
H. Hussmann et al. (Eds.): MDD of Advanced User Interfaces, SCI 340, pp. 1–26.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Model-Driven Useware Engineering

Gerrit Meixner, Marc Seissler, and Kai Breiner*

Abstract. User-oriented hardware and software development relies on a systematic
development process based on a comprehensive analysis focusing on the users’
requirements and preferences. Such a development process calls for the integration
of numerous disciplines, from psychology and ergonomics to computer sciences
and mechanical engineering. Hence, a correspondingly interdisciplinary team must
be equipped with suitable software tools to allow it to handle the complexity of a
multimodal and multi-device user interface development approach. An abstract,
model-based development approach seems to be adequate for handling this com-
plexity. This approach comprises different levels of abstraction requiring adequate
tool support. Thus, in this chapter, we present the current state of our model-based
software tool chain. We introduce the use model as the core model of our model-
based process, transformation processes, and a model-based architecture, and we
present different software tools that provide support for creating and maintaining
the models or performing the necessary model transformations.

1 Introduction

Considering the interaction with technical devices such as a computer or a ma-
chine control panel, the users actually interact with a subset of these hardware and
software components, which, in their entirety, make up the user interface [1]. Un-
fortunately, today’s developers often disregard the most important component of

Gerrit Meixner
German Research Center for Artificial Intelligence (DFKI), Trippstadter Str. 122, 67663,
Kaiserslautern, Germany
e-mail: Gerrit.Meixner@dfki.de

Marc Seissler
University of Kaiserslautern, Center for Human-Machine-Interaction, Gottlieb-Daimler
Str. 42, 67663, Kaiserslautern, Germany
e-mail: Marc.Seissler@mv.uni-kl.de

Kai Breiner
University of Kaiserslautern, Software Engineering Research Group, Gottlieb-Daimler
Str. 42, 67663, Kaiserslautern, Germany
e-mail: Breiner@cs.uni-kl.de

2 G. Meixner, M. Seissler, and K. Breiner

an interactive system – the user – because of their inability to put themselves into
the position of a user. Since usability, which is perceived in a subjective way, de-
pends on various factors such as skills or experience, the user interface will be
perceived by each user in a completely different way.

Moreover, in a highly competitive market that brings forth technically and
functionally more and more similar or equal devices, usability as an additional
sales argument secures a competitive advantage. In order to put stronger emphasis
on users’ and customers’ needs, wishes, working styles, requirements, and prefe-
rences, and in order to consider them right from the beginning in all phases of the
device development process, the responsible professional organizations in Germa-
ny, i.e., GfA, GI, VDE-ITG, and VDI/VDE-GMA, coined the term “Useware” for
the above-mentioned subset and intersection of hardware and software, back in
1998 already [2].

The development of user interfaces for interactive software systems is a time
consuming and therefore costly task, which is shown in a study [3]. By analyzing
a number of different software applications, it was found that about 48% of the
source code, about 45% of the development time, about 50% of the implementa-
tion time, and about 37% of the maintenance time is required for aspects regarding
user interfaces. Petrasch argues that the time effort needed for implementing user
interfaces – even 15 years after the study by Myers et al. [3] – is still at least 50%
[4]. He justifies that the spread of interactive systems as well as their requirements
have drastically increased over the last years. To be able to enforce the develop-
ment of user interfaces more efficiently, a methodical procedure with an early
focus on user and task requirements was seen as necessary.

Therefore, the systematic Useware Engineering Process, which calls for a com-
prehensive user, task, and use context analysis preceding the actual development,
was developed [5]. Later in the Useware Engineering Process, interdisciplinary
teams composed, for instance, of computer scientists, mechanical engineers, psy-
chologists, and designers, continue developing the respective device in close col-
laboration with the ordering customer and its clients by constantly providing
prototypes even in the very early development phases, thereby facilitating
continuous, parallel evaluation (as depicted in Fig. 1).

Fig. 1 Useware Engineering Process

The development process is determined by the procedure of ISO 13407 (user
centered design) and follows the policy of ISO 9241-110 (dialog principles). In

Model-Driven Useware Engineering 3

the analyzing phase, the characteristics and behaviors of current and prospective
users are defined using different methods, i.e., interviews, observations, task
analysis, or surveys. At first, individual task models as well as communalities and
differences between the user groups are derived from the requirements and beha-
viors while the system is used. Additionally, such issues as environmental and
working conditions, team and labor organizations, as well as domain-specific
context are explored during the analysis. Data elicited during the analysis can be
entered, saved, analyzed, and exported using appropriate tools [6]. First of all, the
structuring phase concentrates on harmonization and manual conflation of the in-
dividual task models and user requirements in order to obtain a common, system
comprehensive, platform-independent use model. This model describes, e.g., what
kinds of tasks can be performed or are allowed, for example for user groups at
specific locations with specific devices. On the basis of classification, prioritiza-
tion, and temporal relation of the tasks, an abstract operating structure is specified
initially and saved in the XML-based Useware Markup Language [6]. The struc-
ture evaluation is an important and determining part of this phase. It guarantees
the conformity of the harmonized structure and temporal sequences with the men-
tal models of the users. It is already possible to simultaneously generate first pre-
liminary models as well as executable use models for evaluation goals based on
the use models and to test them by having the user use the respective software
tools [7]. After the structuring phase, the actual design takes place. With the help
of the user requirements and the results of the analysis, concepts of visualization,
navigation, and interaction are chosen and combined appropriately. The design of
coarse mask layouts is finally followed by the fine design of the ergonomically
designed user masks, with the focus being on providing efficient support for the
user as well as information brokering in a quick and systematic way in order to of-
fer the user adequate decision-making aids. In parallel to the fine design, the reali-
zation starts, meaning the concrete implementation of the developed concepts into
a user interface using the selected hard- and software platforms. The parallel eval-
uation represents a continuation of the analysis phase [8], since the development
results are tested and evaluated continuously with structural or executable proto-
types in every phase of the development process by representative users. To
ensure that each user evaluation is taken into account, the user interfaces are im-
proved iteratively. Adjustments to the use model can be made by returning from
later phases to earlier ones, for example.

Any process is useless if developers do not adhere to it or accidently execute
the process in a wrong way. To support the correct execution of the Useware En-
gineering Process, tools are indispensable. Furthermore, the constantly increasing
number of heterogeneous platforms (PC, smart phone, PDA, etc.) is another rea-
son why user interfaces have to be kept consistent with each other in relation to
user experience on such target platforms in order to guarantee intuitional handling
and thus ensure usability [9]. Since usability is a subjectively experienced non-
functional requirement, there is no such thing as a best user interaction concept. In
order to reduce the recurrent development effort of individual solutions for
specific platforms, modalities, or even context of use, a model-based
approach – which facilitates reusability – can be taken, focusing on the needs and

4 G. Meixner, M. Seissler, and K. Breiner

requirements of the users. This allows developers to generate prototypes of the us-
er interface on the basis of the use model from the very beginning of their work.

