). In the full version
of this paper, we detail the construction and prove that it satisfies all of the
properties discussed in the previous section [4]. In this section, we describe some
of the scheme’s technical features and underlying ideas.
Assumptions. Our constructions rely on a bilinear map (symmetric or asym-
metric) between prime order groups. Its privacy and security properties are based
on the relatively standard DLinear and SDH assumptions, BB-HSDH and BB-
CDH [11], and a new constant-size, non-interactive, computational assumption
called SCDH, which we prove hard in generic groups. Additionally, the ε-sound
variant of our scheme requires the random oracle model.
Nested NIZKs. Throughoutour construction,wemake extensiveuse of theGroth-
Sahai scheme for non-interactive zero-knowledge (NIZK) proofs [16], which can be
used to efficiently demonstrate possession of signatures, ciphertexts, and their re-
lationships while maintaining unlinkability properties. One unique (to our knowl-
edge) feature of our construction is the use of nested NIZKs, that is, NIZKs which
prove knowledge of other NIZKs and demonstrate that they satisfy the verifica-
tion equations.This situation arises because a user’s credentials contain a signature
from the registration authority, and a user includes a NIZK proof of the validity of
this signature when they cast a vote. When a signer later uses the vote, they in-
clude this NIZK within a further NIZK to demonstrate the validity of the votes
while maintaining signer anonymity.
Proving distinctness. We give signers to ability prove the distinctness of their
votes through the following mechanism. Each user credential contains (among
other components) a “voter key” v and a “receiver key” r. A valid vote must
contain a certain deterministic, injective function of these keys: f(v, r). Thus,
duplicate votes can be detected when f(v1, r) = f(v2, r). To receive votes anony-
mously, a user includes in each nym an encryption of their receiver key E(r) under
their own public key. Using a homomorphism, the voter can use this ciphertext
to compute E(f(v, r)) and place it within the vote; later, the receiver will de-
crypt this to obtain f(v, r). To maintain signer anonymity when using a series
of votes U1 = f(v1, r), U2 = f(v2, r), . . . to sign a message, the signer blinds the

Signatures of Reputation 407

votes with a (single) exponent to produce a list Us
1 , Us

2 , . . ., which is included in
the signature of reputation along with proof of knowledge of the exponent. Note
that Us

1 , Us
2 , . . . will be distinct if the original values were.

Short signatures. To reduce the size of the signatures, we employ a sampling
technique. Specifically, we can achieve ε-soundness while only including a random
subset of the votes of size O(1

ε), independent of the original number of votes. To
ensure the sample is random, we require the signer to first commit to the entire
list of votes, then use the commitment as a challenge specifying which must
be included. To efficiently demonstrate that the correct votes were included, we
compute the commitment using a Merkle hash tree and include the corresponding
off-path hashes with each vote, resulting in a final signature of size O(1

ε log c).

References

1. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: IEEE Symposium on Security and Privacy (2008)

2. Backstrom, L., Dwork, C., Kleinberg, J.M.: Wherefore art thou r3579x? In: Inter-
national World Wide Web Conference (2007)

3. Arrington, M.: AOL proudly releases massive amounts of user search data. In:
TechCrunch News (August 2006)

4. Bethencourt, J., Shi, E., Song, D.: Signatures of reputation: Towards trust without
identity, http://www.cs.berkeley.edu/~bethenco/sigrep-full.pdf

5. Steinbrecher, S.: Enhancing multilateral security in and by reputation systems. In:
FIDIS/IFIP Internet Security and Privacy Summer School (September 2008)

6. Pingel, F., Steinbrecher, S.: Multilateral secure cross-community reputation sys-
tems for internet communities. In: Furnell, S.M., Katsikas, S.K., Lioy, A. (eds.)
TrustBus 2008. LNCS, vol. 5185, pp. 69–78. Springer, Heidelberg (2008)

7. Steinbrecher, S.: Design options for privacy-respecting reputation systems within
centralised internet communities. In: Intl. Information Sec. Conf, SEC (2006)

8. Belenkiy, M., Chase, M., Erway, C., Jannotti, J., Kupcu, A., Lysyanskaya, A.,
Rachlin, E.: Making p2p accountable without losing privacy. In: WPES (2007)

9. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Balancing accountability and
privacy using e-cash. In: Security and Cryptography for Networks, SCN (2006)

10. Androulaki, E., Choi, S.G., Bellovin, S.M., Malkin, T.: Reputation systems for
anonymous networks. In: Privacy Enhancing Technologies (2008)

11. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)

12. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: PKC (2009)

13. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Non-interactive anony-
mous credentials. In: TCC (2008)

14. Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioannidis, J.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482.
Springer, Heidelberg (2005)

15. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, p. 295. Springer, Heidelberg (1999)

16. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

http://www.cs.berkeley.edu/~bethenco/sigrep-full.pdf

Intention-Disguised Algorithmic Trading
(Short Paper)

William Yuen1, Paul Syverson2, Zhenming Liu1, and Christopher Thorpe1

1 Harvard University
{yuen,zliu,cat}@seas.harvard.edu

2 Naval Research Laboratory
syverson@itd.nrl.navy.mil

1 Introduction

Large market participants (LMPs) must often execute trades while keeping their
intentions secret. Sometimes secrecy is required before trades are completed to
prevent other traders from anticipating (and exploiting) the price impact of their
trades. This is known as “front-running”. In other cases, LMPs with proprietary
trading strategies wish to keep their positions secret even after trading because
their strategies and positions contain valuable information. LMPs include hedge
funds, mutual funds, and other specialized market players.

However order information is leaked, or why it is sought, front-runners who
exploit the LMP’s order information extract value from markets at the expense
of the LMP. Thus, hedge funds and other firms take great pains to hide their
intentions, even generating “noise” trades to hide their intended positions from
other traders [2]. We present trading schemes that disguise an LMP’s inten-
tions and positions from any other entity, including the brokers that the LMP
interacts with.

Various studies [13,12] have shown abnormal price behavior and significant
negative price impact from information leakage prior to a block trade execution.
Thorpe and Parkes [16,17] discuss cryptographic and security research on ex-
changes and how information can be exploited in financial markets. But, existing
research generally proposes new infrastructures or protocols, for which adoption
is notoriously difficult. We take a simpler approach. Our specific contributions
are: (1) to propose a general model underlying the design of trading strategies
that leak no information, (2) to study major scenarios in the market and design
associated algorithms that require no changes to the existing trading infrastruc-
ture, and (3) to prove those algorithms leak no information in those scenarios.
These algorithms can serve as building blocks for more challenging real-world
scenarios beyond our present scope. Though our approach is algorithmic, we are
not concerned with volume-weighted algorithmic trading. See [4], [5] and [11] for
a review of the literature and for insights into the study of automated trading.

We next discuss existing trading infrastructure, define three types of adver-
saries, and present ways they can extract information from orders placed by the
LMP. In Section 3, we describe the model for information leakage and address
the needed properties for an efficient trading strategy. Section 4 introduces differ-
ent trading strategies that disguise the intention and holdings of the LMP from

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 408–415, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

Intention-Disguised Algorithmic Trading 409

exploiters. We evaluate their defensive performance against each of the three
types of “exploiters”. Given the available space, our presentation gives only the
basic ideas. Detailed mathematical explanations of various information leaks, as
well as theorem statements and proofs, can be found in the full paper [18].

2 Preliminaries

Existing trading infrastructure and exploiters
Brokers include brokers, dealers, and broker-dealers. Shares are units of any

security, including equities, bonds, currencies, or derivatives. One can long or
short any of the shortable securities represented through brokers. Each transac-
tion is for a nonzero integer number of shares; although LMPs typically trade
in increments of at least 100 shares. When a trade is executed, the symbol and
quantity is publicly reported by the exchange. Typically, only the broker involved
in the trade knows the identity of the LMP and whether the LMP was the buyer
or seller. From weakest to strongest, the categories of exploiters are:

1. Curious Observers are able to see trades printed as they are executed and/or
the prices and sizes of orders (requested trades) as they are quoted. With
sufficient intelligence and experience, curious observers may be able to guess
the identity and intention of the LMP.

2. Individual Curious Brokers are able to see trade orders by the LMP before
they are executed. A corrupt or careless broker can leak the LMP’s intentions
for exploitation by broker insiders or external agents. Using multiple brokers,
the LMP can limit the information a single curious broker can extract.

3. Colluding Curious Brokers are able to see trade orders by the LMP and
can share their information with each other. If all brokers used by the LMP
are curious and collude, any benefits resulting from splitting trades across
different brokers would be lost. However, all brokers used by the LMP must
collude in order to yield complete knowledge.

In all our strategies the LMP places a set of orders for an asset d at one or more
brokers in order to yield a net purchase or sale of d. Using minimal resources,
we want to prevent reasonably capable exploiters from guessing the net order.
Strategies must also stay completely effective even when exploiters are aware
that the LMP is using them. We focus primarily on the following scenarios:

– Multiple brokers with one trader (nB1T): There is only one trader repre-
sented in the market, the LMP. This trader can interact with many brokers.

– Single broker with multiple traders (1BmT): Only one broker handles trades,
for the LMP and possibly for other market participants.

– Multiple brokers with multiple traders (nBmT): Multiple traders and multiple
brokers can trade simultaneously, the most general scenario.

Two motivating trading strategies and why they leak information
To hide the net order we first consider a simple approach where the LMP uses
two brokers and places an order with each one so that neither broker individually

410 W. Yuen et al.

Table 1. An example of disguising true trading intentions using two brokers

Stock Shares through Broker A Shares through Broker B Net LMP volume traded
ATK +500k −500k 0
SXL −300k +400k +100k

learns about the net order. This simple strategy still allows brokers to extract
some knowledge. For example in Table 1, Broker A observes that a large ATK
trade has gone through Broker B when Broker B prints the block trade after
execution. Broker A is not sure whether the LMP is involved in the trade with
Broker B, or the sign of the LMP’s trade through Broker B. But, A knows that
his large client has traded one of three net positions: 500k, 500k + 500k = 1M, or
500k - 500k = 0. Similarly, broker A knows his client’s net trade for SXL is 100k,
-700k, or -300k shares. Because the number of possible cases is low, Broker A can
analyze each scenario and deduce the best exploitation strategy. For example, a
block trade price that is closer to the bid than to the offer is more likely to be
seller-initiated [10].

