Organic Cation Transporters (OCTs, MATEs), In Vitro and In Vivo Evidence for the Importance in Drug Therapy

Anne T. Nies, Hermann Koepsell, Katja Damme, and Matthias Schwab

Contents

1	Intro	duction	
2	Clor	ing and Molecular Characterization of OCT and MATE Transporters	
	2.1	OCT Transporters	108
	2.2	MATE Transporters	125
3	Tiss	ue Distribution and Subcellular Localization	
	3.1	OCT1	126
	3.2	OCT2	126
	3.3	ОСТ3	128
	3.4	MATE1 and MATE2-K	128
4	Func	ctional Characterization of OCT and MATE Transporters	
	4.1	Common Functional Properties of OCTs	128
	4.2	Substrate and Inhibitor Specificities of Human OCTs	129
	4.3	Drug–Drug Interactions Involving OCTs	130
	4.4	Common Functional Properties of MATEs	
	4.5	Substrate and Inhibitor Specificities of MATEs	131
	4.6	Drug–Drug Interactions Involving MATEs	
5	Kno	ckout Mouse Models	
	5.1	Oct1 Knockout Mice	
	5.2	Oct2 Single-Knockout and Oct1/Oct2 Double-Knockout Mice	133
	5.3	Oct3 Knockout Mice	133
	5.4	Mate1 Knockout Mice	

and

M. Schwab

and

Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany

A.T. Nies (🖂) and K. Damme

Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, 70376 Stuttgart, Germany

University of Tübingen, Tübingen, Germany

e-mail: anne.nies@ikp-stuttgart.de

H. Koepsell

Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany

Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, 70376 Stuttgart, Germany

6	Phar	macogenomics of OCT and MATE Transporters	134
	6.1	Identification of Genetic Variants, Their	
		Predicted Consequences, and Their Effects In Vitro	134
	6.2	Interethnic Variability	135
	6.3	Phenotype–Genotype Correlations	140
Ref	ferenc	es	157

Abstract Organic cation transporters (OCTs) of the solute carrier family (SLC) 22 and multidrug and toxin extrusion (MATE) transporters of the SLC47 family have been identified as uptake and efflux transporters, respectively, for xenobiotics including several clinically used drugs such as the antidiabetic agent metformin, the antiviral agent lamivudine, and the anticancer drug oxaliplatin. Expression of human OCT1 (SLC22A1) and OCT2 (SLC22A2) is highly restricted to the liver and kidney, respectively. By contrast, OCT3 (SLC22A3) is more widely distributed. MATEs (SLC47A1, SLC47A2) are predominantly expressed in human kidney. Data on in vitro studies reporting a large number of substrates and inhibitors of OCTs and MATEs are systematically summarized. Several genetic variants of human OCTs and in part of MATE1 have been reported, and some of them result in reduced in vitro transport activity corroborating data from studies with knockout mice. A comprehensive overview is given on currently known genotype-phenotype correlations for variants in OCTs and MATE1 related to protein expression, pharmacokinetics/-dynamics of transporter substrates, treatment outcome, and disease susceptibility.

Keywords Drug transporters · Organic cation transport · Excretion · OCT1 · OCT2 · OCT3 · MATE1 · MATE2-K · Liver · Kidney · tissue distribution · Knockout mice · Pharmacogenomics · Genotype–phenotype correlation · Metformin · Single nucleotide polymorphisms · Drug response · Interindividual variability · Drug–drug interaction · Pharmacokinetics

1 Introduction

A large number of clinically used drugs are administered orally, from which approximately 40% are cations or weak bases at physiological pH (Neuhoff et al. 2003). For absorption, distribution, metabolism, and elimination (ADME), they need to be taken up into and effluxed from various cell types in the body. Several families of membrane transporters have been recognized to play a role in the transport of organic cations across the plasma membrane. These include members of the solute carrier (SLC) family 22 (organic cation transporters, OCTs) and of the SLC family 47 (multidrug and toxin extrusion, MATEs) (Koepsell et al. 2007). The

human SLC22 family can be divided into several subgroups according to substrates and transport mechanisms (Koepsell and Endou 2004) (Fig. 1). One subgroup comprises OCT1, OCT2, and OCT3, which translocate organic cations and weak bases in an electrogenic manner. Human MATE transporters have only recently been identified as proton/cation antiporters participating in the excretion of organic cations in the liver and kidney (Otsuka et al. 2005; Masuda et al. 2006). Alterations in the expression and function of these transporters may significantly contribute to drug pharmacokinetics and the interindividual variability of drug response. This review summarizes current knowledge about the molecular characteristics, tissue

Fig. 1 Phylogenetic tree of the 23 transporters of the human SLC22 family. Protein sequences were downloaded from the NCBI gene database and aligned with the ClustalX2 program (Larkin et al. 2007). The tree was drawn with the "drawtree" program of the PHYLIP3.67 program package (http://evolution.genetics.washington.edu/phylip.html). The distance along the branches is inversely correlated to the degree of sequence identity. For example, the amino acid sequence identity of OCT1 and OCT2 is 70% and that of OCT1 and URAT1 31%. Electrogenic cation transporters are marked by *black boxes*, transporters for organic cations and carnitine by *gray boxes*, and transporters for organic anions by *white boxes*. Transporters whose function is as yet unknown are unmarked

distribution, (drug) substrates and inhibitors, drug-drug interactions, and the fastgrowing field of pharmacogenomics of human OCT and MATE transporters.

2 Cloning and Molecular Characterization of OCT and MATE Transporters

A large number of physiological and biochemical studies had suggested the presence of different carrier systems mediating the transport of organic solutes in hepatocytes and renal proximal tubule cells (Giacomini et al. 1988; Boyer et al. 1992). However, molecular identification of these transporters succeeded not until molecular biology techniques became available in the late 1980s. The first member of the electrogenic OCT family was isolated from rat kidney by expression cloning (Gründemann et al. 1994). It took another 11 years until Otsuka et al. identified in 2005 human orthologs of the bacterial MATE family as proton/organic cation exchangers responsible for the electroneutral transport of organic cations into bile and urine.

2.1 OCT Transporters

The genes encoding human OCT1 (gene symbol: SLC22A1), OCT2 (SLC22A2), and OCT3 (SLC22A3) are located in a cluster on chromosome 6q26–q27 and have a common structure of 11 coding exons and 10 introns (Koehler et al. 1997; Gründemann et al. 1998; Hayer et al. 1999; Verhaagh et al. 1999; Gründemann and Schömig 2000). The amino acid sequence identity of OCT1 and OCT2 is 70%, and 50% for both OCT1/OCT3 and OCT2/OCT3. OCT orthologs have been cloned from other mammalian species as well (Koepsell et al. 2007) (Fig. 2).

Based on sequence and hydropathy analyses, OCTs have a predicted topology comprising 12 transmembrane helices, an intracellular amino and carboxyl terminus, and a large glycosylated extracellular loop between the first two transmembrane helices (Fig. 3a). The large intracellular loop between transmembrane helix 6 and 7 carries several putative phosphorylation sites that are used for short-term modulation of OCT activity (Koepsell et al. 2007; Ciarimboli 2008). Employing detailed mutagenesis and modeling of the tertiary structure in analogy to the crystallized structure of lactose permease from *Escherichia coli* (Abramson et al. 2003), several amino acids in the 4th, 10th, and 11th transmembrane helix of rat Oct1 were identified that are involved in substrate and/or inhibitor binding (Gorboulev et al. 1999, 2005; Popp et al. 2005; Sturm et al. 2007; Volk et al. 2009). These amino acids are localized within the center of a large cleft that may exist in an outward- or inward-facing conformation. The cleft contains high- and low-affinity substrate and/or inhibitor binding sites (Popp et al. 2005; Gorbunov

OCT1 orthologs in different vertebrates

Fig. 2 OCT1 orthologs in different vertebrates. The phylogenetic tree on the left was constructed from OCT1/Oct1 protein sequences aligned using the ClustalX2 program (Larkin et al. 2007) and drawn with the "drawgram" program of the PHYLIP3.67 program package (http://evolution. genetics.washington.edu/phylip.html). The sequence comparison on the right shows the aligned sequences in the vicinity of amino acid arginine 61, which is highly conserved among species. A genetic variant was identified in human OCT1 that leads to a nonsynonymous exchange of arginine 61 to a cysteine (Kerb et al. 2002; Shu et al. 2003). OCT1-Cys61 shows a reduced in vitro transport function (Kerb et al. 2002; Shu et al. 2003, 2007), is associated with a significant decrease of hepatic OCT1 protein levels (Nies et al. 2009), and affects metformin pharmacokinetics in humans (Shu et al. 2008). For further details see Tables 4-12. The following protein sequences were used for alignments: human NP_003048; orangutan ENSPPYP00000019207; chimpanzee XP_527554; rhesus monkey ENSMMUP00000020546; dog XP 850971; mouse NP_033228; rat NP_036829; cow NP_001094568; pig NP_999154; elephant ENSLAFP00000009760; cat ENSFCAP00000002624; chicken XP_419621; rabbit ENSO-CUP00000002189; bushbaby ENSOGAP0000004719; squirrel ENSSTOP0000008083; zebrafish ENSDARP00000048889. Accession numbers are either from the ENSEMBL genome server (http://www.ensembl.org; numbers starting with "ENS") or from the "Protein" database at http:// www.ncbi.nlm.nih.gov/entrez. Sequences from elephant, cat, rabbit, bushbaby, and squirrel are in part incomplete

et al. 2008; Minuesa et al. 2009; Volk et al. 2009). Whereas the affinities of the low-affinity substrate binding sites are in the same range as the respective Michaelis-Menten constant values, the high-affinity binding sites may have a 10,000-fold higher affinity. The different substrate and inhibitor binding sites overlap and may exhibit competitive or allosteric interactions. Both the low- and high-affinity sites may be inhibitory (Minuesa et al. 2009). High-affinity binding sites may be also

Extracellular

						00000	000000					COOH
8000 8	80000 8	0000	20000	20230	ന്താരാ	800	88	8080	0000	0.0	000	
000	0000	000	0000	000	0000	660	0000	000	008	009	0000	000
0000	0000	0000	0000	0000	0000	000	0000	000	000	0000	0000	000
0090	8008	0000	0000	0000	0000	000	0000	COD	000	0000	0000	000
0000	0000	0000	0000	0000	0000	0000	0000	000	000	0000	0000	00000
0390	0000	00000	0000	0000	0000	000	0000	000	000	0000	0000	000
0000	000	0000	000	0000	COD	0000	000	00000	COD	0000	©©©	00000
F	800 800 800 800 800 800 800 800 800 800	888 888 888 888 888 888 888 888 888 88	000	0000	8 8 8006	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8	8 80090	8	8 88900 889000	00000000000000000000000000000000000000	00000 00000 000000 0000000 0000000 00000

Fig. 3 Predicted membrane topology models of human OCT1 (**a**) and human MATE1 (**b**). Topology prediction was performed with the TMHMM algorithm (http://www.cbs.dtu.dk/services/TMHMM-2.0) and the model was drawn with TOPO2 (http://www.sacs.ucsf.edu/TOPO-run/wtopo.pl). (**a**) Tree-like structures indicate the location of putative *N*-glycosylation sites in OCT1. OCT2 and OCT3 have similar predicted secondary structures as OCT1. (**b**) There are no putative *N*-glycosylation sites in MATE1. Thirteen transmembrane segments are also predicted for human MATE2 and for most of the orthologs from other mammalian species (Terada and Inui 2008)

involved in transport since for inhibition of organic cation transport different IC₅₀ values may be obtained when the uptake measurements were performed using different substrate concentrations far below the respective $K_{\rm m}$ values (see e.g. Table 2: inhibition of OCT2-mediated MPP uptake by flecainide or quinidine). The existence of various substrate and inhibitor binding sites and the complex interactions between different sites explains why largely different IC₅₀ values were obtained for individual transporters when different substrates were used for transport measurements (see, e.g., Tables 1–2: inhibition of OCT1-mediated TEA uptake versus MPP uptake by dopamine or histamine, or inhibition of OCT1-mediated TEA uptake vs. ASP uptake by quinidine). Many naturally occurring

Table 1 Physiol	ogical substrates an	d inhibitors of OCTs and	I MATEs				
Compound	Physiological function	OCT1	OCT2	OCT3	MATE1	MATE2-K	References
Corticosterone	Hormone	7 ⁵ TEA: B 8.91 YW: E 22 ^{0.025} MPP: C	5.4 ¹ YM: E 34 ^{0.025} MPP: C	0.12 ^{MPP; A} 0.29 ^{0.025} MPP; C	>20 ^{50 TEA: D}		A: Gründemann et al. (1998), B: Zhang et al. (1998), C: Hayer-Zillgen et al. (2002), D: Otsuka et al. (2003) and E: Minematsu
β-Estradiol Progesterone Prostaglandin E ₂ Prostaglandin F ₂ .	Hormone Hormone Hormone, locally acting Hormone, locally	5.70.025 MPP 3.10.025 MPP Km: 0.66 controversial K: 0.48 controversial	>30 ^{0.025} MPP 27 ^{0.025} MPP Km: 0.03 Km: 0.33 Km: 0.33	2. 90.025 МРР 4.30.025 МРР			et al. (2010) Hayer-Zilgen et al. (2002) Hayer-Zilgen et al. (2002) Kimura et al. (2002) and Harlfinger et al. (2005) and Kimura et al. (2002) and
Testosterone Choline	acting Hormone Metabolite		$3^{0.1}$ MPP $K_{\rm m}$: 210 ^{00c; A}	44°.1 MPP 23,800°.1 MPP; D	>5,000 ⁵⁰ TEA: C		Harlfinger et al. (2005) Koepsell et al. unpubl. A: Gorboulev et al. (1997) B: Bednarczyk et al. (2003) C: Otsuka et al. (2005) and D: Koepsell et al.
Creatinine	Metabolite	>1,000 ^{0.1} MPP; D	6,060 ⁵ tea: c 42,400 ¹⁰ ag: c	15,700 ^{0.1} MPP; D	Substrate ^A	Substrate ^{A, B}	(unpublished) A: Tanihara et al. (2007), B: Masuda et al. (2006), C: Kimura et al. (2009) and D: Koepsell et al. (unnuhished)
Estrone sulfate Guanidine	Metabolite Metabolite	5,030 ^{0.1} MPP. F	2,200 ⁵ ^{Creat} : B 2,300 ¹⁰ TEA: C 2,300 ⁰¹ MPP, F 3,030 ⁵ TEA: E potential substrate	6,201 ^{0.03} MPP, A	$K_{\rm m}$: 470 $K_{\rm m}$: 2,100 ^D	K _m : 850 K _m : 4,200 ^D	Tanihara et al. (2007) A: Wu et al. (2000), B: Urakami et al. (2004), C: Suhre et al. (2005), D: Tanihara et al. (2007), E: Kimura et al. (2007), E: Kimura et al. (2007), A:
L-Carnitine	Metabolite	12,400 ^{0.1} MPP	13,000 ^{0.1 MPP}	5,590 ^{0.1} MPP			(unpublished) Koepsell et al. (unpublished)
							(continued)