In the subsequent sections, we will first discuss related work, followed by a
section that focuses on supporting user interface developers during development
time. Then we will introduce the CAMELEON Reference Framework as a meta
architecture for model-based user interface development and subsequently present
our derived model-based architecture. Furthermore, we will introduce useML 2.0
and the graphical useML-editor “Udit”. Targeting the transition from the use
model to the abstract user interface design, we present the Dialog and Interface
Specification Language (DISL). Furthermore, we will introduce the User Interface
Markup Language (UIML), which represents the concrete user interface. Addi-
tionally, we will introduce two mapping approaches: from useML to DISL and
from DISL to UIML. Finally, we provide an outlook on currently developed as
well as planned extensions to the tool chain.

2 Related Work

Many problems and limitations of current model-based architectures are a conse-
quence of focusing too much on just one model [10]. For example, MECANO
[11] and TRIDENT [12], [13] are architectures that do not integrate different
discrete models.

TADEUS [14], [15] is an architecture and development environment for the
development of user interfaces considering the application functionality as well as
task modeling aspects. The dialog and the presentation model are generated from
the task model on the basis of predefined classifications. The focus of TADEUS is
on modeling application functionality. Regarding temporal operators, TADEUS
only integrates a sequence operator.

GLADIS+ [16] and ADEPT [17] are architectures for model-based develop-
ment on the basis of task models. The overall usability of these architectures is ra-
ther low. These architectures make use of classical formal models, such as entity
relation (ER) models, to drive the greatest possible degree of automation regarding
the user interface design process. As a consequence, only user interfaces with poor
visual presentation can be generated [18].

In MOBI-D [19], an informal textual representation of the task and domain
model is used to start the development process. MOBI-D is rather a set of tools
than an architecture, and generates (semi-)automatic user interfaces [20]. MOBI-D
cannot be used for developing multi-platform or multi-modality user interfaces.

One of the most recent architectures and XML-based development environ-
ments for multi-modal user interfaces is the Transformation Environment for
inteRactivE Systems representAtions (TERESA) [21], [22]. Basically, TERESA
consists of a task- and presentation model. On the basis of an abstract description
of the task model in the ConcurTaskTree (CTT) notation [23], a developer is able
to (semi-)automatically develop platform-specific task models, abstract presenta-
tion models, concrete presentation models, and finally HTML source code [24].
TERESA was developed as a monolithic development environment with an inte-
grated simulator for evaluating models. The focus of TERESA, based on the task

Model-Driven Useware Engineering 5

model specified with CTT, is on supporting developers by offering different tools
[25], [20]. Besides the task model, the developers need to specify further design
decisions in order to transform the task model into a presentation model
(specified with TeresaXML [26]). Interaction tasks in CTT do not contain the
necessary semantics for transforming tasks into abstract interaction objects
fully automatically [20], [9]. Furthermore, transformation processes are integrated
directly into the source code of TERESA, which reduces the flexibility of the
transformation processes in terms of extension, modification, and maintenance
[27]. In TERESA, finite state machines are used to describe the dialog model,
which is therefore quite limited in its expressiveness [28]. Recent work has been
about the development of MARIA [29], the successor of TERESA.

Similar to TERESA, DYGIMES (Dynamically Generating Interfaces for Mobile
and Embedded Systems) [20] is an architecture for the development of user
interfaces based on different XML-compliant languages. DYGIMES aims at
simplifying the development process by clearly separating the user interfaces from
the application functionality. Furthermore, DYGIMES aims at reducing the
complexity of the different models used. The focus of DYGIMES is on the
automatic generation of a dialog and presentation model from a task model
specified with CTT at runtime. The dialog and presentation model is described with
SeescoaXML (Software Engineering for Embedded Systems using a Component-
Oriented Approach) [25]. Task models are also specified with CTT, which needs
additional abstract UI descriptions [20] to transform the task model into a dialog
and presentation model. Luyten adapts the Enabled Task Sets (ETS) approach from
Paternò [23] and introduces an optimized ETS-calculation algorithm [9]. After ETS
calculation, designers can specify spatial layout constraints, which allow expressing
how the single UI building blocks are grouped and aligned at the user interfaces.
Finally, the generated user interfaces are rendered by a light-weight runtime
environment running, for example, on the target mobile device.

3 Useware Engineering at Development Time

In this section, we will give a short overview of the CAMELEON reference
framework – which is a well-established refinement framework for the systematic
development of user interfaces on the basis of different models. In accordance
with the refinement steps of this particular framework, we will introduce our
architecture as a concrete instantiation of the CAMELEON reference framework.

3.1 CAMELEON – A Reference Framework

For many years, there has been much intensive research on using model-based
development methodologies in the development of user interfaces [30]. These
methodologies are very similar to model-based approaches in the domain of
software engineering. Key aspects like model abstraction and using transformations
to automatically generate further models or source code (e.g., used in Model Driven
Architecture (MDA) in software engineering) are also important factors in the
development of consistent user interfaces [7].

6 G. Meixner, M. Seissler, and K. Breiner

The CAMELEON reference framework was developed by the EU-funded
CAMELEON project [31]. It describes a framework that serves as a reference for
classifying user interfaces that support multiple targets, or multiple contexts of
use on the basis of a model-based approach. The framework covers both the
design time and runtime phases of multi-target user interfaces. Furthermore,
the CAMELEON reference framework provides a unified understanding of
context sensitive user interfaces rather than a prescription of various ways or me-
thods for tackling different steps of development.

Fig. 2 The CAMELEON Reference Framework

As depicted in Fig. 2, the framework describes different layers of abstraction,
which are important for model-based development of user interfaces, and their
relationships among each other [32]:

• The Task and Concepts level considers, e.g., the hierarchies of tasks that
need to be performed in a specific temporal order in order to achieve the
users’ goals (during the interaction with a user interface).

• The Abstract User Interface (AUI) expresses the user interface in terms
of abstract interaction objects (AIO) [12]. These AIOs are independent of
any platform or modality (e.g., graphical, vocal, haptic). Furthermore,
AIOs can be grouped logically.

• The Concrete User Interface (CUI) expresses the user interface in
terms of concrete interaction objects (CIO). These CIOs are modality

Model-Driven Useware Engineering 7

dependent but platform independent. The CUI defines more concretely
how the user interface is perceived by the users.

• The Final User Interface (FUI) expresses the user interface in terms of
platform-dependent source code. A FUI can be represented in any pro-
gramming language (e.g., Java) or mark-up language (e.g., HTML). A
FUI can then be interpreted or compiled.

Between these levels, there are different relationships: reification (forward engi-
neering), abstraction (reverse engineering), and translation (between different
contexts of use).

Fig. 3 shows an example (a simple graphical log-in screen) of the different lay-
ers of the CAMELEON reference framework. Starting with the “task & concepts”
layer modeling the log-in task, the AUI, CUI, and FUI layers can be (semi-)
automatically derived via transformations.

