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Preface

The papers in this volume were selected for presentation at the 4th International
Frontiers of Algorithmics Workshop (FAW 2010), held during August 11-13, 2010
at Wuhan University, Wuhan, China. Previous meetings of this workshop were
held in Lanzhou (2007), Changsha (2008), and Hefei (2009).

In response to the Call-for-Papers, 57 extended abstracts were submitted
from 12 countries and regions, of which 28 were accepted. The submitted papers
were from China, France, Hong Kong, India, Israel, Italy, Japan, Republic of
Korea, Lebanon, The Netherlands, Taiwan, and USA.

The papers were evaluated by an international Program Committee. Each pa-
per was evaluated by at least three Program Committee members, with possible
assistance of the external referees, as indicated by the referee list found in these
proceedings. In addition to the selected papers, the workshop also included three
invited presentations by Mikhail J. Atallah, Deyi Li, and Kurt Mehlhorn, and
two training sessions by John Hopcroft and Xiaotie Deng for providing students
and young researchers with advanced research experience.

We thank all Program Committee members and the external referees for their
excellent work, especially given the demanding time constraints. Furthermore,
we thank the General Conference Co-chairs John Hopcroft and Deyi Li, and the
Steering Committee Co-chairs Xiaotie Deng and Franco Preparata. It has been
a wonderful experience to work with all of them. We also thank the three invited
speakers, the two training session speakers, and all authors who submitted papers
for consideration. They all contributed to the high quality of the workshop.

Finally, we thank all local organizers, led by Rong Peng, and the colleagues of
the State Key Lab of Software Engineering and the School of Computer, Wuhan
University, who worked tirelessly to put in place the logistical arrangements of
the workshop and to create and maintain the website of the workshop. It was
their hard work that made the workshop possible and enjoyable.

May 2010 Der-Tsai Lee
Danny Z. Chen

Shi Ying
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Progress on Certifying Algorithms

Kurt Mehlhorn and Pascal Schweitzer

Max-Planck-Institut für Informatik, Saarbrücken, Germany

A certifying algorithm is an algorithm that produces with each output, a cer-
tificate or witness (easy-to-verify proof) that the particular output has not been
compromised by a bug. A user of a certifying program P (= the implementation
of a certifying algorithm) inputs x, receives an output y and a certificate w, and
then checks, either manually or by use of a checking program, that w proves
that y is a correct output for input x. In this way, he/she can be sure of the
correctness of the output without having to trust P . We refer the reader to the
recent survey paper [9] for a detailed discussion of certifying algorithms.

1 An Example

We illustrate the concept by an example. A matching in a graph G is a subset M
of the edges of G such that no two share an endpoint. A matching has maximum
cardinality if its cardinality is at least as large as that of any other matching.
Figure 1 shows a graph and a maximum cardinality matching. Observe that the
matching leaves two nodes unmatched, which gives rise to the question whether
there exists a matching of larger cardinality. What is a witness for a matching
being of maximum cardinality? Edmonds in his seminal papers [1,2] on how
to compute maximum matchings in polynomial time introduced the following
certificate: An odd-set cover OSC of G is a labeling of the nodes of G with
nonnegative integers such that every edge of G is either incident to a node
labeled 1 or connects two nodes labeled with the same number i ≥ 2.

Theorem 1 ([1]). Let N be any matching in G and let OSC be an odd-set
cover of G. For any i ≥ 0, let ni be the number of nodes labeled i. Then

|N | ≤ n1 +
∑
i≥2

�ni/2�.

Proof. For i, i ≥ 2, let Ni be the edges in N that connect two nodes labeled i
and let N1 be the remaining edges in N . Then

|Ni| ≤ �ni/2� for i ≥ 2 and |N1| ≤ n1

and the bound follows.

It can be shown (but this is non-trivial) that for any maximum cardinality
matching M there is an odd-set cover OSC with

|M | = n1 +
∑
i≥2

�ni/2�, (1)

D.T. Lee, D.Z. Chen, and S. Ying (Eds.): FAW 2010, LNCS 6213, pp. 1–5, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. The node labels certify that the indicated matching is of maximum cardinality:
All edges of the graph have either both endpoints labelled as two or at least one
endpoint labelled as one. Therefore, any matching can use at most one edge with two
endpoints labelled two and at most four edges that have an endpoint labelled one.
Therefore, no matching has more than five edges. The matching shown consists of five
edges.

thus certifying the optimality of M . In such a cover all ni with i ≥ 2 are odd,
hence the name.

A certifying algorithm for maximum cardinality matching returns a match-
ing M and an odd-set cover OSC such that (1) holds. Edmonds [1,2] gave the
first efficient algorithm for maximum cardinality matchings. The algorithm is
certifying and outputs a matching M and an odd-set cover OSC satisfying (1).
By the argument above, the odd-set cover proves the optimality of the match-
ing. Observe, that is it not necessary to understand why odd-set covers proving
optimality always exist. It is only required to understand the simple proof of
Theorem 1, showing that equation (1) proves optimality. Also, a correct check-
ing program which controls whether a set of edges is a matching and a node
labelling is an odd-set cover which together satisfy (1) is easy to write.

2 Formal Verification

We repeat the last two sentences of the introduction. It is only required to
understand the simple proof of Theorem 1, showing that equation (1) proves
optimality. Also, a correct program which checks whether a set M of edges is a
matching and a node labelling OSC is an odd-set cover which together satisfy
(1) is easy to write. Such a program would have to verify that M is a subset of
E, that the degree of every vertex with respect to M is at most one, that the
node labelling OSC is an odd-set cover, and that (1) holds.
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If the preceding paragraph holds true, we should be able to substantiate it in
two ways:

1. Turn the proof of Theorem 1 into a formal proof.
2. Prove the correctness of the checking program.

In ongoing work of the first author with Eyad Alkassar, Christine Rizkallah,
and Norbert Schirmer we have done exactly this. We formalized and proved
Theorem 1 using Isabelle [7] and we wrote the checker in Isabelle and C and
proved it correct using Isabelle and VCC [14], respectively. We plan to extend
this work to a large fraction of the certifying algorithms covered in [9].

3 Three-Connectivity of Graphs

An undirected graph is 3-connected if the removal of any two vertices does not
disconnect it. Linear time algorithms for this problem are known [6,10], but none
of them are certifying. The fastest certifying algorithms have quadratic running
time O(n2), see [12,9]. We review the algorithm given in the latter paper.

Certifying that a graph is not 3-connected is simple; it suffices to provide a set
S of vertices, |S| ≤ 2, such that G \S is not connected. The non-certifying algo-
rithms [6,10] above compute such a set if the input is not 3-connected. However,
if the input is 3-connected, the only output returned is “input is 3-connected”.
Gutwenger et. al. [5] implemented the algorithm of [6] and report that it in-
correctly declares some non-3-connected graphs 3-connected. They provide a
correction.

Tutte [13] introduced a certificate for 3-connectedness, a sequence of edge
contractions resulting in the K4, the complete graph on 4 vertices. We call an
edge e of a 3-connected graph G contractible if the contracted graph G/e, (i.e.
the graph obtained by replacing the end-vertices of e by a single vertex neigh-
boring all vertices previously adjacent to one of the endpoints) is 3-connected.
A separating pair is a pair of vertices whose removal disconnects the graph.

Lemma 1. Let e = (x, y) be an edge of a simple graph G whose end-vertices
have a degree of at least 3. If G/e is 3-connected, then G is 3-connected.

Proof. Since contractions cannot connect a disconnected graph, the original
graph G is connected. There are no cut-vertices in G, as they would map to
cut-vertices in G/e.

Any separating pair of G must contain one of the end-vertices of edge e.
Otherwise the pair is also separating in G/e. It cannot contain both x and y,
otherwise the contracted vertex xy is a cut-vertex in G/e. Suffices now to show
that x, u, with u ∈ V (G) \ y is not a separating pair. Suppose otherwise, then
the graph G− {x, u} is disconnected, but the graph G{x, y, u} is not. Thus {y}
is a component of G − {x, u}. But this is a contradiction since y has degree at
least 3 in G.
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To certify the 3-connectivity of a graph G, it thus suffices to provide a sequence
of edges which, when contracted in that order, have endpoints with a degree
of a least 3 and whose contraction results in a K4. We call such a sequence a
Tutte sequence. We now focus on how to find the contraction sequence, given a
3-connected graph.

The O(n2) algorithm needs three ingredients: First we require the O(n2) algo-
rithm by Nagamochi and Ibaraki [11] that finds a sparse spanning 3-connected
subgraph of G with at most 3n− 6 edges. Second we require a linear time algo-
rithm for 2-connectivity. Third we require a structure theorem, that shows how
to determine a small candidate set of edges among which we find a contractible
edge.

Theorem 2 (Krisell [8]). If no edge incident to a vertex v of a 3-connected
graph G is contractible, then v has a least four neighbors of degree 3, which each
are incident with two contractible edges.

Consider now a vertex v of minimal degree in a 3-connected graph. If it has
degree three, it cannot have four neighbors of degree three and hence must have
an incident contractible edge. If it has degree four or more, it cannot have a
neighbor of degree three (because otherwise, its degree would not be minimal)
and hence must have an incident contractible edge. Also note that an edge xy
in a 3-connected graph is contractible, if G − {x, y} is 2-connected.

We explain how to find the first n/2 contractions in time O(n2). By repeating
the procedure we obtain an algorithm that has overall a running time of O(n2).

First use the algorithm by Nagamochi and Ibaraki [11]. The resulting graph
has 3n − 6 edges. Thus while performing the first n/2 contractions, there will
always be a vertex with degree at most 2·2·3 = 12. Choosing a vertex of minimal
degree, we obtain a set of at most 12 candidate edges, one of which must be
contractible. To test whether an edge xy is contractible, we check whether G −
{x, y} is 2-connected with some linear time algorithm for 2-connectivity.

Theorem 3 ([12]). A Tutte sequence for a 3-connected graph can be found in
time O(n2).

It remains a challenge to find a linear time certifying algorithm for 3-connectivity
of graphs. A linear time certifying algorithm for graphs that contain a Hamil-
tonian cycle was recently found [3]; this assumes that the Hamiltonian cycle is
part of the input. It was also shown recently [4] that for any DFS-tree T of a
3-connected graph G, there is a Tutte sequence that contracts only edges in T .
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Computational Geometry for Uncertain Data
(Abstract of Keynote Talk)

Mikhail J. Atallah

Department of Computer Science, Purdue University
mja@cs.purdue.edu

Abstract. The talk will review recent results and algorithmic challenges
for computational geometry problems in the context of uncertain data.
This is an active area of investigation in the database community, and
we introduce it through the specifics of the maximal elements problem
(called the skyline problem in the database community): Rather than
being a point, an uncertain object is a set of points called instances, each
with an associated probability; instances of the same uncertain object can
be geometrically far from each other, and are mutually exclusive (i.e., at
most one of them can occur). For this version of the maximal elements
problem, the input is a collection of m uncertain objects, whose total
number of instances is n, and the problem is to compute for each of
these n instances the probability that it is a maximal point, i.e., that it
occurs for its own object and is not dominated by any occurring instance
from another object.

D.T. Lee, D.Z. Chen, and S. Ying (Eds.): FAW 2010, LNCS 6213, p. 6, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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On Foundations of Services Interoperation  
in Cloud Computing 

Deyi Li1, Haisu Zhang2, Yuchao Liu1,3, and Guishen Chen1 

1 Institute of Electronic System Engineering,  
Beijing, 100141, China 

2 College of Command Automation, PLA University of Science and Technology,  
Nanjing, 210007, China 

3 Department of Computer Science and Technology, Tsinghua University,  
Beijing, 100084, China 

leedeyi@tsinghua.edu.cn, zhanghaisu@139.com,  
yuchao_liu@163.com, cgs@mail.tsinghua.edu.cn  

Detailed Abstract. With a long-run accumulation of IT technologies, cloud 
computing becomes a new revolution after PC revolution in 1980s, the Internet 
revolution in 1990s, and the mobile Internet revolution in 2000s. Cloud 
computing is a paradigm of Internet computing, which takes software as a 
service oriented to a number of users with changing requirements from time to 
time, at the same time, takes the response of a requirement as an up-to-date best 
effort rather than a unique precise one. It is changing the way we share data, 
information and knowledge.  

Services support direct reusing of application programs instead of software 
deployment, and improve usability of resource sharing. Clouds can be regarded 
as an enabler for interoperation of large scale service provisioning. Therefore, 
assembling of software became services aggregation under the mature 
understanding of interoperability.  

Services interoperation may happen between a user (group) and a service, or 
among services. Users or their groups, services or their aggregations are all 
called agents here. The description of interoperability of agents focuses on three 
issues: their role, goal, and combination of services. The role issue characterizes 
the organization, roles, and actors of an agent, and describes the interaction and 
cooperation among them. The goal issue depicts the decomposition of goals and 
determines the constraint relationship among goals. While the two issues 
compose the problem domain, the third issue is related to the solution domain, 
in which process distinguishes atomic processes, and composite processes, and 
defines the input/output together with precondition/effect of processes 
respectively, the service guides the construction of service chains and 
aggregation of resources. Usually, the description in problem domain is 
qualitative, while the specification in solution domain is quantitative.  

When services description faces anywhere-access and massive demands 
from its huge amount of users, described by natural languages with different 
scales, the capabilities of interoperation such as semantic and granular 
computing with uncertainty are essential.  

These capabilities are related to a qualitative and quantitative transform 
model. More than ten years ago, we suggested a cloud model by means of 
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second order normal distribution, to transform between quantitative data and 
qualitative concepts. Approximately speaking, normal distributions with two 
parameters: expectation (Ex) and entropy (En) are universally existent in 
statistics of preferential common requirements, collective interaction behavior 
and services aggregation process, etc. Over the Internet, if the above 
phenomenon are determined by the sum of a quantity of equal and independent 
statistical factors, and if every factor has minor influence, then the phenomenon 
obtain normal distribution approximately. However, there exist many occasions 
in which there are some dependent factors with great influence. The 
precondition of a normal distribution is no longer existed. To solve this 
problem, we propose a new parameter of hyper entropy (He) in order to relieve 
the precondition.  

In cloud model, the overall property of cloud drops can be represented by 
three numerical characters: the expected value Ex, the entropy En, and the 
hyper-entropy He, corresponding to a qualitative concept. Ex is the 
mathematical expectation of the cloud drops of a concept. In other words, the 
cloud drop located at the Ex point is the most representative of the qualitative 
concept. En is the granular measurement of the qualitative concept, which 
connects both the randomness and the fuzziness of the concept. He is the 
uncertainty measurement of the entropy, i.e. the entropy of the entropy, 
showing to what degree a number of cloud drops become a common concept. 
That is to say, if He is greater than En, the concept cannot be formed any 
longer. The uncertainty of the concept can be represented by multiple numerical 
characters. In general, people get used to perform reasoning with the help of 
languages, rather than excessive mathematic calculation. So, it is adequate to 
employ these three numerical characters to reflect common concepts.  

Forward Cloud Generator (FCG) algorithm transforms a qualitative concept 
with Ex, En and He into a number of cloud drops representing the quantitative 
description of the concept. While Reverse Cloud Generator (RCG) algorithm 
transforms a number of cloud drops into three numerical characters (Ex, En, 
He) representing the concept.  

Generally speaking, a cloud generator is used to form a special concept for a 
group of data only. Different groups of data in the whole distribution domain 
may lead to many different concepts by using Gaussian Mixture Model 
(GMM). Any quantitative data will belong to a certain concept. Furthermore, 
fewer qualitative concepts with larger granular can be further extracted by 
Cloud Synthesis Method (CSM). These concepts may be the foundation of the 
ontology construction as semantic interoperation.  

The CSM process is given in this way: choose two clouds with the shortest 
distance on Ex, and merge them into a new cloud if and only if He of the new cloud 
is small than En. The new cloud can be generated by RCG using the data covered by 
the original two clouds. The process ceases until no two clouds can be merged.   

Based on cloud model, GMM and CSM, the gap between qualitative 
description of requirements on the problem domain and quantitative services on 
solution domain can be bridged.  

Usually, the interoperation of services is multi-attributive, such as 
functionality, reliability, usability, efficiency, maintainability and portability 
etc. Functionality includes suitability, accuracy, interoperability and security;  
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Reliability includes maturity, fault tolerance and recoverability; Usability 
includes understandability, learn-ability and operability; Efficiency includes 
time behavior and resource utilization; Maintainability includes analyzability, 
changeability, stability and testability; at last, portability includes adaptability, 
install-ability, coexistence and replace-ability. All of all, service interoperation 
must be comparable to the qualitative requirements on the problem domain 
described by natural languages. At the same time, the service interoperation has 
to search and match a specific service or service aggregation with quantitative 
description from a service pool on the solution domain, as if pick up drops from 
cloud model.  

As an example for understanding the above bridging method, the time 
behavior measurements of a service, which is quantitative on the solution 
domain, are going to be transformed to qualitative concepts on the problem 
domain. The test dataset comes from seekda (http://webservices.seekda.com/). 
Seekda’s Web Services portal provides a search platform for public direct 
access to web services, which can enable users to find web services based on a 
catalogue of more than 28,000 service descriptions. Services listed at seekda 
cover a wide range of functionality in map, weather, sports, shopping and 
entertainment etc., and can be integrated into more capacious services. At 
present seekda verifies if a service is up once a day, and reports a measurement 
of availability by means of the frequency whether the server correctly 
implements the SOAP protocol daily.  

Suppose the frequencies of 536 services returned from seekda for analysis,  
Fig. 1 shows the frequency of availability distribution. Let f(x) be the frequency 
distribution function of the availability. With the help of cloud model and 
GMM, the qualitative concepts forming process is formulated as: 

1

( ) * ( , , )
n

i i i i i
i

f x a C Ex En He
=

→∑
 

 

Fig. 1. Frequency of availability distribution 
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where ai is the magnitude coefficient, and n is the number of discrete 
concepts after transformation. Fig.2(a) shows that 53 clouds Ci (Exi, Eni, Hei) 
(i=1,…,n, n=53) fits the frequency curve, and the fitting error in Fig.2(b) is less 
than the one asked for. For further extraction, CSM is used to extract out 8 
clouds representing concepts with larger granular, as shown in Fig. 3. From 
these results, we can further rank and recommend services via the qualitative 
concepts, such as services with high performance are those covered by the 
cloud whose Ex is about 99% or 100%, and the services with the availability 
below 95% will not be recommend as the ones with high performance.  

      
  

 

Fig. 2. Qualitative concepts described by cloud models 

 

Fig. 3.   Main concepts extracting by CSM (8 clouds) 

For mature understanding of services interoperability, the cloud model, GMM 
and CSM may form a foundation of ontology, and bridge the gap between 
qualitative description of requirements on the problem domain and quantitative 
services on solution domain. For the future work, the long term monitoring of 
services need to maintain the concepts extraction system automatically. 

(a) 53 cloud models fitting the 
distribution by GMM 

(b) fitting error between cloud 
models and distribution 
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Abstract. In this paper, we study pricing models for multi-slot adver-
tisements, where advertisers can bid to place links to their sales webpages
at one or multiple slots on a webpage, called the multi-slot AD auction
problem. We develop and analyze several important mechanisms, includ-
ing the VCG mechanism for multi-slot ads auction, the optimal social
welfare solution, as well as two weighted GSP1-like protocols (mixed and
hybrid). Furthermore, we consider that forward-looking Nash equilibrium
and prove its existence in the weighted GSP-like pricing protocols.

We prove properties and compare revenue of those different pricing
models via analysis and simulation.

Keywords: Sponsored Search, Mechanism Design, multi-slot AD auc-
tion, GSP, Forward-looking Nash Equilibrium.

1 Introduction

Targeted advertising with search results has been the major factor for successful
commercialization of search engines, with billions of dollars in profits[1]. Those
ADs regularly contain a headline, a line of ad copy, and a link to the target
address.[7] They appear wherever Internet users may drift away from the orig-
inal webpage’s subject matter to look at and potentially click on those ADs to
place an order to the commercial goods they desire. Search engines charge the
advertisers according to both their bids and their click through rates (CTR).
The Generalized Second Price (GSP) protocol, first developed by Google and
widely adopted across the industry, has been studied most extensively in the
academic field.

With the boost of internet bandwidth in recent years, rich ADs, that include
images or videos, have become a new possibility in on-line advertisement. With
rich ADs, user can interact with ads and learn more about a product without
having to leave the webpage they are currently on so that the advertising effects
of ADs are clearly better than text ADs.
1 Generalized Second Price Auction.

D.T. Lee, D.Z. Chen, and S. Ying (Eds.): FAW 2010, LNCS 6213, pp. 11–22, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



12 X. Deng et al.

Fig. 1. Result pages with rich ads from Google and Yahoo! respectively

With both Google and Yahoo! it is possible for the advertisers to add videos
and images to their ads. It was reported that click-through rates rises up to 25
percents for rich ads with videos and images.[11] More and more rich ads have
appeared in online advertisements.

Clearly, it is an important research direction to understand pricing models
and mechanisms for rich ads. In this work, we develop a simple model for this
problem, then make an initial step to study various known protocols originated
from the traditional single slot markets, discuss their strength and weakness,
and test their profitability through analysis and simulation. We organize the
presentation as follows. We introduce the multi-slot pricing problem in section
2. In section 3, we discuss several solutions and protocols, including the OPT
solution and the VCG solution, two weighted GSP-like pricing protocols, as
well as the forward-looking Nash equilibrium in the weighted GSP-like protocol.
In section 4, we make a full comparison of expected revenue among mechanisms
including weighted GSP-like, Optimal, VCG and that under the forward-looking
Nash equilibrium via simulation. Finally, we conclude our work in section 5.

2 Rich ADs Auction as a Mechanism Design Problem

In selling an advertising space to all the advertisers(bidders) with single-slot ads
or multi-slot ads, the seller’s input is described in the following parameters:

Input. The input of the algorithm contains a list of bids and a list of slots,
and each bid is characterized by θi(vi, bi, βi, mi) ∈ Θ, where vi is the bidder’s
private value for each click, and mi denotes the number of continuous slots its
advertisement occupies, we assume mi ∈ {1, n} and n ∈ N+. For concreteness,
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let us assume mi ∈ {1, 3}2 in this paper. The seller also assigns a weight βi to
each bid θi, which is often added as a relevance or quality metric of the bidder’s
ad. If one bids bi, her score is denoted by si = bi · βi.

Data Structure and notations

a) T : {θt1 , θt2 , · · · , θtp}: List of all single-slot bids sorted in decreasing order of
si · βi.

b) M : {θm1 , θm2 , · · · , θmq}: List of all multi-slot bids in decreasing order of
si · βi. For simplicity, we assume that mi=3 for all multi-slot bids in this
paper.

c) K : {α1, α2, · · · , αK}: an ordered list of K slots with position factors: α1 >
α2 > · · · > αK ,αk which are the probabilities that a user will click an ad
with βi = 1 on the corresponding slots.

CTRs are assumed to be related to the position factor αk, as what we get from
statistics. Besides, they are also related to the weight βi of the bidder which
occupies the slot. We assume that the CTR of θi(vi, bi, βi, mi) in slots starting
at αk is:

ctrmi
αk

= βi ·
k+mi−1∑

k

αk (1)

3 Pricing Protocols

The advertising market requires a mechanism that takes in bids from the ad-
vertisers, and decides on allocations of ads to slots as well as prices of slots for
assigned bidders to pay.

3.1 The Optimal (OPT) Solution

Firstly, we will introduce an allocation and payment rule which social welfare and
revenue is optimal in this problem. This is the ultimate social optimal solution
when the seller has the complete information all bidders’ private values.

Allocation Rule. In this solution, the K advertising slots are allocated to
bidders in descending orders of their scores. We follow a greedy allocation rule
that from the top slot in K, each step we choose a bid θi with the maximum si

to fill the slot(s). The allocation rule is described as Algorithm 1.

Theorem 1. The allocation in Algorithm 1 guarantees the social welfare to be
the maximum, when all bidders bid truthfully.

Proof. When all bidders bid truthfully, we regard bi as vi for each bidder. For
a single slot αk, if it is a single-slot bid θti which occupies it, the part this
slot contributes to the social welfare is αk · βi · bi; if it is a multi-slot θmj which

2 This corresponds to a commonly used constant in contextual advertising where text
ads occupy one ad slot thus mi = 1, multimedia ads occupy 3 slots thus mi = 3.
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Algorithm 1. OPT Allocation Rule
Data: K{α1, α2, α3 · · · , αk}, T{θt1 , θt2 , · · · , θtq}, M{θm1 , θm2 , · · · θmr}
Result: An ordered list< θ > � of allocation for K slots
begin

for i ← 1 to K do
st ←Max(bj · βj | θj ∈ T ), sm ←Max(bj · βj | θj ∈M)
if i>=k-2 or (i<k-2 and st > sm) then

Insert θt to List �0

Remove θt from T
else

Insert θm to List �0

Remove θm from M
i← i + 2

if at most 2 θt ∈ �0 then
return �0

else

List �′ ← �0

Remove last 3 θt in �′

Insert Max(bj · βj | θj ∈M) to �′

if
∑

�0
vi · βi · αi >

∑
�′ vi · βi · αi then

return �0

else

return �′

end

occupies it, the part that the bid contributes to the social welfare is (αk +αk+1+
αk+2) · βj · bj, and the part the slot contributes to the social welfare could be
regarded as αk ·βj · bj . In this way, all the multi-slot bids in the auction could be
converted to three single-slot bids, and the bidding price of all three single-slot
bids equal to that of the original multi-slot bid.

Assume that after following Algorithm 1 to allocate all the slots, the ordered
queue we get is �{θ1, θ2, · · · , θn}. If the social welfare of it is not the largest among
all possible queues, then we assume that the bid queue which gets the largest social
welfare is �′{θ′1, θ′2, · · · , θ′n}. In � and �′, we have at least a pair of bids, say θi and
θj , that θi ranks higher than θj in �, which indicates bi · βi > bj · βj , but ranks
lower than θj in �′. Formally, �{θ1, · · · , θi, · · · , θj , · · · , θn},�′{θ′1, · · ·
, θj , θ

′
j+1, · · · , θ′i−1, θi, · · · , θ′n} and

∑
�′ bi · ctri >

∑
� bi · ctri.

If we switch θi and θj in �′, we will get a new queue �′′{θ′1, · · · , θi, θ
′
j+1, · · · ,

θ′i−1, θj , · · · , θ′n}. If both θi and θj are multi-slot bids or both are single-slot bids,
then obviously we have:∑

�′′
bi · ctri −

∑
�′

bj · ctrj = (biβi − bjβj)
∑

αi + (bjβj − biβi)
∑

αj

= (biβi − bjβj)(
∑

αi −
∑

αj) > 0
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�′′ bi · ctri >

∑
�′ bj · ctrj , which contradicts the assumption that �′ receives

the maximal social welfare among all possible queues.
If θi and θj are different types of bids, say θj is a single-slot bid while θi is a

multi-slot one. We first convert θi into three single-slot bids θi1, θi2 and θi3. Then,
we could switch θi and θj through a group of switches: θj ⇔ θi3, θi2 ⇔ θi1 ⇔
· · · ⇔ θ′j+1, θi1 ⇔ θ′i−1 ⇔ · · · ⇔ θ′j+1. As we know from the analysis above,
the social welfare increases after each switch, so we still have

∑
�′′ bi · ctri >∑

�′ bj · ctrj , which contradicts the assumption that �′ receives the maximal
social welfare among all possible queues.

Similarly, we could prove that if θi is a multi-slot bid while θj is a single-slot
one,

∑
�′′ bi · ctri is still larger than that of �′, which leads to a contradiction.

Therefore, OPT Mechanism receives the maximal social welfare among all
possible mechanisms.

Pricing Rule. The optimal solution forms a base for mechanism designs for
our problem. Arguably, when the bidders participate in the market repeatedly
for many rounds, there is a possibility that the seller may gradually learn the
true values of the bidders. In such an idea case, we may charge each bidder its
true value of the clicks. In this case we can achieve the optimal revenue for the
seller.

pθi,αk,mi

OPT = bi (2)

3.2 VCG Mechanism

Next, we will introduce another allocation and payment rule which social welfare
is optimal for this problem. It is an instance of VCG auction in the case of multi-
slot ads auction.

Allocation Rule. In the VCG mechanism, the K advertising slots are allocated
to advertisers in descending orders of their scores, which is the same as the OPT
allocation rule.

Pricing Rule. According to the definition of the VCG mechanism, the expected
payment of θi should be calculated using the Clark’s externality payment rule:

Payθi,αk,mi

V CG = Revenue
Θ\θi,K
OPT − Revenue

Θ\θi,K\∑αk+mi−1
αk

OPT (3)

The former term denotes social value the search engine gets when θi is removed
from the auction, the latter term is social value the search engine gets when θi

and its occupied slots are removed from the auction, and hence the difference
between them is the total harm caused by θi.

In our problem, Payθi,αk,mi

V CG should be described as below:

Payθi,αk,mi

V CG =
K∑

Θ\θi

(bj · βj

k+mj−1∑
k=j0

αk) −
K\∑αk+mi−1

αk∑
Θ\θi

(bj · βj

k+mj−1∑
k=j0

αk) (4)
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According to the definition of payment, Payθi,αk,mi

V CG = pθi,αk,mi

V CG ·βi ·
∑k+mi−1

k αk,
therefore, each time a user clicks on θi’s link, the bidder has to pay

pθi,αk,mi

V CG =
Payθi,αk,mi

V CG

βi ·
∑k+mi−1

k αk

(5)

3.3 Mixed GSP Mechanism

GSP is the dominant ads auction mechanism in sponsored search market much
because of the ease of understanding its rules. A natural way to design a GSP-
like mechanism in multi-slot auction is similar to the traditional GSP. We sort
the ads according to their score, which is the product of βi and bi, and allocate
all the slots according to this order.

Allocation Rule. In this mechanism, the K advertising slots are allocated to
bidders in descending orders of their scores si.We follow the OPT allocation rule,
which is a greedy algorithm and guarantees the social welfare maximum. From
the top slot in K, each step we choose a bidder with the maximum si to fill the
slot. The allocation rule is the same as Algorithm 1.

Pricing Rule. In this mechanism we designed, each time a user clicks on a
sponsored link, the corresponding bidder’s account is automatically billed certain
amount of money, according to her βi and si+1 of the advertiser who is just below
her in the ordered queue. If the allocation rule is followed strictly, the price a
bidder pays will be never more than what she bids. The pricing rule can be
described as below:

pθi,αk,mi

MixedGSP =
si+1

βi
=

βi+1

βi
bi+1 (6)

Where bi+1 denotes the bidding price of the bidder who is just below θi. The
payment rule is exactly the same as the standard weighted GSP payment: pi =
βi+1
βi

bi+1.

Theorem 2. Forward Nash equilibrium exists in Mixed GSP mechanism, where
the adjusted bids are:

Fθi(Θ\θi) =

⎧⎨⎩vi −
∑k+mi−1

j=k αj∑k−mi−1+mi−1
j=k−mi−1

αj

[vi − βi+1
βi

bi+1] 2 ≤ i ≤ K

vi i = 1 or i > K

(7)

Proof. When θi(vi, bi, βi, mi) get slot(s) {αk, · · · , αk+m−1}, the utility is defined
as:

uθi
αk

= [vi − p(bi, ak, mi)] × βi

k+mi−1∑
j=k

αj = [vi −
βi+1

βi
bi+1] × βi

k+mi−1∑
j=k

αj (8)
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When the bidder gets slot(s) {αt, · · · , αt+mi−1}, since p(bi, αt, mi) ≤ bi, her
utility in the worst case is:

uθi
αt

= [vi − p(bi, at, mi)] × βi

t+mi−1∑
j=t

αj = [vi − bi] × βi

t+mi−1∑
j=t

αj

∀b−i, ∀t < k, uθi(bi,βi,mi)
ak

≤ uθi(bi,βi,mi)
at

⇔ [vi −
βi+1

βi
bi+1] × βi

k+mi−1∑
j=k

αj ≤ [vi − bi] × βi

t+mi−1∑
j=t

αj

⇔ bi ≤ vi −
∑k+mi−1

j=k αj∑t+mi−1
j=t αj

[vi −
βi+1

βi
bi+1]

Suppose θi(vi, bi, βi, mi) is just below θi−1(vi−1, bi−1, βi−1, mi−1), and since ∀t ≤
k − mi−1,

∑t+mi−1
j=t αj ≥

∑k−mi−1+mi−1
j=k−mi−1

αj

⇔ bi ≤ vi −
∑k+mi−1

j=k αj∑k−mi−1+mi−1
j=k−mi−1

αj

[vi −
βi+1

βi
bi+1]

If the bidder preferred the highest slot, she should bid as high as possible in
this range so that she could still obtain the highest slot after other bidders’
responses. Similarly, as for the losers, she should bid her true value in order to
get some slots after others’ responses. Suppose Oθi(Mθi(Θ\θi), Θ\θi) = k, then
the Forward-looking best response function is defined as equation(7).

3.4 Hybrid GSP Mechanism

The weakness of mixed GSP is that it does not follow the positive correlation of
the bidder’s bidding price and CTR they get, so it does not mix well. Therefore,
we proposed a new GSP-like mechanism, that is, Hybrid GSP Mechanism.

Allocation Rule. In this mechanism, the K advertising slots are allocated to
bidders, according to the descending order of the ratio of bidder’s score si and
the position factor α of its occupied slots, which we denote as unit bid ρθi,k,mi

ρθi,k,mi =
βi · bi∑k+mi−1

j=k αj

(9)

Especially, for a single-slot bidder θti bidding for the k-th slot, ρθti
,k,1 = βti

bti

αk
,

for another multi-slot bidder θmi bidding for the continuous 3 slots following the
k-th slot, ρθmi

,k,3 = βmi
bmi

αk+αk+1+αk+2
.

We follow an allocation rule that from the top slot in K, each time we choose
an ad with the maximum ρθi,k,mi to fill the slots as described in Algorithm 2.
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Algorithm 2. Hybrid GSP Allocation Rule
Data: K{α1, α2, α3 · · · , αk}, T{θt1 , θt2 , · · · , θtq}, M{θm1 , θm2 , · · · θmr}
Result: An ordered list< θ > � of allocation for K slots
begin

for i ← 1 to k do

ρt ←Max( bj ·βj

αi
| θj ∈ T ), ρm ←Max( bj ·βj

αi+αi+1+αi+2
| θj ∈M)

if i>=k-2 or (i <k-2 and ρt > ρm) then
Insert θt to List �0

Remove θt from T
else

Insert θm to List �0

Remove θm from M
i← i + 2

return �0

end

Pricing Rule. In this mechanism we designed, each time a user clicks on a
sponsored link, the corresponding bidder’s account is automatically billed certain
amount of money, according to the product of position factors α of those slots it
occupies and ρθi+1,k,mi+1 of the advertiser who is just below her in the ordered
queue. If the allocation rule is executed strictly, the price a bidder pays will
never be more than what she bids. The pricing rule can be described as below:

pθi,αk,mi

HybridGSP =
ρθi+1,k,mi+1

βi
×

k+mi−1∑
j=k

αj =
βi+1 ·

∑k+mi−1
j=k αj

βi ·
∑k+mi+1−1

j=k αj

bi+1 (10)

Where bi+1 denotes the bidding price of the bidder who is just below θi in the
ordered queue, mi+1 denotes the number of slots that θi+1 needs.

Theorem 3. Forward Nash equilibrium exists in Hybrid GSP mechanism, where
the adjusted bids are:

Fθi(Θ\θi)=

⎧⎨⎩vi −
∑k+mi−1

j=k αj∑k−mi−1+mi−1
j=k−mi−1

αj

[vi −
ρθi+1,k,mi+1

βi
×
∑k+mi−1

j=k αi] 2 ≤ i ≤ K

vi i=1 or i > K
(11)

Proof. When θi(vi, bi, βi, mi) get slot(s) {αk, · · · , αk+mi−1}, the utility is defined
as:

uθi
αk

= [vi − p(bi, αk, mi)] × βi

k+mi−1∑
j=k

αj

= [vi −
ρθi+1,k,mi+1

βi
×

k+mi−1∑
j=k

αi] × βi

k+mi−1∑
j=k

αj (12)
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When the bidder gets slot(s) {αt, · · · , αt+mi−1}, since p(bi, αt, mi) ≤ bi her util-
ity in the worst case is:

uθi
αt

= [vi − p(bi, at, mi)] × βi

t+mi−1∑
j=t

αj = [vi − bi] × βi

t+mi−1∑
j=t

αj

∀b−i, ∀t < k, uθi(bi,βi,mi)
ak

≤ uθi(bi,βi,mi)
at

⇔ [vi −
ρθi+1,k,mi+1

βi
×

k+mi−1∑
j=k

αi] × βi

k+mi−1∑
j=k

αj ≤ [vi − bi] × βi

t+mi−1∑
j=t

αj

⇔ bi ≤ vi −
∑k+mi−1

j=k αj∑t+mi−1
j=t αj

[vi −
ρθi+1,k,mi+1

βi
×

k+mi−1∑
j=k

αi]

Suppose θi(vi, bi, βi, mi) is just below θi−1(vi−1, bi−1, βi−1, mi−1), and since ∀t ≤
k − mi−1,

∑t+mi−1
j=t αj ≥

∑k−mi−1+mi−1
j=k−mi−1

αj

⇔ bi ≤ vi −
∑k+mi−1

j=k αj∑k−mi−1+mi−1
j=k−mi−1

αj

[vi −
ρθi+1,k,mi+1

βi
×

k+mi−1∑
j=k

αi]

If the bidder preferred the highest slot, she should bid as high as possible in
this range so that she could still obtain the highest slot after other bidders’
responses. Similarly, as for the losers, she should bid her true value in order to
get some slots after others’ responses. Suppose Oθi(Mθi(Θ\θi), Θ\θi) = k , then
the Forward-looking best response function is defined as equation(11).

4 Simulations for Revenue Comparison

In order to compare revenues of the mixed ads auction and the equivalent pure
single-slot ads auction, we should find a fair way to convert all multi-slot ads to
single-slot ads. A reasonable way to do it is to keep their ranks the same in both
auctions.

We did a simulation to compare revenues under different mechanisms. The
ads data we used was from two samples of a search engine, including 202 entries
of single-slot ads and 24 entries of multi-slot ads, and we built the α-list from
statistical data. For fair and more universal significance, we set all the ads’
β values equal to 1, which means that the all the GSP-like mechanisms are
non-weighted. The results of expected revenues under different mechanisms or
equilibrium price are as below:

a) Optimal: optimal mechanism
b) VCG: VCG mechanism

For Fig.2:
c) Mixed GSP: mixed GSP mechanism
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Fig. 2. Simulation Results: Mixed GSP with other Mechanisms

d) Forward-Looking: forward-looking Nash equilibrium price under mixed GSP
mechanism. In this simulation, we calculated the bidders forward-looking
Nash equilibrium price from bottom to up in the rank

e) Equivalent: the single-slot GSP mechanism, which the bidders’ rank equiva-
lent to the mixed GSP ranking. The converted multi-slot ad’s bidding price
is what they bid for multi-slot ads.
For Fig.3:

f) Hybrid GSP: hybrid GSP mechanism
g) Forward-Looking: forward-looking Nash equilibrium price under hybrid GSP

mechanism. In this simulation, we caculated the bidders forward-looking
Nash equilibrium price from bottom to up in the rank

h) Equivalent: the single-slot GSP mechanism, which the bidders’ rank equiva-
lent to the hybrid GSP ranking.The converted multi-slot ad’s bidding price
is bi−1 − ε, where bi−1 is the bidding price of the nearest single-slot bid
above it.

For each mechanism, we compared their revenues given different number of avail-
able slots, from 1 to 15.

From the simulation results, we found that the revenue under Mixed GSP and
Hybrid GSP mechanism, are both greater than the revenue of equivalent single-
slot GSP, when the slots quota is greater than 2. The performance of Hybrid
GSP is better since its difference with equivalent single-slot GSP is greater, which
indicates that Hybrid GSP may make more profits with the same slots.
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Fig. 3. Simulation Results: Hybrid GSP with other Mechanisms

5 Conclusions and Future Work

In this paper, we consider about a rich ads auction problem in sponsored search
markets. We first abstracted this problem to a multi-slot ads auction model,
solved it under Optimal mechanism and VCG mechanism, then we proposed two
GSP-like mechanisms, denoted as Mixed GSP and Hybrid GSP respectively, and
proved that forward-looking Nash equilibrium exists in both mechanisms.

Besides, we did a simulation for full comparison of expected revenues among
payment rules including Optimal, VCG, Mixed GSP, its equivalent single-slot
GSP and forward-looking Nash equilibrium price, Hybrid GSP, its equivalent
single-slot GSP and also its forward-looking Nash equilibrium price.

Most importantly, via simulation, both the Mixed GSP mechanism and Hybrid
GSP mechanism were shown to make more profits than their equivalent pure
single-slot GSP mechanism, under the condition that all bidders get the same
rank in all mechanisms.

Future Work. The real world rich ads auction in sponsored search market is
far more complex than the model we built in this paper. For our primary model,
we propose some issues and problems, and discussed below:

• In the present formulation of the rich ads auction problem, we have focused
on the ads in single-slot or fixed number of slots, namely, mi ∈ {1, n}, n ∈
N+, which is a common method used by search engines. However, under
practice, different rich ads may have different sizes, that is, mi ∈ N+. In this
condition, does a polynomial-time algorithm exist, to allocate the ads and
keep the social welfare maximal?
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• In practice, each advertiser usually set a budget. The auctioneer will not
allocate any slot to advertisers whose budgets are exhausted. The budget
constraint gives a new perspective to the rich ads problem.
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Abstract. We consider the task of designing a truthful auction mecha-
nism for CPU time scheduling problem. There are m commodities (time
slots) T = {t1, t2, . . . , tm} for n buyers I = {1, 2, . . . , n}. Each buyer
requires a number of time slots si for its task. The valuation function of
buyer i for a bundle of time slots Ti is vi(Ti) = wi(m− t), where t is the
last time slot in Ti and |Ti| = si. The utility ui of buyer i is vi(Ti)−p(Ti).
It is well-known that Vickrey-Clarke-Groves (VCG) mechanism gives the
incentive to bid truthfully. Although optimal social welfare is computa-
tionally feasible in CPU time scheduling problem, VCG mechanism may
produce low revenue. We design an auction which also maintains the in-
centives for bidders to bid truthfully. In addition, we perform simulations
and observe that our truthful mechanism produces more revenue than
VCG on average.

Keywords: Mechanism Design, Truthful Mechanism, Auctions,
Scheduling.

1 Introduction

Internet market has become an important part of today’s economy, which pro-
duces large amounts of revenue. Information or digital goods in the Internet mar-
ket differ from the traditional market in some key aspects, for example, digital
goods can be re-created at a marginal cost and the supply is unlimited. The pric-
ing mechanism for digital goods also differs from that of classic economics since
supply exceeds demand in the Internet market while supply is sold out in classic
economics. This new economy system demands many theoretical analyses from
which we can develop tools that help us determine the pricing mechanism and
resource allocation. [5] gives an offline competitive auction for selling multiple
digital goods where each bidder has a different private value for each digital good
and bidders are willing to submit their true private values as bids. In mechanism
design, such auction is called truthful auction, or incentive-compatible auction.
[1] extends this concept to an online auction in which bidders are willing to bid
their true valuations for each digital good.

In this work, we study the auction for CPU processing time as a digital good
in the Internet market. CPU time is a crucial resource and has been extensively
� This work was fully supported by a grant from the Research Grants Council of the
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studied in grid computing. Market-oriented methods have been proposed for ef-
ficient allocation of computational resources in [2,9,7]. In most of CPU time al-
location models, CPU time is considered as the same goods that can reduce the
computational complexity. However, in practice bidders in the same market might
have different valuations for different time slots. Furthermore, we assume all bid-
ders are task-oriented, which means the valuations of time slot allocations for bid-
ders depend on the finish time of their jobs. We adopt the model from [4] which
considers each CPU time slot as a different unit. [4] focuses on the Walrasian
equilibrium price and the complexity of computing such price. In this work,
we are interested in incentive-compatible mechanisms for selling CPU time in
the Internet market. Truth-telling is a desirable feature which ensures behav-
ior is predictable in auction. Information about others’ bids is irrelevant in a
truthful auction so that bidders will not be motivated to spend resource on ob-
taining such information. It is well known that Vickrey-Clarke-Groves (VCG)
mechanism [3,6,8] is a truthful auction mechanism which maximizes the social
welfare. Nevertheless, VCG mechanism has many notable weaknesses, for ex-
ample, VCG is computationally infeasible in many problems and the payment
of VCG mechanism could be very low. We first develop a truthful auction for
time slots on single CPU, in which the CPU time slots allocation mechanism
is a greedy function that depends on the valuation from each bidder. We also
discuss the revenue from our auction mechanism and compare it with the rev-
enue of VCG. Finally, we extend the mechanism to selling processing time on
multiple CPUs with an assumption that bidders are only allowed to submit their
valuation parameters untruthfully. We proved that the proposed auction model
is also incentive-compatible in multiple CPU setting. The paper is organized as
follows. The CPU time scheduling problem is described in Section 2. In Section
3, we propose a new auction for selling CPU time on a single CPU. We describe
the pricing and allocation mechanism. In Section 4, we prove that the auction
is incentive-compatible. In Section 5, we analyze the revenue generated from our
auction mechanism. We also perform simulations and compare the revenue be-
tween our mechanism and VCG. In Section 6, we extend our mechanism and
develop an incentive-compatible auction for multiple CPUs. At last, we conclude
our work with discussion on the results and possible future work in Section 7.

2 The CPU Time Scheduling Problem

In the CPU time scheduling problem, there is a CPU time provider and many
bidders in the market. CPU time provider sells CPU time slots to bidders and
each bidder would like to buy different number of CPU time slots that depends
on the requirement of its job. The valuation of each bidder depends on the
time slots it obtains. The CPU time scheduling problem can be formulated as
follows. Assume there are n jobs announced at the time t = 1, the jth job needs
time sj > 0 to complete its task and has weight wj > 0. From these environment
settings, We form an exchange economy: an auctioneer sells m commodities (time
slots) T = {t1, t2, . . . , tm} to n buyers (jobs) I = {1, 2, . . . , n}. The valuation
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function of buyer i for a bundle of time slots Ti is vi(Ti) = wi(m − t), where
t is the largest time-slot item in Ti and |Ti| = si. The utility ui of buyer i is
vi(Ti) − p(Ti).

3 A Truthful Auction for Time Slots on Single CPU

In this section, we present a truthful auction mechanism for pricing time slots
on single CPU with a linear valuation function for each job. As mentioned in
the last section, the valuation function of buyer i for a bundle of time slots Ti is
vi(Ti) = wi(m− t), where t is the largest time-slot item in Ti and |Ti| = si. The
utility ui of buyer i is vi(Ti) − p(Ti). The goal of the truthful auction is to give
each buyer an incentive to submit its true value of w and s.

The truthful auction we propose is as follows:

Rank buyers according to their submitted weight w. Without loss of generality,
assume that w1 ≥ w2 . . . ≥ wn. Assign time slots to buyers according to their
ranks, i.e. buyer 1 takes the first s1 time slots, followed by s2 time slots assigned
to buyer 2 and so on. We denote the time slots allocation as A, Kj(A) = i if and
only if time slot tj is assigned to buyer i, and Bj(A) = {j + 1, j + 2, . . . , m}

If the bundle of time slots assigned to buyer i is

Ti(A) = {tγ , tγ+1, . . . , tη=γ+si−1} (1)

where γi and ηi are the start and finish time of buyer i, respectively. In this case,
the price of the bundle of time slots is

p(Ti(A)) =
∑

j∈Bηi
(A)

wKj(A) (2)

As an example, consider four buyers bidding for 6 time slots t1, t2, . . . , t6. The
time span and weight are {2, 3, 1} and {9, 6, 4}. The time slots s1 and s2 will be
assigned to buyer 1. By Equation 2, the price of the bundle of time slots t1 and t2
is p(T1) = w2s2 + w3s3 = 6 ∗ 3 + 4 ∗ 1 = 22. Applying the same method to buyer
2, the price of the bundle of time slots t3, t4, t5 is p(T2) = w3s3 = 4. Because there
are no more buyers, buyer 3 is charged at price 0 for its time slots t6.

4 Truthfulness of the Auction

In this section, we prove the pricing and allocation mechanism proposed in Sec-
tion 3 is incentive-compatible. From the proof, we show that there is no other
bidding strategies rather than bidding truthfully which could gain more utility.

Definition 1. A mechanism (f, p1, . . . , pn) is called incentive compatible or truth-
ful if for every buyer i, every w1 ∈ W1, . . . , wn ∈ Wn, every s1 ∈ S1, . . . , sn ∈
Sn, and every w

′
i ∈ Wi, s

′
i ∈ Si, if we denote a = f(wi, si, w−i, s−i) and a

′
=

f(w
′
i, s

′
i, w−i, s−i), then vi(a)− pi(wi, si, w−i, s−i) ≥ vi(a

′
)− pi(w

′
i, s

′
i, w−i, s−i),

where Wi, Si is the set of all possible values of wi, si for buyer i, and w−i, s−i is
the bid vector except buyer i.
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Algorithm 1. Auction mechanism for time slots on single CPU
Input: A set of jobs I = {1, 2, . . . , n} with weight w and timespan s

ordered by w
Output: A set of prices for each job

begin
count timeslot = 1 ;
for i = 1 to n do

start timei = count timeslot;
finish timei = count timeslot + si − 1;
count timeslot = count timeslot + si;
for j ← i + 1 to n do

p(Ti) = p(Ti) + wjsj

end

Theorem 1. The auction mechanism in Algorithm 1 is incentive-compatible.

Proof. Fix i, the valuation function vi = wi(m − t), w−i and s−i, we need to
show that the utility when buyer i declares wi and si is not less than the utility
when he declares a fake w

′
i and s

′
i.

If buyer i submits a w
′
i > wi, it will possibly improve the ranking of buyer

i. Suppose the original ranking of buyer i when declaring wi is k, then the new
ranking is k

′
< k by submitting wi

′. Let Q = {ρ, . . . , σ} where the rankings of
users ρ, . . . , σ are from k

′
+1 to k when buyer i submits w

′
i. Therefore, for buyer

i, its completion time improves by
∑

j∈Q sj but it need to pay
∑

j∈Q wjsj more.
Its utility improves by:

vi(a
′
) − pi(w

′
i, s

′
i, w−i, s−i) − (vi(a) − pi(wi, si, w−i, s−i))

=(vi(a
′
) − vi(a)) − (pi(w

′
i, s

′
i, w−i, s−i) − pi(wi, si, w−i, s−i))

=wi

∑
j∈Q

sj −
∑
j∈Q

wjsj

(3)

Because all buyers in Q has an equal or higher w than buyer i, Equation 3 will
produce a non-positive result, which means the utility of buyer i will not increase
if it submits a w

′
i > wi.

In the same way, if buyer i submits a w
′
i < wi, then the new ranking is

k
′′

> k. Let Q
′
= {ρ′

, . . . , σ
′} where the rankings of users ρ

′
, . . . , σ

′
are from k

to k
′′ − 1 when buyer i submits w

′
i. Therefore, for buyer i, its completion time

delays
∑

j∈Q′ sj but it can pay
∑

j∈Q′ wjsj less. Its utility improves by:

vi(a
′
) − pi(w

′
i, s

′
i, w−i, s−i) − (vi(a) − pi(wi, si, w−i, s−i))

=(vi(a
′
) − vi(a)) − (pi(w

′
i, s

′
i, w−i, s−i) − pi(wi, si, w−i, s−i))

= − wi

∑
j∈Q′

sj +
∑
j∈Q′

wjsj

(4)
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Because all buyers in Q
′

has a less or equal value of w than buyer i, Equation
4 will produce a non positive result, which means the utility of buyer i will not
increase if it submits a w

′
i < wi.

It is noted that buyer i cannot improve its utility by submitting a fake s
′
i

whatever buyer i submits a w
′
i ≥ wi or w

′
i ≤ wi. For a fixed wi, if buyer i

submits s
′
i < si, it cannot complete its task because it only obtains s

′
i slots. If

buyer i submits s
′
i > si, buyer i gets more time slots but pays the same price.

However, the utility ui does not increase because buyer i cannot finish its task
earlier.

Theorem 2. Bidding job weight and time span truthfully always gains non-
negative utility.

Proof. Assume that if buyer i submits wi, si, the valuation of buyer i is

vi = wi(m − β) (5)

According to Equation 2, the price that buyer i pays is only dependent on the
buyers having lower weights.

p(Ti) =
∑

j∈Bβ(A)

wKj(A) (6)

Because wi ≥ wKj(A), where j ∈ Bβ(A), the utility ui of buyer i is:

ui = vi − p(Ti) = wi(m − β) −
∑

j∈Bβ(A)

wKj(A) ≥ 0 (7)

5 Revenue Study

After designing a truthful mechanism for pricing time slots on single CPU, it is
worth evaluating how much the revenue seller may earn by our mechanism. This
section presents a comparison on revenue between our mechanism and VCG, a
well-known truthful mechanism.

5.1 Experimental Results

From the formula presented in Section 3, we cannot tell which mechanism can
achieve higher revenue. In order to further investigate the revenue by our truth-
ful mechanism, we perform simulations at different number of bidders when the
parameters (e.g. weight and time span) are normally distributed in a certain
range. First, we choose both weight and time span parameters randomly from
1 to 100. We perform simulation 100 times at each number of bidders when
the number of bidders increases from 2 to 100. In each simulation, we calculate
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Fig. 1. Comparison of number of wins and revenue ratio between our truthful mecha-
nism and VCG when both job weight and time span range from 1 to 100

Fig. 2. Comparison of number of wins and revenue ratio between our truthful mecha-
nism and VCG when job weight ranges from 1 to 100 and time span ranges from 1 to
50
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the revenues from our mechanism and VCG and compare them. We count the
number of times our mechanism generating more revenue than VCG. We also
compute the average revenues of our mechanism and VCG when the number
of bidders are fixed. Figure 1 shows the comparison result and the average
revenue ratio on our mechanism and VCG. Second, we use the same method
to compare our mechanism and VCG when weights are randomly chosen from
1 to 100 and time span ranges from 1 to 50. Figure 2 shows the compari-
son result and the average revenue ratio on our mechanism and VCG in this
setting.

5.2 More Analyses

From the previous section, we find that our mechanism can generate more rev-
enue than VCG when the parameters(e.g. w and s) are normally distributed. In
this subsection we analyze the revenue generated on two special cases. One is
that the valuation wi of each buyer (job) grows with the time-span si it requires,
the other is the valuations of buyers is inversely related to the time-span, i.e. the
valuation wi grows while the required time-span si decreases.

Case 1 {
a) w1 ≤ w2 ≤ w3 ≤ . . . ≤ wn−1 ≤ wn

b) s1 ≤ s2 ≤ s3 ≤ . . . ≤ sn−1 ≤ sn

This scenario often happens when the valuation of job only depends on the times-
pan it needs. In practice, those jobs that need large amount of processing time
most likely produce more value compared to other jobs. In this circumstance,
our mechanism gives time slots according to the bidders’ submitted weight w,
e.g. bidder n gets the first sn slots. Each bidder is charged by Equation 2, and
the total revenue is:

(n − 1)w1s1 + (n − 2)w2s2 + . . . + wn−1sn−1 (8)

While VCG mechanism allocates time slots in a socially optimal manner, e.g.
bidder n with largest w/s obtains the first tn slots. VCG mechanism charges each
individual bidder the harm it causes to other bidders, e.g. bidder n is charged
at price sn(w1 + w2 + . . . + wn−1). There are different subcases in this scenario
for the VCG mechanism. We study two special subcases.

The first subcase is w1/s1 ≤ w2/s2 ≤ w3/s3 ≤ . . . ≤ wn−1/sn−1 ≤ wn/sn. In
this subcase, the total revenue VCG mechanism generates is:

sn(w1 + w2 + . . . + wn−1) + sn−1(w1 + w2 + . . . + wn−2) + . . . + s2w1 (9)

We can show that the revenue from VCG mechanism is equal to or greater
than our truthful mechanism. It can be proved from Equation 8 - Equation
9:
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(n − 1)w1s1 + (n − 2)w2s2 + . . . + wn−1sn−1

− (s2 + s3 + . . . + sn)w1 − (s3 + . . . + sn)w2 − . . . − sn−1wn

=((n − 1)s1 − s2 − s3 − . . . − sn)w1 + ((n − 2)s2 − s3 − . . . − sn)w2+
. . . + (sn−1 − sn)wn−1

≤0

Another subcase is that w1/s1 ≥ w2/s2 ≥ w3/s3 ≥ . . . ≥ wn−1/sn−1 ≥ wn/sn.
In this subcase, the total revenue VCG mechanism generates is:

s1(w2 + w3 + . . . + wn) + s2(w3 + w4 + . . . + wn) + . . . + sn−1wn (10)

The revenue comparison result is the same as subcase 1. It is because:

(n − 1)w1s1 + (n − 2)w2s2 + . . . + wn−1sn−1

− (w2 + w3 + . . . + wn)s1 − (w3 + w4 + . . . + wn)s2 − . . . − sn−1wn

=((n − 1)w1 − w2 − w3 − . . . − wn)s1 + ((n − 2)w2 − w3 − . . . − wn)s2+
. . . + (wn−1 − wn)sn−1

≤0

Case 2 {
a) w1 ≤ w2 ≤ w3 ≤ . . . ≤ wn−1 ≤ wn

b) s1 ≥ s2 ≥ s3 ≥ . . . ≥ sn−1 ≥ sn

This scenario often happens in the market when urgent jobs with high values
and short timespans come into the market, while a number of jobs are being
scheduled. For example, there are a lot of services that need a large amount of
CPU time to process, but some customer-oriented services need to be attended
promptly. This situation creates a problem of how to schedule this urgent job
and how much it pays. In this case, we analyze the revenue when jobs in the
market follow this pattern. Both our truthful mechanism and VCG mechanism
produce the same time slots allocation and revenue formula as the first subcase
in Case 1. However, the revenue from our truthful mechanism is equal to or
greater than that from VCG mechanism. It is because time-span relationship
differs from that in Case 1. The proof is as follows:

(n − 1)w1s1 + (n − 2)w2s2 + . . . + wn−1sn−1

− (w1 + w2 + . . . + wn−1)sn − (w1 + w2 + . . . + wn−2)sn−1 − . . . − w1s2

=(n − 1)w1s1 + (n − 2)w2s2 + . . . + wn−1sn−1

− w1(s2+s3 + . . .+sn−1+sn)−w2(s3 + s4 + . . . + sn−1 + sn) − . . . − wn−1sn

=((n − 1)s1 − s2 − s3 − . . . − sn)w1 + ((n − 2)s2 − s3 − . . . − sn)w2+
. . . + (sn−1 − sn)wn−1

≥0
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6 A Truthful Auction for Time Slots on Multiple CPUs

In this section, we extend our previous result to multiple CPUs setting. We
propose a mechanism for pricing time slots on multiple CPUs, and prove that
the mechanism is also incentive compatible when bidders are only allowed to
submit a fake weight. The problem is formulated as follows: There are k CPUs,
and an auctioneer sells m commodities (time slots) T = {t1, t2, . . . , tm} on each
CPU to n buyers (jobs) I = {1, 2, . . . , n}. Therefore, the total number of time
slots is km. Let Tpq be the pth time slot on CPU q. Each buyer i needs time si

to complete its task and has weight wi > 0. The valuation function of buyer i
for a bundle of time slots Ti is vi(Ti) = wi(m− t), where t is the latest time-slot
item in Ti. The utility ui of buyer i is vi(Ti)− p(Ti). The goal of the mechanism
is to give buyers an incentive to report its true value of w and s as a bid.

The solution to this problem is inherited from the idea on single CPU. The
buyers are ordered by their submitted weights w. Without loss of generality, as-
sume that w1 ≥ w2 . . . ≥ wn. Assign time slots on different CPUs to buyers ac-
cording to the rank of their weights. We denote the time slot allocation as A and
the bundle of time slots assigned to buyer i as Ti(A) = {tpq, tp(q+1), ...tpk, ...tp′k′ }
where |Ti(A)| = si, and p, p

′
are the start and finish time of buyer i. Let Bi(A)

be the time slots after the finish time of buyer i, i.e. Bi(A) = {p′
+ 1, . . . , m}.

We also define Mi(A) as the job index with maximum weight assigned to the ith

time slots among all CPUs. The price of the bundle of time slots Ti(A) is

p(Ti(A)) =
∑

j∈Bi(A)

wMj(A) (11)

If the context is clear, we will omit A in equations. Suppose that there are 3
CPUs and 4 buyers, the time spans and weights are {2, 4, 5, 1} and {9, 6, 4, 5}.
In this example, buyer 1 is assigned to the first time slot of CPU 1 and 2; buyer
2 is assigned to the first time slot of CPU 3 and the second time slot of CPU
1, 2 and 3; buyer 3 is assigned to the third time slot of CPU 1, 2 and 3 and
the fourth time slot of CPU 1 and 2; finally, buyer 4 is assigned to the fourth
time slot of CPU 3. The intuition behind Equation 11 is that the price of the
bundle of time slots for each buyer is dependent on the maximum weight buyer
on every time slot among all CPUs after its finish time. In this example, buyer
1 pays p(T1) =

∑
j∈Bi

wMj = w2 + w3 + w3 = 14. Applying the same method,
the payments of buyer 2, 3 and 4 are 8, 0 and 0.

Theorem 3. The auction mechanism in Algorithm 2 is incentive-compatible.

Proof. Fix a buyer i, the valuation function vi = wi(m − t), w−i and s−i, we
show that the utility ui when buyer i declares wi is not less than the utility u

′
i

when buyer i declares a fake w
′
i. In this proof, we do not take buyers declaring

a fake s
′
into consideration. It is because that buyer i cannot complete its task

if s
′
i < si. If buyer i submits s

′
i > si, in practice, the auctioneer is able to check
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whether each bidder submit its s truthfully or not from the process state or log
file of the CPU. Therefore, the auctioneer can inflict penalty on buyer i in that
case.

Algorithm 2. Auction mechanism for time-slot on multiple CPUs
Input: A set of jobs I = {1, 2, . . . , n} with weight w and timespan s ordered by

w, A set of time slots T = {t11, t12, . . . , t1k, t21, . . . , tpk} on k CPUs
Output: A set of allocation T and a set of prices P

begin
timeslot = 1 ;
cpu = 1 ;
for k← 1 to n do

for j ← 1 to sk do
Tk ← Tk ∪ ttimeslot,cpu;
finish timek = timeslot;
if cpu = 1 then

Mtimeslot = k ;
cpu← cpu + 1;
if cpu > k then

cpu = 1 ;
timeslot = timeslot + 1 ;

for k← 1 to n do
for j ← finish timek + 1 to p do

p(Tk) = p(Tk) + wMj ;

end

If buyer i bids w
′
i > wi, it will increase the ranking of buyer i. Because of the

multiple CPUs, the increase on the ranking might not advance the finish time of
buyer i. It is because buyer i might finish its job on different CPUs at the same
time as when it bids the true value. In this case, the price and valuation of buyer
i remain unchanged. Otherwise, even buyer i will finish its job earlier, it will not
improve the utility of buyer i. Suppose that the finish time is β when buyer i
bids truthfully and β

′
if buyer submits w

′
i. The valuation of buyer i improves

wi(β−β
′
). Nonetheless, buyer i need to pay

∑
j∈{β′+1,...,β} wMj more. Hence,its

utility improves by:

vi(T
′
i ) − pi(w

′
i, s

′
i, w−i, s−i) − (vi(Ti) − pi(wi, si, w−i, s−i))

=vi(T
′
i ) − vi(Ti) − (pi(w

′
i, s

′
i, w−i, s−i) − pi(wi, si, w−i, s−i))

=wi(β − β
′
) −

∑
j∈{β′+1,...,β}

wMj

(12)

Because all buyers are scheduled by their submitted w, when buyer i reports a
fake w

′
i > wi, all jobs scheduled between β

′
+1 and β have a w ≥ wi. Therefore,

Equation 12 always produces a non-positive result.
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On the other hand, if buyer i reports w
′
i < wi, it will lower the ranking of

buyer i. The loss of ranking might not postpone the finish time of buyer i. In
this case, the price and valuation of buyer i remain the same. If buyer i could
accomplish its job at a time β

′
> β and pays less, it still will not improve

the utility of buyer i. Reporting w
′
i instead of wi, the valuation of buyer i drops

wi(β
′−β) and buyer i pays

∑
j∈{β+1,...,β′} wMj less. However, its utility improves

by:

vi(T
′
i ) − pi(w

′
i, s

′
i, w−i, s−i) − (vi(Ti) − pi(wi, si, w−i, s−i))

=vi(T
′
i ) − vi(Ti) − (pi(w

′
i, s

′
i, w−i, s−i) − pi(wi, si, w−i, s−i))

= − wi(β
′
− β) +

∑
j∈{β+1,...,β′}

wMj

(13)

Because all buyers scheduled in time slots {β + 1, . . . , β
′} have weight w ≤ wi,

Equation 13 will have a non-positive result, which means bidding a fake value
w

′
will not improve buyer i’s utility.

7 Conclusion and Discussion

In this paper, we present an incentive-compatible auction for selling processing
time slots on single CPU. With the similar technique, we propose an auction for
selling processing time slots on multiple CPUs where bidders are also willing to
submit their true private values as bids. We believe our auction mechanism can
generate more profit than the VCG mechanism on average. This study helps us
to explore the possible truthful auction design when the CPU processing time
slots is the commodity in the market. As cloud computing becomes a trend
of future Internet computing, sharing or allocation of resource and computing
power will be an important issue. The resource or computing power provider
will not be exclusive in that market since each participant will play both roles
of provider and buyer. The complexity of that market increases which leaves
a question that how to design an incentive-compatible mechanism. We believe
that it is a possible extension of our current work.
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Abstract. In this paper, we consider the rank aggregation problem for
information retrieval over Web making use of a kind of metric, the co-
herence, which considers both the normalized Kendall-τ distance and
the size of overlap between two partial rankings. In general, the top-d
coherence aggregation problem is defined as: given collection of partial
rankings Π = {τ1, τ2, · · · , τK}, how to find a final ranking π with specific
length d, which maximizes the total coherence Φ(π,Π) =

∑K
i=1 Φ(π, τi).

The corresponding complexity and algorithmic issues are discussed in
this paper. Our main technical contribution is a polynomial time ap-
proximation scheme (PTAS) for a restricted top-d coherence aggregation
problem.

Keywords: Rank aggregation, Kendall-τ distance, coherence, NP-hard,
approximate algorithm, PTAS.

1 Introduction

Meta-search engines are developed to overcome the shortcoming of single search
engine and try to benefit from cooperate decision by combining the results of
multiple independent search engines, that make use of different models and con-
figurations. In this work, we focus on meta-search problem in which only rank-
ing lists are provided by source search engines. This can be modeled by social
choice theory that concentrates on how to aggregate individual’s preferences into
group’s rational preferences. We can view the source search engines as voters,
and all ranked documents as alternatives (candidates), then meta-search prob-
lem is actually to find a social choice function to obtain group’s preferences on
these documents (alternatives). Comparing with traditional voting problem, the
rank aggregation problem on the web has some distinct features. Firstly, the
number of voters is much less than the number of alternatives. Secondly, each
search engine ranks a different set of web pages, determined by the different cov-
erage of web search engines and various ranking algorithms adopted. A common
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case is that search engines only list the top d results, called top-d rankings, with
respect to a query, and the other pages not listed can be assumed to be ranked
below the top d results by the search engine.

The rank aggregation problem is to combine a profile of different rank order-
ings on a set of alternatives, in order to obtain a ‘better’ ranking. The notion of
‘better’ depends on what objective we strive to optimize. Dwork, et al.[5], made
use of Kendall-τ distance as a criterion for meta-search on the web: Given a col-
lection of partial rankings τ1, · · · , τk of alternative web pages, they want to find a
final ranking π of web pages, which minimize the sum of the Kendall-τ distance
between π and τi (i = 1, · · · , k). The Kendall-τ distance between two ranking
lists is the total number of pairs of alternatives that are assigned to different
relative orders in the two ranking lists. In view of the shortage of the Kendall-τ
distance for partial ranking lists with small size of overlap, Chin, et al.[4], pro-
posed a new metric, coherence, considering both Kendall-τ distance and size of
overlap of the partial ranking lists for an alternative measure for partial ranking
aggregation. Under the metric of coherence, the goal of the rank aggregation is
to maximize the sum of the coherence between π and τi (i = 1, · · · , k).

As described in [6,7,8,10] and other studies, people seldom go beyond top
several pages of the result listed by a search engine, which means the alternative
web pages at the top of any ranking are the most important to the users. There-
fore, we concentrate our study on coherence aggregation problem of providing
a partial ranking with the most important alternatives, top-d rankings (top-d
CAP): For a given collection of partial rankings τ1, · · · , τk (they may have differ-
ent lengthes), we are interested in finding a final ranking π of specified length d
such that the sum of coherence between the given rankings and the final ranking
is maximum.

In this paper, we focus on the complexity and algorithmic issues for the top-
d CAP. The main technical contribution is a polynomial time approximation
scheme (PTAS) for top-d CAP under some reasonable restriction. Our approach
is motivated by a unified framework of exhaustive sampling and transforming
polynomial constrains into linear constrains for designing PTASs for polynomial
integer programs with ‘smooth’ coeficients in [1,2]. In general, the coherence ag-
gregation problems do not satisfy the ’smoothness’ condition on the coefficients
required in Arora’s unified approach. Using an extended exhaustively sampling
method, Chin, et. al.[4], obtained a PTAS for CAP with the final ranking being
complete ranking. For the top-d CAP, however, the corresponding integer pro-
gramming formulation has non-constant coefficients in the objective function.
We further extend Arora’s general methodology and provide a new insight into
design of PTAS.

The structure of the paper is as follows. In section 2, we introduce the def-
initions and discuss the computational complexity of top-d CAP. Section 3 is
dedicated to a simple heuristic algorithm with performance ratio 2. In Section 4,
a polynomial time approximation scheme (PTAS) for top-d CAP is presented.
In Section 5, we conclude with remarks and further discussions.
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2 Definitions and Complexity

The formal definitions of coherence aggregation are as follows.
Given a set of alternatives N = {1, 2, · · · , n}, a ranking π with respect to N

is a permutation of some elements of N which represents a voter’s or a judge’s
preference on these alternatives. For a ranking π, let Nπ denote the set of el-
ements presented in π, |π| = |Nπ| denote the number of elements in π, or the
length of π. For each i ∈ Nπ, π(i) denote the position of the element i in π,
and for any two elements i, j ∈ Nπ, π(i) < π(j) implies that i is ranked higher
than j by π. If π orders all the elements in N , it is called a complete ranking;
otherwise, a partial ranking.

Given two partial rankings π and τ , denote by n[π, τ ] = |Nπ ∩Nτ | the size of
their overlap, i.e., the number of elements in both π and τ .

Definition 1. For two partial rankings τ and σ with n[τ, σ] ≥ 2, the Kendall-τ
distance between π and σ is defined as D(τ, σ) = |{(i, j) : τ(i) < τ(j), but σ(i) >
σ(j), ∀i, j ∈ Nπ ∩ Nσ}|. The coherence of τ and σ is defined as

Φ(τ, σ) = n[τ, σ]

⎛⎜⎜⎝1 − D(τ, σ)( n[τ, σ]
2

)
⎞⎟⎟⎠ .

When n[τ, σ] ≤ 1, we define the coherence Φ(τ, σ) = 0.

Definition 2. For a collection of partial rankings Π = (τ1, τ2, · · · , τK) and a
certain (partial) ranking π with respect to N = Nτ1∪· · ·∪NτK , the total coherence
between π and Π = (τ1, τ2, · · · , τK) is

Φ(π; Π) =
K∑

s=1

Φ(π, τs) =
K∑

s=1

n[π, τs]

⎛⎝1 − D(π, τs)(
n[π, τs]

2

)
⎞⎠ .

The coherence aggregation problem (CAP) is to find a (partial) ranking of spec-
ified length L (L ≤ n) with respect to N = Nτ1 ∪ · · · ∪NτK , which maximizes the
total coherence Φ(π, Π) over all rankings π of length L. Especially, when all the
rankings concerned are top-d rankings, the problem is called top-d CAP.

When the profile Π is clear from the context we will denote Φ(π, Π) by Φ(π).
We note that the coherence aggregation problem is equivalent to Kemeny aggre-
gation problem in a weighted version, where the weight of each given ranking is
determined by the overlap with the final ranking.

There are many results on the complexity of rank aggregation problems.
Bartholdi, et al.[3], proved that the Kemeny aggregation problem is NP-hard
for an unbounded number of complete rankings. Their proof can also derive the
proof of NP-hardness for CAP for an unbounded number of partial rankings with
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unbounded length. On the other hand, Dwork, et al.[5], discussed the hardness
in the setting of interest in meta-search: many alternatives and very few voters.
They showed that computing a Kemeny optimal ranking for a collection of given
rankings Π = (τ1, τ2, · · · , τm) is still NP-hard for any fixed even m ≥ 4. Their
result derives directly the NP-hardness of the CAP for all integer m ≥ 4, since
odd number of partial rankings can be obtained from even number of complete
rankings by splitting one complete ranking into two partial rankings.

Theorem 1. The CAP and top-d CAP for a collection of K partial rankings,
for integer K ≥ 4, are all NP-hard.

3 Heuristic Algorithm

In this section, we discuss a practice heuristic algorithm for top-d CAP. Given
a profile of rankings Π = (τ1, τ2, · · · , τm). Obviously, for any subset S ⊂ Nτ1 ∪
· · · ∪ Nτm = N of size |S| = d, the problem of finding a ranking on S maxi-
mizing the total coherence is equivalent to complete CAP on the profile ΠS =
(τ1|S , · · · , τm|S), where τi|S (i = 1, 2, · · · , m) is the restriction of ranking τi on S.
For any ranking σ and its reverse σr on S, we have Φ(σ)+Φ(σr) =

∑m
l=1 |Nτl

∩S|.
It implies that the optimal coherence value of the top-d CAP is no less than
1
2 max|S|=d

∑m
l=1 |Nτl

∩ S|. Thus, a simple 2-approximation algorithm can be
obtained as follows.

Heuristic Algorithm
Step 1. Defining the degree d(i) of element i ∈ N as d(i) = |{l : i ∈ Nτl

, ∀l =
1, 2, · · · , m}|, and choosing d elements with the largest degrees. This derives
a subset S∗ ⊂ N which maximizes

∑m
l=1 |Nτl

∩ S| over all subsets of size d.
Step 2. Giving any ranking σ and its reversal σr on the subset S∗ obtained

in Step 1, and choosing one of them with the larger coherence value as the
approximate solution of the problem.

Remark 1. When S∗ is specified, we can construct a better ranking on S∗ using
the heuristic algorithm presented in [4].

4 Polynomial Time Approximation Scheme

In this section, we mainly discuss the following restricted top-d CAP: For a
collection of partial rankings τ1, τ2, · · · , τK of the same length d, where K is an
integer indifference of d, the objective is to find a final partial ranking π of length
d defined on N = Nτ1 ∪ · · · ∪ Nτm = {1, 2, · · · , n}, such that π maximizes the
total coherence Φ(π) =

∑m
i=1 Φ(π, τi) under the constraints |Nπ ∩ Nτi | ≥ αd

(∀i = 1, 2, · · · , m) for given 0 < α < 1. These constrains imply that the final
ranking must include sufficient information in every given partial ranking.
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Arora, et al.[1,2], presented a unified approach, exhaustive sampling and
transforming polynomial constraints into linear constraints, for developing into
approximation algorithms for polynomial integer programs with ‘smooth’ coe-
ficients. They designed PTASs for some ‘smooth’ dense subcases of many well
known NP-hard arrangement problems, including minimum linear arrangement,
d-dimensional arrangement, betweenness, maximum acyclic subgraph, etc. Their
technique underlines our PTAS for restricted top-d CAP. We further exploit
Arora’s technique of exhaustive sampling, and it enables us to estimate the non-
constant coefficients of the objective function and to transform the quadratic
program into a linear program simultaneously. For briefness, we omit the proofs
of the lemmas in this section.

For any ranking π of length d and its reversal πr with respect to subset T ⊆ N ,
Φ(π) + Φ(πr) =

∑m
i=1 |T ∩ Nτi| ≥ d, so the optimal value of the top-d CAP is

no less than d/2. Therefore to obtain an optimal ranking with at least the value
(1− γ) times the optimum, where γ > 0 is arbitrary, it suffices to find a ranking
whose value is within an additional factor of εd from the optimal value of the
optimal partial ranking for a suitable ε > 0.

Let ε be a given small positive, and t = c/ε for some suitable large constant
c > 0. Here we assume for simplicity that d is a multiple of t. Construct t + 1
sequential groups I0, I1, · · · , It. A placement is a mapping g : N → {0, 1, · · · , t}
from the set N to the set of groups I0, I1, · · · , It. It is proper if it maps n − d
elements to I0 and maps d/t elements of N to each group Ij (j = 1, · · · , t). Given
a placement g : N → {0, 1, · · · , t}, denote

ng
i = |{j ∈ N : g(j) > 0}|,

ωg
i =

{
2/(ng

i − 1) ng
i > 1

0 ng
i ≤ 1 i = 1, 2, · · · , m.

The value of a placement g, denoted by φ(g), is defined as

φ(g) =
m∑

s=1

ωg
s |{(i, j) : τs(i) < τs(j) and 0 < g(i) < g(j)}|.

Note that every partial ranking of length d induces a proper placement, in which
the elements not ranked are placed in the group I0. Our placement problem is
defined as: For a collection of partial ranking τ1, τ2, · · · , τm with the same length
d, we are to find a proper placement g which maximize the value φ(g) under the
constrains ng

i ≥ αd (∀i = 1, 2, · · · , n). The following result gives the relationship
between approximate optimal solutions of CAP and placement problem.

Lemma 1. Let π∗ be an optimal partial ranking, g∗ be its induced placement. If
g is the placement induced by a partial ranking π such that φ(g) ≥ φ(g∗) − ε′d,
then

Φ(π) ≥ Φ(π∗) − εd,

where ε′ = (1 − 3m/c)ε for given ε > 0.
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Therefore, finding an approximate optimal solution to the restricted top-d CAP
can be reduced to the problem of finding a proper placement within an additive
factor of ε′d from the corresponding optimal placement. The placement problem
can be formulated as a quasi-quadratic arrangement programming:

Max
m∑

s=1

∑
ikjl

cs
ikjlxikxjl

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
i=1 xi0 = n − d∑n
i=1 xik = n/t k = 1, 2, · · · , t∑t
k=0 xik = 1 i = 1, 2, · · · , n∑

i∈Nτs

∑
k>0

xik ≥ αd s = 1, 2, · · · , m

xik = 0, 1 i = 1, 2, · · · , n; k = 1, 2, · · · , t

Here the coefficients cs
ikjl ’s are not constants, they are determined by the values

of variables xik’s. For a feasible solution x to this problem, which corresponds
to a placement g, the coefficients in the objective function are:

cs
ikjl =

{
ωg

s if τs(i) < τs(j) and 0 < k < l
0 otherwise

Let g∗ be the optimal placement, and denote

ês
ik =

∑
jl ĉs

ikjl g∗jl = ωg∗
s |{j ∈ Nτs : τs(i) < τs(j),

g∗(j) > k > 0}| = ωg∗
s f̂s

ik.

We use the unified framework of exhaustively sampling presented in [1,2] to es-
timate ωg∗

s and f̂s
ik simultaneously. However, since the size of the overlap of each

given partial ranking and the final ranking may be quite different, the coefficients
do not satisfy the ‘smoothness’ condition required in Arora’s framework. Thus,
we extend Arora’s method by making random sampling independently for each
partial ranking and estimating the coefficients related τ1, τ2, · · · , τm separately.

Our procedure of exhaustively sampling is as follows. We randomly pick with
replacement a multi-set Ts of O(log d/δ2) elements (where δ is a sufficiently small
fraction of ε′ which we will determine later) from the set Nτs (s = 1, · · · , m)
respectively, and thus we choose randomly a multi-set T = T1 ∪ · · · ∪ Tm of size
|T | = O(log d).

Especially, since the final ranking should satisfy the constraints |Nπ ∩Nτi | ≥
αd (∀i = 1, 2, · · · , m), we need only enumerate all possible function h : T →
{0, 1, · · · , t}, which satisfies that

∀s = 1, 2, · · · , m : |{i ∈ Ts : h(i) > 0}| ≥ (α − δ)|Ts|.

For each such function, we solve a linear program Mh described below, and
round the (fractional) optimal solution to construct a proper placement if its
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feasible solution set is not empty. Among all these placements, we pick up one
with maximum value. When the function h we considered is the same as h∗

which is the restriction of an optimal placement g∗ on T , the placement g we
get from the linear program Mh will satisfy

φ(g) ≥ φ(g∗) − ε′n

with high probability, over the random choice of T .
Let g be an arbitrary placement, and h be the restriction of g on T . For

simplicity, we will identify h with its restrictions on Ts’s (s = 1, 2, · · · , m) in the
rest of this section. Making use of the placement of the sampled elements, we
estimate ωg

s and f̂s
ik for each partial ranking τs using �s and fs

ik:

ρs =
d

|Ts|
|{j ∈ Ts : h(j) > 0}|;

�s =
2

ρs − 1
;

fs
ik =

d

|Ts|
|{j ∈ Ts : τs(i) < τs(j) and h(j) > k > 0}|.

Lemma 2. Pick uniformly at random with replacement a multi-set Ts of
O(log d/δ2) elements from Nτs. Let g be a placement, and h be the restrictions
of g on Ts. Then with high probability (over the choice of sample Ts), we have

(1) |ρs − ng
s | ≤ δd and |�s − ωg

s | ≤ αδ/d, where α is a positive constants;
(2) |fs

ik − f̂s
ik| ≤ δd.

Consider the following linear program Mh:

Max Z(x) =
m∑

s=1

(
∑

i∈Nτs

t∑
k=1

�sf
s
ikxik)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
i=1 xi0 = n − d∑n
i=1 xik = d/t k = 1, 2, · · · , t∑t
k=0 xik = 1 i = 1, 2, · · · , n∑
i∈Nτs

∑
k>0 xik ≥ αd s = 1, 2, · · · , m

|
∑

i∈Nτs

∑
k>0 xik − ρs| ≤ δd s = 1, 2, · · · , m∣∣∣∣∣∣

∑
j:τs(i)<τs(j)

∑
l>k>0

xjl − fs
ik

∣∣∣∣∣∣ ≤ δd
s = 1, 2, · · · , m; i ∈ Nτs ;
k = 1, 2, · · · , t

0 ≤ xik ≤ 1 i = 1, 2, · · · , n; k = 1, 2, · · · , t

We solve Mh for every possible assignment h. Let xh be the optimal (frac-
tional) solution for Mh. We round xh

ik using randomized rounding techniques of
Raghavan and Thompson [9] to obtain a placement r̃ and corresponding proper
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placement rh as follows: (1) for each element i, independently take r̃(i) = k with
probability xh

ik; (2) construct a proper placement rh from r̃ by moving elements
from groups with more than n/t elements (n − d elements for I0)assigned to
them to groups with less than n/t elements (n − d elements for I0) assigned to
them arbitrarily.

Let h∗ be the restriction of the optimal placement g∗ to the sample subset T .
Let r∗ be the proper placement which we constructed by rounding the optimal
solution x∗ of Mh∗ . The following lemma gives the relation between the optimal
value of the linear programming Z(x∗) and the value of corresponding proper
placement φ(r∗).

Lemma 3. Let r∗ be the proper placement constructed from the optimal (frac-
tional) solution x∗ of Mh∗ , where h∗ is the restriction of an optimal placement
g∗ to T . Then there is a constant β > 0 such that with high probability

φ(r∗) ≥ Z(x∗) − βδd.

Following from Lemma 2, we have with high probability that g∗ is a feasible
solution to Mh∗ . Hence

Z(x∗) ≥ Z(g∗) =
m∑

s=1

∑
i∈Nτs

t∑
k=1

�sf
s
ikg∗ik

≥
m∑

s=1

∑
i∈Nτs

t∑
k=1

ωg∗
s fs

ikg∗ik −
m∑

s=1

∑
i∈Nτs

t∑
k=1

|�s − ωg∗
s |fs

ikg∗ik

≥ φ(g∗) − β′δd,

where the coefficient β′ > 0 is a constant. By choosing δ = ε′/(β + β′) and also
by Lemma 3, we have

φ(r∗) ≥ Z(x∗) − βδd ≥ φ(g∗) − (β + β′)δd ≥ φ(g∗) − ε′d.

On the other hand, in the linear program Mh, it is demanded that∑
i∈Nτs

∑
k>0

xik ≥ αd.

So with high probability, the placement rh we constructed satisfies

nrh

s ≥ αd − O(
√

d log d) = (α − o(1))d.

Since r∗ is a candidate for our chosen placement rh, and we choose the placement
with maximum value which is no less than the value of r∗, therefore, we obtain
the desired result.

Theorem 2. There is a randomized polynomial time algorithm (PTAS) that
approximately solves the restricted top-d CAP in the following sense. Suppose
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the partial ranking π∗ is an optimal solution of the restricted top-d CAP. Then
for any fixed ε > 0, in time dO(1/ε2) the algorithm finds a partial ranking π of
length d satisfying the constraints |Nπ ∩ Nτi | ≥ (α − o(1))d (∀i = 1, 2, · · · , m)
and

Φ(π) ≥ Φ(π∗) − εd.

5 Conclusion and Further Work

Considering the distinct features in the context of meta-search on the web, we
have developed a new rank aggregation method based on the criterion of Coher-
ence. The practical heuristic algorithm with performance ratio 2 proposed for the
top-d CAP is also suitable for the general coherence aggregation problems. We
also presented a PTAS for the restricted top-d CAP. Our algorithm extends the
general technique of Arora, et al.[1,2], for approximating ‘smooth’ polynomial
integer programs to more complicated quasi-quadratic programs, in which the
coefficients of objective function are not constants. However, the exhaustive ran-
dom sampling technique that underlies our algorithm no longer suffices for the
general CAP without the restricted condition, since the additive approximation
of the coefficients in the objective function is not good enough in general case.
This needs some other approximation method to solve it. Besides the Kendall-τ
distance and coherence, other metrics in social choice theory are also worth of
further exploration with the algorithmic approach.
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Abstract. Minimum Common StringPartition (MCSP) has drawn much
attention due to its application in genome rearrangement. In this paper,
we investigate three variants of MCSP: MCSP c, which requires that there
are at most c symbols in the alphabet; d-MCSP, which requires the occur-
rence of each symbol to be bounded by d; and x-balance MCSP, which re-
quires the length of blocks not being x away from the average length. We
show that MCSP c is NP-hard when c ≥ 2. As for d-MCSP, we present an
FPTalgorithm which runs in O∗((d!)k) time.As it is still unknownwhether
an FPT algorithm only parameterized on k exists for the general case of
MCSP, we also devise an FPT algorithm for the special case x-balance
MCSP parameterized on both k and x.

1 Introduction

String comparison has drawn a lot of attention due to its applications in com-
putational biology, text processing and compression. In this paper, we revisit
the Minimum Common String Partition (MCSP) problem which has a close re-
lation to the genome rearrangement problems such as Edit distance, Sorting by
Reversals and Transpositions, etc.

A partition P of a string X is a sequence P = 〈P1, P2, . . . , Pm〉 of strings
whose concatenation is equal to X , that is P1P2 . . .Pm = X . The strings Pi are
called the blocks of P . Given a partition P of a string X and a partition Q of
a string Y , we say that the pair π = (P, Q) is a common partition of X and Y
if Q is a permutation of P , that is, there exists a permutation σ on [m] such
that Pi = Qσi , 1 ≤ i ≤ m. The minimum common string partition problem is to
compute a common partition of X , Y with the minimum number of blocks.

In the Minimum Common String Partition (MCSP) problem, we are given two
strings X and Y of length n over an alphabet Σ. Let each symbol appear the
same number of times in X and Y . Throughout this paper, we assume that X and
Y satisfy this condition. Clearly, this is a sufficient and necessary condition for X
and Y to have a common string partition. For example, two strings X = beabcdb
and Y = abdbebc have a common partition (〈b, e, ab, c, db〉, 〈ab, db, e, b, c〉). There

D.T. Lee, D.Z. Chen, and S. Ying (Eds.): FAW 2010, LNCS 6213, pp. 45–52, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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are several variants of MCSP. The restricted version where each letter occurs at
most d times in each input string, is denoted by d-MCSP. Another important
version where the input strings are over an alphabet with size bounded by c, is
abbreviated as MCSP c. We also introduce a feasible version where the resulting
blocks in the partition is designated to have nearly even length, we call it x-
balance MCSP. For the x-balance MCSP problem, if the optimum solution has
k blocks, the length of each block ranges from n/k − x to n/k + x. The signed
minimum common string partition problem (SMCSP) is also a variant of MCSP
in which each letter of the two input strings is given a “+” or “-” sign. For a string
S with signs, let −S denote the reverse of S, with each letter sign flipped. The
common partition has a little bit of difference from the original where Pi = Qσi

or Pi = −Qσi .

Related work
The proble d-MCSP is well studied. 2-MCSP (and therefore MCSP) is NP-hard;
moreover, APX-hard [8]. Several approximation algorithms are known for the
problem [8,10]. Chen et al. [1] studied the problem of computing signed reversal
distance with duplicates (SRDD). They introduced the signed minimum common
partition problem as a tool for dealing with SRDD and observed that for any
two related signed strings X and Y , the size of a minimum common partition
and the minimum number of reversal operations needed to transform X and
Y , are within a multiplicative factor 2 of each other. Kolman [12] devised an
O(d2)-approximation algorithm running in O(n) time for SRDD.

Chrobak et al. [3] analyzed the greedy algorithm for MCSP, they showed that
for 2-MCSP, the approximation ratio is exactly 3, for 4-MCSP the approxima-
tion ratio is Ω(log n); for the general MCSP, the approximation ratio is between
Ω(n0.43) and O(n0.67). The same bounds apply for SMCSP. Kaplan and Shafrir
[9] improved the lower bound to Ω(n0.46) when the input strings are over an
alphabet of size O(log n). Kolman [11] described a simple modification of the
greedy algorithm; the approximation ratio of the modified algorithm is O(p2)
for p-MCSP. Christie and Irving [2] proved that the problem of computing (un-
signed) reversal distance is NP-hard for binary strings, it turns out that this
problem has some connection to MCSP c.

On the framework of parameterized complexity, Damaschke first solved MCSP
by an FPT algorithm with respect to parameters k (size of the optimum solu-
tion), r (the repetition number) and t (the distance ratio depending on the
shortest block in the optimum solution) [4].

Our Contribution
We prove that the problem MCSP c is NP-complete when c ≥ 2. For d-MCSP,
we introduce an equivalence condition for the common partition and present
an FPT algorithm for that problem with running time O∗((d!)k). When the
MCSP solution is supposed to be x-balance, we devise an FPT algorithm with
parameter k and x which runs in O((2x)kk!n)) time.
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2 Preliminaries

As aforementioned, we recall the formal definition of MCSP.
Minimum Common String Partition
Input: two strings X, Y over an alphabet Σ
Question: Can X have a partition P and Y have a partition Q such that Q is
a permutation of P ?

We say that the elements from Σ occur or appear in X and Y . A specific
occurrence of some element is called a symbol. The strings in the partition are
called blocks. There is a break or cut between two consecutive blocks in X or Y
respectively.

A duo is a substring of length two. A specific duo is an occurrence of a duo
in X or Y . Two specific duos are continuous if they form a substring of length
three. A match is a pair (aiai+1, bjbj+1) of specific duos, one from X and the
other one from Y , such that ai = bj and ai+1 = bj+1. We also say that the pair
of specific duos are matched if they form a match. Two matches form a conflict
if they cannot be realized at the same time.

An FPT (Fixed-Parameter Tractable) algorithm for an optimization problem
Π with optimal solution value k is an algorithm which solves the problem in
O(f(k)nc) time, where f is any function only on k, n is the input size and c is
some fixed constant not related to k. For convenience we also say that Π is in
FPT. More details on FPT algorithms can be found in [5,6].

It is open whether an FPT algorithm exists for the general MCSP with k
being the unique parameter, so we try to consider variants of it by the use of
additional parameters.

This paper is organized as follows. In Section 2, we present the NP-completeness
of MCSP c. In Section 3, we present FPT algorithms for the two special cases. In
Section 4, we conclude the paper with several open questions.

3 Hardness for MCSP c

In this section, we prove that MCSP c is NP-complete when c ≥ 2 by a re-
duction from 3-PARTITION [7]. Firstly, we go over the formal definition of
3-PARTITION.
3-PARTITION
Input: Positive integers n and B, and positive integers set A = {a1, a2, . . . , a3n},
with B/4 < ai < B/2 and

∑
ai∈A ai = nB.

Question: Can A be partitioned into n disjoint sets S1, S2, . . . , Sn such that,
for 1 ≤ i ≤ n,

∑
aj∈Si

aj = B.
The problem 3-PARTITION is strongly NP-hard: that is, there is a polynomial

p(n) such that it is still NP-hard when all the ai’s are at most p(n). Our reduction
is polynomially bounded for instances of this type.

Given an instance of 3-PARTITION with integers (weights) a1, a2, . . . , a3n,
we construct two strings X , Y for an instance of MCSP 2 as follows
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X = 11110a111110a2 · · · 11110a3n

Y = (0B1)n111n

For the sake of clarity, we first make the following claims.

Claim. Any block in the common string partition has the form 0p1, 10p, 0p or
1q where p, q ≥ 1.

Proof. Suppose to the contrary that there is a common block H with the form
0p1q0r · · ·, then from the format of X and Y , q is either equal to one or equal to
four. But H cannot be a substring of X when q = 1 and cannot be a substring
of Y when q = 4. Similarly, any block in the common partition will not have the
form 1q0p1s · · ·. Consequently, all the common blocks must be of the form 0p1,
10p, 0p and 1q, as there is only one 1 between two 0’s in Y . The claim holds. ��

Claim. The interior ’11’ from ’1111’ in X is matched to ’11’ from 111n+1 in Y .

Proof. From the first claim we conclude that, if a common block contains 0,
then it contains at most one 1. So the interior two 1’s form ’1111’ must be in
the common blocks containing only 1’s. Since there are no consecutive 1’s in Y
besides the substring 111n+1, the claim is certainly true. ��

Theorem 1. MCSP 2 is NP-complete.

Proof. We prove that the 3-PARTITION has an precise partition if and only if
X, Y have a common partition with 6n blocks.

On the necessary side, assume that S1, S2, . . . , Sn satisfy
∑

aj∈Si
aj = B, for

all i. For any Si = {ap, aq, ar}, we obtain three blocks form X : 0ap , 0aq , 0ar1
and one block from Y : 0B1. Obviously, the block from Y can be divided into
three blocks corresponding to the blocks from X . Then there remains 2n blocks
of the form ’1111’ and n blocks of the form ’111’ in X and all these blocks are
separated (not adjacent). The unique block left in Y is 111n+1. Consequently, we
obtain a common partition of X, Y with 6n blocks.

On the sufficient side, from the two claims, we can see that all the 0ai and the
interior substring ’11’ of ’1111’ are in different blocks in the common partition.
So there are at least 6n blocks in any common partition. If the number of blocks
is exactly 6n, then every block of the form 0B in Y is matched to exactly three
blocks of the form 0ai , which means it is a yes 3-PARTITION instance. ��

Since we can construct an instance of MCSP c when c > 2 from an instance if
MCSP 2 by adding the same substring composed of symbols other than those in
MCSP 2 at the ends of the two input strings, we can easily obtain the following
corollary.