Table 1 (continu	ued)						
Compound	Physiological function	0CT1	OCT2	OCT3	MATE1	MATE2-K	References
N-1-Methyl- nicotinamide	Metabolite	1,035 ^{0.05 TEA: C} 7,700 ^{5 TEA: B}	266 ^{60 TEA Ooc: A} 303 ^{10 TEA: E} 310 ⁵ Crea: D ~1,000 ⁶¹ YM: G	3,000 ^{0.1} МРР. Н		Substrate ^F	A: Gorboulev et al. (1997), B: Zhang et al. (1998), C: Bednarczyk et al. (2003), D: Urakami et al. (2004), E: Suhre et al.
Thiamine	Metabolite	434 ^{0.05} TEA: A			Substrate ^C	Substrate ^{B.C}	 (2005), F: Masuda et al. (2006), G: Minematsu et al. (2010) and H: Koepsell et al. (unpublished) A: Bednarzyk et al. (2003), B: Masuda et al. (2006) and C: Tanihara et al.
Agmatine	Metabolite,	24,000 ^{0.1} MPP	$K_{ m m}$: 1,400	$K_{ m m}$: 2,500			(2007) Gründemann et al. (2003)
Cyclo(His-Pro)	Metabolite,	K _m : 655	$K_{ m m}$: 74	<i>K</i> _m : 126			Taubert et al. (2007)
Salsolinol	Metabolite,	$K_{ m m}$: 440	$K_{ m m}$: 130	$K_{\rm m}$: 139			Taubert et al. (2007)
Tyramine	neuromodulator Metabolite, neuromodulator	107 ^{0.05} TEA; B		Substrate ^A			A: Gründemann et al. (1998) and B: Bednarczyk et al.
Acetylcholine	Neurotransmitter	580 ^{0.2} MPP Ooc; A	K_m: 117^{000; A} 149 ^{0.2} MPP Ooc; A	10,490 ^{0.1} MPP; B			(2003) A: Lips et al. (2005) and B: Koepsell et al.
Dopamine	Neurotransmitter	$487^{0.05}$ TEA; B $> 20,000^{0.1}$ MPP; E	K_m: 390^{00c: A} K_m: 1,400^D 1,400⁵ ^{Crea: C}	1,200 ^{0.1} MPP, E			 (unpublished) A: Busch et al. (1998), B: Bednarczyk et al. (2003), C: Urakami et al. (2004), D: Amphoux
							et al. (2006) and E: Koepsell et al. (unpublished)

Epinephrine	Neurotransmitter	>30,000 ^{0.1} MPP; C	$K_{\rm m}$: 420 ^B	$K_{ m m}$: 240 ^A		A: Gründemann et al. (1998), B: Amphoux et al.
Histamine	Neurotransmitter	3,007 ^{0.05} TEA: C >20,000 ^{0.1} MPP: E	K _m : 940 ^D K _m : 1,300 ^{006: A}	$K_{\rm m}$: 180 ^B $K_{\rm m}$: 220 ^D		(2006), and C: Koepsell et al. (unpublished) A: Busch et al. (1998), B: Gründemann et al. (1998), C: Bednarczyk et al. (2003), D:
Norepinephrine	Neurotransmitter	7,100 ^{0.1} MPP; D	K _m : 1,500 ^C K _m : 1,900 ^{Ooc: B}	$K_{\rm m}; 510^{\rm A}$ $K_{\rm m}; 2,630^{\rm C}$		Amphoux et al. (2006) and E: Koepsell et al. (unpublished) A: Gründemann et al. (1998), B: Busch et al. (1998), C: Amphoux et al. (2006)
Serotonin	Neurotransmitter	>20,000 ^{0.025} MPP: C	K _m : 80 ^{00e: A} K _m : 290 ^C	1,000 ^{0.025} MPP. C	<100 ⁵⁰ TEA: B	and D: Koepsell et al. (unpublished) A: Busch et al. (1998), B: Otsuka et al. (2005) and C: Amphoux et al. (2006)
IC ₅₀ values and <i>K</i> Expression in ooc are indicated; abb employed substrat	^m values (explicitly cytes is indicated (C reviations used are: te concentration is in	stated) were measured Doc) when different res : AG aminoguanidine, C ndicated when different	in oocytes of <i>Xenop</i> ults were obtained i <i>Trea</i> creatinine, <i>MPH</i> results were obtaine	<i>us laevis</i> or mammal in the oocyte system ² 1-methyl-4-phenyl cd using different sub	lian cell lines transfected The substrates employ. pyridinium, <i>TEA</i> tetraeth strate concentrations far	with the respective transporter. ed for inhibition measurements ylammonium, YM YM155. The below the respective Michaelis-

Menten constant. Bold face indicates cations, for which transport has been demonstrated. For example, corticosterone is an inhibitor of OCT1 with an IC₅₀

value of 22 µM when measured with 0.025 µM MPP as the substrate

Table 2 Clinically us	ed drugs as substrates and	inhibitors of OCJ	Figure 1 In the second secon				
Therapeutic use	Compound	OCT1	OCT2	OCT3	MATE1	MATE2-K	References
Anesthetic Anesthetic, local	Ketamine Cocaine	115 ^{0.025} МРР 85 ^{0.025} МРР	23 ^{0.025} MPP 113 ^{0.025} MPP	$226^{0.025}$ MPP >1,000^{0.025} MPP			Amphoux et al. (2006) Amphoux et al. (2006)
Anesthetic, local	Lidocaine		294 ¹⁰ Metf; B	$K_{ m m}$: 139 ^A 656 ^{0.2 His; A}			A: Hasannejad et al. (2004) and B: Umehara et al. (2008)
Antiallergic	Cetirizine				371 ^{5 TEA} 885 TEA	818 ^{5 TEA}	Tsuda et al. (2009b)
Anuallergic Antiallergic	Clemastine	4.9^{1} ASP			99	191	I suda et al. (2009b) Ahlin et al. (2008)
Antiallergic	Desloratidine		60^{10} MPP				Zolk et al. (2008)
Antiallergic	Fexofenadine	3¢1 ASP			Substrate		Matsushima et al. (2009)
Antiarrhythmic	Amiodarone	CC		$<\!100^{10}$ MPP			Sata et al. (2005)
Antiarrhythmic	Disopyramide	15-30 ^{5 TEA} : A	324 ¹⁰ MPP; D	457 ^{0.2 His; B}	84 ^{5 TEA; E}	292 ^{5 TEA; E}	A: Zhang et al. (1998), B: Hasannejad
		82 ¹ ASP; C		substrate			et al. (2004), C: Ahlin et al. (2008), D: Zolk et al. 2008 and E: Tsuda
Antiarrhythmic	Flecainide	42 ^{0.001} MPP; A	$<191^{10}$ MPP; B $>1,000^{0.001}$	60 ^{0.001} MPP; A			et al. (2009b) A: Umehara et al. (2008) and B: Zolk et al. (2008)
Antiarrhythmic	Mexiletine		55 ¹⁰ MPP; B	260 ^{0.2 His; A}			A: Hasannejad et al. (2004) and B: Zolk
Antiarrhythmic	Phenytoin Dileicainide			0.75 ^{0.2 His} 66 ^{0.2 His}			et al. (2008) Hasannejad et al. (2004) Hasannejad et al. (2004)
Antiarrhythmic	Procainamide	14.5 ^{0.05} TEA; D	28 ⁵ Crea; E	355 ^{0.2 His; F}	217 ^{5 TEA; J}	178 ^{5 TEA; J}	A: Gorboulev et al. (1997), B: Zhang
,		51 ¹ YM; K 74 ^{5 TEA; B}	50 ^{60 TEA Ooc; A} 92 ^{1 YM; K}	738 ^{0.03} MPP; C substrate ^F	$K_{\rm m}$: 1,230 ^H	$K_{ m m}$: 1,580 ^H $K_{ m m}$: 4,100 ^G	et al. (1998), C: Wu et al. (2000), D: Bednarczyk et al. (2003), E:
			406 ¹⁰ Metf; I			I	Urakami et al. (2004), F: Hasannejad et al. (2004), G:
							Masuda et al. (2006), H: Tanihara et al. (2007). F. Umehara et al.
							(2008), J: Tsuda et al. (2009b) and
Antiarrhythmic	Propafenone	11 ^{1 ASP; A}	25 ¹⁰ MPP; B				K: Minematsu et al. (2010) A: Ahlin et al. (2008) and B: Zolk et al.
							(2002)

Antiarrhythmic	Quinidine	5,4005 TEA; B 5,71 MPP; L 6,71 MPP 000; G 7,11 YM; K 170001 MPP; J 18 ⁵ TEA; A 114 ¹ ASP; I	7,1 ¹ YM: K 8,7 ¹ MPP 000: G 10 ⁵ Ctea: D 13 ¹ MPP: L 17 ¹⁰ Metf: E 87 ¹⁰ MPP: H 87 ¹⁰ MPP: J 446 ⁰⁰⁰¹ MPP: J	140.001 MPP: J 181 MPP Ooc: G 221 MPP: L 124 ^{0,2} His: C K_m: 216^C	29 ⁵ TEA: F	23 ⁵ tea: f	 A: Zhang et al. (1998), B: Bednarczyk et al. (2003), C: Hasannejad et al. (2004), D: Urakami et al. (2004), E: Kimura et al. (2005a), F: Tsuda et al. 2009b, G: Bourdet et al. (2005), H: Zolk et al. (2008), I: Ahlin et al. (2008), J: Umehara
Antiarrhythmic	Verapamil	1.2 ¹ YM: F 2.9 ⁵ TEA: A	13.4 ¹ YM; F 85 ¹⁰ MPP; D		28 ⁵ TEA; E <100 ⁵⁰ TEA; B	32 ⁵ TEA: E substrate ^C	et al. (2008), K: Minematsu et al. (2010) and L: Ming et al. (2009) A: Zhang et al. (1998), B: Otsuka et al. (2005), C: Masuda et al. (2006), D: Zolk et al. (2008), E: Tsuda et al. (2009b) and F: Minematsu et al.
Antiarrhythmic, antihypertensive Antiarrhythmic, antihypertensive	Oxprenolol Propranolol	29 ¹ ASP; A 870.001 MPP; B 63 ¹ ASP; B 1130.001 MPP; C	>1,000 ^{0.001} MPP; B 8.310 Meti; E 22910 MPP; D >300 ^{0.001} MPP; D ^C substrateA	326 ^{0.001} MPP; B 133 ^{0.001} MPP; C			 (2010) A: Ahlin et al. (2008) and B: Umehara et al. (2008) A: Dudley et al. (2000), B: Ahlin et al. (2008), C: Umehara et al. (2008), D: Zolk et al. (2008) and E: Bachmakov et al. (2000)
Antiasthmatic Antiasthmatic Antibacterial Antibacterial Antibacterial	Beclomethasone Budesonide Cephalexin Cephradine Levofloxacin		4.4 ¹ TEA 7.3 ¹ TEA 127 ⁵ Crea: A		6,500 4,040 Substrate ^B	10,400	Lips et al. (2005) Lips et al. (2005) Lips et al. (2005) Tanihara et al. (2007) A: Okuda et al. (2007) et al. 2007 or al. 2007
Antibacterial Antibacterial	Tetracycline Trimethoprim	20 ^{MPP; D} 57 ^{1 ASP; C}	21 ⁵ Crea; A 51 ^{MPP; D} 1,318 ¹⁰ MPP; E	<100 ¹⁰ MPP; B		Substrate	Tanihara et al. (2007) A: Urakami et al. (2004), B: Sata et al. (2005), C: Ahlin et al. (2008), D: Jung et al. (2008) and E: Zolk et al.
Anticoagulant Antidepressant	Nafamostat Citalopram	3.1 ^{0.1} мрр; в 19 ¹ АЅР; А	20 ^{TEA} 12 ^{0.1} MPP; B	145 ^{0.1} MPP; B			(2008) Li et al. (2004) A: Ahlin et al. (2008) and B: Koepsell et al. (unpublished)
Antidepressant, tricyclic	Amitriptyline	17 ¹ ASP; B	14 ¹⁰ MPP; C	>100 ¹⁰ MPP; A			A: Sata et al. (2005)B: Ahlin et al. (2008) and C: Zolk et al. (2008)

(continued)

Table 2 (continued)							
Therapeutic use	Compound	0CT1	OCT2	OCT3	MATE1	MATE2-K	References
Antidepressant, tricyclic Antidepressant, tricyclic	Clomipramine Desipramine	19 ^{1 ASP} 5.4 ^{5 TEA; B} 57 ^{1 ASP; D}	16 ^{60 TEA; A}	14 ^{0.03} MPP; C	56 ⁵ TEA: E	283 ⁵ TEA: E	Ahlin et al. (2008) A: Gorboulev et al. (1997), B: Zhang et al. (1998), C: Wu et al. (2000), D: Ahlin et al. (2008) and E: Tsuda
Antidepressant, tricyclic Antidepressant, tricyclic	Doxepin Imipramine	17 ¹ ASP; B	13 ¹⁰ MPP 6 ¹⁰ MPP; C	42 ^{0.03} MPP: A	42 ⁵ TEA; D	183 ⁵ tea; d	et al. (2009b) Zolk et al. (2008) A: Wu et al. (2000), B: Ahlin et al. (2008), C: Zolk et al. (2008) and D:
Antidepressant, tricyclic Antidiarrheal Antiemetic	Trimipramine Loperamide Diphenylhydramine	28 ¹ asp 24 ¹ asp 3.40.02 mpp; a	15 ^{0.02} MPP; A	695 ^{0.02} MPP; A	87 ⁵ TEA; B	267 ⁵ TEA; B	Tsuda et al. (2009b) Ahlin et al. (2008) Ahlin et al. (2008) A: Müller et al. (2005) and B: Tsuda
Antiemetic Antiemetic	Granisetron Metoclopramide	<100 ^{0.1 MPP} 95 ^{1 ASP; B}	<100 ^{0.1} MPP	<100 ^{0.1} MPP <100 ¹⁰ MPP; A			et al. (2009b) Koepsell et al. (unpublished) A: Sata et al. (2005) and B: Ahlin et al.
Antiemetic	Ondansetron	20 ¹ ASP; A	<100 ^{0.1} MPP; B				A: Ahlin et al. (2008) and B: Koepsell
Antiemetic	Promethazine	17 ^{1 ASP}		ddM 01 ° ° °			et al. (unpuolisnea) Ahlin et al. (2008)
Antiemetic Antiemetic Antihvmertensive	Kamosetron Tropisetron Bisonrolol	<100 ^{0.1} MPP	<100 ^{0.1} MPP 2 4 ¹⁰ Metf	<100 ^{0.1} MPP			Sata et al. (2005) Koepsell et al. (unpublished) Bachmakov et al. (2000)
Antihypertensive	Bucindolol	27 ¹ ASP	ī			Cubatanta	Ahlin et al. (2008)
Antihypertensive	Carvedilol		2.3 ¹⁰ Metf; B 63 ¹⁰ MPP; A			Substrate	A: Zolk et al. (2000) A: Zolk et al. (2008) and B: Bachmakov et al. (2009)
Antihypertensive	Clonidine	0.6 ¹ TEA: A 0.7 ^{0.05} TEA: C 6.5 ^{0.02} MPP: D 23 ¹ ASP: F	2.2 ¹⁰ TEA: E 16 ¹⁰ MPP; G 23 ^{0.02} MPP; D	110 ^{0.02} MPP; D 373 ^{0.03} MPP; B			A: Zhang et al. (1998), B: Wu et al. (2000), C: Bednarczyk et al. (2003), D: Müller et al. (2005), E: Suhre et al. (2005), F: Ahlin et al. (2008)
Antihypertensive Antihypertensive	Debrisoquine Diltiazem	12 ^{1 ASP; B} 16 ^{0.001 MPP; A}	$K_{\rm m}$: 7.3 ^{Ooc} >1,000 ^{0.001} MPP: A	50 ^{0.001} MPP; A	12.5 ⁵ TEA; C	117 ⁵ TEA; C	and G: Zolk et al. (2008) Koepsell et al. (unpublished) A: Umehara et al. (2008), B: Ahlin et al. (2008) and C: Tsuda et al. (2009b)