Another simple strategy is to use a single broker but multiple registered
traders. An LMP might create several registered trading agents that are not
known to be associated with the LMP but trade on its behalf. Thus we could
produce the exact same structure as Table 1 except that now instead of a single
trader using Broker A and Broker B, we have Trader A and Trader B, both
responsible for the same book of the LMP, trading through a single broker. The
broker cannot tell from what he sees if he is dealing with one LMP shopping two
blocks or two LMPs. This defends against collusion, unlike the two-broker sys-
tem. But, if the broker links the two pseudonymous traders together, then he will
know everything about their intentions going forward. We can combine the two
solutions so that each pseudonymous trader is splitting orders across multiple
brokers. This gains both the advantages and the overhead of both approaches.

3 Defining “Information Leak”

A rigorous definition of “information leak” is needed to understand both the
potential threats from exploitation for the LMP and the desired properties of
the trading strategies we are seeking. Here we provide just a sketch of such
definitions and refer the reader to the full paper [18]. We propose in this section
three types of information leak (or rather its absence) so as to formalize the
notion: zero information leak, ε-information leak, and full space strategy.

Our inspiration is Goldwasser et al.’s [9] notion zero knowledge. Roughly,
transmitting a piece of information is zero-knowledge if the universe of compu-
tations the recipient can perform does not change after receiving the information.

Definition 1. (Efficient algorithms for zero information leak) Let (Ω,F , Pr) be
a probability space that represents all possible intended positions of an LMP and
the corresponding a priori distribution over these positions. Let ω be a random

Intention-Disguised Algorithmic Trading 411

sample from Ω. A trading algorithm A is said to be perfect-zero-knowledge with
respect to exploiters if the following two conditions hold:

– A can generate an execution plan in polynomial time (wrt a reasonable rep-
resentation of Ω) that ends with the LMP holding exactly ω shares.

– The exploiters are able to generate the distribution on the random variable
M on their own without seeing the signal ω.

A natural relaxation of zero information leak is to allow ε information leak. The
definition is essentially the same as this except that exploiters can generate a
random variable with a statistical difference1 from M of at most ε. One may think
of the difference between perfect zero knowledge and statistical zero knowledge
[7] to understand the motivation for this relaxation in security definition.

Finally, we propose another way to ensure sufficient noise that an adversary
is unable to eliminate any possible values from Ω. Specifically we require that
Pr[ω | M = p] > 0 for all q and all ω such that Pr[ω] > 0.

Definition 2. (Efficient algorithms for full space strategy) Let (Ω,F , Pr) be a
probability space that represents all possible intended positions of an LMP and
the corresponding prior over these positions. Wolog, assume that Pr[ω] > 0 for
any ω. Let ω be a random sample from Ω. A trading algorithm A is said to give
a full space strategy with respect to exploiters if the following two conditions
hold:

– A can generate an execution plan in polynomial time (w.r.t. a reasonable
representation of Ω) that ends with the LMP holding exactly ω shares.

– For any message M observed by the exploiters, Pr[ω | M] > 0 for any ω ∈ Ω.

Although there are more refined notions of knowledge, e.g., that quantify the
exact number of bits leaked by a system [8], it is unclear how the amount of leaked
information relates to the financial cost of the information. A single leaked bit
information can have great value (the sign of an order issued by an insider), but
other times even a large information leak may be harmless.

4 Trading Strategies

In this section. we design and analyze trading strategies to counter various ad-
versaries in various markets, and in progressively more challenging scenarios.

Multiple brokers with one trader (nB1T)
In order to defend against the three types of exploiters mentioned, we first build
our strategies using a single trader and n orders placed with n different brokers.
We call this the nB1T platform. We start with nB1T strategies for the LMP
against curious observers (the weakest). The following sign flipping game is
closely related to a trading strategy that leaks no information:
1 The statistical difference between two discrete random variables X and Y is defined

as
∑

i |Pr[X = i]− Pr[Y = i]|

412 W. Yuen et al.

Definition 3. (Sign Flipping Game) Given an interval [−q, q], find a set of
numbers T = {t1, t2, ..., tn} such that

∑
i ti = q and

(1) for any integer x ∈ [−q, q] ∩ Z there exists a set of numbers a1, a2, ..., an ∈
{−1, 1}, ti ∈ Z such that x = a1 · t1 + a2 · t2 + ... + an · tn,
(2) The number n is a function of q. The value of n should be as small as possible.

Intuitively, for our nB1T strategy, n in the sign flipping game is the number of
brokers the LMP interacts with, and Ω = [−q, q] is the range of net position
the LMP wants to hold. By buying or selling volume ti with broker i, he can
construct every possible desired net trading volume, x, bounded between −q
and q. Unsigned traded volumes TL = {|aiti|} are printed among other traded
volumes W0 that do not involve the LMP. Observer identification of TL from
TL ∪ W0 depends on market liquidity and other factors. An LMP is always able
to set a larger q at the cost of higher transaction costs. When the security
parameter q is fixed, a natural goal is to minimize the number of brokers used.

Now, suppose the LMP wishes to buy x ∈ [−q, q] shares (negative x notated
as selling) of a product. She would then be able to execute a sequence of orders
t1, t2, ..., tn to each of the brokers such that x = t1 + t2 + ... + tn.

From an observer’s point of view, he only sees the sequence |t1|, |t2|, ..., |tn|. If
he does not have information of the LMP’s intention a priori, the observer can
only attempt to extract knowledge by going through all combinations of the signs
for all ti. Therefore, the LMP’s strategy should make the following set as large
as possible: S = {a1|t1| + a2|t2| + ... + an|tn| : a1, ..., an ∈ {−1, 1}}. A necessary
requirement for a zero-information-leak trading strategy is that [−q, q] ⊆ S. Our
first goal is to construct T = {t1, t2, ..., tn} with minimum possible n such that
S fully covers [−q, q]. We can find a T with |T | = �log2 q� + 2 that satisfies
the first requirement of the sign flipping game. In fact this is nearly optimal in
that any set T that satisfies the first requirement of the sign flipping game will
have |T | ≥ �log2 q�+ 1. Further, there exist on the nB1T platform both efficient
strategies that leak zero information and full space strategies against curious
individual brokers. Proofs of these and related results are in the full paper [18].

The above strategies no longer work against curious individual brokers who
do not collude. For example, in our analysis [18] of efficient strategies for the
sign flipping game, curious broker bn, knowing q and seeing the sign an of an
order of size q/2, would know that the LMP is intending to buy from the range
[−q, 0] if an = −1 or [1, q] if an = 1. If instead we are less efficient, splitting
trades across more brokers, or less complete, making some of the intermediate
values unreachable, then we can prevent any one broker from knowing this much
about the LMP’s position. We will revisit this observation below.

There are also efficient ε-information-leak strategies for the curious broker mar-
ket. When 1/ε is a constant or a polynomial in n, the strategy has a Ω(poly(n))
expansion. See the full paper for rigorous statements and details.
Countering collusion
The above nB1T strategic platform does not yield strong defense against curi-
ous colluding brokers: they can share knowledge with each other, including the

Intention-Disguised Algorithmic Trading 413

identity of the LMP and the sets ai and ti. If colluders know the total number
of brokers used and can find all of them, the value x can be trivially extracted.

Even if n is not known or not all n brokers collude, certain possible values for
x can be eliminated: Suppose, for example, the LMP uses two sets of brokers
R = {b1, b2, ..., bn} and R′ = {b′1, b′2, ..., b′n}, and that R∩R′ = ∅. Let B = R∪R′.
Suppose brokers Bc ⊂ B collude and share the information Tc ⊂ T and Ac ⊂ A
with each other, and let J be the set of indices corresponding to colluding brokers.
With enough colluders they can learn significant information. For example, if∑

j∈J ajtj >
∑

i�∈J |aiti|, colluding brokers would know that 1 ≤ x ≤ q.
To maximize the collusion resistance for a given n, it is clearly optimal to split

q uniformly across all n brokers. In other words, every broker is used to trade q/n
shares, either buying or selling. (Let some brokers be allowed to receive no order
when n is odd to hide a zero position.) This of course leaks n (easily countered
by randomization). Also, note that, even if n is known, the colluding brokers Bc

can never learn more than their proportion of the LMP’s position.
Single broker with multiple traders (1BmT)
To defend against broker collusion, we now examine utilizing m registered trad-
ing agents (hereafter referred to as traders) by the LMP to create the desired
net position. The mathematics behind this 1BmT platform is very similar to
the nB1T strategy: Simply substitute m traders placing orders at one broker
in place of one trader at n brokers (where m = n). The same theorems hold
for 1BmT as for nB1T. In practice, the additional redundant positions held by
the traders add ongoing carrying and transaction costs. Also, changing brokers,
especially in a developed market, is generally easier than changing registered
traders.