Fig. 3 A simple example showing the different layers

3.2 An Architecture for the Model-Based Useware Engineering
Process

Different models are required in model-based development of user interfaces. The
entity of models used is known as “interface model” and consists of different ab-
stract and concrete models [30]. Abstract models are, e.g., the user model
(represents different user groups, for example), the platform model (specifies target

8 G. Meixner, M. Seissler, and K. Breiner

platforms), the context model (describes the context of use), as well as the task
model (describes tasks and actions of the user). The visualization of the user inter-
face is defined by the presentation model. It specifies how visual, haptic, or voice
interaction objects of the user interfaces are specified. The dialog model is the link
between the task model and the presentation model. It describes the operating se-
quence, the starting point, the goal, and the results that control the process of the
user interface. Furthermore, the presentation model and the dialog model are
divided into an abstract and a concrete model part. Especially the abstract presenta-
tion and dialog models are characterized by a lack of references to specific modali-
ties and platforms. As a result, transformations into any modality or platform can
be realized.

The CAMELEON reference framework is the starting point for developing and
integrating our own model-based architecture. This reference framework leaves
open aspects regarding the practical composition of models and how to use them
in user-centered development processes (such as the Useware Engineering
Process). Therefore, we adapted the framework and developed our own model-
based architecture, which integrates perfectly into the different phases of the Use-
ware Engineering Process (see Fig. 4).

Fig. 4 Schematic of the model-based architecture

Model-Driven Useware Engineering 9

The first step consists of a survey of elicited analysis data, from which the task
models of the individual users can be extracted. After harmonizing the analysis
data, task models are combined (manually) during the structuring phase into a sin-
gular use model (see sections 3.3 and 3.4), which also integrates other abstract
models (e.g., context, user, and platform model). Together, the analysis and struc-
turing phases can be mapped to the “task & concepts” layer of the CAMELEON
reference framework. The abstract user interface is built on the basis of the ab-
stract presentation model and the abstract dialog model, which can be described
using the Dialog and Interface Specification Language (DISL) (see section 3.5).
With DISL, it is possible to describe platform- and modality-independent user in-
terfaces during the design phase (abstract user interface). With the standardized
User Interface Markup Language (UIML), concrete graphical user interfaces (de-
sign phase) can be described (see section 3.6). In our architecture, UIML covers
the concrete presentation model as well as the concrete dialog model. By making
use of an appropriate generic vocabulary [33], it is possible to transform UIML in-
to a final user interface (realization phase) by generating source code or other
markup languages (such as HTML) directly.

Although based on models and transformation processes, it is also necessary to
integrate further models, transformations, tools, etc. into a holistic view and put
them into order. As Schaefer shows, the overall architecture of model-based user
interface processes consists of a number of further important components [28]. For
the efficient development of user interfaces, respectively for the interactive
processing of models, development teams additionally need software support, e.g.,
a model-based tool chain. This tool chain integrates model transformation engines
(see sections 3.7 and 3.8), model editors, knowledge bases, as well as databases.
Moreover, an execution environment is required, consisting of layout generators
(e.g., for ordering graphical elements), HCI patterns (for reusing the designers’
expert knowledge), and source code generators.

Finally, an application skeleton of the user interface can be generated via
source code generators in the preferred programming language. This application
skeleton can then be extended by functional characteristics until a complete ver-
tical application prototype in a particular development environment is finished.
This vertical application prototype can then again be tested iteratively by the users
of the interactive system.

3.3 The Useware Markup Language 2.0

The Useware Markup Language (useML) 1.0 [34] was developed to support the
user- and task-oriented Useware Engineering Process with a modeling language
representing the results of the initial task analysis. Accordingly, the use model ab-
stracts platform-independent tasks into use objects (UO) that make up a hierarchi-
cally ordered structure (see Fig. 5). Each element of this structure can be anno-
tated by attributes such as eligible user groups, access rights, and importance.
Further annotations and restrictions can be integrated by extending a dynamic part
of the use model (e.g., for integrating information from the platform or context
model). This functionality makes the use model more flexible than many other

10 G. Meixner, M. Seissler, and K. Breiner

task models and their respective task modeling languages (cf. section 2). Further-
more, the leaf tasks of a use model are described with a set of elementary use
objects (eUO) representing atomic interactive tasks: inform, trigger, select, enter,
and change. In contrast to other task modeling languages such as CTT [23] (see
section 2), an eUO refines an interaction task, i.e., an eUO can be mapped directly
to a corresponding abstract interaction object in the abstract user interface.

The basic structure of the use model has not been changed since 2004 [34], but
the development of a taxonomy for task models and its application to the use
model have revealed certain shortcomings and potentials for enhancing the use
model extensively [35]. All these enhancements have been incorporated into
useML 2.0 as introduced below.

Fig. 5 Schematic of the use model

According to [36], the use model must differentiate between interactive user
tasks (performed via the user interface) and pure system tasks requiring no active
intervention by the user. System tasks encapsulate tasks that are fulfilled solely by
the system – which, however, does not imply that no user interface must be pre-
sented, because the user might decide, for example, to abort the system task, or re-
quest information about the status of the system. Interactive tasks usually require
the user(s) to actively operate the system, but still, there can be tasks that do not
have to be fulfilled or may be tackled only under certain conditions. In any case,
however, interactive tasks are usually connected to system tasks and the underly-
ing application logic, which has been addressed recently by the newly introduced
differentiation of user tasks and system tasks in useML 2.0.

To specify that a certain task is optional, the semantics of the use objects and
the elementary use objects has been enhanced to reflect their importance. Their
respective user actions can now be marked as “optional” or “required”.

Model-Driven Useware Engineering 11

Similarly, only useML 2.0 can attribute cardinalities to use objects and
elementary use objects. These cardinalities can specify minimum and maximum
frequencies of utilization, ranging from 0 for optional tasks up to ∞. Further,
respective logical and/or temporal conditions can now be specified, as well as
invariants that must be fulfilled at any time during the execution (processing) of a
task. Except for useML 2.0, only few task modeling languages are able to specify
both logical and temporal conditions. Consequently, temporal operators (see [7])
have been added to useML, which is the most important and most comprehensive
enhancement in version 2.0. These operators allow for putting tasks on one
hierarchical level into certain explicitly temporal orders; implicitly, temporal
operators applied to neighboring levels of the hierarchical structure can form highly
complex, temporal expressions. In order to define the minimum number of
temporal operators that allows for the broadest range of applications, the temporal
operators of 18 task modeling languages were analyzed and compared [37]. Among
others, Tombola [38], VTMB [39], XUAN [40], MAD [41], DIANE+ [42], GTA
[43], and CTT [23] were examined closely. Based on their temporal operators’
relevance and applicability in a model-based development process, the following
binary temporal operators were selected for useML 2.0:

• Choice (CHO): Exactly one of two tasks will be fulfilled.
• Order Independence (IND): The two tasks can be accomplished in any

arbitrary order. However, when the first task has been performed, the
second one has to wait for the first one to be finalized or aborted.

• Concurrency (CON): The two tasks can be accomplished in any
arbitrary order, even in parallel at the same time (i.e., concurrently).

• Deactivation (DEA): The second task interrupts and deactivates the first
task.

• Sequence (SEQ): The tasks must be accomplished in the given order.
The second task must wait until the first one has been fulfilled.