Pazosin 16 Vit C 001041a Currenta 001041a Currenta Cureta Currenta Currenta	sive	Phenoxybenzamine Pindolol	2.7 ^{0.025} MPP; A 15 ¹ ASP; B 9.7 ^{0.05} TEA; A	4.9 ^{0.025} MPP; A	6.1 ^{0.025} MPP; A >1,000 ^{0.001} MPP: B			A: Hayer-Zillgen et al. (2002) and B: Ahlin et al. (2008) A: Bednarczyk et al. (2003) and B:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Prazosin	59 1.6 ¹ YM; C 1.80.025 MPP; A 9.9 ¹ ASP; B	80 ¹ YM; C >100 ^{0.025} MPP; A	13 ^{0.025} MPP; A			Umenara et al. (2008) A: Hayer-Zillgen et al. (2002), B: Ahlin et al. (2008) and C: Minematsu et al. (2010)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Terazosine Acebutolol	24 ¹ ASP 96 ⁵ TEA					Ahlin et al. (2008) Zhang et al. (1998)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Metoprolol	268 ^{0.001} MPP; A	50 ¹⁰ Metf; B >1,000 ^{0.001} MPP; A	804 ^{0.001} MPP; A			A: Umehara et al. (2008) and B: Bachmakov et al. (2009)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Etilefrine Diclofenac Ibuprofen	447 ^{0.02} MPP <2,000 ⁵ TEA <2,000 ⁵ TEA	$\begin{array}{c} 4,009^{0.02} \text{ MPP} \\ <2,000^5 \text{ TEA} \\ 2,000-5,000^5 \\ \text{TEA} \end{array}$	$K_{ m m}$: 2,800			Müller et al. (2005) Khamdang et al. (2002) Khamdang et al. (2002)
Current $1,000$ Methodume $1,000$ Methodume $204^{0.01}$ MPP Zolk et al. (20) Pyrimethamine 3.8^{30} TEA 10^{30} TEA 10^{30} TEA 0.077^{30} TEA 0.046^{30} TEA 2046 obtolev Pyrimethamine $13^{0.02}$ MPP. E 3.4^{0} TEA 0.077^{30} TEA 0.046^{30} TEA 1200 Quinine 23^{5} TEA: B 6.71 ASP. C $3.7^{0.02}$ MPP. E Substrate ⁶ Substrate ⁷ $A:$ Goboulev 23^{5} TEA: B 6.71 ASP. C $3.7^{0.02}$ MPP. E Substrate ⁶ Substrate ⁷ $A:$ Goboulev 23^{5} TEA: B 6.71 ASP. C $3.7^{0.02}$ MPP. E Substrate ⁶ Substrate ⁷ $A:$ Goboulev 23^{5} TEA: B 6.71 ASP. C $3.7^{0.02}$ MPP. E Substrate ⁶ $A:$ Goboulev $A:$ Goboulev 23^{5} TEA: B 6.71 ASP. C $23^{0.02}$ MPP. E $S.000^{30}$ L $A:$ Goboulev $A:$ Goboulev 23^{1} ASP. H $23^{0.02}$ MPP. E $2002.01, 0.00-5, 0.00^{30}$ $A:$ Carainbol $A:$ Carainbol Amsacrine 5.01^{1} ASP. A $1.000-5, $		Indomethacin Ketoprofen Mefenamic acid Piroxicam Salicylic acid Sulindac	<pre><2,000⁵ TEA <2,000⁵ TEA <2,000⁵ TEA <2,000⁵ TEA <1,000⁵ TEA</pre>	<pre><2,000⁵ TEA <2,000⁵ TEA ~2,000⁵ TEA <2,000⁵ TEA <1,000⁵ TEA</pre>		Substrate		Khamdang et al. (2002) Khamdang et al. (2002) Khamdang et al. (2002) Khamdang et al. (2002) Tanihara et al. (2007) Khamdang et al. (2002)
Amsacrine 5.0 ¹ ASP (2007) an Amsacrine 5.0 ¹ ASP Aline tal. (2 Tisplatin 1,000–5,000 ⁵⁰ 1.5 ¹ ASP TEA: B 5,000–10,000 ⁵⁰ TEA: B Yonezaw		c.moroquure Mefloquine Pyrimethamine Quinine	3.8 ³⁰ TEA 1.3 ^{0.02} MPP: E 2.3 ⁵ TEA: B 45 ¹ ASP: H 52 ¹ ASP: H	1,000 L1,000 MPP 10 ³⁰ TEA 3,4 ⁶⁰ TEA Ooc: A 6,7 ¹ ASP: C 23 ⁰⁰² MPP; E	370.02 MPP, E	0.077 ³⁰ TEA Substrate ^G	0.046 ³⁰ TEA Substrate ^F	 200k et al. (2008) Zolk et al. (2008) Ai Gorboulev et al. (1997), B: Zhang et al. (1998), C: Cetinkaya et al. (2003), D: Ciarimboli et al. (2004), E: Müller et al. (2005), F: Masuda et al. (2006), G: Tanihara et al.
		Amsacrine Cisplatin	5.0 ¹ ASP 1,000–5,000 ⁵⁰ TEA: B	1.5 ¹ ASP: A 5,000–10,000 ⁵⁰	1,000–5,000 ⁵⁰ TEA; B	1,000–5,000 ⁵⁰ TEA: B substrate ^B	>4,000 ^{50 TEA:} B substrate ^B	(2007) and H: Ahlin et al. (2008) Ahlin et al. (2008) A: Ciarimboli et al. (2005) and B: Yonezawa et al. (2006)

Table 2 (continued)							
Therapeutic use	Compound	OCT1	OCT2	OCT3	MATE1	MATE2-K	References
			TEA; B				
•	:		substrate"				
Antineoplastic	Imatinib	Potential substrate ^{A,} ^B					A: Wang et al. (2008a), B: Hu et al. (2008) and C: Nies et al. (innublished)
		<50 ^{100 TEA; C}					
Antineoplastic	Irinotecan			1.8 ¹ MPP			Shnitsar et al. (2009)
Antineoplastic	Melphalan	1.0 MPP	00001 MPP	366 ¹ MPP			Shnitsar et al. (2009)
Antineoplastic	Mutoxantron	10	800	440	0.000 r 00050		Koepsell et al. (unpublished)
Antineoplastic	Uxalıplatın	Substrate	Substrate	Substrate	2,000-2,000 ⁻² TEA		Y onezawa et al. (2006)
Antineoplastic	Tamoxifen		87 ¹⁰ MPP				Zolk et al. (2008)
Antineoplastic	Topotecan				K_{m} : 70	K_{m} : 60	Tanihara et al. (2007)
Antineoplastic	Vincristine			17 ¹ MPF			Shnitsar et al. (2009)
Antineoplastic;	Metaiodobenzylguanidine	Substrate	Substrate	Substrate			Bayer et al. (2009)
radiopharmaceutical	,		4.01 MPP				
Antiobesity	Fentluramine		10 ¹⁰ MPP				Zolk et al. (2008)
Antiobesity	Sibutramine	7 41 MPP	29 10.1 MPP	JO1 MPP			Zolk et al. (2008)
on reasons	rutanninunic two positive		701	07			
Antiparasitic	Pentamidine two positive charges	An: U.I 0.4 ^{0.1} MPP; A 16 ¹ MPP; B	3.8 ^{0.1} MPP; A 11 ¹ MPP; B	15 ^{1 мрр; в}			A: Jung et al. (2008) and B: Ming et al. (2009)
	0	$K_{\rm m}$: $36^{\rm B}$					×.
Anti-Parkinson	Memantine	<u>3.7</u> 0.025 мрр; в 27 ¹ АЅР; С	7.3 ^{0.025} MPP; B K_m: 34 ^{00c; A}	236 ^{0.025} MPP; B			A: Busch et al. (1998), B: Amphoux et al. (2006) and C: Ahlin et al.
Anti-Parkinson	Pramipexole				141 ^{5 TEA}	24 ⁵ TEA	(2008) Tsuda et al. (2009b)
Anti-Parkinson	Talipexole				66^5 TEA	120^{5} TEA	Tsuda et al. (2009b)
Anti-Parkinson; antiviral	Amantadine	18 ^{0.05} TEA; B 40 ¹ YM; E	20 ^{10 TEA; C}	>1,000 ^{0.025} MPP; D	112 ^{5 TEA; F}	1,167 ^{5 TEA: F}	A: Busch et al. (1998), B: Bednarczyk
		40 236 ^{0.025} MPP; D	23 K_m: 27^A 28 ^{0.025} MPP; D A6 ¹ YM; E				Course et al. (2005), C. Sunte et al. (2005), E. Amphoux et al. (2006), E. Minematsu et al. (2010) and F. Tenda et al. (2000).
Antipsychotic	Chlorpromazine	4.3 ^{0.05} TEA; A 27 ¹ ASP; C	14 ¹⁰ MPP; D	<100 ¹⁰ MPP; B			A: Bednarczyk et al. (2003), B: Sata et al. (2005), C: Ahlin et al. (2008) and D: Zolk et al. (2008)

Ahlin et al. (2008) Ahlin et al. (2008) Ahlin et al. (2008) Ahlin et al. (2008) Sata et al. (2005) Sata et al. (2005) Müller et al. (2005)	 A: Zhang et al. (1998), B: Motohashi et al. (2002), C: Cetinkaya et al. (2003), D: Ciarimboli et al. (2004), E: Urakami et al. (2004), F: Otsuka et al. (2005), G: Suhre et al. (2005), H: Tahara et al. (2005), I: Biermann et al. (2006), K: Tanihara et al. (2007), L: Uunehara et al. (2008), M: Zolk et al. (2008), N: Lee et al. (2009) and O: Tsuda et al. (2009) 	A: Urakami et al. (2004), B: Safa et al. (2005), C: Suhre et al. (2005), D: Tahara et al. (2005) and E: Tsuda et al. (2009b)	Annn et al. (2008) A: Bednarczyk et al. (2003), B: Urakami et al. (2004), C: Müller et al. (2005), D: Suhre et al. (2005), E: Tahara et al. (2005) and F: Tsuda et al. (2009b)	A: Takeda et al. (2002) and B: Tanihara et al. (2007)	A: Takeda et al. (2002) and B: Tanihara et al. (2007)	Minuesa et al. (2009)
	7.3 ⁵ TEA: 0 Km: 120 ^K Km: 370 ^J	9.7 ⁵ TEA: E	25 ⁵ TEA: F	$K_{\rm m}$: 4,320 ^B	$K_{\rm m}$: 4,280 ^B	
	1.1 ⁵ TEA: 0 ~10 ⁵⁰ TEA: F K _m : 170 ^K	0.6 ⁵ TEA: E	25 ⁵ TEA; F	$K_{\rm m}$: 2,640 ^B	$K_{\rm m}: 5,120^{\rm B}$	
<pre></pre>	240 ^{1 Ei: N}	~20 ¹⁰ MPP; B	372 ^{0.02} MPP: C			$5 imes 10^{-5}$, 0.0013 MPP
764 ^{0.02} MPP	$\begin{array}{c} 14^{1} \ \mathrm{Amii:} \ 1\\ 26^{1} \ \mathrm{Ase:} \ 1\\ 27^{5} \ \mathrm{Crea:} \ \mathrm{E}\\ 36^{1} \ \mathrm{Ase:} \ \mathrm{C}\\ 36^{1} \ \mathrm{Ase:} \ \mathrm{C}\\ \mathbf{K}_{\mathrm{mi:}} \ 67^{\mathrm{B}}\\ \mathbf{K}_{\mathrm{mi:}} \ 73^{\mathrm{H}}\\ 10^{3} \ \mathrm{TeA:} \ \mathrm{G}\\ 70^{3} \ \mathrm{TeA:} \ \mathrm{G}\\ \mathbf{510^{10} \ \mathrm{Mer:} \ \mathrm{Mer:} \ \mathrm{M}}\\ 510^{10} \ \mathrm{Mer:} \ \mathrm{Mer:} \ \mathrm{M}\\ 1,380^{1} \ \mathrm{Ei.} \ \mathrm{N} \end{array}$	K_m: 56^D 70 ⁵ ^{Crea: A} 111 ¹⁰ TEA: C	31 ¹⁰ Fam: E 38 ⁵ Creat: B 40 ¹⁰ TEA: D 79 ¹⁰ Cim: E K _m : 265 ^E 1,617 ^{0.02} MPP: C			$4.1 \times 10^{-5},$ 0.0013 MPP
78 ¹ ASP 90 ¹ ASP 110 ¹ ASP 142 ¹ ASP 50 ¹ ASP 50 ¹ ASP	95 ¹ ASP; D 166 ⁵ TEA: A	dse 1-2	00 22 ^{0.05} TEA: A 28 ^{0.02} MPP: C	$K_{ m m}$: 151 ^A	$K_{ m m}$: 516 ^A	$7.2 imes10^{-5},$ 0.0013 MPP
Chlorprotixen Flupentixol Fluphenazine Haloperidol Prochlorperazine Sulpiride Butylscopolamine Pronantheline	Cimetidine	Famotidine	Mepenzolate Ranitidine	Acyclovir	Ganciclovir	Abacavir
Antipsychotic Antipsychotic Antipsychotic Antipsychotic Antipsychotic Antispasmodic Antispasmodic	Antiulcer	Antiulcer	Antiulcer	Antiviral	Antiviral	Antiviral HIV