Corollary 1. MCSP c is NP-complete for c ≥ 2.
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4 The FPT Algorithms

In this section, we design FPT algorithms for two variants of MCSP. As it is still
unknown whether MCSP has an FPT algorithm parameterized only on k, we
hope these algorithms could help shed light on answering this open question. On
the other hand, these two variants are closely related to genome rearrangement
problems, hence are meaningful practically.

4.1 On d-MCSP

In this subsection, we describe the FPT algorithm for d-MCSP.
First, let us recall the definition of duos and matches. Note that two matches

with the continuous specific duos in one string are not in conflict if and only if
these duos are matched to two continuous specific duos in the other string.

Lemma 1. Each duo appears the same number of times in X and Y in the
common partition.

Proof. Otherwise, there must be such a specific duo that is unmatched in the
partition. ��

Lemma 2. If each duo appears the same number of times in a partition of X
and a partition of Y , then two matches are conflict if and only if the specific
duos are continuous in one string and not continuous in the other.

Proof. A conflict match means that there exists a symbol which is matched to
two occurrences of that symbol in the matches. Clearly in this case the specific
duos cannot be continuous in both strings. ��

Lemma 3. Given a pair of partition π = (P, Q) for X and Y , if all specific
duos are matched and all matches are not conflict then π is a common partition.

Proof. For any block G = g1g2 · · · gm in P , since all the specific duos gigi+1 are
matched, there must be matches (gigi+1, hjhj+1) and (gi+1gi+2, fkfk+1) that
can be realized at the same time. Since gigi+1 and gi+1gi+2 are continuous duos,
hjhj+1 and fkfk+1 should be continuous too; that is, hj+1 and fk are the same
symbol. As the above analysis holds for all i, we can see that there is a block
H = h1h2 · · ·hm in Q such that G = H . The lemma holds. ��

Our FPT algorithm just follows from the three lemmas. The rough idea is to cut
redundant specific duos such that all duos appear the same number of times in
X and Y , then cut one of the continuous duos that corresponds to two conflict
matches. In the algorithm, we use arrays C and D indexed by duos to store the
number of occurrence of each duo in X and Y respectively. That is, Cab = r
means ab appears r times in X .

Theorem 2. Algorithm Cut-Duos runs in O∗((d!)k) time.
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Proof. From the algorithm we branch on step 2, 3 and 5. As for the cost of the
algorithm, Step 2 has recurrence relation

f(k) =
(

r

s

)
(s!)f(k − (r − s)).

Step 3 has a similar recurrence relation. Step 5 has recurrence relation

f(k) = 2f(k − 1).

Since r, s ≤ d and f(k) achieves its maximum value when r − s = 1, so f(k) =
O∗((d!)k) . ��

Algorithm. Cut-Duos
Input: two strings X,Y such that each symbol appears at most d time in each. string
Output: A common partition (P,Q)
1 Compute the number of occurrence of each duo in X and Y , and store them
in arrays C and D.
2 For every duo ab in X, if r = Cab > Dab = s
2.1 Choose r − s ab’s in X, cut them.
2.2 Compute matches between the remaining ab’s in X and Y .

3 For every duo ab in Y , if r = Cab < Dab = s
3.1 Choose s− r ab’s in Y , cut them.
3.2 Compute matches between the remaining ab’s in X and Y .

4 For two conflict matches (ab, ab) and (bc, bc) with the common symbol
b in X and Y .
5 Choose one duo from ab and bc, cut it in both X and Y .
6 Return the remaining blocks in X and Y respectively as the common
partition (P, Q).

4.2 On x-Balance MCSP

In this subsection, we deal with the x-balance MCSP problem. For the specific
applications in genome arrangement, due to the relation between MCSP and
genome rearrangement, each block corresponds to a gene and each gene should
have roughly the same gene content, so the blocks are supposed to have nearly
even lengths, possibly with some small deviation. Assume that the optimal so-
lution size is k, then we can see that every block is of some length between
(n/k) + x and (n/k) − x.

The rough idea of the FPT algorithm is to cut the input string into blocks of
length ranging from (n/k) − x to (n/k) + x, then compute all possible matches
between the resulting k blocks. In the algorithm, assume that the length of the
ith block is L(i). When we refer to positions from integer u to v (u < v) in X ,
we mean the set of duos {XuXu+1, Xu+1Xu+2, . . . , Xv−1Xv}.

Theorem 3. Algorithm Cut-Depending-on-Length runs in O((2x)kk!n) time.

Proof. From the algorithm we branch on step 2, 3 and 4. Step 2 runs (2x)k−1

times. Step 3 has a similar running time. Step 4 has k! possibilities. Step 5 runs
in O(n) time. So the total running time of the algorithm is O((2x)kk!n)). ��
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We comment that Algorithm Cut-Depending-on-Length works for other varieties
of MCSP whenever they are x-balance.

5 Concluding Remarks

In this paper, we deal with some variants of MCSP. The first one, MCSP c, is
proved to be NP-complete when c ≥ 2. For d-MCSP and x-balance MCSP, we
devise FPT algorithms for them. The original MCSP problem seems difficult to
solve with an FPT algorithm only on the parameter k, so some extra practical
parameters which make the problem fixed-parameter tractable are meaningful.
As d-MCSP has close relation to some specific genome rearrangement problem,
we are currently seeking good approximations for the d-MCSP problem.

Algorithm. Cut-Depending-on-Length
Input: an x-balance instance of MCSP
Output: A common partition (P,Q)
1 Compute the scope of the length of blocks.
2 For input string X, for 1 ≤ i ≤ k − 1
2.1 Let S0 be set of position from n−(n/k + x)(k − i) to n−(n/k − x)(k − i)
2.2 Let S1 be set of position from∑
0≤j<i L(j) + (n/k − x) to

∑
0≤j<i L(j) + (n/k + x)

2.3 Choose a duo from S0 ∩ S1 and cut it.
3 For input string Y , for 1 ≤ i ≤ k − 1
3.1 Let S0 be set of position from n−(n/k + x)(k − i) to n−(n/k − x)(k − i)
3.2 Let S2 be set of position from∑
0≤j<i L(j) + (n/k − x) to

∑
0≤j<i L(j) + (n/k + x)

3.3 Choose a duo from S0 ∩ S2 and cut it.
4 Compute a one-to-one mapping between the resulting blocks in X and Y .
5 Check whether all the two blocks in the map are common.
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Abstract. Maximal Strip Recovery (MSR) is an optimization problem proposed
by Zheng, Zhu, and Sankoff for reliably recovering syntenic blocks from genomic
maps in the midst of noise and ambiguities. Given d genomic maps as sequences
of gene markers, the objective of MSR-d is to find d subsequences, one sub-
sequence of each genomic map, such that the total length of syntenic blocks in
these subsequences is maximized. In our recent paper entitled “Inapproximability
of Maximal Strip Recovery” in ISAAC 2009, we proved that MSR-d is APX-hard
for any constant d ≥ 2, and presented the first explicit lower bounds for approxi-
mating MSR-2, MSR-3, and MSR-4, even for the most basic version of the prob-
lem in which all markers are distinct and appear in positive orientation in each
genomic map. In this paper, we present several further inapproximability results
for MSR-d and its variants CMSR-d, δ-gap-MSR-d, and δ-gap-CMSR-d. One of
our main results is that MSR-d is NP-hard to approximate within Ω(d/ log d)
even if all markers appear in positive orientation in each genomic map. From
the other direction, we show that there is a polynomial-time 2d-approximation
algorithm for MSR-d even if d is not a constant but is part of the input.

1 Introduction

In comparative genomic, the first step of sequence analysis is usually to decompose two
or more genomes into syntenic blocks that are segments of homologous chromosomes.
For the reliable recovery of syntenic blocks, noise and ambiguities in the genomic maps
need to be removed first. A genomic map is a sequence of gene markers. A gene marker
appears in a genomic map in either positive or negative orientation. Given d genomic
maps, Maximal Strip Recovery (MSR-d) is the problem of finding d subsequences, one
subsequence of each genomic map, such that the total length of strips of these subse-
quences is maximized [20,9]. Here a strip is a maximal string of at least two markers
such that either the string itself or its signed reversal appears contiguously as a substring
in each of the d subsequences in the solution. Without loss of generality, we can assume
that all markers appear in positive orientation in the first genomic map.

For example, the two genomic maps (the markers in negative orientation are under-
lined)

1 2 3 4 5 6 7 8 9 10 11 12
8 5 7 6 4 1 3 2 12 11 10 9
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have two subsequences

1 3 6 7 8 10 11 12
8 7 6 1 3 12 11 10

of the maximum total strip length 8. The strip 〈1, 3〉 is positive and forward in both
subsequences; the other two strips 〈6, 7, 8〉 and 〈10, 11, 12〉 are positive and forward
in the first subsequence, but are negative and backward in the second subsequence.
Intuitively, the strips are syntenic blocks, and the deleted markers not in the strips are
noise and ambiguities in the genomic maps.

The problem MSR-2 was introduced by Zheng, Zhu, and Sankoff [20], and was later
generalized to MSR-d for any d ≥ 2 by Chen, Fu, Jiang, and Zhu [9]. For MSR-
2, Zheng et al. [20] presented a potentially exponential-time heuristic that solves a
subproblem of Maximum-Weight Clique. For MSR-d, Chen et al. [9] presented a 2d-
approximation based on Bar-Yehuda et al.’s fractional local-ratio algorithm for
Maximum-Weight Independent Set in d-interval graphs [5]; the running time of this
2d-approximation algorithm is polynomial if d is a constant. From the other direction,
we recently proved that MSR-d for any constant d ≥ 2 is APX-hard:

Theorem 1 (Jiang 2009 [13]). MSR-d for any constant d ≥ 2 is APX-hard. Moreover,
MSR-2, MSR-3, and MSR-d for any constant d ≥ 4 are NP-hard to approximate
within any constants less than 2320

2319 (> 1.0004), 474
473 (> 1.0021), and 285

284 (> 1.0035),
respectively, even if all markers are distinct and appear in positive orientation in each
genomic map.

We refer to [9,19,8] for more hardness results on MSR-d and its variants. In the bio-
logical context, a genomic map may contain duplicate markers as a paralogy set [20,
p. 516], but such maps are relatively rare. Thus MSR-d without duplicates is the most
useful version of MSR-d in practice. Also, all previous hardness proofs of MSR-d and
its variants [9,19,8] rely on the fact that a marker may appear in a genomic map in ei-
ther positive or negative orientation. A natural question is whether the complexity of
the problem stays the same if all markers in the input genomic maps are in positive
orientation. For these two reasons, our previous work [13] and our work in this paper
investigate the most basic version of Maximal Strip Recovery in which all markers are
distinct and appear in positive orientation in each genomic map.

The main result of this paper is the following theorem that strengthens Theorem 1 by
an improved lower bound for MSR-4 and a new asymptotic lower bound for MSR-d:

Theorem 2. MSR-d for any d ≥ 2 is APX-hard. Moreover, MSR-2, MSR-3, MSR-4,
and MSR-d are NP-hard to approximate within 1.000431, 1.002114, 1.010661, and
Ω(d/ log d), respectively, even if all markers are distinct and appear in positive orien-
tation in each genomic map.

Recall that MSR-d admits a polynomial-time 2d-approximation algorithm for any con-
stant d ≥ 2 [9]. Thus MSR-d for any constant d ≥ 2 is APX-complete. Our following
theorem gives a polynomial-time 2d-approximation algorithm for MSR-d even if the
number d of genomic maps is not a constant but is part of the input:
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Theorem 3. For any d ≥ 2, there is a polynomial-time 2d-approximation algorithm
for MSR-d if all markers are distinct in each genomic map. This holds even if d is not
a constant but is part of the input.

Compare the upper bound of 2d in Theorem 3 and the asymptotic lower bound of
Ω(d/ log d) in Theorem 2.

Maximal Strip Recovery [20,9] is a maximization problem. Wang and Zhu [19] in-
troduced Complement Maximal Strip Recovery as a minimization problem. Given d
genomic maps as input, the problem CMSR-d is the same as the problem MSR-d ex-
cept that the objective is minimizing the number of deleted markers not in the strips,
instead of maximizing the number of markers in the strips. A natural question is whether
a polynomial-time approximation scheme may be obtained for this problem. Our fol-
lowing theorem shows that unless NP=P, CMSR-d cannot be approximated arbitrarily
well:

Theorem 4. CMSR-d for any d ≥ 2 is APX-hard. Moreover, CMSR-2, CMSR-3,
CMSR-4, and CMSR-d for any d ≥ 173 are NP-hard to approximate within 1.000625,
1.0101215, 1.0202429, and 7

6−O(log d/d), respectively, even if all markers are distinct
and appear in positive orientation in each genomic map. If the number d of genomic
maps is not a constant but is part of the input, then CMSR-d is NP-hard to approximate
within any constant less than 10

√
5 − 21 = 1.3606 . . ., even if all markers are distinct

and appear in positive orientation in each genomic map.

Note the similarity between Theorem 2 and Theorem 4. In fact, our proof of Theorem 4
uses exactly the same constructions as our proof of Theorem 2. The only difference is
in the analysis of the approximation lower bounds.

Bulteau, Fertin, and Rusu [8] recently proposed a restricted variant of Maximal Strip
Recovery called δ-gap-MSR, which is MSR-2 with the additional constraint that at most
δ markers may be deleted between any two adjacent markers of a strip in each genomic
map. We now define δ-gap-MSR-d and δ-gap-CMSR-d as the restricted variants of the
two problems MSR-d and CMSR-d, respectively, with the additional δ-gap constraint.
Bulteau et al. [8] proved that δ-gap-MSR-2 is APX-hard for any δ ≥ 2, and is NP-hard
for δ = 1. We extend our proofs of Theorem 2 and Theorem 4 to obtain the following
theorem on δ-gap-MSR-d and δ-gap-CMSR-d for any δ ≥ 2:

Theorem 5. Let δ ≥ 2. Then

(1) δ-gap-MSR-d for any d ≥ 2 is APX-hard. Moreover, δ-gap-MSR-2, δ-gap-MSR-
3, δ-gap-MSR-4, and δ-gap-MSR-d are NP-hard to approximate within 1.000431,
1.002114, 1.010661, and d/2O(

√
log d), respectively, even if all markers are distinct

and appear in positive orientation in each genomic map.
(2) δ-gap-CMSR-d for any d ≥ 2 is APX-hard. Moreover, δ-gap-CMSR-2, δ-gap-

CMSR-3, δ-gap-CMSR-4, and δ-gap-CMSR-d for any d ≥ 173 are NP-hard to
approximate within 1.000625, 1.0101215, 1.0202429, and 7

6 −O(log d/d), respec-
tively, even if all markers are distinct and appear in positive orientation in each
genomic map. If the number d of genomic maps is not a constant but is part of the
input, then δ-gap-CMSR-d is NP-hard to approximate within any constant less than
10

√
5 − 21 = 1.3606 . . ., even if all markers are distinct and appear in positive

orientation in each genomic map.
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We refer to arxiv.org/abs/0912.4935 for a complete manuscript combining the
results in [13] and in this paper, and refer to [15,7] for some related results.

2 Preliminaries

L-reduction Given two optimization problems X and Y, an L-reduction [17] from X to
Y consists of two polynomial-time functions f and g and two positive constants α and
β satisfying the following two properties:

1. For every instance x of X, f(x) is an instance of Y such that

opt(f(x)) ≤ α · opt(x), (1)

2. For every feasible solution y to f(x), g(y) is a feasible solution to x such that

|opt(x) − val(g(y))| ≤ β · |opt(f(x)) − val(y)|. (2)

Here opt(x) denotes the value of the optimal solution to an instance x, and val(y)
denotes the value of a solution y. The two properties of L-reduction imply the following
inequality on the relative errors of approximation:

|opt(x) − val(g(y))|
opt(x)

≤ αβ · |opt(f(x)) − val(y)|
opt(f(x))

.

A relative error of ε corresponds to an approximation factor of 1 + ε for a minimiza-
tion problem, and corresponds to an approximation factor of 1

1−ε for a maximization
problem. Thus we have the following propositions:

1. For a minimization problem X and a minimization problem Y, if X is NP-hard to
approximate within 1 + αβε, then Y is NP-hard to approximate within 1 + ε.

2. For a maximization problem X and a maximization problem Y, if X is NP-hard to
approximate within 1

1−αβε , then Y is NP-hard to approximate within 1
1−ε .

3. For a maximization (resp. minimization) problem X and a minimization (resp. max-
imization) problem Y, if X is NP-hard to approximate within 1

1−αβε (resp. 1+αβε),

then Y is NP-hard to approximate within 1 + ε (resp. 1
1−ε ).

APX-hard optimization problems. We review the complexities of some APX-hard op-
timization problems that will be used in our reductions.

– Max-IS-Δ is the problem Maximum Independent Set in graphs of maximum de-
gree Δ. Max-IS-3 is APX-hard; see [4]. Moreover, Chlebı́k and Chlebı́ková [10]
showed that Max-IS-3 and Max-IS-4 are NP-hard to approximate within 1.010661
and 1.0215517, respectively. Trevisan [18] showed that Max-IS-Δ is NP-hard to
approximate within Δ/2O(

√
log Δ).

– Min-VC-Δ is the problem Minimum Vertex Cover in graphs of maximum degree
Δ. Min-VC-3 is APX-hard; see [4]. Moreover, Chlebı́k and Chlebı́ková [10] showed
that Min-VC-3 and Min-VC-4 are NP-hard to approximate within 1.0101215 and
1.0202429, respectively, and, for any Δ ≥ 228, Min-VC-Δ is NP-hard to approx-
imate within 7

6 − O(log Δ/Δ). Dinur and Safra [11] showed that Minimum Ver-
tex Cover is NP-hard to approximate within any constant less than 10

√
5 − 21 =

1.3606 . . ..
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– Given a set X of n variables and a set C of m clauses, where each variable has
exactly p literals (in p different clauses) and each clause is the disjunction of exactly
q literals (of q different variables), Ep-Occ-Max-Eq-SAT is the problem of finding
an assignment of X that satisfies the maximum number of clauses in C. Note that
np = mq. Berman and Karpinski [6] showed that E3-Occ-Max-E2-SAT is NP-hard
to approximate within any constant less than 464

463 .
– Given d disjoint sets Vi of vertices, 1 ≤ i ≤ d, and given a set E ⊆ V1 × · · · × Vd

of hyper-edges, d-Dimensional-Matching is the problem of finding a maximum-
cardinality subset M ⊆ E of pairwise-disjoint hyper-edges. Hazan, Safra, and
Schwartz [12] showed that d-Dimensional-Matching is NP-hard to approximate
within Ω(d/ log d).

Linear forest and linear arboricity. A linear forest is a graph in which every connected
component is a path. The linear arboricity of a graph is the minimum number of linear
forests into which the edges of the graph can be decomposed. Akiyama, Exoo, and
Harary [2,3] conjectured that the linear arboricity of every graph G of maximum degree
Δ satisfies la(G) ≤ �(Δ + 1)/2�. This conjecture has been confirmed for graphs of
small constant degrees. In particular, the proof of the conjecture for Δ = 3 and 4 are
constructive [2,1,3] and lead to polynomial-time algorithms for decomposing any graph
of maximum degree Δ = 3 and 4 into at most �(Δ + 1)/2� = 2 and 3 linear forests,
respectively. Also, the proof of the first upper bound on linear arboricity [3] implies a
simple polynomial-time algorithm for decomposing any graph of maximum degree Δ
into at most �3�Δ/2�/2� linear forests.

Define
f(Δ) = max

G
f(G),

where G ranges over all graphs of maximum degree Δ, and f(G) denotes the number
of linear forests that the algorithm in [3] decomposes G into. Then

�(Δ + 1)/2� ≤ f(Δ) ≤ �3�Δ/2�/2�. (3)

3 MSR-4 Is APX-Hard

In this section, we prove that MSR-4 is APX-hard by a simple L-reduction from
Max-IS-3. Before we present the L-reduction, we first show that MSR-4 is NP-hard
by a reduction in the classical style, which is perhaps more familiar to most readers.
Throughout this paper, we follow this progressive format of presentation.

3.1 NP-Hardness Reduction from Max-IS-3 to MSR-4

Let G be a graph of maximum degree 3. Let n be the number of vertices in G. Partition
the edges of G into two linear forests E1 and E2. Let V1 and V2 be the vertices of G that
are not incident to any edges in E1 and in E2, respectively. We construct four genomic
maps G→, G←, G1, and G2, where each map is a permutation of the following 2n
distinct markers all in positive orientation:
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– n pairs of vertex markers
i
⊂ and

i
⊃, 1 ≤ i ≤ n.

G→ and G← are concatenations of the n pairs of vertex markers with ascending and
descending indices, respectively:

G→ :
1
⊂

1
⊃ · · ·

n
⊂

n
⊃

G← :
n
⊂

n
⊃ · · ·

1
⊂

1
⊃

G1 and G2 are represented schematically as follows:

G1 : 〈E1〉 〈V1〉
G2 : 〈E2〉 〈V2〉

〈E1〉 and 〈E2〉 consist of vertex markers of the vertices incident to the edges in E1 and
E2, respectively. The markers of the vertices in each path v1v2 . . . vk are grouped
together in an interleaving pattern: for 1 ≤ i ≤ k, the left marker of vi, the right
marker of vi−1 (if i > 1), the left marker of vi+1 (if i < k), and the right marker of
vi are consecutive.

〈V1〉 and 〈V2〉 consist of vertex markers of the vertices in V1 and V2, respectively. The
left marker and the right marker of each pair are consecutive.

This completes the construction. We refer to Figure 1 (a) and (b) for an example.

9

1 32 654

7 8

(a)

1⊂ 1⊃ 2⊂ 2⊃ 3⊂ 3⊃ 4⊂ 4⊃ 5⊂ 5⊃ 6⊂ 6⊃ 7⊂ 7⊃ 8⊂ 8⊃ 9⊂ 9⊃
9⊂ 9⊃ 8⊂ 8⊃ 7⊂ 7⊃ 6⊂ 6⊃ 5⊂ 5⊃ 4⊂ 4⊃ 3⊂ 3⊃ 2⊂ 2⊃ 1⊂ 1⊃

1⊂ 2⊂ 1⊃ 3⊂ 2⊃ 4⊂ 3⊃ 5⊂ 4⊃ 6⊂ 5⊃ 6⊃ 7⊂ 7⊃ 8⊂ 8⊃ 9⊂ 9⊃
1⊂ 7⊂ 1⊃ 8⊂ 7⊃ 3⊂ 8⊃ 3⊃ 4⊂ 9⊂ 4⊃ 6⊂ 9⊃ 6⊃ 2⊂ 2⊃ 5⊂ 5⊃

(b)

2⊂ 2⊃ 4⊂ 4⊃ 6⊂ 6⊃ 8⊂ 8⊃
8⊂ 8⊃ 6⊂ 6⊃ 4⊂ 4⊃ 2⊂ 2⊃
2⊂ 2⊃ 4⊂ 4⊃ 6⊂ 6⊃ 8⊂ 8⊃
8⊂ 8⊃ 4⊂ 4⊃ 6⊂ 6⊃ 2⊂ 2⊃

(c)

Fig. 1. (a) The graph G: E1 is a single solid path 〈1, 2, 3, 4, 5, 6〉, E2 consists of two dot-
ted paths 〈1, 7, 8, 3〉 and 〈4, 9, 6〉, V1 = {7, 8, 9}, V2 = {2, 5}. (b) The four genomic maps
G→, G←, G1, G2. (c) The four subsequences of the genomic maps corresponding to the inde-
pendent set {2, 4, 6, 8} in the graph.

Two pairs of markers intersect in a genomic map if a marker of one pair appears
between the two markers of the other pair. The following property of our construction
is obvious:

Proposition 1. Two vertices are adjacent in the graph G if and only if the correspond-
ing two pairs of vertex markers intersect in one of the two genomic maps G1, G2.

We say that four subsequences of the four genomic maps G→, G←, G1, G2 are canoni-
cal if each strip of the subsequences is a pair of vertex markers. We have the following
lemma on canonical subsequences:
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Lemma 1. In any four subsequences of the four genomic maps G→, G←, G1, G2, re-
spectively, each strip must be a pair of vertex markers.

Proof. By construction, a strip cannot include two vertex markers of different indices
because they appear in different orders in G→ and in G←. ��

The following lemma establishes the NP-hardness of MSR-4:

Lemma 2. The graph G has an independent set of at least k vertices if and only if the
four genomic maps G→, G←, G1, G2 have four subsequences whose total strip length
l is at least 2k.

Proof. We first prove the “only if” direction. Suppose that the graph G has an indepen-
dent set of at least k vertices. We will show that the four genomic maps G→, G←, G1, G2
have four subsequences of total strip length at least 2k. By Proposition 1, the k vertices
in the independent set correspond to k pairs of vertex markers that do not intersect
each other in the genomic maps. These k pairs of vertex markers induce a subsequence
of length 2k in each genomic map. In each subsequence, the left marker and the right
marker of each pair appear consecutively and compose a strip. Thus the total strip length
is at least 2k. We refer to Figure 1(c) for an example.

Wenextprovethe“if”direction.Suppose that thefourgenomicmapsG→, G←, G1, G2
have four subsequences of total strip length at least 2k. We will show that the graph G has
an independent set of at least kvertices. By Lemma 1, each strip of the subsequences must
be a pair of vertex markers. Thus we obtain at least k pairs of vertex markers that do not
intersect each other in the genomic maps. Then, by Proposition 1, the corresponding set
of at least k vertices in the graph G form an independent set. ��

3.2 L-Reduction from Max-IS-3 to MSR-4

We present an L-reduction (f, g, α, β) from Max-IS-3 to MSR-4 as follows. The func-
tion f , given a graph G of maximum degree 3, constructs the four genomic maps
G→, G←, G1, G2 as in the NP-hardness reduction. Let k∗ be the number of vertices
in a maximum independent set in G, and let l∗ be the maximum total strip length of any
four subsequences of G→, G←, G1, G2, respectively. By Lemma 2, we have

l∗ = 2k∗.

Choose α = 2, then property (1) of L-reduction is satisfied.
The function g, given four subsequences of the four genomic maps G→, G←, G1, G2,

respectively, returns an independent set of vertices in the graph G corresponding to the
pairs of vertex markers that are strips of the subsequences. Let l be the total strip length
of the subsequences, and let k be the number of vertices in the independent set returned
by the function g. Then k ≥ l/2. It follows that

|k∗ − k| = k∗ − k ≤ l∗/2 − l/2 = |l∗ − l|/2.

Choose β = 1/2, then property (2) of L-reduction is also satisfied.
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We have obtained an L-reduction from Max-IS-3 to MSR-4 with αβ = 1. Chlebı́k
and Chlebı́ková [10] showed that Max-IS-3 is NP-hard to approximate within 1.010661.
It follows that MSR-4 is also NP-hard to approximate within 1.010661. The lower
bound extends to MSR-d for all constants d ≥ 4.

The L-reduction from Max-IS-3 to MSR-4 can be obviously generalized:

Lemma 3. Let Δ ≥ 3 and d ≥ 4. If there is a polynomial-time algorithm for de-
composing any graph of maximum degree Δ into d − 2 linear forests, then there is an
L-reduction from Max-IS-Δ to MSR-d with constants α = 2 and β = 1/2.

4 An Asymptotic Lower Bound for MSR-d

In this section, we derive an asymptotic lower bound for approximating MSR-d by an
L-reduction from d-Dimensional-Matching to MSR-(d + 2).

4.1 NP-Hardness Reduction from d-Dimensional-Matching to MSR-(d + 2)

Let E ⊆ V1 × · · · × Vd be a set of n hyper-edges over d disjoint sets Vi of vertices,
1 ≤ i ≤ d. We construct two genomic maps G→ and G←, and d genomic maps Gi,
1 ≤ i ≤ d, where each map is a permutation of the following 2n distinct markers all in
positive orientation:

– n pairs of edge markers
i
⊂ and

i
⊃, 1 ≤ i ≤ n.

The two genomic maps G→ and G← are concatenations of the n pairs of edge markers
with ascending and descending indices, respectively:

G→ :
1
⊂

1
⊃ · · ·

n
⊂

n
⊃

G← :
n
⊂

n
⊃ · · ·

1
⊂

1
⊃

Each genomic map Gi corresponds to a vertex set Vi = {vi,j | 1 ≤ j ≤ |Vi|}, 1 ≤ i ≤
d, and is represented schematically as follows:

Gi : · · · 〈vi,j〉 · · ·

Here each 〈vi,j〉 consists of the edge markers of hyper-edges containing the vertex vi,j ,
grouped together such that the left markers appear with ascending indices before the
right markers also with ascending indices. This completes the construction. We refer to
Figure 2(a) for an example.

The following property of our construction is obvious:

Proposition 2. Two hyper-edges in E intersect if and only if the corresponding two
pairs of edge markers intersect in one of the d genomic maps Gi, 1 ≤ i ≤ d.

The following lemma is analogous to Lemma 1:

Lemma 4. In any d+2 subsequences of the d+2 genomic maps G→, G←, G1, . . . , Gd,
respectively, each strip must be a pair of edge markers.
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1⊂ 1⊃ 2⊂ 2⊃ 3⊂ 3⊃ 4⊂ 4⊃
4⊂ 4⊃ 3⊂ 3⊃ 2⊂ 2⊃ 1⊂ 1⊃

1⊂ 3⊂ 4⊂ 1⊃ 3⊃ 4⊃ 2⊂ 2⊃
2⊂ 3⊂ 2⊃ 3⊃ 1⊂ 4⊂ 1⊃ 4⊃
1⊂ 1⊃ 2⊂ 3⊂ 4⊂ 2⊃ 3⊃ 4⊃

(a)

1⊂ 1⊃ 2⊂ 2⊃
2⊂ 2⊃ 1⊂ 1⊃
1⊂ 1⊃ 2⊂ 2⊃
2⊂ 2⊃ 1⊂ 1⊃
1⊂ 1⊃ 2⊂ 2⊃

(b)

Fig. 2. MSR-5 construction for the 3-Dimensional-Matching instance V1 = {v1,1, v1,2}, V2 =
{v2,1, v2,2}, V3 = {v3,1, v3,2}, and E = { e1 = (v1,1, v2,2, v3,1), e2 = (v1,2, v2,1, v3,2), e3 =
(v1,1, v2,1, v3,2), e4 = (v1,1, v2,2, v3,2) }. (a) The five genomic maps G→, G←, G1, G2, G3.
(b) The five subsequences of the genomic maps corresponding to the subset {e1, e2} of pairwise-
disjoint hyper-edges.

Analogous to Lemma 2, the following lemma establishes the NP-hardness of MSR-d:

Lemma 5. The set E has a subset of k pairwise-disjoint hyper-edges if and only if the
d + 2 genomic maps G→, G←, G1, . . . , Gd have d + 2 subsequences whose total strip
length l is at least 2k.

Proof. We first prove the “only if” direction. Suppose that the set E has a subset of
at least k pairwise-disjoint hyper-edges. We will show that the d + 2 genomic maps
G→, G←, G1, . . . , Gd have d + 2 subsequences of total strip length at least 2k. By
Proposition 2, the k pairwise-disjoint hyper-edges correspond to k pairs of edge markers
that do not intersect each other in the genomic maps. These k pairs of edge markers
induce a subsequence of length 2k in each genomic map. In each subsequence, the left
marker and the right marker of each pair appear consecutively and compose a strip.
Thus the total strip length is at least 2k. We refer to Figure 2(b) for an example.

We next prove the “if” direction. Suppose that the d + 2 genomic maps
G→, G←, G1, . . . , Gd have d + 2 subsequences of total strip length at least 2k. We
will show that the set E has a subset of at least k pairwise-disjoint hyper-edges. By
Lemma 1, each strip of the subsequences must be a pair of edge markers. Thus we
obtain at least k pairs of edge markers that do not intersect each other in the genomic
maps. Then, by Proposition 2, the corresponding set of at least k hyper-edges in E are
pairwise-disjoint. ��

4.2 L-Reduction from d-Dimensional-Matching to MSR-(d + 2)

We present an L-reduction (f, g, α, β) from d-Dimensional-Matching to MSR-(d + 2)
as follows. The function f , given a set E ⊆ V1×· · ·×Vd of hyper-edges, constructs the
d + 2 genomic maps G→, G←, G1, . . . , Gd as in the NP-hardness reduction. Let k∗ be
the maximum number of pairwise-disjoint hyper-edges in E, and let l∗ be the maximum
total strip length of any d + 2 subsequences of G→, G←, G1, . . . , Gd, respectively. By
Lemma 5, we have

l∗ = 2k∗.
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Choose α = 2, then property (1) of L-reduction is satisfied.
The function g, given d + 2 subsequences of the d + 2 genomic maps

G→, G←, G1, . . . , Gd, respectively, returns a subset of pairwise-disjoint hyper-edges
in E corresponding to the pairs of edge markers that are strips of the subsequences.
Let l be the total strip length of the subsequences, and let k be the number of pairwise-
disjoint hyper-edges returned by the function g. Then k ≥ l/2. It follows that

|k∗ − k| = k∗ − k ≤ l∗/2 − l/2 = |l∗ − l|/2.

Choose β = 1/2, then property (2) of L-reduction is also satisfied.
We have obtained an L-reduction from d-Dimensional-Matching to MSR-(d + 2)

with αβ = 1. Hazan, Safra, and Schwartz [12] showed that d-Dimensional-Matching is
NP-hard to approximate within Ω(d/ log d). It follows that MSR-d is also NP-hard to
approximate within Ω(d/ log d). This completes the proof of Theorem 2.

5 A Polynomial-Time 2d-Approximation for MSR-d

In this section we prove Theorem 3. We briefly review the two previous algorithms [20,9]
for this problem. The first algorithm for MSR-2 is a simple heuristic due to Zheng, Zhu,
and Sankoff [20]:

1. Extract a set of pre-strips from the two genomic maps;
2. Compute an independent set of strips from the pre-strips.

This algorithm is inefficient because the number of pre-strips could be exponential in
the sequence length, and furthermore the problem Maximum-Weight Independent Set
in general graphs is NP-hard.

Chen, Fu, Jiang, and Zhu [9] presented a 2d-approximation algorithm for MSR-d.
For any d ≥ 2, a d-interval is the union of d disjoint intervals in the real line, and
a d-interval graph is the intersection graph of a set of d-intervals, with a vertex for
each d-interval, and with an edge between two vertices if and only the corresponding
d-intervals overlap. The 2d-approximation algorithm [9] works as follows:

1. Compose a set of d-intervals, one for each combination of d substrings of the d
genomic maps, respectively. Assign each d-interval a weight equal to the length
of a longest common subsequence (which may be reversed and negated) in the
corresponding d substrings.

2. Compute a 2d-approximation for Maximum-Weight Independent Set in the result-
ing d-interval graph using Bar-Yehuda et al.’s fractional local-ratio algorithm [5].

Let n be the number of markers in each genomic map. Then the number of d-intervals
composed by this algorithm is Θ(n2d) because each of the d genomic maps has Θ(n2)
substrings. Consequently the running time of this algorithm can be exponential if the
number d of genomic maps is not a constant but is part of the input. In the following, we
show that if all markers are distinct in each genomic map (as discussed earlier, this is a
reasonable assumption in application), then the running time of the 2d-approximation
algorithm can be improved to polynomial for all d ≥ 2. This improvement is achieved
by composing a smaller set of candidate d-intervals in step 1 of the algorithm.
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The idea is actually quite simple and has been used many times previously [16,14,8].
Note that any strip of length l > 3 is a concatenation of shorter strips of lengths 2 and
3, for example, 4 = 2 + 2, 5 = 2 + 3, etc. Since the objective is to maximize the total
strip length, it suffices to consider only short strips of lengths 2 and 3 in the genomic
maps, and to enumerate only candidate d-intervals that correspond to these strips. When
each genomic map is a signed permutation of the same n distinct markers, there are at
most

(
n
2

)
+
(
n
3

)
= O(n3) strips of lengths 2 and 3, and for each strip there is a unique

shortest substring of each genomic map that contains all markers in the strip. Thus we
compose only O(n3) d-intervals, and improve the running time of the 2d-approximation
algorithm to polynomial for all d ≥ 2. This completes the proof of Theorem 3.

6 Inapproximability Results for Related Problems

In this section we prove Theorem 4 and Theorem 5.
For any d, the decision problems of MSR-d and CMSR-d are equivalent. Thus

the NP-hardness of MSR-d implies the NP-hardness of CMSR-d, although the APX-
hardness of MSR-d does not necessarily imply the APX-hardness of CMSR-d. Note
that the two problems Max-IS-Δ and Min-VC-Δ complement each other just as the
two problems MSR-d and CMSR-d complement each other. Thus our NP-hardness
reduction from Max-IS-3 to MSR-3 in [13] can be immediately turned into an NP-
hardness reduction from Min-VC-3 to CMSR-3. Similarly, our L-reduction from Max-
IS-3 to MSR-3 in [13] can be adapted into an L-reduction from Min-VC-3 to CMSR-3
with α = 2 and β = 1/2, and our L-reduction from E3-Occ-Max-E2-SAT to MSR-
2 in [13] can be adapted into an L-reduction from E3-Occ-Max-E2-SAT to CMSR-2
with α = 62/9 and β = 1/2. An asymptotic lower bound for CMSR-d and a lower
bound for CMSR-d with unbounded d can also be obtained. This completes the proof
of Theorem 4.

It is easy to check that all instances of MSR-d and CMSR-d in our constructions for
Theorem 2 and Theorem 4 admit optimal solutions in canonical form with maximum
gap 2, except for the following two cases:

1. In the L-reduction from Ep-Occ-Max-Eq-SAT to MSR-2 and CMSR-2, a strip that
is a pair of literal markers has a gap of q − 1, which is larger than 2 for q ≥ 4.

2. In the L-reduction from d-Dimensional-Matching to MSR-(d + 2), a strip that is a
pair of edge markers may have an arbitrarily large gap if it corresponds to one of
many hyper-edges that share a single vertex.

To extend our results in Theorem 2 and Theorem 4 to the corresponding results in The-
orem 5, the first case does not matter because we set the parameter q to 2 when deriving
the lower bounds for MSR-2 and CMSR-2 from the lower bound for E3-Occ-Max-E2-
SAT. The second case is more problematic, and we have to use a different L-reduction
to obtain a slightly weaker asymptotic lower bound for δ-gap-MSR-d. Trevisan [18]
showed that Max-IS-Δ is NP-hard to approximate within Δ/2O(

√
log Δ). By Lemma 3,

there is an L-reduction from Max-IS-Δ to δ-gap-MSR-(f(Δ) + 2) with αβ = 1. By
the two inequalities in (3), we have f(Δ) + 2 = Θ(Δ). Thus δ-gap-MSR-d is NP-hard
to approximate within d/2O(

√
log d). This completes the proof of Theorem 5.
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Abstract. In this paper, we study an interesting geometric partition
problem, called optimal field splitting, which arises in Intensity-Modulated
Radiation Therapy (IMRT). In current clinical practice, a multileaf colli-
mator (MLC) with a maximum leaf spread constraint is used to deliver the
prescribed radiation intensity maps (IMs). However, the maximum leaf
spread of an MLC may require to split a large IM into several overlapping
sub-IMs with each being delivered separately. We develop an efficient al-
gorithm for solving the field splitting problem while minimizing the total
variation of the resulting sub-IMs, thus improving the treatment delivery
efficiency. Our basic idea is to formulate the field splitting problem as com-
puting a shortest path in a directed acyclic graph, which expresses a spe-
cial “layered” structure. The edge weights in the graph can be computed
by solving an optimal vector decomposition problem using local searching
and the proximity scaling technique as we can prove the L�-convexity and
totally unimodularity of the problem. Moreover, the edge weights of the
graph satisfy the Monge property, which enables us to solve this shortest
path problem by examining only a small portion of the graph, yielding a
time-efficient algorithm.

1 Introduction

In this paper, we study an interesting geometric optimization problem, called
optimal field splitting with feathering, which arises in a modern cancer therapy
technique named Intensity-Modulated Radiation Therapy (IMRT). The quality of
IMRT depends on the ability to accurately and efficiently deliver the prescribed
dose distributions of radiation, commonly called intensity maps (IMs), to the
tumor while sparing the surrounding normal tissues. An IM is specified by a set
of nonnegative integers on a 2-D grid, each of which indicates the amount of
radiation to be delivered to the corresponding body region.

In current clinical practice, an advanced tool for IM delivery is the multileaf
collimator (MLC) [17]. An MLC consists of several pairs of uniform-sized rect-
angular tungsten alloy leaves which can move left and right to form different
� This research was supported in part by the NSF grants CCF-0830402 and CCF-
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rectilinear regions, called MLC-apertures. The cross-section of a radiation beam
is shaped by an MLC-aperture. Due to the mechanical design of the MLCs, there
are some restrictions on the beam-shaping regions [17]. One common constraint
is the maximum leaf spread : each MLC leaf cannot travel away from the vertical
center line of the MLC more than a certain distance Δ (e.g., Δ = 14.5 cm for
the Varian MLCs). Thus, an IM with a large width may not be enclosed within
a single MLC-aperture. Today large intensity maps frequently occur [18]. Such a
large IM needs to be split into multiple sub-IMs, each being delivered separately.

One commonly used IMRT technique for IM delivery using an MLC is the
“step-and-shoot” method [4,17].Mathematically speaking, the “step-and-shoot”
technique can be viewed as an IM segmentation problem: given an intensity
map A = (ai,j)m×n, decompose A into A =

∑κ
k=1 αkSk, where Sk is a special

0-1 matrix specifying a segment that can be conformed by an MLC-aperture,
αk is the amount of radiation delivered through Sk, and κ is the number of
segments used to deliver A. The MLC leaves move to form each of those κ
segments, and to deliver αi units of radiation for the corresponding segment
to achieve the delivery of the whole IM. The number of monitor units (MUs),
which is determined by

∑κ
k=1 αk, is a critical measure for the efficiency of the

step-and-shoot delivery. In fact, it determines the radiation delivery time which
is ideally minimized to reduce the impact of intra-fraction organ motions [17]. In
addition, the reduction of delivery time enables to minimize the loss of biological
effectiveness, improving the effectiveness of IMRT [6]. In general, the minimum
number of MUs for delivering an IM is closely related to the complexity of the
IM, which is unfortunately not well defined. Some researchers use the sum of
positive gradients to measure the complexity [20,2,3]. In this paper, we adopt
the total variation of an IM to measure the complexity [16]. More precisely, the
complexity of an IM A, C(A) =

∑m
i=1

(
a2

i,1 +
∑n−1

j=2 (ai,j − ai,j+1)2 + a2
i,n

)
. Süss

and Küfer found that if the total variation of an intensity map increases, the
minimum number of MUs used to deliver it is expected to increase as well [18].
Thus, the total variation is a good measure of the complexity of an IM.

The splitting of an IM may result in a prolonged delivery time, thus degrading
the treatment quality. The goal of the optimal field splitting, is to find a way to
split a large IM into a set of sub-IMs whose sizes are no larger than a threshold,
such that the total complexity of those sub-IMs is minimized, yielding optimized
treatment quality.

A natural way for splitting a large IM is to use vertical straight lines, yield-
ing abutting sub-IMs. However, if the borders of two abutting sub-IMs are not
precisely aligned, hotspots or coldspots will be introduced. That kind of field
mismatching problem is common due to the uncertainties of the patient setup
and organ motion [8,18]. To alleviate such a problem, a commonly used medi-
cal practice is a so-called field feathering technique [8,18]. With this technique,
a large IM is split into a set of sub-IMs, such that each sub-IM Sk is subject
to the maximum leaf spread constraint, and any two adjacent sub-IMs overlap
over a central feathering region. Each cell in the feathering region belongs to two
adjacent sub-IMs, with non-negative intensity value in both sub-IMs.
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Recently, several field splitting algorithms have been reported in the litera-
tures on improving the delivery efficiency and accuracy for large IMs. To our best
knowledge, Kamath et al. first gave an O(mn2) time algorithm to split along
column using vertical lines into at most three sub-IMs while minimizing the to-
tal MUs, with or without feathering [9]. They also gave an algorithm for a more
general field splitting with the field width as the only constraint. However, the
algorithm again only works for no more than three sub-IMs [8]. In practice, the
current use of the high resolution motorized micro multileaf collimator, e.g. one
manufactured by MRC systems GmbH Heidelberg which has a maximum field
width of 7.2 cm [15], may require to split an IM into more than three sub-IMs
to treat large tumor sites. Wu formulated the field splitting without feathering
problem for an arbitrary field width using vertical lines as a k-link shortest path
problem and developed an O(mn�) time algorithm, where � is the maximum
allowed field width [19]. Chen et al. developed a field splitting algorithm in which
the total MUs is minimized for an arbitrarily large IM field. Their algorithm runs
in time O(mn+mξd−2), where d is the number of the resulting sub-IMs and ξ is
the reminder of n divided by � [5]. By exploring the properties of the complexity
function that adopts the sum of positive gradients of an IM, Wu et al. achieved a
field splitting algorithm that runs in time O(mnα(�)), where α(·) is the inverse
Ackermann function [20].

In this paper, we study the following optimal field splitting with minimized
total variation (OFS-TV) problem. Given an IM A = (ai,j)m×n of size m × n,
an integral maximum field width � > 0, and the feathering region width range
0 < δ < Δ < �, split A with vertical lines into a sequence of d = � n−δ

�−δ � ≥ 2
sub-IMs, such that: (1) the width of each sub-IM, except the last one, is �,
and the width of the last one is larger than 0 and no larger than �; (2) any
two neighboring sub-IMs in the sequence overlap each other and the width of
overlapping (feathering) region is between δ and Δ; (3) no sub-IM overlaps
completely with its neighbors; and (4) the total complexity of all these sub-IMs
is minimized.

By exploring convexity of the OFS-TV problem, we develop an efficient
O(mn�2α(�) log U) time algorithm, where U is the largest entry in the input
IM. The algorithmic techniques used include local searching, proximity scaling,
and Monge matrix searching. Although we adopt a similar algorithm framework
as in Wu et al. [20], judicious characterization of the total variation measure of
an IM is critical for achieving our efficient algorithm. In our algorithm, we first
model the computation of an “optimal” set of (d-1) feathering regions as a short-
est path problem in a directed acyclic graph (DAG). This DAG has a special
“layered” structure, which consists of d layers of nodes with any two adjacent
layers inducing a bipartite graph. We are able to calculate each edge weight in
O(�3 log U) time using the local searching and proximity scaling techniques.
Moreover, the edge weights of the DAG satisfy the Monge property [1]. Thus,
we can solve this shortest path problem by examining only a small portion of
the graph, and our algorithm runs in an O(mn�2α(�) log U) time. Then, the
optimal set of (d-1) feathering regions are decomposed to yield an optimal split.
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In practice, if U is not much larger than �, we can obtain an O(mnUα(�))
time algorithm without using the proximity scaling technique.

2 The Algorithm

In this section, we present our O(mn�2α(�) log U) time algorithm for solving
the optimal field splitting with minimized total variation (OFS-TV) problem.
The algorithm consists of two major steps: (1) Computing an optimal set of
(d− 1) feathering regions; and (2) decomposing each of those feathering regions
to form an optimal split consisting of d sub-IMs.

2.1 The Shortest Path Model for Computing an Optimal Set of
Feathering Regions

Denote the j-th column of IM A as A[j], and A[j..k] is a sub-matrix consists
of all elements of A from column j to column k. Since the widths of the first
d− 1 sub-IM are fixed as � (to make full use of the field width), only d vertical
lines {j1, j2, . . . , jd} are needed to identify the starting column of each sub-IM
(j1 is fixed as 1). Then the k-th feathering region can be easily determined as
Fk = A[jk+1..jk+�−1]. And Fk is somehow decomposed into F

(0)
k and F

(1)
k such

that Fk = F
(0)
k + F

(1)
k . A feasible split of IM A, denote by S = {S1, S2, . . . , Sd},

is defined as follows. For each k ∈ {1, 2, . . . , d}, Sk = F
(1)
k−1||A[jk−1 + �..jk+1 −

1]||F (0)
k , where || is a concatenation operator, F

(1)
0 = F

(0)
d = ∅, j0 = −� +1 and

jd+1 = n + 1. The decomposition of each feathering region Fk may increase the
total complexity. Our goal is to find a set F of the (d − 1) feathering regions
such that the total increase of the complexity introduced by the decomposition
is minimized.

In this paper, we adopt a similar shortest path model as used in Wu et al. [20]
to compute an optimal set of (d − 1) feathering regions. A weighted directed
acyclic graph (DAG) G = (V, E) is constructed, as follows.

– For each column j of A, there is exactly a node uj ∈ V . The nodes are
organized into d layers, with each layer Lk containing all the possible starting
columns of the sub-IM Sk. As shown in Wu et al. [20], the first layer L1
consists of only one node u1, i.e., the first sub-IM S1 has to start at the
first column of A; each other layer Lk (k = 2, 3, . . . , d) contains μ = (n − δ)
mod (�−δ) nodes {uj | (k−1)(�−δ)+1−μ ≤ j ≤ (k−1)(�−δ)+1}; and
the layers are mutually exclusive (i.e., Lk ∩Lk+1 = ∅ for k = 1, 2, . . . , d− 1).

– For any node ui ∈ Lk and uj ∈ Lk+1, there is edge (ui, uj) if and only if
the width of the overlap region of the two corresponding sub-IMs is between
δ and Δ. The edge weight w(ui, uj) is computed as the minimum increased
complexity Δcpl of the corresponding feathering region A[j .. i + � − 1].

– A dummy sink node t is added, and each node in Ld has a directed edge to
t with a weight of 0.
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It is clear that a shortest u1-to-t path, encoding all the starting columns of the
sub-IMs, thus defines an optimal set of (d − 1) feathering regions. Given that
the weight of each edge can be accessed in O(1) time, it is well-known that
computing a shortest path in G takes O(|V |+ |E|) time, where |V | = n + 1 and
|E| = O(n�). Unfortunately, we are not able to compute the weight of each edge
in O(1) time. The edge weight computation becomes the bottleneck for solving
the OSF-TV problem. Next, we show how to compute the edge weights efficiently
and how to use the Monge property to avoid the computation of non-necessary
edge weights to speed up the shortest path computation in G.

2.2 Efficient Algorithm for the Edge Weight Computation

Note that an edge (ui, uj) ∈ E with ui ∈ Lk and uj ∈ Lk+1 defines a feathering
region Fk = A[j .. i + �− 1] and the weight of this edge equals to the minimum
increase of the complexity of Fk. In this section, by exploiting the convexity of
the problem, we develop our efficient algorithm for computing the weight of each
edge (ui, uj) ∈ E based on the local searching and proximity scaling techniques.

Consider the feathering region Fk = A[l..r] with a width of ω = r − l + 1,
which is the overlapping region of Sk and Sk+1. Assume that Fk is decomposed
into F

(0)
k = (xi,j)m×ω and F

(1)
k = (yi,j)m×ω. Then the contribution R(Fk) of Fk

to the complexity of IM A is
∑m

i=1
∑r+1

j=l (ai,j − ai,j−1)2. While the contribution

R(F (0)
k ) to the complexity of Sk is

R(F (0)
k ) =

m∑
i=1

⎛⎝(xi,l − ai,l−1)2 +
r∑

j=l+1

(xi,j − xi,j−1)2 + x2
i,r

⎞⎠ (1)

and similarly, the contribution R(F (1)
k ) to the complexity of Sk+1 is

R(F (1)
k ) =

m∑
i=1

⎛⎝y2
i,l +

r∑
j=l+1

(yi,j − yi,j−1)2 + (ai,r+1 − yi,r)2

⎞⎠ (2)

Therefore, it is natural to define the increase of the complexity due to the de-
composition of the feathering region as R(F (0)

k ) + R(F (1)
k ) − R(Fk).

Note that the term R(Fk) is a constant for any decomposition of Fk, and the
decomposition of Fk can be performed on each row independently. We define the
following optimal vector decomposition (OVD) problem. Given a non-negative
integer vector b = (b1, b2, . . . , bN ), decompose b into two non-negative integer
vectors x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yN ), such that (1) x1 = b1 and
yN = bN ; (2) ∀j ∈ [1, N ], bj = xj + yj ; and (3) Wovd(x)+Wovd(y) is minimized,
where the function Wovd(z) = z2

1 +
∑N

j=2(zj − zj−1)2 + z2
N for a given vector

z = (z1, z2, . . . , zN ).
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Then, for a given feathering region Fk = A[l..r], we can apply the OVD
algorithm to each extended row of Fk, i.e. (ai,l−1, ai,l, . . . , ai,r, ai,r+1) (ai,0 =
ai,n+1 = 0), yielding an optimal decomposition xi and yi with Wovd(xi) +
Wovd(yi) minimized. Clearly, the optimal decomposition of Fk is specified by
F

(0)
k = (xi)m

i=1 and F
(1)
k = (yi)m

i=1. Thus, F
(0)
k and F

(1)
k is an optimal decompo-

sition of Fk minimizing the increase of the complexity.
Unfortunately, the linear algorithm developed in [20,5] for the OVD problem,

in which a different IM complexity measure was used, is not applicable for our
case. A new technique is needed.

The graph model for the OVD problem
Given a non-negative integer vector b = (b1, b2, . . . , bN), we define an edge-
weighted DAG H = (VH , EH) for the OVD problem, as follows.

The element b1 (resp., bN ) of b corresponds to exactly one node v1(b1) (resp.,
vN (0)) in VH , briefly called the source (resp., sink) node s (resp., t) of H . For
every other element bj (j = 2, 3, . . . , N − 1), there is a set Col(j) of bj + 1 nodes
in H corresponding to bj , with Col(j) = {vj(h) | h = 0, 1, . . . , bj}, namely the
bj-column of H . Intuitively, the nodes in Col(j) give all possible distinct ways to
decompose bj into two non-negative integers (i.e., each node vj(h) corresponds
to decomposing bj into h and bj − h). Note that b1-column (resp., bN -column)
consists of only one node v1(b1) (resp., vN (0)). For any two adjacent columns
Col(j) and Col(j + 1) (j = 1, 2, . . . , N − 1), each node vj(h) ∈ Col(j) has a
directed edge e to every node vj+1(h′), with an edge weight w(e) = (h′ − h)2 +
((bj+1 − h′) − (bj − h))2.

Consider any s-to-t path p in H , with p = v1(h1) → v2(h2) → . . . →
vN−1(hN−1) → vN (hN ), where h1 = b1 and hN = 0 (i.e., v1(h1) is the source s
and vN (hN ) is the sink t). Let x(p) = (x1, x2, . . . , xN ) and y(p) = (y1, y2, . . . ,
yN ) be two non-negative integer vectors defined from the path p, in the following
way: for each j = 1, 2, . . . , N , xj = hj and yj = bj − hj . Note that each s-to-t
path p in H actually define a feasible decomposition of b, i.e., b = x(p) + y(p).
The total weight of x(p) and y(p), Wovd(x(p))+ Wovd(y(p)), equals to the total
sum of the weights of the edges on p, i.e., w(p) = Wovd(x(p)) + Wovd(y(p)).
Hence, a shortest s-to-t path in H , which can be computed in O(NU2) time
(U = maxN

j=1 bj), specifies an optimal decomposition of b.
This is a pseudo-polynomial time algorithm for the OVD problem, which

may not be efficient enough, especially when the elements of b are large. We
next exploit the convexity and unimodularity of the problem to achieve our
polynomial O(N3 log U) time OVD algorithm.

Local Searching
Assume that (x, y) is a decomposition of the vector b. In fact, x defines an
s-to-t path in graph H and vice verse. Let Δxj = xj −xj−1. Then, the objective
function of the OVD problem E(x) = Wovd(x)+Wovd(y) =

∑N
j=2 cj(Δxj), where

cj(Δxj) = Δx2
j + (bj − bj−1 − Δxj)2 is a convex function of Δxj .
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The OVD is thus formulated as an integer programming (IP) problem:

min E(x) =
N∑

j=2

cj(xj − xj−1) =
N∑

j=2

cj(Δxj)

s.t. 0 ≤ xj = x1 +
j∑

k=2

Δxk ≤ bk ∀j ∈ [2, N − 1]

x1 = b1 xN = 0

(3)

To use the local searching strategy, we next introduce the concept of L�-convexity
of an integer function [12,13,14].

Definition 1. A function f with domain D is L�-convex if and only if ∀x,y ∈ D
and α ∈ Z+, (x − α1) ∨ y,x ∧ (y + α1) ∈ D, and

f((x − α1) ∨ y)) + f(x ∧ (y + α1)) ≤ f(x) + f(y)

where ∨ and ∧ stands for component-wise maxima and minima, respectively.

Lemma 1. In Equation (3), the objective of the OVD problem is L�-convex.

From the definition 1, the L�-convexity can be easily verified for Equation (3)
due to the convexity of the functions cj(·).

For an OVD solution x◦, define the upper strip Sup(x◦) (resp., lower strip
Slw(x◦)) of x◦ with Sup(x◦) = {x | x◦ ≤ x ≤ x◦ + 1, x1 = b1, xN = 0} (resp.,
Slw(x◦) = {x | x◦ ≥ x ≥ x◦ − 1, x1 = b1, xN = 0} ). The L�-convexity indicates
that the local searching strategy works for the OVD problem [13,11]. The key
idea is in the following: Starting with an initial solution x◦, keep on searching
the upper strip and the lower strip of x◦ to find a better solution. We call the
search on the upper strip or the lower strip as a local search step. Kolmogorov
and Shioura proved that after O(U) local search steps, the algorithm terminates
and can find the optimal solution to the OVD problem.

Let us consider the local search step on the upper strip Sup(x◦). Note that
each element xj of x in Sup(x◦) corresponds to exactly the node vj(xj) ∈ Col(j)
in H . Thus, the upper strip Sup(x◦) induces a subgraph HS of H , whose node set
is {v1(b1)}∪

⋃N−1
j=2 {vj(xj), vj(xj +1)}∪{vN(0)}. Computing an optimal solution

x′ in Sup(x◦) is equivalent to find a shortest s-to-t (i.e., v1(b1)-to-vN(0)) path in
the subgraph HS, which obviously can be done in O(N) time. The local search
on the lower strip Sup(x◦) can be done in the same way.

Lemma 2. Given a non-negative integer vector b = (b1, b2, . . . , bN), the OVD
problem can be solved in O(NU) time, where U = maxN

j=1 bj.

Note that the weights of the edges between two adjacent columns Col(j) and
Col(j + 1) in H satisfy the Monge property [1]. Thus, applying the matrix
searching technique [1], we can also obtain an O(NU) time algorithm for solving
the OVD problem. Although the OVD algorithm based on the local searching
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technique outperforms that based on the straightforward s-to-t shortest path
algorithm by a factor of O(U), it is still a pseudo-polynomial time algorithm. We
next show how to apply the proximity scaling technique introduced by Hochbaum
et al. [7] to achieve a polynomial time OVD algorithm.

Proximity scaling
The proximity scaling technique is used to solve separable convex IP problems
with linear constraints whose coefficient matrix has a bounded absolute value for
each of its subdeterminants [7]. To solve an integer programming problem (IP),
a sequence of scaled versions of the integer programming problem (IP-s) need to
be solved. We take the objective function E(x) =

∑N
j=2 cj(Δxj) in Equation (3)

which is separable convex. Since all coefficient of Δxj in Equation (3) are 1, and
the coefficients of Δxj form a triangular matrix with all 1’s, there is no submatrix
with absolute value of a determinant larger than 1. Thus, the matrix is totally
unimodular with the largest absolute value of the subdeterminants ΔA = 1.

Lemma 3. The coefficient matrix of Δxj in Equation (3) is totally unimodular.

Thus, we can apply the proximity scaling technique for solving the OVD problem.
In each scaling iteration we assume that every Δxj is a multiple of s, i.e., Δxj =
λjs, where λj is some non-negative integer for each j. If we obtain an optimal
solution Δxs to this OVD problem with the scaling factor of s (denoted by
OVD-s), then there exists an optimal solution Δx to the original OVD problem
that is within a distance (N − 2)s away from Δxs, that is, ||Δxs − Δx1||∞ ≤
(N − 2)sΔA = (N − 2)s [7]. That means in the next iteration, we only need to
search the strip Sd = {Δx | Δxs − (N − 2)s ≤ Δx ≤ Δxs + (N − 2)s} for the
optimal solution to the original OVD problem. When s reaches 1, we obtain the
optimal solution Δx∗ to the OVD problem.

To solve the OVD-s problem, note that a solution Δx can be obtained by
a linear transformation on the corresponding solution x, that is, ∀j ∈ [2, N −
1], Δxj = xj − xj−1. Hence, we can solve the OVD-s problem using the graph
model with the local searching technique to obtain an optimal solution, denoted
by xs; then transform it to the solution Δxs. Note that ||Δxs − Δx1||∞ ≤
(N − 2)s, where Δx1 is the vector the linear transformation (Δxj = xj − xj−1)
of the optimal solution x1 to the original OVD problem. With the reverse trans-
formation xj = x1+

∑j
k=2 Δxk, we have ||xs−x1||∞ ≤ (N−2)2s, where x1 is an

optimal solution to the original OVD problem. This indicates that in our graph
model, we need to search the strip Sg = {x | xs−(N−2)2s ≤ x ≤ xs+(N−2)2s}
for each scale s. Recall that in the OVD-s problem, we assume that the solution
is a multiple of s. Thus, we resample the strip Sg with a factor of s, yielding a
corresponding subgraph Hs of H . The number of nodes in Hs is O(N3), with
each of the N columns having O(N2) nodes. Applying our local searching strat-
egy, an optimal solution xs to the OVD-s problem can be found in O(N3) time.
For our OVD-s problem, we start with the initial scale s = U

4(N−2)2 , where U is
the maximum intensity level of b. Then, ||xs − x1||∞ ≤ U

4 . Hence, the scaling
algorithm terminates in O(log U) iterations.
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Lemma 4. Given a non-negative integer vector b = (b1, b2, . . . , bN), the OVD
problem can be solved in O(N3 log U) time, where U = maxN

j=1 bj.

Up to this point, the OSF-TV problem can be solved, as follows. The optimal
set of (d − 1) feathering regions can be obtained using the shortest path model
in Section 2.1 to compute a shortest u1-to-t path in G. The graph G has (n + 1)
nodes and O(n�) edges. Based on Lemma 4, the weight of each edge in G
can be computed in O(m�3 log U) time since IM A has m rows, where U is
the maximum intensity level of A. Thus, the optimal set of feathering regions
can be computed in O(mn�4 log U) time. Note that each row of the resulting
feathering regions can be decomposed by Lemma 4, yielding a split of the IM A
with d sub-IMs, whose total sum of the complexity is minimized.

Lemma 5. Given an instance of the OSF-TV problem, an optimal split can be
obtained in O(mn�4 log U) time.

2.3 Accelerating the Computation of the Shortest u1-to-t Path in
G by Monge Property

In this section, we exploit the Monge property[1] of the graph G = (V, E) define in
Section 2.1. This property enables us to compute a shortest u1-to-t path in G by
only examining a small portion of the edge set E, yielding anO(mn�2α(�) log U)
time algorithm, where α(·) is the inverse Ackermann function.

Lemma 6. Given four nodes ui, ui+1 ∈ Lk and uj , uj+1 ∈ Lk+1 in G with
1 < k < d, w(ui, uj) + w(ui+1, uj+1) ≤ w(ui, uj+1) + w(ui+1, uj).

Proof. First, if either (ui, uj+1) or (ui+1, uj) is not an edge in G, then we can
assume that the weight w(·, ·) of a non-existent edge is +∞ and the lemma holds.
We thus consider the case that both (ui, uj+1) and w(ui+1, uj) are edges in G,
which also indicates that both (ui, uj) and w(ui+1, uj+1) are graph edges. Hence,
we only need to prove the lemma assuming all (ui, uj), (ui+1, uj+1), (ui, uj+1),
and (ui+1, uj) are edges in G.

Note that the edge cost is defined as the increase of the complexity due to
the decomposition (F (0)

k , F
(1)
k ) of the feathering region Fk, that is, R(F (0)

k ) +
R(F (1)

k ) − R(Fk). The part of R(F (0)
k ) + R(F (1)

k ) can be computed by the OVD
algorithm in Section 2.2, and the part R(Fk) is invariant with the decomposi-
tion. We next examine R(F (0)

k ) + R(F (1)
k ) and R(Fk), separately. Decompose

the edge weight w(ui, uj) into w1(ui, uj) − w2(ui, uj), where w1(ui, uj) is the
total complexity induced by the decomposition of the corresponding feathering
region, i.e. R(A[j .. i + � − 1](0)) + R(A[j .. i + �− 1](1)), and w2(ui, uj) is the
original complexity of A[j .. i + � − 1], i.e., R(A[j .. i + � − 1]).

Recall that the weight w1(ui, uj) can be computed by applying the OVD algo-
rithm on each extended row of the feathering region A[j .. i+�−1], separately.
Thus, it is sufficient to assume that A consists of only one row.

In the graph model for the OVD problem, the optimal decomposition of a
feathering region of A can be represented by a shortest path from vi−1(bi−1)
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to vj+1(0). As illustrated in Fig. 1, assume that the dashed line (the dotted
parts stands for omissions in the intermediate columns) is a shortest path from
vi−1(bi−1) to vj+2(0), thus the weight of this path is w1(ui, uj+1). We also assume
that the solid line is a shortest path from vi(bi) to vj+1(0), thus the weight of
this path is w1(ui+1, uj). Denote the dashed path by pb = vi−1(bi−1) → vi(xi)�
· · ·� vj+1(xj+1) → vj+2(0), where xi ≤ bi and xj+1 ≥ 0, and denote the solid
path by pr = vi(bi)� · · ·� vj+1(0). We then distinguish two cases.

1. If xi = bi and xj+1 = 0, then both path-ends of the solid path pr are on
the dashed path pb. We can simply concatenate vi−1(bi−1) → vi(xi) and
pr together to form a vi−1(bi−1)-to-vj+1(0) path, and pick the sub-path of
pb without the first line segment vi−1(bi−1) → vi(xi) as a vi(bi)-to-vj+2(0)
path. It is clear that the total weight of the two new paths is the same
as the total weight of the dashed and the solid paths. Since w1(ui, uj) and
w1(ui+1, uj+1) are the weights of the two shortest paths from vi−1(bi−1) to
vj+1(0) and from vi(bi) to vj+2(0), respectively, we have

w1(ui, uj) + w1(ui+1, uj+1) ≤ w1(ui, uj+1) + w1(ui+1, uj)

2. Otherwise, there must exists some locations where the dashed path and
the solid path across (or overlap) each other, as shown in Fig. 1. In this
case, we can introduce two new edges to uncross the dashed and the solid
paths, yielding two new paths vi−1(bi−1)-to-vj+1(0) and vi(bi)-to-vj+2(0) ,
as shown with the gray thick lines in Fig. 1. More precisely, assume that
the crossing (overlapping) happens at columns Col(l) and Col(l + 1), the
dashed line segment is vl(xl) → vl+1(xl+1) and the solid line segment is
vl(x′

l) → vl+1(x′
l+1), where xl ≤ x′

l and xl+1 ≥ x′
l+1. Since the edge weights

are convex with respect to Δx

wl(vl(xl), vl+1(x′
l+1)) + wl(vl(x′

l), vl+1(xl+1))
≤wl(vl(xl), vl+1(xl+1)) + wl(vl(x′

l), vl+1(x′
l+1))

Again, Since w1(ui, uj) and w1(ui+1, uj+1) are the weights of the two shortest
paths from vi−1(bi−1) to vj+1(0) and from vi(bi) to vj+2(0), respectively, thus

w1(ui, uj) + w1(ui+1, uj+1) ≤ w1(ui, uj+1) + w1(ui+1, uj)

For the w2(ui, uj) = R(A[ui..uj]) =
∑m

t=1
∑j+1

k=i(at,k − at,k−1)2, it is not hard to
verify that

w2(ui, uj) + w2(ui+1, uj+1) = w2(ui, uj+1) + w2(ui+1, uj). (4)

Therefore, we have

w(ui, uj) + w(ui+1, uj+1) ≤ w(ui, uj+1) + w(ui+1, uj) (5)

This proves the lemma. �
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i − 1 i i + 1 l l + 1 j j + 1 j + 2

Fig. 1. Illustrating the Monge property. Note that on the same column Col(j), the
higher the node, the smaller the corresponding xj . The bottom node on column Col(j)
is vj(bj), and the top one is vj(0).

The Monge property as shown in Lemma 6 can be used to speed up the com-
putation of the shortest u1-to-t path in G. For each node uj in the k-th layer
Lk, denote by swk(j) the shortest path weight of u1-to-uj. Clearly, swk(j) =
min{swk−1(j′) + w(uj′ , uj)|uj′ ∈ Lk−1, � − Δ ≤ j − j′ ≤ � − δ}. Note that
(uj′ , uj) is an edge in E if and only if uj′ ∈ Lk−1, uj ∈ Lk, and � − Δ ≤
j − j′ ≤ � − δ. Thus, all the outgoing edges of each node uj′ and the in-
coming edges of each uj can be represented implicitly. In addition, any edge
in G can be accessed in O(1) time and its weight can be computed in T =
O(mω3 log U) = O(m�3 log U) time, where U is the maximum intensity level
of A. The Monge property is normally defined on matrices [1]. We consider
the matrix Mk that contains the path weight swk−1(j′) + w(uj′ , uj) for ev-
ery edge (uj′ , uj) between nodes in two consecutive layers Lk and Lk+1 of G,
where 1 < k < d. Lemma 6 actually indicates that Mk is a staircase matrix
with concave Monge property [1,10]. Hence, by using the staircase Monge ma-
trix searching technique [10], it takes O(T �α(�)) time to compute all shortest
paths from u1 to all nodes in Lk when knowing all swk−1(j′) of Lk−1, where α(·)
is the inverse Ackermann function. Considering all d layers, a shortest u1-to-t
path can be computed in O(dm�3 log Uα(�)) = O(mn�2α(�) log U) time.

Theorem 1. Given an IM A of size m×n, an integer maximum allowable field
width �, and the feathering region width range 0 < δ < Δ < �, the optimal
field splitting with minimized total variation (OFS-TV) problem can be solved in
O(mn�2α(�) log U) time, where U is the maximum intensity level of A.
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applications such as turnaround scheduling or overlay computing. In both
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for all jobs. In this paper, we assume there is one machine permanently
available and the processing time of each job is equal to its weight for
all jobs. We develop the first PTAS when there are constant number
of unavailable intervals. One main feature of our algorithm is that the
classification of large and small jobs is with respect to each individual
interval, thus not fixed. This classification allows us (1) to enumerate the
assignments of large jobs efficiently; (2) and to move small jobs around
without increasing the objective value too much, and thus derive our
PTAS. Then we show that there is no FPTAS in this case unless P =
NP .

For fixed job model, we first show that if job weights are arbitrary then
there is no constant approximation for a single machine with 2 fixed
jobs or for two machines with one fixed job on each machine, unless
P = NP . As the preventive model, we assume that the weight of a
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1 Introduction

In this paper we study the problems of scheduling n weighted jobs to m identical
machines with the objective of minimizing total weighted completion time sub-
ject to availability constraints. We consider two different models of availability
constraints: the preventive model where the unavailability is due to preventive
machine maintenance, and the fixed job model where the unavailability is due to
a priori assignment of some of the n jobs to certain machines at certain times.
Both models have applications such as turnaround scheduling or overlay com-
puting ([4]). In both models, we assume that m is a constant, and the jobs are
non-resumable, i.e., if interrupted by an unavailable interval, a job has to be
restarted after the machine becomes available.

Let us first introduce some notations. For convenience, we use 1, 2, · · · , n to
denote the jobs. Each job i has a processing time pi and a weight wi. Given a
schedule S of the jobs, the completion time of job i in S is denoted by Ci(S).
If S is clear from the context, we will use Ci for short. The total weighted
completion time is denoted by Fw(S) =

∑
wiCi(S). The goal is to schedule the

set of jobs on one or more parallel machines so as to minimize Fw(S). For single
machine with k unavailable intervals due to preventive maintenance, our problem
is denoted by 1, hk | nr−a |

∑
wiCi. For parallel machine environment, let M =

{M0, M1, M2, · · · , Mm} be a set of m+1 parallel machines, where machine M0 is
always available and machines M1, M2, · · · , Mm have k1, k2, · · · , km unavailable
intervals, respectively. Then our problem is denoted by P1,m, hk1 , hk2 , · · · , hkm |
nr − a |

∑
wiCi. If the unavailable intervals are due to fixed jobs, the problems

are denoted as 1, hc | nr − a, fixed |
∑

wiCi for single machine with c fixed
jobs and P0,m, hk1 , hk2 , · · · , hkm | nr − a, fixed |

∑
wiCi for m machines with

k1, k2, · · · , km fixed jobs respectively.

Literature Review. The preventive model has been studied a lot in the literature,
see for example [2], [10], [11], [12], [15]. We review some of the related results
here. For more information, please refer to the surveys by Saidy et. al ([18]),
Schmidt([20]), Lee ([14]) and the references therein. When the machines are
always available, the single machine scheduling problem, denoted as 1 || wiCi,
can be solved optimally by the WSPT (Weighted Shortest Processing time)
algorithm which schedules the jobs in the nondecreasing order of pi/wi ([17]).
The problem becomes NP-hard when there are multiple machines. The problem
1, h1 | nr − a |

∑
wiCi is studied in [1] and [13] and is shown to be NP-hard

in the ordinary sense. Kellerer and Strusevish ([9]) proposed a 4-approximation
for 1, h1 | nr − a |

∑
wiCi and an FPTAS. Kacem and Mahjoub ([7]) and Fu

et al. [6] subsequently developed FPTASs to improve the time complexity. For
the multiple machine environment, Kaspi and Montreuil ([8]) and Liman ([16])
studied the case where the jobs are unweighted, and each machines only has
a single unavailable interval starting at time 0. If the jobs are weighted, Lee
([12]) provided dynamic programming for P1,1, h1 | nr − a |

∑
wiCi. Fu et al.

[6] showed that there is no polynomial time algorithm that approximates the
optimal solution to P0,2, h1, h1 | nr − a, wi = pi |

∑
wici within an exponential
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factor and they developed an FPTAS when there is only one unavailable interval
among all machines and jobs have arbitrary weight.

Scheduling with fixed job model was studied by Scharbrodt, Steger and
Weisser in [19]. They studied the makespan minimization problem and presented
a PTAS when m is a constant. Approximation algorithm was also developed in
[5]. Scharbrodt et. al also proved that when m is arbitrary, there is no approx-
imation algorithm with ratio 3/2 − ε unless P = NP . In 2009, Diedrich and
Jansen ([4]) complemented this negative result by giving a 3/2 + ε approxima-
tion algorithm. So far no result is known about the total weighted completion
time in this model.

New Contributions. For the preventive model, we derive a PTAS for the problem
P1,m, hk1 , hk2 , · · · , hkm | nr − a, wi = pi |

∑
wiCi and show that no FPTAS

exists for this problem. For the fixed job model, we first show that with arbitrary
job weights, no constant approximation exists for 1, h2 | fixed |

∑
wiCi or

P0,2, h1, h1 | fixed |
∑

wiCi. We then extend our PTAS for preventive model
to solve the problem P0,m, hk1 , hk2 , · · · , hkm | nr − a, fixed , wi = pi |

∑
wiCi.

It is tempting to compare the complexity between preventive model and fixed
job model. It has been shown that there is no PTAS for P0,m, hk1 , hk2 , · · · , hkm |
nr − a, wi = pi |

∑
wiCi in the preventive model. This is the reason that we

require at least one machine is permanently available; on the other hand, for
fixed job model, assuming wi = pi for all jobs, the PTAS works even when all
machines have unavailable intervals. In this sense, the problems in the fixed job
model are somehow easier than the problems in the preventive model. However,
the result of no constant approximation mentioned above shows that for the
general case of arbitrary job weight, the problems in fixed job model are as
difficult as the problems in the preventive model.

One technical contribution of this paper lies in the PTAS design, where the
jobs are classified as large jobs and small jobs with respect to each individual
interval. That is, different intervals may define different sets of large jobs and
small jobs. This method allows us (1) to enumerate the assignment of large jobs
efficiently; (2) to move the small jobs around without increasing the objective
value too much, and thus derive our PTAS. This may give some insights for
other related problems or performance criteria.

2 Preventive Model

In this section, we study the case that the machine unavailability is due to preven-
tive maintenance. We first describe our main results, a PTAS for P1,m, hk1 , hk2 ,
· · · , hkm | nr − a, wi = pi |

∑
wiCi. Then we show this problem doesnot admit

FPTAS.
For each machine, its availability can be described as a sequence of alternat-

ing available intervals and unavailable intervals, all the intervals are bounded
except the last which may be available or unavailable. Let c1 be the total num-
ber of the bounded available intervals on machines M1, M2, · · · , Mm. We use
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I1, · · · , Ic1 to denote these intervals and their lengths and let si be the starting
time of interval Ii. It is easy to see that c1 is bounded by the total number of
unavailable intervals

∑
hki . Suppose machine M0, M1, · · · Mc2 , c2 ≤ m, each

has an unbounded available interval, denoted by I∞0 , I∞1 , · · · , I∞c2
, respectively.

Let s∞i be the starting time of interval I∞i .
Let S be any feasible schedule of the job set J = {1, 2, · · · , n}, where pi = wi

for all i. Schedule S assigns each job to an available interval. To minimize the
total weighted completion time, it is sufficient to assume that S does not contain
any idle time between the jobs in each interval. Furthermore, the jobs in each
available interval can be scheduled in an arbitrary order.

For any set of jobs J , let P (J) be the total processing time of jobs in J ; i.e
P (J) =

∑
i∈J pi. Let Q(J) be the minimum total weighted completion time of

jobs in J on a single machine if jobs were continuously scheduled from time 0.
Since we assume pj = wj for all j, then the order of the jobs in the schedule
does not matter, and we always have

Q(J) =
∑
i∈J

p2
i +

i=j∑
i,j∈J

pipj ≥ 1
2

(∑
i∈J

pi

)2

= 1
2P (J)2 (1)

Assuming the jobs in the same interval are always scheduled in decreasing
order of their length, in this way, a schedule is uniquely determined by the
assignment of all the jobs to intervals. In this paper, we will use the assign-
ment and the schedule interchangeably unless we explicitly specify. We will use a
tuple to represent the job assignment in a schedule (maybe a partial sched-
ule): (X1, X2, · · · , Xc1 , Y0, Y1, · · · , Yc2), where Xi(1 ≤ i ≤ c1) contains jobs
assigned to bounded available interval Ii, and Yi(0 ≤ i ≤ c2) contains jobs
allocated to unbounded available interval I∞i . A feasible schedule or assign-
ment is one such that for all available intervals, the total length of the jobs as-
signed to it is less than the length of the interval. Given an assignment/schedule
(X1, X2, · · · , Xc1, Y0, Y1, · · · , Yc2), it is easy to verify that the total weighted
completion time of the schedule is:

Fw(S) =

(
c1∑

i=1

(Q(Xi) + siP (Xi))

)
+

(
c2∑

i=0

(Q(Yi) + s∞i P (Yi))

)
. (2)

Treating a schedule as an assignment of the jobs gives us a new perspective
of the schedules. To get a schedule of a set of jobs J , we just need to find an
assignment of the jobs to the available intervals in J . Let J = J1∪J2. If we have
an assignment of jobs in J1, an assignment of jobs in J2, then we can simply
combine them to get an assignment of all jobs in J . As we will see later, this is
one of the main ideas of our algorithm. We will also use the following facts in
our analysis later.

P (J1 ∪ J2) = P (J1) + P (J2) (3)
Q(J1 ∪ J2) = Q(J1) + Q(J2) + P (J1) · P (J2) (4)
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2.1 Polynomial Time Approximation Scheme

Given an instance of P1,m, hk1 , hk2 , · · · , hkm | nr − a, wi = pi |
∑

wiCi and a
constant 0 < ε < 1, our goal is to design an efficient algorithm that finds an
assignment of the jobs to machines so that the total weighted completion time
is at most (1 + ε) times the optimal. Our algorithm consists of four phases.

1. Phase I: Assign some of the large jobs to the bounded available intervals;
2. Phase II: Assign the remaining jobs including the small jobs and the remain-

ing large jobs to all the available intervals;
3. Phase III: Reassign some of the jobs to make the schedule feasible;
4. Phase IV: Search for the best schedule: both Phase I and II have many alter-

natives, thus result in many candidate schedules, find the one with minimum
weighted completion time.

As one can see, the main part of the algorithm lies in the first three phases where
we try to assign and reassign jobs. In Phase IV, we simply search for the best
solution. In the following, we describe each of the first three phases in detail,
and show how each step can be implemented efficiently.

Phase I: Assign Large Jobs to Bounded Available Intervals. First let
us define large job. Given a constant parameter 0 < δ < 1 which depends on
ε, for each bounded available interval Ii (1 ≤ i ≤ c1), we say that a job is a
large job with respect to Ii if its processing time is greater than or equal to δ · Ii;
otherwise, it is a small job with respect to Ii. Note that a job may be large with
respect to one interval while being small with respect to another.

To assign the large jobs into the bounded available intervals, we use brute
force. Specifically, a job can be assigned to Ii only if it is a large job with respect
to Ii. We enumerate all the possible assignment of large jobs to bounded intervals
such that the total length of jobs assigned to the interval Ii is at most Ii for
each 1 ≤ i ≤ c1. The following lemma gives a bound on the number of possible
assignments of the large jobs, see the Appendix for proof.

Lemma 1. There are at most O(n
c1
δ ) possible assignments of the large jobs,

where 0 < δ < 1 is a constant depending on ε.

Proof. For each bounded available interval Ii, the number of large jobs that can
be assigned to Ii is at most Ii/(δIi) = 1/δ. So there are at most O(n

1
δ ) possible

ways to assign large jobs to interval Ii. Since there are c1 bounded available
intervals, there are at most O(n

c1
δ ) possible assignments of the large jobs to

bounded available intervals in total.

Phase II: Assign Remaining Jobs. Once the large jobs in each interval have
been fixed, we use divide and conquer to assign the remaining jobs to all the
available intervals which includes c1 bounded intervals and c2 unbounded inter-
vals. For this phase, we allow infeasible assignments, that is, the total length
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of jobs assigned to the interval is more than the length of the interval. How-
ever, we only consider those assignments such that the total length of the large
and small jobs assigned to the interval is at most (1 + δ) times the length of
the interval, where δ is defined as in Phase I. We say these intervals are valid
(may be infeasible) with respect to δ. An assignment is valid (feasible) if and
only if all its intervals are valid (feasible). For each fixed large job assignment
(ul

1, · · · , ul
c1

, ∅, ∅, · · · , ∅), Phase II, as described below, returns a list of assign-
ments of the remaining jobs. Furthermore, if (us

1, · · · , us
c1

, v1, v2, · · · , vc2) is an
assignment in the returned list, then (u1, · · · , uc1 , v1, v2, · · · , vc2), uj = ul

j ∪ us
j ,

1 ≤ j ≤ c1, is a valid assignment of all the jobs.

1. If there is only a single remaining job Jk, it can be assigned to any of the
unbounded available intervals, or to those bounded intervals Ii such that Jk

is small with respect to Ii, and Ii remains a valid interval with respect to δ,
return all these possible assignments of Jk.

2. Otherwise
(a) divide the remaining jobs into two equal sets J1 and J2
(b) recursively assign the jobs in J1 and J2, let List1 and List2 be the

returned lists of assignments for J1 and J2, respectively.
(c) for each assignment in List1 and each assignment from List2, combine

them to get an assignment of the jobs in J1 ∪ J2.
(d) filter the assignments:

Let f = (1 + δ
4 log n ). We say two assignments (u1, · · · , uc1+c2+1) and

(v1, · · · , vc1+c2+1) are in the same region with respect to δ if for any
1 ≤ j ≤ c1 + c2 + 1, there exist two integers k1, k2, such that fk1−1 ≤
P (uj), P (vj) < fk1 , and fk2−1 ≤ Q(uj), Q(vj) < fk2 .
To filter the assignments, we keep from each region only one assignment
(us

1, · · · , us
c1

, v1, v2, · · · , vc2) as the representative such that (ul
1 ∪ us

1,
· · · , ul

c1
∪us

c1
, v1, v2, · · · , vc2) is a valid assignment. Finally return these

representative assignments.

Now we analyze Phase II. We have the following lemma about the relation-
ship between any feasible schedule and the list of assignments returned by the
algorithm.

Lemma 2. Let J be a set of n jobs. For any feasible schedule S = (u1, · · · , uc1 ,
v0, v1, · · · , vc2) of the jobs in J , after Phase II, there exists one valid assignment
(u′

1, · · · , u′
c1

, v′0, v′1, · · · , v′c2
) of all jobs such that the following properties hold:

(1) the set of large jobs in u′
j is the same as the set of large jobs in uj, denoted

by ul
j, for j = 1, · · · , c1.

(2) Q(u′s
j ) ≤ f2 log n · Q(us

j), P (u′s
j ) ≤ f log n · P (us

j) for j = 1, · · · , c1, where u′s
j

and us
j are the small jobs in u′

j and uj respectively.
(3) Q(v′j) ≤ f2 log n · Q(vj), P (v′j) ≤ f log n · P (vj) for j = 0, 1, · · · , c2.

Proof. Since we enumerate all possible assignments of the large jobs, after Phase
I, we must have one assignment (ul

1, · · · , ul
c1

, ∅, ∅, · · · , ∅). We will consider only
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the assignments of the remaining jobs that are based on this assignment. There-
fore, property (1) is always true.

Suppose there are n′ remaining jobs. When n′ = 0 or n′ = 1, the lemma
is trivially true. Assuming that the claim is true for k < n′, we now verify the
hypothesis for n′. In Phase II, the remaining jobs are divided into two sets, J1
and J2, which are then recursively assigned. Let (u1

1, · · · , u1
c1

, v1
0 , · · · , v1

c2
) be the

assignment of the jobs in J1 by schedule S. Let (u2
1, · · · , u2

c1
, v2

0 , · · · , v2
c2

) be the
assignment of the jobs in J2 by schedule S. Then u1

i ∪ u2
i = us

i and v1
i ∪ v2

i = vi.
By the inductive hypothesis, there is one assignment of the jobs in J1, (u′1

1 , · · · ,
u′1

c1
, v′10 , · · · , v′1c2

), where u′1
j contains only small jobs with respect to Ij , and has

the following two properties.

Q(u′1
j ) ≤ f2 log n′

2 · Q(u1
j), P (u′1

j ) ≤ f log n′
2 · P (u1

j) for j = 1, · · · , c1.

Q(v′1j ) ≤ f2 log n′
2 · Q(v1

j ), P (v′1j ) ≤ f log n′
2 · P (v1

j ) for j = 0, 1, · · · , c2.

Similarly, by the inductive hypothesis, there is another assignment of the jobs in
J2, (u′2

1 , · · · , u′2
c1

, v′20 , · · · , v′2c2
), where u′2

j contains only small jobs with respect
to Ij , and the following two conditions hold.

Q(u′2
j ) ≤ f2 log n′

2 · Q(u2
j), P (u′2

j ) ≤ f log n′
2 · P (u2

j) for j = 1, · · · , c1.

Q(v′2j ) ≤ f2 log n′
2 · Q(v2

j ), P (v′2j ) ≤ f log n′
2 · P (v2

j ) for j = 0, 1, · · · , c2.

Combining the above assignments of jobs in J1 and J2, we get an assignment
of jobs in J1 ∪ J2, (û′s

1, · · · , û′s
c1

, v̂′0, · · · , v̂′c2), where û′s
i = u′1

i ∪ u′2
i , and

v̂′i = v′1i ∪ v′2i . Then by equations (3) and (4), we have

P (û′s
j) = P (u′1

j ) + P (u′2
j ) ≤ f log n′

2 P (u1
j) + f log n′

2 P (u2
j) = f log n′

2 P (us
j)

Q(û′s
j) = Q(u′1

j ) + Q(u′2
j ) + P (u′1

j ) · P (u′2
j )

≤ f2 log n′
2 · Q(u1

j) + f2 log n′
2 · Q(u2

j) + f log n′
2 · P (u1

j) · f log n′
2 · P (u2

j)

≤ f2 log n′
2 (Q(u1

j) + Q(u2
j) + P (u1

j) · P (u2
j))

= f2 log n′
2 Q(us

j)

In the same way, we can show that the following properties hold for vj and v̂′j :

P (v̂′j) ≤ f log n′
2 P (vj) and Q(v̂′j) ≤ f2 log n′

2 Q(vj) .

Next, we show this assignment together with the assignment of the large jobs
form a valid assignment of all jobs with respect to δ. That is, we show for every
1 ≤ i ≤ c1, P (û′s

i ∪ ul
i) ≤ (1 + δ)Ii. First, for given constant 0 < δ < 1, and

f = 1 + δ
4 log n , we have

f2 log n′ ≤ f2 log n =
(

1 +
δ

4 logn

)2 log n

< (1 + δ) .
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Thus P (û′s
i ∪ ul

i) = P (û′
i) + P (ul

i) ≤ f log n′
2 P (us

i ) + P (ul
i) ≤ (1 + δ)P (us

i ) +
P (ul

i) = (1 + δ)(P (us
i ) + P (ul

i)) = (1 + δ)P (ui) ≤ (1 + δ)Ii.

On the other hand, if (û′s
1, · · · , û′s

c1
, v̂′0, · · · , v̂′c2) is not returned by the filter

step, then another assignment in the same region, (u′s
1, · · · , u′s

c1
, v′0, v

′
1, · · · , v′c2

),
will be returned. Since they are in the same region, we have

P (u′s
j) ≤ f · P (û′s

j) ≤ f · f log n′
2 P (us

j) = f log n′
P (us

j) ≤ f log nP (us
j)

Q(u′s
j) ≤ f · Q(û′s

j) ≤ f · f2 log n′
2 Q(us

j) = f2 log n′
Q(us

j) ≤ f2 log nQ(us
j)

P (v′j) ≤ fP (v̂′j) ≤ f log nP (vj) and Q(v′j) ≤ fQ(v̂′j) ≤ f2 log nQ(vj) .

In the same way we can show that (u′s
1, · · · , u′s

c1
, v′0, v

′
1, · · · , v′c2

) together with
(ul

1, · · · , ul
c1

, ∅, ∅, · · · , ∅) form a valid assignment of all jobs with respect to δ.

The following lemma shows the time complexity of Phase II, the proof is given
in the Appendix.

Lemma 3. For a fixed large job assignment, the running time of Phase II is
O(n(c1 + c2)(logf P )2(c1+c2+1)) where P =

∑
pi.

Proof. Let J ′ be the set of the remaining jobs. Then the total number of regions
of the assignments is at most (logf Q(J ′))c1+c2+1. Since Q(J ′) ≤ 1

2P (J ′)2 ≤
1
2P (J)2, the number of regions is at most O(logf P (J))c1+c2+1.

Let T (n′) be the running time of Phase II for n′ remaining jobs. We can
use (c1 + c2 + 1) linked lists to represent each assignment. When n′ = 1, we
return at most (c1 + c2 + 1) assignments, T (1) = O((c1 + c2)2). Otherwise, we
have two recursive calls, each taking time T (n′/2), and returning a list of at
most logf P (J ′)(c1+c2+1) assignments. To combine one assignment from List1
and one from List2, we just need to merge (c1 + c2 + 1) pairs of linked lists
which can be done O(c1 + c2) in total. We have T (n′) = 2T (n′/2) + O((c1 +
c2)(logf P (J ′))2(c1+c2+1)). One can easily show that the total computation time
is O(n′(c1 + c2 + 1)(logf P (J ′)2(c1+c2+1)) = O(n(c1 + c2)(logf P )2(c1+c2+1)).

Phase III: Reassign Small Jobs to Make Schedules Feasible. Let (u1, u2,
· · · , uc1 , v0, v1, · · · , vc2) be a valid assignment of all jobs after Phase II. As we
mentioned before, this valid assignment may not be a feasible schedule because
some jobs have to be scheduled at time when the machine is unavailable. So
we want to reallocate some of the jobs, in particular, move some jobs from the
bounded available intervals to the unbounded available interval on the first ma-
chine. In Phase III as described below, we process each valid assignment obtained
after Phase II as below, and finally get a feasible assignment.

Phase III: Reassign Small Jobs

(1) Let (u1, u2, · · · , uc1 , v0, v1, · · · , vc2) be a valid but not feasible assignment of
all jobs.
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(2) For each valid but not feasible interval Ij , i.e, Ij < P (uj) < (1+ δ)Ij, repeat
if a job in uj is scheduled at or after the time P (v0), reassign the job to
machine M0, update v0 and uj .

(3) For each valid but infeasible interval Ij after the above step, reassign some
small jobs with total length at most 2δ · Ij to machine M0, so it becomes
feasible

Lemma 4. Let S = (u1, u2, · · · , uc1, v0, v1, · · · , vc2) be a valid but infeasible as-
signment of all jobs after Phase II, and let S′ = (u′

1, u
′
2, · · · , u′

c1
, v′0, v1, · · · , vc2)

be the feasible assignment after Phase III. Then we must have
Fw(S′) ≤ 8δc2

1
(1−δ)2 Fw(S) .

Proof. Let (û1, û2, · · · , ûc1, v̂0, v1, · · · , vc2) be the assignment after step (2), and
Ŝ be the corresponding schedule. First note that if a job is reassigned in step (2),
its completion time will not be increased, thus we have Fw(Ŝ) ≤ Fw(S). Let Ij

be an infeasible interval (sj , tj) after step (2). We assume all jobs are scheduled
in decreasing order. Then the last job must be a small job, whose length is at
most δIi. Furthermore, it starts before P (v̂0), finishes after tj but before tj +δIj .
So we must have Ij < tj < P (v̂0) + δIj , i.e. if Ij is infeasible after step (2), then
Ij ≤ P (v̂0)

1−δ .
In step (3), some small jobs are reassigned. The order of these reassigned jobs

does not matter, but for ease of analysis, we assume these jobs are all inserted
from time 0, first the jobs from û0, then the jobs from û1, and so on.

Next, we analyze the increase of the total weighted completion time. We first
analyze the jobs on machine M0 in Ŝ. Let Imax be the largest infeasible interval.
Since the total length of the inserted jobs is at most (2δI1 + 2δI2 + . . . 2δIc1) ≤
2δc1Imax, for each job in v̂0, its completion time is increased by at most 2δc1Imax.
Using the fact Imax ≤ P (v̂0)

1−δ and Equation (1), the total weighted completion
time of all jobs from v̂0 is increased by at most∑

j∈v̂0

wj · (2δc1Imax) = P (v̂0)(2δc1Imax) ≤ 2δc1P (v̂0)2

1−δ ≤ 2δc1·2Q(v̂0)
1−δ = 4δc1Q(v̂0)

1−δ .

For the reassigned small jobs from û1, the total weighted completion time is
not increased since the completion time of each job is not increased. For the
jobs from û2, they are preceded by those reassigned small jobs from û1, the
completion time of each job is increased by at most 2δI1, thus the total increase
of the total weighted completion time is at most 2δI1 ·2δI2 ≤ 4δ2I2

max. Similarly,
for the jobs from ûk, the total increase of the total weighted completion time is
at most 4δ2(k − 1)I2

max. Summing this up for all intervals, the total increase is
at most

∑c1
k=1 4δ2(k − 1)I2

max ≤ 2δ2c2
1I

2
max ≤ 2δ2c2

1P (v̂0)2

(1−δ)2 ≤ 4δ2c2
1Q(v̂0)

(1−δ)2 .

In summary, the total increase from step (3) is at most

4δc1·Q(v̂0)
1−δ + 4δ2c2

1Q(v̂0)
(1−δ)2 ≤ 8δc2

1Q(v̂0)
(1−δ)2 ≤ 8δc2

1
(1−δ)2 Fw(Ŝ) ≤ 8δc2

1
(1−δ)2 Fw(S) .