Since the unambiguous priority of these four temporal operators is crucial for the
connection of the use model with a dialog model, their priorities (i.e., their order
of temporal execution) have been defined as follows [9]:

Choice > Order Independence > Concurrency > Deactivation > Sequence

3.4 The Graphical useML 2.0-Editor

Editors, simulators, and model transformation tools are needed that allow creating,
testing, as well as processing the user interface models. To address these demands,
the useML-Editor (Udit) was introduced [7], which allows the graphical editing of
useML 2.0 models. Udit enables the developer to create and manipulate use mod-
els easily and quickly via a simple, graphical user interface. It further provides a
validation mechanism for ensuring the correctness of a use model and the integrity
of a use model to be loaded from a useML file. In case of problems, Udit shows
appropriate warnings, hints, and error messages (use models created and saved
using Udit are always valid).

12 G. Meixner, M. Seissler, and K. Breiner

Using project-specific conditions and constraints, useML provides an external
schema attribute definition that can be changed at any time, without necessitating
changes to the core useML schema. For example, user group names, personas and
roles, locations, device types and specifications, the devices’ function models, etc.,
are highly variable. While these conditions and constraints are specified in an
external XML file in useML, Udit provides a schema editor to edit them quickly
and easily.

As can be seen in Fig. 6 (left part), the basic elements of the useML 2.0 specifi-
cation, i.e., use model (root element, black), use objects (orange), active task ele-
mentary use objects (green), and elementary use objects of the passive “inform”
type (blue), are displayed in different colors. This facilitates the developer’s orien-
tation and navigation, especially when a developer works with complex use mod-
els. Collapsing and expanding sub-trees of the use model is also possible. The
temporal operators are displayed as part of the connection line between two
neighboring (elementary) use objects.

Udit has been designed to support the features of the recently revised
useML 2.0. Since then, the initial version of Udit has been consistently enhanced.
Udit now implements the transformation process from the use model to the ab-
stract user interface. An integrated filter mechanism can be used to automatically
derive a specific use model from the basic use model. This specific use model can
be refined by the developer, or it can be automatically exported. Additional fea-
tures, such as drag&drop functionality, a model validation tool, and a zoom func-
tion, have been incorporated.

To visualize the dynamic behavior of the use model, a simulator has been inte-
grated in Udit, which can be used to evaluate the behavior of the developed use
model. As depicted in Fig. 6 (right part), the simulator is split into four main
screens: On the left side of the window, the simulated use model is displayed. The
eUOs that are enabled for execution are highlighted in this use model and listed in
a box, located in the right upper window. Each of the listed eUOs can be executed
by pressing the corresponding “execute” button, which triggers the simulator to
load a new set of executable eUOs. Additional features of the simulator include an
execution history and a window for displaying conditions.

Fig. 6 Udit 2.0 - The useML Editor (left) and Simulator (right)

Model-Driven Useware Engineering 13

3.5 The Abstract User Interface

The abstract user interface is modeled with the Dialog and Interface Specification
Language (DISL) [44], which was developed at the University of Paderborn
(Germany) as a modeling language for platform- and modality-independent user
interfaces for mobile devices. DISL focuses on scalability, reactivity, easy usabili-
ty for developers, and low demands on processing power and memory consump-
tion. An important precondition to the systematic development of user interfaces is
the strict separation of structure, presentation, and behavior of a user interface.
Since the User Interface Markup Language (UIML) [45] facilitates not only this
separation, but also – by employing a XML-based file format – the easy creation
of interpreters and development tools, UIML was used as a basis for the develop-
ment of DISL. Therefore, the basic structure and the syntax of UIML were partial-
ly adapted. However, two UIML properties that shall be presented here in more
detail did not fulfill the purpose of DISL. These are UIML’s limited behavior
model and its dependence on platform specifications.

UIML allows for the event-based behavior description of user interfaces.
Events like pressing a key can lead to changes in the state of the respective user
interface. Therefore, it is possible to specify the behavior of a user interface as a
finite state machine in UIML. This is intuitive for simple user interfaces. In bigger
projects, the developer is likely to lose track of the exponentially growing number
of state transitions. In the past, this has been the reason why mechanisms and nota-
tions were introduced that significantly reduce the complexity of the state space,
for example by employing parallel state transitions as in [46]. This, however, re-
quires storing complex user interface states, such as “menu item 1 selected AND
switch set to C”. Instead of storing numerous complex states, DISL introduces
state variables, resulting in state transitions being calculated from relevant state
variable values at the occurrence of certain events. This also allows for setting
state variables arbitrarily during a state transition. Finally, DISL also provides
means for specifying time-dependent transitions, which is of high relevance for
mobile applications where reactive user interfaces are to be designed even in
unreliable networks, e.g., when a waiting period times out and an alternative
interaction method must be provided to the user.

The second significant difference between DISL and UIML is the consequent
abstraction of the DISL modeling language from any target platforms and modali-
ties, which makes DISL a pure dialog modeling language. In UIML, on the
contrary, abstract descriptions of the user interfaces are possible, but mapping be-
tween abstract items and concrete target platform items – the so-called “vocabu-
lary” – is mandatory. DISL, however, uses only purely abstract interaction objects
(AIO, see [10]); it is up to the implementation to either interpret AIOs
directly on the target device (as presented, for example, in [44]), or to convert the
abstract specification into a modality-dependent code using (external) transforma-
tions (see section 3.8). This supports DISL’s objective of being scalable, since the
abstract interaction objects possess only the minimal set properties that must be
available on many systems. Fig. 7 shows as a proof of concept a simple interface
for a media player modeled with DISL. The left part of Fig. 7 shows an emulated

14 G. Meixner, M. Seissler, and K. Breiner

Siemens M55 mobile phone, whereas the right part of Fig. 7 shows a real Siemens
M55 mobile phone. Both mobile phones – the emulated and the real one – render
the corresponding DISL document. The generated UI is functional but not very
appealing; however, the AIOs could later be augmented during the transformation
phase, e.g., by incorporating HCI patterns as design knowledge, in order to
generate better interfaces on the respective end device.

Fig. 7 Simple User Interface for a Siemens M55 mobile phone generated from DISL

Adopting DISL into the Useware Engineering Process and linking it to the use
models, finally completes the transformation-based, holistic Useware Engineering
Process, as illustrated in [28]. For the development of DISL itself, not the whole
user interface development process was taken into account, but, on purpose, only
the dialog modeling and the presentation, either through direct interpretation on an
end device or through transformation into a target format.

3.6 The Concrete User Interface

The concrete user interface is modeled with the User Interface Markup Language
(UIML) [45]. UIML separates presentation components (e.g., widgets and layout),
dynamic behavior (e.g., state transitions), and the content of a user interface
(see Fig. 8). For instantiating a user interface in UIML, a UIML document and a
specific vocabulary are required.

Model-Driven Useware Engineering 15

Fig. 8 The UIML Meta-Interface Model

The interface section of a UIML document consists of five components: structure,
style, layout, content, and behavior:

• Structure describes a hierarchy of interaction objects and their relationships.
• Style specifies the properties of the components, e.g., text, color, or size.
• Layout defines how the components are arranged relative to each other

(spatial constraints).
• Content separates the content of the interface from the other parts and is

referenced in the components’ properties.
• Behavior describes, for example, interaction rules or actions to be

triggered under various circumstances (specifies the dialog model).

While the interface section describes the general appearance of the user interface,
the peers section of a UIML document describes the concrete instantiation of the
user interface by providing a mapping onto a platform-specific language (i.e.,
interface toolkits or bindings to the application logic).