(continued)

Table 2 (continued)							
Therapeutic use	Compound	OCT1	OCT2	OCT3	MATE1	MATE2-K	References
Antiviral HIV	Azidothymidine	$1.6 imes 10^{-4,}$ 0.0013 MPP	$2.7 imes 10^{-4}, \ 0.0013 \ \mathrm{MPP}$	4×10^{-4} , 0.0013 MPP			Minuesa et al. (2009)
Antiviral HIV	Emtricitabine	$2 \times 10^{-5},$ 0.0013 MPP	$2.4 \times 10^{-3},$ 0.0013 MPP	5.3×10^{-4} , 0.0013 MPP			Minuesa et al. (2009)
Antiviral HIV	Indinavir	37 ^{0.1} MPP; B 62 ¹⁰ MPP; A	275 ^{0.1} MPP; B				A: Zhang et al. (2000) and B: Jung et al. (2008)
Antiviral HIV	Nelfinavir	70.1 MPP; B 22 ¹⁰ MPP; A	13 ^{0.1} MPP; B				A: Zhang et al. (2000) and B: Jung et al. (2008)
Antiviral HIV	Ritonavir	5.2 ¹⁰ MPP; A 14 ^{0.1} MPP; B	25 ^{0.1} MPP; B				A: Zhang et al. (2000) and B: Jung et al. (2008)
Antiviral HIV	Saquinavir	8.3 ¹⁰ MPP; A 37 ^{0.1} MPP; B	205 ^{0.1} MPP; B				A: Zhang et al. (2000) and B: Jung et al. (2008)
Antiviral HIV	Tenofovir	8.5×10^{-4} , 0.0013 MPP; B	5.7×10^{-4} , 0.0013 MPP; B	$5 \times \frac{10^{-6}}{0.0013}$ MPP; B	Substrate ^A		A: Tanihara et al. (2007) and B: Minuesa et al. (2009)
Antiviral HIV	Zalcitabine	24 ^{0.1} MPP K: 242	131 ^{0.1} MPP K m: 232				Jung et al. (2008)
Antiviral HIV, HBV	Lamivudine	$\begin{array}{c} 1.2 \times 10^{-5}, \\ 0.0013 \text{ MPP}, \\ \text{B} \\ 17^{0.1} \text{ MPP}, \text{A} \\ \textbf{K}_{\text{m}}; 249^{\text{A}} \\ \textbf{K}_{\text{m}}; 249^{\text{A}} \\ \textbf{K}_{\text{m}}; 1,250^{\text{B}} \\ \textbf{K}_{\text{m}}; 1,250^{\text{B}} \\ \textbf{M}^{0013} \end{array}$	$\begin{array}{c} 8.1 \\ 0.0013 \text{ MPP; B} \\ 330.1 \text{ MPP; A} \\ \mathbf{K}_{m}^{2} 248^{A} \\ \mathbf{K}_{m}^{2} 1,900^{B} \\ \mathbf{K}_{m}^{2} 1,900^{B} \\ 3,450^{0.0013} \text{ MPP;} \end{array}$	2 × 10 ^{-5,} 0.0013 MPP; B 2,400 ^{0.0013} MPP; B Km: 2,140 ^B			A: Jung et al. (2008) and B: Minuesa et al. (2009)
Bronchodilator Cardiotonic CNS stimulant	Ipratropium Denopamine 3,4-Methylenedioxy-	47 ¹ ASP 24 ^{0.025} MPP	15 ^{10 мрр} 1.6 ^{0.025} мрр	74 ^{0.025} MPP			Zolk et al. (2008) Ahlin et al. (2008) Amphoux et al. (2006)
CNS stimulant CNS stimulant Diuretic	methamphetamine D-Amphetamine Phencyclidine Amiloride	202 ^{0.025} MPP 4.4.0.025 MPP 57 ¹ ASP; A	11 ^{0.025} MPP 25 ^{0.025} MPP 23 ¹ ASP; B K_m; 95 ^B	460 ^{0.025} MPP 333 ^{0.025} MPP			Amphoux et al. (2006) Amphoux et al. (2006) A: Ahlin et al. (2008) and B: Biermann et al. (2006)

Emetic	Anomorphine	2.1 ^{1 ASP}					Ahlin et al (2008)
Hypoglycemic	Metformin	K m: 1,470 ^C 2,010 ¹ Cim Ooc;	339 ^{10 TEA; D} Km: 990 ^C K • 1 380 ^B	K_m: 2,260^G 2,980 ^{0.1 MPP; G}	667 ^{5 TEA; 1} K m: 780 ^F	667^5 TEA: 1 $K_{\rm m}: 1,050^{\rm E}$ $K - 1 980^{\rm F}$	A: Dresser et al. (2002), B: Kimura et al. (2005a), C: Kimura et al. (2005b) D: Suhne et al. (2005)
		Km: 2,160 ^H 3 AD0 ^{0.1} MPP; G	1,700 ¹ Cim; A 2,370 ¹⁰ AG; H				E: Masuda et al. (2006), E: Tanihara et al. (2007)
		9,480 ^{10 АG; Н}	01017				G: Kimura et al. (2009), H: Nies
							et al. (2009) and I: Tsuda et al. (2009h)
Hypoglycemic	Phenformin	10 ¹ Cim Ooc; A	15 ¹⁰ TEA; B 65 ¹ Cim Ooc; A				A: Dresser et al. (2002) and B: Suhre et al. (2005)
Hypoglycemic	Repaglinide	1.6 ¹⁰ Metf; A					A: Bachmakov et al. (2008) and B:
		9.2 ^{1 ASP; B}					Ahlin et al. (2008)
Hypoglycemic	Rosiglitazone	6.9^{10} Metf 30^{30} MPP					Bachmakov et al. (2008)
Muscle relaxant	Orphenadrine	13^{1} ASP					Ahlin et al. (2008)
Muscle relaxant	Vecuronium	127 ¹ MPP; B					A: Zhang et al. (1997) and B: Zhang
Mydriatic	Atropine	232 ⁹ ^{11,20} , 50 1,2 ^{0,02} MPP; A 1,9 ¹ ASP; B	29 ^{0.02} MPP; A	466 ^{0.02} MPP; A			et al. (1998) A: Müller et al. (2005) and B: Ahlin et al. 2008
Narcotic	Morphine	$\frac{12}{28^{1}}$ ASP					Ahlin et al. (2008)
Narcotic; analgesic	Tramadol	53^{1} ASP					Ahlin et al. (2008)
Sedative	Midazolam	3.7^5 TEA					Zhang et al. (1998)
Smoking cessation	Varenicline		$K_{\rm m}: 370$				Feng et al. (2008)
Tranquilizer	Flurazepam		60^{10} MPP				Zolk et al. (2008)
IC ₅₀ values and K_m vi Expression in oocytes	alues (explicitly stated) we is indicated (Ooc) when d	re measured in o lifferent results w	ocytes of <i>Xeno</i> vere obtained i	n the oocyte sy	stem. The sul	Il lines transfe ostrates employ	cted with the respective transporter.
Indicated; appleviation	IS USED are: Amin annuoline,	, AJF 4-(4-(LUUU	curylammusuy	ry1)-/v-memyrpy	TIUIIIUII, AU	ammoguanun	ne, cim cumenume, crea creaumue,

The employed substrate concentration is indicated when different results were obtained using different substrate concentrations far below the respective Michaelis-Menten constant. Bold face indicates cations, for which transport has been demonstrated. For example, ketamine is an inhibitor of OCT1 with an IC₅₀ value of Dop dopamine, Et ethidium bromide, Fam famotidine, His histamine, Metf metformin, MPP 1-methyl-4-phenylpyridinium, TEA tetraethylammonium, YM YM155. 115 µM when measured with 0.025 µM MPP as the substrate. Drug classification is according to the standard handbook Goodman & Gilman's: The Pharmacological Basis of Therapeutics (Hardman et al. 2001)

Table 3 Other selected :	cenobiotics as subs	trates and inhib	itors of OCTs an	id MATEs			
Compound	Classification	OCT1	OCT2	OCT3	MATE1	MATE2-K	References
Aflatoxin B1	Mycotoxin	Substrate 64 ^{5 TEA}	Substrate 121 ^{5 TEA}				Tachampa et al. (2008)
Aminoguanidine	Model cation	Substrate <10,000 ⁵ TEA	$K_{ m m}$: 4,100 800^{5} TEA				Kimura et al. (2009)
Azidoprocainamide Berberine <i>N</i> -Butylpyridinium chloride	Model cation Fluorescent cation Model cation	$K_{\rm m}$: 101 $K_{\rm m}$: 14.8	K m: 4.4 2.3 ^{0.015} TEA				van Montfoort et al. (2001) Nies et al. (2008) Cheng et al. (2009)
Citreoveridine Decynium 22	Mycotoxin Model cation	6.6 ⁵ TEA 1.0 ^{0.025} MPP; D 2.7 ⁵ TEA; C 4.7 ¹ MPP; A	K_m: 18 18 ⁵ TEA 0.1 ⁶⁰ TEA Ooc; B 1.1 ^{0.025} MPP; D	0.09 ^{0.025} MPP; D			Tachampa et al. (2008) A: Zhang et al. (1997), B: Gorboulev et al. (1997), C: Zhang et al. (1998) and D: Haver-Zillgen et al. (2002)
4-4-Dimethylaminostyryl- N-methylpyridinium (ASP)	Fluorescent model cation	$K_{\rm m}$: 2.3 ^B	7^1 Amil; A K_m : 42 ^A				A: Biermann et al. (2006) and B: Ahlin et al. (2008)
Disprocynium 24 Ethidium	Model cation Fluorescent	0.6 ^{0.1} MPP	1.2 ^{0.1} MPP	0.015^{1} MPP $1.4^{0.1}$ MPP			Gründemann et al. (1998) Lee et al. (2009)
Gliotoxin 1-Methyl-4- phenylpyridinium (MPP)	xenobiotic Mycotoxin Model cation	K ^m : 0.8 584 ⁵ TEA 584 5 K ^m : 15 ^A 16 ^{0.05} TEA; E 16 ^{0.05} TEA; E 30 ¹ YM: L K _m : 32 ^D	Km: 1.7 117 ⁵ TEA 2.4 ¹⁰ TEA: F 2.4 ⁶⁰ TEA: B Km: 3.1 ^J 4.4 ¹ YM: L	K _m : 2.0 K _m : 47 ^C K _m : 83 ^G	$K_{\rm m}$: 100 ¹	$K_{\rm m}$: 94 ^H $K_{\rm m}$: 111 ¹	Tachampa et al. (2008) A: Zhang et al. (1997), B: Gorboulev et al. (1997), C: Wu et al. (2000), D: Gründemann et al. (2003), E: Becharczyk et al. (2003), F: Suhre
			K _m : 7.8 ^D K _m : 19 ^{Ooc: B} 20 ¹⁰ MPP: K 43–54 ^{Et; J}				et al. (2005), G: Sata et al. (2005), H: Masuda et al. (2006), I: Tanihara et al. (2007), J: Lee et al. (2009), K: Zolk et al. (2008) and L:
N-Methylquinidine N-Methylquinine Nandrolone Nicotine	Model cation Model cation Anabolic steroid Tobacco toxin	K_m: 12 K_m: 20 35 ¹ ASP 53 ^{0.05} TEA: A 186 ¹ TEA: B	42 ¹ TEA; B	101 ¹ TEA: B	>500 ⁵⁰ TEA: C		Automatsu et al. (2010) van Montfoort et al. (2001) van Montfoort et al. (2001) Ahlin et al. (2008) A: Bednarczyk et al. (2003), B: Lips et al. (2005) and C: Otsuka et al. (2005)
Paraquat	Herbicide (two positive charges)	0	<i>K</i> _m : 114		K _m : 212		Chen et al. 2007

Table 3 (continued)							
Compound	Classification	OCT1	OCT2	OCT3	MATE1	MATE2-K	References
YM758	I _f channel inhibitor	41 ^{0.001} MPP	16 ^{10 Metf} 651 ^{0.001 MPP}	16 ^{0.001} MPP			Umehara et al. (2008)
α-Zearalenol Zearalenone	Mycotoxin Mycotoxin	$\begin{array}{c} 1.7^{5} \text{ TEA} \\ 0.6^{5} \text{ TEA} \end{array}$	34 ⁵ tea 25 ⁵ tea				Tachampa et al. (2008) Tachampa et al. (2008)
IC ₅₀ values and $K_{\rm m}$ values Expression in oocytes is indicated; abbreviations bromide, $Metf$ metformi indicated when different cations, for which transp as the substrate	tes (explicitly stated indicated (Ooc) w used are: <i>Amil</i> arr n, <i>MPP</i> 1-methyl-4 results were obtain ort has been demons	 were measur hen different re liloride, ASP 4 phenylpyridini ed using differ trated. For exar 	ed in oocytes c sults were obti -(4-(Dimethylai ium, <i>PQ</i> paraqi ent substrate c mple, aflatoxin l	of <i>Xenopus laev</i> , ained in the ooc mino)styryl)- <i>N-</i> 1 uat, <i>TEA</i> tetraet uat, <i>TEA</i> tetraet ncentrations fa B1 is an inhibito	s or mammalia yte system. Th nethylpyridiniu hylammonium, below the resp r of OCT1 with	n cell lines trai e substrates em m, AG aminog YM YM155. T bective Michael an IC_{50} value of an IC_{50} value of	sefected with the respective transporter. ployed for inhibition measurements are uanidine, <i>Crea</i> creatinine, <i>Et</i> ethidium he employed substrate concentration is is-Menten constant. Bold face indicates is-Menten constant. Bold face indicates

genetic variants of human OCT1, OCT2, and OCT3 exist that encode transporters with changed functions (Sect. 6).

2.2 MATE Transporters

The human MATE1 gene (SLC47A1) and the MATE2 gene (SLC47A2) are located in tandem on chromosome 17p11.2 and encode proteins of 570 and 602 amino acids, respectively (Otsuka et al. 2005). The amino acid sequence identity of MATE1 and MATE2 is 47.5%. Two additional human MATE2 isoforms have been cloned: MATE2-K (NM_001099646) coding for a 566-amino acid protein and MATE2-B encoding a truncated protein of 220 amino acids (Masuda et al. 2006). Of note, MATE2-K is currently the only isoform in the MATE2 subfamily, for which function has been demonstrated; MATE2-B is nonfunctional and MATE2 function has not been tested (Masuda et al. 2006; Tanihara et al. 2007). MATE orthologs have also been cloned from other mammalian species, including mouse (Otsuka et al. 2005; Kobara et al. 2008), rat (Terada et al. 2006; Ohta et al. 2006), and rabbit (Zhang et al. 2007).