Lemma 2 and Lemma 4 ensure us the assignment returned by Phase IV is feasible
and has a cost close to that of the optimal schedule, see below.
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Lemma 5. For any instance of P1,m, hk1 , hk2 , · · · , hkm | nr − a, wi = pi |∑
wiCi, and any constant ε, 0 < ε < 1, let S∗ be the optimal schedule. Let

δ be a constant such that (16c2
1+1)δ

(1−δ)2 ≤ ε and S be the schedule returned after
Phase IV. Then, Fw(S) ≤ (1 + ε)Fw(S∗).

Proof. Let S∗ = (u∗
1, · · · , u∗

c1
, v∗0 , v∗1 , · · · , v∗c2

) denote the optimal schedule. By
Lemma 2, there exists a valid assignment S′ = (u′

1, · · · , u′
c1

, v′0, v
′
1, · · · , v′c2

) af-
ter Phase II such that the three properties in Lemma 2 hold. By Lemma 4,
after Phase III, we obtain a new feasible assignment S′′ such that Fw(S′′) ≤
(1 + 8c1

2δ
(1−δ)2 )Fw(S′). Finally in Phase IV, we get a feasible schedule S such that

Fw(S) ≤ Fw(S′′) ≤ (1 + 8c1
2δ

(1−δ)2 )Fw(S′). By Equation (2),

Fw(S′) =

(
c1∑

i=1

(Q(u′
i) + siP (u′

i))

)
+

(
c2∑

i=0

(Q(v′i) + s∞i P (v′i))

)
.

By properties of Lemma 2, we have Q(u′
j) ≤ f2 log n · Q(u∗

j) and P (u′
j) ≤

f log n ·P (u∗
j ) for j = 1, · · · , c1, and Q(v′j) ≤ f2 log n ·Q(v∗j ), P (v′j) ≤ f log n ·P (v∗j )

for j = 0, 1, · · · , c2. Therefore,

Fw(S) ≤
(
1 + 8c1

2δ
(1−δ)2

)
(

c1∑
i=1

(
f2 log n · Q(u∗

i ) + sif
log n · P (u∗

i )
)

+
c2∑

i=0

(
f2 log n · Q(v∗i ) + s∞i f log n · P (v∗i )

)
)

=
(
1 + 8c1

2δ
(1−δ)2

)
f2log n

(
c1∑

i=1

(Q(u∗
i ) + siP (u∗

i )) +
m∑

i=0

(Q(v∗i ) + s∞i P (v∗i ))

)
=
(
1 + 8c1

2δ
(1−δ)2

)
· f2 log nFw(S∗) ≤

(
1 + 8c1

2δ
(1−δ)2

)
(1 + δ)Fw(S∗)

=
(
1 + δ + 8c1

2δ(1+δ)
(1−δ)2

)
Fw(S∗) ≤

(
1 + δ + 16c1

2δ
(1−δ)2

)
Fw(S∗)

≤
(
1 + (16c1

2+1)δ
(1−δ)2

)
Fw(S∗) = (1 + ε)Fw(S∗)

Theorem 1. There is a PTAS for P1,m, hk1 , hk2 , · · · , hkm | nr − a, wi = pi |∑
wiCi, its running time is O(n

c
δ n(c + m)(logf P )2(c+m+1)), where ε is the

relative error ratio, δ is a constant such that (16c2+1)δ
(1−δ)2 ≤ ε, f = 1 + δ

4 log n ,
P =

∑
pi and c = hk1 + hk2 + · · · + hkm .

Proof. Let c1 ≤ c be the number of bounded intervals and c2 ≤ m + 1 be the
number of unbounded intervals. By Lemma 1, there are at most O(n

c1
δ ) possible

assignments of the large jobs. For each allocation of large jobs, by Lemma 3,
Phase II takes O(n(c1 + c2 + 1)(logf P )2(c1+c2+1)), and Phase III and Phase IV
are dominated by Phase II. So the total computational time of our algorithm is
O(n

c1
δ n(c1 + c2 + 1)(logf P )2(c1+c2+1)) = O(n

c
δ n(c + m)(logf P )2(c+m+1)).
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2.2 No FTPAS

In this section, we show that the scheduling problem does not admit FPTAS
unless P = NP . We reduce from the Equal Cardinality Partition (EPC) problem.
See Appendix for the reduction.

Theorem 2. The scheduling problem P1,2, 1, 1 | nr − a, wi = pi |
∑

wiCi does
not have FPTAS unless P = NP .

Similarly, we can show that there is no FPTAS for the case of two machines,
in which one of them is always available, and the other has two unavailable
intervals.

Theorem 3. The scheduling problem P1,1, 2|nr − a, wi = pi|
∑

wiCi does not
have FPTAS unless P = NP .

3 Fixed Job Model

In this section, we study the fixed job model. First we show that if the jobs have
arbitrary weight, there does not exist a constant approximation algorithm for a
single machine with 2 fixed jobs or for two machines with one fixed job on each
machine, unless P = NP .

Theorem 4. For any constant α > 1, there is no polynomial time algorithm
that finds an α-approximation for 1, h2 | nr − a,fixed |

∑
wici or P0,2, h1, h1 |

nr − a,fixed |
∑

wici, unless P = NP .

Next we study the scheduling problem with m ≥ 1 identical machines. Like the
preventive model, we assume that the number of unavailable intervals due to
fixed jobs is also a constant, and the weight of each job is equal to its processing
time. Unlike the preventive model, we do not require a machine permanently
available.

Theorem 5. There is a PTAS for P0,m, hk1 , hk2 , · · · , hkm | nr− a, fixed , wi =
pi |

∑
wiCi, its running time is O(n

c
δ n(c + m)(logf P )2(c+m)), where ε is the

relative error ratio, δ is a constant such that 4δ
(1−cδ)2 ≤ ε, f = 1+ δ

4 log n , P =
∑

pi

and c is the number of fixed jobs.
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Abstract. This paper studies the space complexity of the ε-approximate
quantiles problem, which asks for some data structure that enables us to
determine, after reading a whole data stream, a φ-quantile (for any 0 ≤
φ ≤ 1) of the stream within some error bound ε. The best known algo-
rithm for the problem uses O( 1

ε
log εN) words where N is the total num-

ber of items in the stream, or uses O( 1
ε

log |U |) words where U is the set
of possible items. It is known that the space lower bound of the problem
is Ω( 1

ε
) words; however, improvement of this bound is elusive.

In this paper, we prove that any comparison-based algorithm for find-
ing ε-approximate quantiles needs Ω( 1

ε
log 1

ε
) words.

1 Introduction

This paper studies the space complexity of finding ε-approximate quantiles in a
stream of data items, which can only be read in one pass and any item that is
read but is not stored in the memory will be lost forever. All items are from a
totally-ordered set U . Given a stream of N items, the φ-quantile of this stream
is the item whose rank in this stream equals �φN�. The ε-approximate quantiles
problem asks for some data structure such that after reading a data stream of N
items, the data structure enables us to find, for any 0 ≤ φ ≤ 1, an item x whose
rank is in [φN − εN, φN + εN ]. We call x an ε-approximate φ-quantile of the
data stream. The main challenge is to use as few memory words as possible. This
problem and its variants have been studied extensively [2, 3, 4, 6, 7, 8, 9, 11, 12,
13, 14, 15, 19, 20, 22]. Currently, the best algorithms for the problem are given by
Greenwald and Khanna [7], which uses O(1

ε log εN) words, and by Shrivastava et
al.[19], which uses O(1

ε log |U |) words. It is known that Ω(1
ε ) words are necessary

for solving the problem; however, improvement of this lower bound is elusive. In
view of this lack of progress in improving the Ω(1

ε ) lower bound, it is natural
to ask whether the log factors in the current O(1

ε min{log εN, log |U |}) upper
bound are inherent. We note that for another closely related problem on data
streams, namely the ε-approximate frequent items problem, we have O(1

ε )-word
algorithm [5, 10, 16]. In the IITK Workshop on Algorithms for Data Streams
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[1], Cormode raised an open problem of finding the optimal space bound for the
ε-approximate quantiles problem. In particular, he asked if O(1

ε )-word space is
achievable.

This paper gives the first appreciable step for resolving Cormode’s open prob-
lem. We prove that for a large class of algorithms, namely the class of comparison-
based algorithms, we need Ω(1

ε log 1
ε ) words to solve the ε-approximate quantiles

problem. Furthermore, by some simple extension of our argument, we show that
finding ε-approximate φ-quantile for one fixed value of φ is still difficult. In par-
ticular, we prove that any comparison-based algorithm for finding ε-approximate
median (i.e., for φ = 1

2 ) needs Ω(1
ε log 1

ε ) words. We note that in the literature,
there are many comparison-based algorithms for the ε-approximate quantiles
problem (e.g.,[2, 3, 4, 7, 12, 14, 22]). In particular, for the two best existing
algorithms mentioned above, the O(1

ε log εN)-space algorithm of Greenwald and
Khanna [7] is comparison-based, while the O(1

ε log |U |)-space algorithm of Shri-
vastava et al.[19] is not.

Related Works. Yao[21] is among the first to study the ε-approximate quantiles
problem. She proved that any comparison-based algorithm for finding
ε-approximate median requires Ω(

√
N) comparisons. There are also many inter-

esting results on the space complexity, but only for selecting the exact φ-quantile
(not ε-approximate φ-quantile). For example, Pohl [18] showed that if the input
can only be read in one pass, any comparison-based algorithm for computing
the exact median in a data stream of N items needs to store N/2 items. This
result was generalized by Munro and Paterson [17], who considered the case
when we were allowed to read the data stream in multi-passes. They proved
that any comparison-based algorithm for selecting φ-quantile in a stream of N

items needs Ω(N
1
p (log N)2−

2
p ) space where p is the number of passes that the

algorithm scans the input.

Organization. The paper is organized as follows. In Section 2, we describe
formally the computational model that we use in deriving the lower bound, and
then give the definitions that are necessary for our discussion. In Section 3, we
show how to construct a set of difficult inputs for any algorithm A such that there
is always an input that A would return an incorrect answer if it does not have
Ω(1

ε log 1
ε ) space. Section 4 proves some important properties about this input

set, and Section 5 derives the space lower bounds based on these properties.

2 Preliminaries

A data stream is a stream of items that can be read in one pass and any item that
has been read but is not stored in the memory will be lost forever. We assume
that the set of all possible items are totally ordered. In the rest of this paper,
we let M denote the size of the memory. To clarify the discussion, we divide
the memory into two parts, the item memory, which can store m ≤ M items
coming from the stream, and the general memory, which stores other general
values such as pointers, counters, and other system information such as program
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counter, registers, etc. A memory state, or simply a state, is a pair (I, G) where
I is an array of items specifying the content of the item memory (i.e., I[u] is
the item stored at the uth location of the memory) and G is an array of values
specifying the content of the general memory. We assume that the memory is
in the initial state (Io, Go) in which for every 1 ≤ k ≤ m, Io[k] stores the null
item, which is smaller than all other items, and every Go[k] contains the value
zero. Consider any algorithm A. For any state (I, G) and any item a, we write
A((I, G), a) = (I ′, G′) to denote the fact that A updates its state from (I, G) to
(I ′, G′) after processing item a, and for any stream σ = a1a2 . . . ai−1ai, the final
state of A after processing σ from the state (I, G) can be expressed recursively
as A((I, G), σ) = A((I, G), a1a2 · · · ai−1ai) = A(A((I, G), a1a2 · · · ai−1), ai). We
say that A is a comparison-based algorithm if it can be specified by a decision-
tree, which is a ternary tree in which every internal node is labeled by some
comparison “xth item : yth item”, which compares the items currently stored
at the xth and yth location of the item memory (for simplicity, we assume that
the item currently being processed is stored at the 0th location). The tree may
also have internal nodes labeled by comparisons involving values stored in the
general memory or constants that are not items. Every leaf of the tree is labeled
with a sequence of operations for updating the current state (I, G) to a new
state (I ′, G′). We assume that the operations for updating I to I ′ are of one of
the following forms:

1. Swap the items stored at the xth and the yth location of the item memory.
2. Replace the item stored at the xth location of the item memory by the one

stored at the yth location.

The execution of A((I, G), a) follows a path from the root to a leaf: starting
from the root, the comparison labeled at the current internal node will be made
and the execution will branch to its left, middle, and right son if the result is
<, = and >, respectively. When the execution reaches a leaf, the sequence of
operations labeled at that leaf will be executed to update the state.

Given any two pairs of items (a, a′) and (b, b′), we say that the two pairs have
the same relative order if either a = a′ and b = b′, or a < a′ and b < b′, or a > a′

and b > b′. We say that two states (I1, G1) and (I2, G2) are equivalent if

– for any 1 ≤ j, j′ ≤ m, (I1[j], I1[j′]) and (I2[j], I2[j′]) have the same relative
order, and

– G1[j] = G2[j] for all j.

Note that if (I1, G1) and (I2, G2) are equivalent, then there is a permutation
j1, j2, . . . , jm of 1, 2, . . .m such that I1[j1] ≤ I1[j2] ≤ · · · ≤ I1[jm] and I2[j1] ≤
I2[j2] ≤ · · · ≤ I2[jm]. The following lemma gives some useful properties about
comparison-based algorithms.

Lemma 1. Suppose that the states (I1, G1) and (I2, G2) are equivalent. Con-
sider any two items a1 and a2 such that for all 1 ≤ j ≤ m, (I1[j], a1) and
(I2[j], a2) have the same relative order. Then, for any comparison-based algo-
rithm A we have
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(i) the states (Î1, Ĝ1) = A((I1, G1), a1) and (Î2, Ĝ2) = A((I2, G2), a2) are
equivalent,

(ii) for any 1 ≤ j ≤ m, Î1[j] = a1 if and only if Î2[j] = a2, and
(iii) for any 1 ≤ i, j ≤ m, Î1[i] = I1[j] if and only if Î2[i] = I2[j].

Proof. Since (I1, G1) and (I2, G2) are equivalent, we have G1 and G2 are iden-
tical, and there is a permutation j1, j2, . . . , jm of 1, 2, . . . , m such that I1[j1] ≤
I1[j2] ≤ · · · ≤ I1[jm] and I2[j1] ≤ I2[j2] ≤ · · · ≤ I2[jm]. Together with the fact
that for all 1 ≤ j ≤ m, (I1[j], a1) and (I2[j], a2) have the same relative order, we
have

I1[j1] ≤ I1[j2] ≤ . . . ≤ I1[jk] ≤ a1 ≤ I1[jk+1] ≤ · · · ≤ I1[jm]

and
I2[j1] ≤ I2[j2] ≤ . . . ≤ I2[jk] ≤ a2 ≤ I2[jk+1] ≤ · · · ≤ I2[jm]

for some k. It follows that the execution of A((I1,G1),a1) and that of A((I2, G2), a2)
follow exactly the same path in the decision tree, and hence will update the item-
memory in exactly the same way. The lemma follows.

Below, we give the essential property that a set of streams needs in order to
“fool” the comparison-based algorithm A.

Definition 1. Given any two streams σ = a1a2 . . . aL and π = b1b2 . . . bL of the
same length L, we say that σ and π are indistinguishable for A if after processing
σ and π,

1. the final states (Iσ , Gσ) = A((Io, Go), σ)) and (Iπ , Gπ) = A((Io, Go), π) are
equivalent, and

2. for 1 ≤ j ≤ m, Iσ[j] = ak if and only if Iπ[j] = bk.

Note that for σ and π to be indistinguishable, we only require their items in the
item memory to have the same order; the ordering of the other items (i.e., the
items that are not in the item memory) may be very different. This is important
to our lower bound proofs because it gives us enough flexibility to construct a
set of streams in which there is one with large “gap”.

Lemma 2. Suppose that the streams σ and π are indistinguishable for A. Let
(Iσ, Gσ) = A((I0, G0), σ) and (Iπ , Gπ) = A((I0, G0), π). Consider any two items
a and b such that for all 1 ≤ j ≤ m, (Iσ [j], a) and (Iπ [j], b) have the same
relative order. Then, the streams σa and πb are indistinguishable for A.

Proof. Follow directly from Lemma 1.

3 The Construction of Indistinguishable Streams

Suppose that the comparison-based algorithm A has a memory of size M ≤
1

12ε ln 1
12ε . Thus, it can store m ≤ M ≤ 1

12ε ln 1
12ε items. In this section, we

describe how to construct a set Ψ of difficult input streams for A. We also prove
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some simple properties on Ψ . In the next two sections, we give some deeper
analysis on the structure of Ψ and then conclude the Ω(1

ε log 1
ε ) space lower

bound by showing that there exists a stream in Ψ that fools A.
To get Ψ , we iteratively construct the sets of streams Ψ0, Ψ1, . . . , Ψm−1 = Ψ .

The set Ψ0 contains only one single stream of n = 15m distinct items, and for
1 ≤ i ≤ m− 1, the streams in Ψi are obtained by duplicating and extending the
streams in Ψi−1. More specifically, for every stream σ ∈ Ψi−1, we create (accord-
ing to some rules given below) n− 1 different subsequences σi,1, σi,2, . . . , σi,n−1,
each comprises n distinct items. Then, for each 1 ≤ k ≤ n − 1, we append σi,k

to σ and the resulting sequence σσi,k is added to Ψi. It can be verified that any
stream σ ∈ Ψi is the concantenation of some i + 1 subsequences σ0, σ1, . . . , σi

where σk (1 ≤ k ≤ i) is appended to the stream during the construction of Ψk.
For ease of reference, we call σk the kth block of the stream σ. It is also worth
emphasizing that for every 0 ≤ i ≤ m − 1, the items from the streams in Ψi are
all distinct.

To detail the construction of Ψi from Ψi−1, we need some defintions and nota-
tions. Consider any stream σ = σ0σ1 . . . σi−1 in Ψi−1 with blocks σ0, σ1, . . . , σi−1.

– We let σp..q denote the sub-sequence σpσp+1 . . .σq. Note that σ = σ0..i−1.
For any item in σ0..i−1, if it is the �th item in block σp, we denote it as σp[�].
For example, if σ0..1 = a1a2a3 . . . anb1b2 . . . bn, then σ0[3] = a3.

– Let IA(σ) be the set of items stored by A after it processes the data stream
σ; in other words, if (I, G) = A((Io, Go), σ), then IA(σ) and I contain the
same set of items. For any item σp[�] in σ, we say that σp[�] is marked in σ
if it is in IA(σ); otherwise, it is unmarked.

– Given any two items a, a′, and item x, we say that x sits between a and a′

if either a < x < a′ or a′ < x < a. Given any set of items Z, we say that x
sits within Z if Z has two items a and a′ such that x sits between a and a′.

– Let sort(σ) denote the sequence obtained by sorting the items of σ in as-
cending order.

We are now ready to describe our construction of Ψ0, Ψ1, . . . , Ψm−1. Our con-
struction maintains the following invariants:

In-block-sorted. For each σ ∈ Ψi and each block σp = σp[1]σp[2] . . .σp[n]
of σ, we have σp[1] < σp[2] < · · · < σp[n].

Indistinguishable for A. For any two streams σ, σ′ ∈ Ψi, σ and σ′ are
indistinguishable for A.

Since Ψ0 has only one sequence, it is easy to construct Ψ0 that satisfies the above
two invariants. Assume that Ψi−1 is in-block-sorted and indistinguishable for A.
Note that because of the indistingushable property, all streams in Ψi−1 have the
same number of marked items. We now show how to construct Ψi from Ψi−1 such
that Ψi also satisfies the two invariants.

Consider any stream σ in Ψi−1. Note that the sorted version sort(σ) of σ is
“chopped-up” by the marked items (i.e., the items in IA(σ)) into segments of
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unmarked items. We let gap(sort(σ)) denote the longest segment of unmarked
items in sort(σ). Define

gap(Ψi−1) = max{gap(sort(σ)) | σ ∈ Ψi−1}

to be the longest segment of unmarked items among all streams in Ψi−1. Suppose
that gap(Ψi−1) = gap(sort(σ̂0..i−1)) for some stream σ̂0..i−1 ∈ Ψi−1. By defini-
tion, gap(sort(σ̂0..i−1)) is enclosed by two marked items, say, σ̂p[�] and σ̂q[�′]
in sort(σ̂0..i−1).1 Suppose that σ̂p[�] is the r̂th marked item (from the left) in
sort(σ̂0..i−1). Then, σ̂q[�′] is the (r̂ + 1)st marked item in sort(σ̂0..i−1). Our
construction of Ψi from Ψi−1 is based on this value of r̂.

For every stream σ0..i−1 ∈ Ψi−1, we create n − 1 blocks as follows. Let
x and y be the r̂th and (r̂ + 1)st marked items in sort(σ0..i−1). Let
g1g2 . . . gL be the segment of items between x and y in sort(σ0..i−1).
For 1 ≤ k ≤ n − 1, we create a block σi,k = bk

1bk
2 . . . bk

n of n new and
distinct items where

x < bk
1 < bk

2 < · · · < bk
k < g1 < · · · < gL < bk

k+1 < · · · < bk
n < y. (†)

Then, for 1 ≤ k ≤ n − 1, we append σi,k to σ0..i−1 and the resulting
stream σ0..i−1σi,k will be put into Ψi.2 For ease of reference, we call x
and y respectively the left-anchor and right-anchor of σi,k.

It is obvious that Ψi is in-block-sorted. The following lemma proves that it is
also indistinguishable.

Lemma 3. The set Ψi is indistinguishable for A.

Proof. Consider any two streams σ0..i−1σi and π0..i−1πi in Ψi. Since σ0..i−1
and π0..i−1 are in Ψi−1, they are indistinguishable for A. Thus, if (Iσ , Gσ) =
A((Io, Go), σ0..i−1) and (Iπ , Gπ) = A((Io, Go), π0..i−1), then (Iσ [u], Iσ[v]) and
(Iπ [u], Iπ[v]) have the same relative order for any 1 ≤ u, v ≤ m; in other words,
if Iσ[u1] ≤ Iσ [u2] ≤ · · · ≤ Iσ[um] are the sorted sequence of the items in Iσ, then
Iπ[u1] ≤ Iπ [u2] ≤ · · · ≤ Iπ[um] are the sorted sequence of items in Iπ. We can
rewrite (†) for the creation of σi and πi as follows:

Iσ[ur̂] < σi[1] < · · · < g1 . . . gL < · · · < σi[n] < Iσ[ur̂+1]
Iπ [ur̂] < πi[1] < · · · < g′1 . . . g′L′ < · · · < πi[n] < Iπ[ur̂+1].

Observe that (Iσ[u], σi[1]) and (Iπ [u], πi[1]) have the same relative order for all
1 ≤ u ≤ m. By Lemma 2, we conclude that σ0..i−1σi[1] and π0..i−1πi[1] are indis-
tinguishable. By applying Lemma 2 repeatedly to (σi[2], πi[2]), . . ., (σi[n], πi[n]),
we conclude that σ0..i−1σi and π0..i−1πi are indistinguishable. The lemma follows.
1 To handle the exception case when the segment starts from the first item or ends at

the last item, we may assume that there are two additional marked items enclosing
sort(σ̂0..i−1).

2 Note that if there is no items between x and y in sort(σ0..i−1), then we will only
create one σ0..i−1σi.
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4 A Lower Bound on the Length of gap(Ψm−1)

In this section, we prove that there is a stream σ ∈ Ψm−1 such that the length
|gap(σ)| of gap(σ) is at least 14

4 ln 4m log m. Note that σ has length N = nm ≈
(1

ε log 1
ε )2 and thus |gap(σ)| ≥ 14

4 ln 4m log m ≈ 1
ε (log 1

ε )2 = Θ(εN), which is
(asymptotically) the bound we target for fooling A.

Let σ = σ0σ1 . . . σm−1 be any stream in Ψm−1. Consider any block σj of σ. By
the in-block-sorted property, sort(σj) is identical to σj , and by our construction,
σj may be cut into two segments in sort(σj..j+1) after appending σj+1 to σj . It
may be cut into even more smaller segments after appending more blocks later.
The following definition is central to the discussion in this section.

For any 0 ≤ j ≤ i ≤ m−1, we say that a sequence of items is a j-segment
in sort(σj..i) if it is a segment (i.e., a sequence of consecutive items) in
sort(σj..i) containing only items in the block σj .

We say that a segment avoids the item set Z if the segment contains no items
in Z. Note that if there is a segment in sort(σ0..i) that avoids IA(σ0..i) and
has length �, then |gap(σ0..i)| ≥ �. The lemma below suggests that if there is a
j-segment in sort(σj..i) that avoids IA(σ0..i) and has length �, then we can also
conclude that |gap(σ0..i)| ≥ �.

Lemma 4. Suppose that sort(σ0..i) = a1a2 . . . a|σ0..i|. Consider any j-segment
H = ai1ai2 . . . aik

in sort(σj..i).

1. For any item a ∈ σ0..j−1 that sits within H, a �∈ IA(σ0..�) for all j−1 ≤ � ≤ i.
2. If H = ai1ai2 . . . aik

avoids IA(σ0..i), then the corresponding complete seg-
ment Ĥ = ai1ai1+1 . . . ai2 . . . aik−1aik

in sort(σ0..i) also avoids IA(σ0..i).

Proof. For (1), recall that the items of σj are sitting between two consecutive
marked items in sort(σ0..j−1), and as a sits within σj , it is not marked and
thus is not in IA(σ0..j−1)). Together with the fact that a will not reappear, A
will not see or remember a after processing σ0..j−1; this implies a �∈ IA(σ0..�) for
j − 1 ≤ � ≤ i. For (2), note that for any a ∈ Ĥ − H , a �∈ σj+1..i because H is a
j-segment in sort(σj..i). Thus, a is from σ0..j−1 and by (1), it is not in IA(σ0..i).
Together with the fact that H avoids IA(σ0..i), the statement follows.

Our plan is to show that there exists a long j-segment. To this end, we need to
study how σj is cut by later segments. To be precise, for any j < k ≤ m− 1, we
say that σj is cut by σk if we have inserted some new items within a j-segment
in sort(σj..k−1) when creating σk. According to our construction, we have the
following fact.

Fact 1. If σj is cut by σk, then σk’s left-anchor or right-anchor or both are
items of σj .

If both σk’s left- and right-anchors are items of σj , we say that σk cuts σj twice;
otherwise, we say that σk cuts σj once. We now study how many segments can
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be obtained by cutting σj . For any 0 ≤ j ≤ i, let nj be the number of maximal
j-segments in sort(σj..i) that avoid IA(σ0..i). The following lemma derives an
upper bound on their sum. (Note that the sum does not include n0; our later
analysis does not consider n0.)

Lemma 5. We have
∑

1≤j≤i nj ≤ 3i + m and thus there exists a j with nj ≤
(3i + m)/i.

Proof. The inequality can be derived by a simple double counting argument. Let
T be a table with i + |IA(σ0..i)| rows and i columns. Each of the first i rows of
T are labeled by a distinct block σk for 1 ≤ k ≤ i and each of the remaining
|IA(σ0..i)| rows are labeled by a distinct item in IA(σ0..i). Each column of T is
labeled by a distinct σj for 1 ≤ j ≤ i. For any row σk and column σj , we let

T [σk, σj ] =

⎧⎪⎨⎪⎩
2 if σk cuts σj twice;
1 if σk cuts σj once;
0 otherwise,

and for any row a ∈ IA(σ0..i), we set T [a, σj] to 1 if a ∈ σj , and set it to 0
otherwise. Observe that starting from a single j-segment, we may increase the
number of maximal j-segment by 1 when we find that σj is cut by a block, or
when we find an item of σj in IA(σ0..i) (recall that we are interested in maximal
j-segments that avoid IA(σ0..i)). It follows that

nj ≤
∑

1≤k≤i T [σk, σj ] +
∑

a∈IA(σ0..i) T [a, σj] + 1. (1)

Fact 1 implies that for any 1 ≤ k ≤ i, the sum of all entries of row σk is
at most 2. For any row a ∈ IA(σ0..i), since the items in σ0, σ1, . . . , σi are all
distinct, a can be in one σj ; in other words, there is a 1 in row a. Therefore,∑

1≤j≤i

(∑
1≤k≤i T [σk, σj ]+

∑
a∈IA(σ0..i) T [a, σj]

)
=
(∑

1≤k≤i

∑
1≤j≤i T [σk, σj ]

)
+(∑

a∈IA(σ0..i)
∑

1≤j≤i T [a, σj]
)
≤ 2i + |IA(σ0..i)| ≤ 2i + m. Together with (1),

the lemma follows.

When i = m−1, Lemma 5 asserts that there exists some 1 ≤ j ≤ m−1 such that
the number of maximal j-segments in sort(σj..m−1) that avoids IA(σ0..m−1) is
at most 4. Since at most m of the n items of σj are in IA(σ0..m−1), we have
at least n − m = 14m items to be distributed into four or fewer segments. It
follows that there is one with length at least 14m/4 and by Lemma 4(2), we have
gap(Ψ) = Ω(m). Unfortunately, this is much smaller than our target Ω(m log m)
bound. To make improvement, the novel idea is to rewrite the inequality in
Lemma 5 as follows.

Lemma 6

1. We have
∑

1≤j≤i nj ≤
∑

1≤j≤i
(3i+m) ln 4

(i+1) ln(i+1)−j ln j and thus there is a 1 ≤ j ≤ i

with nj ≤ (3i+m) ln 4
(i+1) ln(i+1)−j ln j .
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2. For some 1 ≤ j ≤ i ≤ m − 1, there is a j-segment in sort(σj..i) that
avoids IA(σ0..i) and has length at least n−m

(3i+m) ln 4 ((i + 1) ln(i + 1)− j ln j) >
14m

4m ln 4 ((i + 1) ln(i + 1) − j ln j).

Proof. By Lemma 5, (1) is true if
∑

1≤j≤i
ln 4

(i+1) ln(i+1)−j ln j ≥ 1. Note that for any
1 ≤ b ≤ a, a ln a−b ln b = (a−b) ln a+b ln(1+ a−b

b ) ≤ (a−b) ln a+(a−b) = (a−
b)(1 + ln a). Therefore,

∑
1≤j≤i

ln 4
(i+1) ln(i+1)−j ln j ≥

∑
1≤j≤i

ln 4
(i+1−j)(1+ln(i+1)) =

ln 4
1+ln(i+1)

( 1
i + · · · + 1

)
> ln 4 ln i

1+ln(i+1) , which is greater than 1 for all i > 40 because
ln 4 ln 41

1+ln(41+1) > 1.08 and the function ln x
1+ln(x+1) is monotonically increasing. It can

be verified that the sum is also greater than 1 for all i ≤ 40. Statement (1)
follows.

Statement (2) follows from Statement (1).

By applying Lemma 6(2) repeatedly, we get, for some j1 > j2 > · · · > 1, a
j1-segment in sort(σj1..m−1) of length Ω(m log m − j1 log j1), a j2-segment in
sort(σj2..j1−1) with length Ω(j1 log j1 − j2 log j2) and so on; all these segments
avoid IA(σ0..m−1) and have total length Ω((m log m − j1 log j1) + (j1 log j1 −
j2 log j2) + . . . ) = Ω(m log m). If the items in these segments form a single
segment in sort(σ0..m−1), then we can conclude that gap(Ψm−1) = Ω(m log m).
By making use of the indistinguishable property of the Ψi’s, we show in the rest
of this section that this is true for at least one σ0..m−1 ∈ Ψm−1.

Consider any 1 ≤ j < i ≤ m − 1. Note that for any two streams in Ψj, they
are indistinguishable and look the same to A; thus they will be “cut” in exactly
the same way during the appending of later blocks σj+1, . . . , σi. The following
lemma proves this observation formally.

Lemma 7. Consider any two streams σ0..i and π0..i in Ψi. If

σj [u]σj [u + 1] . . .σj [v] is a j-segment in sort(σj..i) that avoids IA(σ0..i), then
πj [u]πj [u + 1] . . .πj [v] is a j-segment in sort(πj..i) that avoids IA(π0..i).

Proof. Lemma 3 asserts that Ψi, and hence π0..i and σ0..i, are indistinguishable
for A. Together with the fact that σj [u]σj [u + 1] . . .σj [v] avoids IA(σ0..i), we
conclude that H = πj [u]πj [u + 1] . . .πj [v] avoids IA(π0..i) (see Definition 1).
Below, we prove that H is a j-segment in sort(πj..i).

Suppose to the contrary that H is not a j-segment in sort(πj..i). Then, there
must be a j + 1 ≤ k ≤ i such that H is a j-segment in sort(πj..k−1) and not
in sort(πj..k) (note that H is a j-segment in sort(πj..j)). It follows that πk has
some item(s) sitting within H . Referring to (†), note that when constructing πk,
the items of πk are sitting within π0..k−1 as follows:

x < πk[1] < · · · < πk[�] < g1 < · · · < gL < πk[� + 1] < · · · < πk[n] < y

where the left-anchor x and right-anchor y are in IA(π0..k−1), and hence in
π0..k−1. We prove below that x and y cannot be both items of π0..k−1, and this
leads to contradiction.
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There are two possible cases: (1) πk[1], . . . , πk[�] sit within H = πj [u] . . .πj [v],
and (2) πk[� + 1], . . . , πk[n] sit within H . For Case (1), we have

πj [u] < · · · < πj [z] ≤ x < πk[1] < · · · < πk[�] < πj [z + 1] < · · · < πj [v]

for some u ≤ z < v. Note that

– x is not in πj+1..k−1 because H is a j-segment in sort(πj..k−1) and no item
from πj+1..k−1 sits within H , and

– x is not in π0..j−1 because x ∈ IA(π0..k−1) and no item from π0..j−1 that sits
within H can be in IA(π0..k−1) (see Lemma 4(1)).

Therefore, the only remaining possibility is that x is from πj . This implies πj [z] =
x. Suppose that πj [z] is the rth marked item in sort(π0..k−1). Since π0..k−1
and σ0..k−1 are indistinguishable by A, σj [z] is also the rth marked item in
sort(σ0..k−1), and when constructing σk, its items will be inserted immediately
following σj [z]. Thus, there is some item of σk sitting between σj [z] and σj [z+1],
and σj [u]σj [u+1] . . .σj [v] is not a j-segment in sort(σj..i), a contradiction. Thus,
x cannot be an item of πj either.

Similarly, for Case (2), we can conclude that y is not an item of π0..k−1. Thus,
as claimed, x and y cannot be both items of π0..k−1.

We are now ready to derive a lower bound on the length of gap(Ψi).

Lemma 8. For any 0 ≤ i ≤ m− 1, we have |gap(Ψi)| ≥ c(i + 1) ln(i + 1) where
c = 14

4 ln 4 .

Proof. We prove the lemma by induction. It is obviously true for i = 0. Suppose
that it is true for i − 1 and we consider Ψi.

By Lemmas 6 and 7, there exist 1 ≤ j ≤ i, and 1 ≤ u < v ≤ n such that
for any stream σ0..i ∈ Ψi, σj [u]σj [u + 1] · · ·σj [v] is a j-segment in sort(σj..i)
that avoids IA(σ0..i) and its length is at least c((i + 1) ln(i + 1)− j ln j). By the
induction hypothesis, |gap(Ψj−1)| ≥ cj ln j and there is a σ̂0..j−1 ∈ Ψj−1 such
that gap(σ̂0..j−1) = g1g2 . . . gL has length |gap(Ψj−1| ≥ cj ln j. By construction,
we will extend σ̂0..j−1 into n − 1 different streams in Ψj by appending n − 1
different σ̂j , and one of them will satisfy

x<σ̂j [1]< . . .<σ̂j [u]<g1 < · · · < gL < σ̂j [u+1] < · · · < σ̂j [v] < · · · < σ̂j [n] < y.

Thus, the sequence σ̂j [u]g1 . . . gLσ̂j [u+1] . . . σ̂j [v] has length at least c(i+1) ln(i+
1). It follows that the complete segment σ̂j [u] · · · σ̂j [v] in σ̂0..i has length at least
c(i + 1) ln(i + 1) and by Lemma 4(2), it avoids IA(σ0..i). The lemma follows.

5 A Lower Bound on the Space Complexity

We now apply the results in the previous section to derive the lower bound
claimed in this paper. Then, we adapt our lower bound proof and derive the
same Ω(1

ε log 1
ε ) lower bound on the space complexity for finding ε-approximate

median in a data stream.
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Theorem 2. Any comparison-based algorithm A with memory of size m ≤
1

12ε ln 1
12ε , cannot solve the ε-approximate quantiles problem.

Proof. Without loss of generality, we assume that ln 1
12ε ≥ 1; otherwise the

Ω(1
ε ) lower bound implies the Ω(1

ε log 1
ε ) bound. Recall that n = 15m and the

length of a stream in Ψ = Ψm−1 is N = nm. By Lemma 8, there is a stream
σ0..m−1 ∈ Ψ with gap length |gap(σ0..m−1)| = g ≥ 14

4 ln 4m ln m = N
4 ln 4

14
15

ln m
m ≥

N
4 ln 4

14
15

12ε
ln 1

12ε

ln( 1
12ε ln 1

12ε ) ≥ N
4 ln 4

14·12ε
15 > 2εN. Out of the g ≥ 2εN + 1 items in

gap(σ0..m−1), we consider 2εN + 1 consecutive items in the gap. Assume that
these items have ranks from r− εN to r + εN in sort(σ0..m−1) for some integer
r. Then, to find an ε-approximate φ-quantile with φ = r

N , A must return an
item with rank in [φN − εN, φN + εN ] = [r − εN, r + εN ]. It is not possible for
A to return any of these items because they are all in a gap and are not in A’s
memory.

Note that to solve ε-approximate quantiles problem, we are required to find ε-
approximate φ-quantile for any 1 ≤ φ ≤ N . The following theorem suggests that
Ω(1

ε log 1
ε ) space is still necessary even if we only need to find ε-approximate

φ-quantile for some fixed φ.

Theorem 3. Any comparison-based algorithm A with memory of size o(1
ε log 1

ε )
cannot find any ε-approximate median (i.e., 0.5-quantile) in a stream.

Proof. As argued in the proof of Theorem 2, for any comparison-based algorithm
A with o( 1

εo
log 1

εo
)-word space, there is a stream σ of N items such that sort(σ)

has a segment of at least 2εoN + 1 items that avoids IA(σ). By letting εo = 2ε,
we conclude that sort(σ) has a segment of at least 4εN + 1 items that avoids
IA(σ). Let a and b be the smallest and the largest item among these 4εN + 1
items, respectively. Let r be the rank of a. Note that 1 ≤ r ≤ N −4εN . Suppose
that N more items arrive such that N − r−2εN of them are smaller than a and
the remaining items are larger than b. In the resultant stream σ̂ of 2N items, the
ranks of those 4εN+1 items in σ̂ are [(N−r−2εN)+r, (N−r−2εN)+r+4εN ] =
[N − 2εN, N + 2εN ], and they avoid sort(σ̂); it follows that A cannot return
any ε-approximate median for σ̂.
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Abstract. A width-bounded separator is a simple structured hyper-
plane which divides the given set into two balanced subsets, while at the
same time maintaining a low density of the set within a given distance
to the hyperplane. For a given set Q of n grid points in a d-dimensional
Euclidean space, we develop an improved (Monte carlo) algorithm to
find a w-wide separator L in Õ(n

1
d ) sublinear time such that Q has at

most ( d
d+1

+ o(1))n points on one either side of the hyperplane L, and at

most cdwn
d−1

d points within w
2

distance to L, where cd is a constant for
fixed d. This improves the existing Õ(n

2
d ) algorithm by Fu and Chen.

Furthermore, we derive an Ω(n
1
d ) time lower bound for any random-

ized algorithm that tests if a given hyperplane satisfies the conditions of
width-bounded separator. This lower bound almost matches the upper
bound.

1 Introduction

Separator is a fundamental tool in algorithm design. In past decades, many
efforts focus on generalization of planar graph separators which play critical roles
in development of separator theory. The plannar separator theorem, originally
due to Lipton and Tarjan [3], states that every n vertex planar graph has at
most

√
8n vertices whose removal separates the graph into two disconnected

parts of size at most 2
3n. Their 2

3 -separator has been improved by a series of
papers [4,5,6,7] with the best record 1.97

√
n by Djidjev and Venkatesan [7].

Spielman and Teng [8] showed a 3
4 -separator with size 1.82

√
n for planar graphs.

Separators for more general graphs were derived in [9,10,11]. A planar graph
can be induced by a set of non-overlapping discs on the plane such that every
vertex corresponds to a disc center and each edge corresponds to a tangent
relationship between two discs. The separator developed by Miller, Teng and
Vavasis [12] is a generalization of planar graph separators to the d-dimensional
Euclidean space. Some O(

√
k · n) size separators for k-thick system, in which

every point is covered by at most k objects, and the related algorithms were
derived in [12,13,14,15].
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The study of width-bounded separators were initiated by Fu in [16] and has
yielded successful applications in [2,17]. Width-bounded geometric separator has
some interesting advantages over previous geometric separators such as the pop-
ular geometric separator by Miller, Teng and Vavasis [12]. The width-bounded
separator has a simpler linear structure and better balance than that by Miller
et al.’s separator, which is a sphere and can be found in linear time [18].

In this paper, we give an improved algorithm which finds a width-bounded
separator with high probability in Õ(n

1
d ) sublinear time in a dimensioinal Eu-

clidean space �d for d ≥ 2. Our algorithm is similar to that developed by Fu
and Chen [1], but the new algorithm is more careful to control the point sam-
pling and probability to guarantee the balance and low-density conditions. To
our best knowledge, this is the first time to give sublinear time algorithm for
finding a 2D width-bounded separators. Further more, we derive a Ω(n

1
d ) lower

bound for any randomized algorithm that tests if a given hyperplane satisfies
the conditions of width-bounded separator. This lower bound almost matches
the upper bound.

2 Preliminaries and Width-Bounded Separators

For any finite set A, |A| denotes the number of elements in A. Let � be the
set of all real numbers. For two points p1, p2 in the d-dimensional Euclidean
space �d, dist(p1, p2) is the Euclidean distance between p1 and p2. For a set
A ⊆ �d, dist(p1, A) = minq∈A dist(p1, q). The diameter of any P ⊆ �d is
maxp1,p2∈P dist(p1, p2). For a > 0 and a set A of points in �d, if the distance
between every two points in A is at least a, then A is called a-separated. For
ε > 0 and a set Q of points in �d, an ε-sketch of Q is another set P of points
in �d such that each point in Q has a distance ≤ ε to some point in P . We say
P is a sketch of Q if P is an ε-sketch of Q for some constant ε > 0 (that does
not necessarily depend on the size of Q). A sketch set is usually an 1-separated
set such as a grid point set. A weight function w : P → [0,∞) is often used to
measure the density of Q near each point in P . Let f : �d → � be a smooth
function. Its surface is the set L(f) = {v ∈ �d|f(v) = 0}. A hyperplane in �d

through a fixed point p0 ∈ �d is defined by the equation (p − p0) · v = 0, where
v is a normal vector of the plane and “ .” is the usual vector inner product. A
hyperplane in �d is determined by L(f) for some linear function f : �d → �. A
function f(n) is Õ(g(n)) if f(n) = O(g(n)(log n)c) for some constant c.

Definition 1. Given any Q ⊆ �d with a sketch P ⊆ �d, a constant a > 0, and a
weight function w : P → [0,∞), an a-wide-separator is determined by the surface
L(f) for some linear function f : �d → �. The separator has two measurements
for its quality of separation: (1) balance(L(f), Q) = max(|Q1|,|Q2|)

|Q| , where Q1 =
{q ∈ Q|f(q) < 0} and Q2 = {q ∈ Q|f(q) > 0}; and (2) density(L(f), P, a

2 , w),
where in general density(A, P, x, w) =

∑
p∈P,dist(p,A)≤x w(p) for any A ⊆ �d

and x > 0. When f is fixed or no confusion arises, we use balance(L, Q) and
density(L, P, a

2 , w) to stand for balance(L(f), Q) and density(L(f), P, a
2 , w), re-

spectively.
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Definition 2. A (b, c)-partition of �d divides the space into a disjoint union of
regions P1, P2, . . ., such that each Pi, called a regular region, has a volume of b
and a diameter ≤ c. A (b, c)-regular point set A is a set of points in �d with a
(b, c)-partition P1, P2, . . ., such that each Pi contains at most one point from A.
For two regions A and B, if A ⊆ B (A ∩ B �= ∅), we say B contains (intersects
resp.) A.

For the case b = 1 and c =
√

2, the plane can be partitioned into 1 × 1 squares,
where each 1 × 1-square is a region {(x, y)|i ≤ x < i + 1 and j ≤ y < j + 1} for
some grid point (i, j) with two integers i and j. All grid points are (1,

√
2)-regular

points.
Let Bd(r, o) be the d-dimensional ball of radius r at center o. Its volume is

Vd(r) = 2(d+1)/2π(d−1)/2

1·3···(d−2)·d rd if d is odd, or 2d/2πd/2

2·4···(d−2)·drd otherwise.Let Vd(r) = vd ·
rd, where vd is a constant for the fixed dimension d. In particular, v1 = 2, v2 = π
and v3 = 4π

3 . We will use the following well-known fact that can be easily derived
from Helly Theorem (see [19]).

Lemma 1. For an n-element set P in the d-dimensional space �d, there is a
point q with the property that any half-space that does not contain q, covers at
most d

d+1n elements of P . (Such a point q is called a centerpoint of P .)

Definition 3. Let a > 0, p and o be two points in �d. Define Prd(a, p0, p) to
be the probability that the point p has ≤ a perpendicular distance to a random
hyperplane L through the point p0. Define function fa,p,o(L) = 1 if p has a
distance ≤ a to the hyperplane L through o, or 0 otherwise. The expectation of
function fa,p,o(L) is E(fa,p,o(L)) = Prd(a, o, p). Assume P = {p1, p2, . . . , pn}
is a set of n points in �d and each pi has weight w(pi) ≥ 0. Define function
Fa,P,o(L) =

∑
p∈P w(p)fa,p,o(L) and function U(P, L, a) =

∑
p∈P fa,p,o(L).

We give an upper bound for the expectation E(Fa,P,o(L)) for Fa,P,o(L) in the
lemma below.

Lemma 2 ([16]). Let d ≥ 2. Let o be a point in �d, a, b, c > 0 be constants and
ε, δ > 0 be small constants. Assume that P1, P2, . . . , form a (b, c)-partition for
�d, and the weights w1 > · · · > wk > 0 satisfy k ·w1 = O(nε). Let P be a set of n
weighted (b, c)-regular points in a d-dimensional plane with w(p) ∈ {w1, . . . , wk}
for each p ∈ P . Let nj be the number of points p ∈ P with w(p) = wj for

j = 1, . . . , k. Then we have E(Fa,P,o(L)) ≤ (kd · (1
b )

1
d + δ) · a ·

∑k
j=1 wj · n

d−1
d

j +

O(n
d−2

d +ε), where kd = 2vd−1
vd

, vd is constant for fixed dimensional number d. In

particular, k2 = 4√
π

and k3 = 3
2

( 4π
3

) 1
3 .

Definition 4. For each point q and a hyperplane L in �d, define sd(q, L) to be
the signed distance from q to L, which is sd(q, L) = (q − q0) · vL, where “.” is
the regular inner product, q0 is a point on L, and vL is the normal vector of the
hyperplane L with the first nonzero coordinate to be positive.
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Definition 5. For a hyperplane L in �d, if L is through a point q0 and has
the normal vector v, then it has linear equation (u − q0) · v = 0. If q ∈ �d and
d = sd(q, L), then the hyperplane L′ through q and parallel to L has equation
(u − (q0 + dv)) · v = 0. We use L(d) to represent such a hyperplane L′.

For an interval I ⊆ R, ‖I‖ is the length of I. For example, ‖[a, b)‖ = b − a. We
often use Pr(E) to represent the probability of an event E. For a real number
x, �x� is the largest integer y ≤ x, and �x� are the least integer z ≥ x. For an
interval [a, b] ⊆ R, define center([a, b]) to be a+b

2 .

3 The Improved Sublinear Time Randomized Algorithm

Theorem 1 ([21]). Let X1, · · · , Xn be n independent random 0-1 variables,
where Xi takes 1 with probability at most p. Let X =

∑n
i=1 Xi. Then for any

δ > 0, Pr(X > (1 + δ)pn) <
[

eδ

(1+δ)(1+δ)

]pn

.

Theorem 2 ([21]). Let X1, · · · , Xn be n independent random 0-1 variables,
where Xi takes 1 with probability at least p. Let X =

∑n
i=1 Xi. Then for any

δ > 0, Pr(X < (1 − δ)pn) < e−
1
2 δ2pn.

Define τ1(δ) = e−
1
2 δ2

and τ2(δ) = eδ

(1+δ)(1+δ) . Define τ(δ) = max(τ1(δ), τ2(δ)).
We note that τ2(δ) is always strictly less than 1 for all δ > 0, and τ2(δ) is fixed
if δ is a constant. This can be verified by checking that the function f(x) =
(1+x) ln(1+x)−x is increasing and f(0) = 0. This is because f ′(x) = ln(1+x)
which is strictly greater than 0 for all x > 0.

Theorem 3. Let d ≥ 2 be the fixed dimension number and v be a positive pa-
rameter. Let a, b, c > 0 be constants and δ, s1, s2 > 0 be small constants. Let Q
be a set of nQ points in �d, and P be a set of nP (b, c)-regular points, which
form a sketch for Q. Then there exists an O(n

1
d · (log n)1+ε) time randomized

algorithm to find a hyperplane L with probability ≥ 1 − 1
2v such that (1) each

half space has ≤ ( d
d+1 + δ)nQ points from Q, and (2) and the number of points

of P with distance ≤ a to L is ≤ (1 + δ)kdb
−1
d · a ·n

d−1
d

P , where n = nP + nQ and
ε is an arbitrary small constant.

Proof (for Theorem 3). We use two phases to find the separator hyperplane. The
first phase determines the orientation of the hyperplane by selecting a random
hyperplane, and finds the region of the separator hyperplane for a balanced
partition. The second phase finds the position of the separator plane with a
small number of points in P close to it. Without loss of generality, we assume
that 0 < δ < 1. Select constant c0 > 0 and let δ1 = c0δ so that

(kd · b
−1
d + 3δ1)(1 + δ1)2 ≤ (kd · b

−1
d +

δ

2
). (1)

Let a1 = a(1 + δ1) and α = δ1.
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Let o be the center point from Lemma 1 (our algorithm does not need to find
such a center point o, but will use its existence). We consider all points in P
having the same weight 1. By Lemma 2, we have

E(Fa1,P,o) ≤ (kd · b
−1
d + δ1) · a1 · n

d−1
d

P + O(n
d−2

d +ε

P ). (2)

By the well known Markov inequality and inequality (2),

Pr(Fa1,P,o(L) ≥ (1 + α)E(Fa1,P,o)) ≤
1

1 + α
. (3)

This tells us that for a random hyperplane L, the probability is at least 1− 1
1+α

such that there exists a separator hyperplane L′ (it may be through o) that
satisfies the conditions of the theorem and is parallel to L. The hyperplane L′ is
determined by the signed distance from a point in L′ to the hyperplane L since
L′ and L are parallel. We assign the values to some parameters:

r = c4v, where c4 is a constant to be fixed later (4)

ε0 =
δ

7
(5)

ε1 = 5ε0 (6)

m1 =
3(ln 100 + r + log nQ)

ε20
(7)

εc > 0 is a very small constant (8)
ε is an arbitrary constant > 0 (9)
ξ is a positive constant with (10)

1 + ξ

1 − ξ
(1 + α)(kd · b

−1
d + δ1) ≤ (1 + δ)kd · b

−1
d (11)

m2 = 8c2rn
1
d

P (log nP )1+ε, where c2 is a constant with τ(ξ)c2 ≤ e (12)

Algorithm: find separator in d-dimension
Input:

P (a set of weighted (b, c)-regular points in �d),
Q (a set of points in �d),
nP = |P | (the number of elements of set P ), and
nQ = |Q| (the number of elements of set Q).

Phase 1:
begin

Select a fixed point o∗ ∈ �d and a random hyperplane L through o∗.
Randomly select a list m1 points Q′ =< q1, · · · , qm1 > from Q.
For each qj ∈ Q′, compute its signed distance to L dqi = sd(qi, L).
Find the �( 1

d+1 − ε1)m1�-th least point D∗
1,d+1 = dq∗

1
among dq1 , · · · , dqm1

.
Find the �( d

d+1 + ε1)m1�-th least point D∗
d,d+1 = dq∗

2
among dq1 , · · · , dqm1

.
Randomly select a list of m2 points P ′ =< p1, · · · , pm2 > from P .
For each pi ∈ P ′, compute dpi = sd(pi, L).

end (Phase 1)
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Phase 2:
begin

if (|D∗
1,d+1 − D∗

d,d+1| ≥ 3an
1
d

P (log nP )ε) then (Case 1)
begin

Let u = n
1
d

P (log nP )ε.
Partition [D∗

1,d+1, D
∗
d,d+1] into equal length intervals [l1, l2), [l2, l3),

· · · , [lu−1, lu), [lu, lu+1].
Compute W (P ′, L, [li, li+1]) for i = 1, · · · , u.
Select [li, li+1] with the minimal W (P ′, L, [li, li+1]).

end (Case 1)
if (|D∗

1,d+1 − D∗
d,d+1| ≤ δ1a) then (Case 2: Subcase 2.1)

begin
Select J = [D∗

1,d+1 − a, D∗
1,d+1 + a].

end (Case 2: Subcase 2.1)
if (δ1a < |D∗

1,d+1 − D∗
d,d+1| < 3an

1
d

P (log nP )ε) then (Case 2: Subcase 2.2)
begin

Select the least integer v ≥ 2 such that |D∗
d,d+1−D∗

1,d+1|+2a

v ≤ δ1a
3 .

Let s =
|D∗

d,d+1−D∗
1,d+1|+2a

v .
Partition [D∗

1,d+1−a, D∗
d,d+1+a] into [r1, r2)∪[r2, r3)∪· · ·∪[rv−1, rv)∪

[rv, rv+1] of length s.
Compute W (P ′, L, Ii) with Ii = [ri, ri+1) for i = 1, · · · , v − 1 and
Iv = [rv, rv+1].
Select an integer h with 2a < h · s < 2a + 2s.
Let J∗

i = [ri, ri+h) = Ii ∪ Ii+1 ∪ · · · ∪ Ii+h−1 (i = 1, 2, · · · , v − h) and
J∗

v−h+1 = [rv−h+1, rv+1] = Iv−h+1 ∪ Iv−h+2 ∪ · · · ∪ Iv+1.
Compute W (P ′, L, J∗

i ) via W (P ′, L, J∗
i ) = W (P ′, L, J∗

i−1)−
W (P ′, L, Ii−1) + W (P ′, L, Ii+h) (i = 1, · · · , v − h + 1).
Select J = J∗

i with the minimal W (P ′, L, J∗
i ).

end (Case 2: Subcase 2.2)
Output L(center(J)) (see definition 5) as the separator hyperplane.

end (Phase 2)
Repeat the algorithm z times to amplify probability.
End of the Algorithm

Phase 1 of the algorithm: The input of our algorithm is P, Q, nQ = |Q|, and
nP = |P |. Each input point p ∈ P has the format (x1, · · · , xd). The algorithm
starts with the following steps: Select a fixed point o∗ ∈ �d and a random plane L
through o∗ (random hyperplane can be selected via selecting a random normal vec-
tor). Randomly select m1 points q1, · · · , qm1 from Q and let Q′ =< q1, · · · , qm1 >
represent the list of these points just selected from Q (One point may appear
multiple times. This is why we use list instead of set). For each qj ∈ Q′, com-
pute its signed distance dqi = sd(qi, L) to L. Find the �( 1

d+1 − ε1)m1�-th least
point D∗

1,d+1 = sd(q∗1 , L) for dq1 , · · · , dqm1
. Find the �( d

d+1 + ε1)m1�-th least point
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D∗
d,d+1 = sd(q∗2 , L) for dq1 , · · · , dqm1

. Randomly select m2 points p1, · · · , pm2 from
P and let P ′ =< p1, · · · , pm2 > represent the list of these points just selected.
For each pi ∈ P ′, compute dpi = sd(pi, L). It is well-known that finding the i-
th element from a list takes linear steps (see [25]). The computation above takes
O(m1 +m2) steps. In the rest of the algorithm, we locate the position of the sepa-
rator hyperplane parallel to L by finding its signed distance to L. Its position will
be at the center of an interval of size 2a. In the rest of the proof, we treat both P
and Q as lists of points from �d. Each point appears only at most once on both
P and Q. Let td = kd · b−1

d + δ. For q ∈ �d and A ⊆ �d, define Pr(A, L,← q) =
|{q′|q′∈A and sd(q′,L)≤sd(q,L)}|

|A| . For a list of points B =< x1, · · · , xm > from �d

and a point q ∈ �d, define XB,L,q(i) = 1 if sd(xi, L) ≤ sd(q, L), or 0 otherwise.
We also define Y (B, L, q) =

∑m
i=1 XB,L,q(i).

Lemma 3 ([1]). With failure probability at most e−r

50 , we have that Pr(Q, L,←
q∗1) ∈ [ 1

d+1 − δ, 1
d+1 − δ

6 ] and Pr(Q, L,← q∗2) ∈ [ d
d+1 + δ

6 , d
d+1 + δ] for all large

nQ.

Phase 2 of the algorithm: In this phase, we will find a position of the hy-
perplane L′ (parallel to the hyperplane L) with the signed distance to L in the
range [D∗

1,d+1, D
∗
d,d+1]. Lemma 3 guarantees (with high probability) that each

position in the interval [D∗
1,d+1, D

∗
d,d+1] gives a balance partition. We look for

the position that has the small number of points in P close to L′.
For a list A =< x1, · · · , xm >, |A| = m is denoted to be the length of A and

x ∈ A means that x is one of the elements in A (x = xi for some 1 ≤ i ≤ m).
For a real number subset J ⊆ � and a list A of finite points in �d, define

Pr∗(A, L, J) =
|{p : p ∈ A and sd(p, L) ∈ J}|

|A| , (13)

and also define

W (A, L, J) = |{p : p ∈ A and sd(p, L) ∈ J}|. (14)

In the proofs of the next a few lemmas, we pay much attention to handle the in-

tervals Hi with W (P, L, Hi) = Ω(n
d−1

d

P ) and ignore those Hi with W (P, L, Hi) =

o(n
d−1

d

P ). This is because any interval Hi with W (P, L, Hi) = o(n
d−1

d

P ) can di-
rectly bring an position of separator L with the number of points with distance
to L at most a to be bounded by (1 + δ)kdb

−1
d · a · n d−1

d .

Lemma 4. Assume that Hi is an interval with W (P, L, Hi) = o(n
d−1

d

P ) and

Hj is an interval with W (P, L, Hj) = Ω(n
d−1

d

P ). Then with probability at most
1

100nP
e−r, W (P ′, L, Hi) ≥ W (P ′, L, Hj).

Proof. It follows from Theorems 1, 2 and the setting for m2 by equation (12).
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Lemma 5. Let f ≤ nP be an integer and H1, H2, · · · , Hf ⊆ R be f real in-
tervals. With failure probability at most 1

100e−r, we have that W (P, L, Hi) ∈
[W (P ′, L, Hi) nP

(1+ξ)m2
, W (P ′, L, Hi) nP

(1−ξ)m2
] for each interval Hi with

W (P, L, Hi) = Ω(n
d−1

d

P ) and i ≤ f .

Proof. Assume that Hi is an fixed interval with W (P, L, Hi) = Ω(n
d−1

d ). We

have Pr∗(P, L, Hi) = Ω(n
−1
d

P ) by the equation (13). By Theorems 1 and 2, the
probability is at most 2τ(ξ)−Pr∗(P,L,Hi)m2 ≤ e−r

100nP
(see equation (12) that we do

not have that W (P ′, L, Hi) ∈ [(1 − ξ)Pr∗(P, L, Hi)m2, (1 + ξ)Pr∗(P, L, Hi)m2].
Thus, it has the probability ≤ f · 1

100nP
e−r ≤ 1

100e−r, we do not have that
W (P ′, L, Hi) ∈ [(1 − ξ)Pr∗(P, L, Hi)m2, (1 + ξ)Pr∗(P, L, Hi)m2] for each i ≤
f with W (P, L, Hi) = Ω(n

d−1
d ). We assume that for all Hi with i ≤ f and

W (P, L, Hi) = Ω(n
d−1

d ),

W (P ′, L, Hi) ∈ [(1 − ξ)Pr∗(P, L, Hi)m2, (1 + ξ)Pr∗(P, L, Hi)m2]. (15)

Since W (P, L, Hi) = Pr∗(P, L, Hi)nP (by equations (13) and (14)) and assump-
tion (15), we have W (P, L, Hi) ∈ [W (P ′, L, Hi) nP

(1+ξ)m2
,

W (P ′, L, Hi) nP

(1−ξ)m2
]. We have proved the lemma. �

Case 1: |D∗
1,d+1 −D∗

d,d+1| ≥ 3an
1
d

P (log nP )ε. Partition [D∗
1,d+1, D

∗
d,d+1] into dis-

joint intervals [l1, l2), [l2, l3), · · · , [lu−1, lu), [lu, lu+1] such that each li+1 − li(i =

1, · · · , u) is equal to
|D∗

1,d+1−D∗
d,d+1|

g1(nP ) ≥ 3a, where g1(nP ) = u = n
1
d

P (log nP )ε. Let
Ji = [li, li+1) if i < u, and Ju = [lu, lu+1]. Compute W (P ′, L, Ji) for i = 1, · · · , u,
which takes O(m2 + g1(nP )) = O(m2) steps. The algorithm selects J = Ji0 that
has the least W (P ′, L, Ji0) and let L′ = L(center(Ji0)) (see definition 5), which
takes O(g1(nP )) = O(m2) steps. Assume that Ji1 is the interval with the least
W (P, L, Ji1).

Lemma 6. Assume Case 1 condition is true. With failure probability at most
1
50e−r, we have that W (P, L, Ji0) ≤

(
1+ξ
1−ξ kd · b−1

d

)
· a · n

d−1
d

P for all large nP .

Proof. Since
∑k

j=1 nj = nP , and J1, J2, · · · , Ju are disjoint intervals, we have∑g1(nP )
i=1 W (P, L, Ji) ≤ W (P, L, (−∞, +∞)) = nP . Since Ji1 is the interval with

the least W (P, L, Ji1), we have

W (P, L, Ji1) ≤
nP

g1(nP )
≤
(
kd · b

−1
d

)
· a · n

d−1
d

P . (16)

As we mentioned before, we do not discuss the case that there is an interval
Ji with W (P, L, Ji) = o(n

d−1
d ). In this case, it’s unlikely that some Jk with

W (P, L, Jk) = Ω(n
d−1

d ) will have W (P ′, L, Jk) ≤ W (P ′, L, Ji) by Lemma 4.
By Lemma 5, with probability ≤ 1

100e−r, we do not have that for each Ji with
W (P, L, Ji) = Ω(n

d−1
d ) and i ≤ g1(nP ),

W (P, L, Ji) ∈ [ W (P ′, L, Ji)
nP

(1 + ξ)m2
, W (P ′, L, Ji)

nP

(1 − ξ)m2
]. (17)
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Assume (17) is true. Thus, W (P ′, L, Ji1)
nP

(1+ξ)m2
≤ W (P, L, Ji1), which implies

the following:

W (P ′, L, Ji1) ≤ W (P, L, Ji1)
(1 + ξ)m2

nP
. (18)

Since the algorithm selects the interval Ji0 with the least W (P ′, L, Ji0), we have
that

W (P ′, L, Ji0) ≤ W (P ′, L, Ji1). (19)

Thus, we conclude that W (P, L, Ji0) ≤ W (P ′, L, Ji0)
nP

(1−ξ)m2
≤

W (P ′, L, Ji1)
nP

(1−ξ)m2
≤ ((1 + ξ)W (P, L, Ji1 )

m2
nP

) nP

(1−ξ)m2
= 1+ξ

1−ξ W (P, L, Ji1).

By (16), we have W (P, L, Ji0) ≤
(

1+ξ
1−ξ kd · b−1

d

)
· a · n

d−1
d

P . �

Case 2: |D∗
1,d+1 − D∗

d,d+1| < 3an
1
d

P (log nP )ε. Let J∗ be interval such that
center(J∗) ∈ [D∗

1,d+1, D
∗
d,d+1] and |J∗| = 2a1 = 2a(1 + δ1) and W (P, L, J∗)

is the least.
Subcase 2.1: |D∗

1,d+1−D∗
d,d+1| ≤ δ1a. Let J = [D∗

1,d+1−a, D∗
1,d+1 +a] and let

L′ = L(D∗
1,d+1) (In other words, L′ = L(center(J))) (see definition 5). Clearly,

J ⊆ J∗ and W (P, L, J) ≤ W (P, L, J∗).

Subcase 2.2: δ1a < |D∗
1,d+1 − D∗

d,d+1| < 3an
1
d

P (log nP )ε. Let g2(nP ) be the

least integer v ≥ 2 such that
|D∗

d,d+1−D∗
1,d+1|+2a

v ≤ δ1a
3 . Since v ≥ 2 and

|D∗
d,d+1−D∗

1,d+1|+2a

v−1 > δ1a
3 , we have

|D∗
d,d+1−D∗

1,d+1|+2a

v = v−1
v

|D∗
d,d+1−D∗

1,d+1|+2a

v−1 >

v−1
v

δ1a
3 ≥ δ1a

6 . Therefore, v ≤ |D∗
d,d+1−D∗

1,d+1|+2a
δ1a

6

≤ 3an
1
d
P (log nP )ε+2a

δ1a

6

= 6(3n
1
d
P (log nP )ε+2)

δ1
= O(n

1
d

P (log nP )ε). Let s =
|D∗

d,d+1−D∗
1,d+1|+2a

g2(nP ) ∈ [ δ1a
6 , δ1a

3 ].
Partition [D∗

1,d+1−a, D∗
d,d+1+a] into the union of g2(nP ) disjoint intervals of size

s: [r1, r2)∪[r2, r3)∪· · ·∪[rv−1, rv)∪[rv , rv+1], where v = g2(nP ) and ri+1 = ri+s
for i = 1, · · · , v. Let Ii = [ri, ri+1) for i = 1, · · · , v − 1 and Iv = [rv, rv+1]. Let
J∗

i = Ii ∪ Ii+1 · · · ∪ Ii+h−1 for i = 1, . . . , v − h + 1, where h is an integer with
2a < h · s < 2a + 2s. The algorithm selects the interval J = J∗

i2
that has

the least W (P ′, L, J∗
i2). Finally, the algorithm outputs L′ = L(center(J)) (see

definition 5) for the separator hyper-plane. We analyze the algorithm for the
case 2.

Lemma 7. Assume that J is the interval output from the case 2 (either sub-
case 2.1 or subcase 2.2). With failure probability at most 1

100e−r, we have that
W (P, L, J) ≤ 1+ξ

1−ξ W (P, L, J∗).

Proof. The subcase 2.1 is trivial since the small size of the interval implies that
J ⊆ J∗. We only discuss the subcase 2.2. Let It, It+1, · · · , It+m be the inter-
vals such that J∗ ∩ It+i �= ∅ (i = 0, · · · , m). Then It+1, It+2, · · · , It+m−1 are all
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subsets of J∗. Since ‖Ii‖ = s ≤ δ1a
3 , ‖J∗‖ = 2(1+ δ1)a ≥ ‖J∗

t+1‖ ≥ ‖J∗‖− δ1a−
‖It‖ − ‖It+m‖ ≥ 2(1 + δ1)a − δ1a − 2δ1a

3 ≥ 2a + δ1a
3 (Remember that we use

‖[a, b)‖ to represent the length b-a of the interval [a, b)). We have the interval
J∗

t+1 with ‖J∗
t+1‖ ≥ 2a and J∗

t+1 ⊆ J∗. This implies that

W (P, L, J∗
t+1) ≤ W (P, L, J∗). (20)

By Lemma 5, it has probability at most 1
100e−r, the following does not hold:

W (P, L, J∗
i ) ∈ [(1 − ξ)W (P ′, L, J∗

i )nP

m2
, (1 + ξ)W (P ′, L, J∗

i )nP

m2
] for each i ≤

g2(nP ) − h + 1 with W (P, L, J∗
i ) = Ω(n

d−1
d

P ).
We assume that W (P, L, J∗

i ) ∈ [W (P ′, L, J∗
i ) nP

(1+ξ)m2
, W (P ′, L, J∗

i ) nP

(1−ξ)m2
]

for all i ≤ g(nP ) − h + 1. Thus, W (P ′, L, J∗
t+1)

nP

(1+ξ)m2
≤ W (P, L, J∗

t+1) ≤
W (P, L, J∗). Hence, W (P ′, L, J∗

t+1) ≤ W (P, L, J∗
t+1)

(1+ξ)m2
nP

.
Since the algorithm selects the interval J∗

i2
with the least W (P ′, L, J∗

i2
), we

have W (P ′, L, J∗
i2) ≤ W (P ′, L, J∗

t+1). We have that W (P, L, J∗
i2) ≤

W (P ′, L, J∗
i2

) nP

(1−ξ)m2
≤ W (P ′, L, J∗

t+1)
nP

(1−ξ)m2
≤

((1 + ξ)W (P, L, J∗
t+1)

m2
nP

) nP

(1−ξ)m2
= 1+ξ

1−ξ W (P, L, J∗
t+1) ≤ 1+ξ

1−ξ W (P, L, J∗).
As we mentioned before, we do not discuss the case that there is an interval

Ji with W (P, L, Ji) = o(n
d−1

d ). In this case, it’s unlikely that some Jk with
W (P, L, Jk) = Ω(n

d−1
d ) will have W (P ′, L, Jk) ≤ W (P ′, L, Ji) by Lemma 4. �

For a list A of finite points in �d and a hyper-plane M1, define F1(M1, a, A) =∑
pi∈A and dist(pi,M1)≤a w(pi). If M1 and M2 are two parallel hyper-planes with

signed distance dM1,M2 = sd(p, M1) for some point p in the M2, then
F1(M2, a, A) = W (A, M1, [dM1,M2 ,−a, dM1,M2 + a]). The the hyper-plane
L(center(J∗

i2
)) (see definition 5) output by the algorithm has that

F1(L(center(J)), a, P ′) ≤ 1+ξ
1−ξ F1(L(center(J∗)), a1, P

′) by Lemma 7.

Lemma 8. With failure probability at most e−v, one can output an hyperplane
L′ in O(v2 · (n 1

d · (log n)1+ε) steps such that F1(L′, a, P ) ≤
(
(1 + δ)kd · b−1

d

)
· a ·

n
d−1

d

P , and each side of the half-space contains at most ( d
d+1 + δ)nQ points in Q,

where n = nP + nQ.

Proof. After the hyper-plane L is selected in phase one, by Lemma 3 we have
the probability at most e−r that both Pr(Q, L,← q∗1) ∈ [ 1

d+1 − δ, 1
d+1 − δ

6 ]
and Pr(Q, L,← q∗2) ∈ [ d

d+1 + δ
6 , d

d+1 + δ]. This means every L′ (parallel to L)
with the signed distance (to L) in the interval [D∗

1,d+1, D
∗
d,d+1], it has at most

( d
d+1 +δ)nQ points of Q in each of the half spaces. In phase 2, we have probability

at most e−r that it does not output the separator L′ (the signed distance to L

is in [D∗
1,d+1, D

∗
d,d+1]) such that F1(L′, a, P ) ≤

(
1+ξ
1−ξ kd · b−1

d

)
· a · n

d−1
d

P (Case

1 of Phase 2, see Lemma 6) or F1(L′, a, P )) ≤ 1+ξ
1−ξ F1(L(J∗), a1, P ) (Case 2 of

Phase 2, see Lemma 7), where J∗ is the interval of length 2a1 with the least
F1(L(J∗), a1, P ) and center between D∗

1,d+1 and D∗
d,d+1.
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Assume that L is a fixed hyper-plane and L∗ is a another hyper-plane that is
parallel to L and F1(L∗, a1, P ) is the least. By Lemma 6 and Lemma 7, it has
probability is at most e−r such that we cannot get another L′ (parallel to L) such

that F1(L′, a, P ) ≤
(

1+ξ
1−ξ kd · b−1

d

)
· a · n

d−1
d

P or F1(L′, a, P ) ≤ 1+ξ
1−ξ F1(L∗, a1, P ).

With probability at most 1
1+α , Fa1,P,o(L) ≥ (1 + α)E(Fa1,P,o) (by (3)). If the

algorithm repeats z times, let L1, · · · , Lz be the random hyper planes selected
for L. With probability at most ( 1

1+α )z , none of those Lis has another hyper-
plane L∗

i such that L∗
i is parallel to Li and has Fa1,P,o(L∗

i ) ≤ (1 + α)E(Fa1,P,o).
Therefore, we have probability at most ( 1

α+1 )z +2ze−r that we cannot find such
a hyper-plane L′ with

F1(L′, a, P ) ≤ 1 + ξ

1 − ξ
(1 + α)E(Fa1,P,o) or (21)

F1(L′, a, P ) ≤
(

1 + ξ

1 − ξ
kd · b

−1
d

)
· a · n

d−1
d

P . (22)

By inequalities (21), (22), (11) and (2), we have

F1(L′, a, P ) ≤
(

1+ξ
1−ξ (1 + α)kd · b−1

d

)
· a · n

d−1
d

P ≤
(
(1 + δ)kd · b−1

d

)
· a · n

d−1
d

P .

Now we give a bound for the probability. Let z = 2r
ln(1+α) = O(v) (by (4)).

Then ( 1
1+α )z + 2ze−r < 2−v, where we let r = c4v for some constant c4 large

enough.
The phase 1 of the algorithm takes O(m1 + m2) steps. The case 1 of phase

2 takes O(m2) steps. The case 2 of phase 2 takes O(m2) steps. Totally, it takes
O(z(m1 + m2)) = O(v2 · (n 1

d (log n)1+ε)) steps. �

Applying Lemma 8, we finish the proof of the Theorem. �

We have a more generalized version of algorithm for finding width bounded
separator. It will be presented in the journal version of this paper. We also
derive the following lower bound that almost matches the upper bound.

Theorem 4. There is no o(n
1
d )-time randomized algorithm that tests if a given

hyper-plane S is a 2-width bounded separator for a set P of n grid points.
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Rooted Plane Graphs
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Abstract. A plane graph is a drawing of a planar graph in the plane
such that no two edges cross each other. In a rooted plane graph, an
outer (directed) edge is designated as the root. For a given positive in-
teger n ≥ 1, we give an O(1)-time delay algorithm that enumerates all
plane graphs with exactly n vertices using O(n) space. Our algorithm
can generates only plane graphs such that the size of each inner face is
bounded from above by a prescribed integer g ≥ 3 in the same time and
space complexity.

1 Introduction

The problem of enumerating (i.e., listing) all graphs with bounded size is one of
the most fundamental and important issues in graph theory. Many algorithms
for particular classes of graphs have been studied [1,11,13,14,18,20], and sev-
eral excellent books on this subject have been published [3,9,19]. Cataloguing
graphs, i.e., making the complete list of graphs in a particular class can be used
in a various way: search for a possible counterexample to a mathematical con-
jecture; choosing the best graph among all candidate graphs; and experiment for
measuring the average performance of a graph algorithm over all possible input
graphs.

Time delay of an enumeration algorithm is a time bound between two con-
secutive outputs. Enumerating graphs with a polynomial time delay would be
rather easy since we can examine the whole structure of the current graph any-
time. However, algorithms with a constant time delay in the worst case is a
hard target to achieve without a full understanding of the graphs to be enumer-
ated, since not only the difference between two consecutive outputs is required
to be O(1), but also any operation for examining symmetry and identifying the
edges/vertices to be modified to get the next output needs to be executable in
O(1) time. One of the common ideas behind efficient enumeration algorithms
(e.g., [16,15,17]) is to define a unique representation for each graph in a graph
class as its “parent,” which induces a rooted tree that connects all graphs in the
class, called the family tree F , where each node in F corresponds to a graph in
the class. Then all graphs in the class will be enumerated one by one according
to the depth-first traversal of the family tree F . However, the crucial point to
attain an O(1)-time delay is to find a “good” parent which enables us to generate
each of the children from a graph in O(1) time.

D.T. Lee, D.Z. Chen, and S. Ying (Eds.): FAW 2010, LNCS 6213, pp. 113–123, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Enumeration of restricted graphs or graphs with configurations has many
applications in various fields such as machine learning and chemoinformatics.
Enumeration of trees and outerplanar graphs can be used for many purposes in-
cluding the inference of structures of chemical compounds [8], virtual exploration
of chemical universe [12], and reconstruction of molecular structures from their
signatures [4]. It is known that 94.3% of chemical compounds in NCI chemical
database have planar structures [6]. Hence planar graphs is an important class
to be investigated.

Our research group has been developing algorithms for enumerating chemical
graphs that satisfy given various constraints [2,7,8]. We have designed efficient
branch-and-bound algorithms for enumerating tree-like chemical graphs [2,8],
which are based on the tree enumeration algorithm [16], and implementations of
these algorithms are available on our web server1. Currently we aim to provide
efficient algorithms for enumerating chemical graphs for a wider class of graphs
than trees such as cacti and outerplanar graphs in our web server.

Li and Nakano [10] presented an efficient algorithm that enumerates all bi-
connected rooted triangulated plane graphs in constant time per each, where
an outer edge is chosen as the root of each biconnected rooted plane graph. Af-
terwards Nakano [15] presented an algorithm with the same time complexity to
generate all triconnected rooted triangulated plane graphs. Recently, in our com-
panion paper [22], we gave an efficient algorithm for enumerating biconnected
rooted planar graphs with internally triangulated faces, where a planar graph
designates an outer vertex v and two outer edges incident to v.

Yamanaka and Nakano [21] gave an algorithm for generating all connected
rooted plane graphs with at most m edges, where a plane graph has one des-
ignated (directed) edge on the outer face. The algorithm uses O(m) space and
generates such graphs in O(1) time per graph on average without duplications.

In this paper, we consider the class G2(n, g) of all biconnected rooted plane
graphs with exactly n vertices such that the size of each inner face is at most g,
where a rooted plane graph here designates an outer vertex. We give an algorithm
that enumerates all plane graphs in G2(n, g) in O(1) time per graph in the worst
case using O(n) space. Our algorithm also yields an O(n3)-time delay algorithm
for generating all biconnected unrooted plane graphs with exactly n vertices such
that the size of each inner face is at most g. However, our algorithm does not
exploit any dynamic data structure that represents triconnected components to
test biconnectivity of possible candidates for graphs to be generated, because
an O(1) time maintenance of such a data structure required to achieve an O(1)-
time delay seems extremely difficult. To design an O(1)-time delay algorithm for
G2(n, g), we use structural properties of cut-pairs of outer vertices in biconnected
plane graphs, and “balanced orientation” of all edges in a biconnected plane
graph, which allows us to test whether given vertices u and v are adjacent or not
in O(1) time and O(n) space. Note that such a test can be done in O(1) time
using an O(n2)-space adjacency matrix and in time proportional to the sum of
degrees of u and v using an O(n)-space adjacency lists.

1 http://sunflower.kuicr.kyoto-u.ac.jp/tools/enumol/
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The rest of the paper is organized as follows. After introducing basic nota-
tions in Section 2, Section 3 examines the structure of biconnected plane graphs.
Section 4 introduces the parent of each biconnected rooted plane graph, and
characterizes the children of a biconnected rooted plane graph. Sections 5 de-
scribes an algorithm for enumerating all biconnected rooted plane graphs, and
analyzes the time and space complexities of the algorithm. Section 6 makes some
concluding remarks. All proofs of the lemmas in this paper can be found in [23].

2 Preliminaries

Throughout the paper, a graph stands for a simple undirected graph unless
stated otherwise. A graph is denoted by a pair G = (V, E) of a vertex set V
and an edge set E. The set of vertices and the set of edges of a given graph G
are denoted by V (G) and E(G), respectively. For a subset E′ ⊆ E(G), G − E′

denotes the graph obtained from a graph G by removing the edges in E′. Let
X be a subset of V (G). We denote by G − X the graph obtained from G by
removing the vertices in X together with the edges incident with a vertex in X .
Let deg(v) denote the degree of a vertex v in a graph G.

A graph is called planar if its vertices and edges can be drawn as points and
curves on the plane so that no two curves intersect except for their endpoints. A
planar graph with such a fixed embedding is called a plane graph, where a face is
designated as the outer face and all other faces are called inner faces. For a face
f in a plane graph, let V (f) and E(f) denote the sets of vertices and edges on
the facial cycle of f , and define the size |f | of face f to be |V (f)|. A rooted plane
graph is a plane graph which has a designated outer vertex r, which is called
the root. Two rooted plane graphs G1 and G2 are equivalent if their vertex sets
admit a bijection by which the root and the incidence-relation between edges
and vertices/faces in G1 correspond to those in G2.

For given integers n and g, let G2(n) denote the set of all biconnected rooted
plane graphs with exactly n vertices, where no two plane graphs in G2(n) are
equivalent, and let G2(n, g) denote the set of all graphs in G2(n) such that the
size of each inner face is at most g.

A plane graph G is called a fan if it is obtained from a path P with at least
one vertex by adding a new vertex v together with an edge incident to each
vertex in the path, where the vertex v is called the center of a fan. A fan with n
vertices is denoted by Fn, and is treated as a plane graph rooted at the center.

For two outer vertices u and v in a biconnected plane graph, let β[u, v] de-
note the path obtained by traversing the boundary of G from u to v in the
clockwise order.

An orientation of an undirected graph G is to give an orientation for each
undirected edge {u, v} to obtain a digraph DG, where {u, v} becomes one of
directed edge (u, v), directed edge (v, u) and a pair of directed edges (u, v) and
(v, u). Let E+(v) denote the set of directed edges (v, u) in DG. It should be noted
that G contains an undirected edge {u, v} if and only if (u, v) ∈ E+(u) or (v, u) ∈
E+(v) holds. An orientation is called balanced if |E+(v)| = O(|E(G)|/|V (G)|)
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holds for all vertices v in G. Note that a balanced orientation to a planar graph
G satisfies |E+(v)| = O(1), v ∈ V (G), implying that whether two given vertices
u and v in G are adjacent or not can be tested in O(|E+(u)|+ |E+(v)|) = O(1)
time and O(|E(G)|) = O(n) space. In this paper, we prove that every planar
graph admits a balanced orientation, which is one of the crucial points so that
our algorithm can be implemented to run in O(1)-time delay in the worst case.

3 Biconnected Plane Graphs

In a biconnected plane graph G, an edge is called 2-removable if G − e remains
biconnected, and is called 2-irremovable otherwise. Let e1 = {v1, v2} be an outer
edge in G, where v2 appears immediately after v1 along the boundary in the
clockwise order, let f1 be the inner face that contains edge e1, and let V o(e1)
denote the set of all other outer vertices in f1 than v1 and v2. Assume that e1
is not 2-removable. Note that v1 and v2 are connected by the path Q from v2
to v1 along the boundary of G. Any cut-vertex x in G − e1 must intersect path
Q. Also v1 and v2 are connected by the path along inner facial cycle f1. Hence
the set of all cut-vertices in G − e1 is given by V o(e1) �= ∅. See Fig. 1(a). Let
ηfirst(e1) (resp., ηlast(e1)) be the vertex in V o(e1) that appears first (resp., last)
when we traverse the boundary of G from v2 in the clockwise order. Let β(e1)
denote the path β[v2, ηfirst(e1)].
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Fig. 1. (a) Vertices ηfirst(e1) and ηlast(e1) for a 2-irremovable edge e1 = {v1, v2}; (b)
A 2-irremovable edge e2 = {v2, v3}; (c) Edges ei in the active path β[r, up]

Lemma 1. Let e1 = {v1, v2} be a 2-irremovable outer edge in a biconnected
plane graph G. Then β(e1) contains a 2-removable outer edge or an outer vertex
of degree 2.

By Lemma 1, the boundary of a biconnected plane graph G always contains a 2-
removable outer edge or an outer vertex of degree 2. The first removable element
is defined to be the first such edge or vertex that appears when we traverse the
boundary of G from the root in the clockwise order.

Denote the sequence of vertices in the boundary of G by u1 = r, u2, . . . , uB,
where uB+1 denotes u1 = r, and denote the outer edge {ui, ui+1} by ei.
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Consider the first removable element of G, which is an edge e or a vertex v,
which we denoted by {up, up+1} or up. We call the vertex up the critical vertex,
and call the path β[r, up] active. See Fig. 1(c). By Lemma 1, we see that each edge
ei = {ui, ui+1} in the active path has uk = ηlast(ei) such that i+1 < k ≤ B. Let
ki denote the index k of such vertex uk = ηlast(ei), where k1 = B if deg(r) = 2.
let k0 = ∞ for notational convenience. Clearly, it holds

k0 ≥ k1 ≥ k2 ≥ · · · ≥ kp−1 > p. (1)

4 Parents of Biconnected Rooted Plane Graphs

A biconnected plane graph with n ≤ 3 vertices is unique. In what follows, we
assume that n ≥ 4 and g ≥ 3. Let G be a rooted plane graph, where the root r is
an outer vertex. The neighbours of the root r of G are denoted by s1, s2, . . . , sK

(K = deg(r)) from the leftmost one to the rightmost one. The fan factor is
defined to be the maximal subsequence s1, s2, . . . , st such that each si, 2 ≤ i ≤ t
is adjacent to only si−1, si+1 and r, and s1 is adjacent to only s2 and r. See
Fig. 3(d), where t = 3. Let ψ(G) denote the fan factor of G. If ψ(G) �= ∅, then
ψ(G) induces Ft, t = |ψ(G)| from G.

Let G be a biconnected rooted plane graph with n ≥ 4 such that G �= Fn. We
define the parent P(G) of G to be the following graph with n vertices.

(i) If the first removable element is a vertex w adjacent to two neighbours u
and v which are not adjacent each other, then P(G) is defined to be the
graph obtained from G by replacing two edges {u, w} and {w, v} with a
single edge {u, v} and adding a new vertex v′ as the leftmost neighbour of
r together with two new edges {v′, r} and {v′, s1}. See Fig. 2(a) and (b).

(ii) If the first removable element is a vertex w adjacent to two neighbours u
and v which are adjacent each other, then P(G) is defined to be the graph
obtained from G by removing w and two edges {u, w} and {w, v} and adding
a new vertex v′ as the leftmost neighbour of r together with two new edges
{v′, r} and {v′, s1}. Note that the edge joining u and v is not necessarily an
outer edge. See Fig. 2(c) and (d).

(iii) If the first removable element is an edge e, then P(G) is defined to be G− e
(see Fig. 2(e) and (f)).

Let P0(G) = G and P i(G) = P(P i−1(G)) for integers i ≥ 1.

Lemma 2. For any graph G ∈ G2(n) with n ≥ 3, there is an integer i ∈ [0, 3(n−
2)] such that P i(G) = Fn.

Let G be a biconnected rooted plane graph with n ≥ 4 vertices. A rooted plane
graph G′ is called a child of G if G = P(G′). Let C(G) denote the set of all
children of G. Lemma 2 implies that the parent-child relationship by P forms a
family tree rooted at node Fn. In order to generate all children of G, we introduce
the following three operations.
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Fig. 2. (a),(c) and (e) A biconnected rooted plane graph G; (b), (d) and (f) The parent
P(G) of G in (a), (c) and (f), respectively

1. For an outer edge e = {u, v} in a biconnected plane graph G with ψ(G) �= ∅,
operation v-insert(e) removes the leftmost neighbour s1 ∈ ψ(G) of r and
inserts a new outer vertex w on the edge {u, v}, i.e., replaces {u, v} with two
edges {u, w} and {w, v}. See Fig. 2(a) and (b).

2. For two adjacent outer vertices u and v in a biconnected plane graph G with
ψ(G) �= ∅, operation v-add(u, v) removes the leftmost neighbour s1 ∈ ψ(G)
of r and adds a new outer vertex w together with two new edges {u, w} and
{w, v}. Note that the edge joining u and v is not necessarily an outer edge.
See Fig. 2(c) and (d).

3. For two outer vertices u and v which are not adjacent in a biconnected plane
graph G, operation e-add(u, v) adds a new outer edge {u, v}. See Fig. 2(e)
and (f). Clearly operation e-add(u, v) preserves the biconnectivity of G.
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Fig. 3. Biconnected rooted plane graphs. (a) G1; (b) G2 = P(G1); (c) G3 = P(G2);
(d) G4 = P(G3).

Observe that a child G′ is a graph obtained from G by one of the operations
e-add, v-insert and v-add so that the introduced edge/vertex must be the first
removable element of the resulting graph G′. Now we characterize C(G).

Let up (resp., an edge ep = {up, up+1}) denote the first removable element
when it is a vertex up (resp., an edge ep = {up, up+1}).

Lemma 3. Let G1
i be the plane graph obtained from G by operation v-insert(e)

for an outer edge e = {u = ui, v = ui+1}. Then

G1
i ∈ C(G) ⇔ 1 ≤ i ≤ p − 1 (resp., 1 ≤ i ≤ p) and ψ(G) �= ∅. (2)

Lemma 4. Let G2
i,j be the plane graph obtained from G by operation v-add(u, v)

for two outer vertices u = ui and v = uj. Then

G2
i,j ∈ C(G) ⇔ ψ(G) �= ∅, {ui, uj} ∈ E(G), 1 ≤ i ≤ p, and i+1 ≤ j ≤ ki−1, (3)

except that G2
1,2 �∈ C(G) if G = Fn.

Lemma 5. Let G3
i,j be the plane graph obtained from G by operation e-add(u, v)

for two outer vertices u = ui and v = uj. Then

G3
i,j ∈ C(G) ⇔ {ui, uj} �∈ E(G), 1 ≤ i ≤ p, and i + 2 ≤ j ≤ ki−1. (4)

Then C(G) consists of graphs G1
i , G2

i,j and G3
i,j in the above lemmas.

5 Algorithm

To generate all plane graphs G′ ∈ C(G) ∩ G2(n, g), we generate only those G′ ∈
C(G) such that the new face introduced by e-add or v-add and the enlarged
face fi incident to the edge ei = {ui, ui+1} by v-insert are of length at most g.

To generate all biconnected rooted plane graphs in G2(n, g), we set G := Fn,
and execute the following procedure Gen(G, ε = u2), where the second argument
ε stands for the first removable element in the first argument G. In Gen(G, ε),
we first generate children G1

i , G
2
i,i+1 ∈ C(G) for all edges ei in the active path

of G, and then generate children G2
i,i+Δ, G3

i,i+Δ ∈ C(G) for all vertices ui, i =
1, 2, . . . , p in the active path of G by increasing step size Δ ≥ 2 by 1.
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Procedure. Gen(G, ε)
Input: A biconnected rooted plane graph G ∈ G2(n, g) and the first removable
element ε of G, where ε is either an edge ep = {up, up+1} or a vertex up.
Output: All descendants G′ ∈ G2(n, g) of G.
begin

/* Let (u1 = r, u2, . . . , uB) denote the boundary of G in the clockwise order,
ei = {ui, ui+1} denote the edge between ui and ui+1, and fi denote the inner
face containing ei. */
if ψ(G) = ∅ then

for each edge ei = {ui, ui+1}, i = 1, 2, . . . , p do
if |fi| < g, and “i < p” or “i = p and ε is an edge” then

Let G′ be the graph G1
i obtained from G by applying v-insert(ei);

Let w be the newly introduced vertex in ei; Gen(G′, w)
endif;
if G = Fn or i > 1 then

Let G′ be the graph G2
i,i+1 obtained from G by applying v-add(ui, ui+1);

Let w be the newly introduced vertex between ui and ui+1;
Gen(G′, w)

endif
endfor

endif;
for Δ = 2, 3, . . . , min{B − 1, g − 1} do

i := 1; k0 := +∞;
while i + Δ ≤ ki−1 and i ≤ p do

j := i + Δ;
if {ui, uj} ∈ E(G) then

Let G′ be the graph G3
i,j obtained from G by applying e-add(ui, uj);

Gen(G′, ei = {ui, uj})
else /* {ui, uj} ∈ E(G) */

if ψ(G) = ∅ and Δ + 2 ≤ g then
Let G′ be the graph G2

i,j obtained from G by applying v-add(ui, uj);
Let w be the newly introduced vertex between ui and uj ; Gen(G′, w)

endif
endif;
i := i + 1;
/* ki−1 denotes the index k ∈ [i + 1, B] of uk = ηlast(ei−1) */

endwhile
endfor;
Return

end.

Note that the while-loop terminates once it holds i+Δ > ki−1 for some i without
executing an iteration for i′ > i. If i+Δ > ki−1 holds for some i, then it also holds
i′ + Δ > ki′−1 for any i′ ∈ [i, p] since ki−1 ≥ ki′−1 by (1). Therefore, Gen(G, ε)
inspects all possible cases that can generate a child G′ ∈ C(G) ∩ G2(n, g).

We first show that each line of Gen(G, ε) can be executed in O(1) time and
O(n) space. Since it is easy to maintain data for the size |f | of each inner face
f in O(1) per change on an inner face, it suffices to show that ηlast(e) for each
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edge in the active path can be found in O(1) time and that whether two vertices
are adjacent or not can be tested in O(1) time.

Lemma 6. For any edge e in the active path of G, ηlast(e) can be found in O(1)
time and O(n) space.

We test whether given vertices are adjacent or not in O(1) time and O(n) space
by using a balanced orientation. Here we show that a balanced orientation always
exists in a biconnected plane graph and how to maintain a balanced orientation
during an execution of Gen.

Lemma 7. Every planar graph admits a balanced orientation. A balanced ori-
entation of a biconnected plane graph with n vertices can be maintained in O(1)
time per operation for generating a child using O(n) space after an O(n) time
preprocessing to the initial input G := Fn.

Finally we show that Gen(Fn, ε = u2) can be implemented to run in O(|G2(n, g)|)
time. For this, it suffices to show that the time complexity T (G) of Gen(G, ε)
without including the computation time for recursive calls of Gen(G′, ε) is
O(|C(G) ∩ G2(n, g)|). In the first for-loop, G′ by v-add(ui, ui+1) is always a
child in C(G) ∩ G2(n, g) for each ei (except for the case of i = 1 and G = Fn).
Thus the delay spent to generate the next child G′ is O(1) time during the first
for-loop. We next show that the delay spent to generate the next child G′ is O(1)
time during the iteration of the while-loop for each Δ ∈ [2, min{B − 1, g − 1}].
If ψ(G) �= ∅ and Δ + 2 ≤ g then either G3

i,j or G2
i,j is a child in C(G) ∩ G2(n, g),

and the delay between two children G′ is O(1). Consider the case of ψ(G) �= ∅ or
Δ + 2 > g. In this case, G3

i,j (j = i + Δ) is a child in C(G) ∩ G2(n, g) only when
{ui, uj} �∈ E(G). However, if {ui, uj} = {ui, ui+Δ} ∈ E(G) holds and G3

i,j �∈
C(G)∩G2(n, g) for some i, then G3

i+1,j+1 ∈ C(G)∩G2(n, g) for the next i+1 since
{ui, uj} = {ui, ui+Δ} ∈ E(G) implies {ui+1, uj+1} = {ui+1, ui+Δ+1} �∈ E(G) by
the planarity of G.

Hence the delay between two children G′ in the while-loop is also O(1) time.
This proves that the time complexity T (G) of Gen(G, ε) without recursive
calls Gen(G′, ε) is O(|C(G) ∩ G2(n, g)|), and that Gen(Fn, ε = u2) runs in
O(|G2(n, g)|) time. Furthermore, if we output a child G′ before calling Gen(G′, ε)
when the current depth of recursive call is odd and after calling Gen(G′, ε) when
the current depth of recursive call is even, then the delay between two outputs
in the entire execution is O(1) in the worst case. It is easy to see that the entire
algorithm Gen(Fn, ε = u2) can be implemented in O(n) space.