• Logic specifies how the interfaces are bound to the application logic.
• Presentation describes the mapping to a concrete interface toolkit, such

as Java Swing.

Furthermore, a UIML document includes an optional <head>-element for
providing meta-information and a concept that allows the reuse of predefined
components. These so-called “templates” are predefined interaction objects, which
can be easily instantiated with concrete parameters derived from the application
data model.

16 G. Meixner, M. Seissler, and K. Breiner

Since syntax and functionality of DISL were still close to UIML, several
fundamental enhancements and improvements of DISL were incorporated into the
new 4.0 version of UIML [47]. Since May 2009, UIML 4.0 is a standard of the
Organization for the Advancement of Structured Information Standards (OASIS).
DISL’s abstractions accounting for platform and modality independence, however,
are adopted by UIML 4.0 because of their fundamentally different mechanism.
Still, platform independence of graphical user interfaces can now be achieved
using UIML with a generic vocabulary, as demonstrated in [48].

3.7 Transformation of useML 2.0 into DISL

To support the developer in designing user interfaces, an automatic transformation
process has been developed [49]. This process adapts the transformation process
used in the TERESA development methodology [26] and consists of four phases
depicted in Fig. 9. While in the (optional) first phase, the developer manually re-
fines the use model – e.g., for the target platform or target user group – the subse-
quent phases gradually and automatically transform the use model into an abstract
user interface.

While the transformation process introduced in [26] transforms a task model into
a final user interface, we explicitly focus on mapping the use model onto an ab-
stract user interface. Since this is compliant with the architecture proposed with the
CAMELEON Reference Framework [31], it has the advantage that the generated
user interface is independent from the later modality or platform.

Fig. 9 The Transformation Process

Phase 1: Filtering the Use Model
In the optional first phase, developers can annotate the use model by applying as-
sertions to the single UOs and eUOs. These assertions can be used to specify, for
example, on which device a task can be executed or which user group is allowed
to execute the task. After the developer has annotated the use model, filters can be
set to generate the “system task-model” [26]. Whereas a standard set of assertions
is specified in a separate XML-schema in useML, this schema can be individually
extended with project-specific assertions.

Model-Driven Useware Engineering 17

Phase 2: Generating the Binary Priority Tree
The filtered use model is passed to the second process phase as input for the sub-
sequent automated transformation steps. To simplify interpretation and to solve
ambiguities between the temporal operators in this phase, the use model is trans-
formed into a binary “priority tree” [25] representation. While in [25] the priority
tree is used for grouping tasks with identical temporal operator priority on the
same hierarchical level, a binary version of the priority tree has been used. The bi-
nary version of the priority tree has exactly two UOs – respectively eUOs – on
each level of the tree. This significantly reduces the number of cases that have to
be considered when generating the dialog graph in the next phase. In the left part
of Fig. 10, a binary priority tree for a simple “pump” use model is depicted.

The hierarchical structure of the binary priority tree is derived from the
temporal operator priorities. A recursive algorithm starts at the root level of the
use model and selects those UOs that have the temporal operator with the highest
priority. These two UOs are grouped with a new “abstract UO” that replaces both
UOs. After that, the algorithm loops until only two UOs are left on the current
level. Then the algorithm recursively descends into the next hierarchy level and
starts grouping the children. The algorithm terminates when only two UOs/eUOs
are left on each hierarchy level.

Phase 3: Generating the Dialog Graph
A dialog graph is generated based on the binary priority tree in the third phase of
the transformation process. The dialog graph represents the dynamical character of
the use model derived from the semantics of the temporal operators.

eUOs that can be executed by the user at the same point in time are grouped
within the states of the dialog graph. Consequently, a state of the dialog graph
represents an “Enabled Task Set” (ETS) [23]. The right part of Fig. 10 shows the
corresponding dialog graph for the previously mentioned binary priority tree of a
pump.

Fig. 10 The binary priority tree (left) and the generated dialog graph (right) of a simple
pump use model

18 G. Meixner, M. Seissler, and K. Breiner

For each eUO of a dialog state, there is a corresponding directed transition that
is labeled with the eUO and connected to a successor state. These transitions are
used to describe the navigation between the single dialog states. The user can na-
vigate through the dialog graph by executing one of the eUOs of a dialog state.

In [9], an algorithm is introduced that has been used in the DYGIMES
framework to generate a dialog graph from a CTT task model. Since this algorithm
has some shortcomings regarding the generation of parallel states, a new algorithm
has been developed that solves these shortcomings and allows the parallel
identification of successor states and transitions. The developed recursive algorithm
generates the complete dialog graph by virtually executing the use model. For this
execution, each UO and eUO is flagged with an execution status that denotes
whether the object is currently executable or has already been executed.

The algorithm is divided into two subsequent phases: Top-down analysis for
identifying the current dialog state and bottom-up updating for determining the
new use model execution status.

In the top-down analysis, the use model is searched for executable eUOs. For
this purpose, the use model is traversed from the root node of the use model to the
leaves, which are represented by the eUOs. The semantics of the temporal opera-
tors and the execution status of the UOs are used to decide which branch of the bi-
nary priority tree has to be descended recursively. The algorithm terminates when
the leaves of the use model have been reached and the executable eUOs have
been identified. The result of one top-down-analysis is a unique dialog state that
represents one ETS.

Following the top-down analysis, for each eUO stored in the identified dialog
state, the successor dialog state as well as the transition to the successor dialog
state has to be generated. This is where the identified eUOs are “virtually ex-
ecuted”. Each eUO of the previously identified dialog state is selected and labeled
by the algorithm as “executed”. When the execution status of the selected eUO has
been changed in the use model, the execution status of all other UOs/eUOs has to
be updated. Beginning with the parent UO of the executed eUO, the tree nodes are
recursively updated from the leaves up to the root of the use model. This is why
this recursive algorithm is referred to as bottom-up updating.

To generate the whole dialog graph, these two recursive algorithms are nested
within each other. When all eUOs in the binary priority tree are marked as
“executed”, the dialog graph has been generated.

Phase 4: Mapping the Dialog Graph
The final phase of the transformation process implements the mapping from the
generated dialog graph onto a dialog model.

In contrast to the TERESA approach, a modality-independent target mapping
language has been used for this mapping to support the generation of multi-
modality and multi-platform user interfaces. For the specification of this abstract
user interface we use DISL. Since DISL was initially designed for mobile devices,
it supports a concept where the user interface is split into several modular inter-
faces. This concept is used in our transformation process for the presentation
mapping. Here, the states of the dialog graph are mapped onto DISL interfaces.

Model-Driven Useware Engineering 19

Afterwards, each eUO of a dialog state is mapped onto its corresponding abstract
interaction object. In Fig. 11, a mapping of the previously generated dialog graph
of a pump is depicted.

Fig. 11 The mapped dialog graph rendered as a GUI

Since the transitions of the dialog graph are used to move between the dialog
states, they represent a dynamical aspect of the user interface. Therefore, the tran-
sitions are represented in the behavior part of the DISL user interface. By using a
concept of rules and transitions for each AIO, a transition is specified that is fired
when the user interacts with this AIO. This transition executes a “restructure”
command, which triggers the DISL renderer to activate the new interface.