The hydropathy analysis performed by Otsuka et al. (2005) suggested that MATE1 consists of 12 transmembrane helices. However, most of the current topology analysis programs predict 13 transmembrane helices with an extracellular location of the carboxyl terminus (Zhang et al. 2007; Terada and Inui 2008) (Fig. 3b). Immunocytochemical analyses using accessibility of an antibody to a carboxyl-terminal tag in nonpermeabilized cells proved the extracellular location of the carboxyl terminus of rabbit Mate1 (Zhang et al. 2007). Whether this holds true for other MATE orthologs awaits investigation. Several histidine, cysteine, and glutamate residues in different transmembrane helices of human MATE1 and MATE2-K are apparently involved in substrate binding and/or transport (Asaka et al. 2007; Matsumoto et al. 2008). As for the OCTs, naturally occurring genetic variants have been identified in human MATEs that lead to synthesis of functionally impaired transporters (Sect. 6).

3 Tissue Distribution and Subcellular Localization

By screening the abundance of human transcript sequences ("UniGene" database at http://www.ncbi.nlm.nih.gov) one can assess the approximate gene expression pattern for each OCT and MATE transporter. Northern blot and real-time quantitative PCR analyses have revealed the different mRNA expression profiles in more detail (Koepsell et al. 2007; Okabe et al. 2008). In addition to the mRNA expression profiles, knowledge of the protein expression profiles and the subcellular localization of each transporter in distinct cell types of a given tissue are of equal importance, and they have been analyzed to some extent as well. Although each

cell is equipped with a number of different transporters, it is of particular interest to identify transporters in the absorptive and secretory cells of the small intestine, liver, and kidney, because these are the major organs of drug absorption, metabolism, and excretion. The combined action of electrogenic OCT uptake and MATE efflux transporters, which function as proton/cation antiporters, results in the transcellular movement of organic cations in the small intestine, liver, and kidney (Fig. 4).

Because OCTs and MATEs also transport cationic cytostatic drugs such as platinum drugs (see Sect. 4), transporter expression may affect intracellular levels of anticancer drugs and, thus, response to chemotherapy. Therefore, several studies have analyzed transporter expression profiles in cancer-derived cells as well as in normal tissue in comparison to cancerous tissue (Hayer-Zillgen et al. 2002; Zhang et al. 2006; Ballestero et al. 2006; Yokoo et al. 2008; Okabe et al. 2008). Only recently, OCT1 expression was identified as an important clinical determinant of the response to imatinib in chronic myeloid leukemia (Wang et al. 2008a) (see Sect. 6).

3.1 OCT1

Rat Oct1, the first cloned member of the SLC22A family, is strongly expressed in liver, kidney, and intestine (Gründemann et al. 1994). In humans, on the contrary, OCT1 mRNA is most prominently expressed in the liver (Gorboulev et al. 1997; Nishimura and Naito 2005; Jung et al. 2008; Nies et al. 2009). The OCT1 protein has been localized in the sinusoidal (basolateral) membrane of rat and human hepatocytes (Meyer-Wentrup et al. 1998; Nies et al. 2008), where it mediates the uptake of substrates from the blood and, thereby, mediates the first step in hepatic excretion of many cationic drugs (Fig. 4a). Other reported locations of human OCT1 include the lateral membrane of intestinal epithelial cells (Müller et al. 2005) and the luminal (apical) membrane of ciliated cells in the lung (Lips et al. 2005) and of tubule epithelial cells in the kidney (Tzvetkov et al. 2009).

3.2 OCT2

Human OCT2 mRNA is most strongly expressed in kidney (Gorboulev et al. 1997; Nishimura and Naito 2005; Jung et al. 2008), where the OCT2 protein has been localized in the basolateral membrane of proximal tubule epithelial cells (Motohashi et al. 2002; Nies et al. 2008). Analogous to OCT1 in hepatocytes, OCT2 plays an important role in the secretion of organic cations in the kidney by mediating the first step, that is, the uptake of organic cations across the basolateral membrane (Fig. 4b). OCT2 transcripts were also detected in several other human organs, including small intestine, lung, and different brain regions, and the inner ear

Fig. 4 Localization of OCT and MATE transporters in human hepatocytes (**a**) and proximal tubule epithelial cells in the kidney (**b**). The basolateral localization of OCT1 and OCT3 in hepatocytes and of OCT2 in proximal tubule epithelial cells together with the apical localization of MATE transporters results in the transcellular movement and, thereby, secretion of organic cations into bile and urine. MDR1 P-glycoprotein (ABCB1) is an ATP-dependent efflux pump for organic cations. In addition, OCTN1 (SLC22A4) and OCTN2 (SLC22A5) are present in the luminal membrane of proximal tubule cells, where they may exchange luminal carnitine plus sodium or luminal cations against intracellular cations. An apical OCT1 localization in proximal tubule cells was recently reported and was suggested to be involved in reabsorption of metformin from the urine

(Gorboulev et al. 1997; Busch et al. 1998; Lips et al. 2005; Taubert et al. 2007; Ciarimboli et al. 2010). The human OCT2 protein has been localized in the luminal membrane of ciliated epithelial cells in the lung (Lips et al. 2005) and in pyramidal cells of the hippocampus (Busch et al. 1998).

3.3 OCT3

Human OCT3 was initially cloned from a kidney-derived cell line and termed extraneuronal monoamine transporter (EMT) because substrate specificity is similar to monoamine uptake measured in extraneuronal tissues, neuronal expression of OCT3 was not established, and it was not known that monoamines are also transported by OCT2 (Gründemann et al. 1998); for discussion see Koepsell et al. (2003). Unlike OCT1 and OCT2, OCT3 has a broad tissue distribution (Verhaagh et al. 1999; Nies et al. 2009) and transcripts have been detected, among others, in placenta, adrenal gland, liver, kidney, heart, lung, brain, and intestine (Koepsell et al. 2007). The human OCT3 protein was identified in basolateral membrane vesicles from placenta (Sata et al. 2005), in the plasma membrane of normal human astrocytes (Inazu et al. 2003), in the luminal membrane of bronchial and intestinal epithelial cells (Müller et al. 2005; Lips et al. 2005), and in the sinusoidal membrane of hepatocytes (Nies et al. 2009) (Fig. 4).

3.4 MATE1 and MATE2-K

Human MATE1 is strongly expressed in liver and kidney as well as in skeletal muscle, adrenal gland, and testis (Otsuka et al. 2005; Masuda et al. 2006). Immunolocalization analyses identified the MATE1 protein in the canalicular membrane of hepatocytes (Otsuka et al. 2005) and in the luminal membrane of tubular epithelial cells in the kidney (Otsuka et al. 2005; Masuda et al. 2006). Human MATE2-K is almost exclusively expressed in the kidney and is localized in the luminal membrane of proximal tubular epithelial cells (Masuda et al. 2006) (Fig. 4).

4 Functional Characterization of OCT and MATE Transporters

4.1 Common Functional Properties of OCTs

The functional characteristics of OCTs have been studied in detail using cRNAinjected *Xenopus laevis* oocytes or OCT-transfected mammalian cell lines. Several transport characteristics are shared by all OCTs irrespective of their subtype or the species. OCTs transport a broad range of organic cations with diverse molecular structures exhibiting $K_{\rm m}$ values in the micro- to millimolar range (Tables 1–3). Typically, the relative molecular masses of the substrates are below 500 (Suhre et al. 2005; Schmitt and Koepsell 2005; Ahlin et al. 2008; Zolk et al. 2008). OCTs are electrogenic facilitative diffusion systems that translocate organic cations in both directions across the plasma membrane (Busch et al. 1996; Nagel et al. 1997; Kekuda et al. 1998; Budiman et al. 2000; Lips et al. 2005). Transport of organic cations by OCTs is driven by the electrochemical potential but not accelerated by gradients of sodium or protons. For rat Oct2, a nonselective cotranslocation of inorganic cations together with transported organic cation substrates has been observed under depolarized conditions (Schmitt et al. 2009). OCTs are inhibited by a large number of cations and uncharged compounds that are not transported themselves. Partial or total inhibition of transport activity may be achieved (Volk et al. 2009). Transport inhibition may be competitive, partial competitive, or noncompetitive. Importantly, the affinities of the inhibitors are also dependent on the transported substrate (Tables 1-3). For human OCTs, IC₅₀ values between 10 pM and 24 mM have been determined. Transported substrates and inhibitors of OCTs are of endogenous origin, xenobiotics, and clinically used drugs.

4.2 Substrate and Inhibitor Specificities of Human OCTs

Human OCT1, OCT2, and OCT3 have largely overlapping but distinctly different substrate and inhibitor specificities (Tables 1–3). The substrates of human OCTs (hOCT) are typically organic cations with one positive charge or two positive charges (furamidine and paraquat) or weak bases that are positively charged at physiological pH (Tables 1–3). Noncharged compounds such as cimetidine at alkaline pH (Barendt and Wright 2002) may also be transported. Whether OCTs may be also able to transport organic anions remains to be clarified. Transport of prostaglandins by hOCT1 and hOCT2 has been reported by Kimura et al. (2002) but was not confirmed by Harlfinger et al. (2005).

Transported endogenous substrates of human OCTs include monoamine neurotransmitters, neuromodulators, and other compounds such as choline, creatinine, and guanidine. Among the >120 clinically used drugs that were shown to interact with human OCTs, about 20 were identified as transport substrates (Table 2). These include antineoplastic platinum compounds, the histamine H₂ receptor antagonist cimetidine, the antiviral drugs acyclovir, ganciclovir, lamivudine, and zalcitabine, the antidiabetic drug metformin, and the antiarrhythmic drug quinidine. The neurotoxin 1-methyl-4-phenyl pyridinium (MPP), the antidiabetic drug metformin, and the antiviral drug lamivudine are transported with similar affinities by the three human OCT orthologs. The model cation TEA is transported with similar affinities by hOCT1 and hOCT2 but shows low-affinity interaction with hOCT3. At variance, epinephrine and norepinephrine are transported with similar affinity by hOCT2 and hOCT3, and only exhibit low-affinity interactions with hOCT1. Histamine is transported with higher affinity by hOCT3 compared to hOCT2 and is apparently not transported by hOCT1 (Koepsell et al. unpublished data).

Inhibitors of OCTs may have larger molecular weights compared to substrates. They may bind to the central substrate binding pockets of the OCTs or to more peripheral regions in the clefts. Two or more inhibitor molecules may bind at the same time. Transport of a specific substrate may be inhibited partially after inhibitor binding to a high-affinity site and total inhibition may be observed when the inhibitor has bound to the low-affinity site (Minuesa et al. 2009).

It may be difficult to distinguish whether a compound that inhibits an OCT transporter is translocated or not. The reasons are (1) that transport rates may be low, (2) that the expression of endogenous cation transporters may be different in transfected and nontransfected cell lines, and (3) that OCT inhibitors that inhibit control substrates may have different affinities for other substrates. It has to be kept in mind that a correlation between transporter expression and the effect of a drug that interacts with the transporter does not prove that the drug is transported because the transporter inhibition may block cellular uptake of an endogenous compound that may critically influence drug effects on cell functions.

Thomas et al. (2004) observed that compounds that inhibit OCTs decreased uptake of imatinib, a first-generation tyrosine kinase inhibitor, into a human T-cell lymphoblast-like cell line. Similarly, imatinib uptake into blood cells from patients with chronic-phase chronic myeloid leukemia (CML) was blocked by OCT inhibitors (White et al. 2006). When the CML cell line KCL22 was transfected with hOCT1, imatinib uptake was about 1.6-fold higher compared to uptake into control transfectants (Wang et al. 2008a). At variance, expression of hOCT1 in *X. laevis* oocytes or in human embryonic kidney cells did not lead to a significant increase of imatinib uptake (Hu et al. 2008 and Koepsell, Nies, et al. unpublished data). Independent from the conflicting transport data, it was demonstrated that OCT1 mRNA levels and OCT1 genotype are important clinical determinants of treatment response in CML patients (Wang et al. 2008a; Kim et al. 2009) (Sect. 6.3).

4.3 Drug–Drug Interactions Involving OCTs

Various clinically used drugs were identified as inhibitors of OCT-mediated transport by investigating their potency to inhibit in vitro uptake of transported cations (Table 2). When these inhibitory drugs are coprescribed with drugs that are transported by OCTs, drug pharmacokinetics may be altered. Several studies, therefore, investigated the ability of drugs to inhibit transport of the OCT drug substrates metformin or cimetidine in vitro. For example, OCT2-mediated cimetidine transport is inhibited by ranitidine (Tahara et al. 2005) and OCT2-mediated metformin transport by sodium channel blockers (Umehara et al. 2008), β -adrenergic receptor antagonists (Bachmakov et al. 2009), and cimetidine (Zolk et al. 2009). The oral antidiabetics repaglinide and rosiglitazone inhibit OCT1-mediated metformin transport (Bachmakov et al. 2008).

Clinical studies suggest that drug–drug interactions involving OCTs also occur in vivo and may mainly affect cationic drugs that are predominantly eliminated by renal secretion (Ayrton and Morgan 2008; Kindla et al. 2009). For example, cimetidine decreases the renal tubular secretion of ranitidine (van Crugten et al. 1986), procainamide (Lai et al. 1988), dofetilide (Abel et al. 2000), and varenicline (Feng et al. 2008). The inhibition of tubular secretion of metformin by cimetidine was first described more than 20 years ago (Somogyi et al. 1987), but only recently this drug–drug interaction was attributed to OCT2 (Wang et al. 2008b). Other in vivo drug–drug interactions were reported between lamivudine and trimethoprim and between cisplatin and cimetidine or imatinib. It was shown that renal lamivudine clearance was decreased after coadministration of trimethoprim (Moore et al. 1996) and that the concomitant administration of imatinib has a protective effect against cisplatin-induced nephrotoxicity and ototoxicity (Tanihara et al. 2009; Ciarimboli et al. 2010).

4.4 Common Functional Properties of MATEs

MATE transporters are electroneutral transporters that operate independently of a sodium gradient, but use an oppositely directed proton gradient as driving force; translocation of organic cations across the plasma membrane may occur in both directions (Otsuka et al. 2005; Tanihara et al. 2007). MATEs are apparently the functionally long known but searched for proton-driven cation efflux transporters of the canalicular hepatocyte membrane and the luminal membrane of proximal tubule epithelial cells, which have been functionally described for many years (Koepsell 1998; Otsuka et al. 2005).