We next consider strategies against the curious individual broker, assuming
he is unable to identify the traders associated with the LMP. Suppose the LMP
places a set of orders {aktk} at the broker via m different traders. Let W0 =
{w1, w2, ..., wz} be the normal market interest seen by the broker; i.e., the set of
orders the broker receives from clients not affiliated with the LMP. The broker
thus sees total market interest Wt = {aktk} ∪ W0. In a very liquid market,
∃wi ∈ W0 � |wi| = |aktk| for k = 1, ..., m. In this case, the broker cannot
identify any aktk from Wt, and the 1BmT platform does not leak information
to him. This is not so when liquidity is low and the broker knows the LMP is
employing 1BmT, however. For example, if there is no corresponding surge in
activity in the overall market or at other brokers, he can infer that all market
interests may originate from the LMP. Furthermore, if �wi ∈ W0 � |wi| = |aktk|
for some k, aktk can be identified as originating from the LMP. Thus, elements
in the set S can be eliminated, similar to the nB1T platform under collusion.
These potential information leaks on the 1BmT platform in an illiquid market
motivate our next strategy platform.
Multiple brokers with multiple traders (nBmT)
We can extend the above strategies by using n brokers (with index j) and m
traders (with index i), with the security parameter q remaining the same. In
general form, the LMP uses the set of traders {d1, d2, ...dm}, each of the trader

414 W. Yuen et al.

di places orders with a subset of brokers {bi1, bi2, ..., bin}. In total, a maximum
of n ·m orders are placed with a maximum of n ·m unique brokers. In practice,
some of the bij ’s are the same broker. One possibility is to split the net order
x that the LMP wishes to place into m different orders, {a1t1, a2t2, ...amtm},
for m traders as in the sign flipping game in Definition 3. Each trader di can
then place its individual single order aiti, with broker bi1. In this case, the total
number of orders placed is m = �log2(q)�.

Curious observers cannot see the identities of the traders. Thus, nBmT would
look the same as nB1T to curious observers. So, as under nB1T, the external
observers cannot extract the trade order made by each trader, thus cannot ex-
tract any knowledge about the LMP. Another variant (nBmT2) of this strategy
is to divide x into m sets of orders {a1t1, a2t2, ...amtm} for m traders according
to the sign flipping game. This is detailed in our full paper [18].

We now study the performance of nBmT against curious individual brokers.
Each trader di places its order aiti at a different broker. Let Wi be the set of
orders each broker bi1 receives from his clients not affiliated with the LMP, or
normal market activity. Broker bi1, sees total interest Wti = aiti ∪ Wi, and he
cannot identify aiti from Wi since he he does not know that di is affiliated with
the LMP. This case is different from 1BmT because the market activities Wv at
other brokers bv1, v �= i, are also increasing due to the activity of the LMP in
nBmT. Thus, even in a low liquidity environment, broker bi1 cannot determine
whether the increase in |Wti| is due to the activity of the LMP (the presence of
aiti), or due to increased general market volume (an increase in |Wi|).

Collusion does not benefit brokers if traders {di} are not revealed to be affil-
iated with the LMP. Colluding brokers do not know which orders are affiliated
with the LMP and therefore would act at worst as a single broker in the 1BmT
scenario. Thus, the nBmT strategy can guard against total broker collusion.

5 Conclusions and Future Work

We have examined the problem of placing orders while hiding intention. We
presented models of information leakage, and based on these models, we derived
three classes of strategies against curious observers, individual curious brokers,
and colluding curious brokers.

Though not our current focus, we believe transaction costs of these strategies
can sometimes be reasonable, such as when the notional share price is high
and/or the bid-offer is tight. We estimate these costs in [18]. We hope this class
of intention-disguised algorithmic trading can reduce the profitability of and
incentive for exploiting trade information, and alter market behavior as a whole.
To that end, understanding these costs, and reducing them, is important.
Open Questions and Future Research
We believe that either finding the lower bound of the brokers that need to be
used (in terms of f(n)) or finding a better strategy using fewer brokers may be
possible. Furthermore, the sign of a trade with any one broker may be inferred
by an observer using a trade direction algorithm such as that developed by Ellis,

Intention-Disguised Algorithmic Trading 415

Michaely and O’Hara [6] or Peterson and Sirri [15]. Our strategies are unaf-
fected, assuming that all trades are filled in one round. However, realistically,
such trades may take multiple rounds. On the other hand, in practice, there are
also often other market participants trading, thus creating cover noise against
identifying the trades initiated by the LMP. Even in an extremely illiquid market
with no other active trading participants, the orders being worked by brokers are
not synchronous in practice. Therefore, even if a broker with malicious intention
is able to deduce the signs of other brokers, he cannot front run confidently that
he has seen all the relevant trades initiated by the LMP.

Acknowledgement. Zhenming Liu is supported in part by NSF CCF-0634923.

References

1. Brain, S.: A front-running smile? Traders Magazine (May 2005),
http://www.wisdom.weizmann.ac.il/~oded/zk-tut02.html

2. Chacko, G.: Personal Communication (August 2009)
3. Di Crescenzo, G.: Privacy for the stock market. In: Proc. Financial Cryptography

and Data Security (2002)
4. Domowitz, I., Yegerman, H.: The cost of algorithmic trading: a first look at compar-

ative performance. In: Algorithmic Trading: Precision, Control, Execution (March
2005)

5. Domowitz, I., Yegerman, H.: Measuring and interpreting the performance of broker
algorithms. In: ITG Inc. Research Report (August 2005)

6. Ellis, K., Michaely, R., O’Hara, M.: The accuracy of trade classification rule: evi-
dence from NASDAQ. Journal of Financial and Quantitative Analysis (2000)

7. Goldreich, O.: Zero-knowledge: a tutorial. Accessed through,
http://www.wisdom.weizmann.ac.il/~oded/zk-tut02.html

8. Goldreich, O., Petrank, E.: Quantifying knowledge complexity. In: 32nd IEEE Sym-
posium on Foundations of Computer Science (1996)

9. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. In: 17th Annual ACM Symposium of Theory of Computing (1985)

10. Harris, L.: Trading and exchanges: market microstructure for practitioners. Oxford
University Press, Oxford (2003)

11. Kearns, M., Nevmyvaka, Y., Papandreou, A., Sycara, K.: Electronic Trading in
Order-Driven Markets: Efficient Execution. In: IEEE Conference on Electronic
Commerce, CEC (2005)

12. Keim, D.B., Madhavan, A.: The upstairs market for large-block transactions: anal-
ysis and measurement of price effects. The Review of Financial Studies (1996)

13. Kumar, R., Sarin, A., Shastri, K.: The behavior of option Price Around Large
Block Transactions in the Underlying Security. The Journal of Finance (1992)

14. Madhavan, A.: VWAP Strategies. In: Investment Guides, Transaction Performance
(Spring 2002)

15. Peterson, M., Sirri, E.: Evaluation of biases in execuation cost estimates using trade
and quote data. Journal of Financial Markets (2002) (forthcoming)

16. Thorpe, C., Parkes, D.C.: Cryptographic securities exchanges. In: Financial Cryp-
tography and Data Security (2007)

17. Thorpe, C., Parkes, D.C.: Cryptographic combinatorial securities exchanges. In:
Financial Cryptography and Data Security (2009)

18. Yuen, W., Syverson, P., Liu, Z., Thorpe, C.: Intention-Disguised Algorithmic Trad-
ing. Harvard School of Engineering and Applied Sciences Tech. Report TR-01-10

http://www.wisdom.weizmann.ac.il/~oded/zk-tut02.html
http://www.wisdom.weizmann.ac.il/~oded/zk-tut02.html

When Information Improves Information Security�

(Short Paper)

Jens Grossklags1, Benjamin Johnson2, and Nicolas Christin2

1 Center for Information Technology Policy, Princeton University
2 CyLab, Carnegie Mellon University

jensg@princeton.edu,
{johnsonb,nicolasc}@andrew.cmu.edu

Abstract. This paper presents a formal, quantitative evaluation of the impact
of bounded-rational security decision-making subject to limited information and
externalities. We investigate a mixed economy of an individual rational expert
and several naı̈ve near-sighted agents. We further model three canonical types
of negative externalities (weakest-link, best shot and total effort), and study the
impact of two information regimes on the threat level agents are facing.

Keywords: Game Theory, Security Economics, Bounded Rationality, Limited
Information.

1 Introduction

Users frequently fail to deploy, or upgrade security technologies, or to carefully pre-
serve and backup their valuable data [10,12], which leads to considerable monetary
losses to both individuals and corporations every year. A partial interpretation of this
state of affairs is that negative externalities impede end-users’ investments in security
technologies [11,14]. Negative network externalities occur when the benefit derived
from adopting a technology depend on the actions of others as is frequently the case
in the context of network security. For example, users who open and respond to un-
solicited advertisements increase the load of spam for all participants in the network,
including participants who are making the effort to adopt secure practices. Similarly,
choosing a weak password for a corporate VPN system can facilitate compromises of
many user accounts, possibly including those of individuals with strong passwords if
trust relationships inside the VPN exist.

In other words, a rational user facing negative externalities could make the deci-
sion not to invest in security primitives given that their personal investment may only
marginally matter if other users are adopting insecure practices, or if the perceived cost
of a security breach significantly exceeds the cost of investing in security [9].

� We thank John Chuang for his helpful comments to an earlier version of this paper. This work
is supported in part by CyLab at Carnegie Mellon under grant DAAD19-02-1-0389 from the
Army Research Office, by the National Science Foundation under ITR awards ANI-0331659
(100x100) and CCF-0424422 (Team for Research in Ubiquitous Secure Technology), and by
a University of California MICRO project grant in collaboration with DoCoMo USA Labs.

R. Sion (Ed.): FC 2010, LNCS 6052, pp. 416–423, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

When Information Improves Information Security 417

In prior work, we addressed different canonical types of interdependencies, but we
focused our analysis on users capable of gathering all relevant information and cor-
rectly understanding all implications of interconnectedness [4,5]. This paper extends
our prior analysis by relaxing several restrictive assumptions on users’ rationality and
information availability.