Theorem 1. For integers n ≥ 4 and g ≥ 3, all biconnected rooted plane graphs
with exactly n vertices such that each inner face is of length at most g can be
enumerated without duplication in O(n) space by an algorithm that outputs the
difference between two consecutive outputs in O(1) time in a series of all outputs
after an O(n) time preprocessing.

By defining the parent of Fi, i > 1 to be Fi−1, we can easily obtain the following
corollary.
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Corollary 1. For integers n ≥ 4 and g ≥ 3, all biconnected rooted plane graphs
with at most n vertices such that each inner face is of length at most g can be
enumerated without duplication in O(n) space by an algorithm that outputs the
difference between two consecutive outputs in O(1) time in a series of all outputs.

Corollary 2. For a given integer n ≥ 4 and g ≥ 3, all biconnected plane graphs
with exactly n vertices such that each inner face is of length at most g can be
enumerated without duplication in O(n) space by an algorithm that outputs the
difference between two consecutive outputs in O(n3) time in average in a series
of all outputs.

6 Concluding Remarks

In this paper, we gave an enumeration algorithm for the class of biconnected
rooted plane graphs with exactly n vertices and bounded inner face size g. The
algorithm is designed based on graph structures of biconnected plane graphs
and an efficient procedure of testing the adjacency of two given vertices. It is
our future work to design enumeration algorithms for rooted plane graphs with
a higher vertex-connectivity and to take into account the reflectional symmetry
around the root, as studied in our companion paper [22].
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Abstract. In this paper we describe implementations of two general
methods for solving puzzles on any structured lattice. We define the
puzzle as a graph induced by (finite portion of) the lattice, and apply
a back-tracking method for iteratively find all solutions by identifying
parts of the puzzle (or transformed versions of them) with subgraphs of
the puzzle, such that the entire puzzle graph is covered without overlaps
by the graphs of the parts. Alternatively, we reduce the puzzle problem
to a submatrix-selection problem, and solve the latter problem by using
the “dancing-links” trick of Knuth. A few expediting heuristics are dis-
cussed, and experimental results on various lattice puzzles are presented.

Keywords: Polyominoes, polycubes.

1 Introduction

Lattice puzzles intrigued the imagination of “problem solvers” along many gen-
erations. Probably the most popular lattice is the two-dimensional orthogonal
lattice, in which puzzle parts are so-called “polyominoes” (edge-connected sets
of squares), and the puzzle is a container which should be fully covered without
overlaps by translated, rotated, and, possibly, also flipped versions of the parts.

One very popular set of parts is the 12 “pentominoes” (5-square polyomi-
noes), which is shown in Figure 1. We describe here a few examples of the
many works on pentomino puzzles. Such games were already discussed in the
mid 1950’s by Golomb [Go54] and Gardner [Ga57]. Scott [Sc58] found all 65
essentially-different (up to symmetries) solutions of the 8 × 8 puzzle exclud-
ing the central 2 × 2 square. Covering the entire 8 × 8 square with the twelve
pentominoes and one additional 2 × 2 square part, without insisting on the
location of the latter part, is the classic Dudeney’s puzzle [Du08]. The Hasel-
grove couple [HH60], as well as Fletcher [Fl65], computed the 2,339 essentially-
different solutions to the 6×10 pentomino puzzle. Other pentomino puzzles were

D.T. Lee, D.Z. Chen, and S. Ying (Eds.): FAW 2010, LNCS 6213, pp. 124–135, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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discussed by de Bruijn [Br71]. If pentominoes are not allowed to be flipped
upside-down, then there exist 18 such 1-sided pentominoes. Golomb [Go65] pro-
vided one tiling of a 9 × 10 rectangle by all these pentominoes, while Meeus
[Me73] credited Leech for finding all

I
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V

X

W

Z

F L

N

P Y

Fig. 1. Twelve essentially-different
2-dimensional pentominoes

the 46 tilings of a 3 × 30 rectangle
by the set of 1-sided pentominoes.
Haselgrove [Ha74] found one of the
212 essentially-different tilings of a
15 × 15 square by 45 copies of the
“Y” polyomino. Golomb [Go65]
provided many other polyomino
puzzles in his seminal book “Poly-
ominoes.” See also [Kn00] for a list-
ing of other well-studied puzzles.
The Java applet “Jerard’s Universal
Polyomino Solver”1 is highly optimized for puzzles on a regular orthogonal lat-
tice, and can supposedly solve any puzzle on this lattice.

It is well-known that finite-puzzle problems on an orthogonal lattice are NP-
Complete. This is usually shown by a reduction from the Wang tiling prob-
lem, which is also known to be NP-Complete [Le78]. It is not surprising, then,
that no better method than back-tracking is used for solving puzzles. Many
works, e.g., [Sc58, GB65, Br71], suggested heuristics for speeding-up the pro-
cess, usually by taking first steps with the least number of branches (possible
next steps).

Knuth [Kn00] suggested the dancing links method, which allowed solving
several problems, including orthogonal and triangular lattice puzzles, much more
efficiently than before. The main idea is a combination of a link-handling “trick”
that enables easy and efficient “unremove” operations of an object from a doubly-
connected list (a key step in back-tracking), and an abstract representation of
the problems as a matrix-cover problem: Given a 0/1-matrix, choose a subset
of its rows such that each column of the shrunk matrix contains exactly one ‘1’
entry. The reader is referred to the cited reference for more details about this
extremely elegant method.

In this paper we present two back-tracking approaches to solving general lat-
tice puzzles. We formulate the puzzle problem in general terms, so that it would
fit various types of puzzles. Since solving a puzzle even on a two-dimensional
orthogonal lattice is NP-Complete, we cannot hope (unless P=NP) for subexpo-
nential algorithms for the problem. We fully implemented two algorithms and a
few heuristics to expedite them, and ran them on many puzzle problems which
lie on several types of lattices.

This paper is organized as follows. In Section 2 we define the puzzle-solving
problem. In Section 3 we describe two algorithms to solve it, and present in
Section 4 our experimental results. We end in Section 5 with some concluding
remarks.

1 Available at http://www.xs4all.nl/~gp/Site/Polyomino Solver.html
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2 Statement of the Problem

Let L be a lattice generated by a repeated pattern. To avoid confusion, let us
refer to the dual of L, that is, to its adjacency graph, and use interchangeably
the terms “cell” (of the lattice) and “node” (of the graph). A “pattern,” in it
simplest form, is a single node v and a set of labeled half-edges adjacent to it.
(Each undirected edge e of the graph is considered as a pair of half-edges, each
of which is outgoing from one endpoint of e.) The half-edges incident to v are
labeled 0 through d(v) − 1, where d(v) is the degree of v. In addition, there is a
specification of how copies of v connect to each other to form L. For a 1-node
pattern, this specification is simply a pairing of the labels. In addition, there is
a set of transformations defined on v. A transformation is a permutation on the
set of labels, i.e., a 1-to-1 mapping between the set {0, . . . , d(v) − 1} and itself.

For example, the orthogonal two-dimensional lattice is

v0 2

3

1

Fig. 2.

Repeated
pattern of ZZ2

generated by the pattern shown in Figure 2: The pattern
contains a single node, v, of degree 4. The four half-edges
adjacent to v are labeled ‘W’=0, ‘N’=1, ‘E’=2, and ‘S’=3,
which may be coupled exactly with ‘E,’ ‘S,’ ‘W,’ and ‘N,’ re-
spectively. The pairing specification is, then, {(0, 2), (1, 3)}.
Only one transformation, so-called rotate left (RL, in short)
is defined on v. The mapping defined by RL on the half-edges
incident to v is RL(i) = (i + 1) mod 4. The composition of
one to four RL transformations brings v to any possible ori-
entation.

Another example is shown in Figure 3: The repeated

7

v
1

0

2

43

5

6

Fig. 3. The
hexagonal-prism
pattern

pattern of this 3D lattice (see Figure 5(c)) is a prism
with a hexagonal cross-section. The degree of the
single-node pattern v is 8. The eight half-edges, with
labels 0, . . . , 7, are coupled by {(0, 1), (2, 5), (3, 6),
(4, 7)}. Two transformations are defined on v:
(a) An “x-flip”: F (0|1|2|3|4|5|6|7) = (1|0|2|7|6|5|4|3);
and
(b) A “yz-rotate”: R(0|1|2|3|4|5|6|7)=(0|1|3|4|5|6|7|2).
Compositions of F and R bring v (with repetitions) to
all possible orientations in this lattice.

A lattice puzzle P is a finite subgraph of L. Dangling half-edges (that is,
half-edges that are not coupled with half-edges of other copies of the repeated
pattern) are marked as the boundary of the puzzle. Puzzle parts are also finite
subgraphs of L, and they undergo a similar procedure. A solution to the puzzle
is a covering of P by a collection of parts, such that:

1. All nodes of P are covered by nodes of the parts;
2. The labels of dangling half-edges of parts match the labels of the respective

half-edges of P ; except
3. Dangling half-edges of parts may extend out of the boundary of P .
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Some freedom can be given to the set of parts, so as to form variants of the
puzzle problem. We may have a single copy of a given part, or an unlimited
amount of copies. Different types of transformations may be defined for differ-
ent parts of the puzzle.2 While solving a puzzle, we may want to compute one
solution (thus, determine whether or not the puzzle is solvable), or to find the
entire set of solutions to the puzzle.

3 Algorithms

In the full version of the paper we illustrate a simple reduction from bin-packing
(which is known to be an NP-Complete problem [GJ79]) to puzzle solving, show-
ing that the latter is also NP-Complete. The work [DD07] and references therein
provide alternative proofs.

In this section we describe two puzzle-solving algorithms: Direct back-tracking
and matrix cover. Since both paradigms are well-known, emphasis is put not on
these methods but rather on the data structures and heuristics used to expedite
the algorithms in the setting of general-lattice puzzles.

3.1 Back-Tracking

Our first approach to solving the puzzle problem is by direct back-tracking.

Puzzle and Part Data Structures. As mentioned above, the puzzle and
parts are represented by graphs. Edges of the graphs are labeled with numbers:
for each node v, the outgoing half-edges of v are labeled 0, . . . , d(v) − 1, where
d(v) is the degree of v. Dangling half-edges of both puzzle and parts (that is,
half-edges beyond their boundaries), are omitted.

One specific node of each part is marked as the origin of the part. For example,
in the two-dimensional orthogonal lattice, one may fix the origin at the leftmost
cell of the topmost row of the part. Note that the edge labels have to induce a
total order on the neighbors of a cell, thereby, on all the cells of the puzzle or its
parts. In a general lattice, we simply choose the lexicographically-smallest cell,
induced by this order, as the origin of the part. Similarly, we mark the origin
of the puzzle. For example, in the two-dimensional orthogonal lattice, a cell is
always “smaller” than its bottom and left neighbors, and “greater” than its top
and right neighbors. This implies the chosen origin in this lattice.

Part Orientations. A special data structure stores the transformations al-
lowed for each part of the puzzle. As mentioned above, a transformation is a 1-1
mapping between the set of possible labels and itself. In a preprocessing step,

2 For example, consider the flip transformation in a two-dimensional orthogonal-lattice
puzzle. Its analogue in three dimensions is the mirror transformation, which is
mathematically well defined but hard to realize with physical puzzle pieces made
of wooden cubes. In such a puzzle, whether or not to allow the mirror transforma-
tion is a matter of personal taste.
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we compute all the possible orientations of each part. Specifically, we apply all
possible transformations (and combinations of them) to the half-edges outgoing
from the origin cell. Applying a single combination to the origin changes the ori-
entations of all of its neighbors (manifested by new edge labels), and the process
continues recursively in a depth-first manner to all the cells of the part.

Naturally, the graph that represents a part may contain cycles, in which case
“back-edges” are encountered in the course of the search. Note that the for-
mal definition of a lattice does not ensure that back-edges are consistent edge-
labeling-wise. Such an inconsistency simply means that a specific transformation
(the analogue of a rotation) is not allowed in the dealt-with lattice. However, in
all lattices we experimented with, such a situation can never occur; therefore,
we did never check for consistency of back-edges.

After all orientations of a part have been found, two steps should be taken:
(a) Recomputing the origin cell of each oriented copy; (b) Removing duplicate
copies. In fact, both steps can be performed simultaneously. Moreover, the re-
moval of duplicates may be avoided if we precompute the symmetries of the
original part. Nevertheless, all these operations are performed in a preprocessing
step, before running the main puzzle-solving algorithm (which takes the main
bulk of the running time), so any approach will practically do.

Essentially-Different Solutions. In most cases we are not interested in find-
ing multiple solutions that are inherently the same, up to some transformation
defined for the specific lattice. Instead of computing all the solutions and look
for repetitions (an operation which might render the algorithm infeasible if there
are too many solutions), we applied a simple pruning method. Suppose that S
is a solution to a puzzle. One only need to observe that if the entire puzzle has
some symmetry realized by the transformation T , then T (S) is also a solution
to the puzzle. Thus, if we discard all copies of an arbitrary part, obtained by
transformations that realize symmetries of the puzzle, we guarantee that only
essentially-different solutions to the puzzle will be found. To maximize efficiency,
we choose the part with the maximum number of copies. (Usually, this is the
part with the least number of symmetries.)

Solving the Puzzle. Our first method is a classical back-tracking algorithm.
We attempt systematically to cover the puzzle graph with the part graphs. A
part graph covers exactly a portion of the puzzle graph by an injective mapping
of the nodes of the part to the nodes of the puzzle, subject to adjacency relations
in the two graphs, while the labels of the (half-)edges of the part fully match
those of the covered portion in the puzzle.

Initially, all parts are “free,” and all nodes in the puzzle graph are “empty.”
We initialize a variable, called the anchor, to be the origin cell of the puzzle.
Naturally, it should be covered by some cell c of some part p. Moreover, c must
be the origin of p, otherwise, after positioning p in the puzzle, the origin of p
will occupy a puzzle cell which is different from the origin of the puzzle, which
is a contradiction to the lexicographic minimality of the puzzle origin. Thus,
positioning a part in the puzzle (in one of its possible orientations) is achieved
by identifying the anchor with the origin of the part and traversing the part
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graph. A simultaneous and identical (edge-label-wise) traversal is performed in
the puzzle graph. This yields precisely which portion of the puzzle is covered by
the part. An attempt to position a part in the puzzle fails if either the traversal
of the puzzle graph reaches an “occupied” cell, or it gets out of the graph (that
it, the boundary of the puzzle is about to be crossed).

If the part-positioning is successful, we mark the part as “used,” mark all the
nodes of the puzzle graph that are matched to nodes of the positioned part as
“occupied,” and proceed to the next part-positioning step as follows. First, we set
the anchor of the puzzle to be the new lexicographically-minimal “empty” node
in the puzzle graph. This is achieved by scanning the puzzle lexicographically,
starting from the previous anchor and looking for a free node. Then, we attempt
to position a new “free” part (according to a predefined order) in the puzzle by
identifying its origin with the new anchor and proceeding as above. The new
anchor must be the origin of the next positioned part for the same reason as for
the first positioned part.

This part-positioning process continues until one of two things happen: Either
(a) The puzzle graph is fully covered (this situation is identified by not being
able to reset the anchor); or (b) The algorithm is stuck in a situation in which
the puzzle graph is not fully covered, yet no new part can be positioned. In the
former situation the algorithm declares a solution and terminates. In the latter
situation the algorithm back-tracks: The last positioned part is removed from the
puzzle, restoring its status to “free” and marking again the covered puzzle nodes
as “empty.” Then, if another orientation of the same part exists, the algorithm
attempts to position it as above. Otherwise, the algorithm proceeds to the next
available part (according to the predefined order) and attempts to position it in
the same manner.

In case we like to find all solutions to the puzzle, a minor step of the algorithm
is modified: When the algorithm finds a solution, the latter is reported, but then
refers to the last part-positioning step as a failure and then back-tracks. In such a
situation, the algorithm terminates when no back-tracking options remain: This
happens when all options for the first part-positioning are exhausted.

We conclude the description of the algorithm by referring to the dangling half-
edges in part graphs. In principle, they should be matched too to half-edges in the
puzzle graph, in order to ensure proper neighborhoods between parts positioned
in the puzzle. However, this was redundant in all the lattices that we handled.
Thus, we ignored all dangling half-edges in the part-positioning operations. A
cover of the puzzle graph was actually only an exact cover of the nodes of the
graph. Edges in the puzzle graph, that represent neighborhood relations between
parts, were not covered. Exact match of labels was enforced only between inter-
part edges and the corresponding edges in the puzzle graph.

Stranding. A simple pruning method is to consider the size of the connected
component of empty nodes, that include the anchor, in the puzzle graph. If all
free parts are larger than this component, then the algorithm may back-track
without any further checks. This heuristic can also be applied for the second
algorithm described below.
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3.2 Matrix Cover

Our second approach to solving the puzzle problem is by a reduction to matrix
cover, and speeding up the algorithm that solves the latter problem by using the
“dancing links” technique [Kn00].

Reduction. The puzzle problem is represented by a binary matrix in the fol-
lowing manner. We create an M × N matrix, where M is the total number of
options to position parts (in all orientations) in the puzzle, and N is the number
of cells of the graph. By “part-positioning” options we mean all possible map-
pings of the anchor of a part graph to a node in the puzzle graph, such that the
part will partially cover the puzzle and will not exceed its boundary. An entry
(i, j) in the matrix contains the value 1 if the jth node of the puzzle is covered
by some node in the ith part-positioning option; otherwise it is 0.

Naturally, solving the puzzle amounts to choosing a subset of the rows in
which every column contains a single 1 with 0 in all other entries. The chosen
rows represent the choice of parts, while the requirement for a single 1 per column
guarantees that every cell of the puzzle will be covered by exactly one part.

We may want to ensure that every part will be used exactly once, among all
its possible orientations and positions in the puzzle. This is easily achieved by
adding more columns to the matrix, one for each part. In each such column, we
put 1 in all the rows that correspond to the same part, and 0 elsewhere. This
guarantees that exactly one part orientation and position is chosen.

For example, consider the simple 3X3 puzzle shown in Figure 4(a). The three
puzzle parts are shown in Figure 4(b). The left part has eight different orien-
tations (allowing flipping), in each of which it can be positioned in the puzzle
in two ways, for a total of 16 options. The middle part has two different orien-
tations, in each of which it can be positioned in the puzzle in three ways, for
a total of 6 options. Finally, the right part has only one orientation, which can
be positioned in the puzzle in nine ways. Thus, the matrix we need to cover is
made of 31 rows (the total number of part-positioning options) and 12 columns
(9 puzzle cells plus three original parts). One possible solution to the puzzle is
represented by the 3-row submatrix shown in Figure 4(c): The 9 left columns
show the exact covering of the puzzle, while the 3 right columns show that each
part is used exactly one.

The matrix-cover algorithm is also back-tracking in nature, and so its details
are not provided here. However, its running time is reduced significantly as
described below.

1 1 1 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 1 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

(a) Puzzle (b) Parts (c) Submatrix solution

Fig. 4. A puzzle solution represented by a submatrix
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Dancing Links. The algorithm can be sped up tremendously by an elegant
pointer-manipulation trick [Kn00]. In a doubly-connected linked list, an element
x is removed by executing the two operations Next[Prev[x]] := Next[x] and
Prev[Next[x]] := Prev[x]. It is a good programming practice not to access the
storage of an element x after it is deleted, since it may already serve a different
purpose. However, if it is guaranteed that the area allocated to x is not altered
even after it is deleted, one can easily undo the deletion of x by making the links
“dance”: The pair of operations Next[Prev[x]] := x and Prev[Next[x]] := x
readily return x to its original location in the linked list.

Efficient Branching (Size Heuristic). A very efficient heuristic, which re-
duces the running time significantly, is ordering the branches of the algorithm
according to their (anticipated) size. The speed-up of the algorithm naturally
depends on the quality of the prediction of the sizes of branches. In our setting,
branching occurs at the selection of an additional column. Recall that in a valid
solution, exactly one of the rows comprising the submatrix contains the value 1
in this column. (This means that exactly one part covers the puzzle cell corre-
sponding to this column.) Since no a priori information is known (or computed),
a reasonable choice is to explore first columns with the least number of 1-entries.
This is because we will have fewer parts among which to choose the one covering
this cell of the puzzle.

4 Experimental Results

The two algorithms were implemented in Java on a dual-core 2.2GHz PC with
Sun’s Virtual Machine 5+, under the MS Windows XP and Linux operating
systems. The two algorithms allowed simple parallelism for using the dual-core
CPU by splitting the search tree into two branches. All the running times re-
ported below were measured on MS Windows XP without parallelism. (Using the
dual-core CPU reduced the running time by half in practically all cases.) Each
puzzle was solved twice (with a random order of parts), and the reported value
for each puzzle is the average of the two measurements. The software consists of
about 10,000 lines of code. In addition, we implemented a feature which allowed

(a) 3D orthogonal (b) Packed spheres (c) Hexagonal prisms

Fig. 5. Lattice puzzles
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the user to save the current search state in the direct back-tracking method and
to reload it later for a warm-restart of the program.

The first two lattice types which we experimented with were the two- and
three-dimensional orthogonal lattices. The formal structure of the 2D lattice is
described in the introduction of this paper. It is straightforward to generalize it to

Table 1. Statistics of puzzle solving

Puzzle Parts Solutions Method & Branching Time (Sec.)
Lattice Name Size Orig. Total Reduced Poses Unique Sym. Heuristic(s) Points First All
2D Ort. 8 × 8 − 2 × 2 60 12 56 56 1,290 65 *8 BT 2,757,203 0.2 5.7

BT+ST 1,523,328 0.5 3.5
MC 2,910,535 0.2 12.4

MC+ST 2,383,728 0.3 9.8
MC+SZ 117,723 0.2 1.1

MC+SZ+ST 81,880 0.1 0.8
2D Ort. 10 × 6 60 12 57 57 1,758 2,339 *4 BT 10,595,621 0.1 17.9

BT+ST 5,802,074 0.1 14.4
MC 10,606,305 0.2 54.4

MC+ST 9,242,529 0.1 43.3
MC+SZ 1,732,537 0.2 11.8

MC+SZ+ST 1,480,505 0.1 11.2
3D Ort. 10 × 3 × 2 60 12 168 68 1,416 12 *8 BT 1,315,930 0.2 2.3

BT+ST 861,525 0.1 2.0
MC(+ST) 1,325,957 0.3 6.3

MC+SZ(+ST) 74,947 0.2 0.7
3D Ort. 5 × 4 × 3 60 12 168 142 2,168 3,940 *8 BT 1,969,089,192 0.4 5,191

BT+ST 1,259,189,714 1.1 4,165
MC 1,969,152,287 0.6 5,874

MC+ST 1,969,152,287 0.8 5,912
MC+SZ 10,107,229 0.2 68

MC+SZ+ST 10,108,090 0.3 65
3D Ort. 6 × 5 × 2 60 12 168 93 1,916 264 *8 BT 107,590,605 4.8 223

BT+ST 67,714,344 4.2 190
MC 107,620,901 1.9 395

MC+ST 107,620,901 0.8 421
MC+SZ 759,343 0.2 7.2

MC+SZ+ST 693,970 0.4 6.7
3D Ort. Green 98 6 91 91 182 20 *24 BT 1,262 0.2 0.2

Happy Cube BT+ST 1,215 0.1 0.2
MC(+ST) 3,318 0.2 0.3

MC+SZ(+ST) 234 0.0 0.2
3D Ort. Orange 98 6 79 79 158 2 *24 BT 863 0.1 0.4

Happy Cube BT+ST 846 0.1 0.3
MC(+ST) 2,235 0.1 0.3

MC+SZ(+ST) 146 0.0 0.3
3D Ort. Strip 60 12 168 85 965 6 *4 BT 187,883 0.0 0.7

BT+ST 99,272 0.2 0.6
MC 203,197 0.3 1.7

MC+ST 188,506 0.1 1.6
MC+SZ 14,274 0.0 0.4

MC+SZ+ST 13,904 0.0 0.3
3D Ort. Stairs 55 12a 186 186 1,573 640 *1 BT 3,143,814 0.1 12.9

BT+ST 2,088,970 0.1 10.8
MC 3,143,784 0.1 23

MC+ST 3,100,112 0.1 18.8
MC+SZ 178,350 –a 1.8

MC+SZ+ST 159,868 –a 1.4
3D Ort. Big Y 60 12 186 157 1,640 14 *1 BT 210,454,691 52 536

BT+ST 161,584,456 26 513
MC 210,502,803 29 529

MC+ST 210,502,803 2.8 560
MC+SZ 205,230 0.3 1.6

MC+SZ+ST 205,524 0.3 1.6
Spheres Pyramid 20 6 52 31 85 1 *12 BT+(ST) 634 0.0 0.1

MC+(ST) 1,994 0.1 0.2
MC+SZ(+ST) 171 0.1 0.1

Hex Prism Hex prisms 45 11 104 98 232 2 *6 BT 4,675 0.0 0.2
BT+ST 4,029 0.0 0.2

MC+(ST) 5,902 0.1 0.2
MC+SZ(+ST) 422 0.1 0.2

Legend: BT - back tracking; MC - matrix-cover (with dancing links); ST - stranding
heuristic; SZ - size heuristic.
aIn this puzzle one (a priori unknown) part was redundant. This caused the SZ
heuristic to not be able to find any solution.
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three dimensions. Figure 5(a) shows a sample puzzle on the 3D lattice. The third
lattice type is the “packed-spheres” lattice. Figure 5(b) shows a sample puzzle on
this lattice. In this lattice, the repeated pattern is a node of degree 12. A complete
characterization of the group of transformations in this lattice will be provided
in the full version of the paper. The fourth lattice type is the “hexagonal-prism”
lattice, whose structure is also described in the introduction. Figure 5(c) shows
a sample puzzle on this lattice.

(a) 2D 8× 8− 2× 2 (b) 2D 10× 6 (c) 3D Big Y

(d) 3D 5× 4× 3 (e) 3D 6× 5× 2 (f) 3D 10× 3× 2

(g) 3D Green Happy Cube (h) 3D Strip (i) 3D Stairs

(j) 3D Orange Happy Cube (k) Hexagonal Prisms (l) Sphere Pyramid

Fig. 6. Solutions to various puzzles
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We experimented with many puzzles on these lattices, and report here (see
Table 1) on only a few of these puzzles. The size of a puzzle is the number
of cells it contains. For parts we provide four numbers: the number of original
parts, the total number of different oriented parts, the number of oriented parts
that can fit into the puzzle, and the total number of options to position oriented
parts in the puzzle. (The latter is a good measure of the complexity of a puzzle.)
We provide two counts of solutions: essentially different and the total number
of solutions. The acronyms BT and MC stand for the direct back-tracking and
matrix cover methods, respectively. The ST (stranding) heuristic can be applied
to both methods, while SZ (the size heuristic) is relevant to matrix cover only.
The notation “X(+Y)” means that applying the heuristic “Y” did not improve
the running time relative to using only the method “X.” Branches are decision
points in which the back-tracking algorithm places a part or the matrix-cover
algorithm chooses a column. Finally, we report the times needed to find (on
MS Windows) either a single solution or all solutions to the puzzle. Figure 6
shows representative solutions to these puzzles.

As can be easily observed from the data in Table 1, the matrix-cover algo-
rithm, coupled with the dancing-links “trick” and using the branch size-ordering
heuristic, is superior to the direct back-tracking algorithm. (Due to the inherent
representation of the problem in the two algorithms, we do not have any heuris-
tic for the latter algorithm that is similar to the size heuristic for the former
algorithm.) The stranding heuristic can modestly improve both algorithms, but
it doesn’t change the superiority of the matrix-cover algorithm.

5 Conclusion

We present two puzzle-solving algorithms and identify one of them as the method
of choice. We experimented with many puzzles in different lattices. Our future
goals are to extend the algorithms to other lattices, add more restrictions to the
puzzles (e.g., attaching knobs and holes to the parts), implement “SZ” for the
back-tracking method, and improve the efficiency of our implementation.
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In this paper, we investigate the practical aspects of some exact algorithms
for NP-hard graph-theoretic problems. The majority of such exact algorithms
adopt the classical recursive backtracking methodology, with the adjacency-list
or adjacency-matrix as default graph representation. We present a hybrid graph
representation that trades space for time to combine the advantage of O(1)
adjacency-queries in adjacency-matrices and the advantage of efficient neighbor-
hood traversal in adjacency-lists.

Our interest in practical and efficient exact implementations of graph algo-
rithms for hard computational problems has been motivated by several recent
developments such as:

– More random access memory and cache memory availability making memory-
intensive computations more affordable.

– The increased availability of high performance platforms.
– The fact that many NP-complete problems are hard to approximate within

reasonable relative errors A notorious example is the Maximum Clique prob-
lem [3,9].

– The advances in designing exact and parameterized algorithms, and the fact
that search-tree based algorithms are the dominant method.

– Highly demanding application domains. In some application domains, data
takes months and years to collect and exact solutions are badly needed.
Hence, users are often tolerant to accurate answers that take reasonable
time (hours or days).

– Multi-fold approximations. Double inaccuracy arises when “approximate”
solutions are provided for “simplified” models of real problems (protein fold-
ing methods are typical examples).

This paper is concerned mainly with implementation strategies that are suitable
for recursive backtracking algorithms on graphs. Many aspects of our methods
can also be used with hyper-graphs and with other types of problems.

2 Background

In the area of exact algorithms and parameterized complexity, the worst-case
run-times for many different graph algorithms are constantly being improved.
Such improvements usually involve an increase in the number of polynomial-time
reductions during search. Due to the exponential number of search-tree nodes,
polynomial time (housekeeping) reductions could have a butterfly effect on the
efficiency of such algorithms. Obviously, this could render worst-case algorithms
less practical then some simpler exact algorithms that tend to require less work
at every search-tree node1.

Moreover, search-tree based algorithms suffer from the increasing number of
actions associated with branching decisions that have to be taken, then (fre-
quently) taken back, at every search-tree node. A challenging task, therefore,
1 We use the expression “worst-case algorithm” when referring to the algorithm (for a

given problem) with the current smallest asymptotic upper bound on its run-time.
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is to reduce the additional cost of undo operations. Generally, every operation
is pushed onto a stack and later popped out and performed in reverse. We de-
note this action by “explicit-undo.” Our hybrid graph representation addresses
those challenges by reducing the cost of deletion operations via “implicit-undo.”
To illustrate the efficiency of our representation, several implementations us-
ing different techniques were developed and compared for two well-known graph
problems: Dominating Set and Vertex Cover.

2.1 Classical Graph Representation

For the sake of completeness, we ought to mention some elementary facts. Graphs
are usually represented using one of two data structures: adjacency matrices (am)
or adjacency lists (al). In addition, we often use a degrees’ array to keep track of
active vertices and the current cardinalities of their neighborhoods. When using
am, neighborhood traversal takes Ω(n) where n is the number of vertices in the
graph. This is reduced to O(d), where d is the maximum vertex degree, if we
use al instead. On the other hand, checking if two vertices are adjacent requires
O(d) in al and O(1) in am.

2.2 The Dominating Set Problem

In the Dominating Set problem, henceforth ds, we are given an n-vertex graph
G = (V, E), and we are asked to find a set D ⊂ V of smallest possible cardinality
such that every vertex of G is either in D or adjacent to some vertex in D. ds has
received great attention, being a classical NP-hard graph optimization problem
with many logistical applications.

Until 2004, the best algorithm for ds was still the trivial O∗(2n) enumera-
tion2. In that same year, three algorithm were independently published break-
ing the O∗(2n) barrier [7,8,10]. The best worst-case algorithm was presented by
Grandoni with a running time in O∗(1.8019n) [8]. Using measure-and-conquer,
a bound of O∗(1.5137n) was obtained on the running time of Grandoni’s algo-
rithm [4]. This was later improved to O∗(1.5063) in [13] and the current best
worst-case algorithm can be found in [12] where a general algorithm for counting
minimum dominating sets in O∗(1.5048) is also presented.

For our experimental work, we implemented two versions of the algorithm of
[4] where ds is solved by reduction to Minimum Set Cover:

– al ds opt: optimization version using the adjacency-lists representation;
– hybrid ds opt: optimization version using the hybrid graph representation.

2.3 The Vertex Cover Problem

In the (parameterized) Vertex Cover problem, or vc for short, we are given a
graph G = (V, E), together with a parameter k, and we are asked to find a set C

2 Throughout this paper we use the modified big-Oh notation that suppresses all
polynomially bounded factors. For functions f and g we say f(n) ∈ O∗(g(n)) if
f(n) ∈ O(g(n)poly(n)), where poly(n) is a polynomial.
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of cardinality k such that C ⊆ V and the subgraph induced by V \C is edgeless.
The current fastest worst-case vc algorithm runs in O(kn + 1.2852k) time [1].
An optimization algorithm for vc can be obtained by obvious modifications
to the parameterized algorithm of [1], or using the Maximum Independent Set
algorithm from [6].

For comparison purposes, four versions were implemented for vc:

– al vc opt: an optimization version using the adjacency-lists representation,
based on simple modifications of the parameterized vc algorithm;

– hybrid vc opt: an optimization version using the hybrid graph represen-
tation;

– hybrid vc parm: a parameterized version using the hybrid graph represen-
tation but not taking advantage of the folding technique described in [1,2];

– hybrid vcf parm: a parameterized version using the hybrid graph repre-
sentation and modified for fast edge-contraction operations.

3 The Hybrid Graph Representation

We describe our hybrid graph representation using the example of Figure 1.
The adjacency list of a vertex v is stored in an array denoted by al[v]. Accord-
ingly, al[v][i] holds the index of the ith vertex in the list of neighbors of v. The
adjacency matrix, denoted henceforth by im, is used as an index table for the
adjacency list, as follows: the entry im[u][v] is equal to the index of u in al[v].
im[u][v] is −1 when the two vertices are not connected.

Fig. 1. Graph G

Considering the graph G of Figure 1, the initial contents of al and im are as
follows:



140 F.N. Abu-Khzam et al.

im degree al⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4 5 6 7

0 −1 0 0 0 −1 −1 −1 −1
1 0 −1 −1 −1 −1 −1 −1 −1
2 1 −1 −1 −1 −1 −1 −1 −1
3 2 −1 −1 −1 0 0 −1 −1
4 −1 −1 −1 1 −1 1 0 −1
5 −1 −1 −1 2 1 −1 −1 0
6 −1 −1 −1 −1 2 −1 −1 −1
7 −1 −1 −1 −1 −1 2 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 3
1 1
2 1
3 3
4 3
5 3
6 1
7 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2

0 1 2 3
1 0
2 0
3 0 4 5
4 3 5 6
5 3 4 7
6 4
7 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Note that al is implemented using a two dimensional array for fast (direct)
access via the indexing provided by im. We allocate enough memory to fit the
neighbors of each vertex only. In addition to im and al, we introduce three linear
arrays: the degree vector (degree), the vertex list (list), and the vertex index
list (idxlist). The degree vector is the current neighborhood cardinality, the
vertex list is the list of currently active (not deleted) vertices that will be used
instead of the degree vector for more efficient complete graph traversals, and the
vertex index list is the index of each vertex in the vertex list. In other words,
list[i] is the ith vertex in the list of active vertices and idxlist[u] is the index
of vertex u in list.

All data structures except for the degree vector are global and their memory
is allocated at startup only. The degree vector is local to every search-tree node
(i.e: every search-tree node receives a new copy of the vector).

list idxlist[ 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
] [ 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
]

In the next section, we show how these structures are dynamically modified
during the search, while performing various operations. We note that some op-
erations, like edge contraction for example, require additional bookkeeping that
we briefly describe later. However, most common operations can be performed
using the five data structures described above, which when combined together
form the (generic) hybrid graph representation.

4 Efficient Reduction Operations

4.1 Edge Deletion

The simplest and most frequent operation performed during the search is proba-
bly edge deletion. Maintaining the hybrid data structure in this case is straight-
forward. For deleting an edge (u, v), the degrees of u and v are decremented
by one and the adjacency lists of the two vertices are adjusted respectively by
placing u at the last position of al[v] and v at the last position of al[u]. Simply,
each of these two operations consists of a a single swap with the last element of
the respective list, together with an adjustment of the positions in im.
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The delete edge function

Input: Edge (u,v).
Begin

int i, j, x;
i = im[v][u];
j = −−degree[u];
x = al[u][j];
al[u][i] = x;
al[u][j] = v;
im[x][u] = i;
im[v][u] = j;
Repeat the previous steps for i = im[u][v] and j = −−degree[v];

End

Going back to our illustrative graph G, after deleting edge (0, 3), the modified
al, im, and degree will look as follows (changes in bold):

im degree al⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4 5 6 7

0 −1 0 0 2 −1 −1 −1 −1
1 0 −1 −1 −1 −1 −1 −1 −1
2 1 −1 −1 −1 −1 −1 −1 −1
3 2 −1 −1 −1 0 0 −1 −1
4 −1 −1 −1 1 −1 1 0 −1
5 −1 −1 −1 0 1 −1 −1 0
6 −1 −1 −1 −1 2 −1 −1 −1
7 −1 −1 −1 −1 −1 2 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2
1 1
2 1
3 2
4 3
5 3
6 1
7 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2

0 1 2 3
1 0
2 0
3 5 4 0
4 3 5 6
5 3 4 7
6 4
7 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Notice that edge deletion runs inO(1) since all the information required for switch-
ing positions in al can be found in im. Now assume we want to undo this opera-
tion. This can be accomplished by simply setting degree[0] = degree[3] = 3.
The only difference between this state and the initial state is that the positions
of the neighbors have changed in the adjacency lists. Knowing that every search-
tree node will maintain its own copy of the degree vector, no actions whatsoever
need to be taken to undo this operation, thus we have an “implicit-undo” for edge
deletion operations.

Remark 1. Checking if two vertices u and v are adjacent still takes constant time
but requires one additional checking: u and v are adjacent when −1 < im[u][v] <
degree[v].

4.2 Vertex Deletion

Deleting a vertex v runs in Ω(d) time where d is the (current) degree of v. We run
the edge deletion operation for every active neighbor of v. In addition, we remove
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v from the list of active vertices by swapping it with the last active vertex in list
and decrementing the number of active vertices by one. The idxlist plays the
same role as im for deleting a vertex from list. As in the case of edge-deletion,
the undo of vertex deletion requires no actions since every edge deletion can be
considered as an independent operation.

To illustrate the purpose of the list vector, consider the two operations of
copying the degree vector and searching for the vertex of highest degree. Doing
so would consume Ω(n) time if the degree vector is used alone. This is reduced
to Ω(nc), where nc is the number of currently active vertices, when combining
the degree and list vectors. Iterating from i = 0 to nc, degree[list[i]] returns
the degree of the vertex at position i in list.

delete vertex function

Input: Vertex v, and total number of active vertices nc.
Begin

int last, i, u, d;
d = degree[v];
last = list[n − 1];
i = idxlist[v];
list[i] = last;
list[n − 1] = v;
idxlist[last] = i;
idxlist[v] = n − 1;
for(i = d − 1; i ≥ 0; i −−)

u = al[v][i];
delete edge(u, v);

End

4.3 Edge Contraction

The next operation we consider is edge contraction. Contracting edge (u, v)
replaces vertices u and v by a new vertex whose neighborhood is N(u)∪N(v) \
{u, v}.

To implement this operation, we use a coloring technique that requires ad-
ditional bookkeeping. Simply, vertices with the same color are treated as one
single vertex obtained by contracting edges between them. Initially, every vertex
vi is assigned color ci, and every color class ci has initial cardinality one and
degree d(ci) = d(vi). In addition to previously discussed data structures, we use
the following:

– the vcolor vector: holds the current color of every vertex;
– the color card (cc) vector indicates the current cardinality of every color

set;
– the color degree (cd) vector holds the current degree of every color set;
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– the color set list (csl) holds the list of vertices belonging to every color
set.

The list and idxlist do not hold vertex information anymore, but they maintain
the list of active (not deleted) colors instead, since all operations now involve
color sets. When no edge contraction operations are performed, color sets would
be identified with their corresponding vertices.

cd cc csl degree al⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 3
1 1
2 1
3 3
4 3
5 3
6 1
7 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1 1
2 1
3 1
4 1
5 1
6 1
7 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 3
1 1
2 1
3 3
4 3
5 3
6 1
7 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2

0 1 2 3
1 0
2 0
3 0 4 5
4 3 5 6
5 3 4 7
6 4
7 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
vcolor list idxlist[ 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
] [ 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
] [ 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
]

When edge contraction is possible, the initial state for the graph G consists of
all structures previously shown. al, im, csl, list and idxlist would be globally
stored (in RAM), while degree, cd, cc and vcolor would be copied at every
search-tree node. To contract an edge (v0, v3), we actually assign both vertices
the same color. Assuming we assign the two vertices color c0, the modifications
required are shown below in bold (changes to im not shown here but are re-
quired):

cd cc csl degree al⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 4
1 1
2 1
3 0
4 3
5 3
6 1
7 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2
1 1
2 1
3 0
4 1
5 1
6 1
7 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2

0 0 3
1 1
2 2
3 3
4 4
5 5
6 6
7 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2
1 1
2 1
3 2
4 3
5 3
6 1
7 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2

0 1 2 3
1 0
2 0
3 5 4 0
4 3 5 6
5 3 4 7
6 4
7 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vcolor list idxlist[ 0 1 2 3 4 5 6 7

0 1 2 0 4 5 6 7
] [ 0 1 2 3 4 5 6 7

0 1 2 7 4 5 6 3
] [ 0 1 2 3 4 5 6 7

0 1 2 7 4 5 6 3
]
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Since we are dealing with simple graphs, any edge between two vertices belonging
to the same color set is deleted and no more than one edge is allowed between a
color set and another. Clearly, such an operation can be implicitly taken back,
but is also more time and space consuming than simple vertex deletion.

This technique makes it possible to implement the vertex folding operation,
introduced in [1], for the parameterized vc algorithm.

4.4 The Vertex Cover Folding Operation

Let (G, k) be an instance of the Vertex Cover problem and let u ∈ V (G) be a
degree-two vertex with neighbors v and w. If v and w are adjacent, then there
is a minimum vertex cover that contains v and w (and not u). So it is safe to
delete u, add v and w to the potential solution and decrement k by two. In
the case where v and w are non-adjacent, an equivalent Vertex Cover instance
is obtained by contracting edges uv and uw and decrementing k by one. This
latter operation is known as degree-two vertex folding.

As we shall see, applying the coloring technique to implement vertex folding
considerably improves the runtime on certain recalcitrant instances, but slows
down the computation on graphs where folding rarely occurs. In such cases, the
overhead of maintaining color-sets is a drawback. Note that folding alone made
it possible to obtain a worst-case run time of O∗(1.285k) in [1]. Yet, our results
show that excluding folding from the same algorithm is faster on a large number
of instances, especially real ones.

5 Experimental Results

Four different versions were implemented for the Vertex Cover algorithm.
al vc opt and hybrid vc opt are two generic search-tree optimization ver-
sions using the adjacency-list and hybrid graph representations respectively. In
Table 1, the running times for both versions are reported for a number of DI-
MACS graphs. hybrid vc parm is a parameterized hybrid version that does

Table 1. al vc opt vs. hybrid vc opt (no folding)

Graph |V | |E| |C| al vc opt hybrid vc opt

brock800 1.clq 800 207505 790 1 min 54 sec 32 sec
p hat300-1.clq 300 10933 261 1 min 25 sec 41 sec
p hat500-1.clq 500 31569 450 3 hr 48 min 1 hr 23 min
p hat500-2.clq 500 62946 464 40 sec 12 sec
p hat700-1.clq 700 60999 635 > 1 week 93 hr 20 min
p hat700-2.clq 700 121728 651 15 min 10 sec 3 min 44 sec
p hat700-3.clq 700 183010 690 20 sec 6 sec
p hat1000-2.clq 1000 244799 946 31 hr 26 min 5 hr 28 min
p hat1000-3.clq 1000 371746 989 2 min 47 sec 48 sec
p hat1500-3.clq 1500 847244 1488 20 min 57 sec 5 min 3 sec
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Table 2. hybrid vc parm vs. hybrid vcf parm (with folding) on a 4-regular graph
having 300 vertices and 600 edges

Vertex Cover Size (|K|) Answer No Folding With Folding
192 yes 14 sec < 1 sec
191 yes 17 sec 6 sec
190 yes 2 hr 14 min 6 min 27 sec
165 no > 4 days 46 min 56 sec
160 no 38 hr 2 min 2 min 32 sec

Table 3. al ds opt vs. hybrid ds opt

Graph |V | |E| |D| al ds opt hybrid ds opt

rgraph1 100 400 16 21 min 4 sec 4 min 11 sec
rgraph2 100 600 11 5 min 5 sec 53 sec
rgraph3 100 1500 6 41 sec 5 sec
rgraph4 150 1200 14 16 hr 46 min 2 hr 27 min
rgraph5 150 1500 11 3 hr 31 min 28 min 20 sec
rgraph6 150 3000 6 2 min 8 sec 12 sec
rgraph7 150 3000 7 27 min 16 sec 2 min 1 sec
rgraph8 200 4500 9 5 hr 44 min 30 min 8 sec
rgraph9 200 5000 8 1 hr 20 min 6 min 46 sec
rgraph10 200 6000 6 1 hr 36 min 7 min 13 sec
rgraph11 200 12000 4 6 min 49 sec 17 sec
rgraph12 250 9000 8 14 hr 37 min 56 min 53 sec
rgraph13 250 10000 7 1 hr 30 min 5 min 34 sec
rgraph14 250 12000 5 4 hr 41 min 16 min 19 sec
rgraph15 250 24000 3 19 sec < 1 sec
rgraph16 300 22461 4 8 min 31 sec 17 sec
rgraph17 300 22258 4 28 min 32 sec 1 min 10 sec
rgraph18 300 11063 8 133 hr 38 min 5 hr 54 min
rgraph19 300 11287 8 > 7 days 8 hr 14 min
rgraph20 1000 374633 3 4 min 37 sec 2 min 29 sec
rgraph21 1000 374552 3 28 min 37 sec 6 min 36 sec

not take advantage of vertex folding, while hybrid vcf parm is a parameter-
ized version implemented using the coloring technique described in the previous
section for folding.

In general, the folding technique is at most two times slower than the simple
generic branching algorithm. It gets faster as the difference between the highest
and lowest vertex-degrees gets smaller. In particular, applying vertex folding,
via our coloring technique, is much faster on regular graphs. To illustrate, tests
were run on a 4-regular graph, by varying the input parameter, and results are
reported in Table 2.

As for the Dominating Set problem, al ds opt denotes the optimiza-
tion version using the adjacency-lists representation and hybrid ds opt the
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Table 4. al ds opt vs. hybrid ds opt

Graph |V | |E| |D| al ds opt hybrid ds opt

GDS3211.96 4636 11249 1567 3 min 57 sec 1 min 3 sec
GDS3221.95 5759 43991 1551 11 min 55 sec 3 min 6 sec
GDS3221.94 8517 131498 2042 1 hr 5 min 11 min 8 sec
GDS3221.93 11065 315488 2427 3 hr 58 min 26 min 27 sec
GDS3221.92 13712 649073 2758 > 6 hours 54 min 43 sec

optimization version using the hybrid graph representation. Running times of
the ds implementations on random graphs, with various densities, are given
in Table 3. In addition, real ds instances for biological problems were
obtained from the Gene Expression Omnibus (GEO) data-sets available at
http://www.ncbi.nlm.nih.gov and the results are shown in Table 4. The raw
data (SOFT) files were transformed into simple unweighted graphs using Pear-
son’s coefficients and appropriate thresholding. The threshold value used for each
graph appears in the file extension in Table 4.

All codes were implemented in standard C, and experiments were run on two
types of machines (in two labs): Intel Core2 Duo 2327 MHz and Intel Xeon Pro-
cessor X5550 (Nahalem) 2.66 GHz Quad Core. However, the numbers reported
in each row were obtained on the same architecture.

6 Conclusion

We presented a hybrid graph representation that efficiently trades space for time
and facilitates many common graph operations required during recursive back-
tracking. Experiments on both Vertex Cover and Dominating Set showed
the utility of using this dynamic data structure. The running times of the same
algorithm were shown to be consistently reduced, sometimes from days to hours.

The main focus in this paper was on operations reducing the original graph
size, such as vertex deletion and edge contraction. However, some algorithms re-
quire operations that do not decrease the size of an input graph. Such operations
are harder to implement. Edge addition is a notable example that remains to be
considered.
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Abstract. We consider the problem of evaluating certain exponential
sums. These sums take the form∑

x1,x2,...,xn∈ZN

e
2πi
N

f(x1,x2,...,xn),

where each xi is summed over a ring ZN , and f(x1, x2, . . . , xn) is a mul-
tivariate polynomial with integer coefficients. We show that the sum can
be evaluated in polynomial time in n and log N when f is a quadratic
polynomial. This is true even when the factorization of N is unknown.
Previously, this was known for a prime modulus N . On the other hand,
for very specific families of polynomials of degree ≥ 3 we show the prob-
lem is #P-hard, even for any fixed prime or prime power modulus. This
leads to a complexity dichotomy theorem — a complete classification of
each problem to be either computable in polynomial time or #P-hard
— for a class of exponential sums. These sums arise in the classifica-
tions of graph homomorphisms and some other counting CSP type prob-
lems, and these results lead to complexity dichotomy theorems. For the
polynomial-time algorithm, Gauss sums form the basic building blocks;
for the hardness result we prove group-theoretic necessary conditions for
tractability.

1 Introduction

Exponential sums are among the most studied objects in Number Theory [1,2,3].
They have fascinating properties and innumerable applications. Recently they
have also played a pivotal role in the study of computational complexity of graph
homomorphisms [4,5].

� Supported by NSF CCF-0830488 and CCF-0914969.
�� Most of the work done while the author was a postdoc at the Institute for Advanced

Study and Princeton University. Supported by Grants CCF-0832797, DMS-0635607,
and the USC Viterbi School of Engineering Startup Fund (from Shang-Hua Teng).

D.T. Lee, D.Z. Chen, and S. Ying (Eds.): FAW 2010, LNCS 6213, pp. 148–159, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



On Tractable Exponential Sums 149

The most fundamental and well-known among exponential sums are those
named after Gauss. Let p be an odd prime, and ωp = e2πi/p be the p-th primitive
root of unity. Then the Gauss sum over Zp is

G =
∑
t∈Zp

(
t

p

)
ωt

p, where
(

t

p

)
is the Legendre symbol. (1)

In this paper, we will need to use a more general form of the Gauss sum which
will be defined later in Section 1. Another well-known expression for G in (1) is

G =
∑

x∈Zp

(
ωp

)x2

.

Gauss also knew the remarkable equality G2 = (−1)(p−1)/2p; i.e.,

G = ±√
p if p ≡ 1 (mod 4), and G = ±i

√
p if p ≡ 3 (mod 4). (2)

In particular, we have |G| =
√

p, which is an expression that the p terms in the
sum G are somewhat “randomly” distributed on the unit circle (but note that
the equality is exact). However, the truly amazing fact is that, in all cases, the
plus sign (+) always holds in (2). Gauss recorded this conjecture in his diary
in May 1801, and on August 30, 1805 Gauss recorded that a proof of the “very
elegant theorem mentioned in 1801” had finally been achieved.

In this paper we consider the computational complexity of evaluating expo-
nential sums of the form

Z(N, f) =
∑

x1,x2,...,xn∈ZN

e
2πi
N f(x1,x2,...,xn),

where each xi is summed over a ring ZN and f(x1, x2, . . . , xn) is a multivariate
polynomial with integer coefficients. The output of the computation is an alge-
braic number, in the cyclotomic field Q(e2πi/N ). Any canonical representation
of the output algebraic number will be acceptable [6,7]. These sums are natural
generalizations of the sums considered by Gauss and with arbitrary polynomials
f , they have also played important roles in the development of number theory.

Our main results are as follows: We show that the sum Z(N, f) can be evalu-
ated in polynomial time when f is a quadratic polynomial. The computational
complexity is measured in terms of n, log N , and the number of bits needed to
describe f . While it is known that Z(N, f) can be computed efficiently when N
is a prime [8], our algorithm works for any composite modulus N , even without
knowing its prime factorization. On the other hand, for very specific families of
polynomials of degree ≥ 3, we show the problem is #P-hard even for any fixed
prime or prime power modulus. This leads to a complexity dichotomy theorem —
a complete classification of each problem to be either computable in polynomial
time or #P-hard — for a class of exponential sums.

For the polynomial-time algorithm, we employ an iterative process to elimi-
nate one variable at a time. Gauss sums form the basic building blocks. The fact
that we know the exact answer to the Gauss sum, including the sign, is crucial.
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It turns out that the situation is different for an odd or an even modulus N . A
natural idea is to deal with each prime power in the modulus N separately, and
combine the answers by Chinese remaindering. It turns out that the algorithm is
more difficult for a modulus which is a power of 2, than for an odd prime power.
A more fundamental difficulty arises when N is large and its prime factorization
is unknown. We overcome this difficulty as follows: (1) Factor out all powers of 2
in N and deal with it separately. (2) Operate in the remaining odd modulus as if
it were an odd prime power; whenever this operational commingling encounters
an obstacle, we manage to discover a non-trivial factorization of the modulus N
into relatively prime parts. In that case we recurse.

Theorem 1. Let N be any positive integer and f ∈ Z[x1, . . . , xn] be a quadratic
polynomial in n variables x1, . . . , xn. Then the sum Z(N, f) can be evaluated in
polynomial time in n, log N , and the number of bits needed to describe f .

Previously, it was known that for quadratic polynomials f , the sum can be
computed in polynomial time, if N is a prime [8]. An algorithm with running
time O(n3) can also be found in the paper by Ehrenfeucht and Karpinski [9].
Compared to these algorithms, ours works for any N even if it is given as a part
of the input and its factorization is unknown. It was also suggested that there is
a reduction from root counting. One can express the sum as∑N−1

k=0 #[f = k] · e2πik/N .

If N is polynomially bounded and if one can compute #[f = k] for all k, then
one can compute the sum. But this works only when N is small. Our results are
for general N (polynomial time in the length log N). In our algorithm, Gauss
sums play a crucial role. Any claim to the contrary amounts to an independent
proof of Gauss’s sign formula (that “very elegant theorem mentioned in 1801”),
since it is not only a crucial building block of our algorithm, but also a special
case of the algorithm. We also note that our treatment for the case when N is
a power of 2 is significantly different than previous work. No simple adaptation
of ideas from Sylvester’s law of inertia seems to work.

For the hardness part, we give several successively more stringent necessary
conditions for a class of polynomials to be tractable. The first necessary condi-
tion involves the rank of an associated matrix, and the proof uses the widely
applicable dichotomy theorem of Bulatov and Grohe [10] on counting graph ho-
momorphisms over non-negative weighted graphs. The second condition involves
linear independence and orthogonality. The third and much more stringent nec-
essary condition is group-theoretic in nature; it asserts that the set of row vectors
of a certain complex matrix must form a group. In the paper [4], Goldberg et
al. had proved a similar condition for {−1, +1}-matrices, in the study of graph
homomorphisms over real weighted graphs. Finally, in subsection 4.1, we give a
Generalized Group Condition which leads to a complexity dichotomy.

Previously, it was shown by Ehrenfeucht and Karpinski [9] that for any fixed
prime N , the problem of computing Z(N, f) for general cubic polynomials f is
#P-hard [9]. However, our tests in Section 4 are more powerful. They allow us
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to prove the #P-hardness of Z(N, f) even if f belongs to some very restricted
families of polynomials, since they fail one of the tests in Section 4.

These sums arise recently in the classifications of graph homomorphisms as
well as some other counting CSP type problems (include both CSP and Holant
Problems). For example, the special case when N = 2 is a key component of the
dichotomy of Goldberg et al. [4] for graph homomorphisms over real weighted
graphs. It implies that the partition function ZH(·) (see the definition in section
4) with H1,1 = H1,2 = H2,1 = 1 and H2,2 = −1, which has been an obstacle to
the dichotomy theorem of Bulatov and Grohe [10] and was left open for some
time, can actually be computed in polynomial time.

Preliminaries

Let ωN = e2πi/N denote the N -th primitive root of unity. Let N = N1 ·N2 be a
non-trivial factorization, namely N1, N2 > 1. Suppose N1 and N2 are relatively
prime, then there exist integers a and b such that bN1 +aN2 = 1. It follows that

Z(N, f) = Z(N1, af) · Z(N2, bf). (3)

Therefore, if we know a non-trivial factorization of N into relatively prime factors
N1 and N2, then the problem Z(N, f) decomposes. In particular, we can factor
N = 2kN ′, where N ′ is odd. Thus we can treat the problems Z(2k, ·) and Z(N ′, ·)
separately. In Section 2, we give an algorithm for the case when N is odd and
in Section 3 we deal with the case when N = 2k.

Our algorithm crucially relies on the fact that the following general form of
Gauss sum G(a,b) can be computed in polynomial time in log a and log b, even
without knowing their prime factorizations. Let a, b be non-zero integers with
b > 0 and gcd(a, b) = 1. Then G(a, b) denotes the following sum:

G(a, b) =
∑

x∈Zb
ωax2

b .

The algorithm for computing G(a, b) can be found in the full version [11].

2 Odd Modulus

First, we present a polynomial-time algorithm for the case when N is odd. Let

f(x1, . . . , xn) =
∑

i≤j∈[n] ci,jxixj +
∑

i∈[n] cixi + c0. (4)

We may assume c0 = 0 because it only contributes a constant factor to Z(N, f).
For each non-zero coefficient c = ci,j or ci of f , we compute the greatest common
divisor g = gcd(N, c�log2 N�). Note that if ordpN is the exact order of a prime p
in N , then N ≥ pordpN and thus ordpN ≤ �log2 N�. Hence if c shares any prime
p with N , but not all the prime factors of N , then g has the factor pordpN , and
N = g ·(N/g) is a non-trivial factorization of N into two relatively prime factors.
We can test for each non-zero c = ci,j or ci whether N = g · (N/g) gives us a
non-trivial factorization of N into two relatively prime factors.
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By (3), if for some c, we did find such a factorization N = N1 · N2, then the
problem decomposes into two subproblems Z(N1, ·) and Z(N2, ·). There can be
at most a linear number log2 N many such subproblems, and a polynomial-time
algorithm for each subproblem will give a polynomial-time algorithm for Z(N, ·).
Therefore, in the following we assume for each non-zero coefficient c = ci,j or ci,
either gcd(N, c) = 1 or c has all prime factors of N , and we know, by computing
the gcd, which case it is for each coefficient c. We consider the following cases.
Case 1. There exists some diagonal coefficient ci,i relatively prime to N .
Without loss of generality we assume c1,1 is relatively prime to N . Then c1,1 is
invertible in ZN . Since N is odd, 2 is also invertible. Denote by c′1,i an integer
such that c′1,i ≡ (2c1,1)−1c1,i (mod N), for 2 ≤ i ≤ n. We have, modulo N ,

f(x1, . . . , xn)=c1,1

[
x2

1+2x1(c′1,2x2+. . .+c′1,nxn)
]
+
∑

2≤i≤j≤n ci,jxixj +
∑

i∈[n] cixi.

Let g(x2, . . . , xn) = c′1,2x2 + . . . + c′1,nxn. Then we can write f as

f = c1,1(x1 + g)2 + c1(x1 + g) + h,

where h is some quadratic polynomial in x2, . . . , xn. If we substitute y = x1 + g
for x1, then for any fixed x2, . . . , xn ∈ ZN , when x1 takes all the values in ZN ,
y also takes all the values in ZN . Hence, we have

Z(N, f) =
∑

x2,...,xn∈ZN

∑
y∈ZN

ω
c1,1y2+c1y+h(x2,...,xn)
N .

Completing the square again, c1,1y
2 + c1y = c1,1(y + (2c1,1)−1c1)2 + c′, where

c′ = −c2
1/(4c1,1) ∈ ZN and Z(N, f) =

∑
x2,...,xn∈ZN

∑
z∈ZN

ω
c1,1z2+h′(x2,...,xn)
N ,

where h′(x2, . . . , xn) = h(x2, . . . , xn) + c′ is an explicitly computed quadratic
polynomial in x2, . . . , xn. It then follows that Z(N, f) = Z(N, h′) · G(c1,1, N),
where h′ has (at least) one fewer variable than f and the Gauss sum G(c1,1, N)
can be computed in polynomial time. This completes the proof of Case 1.
Case 2. No ci,i is relatively prime to N but there exist some i, j : 1 ≤ i < j ≤ n
such that gcd(ci,j , N) = 1. By our earlier assumption, for every prime factor p
of N , p divides every ci,i for all 1 ≤ i ≤ n.
The existence of ci,j for some i, j : 1 ≤ i < j ≤ n implies that in particular
n ≥ 2. Without loss of generality, we assume gcd(c1,2, N) = 1. Now we perform
the following substitution: x1 = y1 + y2, x2 = y1 − y2, and xi are unchanged for
any 2 < i ≤ n if n > 2. This transformation is a 1-1 correspondence from Zn

N to
itself with inverse y1 = (x1 + x2)/2 and y2 = (x1 − x2)/2 because 2 is invertible
in ZN . Since the transformation is linear it does not change the degree of f . It is
easily checked that the coefficient of y2

1 in the new polynomial is c1,1 +c2,2 +c1,2.
Since c1,1 and c2,2 have all the prime factors of N , c1,1 + c2,2 + c1,2 is relatively
prime to N . This transformation reduces the computation of Z(N, f) to Case 1.
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Case 3. No coefficients ci,j of f , where 1 ≤ i ≤ j ≤ n, are relatively prime to N .
However, there exists a ci relatively prime to N , for some i : 1 ≤ i ≤ n. Without
loss of generality, assume gcd(c1, N) = 1. Let p be a prime divisor of N , then

p | c1,1, . . . , c1,n and yet p � c1. (5)

Let k = ordpN be the exact order of p in N with k ≥ 1. Write N = pkN1, then
gcd(p, N1) = 1, and for some integers a and b, we have bpk + aN1 = 1. By (3),
Z(N, f) = Z(pk, af) · Z(N1, bf). Note that gcd(a, p) = 1. Hence the condition
(5) for the coefficients of f also holds for af . We will show Z(pk, af) = 0. For
notational simplicity, we will write below f for af .

Z(pk, f)=
∑

x2,...,xn∈Z
pk

ω
∑

2≤i≤j≤n ci,jxixj+
∑

2≤i≤n cixi

pk

∑
x1∈Z

pk

ω
∑

1≤i≤n c1,ix1xi+c1x1

pk .

We fix any x2, . . . , xn ∈ Zpk , and consider the inner sum over x1. If k = 1, then
all terms c1,ix1xi disappear, and because p � c1, the inner sum is equal to 0.

Now suppose k > 1. We repeat the sum for p times with x(j) = x1 + j · pk−1

where 0 ≤ j ≤ p − 1. Then by (5), we have c1,ix1xi ≡ c1,ix
(j)xi (mod pk) and

∑
x1∈Z

pk

ω
∑

1≤i≤n c1,ix1xi+c1x1

pk =
1
p

∑
x1∈Z

pk

ω
∑

1≤i≤n c1,ix1xi+c1x1

pk

⎛⎝p−1∑
j=0

ωjc1
p

⎞⎠ .

By p � c1, the geometric sum
∑p−1

j=0 ωjc1
p = 0. This finishes Case 3.

Case 4. No coefficients ci,j and c� of f , where 1 ≤ i ≤ j ≤ n and 1 ≤ � ≤ n, are
relatively prime to N .
By our earlier assumption, this means that every prime factor of N divides
every coefficient ci,j and c�. Then we can find the joint gcd d of N with all these
coefficients, which must at least contain every prime factor of N , and divide out d
in the exponent. By ωd

N = ωN/d, we get Z(N, f) = d ·Z(N/d, f ′) where f ′ = f/d
is the quadratic polynomial obtained from f by dividing every coefficient with
d.This reduces the modulus from N to N/d.

By combining all the four cases, we get a polynomial-time algorithm for the
case when N is odd.

3 Modulus Is a Power of 2

Next, we deal with the more difficult case when the modulus, denoted by q here,
is a power of 2: q = 2k for some k ≥ 1. We note that the property of an element
c ∈ Zq being even or odd is well-defined.

For the case when k = 1, Z(q, f) is computable in polynomial time by [8]. So
we always assume k > 1 below. The algorithm goes as follows. For each round,
we show how to, in polynomial time, either

1. output the correct value of Z(q, f); or
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2. construct a new quadratic polynomial g ∈ Zq/2[x1, . . . , xn] and reduce
the computation of Z(q, f) to the computation of Z(q/2, g); or

3. construct a new quadratic polynomial g ∈ Zq[x1, . . . , xn−1], and reduce
the computation of Z(q, f) to the computation of Z(q, g).

This gives us a polynomial-time algorithm for evaluating Z(q, f) since we know
how to solve the two base cases when either k = 1 or n = 0 efficiently.

Suppose we have a polynomial f ∈ Zq[x1, . . . , xn] as in (4). Our first step is
to transform f so that all the coefficients of its cross terms (ci,j , where 1 ≤ i <
j ≤ n) and linear terms (ci) are even. Assume f does not yet have this property.
We let t be the smallest index in [n] such that one of {ct, ct,j : j > t} is odd. By
separating out the terms involving xt, we rewrite f as follows

f = ct,t · x2
t + xt · f1(x1, . . . , x̂t, . . . , xn) + f2(x1, . . . , x̂t, . . . , xn), (6)

where f1 is an affine linear function and f2 is a quadratic polynomial. Both f1
and f2 here are over variables {x1, . . . , xn} − {xt}. Here the notation x̂t means
that xt does not appear in the polynomial. Moreover

f1(x1, . . . , x̂t, . . . , xn) =
∑

i<t ci,txi +
∑

j>t ct,jxj + ct. (7)

By the minimality of t, ci,t is even for all i < t and at least one of {ct, ct,j : j > t}
is odd. We claim that

Z(q, f) =
∑

x1,...,xn∈Zq

ωf(x1,...,xn)
q =

∑
x1,...,xn∈Zq

f1(x1,...,x̂t,...,xn)≡0 mod 2

ωf(x1,...,xn)
q . (8)

This is because∑
x1,...,xn∈Zq

f1≡1 mod 2

ωf(x1,...,xn)
q =

∑
x1,...,x̂t,...,xn∈Zq

f1≡1 mod 2

∑
xt∈Zq

ω
ct,tx

2
t+xtf1+f2

q .

However, for any fixed x1, . . . , x̂t, . . . , xn, the inner sum is equal to ωf2
q times∑

xt∈[0:2k−1−1]

ω
ct,tx2

t+xtf1
q +ω

ct,t(xt+2k−1)2+(xt+2k−1)f1
q =

(
1+(−1)f1

)∑
xt

ω
ct,tx2

t+xtf1
q =0,

since f1 ≡ 1 mod 2. Note that we used (x + 2k−1)2 ≡ x2 (mod 2k) when k > 1
in the first equation.

Recall that f1 (see (7)) is an affine linear form of {x1, . . . , x̂t, . . . , xn}. Also
note that ci,t is even for all i < t and one of {ct, ct,j : j > t} is odd. We consider
the following two cases.

In the first case, ct,j is even for all j > t and ct is odd, then f1 is odd for any
assignment (x1, . . . , x̂t, . . . , xn) in Zn−1

q . As a result, Z(q, f) = 0 by (8).
In the second case, there exists at least one j > t such that ct,j is odd. Let

� > t be the smallest of such j’s. Then we substitute the variable x� in f with a
new variable x′

�, where (as ct,� is odd, ct,� is invertible in Zq)

x� = c−1
t,�

(
2x′

� −
(∑

i<t ci,txi +
∑

j>t,j =� ct,jxj + ct

))
. (9)
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and let f ′ denote the new quadratic polynomial in Zq[x1, . . . , x�−1, x
′
�, x�+1, . . . ,

xn]. We claim that

Z(q, f ′) = 2 · Z(q, f) = 2 ·
∑

x1,...,xn∈Zq

f1≡0 mod 2

ωf(x1,...,xn)
q .

To this end, we define the following map from Zn
q to Zn

q : (x1, . . . , x
′
�, . . . , xn) 	→

(x1, . . . , x�, . . . , xn), where x� satisfies (9). It is easy to check that the range of
this map is exactly the set of (x1, . . . , x�, . . . , xn) in Zn

q such that f1 is even.
Moreover, for every such tuple (x1, . . . , x�, . . . , xn) the number of its preimages
in Zn

q is exactly 2. The claim then follows.
As a result, to compute Z(q, f), we only need to compute Z(q, f ′), and the

advantage of the new polynomial f ′ over f is the following property. The proof
of Property 1 can be found in the full version [11].

Property 1. For every cross and linear term that involves x1, . . . , xt, its
coefficient in f ′ is even.

To summarize, after substituting x� with x′
� using (9), we obtain a quadratic

polynomial f ′ such that Z(q, f ′) = 2 · Z(q, f) and for all cross and linear terms
that involve x1, . . . , xt, its coefficient in f ′ is even. We can repeat this substitution
procedure on f ′: either we show that Z(q, f ′) is trivially 0 or we get a quadratic
polynomial f ′′ such that Z(q, f ′′) = 2 ·Z(q, f ′) and the parameter t increases by
at least one. As a result, given any quadratic polynomial f , we can, in polynomial
time, either show that Z(q, f) is 0 or construct a new quadratic polynomial g
∈ Zq[x1, . . . , xn] such that Z(q, f) = 2d · Z(q, g) for some known integer d ≤ n,
and every cross term and linear term of g has an even coefficient.

For notational simplicity, we can just assume that the given f in (4) already
satisfies this condition. (Or equivalently, we rewrite f for g.) We will show that,
given such a polynomial f in n variables, we can reduce it either to the com-
putation of Z(q/2, f ′), in which f ′ is a quadratic polynomial in n variables; or
to the computation of Z(q, f ′′), in which f ′′ is a quadratic polynomial in n − 1
variables. We consider the following two cases: ci,i is even for all i ∈ [n]; or at
least one of the ci,i’s is odd.

In the first case, we know ci,j and ci are even for all 1 ≤ i ≤ j ≤ n. We use
c′i,j and c′i to denote integers in [0 : 2k−1 − 1] such that ci,j ≡ 2c′i,j (mod q) and
ci ≡ 2c′i (mod q), respectively. Then,

Z(q, f) = ωc0
q ·

∑
x1,...,xn∈Zq

ω
2
(∑

i≤j∈[n] c′i,jxixj+
∑

i∈[n] c′ixi

)
q = 2n ·ωc0

q ·Z(2k−1, f ′),

where
f ′ =

∑
i≤j∈[n] c

′
i,jxixj +

∑
i∈[n] c

′
ixi

is a quadratic polynomial over Zq/2 = Z2k−1 . This reduces the computation of
Z(q, f) to Z(q/2, f ′).
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In the second case, without loss of generality, we assume c1,1 is odd, then

f = c1,1(x2
1 + 2x1f1) + f2 = c1,1(x1 + f1)2 + f ′,

where f1 is an affine linear form, and both f2 and f ′ are quadratic polynomials,
all of which are over x2, . . . , xn. We are able to do this because c1,j and c1, for
all j ≥ 2, are even. Now we have

Z(q, f)=
∑

x1,...,xn∈Zq

ω
c1,1(x1+f1)2+f ′
q =

∑
x2,...,xn∈Zq

ωf ′
q ·

∑
x1∈Zq

ω
c1,1(x1+f1)2

q =G(c1,1, q)·Z(q, f ′).

The last equation is because the sum over x1 ∈ Zq is independent of the value
of f1. This reduces the computation of Z(q, f) to Z(q, f ′), and f ′ is a quadratic
polynomial in n − 1 variables.

To sum up, given any quadratic f , we can, in polynomial time, either output
the correct value of Z(q, f); or reduce one of the two parameters, k or n, by at
least 1. This gives us a polynomial-time algorithm for Z(q, f) when q = 2k.

4 #P-Hardness

We first introduce the definition of a partition function ZA(·) [12,13,14,10,15],
where A is a symmetric complex matrix. We give four necessary conditions on
the matrix A for the problem of computing ZA(·) being not #P-hard. Then we
demonstrate the wide applicability of these four conditions by reducing ZA(·),
for some appropriate A, to Z(N, f) and proving that even computing Z(N, f) for
some very restricted families of polynomials over a fixed modulus N is #P-hard.
Finally, we show that, for a large class of problems defined using Z(N, f), these
conditions actually cover all the #P-hard cases. Together with the polynomial-
time algorithm presented in Section 2 and 3, they imply an explicit complexity
dichotomy theorem for this class.

Let A ∈ Cm×m be a symmetric m × m matrix, then we define the partition
function ZA(·) as follows: Given any undirected graph G = (V, E) (Here G is
allowed to have multi-edges but no self loops)

ZA(G) =
∑

ξ:V →[m]

wtA(G, ξ), where wtA(G, ξ) =
∏

(u,v)∈E

Aξ(u),ξ(v). (10)

The complexity of ZA(·), for various A, has been studied intensely [12,13,14,10,15].
We need the following lemma which can be proved following an important result
of Bulatov and Grohe [10]. The proof uses the technique of Valiant [16,17] called
interpolation, which is omitted here.

Lemma 1 (The Rank-1 Condition). Let A ∈ Cm×m be a symmetric matrix
and let A′ be the matrix such that A′

i,j = |Ai,j | for all i, j. If there exists a 2× 2
sub-matrix B of A′, such that, B is of full rank and at least three of the four
entries of B are non-zero, then computing ZA(·) is #P-hard.
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We can use lemma 1 to prove a stronger necessary condition for ZA(·) being not
#P-hard. The proof can be found in the full version [11]. In the statement below,
we let Ai,∗ denote the i-th row vector of A. We say a matrix A is M -discrete,
for some integer M ≥ 1, if every entry of A is an M -th root of unity.

Lemma 2 (Orthogonality). Let M be a positive integer and let A be a sym-
metric and M -discrete m × m matrix. If there exist i �= j ∈ [m] such that Ai,∗
and Aj,∗ are neither linearly dependent nor orthogonal, then ZA(·) is #P-hard.

Next we prove a much stronger group-theoretic necessary condition for ZA(·)
being not #P-hard, where A is any discrete unitary matrix as defined below. A
similar condition was first used by Goldberg et al. in [4] for {+1,−1}-matrices,
in the study of ZA(·) over real matrices. In the rest of this section, we will use
[0 : m − 1] to index the rows and columns of an m × m matrix for convenience.

Definition 1 (Discrete Unitary Matrix). Let A ∈ Cm×m be an m × m sy-
mmetric complex matrix. We say A is an M -discrete unitary matrix, for some
positive integer M , if it is M -discrete and satisfies

— ∀ i ∈ [0 : m − 1], A1,i = Ai,1 = 1; ∀ i �= j, 〈Ai,∗,Aj,∗〉 = 0, where

〈Ai,∗,Aj,∗〉 =
∑

k∈[m] Ai,k Aj,k.

Given two vectors x,y ∈ Cm we let x ◦ y denote their Hadamard product z:
z = x ◦ y ∈ Cm, where zi = xi · yi for all i.

Lemma 3 (The Group Condition). Let A ∈ Cm×m be an m×m symmetric
M -discrete unitary matrix, for some positive integer M . Then computing ZA(·)
is #P-hard, unless A satisfies the following Group Condition:

— ∀ i, j ∈ [0 : m − 1], ∃ k ∈ [0 : m − 1] such that Ak,∗ = Ai,∗ ◦ Aj,∗.

These three necessary conditions are very powerful and can be used to prove the
#P-hardness of Z(N, f), for some very restricted families of polynomials f over a
fixed modulus N . We would like to say, e.g., evaluating Z(N, f), when f contains
terms x1x2x3, is #P-hard. However, we have to be very careful; such complexity-
theoretic statements are only meaningful for a sequence of polynomials, and
not an individual polynomial. This motivates the following definition. Let h ∈
Z[x1, . . . , xr] be a fixed polynomial (e.g., h = x1x2x3, with r = 3). We say
f ∈ Z[x1, . . . , xn] is an h-type polynomial, if there exists an r-uniform hypergraph
G = (V, E) with V = [n] such that (We allow G to have multi-edges, i.e., E is a
multiset; and edges in E are ordered subsets of [n] of cardinality r)

f(x1, . . . , xn) =
∑

(i1,...,ir)∈E h(xi1 , . . . , xir ). (11)

Definition 2. Let q = pt be a prime power and h ∈ Z[x1, . . . , xr] be a polyno-
mial. We use S[q, h] to denote the following problem: given an r-uniform hyper-
graph G, compute Z(q, f), where f is the h-type polynomial defined by G.
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Using these three necessary conditions, it is easy to prove the #P-hardness of
the following problems, with

h1(x1, x2, x3) = x1x2x3, h2(x1, x2) = x2
1x2 and h3(x1, x2) = x1x2 + x2

1x
2
2.

Corollary 1. For any fixed prime power q = pt, S[q, h1] is #P-hard;
For any prime power q /∈ {2, 4}, S[q, h2] and S[q, h3] are #P-hard.

Proof. We will only prove the statement for S[q, h3] here. For S[q, h3], let A be
the following m × m symmetric and q-discrete matrix:

Ai,j = ωh3(i,j)
q , for all i, j ∈ [0 : q − 1]. (12)

It is easy to see that ZA(·) is computationally equivalent to S[q, h3]. Moreover,
when q is an odd prime power, the two vectors A0,∗ and A1,∗ are neither linearly
dependent nor orthogonal and thus, by Lemma 2, S[q, h3] is #P-hard. For the
case when q = 2t and t > 2, it can be checked that A is q-discrete unitary but
does not satisfy the Group Condition. Then by Lemma 3, S[q, h3] is #P-hard.

4.1 A Dichotomy Theorem for S[q, h]

Let q be a prime power, and h ∈ Zq[x1, x2] be a symmetric polynomial. By the
proof of Corollary 1 above, the problem S[q, h] is computationally equivalent to
ZA(·), where A is the following q × q and q-discrete matrix:

Ai,j = ωh(i,j)
q , for all i, j ∈ [0 : q − 1]. (13)

Although the Orthogonality and the Group conditions can be used to prove the
#P-hardness of S[q, h] for many interesting polynomials h, as demonstrated in
Corollary 1, it does not cover all the #P-hard S[q, h]. For example, even if we
assume that h is symmetric; and every monomial in h(x1, x2) contains both x1
and x2 (and thus, h(0, x) = h(x, 0) = 0 for all x ∈ Zq and the matrix A defined
in (13) is both symmetric and normalized : A0,i = Ai,0 = 1 for all i ), the Group
condition can not deal with the case when there exist indices i �= j ∈ [0 : q − 1]
such that Ai,∗ = Aj,∗. We will use C to denote this class of problems.

We can prove a stronger theorem — the fourth condition. It is a strengthen-
ing of the current Group condition, leading to a complexity dichotomy theorem
for the class C. Due to the space limit, we omit its proof here.

Lemma 4 (The Generalized Group Condition). Let A be an m×m sym-
metric, normalized and M -discrete matrix for some positive integer M such that
for all i, j ∈ [0 : m− 1], either Ai,∗ = Aj,∗ or 〈Ai,∗,Aj,∗〉 = 0. Let T1, . . . , T� be
a partition of [0 : m − 1], such that, Ai,∗ = Aj,∗ ⇐⇒ ∃ k ∈ [�] : i, j ∈ Tk. Then
ZA(·) is #P-hard unless A satisfies the following Generalized Group condition:

— For all k ∈ [�], |Tk| = m/�; and for all i, j ∈ [0 : m − 1], there
exists a k ∈ [0 : m − 1] such that Ak,∗ = Ai,∗ ◦ Aj,∗.
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By combining the Generalized Group condition with the Orthogonality condi-
tion, we are able to show that for every problem S[q, h] in the class C, either
S[q, h] is #P-hard; or we have A = J ⊗ A′, where J is an all-1 matrix and A′

is a q-discrete unitary matrix that satisfies the original Group Condition. The
latter can ultimately lead to a polynomial-time algorithm for ZA(·) and S[q, h],
using the algorithm developed in Section 2 and 3.

Acknowledgements. We thank Eric Bach, Richard Brualdi, Michael Kowal-
czyk, Endre Szemeredi and Mingji Xia for helpful discussions.
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Abstract. A d-interval is the union of d disjoint intervals on the real line. A
d-track interval is the union of d disjoint intervals on d disjoint parallel lines
called tracks, one interval on each track. As generalizations of the ubiquitous
interval graphs, d-interval graphs and d-track interval graphs have wide applica-
tions, traditionally to scheduling and resource allocation, and more recently to
bioinformatics. In this paper, we prove that recognizing d-track interval graphs
is NP-complete for any constant d ≥ 2. This confirms a conjecture of Gyárfás
and West in 1995. Previously only the complexity of the d = 2 case was known.
Our proof in fact implies that several restricted variants of this graph recognition
problem, i.e, recognizing balanced d-track interval graphs, unit d-track interval
graphs, and (2, . . . , 2) d-track interval graphs, are all NP-complete. This partially
answers another question recently raised by Gambette and Vialette. We also prove
that recognizing depth-two 2-track interval graphs is NP-complete, even for the
unit case. In sharp contrast, we present a simple linear-time algorithm for rec-
ognizing depth-two unit d-interval graphs. These and other results of ours give
partial answers to a question of West and Shmoys in 1984 and a similar ques-
tion of Gyárfás and West in 1995. Finally, we give the first bounds on the track
number and the unit track number of a graph in terms of the number of vertices,
the number of edges, and the maximum degree, and link the two numbers to the
classical concepts of arboricity.

1 Introduction

A d-interval is the union of d disjoint (open) intervals on the real line. A d-interval
graph is the intersection graph of a family of d-intervals. Recall that the intersection
graph Ω(F) of a family of sets F = {S1, . . . , Sn} is the graph with F as the vertex set
and with two different vertices Si and Sj adjacent if and only if Si ∩Sj �= ∅; the family
F is called a representation of the graph Ω(F).

Throughout the paper, the intervals are all open. The d disjoint intervals of a d-
interval can be restricted in their lengths as follows. A d-interval is balanced if the d
disjoint intervals have the same length, and is unit if the d disjoint intervals all have unit
length. A d-interval is (x1, . . . , xd) if the d disjoint intervals have integer endpoints
and have lengths x1, . . . , xd, respectively, in sequential order. For a balanced d-interval
graph, the d disjoint intervals that constitute the same d-interval must have the same

� Supported in part by NSF grant DBI-0743670.

D.T. Lee, D.Z. Chen, and S. Ying (Eds.): FAW 2010, LNCS 6213, pp. 160–171, 2010.
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length, although the intervals from different d-intervals may have different lengths; on
the other hand, all intervals of a unit d-interval graph must have the same unit length.

The depth of a family of d-intervals is the maximum number of intervals that share a
common point. The representation depth of a d-interval graph is the minimum depth of
any d-interval representation of the graph. For example, any d-interval representation
of a triangle-free graph must have depth at most 2, because three intervals sharing a
common point would induce a triangle in the intersection graph.

A d-track interval is the union of d disjoint intervals on d disjoint parallel lines called
tracks, one interval on each track. Similarly define the restrictions on d-track intervals
and the corresponding variations of d-track interval graphs. The d disjoint tracks for a
d-track interval graph can be viewed as d disjoint “host” intervals on the real line for
a d-interval graph. Thus the class of d-track interval graphs is contained in the class of
d-interval graphs. We summarize the hierarchy of d-interval graph classes:

(x, . . . , x) ⊆ unit ⊆ balanced ⊆ unrestricted triangle-free ⊂ representation depth ≤ 2

d-track interval graphs ⊂ d-interval graphs

As generalizations of the ubiquitous interval graphs, d-interval graphs and d-track
interval graphs have wide applications, traditionally to scheduling and resource allo-
cation [19,7,14,8], and more recently to bioinformatics [16,5,21,9,15,2]. A classical re-
sult of West and Shmoys [23] states that, for any constant d ≥ 2, recognizing d-interval
graphs is NP-complete (moreover, for any constants d ≥ 2 and r ≥ 3, recognizing
d-interval graphs of representation depth at most r is also NP-complete). Recently,
Gambette and Vialette [10] studied some restricted subclasses of 2-interval graphs, and
observed that the lengths of 2-intervals in West and Shmoys’s proof of NP-hardness
of recognizing 2-interval graphs [23] can be adjusted to meet the balanced restriction.
Thus recognizing balanced 2-interval graphs is NP-hard too. The complexity of rec-
ognizing the more restricted unit and (x, x) 2-interval graphs, however, was left as an
open question:

Question 1 (Gambette and Vialette, 2007 [10]). What is the complexity of recognizing
unit 2-interval graphs and (x, x) 2-interval graphs?

Recall that d-track interval graphs are a subclass of d-interval graphs. Gyárfás and
West [13] proved that recognizing 2-track interval graphs is NP-complete (their proof
also implies that for any constant r ≥ 3, recognizing 2-track interval graphs of repre-
sentation depth at most r is NP-complete), and made the following conjecture:

Conjecture 1 (Gyárfás and West, 1995 [13]). For any constant d ≥ 2, recognizing d-
track interval graphs is NP-hard.

It is easy to check that Gyárfás and West’s proof of NP-hardness of recognizing 2-
track interval graphs [13] can also be adapted, by adjusting the interval lengths in the
representation as Gambette and Vialette [10] did for 2-interval graphs, to show that
recognizing balanced 2-track interval graphs is NP-hard. But whether the proof can be
adapted further to prove the NP-hardness of recognizing unit and (x, x) 2-track interval
graphs, or the NP-hardness of recognizing d-track interval graphs for d > 2, is not at
all obvious. Our main result is the following theorem that partially answers Question 1
and confirms Conjecture 1:
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Theorem 1. For any constant d ≥ 2, recognizing d-track interval graphs, balanced
d-track interval graphs, unit d-track interval graphs, and (2, . . . , 2) d-track interval
graphs are all NP-complete. Moreover, for any constants d ≥ 2 and r ≥ 3, recognizing
d-track interval graphs, balanced d-track interval graphs, unit d-track interval graphs,
and (2, . . . , 2) d-track interval graphs of representation depth at most r are all NP-
complete.

West and Shmoys [23] also posed the following natural question after proving the NP-
completeness of recognizing d-interval graphs of representation depth at most r for any
constants d ≥ 2 and r ≥ 3:

Question 2 (West and Shmoys, 1984 [23]). What is the complexity of recognizing d-
interval graphs of representation depth at most 2? In particular, what is the complexity
of recognizing d-interval graphs that are triangle-free?

We will use the term “depth-two” as an abbreviation for “representation depth at most
2.” Recall that the class of triangle-free d-interval graphs is properly contained in the
class of depth-two d-interval graphs. Thus any algorithm for recognizing depth-two
d-interval graphs can be augmented, by adding a straightforward step that checks the
triangle-free condition, to an algorithm for recognizing triangle-free d-interval graphs.
In the same spirit of Question 2 on recognizing d-interval graphs, Gyárfás and West [13]
later posed the following question on recognizing 2-track interval graphs:

Question 3 (Gyárfás and West, 1995 [13]). What is the complexity of recognizing 2-
track interval graphs that are triangle-free?

Our following theorem complements Theorem 1 and partially answers Question 3:

Theorem 2. Recognizing (i) depth-two 2-track interval graphs and (ii) depth-two unit
2-track interval graphs are both NP-complete.

We also have the following positive results that partially answer Question 2:

Theorem 3. Let G be a graph of n vertices and m edges. (i) There is an O(poly(m +
n)) time algorithm that determines, for any d ≥ 2, either that G is not a depth-two
d-interval graph, or that G is a depth-two (d + 1)-interval graph. (ii) There is an
O(2mpoly(m + n)) time algorithm that determines, for any d ≥ 2, whether G is a
depth-two d-interval graph. (iii) There is an O(m + n) time algorithm that determines
the smallest number d such that G is a depth-two unit d-interval graph.

The O(poly(m + n)) time algorithm in Theorem 3(i) implies an approximation algo-
rithm with additive error 1 for finding the smallest number d such that G is a depth-
two d-interval graph. This approximation would be best possible if it turned out that
recognizing depth-two d-interval graphs is NP-hard for any constant d ≥ 2; see Ques-
tion 2. The O(2mpoly(m + n)) time algorithm in Theorem 3(ii) improves a previ-
ous O(3m(m + n)) time algorithm by Maas [18] for recognizing depth-two d-interval
graphs. Also note the sharp contrast between Theorem 2(ii) and Theorem 3(iii): it is
interesting that while recognizing unrestricted 2-interval graphs and 2-track interval
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Table 1. Complexities of recognizing d-interval graphs and d-track interval graphs

d-interval graphs d-track interval graphs
unrestricted NP-complete [23] NP-complete Theorem 1
balanced NP-complete (d = 2) [10] NP-complete Theorem 1
unit ? [10] NP-complete Theorem 1
(2, . . . , 2) ? [10] NP-complete Theorem 1
depth-two ? (+1 approximation) Theorem 3(i) NP-complete (d = 2) Theorem 2
depth-two, unit linear-time Theorem 3(iii) NP-complete (d = 2) Theorem 2

graphs are both NP-complete, recognizing their restricted (depth-two, unit) variants are
so drastically different in complexity. We summarize in Table 1 the current best results
on recognizing variants of d-interval graphs and d-track interval graphs.

The graph recognition problems studied in this paper are closely related to classi-
cal problems on interval numbers and track numbers in extremal graph theory. For a
graph G, the interval number i(G) is the smallest number d such that G is a d-interval
graph [20,12], and the track number t(G) is the smallest number d such that G is a
d-track interval graph [17,13]. Thus a graph is a d-interval graph (resp. d-track interval
graph) if and only if its interval number (resp. track number) is at most d. Similarly
define the unit interval number iu(G) as the smallest number d such that G is a unit
d-interval graph [4], and the unit track number tu(G) as the smallest number d such
that G is a unit d-track interval graph. It is clear that i(G) ≤ iu(G), t(G) ≤ tu(G),
i(G) ≤ t(G), and iu(G) ≤ tu(G) for any graph G.

We link the track number and the unit track number of a graph to the classical con-
cepts of arboricity. A caterpillar is a tree containing a dominating path such that every
vertex not on the path is adjacent to some vertex on the path. A caterpillar forest is a
graph in which every connected component is a caterpillar. The caterpillar arboricity
ca(G) of a graph G is the minimum number of caterpillar forests into which its edges
can be decomposed. A linear forest is a graph in which every connected component
is a path. The linear arboricity la(G) of a graph G is the minimum number of linear
forests into which its edges can be decomposed. It is clear that ca(G) ≤ la(G) for any
graph G. Akiyama, Exoo, and Harary [1] conjectured that every graph G of maximum
degree Δ satisfies la(G) ≤ �(Δ + 1)/2�. This conjecture has been shown to be correct
asymptotically as Δ → ∞ [3], and has been confirmed for graphs of small constant
degrees [1].

Let G be a graph of n vertices, m edges, and maximum degree Δ. It is known that
i(G) ≤ �(n + 1)/4� [11], iu(G) ≤ �(n − 1)/2� [4], i(G) ≤ �

√
m/2� + 1 [6], and

i(G) ≤ iu(G) ≤ �(Δ + 1)/2� [12,22]. These bounds are best possible. Our following
theorem gives complementary bounds of these types:

Theorem 4. Let G be a graph of n vertices, m edges, and maximum degree Δ. Then
(i) t(G) ≤ �n/2�; (ii) tu(G) ≤ �m/2�, and this bound is best possible; (iii) t(G) ≤
ca(G) and tu(G) ≤ la(G). In particular, if la(G) ≤ �(Δ + 1)/2� as conjectured, then
t(G) ≤ tu(G) ≤ �(Δ + 1)/2� ≤ �n/2� and t(G) ≤ �√m �.
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2 Hardness of Recognizing d-Track Interval Graphs

In this section we prove Theorem 1. The most basic part of our result, which confirms
Conjecture 1 of Gyárfás and West [13], is that recognizing d-track interval graphs for
any constant d ≥ 2 (RDT) is NP-hard. We will show that RDT is NP-hard by a reduction
from the following NP-hard problem [23,13]:

Hamiltonian path in triangle-free cubic graph (HP3): Given a triangle-free
cubic graph G = (V, E) and an edge uv ∈ E, decide whether there is a
Hamiltonian path in G starting at u and ending at v.

In the following, we first study the simple case of d = 2 and prove that recognizing
2-track interval graphs (R2T) is NP-hard, then turn to the general case and prove that
recognizing d-track interval graphs for any constant d ≥ 2 (RDT) is NP-hard. Our
proof, although presented in a progressive way, will reduce HP3 to both R2T and RDT
directly; indeed the reduction to R2T is exactly the same as the reduction to RDT with
d = 2. In contrast, West and Shmoys’s proof for d-interval graphs [23] first reduces HP3
to recognizing 2-interval graphs, then inductively reduces recognizing (d − 1)-interval
graphs to recognizing d-interval graphs.

In any d-track interval representation of a graph, each edge uv of the graph has to be
realized on at least one of the d tracks, that is, represented by two overlapping intervals,
one interval of u and one interval of v, on one of the d tracks. If the intervals of u and v
overlap on exactly one of the d tracks, then the edge uv is said to be uniquely realized
on that track. A d-track interval representation of a graph is continuous on some track
if the union of all intervals on that track is a single interval (with no holes).

Lemma 1. In any multiple-interval representation of a graph, if the depth of the repre-
sentation is at most 2, then at most t−1 edges of the graph can be realized by t intervals.
Moreover, if exactly t − 1 edges are realized by t intervals, then the representation of
the t intervals must be continuous.

Lemma 2. K2d,2d−1 has a continuous (2, . . . , 2) d-track interval representation
(Fig. 1). Every d-track interval representation of K2d,2d−1 must be continuous on each
track.

2.1 R2T Is NP-Hard

Given a triangle-free cubic graph G = (V, E) with the vertex set V = {v1, . . . , vn} and
an edge v1vn ∈ E, we will construct an extended graph G2 such that G has a Hamil-
tonian path between v1 and vn if and only if G2 has a 2-track interval representation.
Note that G has exactly 3n/2 edges, so the number n of vertices must be even.

We refer to Fig. 2 for the construction of the extended graph G2. The following
subgraphs are used in our construction:

1. A graph G̈ obtained from G by deleting the edge v1vn;
2. An independent set Q of n vertices qi, 1 ≤ i ≤ n;
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Track 1
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...

...

Fig. 1. A continuous d-track interval representation of the complete bipartite graph K2d,2d−1

G̈

v1

vi

vn

P

p0

p1

p2

p2i

p2n

p2n+1

p2n+2

Q

q1

qi

qn

X4

x

Fig. 2. The extended graph G2. Each vertex qi in the independent set Q is connected to a distinct
copy of the complete bipartite graph K4,3 (only one copy is shown here). Each vertex pj on the
path P is connected to a distinct copy of the gadget X4 (only one copy is shown here).

3. A path P = 〈p0p1 . . . p2n+2〉 of 2n + 3 vertices pj , 0 ≤ j ≤ 2n + 2;
4. The complete bipartite graph K4,3;
5. A gadget X4 consisting of a vertex x and four copies of K4,3, where x is connected

to a vertex of degree 3 in each copy of K4,3.

The extended graph G2 is composed by connecting the graph G̈, the independent set
Q, the path P , n copies of the complete bipartite graph K4,3, and 2n + 3 copies of the
gadget X4 as follows:

– Connect G̈ to Q by the n edges viqi, 1 ≤ i ≤ n.
– Connect Q to P by 3n edges: three edges from each vertex qi, 1 ≤ i ≤ n, to the

three vertices p2i−1, p2i, and p2i+1.



166 M. Jiang

Track 2

Track 1

κ1

κ1

κ2

κ2

κ3

κ3

κ4

κ4

y

y

x

x

Fig. 3. A 2-track interval representation of the graph X4(y). Each of the four copies κ1, κ2, κ3,
and κ4 of K4,3 in X4 is represented continuously (shown schematically as ovals), following the
pattern in Fig. 1 with d = 2.