4.5 Substrate and Inhibitor Specificities of MATEs

MATE1 and MATE2-K have similar substrate and inhibitor specificities, which overlap with those of OCTs (Tables 1–3). The OCT substrates MPP and TEA are also transported by the two MATE orthologs. Endogenous substrates include the organic cations creatinine, guanidine, thiamine, and also the organic anion estrone sulfate. About 30 clinically used drugs have been shown to interact with MATE transporters, and several were identified as transport substrates such as metformin, cimetidine, oxaliplatin, acyclovir, and fexofenadine (Table 2).

4.6 Drug–Drug Interactions Involving MATEs

Information of drug-drug interactions involving MATEs is currently limited. In vitro, cimetidine inhibits MATE1-mediated transport of fexofenadine (Matsushima

et al. 2009) and metformin (Tsuda et al. 2009b). Thus, the clinical observation that metformin tubular secretion is inhibited by cimetidine (Somogyi et al. 1987) may not only be due to inhibition of OCT2-mediated metformin uptake (Wang et al. 2008b) but also to inhibition of MATE1-mediated luminal metformin efflux (Tsuda et al. 2009b).

5 Knockout Mouse Models

Knockout mouse models are valuable tools to identify the physiological and pharmacokinetic roles of transporters in vivo. For that purpose, *Oct1* (Jonker et al. 2001; Shu et al. 2007), *Oct2* (Jonker et al. 2003), *Oct3* (Zwart et al. 2001; Wultsch et al. 2009), and *Mate1* (Tsuda et al. 2009a) single-knockout mice and *Oct1/Oct2* double-knockout mice (Jonker et al. 2003) have been generated. All strains are viable and fertile and show no apparent phenotypical abnormalities, indicating that none of the transporters is essential for obvious physiological functions in mice. However, the tissue distribution and disposition of endogenous or exogenous organic cations may differ significantly between wild-type mice and the knockout mouse strains. These knockout mouse models may be used for the prediction of pharmacokinetics in humans, especially in those carrying genetic variants that encode transporters with reduced function (Sect. 6).

5.1 Oct1 Knockout Mice

Intravenous injection of the model cation TEA into Oct1(-/-) mice resulted in a fourfold to sixfold reduced hepatic accumulation and in a twofold reduced direct intestinal excretion of TEA in comparison to wild-type mice (Jonker et al. 2001). On the other hand, urinary TEA excretion was increased, probably because lack of hepatic Oct1 leads to increased availability of TEA to the kidney. Similar to TEA, the levels of the anticancer drug *meta*-iodobenzylguanidine, the neurotoxin MPP (Jonker et al. 2001), and the antidiabetic drug metformin (Wang et al. 2002; Shu et al. 2007) were also lower in livers from Oct1(-/-) mice than in those from wildtype mice. The decreased hepatic metformin uptake resulted in a reduced effect on AMP-activated protein kinase phosphorylation and gluconeogenesis, and, in consequence, the glucose-lowering effect of metformin was completely abolished (Shu et al. 2007). Thus, mouse Oct1 – as well as human OCT1 (see Sect. 6) – is a major determinant of the pharmacodynamic responses to metformin. It is of interest that Oct1(-/-) mice do not develop metformin-induced lactic acidosis, which is a severe and rare adverse drug reaction of metformin treatment in humans (Wang et al. 2003).

5.2 Oct2 Single-Knockout and Oct1/Oct2 Double-Knockout Mice

In contrast to the absence of Oct1, the targeted disruption of the murine Oct2 gene had only little effect on the pharmacokinetics of intravenously injected TEA (Jonker et al. 2003). The hepatic and renal concentrations of TEA and the excretion of TEA in the urine and feces were similar in Oct2(-/-) and wild-type mice. Because Oct1 is expressed in mouse kidney in addition to Oct2 (Alnouti et al. 2006) and Oct1 and Oct2 have overlapping substrate specificities (Gründemann et al. 1999), renal Oct1 expression is apparently sufficient for secretion of most organic cations even in the absence of Oct2. In order to develop a mouse model for studying the renal secretion of organic cations, Oct1/Oct2 double-knockout mice have been generated (Jonker et al. 2003). Renal tubular secretion of TEA was completely abolished and TEA was only eliminated by glomerular filtration in these doubleknockout mice, which resulted in significantly elevated TEA plasma levels compared to wild-type mice. Similarly, urinary excretion of cisplatin was significantly impaired in Oct1/Oct2(-/-) mice so that the animals were protected from severe cisplatin-induced renal tubular damage and from cisplatin-induced loss of hearing (Filipski et al. 2009; Ciarimboli et al. 2010).

5.3 Oct3 Knockout Mice

After cloning human OCT3 it was hypothesized that the functional defined corticosterone-sensitive extraneuronal transport activity for monoamine neurotransmitters is mainly mediated by OCT3 (Gründemann et al. 1998; Koepsell et al. 2003). Interestingly, steady-state norepinephrine and dopamine levels did not differ between several tissues from wild-type and Oct3(-/-) mice whereas differences in MPP accumulation were observed (Zwart et al. 2001). Intravenous injection of MPP into Oct3(-/-) mice resulted in significantly reduced MPP levels in heart, but not in small intestine, liver, kidney, brain, and placenta in comparison to tissues from wild-type mice. Moreover, fetuses from pregnant Oct3(-/-) mice had three times lower MPP levels. Because MPP is a substrate of murine Oct1, Oct2, and Oct3, these data suggest a prominent role of Oct3 in the heart and fetoplacental interface, whereas in other tissues the lack of Oct3 is apparently well compensated by the function of other Octs. Although Oct3(-/-) mice did not show overt phenotypical abnormalities, Oct3 is probably critically involved in central nervous function. Vialou et al. (2004) showed that Oct3 is implicated in the appropriate neural and behavioral responses to environmentally induced changes in osmolarity. Whether Oct3 also plays a role in the regulation of fear and anxiety is being discussed (Vialou et al. 2008; Wultsch et al. 2009). Of note, there is compensatory upregulation of Oct3 in the brain of mice that lack the neuronal serotonin transporter Slc6a4/Sert (Schmitt et al. 2003; Baganz et al. 2008).

5.4 Matel Knockout Mice

Pharmacokinetic characterization of Matel(-/-) mice (Tsuda et al. 2009a) was carried out with metformin, a typical drug substrate of human MATE1 (Table 2). After intravenous injection, renal and hepatic metformin concentrations were markedly increased in the Matel(-/-) mice compared to wild-type mice. In addition, plasma metformin levels were increased in Matel(-/-) mice, whereas urinary metformin excretion was significantly decreased. These data indicate a crucial role of Mate1 in the renal clearance of metformin and probably other drugs as well.

6 Pharmacogenomics of OCT and MATE Transporters

It is well accepted that drug response to the same medication differs among individuals (Kerb 2006). Besides factors such as age, organ function, concomitant therapy, drug–drug interactions, and the nature of the disease, genetic factors have been recognized as important determinants of interindividual variability of drug response. Because OCTs and MATEs function as drug uptake and efflux transporters, respectively (Sect. 4), genetic variants in these transporters may account for interindividual variability of pharmacokinetics of many drugs (Ho and Kim 2005; Giacomini and Sugiyama 2006; Kerb 2006). At present, major research efforts are being taken to identify OCT and MATE variants, to analyze their potential functional consequences, and to determine their contribution to a patient's response to pharmacotherapy.

6.1 Identification of Genetic Variants, Their Predicted Consequences, and Their Effects In Vitro

More than 1,100 and 450 single-nucleotide polymorphisms (SNPs) are currently listed for the OCT and MATE genes, respectively, in the NCBI-SNP database (National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/SNP; build 130, January 2010). The Pharmacogenetics and Genomics Knowledge Base (PharmGKB, http://www.pharmgkb.org) is another public database comprising data and information related to all areas of pharmacogenetics including a large collection of DNA samples from ethnically diverse populations (Giacomini et al. 2007). Moreover, the International HapMap Consortium (http://www.hapmap.org) has generated a haplotype map of the human genome by identifying more than 3.1 million SNPs genotyped in 270 individuals from four geographically diverse populations (International HapMap Consortium et al. 2007). It is expected that the current next generation sequencing projects aiming at the complete sequencing

of 1,000 human genomes (Kaiser 2008; Siva 2008) will identify more variants, especially those with low frequencies between 0.1% and 1% (Ionita-Laza et al. 2009).

Whereas most sequence variants are present in the introns, others are located in the 5'- and 3'-flanking regions and may lead to an altered expression level of the respective OCT or MATE transporter (Ogasawara et al. 2008; Nies et al. 2009; Hesselson et al. 2009; Ha Choi et al. 2009). Sequence variants within the exons (coding SNPs, cSNPs) may result in amino acid substitutions. These nonsynon-ymous or missense variants are of considerable interest because they may affect the transport function of the OCT and MATE transporters. A comprehensive list of the currently known cSNPs in the genes encoding human OCTs and MATEs are given in Table 4.

PolyPhen (polymorphism phenotyping, http://genetics.bwh.harvard.edu/pph2; Ramensky et al. 2002) and SIFT (Sorting Intolerant from Tolerant, http://sift.jcvi. org/; Kumar et al. 2009) are two commonly used algorithms, with which the potential functional effects of single amino acid substitutions can be predicted in silico. Based on multiple sequence alignments and in part on information from known three-dimensional protein structures, the algorithms predict the probability that an amino acid substitution has an impact on protein structure and function. However, these in silico predictions cannot substitute for the experimental analysis of each amino acid variant to proof functional changes of the respective OCT or MATE transporter. For comparison, Table 4 lists the predicted functional consequences as well as in vitro transport data for many of the known nonsynonymous OCT and MATE variants. SIFT and PolyPhen predictions are similar for most variants though they differ for some (e.g., OCT1-Ser14Phe, OCT1-Leu23Val, OCT1-Pro341Leu, OCT2-Lys432Gln, MATE1-Leu125Phe). Moreover, amino acid substitutions that are predicted to be tolerated have no transport activity in vitro (e.g., OCT1-Gly220Val, MATE1-Val480Met). This shows limitations of the in silico predictions, which did not include recent structural analysis data (Popp et al. 2005; Volk et al. 2009). The differences may partly be due to the fact that several variants are not properly incorporated into the plasma membrane but are rather retained intracellularly (Shu et al. 2007; Kajiwara et al. 2009; Chen et al. 2009b). The observations that variants alter transport function in a substratedependent manner (e.g., OCT1-Ser189Leu, OCT1-Met420del) illustrate the difficulty to predict complex effects of mutagenesis on functions of polyspecific transporters.

6.2 Interethnic Variability

Geographic, ethnic, and racial differences in the frequency of genetic variants are well known and several examples in the field of ADME genes have been reported as a mechanistic basis for differences in drug response and/or drug toxicity (Schaeffeler et al. 2001; Klein et al. 2005).

data							
Gene	trs#	Amino acid	SIFT prediction	Polyphen prediction	Transport in v	itro in	References
		change	(score)	1	comparison to	refseq	
					MIN 2.21 /00	(LEL)	
					TEA	Mettormin	
SLC22AI	rs34447885	Ser14Phe	Tolerated (1.00)	Possibly damaging	~190% ^A	~60% ^B	A: Shu et al. (2003) and B: Shu et al.
	rs77557761	Gln18His fe	NA	NA			
	10/2022/01	I our of the last	Deleterious (0.04)	Donian			
	re35888596	Glv38 A sn	Deleterious (0.01)	Dossibly damaging			
	rs2297373	Phe41Leu	Deleterious (0.00)	Probably damaging			
	rs12208357	Arg61Cys	Deleterious (0.02)	Probably damaging	$30\%^{\mathrm{A,B}}$	~5% ^C	A: Kerb et al. (2002), B: Shu et al.
							(2003)
							and C: Shu et al. (2007)
	rs35546288	Leu85Phe	Tolerated (0.30)	Benign	Similar		Shu et al. (2003)
	rs55918055	Cys88Arg	Deleterious (0.00)	Probably damaging	1.4%		Kerb et al. (2002)
	No refSNP ID	Pro117Leu	Deleterious (0.01)	Possibly damaging			Sakata et al. (2004)
	rs683369	Phe160Leu	Tolerated (0.66)	Benign	Similar ^{A, B}	Similar ^C	A: Kerb et al. (2002),
				ŀ			B: Shu et al. (2003)
							and C: Shu et al. (2007)
	rs34104736	Ser189Leu	Tolerated (0.49)	Benign	Similar ^A	$\sim 20\%^{\mathrm{B}}$	A: Shu et al. (2003) and
						I	B: Shu et al. (2007)
	rs36103319	Gly220Val	Tolerated (0.10)	Benign	$0\%^{\rm A}$	$0\%^{\rm B}$	A: Shu et al. (2003) and
							B: Shu et al. (2007)
	rs4646277	Pro283Leu	Deleterious (0.00)	Probably damaging	0%0		Itoda et al. (2004)
	rs4646278	Arg287Gly	Deleterious (0.00)	Probably damaging	0%		Itoda et al. (2004)
	rs2282143	Pro341Leu	Tolerated (0.07)	Probably damaging	$\sim 65 %^{\rm A}$	Similar ^B	A: Shu et al. (2003) and
							B: Shu et al. (2007)
	rs34205214	Arg342His	Tolerated (0.06)	Benign	Similar ^A	Similar ^B	A: Shu et al. (2003) and D: Shu et al. (2007)
							D. 3111 CI 41. (2007)

A: Kang et al. (2007) and B: Song et al. (2008) A: Leabman et al. (2002), B: Kang et al. (2007) and C: Song et al. (2008) (continued)	~40% ^B ~60% ^C	~50% ^A Decrease, ^A ~62% ^B	Benign Benign	Tolerated (0.23) Tolerated (0.69)	Thr201Met Ala270Ser	No refSNP ID rs316019
Fujita et al. (2006) A: Kang et al. (2007) and	~31% ^B	Similar ~42% ^A	Benign Probably damaging Possibly damaging	Tolerated (0.09) Deleterious (0.00) Deleterious (0.02)	Met 165 Val Arg 176 His Thr 19911e	77508 371881 efSNP ID
Fujita et al. (2006) Fujita et al. (2006) Leabman et al. (2002) Fuita et al. (2006)		Similar Similar Decrease Similar	NA NA Possibly damaging Benign Benign Benign	NA NA Deleterious (0.00) Tolerated (1.00) Tolerated (0.44) Tolerated (0.09)	Phe45Leu fs Phe45Ile fs Pro54Ser Phe161Leu Met165Ile Met165Val	2552765 177505 177504 177509 177507 177508
	/itro in) refseq (OCT2) Metformin	Transport in v comparison tc <u>NP_003049.1</u> <u>MPP</u>				
B: Shu et al. (2007) A: Shu et al. (2003) and B: Shu et al. (2007)	Similar ^B	Similar ^A	Benign	Tolerated (0.14)	Arg488Met	5270274
Shu et al. (2003) A: Shu et al. (2003) and	$0\%^{\mathrm{B}}$	Similar 0% ^A	Probably damaging Benign Probably damaging	Tolerated (0.12) Tolerated (1.00) Deleterious (0.00)	Met440lle Val461lle Gly465Arg	956182 -295611 -059508
A: Kerb et al. (2002), B: Shu et al. (2003) and C: Shu et al. (2007)	~30% ^C	Similar ^{A,B}	Benign NA	Deleterious (0.00) NA	Gly414Ala Met420del	2552762 refSNP ID
B: Shu et al. (2003) and C: Shu et al. (2007) A: Shu et al. (2003) and B: Shu et al. (2007)	Similar ^B	Similar ^A	Benign	Tolerated (0.27)	Met408 Val	28031
A: Kerb et al. (2002),	$\sim 10\%^{\rm C}$	$0.9\%,^{\rm A} 0\%^{\rm B}$	Benign	Tolerated (0.19)	Gly401Ser	130495