First, we anticipate the vast majority of users to be non-expert, and to apply approx-
imate decision-rules that fail to accurately appreciate the impact of their decisions on
others [1]. In particular, in this paper, we assume non-expert users to conduct a simple
self-centered cost-benefit analysis, and to neglect externalities. Such users would secure
their system only if the vulnerabilities being exploited can cause significant harm or a
direct annoyance to them (e.g., their machines become completely unusable), but would
not act when they cannot perceive or understand the effects of their insecure behavior
(e.g., when their machine is used as a relay to send moderate amounts of spam to third
parties). In contrast, an advanced, or expert user fully comprehends to which extent her
and others’ security choices affect the network as a whole, and responds rationally.

Second, we address how the security choices by users are mediated by the infor-
mation available on the severity of the threats the network faces. We assume that each
individual faces a randomly drawn probability of being subject to a direct attack. In-
deed in practice, different targets, even if they are part of a same network, are not all
equally attractive to an attacker: a computer containing payroll information is, for in-
stance, considerably more valuable than an old “boat anchor” sitting under an intern’s
desk. Likewise, a machine may be more attractive than another due to looser restrictions
in the access policies to the physical facility where the machine is located.

As an initial step, we study the strategic optimization behavior from the perspective of
a sophisticated user in an economy of inexperienced users, using three canonical secu-
rity games that account for externalities [4]. This approach results in a decision-theoretic
model [2,3,13]. We present the mathematical formulation and analysis methodology in
the following section, which is based on our recent work focusing exclusively on the
weakest-link externality [6].

2 Model and Analysis

Basic Model: Consider a game in which each of N network users is responsible for
choosing security investments for their individual node. Each player begins the game
with an initial endowment M , and suffers a maximum loss of L if a security breach oc-
curs. The risk of a security breach is determined by an exogenous probability pi ∈ [0, 1],
which for this paper we assume to be uniformly distributed. Security risks can be miti-
gated in two distinct ways. We denote by protection those security investment strategies
which benefit the public network (such as installing antivirus software or firewalls), and
we denote by self-insurance those strategies which benefit only the contributing user
(such as keeping private data backups) [4]. The cost of full protection investment is de-
noted b and the cost of full self-insurance is denoted c. Each player chooses a protection
investment level ei ∈ [0, 1] and a self-insurance investment level si ∈ [0, 1]. The man-
ner in which protection strategies jointly affect players in the network is determined by
an aggregate protection function H(e1, . . . , eN), of which we will consider three types:

418 J. Grossklags, B. Johnson, and N. Christin

weakest link (H(e1, . . . , en) = minj ej), best shot (H(e1, . . . , en) = maxj ej), and
total effort (H(e1, . . . , eN) = 1

N

∑
j ej). The utility for player i is given by

U(i) = M − piL(1 − H(e1, . . . , eN))(1 − si) − bei − csi . (1)

Bounded rationality and limited information: We consider distinct approaches to
relax assumptions on user rationality and information availability.

First, we distinguish users based on their treatment of network interdependencies.
We say a player is naı̈ve if she does not take network interdependency into account
in her decisions, i.e., she operates under the assumption that H(e1, . . . , eN) = ei.
Whereas a player is of the type expert if she correctly perceives and understands the
interdependent nature of the game. That is, she properly considers the role of H into
her payoff function.

Second, we distinguish between the level of information users have about others’
risks. We say that a player has complete information if she knows all the risk factors
associated to the other players. In contrast, a player has incomplete information if she
knows her own risks but not the risks of other players. Clearly, a naı̈ve player does not
use the external risk information (because she is not aware of its effects), but an expert
player does. To provide a decision framework for an expert with limited information, we
assume that the distribution on risk parameters is known to all players. Thus, an expert
with limited information can still conduct an expected cost-benefit analysis to make
a strategic decision. This setup allows us to study the extent to which the complete
information is beneficial to the players and to the network.
Methodology: The overarching aim of our analysis is to understand how expertise and
knowledge affect player payoffs. To this end, our study considers a single expert agent
in a field of N − 1 naı̈ve agents, subject to one of the two information conditions, and
the incentives of the utility function defined above.

We begin by determining, for each of the three games, (best shot, weakest link, and
total effort), and for each of the two information conditions, (complete and incomplete),
the payoff-maximizing strategy for an expert in that game. These strategy conditions
involve the parameters b, c, L, M , N , pi and in the case of complete information pj for
j �= i.

We next compute an average or expected payoff for the expert as a result of playing
this strategy. The expected value is taken with respect to the various probabilities pi

and pj , which we assume are each drawn independently from the uniform distribution
on [0, 1]. This final expected payoff is a function of parameters b, c, L, M , and N .
The required computations often require us to consider selected parameter orientations
as separate cases; but there are a small number of separate cases (at most 6) for each
game, and the expected payoff functions and case conditions can be recorded neatly in
tables.

We compute these payoff functions for an expert with complete information, for an
expert with incomplete information, and also for one of the many naı̈ve players. These
functions tell the whole story in terms of how a player in this game, with a given level
of knowledge and expertise, will fare in a given parameter configuration of this game.
Unfortunately, the functions involve five free variables, and it remains to distill the
information for further interpretive analysis.

When Information Improves Information Security 419

To begin this part of the process, we fix the parameters related to the initial endow-
ment, M , and the total maximum loss, L by setting M = L = 1. The assumption
M = L says that an agent can lose her entire endowment if a completely unprotected
attack occurs, and may be considered as simply an interpretative statement about the
initial endowment. The assumption L = 1 generates a relatively simple scaling effect
– while it does affect the gross payoffs linearly, the assumption does not, for exam-
ple, affect the configuration of other parameters that yield the minimum or maximum
payoff. After incorporating these assumptions, what remains is a payoff function that
depends only on the cost of protection, b, the cost of self-insurance, c, and the number
of players, N .

The final step is to isolate the parameter conditions that yield interesting and sub-
stantive results. It turns out that there is only a narrow range of parameter configuration
in which a substantial payoff difference exists between various agent types, and so we
focus our attention on those cases.

3 Results

Due to limited space in this version of the paper, we exemplify this methodology by
focusing on the case of an expert with limited information in the best shot game. Com-
plete analytical results for all three games, – strategies and expected payoffs, together
with all accompanying derivations – may be found in our companion technical report
[8] and in our in-depth discussion of the weakest-link externality [6].

3.1 Analytical Results

Consider the factors influencing the decisions of an expert with incomplete information
in the best shot game. First, note that because of the linear, monotonous nature of the
utility function given in Eqn. (1), only three strategies are potentially utility-maximizing
for player i: passivity (ei = 0, si = 0), full protection (ei = 1, si = 0), and full
insurance (ei = 0, si = 1). Any other strategy can be shown to result in sub-optimal
payoffs [4,8].

Now, if player i protects, her payoff is M −b; if she insures, her payoff is M −c, and
if she does neither, then her payoff is M −piL(1−Pr∗¬i) where Pr∗¬i is the probability
that one of the N − 1 naı̈ve players protects. Because we know the strategy for naı̈ve
player j is to protect if and only if b ≤ pjL and b ≤ c, we may compute Pr∗¬i as{

0 if c < b

1 − (
b
L

)N−1
if b ≤ c

. Hence the payoff for the expert when she does nothing is

M − piL when c < b, and M − piL(b
L)N−1 when b ≤ c. These values can be found in

the lower portion of Table 1, which also records initial payoffs as the results of strategy
choices under the complete information condition.

The next step is determine what our expert should do given known values for the
parameters. Consider the case b ≤ c. Here the expert with incomplete information would
never choose to insure because protection is cheaper for the same result. On the other

hand, the assumptions that b≤L ≤ 1 imply that the inequality M−piL
(

b
L

)N−1≤M−b

420 J. Grossklags, B. Johnson, and N. Christin

Table 1. Best shot security game: Payoffs for different strategies under different information
conditions

Case Information Payoff Payoff Payoff
Type Passivity Self-Insurance Protection

c < b Complete M − piL M − c M − b

b ≤ c and maxj �=i pj < b/L Complete M − piL M − c M − b

b ≤ c and b/L ≤ maxj �=i pj Complete M M − c M − b

c < b Incomplete M − piL M − c M − b

b ≤ c Incomplete M − piL (b/L)N−1 M − c M − b

is tautological. Hence the expert will also never protect. We find that in the parameter
case b ≤ c, an expert with incomplete information will always choose to be passive.
This result can be found in Table 2 under the appropriate parameter case and information
condition.

Table 2. Best shot security game: Conditions to select protection, self-insurance or passivity
strategies

Case Information Conditions Conditions Conditions
Type Passivity Self-Insurance Protection

c < b Complete pi < c/L pi ≥ c/L Never
b ≤ c and maxj �=i pj < b/L Complete pi < b/L Never pi ≥ b/L

b ≤ c and b/L ≤ maxj �=i pj Complete Always Never Never

c < b Incomplete pi < c/L pi ≥ c/L Never
b ≤ c Incomplete Always Never Never

Finally, to determine an expected payoff for the expert with incomplete information
in the best shot game with b ≤ c, we compute the probability that she protects (over
her draw of pi) times the expected payoff for protection, plus the probability that she
insures times the expected payoff for insuring, plus the probability that she is passive

times her expected payoff for passivity. The end result is M − L
2

(
b
L

)N−1
. This value

is recorded in Table 3, along with expected total payoffs for other parameter cases and
player information conditions.

Tables and derivations for the other two canonical games can be found in the com-
panion technical report [8].

3.2 Applications

We highlight two applications from our study. A more thorough discussion can be found
in the technical report [8].