Track 1
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p2n+1
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q1 qn

qi

qjvi

vj

v1

vn

· · ·

· · ·

· · ·

Fig. 4. A 2-track interval representation of the extended graph G2

– Connect each vertex qi in Q to a vertex of degree 3 in a distinct copy of K4,3.
– Connect each vertex pj in P to a distinct copy of X4: three edges from pj to the

vertex x and two neighbors of x in X4.

Denote by X4(y) the graph consisting of a vertex y and a copy of the gadget X4, where
y is connected to the vertex x and two neighbors of x in X4. Then each vertex pj and the
corresponding copy of the gadget X4 induce a subgraph X4(pj) in G2. The following
lemma shows an important property of these subgraphs.

Lemma 3. The graph X4(y) has a (2, 2) 2-track interval representation (Fig. 3). More-
over, in any 2-track interval representation of X4(y), there is a track on which the in-
terval of y is completely covered by the intervals of X4.

Since each vertex pj is connected to a distinct copy of X4, Lemma 3 implies that at
most one interval of each vertex pj is free, that is, at most one interval of pj on one
of the d tracks is available to overlap with the intervals of other vertices of P and the
vertices of Q.

We now show that the input graph G has a Hamiltonian path between v1 and vn if and
only if the extended graph G2 has a 2-track interval representation. Refer to Fig. 4. We
first prove the “only if” direction. Suppose that G has a Hamiltonian path 〈v1 . . . vn〉.
Then the edges of G̈ that are not on the Hamiltonian path form a perfect matching in G̈.
Construct a 2-track interval representation of the extended graph G2 as follows:

– Realize the path P = 〈p0p1 . . . p2n+2〉 on track 1 by consecutively overlapping
intervals. Realize the edges between Q and P also on track 1, by choosing the
interval of qi the same as the interval of p2i.
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– Realize the Hamiltonian path 〈v1 . . . vn〉 on track 1 by consecutively overlapping
intervals.

– Realize each edge vivj of G̈ that is not on the Hamiltonian path and the two edges
viqi and vjqj on track 2 by disjoint groups of four intervals.

– Realize the edge between each vertex qj in Q and the corresponding copy of K4,3
on track 2.

– Realize each subgraph X4(pj) following the pattern in Fig. 3 with y = pj such that
the one free interval of each pj is on track 1 (the path P and the edges between Q
and P are realized by these free intervals).

Note that this representation of G2 can be easily adapted to a (2, 2) 2-track interval
representation. This completes the “only if” direction of the proof.

We next prove the “if” direction. Suppose that G2 has a 2-track interval representa-
tion. We will find a Hamiltonian path between v1 and vn in G. By Lemma 3, at most one
interval of each vertex pj is free. Thus all edges of the path 〈p0p1 . . . p2n+2〉 must be
uniquely realized on the same track, say track 1, by consecutively overlapping intervals.
Then all edges between Q and P must be uniquely realized on track 1 too. Since the
interval of each vertex qi is completely covered by the three consecutively overlapping
intervals of p2i−1, p2i, and p2i+1 on track 1, the other two edges incident to qi (the edge
viqi and the edge between qi and the corresponding copy of K4,3) must be uniquely
realized on track 2.

By Lemma 2, the representation of K4,3 is continuous on each track. Since qi is
adjacent to only one vertex of K4,3, at least one endpoint of the interval of qi must be
covered by the union of the intervals of K4,3 on track 2. Similarly, since vi is adjacent
to qi but not to K4,3, at least one endpoint of the interval of vi must be covered by
the interval of qi on track 2. For each edge vivj of G, if the two intervals of vi and vj

overlap on track 2, then they must overlap only at their endpoints that are not covered
by the intervals of qi and qj . Since no three vertices of the triangle-free graph G can
have three overlapping intervals that share a common point, neither the interval of vi

nor the interval vj can overlap with the interval of a third vertex vk on track 2. That is,
for each vertex vi of G, at most one edge of G incident to vi can be realized on track 2.
Since each edge is incident to two vertices, it follows that at most n/2 edges of G can
be realized on track 2.

Recall that the cubic graph G has n vertices and 3n/2 edges, and that G̈ is obtained
from G by deleting the edge v1vn. Thus at least 3n/2 − 1 − n/2 = n − 1 edges of
G̈ must be realized on track 1, by n intervals. Then, by Lemma 1, exactly n − 1 edges
of G̈ must be realized by n continuous intervals on track 1. It follows that exactly n/2
edges of G̈ must be realized on track 2, one edge incident to each vertex vi. Thus the
n − 1 edges of G̈ realized on track 1 must include exactly two edges incident to each
vertex vi other than v1 and vn, and exactly one edge incident to each of the two special
vertices v1 and vn. A connected graph of n vertices and n− 1 edges is a tree, and a tree
of maximum degree 2 is a path. Therefore these n − 1 edges, which are realized by n
continuous intervals, form a Hamiltonian path between v1 and vn. This completes the
“if” direction of the proof.
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2.2 RDT Is NP-Hard

Given a triangle-free cubic graph G = (V, E) with the vertex set V = {v1, . . . , vn} and
an edge v1vn ∈ E, we will construct an extended graph Gd such that G has a Hamilto-
nian path between v1 and vn if and only if Gd has a d-track interval representation. We
refer back to Fig. 2. Similar to the construction of G2, the construction of Gd uses the
following subgraphs:

1. A graph G̈ obtained from G by deleting the edge v1vn;
2. An independent set Q of n vertices qi, 1 ≤ i ≤ n;
3. A path P = 〈p0p1 . . . p2n+2〉 of 2n + 3 vertices pj , 0 ≤ j ≤ 2n + 2;
4. The complete bipartite graph K2d,2d−1;
5. A gadget X2d consisting of a vertex x and 2d copies of K2d,2d−1, where x is

connected to a vertex of degree 2d − 1 in each copy of K2d,2d−1.

Note that the graph G̈, the independent set Q, and the path P here are the same as
those for the d = 2 case, but the complete bipartite graph is generalized from K4,3 to
K2d,2d−1, and the gadget is generalized from X4 to X2d.

The extended graph Gd is composed by connecting the graph G̈, the independent set
Q, d − 1 copies of the path P , n copies of the complete bipartite graph K2d,2d−1, and
(d − 1)2(2n + 3) + (d − 2)n copies of the gadget X2d as follows:

– Connect G̈ to Q by the n edges viqi, 1 ≤ i ≤ n.
– Connect Q to each of the d − 1 copies of P by 3n edges: three edges from each

vertex qi, 1 ≤ i ≤ n, to the three vertices p2i−1, p2i, and p2i+1.
– Connect each vertex qi in Q to a vertex of degree 2d − 1 in a distinct copy of

K2d,2d−1.
– Connect each vertex pj in each of the d − 1 copies of P to d − 1 distinct copies of

X2d: three edges from pj to the vertex x and two neighbors of x in each copy of
X2d.

– Connect each vertex vi in G̈ to d− 2 distinct copies of X2d: three edges from vi to
the vertex x and two neighbors of x in each copy of X2d.

Note that the graph Gd, when d = 2, is exactly the same as the graph G2 in the previous
subsection.

Denote by Xk
2d(y) the graph consisting of a vertex y and k copies of the gadget X2d,

where y is connected to the vertex x and two neighbors of x in each copy of X2d. The
extended graph Gd contains the n subgraphs Xd−2

2d (vi), 1 ≤ i ≤ n, and d− 1 copies of
each subgraph Xd−1

2d (pj), 0 ≤ j ≤ 2n+2. The following lemma generalizes Lemma 3:

Lemma 4. Let 1 ≤ k ≤ d. The graph Xk
2d(y) has a (2, . . . , 2) d-track interval repre-

sentation. Moreover, in any d-track interval representation of Xk
2d(y), there are k tracks

such that on each of the k tracks the interval of y is completely covered by the intervals
of X2d.

A consequence of Lemma 4 is that each vertex vi has at most two free intervals, and
each copy of the vertex pi has at most one free interval. Then by a similar argument as
in the d = 2 case, we can show that the input graph G has a Hamiltonian path between
v1 and vn if and only if the extended graph Gd has a d-track interval representation.
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3 Algorithm for Recognizing Depth-Two d-Interval Graphs

In this section we prove part (i) of Theorem 3. Let G = (V, E) be a graph of n vertices
and m edges. Observe that in any depth-two d-interval representation of the graph, each
edge uv corresponds to at least one pair of overlapping intervals of the two vertices u
and v: either the two intervals overlap partially, or one interval contains the other. In
either case, the intersection of the two intervals do not overlap with the other intervals.
We will use the following lemma by West [22] (see also [12]):

Lemma 5 (West, 1989 [22]). Every graph has a multiple-interval representation of
depth at most 2 in which each vertex v is represented by at most �(deg(v) + 1)/2�
unit intervals, except for an arbitrarily specified vertex w that appears left-most in the
representation and is represented by at most �(deg(w) + 1)/2� unit intervals, where
deg(v) denotes the degree of a vertex v.

We now present a polynomial-time algorithm that determines, for any d ≥ 2, either
that G is not a depth-two d-interval graph, or that G is a depth-two (d + 1)-interval
graph. We will reduce the graph recognition problem to a maximum flow problem on a
network G′ constructed from the graph G. The network G′ consists of n′ = m + n + 3
nodes: the m edges in E, the n vertices in V , the source s, the sink t, and the pre-sink
t0. These nodes are connected by m′ = 3m + n + 1 arcs:

– One arc (s, e) of capacity 2 from the source s to each edge e in E.
– Two arcs (e, u) and (e, v), each of capacity 2, from each edge e in E to its two

incident vertices u and v in V .
– One arc (v, t0) of capacity 2d from each vertex v in V to the pre-sink t0.
– One arc (t0, t) of capacity min{2m, 2dn− 1} from the pre-sink t0 to the sink t.

We refer to Fig. 5 for an example of the construction. The following two lemmas estab-
lish the relation between the graph G and the network G′:

Lemma 6. If G has a d-interval representation of depth at most 2, then G′ has a flow
of value 2m.

Proof. Consider any depth-two d-interval representation of G. Assume without loss of
generality that the 2dn endpoints of the dn intervals are all distinct (this can be achieved
by a standard procedure for interval graphs). For each edge uv, find in the representation

(a) (b) (c)
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u
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w
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w
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Fig. 5. An example of the reduction from graph recognition to maximum flow. (a) The graph G.
(b) A 2-interval representation of depth 2 for G. (c) The flow network G′.
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any pair of overlapping intervals Iu and Iv of the two vertices u and v, respectively, then
assign the two endpoints of the intersection Iu∩Iv to the edge uv. There are three cases:
if Iu ⊂ Iv , then both endpoints of Iu are assigned; if Iv ⊂ Iu, then both endpoints of Iv

are assigned; otherwise Iu and Iv properly intersect, and one endpoint of each interval
is assigned. Since the representation has depth at most 2, each edge of G is assigned
two distinct endpoints from the 2dn interval endpoints in the representation.

We now construct a flow f of value 2m in the network G′. First, for each edge e,
set f(s, e) = 2. Next, for each edge e and for each vertex v incident to e, set f(e, v)
to the number of endpoints of v assigned to e (either 0, 1 or 2). Then, for each vertex
v, set f(v, t0) =

∑
e f(e, v), where e ranges over all edges incident to v. Finally, set

f(t0, t) =
∑

v f(v, t0), which is clearly 2m. By Lemma 1, at most dn − 1 edges can
be realized by dn intervals. Thus 2m ≤ 2(dn − 1) < 2dn − 1. ��

Lemma 7. If G′ has a flow of value 2m, then G has a (d + 1)-interval representation
of depth at most 2.

Proof. Let f be a flow of value 2m in G′. Since all arc capacities are integers, we can
assume that f is integral. The flow f is maximum since the total capacity of the arcs
from the source is 2m. In particular, this implies that f(s, e) = 2 for every edge e.
Obtain a partition E = E1 ∪ E2 of the edges such that each edge e = uv belongs to
E1 if f(e, u) = f(e, v) = 1, and belongs to E2 otherwise. For each vertex v, let d2(v)
be the number of edges e incident to v such that f(e, v) = 2. Then

∑
v d2(v) = |E2|.

To construct a (d + 1)-interval representation of depth at most 2 of the graph G, we
will first use d − d2(v) intervals for each vertex v to realize the edges in E1, then use
1 + d2(v) intervals for each vertex v to realize the edges in E2.

We first consider the edges in E1. Since the capacity of each arc (v, t0) is 2d, we have
f(v, t0) ≤ 2d for each vertex v. Thus each vertex v is incident to at most 2d − 2d2(v)
edges in E1. Moreover, since the capacity min{2m, 2dn − 1} of the arc (t0, t) is less
than the total capacity 2dn of the n arcs (v, t0), at least one vertex, say w, must have
f(w, t0) ≤ 2d − 1. Thus w is incident to at most 2d − 1 − 2d2(w) edges in E1. Note
that

�(2d− 2d2(v) + 1)/2� = d− d2(v) and �(2d− 1− 2d2(w) + 1)/2� = d− d2(w).

Thus, by Lemma 5, the subgraph G1 = (V, E1) has a multiple-interval representation
of depth at most 2 in which each vertex v is represented by at most d − d2(v) in-
tervals. Add dummy intervals until each vertex v is represented by exactly d − d2(v)
intervals.

We next consider the edges in E2. Add n disjoint long intervals to the representation,
one for each vertex. Then, for each edge e incident to a vertex v such that f(e, v) = 2,
add a short interval Iv for v to the representation such that Iv is contained in the long
interval of the other vertex of e, and does not intersect any other intervals. Thus, using
one long interval and d2(v) short intervals for each vertex v, all edges in E2 are realized.
Altogether, we have exactly d− d2(v) + 1 + d2(v) = d + 1 intervals for each vertex v
in the representation. ��
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Abstract. Distributed dining philosophers is regarded as one of the
most representative resource allocation problems. Many strategies are
employed for avoiding deadlock and starvation, the two well-known prob-
lems in Distributed Dining Philosophers Problem(DDPP). In this paper,
the formal semantics of DDPP are originally proposed by using cate-
gory theory based on the Chandy-Mirsa’s acyclic directed graph strat-
egy. The goal is to demonstrate how category theory is used in precisely
defining categorical semantics and diagrammatically describing philoso-
phers’ priority, states-transition, and composition of processes, rather
than to design a new algorithm to solve the DDPP. Compared with
other formal techniques, category theory not only provides a good math-
ematical structure for formalizing different relationships and interactions
at different abstract levels, but also its diagrammatical representation
strengthens the traceability and understandability of philosophers’ pri-
ority and states-transformation; additionally, its universal constructions
(like colimit) offer the ability to manipulate and reason about system
configuration.
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1 Introduction

The resource allocation problem is generally considered as the fundamental prob-
lem in distributed systems. Dining philosophers is a one of the most typical
distributed resource allocation problems. In 1965, Edsger Dijkstra set an exam-
ination question on a synchronization problem where five computers competed
for access to five shared tape drive peripherals. Soon the problem was retold by
Tony Hoare as the Dining Philosophers Problem (DPP).

The Classical Dining Philosophers Problem(CDPP) was originally in-
troduced for a ring topology by Dijkstra [1]. Five philosophers are sitting around
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a circular table. Each philosopher has his own place, a single fork between each
pair of adjacent philosophers. Any philosopher may decide to eat at any time
and requires both of his forks to do so. The Distributed Dining Philoso-
phers Problem(DDPP)[2], also called as the general philosophers problem,
states there are n symmetrical philosophers (with identical protocols) contend-
ing for access to m resources. Each philosopher requires a fixed subset of the
resources and has to acquire all required resources for the philosopher to per-
form its task (such as eating), and every resource could be allocated to at most
one philosopher at a time. The CDPP is a special case of DDPP.

Deadlock and starvation are the most serious phenomena, which should be
avoided in tackling the resource allocation problem. Deadlock occurs when two
or more processes in a system are blocked forever, because of requirements that
can never be satisfied. Starvation happens when one or more processes can
never use resources.

Theretofore, several attempts have been made to find a satisfactory solution
to the dining philosophers problem in a distributed environment. The queue of
waiting neighbors [3],[4] and token-passing scheme are general approaches to
avoid deadlock and starvation, but result in “strict mutual exclusion problem”.
Probabilistic algorithm with fairness [5] and one without fairness [6] can also
be used, but it’s difficult to verify the correctness. Formal models (e.g. STOCS
[7], SPANNER [8]) and automated verification tools (e.g. ARC [9], PVS [10])
are also applied to solve this problem. A famous solution for DDPP is based
on an acyclic directed graph technique which was firstly presented by K. M.
Chandy and J. Misra [11]. This strategy can be efficiently guarantee safety, live-
ness and fairness of dining philosophers problem as well as drinking philosophers
problem.

However, there still is no effective methodology to defining the formal se-
mantics of DDPP by using category theory. The motivation of this paper is
not to propose new algorithm to solve the DDPP, but to illustrate how cate-
gory theory is used in describing formal semantics of a particular solution of
DDPP, which based upon the Chandy-Misra’s acyclic directed graph strategy
[11]. The diagrammatical representation and powerful expressive ability of cat-
egory theory make it easier to clarify the traceability and understandability of
DDPP.

The rest of this paper is organized as follows. Section 2 reviews some proper-
ties of DDPP and foundational definitions of category theory; Chandy-Misra’s
solution to DDPP is briefly presented in Section 3; The next Section detailedly
demonstrates the categorial semantics of DDPP from four different levels; con-
cluding remarks and future works are finally discussed in Section 5.

2 Background Knowledge

2.1 Properties of DDPP

Each philosopher has 3 phases: thinking, hungry, and eating. Associated with a
philosopher process i is a variable “i.phase” that takes on variable “t, h, e”.
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(1)Thinking: The process does not require any resource. We employ a boolean
variable i.t ≡ (i.phase = t). A process spontaneously makes transition from
thinking to hungry phase in finite time.

(2)Hungry: The process requires all resources adjacent to it. We employ a
boolean variable i.h ≡ (i.phase = h).

(3)Eating: When all resources required by a process are acquired, its phase
is changed to eating. We employ a boolean variable i.e ≡ (i.phase = e).
A solution to DDPP guarantees each philosopher is eventually able to enter
its critical section and access its needed resources with satisfying the following
properties:
Safety: Neighbors never eat simultaneously.
Progress/Liveness: Every hungry process eventually eats.
The safety property is weaker than “strict mutual exclusion”, which doesn’t allow
two processes in the system, no matter how far apart, to enter the critical section
simultaneously. Here, only two adjacent neighbors can’t eat at the same time;
we permit the non-neighbors to eat simultaneously. The deadlock and starvation
can be avoided if the system meet the restriction of progress.

2.2 Category Theory

As a relatively young branch of mathematics, category theory, which is a formal
tool similar to set theory, is designed to demonstrate various structural con-
cepts of different fields in a uniform way. In recent years, several researchers
indicated that category theory can be used for formalizing many aspects in
computer science, especially software engineering, including the design and im-
plementation of programming languages[12],[13], models of concurrency[14],[15]
type theory[16],[17], specification language[18], automata theory[19],[20], archi-
tecture[21],[22], and syntax and semantic model [23],[24].

Some fundamental definitions [25],[26] needed in the rest of paper are given.
Definition 1. Category
A category C is given by a collection C0 of objects and a collection C1 of mor-
phisms which have the following structure.

– Each morphism in C1 has a domain and a codomain , which are objects in
C0; one writes f : X → Y if X is the domain of the morphism f , and Y its
codomain. One also writes X = dom(f) and Y = cod(f);

– Given two morphisms f : X → Y and g : Y → Z such that cod(f) = dom(g),
the composition of f and g, written g ◦ f : X → Z (called the composition
law), is defined and has domain dom(f) and codomain cod(g);

– Composition is associative, that is: given f : X → Y , g : Y → Z and
h : Z → W , h ◦ (g ◦ f) = (h ◦ g) ◦ f (called the associative law);

– For every object X there is an identity morphism idX : X → X , satisfying
idX ◦ g = g for every g : Y → X and f ◦ idX = f for every f : X → Y (called
the identity law).
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Definition 2. Graph homomorphism
Let G and H be graphs. A homomorphism of graphs ϕ : G → H is a pair of maps
ϕ0 : G0 → H0 and ϕ1 : G1 → H1 such that for each arrow f : x → y of G we
have ϕ1(f) : ϕ0(x) → ϕ0(y) in H.
Definition 3. Diagram
Let C be a category and I a graph. A diagram in C with shape I is a graph
homomorphism δ : I → graph(C).
Definition 4. Commutative Diagrams
Let C be a category, its diagram D is said to commute iff, for every pair x,y of
nodes and every pair of paths W = U1, U2, ..., Um, W ′ = V1, V2, ..., Vn from x to
y in diagram D,

Um ◦ Um−1 ◦ ... ◦ U1 = Vn ◦ Vn−1 ◦ ... ◦ V1
holds in category C.
Definition 5. Colimit
Let δ : I → graph(C) be a diagram in category C. A colimit of δ is a commutative
cocone p : δ → z such that, for every other commutative cocone p′ : δ′ → z′,
there is a unique morphism f : z → z′ such that f ◦ p = p′.

Remark 1. Colimit is a generalization of other universal constructions, which
includes initial object, sum(coproduct), pushout and coequalizer.

3 Acyclic Graphic Solution of DDPP

In this section, we briefly present Chandy-Mirsa’s acyclic directed graph tech-
nique for solving the DDPP. Firstly, DDPP with n symmetrical philosophers and
m resources could be represented by a static, finite and undirected graph G
with n nodes and m edges [27]. The nodes of G represent philosophers, and the
edge between node i and node j is denoted by (i, j), is equivalently by (j, i), which
means philosopher i and philosopher j shares a resource. For convenience, the
graph can also be represented by the constant integer matrix E with n rows
and n columns, where E(i, j) = 1 holds if and only if there is an edge between i
and j in graph G, otherwise E(i, j) = 0. Since G is undirected, E(i, j) = E(j, i).
There is no edge in G from a node to itself, E(i, i) = 0, for all node.
Example: As the picture (a) in Fig. 1 illustrated, a DDPP with 5 philosophers
and 7 resources could be described by graph G and integer matrix E.
Deadlock, firstly recognized and analyzed in 1968 by E. W. Dijkstra [32], who
termed it as deadly embrace, can cause an indefinite circular wait among some
processes. The solution of deadlock requires the selection of one process -“the
winner”- from a set of conflicting processes by imposing an asymmetry on pro-
cesses that express the different precedence. The priority between pairs of poten-
tially conflicting processes could be depicted by a directed graph H , obtained
from its homomorphism graph G by giving the directions to edges in G as fol-
lows: An edge in H is directed from the process with greater priority toward
the process with lesser priority. Besides the direction of edges, the priority can
also be represented by the dynamic integer matrix Pr with n rows and n
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Pr0= 

0  1  0  1  1

1  0  2  2  0

0  2  0  4  0

1  2  4  0  5

1  0  0  5  0

1

542

3

H0

1

542

3

E= 

0  1  0  1  1

1  0  1  1  0

0  1  0  1  0

1  1  1  0  1

1  0  0  1  0

(a) Adjacenct Graph of DDPP (b) Initial State of DDPP

Fig. 1. Graphic Description of DDPP

columns, where Pr(i, j) = i if and only if the edge is directed from i to j in
graph H , we also say i has priority over j. Of course, Pr(i, j) = Pr(j, i).

Meanwhile, we assume that the DDPP’s initial state is described as an acyclic
directed Graph H0 and the initial matrix Pr0 in the picture (b) of Fig. 1.
The next states of DDPP are Hi (i > 0).

Some models of concurrency involve synchronousmessage passing (e.g. CCS[28]
and CSP[29]), and some utilize temporal logic languages (e.g. Tempura[30] and
PTL[31]) with shared variables to tackle communication between concurrent pro-
cesses. The following conditions and theorems are depicted by using UNITY tem-
poral logic [27].

When a hungry philosopher i intends to enter the eating state, the relative
parameters must satisfy the following eating condition.
Condition 1. (Enter-Eating)

i.h ∧ (∀j :: Pr(i, j) = i ∨ Pr(i, j) = 0)

Theorem 1. (Safety) Neighbors never eat simultaneously.

¬(i.e ∧ j.e ∧ E(i, j) = 1) Invariant 1

Proof. We assume philosopher i and philosopher j share a resource, so they are
neighbors. If philosopher i satisfies Condition 1, therefore philosopher i can eat.
Because Pr(i, j) = Pr(j, i) = i, so philosopher j doesn’t satisfy Condition 1,
hence, philosopher j can’t eat.

The direction from i to j doesn’t change until i eats, or, equivalently, a philoso-
pher yields its priority to all its neighbors only when it eats, which satisfy the
following rule.
Transformation Rule

i.e ∧ E(i, j) = 1 ⇒ Pr(i, j) = j ∧ Pr(j, i) = j

Deadlock should satisfy the next Condition.
Condition 2 (Deadlock). There is a cycle in graph Hi, where i ≥ 0.
Theorem 2 (Free-Deadlock). If the initial state of DDPP H0 is acyclic, there
is no deadlock in the following states of DDPP, because the next state of DDPP
Hi (i > 0) remains acyclic.
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Hi (i ≥ 0) is acyclic. Invariant 2

Proof. The initial graph H0 is acyclic, the transformation rule ensures the
acyclicity of Hi (i > 0), because of a eating philosopher with all of its edges
are directed towards to itself, therefore, there is no circle in graph Hi (i > 0).
Theorem 3 (Free-Starvation/Progress). Every hungry philosopher eventu-
ally eats.
Proof. A philosopher yields its priority to all its neighbors only when it eats
(Transformation Rule). Consequently, an eaten philosopher doesn’t eat once
again until that all its neighbors have finished last-time-eating. Hence, it eats
again when it acquires all the requested resources, just after the other neighbors
yield priority to this eaten philosopher.
Theorem 4 (Fairness). Every philosopher has the same opportunity to eat.
The ratio of eating for philosopher i and philosopher j is 1 : 1.
Proof. The fairness is can be deduced from Theorem 3.

4 Categorial Semantics of Distributed Dining
Philosophers Problem

Based upon the above solution, we originally present the formal semantics of
DDPP using category theory in this section.

4.1 Signature

There are three phases for every philosopher. The transformations of phases also
cover three actions: from thinking to hungry, from hungry to eating, and from
eating to thinking. The signature of philosopher is defined according to its phases
and transformations.
Definition 6. Signature of Philosopher
The philosopher signature is duple γ = {Δ, Θ}, where:

• Δ is a set of all the phases of philosophers, Δ = {t, h, e};
• Θ is a set of action, each action represents a transformation between two

phases, Θ = {i.e 	→ i.t, i.t 	→ i.h, i.h 	→ i.e}.
According to the undirected graph G given in the Sect. 3, we could define the

signature category of DDPP.
Definition 7. Signature of DDPP
The DDPP’s signature is duple Σ = {Υ, Ω}, where:

• Υ is a set of all the nodes in G, each node represents a philosopher γ;
• Ω is a set of all edges in G, each edge represents the neighbor relationship

between two different philosophers.

4.2 Categorial Semantics of Philosopher

The phase category P could be defined based on the signature of philosopher
and Condition 1(in Sect. 3).
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Definition 8. Category: Phases of Philospher P = (Δ, Γ )
The phase category P (see Fig. 2) includes a set Δ and a collection of three
guarded morphisms and three identity morphisms Γ = {f1, f2, f3, idt, ide, idh}.
For every object i in Δ, there is an identity morphism idi : i → i, which means
the current phase of philosopher preserve unchanged. f1, f2, and f3 separately
represent three actions in Θ of philosopher’s signature. These guarded morphisms
are described by using the following form: (ς � f : x → y), where ς is the
condition of morphism f : x → y. Therefore, f1, f2, f3 is defined as follows.

(1) Finished� f1 : e → t (Finished is a signal on the completion of eating.)
(2) Request� f2 : t → h (Request is a signal denotes asking for resources.)
(3) Condition 1� f3 : h → e
• Given two morphisms fx : i → j and fy : j → k such that dom(fy) =

cod(fx). The composition of fx and fy, has three different kinds, which are
written as f2 ◦ f1 : e → h; f3 ◦ f2 : t → e and f1 ◦ f3 : h → t;

• Composition is associative, that is: given f1 : e → t, f2 : t → h, and
f3 : h → e, then f3 ◦ (f2 ◦ f1) = (f3 ◦ f2) ◦ f1;

• Each identity morphism idi : i → i satisfies idi◦f∗ = f∗ for every f∗ : j → i,
and f ′

∗ ◦ idi = f ′
∗ for every f ′

∗ : i → j.
Our solution does not deny the possibility of simultaneous eating for non-

neighbors in terms of Condition 1 and Theorem 1.
Definition 9. Parallel Philosophers x ‖ y
Pk(Γ ) = {f1, f2, f3} represents a set of three transformed morphisms between
two phases of philosopher k, where f1, f2, and f3 is defined in Definition 8.

Given the precondition fi ∈ Px(Γ ) ∧ gj ∈ Py(Γ ) where (1 ≤ i, j ≤ 3) , the
parallel operation fi ‖ gj means the action fi and gj can simultaneously take
place. Hence, the parallel relationship between philosopher x and philosopher y
can be divided into two cases.
Case 1: If philosopher x and philosopher y do not have common resource
(E(x, y) = 0), all three actions/morphisms fi (1 ≤ i ≤ 3) and gj (1 ≤ j ≤ 3)
can synchronously happen at the some time.

x ‖ y = (∀i, j : 1 ≤ i ≤ 3 ∧ 1 ≤ j ≤ 3 : fi ‖ gj))
Case 2: If philosopher x and philosopher y have common resource (E(x, y) = 1),
except the 3rd action/morphism f3 : h → e and g3 : h → e, the other situations
can synchronously happen at the some time.

x ‖ y = ((∀i, j : 1 ≤ i ≤ 3 ∧ 1 ≤ j ≤ 2 : fi ‖ gj) ∧ (∀i, j : 1 ≤ i ≤ 2 ∧ 1 ≤ j ≤
3 : fi ‖ gj) ∧ ((f3 ◦ g3) ∨ (g3 ◦ f3)))

t

heide idh

idt

f1 f2

f3

Fig. 2. Graph of Category P
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where (f3 ◦ g3) indicates that philosopher y eats before philosopher x eats if
Pr(x, y) = y; and vice versa.

4.3 Categorial Semantics of State

A state of DDPP shows the priority of philosophers at any time, and the state
changes only as some philosophers enter into the eating phase. The state category
C could be defined based on precedence graph H .
Definition 10. Category: State of DDPP C = (Υ, Φ)
The state category C is composed of Υ in Definition 7, each object represents a
philosopher γ; and a morphism collection Φ, where for every morphism f : i →
j ∈ Φ (i, j ∈ Υ ∧ i �= j) means that philosopher i has priority over j, and for
every object i in Υ ,there is an identity morphism idi : i → i, which indicates
that the priority of i is equivalent to the priority of i.

• Given two morphisms f : i → j and g : j → k such that dom(g) =
cod(f). The composition of f and g, written g ◦ f : i → k, is defined and has
domain dom(f) and codomain cod(g). The composition means the priorities of
philosophers are transitive;

• Composition is associative, that is, given f : i → j, g : j → k, and
h : k → w, then h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

• Each identity morphism idi : i → i satisfies idi ◦ g = g for every g : j → i,
and f ◦ idi = f for every f : i → j.

Category theory supports the diagrammatic representation which visualizes
the relationships between concepts. It is possible to use diagrams to express and
reason about properties in a formal way.

1

542

3

id1

id2

id3

id4

id5

f12

f23
f43

f24

f14

f54

f15

Fig. 3. Graph of Category CH0

Example: The graph of a category CH0 is given in Fig. 3. The diagram of a
category CH0 and its graph H0 is a graph homomorphism δ : CH0 → H0.

4.4 Categorial Semantics of States-Transition

The initial state H0 can be depicted by a category CH0 . Now, let’s continue to
analyze the possible following states with an assumption that all the philoso-
phers are hungry and want to require their resources. Obviously, the category
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H1b

1

542

3
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Fig. 4. States-Transition of DDPP (H1a and H1b are two other states after H0)

CH0 is only changed as soon as the 1st philosopher begin eating. As demon-
strated in the Fig. 4, the next state is H1. Then, the 2nd philosopher and the
5th philosopher will eat simultaneously because they are not neighbors. After
acquiring the four resources, the 4th philosopher can eat in state H2, and result
in state H3. Finally, the state H3 will be return to state H0.

The two other different states (see Fig. 4) after H1 take place after state H0:
Case 1: If the 2nd philosopher is hungry, and the 5th philosopher is thinking,
the next state is H1a.
Case 2: If the 2nd philosopher is thinking, and the 5th philosopher is hungry,
the next state is H1b.

Therefore, the states-transition can be formally defined as a category T.
Definition 11. Category: States-Transition of DDPP T = (C, Ψ)
A category DDPP-Change is composed of two collections:

• C is the collection of all state categories Ci in DDPP, each object represents
a state category of DDPP;

• Ψ is the collection of morphisms, each morphism ψ : Ci → Cj(i �= j) rep-
resents the convert from a state Ci to another state Cj after some philosophers
enter into eating, and for every object Ci in C, there is an identity morphism
idCi : Ci → Ci, which means that the current state Ci of DDPP preserve un-
changed.

H1a

H2H0 H1

H1b

H3

f01 f12 f23

g1
g2

k1 k2

f30

id1a

id1b

id2
id1

id0 id3

Fig. 5. Graph of Category T
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It’s easy to verify the correctness of composition law, associative law and
identity law in above category T = (C, Ψ). The graph of category T is illustrated
in the Fig. 5, where states collection C = {H0, H1, H1a, H1b, H2, H3}; and mor-
phisms collection Ψ = {f01, f12, f23, f30, g1, g2, k1, k2, id0, id1, id2, id3, id1a, id1b}.
Theorem 5. The diagram of category States-Transition T is commutative.
The commutative property of a diagram helps to establish a set of equalities
between morphisms. Hence, diagrams and commutativity provide us with the
ability of doing equational reasoning in a visual form.
Example: In Fig. 5, there are three different paths from H1 to H2. We can get
the equation:

g2 ◦ g1 = f12 = k2 ◦ k1

4.5 Categorial Semantics of System

The system of DDPP consists of some process: philosopher’s processes Phi (1 ≤
i ≤ n) and environmental process En. Each process Phi has its own private
signature γ = (Δ, Θ). The matrixes E and Pr, which belong to the process
En, can be accessed by all process Phi. Category theory provides the level
of mathematical abstraction to describe software architectures, we define the
category of processes’ composition S.
Definition 12. Category: Composition of Processes S = (Ξ,

⊕
)

A category S is composed of two collections:
• Ξ is the collection of all processes Ξ = {Ph1, Ph2, ..., Phn, En} in DDPP,

each object represents a process of DDPP;
•
⊕

is the collection of morphisms between two different processes. The
access morphism (μ : En → Phi) means that the matrix E can be read from
process En to process Phi, and matrix Pr can be read and rewritten by process
Phi. The compose morphism (ν : Phi → (Phi � Ph∗)) or (ν : Phi → (Ph∗ �
Phi)) indicates that process Phi is part of the compositive components (Phi �
Ph∗) or (Ph∗ � Phi).

• For every object Pi in Ξ there is an identity morphism idPi : Pi → Pi,
which means that the process is not combined with other processes, satisfying
idPi ◦ g = g for every g : Pj → Pi and f ◦ idPi = f for every f : Pi → Pj .

It’s easier to proof the correctness of composition law and associative law. One
of the characteristics of universal constructions (like pushout and colimit) is the

En

Ph1
Ph2

Ph1^Ph2

En

Ph3

Ph1^ Ph2^ Ph3

En

Ph1 Ph2

Ph1^Ph2

En

Ph1
Ph2

Ph1^Ph2

En

Ph3

Ph1^ Ph2^ Ph3

(a) Composition1 (b) Composition2 (c) Composition2

Fig. 6. Composition of Processes
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δa

s s'f

p'a

pa

Fig. 7. Colimit of Diagram δ in category S

ability to capture the collective behaviors of systems of interconnected compo-
nents. Two processes Ph1 and Ph2 can be integrated into combined component
Ph1 � Ph2 by using pushout operation (See the picture (a) in Fig. 6). As the
pictures (b) and (c) elaborated, two different approaches about composing three
processes Ph1, Ph2 and Ph3 could be expressed by employing the two pushout
operations, such that Composition2 is equivalent to Composition3.

In DDPP, we can get a entire-system after using the pushout operation
for n − 1 times. Different systems could be gained through different orders of
composition. Each system will be considered as a colimit of the diagram of the
category S.
Definition 13. Colimit of System
Let δ : I → graph(S) be a diagram in category S. A colimit of δ is a commutative
cocone p : δ → s, where s is one of the composition of all processes, such that,
for every other entire-system s′ and its commutative cocone p′ : δ′ → s′, there
is a unique morphism f : s → s′ such that f ◦ p = p′ (see the Fig. 7).
Theorem 6. Every entire-system si and its commutative cocone p : δ → si is a
colimit of δ : I → graph(S).

5 Conclusions and Future Works

In this paper, we have shown how concepts and semantics of a particular model
about DDPP can be formalized in a categorial framework. The purpose is to
emphasize the strengths of category theory – its simple theory, diagrammatical
representation and its expressive power in representing concepts of computer
science. In contrast to other formal models of dining philosophers problem, the
perceived benefits of our categorial formalization are as follows:

Firstly, category theory is advocated as a good mathematical structure for for-
malize different relationships and interactions precisely because the morphisms
can be regarded as structure-preserving mappings. In our paper, we define four
categories from four different levels: phases of philosophers, priority of philoso-
phers, state-transitions and system’s integration. Each category has its own ob-
jects and morphisms, which provide an formal way to express the relationships
between objects.

Secondly, a distinctive attribute of category theory as a mathematical for-
malization is that it is essentially graphical [26]. The diagrammatical nature
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of category theory certainly not only help to express and reason about some
properties of DDPP in a formal way, but also enhance the traceability and un-
derstandability the solution of DDPP.

Additionally, category theory offers techniques for manipulating and reason-
ing about system configuration represented as the colimit of a diagrams, which
could express how a system is configured in term of several simpler components
(philosopher’s processes and environmental process) and interconnections be-
tween them. Hence, we can get a model of the global behaviors of the system
and the morphisms that relate the processes to the global system.

We will continue our research on the other distributed resource allocation
problems (such as committee coordination problem [27] and dynamic resources
allocation problem [33]), which will deeply explain the superiority, efficiency and
dependability of categorial formalization.

Acknowledgments. The authors thanks Professor José Luiz Fiadeiro for de-
tailed comments and discussion about this work.
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Abstract. We consider the Capacitated Domination problem, which
models a service-requirement assignment scenario and is a generaliza-
tion to the well-known Dominating Set problem. In this problem, given a
graph with three parameters defined on each vertex, namely cost, capac-
ity, and demand, we want to find an assignment of demands to vertices
of least cost such that the demand of each vertex is satisfied subject to
the capacity constraint of each vertex providing the service.

In terms of polynomial time approximations, we present logarithmic
approximation algorithms with respect to different demand assignment
models on general graphs. On the other hand, from the perspective of
parameterization, we prove that this problem is W[1]-hard when pa-
rameterized by a structure of the graph called treewidth. Based on this
hardness result, we present exact fixed-parameter tractable algorithms
with respect to treewidth and maximum capacity of the vertices. This
algorithm is further extended to obtain pseudo-polynomial time approx-
imation schemes for planar graphs.

1 Introduction

For decades, Dominating Set problem has been one of the most fundamental
and well-known problems in both graph theory and combinatorial optimization.
Given a graph G = (V, E) and an integer k, Dominating Set asks for a subset
D ⊆ V whose cardinality does not exceed k such that every vertex in the graph
either belongs to this set or has a neighbor which does. As this problem is known
to be NP-hard, approximation algorithms have been proposed in the literature.
On one hand, a simple greedy algorithm is shown to achieve a guaranteed ratio
of O(ln n) [5,17,22], where n is the number of vertices, which is later proven to be
the approximation threshold by Feige [9]. On the other hand, algorithms based
on dual-fitting provide a guaranteed ratio of Δ [15], where Δ is the maximum
degree of the vertices of the graph.

In addition to polynomial time approximations, Dominating Set has its spe-
cial place from the perspective of parameterized complexity as well [8,10,23]. In
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contrast to Vertex Cover, which is fixed-parameter tractable (FPT), Dominating
Set has been proven to be W[2]-complete when parameterized by solution size,
in the sense that no fixed-parameter algorithm exists (with respect to solution
size) unless FPT=W[2]. Though Dominating Set is a fundamentally hard prob-
lem in the parameterized W -hierarchy, it has been used as a benchmark problem
for developing sub-exponential time parameterized algorithms [1,6,11] and linear
size kernels have been obtained in planar graphs [2,10,12,23], and more generally,
in graphs that exclude a fixed graph H as a minor.

Besides Dominating Set problem itself, a vast body of work has been proposed
in the literature, considering possible variations from purely theoretical aspects
to practical applications. In particular, variations of Dominating Set problem,
ranging from strategic decisions, such as locating radar stations or emergency
services, to computational biology and to voting systems, occur in numerous
practical settings. See [14,24] for a detailed survey. For example, Haynes et al.
[13] considered Power Domination Problem in electric networks [13,21] while
Wan et al. [25] considered Connected Domination Problem in wireless ad hoc
networks.

Motivated by a general service-requirement assignment model, Kao et al., [19]
considered a generalized domination problem called Capacitated Domination. In
this problem, the input graph is given with tri-weighted vertices, referred to as
cost, capacity, and demand, respectively. The demand of a vertex stands for the
amount of service it requires from its adjacent vertices (including itself) while
the capacity of a vertex represents the amount of service it can provide when it’s
selected as a server. The goal of this problem is to find a dominating multi-set
as well as a demand assignment function such that the overall cost of the multi-
set is minimized. For different underlying applications, there are two different
demand assignment models, namely splittable demand model and unsplittable
demand model, depending on whether or not the demand of a vertex is allowed
to be served by different vertices. Moreover, depending whether the number of
copies, or multiplicity of each vertex in the dominating multi-set, is limited, there
are different models, which we referred to as hard capacity and as soft capacity.

Kao et al., [19] considered the problem with soft capacity and splittable de-
mand model and provided a (Δ + 1)-approximation for general graphs, where
Δ is the degree of the graph. They proved that the problem remains NP-hard
even when the input graph is restricted to a tree, for which they also presented
a polynomial time approximation scheme. Dom et al., [7] considered the hard
capacitated domination problem with uniform demand and showed that this
problem is W[1]-hard even when parameterized by treewidth and solution size.

Our contribution. In this paper, we consider the (soft) Capacitated Domina-
tion problem and present logarithmic approximation algorithms with respect
to different demand assignment models on general graphs. Specifically, we pro-
vide a (ln n)-approximation for weighted unsplittable demand model, a (4 lnn+
2)-approximation for weighted splittable demand model, and a (2 lnn + 1)-
approximation for unweighted splittable demand model, where n is the number
of vertices. Together with the (Δ + 1)-approximation result given by Kao et al.,
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[19], this establishes a corresponding near-optimal approximation result to the
original Dominating Set problem and closes the problem of generally approxi-
mating this problem. Although the result may look natural, the greedy choice we
make is not obvious when non-uniform capacity as well as non-uniform demand
is taken into consideration. On the other hand, from the perspective of param-
eterization, we prove that this problem is W[1]-hard when parameterized by a
structure of the graph, called the treewidth, and present exact FPT algorithms
with respect to both treewidth and maximum capacity of the vertices. This al-
gorithm is further extended to obtain pseudo-polynomial time approximation
schemes for planar graphs, based on a framework due to Baker [3].

The rest of this paper is organized as follows. In Section 2, we give formal
definitions and notation adopted in the paper. In Section 3, we present our ideas
and algorithms that achieve the aforementioned approximation guarantees. We
present the parameterized results in Section 4 and conclude by listing some
future work in Section 5. Note that most proofs as well as detailed algorithm
pseudo-codes are omitted due to the space limit and can be found in the full
version of this work [18].

2 Preliminary

We assume that all the graphs considered in this paper are simple and undirected.
Let G = (V, E) be a graph. The set of neighbors of a vertex v ∈ V is denoted
by NG(v) = {u : (u, v) ∈ E}. The closed neighborhood of v ∈ V is denoted by
NG[v] = NG(v) ∪ {v}. The subscript G in NG[v] will be omitted when there is
no confusion.

Consider a graph G = (V, E) with tri-weighted vertices, referred to as the
cost, the capacity, and the demand of each vertex u ∈ V , denoted by w(u), c(u),
and d(u), respectively. Let D denote a multi-set of vertices of V and for any
vertex u ∈ V , let xD(u) denote the multiplicity of u or the number of times of u
in D. The cost of D, denoted w(D), is defined to be w(D) =

∑
u∈D w(u) ·xD(u).

Definition 1 (Capacitated Dominating Set). A vertex multi-subset D is
said to be a feasible capacitated dominating set with respect to a demand assign-
ment function f if the following conditions hold.

– Demand constraint:
∑

u∈NG[v] f(v, u) ≥ d(v), for each v ∈ V .
– Capacity constraint:

∑
u∈NG[v] f(u, v) ≤ c(v) · xD(v), for each v ∈ V .

Given a problem instance, the capacitated domination problem asks for a ca-
pacitated dominating multi-set D and demand assignment function f such that
w(D) is minimized. For unsplittable demand model we require that f(u, v) is
either 0 or d(u) for each edge (u, v) ∈ E. Note that since it is already NP-
hard1 to compute a feasible demand assignment function from a given feasible
capacitated dominating multi-set when the demand cannot be split, it is natural

1 This can be verified by making a reduction from Subset Sum.
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to require the demand assignment function to be specified, in addition to the
optimal vertex multi-set itself.

Parameterized complexity is a well-developed framework for studying the com-
putationally hard problem [8,10,23]. A problem is called fixed-parameter tractable
(FPT) with respect to a parameter k if it can be solved in time f(k)·nO(1), where
f is a computable function depending only on k. Problems (along with its defin-
ing parameters) belonging to W[t]-hard for any t ≥ 1 are believed not to admit
any FPT algorithms (with respect to the specified parameters). Now we define
the notion of parameterized reduction.

Definition 2. Let A and B be two parameterized problems. We say that A re-
duces to B by a standard parameterized reduction if there exists an algorithm
Φ that transforms (x, k) into (x′, g(k)) in time f(k) · |x|α, where f, g : N → N
are arbitrary functions and α is a constant independent of |x| and k, such that
(x, k) ∈ A if and only if (x′, g(k)) ∈ B.

Next we define the concept of tree decomposition [4,20].

Definition 3 (Tree Decomposition of a Graph). A tree decomposition of a
graph G = (V, E) is a pair (X = {Xi : i ∈ I} , T = (I, F )) where each node i ∈ I
has associated with it a subset of vertices Xi ⊆ V , called the bag of i, such that

1. Each vertex belongs to at least one bag:
⋃

i∈I Xi = V .
2. For all edges, there is a bag containing both its end-points.
3. For each v ∈ V , the set of nodes {i ∈ I : v ∈ Xi} induces a subtree of T .

The width of a tree decomposition is maxi∈I |Xi|. The treewidth of a graph G
is the minimum width over all tree decompositions of G.

3 Logarithmic Approximation

In this section, we present logarithmic approximation algorithms for capaci-
tated domination problems with respect to different cost and demand models.
Specifically, we provide a (ln n)-approximation for weighted unsplittable demand
model, a (4 ln n + 2)-approximation for weighted splittable demand model, and
a (2 lnn + 1)-approximation for unweighted splittable demand model, where n
is the number of vertices.

The main idea is based on greedy approach in the sense that we keep choosing
a vertex with the best efficiency in each iteration until the whole graph is domi-
nated. By best efficiency we mean the maximum cost-efficiency ratio defined for
each vertex in the remaining graph. We describe the results in more detail in
the following subsections.

3.1 Weighted Unsplittable Demand

Let U be the set of vertices which are not dominated yet. Initially, we have
U = V . For each vertex u ∈ V , let Nud[u] = U ∩N [u] be the set of undominated
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vertices in the closed neighborhood of u. Without loss of generality, we shall
assume that the elements of Nud[u], denoted by vu,1, vu,2, . . . , vu,|Nud[u]|, are
sorted in non-decreasing order of their demands in the remaining section.

In each iteration, the algorithm chooses a vertex of the most efficiency from
V , where the efficiency of a vertex, say u, is defined by the largest effective-
cost ratio of the number of vertices dominated by u over the total cost. That
is, max1≤i≤|Nud[u]| i/ (w(u) · xu(i)), where xu(i) =

⌈∑
1≤j≤i d(vu,j)/c(u)

⌉
is the

number of copies of u selected in order to dominate vu,1, vu,2, . . . , and vu,i.
In iteration j, let OPTj be the cost of the optimal solution for the remaining

problem instance, which is clearly upper bounded by the cost, OPT , of the
optimal solution for the input instance. Let the number of undominated vertices
at the beginning of iteration j be nj, and the number of vertices that are newly
dominated in iteration j be kj .

Denote by Sj the cost in iteration j. Note that Sj = w(u) · xu(kj), where
u is the most efficient vertex chosen in iteration j. Assume that the algorithm
repeats for m iterations.

Lemma 1. For each j, 1 ≤ j ≤ m, we have Sj ≤ kj

nj
· OPTj.

Theorem 1. A (ln n)-approximation for weighted capacitated domination prob-
lem with unsplittable demands can be computed in polynomial time, where n is
the number of vertices.

3.2 Weighted Splittable Demand

In this section, we present an algorithm that produces a (4 ln n+2)-approximation
for the weighted capacitated domination problem with splittable demand. The dif-
ference between this algorithm and the previous one lies in the way we handle
the demand assignment. In each iteration the demand of a vertex may be par-
tially served. The unsatisfied portion of the demand is called residue demand.
For each vertex u ∈ V , let rd(u) be the residue demand of u. rd(u) is set equal
to d(u) initially, and will be updated accordingly when a portion of the residue
demand is assigned. u is said to be completely satisfied when rd(u) = 0.

We will inherit the notation used in the previous section. We assume that the
elements of Nud[u], written as vu,1, vu,2, . . . , vu,|Nud[u]|, are sorted according to
their demands in non-decreasing order.

In each iteration, the algorithm performs two greedy choices. First, the al-
gorithm chooses the vertex of the most efficiency from V , where the efficiency
is defined similarly as in the previous section with some modification since the
demand is splittable.

For each vertex u ∈ V , let ju with 0 ≤ ju ≤ |Nud[u]| be the maximum
index such that c(u) ≥

∑ju

i=1 rd(vu,i). Let X(u) =
∑ju

i=1 rd(vu,i)/d(vu,i) be
the sum of the effectiveness over the vertices whose residue demand could be
completely served by a single copy of u. In addition, we let Y (u) = (c(u) −∑ju

i=1 rd(vu,i))/d(vu,ju+1) if ju < |Nud[u]| and Y (u) = 0 otherwise. The efficiency
of u is defined as (X(u) + Y (u))/w(u).
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Algorithm Split-Log-Approx

1: rd(u)←− d(u), and map(u)←− φ for each u ∈ V .
2: while there exist vertices with non-zero residue demand do
3: // 1st greedy choice
4: Pick a vertex in V with the most efficiency, say u.
5: if ju equals 0 then

6: Assign this amount c(u) ·
⌊

rd(vu,1)

c(u)

⌋
of residue demand of vu,1 to u.

7: map(vu,1)←− {u}
8: else
9: Assign the residue demands of the vertices in {vu,1, vu,2, . . . , vu,ju} to u.

10: if ju < |Nud[u]| then
11: Assign this amount c(u)−∑ju

i=1 rd(vu,i) of residue demand of vu,ju+1 to u.

12: map(vu,ju+1)←− map(vu,ju+1) ∪ {u}
13: end if
14: end if
15:
16: // 2nd greedy choice
17: if there is a vertex u with 0 < rd(u) < 1

2
· d(u) then

18: Satisfy u by doubling the demand assignment of u to vertices in map(u).
19: end if
20: end while
21: compute from the assignment the cost of the dominating set, and return the result.

Fig. 1. The pseudo-code for the weighted splittable demand model

Second, the algorithm maintains for each vertex u ∈ V a set of vertices,
denoted by map(u), which consists of vertices that have partially served the
demand of u before u is completely satisfied. That is, for each v ∈ map(u) we
have a non-zero demand assignment of u to v. Whenever there exists a vertex
u whose residue demand is below half of its original demand, i.e., 0 < rd(u) <
1
2 · d(u), after the first greedy choice, the algorithm immediately doubles the
demand assignment of u to the vertices in map(u). Note that in this way, we
can completely satisfy the demand of u since

∑
v∈map(u) f(u, v) > 1

2 · d(u) . A
high-level description of this algorithm is presented in Figure 1.

Observation 1. After each iteration, the residue demand of each unsatisfied
vertex is at least half of its original demand.

Clearly, the observation holds in the beginning when the demand of each vertex
is not yet assigned. For later stages, whenever there exists a vertex u for which
0 < rd(u) < 1

2 · d(u), it’s always sufficient to double the demand assignment
f(u, v) of u to v for each v ∈ map(u). If map(u) is only modified under the
condition 0 < jv < |Nud[v]|, (line 12 in Figure 1), then map(u) contains exactly
the set of vertices that have partially served u. Since rd(u) < 1

2 ·d(u), it’s sufficient
to double the demand assignment in this case so d(u) is completely satisfied. If
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map(u) is reassigned through the condition jv = 0 for some stage, then we have
c(v) < rd(u) ≤ d(u). Since we assign this amount c(v) · �rd(u)/c(v)� of residue
demand of u to v, this leaves at most half of the original residue demand and u
will be satisfied by doubling this assignment.

Let the cost incurred by the first greedy choice be S1 and the cost by the
second choice be S2. Notice that S2 is bounded above by S1. In the following, we
will bound the cost S1. For each iteration j, let uj be the vertex of the maximum
efficiency and OPTj be the cost of the optimal solution for the remaining problem
instance. Let nj =

∑
u∈V rd(u)/d(u) denote the sum of effectiveness of each

vertex in the remaining problem instance at the beginning of this iteration. Let
S1,j be the cost incurred by the first greedy choice in iteration j. Assume that
the algorithm repeats for m iterations. We have the following lemma.

Lemma 2. For each j, 1 ≤ j ≤ m, we have

– S1,j ≤ nj−nj+1
nj

· OPTj,
– nj − nj+1 ≥ 1

2 , and
–
∑m−1

j=1 �nj − nj+1� / �nj� ≤ 2 lnn.

By Lemma 2 we have
∑m

j=1 S1,j ≤
∑m−1

j=1
nj−nj+1

nj
· OPTj + nm

nm
· OPTm ≤(∑m−1

j=1 �nj − nj+1� / �nj� + 1
)
·OPT , since �r� ≤ r ≤ �r� for any real number

r and OPTj ≤ OPT for each 1 ≤ j ≤ m.

Theorem 2. Algorithm Split-Log-Approx computes a (4 ln n+2)-approximation,
where n is the number of vertices, for weighted capacitated domination problem
with splittable demands.

3.3 Unweighted Splittable Demand

In this section, we consider the unweighted capacitated domination problem with
splittable demand and present a (2 ln n+1)-approximation. In this case the weight
w(v) of each vertex v ∈ V is considered to be 1 and the cost of the capacitated
domination multiset D corresponds to the total multiplicity of the vertices in
D. To this end, we first make a greedy reduction on the problem instance by
spending at most 1 ·OPT cost such that it takes at most one copy to satisfy each
remaining unsatisfied vertex. Then we show that a (2 ln n)-approximation can
be computed for the remaining problem instance, based on the same framework
of Section 3.2.

For each u ∈ V , let gu be the vertex in N [u] with the maximum capacity.
First, for each u ∈ V , we assign this amount c(gu) ·

⌊
d(u)
c(gu)

⌋
of the demand of u

to gu. Let the cost of this assignment be S, then we have the following lemma.

Lemma 3. We have S ≤ OPT , where OPT is the cost of the optimal solution.

In the following, we will assume that d(u) ≤ c(gu), for each u ∈ V . The algorithm
of Section 3.2 is slightly modified. In particular, for the second greedy choice,
whenever rd(u) < d(u) for some vertex u ∈ V , we immediately assign the residue
demand of u to gu.
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Theorem 3. A (2 ln n + 1)-approximation for weighted capacitated domination
problem with unsplittable demands can be computed in polynomial time, where n
is the number of vertices.

4 Parameterized Results

4.1 Hardness Results

In this section we show that Capacitated Domination Problem is W[1]-hard when
parameterized by treewidth by making a reduction from k-Multicolor Clique, a
restriction of k-Clique problem.

Definition 4 (Multicolor Clique). Given an integer k and a connected
undirected graph G =

(⋃k
i=1 V [i], E

)
such that V [i] induces an independent set

for each i, the Multicolor Clique problem asks whether or not there exists a
clique of size k in G.

Given an instance (G, k) of Multicolor Clique, we will show how an instance
G = (V , E) of Capacitated Domination with treewidth O(k2) can be built such
that G has a clique of size k if and only if G has a capacitated dominating set of
cost at most k′ = (3k2 − k)/2. For convenience, we shall distinguish the vertices
of G by referring to them as nodes.

Let N be the number of vertices. Without loss of generality, we label the
vertices of G by numbers, denoted label(v), v ∈ V , between 1 and N . For each
i �= j, let E[i, j] denote the set of edges between V [i] and V [j]. The graph G is
defined as follows. For each i, 1 ≤ i ≤ k, we create a node xi with w(xi) = k′+1,
c(xi) = 0, and d(xi) = 1. For each u ∈ V [i], we have a node u with w(u) = 1,
c(u) = 1 + (k − 1)N , and d(u) = 0. We also connect u to xi. For convenience,
we refer to the star rooted at xi as vertex star Ti.

Similarly, for each 1 ≤ i < j ≤ k, we create a node yij with w(yij) = k′ + 1,
c(xi) = 0, and d(xi) = 1. For each e ∈ E[i, j] we have a node e with w(e) = 1,
c(e) = 1 + 2N , and d(e) = 0. We connect e to yij . We refer to the star rooted
at yij as edge star Tij . The selection of nodes in Ti and Tij in the capacitated
dominating set will correspond to the choices made in selecting the vertices that
form a clique in G.

In addition, for each i �= j, 1 ≤ i, j ≤ k, we create two bridge nodes b1
i,j , b2

i,j

with w(b1
i,j) = w(b2

i,j) = 1 and d(b1
i,j) = d(b2

i,j) = 1. The capacities of the bridge
nodes are to be defined later. Now we describe the way how stars Ti and Tij are
connected to bridge nodes such that the reduction claimed above holds. For each
i �= j, 1 ≤ i, j ≤ k and for each v ∈ V [i], we create two propagation nodes p1

v,i,j ,
p2

v,i,j and connect them to v. Besides, we connect p1
v,i,j to b1

i,j and p2
v,i,j to b2

i,j .
We set w(p1

v,i,j) = w(p2
v,i,j) = k′+1 and c(p1

v,i,j) = c(p2
v,i,j) = 0. The demands of

p1
v,i,j and p2

v,i,j are set to be d(p1
v,i,j) = label(v) and d(p2

v,i,j) = N − label(v). For
each 1 ≤ i < j ≤ k and for each e = (u, v) ∈ E[i, j], we create four propagation
nodes p1

e,i,j , p2
e,i,j , p1

e,j,i, and p2
e,j,i with zero capacity and k′ + 1 cost. Without
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xi

xj

yij

u

v

e

i < j, u ∈ V [i], v ∈ V [j], and e = (u, v) ∈ E[i, j]

b1i,j

b2i,j

b1j,i

b2j,i

Fig. 2. The connections between stars and bridge nodes

loss of generality, we assume that u ∈ V [i] and v ∈ V [j]. The demands of the
four nodes are set as the following: d(p1

e,i,j) = N − label(u), d(p2
e,i,j) = label(u),

d(p1
e,j,i) = N − label(v), and d(p2

e,j,i) = label(v). Finally, for each bridge node b,
we set c(b) =

∑
u∈N [b] d(b) − N .

Lemma 4. The treewidth of G is O(k2). Furthermore, G admits a clique of
size k if and only if G admits a capacitated dominating set of cost at most
k′ = (3k2 − k)/2.

Theorem 4. The Capacitated Domination problem is W[1]-hard when param-
eterized by treewidth, regardless of the demand model.

4.2 FPT Algorithms on Graphs of Bounded Treewidth

In this section we show that Capacitated Domination Problem with unsplittable
demand is FPT with respect to treewidth and maximum capacity by giving
a 22k(log M+1)+log k+O(1) · n exact algorithm. To this end, we give a dynamic
programming algorithm on a so-called nice tree decomposition [20] of the input
graph G.

Definition 5 (Nice Tree Decomposition). A tree decomposition (X, T ) is a
nice tree decomposition if one can root T in such a way that each node i ∈ I is
of one of the four following types. (1) Leaf: node i is a leaf of T , and |Xi| = 1.
(2) Join: node i has exactly two children, say j1 and j2, and Xi = Xj1 = Xj2 .
(3) Introduce: node i has exactly one child, say j, and there is a vertex v ∈ V
such that Xi = Xj ∪ {v}. (4) Forget: node i has exactly one child, say j, and
there is a vertex v ∈ V such that Xj = Xi ∪ {v}.

Given a tree decomposition of width k, a nice tree decomposition T of the same
width can be found in linear time [20]. In the following, without loss of generality,
we shall assume that the bag associated with the root of T is empty. For each
node i in the tree T , let Ti be the subtree rooted at i and Yi :=

⋃
j∈Ti

Xj . Starting
from the leaf nodes of T , our algorithm proceeds in a bottom-up manner and
maintains for each node i of T a table Ai whose columns consist of (a) P with
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P ⊆ Xi indicating the set of vertices in Xi that have been served in future
stages, and (b) rc(u) with 0 ≤ rc(u) < c(u) indicating the residue capacity of u,
for each u ∈ Xi.

Clearly, each row of Ai corresponds to a possible configuration consisting of
the unsatisfied vertices and the residue capacity of each vertex in Xi that can be
used. The algorithm computes for each row of Ai the cost of the optimal solution
to the subgraph induced by Yi under the constraint that the configuration of
vertices in Xi agrees with that specified by the values of the row.

In the following, we describe the computation of the table Ai for each node i
in the tree T in more detail. In order to keep the content clean, we use the terms
”insert a new row” and ”replace an old row by the new one” interchangeably.
Whenever the algorithm attempts to insert a new row into a table while another
row with identical configuration already exists, the one with the smaller cost will
be kept. We have the following situations.

– i is a leaf node. Let Xi = {v}. We add two rows to the table Ai which
correspond to cases whether or not v is served.

– i is an introduce node. Let j be the child of i, and let Xi = Xj ∪{v}. The
data in Aj is basically inherited by Ai.We extend Ai by considering, for each
existing row r in Aj , all 2|Xj\Pr | possible ways of choosing vertices in Xj\Pr

to be assigned to v. In addition, v can be either unassigned or assigned to
any vertex in Xi.

– i is a forget node. Let j be the child of i, and let Xi = Xj\ {v}. In this
case, for each row r ∈ Aj such that v ∈ Pr, we insert a row r′ to Ai identical
to r except for the absence of v in Pr′ .

– i is a join node. Let j1 and j2 be the two children of i in T . We consider
every pair of rows r1 and r2 such that Pr1 ∩ Pr2 = φ, where r1 ∈ Aj1 and
r2 ∈ Aj2 . For each such pair of rows (r1, r2), we insert a new row r to Ai

with Pr = Pr1 ∪Pr2 , rcr(u) = (rcr1(u) + rcr2(u)) mod c(u), for each u ∈ Xi,
and cost(r) = cost(r1) + cost(r2) −

∑
u∈Xi

⌊
rcr1(u)+rcr2(u)

c(u)

⌋
.

Theorem 5. CapacitatedDomination problemwith unsplittable demandon graphs
of bounded treewidth can be solved in time 22k(log M+1)+log k+O(1) ·n, where k is the
treewidth and M is the largest capacity.

We state without going into details that by suitably replacing the set Pi with
the residue demand rdi(u) for each vertex u ∈ Xi in the column of the table
we maintained, the algorithm can be modified to handle the splittable demand
model. We have the following corollary.

Corollary 1. Capacitated Domination problem with splittable demand on graphs
of bounded treewidth can be solved in time 2(2M+2N+1) log k+O(1) ·n, where k is the
treewidth, M is the largest capacity, and N is the largest demand.

4.3 Extension to Planar Graphs

In this section we extend the above FPT algorithms based on a framework
due to Baker [3] to obtain a pseudo-polynomial time approximation scheme
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for planar graphs. In particular, for unsplittable demand model, given a pla-
nar graph G with maximum capacity M and an integer k, the algorithm com-
putes an (1 + 4

k−1 )-approximation in time O(22k(log M+1)+2 log kn), where n is
the number of vertices. Taking k = �c log n�, where c is some constant, we get
a pseudo-polynomial time approximation algorithm which converges toward op-
timal as n increases. On the other hand, for splittable demand model, we have
a pseudo-polynomial time approximation scheme in O(2(2M+2N+1) log k+O(1) ·n)
time, where N is the maximum demand. To get rid of the factor N , we could ap-
ply the transformation used in Section 3.3 and Lemma 3 in advance and obtain
a (2 + 4

k−1 )-approximation in O(2(4M+1) log k+O(1) · n) time.
This is done as follows. Given a planar graph G, we generate a planar em-

bedding and retrieve the vertices of each level using the linear-time algorithm of
Hopcroft and Tarjan [16]. Let m be the number of levels of this embedding. Let
OPT be the cost of the optimal capacitated dominating set of G, and OPTj be
the cost contributed by vertices at level j.

Since
∑

0≤i≤m(OPTi +OPTi+1) ≤ 2 ·OPT , there exists one r with 0 ≤ r < k

such that
∑

0≤j<�m
k � (OPTjk+r + OPTjk+r+1) ≤ 2

k · OPT. For each 0 ≤ j ≤⌊
m
k

⌋
+ 1, let Gj be the graph induced by vertices between level (j − 1)k + r and

jk + r + 1. In addition, we set the demands of vertices at level (j − 1)k + r and
level jk+ r+1 to be zero for each Gj . Clearly, the treewidth of each Gj is upper
bounded by k + 1 and the sum of the optimal cost for each Gj is no more than
(1 + 4

k ) · OPT . Take k′ = k − 1 and we’re done.

5 Concluding Remarks

We conclude with a few open problems and future research goals. First, although
exact FPT algorithms are provided, the problem of approximating the optimal
solution when parameterized by treewidth remains open. It would be nice to
obtain faster approximation algorithms for graphs of bounded treewidth as this
would provide faster approximations for planar graphs as well. Second, it would
be nice to know how the problem behaves on special graph classes. As this
problem has been shown to be difficult and admit a PTAS on trees when the
demand can be split, approximations for other classes such as interval graphs
remain unknown. Third, from the perspective of parameterization, it may be
possible to find other parameters that are more closely related to the problem
and obtain better results.
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Abstract. The problem of Minimum Congestion Hypergraph Embed-
ding in a Weighted Cycle (MCHEWC) is to embed the hyperedges of a
hypergraph as paths in a weighted cycle such that the maximum conges-
tion, i.e. the maximum product of the weight of an edge and the number
of times that the edge is passed by the embedding, is minimized. It is
known that the problem, the same as the unweighted case, is NP-hard.
The aim of this paper is to present a polynomial time approximation
scheme (PTAS) for the problem.

Keywords: hypergraph embedding, weighted cycle, minimum conges-
tion, NP-hard, polynomial time approximation scheme.

1 Introduction

The problem of Minimum-Congestion Hypergraph Embedding in a Cycle (de-
noted by MCHEC) was proposed by Ganley and Cohoon [3]. In that problem,
we wish to embed the m-hyperedges of an n-vertex hypergraph as paths in an
n-vertex cycle, such that the maximum number of paths that pass through an
edge in the cycle is minimized. The problem of Minimum-Congestion Hyper-
graph Embedding in a Weighted Cycle (MCHEWC) is a weighted version of
the previous problem of which each cycle is considered as weighted and hence
different. The congestion of an edges now is defined as the number of paths that
pass through it times its weight. The aim is also to find an embedding such that
the maximum congestion is minimized. The MCHEWC problem is a challeng-
ing problem with many applications in electronic design automation, computer
networks, parallel computing and computer communication.

Several studies related to the MCHEWC problem have been performed. The
optimal solution for the problem of Minimum Congestion Graph Embedding in
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a Cycle (MCGEC) is solved in polynomial time by an algorithm developed by
Frank et al. [1,2]. Ganley and Cohoon [3] showed that the MCHEC problem is
NP-hard in general, but solvable in polynomial time when the congestion is at
most k, where k is a fixed number. In that case, a solution can be computed
in O((nm)k+1) time. Other approximation algorithms have been proposed sub-
sequently. Gu and Wang [4] presented an algorithm for solving the MCHEC
problem with an approximation ratio 1.8 which was further reduced to 1.5 by
Lee and Ho [6]. Very recently, Li et al. [7] presented a polynomial time approxi-
mation scheme for solving the MCHEC problem. Lee and Ho [5] showed that the
problem of Weighted Hypergraph Embedding in a Cycle (WHEC) and the prob-
lem of Weighted Graph Embedding in a Cycle (WGEC) are both NP-hard and
proposed a 2-approximation algorithm using the idea of removing the longest
adjacent paths. In this paper, we present for the first time a polynomial time
approximation scheme to the MCHEWC problem.

2 Preliminaries

In this section we introduce some notations which will be used in this paper.
A weighted cycle C of n nodes is an undirected graph G = (V, EG) with node
set V = {i|1 ≤ i ≤ n} and the weighted edge set EG = {ei|1 ≤ i ≤ n}, where
ei represents the edge of weight wi connecting the nodes i and i + 1 for i =
1, 2, ..., n. Throughout this paper, we assume that all nodes are uniquely labelled
using nonnegative integers after performing modulo n operation. Without loss
of generality, we assume that the numbers on the nodes are ordered in the
clockwise direction. A hypergraph H = (V, EH) is defined over the same node
set V = {i|1 ≤ i ≤ n} with the set EH = {h1, h2, ..., hm} of the hyperedges,
where each hyperedge hj is a subset of V with two or more nodes.

For each j(1 ≤ j ≤ m), we define a connecting path (or c-path) Pj for
hyperedge hj , where Pj is a minimal path in the weighted cycle C containing all
nodes in hj . Therefore, there are exactly |hj | possible c-paths for each hyperedge
hj . Choosing one c-path for each hyperedge of H , we have an embedding of
the hypergraph H in a weighted cycle that is a set of c-paths in C. Given an
embedding of a hypergraph, the congestion of each edge of C is the product of its
weight and the number of c-paths that contain the edge. For a given hypergraph
and a weighted cycle on the same node set, the MCHEWC problem is to find an
embedding of the hypergraph such that the maximum congestion in the weighted
cycle is minimized.

Formally, we introduce the following notation. For each j(1 ≤ j ≤ m), let hy-
peredge hj = {ij1, i

j
2, ..., i

j
|hj |} be such that nodes, ij1, i

j
2, ..., and ij|hj|, are ordered

in the clockwise order along the cycle C. Then hj partitions the cycle C into
|hj | segments: Ej

l , l = 1, 2, ..., |hj|, where Ej
l = {ei|ijl ≤ i ≤ ijl+1 − 1}. Note that

the arithmetic operations involving the subscripts of the indices are performed
by modulo |hj |.
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A c-path is called an Ej
l -embedding for hyperedge hj if the c-path consists of

edges of EG \ Ej
l . An embedding of the hypergraph is a set of m c-paths, one

c-path for each hyperedge. There are |hj | different embeddings for each hyper-
edge hj and the total number of feasible solutions to the MCHEWC problem is
therefore |h1||h2|...|hm|.

We use a vector x = (x1, x2, ..., xm) to denote a solution, where xj represents
an Ej

lj
-embedding of the hyperedge hj for some lj(1 ≤ lj ≤ |hj|), and call

it an x-embedding of the hypergraph. For an edge ei in the cycle C, we use
ei(x) to denote the number of c-paths passing through the edge ei regarding the
x-embedding. Then the MCHEWC problem can be modeled as the following
optimization problem. {

min z;
wiei(x) ≤ z, i = 1, 2, . . . , n.

(1)

Since the problem is known to be NP-complete, our interest is in the algorithms
which return solutions with guaranteed near-optimum values. By OPT(I) we
denote the optimum objective value on instance I of the MCHEWC problem
and by A(I) the cost of the solution given by an algorithm A. We want to find a
polynomial time approximation scheme (PTAS) to solve the MCHEWC problem.
That is, we want to find an algorithm which has the following performance ratio

RA(I, ε) = A(I)
OPT (I) ≤ 1 + ε

for any given constant ε > 0.
Given a weighted cycle C, we take wi := wi/wmax(1 ≤ i ≤ n), where wmax =

max{wi|1 ≤ i ≤ n}. Then the new embedding problem is equivalent to the
original embedding problem. For the sake of convenience, from now on, we may
assume that each edge in the cycle C has a weight belonging to (0, 1].

3 Development of PTAS for Special Cases

In this section, we develop PTAS for some special cases. In the first place, we
consider the special case that the number of hyperedges is bounded from above
by c log(n) with c a positive constant, we have the following lemma.

Lemma 1. Let r(1 ≤ r ≤ n) be an integer and x=(x1, x2, ..., xm) an embedding
of H where xj is an Ej

lj
-embedding of hj. Define

Ωi1,i2,...,ir(x) = {j |Ej
lj
∩ {ei1 , ei2 , ..., eir} �= ∅}

for any indices 1 ≤ i1, i2, ..., ir ≤ n. Then there exist r indices 1 ≤ m1, m2, ..., mr

≤ n such that for any embedding x
′
= (x

′
1, x

′
2, ..., x

′
m) of H which satisfies x

′
j =

xj for all j ∈ Ωm1,m2,...,mr(x), the following inequality

wiei(x′) − wiei(x) ≤ 1
r
wiei(x)

holds for all i.
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Proof. Let 1 ≤ i1, i2, ..., ir ≤ n be r distinct indices of edges on C and x =
(x1, x2, ..., xm) an embedding of H . We use these edges ei1 , ei2 , ..., eir and the
given embedding x to create a set Ω as follows.

Ωi1,i2,...,ir(x) = {j| Ej
lj
∩ {ei1 , ei2 , ..., eir} �= ∅}.

Notice that for the fixed x and r, Ωi1,i2,...,ir(x) depends on the choice of indices,
i1, i2, ..., ir of edges on C. By Ω(x, r) we denote the one of maximum size which
is reached at m1, m2, ..., mr, i.e. Ω(x, r) = Ωm1,m2,...,mr(x). We will show that
Ω(x, r) is the one required to make the lemma true. To this end, we define

Ω(i) = {j | ei ∈ Ej
lj

and emh
�∈ Ej

lj
for h = 1, 2, . . . , r}.

It follows from the definition that

Ω(i) = Ωm1,m2,...,mr,i(x) − Ωm1,m2,...,mr (x) (2)

For 1 ≤ t ≤ r, we define

Ω(mt, i) = {j | emt ∈ Ej
lj

and ei, emh
�∈ Ej

lj
for h ∈ {1, 2, . . . , r} − {t}}.

From the definition again, we get

Ω(mt, i) = Ωm1,m2,...,mr,i(x) − Ωm1,...,mt−1,mt+1,...,mr,i(x) (3)

The maximality of Ωm1,m2,...,mr(x) together with (2) and (3) make sure that

|Ω(mt, i)| ≥ |Ω(i)|.

We now further claim that Ω(mt, i), t = 1, 2, ..., r does not overlap to each other.
For, suppose on the contrary, there are two integers p, q(1 ≤ p, q ≤ r) and
j ∈ Ω(mp, i) ∩ Ω(mq, i). It follows from the definition of Ω(mt, i) that

emp ∈ Ej
lj

and ei, emh
�∈ Ej

lj
, h ∈ {1, 2, . . . , r} − {p},

and simultaneously that

emq ∈ Ej
lj

and ei, emh
�∈ Ej

lj
, h ∈ {1, 2, . . . , r} − {q},

which obviously contradict each other.
Keeping in mind that the embedding xj of hyperedge hj contains ei if and only

if ei /∈ Ej
lj

, we see that the embedding of each hyperedge hj with j ∈ Ω(mt, i)
contains the edge ei. This observation together with the above claim ensure
that

ei(x) ≥
r∑

t=1

|Ω(mt, i)| ≥ r|Ω(i)| (4)
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Now we are ready to prove the lemma. Let x′ be an embedding of H such that
x′

j = xj for all j ∈ Ω(x, r), and l′j be the index such that x′
j is a Ej

l′j
−embedding

of hj . Then we have

ei(x′) − ei(x) ≤ |{j | ei �∈ Ej
l′j

and ei ∈ Ej
lj
}|

= |{j �∈ Ω(x, r) | ei �∈ Ej
l′j

and ei ∈ Ej
lj
}|

≤ |{j �∈ Ω(x, r) | ei ∈ Ej
lj
}|

= |{j | ei ∈ Ej
lj

and emh
�∈ Ej

lj
, h = 1, 2, . . . , r}|

= |Ω(i)| ≤ 1
r
ei(x) (from (4)).

Since wi > 0 for all i = 1, 2, ..., n, we obtain wiei(x′) − wiei(x) ≤ 1
r wiei(x).

Similar to [7], Lemma 1 leads to a polynomial time approximation scheme to the
MCHEWC problem under the condition when m ≤ c log(n). For any prespecified
real number ε > 0, we take an integer r such that 1/r < ε. Notice that if we
replace x by an optimal solution x∗ in Lemma 1 then x′ described there is an
approximation within a factor of 1 + ε of the optimum. Now we demonstrate
that such an approximation scheme x′ can be accomplished in a polynomial
time.

Note that for fixed x and r, Ωi1,i2,...,ir(x) depends on the choice of the indices,
i1, i2, ..., ir, of edges on C. By Ω(x, r) we denote the one of maximum size which
is reached at m1, m2, ..., mr, i.e. Ω(x, r) = Ωm1,m2,...,mr(x). Suppose we are
lucky that m1, m2, ..., mr appear to us such that Ω(x∗, r) = Ωm1,m2,...,mr(x∗)
because it is allowed to enumerate all

(
n
r

)
possibilities. For each j(1 ≤ j ≤ m),

let
Ej = {Ej

l |E
j
l ∩ {em1 , em2 , ..., emr} �= ∅, 1 ≤ l ≤ |hj |},

then |Ej | ≤ min{r, |hj|} for any j. For each j, we enumerate all |Ej | possible
embeddings to form a set of solutions which is denoted by X , then we have
|X | ≤ Πj |Ej | ≤ rm ≤ nc ln r. Lemma 1 makes sure that X contains an embed-
ding x′ such that wiei(x′) ≤ (1+ ε)wiei(x), so the approximation scheme x′ can
be accomplished within the time up bounded by

(
n
r

)
nc ln r. The algorithm in this

case is described schematically as follows.

Algorithm. specialEmbedding:
Input: G = (V, EG) and H = (V, EH).
Output: an x-embedding of H .
1. for each r-element subset {ei1 , ei2 , ..., eir} of the n input edges in EG do

(a) Ej = {Ej
l |E

j
l ∩ {ei1 , ei2 , ..., eir} �= ∅, 1 ≤ l ≤ |hj |}

(b) Create a set of solutions by enumerating all |Ej | possible embeddings of
hj

2. Output the best solution obtained in Step 1.
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Theorem 1. The MCHEWC problem can be solved with a PTAS when m ≤
c log n, where c is a constant independent of m and n.

Now we restrict the problem to the case when m > c logn. We define a variable
xj,l to be one if xj is the Ej

l -embedding and zero otherwise for 1 ≤ j ≤ m and
1 ≤ l ≤ |hj |; and further an index function χj(ei, l) to be zero if ei ∈ Ej

l and
one if ei /∈ Ej

l . Then (1) is equivalent to following 0-1 optimization problem.⎧⎪⎨⎪⎩
min z;∑|hj |

l=1 xj,l = 1, j = 1, 2, . . . , m,

wi

∑m
j=1

∑|hj|
l=1 χj(ei, l)xj,l ≤ z, i = 1, 2, . . . , n.

(5)

Let x̄j,l, j = 1, 2, ..., m; l = 1, 2, ..., |hj| be its fractional optimal solution, and

τi = wi

m∑
j=1

|hj|∑
l=1

χj(ei, l)x̄j,l.

Hereafter, by copt we denote the optimum value of (5), then τi ≤ copt for all i.
In this section, when m > c logn, we restrict ourselves to the case copt ≥ dm for
some constant d(0 < d ≤ 1). We apply a standard randomized rounding strategy
to the fractional optimal solution x̄j,l, j = 1, 2, ..., m; l = 1, 2, ..., |hj|. For each
j = 1, 2, ..., m, independently, with probability x̄j,l, set x′

j,l = 1 and x′
j,h = 0 for

any h ∈ {1, 2, ..., |hj|} − {l}. Then we get a 0-1 solution x′
j,l, j = 1, 2, ..., m; l =

1, 2, ..., |hj| to (5), hence a solution to (1).

Lemma 2. Let X1, X2, ..., Xn be n independent random 0-1 variables, where Xi

takes 1 with probability pi, 0 < pi < 1. Let X =
∑n

i=1 aiXi, 0 < ai ≤ 1, and
μ = E[X ]. Then for any 0 < δ ≤ 1/2, Pr(X > μ + δn) < exp{− 1

3nδ2}.

Proof. Let X ′ =
∑n

i=1 Xi, and μ′ = E[X ′]. Then μ′ =
∑n

i=1 pi ≤ n, μ =∑n
i=1 aipi ≤ n, and μ′ ≥ μ. To prove this lemma, we need to resort to the

following Markovian inequality:

Pr(X > μ + δn) = Pr(etX > et(μ+δn)) ≤ E[etX ]
et(μ+δn)

for ∀t > 0. Note that

E[etaiXi ] = pie
tai + (1 − pi) = 1 + pi(etai − 1) ≤ epi(etai−1).

Therefore,

E[etX ] = E[e
∑n

i=1 taiXi ] =
n∏

i=1

E[etaiXi ] ≤
n∏

i=1

epi(etai−1)

= exp{
n∑

i=1

pi(etai − 1)} = exp{
n∑

i=1

pie
tai −

n∑
i=1

pi}

= exp{
n∑

i=1

pie
tai − μ′}.
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Let t = ln(1 + δ) > 0 (∀δ > 0), we then get

Pr(X > μ + δn) ≤ e
∑n

i=1 pie
tai−μ′

et(μ+δn) =
e
∑n

i=1 pi(1+δ)ai−μ′

(1 + δ)(μ+δn) = (
e

∑n
i=1 pi(1+δ)ai −μ′

n

(1 + δ)(
μ
n +δ)

)n.

Now we only need to prove that for 0 < δ ≤ 1
2 ,

e

∑
n
i=1 pi(1+δ)ai −μ′

n

(1 + δ)(
μ
n +δ) ≤ e−δ2/3.

After taking logarithm on the both sides of above inequality, we get that∑n
i=1 pi(1 + δ)ai − μ′

n
− (

μ

n
+ δ) ln(1 + δ) +

δ2

3
≤ 0.

Let f(δ) =
∑n

i=1 pi(1+δ)ai−μ′

n − (μ
n + δ) ln(1 + δ) + δ2

3 , we only need to prove
f(δ) ≤ 0 for 0 < δ ≤ 1

2 .
By simple calculation of first and second derivation of
f(δ), we get

f
′
(δ) =

∑n
i=1 piai(1 + δ)ai−1

n
−

μ
n + δ

1 + δ
− ln(1 + δ) +

2
3
δ,

f
′′
(δ) =

∑n
i=1 piai(ai − 1)(1 + δ)ai−2

n
+

μ
n − 1

(1 + δ)2
− 1

1 + δ
+

2
3
.

Since f
′′
(0) ≤ 0, f ′(δ) must be nonincreasing in (0, 1

2 ], and thus f ′(δ) ≤ 0 due
to f ′(0) = 0. Therefore f(δ) is nonincreasing, along with f(0) = 0, it is finally
ensured that f(δ) ≤ 0 in (0, 1

2 ].

When m ≥c log n and copt ≥ dm, we have

Lemma 3. Let xj, l be a 0-1 solution to (5) after randomized rounding pro-
cedure. Then for any fixed small number ε > 0, with probability at least 1 −
n1− 1

3 ε2d2c,
wiei(x) ≤ (1 + ε)copt,

for each ei ∈ EG.

Proof. Recalling that for each j, xj,l is rounded to 1 only for one index l (1 ≤
l ≤ |hj |), we see that the variable

∑|hj|
l=1 χj(ei, l)xj,l rounds to either 1 or 0, and

is independent to each other for different j,s. Let

wiei(x) = wi

m∑
j=1

|hj |∑
l=1

χj(ei, l)xj,l, 0 < wi ≤ 1.

The expectation of the sum of variables is
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E[wiei(x)] = wi

m∑
j=1

|hj |∑
l=1

χj(ei, l)xj,l = τi ≤ copt.

For any fixed δ > 0, applying Lemma 2 to wiei(x), we get

Pr(wiei(x) > τi + δm) < e−δ2m/3,

and hence

Pr(wiei(x) > τi + δm for at least one i) < n × e−δ2m/3.

By utilizing the assumption m ≥ c log n, we obtain

Pr(wiei(x) ≤ τi + δm for all i) ≥ 1 − n1−δ2c/3.

If we take δ = dε, we get τi + δm ≤ (1 + ε)copt. The lemma is proved.

Corollary 1. For δ = dε and c > 3/δ2 be a constant number. If m > c log n
then there exists an embedding x such that wiei(x) ≤ (1 + ε)copt for all i.

Proof. The existence of such an embedding obtained from the proof of Lemma 3
because c > 3/δ2, making sure that

Pr(wiei(x) ≤ (1 + ε)copt) ≥ Pr(wiei(x) ≤ τi + δm for all i) > 0.

Recall that x̄j,l is a fractional solution to (5). We partition {1, 2, ..., m} into
L1, L2, ..., Lk such that c log n ≤ |Lh| < 2c logn for h = 1, 2, ..., k. Let τi,h =
wi

∑
j∈Lh

∑|hj|
l=1 χ(ei, l)x̄j, l. For each h, Corollary 1 guarantees that there exists

an embedding xh for the hyperedge hj with j ∈ Lh such that

wiei(xh) ≤ τi,h + δ|Lh|

holds for all i.
Applying specialEmbedding to Lh, h = 1, 2, ..., k, we can find an approxima-

tion x′
h in polynomial time such that wiei(x′

h) − wiei(xh) ≤ δwiei(xh) for all i.
Therefore,

wiei(x′
h) ≤ τi,h + δ|Lh| + δwiei(xh)

holds for all i.
Let x′ be a concatenation of x′,

hs. It follows that

wiei(x′) ≤
k∑

h=1

(τi,h + δ|Lh| + δwiei(xh)) = τi + δm + δwiei(x)

≤ τi + δm + δτi + δ2m ≤ [1 + (1 +
2
d
)δ]copt ≤ (1 + ε)copt,

where ε = (1 + 2/d)δ.
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Theorem 2. The MCHEWC problem can be solved with a PTAS when copt ≥
dm(0 < d ≤ 1) and m > c log n, where c is a constant number.

4 An Ultimate PTAS

When the optimal congestion copt is small relative to the number of hyperedges,
randomized rounding and derandomization scheme does not necessarily work
to the MCHEWC problem. To overcome this obstacle, for any given ε > 0 we
collect all the edges from EG of weight no less than ε getting a set of larger
edges denoted by K, i.e. K = {ei|wi ≥ ε}. For an integer r ≤ |K|, and edges
ei1 , ei2 , ..., eir in K, we define

Ri1,i2,...,ir = {j | ei1 , ei2 , ..., eir ∈ Ej
l for some l(1 ≤ l ≤ |hj |)}

Ui1,i2,...,ir = {1, 2, ..., m} − Ri1,i2,...,ir .

The following lemma makes the techniques developed in the last section be
applicable to Ui1,i2,...,ir .

Lemma 4. copt ≥ ε
r |Ui1,i2,...,ir |.

Proof. For each j ∈ Ui1,i2,...,ir , it follows from the definition that these r edges,
ei1 , ei2 , ..., eir must belong to different segments Ej

l , l = 1, 2, ..., |hj|, of jth hy-
peredge. Let x = {x1, x2, ..., xm} be an optimum solution where xj represents an
Ej

lj
-embedding. Since {ei1 , ei2 , ..., eir} �⊂ Ej

lj
there exists h(1 ≤ h ≤ r) such that

eih
∈ xj , implying that the embedding xj for j ∈ Ui1,i2,...,ir must contribute one

to eih
(x). However the optimality of x implies that εeih

(x) ≤ wih
eih

(x) ≤ copt,
which further guarantees that |Ui1,i2,...,ir |ε ≤ rcopt. This proves the lemma.

Lemma 4 guarantees that it can be approximated on Ui1,i2,...,ir for ei1 , ei2 , ..., eir

in K by using the the techniques developed in last section. Now we are going
to show that it is able to be approximated either on Ri1,i2,...,ir with special
selection of ei1 , ei2 , ..., eir . To this end, we use x to denote a putative optimum
solution of objective value copt. Let y be an embedding of H and P a subset
of indices of hyperedges of H . We use y|P to denote a partial embedding of y
whose component indices are restricted in P . The definition of Ri1,i2,...,ir implies
that for each j ∈ Ri1,i2,...,ir , there is an integer lj such that ei1 , ei2 , ..., eir ∈
Ej

lj
. Let x∗

j be the Ej
lj

-embedding for all j ∈ Ri1,i2,...,ir , and x∗|Ri1,i2,...,ir
be a

partial embedding vector having component x∗
j for all j ∈ Ri1,i2,...,ir . We will

show that there exist indices i1, i2, ..., ir such that the partial embedding vector
x∗|Ri1,i2,...,ir

does form a good approximation to the optimum embedding x on
Ri1,i2,...,ir .

Let x = (x1, x2, . . . , xm) be an optimal embedding such that max1≤i≤n wiei(x)
is minimized, and l the index such that el(x) = min{ei(x)| ei(x) �= 0, 1 ≤ i ≤ n}.
Define

pi1,i2,...,ik
= |{j ∈ Ri1,i2,...,ik

|x∗
j �= xj}|
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and

ρk = min
1≤i1,i2,...,ik≤n

pl,i1,i2,...,ik

el(x)
.

Lemma 5. There are edges ei1 , ei2 , ..., eir in K, such that for any ei ∈ EG,

wiei(x∗|Rl,i1,i2,...,ir
) − wiei(x|Rl,i1 ,i2,...,ir

) ≤ εcopt.

Proof. The proof is divided into two cases: 1) |K| ≥ 1
ε ; 2) |K| < 1

ε .
1) In this case the integer r can be set to be greater than or equal to 1

ε since
|K| ≥ 1

ε . Note that pl,i1 = |{j ∈ Rl,i1 |x∗
j �= xj}| is the congestion of el caused

by xj for j ∈ Rl,i1 . Therefore, pl,i1 ≤ el(x). It follows from the definition that
ρ1 ≤ 1. In addition, ρk is non-increasing as k increases. Since the sum of r terms
(ρ1−ρ2)+(ρ2−ρ3)+ ...+(ρr−ρr+1) = ρ1−ρr+1 ≤ ρ1 ≤ 1 there is k(1 ≤ k ≤ r)
such that ρk − ρk+1 ≤ 1

r . For all ei ∈ EG, we define

R(i) = {j ∈ Rl,i1,i2,...,ir |x∗
j �= xj and x∗

j �= xi
j}

where xi
j represents the Ej

l -embedding such that ei ∈ Ej
l . Then it follows

ei(x∗|Rl,i1,i2,...,ir
) − ei(x|Rl,i1,i2,...,ir

) ≤ |R(i)|.

To prove the lemma, we only need to examine that wi|R(i)| ≤ 1
r copt since 1

r ≤ ε in
this case. To do so, we fix the indices 1 ≤ i1, i2, ..., ik ≤ n such that pl,i1,i2,...,ik

=
ρkel(x). Then for any r(k < r < n) and i(1 ≤ i ≤ n), we have

|R(i)| = |{j ∈ Rl,i1,i2,...,ir |x∗
j �= xj and x∗

j �= xi
j}|

≤ |{j ∈ Rl,i1,i2,...,ik
|x∗

j �= xj and x∗
j �= xi

j}|
= |{j ∈ Rl,i1,i2,...,ik

|x∗
j �= xj}| − |{j ∈ Rl,i1,i2,...,ik

|x∗
j = xi

j and x∗
j �= xj}|

= |{j ∈ Rl,i1,i2,...,ik
|x∗

j �= xj}| − |{j ∈ Rl,i1,i2,...,ik,i|x∗
j �= xj}|

= p l,i1,i2,...,ik
− p l,i1,i2,...,ik,i ≤ ρkel(x) − ρk+1el(x) ≤ el(x)

r
.

It turns out that

wi|R(i)| ≤ wiel(x)
r

≤ wiei(x)
r

≤ 1
r
copt.

2) Let K = {ei1 , ei2 , ..., eir} and r < 1
ε . By T we denote the subset of Ri1,...,ir

such that xj �= x∗
j for each j ∈ T , and thus the hyperedge hj must be embedded

through the edge ek ∈ K with wk = 1 in the partial optimum embedding x|T .
It is obvious that |T | ≤ copt, and that

wiei(x∗|Ri1,i2,...,ir
) − wiei(x|Ri1,i2,...,ir

) = wiei(x∗|T ) − wiei(x|T ).
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Notice that

wiei(x∗|T ) − wiei(x|T ) = −wi|T |

when ei ∈ {ei1 , ei2 , ..., eir}, and

wiei(x∗|T ) − wiei(x|T ) ≤ wi|T |

when ei �∈ {ei1 , ei2 , ..., eir}. Recalling that wi < ε when ei �∈ {ei1 , ei2 , ..., eir} and
|T | ≤ copt, we get

wiei(x∗|Ri1,i2,...,ir
) − wiei(x|Ri1 ,i2,...,ir

) ≤ εcopt.

The proof for the lemma is complete.

The above lemma implies that x∗|Ri1,...,ir
does approximate the optimal em-

bedding x as good as we want. For simplicity, we write U = Ui1,...,ir and
R = {1, 2, ..., m} − U . Now we focus on the hyperedges with indices in U . A
combination of the ideas developed in the last section applies to this situation.

Case 1. |U | ≤ c log n. Using the techniques developed in section 3 , we find a
partial embedding x′′|U on U in polynomial time such that

wiei(x′′|U ) − wiei(x|U ) ≤ εcopt

hold for any ei ∈ EG. By Lemma 5, the whole solution x = (x′
1, x

′
2, ..., x

′
m)

defined by

x′
j =

{
x∗

j , if j ∈ R,
x′′

j , if j ∈ U.

satisfies
wiei(x′) ≤ (1 + 2ε)copt

for any ei ∈ EG.

Case 2. |U | > c log n. Lemma 4 implies that the techniques developed in sec-
tion 3 are applicable to U . Lemma 5 guarantees that the following optimization
problem⎧⎪⎨⎪⎩

min z;∑|hj |
l=1 xj,l = 1, j = 1, 2, . . . , |U |,

wi

∑|U|
j=1

∑|hj|
l=1 χj(ei, l)xj,l ≤ z − wiei(x∗|R), i = 1, 2, . . . , n.

(6)

has a fractional solution x̄j,l(1 ≤ j ≤ |U |, 1 ≤ l ≤ |hj |) with cost d̄ ≤ (1+2ε)copt.
From the proof of Lemma 3, we have

Lemma 6. Let x′|U be a 0-1 solution of (6) after randomized rounding. Then
for any δ > 0, with certain probability> 0,

wiei(x′|U ) + wiei(x∗|R) ≤ τi + wiei(x∗|R) + δ|U |,

hold for all ei ∈ EG, where τi = wi

∑|U|
j=1

∑|hj|
l=1 χj(ei, l)x̄j,l.
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Algorithm general Embedding
Input: G = (V, EG) and H = (V, EH).
Output: an x-embedding of H .
1. Calculate K = {ei|wi ≥ ε}.