Table 4	(continued)					
Gene	#sı	Amino acid change	SIFT prediction (score)	Polyphen prediction	Transport in vitro in comparison to refseq 60712.2 (MATE1)	References
					TEA Metformin	
	rs8177513	Ala297Gly	Tolerated (0.34)	Benign	Similar	Fujita et al. (2006)
	rs45599131	Leu351Trp	Deleterious (0.01)	Possibly damaging		
	rs8177516	Arg400Cys	Deleterious (0.00)	Benign	Decrease	Leabman et al. (2002)
	rs8177517	Lys432Gln	Tolerated (0.56)	Possibly damaging	Decrease	Leabman et al. (2002)
	rs17853948 rs17853948 rs17853948	Aug400Lys Val502Gly Val502Glu	Deleterious (0.03) Deleterious (0.03) Deleterious (0.05)	Provatory damaging Possibly damaging Possibly damaging		
				Surgauna frances		
					Norepinephrine transport in vitro in comparison to refeed NP 068812 1	
					(OCT3)	
SLC22A3	rs8187715 rs8187717	Thr44Met Ala116Ser	Tolerated (0.09) Tolerated (1.00)	Benign Benign		
	No refSNP ID	Met370Ile	Tolerated (0.21)	Probably damaging	~50%	Lazar et al. (2008)
	rs8187725 *** 12212246	Thr400IIe A1a430Val	Tolerated (0.35)	Benign		
	rs9365165	Gly475Ser	Tolerated (1.00)	Benign		
					Transport in vitro in	
					comparison to refseq	
					<u>NP_060712.2 (MATE1)</u> TEA Metformin	
SLC47AI	No refSNP ID	Val10Leu	Tolerated (0.58)	Benign	Similar Similar	Kajiwara et al. (2009)
	rs77630697	Gly64Asp	Deleterious (0.00)	Probably damaging	~1%, ^A ~14% ^B ~2% ^{A,B}	A: Kajiwara et al. (2009) and B: Chen et al. (2009b)
	rs77474263	Leu125Phe	Deleterious (0.00)	Benign	~50% ~50%	Chen et al. (2009b)
	rs11551331	Pro148Arg	Deleterious (0.00)	Benign		
	rs35646404	Thr159Met	Tolerated (0.33)	Benign		

Kajiwara et al. (2009) Kajiwara et al. (2009) Chen et al. (2009) Kajiwara et al. (2009) Chen et al. (2009)	Chen et al. (2009b) Chen et al. (2009b)		Kajiwara et al. (2009) Kajiwara et al. (2009)
~41% ~27% ~40% Similar 0%	~65% Similar	n vitro in 1 to refseq 3116.2 X) Metformin	~66%
~20% ~20% ~63% 0%	Similar Similar	Transport i comparison NP_00109; (MATE2-F TEA	~48% 0%
Benign Probably damaging Benign Benign Benign	Benign Probably damaging Benign		Benign Probably damaging Probably damaging
Tolerated (0.31) Deleterious (0.02) Tolerated (0.51) Tolerated (0.35) Tolerated (0.16)	Tolerated (0.64) Tolerated (0.12) Tolerated (0.12)		Deleterious (0.00) Deleterious (0.00) Deleterious (0.00)
Ala310Val Asp328Ala Val338Ile Asn474Ser Val480Met	Cys497Ser Cys497Phe Gln519His		Lys64Asn Gly211Val Gly393Arg
No refSNP ID No refSNP ID rs35790011 No refSNP ID rs76645859	rs35395280 rs35395280 rs78700676		SLC47A2 No refSNP ID No refSNP ID rs34399035

ph2. (Ramensky et al. 2002). Default settings were used for calculations, SIFT sorting intolerant from tolerant algorithm, http://sift.jcvi.org (Kumar et al. 2009). For prediction, the "SIFT sequence" single protein tool was used with default settings and the UniProt-Swiss Prot 56.6 database. Substitution values <0.05 are predicted to be intolerant and, thus, deleterious, TEA tetraethylammonium fs fi

Significant ethnic differences exist also in the frequency of allele and genotype distributions of SLC22A1, SLC22A2, and SLC47A1 variants as listed in Tables 5-8. For instance, whereas in European-Americans and Caucasians the allele frequency of the SLC22A1-Arg61Cys polymorphism is approximately 8%, in African-Americans as well as Asian-Americans, no variant subject including 260 individuals tested were identified. In contrast, for the SLC22A1-Pro341Leu variant a significant higher allele frequency was found in African-Americans and Asian-Americans (8% and 17%) than in Caucasians (up to 2%). Finally, the Met408Val polymorphism was detected with high-frequency distributions in all ethnic groups (Caucasians, Africans, Asians). Currently it is unclear whether these differences in allele frequencies between various ethnic groups are of any clinical importance and potentially may render individuals more susceptible to certain xenobiotics and/or environmental factors. For example, aflatoxin B1 is a substrate of OCT1 and it is well recognized that the incidence of hepatocellular carcinoma is significantly more frequent in Asians compared to Caucasians. One may assume that such a difference in disease frequency may be explained by functional relevant genetic variants of the uptake transporter OCT1 that are more common in Asian populations.

6.3 Phenotype–Genotype Correlations

Currently data on tissue expression of OCTs and MATEs correlated to genetic variants are limited. The only polymorphism identified so far that affects OCT1 expression in human liver on mRNA and protein levels is Arg61Cys (Nies et al. 2009; Table 9) after correction for nongenetic factors (such as cholestasis) and additional SLC22A1 variants. Of note, a total of 36 variants in the *SLC22A1* gene were tested including some SNPs, which showed reduced function in vitro (Table 4). It would be of major interest to analyze whether expression of OCT2, which is the predominant OCT uptake transporter in human kidney and involved in renal excretion of several drugs (e.g., metformin), is also influenced by genetic factors.

Several studies addressed the association of OCT genotypes with pharmacokinetic parameters of OCT substrates in humans (Tables 9–12). These investigations were based on initial observations that some variants alter OCT function in in vitro cell experiments (Table 4). A key publication in this field showed that metformin AUC and C_{max} are significantly higher in OCT1-variant healthy subjects as compared to individuals with *OCT1* reference gene sequence (Shu et al. 2008). In addition and in line with *Oct1* knockout mice experiments, OCT1 variant human subjects revealed poor response to metformin measured by the oral glucose tolerance test (Shu et al. 2007). These data suggested for the first time that OCT1 may be a promising candidate gene for better prediction of the response to the antidiabetic agent metformin. Although some studies including type 2 diabetes patients were subsequently performed, unfortunately the results are inconsistent (Tables 9–12). A second clinically highly relevant agent, which was related to OCT1 expression and

Table 5 Allele frequencia	s of SLC22A1 (OC	CTI) genetic variants	in different ethnic	populations		
SLC22A1 (OCT1) ^a	rs#	Allele frequency (^c	<i>(%</i>)			References
		European- American/ Caucasian	African- American	Asian- American	Chinese, Japanese, Korean, Vietnamese	
5' near gene	rs6935207	14 $(n = 55)^{\text{A}}$ 27 $(n = 150)^{\text{B}}$			59 $(n = 150 \text{ Koreans})^{\text{C}}$	A: Kerb et al. (2002), B: Nies et al. (2009) and C: Kang et al. (2007)
5' near gene 5' near gene 5' UTR, C>A	rs9457840 rs6899549 No refSNP ID	$\begin{array}{l} 2 \ (n = 150) \\ 0 \ (n = 150) \end{array}$			$0.4 \ (n = 116 \ \text{Japanese})$	Nies et al. (2009) Nies et al. (2009) Nies et al. (2009) Itoda et al. (2004)
Ser14Phe	rs34447885	$\begin{array}{l} 0 \; (n = 200)^{\rm A} \\ 0 \; (n = 150)^{\rm B} \end{array}$	$3.1 \ (n = 200)^{\rm A}$	$0 \ (n = 60)^{\rm A}$		A: Shu et al. (2003) and B: Nies et al. (2009)
Leu23Val Glv38Asn	rs34570655 rs35888596	0 (n = 150) 0 (n = 150)				Nies et al. (2009) Nies et al. (2009)
Phe41Leu	rs2297373	$0 (n = 150)^{A}$			0.4 ($n = 116$ Japanese) ^B	A: Nies et al. (2009) and B: Itoda et al. (2004)
Ser52Ser	rs1867351	23 $(n = 243)^{\rm A}$			$44.4 (n = 116 \text{ Japanese})^{\text{B}}$ $35 (n = 150 \text{ Koreans})^{\text{C}}$	A: Kerb et al. (2002), B: Itoda et al. (2004) and C: Kang et al. (2007)
Arg61Cys	rs12208357	9.1 $(n = 243)^{\text{A}}$ 7.2 $(n = 200)^{\text{B}}$ 9.7 $(n = 150)^{\text{C}}$	$0 (n = 200)^{B}$	$0 (n = 60)^{\rm B}$		A: Kerb et al. (2002), B: Shu et al. (2003) and C: Nies et al. (2009)
Leu85Phe	rs35546288	$0 (n = 200)^{\text{A}}$ $0 (n = 150)^{\text{B}}$	$1 \ (n = 200)^{\rm A}$	$0 \ (n = 60)^{\rm A}$		A: Shu et al. (2003) and B: Nies et al. (2009)
Cys88Arg	rs55918055	$\begin{array}{l} 0.6 \; (n=243)^{\rm A} \\ 0.3 \; (n=150)^{\rm B} \end{array}$				A: Kerb et al. (2002) and B: Nies et al. (2009)
Pro117Leu, C>T g.160463307	No refSNP ID				$0.4 \ (n = 116 \text{ Japanese})$	Itoda et al. (2004)
Intron	rs4646272	6.7 $(n = 150)^{\rm A}$			62.9 ($n = 116$ Japanese) ^B	A: Nies et al. (2009) and B: Itoda et al. (2004)
Intron, T>C g.160471091					8.2 ($n = 116$ Japanese)	Itoda et al. (2004)
						(continued)

Table 5 (continued)						
SLC22A1 (OCT1) ^a	rs#	Allele frequency ((%)			References
		European- American/ Caucasian	African- American	Asian- American	Chinese, Japanese, Korean, Vietnamese	
Phe160Leu	rs683369	22 $(n = 241)^{\text{A}}$ 6.5 $(n = 200)^{\text{B}}$ 23 $(n = 150)^{\text{C}}$	$0.5 (n = 200)^{\rm B}$	$1.7 (n = 60)^{\rm B}$	8.6 ($n = 116$ Japanese) ^D 13 ($n = 150$ Koreans) ^E	A: Kerb et al. (2002), B: Shu et al. (2003), C: Nies et al. (2009), D: Itoda et al. (2004) and E: Kang et al. 2007
Intron Intron Ala187Ala, G>A g.160473299	rs4646273 rs3737088				45.7 (n = 116 Japanese) $1.7 (n = 116 Japanese)$ $0.9 (n = 116 Japanese)$	Itoda et al. (2004) Itoda et al. (2004) Itoda et al. (2004)
Intron Intron	rs4646276 rs2282142				47 ($n = 116$ Japanese) 16.8 ($n = 116$ Japanese)	Itoda et al. 2004 Itoda et al. (2004)
Ser189Leu	rs34104736	$\begin{array}{l} 0.5 \; (n=200)^{ m A} \ 0 \; (n=150)^{ m B} \end{array}$	$0 \ (n = 200)^{\mathrm{A}}$	$0 \ (n = 60)^{\rm A}$	•	A: Shu et al. (2003) and B: Nies et al. (2009)
Gly220Val	rs36103319	$\begin{array}{l} 0 (n=200)^{\mathrm{A}} \ 0 (n=150)^{\mathrm{B}} \end{array}$	$0.5 \ (n = 200)^{\rm A}$	$0 \ (n = 60)^{A}$		A: Shu et al. (2003) and B: Nies et al. (2009)
Pro283Leu	rs4646277	$0 \ (n = 150)^{ m A}$			1.3 $(n = 150 \text{ Koreans})^{\text{B}}$ 0 $(n = 100 \text{ Vietnamese})^{\text{B}}$ 0.5 $(n = 100 \text{ Chinese})^{\text{B}}$	A: Nies et al. (2009) and B: Kang et al. (2007)
Arg287Gly	rs4646278	0 (n = 150)				Nies et al. (2009)
Pro341Leu	rs2282143	$0 (n = 200)^{\mathrm{A}}$ 1.7 $(n = 150)^{\mathrm{B}}$	8.2 $(n = 200)^{\rm A}$	11.7 $(n = 60)^{\rm A}$	16.8 $(n = 116 \text{ Japanese})^{C}$ 16.7 $(n = 150 \text{ Koreans})^{D}$ 5.5 $(n = 100$ Vietnamese) ^D 11 $(n = 100 \text{ Chinese})^{D}$	A: Shu et al. (2003), B: Nies et al. (2009), C: Itoda et al. (2004) and D: Kang et al. (2007)
Intron, C>G g.160477747					2.2 ($n = 116$ Japanese)	Itoda et al. (2004)
Arg342His	rs34205214	$egin{array}{l} 0 \; (n=200)^{ m A} \ 0 \; (n=150)^{ m B} \end{array}$	$3.1 (n = 200)^{\rm A}$	$0 \ (n = 60)^{\rm A}$		A: Shu et al. (2003) and B: Nies et al. (2009)