Our first result is that the range of security parameters conducive to an environment
in which limited information plays a significant role is somewhat restricted, and be-
comes more restricted as the number of players increases. Consider the three graphs

When Information Improves Information Security 421

Table 3. Best shot security game: Total expected game payoffs

Case Information Type Total Expected Payoff
c < b Complete M − c + c2/2L

b ≤ c Complete M − b (1− b/2L) (b/L)N−1

c < b Incomplete M − c + c2/2L

b ≤ c Incomplete M − L/2 (b/L)N−1

c < b Naı̈ve M − c + c2/2L

b ≤ c Naı̈ve M − b + b2/2L

Case 4

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Se
lf

−
in

su
ra

nc
e

co
st

 (
c)

Self−protection cost (b)

Case 1

Case 2

Case 3

 0

(a) Weakest link

Case 2

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Se
lf

−
in

su
ra

nc
e

co
st

 (
c)

Self−protection cost (b)

Case 1

 0

(b) Best shot

 0 0.2 0.4 0.6 1 0.8

Se
lf

−
in

su
ra

nc
e

co
st

 (
c)

Self−protection cost (b)

Case 1

Case 4

Case 2

Case 3

Case 6

Case 5

 0

 0.2

 0.4

 0.6

 0.8

 1

(c) Total effort

Fig. 1. Strategy boundaries in the incomplete information scenario for the expert player as a
function of protection and self-insurance costs. (Here the number of players is fixed at N = 4,
and the initial endowment and the potential loss are fixed at M = L = 1.) For the relevant
analytic results used to construct these graphs, please refer to the technical report [8].

 1.18

 0.2 0.4 0.6 0.8 1
Self−protection cost (b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Se
lf

−
in

su
ra

nc
e

co
st

 (
c)

 1
 1.02
 1.04
 1.06
 1.08
 1.1
 1.12
 1.14
 1.16

 0

(a) Weakest link

 1.02

 0.2 0.4 0.6 0.8 1
Self−protection cost (b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Se
lf

−
in

su
ra

nc
e

co
st

 (
c)

 1

 1.005

 1.01

 1.015

 0

(b) Best shot

 0.2 0.4 0.6 0.8 1
Self−protection cost (b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Se
lf

−
in

su
ra

nc
e

co
st

 (
c)

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 0

(c) Total effort

Fig. 2. Heat plots showing the extent of payoff discrepancy between the expert with complete
information and the expert with incomplete information as a function of protection and self-
insurance costs. (As in Fig. 1, N = 4, and M = L = 1.) For the relevant analytic results used to
construct these graphs, please refer to the technical report [8].

in Figure 1. These graphs show dividing lines between various dominant strategies as
function of the two types of investment costs – protection and self-insurance. Compar-
ing these to the graphs in Figure 2, the direct relationship is clear between the parameter
conditions that determine certain dominant strategies and the parameter conditions un-
der which additional information has an effect on an expert player’s payoff. From these
graphs we can tell that information plays a substantial role in the smaller-sized cases,

422 J. Grossklags, B. Johnson, and N. Christin

but in the other cases (i.e., N large), the additional information has little to no effect.
Another striking observation (not shown in these figures) is that for every game, the
size of the interesting parameter cases shrinks toward zero as we increase the number
of players.

Our second result is that, even in the parameter ranges in which information plays a
role, that role is limited. In all games, the maximum percent increase in expected pay-
off as a result of additional information is around 18%. This occurs in the weakest link
game with exactly four players, and under fixed costs of protection and self-insurance
that are set to produce maximum information impact. So having information about costs
and risks of others is not a dominant factor – in other words, using educated guesses
to predict these values does not hurt the bottom line too much. In contrast with this
observation, the expected payoff of the naı̈ve player is greatly reduced as a result of his
imperfect situational perception. So if network users do not understand the interdepen-
dent nature of their security threats, their payoff is greatly reduced.

3.3 Value of Information

The degree of darkening in the graphs of Figure 2 allows us to visualize the payoff
discrepancy as a result of incomplete information, and is something we might refer
to as the value of information. It is nontrivial to arrive at a definitive answer for this
quantity’s best measure and is in fact the subject of a full related paper [7], but we
consider the following ratio definition as a first step towards the goal of reasonably
quantifying the value of information in this context.

Expected payoff of an expert agent in the complete information environment
Expected payoff of an expert agent in the incomplete information environment

4 Conclusions

In our work we emphasize that security decision-making is shaped by the structure
of the task environment as well as the knowledge and computational capabilities of
the agents. In our model, decisions are made from three distinct security actions (self-
protection, self-insurance or passivity) to confront the security risks of weakest-link,
best shot and total effort interdependencies [4,14]. In these environments, we investi-
gate the co-habitation of a single fully rational expert and N − 1 naı̈ve agents. The
naı̈ve agents fail to account for the decisions of other agents, and instead follow a sim-
ple but reasonable self-centered rule-of-thumb. We further study the impact of limited
information on the rational agent’s choices.

We find that in general, the naı̈ve agents match the payoff of the expert when self-
insurance is cheap, but not otherwise. Even with limited information, the sophisticated
agent can generally translate her better structural understanding into decisions that min-
imize wasted protection investments, or an earlier retreat to the self-insurance strategy
when system-wide security is (likely) failing.

To analyze the impact of the different information conditions we have proposed a
new mathematical formalization. We measure the value of complete information as
the ratio of the payoff in the complete information environment to the payoff in the

When Information Improves Information Security 423

incomplete information environment. Our analysis of Figure 2 is a first step in that
direction, however, we defer a more formal analysis to a companion research paper [7].

Finally, a system designer is not only interested in the payoffs of the network par-
ticipants given different information realities (e.g., due to frequent changes in attack
trends). He is also concerned with how well-fortified the organization is against attacks.
To that effect we plan to include a more thorough presentation of the parameter condi-
tions that cause attacks to fail due to system-wide protection, and when they succeed
(due to coordination failures, passivity, and self-insurance).

References

1. Acquisti, A., Grossklags, J.: Privacy and rationality in individual decision making. IEEE
Security & Privacy 3(1), 26–33 (January–February 2005)

2. Cavusoglu, H., Raghunathan, S., Yue, W.: Decision-theoretic and game-theoretic approaches
to IT security investment. J. Mgt. Info. Sys. 25(2), 281–304 (Fall 2008)

3. Gordon, L., Loeb, M.: The economics of information security investment. ACM Transactions
on Information and System Security 5(4), 438–457 (November 2002)

4. Grossklags, J., Christin, N., Chuang, J.: Secure or insure? A game-theoretic analysis of in-
formation security games. In: Proc. WWW 2008, Beijing, China, pp. 209–218 (April 2008)

5. Grossklags, J., Christin, N., Chuang, J.: Security and insurance management in networks
with heterogeneous agents. In: Proc. ACM EC 2008, Chicago, IL, pp. 160–169 (July 2008)

6. Grossklags, J., Johnson, B.: Uncertainty in the weakest-link security game. In: Proc.
GameNets 2009, Istanbul, Turkey, pp. 673–682 (May 2009)

7. Grossklags, J., Johnson, B., Christin, N.: The price of uncertainty in security games. In: Proc
(online) WEIS 2009, London, UK (June 2009)

8. Grossklags, J., Johnson, B., Christin, N.: When information improves information security.
Tech. rep., UC Berkeley & Carnegie Mellon University, CyLab (February 2009), http://
www.cylab.cmu.edu/research/techreports/tr-cylab09004.html

9. Herley, C.: So long, and no thanks for the externalities: The rational rejection of security
advice by users. In: Proc. NSPW 2009, Oxford, UK (September 2009)

10. Kabooza. Global backup survey: About backup habits, risk factors, worries and data loss of
home PCs (January 2009), http://www.kabooza.com/globalsurvey.html

11. Kunreuther, H., Heal, G.: Interdependent security. Journal of Risk and Uncertainty 26(2-3),
231–249 (March 2003)

12. NCSA/Symantec. Home user study (October 2008), http://staysafeonline.org/
13. Schechter, S., Smith, M.: How much security is enough to stop a thief? In: Proc. IFCA FC

2003, Gosier, Guadeloupe, pp. 122–137 (January 2003)
14. Varian, H.: System reliability and free riding. In: Camp, L., Lewis, S. (eds.) Economics of

Information Security, Advances in Information Security, vol. 12, pp. 1–15. Kluwer Academic
Publishers, Dordrecht (2004)

http://www.cylab.cmu.edu/research/techreports/tr-cylab09004.html
http://www.cylab.cmu.edu/research/techreports/tr-cylab09004.html
http://www.kabooza.com/globalsurvey.html
http://staysafeonline.org/

R. Sion (Ed.): FC 2010, LNCS 6052, p. 424, 2010.
© IFCA/Springer-Verlag Berlin Heidelberg 2010

BetterThanPin: Empowering Users to Fight Phishing
(Poster)

Teik Guan Tan

Data Security Systems Solutions Pte Ltd
teikguan@ds3global.com

Abstract. The BetterThanPin concept is an online security service that allows
users to enable almost any Cloud or Web-based account (e.g. Gmail, MSN,
Yahoo, etc) to be protected with “almost” 2-factor authentication (2FA). The
result is that users can now protect their online accounts with better authentica-
tion, without waiting for the service or cloud provider.

Keywords: 2-factor Authentication, Cloud Security.

1 The Problem

The strength of authentication security for online accounts is solely dependent on
what the online provider is willing to implement. Basically, if the online provider
does not implement strong 2-factor authentication, there’s probably nothing the user
can do about it, besides not using it. Popular online services such as Gmail, MSN and
Facebook which have hundreds of millions of subscribers will find it cost-prohibitive
and economically unviable to implement strong authentication to their applications
simply to satisfy a small percentage (but sizeable in absolute terms) number of users.

2 The Idea

The rationale behind BetterThanPin is to convert any online account authentication
from the standard UserID-Password to the more secure UserID-Password+dynamic
password, without needing to change anything on the online service. In the Better-
ThanPin system, an online Change-Password process is run to regularly update the
expected login password for the online account to include the both the user’s chosen
password plus dynamic password as the expected login password.

The 2nd factor tokens we expect to be available for obtaining the dynamic
password include Hardware/Software dynamic password tokens, as well as dynamic
passwords transmitted via Email or SMS to mobile phones. Users can choose the
type of token depending on convenience, costs and level of security needed. The
dynamic passwords can be changed on an hourly, daily or weekly basis.