If |K| ≥ 1
ε
, then

for each r-element subset {ei1 , ei2 , ..., eir} ⊆ K do

(a) R = {j | ei1 , ei2 , ..., eir ∈ Ej
l }, and U = {1, 2, ..., m} −R.

(b) Let x∗|R be a partial approximation on R with x∗
j being Ej

l -
embedding for j ∈ R.

(c) find a partial embedding x′|U using techniques developed in §4.
(d) concatenate x∗|R and x′|U to get an approximation x′.

else K = {ei1 , ..., eik}, R = {j|ei1 , ei2 , ..., eik ∈ Ej
l }, U = {1, 2, ..., m} −R,

do (b), (c) and (d).
2. Output the best solution obtained in Step 1.

Fig. 1. Outline for the ultimate PTAS

By using standard derandomization procedure used in section 3, we can find an
approximation x′′ on U in polynomial time such that

wiei(x′′|U ) + wiei(x∗|R) ≤ (1 + λε)copt,

where λ is a finite integer. Let x′ be a concatenation of x∗|R and x′′|U . Then

wiei(x′) = wiei(x∗|R) + wiei(x′′|U ) ≤ (1 + λε)copt.

In conclusion, we have ultimately developed a PTAS for a solution of the prob-
lem. We recapitulate it in Figure 1 and conclude it with a theorem.

Theorem 3. There is a PTAS to the MCHEWC problem.

5 Conclusion Remarks

Our work explores provably good algorithm for the MCHEWC problem by pre-
senting a PTAS. The aim is to extend the techniques in [7] for the MCHEC
problem to a weighted version. Further challenging problems relative to this
topic include whether there exists a PTAS when both the hyperedges and edges
in the cycle are weighted. This most general problem remains open.
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compute a solution X ⊂ V by identifying the corresponding set C = E(X, V −X)
of edges, called cut set.

Graph cut problems have great applications and have been extensively stud-
ied in the literature. The optimally cutting k vertices (or vertices of weight k)
problem in general graphs is a hard problem. Few ‘positive’ results on the prob-
lem are known. Considering the hardness of the problem, we study the problem
in the graphs restricted to trees. The different versions of the problem in trees
are still interesting, since they naturally generate the famous knapsack problem
from several ways [8].

Our problems in rooted trees are related to some special cases of the precedence
constraint knapsack problem (PCKP) [5,3]. In PCKP, a directed acyclic graph
is given, each vertex in the graph is regarded as an item to be selected into the
knapsack, and if a vertex is selected into the knapsack then all its ancestors
(vertices having a direct path to the vertex) must also be selected into the
knapsack. MaxMstCut (resp. MinLstCut) can model the precedence constraint
knapsack problem in rooted trees with all edges directed toward (resp. out) the
root, which is called the in-tree (resp. out-tree) knapsack problems [3,1].

As a prior work on MinLstCut in rooted trees, there exists a (4/3 + ε)-
approximation algorithm for the partial totally unimodular cover problem with
any ε > 0, presented by Könemann, Parekh and Segev [6]. MinLstCut is con-
tained by their problem. Another related work is the algorithms for the tree
knapsack problems. Cho and Shaw presented a depth-first dynamic program-
ming algorithm for the out-tree knapsack problem in [1] that can be modified to
get an O(n(W − k))-time pseudo polynomial-time algorithm for MinLstCut in
rooted trees, where W is the total weight of all vertices in the tree. This pseudo
polynomial-time algorithm can also be used to derive approximation schemes,
but the running time depends on W . Johnson and Niemi [3] designed several al-
gorithms for two different tree knapsack problems. Their O(n3/ε)-time FPTAS
(fully polynomial-time approximation scheme) for the in-tree knapsack problem
can solve MaxMstCut in rooted trees in the same time. There are few nontrivial
results on the problems in unrooted trees. In this paper, except showing that
MinMstCut in trees can be solved in linear time and space easily, we present:

(i) O(ln/ε)-time O(l2/ε + n)-space FPTAS’s for MaxMstCut in rooted and
unrooted trees;

(ii) O(ln(1/ε + log n))-time O(l2/ε + n)-space FPTAS’s for MinLstCut and
MaxLstCut in rooted and unrooted trees.

The rest of the paper is organized as follows. Section 2 gives our notation
system. Section 3 presents pseudo polynomial-time algorithms that will be used
to design FPTAS’s. Section 4 presents FPTAS for MaxMstCut in rooted trees
and Section 5 presents FPTAS’s for MinLstCut and MaxLstCut in rooted trees.
Finally Section 6 designs FPTAS’s for the problems in unrooted trees.

2 Preliminaries

For an undirected graph G = (V, E) and a subset X ⊆ V , let G[X ] denote the
subgraph of G induced by the vertices in X , and let E(X, V − X) denote the
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set of edges with one endpoint in X and the other in V − X . We may denote
by V (G) and E(G) the sets of vertices and edges of a graph G, respectively.
Let �∗ = �+ ∪ {0} denote the set of nonnegative reals. For a vertex weight
w : V → �∗ and an edge cost c : E → �∗, let w(X) denote

∑
v∈X w(v) and

c(X) denote
∑

e∈E(X,V −X) c(e), respectively. Given an unrooted tree G and a
vertex r in it, we use Gr to denote the rooted tree obtained from G by choosing
r as the root. In a rooted tree, let V (v) denote the set of descendants of a vertex
v, where v ∈ V (v), and ep(v) denote the edge connecting v and its parent. A
set X is called root-connecting if G[V − X ] is connected and contains the root.
We use n and l to denote the number of vertices and the number of leaves (i.e.,
vertices of degree 1) in the graph respectively. To distinguish edge weight with
vertex weight, we say edge cost instead of edge weight.

We will consider the four problems MaxMstCut, MaxLstCut, MinMstCut
and MinLstCut in rooted and unrooted trees with nonnegative edge cost and
nonnegative vertex weight. MaxMstCut, MaxLstCut and MinLstCut are NP-
hard as they generate the well-known knapsack problem (more discussions can
be found in the full version of this paper [8]). In the full version, we also show
that these three problems in trees are polynomial-time solvable when the vertex
weight can only be 0 or 1. However, MinMstCut is polynomial-time solvable,
even without the constraint on the vertex weight. Note that the edge cost and
vertex weight are nonnegative. The cut set corresponding to the optimal solution
only contains one edge. We only need to identify a feasible edge with minimum
cost. An edge e in a rooted tree is a feasible edge if w(e) ≤ k, and an edge e in
an unrooted tree is a feasible edge if at least one component of G − e is of total
vertex weight ≤ k. We can find all feasible edges in a DFS (For an unrooted tree,
we arbitrarily select a vertex as the root and consider if min(w(v), W −w(v)) ≤ k
for each vertex v). In the DFS, we only need to remember the feasible edge with
minimum cost among all visited edges. Therefore, we can solve the problem in
linear time and space. We will not discuss MinMstCut in the rest of the paper.

3 Pseudo Polynomial-Time Algorithms

In this section, we give dynamic programming algorithms for our problems in
rooted trees, which are pseudo polynomial-time algorithms and will be used to
derive FPTAS’s. One technique we used to design the dynamic programming
algorithms is called the ‘left-right’ method for trees in [3]. To get the pseudo
polynomial-time algorithms, we assume that all edge cost are integers in this
section. In fact, our algorithm will find an optimal solution X only when c(X) ≤
q holds for a prescribed threshold q.

We order all the leaves in the tree according to a DFS (first visited has small
index). In our algorithm, if a vertex is not allowed to be cut away from the rooted
tree, then all the edges in the path from the vertex to the root are not allowed
to be deleted. Let L = {z1, z2, . . . , zl}, l = |L|, be the set of leaves, where leaves
z1, z2, . . . , zl appear from left to right in this order. For 0 ≤ i ≤ l and 0 ≤ j ≤ q,
define X (i, j) to be the set of all root-connecting sets X ⊆ V − {r} that satisfy
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two constraints: L ∩ X ⊆ {z1, z2, . . . , zi} (only the first i leaves are allowed to
be cut away); and c(X) = j.

Let OPT (i, j) = min{w(X) | X ∈ X (i, j)} for MaxMstCut (resp., OPT (i, j) =
max{w(X) | X ∈ X (i, j)} for MaxLstCut and MinLstCut), and let X(i, j) store
a set X ∈ X (i, j) attaining w(X) = OPT (i, j), where we let X(i, j) =⊥ and
OPT (i, j) = ∞ if X (i, j) = ∅. Clearly X(l, j0) is an optimal solution to MaxM-
stCut if j0 is the maximum number such that OPT (l, j0) ≤ k. We maintain a
table of size (l + 1) × (q + 1) to store OPT (i, j) and X(i, j) for 0 ≤ i ≤ l and
0 ≤ j ≤ q. Let Pi be the set of edges such that we can remove zi without deleting
zi+1 by making a cut at any edge from Pi. Then, for any edge e ∈ Pi, deleting e
cuts away leaves za, za+1, . . . , zi with consecutive indices. Let α(e) be the small-
est index a of the leaves being cut. Then all values OPT (i, j) and X(i, j) can be
computed by the recursive formula in Fig. 1.

Algorithm DP(G, k, q)
Input: A tree G = (V, E) rooted at a vertex r with nonnegative integer edge
cost and nonnegative vertex weight and two numbers k, q ≥ 0.
Output: A solution to MaxMstCut in G if the value of the optimal solution
is at most q.

1. For j = 1 to q, do
OPT (0, j)←−∞, X(0, j)←−⊥.

2. For i = 1 to l, do
OPT (i, 0)←− 0, X(i, 0)←− ∅.
For j = 1 to q, do

OPT (i, j)←− OPT (i− 1, j), X(i, j)←− X(i− 1, j).
For each e ∈ Pi, do

If c(e) ≤ j and OPT (α(e)−1, j − c(e)) + w(e) < OPT (i, j),
then

OPT (i, j)←− OPT (α(e)−1, j − c(e)) + w(e),
X(i, j)←− X(α(e)−1, j − c(e)) ∪ V (e).

3. Let j0 be the maximum number such that OPT (l, j0) ≤ k.
4. Return X(l, j0).

Fig. 1. Algorithm DP(G, k, q)

Lemma 1. For a rooted tree G with nonnegative integer edge cost and nonneg-
ative vertex weight, Algorithm DP(G, k, q) can be implemented to run in O(qn)
time and O(ql + n) space.

Note that {Pi | i = 1, 2, . . . , l} is a partition of the edge set E. So each edge is
considered only once in the algorithm. Then the running time of the algorithm
is O(qn). The space of the algorithm is O(ql + n).

Since DP(G, k, q) only computes OPT (i, j) for j from 0 to q, when the weight
of an optimal solution is greater than q, DP(G, k, q) can not find an optimal
solution.
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4 FPTAS for MaxMstCut in Rooted Trees

First, we consider MaxMstCut in rooted trees and then extend our results to
the problem in unrooted trees in Section 6.

4.1 A 1
3 -Approximation Algorithm

To design our FPTAS for MaxMstCut, we first give an O(n log l)-time 1
3 -

approximation algorithm. The idea of the algorithm comes from a well-known
greedy approximation algorithm for the knapsack problem, which is to greed-
ily select items of the most dense. Let V ′ be the set of all vertices except the
root. For any v ∈ V ′, the density of v is defined as ϕ(v) = c(e)/w(V (v)), where
e = ep(v). Our algorithm will first contract all overload and dominated edges as
preprocesses. An edge is called an overload edge, if the total weight of vertices
cut away from the tree by deleting it exceeds k. Clearly, we can simply contract
all overload edges to form the new root. An edge e is called a dominated edge, if
we can cut away an edge e′ with cost c(e′) > c(e) by deleting e. It is also easy to
see that no dominated edge will be in the cut set corresponding to an optimal
solution. We can also safely contract all dominated edges directly, and in the
new tree, on any path from the root to a leaf, the edge cost is monotonous. The
simple approximation algorithm is presented in Fig. 2.

Algorithm Appro(G, k)
Input: A rooted tree G = (V, E) with nonnegative edge cost c : E → �∗ and
nonnegative vertex weight w : V → �∗ and a number k > 0.
Output: A 1

3
-approximation solution to MaxMstCut in G.

1. Contract all overload and dominated edges.
2. A←− the set of vertices v with w(v) = 0.
3. While V ′ − A = ∅, do select v ∈ V ′ −A such that ϕ(v) is maximized

If w(A) + w(V (v)) ≤ k, add V (v) into A.
Else return the better of A and V (v) and halt.

4. Return A.

Fig. 2. Algorithm Appro(G, k)

Lemma 2. Algorithm Appro(G, k) is an O(n log l)-time 1
3 -approximation algo-

rithm for MaxMstCut in rooted trees with nonnegative edge cost and nonnegative
vertex weight.

Proof. Since we have contracted all dominated edges, we know that there is an
optimal solution contains all vertices with zero weight in the tree. Then we can
simply put them into the solution set directly. Next, if the algorithm stops at
Step 4, it will return an optimal solution, else the algorithm will return A or V (v′)
in Step 3, where v′ is the last vertex being selected in the algorithm. Note that



FPTAS’s for Some Cut Problems in Weighted Trees 215

V (v′) is excluded from A in the algorithm. Thus A is a feasible solution when the
algorithm halts. V (v′) is also a feasible solution, because all overload edges are
contracted in Step 1. Assume that X∗ is an optimal solution. We partition A and
X∗ into a serial of disjoint subsets: A = {V (v1), V (v2), . . . , V (vx)} and X∗ =
{V (u1), V (u2), . . . , V (uy)}, where vi is not a descendent of any vertex in A and ui

is not a descendent of any vertex in X∗. We further assume that {u1, . . . , uj} ⊆ A
and {uj+1, . . . , uy}∩A = ∅. Obviously, X1 = {V (u1), V (u2), . . . , V (uj)} is still a
feasible solution and X1 ⊆ A. Since we have contracted all dominated edges, we
know that c(A) ≥ c(X1). If c(X1) ≥ 1

3c(X∗), then c(A) ≥ 1
3c(X∗). Otherwise,

we have c(X2) ≥ 2
3c(X∗), where X2 = X∗ − X1 = {V (uj+1), . . . , V (uy)}. Since

at the time when the algorithm selects v′, no vertex in {uj+1, . . . , uy} has been
selected by our algorithm, we know that ϕ(vi) ≥ ϕ(v′) ≥ ϕ(ui′) holds for any
i = 1, . . . , x and i′ = j + 1, . . . , y, which implies the total cost of A and V (v′) is
greater than that of X2. Then c(A) + c(V (v′)) ≥ c(X2) ≥ 2

3 c(X∗). Therefore, in
any case, the better of A and V (v′) will has cost at least 1

3c(X∗).
As for the running time, we only need to show that Step 3 can be done in

O(n log l) time. First of all, we compute the densities of all vertices in the tree
in a DFS. If a vertex v has an ancestor u such that ϕ(v) < ϕ(u), we say that
v is a weak vertex and ep(v) a weak edge. Note that the algorithm will never
select a weak vertex in Step 3. We can reduce the tree by contracting all weak
edges. Detecting and contracting all weak edges can be done in a DFS. After
reducing the tree, the tree has the monotonicity property: on any path from the
root to a leaf, the vertex density is monotonous. Then we can sort all the vertices
according to their densities in O(n log l) time as we do in Mergesort. After sorting
the vertices, we only need to select vertices according to the sorting list. Then
we can do Step 3 in O(n log l) time.

Note. This greedy algorithm can get approximation ratio 1
2 for the knapsack

problem. Ibarra and Kim [2] also introduced an O(n2)-time 1
2 -approximation

algorithm for MaxMstCut in rooted trees. In their algorithm, they will update
the densities of vertices when each time selecting a vertex of maximum density
and deleting it from the tree1. We will use our 1

3 -approximation algorithm instead
of their 1

2 -approximation algorithm, because we cannot improve the running time
bound of our FPTAS by improving the approximation ratio from 1

3 to 1
2 , but will

worsen the running time bound if the running time of the constant approximation
algorithm changes from O(n log l) to O(n2).

4.2 The FPTAS

Next, we design the FPTAS. Let R =Appro(G, k). Algorithm DP(G, k, 3c(R))
will find an optimal solution for our problem (assume that all edge costs are
integers). If the cost of each edge is a small number, i.e., bounded by a polynomial
of n, then DP(G, k, 3c(R)) runs in polynomial time. To obtain an FPTAS, we
1 The correctness of the algorithm (Theorem 2 in [2]) was proved by assuming an

important property (the fourth line of the proof of Theorem 2), the complete proof
of which was omitted.
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scale the cost of each edge down to be bounded by a polynomial of n and use
Algorithm DP on the new instance to get a solution. By scaling with respect
to the desired error ε, we can get a solution with cost within (1 − ε)c(X∗) and
c(X∗) in polynomial time with respect to both n and 1/ε, where X∗ is an optimal
solution to our problem. The FPTAS for MaxMstCut is described in Fig. 3.

Algorithm Fptas1(G, k, ε)
Input: A rooted tree G = (V, E) with nonnegative edge cost c : E → �∗ and
nonnegative vertex weight w : V → �∗, and two numbers k ≥ 0 and 1 > ε ≥ 0.
Output: An (1− ε)-approximation solution to MaxMstCut.

1. Apply preprocesses to deal with overload edges and idle edges.
2. R←−Appro(G, k) and g ←− c(R).
3. If g = 0, return R as an optimal solution and halt.
4. Q←− εg/l and replace c(e) with c′(e) = �c(e)/Q�.
5. Return DP(G, k, �3g�).

Fig. 3. Algorithm Fptas1(G, k, ε)

Theorem 1. For MaxMstCut in a rooted tree with nonnegative edge cost and
nonnegative vertex weight, algorithm Fptas1(G, k, ε) runs in O(ln/ε) time and
O(l2/ε + n) space, and returns a set A such that

c(A) ≥ (1 − ε)c(X∗), (1)

where X∗ is an optimal solution to MaxMstCut.

Proof. Since Appro(G, k) runs in O(n log l) time and O(n) space, and DP
(G, k, �3g�) runs in O(3gn/Q) = O(ln/ε) time and O(3gl/Q + n) = O(l2/ε + n)
space, we get the running time and space bounds.

Next, we prove (1). Since the cardinality of any cut is at most the number l
of leaves in G, we have that |E(V − X∗, X∗)| ≤ l. It is also clear that for any
e ∈ E(V − X∗, X∗), 0 ≤ c(e) − Qc′(e) < Q. Then we have

0 ≤ c(X∗) − Qc′(X∗) < lQ.

Since A is an optimal solution for the scaled instance, it must be at least as good
as X∗ in the scaled instance. Then

c(A) ≥ Qc′(X∗)
≥ c(X∗) − lQ = c(X∗) − εg (by c(X∗) ≥ g)
≥ (1 − ε)c(X∗).

5 FPTAS’s for MinLstCut and MaxLstCut in Rooted Trees

We cannot directly extend the FPTAS for MaxMstCut in Section 4 to an FPTAS
for MinLstCut or MaxLstCut in rooted trees, because we have no similar con-
stant factor algorithm as Appro(G, k) for MinLstCut or MaxLstCut. To get a
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constant factor algorithm, we will use a ‘rounding’ technique [7]. This technique
is used as a basic trick for deriving FPTAS’s for many problems. We will apply
it in a straightforward way to our algorithm to get an approximation scheme
first. Then we further improve the running time of our algorithm by using the
‘rounding’ technique again to get the final FPTAS. In this section, we design the
FPTAS for MinLstCut, which can also be modified to solve MaxLstCut.

5.1 The Preliminary Algorithm

Firs, we present an algorithm Scaling that, given a MinLstCut instance I =
(G, c, w, k), a desired error ratio ε and a number p, will run in O(ln/ε) time and
O(l2/ε + n) space and return A, where A =⊥, if c(X∗) > 2p, and A is a feasible
solution with value c(A) satisfying (1 + ε)c(X∗) ≥ c(A), if p ≤ c(X∗) ≤ 2p.

Algorithm Scaling(G, k, ε, p)
Input: A rooted tree G = (V, E) with nonnegative edge cost c : E → R∗ and
nonnegative vertex weight w : V → R∗, and three numbers k ≥ 0, 1 > ε ≥ 0
and p ∈ N .
Output: ⊥ or a feasible solution.

1. Q←− εp/l and replace c(e) with c′(e) = �c(e)/Q�.
2. Return DP(G, k, 2p).

Fig. 4. Algorithm Scaling(G, k, ε, p)

By the definition of DP(G, k, 2p) for MinLstCut, we know that if c(X∗) > 2p,
our algorithm will return ⊥, else will return a feasible solution A such that c(A) ≥
c(X∗). Assume p ≤ c(X∗) ≤ 2p and let A = Scaling(G, k, ε, p). Analogously
with the analysis of Theorem 1, we can prove that directly

c(A) ≤ Q · c′(X∗)
≤ c(X∗) + lQ = c(X∗) + εp (by c(X∗) ≥ p)
≤ (1 + ε)c(X∗).

Therefore, Scaling(G, k, ε, p) works as claimed.
To get an FPTAS, we need to compute a value p∗ such that p∗ ≤ c(X∗) ≤

2p∗ and call Scaling(G, k, ε, p∗). We may simply assume c(X∗) ≥ 1. Then we
perform the loop in Fig. 5 to compute p∗.

It is clear that the process in Fig. 5 will return p∗ by calling Scaling(G, k, ε =
1, p) for atmost �log c(X∗)� times. Therefore,we can compute p∗ in O(ln log c(X∗))
time and O(l2 + n) space.

Theorem 2. There is an O(ln(1/ε + log c(X∗))-time and O(l2/ε + n)-space
algorithm that computes a solution with error ε for MinLstCut in a rooted tree
with nonnegative edge cost and nonnegative vertex weight.
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1. Let p←− 1;
2. If Scaling(G,k, ε = 1, p) =⊥, return p as p∗ and halt;
3. Otherwise, let p←− 2p and go to Step 2.

Fig. 5. Computing p∗

Since the running time of the approximation algorithm depending on c(X∗), it
is not a real polynomial-time algorithm. Next, we further improve the running
time bound from O(ln(1/ε + log c(X∗))) to O(ln(1/ε + log n)).

5.2 Further Improvement

In Fig. 5, we set p as 1 in the beginning to compute p∗, and the algorithm may
run �log c(X∗)� loops. If we get a value p1 such that p1 ≤ c(X∗) ≤ np1 and set
p as p1 in the first step, then we can compute P ∗ in O(ln log n) time. We show
that we can also use the rounding technique to compute p1 in O(ln log n) time.

We sort the edges according to their costs in O(n log n) time and assume
that c(ei1) ≤ c(ei2) if i1 ≤ i2. Note that all edges are of positive cost edges.
If c(ei) ≤ c(X∗) ≤ c(ei+1), we can contract all edges with cost greater than
c(ei) safely. And in the remaining tree, the total cost of all edges is not greater
than nc(ei). Therefore, c(ei) is a satisfied value of p1. We can also use Algorithm
Scaling with ε = 1 to detect ei. If we check each edge, then we may call
Scaling for n times. But we can simply improve it to �log n� times by using
binary search. Then, we can compute p1 in O(ln log n) time and O(l2 +n) space.

The FPTAS for MinLstCut in this section can be directly modified to a similar
FPTAS for MaxLstCut, which preserves the approximation ratio.

Theorem 3. There is an O(ln(1/ε+logn)-time and O(l2/ε+n)-space algorithm
that computes a solution with error ε for MinLstCut and MaxLstCut in a rooted
tree with nonnegative edge cost and nonnegative vertex weight.

6 FPTAS’s for Unrooted Trees

If the tree is an unrooted tree, we still can solve the problem by choosing each
vertex as a root and solving the n problems in the rooted trees. But the running
time bound will increase by a factor of Θ(n). In this section, we show that our
algorithms for rooted trees can be extended to that for unrooted trees without
increasing the running time bound. We will iteratively choose a leaf-balanced
separator of the tree and solve the problem in a divide-and-conquer way.

First, we define a constrained version of our problems. Given a set of inputs
of MaxMstCut additionally with a prescribed set L′ of leaves, the constrained
MaxMstCut requires to find a solution to cut away all leaves in L′ (possibly
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with other leaves) from the given tree, where L′ may be empty. We design an
algorithm DP2(G, k, L′, q) for the constrained MaxMstCut. Thus for L′ = ∅,
DP2(G, k, ∅, q) is exactly DP(G, k, q).

DP2(G, k, L′, q) can be obtained by modifying DP(G, k, q) as follows. In the
fourth line of Step 2, DP(G, k, q) initializes OPT (i, j) and X(i, j) by

OPT (i, j) ←− OPT (i − 1, j), X(i, j) ←− X(i − 1, j).

In the modified algorithm, the same initialization is used if zi �∈ L′. On the other
hand, if zi ∈ L′, we initialize them by

OPT (i, j) ←− ∞, X(i, j) ←−⊥ .

By this modification, all cuts that keep zi ∈ L′ in the tree are assigned an infinite
cost. Thus the algorithm computes a minimum cost solution of the constrained
MaxMstCut, if a feasible solution exists. Note that the running time bound of
DP2(G, k, L′, q) does not change.

Next, we introduce the concept of leaf centroid, which will be used to split
the tree into several small trees.

Lemma 3. For any tree, there is a vertex such that each of the subtrees obtained
by removing it contains at most half of number of leaves in the original tree, and
this vertex can be found in linear time.

We will call the vertex described in Lemma 3 a leaf centroid. Leaf centroid is an
extension of centroid introduced in [4]. Lemma 3 can be proved easily.

Recall that Gr is the rooted tree obtained from an unrooted tree G by choosing
r as the root. For a neighbor v of r, let Gr(v) denote the tree obtained by
contracting V − V (v) in Gr into a single vertex r. Let wr(v) denote the total
weight of vertices in V − V (v). Then wr(v) can be computed in a DFS for all
pairs of r and its neighbor v.

Now we are ready to give the main steps of our algorithm for the problem
in unrooted trees. Given an unrooted tree G, first, we select a leaf centroid v
of the tree as a root to get a rooted tree Gr and use the FPTAS in Section 4
for MaxMstCut (or the FPTAS in Section 5 for MinLstCut) to get a candidate
solution. Second, for each neighbor v of r, we consider the new created subtree
Gr(v) as a constrained problem by adding the new created vertex r in to L′.
With this method, we can solve our problems in unrooted trees iteratively. Let
X be an optimal solution, if r ∈ V − X then we can find a solution within the
error bound in the first step, if r ∈ X then the optimal solution is an optimal
solution to the problem in Gr(v) for some neighbor v of r with the constraint
r ∈ X , which implies that we can solve the problem by solving the problems in
Gr(v). We will assume that we solve the problem directly if the tree has only two
leaves. Then the algorithm will run at most O(log l) iterations. Note that when
the tree has at least three leaves, no leaf centroid is a leaf of the tree, and hence
L′ does not contain a possible root, implying that DP2(Gr, k, L′, q) receives a
well-defined input in our algorithm.
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As for the running time, we first show that when the graph is a path (a tree
has only two leaves), our problems can be solved in linear time. Clearly, it holds
for MinLstCut and MaxLstCut. For MaxMstCut in unrooted trees, it is easy to
see that, for each edge of maximum cost, there is an optimal solution containing
at most one endpoint of it. Then we can select an edge (u, v) of maximum weight,
and return the better one between two solutions in two rooted trees Gu and Gv.
Therefore, the problem in unrooted paths can be solved in linear time.

The hard part is the analysis for the general case. Since the case for MinLstCut
is more complicated than the case for MinLstCut. We will analyze the algorithm
for MinLstCut. We consider the search tree T generated in the algorithm. Each
node of T corresponds to an instance of the constrained MinLstCut in unrooted
trees. The root of T represents the original instance, say G(0). The children of
a node x in T correspond to the instances called recursively by the second step
of the algorithm when it solves the instance corresponding to x. We say that a
node is in level i if the path from the node to the root G(0) contains i edges.

Let G(i−1) be the tree corresponding to an instance I(i−1) in the (i − 1)-st
level of T , and G

(i)
j be the trees corresponding to the children instances I

(i)
j of

I(i−1) (j = 1, 2, . . . , x). We assume that G(i−1) has n(i−1) vertices and l(i−1)

leaves, and G
(i)
j has n

(i)
j vertices and l

(i)
j leaves. Then 3 ≤ n

(i)
j ≤ n(i−1) − 1,

3 ≤ l
(i)
j ≤ � l(i−1)

2 � + 1,
∑x

j=1 n
(i)
j ≤ n(i−1) + x − 1, and

∑x
j=1 l

(i)
j ≤ l(i−1) + x.

Under these constraints, we have the following relation (see full version of the
paper [8] for the proof)

x∑
j=1

l
(i)
j n

(i)
j ≤ l(i−1)n(i−1)

2
+

1
2
l(i−1) + 2n(i−1) − 4. (2)

Now we analyze the whole running time of the algorithm for MinLstCut. In
each node of T , the algorithm will call the FPTAS in Section 5 (say Fptas2 for
convenience) for once. The whole running time of the algorithm will be the sum
of all the running time taking by Fptas2. We will use N (i) to denote the total
number of vertices of all trees in level i of T . It is easy to verify that N (i) ≤ 3n(0).

For instance I(i−1), computing Fptas2 will use O(l(i−1)n(i−1)(1/ε+log n(i−1)))
time. For all subinstances of I(i−1), computing Fptas2 will take basic computa-
tions of ∑x

j=1 l
(i)
j n

(i)
j (1/ε + log n

(i)
j )

≤ ( l(i−1)n(i−1)

2 + 1
2 l(i−1) + 2n(i−1))(1/ε + log n(i−1)) (by (2))

≤ ( l(i−1)n(i−1)

2 + 5
2n(i−1))(1/ε + log n(i−1)).

This implies that in the i-th level of T , totally we use no more than

(
∑

j

l
(i−1)
j n

(i−1)
j

2
+

5
2
N (i−1)) · (1/ε + log N (i−1))
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basic computations. By iteratively using the above relation, we get that

(
∑

j l
(i−1)
j n

(i−1)
j ) · (1/ε + log N (i−1))

≤ l(0)n(0)

2i−1 (1/ε + log n(0)) +
∑i−2

j=0
5/2·N(j)

2(i−2−j) (1/ε + log N (j))
≤ l(0)n(0)

2i−1 (1/ε + log n(0)) + 5N (i−1)(1/ε + log N (i−1))
≤ l(0)n(0)

2i−1 (1/ε + log n(0)) + 15n(0)(1/ε + log 3n(0)). (by N (i−1) ≤ 3n(0))

Therefore, in the i-th level of T , we use basic computations no more than
1
2 ( l(0)n(0)

2i−1 (1/ε + log n(0)) + 15n(0)(1/ε + log 3n(0))) + 15
2 n(0)(1/ε + log 3n(0))

≤ l(0)n(0)

2i (1/ε + log n(0)) + 15n(0)(1/ε + log 3n(0)).

Since T has O(log l(0)) levels, totally, we use basic computations of

∑
i(

l(0)n(0)

2i (1/ε + log n(0)) + 15n(0)(1/ε + log 3n(0)))
= O(l(0)n(0)(1/ε + log n(0))).

We can solve MinLstCut in unrooted trees with the above running time bound.
In the same way, we know that MaxMstCut in unrooted trees can also be solved
in the same running time as that for the problem in rooted trees. The space used
in the algorithms for the problems in unrooted trees also do not increase. Then
we get
Theorem 4. There is an O(ln/ε)-time and O(l2/ε + n)-space algorithm that
computes a solution with error ε for MaxMstCut in an unrooted tree with non-
negative edge cost and nonnegative vertex weight.

Theorem 5. There is an O(ln(1/ε + log n))-time and O(l2/ε + n)-space algo-
rithm that computes a solution with error ε for MinLstCut and MaxLstCut in
an unrooted tree with nonnegative edge cost and nonnegative vertex weight.
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Abstract. Wireless Communication Networks based on Frequency Di-
vision Multiplexing (FDM in short) plays an important role in the field
of communications, in which each request can be satisfied by assigning a
frequency. To avoid interference, each assigned frequency must be differ-
ent to the neighboring assigned frequencies. Since frequency is a scarce
resource, the main problem in wireless networks is how to utilize the
frequency as fully as possible. In this paper, we consider the call con-
trol problem. Given a fixed bandwidth of frequencies and a sequence of
communication requests, in handling each request, we must immediately
choose an available frequency to accept (or reject) it. The objective of
call control problem is to maximize the number of accepted requests. We
study the asymptotic performance, i.e., the number of requests in the
sequence and the number of available frequencies are very large positive
integers. In this paper, we give a 7/3-competitive algorithm for call con-
trol problem in cellular network, improving the previous 2.5-competitive
result. Moreover, we investigate the triangle-free cellular network, pro-
pose a 9/4-competitive algorithm and prove that the lower bound of
competitive ratio is at least 5/3.

1 Introduction

Frequency Division Multiplexing (FDM in short) is commonly used in wireless
communications. To implement FDM, the wireless network is partitioned into
small regions (cell) and each cell is equipped with a base station. When a call
request arrives at a cell, the base station in this cell will assign a frequency to
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this request, and the call is established via this frequency. Since frequency is a
scarce resource, to satisfy the requests from many users, we have to reuse the
same frequency for different call requests. But if two neighboring calls are using
the same frequency, interference will appear to violate the quality of communica-
tions. Thus, to avoid interference, the same frequency cannot be assigned to two
different calls with distance close to each other. In general, the same frequency
cannot be assigned to two calls in the same cell or neighboring cells.

There are two research directions on the fully utilization of the frequencies.
One is frequency assignment problem, and the other is call control problem. In
frequency assignment problem, each call request must be accepted, and the ob-
jective is to minimize the number of frequencies to satisfy all requests. In call
control problem, the bandwidth of frequency is fixed, thus, when the number
of call requests in a cell or in some neighboring cells is larger than the total
bandwidth, the request sequence cannot be totally accepted, i.e., some requests
would be rejected. The objective of call control problem is to accept the requests
as many as possible.

Problem Statement
In this paper, we consider the online version of call control problem. There are
ω frequencies available in the wireless networks. A sequence σ of call requests
arrives over time, where σ = {r1, r2, ..., rt, ...}, ct denote the t-th call request and
also represent the cell where the t-th request arrives. When a request arrives at
a cell, the system must either choose a frequency to satisfy this request without
interference with other assigned frequencies in this cell and its neighboring cells,
or reject this request. When handling a request, the system does not know any
information about future call requests. We assume that when a frequency is
assigned to a call, this call will never terminate and the frequency cannot be
changed. The objective of this problem is to maximize the number of accepted
requests.

We focus on the call control problem in cellular networks and triangle-free
cellular networks. In the cellular network, each cell is a hexagonal region and
has six neighbors, as shown in Figure 1(a). The cellular network is widely used
in wireless communication networks. A network is triangle-free if there are no
3-cliques in the network, i.e., there are no three mutually-adjacent cells. An ex-
ample of a triangle-free cellular network is shown in Fig. 1(b).

Performance Measure
To measure the performance of online algorithms, we often use the competitive
ratio, which compare the output between the online algorithm and the optimal
offline algorithm, which knows the whole request sequence in advance. In call
control problem, the output is the number of accepted requests. For a request
sequence σ, let A(σ) and O(σ) denote the number of accepted request of an online
algorithm A and the optimal offline algorithm O, respectively. The competitive
ratio of algorithm A is RA = supσ O(σ)/A(σ). For the call control problem,
we focus on the asymptotic performance, i.e., the number of requests and the
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A cell

(a) cellular network

a cell

(b) triangle-free cellular network

Fig. 1. An example of the cellular network and triangle-free cellular network

number of frequencies are large positive integers. The asymptotic competitive
ratio for an online algorithm A is

R∞
A = lim sup

n→∞
max

σ
{O(σ)
A(σ)

|O(σ) = n}.

Related Works
How to fully utilize the frequencies to satisfy the communication requests is a
very fundamental problem in theoretical computer science and engineering. Both
the frequency assignment problem and the call control problem are well studied
during these years. From the description of these two problems, we know that the
call control problem is the dual problem of the frequency assignment problem.

The offline version of the frequency assignment problem in cellular networks
was proved to be NP-hard by McDiarmid and Reed [6], and two 4/3-approximation
algorithms were given in [6,7]. For the online frequency assignment problem, when
a call request arrives, the network must immediately assign a frequency to this call
without any interference. There are mainly three strategies: Fixed Allocation [5],
Greedy Assignment [1], and Hybrid Assignment [3]. If the duration of each call
is infinity and the assigned frequency cannot be changed, the hybrid algorithm
gave the best result for online frequency assignment, i.e., a 2-competitive algo-
rithm for the absolute performance and a 1.9126-competitive algorithm for the
asymptotic performance. When the background network is triangle-free, a 2-local
5/4-competitive algorithm was given in [9], an inductive proof for the 7/6 ratio
was reported in [4], where k-local means when assigning a frequency, the base sta-
tion only knows the information of its neighboring cells within distance k. In [11],
a 1-local 4/3-competitive algorithm was given.

For the call control problem, the offline version is NP-hard too [6]. To handle
such problem, greedy strategy is always the first try, when a call request ar-
rives, the network choose the minimal available frequency to serve this request,
if any frequency is interfere with some neighboring assigned frequency, the re-
quest will be rejected. Pantziou et al. [8] analyzed the performance of the greedy
strategy, proved that the asymptotic competitive ratio of the greedy strategy is
equal to the maximal degree of the network. Caragiannis et al. [1] gave a ran-
domized algorithm for the call control problem in cellular networks, the asymp-
totic competitive ratio of their algorithm is 2.651. Later, the performance of the



Deterministic Online Call Control in Cellular Networks 225

randomized algorithms was improved to 16/7 by the same authors [2], they also
proved the lower bound of the asymptotic competitive ratio for the randomized
algorithm is at least 2. Very recently, a deterministic algorithm with asymptotic
competitive ratio 2.5 was given in [10], and the lower bound of the asymptotic
competitive ratio for the deterministic algorithm was proved to be 2.

Our Contributions
In this paper, we consider the deterministic algorithms for the call control problem
in cellular networks and triangle-free cellular networks. In cellular network, we
give a 7/3-competitive algorithm, improving the previous 2.5-competitive result.
In triangle-free network, we propose a 9/4-competitive algorithm, moreover, the
lower bound of the competitive ratio in triangle-free network is proved to be at
least 5/3.

2 Call Control in Cellular Networks

2.1 Algorithm

The idea of our algorithm for call control problem in cellular networks is similar
to the algorithm in [10]. By using a totally different analysis, we can show our
algorithm is better, moreover, our algorithm is best possible among this kind of
algorithms.

Cellular networks are 3 colorable, each cell can be associated with a color
from {R, G, B} and any two neighboring cells are with different colors. Partition
the frequencies into four sets, FR, FB , FG, and FS , where FX (X ∈ {R, G, B})
can be only used in cells with color X and FS can be used in any cell. Since we
consider the asymptotic performance of the call control problem, we may regard
the number ω of frequencies in the system is a multiple of 7. Divide the the
frequencies into four disjoint set as follows:

FR = {1, ..., 2ω/7},
FG = {2ω/7 + 1, ..., 4ω/7},
FB = {4ω/7 + 1, ..., 6ω/7}, and
FS = {6ω/7 + 1, ..., ω}

Obviously, the ratio between the number of frequencies in FR, FG, FB , and FS

is 2 : 2 : 2 : 1.
Now we describe our algorithm CACO as follows:

2.2 Analysis

The high level idea to prove the performance of our algorithm CACO is to show
that the ratio between the total number of accepted requests by CACO and the
total number of satisfied requests by the optimal offline algorithm is at least 3/7.
To prove this, we analyze the number of satisfied requests in each cell and its
neighboring cells, then compare the number with the optimum value.
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Algorithm 1. CACO: When a request arrives at a cell C with color c ∈
{R, G, B}
1: if Fc is not totally used up then
2: assign the minimal available frequency from Fc to satisfy this request.
3: else if FS is not totally used up in cell C and its neighboring cells then
4: assign the minimal available frequency from FS to satisfy this request.
5: else
6: reject this request.
7: end if

Let Ri be the number of the requests arrived at cell Ci. Let Oi be the number
of requests accepted by the optimal offline algorithm in cell Ci.

∑
Oi is the

total number of accepted request by the optimal offline algorithm. Let Ai be the
number of requests accepted by our online algorithm CACO in cell Ci.

∑
Ai is

the total number of accepted request by CACO. Let Gx(Ci) be the the number
of requests accepted by CACO in cell Ci by assigning frequencies from Fx. It
can be seen that Ai = GR(Ci) + GG(Ci) + GB(Ci) + GS(Ci). If Ci is colored
with x ∈ {R, G, B}, then Ai = Gx(Ci) + GS(Ci).

Fact 1. For each cell Ci, Oi ≤ Ri, Ai ≤ Ri, and Ai ≥ 2ω/7 when Ri ≥ 2ω/7.

According to the number of satisfied requests by the optimal offline algorithm,
we classify the cells into two types: cell ci is safe if Oi ≤ 2ω/3, and dangerous
otherwise.

Lemma 2. If Ci is safe, then Ai ≥ 3Oi/7

Proof. This lemma can be proved by analyzing the following two cases.

– If Ri ≤ 2ω/7, Ai = Ri ≥ Oi, then Ai ≥ 3Oi/7.
– If Ri > 2ω/7, CACO will accept at least 2ω/7 requests by assigning frequen-

cies from Fx, thus, Ai ≥ 2ω/7. Since Ci is safe, Oi ≤ 2ω/3, thus, Ai ≥ 3Oi/7.
��

Fact 3. A safe cell has at most 3 dangerous neighboring cells. All neighboring
cells around a dangerous cell are safe.

Proof. This fact can be proved by contradiction. If a safe cell C has more than
3 dangerous neighboring cells, since C has 6 neighboring cells, there must exist
two dangerous cells which are neighbors. From the definition of dangerous cell,
the total number of accepted request in these two dangerous neighboring cells is
strictly more than ω, contradiction!

Similarly, if a dangerous cell C′ is a neighboring cell of another dangerous cell
C, the total number of accepted request in C and C′ is strictly more than ω.
Contradiction! ��
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According to the algorithm, when a request cannot be satisfied in a cell C with
color c, all frequencies in Fc must be used in C, and all frequencies in FS must
be used in C and its six neighbors. Thus, we have the following fact:

Fact 4. If cell C cannot satisfy any request according to the algorithm CACO,
then GS(C) +

∑
GS(Ck) ≥ ω/7, where Ck is the neighboring cell of C.

To compare the number of satisfied requests in each cell with the optimal offline
solution, we define Bi as follows, where Ck represents the neighboring cell of Ci.

Bi =
{

3Oi/7 if Ci is safe
Ai +

∑
(Ak − 3Ok/7)/3 if Ci is dangerous.

Lemma 5.
∑

Bi ≤
∑

Ai.

Proof. According to Lemma 2, if Ci is safe, we have Ai ≥ 3Oi/7. From Fact 3,
we know there are at most three dangerous neighbors around Ci, thus, after
counting Bi = 3Oi/7 frequencies in Ci, the remaining Ai − 3Oi/7 frequencies
can compensate the frequencies in the dangerous neighboring cells, and each
dangerous cell receives (Ai −3Oi/7)/3 frequencies. From the definition of Bi, we
can see that

∑
Bi ≤

∑
Ai. ��

Theorem 1. The asymptotic competitive ratio of algorithm CACO is at most
7/3.

Proof. From the definition of Oi and Bi, we can say Oi/Bi ≤ 7/3 for any
cell leads to the correctness of this theorem. That is because

∑
Oi/

∑
Ai ≤∑

Oi/
∑

Bi ≤ max Oi/Bi

If the cell is safe, i.e., Oi ≤ 2ω/3, we have Oi/Bi = 7/3.
If the cell Ci is dangerous, i.e., Oi > 2ω/3, since Ri ≥ Oi > 2ω/3 > 3ω/7,

that means the number of requests Ri in this cell is larger than Ai. Thus, some
requests are rejected in cell Ci, moreover, this cell cannot accept any further
requests.

– If the number of accepted requests in any neighbor of Ci is no more than
2ω/7, we can say that all the shared frequencies in FS are assigned to requests
in cell Ci. Thus, Ai = 3ω/7. We have

Oi/Bi = Oi/(Ai + (
∑

(Ak − 3Ok/7))/3) ≤ Oi/Ai ≤ ω/Ai = 7/3.

– Otherwise, suppose there are m neighbors of Ci in which the number of
accepted requests are more than 2ω/7. Let Ôi denote the average number
of optimum value of accepted requests for these m neighboring cells around
Ci.
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Bi = 2ω/7 + GS(Ci) + (
∑

for all safe neighbors

(Ak − 3Ok/7))/3

≥ 2ω/7 + GS(Ci) + (m × 2ω/7 +
∑

for the neighbors
with Ak > 2ω/7

GS(Ck) − m × 3Ôi/7)/3

≥ 2ω/7 + (m × 2ω/7 +
∑

for the neighbors
with Ak > 2ω/7

GS(Ck) + GS(Ci) − m × 3Ôi/7)/3

= 2ω/7 + (m × 2ω/7 + ω/7 − m × 3Ôi/7)/3
≥ 2ω/7 + (2ω/7 + ω/7 − 3Ôi/7)/3

(that is because for any neighbor with Ak > 2w/7,

Ok ≤ (ω − Oi) ≤ ω/3, thus, Ôi ≤ ω/3 and 2ω/7 − 3Ôi/7 ≥ 0.)
≥ 2ω/7 + (3ω/7 − 3(ω − Oi)/7)/3

(since Ok ≤ ω − Oi leads to Ôi ≤ ω − Oi)
= 2ω/7 + Oi/7

Thus, Oi/Bi ≤ Oi/(2w/7 + Oi/7) ≤ 7/3. ��

In this kind of algorithms, the frequencies are partitioned into FR, FG, FB and
FS , when a request arrives at a cell with color c, first choose the frequency from
the set Fc, then from FS if no interference appear. The performances are different
w.r.t. the ratio between |FR| (|FG|, |FB|) and |FS |. Note that from symmetry,
the size of FR, FG and FB should be same. Now we show that CACO is best
possible among such kind of algorithms. Suppose the ratio between |FR| and
|FS | is x : y. Consider the configuration shown in Figure 2. In the first step,
ω requests arrive at the center cell C with color c, the algorithm will use up
all frequencies in Fc and FS , in this case, the ratio of accepted requests by the
optimal offline algorithm and the online algorithm is (3x + y)/(x + y) since the
optimal algorithm will accept all these requests. In the second step, ω requests
arrive at C1, C2 and C3 with the same color c′. The online algorithm can only
accept xω/(3x + y) requests in each Ci (1 ≤ i ≤ 3) since the frequencies in FS

are all used in C. In this case, the ratio between the optimal offline algorithm
and the online algorithm is 3(3x + y)/(4x + y) since the optimal algorithm will
accept all ω requests in Ci (1 ≤ i ≤ 3) and reject all requests in C. Balancing
these two ratios, we have x : y = 2 : 1, and the ratio is at least 7/3.

3 Call Control in Triangle-Free Cellular Networks

The call control problem in cellular network is hard. But for some various
graph classes, this problem may have a better performance. For example, in
linear network, an optimal online algorithm with competitive ratio 3/2 can be
achieved [10]. An interesting induced network, triangle-free cellular network, has
been studied for many problems including frequency assignment problem[4,9].
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C

C1

C2C3

Fig. 2. Algorithm CACO is best possible among this kind of algorithms

Ci

(a) Structure A:
neighbors with the
same base color

Ci CkCj

(b) Structure B:
neighbors with dif-
ferent base colors

Fig. 3. Structure of neighboring cells

For a given cell Ci, from the definition of triangle-free, only two possible
configurations may exist for the structure of neighboring cells, which are shown
in Fig. 3. It is easy to see that if Ci has 3 neighbors, the neighboring vertices are
of the same color. On the other hand, if the neighbors are of different colors, Ci

has at most 2 neighbors. There exists a simple structure in triangle-free cellular
network, i.e., a cell has only one neighbor, we can regard this structure as the
case in Fig. 3(b).

For the three base colors R, G and B, we define a cyclic order among them
as R → G, G → B and B → R. Partition the frequency set {1, ..., ω} into three
disjoint sets:

FR = {1, ..., ω/3}, FG = {ω/3 + 1, ..., 2ω/3}, FB = {2ω/3 + 1, ..., ω}

To be precisely, assigning frequencies from a set must in order of bottom-to-top
(assigning frequencies from lower number to higher number) or top-to-bottom
(assigning frequencies from higher number to lower number). Now we describe
our algorithm for call control problem in triangle-free cellular networks.

Algorithm CACO2: Handling request in a cell C with color X ∈ {R, G, B}

1. If cell C has no neighbors, just assign frequency from 1 to ω.
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2. If cell C has neighboring structure A (Fig. 3(a)), let Y be the base color of
C’s neighbors and Z be the other third color. Assign frequency in cell C as
follows if no interference appear:
(a) Assign frequencies from FX in bottom-to-top order.
(b) If all frequencies in FX are used up, assign frequencies from FZ in

bottom-to-top order if X → Y ; and in top-to-bottom order otherwise.
Such assignment can make sure if C uses the frequency from FZ after
using up all frequencies from FX , and its neighboring cell C′ also uses
the frequency from FZ after using up the frequencies from FY , C and C′

must assign frequency from FZ in different order no matter the neighbor
configuration of C′ is. (This can be verified by checking this case (case
2) and the next case (case 3) of CACO2.)

3. If cell C has neighboring configuration B (Fig. 3(b)), let Y and Z be the base
colors of its two neighbors, respectively. Without loss of generality, assume
X → Y . Assign frequency in cell C as follows if no interference appear:
(a) Assign frequencies from FX in bottom-to-top order.
(b) If all frequencies in FX are used up, assign frequencies from FY in top-

to-bottom order.

Theorem 2. The competitive ratio of CACO2 is at most 9/4.

Proof. Assume at some time, let Oi and Ai denote the number of accepted
requests in cell Ci by the optimal offline algorithm and online algorithm CACO2,
respectively. The theorem holds if

∑
Oi/

∑
Ai ≤ 9/4. Similar to the analysis for

CACO, we define Bi as the amortized number of accepted requests in cell Ci.
Thus, our target is to prove that Oi/Bi ≤ 9/4 and

∑
Bi ≤

∑
Ai. W.l.o.g., let

X , Y and Z denote the three colors in the network.
Intuitively, we may set Bi = 4Oi/9 if Ai ≥ 4Oi/9 in cell Ci, and the remain-

ing uncounted frequencies can be used to compensate the number of accepted
frequencies in its neighboring cells. Next, we describe how to partition the re-
maining uncounted frequencies according to cell Ci’s neighboring configuration.
Let Hij to be the number of frequencies used in Ci but will compensate the
number of frequencies in Cj .

1. The neighboring configuration of Ci is A (Fig. 3(a)), the uncounted number
of frequencies is Ai − 4Oi/9, evenly distribute this number to the three
neighboring cells, i.e., each neighboring cell Cj of Ci receives Hij = (Ai −
4Oi/9)/3.

2. The neighboring configuration of Ci is B (Fig. 3(b)), denote the color of Ci

to be X , and the colors of its neighboring cells to be Y (cell Cj) and Z (cell
Ck) respectively. W.l.o.g., assume X → Y , Y → Z and Z → X .
– If Ai > ω/3,

In this case, the requests in cell Ci will use some frequencies from FY .
If Aj < 4Oj/9, there exist rejected request in Cj , thus, Ai + Aj = 2ω/3.
The remaining uncounted number of frequencies in Ci can be partitioned
into (4Oj/9 − Aj) and ω/9, the former part (4Oj/9 − Aj) compensates
the number in Cj (i.e., Hij = 4Oj/9 − Aj if Aj < 4Oj/9) and the later
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part ω/9 compensates the number in Ck (i.e., Hik = ω/9 if Ak < 4Ok/9).
This compensation is justified since 4Oi/9+(4Oj/9−Aj)+ω/9 = 4(Oi+
Oj)/9 − Aj + ω/9 ≤ 5ω/9 − Aj < Ai.

– If Ai ≤ ω/3,
In this case, all frequencies used in Ci are from FX , and some frequencies
used in Ck may from FX too. If Ak < 4Ok/9, all remaining uncounted
number Ai − 4Oi/9 of frequencies in Ci will compensate the number in
Ck, i.e., Hik = Ai − 4Oi/9 and no extra number of frequencies compen-
sates the number of frequencies in Cj , i.e., Hij = 0.

We define Bi as follows, where Hji is the compensation from neighboring Cj .

Bi =
{

4Oi/9 if Ai ≥ 4Oi/9
Ai +

∑
Hji if Ai < 4Oi/9,

From previous description, we can say that 4Oi/9+
∑

j Hij ≤ Ai if Ai ≥ 4Oi/9,
thus, ∑

Bi =
∑

Ai≥4Oi/9

4Oi/9 +
∑

Ai<4Oi/9

(Ai +
∑

Ci and Cj are neighbors

Hji)

=
∑

Ai≥4Oi/9

(4Oi/9 +
∑

Ci and Cj are neighbors

Hij) +
∑

Ai<4Oi/9

Ai

≤
∑

Ai≥4Oi/9

Ai +
∑

Ai<4Oi/9

Ai

≤
∑

i

Ai

Now we analyze the relationship between Bi and Oi. Assuming the color of Ci

is X .

1. If Ai ≥ 4Oi/9, Bi = 4Oi/9.
2. If Ai < 4Oi/9,

(a) If Ai < ω/3
Since Ai < 4Oi/9, there must exist some rejected requests in Ci. Some
frequencies in FX are used in one of Ci’s neighbor Cj . According to
the algorithm, the neighboring structure of Cj is B (Fig. 3(b)), and
Ai + Aj = 2ω/3.
In this case, Hji = 4Oi/9 − Ai, thus,

Bi = Ai +
∑

Ck and Ci are neighbors

Hki ≥ Ai + Hji = 4Oi/9.

(b) If Ai ≥ ω/3 and Ci has two neighbors Cj with color Y and Ck with
color Z as shown in Fig. 3(b). W.l.o.g., assume that X → Y , Y → Z
and Z → X . According to the algorithm, after using up the frequencies
in FX , Ci will use some frequencies from FY until interference appear,
thus, Ai + Aj ≥ 2ω/3.
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i. If the neighboring configuration around Cj is A (Fig. 3(a)), we claim
that Aj ≥ 4Oj/9. That is because Oj ≤ ω − Oi ≤ ω − 9Ai/4 ≤
ω − 9ω/12 = ω/4, Ai ≤ 4Oi/9 ≤ 4ω/9, and Ai + Aj ≥ 2ω/3.
In this case, Hji = (Aj − 4Oj/9)/3, and

Bi ≥ Ai + Hji = Ai + (Aj − 4Oj/9)/3 ≥ 4Oi/9.

ii. If the neighboring configuration around Cj is B (Fig. 3(b)),
– if Aj ≤ ω/3, we have Hji = Aj − 4Oj/9. Thus,

Bi ≥ Ai + Hji = Ai + Aj − 4Oj/9 ≥ 2ω/3 − 4Oj/9 ≥ 4Oi/9.

– If Aj ≥ ω/3, Hji = ω/9, thus,

Bi ≥ Ai + Hji = Ai + ω/9 ≥ ω/3 + ω/9 = 4ω/9 ≥ 4Oi/9.

(c) If Ai ≥ ω/3 and the neighbors of Ci are of the same color (Fig. 3(a)),
assume the color of its neighboring cell is Y . According to the algorithm,
after using up the frequencies from FX , Ci will use some frequencies
from FZ to satisfy some requests. Since Ci rejects some requests, we
have Ai + Aj = ω for some neighboring cell Cj of Ci. This is because
Ci and Cj assign frequencies from FZ in different order, and Cj will use
the frequency from FZ after using up the frequency from FY .
In this case, Hji = (Aj − 4Oj/9)/3 if the neighboring configuration of
Cj is A (Fig. 3(a)), or Hji = ω/9 if the neighboring configuration of Cj

is B (Fig. 3(b)). In the former case,

Bi ≥ Ai + Hji = Ai + (Aj − 4Oj/9)/3 > 4Oi/9;

in the later case,

Bi ≥ Ai + Hji = Ai + ω/9 ≥ 4ω/9 ≥ 4Oi/9.

Combine all above cases, we have Oi/Bi ≤ 9/4 in each cell Ci. Since
∑

Bi ≤∑
Ai, we have

∑
Oi/

∑
Ai ≤ 9/4. ��

Next, we show that the lower bound of competitive ratio for call control problem
in triangle-free cellular networks is at least 5/3.

Theorem 3. The competitive ratio for call control problem in triangle-free cel-
lular network is at least 5/3.

Proof. We prove the lower bound by using an adversary who sends request ac-
cording to the assignment of the online algorithm.

Consider the configuration shown in Figure 4.
In the first step, the adversary sends ω requests in the center cell C. Suppose

the online algorithm accepts x requests. If x ≤ 3ω/5, the adversary stop sending
request. In this case, the optimal offline algorithm can accept all these ω requests,
thus, the ratio is at least 5/3.
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CC2

C3

C1

Fig. 4. lower bound of competitive ratio is at least 5/3

If x > 3ω/5, the adversary then sends ω requests in each cell of C1, C2 and
C3. To avoid interference, the online algorithm can accept at most ω−x requests
in each cell, and the total number of accepted requests is x+3(ω−x) = 3ω−2x.
In this case, the optimal offline algorithm will accept 3ω requests, i.e., reject all
requests in the center cell C. Thus, the ratio in this case is 3ω/(3ω − 2x). Since
x > 3ω/5, this value is at least 5/3.

Combine the above two cases, we can say that the competitive ratio is at least
5/3. ��
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Abstract. The newsvendor problem describes the dilemma of a news-
paper salesman—how many papers should he purchase each day to resell,
when he doesn’t know the demand? We develop approaches for this well
known problem in operations research, both for when the actual demand
is known at the end of each day, and for when just the amount sold
is known, i.e., the demand is censored. We present three results: (1) the
first known algorithm with a bound on its worst-case performance for the
censored demand newsvendor problem, (2) an algorithm with improved
worst-case performance bounds for the regular newsvendor problem com-
pared to previously known algorithms, and (3) more precise bounds on
the performance of the two algorithms when they are seeded with an
approximate “guess” on the optimal solution. In addition (4) we test
the algorithms in a variety of simulated and real world conditions, and
compare the results to those by previously known approaches. Our tests
indicate that our algorithms perform comparably and often better than
known approaches.

1 Introduction

The newsvendor problem is about deciding the number of items of a product a
vendor should order to meet an unpredictable demand, when the product has a
short life-cycle like newspapers, perishables, or fashion apparel. Formally, in this
problem we receive, online, a sequence σ = d1, . . . , dT of demands, where each
di is from a given interval [m, M ] of valid demands. Before we can see demand
di, we have to place an order amount xi. We only actually sell the lesser of di

and xi; i.e., our profit is r min{di, xi}− cxi where r is the per unit revenue and c
is the per unit cost. Any unsold items go waste, and cannot be used in the next
step, and similarly any unmet demand is lost and not seen again. The objective
is to place orders that maximize the total profit over the demand sequence.

There is a more realistic censored demands version of the problem in which
the true demand of a product is not revealed to the vendor, instead just the ac-
tual sales is. Here, at each step i, after we order amount xi, we learn the amount
sold si = min{di, xi}, and earn the profit rsi − cxi. These two newsvendor prob-
lems play a fundamental role in real-world supply chain planning of several kinds
of products, such as consumer electronics, seasonal products, perishables, and
certain kinds of vaccines. They have been extensively studied within operations
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research, although almost always under the assumption that the demands are
independently and identically distributed according to some underlying distribu-
tion, which is known to a varying degree (see, e.g., [4, 8, 13, 17, 23, 31, 32, 34,
35, 37, 38, 39, 40, 41, 44]).

In this paper we present three results: (1) the first known algorithm with
a bound on its worst-case performance for the censored demand newsvendor
problem, (2) an algorithm with improved worst-case performance bounds for
the regular newsvendor problem compared to previously known algorithms, and
(3) more precise bounds on the performance of the two algorithms when they
are seeded with an approximate “guess” on the optimal solution. Further (4) we
present results of extensive tests of our algorithms on simulated and real data.

Offline Adversaries for the Newsvendor. A common approach taken to re-
solve the demand uncertainty issue is using a stochastic model for the demands;
assuming, for example that for each period the demand is drawn independently
from some known distribution. In using such an approach, the goal is then to
choose an order amount which maximizes expected profit (see, e.g., [12]). How-
ever, such approaches are commonly inadequate, as the quality of the final result
depends heavily on the quality of the assumptions made about the distribution.
Given the strong uncertainty inherent in many newsvendor items, the quality
of such approaches is usually low. (See [44] for a lengthier discussion on the
shortcomings of this approach.) We observe this as well in our experiments on
real-world data (see Section 4).

Alternate approaches to the newsvendor problem are more “adversarial” in
nature. In these models, very little is assumed about the nature of the demands,
and worst-case analysis is used. Typically, only a lower bound m and upper
bound M on the range of possible demand values are assumed. Here, one possible
approach is to minimize the maximum regret :

max
demand sequences

(OPT − ALG),

where OPT denotes the profit of the offline optimal algorithm which knows the
demand sequence in advance (see, e.g., [5]), and ALG is the profit of the strategy
used (see [38, 44, 46]). This is related to the standard approach for evaluating and
designing online algorithms in computer science, i.e., to minimize the competitive
ratio, which is roughly the ratio OPT/ALG in the worst case (see [5]).

The above approaches are not useful, however, since using Yao’s technique,
one can prove a lower bound of Tc(M − m)(r − c)/r on the maximum regret,
and similarly a lower bound of Mc/(mr) + (r − c)/r on the competitive ratio
for any randomized online algorithm [31, 32]. Such “high” lower bounds are not
surprising since here an algorithm has to make a decision corresponding to an
input before the input is received. This is unlike online problems in, say, caching
or scheduling, where the decision is made after the input is received but before
the next input is received.

For this reason, we turn away from evaluating the performance of algorithms
in terms of the dynamic offline optimal, and consider a more realistic target:
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the static offline optimal, which we denote here by STOPT. STOPT is a weaker
version of OPT which makes an optimal decision based on perfect knowledge of
the demands, but is required to choose one single order quantity to use for all
periods. This approach is standard in computational learning theory and online
learning [7, 19]. Bertsimas and Thiele [4] show that on a sequence of T demands,
STOPT chooses to order, every day, an amount equal to the demand of rank
�T −Tc/r� in the sorted non-decreasing sequence of the demands. In particular,
we evaluate our algorithms using maximum regret from static optimal :

max
demand sequences

(STOPT − ALG),

Comparing the performance of algorithms with the performance of STOPT is
both theoretically and practically significant, because any bounds for an al-
gorithm with respect to STOPT also hold with respect to an algorithm which
makes decisions based on stationary stochastic assumptions—assumptions made
by most of the algorithms in the inventory theory literature[8, 12, 13, 17, 23, 34,
35, 38, 39, 40, 41, 44].

1.1 Our Contributions

In this paper we present three algorithms, bounds on their worst-case perfor-
mance in terms of regret from STOPT, and their empirical evaluation on simu-
lated as well as real data. Our contributions are—

– A simple deterministic algorithm for the regular newsvendor problem with
a bound on regret from STOPT. This is in contrast to the bound on the
algorithm’s regret from OPT in terms of STOPT’s regret from OPT given in
[32, 33]—the previously known worst-case bound for the problem. (Section
3.2.)

– An simple deterministic algorithm for the censored demand newsvendor
problem with the first known worst-case bound—on regret from STOPT.
(Section 3.4.)

– Versions of the two algorithms above that accept a guess on the STOPT
solution, and more precise bounds on their regret from STOPT based on the
quality of the guess. (Section 3.3.)

– Extensive empirical comparison of the performance of our algorithms with
known algorithms from operations research and inventory management on
simulated and real data from a supermarket. (Section 4.)

We begin with an brief outline of the extensive past work on these problems,
and other related work in machine learning in Section 2.

2 Related Work

The Newsvendor Problem. The newsvendor problem is easy to solve when we
know the true demand distribution, in which case we can apply the well-known
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“critical fractile” solution: in each period order x where φ(x) = (r−c)/r and φ(·)
is the cumulative probability function for the distribution [35]. This maximizes
the expected profit.

In most real-life scenarios, however, the true demand distribution is not avail-
able and so several studies assume that we have only partial information on
the underlying distribution. In this, the Bayesian approach is most popular. It
assumes knowledge of the family of distributions to which the true distribution
belongs, but not of the specific parameters. It begins with an prior belief about
the parameter values, and continually updates its belief based on observations
of demand over time, by computing posterior distributions. See, e.g., work by
Scarf [39, 40], Karlin [21], Iglehart [18], Murray and Silver [29], and Azoury [2].
In several applications, however, updating the prior distribution is found to be
expensive [30].

A contrasting approach is the non-parametric or robust approach, as taken
by the well-known Scarf’s Rule, which maximizes the expected profit for the
worst-case demand distribution, when only the mean and variance of the distri-
bution are known [13, 41]. This maximin approach is, however, risk averse [34].
A slightly less conservative approach is that of minimax expected regret, which
aims to minimize the maximum expected loss from not being able to make opti-
mal decisions because of limited demand information [3, 8, 24, 34, 38, 44]. (We
use a similar criteria, but in the context of adversaries, minimizing the maximum
regret over all sequences, rather than the maximum expected regret).

A different approach is that of sample average approximation taken by Levi et
al. [23]. Their policy is based only on the observed samples of demands and, when
the number of samples is larger than a specific lower bound, is guaranteed to have
a profit arbitrarily close to that of the policy that knows the true distribution.

All of the above policies assume that the demands follow a single (possible
unknown) underlying distribution, in particular, they are independent and iden-
tically distributed. This itself need not be true in real-world situations.

There has been some work which does not assume an underlying distribution.
With respect to OPT, O’Neil [31] gives simple deterministic “balancing” algo-
rithms that match the lower bounds on the maximum regret, Tc(M − m)(r −
c)/r, and competitive ratio, Mc/(mr) + (r − c)/r. More importantly, O’Neil et
al.[31, 32, 33] give an algorithm WMN based on the weighted majority approach
[25], that has a bound on its regret from the dynamic optimal OPT in terms of
the regret of STOPT from OPT. They also give an algorithm WMNS which has a
similar bound except that the static optimal in its case is “shifting”, i.e., allowed
to change the order quantity a fixed number of times during the sequence.

Recently, Zhang and Xu [47] have analyzed the newsvendor problem using
the risk-reward version of competitive analysis introduced by [1]. Bertsimas and
Thiele [4] give solutions for several variants of the newsvendor problem which
optimize the order quantity purely based on historical data, including the amount
ordered each day by STOPT. They also take into account risk preferences by
“trimming” historical data which would lead to overly optimistic predictions.
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The Censored Demands Newsvendor Problem. There are several papers that
follow the Bayesian approach for the censored demands newsvendor problem,
beginning with Conrad [10], and then by Harpaz et al. [15], Ding et al. [11], and
Lu et al. [27, 28]. Also related are papers by Chen and Plambeck [9], Lariviere
and Porteus [22], and Liyanage and Shanthikumar [26]. These latter papers,
however, consider the variant when the inventory is non-perishable and carries
over to the next period.

Following the non-parametric approach, Burnetas and Smith [6] give a stochas-
tic approximation algorithm that approximates the newsvendor quantile of the
demand distribution. Huh and Rusmevichientong [17] and Huh et al. [16] ap-
ply stochastic online convex optimization techniques (a stochastic variant of the
classical gradient descent method) to this problem. They give policies whose per
period performance converges, as T increases, to that of the policy that knows the
underlying distribution. Godfrey and Powell [14] and Powell et al. [36] present a
non-parametric method CAVE to successively approximate the convex objective
function with piecewise linear functions. (We compare our algorithms with CAVE
in Section 4.)

Online Decision Making. Our basic approach is somewhat related to the Al-
gorithm “Follow the Perturbed Leader,” a general algorithm for online deci-
sion making, also applicable to the learning from experts problem. It’s creators,
Kalai and Vempala[20], apply the algorithm to such problems as online shortest
paths[43] and the tree update problem[42]. Their algorithm, however, relies on
randomization to bound the performance. Our algorithms are deterministic and
focus on the specific structure of the newsvendor problems.

3 Algorithms and Analysis

In this section we present a basic incremental algorithm INC, which has a
bounded regret from STOPT. We then make this bound more precise by mod-
ifying it into algorithm INCβ, which adds imaginary initial demands to input
sequence. The precision of the bound is improved by controlling the differences
(“gaps”) between the imaginary demands added, as well as the STOPT solution
for that initial demand sequence. Lastly, we show how the above algorithms can
be modified to allow for bounds when the demands are censored.

Denote the demand sequence by σ = d1, . . . , dT , the revenue per item by r
and the cost per item by c. Denote the subsequence of demands till step i, for
i ≤ T , by σ(i) = d1, . . . , di. Further, denote the j-order statistic of the demands
by d(j). (The j-order statistic is the demand at rank (position) j in the sequence
of demands sorted in non-decreasing order [45].) Recall that given σ, STOPT
chooses to order the amount d(�T−Tc/r�) [4]. Denote the profit of algorithm
ALG on σ by ALG(σ). Lastly, if β and σ are two demand sequences, denote the
concatenated sequence by (β, σ).



Newsvendor Problem 239

3.1 Basic Incremental Algorithm

The basic incremental algorithm INC is best described by first describing the
following related, albeit hypothetical, algorithm INCL which is online but has
the benefit of a lookahead of one: before deciding the order amount at step i,
INCL knows all demands in σ(i).

Algorithm INCL. At step i order the amount that STOPT orders on sequence
σ(i), i.e., the �i − ic/r�-order statistic of σ(i).

Lemma 1. INCL(σ) ≥ STOPT(σ).

Proof. The proof is by induction on the number of steps i considered in the
sequence. For the base case of i = 1, it is clear that both INCL and STOPT
order the single demand value. For the inductive step assume INCL(σ(i)) ≥
STOPT(σ(i)). Let the amount ordered by STOPT on σ(i + 1), and thus the
amount ordered by INCL on step (i + 1) on σ, be x. Thus INCL(σ(i + 1)) =
INCL(σ(i))+r min{di+1, x}−cx, which, by induction, is at least STOPT(σ(i))+
r min{di+1, x} − cx.

We claim that STOPT(σ(i)) is at least as large as the profit of ordering x
for each step of σ(i), i.e., the profit STOPT, when operating on σ(i + 1), earns
on the first i steps. This follows directly from the optimality of STOPT(σ(i)).
Combining this the result above we get INCL(σ(i + 1)) ≥ STOPT(σ(i + 1)).

Algorithm INC. At step 1 order m. At step i ≥ 2 order the �i − ic/r�-order
statistic of σ(i − 1), if it exists, and order the (i − 1)-order statistic of σ(i − 1)
otherwise.

Denote by Δi the maximum difference between two demands of consecutive
ranks in σ(i) (padded with an initial demand of m), i.e., maxj≥0(d

(j+1)
(i) − d

(j)
(i) ),

where d(i) refers to demands in σ(i) and d
(0)
(i) = m. Further let Δ denote maxi Δi.

We now bound the performance of INC.

Lemma 2. INC(σ) ≥ STOPT(σ) − TΔ max{r − c, c}.

Proof. We show that INC(σ) ≥ INCL(σ) − TΔ max{r − c, c}. The rest follows
from Lemma 1.

Observe that if at some step INCL orders x and INC orders x ± δ, then as a
result INC’s profit can be lower than INCL’s by at most max{x(r − c) − (x −
δ)(r − c), x(r − c) − (xr − (x + δ)c)} = δ max{r − c, c}.

We now show that at each step i, the difference between the order of INCL
and the order of INC is Δi, which will complete the proof. This is clear for step
i = 1, in which INC orders m and INCL orders d1. For step i ≥ 2, first assume
that the �i− ic/r�-order statistic exists in σ(i−1). Observe that both INCL and
INC consider this order statistic, but INCL considers it in the sequence σ(i) while
INC considers it in the the shorter sequence σ(i − 1). Depending on the rank of
di in σ(i), these amounts may be the same, or differ by at most Δi. When the
�i − ic/r�-order statistic does not exist in σ(i − 1), it has to be the demand at
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rank i. In that case INC orders the (i − 1)-order statistic in σ(i − 1) and INCL
orders the i-order statistic in σ(i), and again the two order amounts can differ
by at most Δi.

3.2 Imaginary Initial Demands

Algorithm INC’s bound depends on Δ, which for some input sequences may be
as large as (M − m). To control Δ, we add an imaginary sequence of initial
demands β = b1, . . . , bt to the beginning of the input; so on input sequence σ,
the algorithm imagines it receives the input (β, σ). We show how this leads to
an algorithm INCβ which has tighter bounds.

Let β be such that its demands are some δ apart and “cover” the range [m, M ],
i.e., β = m, m + δ, m + 2δ, . . . , M . It is used in the following algorithm.

Algorithm INCβ. Given a sequence of beginning demands β, run INC on the
sequence (β, σ). The profit INCβ earns, however, is the profit on the actual
demands in σ.

Since β occurs at the beginning it ensures that, irrespective of σ, Δi ≤ δ
for every step i of input (β, σ). Thus Δ ≤ δ for the entire input. Introducing
β does, however, affect the algorithm’s performance in other ways, which we
bound below. We begin with some notation.

Let σ′ be a subsequence of σ. When an algorithm ALG runs on input σ, denote
the profit it earns on just σ′ by ALG(σ′ | σ). Thus INCβ(σ) = INC(σ | (β, σ)).
Further, let x be the order amount chosen by STOPT when it runs on input σ. If
STOPT uses x on an input sequence β, denote the profit it earns by STOPT(β |
σ).

Lemma 3. INCβ(σ) ≥ STOPT(σ)−((T +t)δ max{r−c, c}+INC(β)−STOPT(β |
σ)), in which T and t are the lengths of σ and β, respectively, and δ is the Δ-value
for (β, σ).

Proof. Clearly, INCβ(σ), which is INC(σ | (β, σ)), equals INC(β, σ) − INC(β |
(β, σ)). Since INC is online INC(β | (β, σ)) = INC(β).

Using Lemma 2, we can lower bound INC(β, σ) by STOPT(β, σ) − (T +
t)δ max{r − c, c}. Let x be the order amount chosen by STOPT on input σ.
From its optimality, STOPT(β, σ) is at least the profit if x is chosen in all steps
of input (β, σ), i.e.,

STOPT(β, σ) ≥ STOPT(β | σ) + STOPT(σ).

Combining the results above completes the proof.

At each step in β, the difference between the order amount INC places and x
can be at most (M − m). This leads to the following theorem.

Theorem 1. INCβ(σ) ≥ STOPT(σ)−((T +t)δ max{r−c, c}+t(M−m)max{r−
c, c}), in which T and t are the lengths of σ and β, respectively, and δ is the
Δ-value for (β, σ).

Observe that the last term is a constant in terms of T . Thus if δ = Θ((M −
m)/

√
T ) is chosen, we get INCβ(σ) ≥ STOPT(σ)−O(

√
T (M−m)max{r−c, c}).
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3.3 Tighter Bounds for Reasonable Guesses

We can, however, get tighter bounds if β is chosen more carefully. We first show
how to choose β such that INC(β) = STOPT(β). Let X be target order amount
we want STOPT to choose on input β. We choose the demands bi in β such that
INC also orders X at each step. Observe that if on some step INC chooses the
order statistic k, then on the next it either chooses the same order statistic k or
the next (k + 1). This is because for any i, �i − ic/r� is at most 1 larger than
�(i − 1) − (i − 1)c/r�, when c/r < 1. We sketch how to construct β below.

Modify INC to choose X at step 1 (instead of the earlier specified m). Choose
b1 = X . This ensures that INC chooses X in step 2. The remaining bi values
“move away” from X in steps of δ, until they “cover” the range [m, M ]. At each
step i we add a bi which is the next higher or next lower based on the following
cases:

– Case 1: If �i− ic/r� = �(i− 1)− (i− 1)c/r�, add the next higher value of bi.
– Case 2: Else, if �i− ic/r� = �(i− 1)− (i− 1)c/r�+ 1, we add the next lower

values of bi.

Both cases have to occur since c/r < i. If, however, say the lower range is covered
before the higher, we simply repeat bi equal to m until the higher is covered as
well, and vice versa. This ensures that INC orders X at every step on β.

For the rest of the paper we assume β is constructed using the method
above. Clearly, if X is x, the amount STOPT orders on input σ, then INC(β) −
STOPT(β | σ) = 0, and the adverse effect of adding β is neutralized. But since x
is not known in advance we guess at value X . We bound the the profit of INCβ
in terms of the difference |X − x|.

Theorem 2. INCβ(σ) ≥ STOPT(σ)− ((T + t)δ max{r−c, c}+O(|X−x|2r/δ)),
in which T and t are the lengths of σ and β, respectively, and δ is the Δ-value
for (β, σ).

Proof. Denote INC(β)−STOPT(β | σ) by R. We begin with bounding the change
in R when |X −x| is increased by 1. Assume X ≤ x. Let the number of bi values
in the interval [X, x] be q. It is easy to see that on decreasing X by 1, the increase
in R is r(�tc/r� + q) − ct = O(qr). A similar argument shows that when X > x
and X is increased by 1, the increase in R is O(qr).

Since bis are δ apart, q = O(|X − x|/δ). Furthermore, since R = 0 when
X = x, it follows by “integrating” over the distance |X − x| that R itself is
O(|X − x|2r/δ).

In practice, we found that varying the value of X does indeed result in a parabolic
curve for the profit on INCβ. Further, INCβ performs well as long as X is a
reasonable guess of x.

3.4 Censored Demands

In the real world demands are usually censored, i.e., at each step i only the amount
of sales si = min{di, xi} is revealed to the algorithm. We show how we can
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modify INC and INCβ into algorithms for censored demands, CINC and CINCβ,
respectively, which can guarantee a minimum profit in terms of STOPT(σ), the
optimal profit on the uncensored demand sequence. Let the censored demand se-
quence for the algorithm in question be represented by cen(σ).

Algorithm CINC. On input cen(σ) proceed as algorithm INC would on input
cen(σ), except if at any step i the sale si equals the order amount (i.e., demand
is censored), assume that the input demand di is the largest possible M .

Note assuming that when demand is censored di = M does not affect the
immediate working or profit of CINC. It only affects the decisions CINC takes in
future.

Theorem 3. CINC(cen(σ)) ≥ STOPT(σ) − TΔ max{r − c, c}.

Proof. Let σ′ be the input sequence CINC assumes it receives—after the censor-
ship and its own modifications on censored demands. Every demand value in σ′ is
at least as large at the corresponding values in σ. Thus STOPT(σ′) ≥ STOPT(σ).
The rest follows from Lemma 2.

We can similarly define CINCβ and prove the following theorem.

Theorem 4. CINCβ(cen(σ)) ≥ STOPT(σ) − ((T + t)δ max{r − c, c} + O(|X −
x|2r/δ)), in which T and t are the lengths of σ and β, respectively, and δ is the
Δ-value for (β, σ).

4 Experiments

4.1 Comparison Algorithms

In our experiments, we implement and compare our algorithms with the follow-
ing:

STOPT. This is the static optimal described in Section 1. At every step it orders
d(�T−Tc/r�), the demand at position �T−Tc/r� in the sequence of demands sorted
in non-decreasing order, as shown in [4].

NORMAL. This algorithm assumes that the demands are normally distributed
with a given mean μ and standard deviation σ, and places the order that maxi-
mizes the expected profit. That order amount is μ+σφ−1

(
(r−c)/r

)
, where φ−1(·)

is the inverse of the standard normal cumulative distribution function[12].

SCARF. This algorithm implements Scarf’s Rule [41]. Rather then using the
normal distribution, like above, it assumes a worst case distribution for the given
mean μ and standard deviation σ. It orders μ + σ

2

(√
(r − c)/c −

√
c/(r − c)

)
if

c(1 + σ2/μ2) < r, and 0 otherwise [12, 41].
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WMN and WMNS. These algorithms, Weighted Majority Newsvendor and
Weighted Majority Newsvendor Shifting, respectively, are based on the weighted
majority approach that is common in computational learning theory [31, 32, 33].
They are the first known algorithms with worst-case performance bounds.

CAVE. This algorithm, named Concave, Adaptive Value Estimation, estimates
the the profit as a function of the order amount, through a sequence of concave,
piecewise linear approximations. The approximations are constructed using sam-
ple gradients of the profit at different order quantities [14]. It does not depend
on any prior knowledge of the underlying sample distribution. Furthermore, it
is designed to handle censored demands.

Algorithms WMN, WMNS, and CAVE use user-specified parameters. For those,
we use values recommended in their respective papers.

4.2 Experiments on Simulated Data

First, in Figure 1(a) we show the performance of INC on a simulated demand
sequence generated from a normal distribution. We took the average profit of 100
sequences of 100 days (steps) each. The actual means of these sequences were
about 52 and the standard deviations were about 10. The minimum value for
each sequence was 0 and the maximum value was 100. Further, we chose revenue
per item r = 5 and cost per item c = 2. (These values for r and c are used for all
experiments, including the ones on real-world data.) We compare our basic INC
to STOPT, SCARF, NORMAL, WMN, and WMNS. The demand sequence was
not censored, as these algorithms are designed for non-censored data. Along the
x-axis we have the various values of the mean assumed by SCARF and NORMAL.
Along the y-axis we have the profit of each algorithm.

Notice that INC is extremely close to WMN and WMNS all of three of which
are slightly less then STOPT. They outperform NORMAL and SCARF when the
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Fig. 1. (a) INC is close to WMN and WMNS, and outperforms NORMAL and SCARF
when they assume means off by about 3% or more. (b) Assuming data is censored
reduces profit in the basic CINC.
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Fig. 2. (a) Bounding Δ in CINCβ improves performance, as long as β is short. (b)
CINCβ is tolerant to bad guesses of X.

assumed mean is off by about just 3 or more (which translates to about 3% of
the range or more).

For the remaining tests, we focus on performance on censored demand se-
quences. In Figure 1(b), we again generate simulated values from different nor-
mal distributions, such that the mean demand values of the sequences vary from
20 to 70. We compare the performance of the basic INC algorithm to that of its
censored version CINC. The mean of the sequences vary along the x-axis, and
the profits of the algorithms as a fraction of the profits of STOPT are shown on
the y-axis.

For data sets in which the mean is significantly less then the maximum value
of demand, there is a severe drop-off of performance of our censored algorithm
CINC. This drop can be accounted for by noting that the bound on the INC
and CINC, without added β sequences, is in terms of Δ, the maximum “gap”
between the demands. When we are using the censored data approach Δ can
be quite large since several demand values are assumed to be M even when the
sequence has only seen much smaller demands. In other words, CINC often ends
up choosing M as the order amount, even when most of the demands are much
smaller. This produces considerable waste.

The above problem is addressed by adding an initial set of inputs in the al-
gorithm CINCβ, effectively bounding Δ to some chosen small value δ. We show
results of CINCβ’s performance in Figure 2(a). Here we attempted several ver-
sions of CINCβ, but without any form of guess X . That is, we simply added
a string of prior demands a specified gap δ apart. Versions of CINCβ with Δ
bounded by 5, 10, or 20, all perform better than CINC. The version of CINCβ
with Δ bounded by 1 does not, and this is because the corresponding β is quite
long and adversely affects the performance on the relatively short σ. (This is
later countered by adding a suitable guess for X to CINCβ.)

Observe that CINCβ, with equally spaced prior gaps, seems to perform best
if the sequence’s mean was close to 55. Since at this value it turns out that the
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Fig. 3. The influence of beginning sequence β diminishes with increasing length of
input sequence σ

amount x that STOPT orders on the sequence is close to the amount STOPT
orders on the β sequences we chose, it led us to the idea of guessing described
in Section 3.3. Instead of letting β influence the final result, we can control the
effect with a guess X for x, and creating a β such that STOPT on β would
order X . In Figure 2(b) we show the performance of this idea. This data is also
simulated, and has an actual mean around 47. The sequence length is 100. On
the x-axis we have the values of the guesses given to the algorithms. There are
several versions of CINCβ, each with different gap values, Δ = δ.

Recall from Section 3.4 that the bound on CINCβ is: CINCβ(cen(σ)) ≥
STOPT(σ)−((T +t)δ max{r−c, c}+O(|X−x|2r/δ)). This equation predicts that
the amount of regret resulting from a bad guess is quadratic in the incorrect-
ness of the guess. And, our graphs of CINCβ do actually have a parabolic shape.
Further, notice that the curves with wider gaps slope downward in profit more
slowly, as the guesses become worse—they are robust to bad guesses. However,
small gap-versions have a benefit if the guess is accurate: their peaks achieve
higher profits. We also plotted CAVE in this plot. Cave does reasonably well,
and has the advantage of requiring no initial guess. However, for guesses within
15 units of the optimal, giving a window of about 35 out of a range of 100,
all CINCβ versions outperform CAVE. The CINCβ versions with δ of 10 or 20
outperform CAVE irrespective of the guess.

The quadratic term within the bound equation for CINCβ above does not have
a T factor within in it. That is, it is independent of the length of the sequence. As
such, we expect that for longer sequences, the amount of error, when taken as a
percentage of STOPT, will decrease—as the length of the sequence σ dominates
over that of β. We show this in Figure 3. The four plots of CINCβ are for various
guesses for X . The y-axis for this (and remaining plots) shows the profit as a
fraction of the profit earned by STOPT. The sequences are generated so that the
optimal guess would be 55. The plots are clearly as expected.
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Fig. 4. (a) CINCβ performs well on real-world data as well. (b) CINCβ’s performance
is steady even as the relative skew in real-world increases.

4.3 Experiments on Real-World Data

We also tested our algorithms using real-world data from a local supermarket.
We took the amount of sales for 250 dairy products for a sequence of about 260
days, and used them as our demand sequences. Here too, for simplicity, we used
revenue per item r = 5 and cost per item c = 2. This data is very different then
the normal distributions that we used earlier—many sequences have large skew.

In Figure 4(a), we take the same algorithms as from Figure 2(b). The x-axis
is a normalized guess value. That is, the value on the x-axis is the difference
between the guess X and the optimal guess x (STOPT choice for σ). Since all of
the demand sequences are quite different, we use this normalization. The value
plotted against the y-axis is the average profit over the 250 products, normalized
using STOPT’s profit for each product. Notice that the relationships in Figure
2(b) still hold for the CINCβ algorithms on real-world data. Smaller gaps are
stronger at the peak, but slope away faster.

From the last plot, we find that CAVE averages a lower performance then
before. We believe this is due to the non-normality in real-world data. We
use the value of the skew of each distribution (the difference between me-
dian and mean), as a measure of the non-normality. Figure 4(b) has, on the
x-axis, the skew of each real world sequence, normalized by the median (i.e.,
|mean − median|/median). Relatively more skewed distributions appear farther
right. Each plot of CINCβ has a gap Δ of 5. The four plots show four different
variations from the optimal x of the guessed value X . We also plot the perfor-
mance of SCARF and CAVE. Here we use a version of SCARF which takes the
demands from the sequence seen till now and computes their mean and standard
deviation, which it uses in Scarf’s Rule to compute the next order quantity. The
demand values given to SCARF are uncensored.

In this graph, we see that the bounds on CINCβ hold even for highly erratic
data. While CAVE performs very well so long as the sequence has small relative
skew, the other sequences result in poor performance, even net losses over the
entire sequence. SCARF is much worse off on real data, even though it has the
advantage of uncensored demands.
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5 Conclusion

In introducing our incremental algorithm and proving its bounds, we introduce
an algorithm with three strengths. First, the algorithm is fairly simple and we
can directly bound its profit in terms of the profit of the offline optimal algorithm
STOPT (the only known such bound for the newsvendor problem). Second, the
simplicity of our algorithm implies that it can be modified to account even for
censored data. Finally, the algorithm’s performance is robust on both simulated
data and real-world data.

It would be interesting to extend the algorithms to more general versions of
the newsvendor problem. For instance, when the items ordered in a period do
not become obsolete at the end of that very period, but can be carried over for
a fixed number of periods.
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Abstract. Given a set S = {b1, · · · , bn} of integers and an integer s, the
subset sum problem is to decide if there is a subset S′ of S such that
the sum of elements in S′ is exactly equal to s. We present an online
approximation scheme for this problem. It updates in O(log n) time and
gives a (1 + ε)-approximation solution in O((log n + 1

ε2
(log 1

ε
)O(1)) log n)

time. The online approximation for target s is to find a subset of the
items that have been received. The bin packing problem is to find the
minimum number of bins of size one to pack a list of items a1, · · · , an

of size in [0, 1]. Let function bp(L) be the minimum number of bins to
pack all items in the list L. We present an online approximate algorithm
for the function bp(L) in the bin packing problem, where L is the list
of the items that have been received. It updates in O(log n) updating
time and gives a (1 + ε)-approximation solution app(L) for bp(L) in
O((log n)2 + ( 1

ε
)O( 1

ε
)) time to satisfy app(L) ≤ (1 + ε)bp(L) + 1.

1 Introduction

Both the subset sum and the bin packing are classical problems that have been
studied extensively in the area of theoretical computer science. An instance of
the subset sum problem is a pair (S, s), where S is a set {b1, · · · , bn} and s is
an integer. The target is to find if there is a subset S′ of S such that the sum
of elements in S′ is exactly equal to s. Ibarra and Kim [12] have given a fully
polynomial-time approximation for it. The fastest approximation scheme was
shown by Kellerer et al [15] with running time O(min{n/ε, n+(1/ε)2(log(1/ε)}).

The bin packing problem is to find the minimum number of bins of size one to
pack a list of items a1, · · · , an of size in [0, 1]. It is a classical NP-hard problem
and has been widely studied. The bin packing problem has many applications in
the engineering and information sciences. Some approximation algorithms have
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been developed for this problem. Examples include First Fit, Best Fit, Sum-of-
Squares, and Gilmore-Gomory cuts [2,8,7,11,10]. The first linear time approxi-
mation scheme for the offline bin packing problem is shown in [9]. Recently, a
sublinear time approximation algorithm has been developed for the offline bin
packing problem with weighted sampling [3]. A classical online algorithm assigns
items to bins in the order they are given in the original list, without using the
information of subsequent items. Online algorithms and their performance were
reported in a series of papers [13,14,18,6,16,19,21,20]. The current champion on-
line algorithm has approximation ratio 1.58889 given by Seiden [20]. On the
other hand, a lower bound of 1.53635 for online algorithms has been proved by
Brown [4] and Liang [17].

For online models of computation, an item from input can arrive at any time,
and will be saved in the memory. For the subset sum problem, when a target s is
given, a (1+ ε)-approximation solution should be outputted. For the bin packing
problem, a (1 + ε)-approximation solution should be outputted for packing all
items that have arrived.

We show an online approximation scheme for the subset sum problem such
that it has a O(log n) updating time and gives a (1 + ε)-approximation solution
in an O((log n + 1

ε2 (log 1
ε )O(1)) log n) time. The online approximation for target

s is to find a subset of the items that have been received. We also show an
O((log n + 1

ε2 (log 1
ε )O(1)) log n) time approximation scheme for the subset sum

problem with a sorted list of items.
Let function bp(L) be the minimum number of bins to pack all items in

the list L. We present an online approximate algorithm for the function bp(L)
in the bin packing problem. It updates in O(log n) time and gives a (1 + ε)-
approximation solution app(L) for bp(L) in O((log n)2 + (1

ε )O( 1
ε )) time to have

app(L) ≤ (1 + ε)bp(L) + 1, where L is the list of input items received. The
online algorithms in this paper for bin packing only approximate the minimum
number of bins to pack those input items. It also gives a packing plan that allows
an item position to be changed at different moment. This does not contradict
the existing lower bound works [4,17] that no approximation scheme for online
algorithms that do not change the bins of already packed items.

Our algorithms for two problems share some similar technologies, which are
based on partitioning the input items into O(log n) intervals. In section 2, we
present algorithms and their lower bound for the subset sum problem. In sec-
tion 3, we present algorithms and their lower bound for the bin packing problem.

1.1 Overview of Our Methods

For a target s, the elements are partitioned as large items and small items to
stay in O(log n) intervals [a1, a2), [a2, a3), · · · , [ak, ak+1]. A large item is of size
at least δs for some constant δ. In each interval, there is a small factor (1 + γ)
difference among its elements for some small positive constant γ. If the elements
are saved in a tree structure like the B-tree, the number of input items in each
interval can be determined in O(log n) steps. For the subset sum problem, apply
a pruning method to approximate the sum of subsets with large items to reduce
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the number of cases. Finally, add some small items from those intervals to make
the total sum approximation to the target as close as possible.

For the bin packing problem, a linear programming method is used to pack
large items [9]. Then small items are first filled into the bins packed with items,
and then some additional bins. The number of items in each interval shows how
much capacity is needed.

2 Algorithms for the Subset Sum Problem

Given a list of positive integers b1, b2, · · · , bn and a positive integer s, the subset
sum problem is to find a subset of elements from the list such that their sum is
equal to s. The optimal solution to this problem is the subset with the largest
sum, but no more than s. In this section, we study an approximation to this
problem, which tries to minimize the difference with the optimal solution.

2.1 An Offline Algorithm for Subset Sum

We show an algorithm that depends on certain data structure to hold the input
items and a pruning method. We present a pruning method in Section 2.2 and
a data structure in Section 2.3.

Definition 1. – A multiset has the format (n1g1, · · · , nmgm), where each nigi

represents that element gi appears ni times. The number m is called the
length of the multiset.

– For a multiset T = (n1g1, · · · , nmgm), define
∑

(T ) = n1g1 + · · · + nmgm.
– Assume that T is a multiset (n1g1, · · · , nmgm). A sub-multiset T ′ of T is a

multiset (n′
1g1, · · · , n′

mgm) with n′
i ≤ ni for i = 1, · · · , m.

– For a multiset T = (n1g1, · · · , nmgm) and a real γ > 0, a γ-pruning of T is a
list of integers s1, · · · , st such that for each sub-multiset T ′ = (n′

1g1, · · · , n′
mgm)

of T , there is a si such that
∑

(T ′)/(1 + γ) ≤ si ≤
∑

(T ′) and si =
∑

(T ′′)
for some sub-multiset T ′′ = (n′′

1g1, · · · , n′′
mgm) of T .

– A multiset T = (n1g1, · · · , nmgm) is a (δ, m, m′)-multiset for s if for each gi

(i = 1, · · · , m), δs ≤ gi ≤ s and ni ≤ m′.

In the algorithm below, we assume that we have an algorithm Prune(γ, T ) that
returns a γ-pruning for a multi-set T .

Algorithm
Input: a parameter ε, which determines the ratio of approximation, an integer
target s, and a data structure to hold the input integers b1, · · · , bn.

Steps:

1. Let constants ε1 = ε
100 and γ = ε1

100 .
2. Find the largest element bk1 that is at most s.
3. Partition all items less than or equal to bk1 into O(log n) intervals I1 =

[a1, a0), I2 = [a2, a1), · · · , It = [at, at−1], where a0 = bk1 , and at ≤ γs
n , ai+1 =

ai/(1 + γ).
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4. Let the first group of intervals consist I1, I2, · · · , Im such that am ≤ ε1s and
am−1 > ε1s.

5. Let the second group of intervals consist Im+1, Im+2, · · · , It.
6. Let M = Prune(γ, (min(

⌊
2
ε1

⌋
, C[I1])a1, · · · , min(

⌊
2
ε1

⌋
, C[Im])am)), where

C[Ii] is the number of items in Ii, and
⌊

2
ε1

⌋
is for the consideration that

a subset with sum at most s should have no more than
⌊

2
ε1

⌋
items of size at

least ε1s.
7. Let M ′ = ∅.
8. For each y ∈ M with y ≤ s,
9. Let v1 = y.