3.8 Transformation of DISL into UIML

According to the CAMELEON Reference Framework, the next step in a model-
based user interface development process is the transformation of the abstract user
interface into a modality-depended but platform-independent concrete user
interface. Since UIML can be used to describe the user interface in terms of a plat-
form-independent model, the language is used as the target mapping language.
Therefore, in this step, the dialogs and interaction objects, as well as the behavior
of the abstract UI have to be mapped onto the corresponding UIML elements.

20 G. Meixner, M. Seissler, and K. Breiner

In both languages (DISL and UIML), the user interface is separated into
structure, style, and behavior descriptions. Starting by analyzing the user interface
structure, the widgets that have to be mapped are identified in the first transforma-
tion step. This mapping is specified in a look-up table that expresses the relation-
ship between the abstract DISL interaction objects and the concrete UIML
widgets. One mapping can be, for example, that an abstract DISL command inte-
raction object is mapped onto a UIML button widget, which is commonly used in
graphical user interfaces to trigger a function. In the style section of the
DISL and UIML user interfaces, the widget’s properties that have an impact on
the presentation of the user interface are specified. Therefore, DISL properties
such as widget texts, descriptions, and visibility attributes are mapped onto the
corresponding UIML properties.

The behavior section is primarily used to specify the actions that have to be
executed when the user interacts with the user interface. These user interactions
may result in opening a new window or changing a set of interaction objects. In
DISL, the user interface behavior is described with a set of rules, which allow the
specification of conditions, and a set of transitions, which specify a set of actions
that are executed when the according rule is evaluated as true. Additionally, DISL
supports the definition of events that allow the specification of time-triggered
transitions. As in DISL, the behavior description in UIML is also specified using
rules, conditions, and, accordingly, the actions to be executed when a condition is
evaluated to true. Because of this similarity, the behavior can be mapped rather
statically between those languages.

While those three categories are used in both languages to describe the UI, the lan-
guages have different characteristics that have an influence on the transformation
process:

One aspect with an impact on the transformation is that an explicit classifica-
tion of the interaction objects is used in DISL. The abstract interaction objects are
classified as output, interaction, and collection interaction objects. While these
classes have an impact on the interaction objects semantics, they are not expressed
as an explicit property in the interaction objects style definition. Since UIML does
not use such a widget classification, those properties have to be expressed as ex-
plicit properties in the UI style definition. For example, the textfield interaction
object is an output element used for presenting large non-editable texts to the user
[28]. Since there is no dedicated output-only widget in UIML, this property has to
be expressed in the widget style definition by specifying the editable attribute of
the respective text widget.

Another aspect that has to be considered in the mapping process is that the
properties specified in the style description also have an influence on the mapping
of the widgets. For example, in DISL there is an incremental property in the style
definition that is used to specify a variablebox that accepts numerical input values.
If this property is set, the variable box has to be mapped onto a spinner widget in
UIML, while otherwise a text widget is used during the structure mapping phase.

The third aspect that has an influence on the transformation is that besides the
explicit properties in the style section of the DISL document, additional informa-
tion can be used in the mapping process. In DISL, some widget properties are

Model-Driven Useware Engineering 21

specified in the behavior section. For example, DISL does not support the
specification of a minimum or maximum value for a variable box that is set to be
incrementally changeable. To emulate these boundaries, they have to be specified
in the behavior section of the DISL document by using two variables and a set of
rules and transitions that ensure that the values cannot exceed the limits. While
this behavior can be mapped onto a UIML style property, the rules and transitions
must be omitted when mapping the behavior section of the two languages.

While this phase of the transformation process benefits from the similar struc-
ture of the AUI and the CUI models, ambiguities in the mapping process may oc-
cur. These ambiguities stem from the fact that the abstract user interface model
has to be enriched with additional, modality-specific information not contained in
the source model. Since UIML is used as the target language for describing the
CUI, attributes for the graphical user interfaces – such as widget size, layout, and
color – have to be specified in this mapping that are, by definition, not contained
in the AUI model.

Various strategies can be used to obtain this information and to use it as input
in the transformation process. One approach is to derive the information from oth-
er models. Platform models [30] are used to specify information about the input
and output capabilities of the target device and are therefore suitable as an input
source. But while it has been shown that these models are suitable for partially de-
riving the layout [9], they are still not sufficient for automatically deriving a
high fidelity user interface. Aspects such as the corporate identity of a user
interface usually still have to be applied by the developer herself. Therefore, tools
are needed in this transformation phase that allow manual intervention in the
transformation phases.

Today, different languages – e.g., ATL [50], RDL/TT [51], and XSLT [52] –
and tools are used for model transformation. A review of several transformation
systems can be found in [53]. Since the models used in these transformation
processes are based on XML, XML-based transformation languages and tools are
needed. XSL Transformation (XSLT) is standardized by the W3C group and one
of the most widespread languages for transforming XML-based documents. XSLT
uses templates to match and transform XML documents into other XML struc-
tures, respectively output formats. Since XSLT is one of the most popular XML
based transformation languages and offers a large set of generic transformation
processors, it is used for the implementation of the DISL-to-UIML transformation
process. To enable convenient handling of the XSLT templates, an additional tool
has been built that allows selecting the input model (DISL), the transformation
template (XSLT), and the output folder for transforming DISL into UIML. Fol-
lowing the generation of the CUI, the source code for the final user interface can
be generated, or the user interface can be interpreted by a renderer. In order to en-
able early feedback of the resulting user interface, an UIML renderer has been in-
tegrated into the transformation tool DISL2UIML. Fig. 12 shows a screenshot of
the DISL2UIML tool. In the left part, a developer can choose a DISL document
and the transformation template (XSLT). After starting the transformation, the re-
sulting UIML document is visualized in the right part of DISL2UIML. In the next
step, UIML.net can be started for rendering the transformed UIML document.

22 G. Meixner, M. Seissler, and K. Breiner

Fig. 12 Screenshot of DISL2UIML showing the transformation software as well as the
rendered UIML document

This renderer is an enhanced and extended version of UIML.net [54] capable of
rendering UIML 4.0 compliant user interfaces. Different vocabularies such as Gtk#,
System.Windows.Forms and System.Windows.Forms for the Compact .Net
Framework can be used to present the user interface with a different look and feel.

Besides offering tools for model transformation, tools for authoring and
enhancing models are crucial. In recent years, a set of UIML authoring
environments have been introduced that allow the design of multi-platform user
interfaces. Gummy [55] is an authoring environment that supports the graphical
editing of UIML 3.0 documents by offering a toolbox with a set of predefined
widgets. After selecting the target platform, the tool loads the appropriate UIML
widgets that are available on that platform. Jelly [56] has been recently introduced
as a tool for designing multi-platform user interfaces. Although Jelly relies on a
proprietary UI description language, it adapts the UIML structure. Harmonia Inc.
LiquidApps [57] is the only known commercial UIML authoring environment that
supports editing UIML 3.0 compliant documents. The tool has a graphical
WYSIWYG editor for designing the user interface using drag&drop functionality.
Besides adding and aligning the widgets, the behavior of the user interface can be
specified in a different view. After the user interface has been specified, the code
for the final user interface can be automatically generated by the tool for several
target languages, e.g., Java, C++ Qt, and Web apps.