In the example above, a user using SMS as the 2nd factor authentication will

receive an SMS daily, containing dynamic password from the BetterThanPin service.

User
Gmail, MSN,
Yahoo, etc

Password = static password +
dynamic OTP from BTP service

BTP

Dynamic OTP
sent in SMS

Change Password

Certification Intermediaries and the Alternative
(Poster)

Pern Hui Chia

Centre for Quantifiable Quality of Service in Communication Systems (Q2S)�

Albano and Lizzeri showed that if quality is endogenous, the existence of a cer-
tification intermediary will improve product quality [1]. If quality is exogenous,
an intermediary will also improve welfare by not certifying unsafe products;
however, it is optimal for a monopolistic intermediary to disclose only minimal
information necessary to induce trade [3]. Indeed, many certification schemes
today specify only whether a product (website, software) has met a minimal set
of requirements. When the criteria are lenient, costs for certification will be in-
different, causing the separating equilibrium to diminish and thus not providing
a reliable signal. Edelman showed empirically that TRUSTe-certified websites
were more likely to be untrustworthy compared to non-certified websites [2].

The role of certification intermediaries is hence an interesting issue. An impor-
tant work, following the surge of 3rd party mobile applications, is to analyze the
different certification schemes on mobile platforms: independent soft-
ware testing is required for Symbian, Java and Windows Mobile certification;
Apple, however, solely determines which software can be marketed in the iTunes
Appstore; on the other hand, Android applications can be distributed with self-
signed certificates. Such an analysis should take into account of the incentives
of technology intermediaries and low user awareness for certification schemes.

There are reasons to doubt if strict enforcement of certification would always
be appropriate. After all, the verdict is intrinsically centralized and often based
on minimal criteria. A plausible strategy is to engage users as alternative inter-
mediaries. Sourcing for grassroots scrutiny can benefit from many eyeballs and
be driven by social capital such as reputation and reciprocity. A hurdle is the
limited user capability to evaluate security; innovations to enable simple and
objective assessment by ordinary users will be helpful. Analyzing the economics
of users as alternative certification intermediaries (incentive-design, evo-
lution of cooperation, free-riding and reliability tradeoff) can be very interesting.

References

1. Albano, G.L., Lizzeri, A.: Strategic Certification and Provision of Quality. Interna-
tional Economic Review (2001)

2. Edelman, B.: Adverse selection in online ‘trust’ certifications. In: Proc. WEIS (2006)
3. Lizzeri, A.: Information Revelation and Certification Intermediaries. Rand Journal

of Economics (1999)

� Q2S, Centre of Excellence, appointed by The Research Council of Norway, is funded
by the Research Council, Norwegian University of Science and Technology (NTNU)
and UNINETT. http://www.q2s.ntnu.no

R. Sion (Ed.): FC 2010, LNCS 6052, p. 425, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

SeDiCi: An Authentication Service Taking
Advantage of Zero-Knowledge Proofs

S�lawomir Grzonkowski

Digital Enterprise Research Institute
National University of Ireland, Galway
IDA Business Park, Galway, Ireland
slawomir.grzonkowski@deri.org

Transmission of users’ profiles over insecure communication means is a crucial
task of today’s ecommerce applications. In addition, the users have to create many
profiles and remember many credentials. Thus they retype the same information
over and over again. Each time the users type their credentials, they expose them
to phishing or eavesdropping attempts.These problems could be solved by using
Single Sign-on (SSO). The idea of SSO is that the users keep using the same set
of credentials when visiting different websites. For web-aplications, OpenID1. is
the most prominent solution that partially impelemtns SSO. However, OpenID is
prone to phishing attempts and it does not preserve users’ privacy [1].

To address phishing and eavesdropping, we developed SeDiCi, a secure SSO.
This technology takes advantage of Zero-Knowledge Proof (ZKP) authentication
that is based on our previous work [2]. The technology also supports REST-
based API that enables taking advantage of the service by mobile phones, web-
applications and other client applications. To provide interoperability with other
systems, SeDiCi stores data using semantic web standards such as FOAF. Thus,
the users are able to use their profiles and social networks from other services.

Acknowledgement

The work presented in this paper was supported (in part) by the Lion project
supported by Science Foundation Ireland under Grant No. RSF0844 and Enter-
prise Ireland under Grant No. REI 1005. A method and apparatus for authen-
ticating a user is a pending patent. The author would like to thank to Lukasz
Korczynski for his help with the implementation.

References

1. Adida, B.: Beamauth: two-factor web authentication with a bookmark. In: CCS
2007: Proceedings of the 14th ACM Conference on Computer and Communications
Security, pp. 48–57. ACM, New York (2007)

2. Grzonkowski, S., Zaremba, W., Zaremba, M., McDaniel, B.: Extending web appli-
cations with a lightweight zero knowledge proof authentication. In: CSTST 2008:
Proceedings of the 5th International Conference on Soft Computing as Transdisci-
plinary Science and Technology, pp. 65–70. ACM, New York (2008)

1 OpenID 2.0 spec: http://openid.net/specs/openid-authentication-2_0.html

R. Sion (Ed.): FC 2010, LNCS 6052, p. 426, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

http://openid.net/specs/openid-authentication-2_0.html

Poster Abstract: Security in Commercial
Applications of Vehicular Ad-Hoc Networks�

Pino Caballero-Gil, Jezabel Molina-Gil,
Cándido Caballero-Gil, and Candelaria Hernández-Goya

Department of Statistics, O.R. and Computation, University of La Laguna, 38271 La
Laguna, Tenerife, Spain

{pcaballe,jmmolina,ccabgil,mchgoya}@ull.es

Abstract. This work proposes a combined protocol for incentive-based
cooperation and strong authentication in Vehicular Ad-hoc Networks.

1 Introduction

A Vehicular Ad-hoc NETwork (VANET) is a special type of ad-hoc network used
to provide wireless communications that may be: Vehicle-TO-Vehicle (V2V),
Vehicle-TO-Infrastructure (V2I) or Infrastructure-TO-Vehicle (I2V). Its major
drawback is the required complex networking management system and security
protocols, so both cooperation and strong node authentication are needed.

Many schemes to stimulate cooperation may be found in the bibliography.
Buttyan and Hubaux introduced in [1] the use of virtual credit. Li and Wu pro-
posed in [2] a receipt counting reward. Different schemes depending on the type
of packets are here defined so that they assign incentives to vehicles according
to their contribution in packet forwarding, trying to achieve fairness and stim-
ulate participation. In particular, leaders of groups are encouraged to look for
forwarding nodes in their groups. With respect to authentication, based on pri-
vacy requirements, Identity-Based cryptography [3] is proposed for I2V while
in V2I communications a challenge-response scheme using a secret-key approach
based on random key trees is defined. Also to provide privacy, ring signatures are
used for V2V communications between groups, while secret-key authentication
is the proposed solution inside groups in order to save communications. These
ingredients are mixed in a cooperation and authentication protocol for VANETs.

References
1. Buttyan, L., Hubaux, J.P.: Security and Cooperation in Wireless Networks. Cam-

bridge Univ. Press, Cambridge (2007)
2. Li, F., Wu, J.: FRAME: An Innovative Incentive Scheme in Vehicular Networks. In:

Proc. of IEEE International Conference on Communications (2009)
3. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R.,

Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

� Research supported by the Spanish Ministry of Education and Science and the Euro-
pean FEDER Fund under TIN2008-02236/TSI Project, and by the Agencia Canaria
de Investigación, Innovación y Sociedad de la Información under PI2007/005 Project.

R. Sion (Ed.): FC 2010, LNCS 6052, p. 427, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

Domain Engineering for Automatic Analysis of
Financial Applications of Cryptographic

Protocols
(Poster)

Lilia Georgieva
Department of Mathematical and Computer Sciences, Heriot-Watt University,

Edinburgh, UK
lilia@macs.hw.ac.uk

Abstract. Our aim is to develop a general framework for study and
automatic analysis of properties of cryptographic protocols in order to
establish design guidelines for business applications which would ensure
correctness.

The rapid growth of e-commerce has led to increasing need for secure online
transactions, authentication, and credential management. The design of security
protocols to address these needs difficult and error-prone. Despite advances in
cryptology, security, database systems and database mining, there is no infras-
tructure for handling sensitive data.

We investigate how formal methods and tools for automatic verification can
address these needs. We study the framework of domain engineering [1] which is
suitable for business process modelling. We formalise the desired properties in
typed first-order logic and apply model checking to establish correctness. Desired
goals of security protocols which can be modelled and are of relevance to financial
services include authenticity (correct identification of the sender), integrity (the
sent data is identical to the received data), secrecy (non disclosure of a secret
message to the attacker), anonymity.

The common approach for formal logic based protocol verification involves
(i) formal specification of the properties of the protocol steps; (ii) formal spec-
ifications of the protocol assumptions; (iii) formal specifications of the protocol
goals; and (iv) applications of the axioms and inference rules of the logic to
assumptions and protocol steps to derive the goals.

We model cryptographic protocols in typed first-order logic and use the model
checker Alloy [2] with the aim to design a more general framework for automatic
analysis of cryptographic protocols in which more properties of the cryptographic
protocols can be modelled.

References
1. Bjorner, D.: A triptych software development paradigm: Domain, requirements and

software towards a model development of a decision support system for sustainable
development. In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS,
vol. 1710, pp. 29–60. Springer, Heidelberg (1999)

2. Jackson, D.: Software abstractions: Logic, language, and analysis (2006)

R. Sion (Ed.): FC 2010, LNCS 6052, p. 428, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

hPIN/hTAN: Low-Cost e-Banking Secure
against Untrusted Computers

Shujun Li1, Ahmad-Reza Sadeghi2, and Roland Schmitz3

1 University of Konstanz, Germany
2 Ruhr-University of Bochum, Germany
3 Stuttgart Media University, Germany

Abstract. We propose hPIN/hTAN, a low-cost token-based e-banking
protection scheme when the adversary has full control over the user’s com-
puter.Comparedwith existinghardware-based solutions, hPIN/hTANde-
pends on neither second trusted channel, nor secure keypad, nor computa-
tionally expensive encryption module.