10. For each Ii = [ai, ai−1) in the second group,
11. Find the largest integer ji ≤ C[Ii] with v1 + ji · ai ≤ s
12. Let v1 = v1 + ji · ai.
13. Put v1 into set M ′.
14. Output the largest x ∈ M ′.

End of Algorithm

Lemma 1. Assume that there is an algorithm Prune(γ, T ) such that given a
multiset (δ, m, m′)-multiset T for s, it generates a γ-pruning in O(t(1

ε )) time
if m = O(1

ε ), m′ = O(1
ε ) and δ = O(ε). Assume that the n input elements

are saved in the data structure D that takes q(n) time to answer the number
of items in an interval range [a, b] and the largest item at most s. Then there
is a deterministic O((q(n) + t(1

ε )) log n) time algorithm such that it outputs an
(1+ε)-approximation for the subset sum problem, where ε is an arbitrary positive
constant.

Proof. Without loss of generality, assume ε ≤ 1. Consider an optimal solution
sopt = u1 + u2 = (bi1 + bi2 + · · ·+ bih

)+ (bj1 + bj2 + · · ·+ bjk
) for the subset sum

problem, where u1 = bi1 + bi2 + · · ·+ bih
is the sum of items from the first group

of intervals and u2 = bj1 + bj2 + · · · + bjk
is the sum of items from the second

group of intervals. There exists a u′
1 ∈ M with

u1

1 + γ
≤ u′

1 ≤ u1. (1)

Convert u2 into u′
2 = aj1 + aj2 + · · · + ajk

such that bju ∈ Iju = [aju , aju−1) for
u = 1, · · · , k. Therefore,

u2

1 + γ
≤ u′

2 ≤ u2. (2)

We have sopt/(1 + γ) ≤ u′
1 + u′

2.
According to lines 10 to 13 in the algorithm, there exists v1 ∈ M ′ such that

v1 = u′
1 + u′′

2 = u′
1 + (jm+1am+1 + jm+2am+2 + · · · + jtat), (3)



254 L. Ding et al.

where

u′′
2 = (jm+1am+1 + jm+2am+2 + · · · + jtat). (4)

Since each item in the second group is at most ε1s and our algorithm increases
v1 as much as possible until it is in [s − ε1s, s] or all items in the second group
is used, we have

v1 ≥ min(u′
1 + u′

2, (1 − ε1)s). (5)

Case 1. The optimal solution sopt ≤ (1 − ε1)s. By inequality (5), we have

v1 ≥ min(u′
1 + u′

2, (1 − ε1)s) (6)
≥ min(u′

1 + u′
2, sopt) ≥ min(sopt/(1 + γ), sopt) (7)

≥ sopt/(1 + γ). (8)

– Case 1.1. sopt(1 + ε1) < v1.
For each term jpap in u′′

2 (see equation (4)), find an arbitrary subset Jp ⊆ Ip

such that Jp has exactly jp elements. Let u′′′
2 =

∑t
p=m+1(

∑
bi∈Jp

bi), and
v2 = u1 + u′′′

2 . We have

u′′
2 ≤ u′′′

2 ≤ (1 + γ)u′′
2 . (9)

By inequalities (1) and (9), we have v1 ≤ v2 ≤ v1(1 + γ).
• Case 1.1.1 v2 > s.

We know that u1 ≤ s since sopt = u1 + u2 ≤ s. We reduce some items
of u′′′

2 from the second type of intervals to convert v2 to v3. We will
eventually have (1−ε1)s ≤ v3 ≤ s since each item from the second group
of intervals is at most ε1s. Therefore, sopt < v3 ≤ s, which contradicts
that sopt is an optimal solution.

• Case 1.1.2 v2 ≤ s.
Since sopt < v1 ≤ v2 ≤ s, this contradicts that sopt is an optimal solution.

– Case 1.2. sopt(1 + ε1) ≥ v1.
By inequalities (6) to (8), we have sopt

1+γ ≤ v1. Thus, we have sopt

1+γ ≤ v1 ≤
sopt(1 + ε1). Therefore, v1 is an (1 + ε)-approximation to sopt.

Case 2. The optimal solution sopt > (1 − ε1)s.
By inequalities (1) and (2), u1+u2

1+γ ≤ u′
1 + u′

2 ≤ u1 + u2. By lines 10 to 13 in
the algorithm and equation (3), we have v1 = u′

1 +u′′
2 ≥ u′

1 +u′
2− ε1s since each

item in a second type interval is at most ε1s. Therefore,

sopt

1 − ε1
≥ s ≥ v1 = u′

1 + u′′
2 ≥ u′

1 + u′
2 − ε1s ≥ u1 + u2

1 + γ
− ε1s (10)

≥ u1 + u2

1 + γ
− ε1

sopt

(1 − ε1)
= (

1
1 + γ

− ε1
(1 − ε1)

)sopt ≥ (1 − ε

2
)sopt. (11)

Therefore, v1 ∈ [(1− ε
2 )sopt,

sopt

1−ε1
]. Therefore, v1 is an (1 + ε)-approximation for

sopt.
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It takes O(q(n) log n) time to obtain C[Ii] for i = 1, · · · , t since t = O(log n).
The number of first type intervals is O(log 1

ε ). Each approximate solution sub-
set for target s contains at most O(1

ε ) items from first type intervals. It takes
O(t(1

ε ) log n) time to prune and process all y ∈ M in lines 8 to 13 in the algo-
rithm. The total time is O((q(n) + t(1

ε )) log n). �

2.2 A Pruning Method

We show a pruning method that is embedded in the algorithm in Section 2.1. It
is based on a divide-and-conquer method.

Consider a (δ, m, m′)-multiset T = (n1b1, · · · , nubu) for s for δ = O(ε), m =
O(1

ε ), m′ = O(1
ε ). The following functions are used to generate a δ′-pruning for

T for δ′ = O(ε).
The parameter δ′ be used to control the pruning. Let η = δ′

log u . Partition
[δs, 2s] into intervals J1 = [d0, d1), J2 = [d1, d2), · · · , Jv = [dv−1, dv] such that
di = di−1(1+η). We just make the number v to be big enough such that (1+η)v ≥
2s/δs = 2/δ. Therefore, the total number of intervals v = O( (log u)(log 1

ε )
ε ) by the

setting of η and the fact δ′ = O(ε).

Sketch(M)
Input: a list of items M = h1, · · · , hr

Let U = ∅.
For each interval Ji, put the smallest item in Ji ∩ M into U .
Output U .

End of Sketch

Merge (M1, M2)
Input: two lists of items M1 = x1, · · · , xt, and M2 = y1, · · · , yz

Let M = ∅.
For each pair xi ∈ M1 and yj ∈ M2

put xi + yj into M .
Sketch(M).

End of Merge

Algorithm Prune(δ′, L)
Input: A multiset L = n1b1, · · · , nubu and a parameter δ′.

Let M = ∅.
If L has only one item, n1b1

Put 0, b1, 2b1, · · · , n1b1 into list M .
Return Sketch(M).

Partition L into two multisets L1 and L2 evenly.
Return Merge(Prune(L1), Prune(L2)).

End of Algorithm

The following facts are easy to verify. Their proofs can be found in [5].
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Lemma 2 ([5]). (1)For 0 ≤ y ≤ 1, ey ≤ 1+y+y2. (2)For a real number y ≥ 1,
(1 + 1

y )y ≤ e. (3) For a real number y, 1 + y < ey.

Lemma 3. There is an O((1
ε )2(log(1

ε ))O(1)) time algorithm such that given a
(δ, m, m′)-multiset for s, where δ = O(ε), m = O(1

ε ), m′ = O(1
ε ), it generates a

δ′-pruning for a δ′ = O(ε).

Proof. We prove this by induction. Assume u = 2k for some integer k, where u
is the number of different elements in multiset T . When 2k−1 < u < 2k for some
integer k, we can append some 0s so that the total length is equal to 2k.

The basis of induction is trivial. Assume that for u ≤ 2k−1, for each mul-
tiset L of length u, and each sub-multiset L′ of L, Prune(δ′, L) contains h
with

∑
(L′)/(1 + η)k−1 ≤ h ≤

∑
(L′). Consider the case u = 2k. Let L be

a multiset of length u = 2k. Partition L into L1 and L2 of length 2k−1. Let
L′ be a sub-multiset with partition L′ = L′

1 ∪ L′
2, where L′

1 consists all ele-
ments in L1 and L′

2 consists all elements in L2. By our hypothesis, we have
h1 ∈ Prune(δ′, L′

1) and h2 ∈ Prune(δ′, L′
2) such that

∑
(L′

1)/(1 + η)k−1 ≤
h1 ≤

∑
(L′

1) and
∑

(L′
2)/(1 + η)k−1 ≤ h2 ≤

∑
(L′

2). By the merging and
pruning procedures, we have item h with (h1 + h2)/(1 + η) ≤ h ≤ h1 + h2,
which implies

∑
(L′)/(1 + η)k ≤ h ≤

∑
(L′). Therefore, for the input multiset

L′ = (n1b1, · · · , nubu) for s,
∑

(L′)/(1 + η)log u ≤ h ≤
∑

(S′). By Lemma 2,

h ≥
∑

(L′)/(1 + η)log u ≥
∑

(L′)e−η log u (12)

≥
∑

(L′)e−δ′
≥
∑

(L′)/(1 + δ′ + δ′2) (13)

≥
∑

(L′)/(1 + 2δ′). (14)

The total number of intervals v = O( (log u)(log 1
ε )

ε ) by the setting of η and the fact
δ′ = O(ε). It is easy to see that the merging takes O(( log u

ε )2) each time. The total

time follows from the recursive equation T (u) ≤ 2T (u/2) + O(( (log u)(log 1
ε )

ε )2).

This gives a solution T (u) = O(( (log u)(log 1
ε )

ε )2 log u) = O((1
ε )2(log 1

ε )2(log u)3) =
O((1

ε )2(log 1
ε )5) since u = O(1

ε ). �

2.3 A Data Structure

We describe a data structure to hold the input elements. It takes O(log n) time
to insert a new element and find the number of elements in the range of an
arbitrary interval. It is an interval 2-3 tree [1,5].

Definition 2. – A 2-3 tree [1,5] is a tree whose each internal node has two or
three children, and every path from the root to a leaf is of the same length.

– Define an interval 2-3 tree to be a 2-3 tree such that each internal node A
has an additional record for the number of leaves in the subtree with root at
A.
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– For an interval 2-3 tree T and a node A of T , let TA be the subtree of T with
root at A.

Lemma 4. An interval 2-3 tree takes O(log n) time to insert a new element and
O(log n) time to obtain the number of elements in a prescribed range [a, b].

Proof. Assume T is an interval 2-3 tree to hold all elements from the input. Each
internal node A also holds the number of leaves in the subtree TA. This makes it
possible to find the number of items in a range [a, b] in O(log n) steps. Insertion
to the interval 2-3 tree is similar to the regular 2-3 tree, but it also increase the
size of subtrees that contain the new item.

All items in the interval 2-3 tree are in the bottom leaves with an ascending
order from left to right. In order to find the number of items in a prescribed
range [a, b], search the interval 2-3 tree for the leftmost item a′ that is larger
than or equal to a, and also the rightmost item b′ that is less than or equal to b.
Let Pa′ be the path from a′ to the root, and Pb′ be the path from b′ to the root.
Let r′ be the first node that is in both Pa′ and Pb′ . Following the path from a′

to r′, calculate the number n1 of leaves on the left side of a′ (the leaves less than
a′) under subtree Tr′ . Following the path from b′ to r′, calculate the number n2
of leaves on the right side of b′ (the leaves greater than b′) under subtree Tr′ .
Let n0 be the size of subtree Tr′ . Then n0 − n1 − n2 is the number of leaves in
the range [a, b]. �

A node contains the tuple (l1, · · · , lk, s), where k is the number of children, li is
the largest leaf under the substree of the i-th child, and s is the number of leaves
under this node. Furthermore, a node also holds the tuple (p1, · · · , pk), where
each pi is a pointer to the i-th child.

2.4 Full Algorithms for the Subset Sum Problem

We show both online and offline algorithms for the subset sum problem. For
the online algorithm, a new items ai or target s arrives at unpredicted time.
When a target is given, an (1 + ε) approximation of the optimal solution will be
computed. We also convert our online an algorithm that deals with the subset
sum problem with multiple targets and have Theorem 3.

Theorem 1. There is an online algorithm for the subset sum problem such that
it has an O(log n) updating time, and computes an (1 + ε)-approximation in
O((log n + 1

ε2 (log 1
ε )O(1)) log n) time, where ε is an arbitrary positive constant.

Proof. Build an interval 2-3 tree as described in Lemma 4. When a new item ar-
rives, insert it in the interval 2-3 tree. It follows from Lemma 1 and Lemma 4 . �

The following theorem is for an offline algorithm with a sorted list of input.

Theorem 2. There is a O((log n+ 1
ε2 (log 1

ε )O(1)) log n) time algorithm such that
given a list of n sorted elements and a target s, it outputs a (1+ε)-approximation
for the subset sum problem, where ε is an arbitrary positive constant.
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Proof. It is well known that searching a sorted list takes O(log n) steps with
binary search. It follows from Lemma 3 and Lemma 1. �

Definition 3. Given a list of positive integers a1, · · · , an, and m targets t1, · · · , tm,
the approximatemultiple queries subset sumproblem is to find (1+ε)-approximation
solutions for the m targets.

Theorem 3. There is an algorithm for the multiple queries subset sum problem
such that it outputs m (1 + ε)-approximations in
O((n + m(log n + (1

ε )2(log 1
ε )O(1))) log n) time, where ε is an arbitrary positive

constant.

Proof. It follows from Theorem 1. �

2.5 Lower Bound for Subset Sum

We give an Ω(log n) lower bound for deterministic approximation scheme for the
subset sum problem with a sorted input list.

Theorem 4. Every deterministic approximation scheme must make Ω(log n)
adaptive queries to the input sorted list for the subset sum problem.

3 Algorithms for Bin Packing

In this section, we first show an O(log n) time deterministic approximation
scheme for bin packing if the input is a sorted list of elements. We then show an
online approxiamtion scheme which takes O(log n) time and O(n) space.

3.1 Bin Packing for Large Items

In this section, we review a classical method for packing large items.

Definition 4. – For item y and integer h, define yh to be h copies of item y.
– A type Ti of a bin is represented by a multi-set (b1,ia1, · · · , bm,iam), which

satisfies
∑m

j=1 bj,iaj ≤ 1.
– If T is a type of bin, denote (x, T ) to be x bins of type T .
– A packing solution is given by a list of (x1, T1), · · · , (xt, Tt) to pack all ele-

ments.
– Assume that y1 ≤ y2 ≤ · · · ≤ ym be a sublist of items in the list L = a1 · · ·an.

Assume that P is a packing solution for L′ = yh1
1 ≤ yh2

2 ≤ · · · ≤ yhm
m . Define

a packing adaption of L′ to L is a packing that put hi elements between yi−1
and yi to replace those slots for yi.

– A packing scheme is often described as an adaption to an existing solution
for some list yh1

1 ≤ yh2
2 ≤ · · · ≤ yhm

m .

We show the following Lemma 5 and Lemma 6 that are essentially from [9].
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Lemma 5 ([9]). Assume δ is a constant. Given a bin packing problem for B =
{n1a1, · · · , nmam} with each ai ≥ δ, there is a mO( 1

δ ) time algorithm to give
a solution with at most Opt(B) + q, where q is the number of types to pack
a1, · · · , am, and is at most m

1
δ .

Lemma 6 ([9]). Assume there is a t(m, n) time algorithm A such that given a
list of items of size at least δ, it returns m items y1, y2, · · · , ym, where yi is the i-
th element from the list for i = 1, 2, · · · , m. Then there is a t(O(1), n)+ ( 1

εδ )O( 1
δ )

time approximation scheme B for the δ-bin packing problem.

3.2 An Offline Algorithm

Our offline algorithm for the bin packing problem assumes that the input is
a sorted list of items. Our algorithm takes O((log n)2) time. It is interesting
that this gives an example of an NP-hard problem that has an O((log n)2) time
approximation scheme.

Lemma 7. Assume that the n input elements are saved in the data structure
D that takes y(n) time to answer the number of items in the range [a, b] or
find the i-th element. Then there is a deterministic O((log n)y(n) + (1

ε )O( 1
ε ))

time algorithm such that it outputs a (1 + ε)Copt + 1 approximation for the bin
packing problem, where ε is an arbitrary positive constant.

Proof. Without loss of generality, assume 0 < ε ≤ 1. Let constants δ = ε
3 and

γ = ε
3 .

Algorithm
1. Partition all items in [ δ

n2 , δ) into O(log n) intervals I1 = [a0, a1), I2 =
[a1, a2), · · · , It = [at−1, at), where a0 = δ

n2 , at = δ, ai+1 = (1 + γ)ai.
2. Let C(Ii) be the number of items in the interval Ii.
3. Use si = C([ai, ai+1))ai+1 to approximate the sum of items in [ai, ai+1).
4. Find a (1+ ε)-approximation U of bins for packing all items of size at least

δ via Lemma 6 and let x1T1, · · · , xqTq be the types from the above approximate
solution.

5. Fill all bins in x1T1, · · · , xqTq with at least δ space unfilled by the items in
∪t

i=1C([ai, ai+1))ai+1 so that each bin wastes no more than δ space.
6. Use some additional bins to pack the left items in ∪t

i=1C([ai, ai+1))ai+1.
7. Make the plan that each item in [ai−1, ai] replaces an ai+1 packed in those

bins (the plan is not executed).
End of Algorithm

By the algorithm, we have 1
1+γ

∑t
j=1 sj ≤

∑
ai∈[ 1

n2 ,δ) ai ≤
∑t

j=1 sj . Assume
that an optimal solution to a bin packing problem has two types of bins. Each
bin of the first type contains at least one item of size δ, and each bin of the
second type only contains items of size less than δ. Let R1 be the set of all first
type bins, and R2 be the set of all second type bins.
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Case 1. If U can contain all items, then |U | ≤ (1 + ε)|R1| ≤ (1 + ε)|R1 ∪ R2|.
Case 2. A bin beyond those in U is used. Let U ′ be all bins without more than

δ positions left right after line 6 in the algorithm. There is at most one bin with
more than δ space wasted right after line 6. In line 7 of the algorithm, when an
item ai+1 is replaced by an item in [ai, ai+1), at most ai+1

γ
1+γ additional space

is wasted. After line 7, a bin in U ′ wastes at most δ + (1 − δ) γ
1+γ ≤ 2δ space.

We have |U ′| ≤ |R1∪R2|
(1−2δ) ≤ (1 + ε)|R1 ∪R2|. Therefore, the approximate solution

is at most (1 + ε)|R1 ∪ R2| + 1.
It takes O((log n)y(n)) time to generate si = C([ai, ai+1))ai+1 for i = 1, · · · , t.

It takes O(y(n) + (1
ε )O( 1

ε )) time to derive the approximation for those elements
in [δ, 1] by Lemma 5. The total time is O((log n)y(n) + (1

ε )O( 1
ε )). �

Theorem 5. There is a deterministic O((log n)2+(1
ε )O( 1

ε )) time algorithm such
that given a list of n sorted elements, it outputs a (1 + ε)Copt + 1 approximation
to the bin packing problem, where ε is an arbitrary positive constant.

Proof. It follows from Lemma 7 and the fact that it takes O(log n) time find the
number of elements in a prescribed range [a, b]. �

3.3 An Online Algorithm

We show a deterministic online algorithm to approximate the bin packing prob-
lem. We use a balance tree to store items from the input list. The tree supports
insertion and searching in O(log n) time. The method used in Theorem 5 will be
applied here.

Theorem 6. There is a deterministic streaming algorithm for the bin packing
problem such that it has a O(log n) updating time, and computes a (1+ ε)Copt +
1 approximation in ((log n)2 + (1

ε )O( 1
ε ) time, where ε is an arbitrary positive

constant.

Proof. Build an interval 2-3 tree as described in Lemma 4. When a new item ar-
rives, insert it in the interval 2-3 tree. It follows from Lemma 7 and Lemma 4. �

3.4 Lower Bound for Deterministic Algorithms

Theorem 7. Every deterministic approximation scheme must make Ω(log log n)
adaptive queries to a sorted input list for the bin packing problem.
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Abstract. In this paper we investigate the structural properties of k-
path separable graphs, that are the graphs that can be separated by a
set of k shortest paths. We identify several graph families having such
path separability, and we show that this property is closed under minor
taking. In particular we establish a list of forbidden minors for 1-path
separable graphs.

1 Introduction

“Divide and Conquer” is an common technique in computer science to solve
problems. The whole data is separated into different small parts to find a solution
in these parts, and then to merge the solutions to obtain the result on the input
graph.

A wide theory has been developed for graphs that can be decomposed into
small pieces. Such graphs, a.k.a. bounded treewidth graphs, supports polynomial
algorithms for many class of problems, whereas no algorithms of complexity
better than exponential complexity are known for the general case. This has
contributed to new insights into Fixed Parameterized Tractable theory whose
consequences for practical algorithms are effective improvements on the running
time [2,6].

There are however problems that can be efficient solved even for graphs with-
out small separators (or equivalently of large treewidth). Large separators but
“well shaped” reveal very useful for approximation algorithms. For instance, if
the separator has a small diameter, or a small dominating set, then distances
between vertices can be computed efficiently up to some small additive errors
(see [4,3,12] for works about the treelength of a graph).

An important observation due to Thorup [11] is that separators consisting of
a set of shortest paths are also very useful for the design of compact routing
scheme, distance and reachability oracles. More precisely, he used the fact that
every weighted planar graph with n vertices has a set of three shortest paths
whose deletion split the graph into connected components of at most n/2 vertices
(a decomposition into components of at most 2n/3 vertices using two shortest
paths was early proved in [7]). Using a recursive decomposition, and sampling
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each such shortest path, he showed that distances between any pair of vertices
can be approximated up to a factor of 1 + ε in polylogarithmic time, for every
ε > 0, with an oracle of size1 O(ε−1n logn).

This notion of “shortest path” separator has been extended in [1]. Roughly
speaking, a k-path separator is the union of k shortest paths whose removal
halve the graph. The formal definition is actually slightly more complicated and
is described in Section 2. The same authors have showed that k-path separable
graphs have efficient solutions for several “Object Location Problems” including
compact routing schemes, distance oracles, and small-world navigability. Based
on the deep Robserton-Seymour’s decomposition [9], they show in particular that
every weighted graph excluding a minor H has a (1 + ε)-approximate distance
oracle of size O(ε−1kn log n), where k = k(H) depending only of H . Actually,
the oracle can be distributed into balanced labels, each of size O(ε−1k log n) such
that distance queries can be answered from given the source-destination labels
only. The graphs excluding a fixed minor is a huge family of graphs including
(and not restricted to) bounded treewidth graphs, planar graphs, and graphs of
bounded genus.

1.1 Our Results

An approximate distance oracle for a graph G is a data-structure that quickly
returns, for any source-destination pair, an approximation on cost of a shortest
path connecting them. Such data-structures are obtained by preprocessing G
where each edge has a weight corresponding to the cost of traversing this edge
(or length). However, in practice, the number n of vertices of G is large whereas
the number of interesting vertices for which we want approximate the distance is
small (say t). Current solutions [1,11] provide oracles of size O(t log n) whereas
a space independent of n would be preferable.

Such a compression can be achieved by adding weights on the vertices of
the input graph. Typically, interesting vertices receive a weight 1 whereas the
others receive a weight 0. A k-path separator on such vertex- and edge-weighted
graph is then defined as previously, excepted that the removal of the separator
must leave connected components of size at most half the total vertex-weight of
the graph. The size of the oracles is improved since log t recursion levels suffice
instead of log n in the initial formulation.

In this paper we extend the classical notion of k-path separability to edge-
and vertex-weighted graphs. In particular, we prove that previous results (e.g.,
the 3-path separability of planar graphs) still hold in this new framework.

We establish a connection between separators corresponding to the border of
a face and k-path separability, and we identify several families of graphs that are
1-path and 2-path separable. We note that most of our proofs are constructive,
and lead to polynomial and even linear algorithms.

More interestingly, we show that the family of graphs that are k-path separable
for any weight function is minor-closed. Combined with the Graph Minor Theory
1 The size is actually the number of “distance items” stored in the oracle.



264 E. Diot and C. Gavoille

of Robertson and Seymour [10], it follows that the k-path separability can be
theoretically tested in cubic time [8] for each fixed k, although no algorithm is
currently known. Finally, we provide a first step towards the characterization of
1-path separable graphs.

2 Preliminaries

A minor of a graph G is a subgraph of a graph obtained from G by edge con-
traction. We denote by Kr the complete graph (or clique) on r vertices, and Kp,q

the complete bipartite graph. For convenience, the term component is a short
for connected component.

A vertex-weight function (resp. edge-weight function) is a non-negative real
function defined on the vertices (resp. edges) of a graph. A non-negative real
function applying on both vertices and edges is simply called weight function. A
weighted graph is graph G having a weight function ω, that we denote also by
(G, ω). The weight of a subgraph H of G, denoted by ω(H), is the sum of the
weights over the vertices of H .

A half-separator for a graph G with vertex-weight function ω is a subset of
vertices S such that each component of G\S has weight at most ω(G)/2. Observe
that the deletion of a half-separator does not necessarily disconnect the graph.

A k-path separator of a weighted graph G is a subgraph P0∪P1∪. . . where each
Pi is a subgraph composed of the union of ki minimum cost paths in G\

⋃
j<i Pj ,

and where
∑

i ki � k. A k-path separator is said strong if it consists of P0 only,
i.e., composed of the union of k minimum cost paths in G. A weighted graph
is (strongly) k-path separable if every induced subgraph has a (strong) k-path
separator.

A tree-decomposition of a graph G is a tree T whose vertices, called bags, are
subsets of vertices of G such that:

1. for every vertex u of G, there exists a bag X of T such that u ∈ X ;
2. for every edge {u, v} of G, there exists a bag X of T such that u, v ∈ X ; and
3. for every vertex u of G, the set of bags containing u induces a subtree of T .

An important property following from the last two points is that every path
between u ∈ X and v ∈ Y in G has to intersect all the bags on the path from
X and Y in T . Therefore, the deletion of every bag X disconnects G provided
that T \ X is composed of more than one subtree and that no bags Y ⊆ X .

The width of a tree-decomposition T is maxX∈T {|X | − 1}. A treewidth-t graph
is a graph having a tree-decomposition of width t, and the treewidth of G is the
minimum t such that G is a treewidth-t graph.

We will use several times the following basic result (the proof of this lemma,
and of several others, appear in the full version).

Lemma 1. Every tree-decomposition of a vertex-weighted graph has a bag that
is a half-separator of the graph. Such a bag is called center of the tree-
decomposition.
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For the sake of presentation, we prove the following folklore results.

Proposition 1

1. Every weighted treewidth-t graph is strongly �(t + 1)/2�-path separable.
2. Every weighted planar graph is strongly 3-path separable.
3. Every weighted n-vertex graph is strongly �n/4�-path separable
4. The uniform2 weighted clique K4k+1 is not k-path separable.

Proof.
1. Consider any subgraph H of a weighted graph G. The treewidth of H

is at most the treewidth of G. So H has a tree-decomposition of width � t.
By Lemma 1, the center C of the tree-decomposition is a half-separator. It
can be covered by at most �|C|/2� � �(t + 1)/2� shortest paths. Therefore, H
has a strong �(t + 1)/2�-path separator, and thus G is strongly �(t + 1)/2�-path
separable.

2. It is well-known that every planar graph has a tree-decomposition such
that every bag consists of at most three shortest paths. This comes from the
well-known fact that every planar graph having a depth-h rooted tree has a
tree-decomposition where each bag consists of 3 paths of the tree starting from
the root (see [5][pp. 305]). By Lemma 1, the center C of the tree-decomposition
is a half-separator. So, C forms a strong 3-path separator.

3. Consider any subgraph H of a weighted graph (G, ω) with n vertices. Let
W be the smallest set of vertices in H such that ω(W ) � ω(H)/2. Thus, the
components of H \ W have weight � ω(H)/2. It is clear that W contains at
most half the vertices of H , i.e., |W | � �|V (H)|/2�. A set of at most �|W |/2�
shortest paths suffices to cover W . Therefore, H has a strong k-path separator
with k = ��|V (H)|/2� /2� � �n/4�, completing the proof of Point 3.

4. Let us show that the uniform weighted K4k+1 has no k-path separator.
Indeed, every k-path separator S consists of at most 2k vertices since every
shortest path in a clique consists of an edge. K4k+1 \ S is a clique on at least
2k + 1 vertices, so S is not a half-separator. �
As remark in [1], the k-path separability of minor-free graphs holds also for
vertex-weighted graphs. However the formal proof of this result cannot be con-
sidered as folklore, and its self-contained proof is currently more than the page
limitation of this paper.

One the of unresolved problem we left open is to know whether they are planar
graphs that are not 2-path separable.

3 Face-Separable Graphs

As we will see later in Section 4, graphs that are k-path separable have strong
structural properties. In particular, planarity plays an important role, at least for
k = 1 in the light of Theorem 3. In this section we will see that, a half-separator
2 That is with a unit weight for all vertices and edges.
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of a special “shape” implies a low path separability of the graph. Moreover, this
half-separator is defined independently of the shortest path metric of the graph,
it only depends on the vertex-weight function.

A half-separator S of a weighted graph G is a face-separator if G has a plane
embedding such that S is the border of a face. A graph is face-separable if every
induced subgraph has a face-separator.

By definition, outerplanar graphs are face-separable, since the outerface con-
tains all vertices of the graph. We will see that the family of face-separable graphs
includes more general graphs, like the series-parallel graphs, the subdivisions of a
K4 (Proposition 2), and even includes some unbounded treewidth planar graphs
(Proposition 3).

The main result of this section is:

Theorem 1. Every face-separable weighted graph is strongly 2-path separable.

The bound given by Theorem 1 is best possible because there are face-separable
graphs that are not 1-path separable. This can be proved by combining Propo-
sition 2 and the fact there are treewidth-2 graphs and subdivisions of K4 that
are not 1-path separable – see Fig. 3.

Proposition 2. Every weighted treewidth-2 graph or weighted subdivision of K4
is face-separable.

Proof. Let (G, ω) be any weighted treewidth-2 graph. It is known that every
treewidth-2 graph is a subgraph of a series-parallel graph, and in particular a
planar graph. As any subgraph of G is also a treewidth-2 graph, it is sufficient
to prove that G has a face-separable. We consider the graph H obtained from G
by adding as many edges as possible while preserving a treewidth-2 graph. Let
T be a tree-decomposition of H of width 2, and let C be the center of T . Bag
C is composed of a K3. We embed H in the plane such that C is the border of
a face of this embedding. This is possible by moving some subgraph from inside
the K3 to outside. If not, H would contain a K4-minor, contradicting the fact
that H has treewidth 2. We can now remove the edges that have been added to
H in order to obtain G, and we consider the border S of the face containing the
three vertices of C. Such a face exists since deleting edges can only enlarge the
existing faces of a plane embedding. We have S ⊆ C, and C is a half-separator
of H (Lemma 1). Note that H has the same total weight of G (we have added
only edges). It follows that S is a half-separator for G. This completes the first
part of the statement of the proposition.

Consider now a subdivision G of K4 having a vertex-weight function ω, and
H be an induced subgraph of G. If H is a proper subgraph of G (i.e., H �= G),
then H is outerplanar and thus has a face-separator. So, assume that H = G.

We assume given a plane embedding of H . We denote by v1, . . . , v4 the four
degree-3 vertices of H , and by Pi,j the path between vi and vj , for all i, j ∈
{1, . . . , 4}. Let wi = ω(vi), and let pi,j = ω(Pi,j \ {vi, vj}) be the sum of the
weights of vertices on Pi,j excluding its extremities.
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Let assume that H has no face-separator. There are four possible faces
F1, . . . , F4, each one bordered by three paths. Faces are ordered such that when-
ever the border of Fi is removed, the remaining component is composed of three
paths sharing vertex vi. The total weight of this component is wi +

∑
j =i pi,j .

As the border of Fi is not a face-separator, we have wi +
∑

j =i pi,j > ω(H)/2.
This holds for each i ∈ {1, . . . , 4}. Summing these four equations, it turns out
(observe that each path pi,j occurs twice in this sum):

∑
i

wi + 2
∑
i=j

pi,j > 2ω(H) = 2

⎛⎝∑
i

wi +
∑
i=j

pi,j

⎞⎠ .

It implies 0 >
∑

i wi: a contradiction, by definition ω(v) � 0 for each vertex v.
Therefore, one of the face Fi is a face-separator for H , that completes the proof. �
Up to now, the graphs we have proved to be face-separable are all of treewidth
� 3. From Proposition 1 (Point 1), they are 2-path separable. It is natural to
ask whether all face-separable graphs have such a low treewidth property. We
answer negatively to this question.

Proposition 3. For every n, there is a uniform weighted face-separable graph
with at most n vertices whose treewidth is Ω(log log n).

Proof. (Sketch). The proof is based on the construction of a graph called Gp,
for integral p � 1. It has treewidth at least k = p − O(log log p) because we can
show it contains a k×k-grid minor, and the number of vertices of Gp is n < 22p

.
In other words, the treewidth of Gp is at least log log n − O(log(4) n).

Graph Gp is composed of a tree Tp of depth p where each vertex of depth
i < p has exactly d(i) children, for some function d defined later. Furthermore,
for each depth i, a path linking all depth-i vertices is added to Tp to form Gp.
Let us denote by L(i) the number of depth-i vertices in Tp. The values L(i) and
d(i) obey to the following induction: L(0) = 1 and L(i) = L(i − 1) · d(i − 1),
where d(i) =

∑i
j=0 L(j). The first values of L(i) and d(i) are given in the table

hereafter, and G4 is depicted on Fig. 1.

i 0 1 2 3 4 5 ...
L 1 1 2 8 96 10368 ...
d 1 2 4 12 108 10464 ...

Fig. 1. The graph G4 with 108 vertices
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To prove Proposition 3, we show that every subgraph H of Gp contains a
face-separator. An important property we use is that in Gp, the number d(i)
of children for a vertex of depth i is at least the vertex number of the graph
induced by Ti−1. The key point is that H is either outerplanar, or there must
exist a vertex v of depth i in Tp such that all its children belongs to the border
of the outerface of H . In the first case, H is trivially face-separable. In the
second one, and using the property on d(i), we derive that at least half the
vertices of H lie on the outerface. �

4 The Hierarchy of Separable Graphs

For every integer k � 1, we denote by PSk the family of all the graphs G that
are k-path separable for every weight function ω. More formally,

PSk = {G | ∀ω, (G, ω) is k-path separable} .

We define similarly the family SPSk of all the graphs that are strongly k-path
separable for every weight function.

We have seen that every weighted planar graph is strongly 3-path separable.
In other words, planar graphs are in SPS3. In Section 3, we have seen that every
subdivided outerplanar graph is face-separable, and thus strongly 2-path separa-
ble. Thus this family is in SPS2. We will show in Proposition 6 that outerplanar
graphs are in actually in PS1. Obviously, families PS1 and SPS1 coincide.

Clearly, for each k, SPSk ⊂ PSk since a strongly k-path separator is a par-
ticular k-path separator. Also, the hierarchies PS1 ⊂ · · · ⊂ PSk and SPS1 ⊂
· · · ⊂ SPSk are strict because of the complete graph. By Proposition 1 (points 3
and 4), K4k+1 ∈ SPSk+1 and K4k+1 /∈ PSk. The family PSk is however much
larger than SPSk as suggested by the next proposition.

Proposition 4. For each k > 4, there is a graph Gk with O(k2) vertices such
that Gk �∈ SPSk, but Gk ∈ PS4.

Proof. Consider the graph Gk composed of a 2(k + 1) × 2(k + 1)-grid in which
a vertex v is connected to all the vertices of the grid. Gk has 4k2 + 5 vertices.
Vertex and edge weights are unitary. As shown in [1], Gk has no strong k-path
separator, the removal of any set of k shortest paths deletes at most 2k + 1
vertices, and 2(k + 1) are required to halve the graph. Therefore, Gk /∈ SPSk.
However, for every weight function ω, (Gk, ω) has a 4-path separator. The first
path consists of the universal vertex v, and the three others are defined as in
the planar case (since Gk \ {v} is planar, and thus 3-path separable). Therefore,
Gk ∈ PS4. �
For the study of PSk and SPSk graphs families, the next proposition tell us that
we can always assume that graphs are biconnected.

Proposition 5. A graph belongs to PSk (reps. SPSk) if and only if all its bi-
components belong to PSk (resp. SPSk).
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4.1 Closed under Minor Taking

The remarkable property of PSk and SPSk families is they are closed under minor
taking. From the Graph Minor Theorem, such families can be characterized by a
finite list of forbidden minors, and membership of a given graph in one of these
families can be done in time O(n3) for fixed k.

Theorem 2. For each integer k � 1, the families PSk and SPSk are minor-
closed.

Proof. We give the proof for the family SPSk, the proof for PSk is similar. Let H
be any minor of a graph G. We will prove that if G is k-path separable, then H
is k-path separable too. To prove that H is k-path separable, we need to prove
the property for every induced subgraph of H . However, since every subgraph
of H is also a minor of G, we simply show that H has a k-path separator.

It is not difficult to see that if H is a minor of G, then with each vertex u
of H we can associate a connected subgraph of G, called super-node of u, such
that if (u, v) is an edge of H , then there exists an edge of G, called super-edge of
(u, v), connecting a vertex of the super-node of u and a vertex of the super-node
of v. (If there are several such edges we select only one.) The super-nodes must
be pairwise disjoint (see Fig. 2).

Let ωH be any weight function on H . From ωH , we construct a weight function
ωG on G as follows. For every edge (x, y) of G that is a super-edge of (u, v)
(colored black on Fig. 2), we set ωG(x, y) = ωH(u, v). For every edge (x, y) of G
such that x and y both belongs to the same super-node (called internal-edge and
dashed on Fig. 2), we set ωG(x, y) = 0. And, for all other edges (x, y) of G (called
external-edge and colored red on Fig. 2), we set ωG(x, y) = 1 +

∑
e∈E(H) ωH(e),

so that the cost of a path in G using any such edge is strictly larger than the cost
of any simple path in H . The weight of a vertex x that belongs to the super-node
of u is ωG(x) = ωH(u)/tu, where tu is the number of vertices of the super-node of

Fig. 2. A graph G and a minor H
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u. Note that the sum of weights of the vertices of the super-node of u is precisely
ωH(u). The weight of all other vertices is 0. Observe that ωG(G) = ωH(H).

Since G ∈ SPSk, the weighted graph (G, ωG) has a k-path separator SG

consisting of k shortest paths in G. Let H0, H1, . . . be the components of H ,
and assume that ωH(H0) is maximum. With each path P of SG that intersects
a super-node of a vertex of H0, we associate a path Q in H0 as follows. Let
(U0, . . . , Ut) be the ordered sequence of all the super-nodes of vertices of H0
traversed by P . We denote by ui the vertex of H0 such Ui is the super-node of ui.
Path Q is obtained by adding an edge between ui−1 to ui, for each i ∈ {1, . . . , t}.
We claim that the set composed of each path Q constructed from P as above,
and denote by SH , is a half-separator of H .

First, let us show that Q is a shortest path in H0 (and thus in H). Path P
between the last vertex of Ui−1 and the first vertex of Ui consists of the super-
edge of (ui−1, ui), because H0 is connected and the weight of this super-edge
is less than the weight of any external-edges. Thus Q is a path in H0. Now,
assume that there exists a path Q′ in H0, from u0 to ut, that is shorter than
Q. Then, from Q′ we can construct a shorter path in G (shorter than P ) from
the last vertex of U0 to the first vertex of Ut. This is due to the fact that each
super-node is connected and internal-edges have weight 0. This contradicts that
P is a shortest path, hence Q is a shortest path in H0.

It remains to show that SH is a half-separator of H . Observe that for i �= 0,
ωH(Hi) � ωH(H)/2 because ω(H0) is maximum. Let XH0 be the set of vertices
of any component in H0 \ SH . Then, there must exists a component XG in
G \ SG wholly containing all the super-nodes of the vertices of XH0 . Let v be a
vertex of XH0 whose its super-node belongs to none component of G\SG. Then,
there exists a vertex of this super-node that is in SG. From our construction, v
belongs to SH (vertices of Q and super-nodes of P correspond): contradiction.
Therefore, ωH(XH0) � ωG(XG). Moreover, ωG(XG) � ωG(G)/2 = ωH(H)/2.
Thus, SH is a half-separator of H , completing the proof. �

4.2 One-Path Separable Graphs

In this part, we concentrate our attention to the graphs that belong to PS1.
We have seen in Proposition 2, that the subdivisions of outerplanar graph or
of K4 are face-separable, and thus belong to PS2 (and even to SPS2). Actually,
outerplanar graphs are in PS1:

Proposition 6. Every weighted outerplanar graph is 1-path separable.

Unfortunately, Proposition 6 does not generalize to treewidth-2 graphs. As de-
picted on Fig. 3, there are simple series-parallel graphs and subdivisions of K4
that are not in PS1.

The family PS1 does not reduce to outerplanar graphs, as shown in Propo-
sition 7. A globe graph is a subdivision of K2,r, for some r, in which the two
degree-r vertices may be adjacent.

Proposition 7. Every weighted globe graph is 1-path separable.
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Fig. 3. Forbidden minors for planar graphs in PS1. Black vertices and bold edges have
weight 2, blue edges have weight 3, other vertices and edges have weight 1. The two
non-planar forbidden minors are K5, and a K3,3 whose one edge is subdivided into two
edges.

A first attempt to characterize PS1 is given by Theorem 3.

Theorem 3. Every biconnected graph of PS1 is either isomorphic to K3,3, or
planar and excludes the list of minors depicted on Fig. 3.

Proof. Let (G, ω) be a biconnected weighted graph with G ∈ PS1. First assume
that G is not planar. From Kuratowski’s criteria, G contains a subdivision of K5
or K3,3.

The complete graph K5 is not 1-path separable graph from Proposition 1
(cf. Point 4 with k = 2). From Theorem 2, it follows that G cannot contain a
subdivision of K5, so it must contain a subdivision of K3,3.

We shall proof that a subdivision of K3,3 in which only one edge is subdivided
into two edges is not 1-path separable. Denote by M this graph, and set unitary
all the weights so that the total vertex-weight is 7. The diameter of M is two.
The deletion of any shortest path deletes at most three vertices. Moreover, such a
deletion cannot disconnect M , and thus leaves a component with at least 4 > 7/2
vertices. M is not 1-path separable. Therefore, if G is not planar, then G can
only be isomorphic to K3,3.

We prove now that K3,3 is 1-path separable. Denote by {x1, x2, x3} and
{y1, y2, y3} the vertex set of each part of K3,3. We first show that K3,3 has
a 1-path separator. Later we will prove it for all its induced subgraphs. W.l.o.g.
assume that ω(x1) � ω(x2) � ω(x3).

Define P1 be a shortest path from x1 to x2, and assume P1 contains yi1 . Define
P2 be a shortest path from yi2 to yi3 (with i1, i2, i3 pairwise different indices),
and assume it contains xj1 (denote by j2, j3 the two other x’s indices). We show
that P1 or P2 is a 1-path separator. By contradiction, if P1 is not a half-separator,
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then (and similarly for P2) ω(P1) < ω(K3,3)/2 and ω(G \ P1) > ω(K3,3)/2. As
ω(P1) is lower bounded by ω(x1)+ω(x2)+ω(yi1) and ω(G \P1) upper bounded
by ω(x3) + ω(yi2) + ω(yi3) (and similarly for P2), it follows that:

ω(x1) + ω(x2) + ω(yi1) < ω(x3) + ω(yi2) + ω(yi3) (1)
ω(xj1 ) + ω(yi2) + ω(yi3) < ω(xj2) + ω(xj3 ) + ω(yi1) (2)

By summing these equations, we obtain:

ω(x1) + ω(x2) + ω(xj1) < ω(x3) + ω(xj2 ) + ω(xj3 )
⇒ ω(x1)+ω(x2)+ω(x3) < ω(x3)+ω(xj2)+ω(xj3) � ω(x3) + ω(x2) + ω(x1)

since, by assumption, ω(x3) � ω(xj1 ) and ω(xj2)+ω(xj3) � ω(x2)+ω(x1). This
leads to a contradiction. Thus, P1 or P2 is a 1-path separator for K3,3.

Now, let H be any induced subgraph of K3,3. We use similar notations ex-
cepted that the two vertex-sets are {x1, . . . , xp} and {y1, . . . , yq} with 1 � p �
q � 3. If p + q � 4, then H is outerplanar, and thus 1-path separable by Propo-
sition 6. We are left with the case p = 2 and q = 3, the case p = q = 3 is already
done. We define similarly the two paths P1 and P2, i.e., a shortest path from x1
to x2 containing yi1 , and the shortest path between y’s vertices different from
yi1 and through xj1 . If these both paths are not half-separators, then Eq. (1)
and (2) rewrite in (vertices x3 and xj3 do not exist anymore):

ω(x1) + ω(x2) + ω(yi1) < ω(yi2) + ω(yi3)
ω(xj1 ) + ω(yi2) + ω(yi3) < ω(xj2) + ω(yi1)

Summing these equations, we obtain:

ω(x1) + ω(x2) + ω(xj1 ) < ω(xj2 ),

a contradiction since vertex-weights are non-negative and ω(xj2 ) � ω(x1). Thus,
P1 or P2 is a 1-path separator for H .

Therefore, we have proved that the only non-planar graph of PS1 is K3,3. For
planar graphs, we manage to find forbidden minors represented in Fig. 3. To
prove that each minor M of this list is indeed excluded, we exhibit a particular
weight function ω for M . Actually, each vertex and edge has weight 1 or 2 as
depicted on Fig. 3. We then exhaustively check that, for each pair u, v of vertices
of M , the deletion of any shortest path from u to v leaves a component of weight
> ω(M)/2.

To illustrate this, consider for instance the “wheel graph”, composed of a
cycle of length 5 and a degree-5 vertex, called hereafter center, connected of
all vertices of the cycle. The total weight of the graph is 7, the center has
weight 2. Any shortest path from the center to a non-center vertex consists of
one edge. Therefore its deletion leaves a path of 4 vertices, so of weight 4. Any
shortest path between two non-center vertices consists of 2 edges at most, so
leaving a component with the center and two (or more) non-center vertices,
thus of weight at least 4. In both cases, the weight is > 7/2. This graph has no
half-separator composed of a shortest path, and thus is not in PS1. �
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5 Conclusion

In this paper we have investigated the family of graphs that are k-path separable.
Graph Minor Theory implies that such a family can be characterized by a finite
set of forbidden minors that we have started to list for k = 1.

We propose here a list of further researches.

1. Determine the full list of forbidden minors for k-path separable graphs and
for k = 1.

2. Find an explicit linear time algorithm to determine if a graph is k-path
separable, for fixed k.

3. Prove or disprove that planar graphs are 2-path separable.
4. Prove NP-completeness for the problem of determining whether a given

weighted graph has a k-path separator.
5. Extend the study to more general isometric separators, not only shortest

paths.
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Abstract. Let C be a set of colors, and let ω(c) be an integer cost
assigned to a color c in C. An edge-coloring of a graph G is to color all
the edges of G so that any two adjacent edges are colored with different
colors in C. The cost ω(f) of an edge-coloring f of G is the sum of costs
ω(f(e)) of colors f(e) assigned to all edges e in G. An edge-coloring f of
G is optimal if ω(f) is minimum among all edge-colorings of G. In this
paper, we show that the problem of finding an optimal edge-coloring of a
tree T can be simply reduced in polynomial time to the minimum weight
perfect matching problem for a new bipartite graph constructed from T .
The reduction immediately yields an efficient simple algorithm to find
an optimal edge-coloring of T in time O(n1.5Δ log(nNω)), where n is the
number of vertices in T , Δ is the maximum degree of T , and Nω is the
maximum absolute cost |ω(c)| of colors c in C. We then show that our
result can be extended for multitrees.

1 Introduction

Let G = (V, E) be a graph with vertex set V and edge set E, and let C be a
set of colors. An edge-coloring of G is to color all the edges in E so that any
two adjacent edges are colored with different colors in C. The minimum number
of colors required for edge-colorings of G is called the chromatic index, and is
denoted by χ′(G). It is well-known that Δ(G) ≤ χ′(G) ≤ Δ(G) + 1 for every
simple graph G and that χ′(G) = Δ(G) for every bipartite (multi)graph G, where
Δ(G) is the maximum degree of G [9]. The ordinary edge-coloring problem is to
compute the chromatic index χ′(G) of a given graph G and find an edge-coloring
of G using χ′(G) colors. Let ω be a cost function which assigns an integer ω(c) to
each color c ∈ C, then the cost edge-coloring problem is to find an optimal edge-
coloring of G, that is, an edge-coloring f such that

∑
e∈E ω(f(e)) is minimum

among all edge-colorings of G. An optimal edge-coloring does not always use
the minimum number χ′(G) of colors. For example, suppose that ω(c1) = 1 and

D.T. Lee, D.Z. Chen, and S. Ying (Eds.): FAW 2010, LNCS 6213, pp. 274–284, 2010.
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Fig. 1. (a) Edge-coloring using χ′(G) = 3 colors, and (b) optimal edge-coloring using
χ′(G) + 1 = 4 colors, where ω(c1) = 1 and ω(c2) = ω(c3) = ω(c4) = 5

ω(ci) = 5 for each index i ≥ 2, then the graph G with χ′(G) = 3 in Fig. 1(a) can
be uniquely colored with the three cheapest colors c1, c2 and c3 as in Fig. 1(a),
but this edge-coloring is not optimal; an optimal edge-coloring of G uses the
four cheapest colors c1, c2, c3 and c4, as illustrated in Fig. 1(b). However, every
simple graph G has an optimal edge-coloring using Δ(G) or Δ(G)+1 colors [5,8],
and every bipartite (multi)graph G and hence every tree has an optimal edge-
coloring using Δ(G) (= χ′(G)) colors [1,5]. The edge-chromatic sum problem,
introduced by Giaro and Kubale [4], is merely the cost edge-coloring problem
for the special case where ω(ci) = i for each integer i ≥ 1.

The cost edge-coloring problem has a natural application for scheduling [10].
Consider the scheduling of biprocessor tasks of unit execution time on dedicated
machines. An example of such tasks is the file transfer problem in a computer
network in which each file engages two corresponding nodes, sender and receiver,
simultaneously [2]. Another example is the biprocessor diagnostic problem in
which links execute concurrently the same test for a fault tolerant multiprocessor
system [6]. These problems can be modeled by a graph G in which machines
correspond to the vertices and tasks correspond to the edges. An edge-coloring
of G corresponds to a schedule, where the edges colored with color ci ∈ C
represent the collection of tasks that are executed in the ith time slot. Suppose
that a task executed in the ith time slot takes the cost ω(ci). Then the goal is
to find a schedule that minimizes the total cost, and hence this corresponds to
the cost edge-coloring problem.

The cost edge-coloring problem is APX-hard even for bipartite graphs [7], and
hence there is no polynomial-time approximation scheme (PTAS) for the problem
unless P = NP. On the other hand, Zhou and Nishizeki gave an algorithm to
solve the cost edge-coloring problem for trees T in time O(nΔ1.5 log(nNω)),
where n is the number of vertices in T , Δ is the maximum degree of T , and Nω

is the maximum absolute cost |ω(c)| of colors c in C [10]. The algorithm is based
on a dynamic programming approach, and computes a DP table for each vertex
of a given tree T from the leaves to the root of T . For computing the DP tables,
the algorithm needs to construct O(n) bipartite graphs in total and solves the
minimum weight perfect matching problem for each of them.
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(b) BT

Fig. 2. (a) Optimal compact edge-coloring of a tree T , and (b) perfect matching of
BT , whose edges are drawn by thick lines

In this paper, we first show that the cost edge-coloring problem for a tree
T can be simply reduced in polynomial time to the problem of finding a min-
imum weight perfect matching in an edge-weighted bipartite graph BT con-
structed from T , as illustrated in Fig. 2. The reduction takes time O(nΔ), and
yields an efficient simple algorithm to find an optimal edge-coloring of T in time
O(n1.5Δ log(nNω)). Our algorithm constructs a single bipartite graph BT , and
solves only once the minimum weight perfect matching problem for BT . Thus,
our algorithm is much simpler than the known algorithm [10], and can be easily
implemented. We then show that the algorithm for trees can be extended for
multitrees, which will be defined in Section 5.

The rest of the paper is organized as follows. In Section 2 we first define some
basic terms which will be used throughout the paper. We then give the reduction
in Section 3. In Section 4 we prove a lemma used by the reduction. In Section 5
we show that the algorithm for trees can be extended for multitrees. Finally, in
Section 6 we give a conclusion.

2 Preliminaries

In this section, we define some basic terms.
Let T = (V, E) be a tree with a set V of vertices and a set E of edges.

We sometimes denote by V (T ) and E(T ) the vertex set and the edge set of T ,
respectively. We choose an arbitrary vertex r of T as the root, and regard T as
a rooted tree. We denote by n the number of vertices in T , that is, n = |V |. One
may assume that n ≥ 2. The degree d(v) of a vertex v is the number of edges in
E incident to v. We denote the maximum degree of T by Δ(T ) or simply by Δ.
We denote by ch(v) the number of edges joining a vertex v and its children in
T . Then, ch(r) = d(r), and ch(v) = d(v) − 1 for every vertex v ∈ V \ {r}. We
denote by p(v) the parent of a vertex v ∈ V \ {r} in T .
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Although T has an optimal edge-coloring using Δ(T ) colors [1,5], we as-
sume for the sake of convenience that |C| = Δ(T ) + 1, and we write C =
{c1, c2, · · · , cΔ+1}. An edge-coloring f : E → C of a tree T = (V, E) is to color
all the edges of T by colors in C so that any two adjacent edges are colored
with different colors. Let ω : C → Z be a cost function, where Z is the set of all
integers. One may assume without loss of generality that ω is non-decreasing,
that is, ω(ci) ≤ ω(ci+1) for every index i, 1 ≤ i ≤ Δ. The cost ω(f) of an
edge-coloring f of a tree T = (V, E) is defined as follows:

ω(f) =
∑
e∈E

ω(f(e)).

An edge-coloring f of T is optimal if ω(f) is minimum among all edge-colorings
of T . The cost edge-coloring problem is to find an optimal edge-coloring of a
given tree.

For an edge-coloring f of a tree T and a vertex v of T , we denote by C(f, v)
the set of all colors that are assigned to the edges incident to v, that is,

C(f, v) = {f(e) | e is an edge incident to v in T}.

We say that a color c ∈ C is missing at v if c /∈ C(f, v). We denote by Miss(f, v)
the set of all colors missing at v, that is, Miss(f, v) = C \ C(f, v).

Interchanging colors in an “alternating path” is one of the standard techniques
for ordinary edge-colorings [9], which we also use in the paper. Let f be an edge-
coloring of a tree T , let cα and cβ be any two colors in C, and let T (cα, cβ) be
the subgraph of T induced by all edges colored with cα or cβ. Since T is a tree,
each connected component of T (cα, cβ) is a path, called a cαcβ-alternating path,
whose edges are colored alternately with cα and cβ . A vertex v ∈ V is an end
of a cαcβ-alternating path if and only if exactly one of the two colors cα and
cβ is missing at v. We denote by P (v; cα, cβ) a cαcβ-alternating path starting
with v. Interchanging colors cα and cβ in P (v; cα, cβ), one can obtain another
edge-coloring f ′ of T .

For a graph G = (V, E), a subset M of E is called a matching of G if no two
edges in M share a common vertex. A matching M of G is perfect if every vertex
of G is an end of an edge in M . Thus, |M | = 1

2 |V | for every perfect matching
M of G. Let w : E → Z be a weight function which assigns an integer weight
w(e) ∈ Z to each edge e in G. Then, the weight w(M) of a matching M of G is
defined as follows:

w(M) =
∑
e∈M

w(e).

The minimum weight perfect matching problem is to find a perfect matching M
of a given graph G such that w(M) is minimum among all perfect matchings
in G. The problem can be solved for a bipartite graph G = (V, E) in time
O(
√

|V ||E| log(|V |Nw)), where Nw is the maximum absolute weight |w(e)| of
edges e in E [3].
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3 Reduction

Our main result is the following.

Theorem 1. The cost edge-coloring problem for a tree T can be reduced in time
O(nΔ) to the minimum weight perfect matching problem for a single bipartite
graph BT constructed from T .

Before presenting the reduction, we introduce a “compact” edge-coloring of a
tree. Let T = (V, E) be a tree with root r. An edge-coloring f of T is compact if
the following two conditions (i) and (ii) hold:

(i) for the root r of T , C(f, r) = {c1, c2, · · · , cch(r)}; and
(ii) for each vertex v ∈ V \ {r}, C(f, v) = {c1, c2, · · · , cch(v), ck} for some index

k such that
(a) k ≥ ch(v) + 1; and
(b) if k ≥ d(v) + 1, then k ≤ d(u) and ck is assigned to the edge joining

v and the parent u = p(v).
For example, the edge-coloring in Fig. 2(a) is compact. Clearly, a compact edge-
coloring uses colors c1, c2, · · · , cΔ and does not use color cΔ+1. We then have
the following lemma, whose proof will be given in Section 4.

Lemma 1. Every tree T has an optimal edge-coloring which is compact.

We now give the reduction from the cost edge-coloring problem for a tree T to
the minimum weight perfect matching problem for a bipartite graph BT .

The bipartite graph BT = (VB , EB) can be constructed from a tree T =
(V, E), as follows. (See Figs. 2 and 3.)

(i) For each vertex v ∈ V , add d(v) vertices v1, v2, · · · , vd(v) to VB.
(ii) For each edge (u, v) ∈ E with u = p(v), add d(u) edges to EB , as follows:

for each index i, 1 ≤ i ≤ d(u), join vertices ui and vj by an edge whose
weight is w((ui, vj)) = ω(ci), where

j =
{

i if i ≤ d(v);
d(v) otherwise.

Clearly, |VB| =
∑

v∈V d(v) = 2(n − 1) and |EB| =
∑

(u,v)∈E d(u) = O(nΔ).
Therefore, the bipartite graph BT can be constructed from T in time O(nΔ).

(a)  d(u) < d(v)

ud(u)u2u1

vd(u) vd(u)+1 vd(v)v2v1

ω(c1) ω(c2) ω(cd(u)) ω(c1) ω(c2) ω(cd(v)) ω(cd(u))

...

vd(v)v2v1

...... ...

ud(v) ud(v)+1 ud(u)u2u1
... ...

(b)  d(u) > d(v)

Fig. 3. Subgraph BT (u, v) of BT corresponding to an edge (u, v) of T
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Clearly, the maximum absolute weight Nw = max
{
|ω(c1)|, |ω(cΔ)|

}
of edges in

BT is not greater than the maximum absolute cost Nω = max
{
|ω(c1)|, |ω(cΔ+1)|

}
of colors in C.

For each edge (u, v) in T , we denote by BT (u, v) the subgraph of BT induced
by vertices u1, u2, · · · , ud(u) and v1, v2, · · · , vd(v). BT (u, v) corresponds to edge
(u, v) of T . (See Fig. 3.) We then have the following lemma.

Lemma 2. For every tree T , the following (a) and (b) hold:
(a) every perfect matching M of BT contains exactly one of the edges in BT (u, v)

for every edge (u, v) of T , as illustrated in Fig. 3 where edges in M are
drawn by thick lines; and

(b) every perfect matching M of BT induces a compact edge-coloring f of T .
Conversely, every compact edge-coloring f of T induces a perfect matching
M of BT . Furthermore, ω(f) = w(M).

Proof. (a) Let M be a perfect matching of BT . We prove from the leaves to the
root that M contains exactly one of the edges of BT (u, v). One may assume that
u = p(v).

If v is a leaf of T , then BT (u, v) is a star with center v1 and only the edges
of BT (u, v) are incident to v1 in BT . Therefore, the perfect matching M of BT

contains exactly one edge of BT (u, v), say (uk, v1) for some index k, 1 ≤ k ≤ d(u).
One may thus assume that v is an internal vertex of T , and that M contains

exactly one of the edges of BT (v, w) for each child w of v in T . Since v has
a parent u in T , we have v �= r and hence ch(v) = d(v) − 1. Therefore, M
contains exactly d(v) − 1 edges in the bipartite subgraphs corresponding to the
edges of T joining v and its d(v)− 1 children. Hence, exactly one of the vertices
v1, v2, · · · , vd(v), say vj , is not an end of these d(v) − 1 edges in M . Since M is
a perfect matching of BT , M contains exactly one edge (uk, vj) of BT (u, v) for
some index k, 1 ≤ k ≤ d(u).

(b) Every perfect matching M of BT induces an edge-coloring f of T , in which
each edge (u, v) of T is colored with ck for the index k above; the edge of BT (u, v)
contained in M has an end uk, 1 ≤ k ≤ d(u). One can easily observe that the
edge-coloring f is compact.

Conversely, every compact edge-coloring f of T induces a perfect matching
M of BT ; if u = p(v) and f((u, v)) = ci, 1 ≤ i ≤ d(u), then M contains an edge
joining ui and vj where

j =
{

i if i ≤ d(v);
d(v) otherwise.

Obviously, ω(f) = w(M). ��
By Lemma 1 every tree T has an optimal edge-coloring f which is compact, and
hence by Lemma 2(b) BT has a perfect matching M such that w(M) = ω(f).
Remember that |VB| = O(n), |EB | = O(nΔ), and the maximum absolute weight
Nw of edges in BT is not greater than the maximum absolute cost Nω of colors
in C. Since a minimum weight perfect matching of BT can be found in time
O(
√

|VB||EB| log(|VB |Nw)) [3], we can find an optimal edge-coloring of T in
time O(n1.5Δ log(nNω)).
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4 Proof of Lemma 1

In this section, we give a proof of Lemma 1.
Let T = (V, E) be a tree with root r. For a vertex w of T , we denote by Tw

the subtree of T which is rooted at w and is induced by w and all descendants
of w in T . (See Fig. 4(a).) Clearly, T = Tr.

(a)  f 

w1 wch(w)
w2

w

Tw1

f1

cl1
cl2

Tw2
Twch(w)

clch(w)

wj

Twj

clj
. . . . . .

. . . . . .f2 f j f ch(w)

w1 wch(w)
w2

w

Tw1

cl1
cl2

Tw2
Twch(w)

clch(w)

wj

Twj

clj
. . . . . .

. . . . . .g1, l1
g2, l2

gj, lj
gch(w), lch(w)

(b)  f 

Fig. 4. (a) A (w, i)-compact edge-coloring f of Tw, and (b) a (Tw, i)-compact edge-
coloring f ′ of Tw

Let w be an arbitrary vertex of T . Since χ′(Tw) ≤ Δ(T ) and |C| = Δ(T ) + 1,
for each color ci ∈ C, Tw has an edge-coloring f in which ci is not used and
hence ci ∈ Miss(f, w). Let

ω(Tw, i) = min{ω(f) | f is an edge-coloring of Tw such that ci ∈ Miss(f, w)}.

For a color ci ∈ C, an edge-coloring f of Tw is defined to be (w, i)-compact if
the following two conditions (i) and (ii) hold:

(i) ci ∈ Miss(f, w); and
(ii) if i ≥ ch(w) + 1 then C(f, w) = {c1, c2, · · · , cch(w)}, and otherwise

C(f, w) ∪ {ci} = {c1, c2, · · · , cch(w)+1}.
We then have the following lemma.

Lemma 3. For each color ci ∈ C, Tw has a (w, i)-compact edge-coloring f such
that ω(f) = ω(Tw, i).

Proof. We give a proof only for the case where i ≥ ch(w) + 1. (The proof for the
other case is similar.) The definition of ω(Tw, i) implies that Tw has an edge-
coloring f such that ci ∈ Miss(f, w) and ω(f) = ω(Tw, i). In particular, let f
be an edge-coloring of Tw such that |C(f, w) ∩ {c1, c2, · · · , cch(w)}| is maximum
among all these edge-colorings. Suppose for a contradiction that f is not (w, i)-
compact. Then, C(f, w) �= {c1, c2, · · · , cch(w)}. Since |C(f, w)| = ch(w), there
exist two colors cα and cβ such that

cα ∈ {c1, c2, · · · , cch(w)} \ C(f, w)
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and
cβ ∈ C(f, w) \ {c1, c2, · · · , cch(w)}.

Since α ≤ ch(w) < β, we have ω(cα) ≤ ω(cβ). Since i ≥ ch(w)+1, we have cα �=
ci. Since ci ∈ Miss(f, w) and cβ ∈ C(f, w), we have cβ �= ci. Since cα ∈ Miss(f, w)
and cβ ∈ C(f, w), there is a cαcβ-alternating path P (w; cα, cβ) starting from
w. We obtain another edge-coloring f ′ of Tw by interchanging colors cα and
cβ in P (w; cα, cβ). Since ω(cα) ≤ ω(cβ), ω(f ′) ≤ ω(f). Since ci �= cα, cβ and
ci ∈ Miss(f, w), we have ci ∈ Miss(f ′, w) and hence ω(Tw, i) ≤ ω(f ′). Therefore,
ω(Tw, i) ≤ ω(f ′) ≤ ω(f) = ω(Tw, i) and hence ω(f ′) = ω(Tw, i). Since cα ∈
C(f ′, w) and α ≤ ch(w) < β, we have

C(f ′, w) ∩ {c1, c2, · · · , cch(w)} =
(
C(f, w) ∩ {c1, c2, · · · , cch(w)}

)
∪ {cα}

and hence

|C(f ′, w) ∩ {c1, c2, · · · , cch(w)}| > |C(f, w) ∩ {c1, c2, · · · , cch(w)}|,

a contradiction. ��
A (w, i)-compact edge-coloring f of Tw is defined to be (Tw, i)-compact if the
following condition (iii) holds:

(iii) for each vertex v ∈ V (Tw) \ {w}, C(f, v) = {c1, c2, · · · , cch(v), ck} for
some index k such that
(a) k ≥ ch(v) + 1; and
(b) if k ≥ d(v)+1, then k ≤ d(u) and ck is assigned to the edge joining

v and the parent u = p(v).
Clearly, an edge-coloring f of T with root r is compact if f is (Tr, ch(r) + 1)-
compact. Using the argument on an alternating path, one can easily show that
the cost ω(f) of an optimal edge-coloring f of T is equal to ω(Tr, ch(r) + 1).
Therefore, as a proof of Lemma 1, it suffices to prove the following lemma.

Lemma 4. For each vertex w of T and each color ci ∈ C, Tw has a (Tw, i)-
compact edge-coloring f such that ω(f) = ω(Tw, i).

Proof. We prove the lemma by induction on the number of vertices in Tw.
For the base case, let w be a leaf of T . Then, Tw is a tree of a single vertex

w, and hence the lemma trivially holds.
Let ci be a color in C, and let w be an internal vertex of T . Let w1, w2, · · · ,

wch(w) be the children of w, as illustrated in Fig. 4(a). Suppose as the induction
hypothesis that the lemma holds for each color cl ∈ C and each subtree Twj ,
1 ≤ j ≤ ch(w). Then, for each color cl ∈ C, Twj has a (Twj , l)-compact edge-
coloring gj,l such that ω(gj,l) = ω(Twj , l).

By Lemma 3, Tw has a (w, i)-compact edge-coloring f such that ω(f) =
ω(Tw, i). If f is (Tw, i)-compact, then we have done. So we may assume that
f is not (Tw, i)-compact. For each subtree Twj , 1 ≤ j ≤ ch(w), let fj = f |Twj

be the restriction of f to Twj , that is, fj(e) = f(e) for each edge e of Twj .
Let clj be the color assigned to the edge (w, wj), 1 ≤ j ≤ ch(w), by f , as
illustrated in Fig. 4(a). Then one can easily observe that clj ∈ Miss(fj , wj) and
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ω(fj) = ω(Twj , lj) = ω(gj,li) for each j, 1 ≤ j ≤ ch(w). We now construct
another edge-coloring f ′ of Tw, as follows (see Fig. 4(b)):

f ′(e) =
{

gj,lj (e) if e ∈ E(Twj ) for some j, 1 ≤ j ≤ ch(w);
f(e) otherwise.

Clearly, f ′ is (Tw, i)-compact and ω(f ′) = ω(f) = ω(Tw, i). ��

5 Multitrees

Replace each edge in a tree by multiple edges, as illustrated in Fig. 5(a). The
resulting multigraph is called a multitree. In this section, we show that our
reduction for trees can be extended for multitrees.

Theorem 2. The cost edge-coloring problem for multitrees T = (V, E) can be
reduced in time O(|E|Δ) to the minimum weight perfect matching problem for a
bipartite graph BT , and can be solved in time O(|E|1.5Δ log(|E|Nω)).

Let T = (V, E) be a multitree with root r. Since T is a bipartite multigraph, T
has an optimal edge-coloring using Δ colors [1]. For a vertex v ∈ V \ {r}, we
denote by m(v) the number of multiple edges joining v and p(v). Thus m(v) =
d(v)− ch(v). Similarly as for trees, an edge-coloring f of a multitree T is defined
to be compact if the following two conditions (i) and (ii) hold:

(i) for the root r of T , C(f, r) = {c1, c2, · · · , cch(r)}; and
(ii) for each vertex v ∈ V \{r}, C(f, v) = {c1, c2, · · · , cch(v), ck1 , ck2 , · · · , ckm(v)}

for some indices kj , 1 ≤ j ≤ m(v), such that
(a) kj ≥ ch(v) + 1; and
(b) if kj ≥ d(v) + 1, then kj ≤ d(u) and ckj is assigned to an edge joining

v and the parent u = p(v).
Figure 5(a) depicts a compact edge-coloring of a multitree. Clearly, a compact
edge-coloring uses colors c1, c2, · · · , cΔ and does not use color cΔ+1. Similarly
as Lemma 1, one can prove that every multitree has an optimal edge-coloring
which is compact.

The bipartite graph BT = (VB , EB) for a multitree T = (V, E) can be con-
structed as follows. (See Figs. 5 and 6.)

c1

c1
c3

c3

c2

c2

c5
c4

c4

r

(a)

3 4 521 3 421

321

(b)
Fig. 5. (a) Optimal compact edge-coloring of a multitree T , and (b) its corresponding
perfect matching in BT whose edges are drawn by thick lines
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(a)  d(u) < d(v)

ud(u)u2u1

vd(u) vd(u)+1 vd(v)v2v1

...

vd(v)vch(v)+1vch(v)

m(v) vertices

d(u) - d(v) vertices

uch(v)+1uch(v)

...

... ...

ud(v) ud(v)+1 ud(u)
...

v2v1

...

u2u1
... ...

......

ω(c1) ω(c2) ω(cd(u))

ω(c1) ω(c2) ω(cch(v))
ω(cd(u))

(b)  d(u) > d(v)
Fig. 6. Subgraph BT (u, v) of BT corresponding to multiple edges joining v and u = p(v)
in T

(i) For each vertex v ∈ V , add d(v) vertices v1, v2, · · · , vd(v) to VB.
(ii) For each set of m(v) multiple edges joining vertices v and u = p(v), add

edges to EB, as follows: for each index i, 1 ≤ i ≤ d(u), join vertices ui and
vj by an edge whose weight is w((ui, vj)) = ω(ci), where

j =
{

i if i ≤ d(v);
ch(v) + 1, ch(v) + 2, · · · , d(v) otherwise.

Clearly, |VB| = 2|E|. If d(u) ≤ d(v), then |E(BT (u, v))| = d(u). If d(u) > d(v),
then |E(BT (u, v))| = d(v) +

(
d(u) − d(v)

)
m(v). In either case, |E(BT (u, v))| ≤

d(u)m(v) because m(v) ≥ 1. Therefore, |EB | ≤
∑

d(u)m(v) = O(Δ|E|), where
the summention is taken over all pairs (u, v) such that u = p(v).

Similarly as in Lemma 2, one can prove that every perfect matching M of
BT contains exactly m(v) edges in BT (u, v); every compact edge-coloring f
of a multitree T induces a perfect matching M of BT , and vice versa; and
ω(f) = w(M). Thus, our reduction for trees can be extended for multitrees, and
hence Theorem 2 holds.

6 Conclusions

In this paper, we show that the cost edge-coloring problem for a tree T can be
reduced in time O(nΔ) to the minimum weight perfect matching problem for
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the bipartite graph BT . This reduction immediately yields an algorithm which
actually finds an optimal edge-coloring of T in time O(n1.5Δ log(nNω)). We then
show that the algorithm for trees can be extended for multitrees.
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Abstract. We study the minimum diameter color-spanning set problem
which has recently drawn some attention in the database community.
We show that the problem can be solved in polynomial time for L1

and L∞ metrics, while it is NP-hard for all other Lp metrics even in
two dimensions. However, we can efficiently compute a constant factor
approximation.

1 Introduction

Assume we have a set of resources of one of several different types, or colors. We
want to solve a task that requires simultaneous use of one resource of each color.
There is a communication delay between any pair of resources. How should we
allocate the resources so as to minimize the maximum delay between any two
of our selected resources? We call this the minimum diameter color-spanning
set problem (MDCS). It arises in large computer networks with different types
of servers (think of a large company trying to pool resources to solve a certain
computational task). It also arises in spatial databases, where it has recently been
studied by Zhang et al. [7]. For example, we may search for a holiday location
that features skiing, sailing, golfing, and shopping, all within short distance of
each other and of our hotel.

Modeling the Problem. We model MDCS as follows. We are given a set S of n
points in d-dimensional space IRd. We measure distances in the Lp metric, for
some 1 ≤ p ≤ ∞. Each point is colored in one of k colors, where k ≥ 1. S
may be a multiset, which means we can have scenarios where a point is colored
simultaneously with several colors. We call a subset of k points of distinct colors
a rainbow set. MDCS is the problem of finding a rainbow set of smallest diameter.
If we want to emphasize the dimension and metric, we write MDCS(d, p). We
denote the smallest diameter of a rainbow set of S in Lp metric by rp(S). See
Fig. 1 for an example.
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B

Fig. 1. An instance of MDCS(2, 2) with 3 colors. The smallest color-spanning disc B,
enclosing the dashed triangle, does not minimize the diameter of a rainbow set, but it
is a good approximation (Lemma 4). The solid triangle spans the minimum-diameter
rainbow set.

Previous Work. Zhang et al. proposed an O(nk)-time algorithm for MDCS(2, 2)
based on a brute-force enumeration of all possible rainbow sets. Their algorithm
was implemented in a geographical tagging system named MarcoPolo by Chen
et al. [3]. They also list several other applications of this problem.

Our Results. It is straightforward to solve the problem for d = 1 in O(n log n)
time. On the other hand, we show that MDCS(2, 2) is NP-hard for d ≥ 2 and
1 < p < ∞. We do not know whether the problem is W [1]-hard or APX-
hard for these metrics, but there are efficient approximation algorithms. For
example, we can approximate r2(S) by a factor of 1.154 in time O(n log n) in two
dimensions. For p ∈ {1,∞}, we can solve MDCS(2, p) optimally in time O(n log n),
and MDCS(3, p) in time O(k1+εn2), for any ε > 0. In IRd, the running time is
O(nd+2).

Related Work. To the best of our knowledge, this problem has not been studied
from a theoretical point of view. Several other color-spanning set problems have
been studied by Abellanas et al. They called rainbow sets color-spanning sets.
They gave efficient algorithms in two dimensions for the smallest color-spanning
disc problem [1] (finding a smallest disc containing at least one point of each
color) and the smallest color-spanning rectangle problem [2] (finding a smallest
rectangle containing at least one point of each color). We denote the diameter of
a smallest color-spanning disc (or ball in higher dimensions) of a k-colored set
S by bp(S).
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In two dimensions, the smallest color-spanning disc for any Lp metric can be
computed in time O(kn log n) [1]. This algorithm uses a farthest color Voronoi
diagram which can be computed using an algorithm for the computation of
the upper envelope of Voronoi surfaces in one dimension higher [5, Theorem 8].
In three dimensions, the running time becomes O(k1+εn2), for any ε > 1 [5,
Theorem 19]. To generalize these algorithms to higher dimensions would require
to bound the complexity of the envelopes of higher-dimensional Voronoi surfaces,
which required considerable effort even in two and three dimensions. However,
we can always find the smallest enclosing ball in time O(nd+2) by brute-force
enumeration of all balls with some subset of d + 1 points on their boundary.

Structure of the Paper. In Section 2, we state a few facts about smallest en-
closing balls in higher dimensions. In Section 3, we present efficient algorithms
for MDCS(d, 1) and MDCS(d,∞) and approximation algorithms for the other Lp

metrics. In Section 4, we show that MDCS(2, p) is NP-complete for 1 < p < ∞.
We conclude the paper in Section 5.

2 Preliminaries

We first state a few facts about smallest enclosing balls of point sets in higher
dimensions. For a point set S, we denote its diameter in Lp metric by diamp(S)
and its smallest enclosing ball by Bp(S).

As we will see later, the worst case ratio of the diameter of the smallest
enclosing ball of a point set and the diameter of the point set determines the ap-
proximation ratio of our algorithms. We denote this ratio by αd

p in d-dimensional
space with Lp metric. The following proposition is illustrated in Fig. 2.

Fig. 2. The smallest spanning-color discs in L1 metric (left) and L∞ metric (right)
for three-colored point sets. In both cases, the length of the dashed line (the distance
of the two points on the boundary of the square) is equal to the diameter of the disc.
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Proposition 1. Let S be a point set in IRd. For p ∈ {1,∞}, Bp(S) is a hyper-
cube, and diamp(S) = diamp(Bp(S)), i.e., αd

1 = αd
∞ = 1. ��

Proposition 2. For 1 < p < ∞, any two points on the boundary of a ball B in
Lp metric have distance at most diamp(B), with equality if and only if the two
points are antipodal. ��

Corollary 3. Let S be a k-colored point set in IRd. For any p, rp(S) ≤ bp(S).
��

3 Approximating MDCS

Let S be a k-colored set of points in IRd with Lp metric. In this section we will
show that the minimum diameter rainbow set can be approximated by computing
the minimum color-spanning ball. Since we can compute bp(S) efficiently, this
gives us polynomial-time approximation algorithms for MDCS(d, p).

Lemma 4. In any dimension d with any Lp metric, the smallest color-spanning
ball is an αd

p-approximation for the minimum diameter rainbow set.

Proof. Let R be a minimum diameter rainbow set of S. Let B be a smallest
enclosing ball of R. Then, by Cor. 3,

bp(S) ≥ rp(S) = diamp(R) ≥ diam(B)
αd

p

≥ bp(S)
αd

p

. ��

We can therefore now focus on determining better bounds for αd
p. We have

already seen in Prop. 1 that αd
1 = αd

∞ = 1. We can therefore solve MDCS optimally
by computing a smallest color-spanning ball.

Theorem 5. We can solve MDCS(d, 1) and MDCS(d,∞) by computing a smallest
color-spanning ball of S. ��

For other Lp metrics, the minimum-color spanning ball is at least a 2-
approximation for the minimum diameter rainbow set. It does not necessarily
minimize the diameter, as can be seen in Fig. 1.

Theorem 6. For any d and p, αd
p ≤ 2.

Proof. Let B be a smallest enclosing ball of a point set R. Then there must
be two points in R with distance at least 1

2diamp(B). Otherwise, R would be
completely contained in a half-ball of B, but then B would not be the smallest
enclosing ball of R. ��

For L2 metric, we have a stronger bound.

Theorem 7. αd
2 ≤

√
2d

d+1 . ��
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Proof. In L2 metric, the smallest enclosing ball B of a regular simplex in IRd

with unit edges is a universal cover [6], i.e., it contains any point set of diameter

1. B has diameter
√

2d
d+1 . ��

Corollary 8. In two dimensions with L2 metric, we can find a 2√
3
≈ 1.154-

approximation to diamp(S) in time O(kn log n). In three dimensions, we can find

a
√

3
2 ≈ 1.225-approximation to diamp(S) in time O(k1+εn2), for any ε > 1. In

higher dimensions, the approximation factor is never more than
√

2 ≈ 1.414. ��
In two dimensions, we can improve the bound for α2

p.

2y

1 x

y

2y

Fig. 3. An equilateral triangle with side length 2y in Lp metric in a ball of diameter 2

Theorem 9. For 2 ≤ p ≤ ∞, α2
p < 4

3 .

Proof. By Prop. 1, αd∞ = 1, so we can assume that 2 ≤ p < ∞. It is straightfor-
ward to adapt the proof in [6] to Lp metrics to show that the smallest enclosing
ball B of a regular simplex in IRd with unit edges is a universal cover. But we
do not have a closed formula for the diameter of that ball. Fig. 3 shows a ball
of diameter 2 in IR2 with an inscribed equilateral triangle of side length 2y (the
figure assumes L2 metric, but the figure would be simular for any Lp metric,
2 ≤ p < ∞). We have two constraints for x and y:

xp + yp = 1 (1)
and (1 + x)p + yp = (2y)p . (2)
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Substituting yp = 1 − xp in Eq. (2) yields

(1 + x)p + (2p − 1)xp = 2p − 1 .

Note that the left-hand side of this equation is monotone increasing in x. If p ≥ 2,
then it is not larger than the right-hand-side if we set x = 1

2 . Thus, x ≥ 1
2 . Then,

Eq. 2 implies

yp =
(1 + x)p

2p − 1
>

(
3
4

)p

.

Thus, α2
p = 1

y < 4
3 . ��

4 Hardness of MDCS

We do not know whether the approximation algorithms in the previous section
are optimal (we suspect they are not) or whether there exists a PTAS, but we
cannot hope to solve the problem exactly in polynomial time because we will
now show that MDCS is NP-hard.

We first give the decision version of MDCS: Given an instance of MDCS and
a positive number d, decide whether there exists a rainbow set of diameter at
most d. Clearly, this problem is in NP (we can compare the square of all pairwise
point distances to d2, avoiding costly square root calculations). Hardness of the
decision problem implies hardness of the optimization problem.

Theorem 10. The decision version of MDCS is NP-hard for Lp metric, for 1 <
p < ∞, in two or higher dimensions.

Proof. We prove the hardness of MDCS by reduction from 3SAT . We give the
proof for L2 metric in two dimensions and then show how to extend it to other
Lp metrics. This implies hardness for higher dimensions.

We first sketch the proof under the assumption that we can easily compute
coordinates of points on a circle. We will then show how to approximate these
coordinates with low precision rational numbers.

Let F be a Boolean formula in conjunctive normal form with n variables
x1, . . . , xn in m clauses c1, . . . , cm of size at most three. To construct an instance
I of MDCS, we draw a circle C with diameter 1. For each variable xi, we define
two antipodal slots si and s̄i on C, corresponding to the positive literal xi and
the negative literal x̄i, respectively. These slots should be pairwise distinct, but
otherwise they can be placed arbitrarily; for example, we could create 2n equally-
spaced slots on C.

For each clause cj we create a new color colj . If xi appears in cj , we place a
point of color colj at slot si Similarly, if x̄i appears in cj, we place a point of
color colj at slot s̄j . Note that several points can coincide if a literal appears in
several clauses. Finally, we set d = 1− ε for some ε defined below. See Fig. 4 for
an example of the construction.
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s1

s̄3s3

s̄1

s2

s4

s̄4

s̄2

Fig. 4. An example for the construction in the NP-hardness reduction. Let F =
(x1∧ x̄2 ∧ x̄4)∨ (x2 ∧x3 ∧x4)∨ (x̄1 ∧ x̄3 ∧ x̄4). The literals of the first clause are colored
white, the second clause colored cyan, and the third clause colored black. Note that a
white and black point share slot s̄4.

If I has a solution, then there is a rainbow set R of m points with diameter
at most d = 1 − ε. In particular, R cannot contain both si and s̄i, for any i.
Therefore, R induces a truth assignment for the variables xi. If si ∈ R, we set
xi = 1, otherwise we set xi = 0. Since R contains one point of each color, each
clause will contain at least one true literal, i.e., F will be satisfied.

If F admits a satisfying assignment, then each clause cj contains at least one
true literal xij (or x̄ij ). We add the corresponding point of color colj at slot sij

(or s̄ij ) to the set R. Then, R is a rainbow set of diameter at most d. Thus, I
has a solution.

We now discuss the problem of approximating the slot coordinates with low
precision rationals. For example, if the slots are evenly spaced around the circle,
we can set ε to be any value strictly smaller than π

n . If we chose ε < π
2n , we

can approximate the slot positions by choosing an arbitrary point inside a ball
centered at the slot with diameter at most ε

2 .
For other Lp metrics, 1 < p < ∞, observe that any two points on the boundary

of a unit disc will have distance at most 1, with equality if and only if the two
points are antipodal. Therefore, the proof above also works for arbitrary Lp

metrics, except if p = 1 and p = ∞, since for these metrics the discs are actually
squares and any two points on opposite sides of the square have distance equal
to the diameter of the disc. ��
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5 Conclusions

We have shown that MDCS can easily be solved for L1 and L∞ metrics, while
it is NP-hard for other Lp metrics. Unfortunately, the approximation ratio of
the smallest color-spanning disc deteriorates if the dimension increases. It would
therefore be interesting to find better approximation algorithms for MDCS, in par-
ticular in higher dimensions. It may also be worthwhile to study FPT algorithms
for MDCS, for example with parameter k, the number of colors. The problem is
clearly polynomial-time for two colors, and our NP-hardness reduction required
a large number of colors.
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Abstract. Given a set of n equal size and non-overlapping axis-aligned
squares, we need to choose exactly one point in each square to make
the area of a convex hull of the resulting point set as large as possible.
Previous algorithm [10] on this problem gives an optimal algorithm with
O(n3) running time. In this paper, we propose an approximation algo-
rithm which runs in O(n log n) time and gives a convex hull with area
larger than the area of the optimal convex hull minus the area of one
square.

Keywords: Convex Hull, Imprecise Data, Computational Geometry.

1 Introduction

Finding a convex hull is a classic problem in computational geometry and it is
used in many application domains such as pattern recognition [1], data mining [4]
etc. There are many papers on computing the convex hull [3] [6] [8] [7] [9]. But all
those classic algorithms assume that the input data are precise. In fact, data in
real life, more often than not, are recorded approximately in computer because
of computational error or privacy protection [2] [5] etc. The imprecise data can
be presented by circle model or line segment model. Also the axis-aligned squares
are often used to present the imprecise data.

The problem we discuss in this paper is: Given a set of n equal size and non-
overlapping axis-aligned squares, we need to choose exactly one point in each
square such that the area of the convex hull of the resulting point set as large as
possible. Löffler et al. [10] propose an O(n3) algorithm for this problem. In this
paper, we propose an approximation algorithm for the problem. The difference
between the area of the convex hull computed by our algorithm and the area
of the optimal convex hull is less than the area of one square and the time
complexity is only O(n log n).
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2 O(n3) Algorithms by Löffler et al. [10]

In [10], Löffler et al. give some important observations. We borrow some defini-
tions and lemmas from [10]. Let pt, pr, pl and pb, called extreme points, be the
topmost, rightmost, leftmost and bottommost vertices of a convex hull. These
four points divide the convex hull into four parts: top left, top right, bottom left
and bottom right chains. Similarly topmost, rightmost, leftmost and bottom-
most square of input set are called extreme squares and denoted as St, Sr, Sl

and Sb.

Lemma 1. There is an optimal solution where all points lie at a corner of their
square.

Lemma 2. All vertices on the top left chain are top left corners of their squares,
and similar for the other three chains.

Lemma 3. An extreme square in the input set gives one of the extreme points
of the optimal solution.

The general idea of the O(n3) algorithms in [10] is: first we fix four extreme
points that have constant number of combinations. Then constructing the opti-
mal convex hull by reducing the problem to constructing the largest area convex
hull on parallel line segments model by dynamic programming method which
takes O(n3) time.

3 Approximation Algorithm

Let CH(v1, v2, ..., vk) be the convex hull such that v1, v2, ..., vk are the ver-
tices in counterclockwise order. We denote the area of CH(v1, v2, ..., vk) by
Area(v1, v2, ..., vk). For square S, let Stl, Str, Sbl, Sbr be the top left, top right,
bottom left and bottom right corner vertices of S respectively. Let x.a and y.a
be the x and y coordinates of point a.

Without loss of generality, we assume the input squares are unit squares and
there are only one topmost square, one bottommost square, one leftmost square
and one rightmost square at most. According to lemma 1,2 and 3, there are
only at most 16 combinations of extreme points. Now assuming four extreme
points are fixed, we construct the convex hull as follows: use pl, pt and all top
left corners of all non-extreme squares to construct top left chain in O(n log n)
time. Other three convex chains are constructed in similar way. Therefore, we
can construct at most 16 such convex hulls in O(n log n) time. We call those
convex hulls as CHorigin.

If there is a non-extreme square of which more than one corner appear as
vertices of one convex hull, we call this square invalid square. If we use a line l to
sweep the convex hull from left to right (or from top to bottom if l is horizontal),
the length of intersection line segment between l and the convex hull increases
first and then decreases. We denote the increasing region as l+ and the deceasing
region l−. In this paper, l is fixed to vertical, horizontal, positive 45 degree and
negative 45 degree lines denoted as |,−, /, \ respectively.
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R1 R2

R3R4

R5

B

R6

R7

C

Str
1

R8

R10

R9

Sbr
1

S1

Stl
1

Fig. 1. It is impossible that more than two vertices of non-extreme squares are on
CHorigin

Lemma 4. At most two vertices of one invalid square can appear as vertices of
CHorigin.

Proof. Let us assume there is a non-extreme square S1 and Stl
1 , Str

1 , Sbr
1 are on

top left, top right and bottom right chains of CHorigin respectively. We divide
the plane into 10 subdivisions from R1 to R10 (see Figure 1). R8, R9 are unit
squares on the right and the top of S1. According to the properties of the convex
hull, there is no vertex lying in R1, R2 and R3. Also there is no vertex in R8 and
R9 since the squares don’t overlap. Therefore, pr, pt of CHorigin should appear
in R7, R6 respectively. However, according to the property of convex hull, pr, pt

have to be B, C respectively where B is the bottom right corner of R8 and C is
the top left corner of R9. Then Str

1 is on the line segment of BC. We can treat
Str

1 as inside the convex hull.

From lemma 4, we know there are only 6 types of invalid squares by choosing
different pairs of corners to appear on CHorigin. For invalid square S, if Stl

and Sbl appear on CHorigin, we call it SlNear. Similarly, other three invalid
squares are denoted as StNear, SbNear, SrNear. However if Stl and Sbr appear
on CHorigin, there are two cases: if the diagonal line through Stl and Sbr is on
\+ region, then we denote the invalid square as SblNear , otherwise as StrNear.
Similarly we define StlNear, and SbrNear. Therefore, we have 8 types of invalid
squares totally.

Lemma 5. There is not any part of non-extreme square to the left of left edge
of SlNear, to the right of right edge of SrNear, to the top of top edge of StNear

and to the bottom of bottom edge of SbNear. There is not any part of non-extreme
square to the left of left edge of SblNear and below the bottom edge of SblNear.
Similar situations also hold for StrNear, StlNear and SbrNear.

Proof. We will prove the first case. Other three cases for SrNear, StNear, SbNear

have similar proof. Assume that there is a non-extreme square S1 to the left of
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left edge of SlNear . According to lemma 2, the left edge of SlNear appears on |+.
If we draw a line l through the left edge of S1, since l is to the left of left edge
of SlNear , the length of the intersection line segment between l and CHorigin

should be less than 1. Thus at least one of the two left corners of S1 is out of
CHorigin which contradicts the way we constructed CHorigin.

Now we prove there is not any part of non-extreme square to the left of left
edge of SblNear. Other cases have similar proof. Suppose there is a non-extreme
square S1 to the left of left edge of SblNear . There are two subcases:

1. S1 is below SblNear (see Figure 2(a)). Let l1 be the line through Stl
blNear and

Sbr
blNear , l2 be the line through Stl

1 and Sbr
1 . Since no squares overlap and S1

is below SblNear , l2 should be to the left of l1. Furthermore l1 is on the region
of \+, then the length of the intersection line segment of l2 with CHorigin is
less than

√
2 that means at least one vertex of Stl

1 and Sbr
1 is out of CHorigin.

That contradicts the way we construct CHorigin.
2. S1 is above SblNear (see Figure 2(b)). If we draw vertical and horizontal

lines through Stl
blNear and divide the plane into four regions R1, R2, R3, R4.

According to the property of convex hull, there are no vertices on region R1.
Then S1 can not appear on R1 thus can not appear to the left of left edge
of SblNear.

Note that this is also true that there is not any part of non-extreme square in
the left plane of the line through Stl

blNear and Sbr
blNear since no squares overlap.

Similar situations also hold for StrNear, StlNear and SbrNear.

From lemma 5, we know some pairs of invalid squares can not coexist. For
example, SlNear and SblNear can not appear simultaneously since both require
there are no non-extreme squares appearing to the left of their left edges. Thus
we have the following corollary.

SblNear

S1

l1

l2
pl

pb

SblNear

S1

pl

pb

R1

R2

R3 R4

(a) (b)

Fig. 2. Illustration for lemma 5
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Corollary 1. The following pairs of invalid squares can not coexist: {SlNear,
SblNear}, {SlNear, StlNear}, {SrNear, SbrNear},{SrNear, StrNear}, {StNear,
StlNear}, {StNear, StrNear}, {SbNear, SblNear}, {SbNear, SbrNear}, {StlNear,
SblNear}, {SblNear, SbrNear}, {SbrNear, StrNear} and {StrNear, StlNear}.

Lemma 6. If SlNear exists, we can move pl to the other left corner of Sl and
reconstruct the convex hull to make SlNear valid square such that the resulting
convex hull has larger area and no new invalid squares appear. Similar properties
hold for SrNear, SbNear, StNear.

Proof. Suppose pl is Sbl
l for CHorigin. Since two left vertices of SlNear ap-

pear on CHorigin and on region |+, then y.Stl
lNear > y.Sbl

l > y.Sbl
lNear. Thus

y.Stl
l > y.Stl

lNear since squares have same size. If we move pl from Sbl
l to Stl

l then
reconstruct the convex hull, Stl

lNear is inside the new convex hull. According to
lemma 5, there is no square to the left of left edge of SlNear. After moving pl

from Sbl
l to Stl

l , Sbl
lNear is still the neighbor vertex of pl on the bottom left chain

of CHnew . Since pr, pb, pt are fixed, the only vertices could be changed are from
top left chain. Also because pl is moved vertically upward, the vertices can only
disappear on CHnew without adding new vertices and the new convex hull has
larger area.

If StrNear exists, there are two cases: St and Sr are different or same.

Lemma 7. If StrNear exists and St and Sr are different, we can move pt or pr

and reconstruct the convex hull to make StrNear valid square such that the area
of new convex hull is at least the area of old convex hull minus 1

2 and no new
invalid squares appear. Similar properties hold for SbrNear, SblNear, StlNear.

Proof. Depending on y.Str
r ≤ y.Sbr

t or y.Str
r > y.Sbr

t , we have two cases:

1. y.Str
r ≤ y.Sbr

t . There are still four subcases depending on pt and pr from
which corner of St and Sr:
(a) pt is Str

t and pr is Str
r (see Figure 3). We can move pt to Stl

t and recon-
struct the convex hull denoted as CHnew . First, we prove that StrNear

is no longer invalid in CHnew . Suppose StrNear is still invalid. We draw
a line l1 through Stl

t and Sbr
t and a line l2 through Stl

trNear and Sbr
trNear.