After generating the code for the final user interface, language-specific tools
can be used by the developer to incorporate final design decisions and compile the
user interface.

Model-Driven Useware Engineering 23

4 Summary and Outlook

In this chapter, we have presented the current status of our model-based user inter-
face development environment. After discussing related work, we introduced the
CAMELEON Reference Framework as a meta-architecture for model-based user
interface development and subsequently presented the model-based architecture
we derived from it. Furthermore, we introduced useML 2.0 and the graphical
useML editor “Udit”, which is targeted at the structuring phase of the Useware
Engineering Process. Additionally, we introduced the Dialog and Interface Speci-
fication Language (DISL) and the User Interface Markup Language (UIML) as
well as mapping processes from useML to DISL and from DISL to UIML.

Currently, we are investigating efforts to optimize the transformation
approach from DISL to UIML by integrating platform models. For specifying
platform models, we have analyzed the User Agent Profile (UAProf), which is a
specification for capturing the capabilities of a mobile phone, including, e.g.,
screen size, multimedia capabilities, and character set support. Information
about input and output capabilities, in particular, is relevant for transforming the
abstract user interface into a concrete user interface. During this transformation
process, information about target constraints is essential.

Furthermore, existing tools have to be extended and new tools have to be
developed. Especially tools for tweaking the transformation process of useML to
DISL have to be developed in conjunction with new DISL renderers, e.g., for the
Apple iPhone or for the Google Android platform.

References

[1] Shneiderman, B.: Designing the user interface - strategies for effective human-
computer interaction. Addison-Wesley, Boston (2005)

[2] Zuehlke, D., Wahl, M.: Hardware, Software – Useware. Elektronik 23, 54–62 (1999)
[3] Myers, B., Rosson, M.B.: Survey on User Interface Programming. In: Proc. of the

10thAnnual CHI Conference on Human Factors in Computing Systems, pp. 195–202
(1992)

[4] Petrasch, R.: Model Based User Interface Design: Model Driven Architecture und
HCI Patterns. GI Softwaretechnik-Trends 27(3), 5–10 (2007)

[5] Zuehlke, D., Thiels, N.: Useware engineering: a methodology for the development of
user-friendly interfaces. Library Hi Tech 26(1), 126–140 (2008)

[6] Meixner, G., et al.: Raising the Efficiency of the Use Context Analysis in Useware
Engineering by Employing a Support Tool. In: Lee, S., Choo, H., Ha, S., Shin, I.C.
(eds.) APCHI 2008. LNCS, vol. 5068, Springer, Heidelberg (2008)

[7] Meixner, G., et al.: Udit – A Graphical Editor For Task Models. In: Proc. of the
4thInternational Workshop on Model-Driven Development of Advanced User Inter-
faces (MDDAUI). CEUR Workshop Proceedings, Sanibel Island, USA, vol. 439
(2009)

[8] Boedcher, A.: Methodische Nutzungskontextanalyse als Grundlage eines strukturier-
ten USEWARE-Engineering-Prozesses, Fortschritt-Berichte pak 14, Technische Un-
iversität Kaiserslautern, Kaiserslautern (2007)

24 G. Meixner, M. Seissler, and K. Breiner

[9] Luyten, K.: Dynamic User Interface Generation for Mobile and Embedded Systems
with Model-Based User Interface Development. PhD thesis, TransnationaleUniversi-
teit Limburg (2004)

[10] Pribeanu, C., Vanderdonckt, J.: Exploring Design Heuristics for User Interface Deri-
vation from Task and Domain Models. In: Proc. of the 4th International Conference
on Computer-Aided Design of User Interfaces, pp. 103–110 (2002)

[11] Puerta, A.: TheMecano Project: Enabling User-Task Automation During Interface
Development. In: Proc. of the Spring Symposium on Acquisition, Learning and
Demonstration: Automating Tasks for Users, pp. 117–121 (1996)

[12] Vanderdonckt, J., Bodart, F.: Encapsulating Knowledge for Intelligent Automatic In-
teraction Objects Selection. In: Proc. of the 1st Annual CHI Conference on Human
Factors in Computing Systems, pp. 424–429 (1993)

[13] Bodart, F., et al.: Key Activities for a Development Methodology of Interactive Ap-
plications. In: Benyon, D., Palanque, P. (eds.) Critical Issues in User Interface Sys-
tems Engineering, pp. 109–134. Springer, Heidelberg (1995)

[14] Schlungbaum, E.: Knowledge-based Support of Task-based User Interface Design in
TADEUS. In: Proc. of the 16th Annual CHI Conference on Human Factors in Com-
puting Systems (1998)

[15] Stary, C.: TADEUS: seamless development of task-based and user-oriented interfac-
es. IEEE Transactions on Systems, Man, and Cybernetics 30(5), 509–525 (2000)

[16] Ricard, E., Buisine, A.: Des tâches utilisateur au dialogue homme-machine:
GLADIS++, une demarche industrielle. In: Proc. of Huitièmes Journées-
surl’Ingénierie de l’Interaction Homme-Machine (1996)

[17] Markopoulos, P., et al.: On the composition of interactor specifications. In: Proc. of
the BCS-FACS Workshop on Formal Aspects of the Human Computer Interface,
London (1996)

[18] Abed, M., et al.: Using Formal Specification Techniques for the Modeling of Tasks
and the Generation of Human-Computer User Interface Specifications. In: Diaper, D.,
Stanton, N. (eds.) The Handbook of Task Analysis for Human-Computer Interaction,
pp. 503–529. Lawrence Erlbaum Associates, Mahwah (2003)

[19] Puerta, A.: A Model-Based Interface Development Environment. IEEE Soft-
ware 14(4), 40–47 (1997)

[20] Clerckx, T., Coninx, K.: Integrating Task Models in Automatic User Interface Gener-
ation. EDM/LUC Diepenbeek, Technical Report TR-LUC-EDM-0302 (2003)

[21] Mori, G., et al.: Tool Support for Designing Nomadic Applications. In: Proc. of the
8th International Conference on Intelligent User Interfaces, pp. 141–148 (2003)

[22] Paternò, F., et al.: Authoring pervasive multi-modal user interfaces. International
Journal on Web Engineering and Technology 4(2), 235–261 (2008)

[23] Paternò, F.: Model-based design and evaluation of interactive applications. Springer,
London (1999)

[24] Mori, G., et al.: Design and Development of Multidevice User Interfaces through
Multiple Logical Descriptions. IEEE Transactions on Software Engineering 30(8),
507–520 (2004)

[25] Luyten, K., et al.: Derivation of a Dialog Model from a Task Model by Activity
Chain Extraction. In: Proc. of the 10th International Workshop on Interactive Sys-
tems: Design, Specification and Verification (2003)

Model-Driven Useware Engineering 25

[26] Berti, S., et al.: The TERESA XML language for the Description of Interactive
Systems at Multiple Abstraction Levels. In: Proc. of the Workshop on Developing
User Interfaces with XML: Advances on User Interface Description Languages, pp.
103–110 (2004)