Due to the rapid progress of the Internet, e-banking has become more and more
popular all over the world and security is considered as one of the most serious
issues of e-banking. The earliest and simplest defense protecting e-banking sys-
tems is user authentication based on static PINs. Since static PINs are prone to
identity theft, two-factor user authentication such as PIN/TAN has been widely
adopted to make e-banking more secure. However, PIN/TAN cannot resist man-
in-the-middle (MitM) attack, whose aim is to manipulate transactions. In the
strongest form of MitM attacks, the user’s computer is under the full control
of the adversary, who can observe and tamper with all the communications be-
tween the user and the e-banking server. The wide spread of malware over the
Internet renders such advanced MitM attacks possible in reality.

In this poster, we propose hPIN/hTAN, the first (to the best of our knowledge)
hardware-based solution against MitC attacks that depends on neither second
trusted channel nor secure keyboard nor computationally expensive encryption
(such as PKC). Instead, hPIN/hTAN bases its security only on proper use of a
cryptographic hash function and active involvement of human attention.

The hPIN/hTAN includes two specific protocols – hPIN and hTAN, which
protect the login process and online transactions, respectively. The involved par-
ties include a human user, a trusted USB-token issued by the bank to the user,
an untrusted terminal computer, and the e-banking server. The USB-token is
equipped with a trusted display and shares a secret with the server.

The core of the hPIN protocol is a random code shown on the trusted display
of the USB-token, which makes it possible for the user to input a transformed
PIN on the untrusted computer without leaking the PIN. After user authen-
tication to the USB-token, the hPIN protocol achieves mutual authentication
between the USB-token and the server. In the hTAN protocol, the user verifies
the transaction data simultaneously via the display of the USB-token while typ-
ing them on the keyboard of the untrusted computer. Then the USB-token and
the server perform a transaction verification process based on the shared secret.

R. Sion (Ed.): FC 2010, LNCS 6052, p. 429, 2010.
c© IFCA/Springer-Verlag Berlin Heidelberg 2010

Author Index

Algasinger, Michael 328
Anderson, Ross 336

Barth, Adam 192
Bartlett, Peter L. 192
Bethencourt, John 400
Bisht, Prithvi 272
Björkqvist, Mathias 160
Bonneau, Joseph 98
Bußmeyer, Daniel 320

Caballero-Gil, Cándido 427
Caballero-Gil, Pino 427
Cachin, Christian 160
Čagalj, Mario 351
Camenisch, Jan 66
Canard, Sébastien 82
Catrina, Octavian 35
Chen, Xiaofeng 304
Chia, Pern Hui 425
Chothia, Tom 20
Christianson, Bruce 4
Christin, Nicolas 416
Cranor, Lorrie Faith 3
Csaba, György 328

Damg̊ard, Ivan 367
De Cristofaro, Emiliano 143
Dingledine, Roger 238
Dubovitskaya, Maria 66

Edelman, Benjamin 175
Edwards, Jonathan W. 51

Gardner, Ryan W. 312
Garera, Sujata 312
Georgieva, Lilia 428
Goldberg, Ian 359
Gouget, Aline 82
Gröbert, Felix 320
Grossklags, Jens 416
Groza, Bogdan 391
Grzonkowski, S�lawomir 426
Guajardo, Jorge 375

Haas, Robert 160
Hao, Feng 383
Hernández-Goya, Candelaria 427
Hilgers, Christian 328
Hubaux, Jean-Pierre 2
Hu, Xiao-Yu 160

Jaeger, Christian 328
Järvinen, Kimmo 207
Johnson, Benjamin 416
Just, Mike 98

Kaminsky, Dan 289
Karger, Paul A. 51
Kasper, Timo 343
Kate, Aniket 359
Keller, Marcel 367
Kesdogan, Dogan 114
Kiayias, Aggelos 257
Kim, Jangseong 304
Kim, Kwangjo 304
Kolesnikov, Vladimir 207
Kurmus, Anil 160

Li, Shujun 429
Liu, Zhenming 408

Matthews, Greg 98
Maurer, Ueli 1
McIntosh, Suzanne K. 51
Mennink, Bart 375
Minea, Marius 391
Mitchell, John C. 192
Molina-Gil, Jezabel 427
Moore, Tyler 175, 222
Moran, Tal 222
Murdoch, Steven J. 336
Mu, Yi 304

Neven, Gregory 66
Ngan, Tsuen-Wan “Johnny” 238

Paar, Christof 343
Palmer, Elaine R. 51

432 Author Index

Patterson, Meredith L. 289
Pawlitzek, René 160
Perković, Toni 351
Pimenidis, Lexi 114

Rubin, Aviel D. 312
Rubinstein, Benjamin I.P. 192
Rührmair, Ulrich 328

Sadeghi, Ahmad-Reza 207, 429
Sassaman, Len 289
Saxena, Amitabh 35
Saxena, Nitesh 351
Schäge, Sven 129
Schmitz, Roland 429
Schneider, Thomas 207
Schoenmakers, Berry 375
Schwenk, Jörg 129, 320
Shi, Elaine 400
Silbermann, Michael 343
Sistla, A. Prasad 272
Smirnov, Vitaliy 20
Song, Dawn 192, 400
Stajano, Frank 4

Stutzmann, Martin 328
Sundararajan, Mukund 192
Syverson, Paul 408

Tan, Teik Guan 424
Thorpe, Christopher 408
Tian, Haibo 304
Toll, David C. 51
Tsudik, Gene 143

Venkatakrishnan, V.N. 272
Vukolić, Marko 160

Wallach, Dan S. 238
Weber, Samuel 51
Wegener, Christoph 320
Wendolsky, Rolf 114
Westermann, Benedikt 114
Wong, Ford-Long 4
Wu, Qianhong 304

Yuen, William 408
Yung, Moti 257

Zhang, Fangguo 304

	Title
	Preface
	Organization
	Table of Contents
	Constructive Cryptography – A Primer
	Security Mechanisms with Selfish Players in Wireless Networks
	Users Do the Darndest Things:True Stories from the CyLab Usable Privacy and Security Laboratory
	Multichannel Protocols to Prevent Relay Attacks
	Introduction
	TheCore Idea
	Unrelayable Channels and Protocols That Use Them
	Example: Banknote
	Example: Accelerometers
	Example: Physical One-Way Functions
	Example: Quantum Channel (Polarized Photons)
	Example: Quantum Channel (Entangled Photons)
	Why Our Multichannel Approach Works

	Conclusions and Further Work
	References

	A Traceability Attack against e-Passports
	Introduction
	The e-Passport Protocols
	The Passport Protocols
	Related Work
	Experimental Framework
	Passport Finger Printing via Answer to Reset

	An Attack against French e-Passports
	A Time-Based Traceability Attack
	Conclusion
	References

	Secure Computation with Fixed-Point Numbers
	Introduction
	Preliminaries
	Secure Computation Framework
	Data Representation
	Building Blocks

	Secure Fixed-Point Arithmetic
	Scaling
	Addition, Subtraction, and Comparison
	Multiplication
	Division

	Conclusions
	References

	Implementing a High-Assurance Smart-Card OS
	Introduction
	Feasibility

	Applications of the Technology
	Background – Security Policy and Authentication
	Security Design Challenges
	File System
	Persistent Storage Manager - PSM
	Implementing Application Download
	Cryptographic Challenges

	Chip Initialization
	Conclusion
	References

	Unlinkable Priced Oblivious Transfer with Rechargeable Wallets
	Introduction
	Construction Overview
	RelatedWork

	Definition of UP-OT
	Syntax
	Security

	Preliminaries
	Modified Boneh-Boyen Signatures
	Zero-Knowledge Proofs and Σ-Protocols
	Wallet Signature Scheme
	Set Membership Scheme

	Our UP-OT Construction
	Security Analysis
	Fair Purchase and Recharge Protocols
	References

	Multiple Denominations in E-cash with Compact Transaction Data
	Introduction
	Related Work
	Our Contribution

	Preliminaries
	Construction of the Binary Tree of Keys
	Discrete Log Relation Sets
	Signature Schemes with Additional Features
	Bounded Accumulators

	Model for Divisible E-cash
	Procedures for Divisible E-cash
	Security Properties

	Description of Our Divisible E-cash Construction
	Setup and Key Generation Procedures
	The Withdrawal Protocol
	The Spending Phase
	Deposit and Detection of Frauds
	Efficiency Considerations
	Security Theorem

	Conclusion
	References
	Bounded Accumulator with Additional Procedure
	Proof of Validity of a Spending

	What’s in a Name? Evaluating Statistical Attacks on Personal Knowledge Questions
	Introduction
	Security Model
	Authentication Protocol
	Threat Model

	Quantifying Resistance to Guessing
	Mathematical Formulation of Guessing
	Marginal Guessing
	Effective Key Length Metrics
	Relationship between Metrics
	Applicability to Personal Knowledge Questions
	Estimation from Statistics

	Information Sources
	Question Types and Their Use
	Data Collection

	Results and Discussion
	Countermeasures
	Concluding Remarks
	References
	Sources of Statistical Data

	Cryptographic Protocol Analysis of AN.ON
	Introduction
	Description of AN.ON
	Scope, Assumptions and Course
	Authentication Protocol of the First Mix
	Attack on AN.ON’s Encryption/Decryption Scheme
	Structure of Mix Packets
	Output Feedback Mode (OFB)
	The Attack
	Discussion of the Attack