Because Str
r is the rightmost extreme point, then x.Str

r ≥ x.Str
t . If Str

r

is on the right half plane of l1 (see Figure 3(a)), because y.Str
r ≤ y.Sbr

t ,
then Str

r is on the intersection region of the the right half plane of l1
and the bottom half plane of the line through the bottom edge of St.
Therefore the length of intersection line segment between l1 and CHnew

is larger than
√

2. There is a contradiction because the length of line
segment Stl

trNearS
br
trNear is

√
2, l1 and l2 are in region \−, and l2 is to the

left of l1. If Str
r is on the left half plane of l1 (see Figure 3(b)), because

y.Str
r ≤ y.Sbr

t , then Str
r is on the intersection region of the the left half

plane of l1 and the right half plane of the line through the right edge
of St. Let l3 be the line through Str

r and parallel with l1, l4 be the line
through Stl

t and Stl
trNear and l5 be the line through Sbr

t and Sbr
trNear.
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Fig. 3. Illustration for lemma 7

Let the intersection points of l3 with CHnew, l4 and l5 be a, b and c
respectively. Then the length of intersection line segment between l3 and
CHnew is |aStr

r | ≥ |bStr
r | ≥ |bc| =

√
2. There is a contradiction.

Second, we prove that moving pt to Stl
t does not add new vertex on

CHnew . Since pl, pb, pr are not moved, vertices can be changed only on
top left chain and top right chain. After moving pt from right to left,
the vertices on top left chain can only disappear. According to lemma 5,
there is not any part of non-extreme square on the left half plane of the
line through Stl

trNear and Sbr
trNear. Then the only vertex could be added

on top right chain is Str
trNear. However we can prove this will not happen.

Suppose Str
trNear appears on the top right chain of CHnew . Let Sbl

trNear

on (0, 0) (see Figure 4). We draw a unit square S1 just to the right of
StrNear. Since Str

trNear is on the top right chain, Sbr
trNear is on the bottom

right chain, and Sr can not overlap with StrNear, then 0 ≤ y.pr ≤ 1 and
x.pr ≥ 2. Let l2 be the line through Sbr

trNear and pr, l1 be the line
through Stl

trNear and Str
t , and l3 be the line through Str

trNear and pr.
Let the intersection point of l2 and l3 be a. Let the angle between l1, l2
and horizontal line are β and α respectively. We want to prove that the
vertical distance d from a to top edge of St is less than 1/2. Since the
length of top edge of St is fixed and Stl

t should be on the left half plane of
l3. According to convex property, to make d as large as possible, we put
Stl

t on l3. Since the negative 45 degree diagonal line of StrNear is on \−
region, then α ≥ β. To make d as large as possible, we set β = α. Also
to make d larger, we can move pr to left. But x.pr ≥ 2, so we can set
x.pr = 2 and y.pr = y∗. The equation of line l3 is y−(y∗−1)x−4+y∗ = 0
and The equation of line l2 is y − y∗x − 1 = 0 where 0 ≤ y∗ ≤ 1. Then
the coordinate of a is{

x.a = 2 − y∗

y.a = 1 + y∗ − y∗2 = −(y∗ − 1
2 )2 + 5

4 ≤ 5
4

Then the vertical distance d′ from a to the top edge of StrNear is ≤ 1/4.
Since top edges of StrNear and St have the same length and are parallel,
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Fig. 4. Illustration for lemma 7

then d = d′ ≤ 1/4 < 1/2. Therefore the distance between top edges of
StrNear and St is d + d′ < 1. Because Str

t and Stl
rtNear is on the top left

chain of CHorigin, x.Str
t > x.Stl

rtNear . That means St overlaps SrtNear.
This contradicts the fact all squares are non-overlapping.
Finally, we need to prove Area(CHnew) ≥ Area(CHorigin) − 1/2. We
draw a line through Stl

rtNear and Sbr
rtNear and let it intersect with top

right chain of CHnew at point a. Then

Area(CHnew) − Area(CHorigin)
= Area(Stl

t , a, Sbr
rtNear, S

tr
r ) − Area(Str

t , Stl
rtNear, S

br
rtNear, S

tr
r )

≥ Area(Stl
t , Stl

rtNear, S
tr
r ) − Area(Str

t , Stl
rtNear, S

tr
r )

= 1
2 (y.Str

r − y.Stl
rtNear)

= 1
2 (y.Str

r − y.Sbr
rtNear − 1)

≥ − 1
2

The last line of above formula is true because Sbr
rtNear and Str

r are on
the bottom right chain and Str

r is the rightmost point that leads to
y.Str

r − y.Sbr
rtNear ≥ 0.

(b) pt is Stl
t and pr is Str

r . This is the same situation after moving pt in the
first subcase. So no SrtNear in this case.

(c) pt is Str
t and pr is Sbr

r . We move pt from Str
t to Stl

t . The rest of proof is
similar to the first subcase.

(d) pt is Stl
t and pr is Sbr

r . This is the same situation after moving pr and pt

to make SrtNear valid for the second and third subcases. So no SrtNear

in this subcase.
2. y.Str

t ≤ y.Str
r ≤ y.Sbr

t . We can reduce this case to the first case. For example,
if pt is Str

t and pr is Str
r (see Figure 5(a)), we move pr from Str

r to Sbr
r . We

know x.Str
r > x.Str

t + 1 since no squares overlap. If we draw a line l through
Str

r and Sbl
r and symmetric image over l for all squares, then this case is

exactly the same as the first subcase in previous case.
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St

Sr

l

l

(a) (b)

Fig. 5. (b) is symmetric image of (a) over l

Now let us discuss the situation when St and Sr are the same square denoted as
Str. Let the topmost square except Str be St∗ and rightmost square except Str

be Sr∗. There are two subcases: pr �= pt or pr = pt.
If pr �= pt, we could have pt = Stl

tr or pr = Sbl
tr. Since those two cases are

symmetric, we only consider pt = Stl
tr.

Lemma 8. If pt = Stl
tr and pr = Str

r∗, we can move pr from Str
r∗ to Sbr

r∗ and
reconstruct the convex hull to make StrNear valid square such that the area of
new convex hull is at least the area of old convex hull minus 1

2 and no new invalid
squares appear.

Proof. First we prove StrNear is no longer invalid on CHnew. Suppose StrNear

still appears on CHnew. Since pr = Str
r∗ and Sr∗ is the second rightmost square,

we have x.Stl
tr ≤ x.Str

r∗ = x.Sbr
r∗ ≤ x.Str

tr (see Figure 6). Let the line through Sbr
r∗

and Stl
r∗ be l1 and the line through Sbr

trNear and Stl
trNear be l2. The length of the

intersection segment of l1 with CHnew is ≥
√

2 since Stl
r∗ is inside CHnew . That

contradicts the fact l1 is to the right of l2 and they are in \− region of CHnew .
Second, since pt, pl, pb are fixed, moving pr from Str

r∗ to Sbr
r∗ could only change

top right chain and bottom right chain. For bottom right chain, the movement
only makes the vertices on bottom right chain disappear. For top right chain,
the only possible new vertex could add in is Str

trNear. Similar to the proof of
lemma 7, we can prove this could not happen.

Finally, we need to prove Area(CHnew) − Area(CHorigin) ≥ − 1
2 . Assume l2

intersects with CHnew at point a (see Figure 6).

Area(CHnew) − Area(CHorigin)
= Area(Stl

tr , S
tl
rtNear, a, Sbr

r∗) − Area(Stl
tr , S

tl
rtNear, S

br
rtNear, S

tr
r∗)

≥ −Area(Stl
tr, S

br
r∗, S

tr
r∗)

= − 1
2 × 1 × (x.Str

r∗ − x.Stl
tr)

≥ − 1
2

The last inequality is true because x.Stl
tr ≤ x.Str

r∗ = x.Sbr
r∗ ≤ x.Str

tr .
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SrtNear
Str

Sr∗

a

l2 l1

Fig. 6. Illustration for lemma 8

Lemma 9. If pt = Stl
tr and pr = Sbr

r∗, then SrtNear can not appear on CHorigin.

Proof. This is true because this situation is the same as the situation in lemma 8
after moving pr from Str

r∗ to Sbr
r∗.

Now let us discuss the situation when pr = pt. First we discuss the situation of
pr = pt = Str

tr . There are still two subcases: St∗ and Sr∗ are different squares or
the same square.

Lemma 10. If pr = pt = Str
tr and St∗ and Sr∗ are different squares, then

SrtNear can not appear on CHorigin.

Proof. Suppose SrtNear appears on CHorigin. According to lemma 5, there is not
any part of non-extreme squares on the right half plane of the line l1 through
Stl

trNear and Sbr
trNear. Let the horizontal line through top edge of StrNear be

l2. Since St∗ is the topmost square except Str, top edge of St∗ has to appear
in the intersection region of the left half plane of l1 and upper half plane of l2.
Therefore two top vertices of St∗ are out of CHorigin that contradicts the way we
construct CHorigin. Note that if StrNear = St∗, then there is no contradiction.
Similar proof for Sr∗. Since St∗ and Sr∗ are different, at least one contradiction
exists.

Lemma 11. If pr = pt = Str
tr and St∗ and Sr∗ are the same square denoted as

Str∗, then SrtNear is Str∗. We could choose pt = Stl
tr or pr = Sbr

tr and reconstruct
the convex hull to make StrNear valid square such that the area of new convex
hull is at least the area of old convex hull minus 1

2 and no new invalid squares
appear.

Proof. First we prove SrtNear is Str∗. Assume SrtNear is not Str∗. According to
lemma 5, there is no non-extreme squares on the right half plane of the line l1
through Stl

trNear and Sbr
trNear. Therefore the top edge or right edge of Str∗ should

be to the bottom or the left of StrNear that contradicts the definition of Str∗.
For SrtNear = Str∗, there are three subcases:

1. The top edge of Str∗ is below the bottom edge of Str and the right edge
of Str∗ is to the left of the left edge of Str (see Figure 7). In this case, we
choose pt = pr = Stl

tr or pt = pr = Sbr
tr to construct the new convex hull.

Let l2 be the line through Stl
tr and Stl

tr∗ and l3 be the line through Sbr
tr and

Sbr
tr∗. Suppose Str∗ is still invalid after set pt = pr = Stl

tr. Then all squares
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Str∗

Strl1

l2

l3

Fig. 7. Illustration for lemma 11

are on the bottom half plane of l1. Then we set pt = pr = Sbr
tr . Similarly if

Str∗ is still invalid, all squares are on the top half plane of l2. Since l2 and
l3 are parallel, the centers of all squares are on the same line which can be
easily handled (details are omitted). Without loss of generality we assume
no centers of three squares are on the same line. Therefore, choose either
pt = pr = Stl

tr or pt = pr = Sbr
tr will make Str∗ no longer invalid. Similar to

the proof of lemma 7, we know there are no new vertices added on CHnew .
For the area, we have:

Area(CHnew) − Area(CHorigin)
≥ Area(Stl

tr, S
tl
tr∗, S

br
tr∗) − Area(Str

tr , Stl
tr∗, S

br
tr∗)

= Area(Stl
tr, S

tl
tr∗, S

tr
tr ) − Area(Stl

tr , S
br
tr∗, S

tr
tr )

= − 1
2 × 1 × (y.Stl

tr∗ − y.Sbr
tr∗)

= − 1
2

2. The top edge of Str∗ is below the bottom edge of Str and the right edge of
Str∗ is to the right of the left edge of Str. In this case, we set pt = Stl

tr and
pr = Sbr

tr∗. This is similar the situation of lemma 9 and there is no StrNear on
CHnew . For the area, we have exactly the same formula as the first subcase.

3. The top edge of Str∗ is above the bottom edge of Str and the right edge of
Str∗ is to the left of the left edge of Str. This case is symmetric to the second
subcase.

If pr = pt = Stl
tr or pr = pt = Sbr

tr , from above proof, we know one of them has
no StrNear. Then for the one has StrNear, we can move pr = pt to the other
diagonal vertex to make StrNear disappear.

Theorem 1. For n unit non-overlapping axis-aligned squares, we have O(n log n)
time approximation algorithm to find the largest area convex hull such that exactly
one point in each square is chosen to construct the convex hull. The area of the
approximate convex hull is at most 1 less than the area of the optimal convex hull.

Proof. The 16 CHorigin can be constructed in O(n log n) time. We choose the
largest area convex hull CHmax

origin from those 16 CHorigin. If one invalid square
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appears, according to lemma 6 to lemma 11, we could move extreme vertices
to make CHnew such that Area(CHnew) ≥ Area(CHmax

origin) − 1
2 . Also we know

from lemma 6 to lemma 11 that invalid squares causing the area decrease at
most 1

2 by moving vertices can only be SbrNear, SblNear, StlNear and StrNear.
According to corollary 1, at most two of those four invalid squares could ex-
ist simultaneously. So the area could be decreased at most by 1. Therefore
Area(CHnew) ≥ Area(CHmax

origin) − 1 ≥ Area(CHopt) − 1 where CHopt is the
optimal convex hull. CHnew can be constructed in O(n log n) time.

4 Conclusions

In this paper, we present an approximation algorithm for calculating the largest
area convex hull with the model of the same size squares. The running time is
O(n log n) and the difference between the area of our result and the area of the
optimal convex hull is no more than the area of one square. The algorithm is
suitable for those realtime applications which have limited computing time. For
the future works, it will be interesting to investigate the approximate algorithms
for the overlapping squares by using our methods.
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Abstract. A polygon P admits a sweep if two mobile guards can de-
tect an unpredictable, moving target inside P , no matter how fast the
target moves. For safety, two guards are required to always be mutu-
ally visible, and thus, they should move on the polygon boundary. Our
objective in this paper is to find an optimum sweep such that the sum
of the distances travelled by the two guards in the sweep is minimized.
We present an O(n2) time and O(n) space algorithm, where n is the
number of vertices of the given polygon. This new result is obtained by
converting the problem of sweeping simple polygons with two guards
into that of finding a shortest path between two nodes in a graph of size
O(n).

1 Introduction

Motivated by the relations to the well-known Art Gallery and Watchman Route
problems, much attention has recently been devoted to the problem of detecting
an unpredictable, moving target in an n-sided polygon P by a group of mobile
guards. Both the target and the guards are modeled by points that can contin-
uously move in P . The goal of the guards is to eventually ”see” the target, or
to verify that no target is present in the polygon, no matter how fast the target
moves. Many types of polygon shapes and the vision sensors of the guards have
been studied in the literature [3,5,6,7,8,10,11,13,14].

In this paper, we focus on the two-guard model studied in [3,6], in which
two guards move on the polygon boundary and are always kept to be mutually
visible. The goal is to sweep P with two guards so that at any instant, the line
segment connecting the guards partitions P into a ”clear” region (not contain-
ing the target) and an ”uncleared” region (it may contain the target). In the
end, we would like to know whether the whole polygon P is clear or the tar-
get is detected, if it is ever possible. In generally, one can consider to sweep a
polygonal region with a chain of k + 1 guards (k is a positive integer) such that
consecutive guards along the chain are mutually visible. For instance, efficient
algorithms for computing the minimum number r∗ of guards required to sweep
P as well as for generating a sweep schedule have been presented in [3,13]. This

D.T. Lee, D.Z. Chen, and S. Ying (Eds.): FAW 2010, LNCS 6213, pp. 304–315, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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target-finding model may have applications in adversarial settings, as it has ob-
vious advantages for safety and communication between guards.

Icking and Klein were the first to study the problem of sweeping corridors with
two guards, which was called the two-guard problem [6]. A simple polygon P with
an entrance s and an exit t on its boundary is called a corridor. The problem of
sweeping corridors with two guards asks the guards to start at the entrance s
and force the target out of the region through the exit t. They gave an O(n log n)
time algorithm for determining whether a corridor can be swept with two guards
[6]. Later, a linear time algorithm was presented by Heffernan [5]. Tseng et al.
gave an O(n log n) time algorithm to determine whether there is a pair of vertices
in P that allows a sweep. This result has recently been improved to O(n) [1].
If a corridor can be swept with two guards, a sweep schedule consisting of the
minimum number m of sweep instructions can be reported in O(n log n + m)
time. Note that m has a lower bound Ω(n2) [6].

The problem of sweeping simple polygons with two guards was later studied
[13,14]. Since neither the entrance nor the exit on the polygon boundary is
given, the starting point (on the polygon boundary) of any sweep schedule may
be visited by the target for the second or more time, i.e., recontamination is
generally necessary for the problem of sweeping simple polygons with a chain of
guards [3,4,14]. This makes it more difficult and challenge. The previous research
was mainly concentrated on determining whether a sweep is possible for the given
polygon and reporting a sweep schedule (if it exists). For instance, a linear time
algorithm for determining whether a polygon can be swept with two guards and
a quadratic algorithm for reporting a sweep schedule have been presented in
[13,14].

Our objective in this paper is to find an optimum sweep such that the sum of
the distances travelled by the two guards in the sweep is minimized. The moti-
vation for studying this problem (called the min-sum problem) arises from the
fact that the cost or energy required by a mobile robot (guard) is an increasing
function of the distance it travelled.

In Section 2 of this paper, we give basic definitions empolyed in the paper
[5,6]. It has been known that a sweep of the given polygon can be decomposed
into a sequence of two basic motions of the guards (called the straight/counter
sweeps in this paper), in which both guards never change their moving directions.
Moreover, the starting/ending position of a basic motion is given by a ray-
shooting segment (which connects a reflex vertex and one of its ray shots) [6,14].
In Section 3, we present a through study of all basic sweeps among the ray-
shooting segments. In Section 4, we introduce a data structure that records the
ray-shooting segments (i.e., the starting/ending positions of basic motions) and
a transition relation among all basic motions of the two guards. By applying
Dijkstra’s algorithm to the obtained diagram, we can then give our O(n2) time
and O(n) space algorithm for finding an optimum sweep of simple polygons
such that the sum of the travelled distances is minimized. In Section 5, we show
that the O(n2) time solution to the min-sum problem is optimal in the worst
case.
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2 Preliminary

Let P denote a simple polygon of n vertices and ∂P the boundary of P . Two
points p, q ∈ P are visible from each other if the line segment connecting them,
denoted by pq, does not intersect the exterior of P .

Let g1, g2 be two point guards on ∂P . Let g1(t) and g2(t) denote the positions
of g1 and g2 on ∂P at time t; we require that g1(t) and g2(t): [0,∞) → ∂P be two
continuous functions. A point x ∈ P is said to be detected or illuminated at t if x
is contained in the line segment g1(t)g2(t). A configuration of g1 and q2 at time
t is a pair of the points g1(t) and g2(t) such that the line segment g1(t)g2(t) lies
in the interior of P . Assume that the initial positions of two guards are located
at a vertex or on an edge of P . The configuration of g1 and q2 at a time thus
divides P into a clear region that does not contain the target, and an uncleared
(or a contaminated) region that may contain the target.

As in [6], a sweep instruction can be given by a pair of functions g1(t), g2(t)
such that either of g1(t) and g2(t) specifies an algebraic path, i.e., an edge of P
along which the guard g1 or g2 moves. More specifically, the following two types of
sweep instructions are considered: Two guards g1 and g2 move along segments of
single edges such that (i) no intersections occur among all line segments g1(t)g2(t)
during the movement, or (ii) any two segments g1(t)g2(t) intersect each other.
See Figs. 1(a)-(b), where the clear region of the polygon P is shaded. (Probably,
one guard stands still, while the other moves.)

Let the area of P be one, and let P (t) denote the fraction of the clear area
at time t. Clearly, P (0) = 0. We say a sweep schedule exists for P , or equally, P
allows a sweep if P (t) = 1 for some t > 0. The complexity of a sweep schedule is
the total number of sweep instructions it consists of.

For a vertex v of the polygon P , let Succ(v) denote the vertex immediately
succeeding v clockwise, and Pred(v) the vertex immediately preceding v clock-
wise. A vertex of P is reflex if its interior angle is strictly greater than 180◦.
An important definition for reflex vertices is that of ray shots: the backward ray
shot from a reflex vertex r, denoted by Backw(r), is the first point of P hit by
a “bullet” shot at r in the direction from Succ(r) to r, and the forward ray
shot Forw(r) is the first point hit by the bullet shot at r in the direction from

(a) (b)

PP

r

Forw(r)

Backw(r)

(c)

P

Fig. 1. Sweep instructions, and ray shots



Optimum Sweeps of Simple Polygons with Two Guards 307

Pred(r) to r. See Fig. 1(c). The vertex r is referred to as the origin of the shots
Backw(r) and Forw(r). The segment rBackw(r) or rForw(r) is referred to as
the ray-shooting segment.

3 Basic Sweeps among the Ray-Shooting Segments

It has been known that a sweep of the given polygon can be decomposed into a
sequence of two basic motions of the guards, in which only instructions (i), or
only instructions (ii) are used [5,6,14]. Moreover, the starting/ending position
of a basic motion is given by a ray-shooting segment. A sweep between two
ray-shooting segments is said to be straight if only instructions (i) are used, or
counter if only instructions (ii) are used. Clearly, the two ray-shooting segments
for straight (resp. counter) sweeps are disjoint (resp. intersect each other).

3.1 Straight Sweeps

We will first review the structure of the restrictions placed on the motion of the
two guards in straight sweeps, which was originally studied for the problem of
sweeping corridors with two guards [5,12], and then, show how it can be used in
the solution to the problem of sweeping simple polygons with two guards.

Let a and b denote two endpoints of the current segment connecting the two
guards, which separates the clear region from the contaminated region. Without
loss of generality, assume that the region right to the segment ab, as viewed from
a, is clear. Assume below that all boundary points of P are ordered clockwise,
starting at the point a. Let p1, p2 be the two reflex vertices such that their
backward ray-shooting segments p1Backw(p1) and p2Backw(p2) are contained
in the contaminated region. Consider a straight sweep from ab, which is de-
voted to clearing both p1Backw(p1) and p2Backw(p2). The shot Backw(p2) is
said to be dominated, with respect to ab, if p1 precedes p2, and Backw(p1) pre-
cedes Backw(p2). See Figs. 2(a)-(b). As discussed in [5,12], the shot Backw(p1)
(resp. Backw(p2)) in Fig. 2(a) imposes a requirement that one guard should
reach Backw(p1) (resp. Backw(p2)) by the time the other reaches an inter-
nal point of p1Succ(p1) (resp. p2Succ(p2)) in the straight sweep. Analogously,
the symmetric situation in Fig. 2(b) imposes a requirement that one guard
should not leave Backw(p1) (resp. Backw(p2)) before the other leaves the edge
p1Succ(p1) (resp. p2Succ(p2)) in the straight sweep. Clearly, the requirement
imposed by Backw(p1) implies that by Backw(p2) in either situation. Hence,
the shot Backw(p2) can be ignored when a straight sweep from ab that clears
p1Backw(p1) and p2Backw(p2) is considered.

We can also define five other types of dominated shots between the intersecting
ray-shooting segments, which are contained in the contaminated region [5,12].

– Forw(p1) is dominated with respect to ab if there exists a vertex p2 such
that p1 precedes p2, and Forw(p1) precedes Forw(p2) (Figs. 2(c)-(d)).

– Backw(p2) is dominated with respect to ab if there exists a vertex p1 such
that p1 precedes Backw(p2), and Backw(p1) precedes p2 (Fig. 2(e)).
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Fig. 2. Illustration for the definition of dominated shots

– Backw(p1) is dominated with respect to ab if there exists a vertex p2 such
that Backw(p2) precedes p1, and p2 precedes Backw(p1) (Fig. 2(f)).

– Forw(p2) is dominated with respect to ab if there exists a vertex p1 such
that Forw(p2) precedes p1, and p2 precedes Forw(p1) (Fig. 2(g)).

– Forw(p1) is dominated with respect to ab if there exists a vertex p2 such
that p1 precedes Forw(p2), and Forw(p1) precedes p2 (Fig. 2(h)).

A shot is said to be non-dominated with respect to ab, if it is not dominated
by any other shots. Clearly, each family of non-dominated shots has the non-
crossing property [5,14]. For example, if the origins of non-dominated backward
shots are in clockwise order, p1, . . . , pk on ∂P , then their shots Backw(p1), . . .,
Backw(pk) are in counterclockwise order on ∂P .

The concept of non-dominated shots is used in our solution to the problem
of sweeping simple polygons with two guards. The idea here is to consider all
possible straight sweeps from the current segment ab. We claim that it suffices to
compute at most two straight sweeps from ab to the ray-shooting segments in the
contaminated region. Denote by a1 the first reflex vertex, which succeeds a and
whose ray-shooting segment a1Backw(a1) is contained in the contaminated re-
gion. Clearly, Backw(a1) dominates all the backward shots Backw(p2) shown in
Fig. 2(a). Similarly, denote by Backw(b1) the first backward shot, which succeeds
a and whose ray-shooting segment b1Backw(b1) is wholly contaminated. Also,
Backw(b1) dominates all the shots Backw(p1) shown in Fig. 2(b). If the domi-
nance relation between Backw(a1) and Backw(b1) occurs (Figs. 2(e)-(f)), only
the straight sweep towards the ray-shooting segment with the non-dominated
shot is possible; in this case, we determine whether this straight sweep really ex-
ists. Otherwise, two segments a1Backw(a1) and b1Backw(b1) are disjoint; in this
case, only the straight sweep towards the ray-shooting segment which is closer
to ab need be considered, and thus, we determine whether this straight sweep
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really exists. (Since the same procedure is done for all ray-shooting segments,
whether the straight sweep between a1Backw(a1) and b1Backw(b1) exists will
be determined, when a1Backw(a1) or b1Backw(b1) is considered as the starting
segment ab.) For the forward non-dominated shots with respect to ab, the same
treatment is done analogously. (Further consideration between the forward and
backward non-dominated shots is not needed, as it can leave to the decisions on
the existences of the two straight sweeps from ab.) Hence, our claim is proved.

In order to solve the problem of sweeping the given polygon with two guards,
we perform the above operation, for every ray-shooting segment, by taking as
two different starting segments ab (i.e., either of its endpoints is considered as
the point a once). For every vertex v, we also consider vv as a ray-shooting
segment, and perform the above operation for the starting segment vv once.
Note that the straight sweep from vv with the wholly contaminated polygon P
represents the very first motion of the two guards, and on the other hand, the
straight sweep towards vv gives the very last motion of the two guards. We say
a straight sweep between two ray-shooting segments is canonical if it is reported
in the above procedure.

Let us now consider the time required to find all canonical straight sweeps.
First, one can compute all backward and forward ray shots in O(n log n) time
using the ray-shooting query algorithm [2]. For straight sweeps, the following
result is known in the literature.

Lemma 1. [5] Suppose that all ray shots inside the polygon P have been pre-
computed in O(n log n) time. Given two disjoint, internal segments with their
endpoints on ∂P , one can determine in linear time whether a straight sweep
between them exists.

For a starting segment ab, we can find in linear time two reflex vertices a1 and
b1, as described above. It then needs to determine whether a straight sweep from
ab exists at most twice. Hence, we have the following result.

Lemma 2. All canonical straight sweeps in P can be computed in O(n2) time.

3.2 Counter Sweeps

A counter sweep is a sweep in which both guards move on ∂P clockwise (or
counterclockwise), in such a way that they are always mutually visible. Also, a
counter sweep depends on the structure of ray shots. Again, let a, b denote the
two endpoints of the current ray-shooting segment, which separates the clear
region from the contaminated region. Assume also that the region right to the
segment ab (viewed from a) is clear, and all boundary points of P are ordered
clockwise, starting at a. Consider a counter sweep from ab, which is devoted to
clearing a pair of disjoint ray-shooting segments having a clear endpoint and a
contaminated endpoint. See Fig. 3. Analogously, we can define the following six
types of c-dominated shots [5,12].

– Backw(p1) is c-dominated with respect to ab if there exists a vertex p2 such
that p1 precedes p2, and Backw(p2) precedes Backw(p1) (Figs. 3(a)-(b)).
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– Forw(p2) is c-dominated with respect to ab if there exists a vertex p1 such
that Forw(p2) precedes Forw(p1), and p1 precedes p2 (Figs. 3(c)-(d)).

– Forw(p2) is c-dominated with respect to ab if there exists a vertex p1 such
that Forw(p2) precedes p1, and Backw(p1) precedes p2 (Fig. 3(e)).

– Backw(p1) is c-dominated with respect to ab if there exists a vertex p2 such
that p1 precedes Forw(p2), and p2 precedes Backw(p1) (Fig. 3(f)).

– Forw(p1) is c-dominated with respect to ab if there exists a vertex p2 such
that Backw(p2) precedes p1, and Forw(p1) precedes p2 (Fig. 3(g)).

– Backw(p2) is c-dominated with respect to ab if there exists a vertex p1 such
that p1 precedes Backw(p2), and p2 precedes Forw(p1) (Fig. 3(h)).

A shot is said to be non-c-dominated, with respect to ab, if it is not c-dominated
by any other shots. Clearly, each family of non-c-dominated shots has the cross-
ing property [5]. For an example, if p1, . . ., pk are ordered clockwise on ∂P , their
non-c-dominated shots Backw(p1), . . ., Backw(pk) are ordered clockwise on ∂P .

The concept of non-c-dominated shots is also used in the solution to the
problem of sweeping simple polygons with two guards. Again, it suffices to con-
sider at most two counter sweeps from ab. Denote by a1 the last reflex vertex,
which is contaminated but whose shot Backw(a1) is clear. Clearly, Backw(a1)
c-dominates all the shots Backw(p1) shown in Fig. 3(a). Denote by Forw(b1)
the last forward shot, which is contaminated but whose origin b1 is clear. Also,
Forw(b1) c-dominates all the shots Forw(p2) shown in Fig. 3(c). If the c-
dominance relation occurs between Backw(a1) and Forw(b1) (Figs. 3(e)-(f)),
only the counter sweep towards the ray-shooting segment with the non-c-
dominated shot is possible; in this case, we determine whether this counter sweep
really exists. Otherwise, a1Backw(a1) and b1Backw(b1) intersect each other; in
this case, three considered segments (including ab) are pairwisely intersected,
and thus, we only need to determine whether the counter sweep towards the
ray-shooting segment, whose contaminated endpoint is closer to a in clockwise
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direction, really exists. For the situations shown in Fig. 3(b), Fig. 3(d) and Figs.
3(g)-(h), we also need to determine whether a counter sweep from ab is possible.

For every ray-shooting segment, we perform the above operation by taking
it as the starting segment ab twice. Also, we say a counter sweep between two
ray-shooting segments is canonical if it ever is reported in this procedure. Anal-
ogous to the complexity analysis made for canonical straight sweeps, we have
the following results.

Lemma 3. [5] Suppose that all ray shots inside the polygon P have been pre-
computed in O(n log n) time. Given two intersecting, internal segments with their
endpoints on ∂P , one can determine in linear time whether a counter sweep be-
tween them exists.

Lemma 4. All canonical counter sweeps in P can be computed in O(n2) time.

4 Algorithm for the Min-sum Problem

In this section, we introduce a data structure, called the ray-shooting segment di-
agram, which records the ray-shooting segments and a transition relation among
all basic motions of the two guards. Next, we show that any non-trivial sweep
can be represented by a path between two special nodes of the ray-shooting
segment diagram. This makes it possible to apply Dijkstra’s algorithm to the
ray-shooting segment diagram, so as to find an optimum solution.

Suppose that all vertices of P and the ray shots are ordered on ∂P clockwise.
For simplicity, we number all vertices and ray shots in the sorted order using
integers 0, 1, . . ., m − 1 (m < 3n). The ray-shooting segment diagram G is
constructed as follows. First, we put into the set V (G) all the nodes (i, j) (0 ≤
i, j ≤ m − 1), where one of i and j is a ray shot and the other is its origin.
We call these nodes (i, j) the segment-nodes. Without loss of generality, assume
that a sweep schedule starts (resp. ends) at a vertex. So for every vertex k, we
put the node (k, k) into V (G). The nodes (k, k) are considered as the possible
starting points of sweep schedules, and thus, called the starting vertex-nodes.
Moreover, we put a copy of (k, k), denote by (k′, k′) (k′ = k), into V (G). The
nodes (k′, k′) are considered as the possible ending points of sweep schedules,
and called the ending vertex-nodes. Finally, we add two special nodes s (called
the source node), t (called the target node) to V (G). The total number of nodes
of V (G) is clearly less than 4n.

Consider how to construct the arc set of the diagram G, which is denoted
by E(G). Two nodes A, B of V (G) are connected by two symmetric arcs (in
opposite directions) if and only if both A and B are the segment-nodes, and
there is a canonical straight or counter sweep between A and B. Let C denote a
vertex-node, and let D denote a segment-node. The node C is connected to D by
a single arc from C to D if and only if there is a canonical straight sweep from
C to D. Analogously, C is connected to D by a single arc from D to C if and
only if there is a canonical straight sweep from D to C. Note that the very first
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or last motion of any sweep schedule is a straight sweep (that starts or ends at
a polygon vertex). Finally, for every starting vertex-node (k, k), we add an arc
from s to (k, k). And, for every ending vertex-node (k′, k′), we add an arc from
(k′, k′) to t. Since at most two canonical straight (resp. counter) sweeps from
a ray-shooting segment are examined, the total number of arcs of the obtained
set E(G) is O(n). Observe that the transition relation among canonical straight
and counter sweeps is implicitly represented by all pairs of the nodes adjacent
in the diagram G, which give all arcs of the set E(G).

Lemma 5. The ray-shooting segment diagram G of a simple polygon can be
constructed in O(n2) time and O(n) space.

Proof. First, all ray shots can be computed in O(n log n) time using the ray-
shooting query algorithm [2]. Moreover, all canonical straight and counter sweeps
can be found in O(n2) time (Lemmas 3 and 4). Since the number of nodes of
V (G) is no more than 4n and the size of E(G) is O(n), the lemma simply
follows. �

Following from the definitions of non-dominated and non-c-dominated shots,
any sweep schedule can be transformed, by deleting all unnecessary instructions,
into the one that consists of only canonical sweeps. A sweep schedule is said to
be non-trivial if it consists of only canonical straight and counter sweeps. Then,
we have the following result.

Lemma 6. The polygon P can be swept with two two guards if and only if the
diagram G contains a directed st-path.

Proof. Assume first that P can be swept with two guards. Fix a non-trivial
sweep schedule S. Then, S can be decomposed into a sequence of canonical
straight and counter sweeps. Following from our construction of the diagram G,
all canonical straight and counter sweeps are represented by arcs of G. Hence,
the configuration of two guards in a canonical sweep of S at any time instant
can be mapped to the arc representing that canonical sweep. (Remember that
a canonical sweep between two ray-shooting segments are represented by two
symmetric arcs in G.) An infinite number of the configurations of the guards
may correspond to the same arc. Thus, the sweep schedule S can be mapped to
a sequence of arcs in G. Next, add two additional arcs to the obtained sequence;
one connects s to the first node of the arc sequence representing S, and the other
connects the last node of the arc sequence. Since S gives a continuous motion of
the two guards, the resulting sequence is a directed st-path in G.

Assume now that G contains a directed st-path. For any arc of the st-path, we
can transform it into a canonical sweep of the two guards inside the polygon P .
Notice that the first two arcs of the st-path represent a straight sweep that gives
the very first clear region, and the last two arcs represent another straight sweep
that clears the whole polygon P . The st-path in G can thus be transformed into
a sweep schdule of the two guards. �
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The following observation is simple (and necessary to our algorithm).

Observation 1. Suppose that the sum of the distances travelled by the two
guards is minimized in a sweep schedule S. Then, S is non-trivial.

To solve the min-sum problem, we assign a weight with each arc of E(G). First,
the weight of an arc connected to the node s or t is defined as zero. Since all
other arcs of E(G) represent canonical sweeps, the weight of an arc is defined
as the sum of the distances travelled by the two guards in the canonical sweep.
We denote by Gs this weighted diagram of G.

It then follows from Lemma 6 as well as Observation 1 that a min-sum directed
st-path in Gs corresponds to an optimum sweep of the polygon P . Note that
whether sweeping P with two guards is possible can be determined using the
graph Gs or G, too. Since a min-sum st-path in Gs can be computed using
Dijkstra’s algorithm, we conclude:

Theorem 1. Given a simple polygon P , one can compute in O(n2) time and
O(n) space an optimum sweep of P , if it exists, such that the sum of the distances
travelled by the two guards is minimized.

5 A Lower Bound

We show that the starting point of any sweep of the polygon P may be recon-
taminated, and a sweep schedule can consist of Ω(n2) sweep instructions. So our
O(n2) time algorithm for the min-sum problem is optimal in the worst case.

We need more definitions. Let x, y denote two boundary points of P , and
∂P [x, y] (resp. ∂P (x, y)) the closed (resp. open) clockwise chain of ∂P from x
to y. A pair of reflex vertices u, v is said to form a p-deadlock, p ∈ ∂P , if both
∂P (u, Backw(u)] and ∂P [Forw(v), v) do not contain p, and they intersect each
other [6,14].

Lemma 7. There exists a polygon P such that the starting point of any sweep
of P has to be recontaminated, and any sweep schedule consists of Ω(n2) sweep
instructions.

Proof. The polygon P depicted in Fig. 4 can be swept with two guards. Fig.
4(a) gives the first straight sweep starting at s, and Fig. 4(b) shows the clear
region after several counter sweeps are performed. Fig. 4(c) gives a sweep from bc
to hi, which consists of several straight and counter sweeps. The whole polygon
can further be cleared by some counter sweeps (symmetric to Fig. 4(b)) and the
last straight sweep ending at t (symmetric to Fig. 4(a)).

We now claim that the starting point of any sweep of P has to be recontam-
inated. Since all points of ∂P [a, d] ∪ ∂P [g, j] have their deadlocks, the starting
point of any sweep schedule S belongs to ∂P (j, a)∪∂P (d, g); otherwise, S is triv-
ial since a beginning portion of S can simply be deleted from it. Since ∂P [b, c]
and ∂P [h, i] are disjoint, any sweep schedule has to start at a point of ∂P (j, a)
(resp. ∂P (d, g)) but end at a point of ∂P (d, g) (resp. ∂P (j, a)). See also [14].
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Fig. 4. Illustration for the proof of Lemma 7

Moreover, in order to obtain a clear region that contains Pred(c) and Pred(i)
simultaneously, the sweep between bc and hi (e.g., Fig. 4(c)) is always needed.
The starting point of any sweep schedule is thus contained in the contaminated
region at the beginning of the sweep between bc and hi (see Fig. 4(b)). Hence,
our claim is proved.

Finally, if one replaces the chains ∂P [e, f ] and ∂P [k, l] with two long chains
shown in Fig. 4(d), then the guard moving on ∂P [e, f ] has to visit more than
n2/16 edges in the sweep between bc and hi (as there are n/8 wedges in ∂P [k, l]
[6]). Since a sweep instruction is defined by a pair of the edges on which the two
guards move, any sweep schedule for P thus consists of Ω(n2) instructions. The
proof is complete. �

References

1. Bhattacharya, B.K., Mukhopadhyay, A., Narasimhan, G.: Optimal algorithms for
two-guard walkability of simple polygons. In: Dehne, F., Sack, J.-R., Tamassia, R.
(eds.) WADS 2001. LNCS, vol. 2125, pp. 438–449. Springer, Heidelberg (2001)

2. Chazelle, B., Guibas, L.: Visibility and intersection problem in plane geometry.
Discrete Comput. Geom. 4, 551–581 (1989)



Optimum Sweeps of Simple Polygons with Two Guards 315

3. Efrat, A., Guibas, L.J., Har-Peled, S., Lin, D.C., Mitchell, J.S.B., Murali, T.M.:
Sweeping simple polygons with a chain of guards. In: Proc., ACM-SIAM Sympos.
Discrete Algorithms, pp. 927–936 (2000)

4. Guibas, L.J., Latombe, J.C., Lavalle, S.M., Lin, D., Motwani, R.: Visibility-based
pursuit-evasion in a polygonal environment. IJCGA 9, 471–493 (1999)

5. Heffernan, P.J.: An optimal algorithm for the two-guard problem. IJCGA 6, 15–44
(1996)

6. Icking, C., Klein, R.: The two guards problem. IJCGA 2, 257–285 (1992)
7. LaValle, S.M., Simov, B., Slutzki, G.: An algorithm for searching a polygonal region

with a flashlight. IJCGA 12, 87–113 (2002)
8. Lee, J.H., Park, S.M., Chwa, K.Y.: Searching a polygonal room with one door by

a 1-searcher. IJCGA 10, 201–220 (2000)
9. Park, S.M., Lee, J.H., Chwa, K.Y.: Visibility-based pursuit-evasion in a polygonal

region by a searcher. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP
2001. LNCS, vol. 2076, pp. 456–468. Springer, Heidelberg (2001)

10. Suzuki, I., Yamashita, M.: Searching for mobile intruders in a polygonal region.
SIAM J. Comp. 21, 863–888 (1992)

11. Tan, X.: A characterization of polygonal regions searchable from the boundary.
In: Akiyama, J., Baskoro, E.T., Kano, M. (eds.) IJCCGGT 2003. LNCS, vol. 3330,
pp. 200–215. Springer, Heidelberg (2005)

12. Tan, X.: The two-guard problem revisited and its generalization. In: Fleischer, R.,
Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 847–858. Springer, Heidelberg
(2004)

13. Tan, X.: Sweeping simple polygons with the minimum number of chain guards.
Inform. Process. Lett. 102, 66–71 (2007)

14. Tan, X., Jiang, B.: Searching a polygonal region by two guards. J. Comput. Sci.
Tech. 23(5), 728–739 (2008)



Adaptive Algorithms for Planar Convex Hull Problems�

Hee-Kap Ahn1 and Yoshio Okamoto2

1 Department of Computer Science and Engineering,
Pohang University of Science and Technology, Korea

heekap@postech.ac.kr
2 Graduate School of Infomation Science and Engineering,

Tokyo Institute of Technology, Japan
okamoto@is.titech.ac.jp

Abstract. We study problems in computational geometry from the viewpoint of
adaptive algorithms. Adaptive algorithms have been extensively studied for the
sorting problem, and in this paper we generalize the framework to geometric
problems. To this end, we think of geometric problems as permutation (or rear-
rangement) problems of arrays, and define the “presortedness” as a distance from
the input array to the desired output array. We call an algorithm adaptive if it runs
faster when a given input array is closer to the desired output, and furthermore
it does not make use of any information of the presortedness. As a case study,
we look into the planar convex hull problem for which we discover two natural
formulations as permutation problems. An interesting phenomenon that we prove
is that for one formulation the problem can be solved adaptively, but for the other
formulation no adaptive algorithm can be better than an optimal output-sensitive
algorithm for the planar convex hull problem.

1 Introduction

One can think of computational geometry as a generalization of numerical problems
(namely, 1-dimensional problems) to higher dimensions. A typical example is the 2-
dimensional convex hull computation, which can be thought of as a 2-dimensional gen-
eralization of sorting an array of numbers.

This work is motivated by a thorough treatment for sorting problems to take “pre-
sortedness” into account in the analysis of the algorithms. In certain cases one expects
sorting algorithms to run faster if a given input is almost sorted. Mehlhorn [23] intro-
duced the term “adaptive sorting algorithms” for those with such a property. A formal
framework for the worst-case analysis of adaptive sorting algorithms was introduced by
Mannila [22], and the framework is well surveyed by Estivill-Castro and Wood [15].

An adaptive sorting algorithm has several characteristics. First, it runs faster if the
presortedness is high. Second, the algorithm does not use any information of the pre-
sortedness. That is a reason why it is called “adaptive.”
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In this paper, we study adaptive computational geometry. To apply the adaptiveness
framework to geometric problems, we want to think of the problems as permutation
problems. That is, we are given an array of objects (points, segments, etc.), and we
output a permutation (or a rearrangement) of the objects that represents the desired
answer. Naturally, the sorting problem is such a permutation problem, and the planar
convex hull problem can be seen as a permutation problem (and actually, a lower bound
of the convex hull algorithm is given by a reduction from the sorting problem). Indeed,
this work is also motivated by recent studies on in-place geometric algorithms that treat
some geometric problems as permutation problems [7,9,10].

Several “presortedness” measures have been proposed [15]. In this work, we use the
oldest and the most frequently used measure: the number of inversions. Given two linear
orders ≤1,≤2 on X , an inversion is an ordered pair (i, j) ∈ X2 such that i <1 j and
j <2 i. We denote the total number of inversions for ≤1,≤2 by inv(≤1,≤2), Note that
inv(≤1,≤2) = 0 if and only if the order ≤1 conforms to the order ≤2, and therefore we
may regard the number of inversions as an appropriate measure of the presortedness.

As a case study, we consider the planar convex hull computation: given a set of
points in the plane, we want to compute its convex hull. For this problem, we discover
two natural formulations as permutation problems. In both formulations, we require
the points on the boundary of the convex hull to be sorted in clockwise order, but they
are different in the treatment of the points in the interior. In the first formulation the
interior points are required to be sorted (by their x-coordinates) while in the second
formulation the interior points are not required so. Interestingly, this makes a huge
difference in terms of complexity. We show that in the first formulation the problem
can be solved in O(n(1 + log(1 + k))) time when k is the number of inversions in a
given array of n points with respect to the desired output. Since k ≤

(
n
2

)
, the running-

time bound can be as bad as O(n log n). Hence, this is still worst-case optimal with
respect to n. On the other hand, in the second formulation we give a lower bound of
Ω(n log h) for computing the convex hull, where h is the complexity of the convex
hull. This shows that the second formulation does not allow us to design any adaptive
algorithm. This kind of phenomenon has not been seen for any problems for which the
adaptive framework was applied.

A natural question arises here: since the convex hull of n points in the plane can be
computed in linear time once they are sorted along a line or around a point, why do we
need another adaptive algorithm other than an optimal adaptive sorting algorithm? An
answer to the question is that any existing adaptive sorting method does not reflect the
presortedness of a point set on its convex hull: consider an input array A of n points
whose i-th element is a point with coordinates (i, (−1)i

√
i), for 1 ≤ i ≤ n. Clearly the

points are already sorted along the x-axis, but not along its convex hull. As a result, A
has no inversion on sorting, but has Ω(n2) inversions on convex hull.

Related work. There are a huge number of articles discussing the adaptive sorting prob-
lem. We recommend the readers to consult a survey by Estivill-Castro and Wood [15].
Adaptive sorting algorithms are also discussed in terms of integer sorting [25] and I/O-
efficiency (both cache-aware and cache-oblivious) [8].

There are several papers which apply the adaptiveness framework to problems other
than sorting. Demaine, López-Ortiz, and Munro [11] considered some set operations on
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sorted sets, and gave adaptive algorithms with respect to a certain measure of difficulty
of the problem. The problem has been motivated from a database application, and this
line of research was followed by some subsequent papers [4,3].

Levcopoulos, Lingas, and Mitchell [19] were the first to study a geometry prob-
lem in the adaptive framework. They studied the convex hull computation of a (possi-
bly self-intersecting) piecewise linear chain. Their consideration relies on the fact that
the convex hull can be computed in linear time when the chain does not have a self-
intersection. Since the x-monotone non-self-intersecting chain can be seen as a sorted
sequence, their study is a generalization of the adaptive sorting framework. However,
they did not look at the problem as a permutation problem. Besides, Baran and De-
maine [1] and Barbay and Chen [2] studied other geometric problems. However, their
adaptiveness framework does not look at the presortedness and is completely different
from the viewpoint of this work. In this sense, this paper studies the most fundamental
counterpart of the adaptive sorting problem in computational geometry.

Notation. An array A of n elements is indexed by 1, . . . , n. The i-th element of A
is denoted by A[i], i ∈ {1, . . . , n}. The subarray of A consisting of A[i], . . . , A[j]
is denoted by A[i..j]. For a subset A′ of A, the difference A \ A′ denotes the array
consisting of the elements of A \ A′ and ordered as in A. The concatenation of two
arrays A and B (in this order) is denoted by A◦B. For a set (or an array) P of points, we
denote by conv(P ) the convex hull of P , and by ∂conv(P ) the boundary of conv(P ).

Weak orders. For the investigation of geometric problems, it is convenient to extend
the framework for linear orders to weak orders. In general, a binary relation � on a set
X is a weak order on X if it is reflexive (x � x for all x ∈ X), transitive (x � y and
y � z imply x � z for all x, y, z ∈ X), and total (x � y or y � x for all x, y ∈ X).
We say x ∼ y if x � y and y � x, and x < y if x � y and not x ∼ y. Note that a weak
order is a linear order if and only if it is also antisymmetric. In other words, x ∼ y does
not necessarily imply x = y for a weak order �. Given two weak orders�1,�2 on X ,
an inversion is an ordered pair (i, j) ∈ X2 such that i <1 j and j <2 i. We denote the
total number of inversions for �1,�2 by inv(�1,�2).

2 Planar Convex Hulls

Informally speaking, in the planar convex hull problem, we are given a set P of n points
in general position (i.e., no three points of P are collinear, and no two points have the
same x-coordinate), and want to identify the points on the boundary of the convex hull
of P . To cast the problem into the adaptive framework, we introduce the following two
formulations.

2.1 First Formulation: The Interior Points Need to Be Sorted

We are given P as an array of n points in the plane. The output is a rearrangement Q of
the array P in the following way. If h is the number of points on ∂conv(P ), then Q[1..h]
should be the array of these points sorted clockwise with Q[1] being the leftmost point
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in P . Then, Q[h+1..n] should be the array of points lying in the interior of conv(P ),
sorted by their x-coordinates.

Thus, we obtain two linear orders. The first order ≤P is defined by the input array
P as P [i] ≤P P [j] if and only if i ≤ j. The other order ≤Q is defined by the output
array Q as Q[i] ≤Q Q[j] if and only if i ≤ j. For these we may define the number of
inversions.

2.2 Second Formulation: The Interior Points Need Not to Be Sorted

In the first formulation, it would be unnatural to require the interior points to be sorted
because we are often interested in the points on the boundary of the convex hull only.
Therefore, we consider the following variation. Given an array P of n points in the
plane, the output is a rearrangement Q of the array P in the following way. If h is
the number of points on ∂conv(P ), then Q[1..h] should be the array of these points
sorted clockwise with Q[1] being the leftmost point in P . Then, Q[h+1..n] is any re-
arrangement of points lying in the interior of conv(P ). So the output array Q is not
uniquely determined from P . Note that this formulation has already been proposed in
the literature on in-place algorithms [10].

Then, we define the following two weak orders. The first one ≤P is the same as the
first formulation: P [i] ≤P P [j] if and only if i ≤ j. The other order�Q is defined from
an output array Q as Q[i] �Q Q[j] if and only if 0 ≤ i ≤ j ≤ n or h+1 ≤ j ≤ i ≤ n.
That means the interior points are indifferent in �Q. Note that the order �Q does not
depend on a particular choice of an output Q. This is the spot where we need a weak
order since the output is not determined uniquely from the input.

2.3 Results

With these two formulations, we prove the following results.

– For the first formulation, we give an adaptive algorithm running in O(n(1+log(1+
k))) time where k = inv(≤P ,≤Q). We also give a lower bound Ω(n(1 + log(1 +
k/n))) for the number of comparisons even if the number h of points on the bound-
ary of the convex hull is constant.

– For the second formulation, we prove that any (fixed-degree) algebraic computa-
tion tree solving the problem has height at least Ω(n log h). Therefore, with the
second framework we cannot beat an optimal output-sensitive algorithm (running
in O(n log h) time, e.g. [18]) and cannot obtain any adaptive algorithm.

3 An Adaptive Algorithm for the First Formulation

When designing adaptive convex hull algorithms, we may encounter at least the follow-
ing two difficulties. First, we cannot determine whether p <Q q just by looking at two
points p, q. It depends on how the other points are placed around p, q. Second, related
to the first one, if we want to proceed by divide-and-conquer and obtain a subset P ′ of
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P that yields the output Q′, then it is not generally the case that Q′ is a subarray of Q;
i.e., subsets do not inherit the linear order. These two issues do not arise in the sorting
problem, where any two numbers can be compared just by looking at them, and any
smaller subsets inherit the order.

Our algorithm below overcomes these issues and is shown to be adaptive. The call
to CONVEXHULL(P ) identifies the upper chain U(P ) of conv(P ) in the increasing
order of x-coordinates, the lower chain L(P ) of conv(P ) in the decreasing order of
x-coordinates, and the set I(P ) of points in the interior of conv(P ) in the increas-
ing order of x-coordinates. The desired output is the concatenation U(P ) ◦ (L(P ) \
{the rightmost point, the leftmost point}) ◦ I(P ).

Algorithm: CONVEXHULL(P )
Step 1: If P is arranged as a desired output, then identify U(P ), L(P ), I(P ) and halt.
Step 2: Otherwise, compute a vertical bisector s of P . Let PA be the set of points in P

left to s, and PB be the set of points in P right to s.
Step 3: Compute the upper common tangent u and the lower common tangent � of

conv(PA) and conv(PB). Let au ∈ PA and bu ∈ PB be the two points spanning
u. Similarly, let a� ∈ PA and b� ∈ PB be the two points spanning �. Let PL be the
set of points in P that lie left to the line spanned by au, a�, PR be the set of points
in P that lie right to the line spanned by bu, b�, and PM = P \ (PL ∪ PR). Note
that PL ⊆ PA and PR ⊆ PB .

Step 4: Call CONVEXHULL(PL) and CONVEXHULL(PR) to obtain U(PL), L(PL),
I(PL), U(PR), L(PR), I(PR). Identify U(P ) = U(PL) ◦ U(PR) and L(P ) =
L(PR) ◦ L(PL).

Step 5: Sort the points in PM by their x-coordinates to obtain the sorted sequence
S(PM ), and apply the merge sort for I(PL), S(PM ), I(PR). Identify the result as
I(P ). Halt.

The algorithm is similar to the divide-and-conquer algorithm by Kirkpatrick and Seidel
[18]. In their algorithm the upper hull and the lower hull are computed separately, but
we cannot do so here since we may lose the adaptiveness. Rather, we compute the upper
and lower hulls simultaneously. The correctness of the algorithm is straightforward.

Now we estimate the running time. From now on, denote by n the number of input
points in P , and by k the number of inversions between ≤P and ≤Q.

Step 1 can be executed in O(n) time as follows. First we find the leftmost point
p and the rightmost point q of P in O(n) time. In the desired output, p should come
first (p = P [1]) and q should come somewhere, say at the h′-th position (q = P [h′]).
Then we check whether the subarray P [1..h′] is a concave chain Cu by looking at turns
at all three consecutive points. This can be done in O(n) time. Next, we compute the
second leftmost point p′ on the lower hull of P in O(n) time, and determine h ≥ h′

such that p′ = P [h]. Then, we check whether the subarray P [h′..h] with p forms a
convex chain C� in O(n) time. Now the points P [h+1..n] must lie in the interior of
conv(P ), and be sorted by their x-coordinates. First we check if they are sorted in O(n)
time. Then, for each point r ∈ P [h+1..n] from left to right, we check if r lies between



Adaptive Algorithms for Planar Convex Hull Problems 321

the concave chain Cu and the convex chain C�. This can be done in O(n) time since
they are all sorted. Finally, we identify U(P ) = P [1..h′], L(P ) = P [h′..h] ◦ P [1],
I(P ) = P [h+1..n]. Thus, we can execute Step 1 in O(n) time.

Step 2 reduces to the median finding problem, which can be solved in O(n) time [6].
In Step 3, computing the upper and the lower tangents reduces to 2D linear program-

ming (as in Kirkpatrick and Seidel [18]), which can be solved in O(n) time [24]. Also
it is straightforward to find PL and PR in O(n) time. Note that |PL|, |PR| ≤ n/2.

Step 4 involves recursive calls. A crucial observation is that a point of P on ∂conv(P )
lies on ∂conv(PL) or ∂conv(PR), and a point of PL (and PR) on ∂conv(PL) (and
∂conv(PR) respectively) lies on ∂conv(P ). Therefore, the desired output QL for CON-
VEXHULL(PL) and the desired output QR for CONVEXHULL(PR) are subsequences
of Q. This way, we succeed in overcoming the difficulties described before. If we
denote by t(n, k) the worst-case running time of CONVEXHULL(P ) over all P with
|P | = n and inv(≤P ,≤Q) = k (when Q is the desired output), Step 4 takes at
most t(|PL|, kL) + t(|PR|, kR) time, where kL, kR denote the number of inversions
for PL, PR and (the restriction to PL, PR of) Q, respectively. Since PL, PR, PM are
disjoint subsequences of P , we have the following lemma.

Lemma 1. Denote by kL, kR, kM the number of inversions for PL, PR, PM and (the
restriction to PL, PR, PM of) Q, respectively. Then, it holds that kL + kR + kM ≤ k.

In Step 5, we sort the points in PM . If we apply an adaptive sorting algorithm, say by
Estivill-Castro and Wood [14], we can sort PM in O(|PM |(1+log(1+kM ))) time. Fur-
ther, the merging can be done in O(n) time in a standard way since I(PL), I(PR), S(PM )
are all sorted.

Now we analyze the overall running time summarizing the discussion above. Con-
sider all linear-time processing in Steps 1, 2, 3, 5 takes an time for some constant a and
for all sufficiently large n, and the adaptive sorting in Step 5 takes b|PM |(1 + log2(1 +
kM )) time for some constant b and for all sufficiently large n. If we denote the number
of points in PL, PR, PM by nL, nR, nM , respectively (note that nL + nR + nM = n),
then we obtain the following recurrence:

t(n, k) ≤ an + t(nL, kL) + t(nR, kR) + bnM (1 + log2(1 + kM ))

for sufficiently large n and k ≥ 1. Note that for small n it holds t(n, k) = O(1) and
when k ≤ 0 it holds that t(n, k) = O(n). We now derive that t(n, k) ≤ cn(1+log2(1+
k)) for some constant c and for all sufficiently large n.

By induction, we obtain

t(n, k) ≤ an + cnL(1 + log2(1 + kL)) + cnR(1 + log2(1 + kR))
+bnM (1 + log2(1 + kM )).

We choose c so that it satisfies 2b ≤ c. Let nL = αn and nR = βn. Then we have
0 ≤ α ≤ 1/2, 0 ≤ β ≤ 1/2, and nM = (1−α−β)n. Note that α and β are parameters
that cannot be freely chosen but depend on the input. The recurrence becomes
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t(n, k) ≤ an + cαn(1 + log2(1 + kL)) + cβn(1 + log2(1 + kR))

+
c

2
(1 − α − β)n(1 + log2(1 + kM ))

= an + c(α + β +
1 − α − β

2
)n

+cn log2(1 + kL)α(1 + kR)β(1 + kM )(1−α−β)/2

≤ an + cn + cn log2(1 + kL)α(1 + kR)β(1 + kM )(1−α−β)/2.

Here, we want to know when the argument of the last logarithm (1+kL)α(1+kR)β(1+
kM )(1−α−β)/2 is maximized. Taking the logarithm further, we reduce this maximiza-
tion to the following linear program with two variables α, β:

maximize α log2(1 + kL) + β log2(1 + kR) +
1 − α − β

2
log2(1 + kM )

subject to 0 ≤ α, β ≤ 1/2.

This problem can be directly solved. We have four cases. Let A = log2(1 + kL) −
1
2 log2(1 + kM ) (that is the coefficient of α), and B = log2(1 + kR)− 1

2 log2(1 + kM )
(that is the coefficient of β).

Case 1: when A ≥ 0 and B ≥ 0. Then, the optimum is attained at α = β = 1/2, and
the optimal value is (log2(1 + kL) + log2(1 + kR))/2.

Case 2: when A ≥ 0 and B < 0. Then, the optimum is attained at α = 1/2, β = 0,
and the optimal value is (2 log2(1 + kL) + log2(1 + kM ))/4.

Case 3: A < 0 and B ≥ 0. Then, the optimum is attained at α = 0, β = 1/2, and the
optimal value is (2 log2(1 + kR) + log2(1 + kM ))/4.

Case 4: A < 0 and B < 0. Then, the optimum is attained at α = β = 0, and the
optimal value is (log2(1 + kM ))/2.

For each of these four cases, we proceed with the estimation of t(n, k). When Case 1
occurs, we obtain

t(n, k) ≤ (a + c)n + cn log2(1 + kL)1/2(1 + kR)1/2

≤ (a + c)n + cn log2
(1 + kL) + (1 + kR)

2

≤ (a + c)n + cn log2
2 + k

2
≤ (a + c)n + cn log2(

3
4
(1 + k))

= (a + c)n + (log2
3
4
)cn + cn log2(1 + k),

where we use a relation of arithmetic means and geometric means in the second in-
equality, Lemma 1 in the third inequality, and 2+k

2 ≤ 3
4 (1 + k) for k ≥ 1 in the second

to last inequality. Thus, if we choose c so that it satisfies a + (1 + log2
3
4 )c ≤ c, then

we obtain t(n, k) ≤ cn(1 + log2(1 + k)) as desired. Note that log2
3
4 ≈ −0.415037.

When Case 2 occurs, we obtain

t(n, k) ≤ (a + c)n + cn log2(1 + kL)1/2(1 + kM )1/4

≤ (a + c)n + cn log2(1 + kL)1/2(1 + kM )1/2,
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and we then go along the same line as Case 1. Case 3 is also similar. When Case 4
occurs, we obtain

t(n, k) ≤ an + cn + cn log2(1 + kM )1/2 ≤ an + cn + cn log2(1 + kM/2)

and we proceed with the same argument. This way, we conclude t(n, k) ≤ cn(1 +
log2(1 + k)) for all of the four cases. We summarize the discussion in the following
theorem.

Theorem 1. The algorithm CONVEXHULL above computes the convex hull of a given
(non-degenerate) point set in the plane in O(n(1 + log(1 + k))) time, where n is the
number of input points and k is the number of inversions as defined in the first formu-
lation, namely k = inv(≤P ,≤Q).

As for the lower bound it is easy to observe the following.

Theorem 2. Any algorithm to solve the planar convex hull problem in the first formu-
lation needs at least Ω(n(1 + log(1 + k/n))) comparisons in the worst case even if
the number of points on the boundary of the convex hull is constant (four). Here, n
is the number of input points and k is the number of inversions as defined in the first
formulation.

Proof. We reduce the adaptive sorting problem to our problem. Guibas, McCreight,
Plass, and Roberts [16] showed that any sorting algorithm needs at least Ω(n(1+log(1+
k/n))) comparisons in the worst case, where n is the size of an input array and k is
the number of inversions between the positions (or indices) in the input array and the
increasing order of numbers themselves.

Let A be an input array of size n for the sorting problem. Then, we construct an array
P of n + 4 planar points as follows. For each number A[i] in the input array, we set
P [i+4] = (A[i], 0). This determines P [5..n+4]. The other four points are determined
as follows. Let � be the smallest number in A, and u be the largest number in A. Then,
we set P [1] = (� − 2, 1), P [2] = (u + 2, 1), P [3] = (u + 1,−1), P [4] = (� − 1,−1).
This completes the construction of the point set P , and we consider the planar convex
hull problem when the input array is P . Let Q be the output array. Then we can see that
P [1], . . . , P [4] are the points on the boundary of the convex hull, and k = inv(≤P ,≤Q).
Furthermore, from Q we can extract the sorted sequence in the increasing order as the
x-coordinates of Q[5..n+4]. Since � and u can be found in linear time, this finishes the
whole reduction. ��

4 Lower Bound for the Second Formulation

To obtain a lower bound for the second formulation, we consider the following NO

INVERSION PROBLEM: Given an array P of (non-degenerate) point set in the plane,
we want to determine whether inv(≤P ,�Q) = 0. The following theorems show that
this problem is as hard as the planar convex hull problem itself.

Theorem 3. Any (fixed-degree) algebraic decision tree solving the NO INVERSION

PROBLEM has height at least Ω((n−h) log h), where n is the number of input points
and h is the number of points on the boundary of the convex hull.
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Proof. We construct a linear-time reduction to NO INVERSION PROBLEM from the
following CHIR PROBLEM:1 Given a regular convex h-gon R with its smallest cir-
cumscribing disk D, and n−h points in D, determine whether all of these n−h points
lies in R. Kapoor and Ramanan [17] proved that any (fixed-degree) algebraic decision
tree solving the CHIR Problem has height at least Ω((n−h) log h).2

For the reduction, we are given a regular convex h-gon R with its smallest circum-
scribing disk D, and a set X of n−h points in D. Then, we construct an array P of
points that is supposed to be an instance of the NO INVERSION PROBLEM as follows.
At P [1..h] we place the vertices of R in the clockwise order in such a way that P [1]
will be the leftmost one. Then, at P [h+1..n] we place the points of X arbitrarily. We
can see that P can be constructed in linear time. We can also see that inv(≤P ,�Q) = 0
if and only if all points of X lie in R. Thus, the reduction is completed. ��

Theorem 4. Any (fixed-degree) algebraic decision tree solving the NO INVERSION

PROBLEM has height at least Ω(n log n), where n is the number of input points.

Proof. Follow the proof of Theorem 3, but this time we set h = n/2 in the CHIR
PROBLEM. Then, the same argument gives a desired lower bound. ��

The following corollary is straightforward from the theorems above.

Corollary 1. Any (fixed-degree) algebraic decision tree solving the NO INVERSION

PROBLEM has height at least Ω(n log h), where n is the number of input points and h
is the number of points on the boundary of the convex hull.

Proof. When h < n/2, we have an Ω(n log h) lower bound from Theorem 3. When
h ≥ n/2, we have an Ω(n log h) lower bound from Theorem 4. ��

As shown in the following theorem, the lower bound for the NO INVERSION PROBLEM

can be translated to the lower bound for the planar convex hull problem in the second
formulation.

Theorem 5. For the (fixed-degree) algebraic computation tree model, any algorithm
to solve the planar convex hull problem in the second formulation requires at least
Ω(n log h) time, where n is the number of input points and h is the number of points on
the boundary of the convex hull.

Proof. Let A be an algorithm to solve the planar convex hull problem in the second
formulation, and let Q be an output array from A when we input P into A. From Q, we
can determine h in O(n) time as Step 1 of the algorithm CONVEXHULL in the previous
section. Therefore, by looking through P [1..h] and Q[1..h], we can determine whether
inv(≤P ,�Q) = 0 in O(h) time. In this way, we can solve NO INVERSION PROBLEM,
and so A needs at least Ω(n log h) comparisons by Corollary 1 (note that decision by
one comparison can be implemented as a node of an algebraic decision tree). ��

1 This is the abbreviation of “Convex hull inclusion with restriction” [17].
2 The CHIR problem by Kapoor and Ramanan [17] is a bit different from ours, but the lower

bound proof of them can be easily adapted to our variation.
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5 Concluding Remarks

For the sorting problem, several algorithms running in O(n(1 + log(1 + k/n))) time
[12,13,20,21,22,23] have been presented, and there is a tight lower bound [16]. This
lower bound also applies to the first formulation, and there is a gap between this lower
bound and the running time of our algorithm. It is desirable to find an optimal algorithm.

For further investigation, we can think of other presortedness measures, and other
geometric problems that can be thought of as permutation problems. A lot of questions
remain unsolved, and we hope that this is a stimulating line of research.
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Abstract. Monitoring and surveillance are important aspects in mod-
ern wireless sensor networks. In applications of wireless sensor networks,
it often asks for the sensors to quickly move from the interior of a spec-
ified region to the region’s perimeter, so as to form a barrier coverage
of the region. The region is usually given as a simple polygon or even a
circle. In comparison with the traditional concept of full area coverage,
barrier coverage requires fewer sensors for detecting intruders, and can
thus be considered as a good approximation of full area coverage.

In this paper, we present an O(n2.5 log n) time algorithm for moving n
sensors to the perimeter of the given circle such that the new positions of
sensors form a regular n-gon and the maximum of the distances travelled
by mobile sensors is minimized. This greatly improves upon the previous
time bound O(n3.5 log n). Also, we describe an O(n4) time algorithm
for moving n sensors, whose initial positions are on the perimeter of the
circle, to form a regular n-gon such that the sum of the travelled distances
is minimized. This solves an open problem posed in [2]. Moreover, our
algorithms are simpler and have more explicit geometric flavor.

1 Introduction

Wireless Sensor Networks (WSN) are envisioned to be developed for a wide range
applications. A WSN is composed of a large number of sensor nodes, which are
densely deployed either inside the phenomenon or very close to it [1]. Each sensor
node is equipped with a sensing device, a low computational capacity processor,
a short-range wireless transmitter-receiver and a limited battery-supplied energy.
Sensor nodes monitor some surrounding environmental phenomenon, process the
data obtained and forward these data towards a base station. These character-
istics of a WSN require that sensor network protocols and algorithms possess
self-organizing capabilities, i.e., sensors are able to cooperate in order to organize
and perform networking tasks efficiently.

A typical application of WSN is to monitor a specified region either for mea-
suring purposes or for reporting various types of activities (e.g., fire alarms,
calamities, etc). Another application concerns security and safety systems, such
as, detecting intruders (or movement thereof) around infrastructure facilities
and regions. Particularly, it often asks to monitor an area so as to detect in-
truders as they penetrate the protected area or as they cross the area border.

D.T. Lee, D.Z. Chen, and S. Ying (Eds.): FAW 2010, LNCS 6213, pp. 327–338, 2010.
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For example, research efforts are currently under way to extend the scalability
of wireless sensor networks so that they can be used to monitor international
border as well [8,11].

The study of barrier coverage with mobile sensors was originated in [3,11],
and later in [2]. Differing from the traditional concept of full coverage, it asks
to cover the entire deployment region by guaranteeing that there is no path
through this region that can be traversed undetectedly by an intruder, i.e., all
crossing paths through the region are covered by sensors [2,3,11]. Since mobile
sensors are allowed to move inside the deployment region, a crossing path may
occur occasionally. So, an interesting problem is to reposition the sensors quickly
so as to repair the existing security hole and thereby detect intruders [2]. Since
barrier coverage requires fewer sensors for detecting intruders, it thus gives a
good approximation of full area coverage. The planar region on which sensors
move is usually represented by a simple polygon or even a circle.

In this paper, we study the problem of moving n sensors to the perimeter of
a circular region to form a regualr n-gon such that either the maximum of the
distances travelled by mobile sensors or the sum of the travelled distances is min-
imized. An efficient solution to the min-max or min-sum problem is important,
as the energy required by a mobile sensor is an increasing function of the distance
it travels. First, we present an O(n2.5 log n) time algorithm for moving n sensors
to the perimeter of the given circle such that the new positions of sensors form a
regular n-gon and the maximum of the distances travelled by mobile sensors is
minimized. This improves upon the previous time bound O(n3.5 log n) [2]. Also,
we describe an O(n4) time algorithm for moving n sensors, whose initial posi-
tions are on the perimeter of the given circle, to form a regular n-gon such that
the sum of the travelled distances is minimized. This solves an open problem
posed in Section 5.5 of [2]. Moreover, since our algorithms are based on some
properties from elementary geometry, they are simple and easy to implement.

2 Problem Definition and Previous Work

Suppose that mobile sensors are working inside a planar region. As discussed
in [2,3], individual sensors are able to locally determine the existence of barrier
coverage, even when the region is arbitrarily shaped. For simplicity, the region
is usually delimited by a simple polygon or even by a circle. In this paper, we
mainly focus on the problem of moving n sensors to the perimeter of a unit-radius
circular region such that the new positions of sensors form a regular n-gon and
thereby give barrier coverage, assuming that the mobile sensors have detected the
existence of a crossing path. We assume that the sensors are location aware (i.e.,
they know their geometric coordinates) and know the center of the given circle.
Assume also that the range of the sensor’s transmitter-receiver is always longer
than an edge of the regular n-gon; otherwise, barrier coverage is impossible.

Denote by C the given circular region. For n sensors, denote by A1, A2, . . .,
An their initial positions in the interior or on the perimeter of C, and A′

1, A′
2,

. . ., A′
n their goal positions on the perimeter of C, which form a regular n-gon.
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Moreover, denote by AA′ the line segment with two endpoints A and A′, and
|AA′| the length of AA′ (i.e., the Euclidean distance between A and A′). Then,
one can easily define the following two problems:

1. The min-max problem: Minimizing the maximum of the distances trav-
elled by the sensors, i.e., min {maxn

i=1|AiA
′
i|}.

2. The min-sum problem: Minimizing the sum of the distances travelled by
the sensors, i.e., min

∑n
i=1 |AiA

′
i|.

An O(n3.5 log n) time algorithm has been proposed by Bhattacharya et al. to
solve the min-max problem [2]. For a simple polygon with m vertices, an
O(mn3.5 log n) time solution is also given. Their algorithms are based on the
parametric searching technique, which requires many sophisticated procedures
(e.g., a sorting algorithm with an unknown optimal value [4], and a parallel sort-
ing network [12]). As many other geometric applications of parametric searching,
the necessary condition for giving an optimal solution is not explictly described
[2]. These drawbacks of parametric searching have previously been pointed out
in the literature (see Section 1 of [9]).

Two approximation algorithms for the min-sum problem for circular regions
are further provided in [2]. A simple O(n2) time solution to a special version of
the min-sum problem, in which both the initial positions and the movements of
all sensors are limited on the perimeter of the given circle, is also given. Again, the
similar result was extended to polygonal regions [2]. Whether a polynomial-time
solution to the min-sum problem exists is left open, even when the initial positions
of all sensors are on the perimeter of the given circle (see Section 5.5 of [2]).

3 Min-max Problem

Suppose that C is a unit-radius circle, and o is the center of C. Denote by ∂C the
perimeter of the circle C. Moreover, denote by λC the optimal solution to the min-
max problem for the circle C, i.e., λC = min {maxn

i=1|AiA
′
i|}. Clearly, λC ≤ 2.

In the following, we study the geometric properties of the points on ∂C that
may contribute to the optimum λC , and then present our new algorithm for
computing λC .

3.1 Geometric Properties of the Boundary Points Related to λC

Denote by Xi the point of ∂C, which is closest to Ai. Clearly, Xi is an intersection
point of ∂C with the line passing through Ai and o. Denote by Yi the other
intersection point, which is the point of ∂C furthest from Ai. See Figure 1(a).

The following properties are important to our algorithm for the min-max
probem.

Lemma 1. Suppose that an optimal solution to the min-max problem is obtained
with λC = |AiA

′
i|, for some i (1 ≤ i ≤ n). Then, either A′

i is the point Xi,
or there exists another sensor Aj (j �= i) such that λC = |AjA

′
j | also holds.
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Fig. 1. (a) The points Xi and Yi on ∂C; (b) |AiA
′
i| = |AjA

′
j |

In the latter case, a slight rotation of the regular n-gon giving λC in either
direction monotonically increases one of the two distances |AiA

′
i| and |AjA

′
j |,

and decreases the other.

Proof. Assume first that in the obtained optimal solution, the sensor Ai is the
only one satisfying λC = |AiA

′
i|, but A′

i is not the point Xi. So |AiXi| < |AiA
′
i|

holds (Figure 1(a)). Let us rotate the regular n-gon giving λC by moving the
vertex A′

i towards Xi, with a very small distance ε. Clearly, the distance function
between Ai and A′

i decreases monotonically during the rotation of the n-gon.
Denote by A′′

1 , A′′
2 , . . ., A′′

n the new positions of the sensors after the rotation
stops. Since ε is arbitrarily small and Ai is the only one satisfying λC = |AiA

′
i|,

we have |AiA
′′
i | ≥ |AkA′′

k | for all k �= i, and moreover, |AiA
′′
i | < |AiA

′
i| holds;

it contradicts that λC (= |AiA
′
i|) gives the optimal solution to the min-max

problem.
Suppose now that there exists another sensor Aj such that λC = |AjA

′
j |

(j �= i) also holds (Figure 1(b)). A slight rotation of the regular n-gon giving
λC in either direction cannot make both |AiA

′′
i | < |AiA

′
i| and |AjA

′′
j | < |AjA

′
j |

hold, where A′′
i and A′′

j denote the new positions of A′
i and A′

j after the rotation
stops; otherwise, it contradicts the equations λC = |AiA

′
i| and λC = |AjA

′
j |. This

implies that the rotation of the regular n-gon giving λC increases one of the two
distances |AiA

′
i| and |AjA

′
j |, but decreases the other. The proof is complete. �

The points of ∂C satisfying the conditions described in Lemma 1 clearly
contribute to the candidate values for λC . The points Xh of all sensors Ah

(1 ≤ h ≤ n) can simply be found. So an important task is to find all the pairs
(Ai, Aj) (i �= j) such that the distance from Ai to a vertex of a regular n-gon
equals to the distance from Aj to another vertex of the n-gon, and a slight ro-
tation of the n-gon in either direction monotonically increases one of the two
distances but decreases the other. For simplicity, we call such distances the equal
distances.

Let P be an arbitrary regular n-gon with the vertices P1, P2, . . ., Pn on ∂C.
In order to find all equal distances, we simulate below a clockwise rotation of
the polygon P on ∂C with an arc distance 2π/n. First, compute the distances
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between all pairs of a sensor and a vertex of P , and sort these n2 distances into
the sequence, say, d1 < d2 < . . . < dn2 . Denote by D the resulting sequence of
these distances. For any two adjacent distances in D, we then check whether they
can produce an equal distance during the procedure of rotating P . Note that the
two sensors related to that equal distance as well as the two intervals of ∂C (of
arc length 2π/n) on which the two vertices of P move are known. Moreover, since
one of the two distances increases but the other decreases to the equal distance,
the exact distance between the goal positions of two sensors is also known. (The
distance between two goal positions can be represented as 2sin(wπ/n), where
w(≤ n) is a known, positive integer.) Thus, we can determine in constant time
whether the equal distance for a pair of adjacent distances in D can be attained.
If yes, report the found equal distance. From the initial sequence d1, d2, . . ., dn2 ,
we can thus obtain some equal distances. Denote by E the set of the found equal
distances.

To achieve an equal distance e, the polygon P is rotated on ∂C with an arc
distance from its initial position. Denote by r(e) (≤ 2π/n) this arc distance
(from the initial position of P ) required to obtain the equal distance e. Let R
be the set of these arc distances r(e), and rmin the smallest arc distance in R.

The clockwise rotation of P with the arc distance 2π/n can then be performed
as follows. First, take out (i.e., delete) rmin from the set R. Since an equal dis-
tance happens only between two adjacent distances in D, the first equal dis-
tance occurs when the polygon P is rotated on ∂C with the arc distance rmin.
Afterwards, the two adjacent distances, which contributed to rmin, have to be
exchanged in the sequence D. The change of these two distances in D may in-
troduce at most two new equal distances, and thus, we further check whether
these two equal distances can be attained. If a new equal distance is ever found,
we compute the corresponding arc distance from the initial position of P , and
then insert it into R. Next, take out the current arc distance rmin from R and
continue to rotate P on ∂C according to (the remaining value of) rmin. In this
way, the polygon P is gradually rotated, and whenever the arc distance repre-
sented by rmin is reached, we maintain the sequence D of n2 distances between
sensors and the current vertices of P , and the set R of the arc distances, which
are computed from the found equal distances. All equal distances are clearly
reported after the rotation of P is complete.

Lemma 2. Let m be the number of the equal distances. Then, m = O(n3).

Proof. Let Ai(Px) denote the distance function from a sensor Ai to a vertex
Px of the n-gon P . Clearly, the function Ai(Px) increases or decrease monoton-
ically in the procedure of rotating P , except that the interval of ∂C on which
Px moves contains the point Xi or Yi; in this case, we divide that interval of ∂C
into two sub-intervals such that Ai(Px) is monotone in either sub-interval. All
functions Ai(Px), Px ∈ P , can thus be grouped into two sets Si1 and Si2 such
that the functions in the set Si1 monotonically increase and the functions in Si2
monotonically decrease. The union of the intervals of ∂C, on which the vertices
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Px of all functions of Si1 (resp. Si2) move, is the clockwise chain of ∂C from Xi

to Yi, or from Yi to Xi. Hence, all functions in Si1, or in Si2 can be considered as
a single distance function from the sensor Ai, which is also monotone. Similarly,
we can define the monotone functions Aj(Py), for all other sensors Aj and all
polygon vertices Py.

Let us now give an upper bound on the number of the equal distances. In
the procedure of rotating P with the arc distance 2π/n, any decreasing (resp.
increasing) function Aj(Py) can produce at most one equal distance with a func-
tion of Si1 (resp. Si2), i �= j. This is because the function Aj(Py) is monotone,
and all functions in Si1 (resp. Si2) can be considered as a monotone distance
function from Ai. Since both the number of the sensors Aj (j �= i) and the
number of the vertices Py are no more than n, the sensor Ai can contribute to
O(n2) equal distances. Therefore, we have m = O(n3). �

3.2 Algorithm

Let p be a point on ∂C, and d the distance between p and an arbitrary sensor.
We can then give an algorithm for determining whether λC ≤ d [2].

Algorithm Distance-Test

1. Compute the regular n-gon by fixing one of its vertices at p, and denote by
B1, B2, . . ., Bn the vertices of the obtained n-gon.

2. Construct a bipartite graph Hd between the sensors A1, A2, . . ., An and the
vertices B1, B2, . . ., Bn; sensor Ai is linked to vertex Bj (1 ≤ i, j ≤ n) if
and only if |AiBj | ≤ d.

3. Check whether there exists a perfect matching in Hd. If yes, report λC ≤ d;
otherwise, report λC > d.

The time complexity of the algorithm Distance-Test is O(n2.5). This is because
the first two steps of Distance-Test clearly take O(n2) time, and the last step
requires O(n2.5) time to check whether there exists a perfect matching in the
bipartite graph Hd [6].

To give a simple solution to the min-max problem, one can run a binary search
over all the distances |AiXi| (1 ≤ i ≤ n) and the equal distances ej (1 ≤ j ≤ m)
using the fixed-size decision algorithm Distance-Test to determine whether
the optimum λC is larger than, smaller than or equal to the selected distance d.
Clearly, the smallest of the values d satisfying λC ≤ d gives the answer to the
min-max problem.

Let us now describe a more efficient algorithm for the min-max problem.
Again, denote by P a regular n-gon with the vertices P1, P2, . . ., Pn on ∂C.
First, we perform a binary search over all the distances between sensors and
the initial positions of vertices of P , i.e., d1, d2, . . ., dn2 , to find two distances
dk, dk+1 such that dk < λC ≤ dk+1. Without loss of generality, we assume that
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d0 = 0, dn2+1 = 2, and 0 ≤ k ≤ n2. In the following, we show that there are at
most O(n2) equal distances e, with dk < e ≤ dk+1.

Let P i (1 ≤ i ≤ n) denote the regular n-gon obtained by fixing one of its
vertices at the point Xi. Suppose that the vertices of P i are indexed clockwise,
starting from the vertex P i

1 = Xi. Clearly, there are �(n − 2)/2� pairs of the
vertices in P i, whose distances to the sensor Ai are the same. Let di

1 < di
2 <

. . . < di
�n/2�+1 denote the sequence of the distances from Ai to all vertices of P i

(including P i
1) and the point Yi as well when n is odd. When n is odd, the point

Yi is not the vertex of P i. But, as discussed above, some distance function needs
to be divided into two monotone sub-functions using the point Yi.

Lemma 3. Let P be an arbitrary regular n-gon on ∂C, and d1, d2, . . ., dn2

the increasing order of the distances between all sensors and the vertices of P .
Assume that d0 = 0 and dn2+1 = 2, and that we know dk < λC ≤ dk+1 for
some k, 0 ≤ k ≤ n2. Let m(k) be the number of the equal distances e, with
dk < e ≤ dk+1. Then, m(k) = O(n2), and all of these equal distances can be
computed in O(n2 log n) time.

Proof. Suppose that we have known dk < λC ≤ dk+1. For any polygon P i (1 ≤
i ≤ n), the range (dk, dk+1] is clearly contained in [di

j , d
i
j+2] for some j < �n/2�,

or in [di
j , d

i
j+1] when j = �n/2�. Also, denote by Ai(P i

x) the distance function
from the sensor Ai to a vertex P i

x of the n-gon P i. Since the distance functions
from Ai to all vertices of P i can be grouped into two monotone functions in
the rotation of P i with the arc distance 2π/n, at most four distance functions
Ai(P i

x) may vary in the range (dk, dk+1]. These distance functions from Ai can
be found in O(log n) time, provided that the increasing order of the distances
di
1, di

2, . . ., di
�n/2�+1 is known.

Consider now the procedure of rotating the polygon P on ∂C clockwise with
the arc distance 2π/n. Suppose that all the polygons P 1, P 2, . . . , Pn are also
rotated with the arc distance 2π/n simultaneously. Assume that all the O(n)
distance functions, which vary in the range (dk, dk+1], have been sorted according
to their initial values (i.e., using the corresponding distances di

j , 1 ≤ i, j ≤ n).
Denote by D(k) the increasing order of these distance functions. For any two
adjacent distances in D(k), we then check whether they can be equal in the
procedure of rotating the polygon P . If yes, report that equal distance. Also,
we can simply check whether the found equal distance is between dk and dk+1.
From the initial sequence D(k), we can compute a set of equal distances. Denote
by R(k) the set of the arc distances, which are required to attain the found
equal distances. As in the proof of Lemma 2, the polygon P can then be rotated
according to the arc set R(k). When the set R(k) becomes empty in the procedure
of rotating P , we obtain all the equal distances e, with dk < e ≤ dk+1. The
number m(k) of the equal distances e, with dk < e ≤ dk+1, is O(n2). This
is because D(k) contains O(n) monotone functions in the whole procedure of
rotating P and a pair of adjacent distances in D(k) at any instant time of the
rotation can contribute to at most one equal distance.
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Finally, consider the time required to compute these equal distances. First, the
sequences of the distances di

1, di
2, . . ., di

�n/2�+1, for all i (1 ≤ i ≤ n), can totally
be computed in time O(n2 log n). The initial sequence D(k) of the distance
functions, which vary in the range (dk, dk+1], can then be found in O(n log n)
time. When an equal distance occurs between two adjacent distances of D(k) in
the procedure of rotating P , we insert its corresponding arc distance into the set
R(k). For efficiency, R(k) is maintained in a priority queue. Hence, an insertion
of an arc distance to R(k) as well as a deletion of the smallest arc distance from
R(k) takes O(log n) time. So the total time required is O(n2 log n). �

By now, we can give our algorithm for the min-max problem. First, perform a
binary search over the distances d0, d1, . . ., dn2+1 using the fixed-size decision
algorithm Distance-Test to determine whether the optimum λC is larger than,
smaller than or equal to the selected distance. After this binary search is done,
we can assume that dk < λC ≤ dk+1 for some k, 0 ≤ k ≤ n2. Next, rotate
the polygon P with the arc length 2π/n to find all the equal distances e, with
dk < e ≤ dk+1. Furthermore, we sort these m(k) equal distances and the other
n distances |AjXj| (1 ≤ j ≤ n). Denote the resulting sequence by ed1 < ed2 <
. . . < edn+m(k). Since the optimum λC is one of these n +m(k) values (Lemmas
1 and 3), it suffices to run another binary search using the algorithm Distance-
Test. We conclude the algorithm in the following:

Algorithm Min-Max

1. Let P be an arbitrary regular n-gon on ∂C, and d1, d2, . . ., dn2 the increasing
order of the distances between all sensors and the vertices of P . Assume also
that d0 = 0 and dn2+1 = 2.

2. Run a binary search over the distances d0, d1, . . ., dn2+1 using the fixed-size
decision algorithm Distance-Test to find two values dk, dk+1 (0 ≤ k ≤ n2)
such that dk < λC ≤ dk+1. (The regular n-gon used in Distance-Test is
constructed according to the selected distance.)

3. For every i (1 ≤ i ≤ n), place the regular n-gon P i on ∂C by fixing one
of its vertices at the point Xi, and then sort the distances from Ai to all
vertices of P i and the point Yi as well when n is odd, into the sequence
di
1 < di

2 < . . . < di
�n/2�+1. Next, find at most 4n vertices of P i such that

their distance functions (from Ai) vary in the range (dk, dk+1] when P i is
rotated with the arc distance 2π/n.

4. Rotate the polygon P on ∂C with the arc distance 2π/n to compute all
the equal distances e, with dk < e ≤ dk+1. Then, sort these m(k) equal
distances and the other n distances |AjXj | (1 ≤ j ≤ n) into the sequence ,
say, ed1 < ed2 < . . . < edn+m(k).

5. Run a binary search over the distances ed1, ed2, . . ., edn+m(k) using the
fixed-size decision algorithm Distance-Test to determine whether λC is
larger than, smaller than or equal to the selected distance.

6. Report the smallest of the values edj satisfying λC ≤ edj .
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It follows from the discussion made above that Steps 2 and 5 of Min-Max take
O(n2.5 log n) time, which clearly dominates the time complexity of the algorithm
Min-Max. Hence, we obtain the main result of this paper:

Theorem 1. The min-max problem for a given circle can be solved in O(n2.5 log n)
time.

4 Min-sum Problem: When Sensors Are Initially on the
Perimeter of the Circle

This section presents an O(n4) time algorithm for a special version of the min-
sum problem, in which all sensors are initially on the perimeter of the unit-radius
circle C. Our result solves an open problem posed in [2].

Let A1, A2, . . ., An denote the initial positions of n sensors on ∂C, and A′
1,

A′
2, . . ., A′

n their goal positions on ∂C. Denote by ΔC the optimal solution to
the min-sum problem for C, i.e., ΔC = min

∑n
i=1 |AiA

′
i|. The following property

is important to the solution of our min-sum problem.

Lemma 4. Suppose that all sensors are initially on the perimeter of the unit-
radius circle C. In any assignment between the initial and goal positions of n
sensors, which gives ΔC , there exists some sensor Ax (1 ≤ x ≤ n) such that
Ax = A′

x.

Proof. The proof is by contradiction. Assume that in any assignment between
the initial and goal positions of n sensors, which gives ΔC , all sensors move,
i.e., Ai �= A′

i for all i, 1 ≤ i ≤ n. For our purpose, we construct below a line
segment L such that the length L is equal to ΔC . To avoid confusion, we use the
small letters ’ak’ (’a′

k’) to represent the points Ak (A′
k) on L. See Figure 2(b).

First, fix a segment AsA
′
s for an aribitrary index s, in an assignment giving ΔC .

Then, draw all other segments contributed to ΔC , in an arbitrary order, on the
extension of the segment AsA

′
s by connecting the point A′

y of the segment AyA′
y

to the previously existed point Ax. Assume that at is the last endpoint obtained
in constructing the segment L. Since a′

s is the other endpoint of L, we have
|ata

′
s| = ΔC . See Figure 2(b) for an example, where a′

s = a′
3 and at = a1.

Let us now move all points A′
j on ∂C clockwise, by a very small arc distance

α, say, nα < π/4. Assume that no point Aj is passed over during this clockwise
rotation of the n-gon (it is always possible since α can be arbitrarily small).
Denote by Bj the new position of A′

j (1 ≤ j ≤ n), and Δ1 the solution of the
min-sum problem in which every sensor Aj moves to Bj . See Figure 2(a). Since
three points Aj , A′

j and Bj (1 ≤ j ≤ n) are on ∂C, the angle � A′
jAjBj is α.

Next, we translate the segment AtBt such that the translated segment, denoted
by atbt, and the segment ata

′
t (on L) form the angle α at the point at. See Figure

2(b). Draw all other segments in the assigment giving Δ1 on the extension of
the segment atbt, in the reversed order of the segments added to construct L.
Denote by L1 the resulting segment. See Figure 2(b). Clearly, bs is the other
endpoint of L1. Also, we have |atbs| = Δ1.
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Analogously, we move all points A′
j on ∂C counterclockwise, by the same arc

distance α. Assume also that no point Aj is passed over during this counterclock-
wise rotation of the n-gon. Denote by Ej the new position of A′

j (1 ≤ j ≤ n),
and Δ2 the solution of the min-sum problem in which every sensor Aj moves to
Ej . Similarly, we can obtain a line segment L2, with two endpoints at and es,
of length Δ2. See Figure 2(b). Without loss of generality, assume that L1 and
L2 are to the different sides of L. Thus, L1 and L2 form the angle 2α at the
point at.

In the above construction of L and L1 (resp. L2), only the translation and
the rotation of segments are empolyed. Hence, two points a′

s and bs (resp. a′
s

and es) can be connected by n arcs of length α, which are scanned by all sensors
in transforming the assignment for ΔC into that for Δ1 (resp. Δ2). These n
arcs can thus be replaced by a long arc of length nα, i.e., a′

s and bs (resp. a′
s

and es) are connected by an arc of length nα (< π/4). It immediately implies
that three points a′

s, bs and es are passed by another unit-radius circle, say, C′.
See Figure 2(b). Since the angle formed by L1 and L2 (i.e., two segments atbs

and ates) at at is 2α, the point at cannot be contained in the interior of the
circle C′ (otherwise, since the arc distance between bs and es is 2nα, we would
have 2α > 2nα (n ≥ 2), a contradiction). The segment L then has two common
points with ∂C′. If the center of C′ happens to be on L, we have Δ1 < ΔC

and Δ2 < ΔC , contradicting that ΔC gives an optimal solution to the min-sum
problem. In the case that the center of C′ is not on L, either Δ1 < ΔC or
Δ2 < ΔC holds, a contradiction again. This completes the proof. �

Based on Lemma 4, the min-sum problem for the circle C can be solved by fixing
a vertex of the regular n-gon at the initial position of every sensor once, then
solving the weighted matching problem (n times) in a complete bipartite graph
such that one subset of its nodes represents the initial positions of all sensors
and the other represents the goal positions of sensors, and finally reporting the
smallest of the obtained solutions to all weighted matching instances.
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Fig. 2. Illustration of the proof of Lemma 4
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Algorithm Min-Sum

1. For each i = 1, 2, . . . , n, do the following:
(a) Place a regular n-gon P on ∂C by fixing one of its vertices at the sensor

Ai. Then, construct a complete bipartite graph Hi between the sensors
A1, A2, . . ., An and the vertices P1, P2, . . ., Pn of the n-gon (i.e., any of n
sensors is linked to all polygon vertices). Moreover, define the Euclidean
distance between a sensor and a vertex of P as the weight of the edge of
Hi connecting the corresponding nodes.

(b) Compute an optimal solution Δ(Hi) to the weighted bipartite matching
problem for the graph Hi (i.e., finding the optimal assignment of the n
sensors to the vertices of P in the weighted bipartite graph Hi).

2. Report the smallest of all found solutions Δ(Hi).

Since the number of nodes of the graph Hi is 2n, the Hungarian method can
solve in O(n3) time the weighted matching problem in the complete bipartite
graph Hi [10]. Hence, we have the following result.

Theorem 2. Suppose that all sensors are initially located on the perimeter of
the given circle. Then, the min-sum problem can be solved in O(n4) time.

5 Concluding Remarks

In this paper, we have presented an O(n2.5 log n) time algorithm for moving
n sensors to the perimeter of the given circle such that the new positions of
sensors form a regular n-gon and the maximum of the distances travelled by
mobile sensors is minimized. This greatly improves upon the previous time bound
O(n3.5 log n). Also, we have described an O(n4) time algorithm for moving n
sensors, given on the perimeter of the circle, to form a regular n-gon such that
the sum of the travelled distances is minimized. This solves an open problem
posed in [2]. Moreover, our algorithms are simple and easy to implement.

There are several open questions which are interesting for further research.
First, whether the min-sum problem is NP -hard is not known. The answer
might be negative, since it seems quite difficult to specify a finite number of
candidate points on the perimeter of the given circle such that an optimal so-
lution can be computed from these candidate points. Also, it is interesting to
extend our methods to polygonal or convex regions. For a polygonal or convex
polygon, the sensors are required to move to the perimeter of the polygon such
that the polygonal distance along the perimeter between any two consecutive
sensors are the same [2]. Finally, although our algorithms as well as the previous
algorithms given in [2] were developed for a wireless sensor network, we have
assumed a centralized control server, where nodes are connected using a gate-
way. The distributed self-deployment algorithms for full/barrier coverage, which
consider various designing strategies, such as oblivious robots, uniformity and
system lifetime, have been studied in [5,7]. Whether the distributed version of
our algorithms can be developed is an interesting question for further work.
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