[27] Limbourg, Q., Vanderdonckt, J.: Addressing the Mapping Problem in User Interface
Design with UsiXML. In: Proc. of the 3rd International Workshop on Task Models
and Diagrams for User Interface Design (2004)

[28] Schaefer, R.: Model-Based Development of Multimodal and Multi-Device User Inter-
faces in Context-Aware Environments. C-LAB Publication, 25. Shaker Verlag,
Aachen (2007)

[29] Paternò, F., et al.: MARIA: A universal, declarative, multiple abstraction-level lan-
guage for service-oriented applications in ubiquitous environments. ACM Transac-
tions on Computer-Human Interaction (TOCHI) 16(4), 1–30 (2009)

[30] Puerta, A., Eisenstein, J.: Towards a General Computational Framework for Model-
Based Interface Development Systems. In: Proc. of the 4th International Conference
on Intelligent User Interfaces (1999)

[31] Calvary, G., et al.: A Unifying Reference Framework for Multi-Target User Interfac-
es. Interacting with Computers 15(3), 289–308 (2003)

[32] Cantera Fonseca, J.M., et al.: Model-Based UI XG Final Report, W3C Incubator
Group Report, May 4 (2010),
http://www.w3.org/2005/Incubator/model-based-ui/
XGR-mbui-20100504/ (accessed June 1, 2010)

[33] Ali, M.F., et al.: Building Multiplatform User Interfaces With UIML. In: Seffah, A.,
Javahery, H. (eds.) Multiple User Interfaces – Cross-Platform Applications and Con-
text-Aware Interfaces, pp. 95–118. John Wiley & Sons, Chichester (2004)

[34] Mukasa, K., Reuther, A.: The Useware Markup Language (useML) - Development of
User-Centered Interface Using XML. In: Proc. of the 9th IFAC Symposium on Anal-
ysis, Design and Evaluation of Human-Machine-Systems, Atlanta, USA (2004)

[35] Meixner, G., Goerlich, D.: Eine Taxonomie für Aufgabenmodelle. In: Proc. of Soft-
ware Engineering 2009, Kaiserslautern, Germany. LNI P, vol. 143, pp. 171–177
(2009)

[36] Bomsdorf, B., Szwillus, G.: From task to dialogue: Task based user interface design.
SIGCHI Bulletin 30(4), 40–42 (1998)

[37] Meixner, G.: Entwicklung einer modellbasierten Architektur für multimodale Benut-
zungsschnittstellen, Fortschritt-Berichte pak 21, Technische Universität Kaiserslau-
tern, Kaiserslautern (2010)

[38] Uhr, H.: TOMBOLA: Simulation and User-Specific Presentation of Executable Task
Models. In: Proc. of the International HCI Conference, pp. 263–267 (2003)

[39] Biere, M., et al.: Specification and Simulation of Task Models with VTMB. In: Proc.
of the 17th Annual CHI Conference on Human Factors in Computing Systems, pp.
1–2. ACM Press, New York (1999)

[40] Gray, P., et al.: XUAN: Enhancing UAN to capture temporal relationships among ac-
tions. In: Proc. of the Conference on People and Computers, vol. IX, pp. 301–312.
Cambridge University Press, Cambridge (1994)

[41] Scapin, D., Pierret-Golbreich, C.: Towards a method for task description: MAD. In:
Proc. of the Conference Work with Display Units, pp. 27–34 (1989)

[42] Tarby, J.C., Barthet, M.F.: The Diane+ method. In: Proc. of the 2nd International
Conference on Computer-Aided Design of User Interfaces, pp. 95–120 (1996)

26 G. Meixner, M. Seissler, and K. Breiner

[43] Van Der Veer, G., et al.: GTA: Groupware task analysis – modeling complexity. Acta
Psychologica 91, 297–322 (1996)

[44] Mueller, W., et al.: Interactive Multimodal User Interfaces for Mobile Devices. In:
Proc. of the 37th Annual Hawaii International Conference on System Sciences,
Hawaii, USA (2004)

[45] Abrams, M., et al.: UIML: An Appliance-Independent XML User Interface
Language. In: Proc. of the 8th International World Wide Web Conference, Toronto,
Canada, pp. 1695–1708 (1999)

[46] Curry, M.B., Monk, A.F.: Dialogue Modeling of Graphical User Interfaces with a
Production System. Behaviour and Information Technology 14(1), 41–55 (1995)

[47] Helms, J., et al.: User Interface Markup Language (UIML) Version 4.0. (2009),
http://docs.oasis-open.org/uiml/v4.0/cd01/
uiml-4.0-cd01.pdf

[48] Ali, M.F., et al.: Building Multi-Platform User Interfaces with UIML. In: Proc. of
the 4th International Conference on Computer-Aided Design of User Interfaces, pp.
255–266 (2002)

[49] Seißler, M., Meixner, G.: Entwicklung eines Transformationsprozesses zur modellba-
sierten Entwicklung von multimodalen Benutzungsschnittstellen. In: Proc. of the 8th
Berliner Werkstatt Mensch-Maschine-Systeme, Berlin, Germany (2009)

[50] Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoD-
ELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

[51] Schaefer, R., et al.: RDL/TT - A Description Language for the Profile-Dependent
Transcoding of XML Documents. In: Proc. of the International ITEA Workshop on
Virtual Home Environments (2002)

[52] W3C Consortium, XSL Transformations (XSLT) Version 1.0. W3C Recommenda-
tion, November 16 (1999)

[53] Schaefer, R.: A survey on transformation tools for model based user interface
development. In: Proc. of the 12th International Conference on Human-Computer In-
teraction: Interaction Design and Usability, Beijing, China, pp. 1178–1187. Springer,
Heidelberg (2007)

[54] Luyten, K., Coninx, K.: UIML.Net: an Open UIML Renderer for the.Net Framework.
In: Jacob, R.J.K., Limbourg, Q., Vanderdonckt, J. (eds.) Computer-Aided Design of
User Interfaces, vol. IV, pp. 259–270. Kluwer Academic Publishers, Dordrecht
(2006)

[55] Meskens, J., et al.: Gummy for multi-platform user interface designs: shape me, mul-
tiply me, fix me, use me. In: Proc. of the Working Conference on Advanced Visual
Interfaces 2008, Napoli, Italy, pp. 233–240. ACM, New York (2008)

[56] Meskens, J., et al.: Jelly: A Multi-Device Design Environment for Managing Consis-
tency Across Devices. In: Proc. of the Working Conference on Advanced Visual In-
terfaces 2010, Rome, Italy. ACM, New York (2010)

[57] Harmonia Inc. LiquidApps® - A Powerful Enterprise Mashup Solution,
http://www.liquidappsworld.com/ (accessed June 1, 2010)

	Model-Driven Useware Engineering
	Introduction
	Related Work
	Useware Engineering at Development Time
	CAMELEON – A Reference Framework
	An Architecture for the Model-Based Useware Engineering Process
	The Useware Markup Language 2.0
	The Graphical useML 2.0-Editor
	The Abstract User Interface
	The Concrete User Interface
	Transformation of useML 2.0 into DISL
	Transformation of DISL into UIML

	Summary and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