	Attack on the Mix Authentication Protocol
	Related Work
	Discussion
	Conclusion
	References

	A CDH-Based Ring Signature Scheme with Short Signatures and Public Keys
	Introduction
	Related Work
	Contribution

	Preliminaries
	Ring Signature Scheme
	Ring Unforgeability
	Ring Anonymity
	Complexity Assumptions
	Bilinear Groups
	Multi-generator Programmable Hash Function

	Efficient Ring Signature Scheme RS
	Security
	Ring Unforgeability
	Ring Anonymity
	Digital Signature Schemes

	Conclusion
	References
	Proof of Lemma

	Practical Private Set Intersection Protocols with Linear Complexity
	Introduction
	PSI Flavors
	Roadmap
	Prior Work
	Towards Efficient $ PSI $ and $APSI$ Protocols
	Preliminaries
	Security Properties
	Baseline: $APSI$ from $RSA-PPIT$
	$APSI$ with Linear Costs
	Deriving Efficient PSI
	More Efficient PSI
	From $PSI (APSI) to PSI-DT (APSI-DT)$
	Evaluation

	Conclusions
	References
	A: Cryptographic Assumptions
	B: APSI Protocol in Fig. 2
	C: PSI Protocol in Fig. 4
	D: Simplified Description of PSI in Fig. 3

	Design and Implementation of a Key-Lifecycle Management System
	Introduction
	Model
	Automated Deployment
	Deployment Patterns
	Administering Deployments
	Deployment Policy

	Strict Access Control
	Implementation and Evaluation
	References

	Measuring the Perpetrators and Funders of Typosquatting
	Introduction
	Structure and Strategy of the Domaining Business
	Measuring Typosquatting
	Identifying Typosquatting Domains
	Crawling Typosquatting Websites

	How Typosquatting Domains Are Used
	Squatter Strategy 1: Pay-Per-Click Ads
	Squatter Strategy 2: Redirection and Linked Domains

	Do Pay-Per-Click Ads Promote Typosquatting?
	Estimating Visitors and Advertising Costs
	Countering Typosquatting
	Existing Efforts to Regulate Typosquatting
	Identifying Servers That Distinctively Host Typo Domains
	The Role and Responsibility of Ad Platforms

	Conclusions
	References

	A Learning-Based Approach to Reactive Security
	Introduction
	FormalModel
	Case Studies
	Reactive Security
	Advantages of Reactivity
	Generalizations
	Related Work
	Conclusions
	References

	Embedded SFE: Offloading Server and NetworkUsing Hardware Tokens
	Introduction
	Our Contributions and Outline
	Related Work

	Preliminaries
	Garbled Circuits (GC)

	Architecture, System and Trust Model
	Token-Assisted Garbled Circuit Protocols
	Protocols Overview, Security Intuition and Claim
	Circuit Representation
	GC Creation with Stateful Token Using Secure Counter
	GC Creation with Stateless Token (no Counter)

	Proof-of-Concept Implementation
	Architecture
	Prototype Implementation

	References

	The Phish-Market Protocol:Securely Sharing Attack Data between Competitors
	Introduction
	The Phish-Market Protocol
	Protocol Overview
	Security Properties
	Formal Protocol Definition

	Performance Evaluation
	Theoretical Efficiency
	Implementation Performance

	Related Work
	Concluding Remarks
	References

	Building Incentives into Tor
	Introduction
	Background
	IncentiveGoals
	Design
	Experiments
	Experimental Apparatus
	Experiment 1: Unincentivized Tor
	Experiment 2: Gold Stars
	Experiment 3: Alternating Relays
	Experiment 4: Pair-Wise Reputation

	Discussion
	Strategic Users
	The Audit Arms Race
	Anonymity Implications
	The Economics of Attracting More Relays

	Related Work
	Incentives in Anonymous Communication Networks
	Incentives in Other Peer-to-Peer Networks

	Conclusions
	References
	Experiment 4: Pair-Wise Reputation

	Tree-Homomorphic Encryption and Scalable Hierarchical Secret-Ballot Elections
	Introduction
	Model and Definitions
	The Model
	Overview of Our Election Paradigm
	Security Properties of Our Model and Objectives for Protocol Design
	Non Interactive Zero Knowledge Proofs
	The Number Theoretic Assumptions

	The Granular Voting Schemes
	The Modest Range Tally Voting Scheme
	The Wide Range Tally Voting Scheme
	Security Properties

	References

	Automatically Preparing Safe SQL Queries
	Introduction
	Related Work
	Background and Problem Statement
	Our Approach
	Intuitions behind Our Approach
	Handling Straight Line Programs
	Handling of Conditionals and Procedures
	Loop Handling
	Implementation

	Evaluation
	Effectiveness
	Performance Experiment

	Conclusion
	References

	PKI Layer Cake: New Collision Attacks against the Global X.509 Infrastructure
	Introduction
	Background
	Current Status of These Vulnerabilities

	Methodology
	Attacks
	MD2RSA Signature Transfer
	Subject Name Confusion
	PKCS#10-Tunneled SQL Injection
	PKCS#10-Tunneled ASN.1 Attacks
	SSL Client Authentication Bypass
	EV Hijacking

	Remediation
	Immediate Steps
	EV Remediation

	Future Work
	References

	Three-Round Abuse-Free Optimistic Contract Signing with Everlasting Secrecy (Extended Abstract)
	Introduction
	Verifiable Encryption of Chameleon Signatures
	Formal Definition
	A Concrete Construction from RSA Signatures

	Secret Abuse-Free Contract Signing
	Security Model
	Our Protocol
	Misbehavior in the Protocol

	Security Analysis of the Contract Signing Protocol
	Conclusions
	References

	Designing for Audit: A Voting Machine with a Tiny TCB (Short Paper)
	Introduction
	High-Level Approach
	Our Voting System
	Functionality Overview
	Structure and Readability
	Type Safety
	Cryptographic Operations

	Conclusion
	References

	Attacking of SmartCard-Based Banking Applications with JavaScript-Based Rootkits (Short Paper)
	Introduction
	Prerequisites
	Target Solution
	Target Environment

	Proof of Concept Attack
	Attack Vector and Threat Model
	Implementation

	Related Work
	Mitigation
	Conclusion
	References

	Security Applications of Diodes with Unique Current-Voltage Characteristics (Short Paper)
	Introduction
	Sample Preparation
	Electrically Readable Certificates of Authenticity
	Physically Obfuscated Keys from Random Diodes
	Machine Learning Resistant Strong PUFs via Crossbar Structures
	Summary
	References

	Verified by Visa and MasterCard SecureCode:Or, How Not to Design Authentication (Short Paper)
	Introduction
	Security Weaknesses
	Confusing the User – Hiding Security Cues
	Activation During Shopping
	Informed Consent and Password Choice
	Liability Shifting
	Mutual Authentication
	Inconsistent Authentication Methods
	Privacy

	The Way Forward
	References

	All You Can Eat or Breaking a Real-World Contactless Payment System (Short Paper)
	Introduction
	Previous Attacks on mifare Classic
	Tampering with a Real-World System
	Hardware and Software Set-Up
	Recovering the Secret Keys
	Practical System-Level Tests
	Summary of the Vulnerabilities

	Resulting Attacks and Their Implications
	Conclusion
	References

	Shoulder-Surfing Safe Login in a Partially Observable Attacker Model (Short Paper)
	Introduction
	Shoulder-Surfing Safe Login Based on Table Look-ups
	Usability Evaluation
	STL vs. Mod10 Evaluation Study
	Mod10 vs. Mod10-table Evaluation Study

	Side-Channel Timing Attacks
	Conclusion
	References

	Using Sphinx to Improve Onion Routing Circuit Construction (Extended Abstract)
	Introduction
	Preliminaries
	Using Sphinx in OR Circuit Construction
	Performance Comparison
	References

	Secure Multiparty AES (Short Paper)
	Introduction and Motivation
	Related Work
	Preliminaries
	TheAESProtocol
	SubBytes
	Other Operations

	Security
	Analysis
	Implementation
	Benchmarks

	Conclusion
	References

	Modulo Reduction for Paillier Encryptions and Application to Secure Statistical Analysis (Extended Abstract)
	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Multiparty Computation Gates

	Random Bitwise Value Generation
	Multiparty Modulo Reduction
	Efficiency Analysis
	References

	On Robust Key Agreement Based on Public Key Authentication (Short Paper)
	Introduction
	PastWork
	TheYAK Protocol
	Stage 1: Public Key Registration
	Stage 2: Key Agreement

	Security Analysis
	Self-communication
	Conclusion
	References

	A Formal Approach for Automated Reasoning about Off-Line and Undetectable On-Line Guessing (Short Paper)
	Motivation and Related Work
	Formalization of Guessing Rules
	Implementation and Experimental Results
	Conclusions
	References

	Signatures of Reputation (Extended Abstract)
	Introduction
	Defining Signatures of Reputation
	Privacy and Security Properties
	Highlights of Our Construction
	References

	Intention-Disguised Algorithmic Trading (Short Paper)
	Introduction
	Preliminaries
	Defining “Information Leak”
	Trading Strategies
	Conclusions and Future Work
	References

	When Information Improves Information Security (Short Paper)
	Introduction
	Model and Analysis
	Results
	Analytical Results
	Applications
	Value of Information

	Conclusions
	References

	Better ThanPin: Empowering Users to Fight Phishing (Poster)
	The Problem
	The Idea

	Certification Intermediaries and the Alternative (Poster)
	References

	SeDiCi: An Authentication Service Taking Advantage of Zero-Knowledge Proofs
	References

	Poster Abstract: Security in Commercial Applications of Vehicular Ad-Hoc Networks
	Introduction
	References

	Domain Engineering for Automatic Analysis of Financial Applications of Cryptographic Protocols (Poster)
	References

	hPIN/hTAN: Low-Cost e-Banking Secure against Untrusted Computers
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