Gly401Ser	rs34130495	$\begin{array}{l} 3.2 \ (n=232)^{\rm A} \\ 1.1 \ (n=200)^{\rm B} \\ 1.1 \ (n=150)^{\rm C} \end{array}$	$0.7 \ (n = 200)^{\rm B}$	$0 (n = 60)^{\rm B}$		A: Kerb et al. 2002, B: Shu et al. (2003) and C: Nies
Met408Val	rs628031	$59.7 (n = 150) 59.7 (n = 232)^{A} 59.8 (n = 200)^{B} 42.9 (n = 150)^{C}$	73.5 $(n = 200)^{\rm B}$	76.2 $(n = 60)^{\rm B}$	81 $(n = 116 \text{ Japanese})^{\text{D}}$ 74 $(n = 150 \text{ Koreans})^{\text{E}}$	A: Kerb et al. (2002), B: Shu et al. (2003), C: Nies et al. (2009), D: Itode et al. (2004) and E: Konce et al. (2007)
Ala413Ala Gly414Ala Intron	rs3488879 rs72552762 rs4646281	$\begin{array}{l} 0 \; (n = 150) \\ 0.2 \; (n = 232) \end{array}$			81 $(n = 116$ Japanese)	Nies et al. (2009) Nies et al. (2009) Kerb et al. (2002) Itoda et al. (2004)
Met420del g.160480871- 160480873delATG	No refSNP ID	$15.7 (n = 232)^{\text{A}}$ $18.5 (n = 200)^{\text{B}}$ $17 (n = 150)^{\text{C}}$	2.9 $(n = 200)^{\rm B}$	$0 (n = 60)^{\rm B}$		A: Kerb et al. (2002), B: Shu et al. (2003) and C: Nies et al. (2009)
Met440Ile Intron, A>G 9.160484779	rs35956182	0(n = 200)	0.5 (n = 200)	0 (n = 60)	$0.4 \ (n = 116 \ \text{Japanese})$	Shu et al. (2003) Itoda et al. (2004)
Intron Intron VialA6111a	rs2297374 rs622591 rs34705611	$0 (n - 200)^{A}$	A(000 - ") 1	A(0) - a) 0	$30.2 \ (n = 116 \ \text{Japanese})$ 59.1 $(n = 116 \ \text{Japanese})$	Itoda et al. (2004) Itoda et al. (2004) A • Shu et al. (2003) and B• Nisse
Gly465Arg	rs34059508	$\begin{array}{l} 0 \ (n = 150)^{B} \\ 0 \ (n = 150)^{B} \\ 1.5 \ (n = 236)^{A} \\ 4 \ (n = 200)^{B} \\ 2.5 \\ 1$	$0 (n = 200)^{B}$	$0(n = 60)^{B}$		A: Kerb et al. (2009) A: Kerb et al. (2002), B: Shu et al. (2003) and C: Nies
Arg488Met	rs35270274	$4.3 (n = 150)^{-1}$ $0 (n = 200)^{A}$ $0 (n = 150)^{B}$	$5 (n = 200)^{\text{A}}$	$0 (n = 60)^{A}$		et al. (2009) A: Shu et al. (2003) and B: Nies et al. (2009)
Val501Val 3' UTR, delATG, g.160499610- 160499612	rs41267797	3.6 (n = 56)			$0.4 \ (n = 116 \ \text{Japanese})$	Kerb et al. (2002) Itoda et al. (2004)
3' UTR 3' UTR	rs9457846 rs34108432	$\begin{array}{l} 0 \; (n = 150) \\ 0 \; (n = 150) \end{array}$				Nies et al. (2009) Nies et al. (2009)
<i>UTR</i> untranslated region The work by Itoda et al. (2 ^a In case that no refSNP ID	004) describes arr is available, the g	hythmic patients enomic localization o	n chromosome 6	is given (NC_000	06.10)	

Table 6 Allele fi	requencies of SLC	722A2 (OCT2) gen	etic variants in diff	erent ethnic populs	ttions	
SLC22A2	rs#	Allele frequency ((%)			References
$(OCT2)^{a}$		European-	African-	Asian-American	Chinese, Japanese,	
		American/	American		Korean, Vietnamese	
		Caucasian				
5' UTR	rs8177506	0 (n = 200)	0 (n = 200)	$1.7 \ (n = 60)$		Leabman et al. (2002)
Phe45 fs	rs8177505	$0.5 \ (n = 200)^{\rm A}$	$0~(n=200)^{ m A}$	$0 \ (n = 60)^{\rm A}$	$0 (n = 116 \text{ Japanese})^{B}$	A: Leabman et al. (2002) and B:
						Fukushima-Uesaka et al. (2004)
Pro54Ser	8177504	$0 \ (n = 200)^{\rm A}$	$0.5~(n=200)^{\rm A}$	$0~(n=60)^{ m A}$	$0 (n = 116 \text{ Japanese})^{B}$	A: Leabman et al. (2002) and B:
						Fukushima-Uesaka et al. (2004)
Thr130Thr	rs624249	$39.4 \ (n = 200)^{\rm A}$	$20.5 \ (n = 200)^{\rm A}$	$18.3 \ (n = 60)^{\rm A}$	$15 (n = 150 \text{ Koreans})^{\text{B}}$	A: Leabman et al. (2002), B: Kang et al.
					18.4 $(n = 112 \text{ Chinese})^{C}$	(2007) and C: Wang et al. (2008b)
Phe161Leu	rs8177509	0.5 (n = 200)	0 (n = 200)	0 (n = 60)		Leabman et al. (2002)
Met165Val	rs8177508	0 (n = 200)	0.5 (n = 200)	0 (n = 60)		Leabman et al. (2002)
Met165Ile	rs8177507	$0 \ (n = 200)^{\rm A}$	$1 (n = 200)^{\rm A}$	$0 \ (n = 60)^{\rm A}$	$0 (n = 116 \text{ Japanese})^{B}$	A: Leabman et al. (2002) and B:
					•	Fukushima-Uesaka et al. (2004)
Intron	rs2774230	$29.6 (n = 200)^{\rm A}$	41.9 $(n = 200)^{\rm A}$	$3.3 \ (n = 60)^{\rm A}$	$15.8 \ (n = 112 \text{ Chinese})^{B}$	A: Leabman et al. (2002) and B: Wang
						et al. (2008b)
Intron	rs8177511	0 (n = 200)	2.5 (n = 200)	0 (n = 60)		Leabman et al. (2002)
Thr199Ile, C>T	No refSNP ID				$0.9 (n = 116 \text{ Japanese})^{\text{A}}$	A: Fukushima-Uesaka et al. (2004) and
g.160591647					$0.7 (n = 150 \text{ Koreans})^{\text{B}}$	B: Kang et al. (2007)
					$0 (n = 100 \text{ Vietnamese})^{\text{B}}$	
					$0 (n = 100 \text{ Chinese})^{\text{B}}$	
Thr201Met,	No refSNP ID				1.3 $(n = 116 \text{ Japanese})^{\text{A}}$	A: Fukushima-Uesaka et al. (2004),
C>T					$0.7 (n = 150 \text{ Koreans})^{B}$	B: Kang et al. (2007) and C: Wang
g.160591641					1.5 (n = 100)	et al. (2008b)
					Vietnamese) ^B	
					$0 (n = 100 \text{ Chinese})^{\mathrm{B}}$	
					$0.4 (n = 112 \text{ Chinese})^{\text{C}}$	
lle223lle	rs8177510	0 (n = 200)	0 (n = 200)	$1.7 \ (n = 60)$		Leabman et al. (2002)
Ala270Ser	rs316019	$15.7 \ (n=200)^{\rm A}$	$11 \ (n = 200)^{\rm A}$	$8.6 (n = 60)^{\rm A}$	$16.8 \ (n = 116 \text{ Japanese})^{\text{C}}$	A: Leabman et al. (2002), B: Nies et al.
		$8.7 \ (n = 150)^{\rm B}$			$11.0 \ (n = 150 \text{ Koreans})^{\text{D}}$	(2009), C: Fukushima-
					13.5 $(n = 100)$	

Table 6 (contin	(pen					
SLC22A2	rs#	Allele frequency	$(2_0')$			References
(OCT2) ^a		European- American/	African- American	Asian-American	Chinese, Japanese, Korean, Vietnamese	
		Caucasian				
3' UTR, insT						
g.160558192						
3' UTR	rs3219198	$0.5 \ (n = 200)$	$0.5 \ (n = 200)$	0 (n = 60)		Leabman et al. (2002)
fs frameshift, U1	TR untranslated re	egion				
^a In case that no	refSNP ID is ava	ilable, the genomic l	ocalization on chr	omosome 6 is given	I (NC_00006.10)	

SLC22A3 (OCT3) ^a	rs#	Allele frequency (%)		References
		Caucasian	Korean	
5' near gene	rs10455781	3 (n = 150)		Nies et al. (2009)
5' near gene	rs555754	47.5~(n=100)		Lazar et al. (2003)
Thr44Met	rs8187715	$0 \ (n = 150)$		Nies et al. (2009)
Arg120Arg	rs668871	$48.5~(n=100)^{ m A}$	73 $(n = 150)^{\rm B}$	A: Lazar et al. (2003) and B: Kang et al. (2007)
Gly193Gly	rs76026925		2 (n = 150)	Kang et al. (2007)
g.160748108				
Phe201Phe	rs3918291	0.5~(n = 100)		Lazar et al. (2003)
Met370Ile	No refSNP ID	$0 \ (n = 100)^{\mathrm{A}}$		A: Lazar et al. (2008) and B: Nies et al. (2009)
g.160778055		$0 \ (n = 150)^{ m B}$		
Thr400Ile	rs8187725	0.3~(n=150)		Nies et al. (2009)
Ala411Ala	rs2292334	$36.5~(n=100)^{ m A}$	$50 \ (n = 150)^{\rm C}$	A: Lazar et al. (2003), B: Nies et al. (2009) and
		$34.3 \ (n = 150)^{\rm B}$		C: Kang et al. (2007)
Ala439Val	rs12212246	0 (n = 150)		Nies et al. (2009)
Gly475Ser	rs9365165	0 (n = 150)		Nies et al. (2009)
Leu498Leu	rs8187722	0.7~(n=150)		Nies et al. (2009)
3' UTR	rs3088442	33.7~(n=150)		Nies et al. (2009)
UTR untranslated region ^a In case that no refSNP ID	is available, the genon	nic localization on chromoso	me 6 is given (NC 0000	06.10

Table 8 Allele free	quencies of SLC4	<pre>#7/MATE genetic var</pre>	iants in different eth	nnic populations.			
SLC47A1	rs#	Allele frequency (%	(9				References
(MATE1) ^a		European-	Mexican-	African-	Chinese-	Japanese	
		American/ Caucasian	American	American	American		
5' UTR	rs2252281	$32.1 \ (n = 68)$	28.9 (n = 68)	44.5 $(n = 68)$	23.1 $(n = 68)$		Ha Choi et al. (2009)
5' UTR	rs78572621	5.4 $(n = 68)$	7.8 $(n = 68)$	$1.7 \ (n = 68)$	3.1 (n = 68)		Ha Choi et al. (2009)
5' UTR	rs76654011	0 (n = 68)	0 (n = 68)	2.5 (n = 68)	0 (n = 68)		Ha Choi et al. (2009)
5' UTR	rs75517315	1.5 (n = 68)	$0.8 \ (n = 68)$	$1.5 \ (n = 68)$	2.9 $(n = 68)$		Ha Choi et al. (2009)
Val10Leu, G>T	No refSNP ID					2.2 $(n = 89)$	Kajiwara et al. (2009)
2101106118							
Arg11Arg, C>T g.19377877	No refSNP ID					$0.6 \ (n = 89)$	Kajiwara et al. (2009)
Ser29Ser	rs61733934	2.2 (n = 68)	$0.7 \ (n = 68)$	0 (n = 68)	0 (n = 68)		Chen et al. (2009b)
Ala42Ala, T>C 2.19377970	No refSNP ID					$0.6 \ (n = 89)$	Kajiwara et al. (2009)
Glv64Asn	re77630697	$0 (n = 68)^{A}$	$0 (n = 68)^{A}$	$0 (n = 68)^{A}$	$0.7 (n = 68)^{A}$	$0.6 (n = 80)^{B}$	A. Chen et al (2000h)
							and B: Kajiwara et al. (2009)
Phe90Phe	rs34012597	0 (n = 68)	0 (n = 68)	5.1 $(n = 68)$	$0.7 \ (n = 68)$		Chen et al. (2009b)
Leu125Phe	rs77474263	0 (n = 68)	5.1 $(n = 68)$	0 (n = 68)	0.7 (n = 68)		Chen et al. (2009b)
Leu236Leu	rs16960203	$0 (n = 68)^{A}$	7.6 $(n = 68)^{\rm A}$	$0.7 \ (n = 68)^{\rm A}$	8.3 $(n = 68)^{\rm A}$	9.6 $(n = 89)^{\rm B}$	A: Chen et al. (2009b) and B: Kajiwara
							et al. (2009)
Ile297Ile, Ala310Val_C>T	rs76420645 No refSNP ID	0 (n = 68)	0 (n = 68)	$0.8 \ (n = 68)$	0 (n = 68)	(0) = 80	Chen et al. (2009b) Kaiiwara et al (2009)
g.19404100							(coor) in is numular
Asp328Ala, A>C 0.19404154	No refSNP ID					$0.6 \ (n = 89)$	Kajiwara et al. (2009)
Val338Ile Asn474Ser, A>G g.19416701	rs35790011 No refSNP ID	0 (n = 68)	0 (n = 68)	5.1 (n = 68)	0 (n = 68)	0.6 $(n = 89)$	Chen et al. (2009b) Kajiwara et al. (2009)
)							

Val480Met	rs76645859	0 (n = 68)	0 (n = 68)	0 (n = 68)	$0.8 \ (n = 68)$	Chen et al. (2009b)
Cys497Ser	rs35395280	0 (n = 68)	0 (n = 68)	$2.4 \ (n = 68)$	$0 \ (n = 68)$	Chen et al. (2009b)
Gln519His	rs78700676	0 (n = 68)	0 (n = 68)	$0.8 \ (n = 68)$	0 (n = 68)	Chen et al. (2009b)

The work by Kajiwara et al. (2009) describes subjects with renal diseases

^aIn case that no refSNP ID is available, the genomic localization on chromosome 17 is given (NC_000017.9). UTR, untranslated region

Table 9 Phenoty	pe-genotype correlations	of SLC22AI(OCTI) in humi	ans	
	SLC22A1 (OCT1)	Population (n)	Results	References
Tissue expression				
Liver	rs4646272 (intron) Met408Val	Nondiabetic donors (Caucasian $n = 33$,	OCT1 mRNA tended to be lower in 408Met carriers	Shikata et al. (2007)
		Japanese $n = 25$)		
Liver	36 variants	Caucasian surgical liver samples $(n = 150)$	By multivariate analysis adjusted for multiple testing. Arg61Cys significantly correlated with decreased OCT1 protein expression ($n < 0.0001$)	Nies et al. (2009)
Pharmacokinetics	<i>(pharmacodynamics</i>			
Metformin (two	Arg61Cys	Healthy subjects	Plasma glucose AUC for OGTT ($p = 0.004$) and insulin levels	Shu et al.
doses, total	Gly401Ser	(n = 20)	2 h after glucose administration ($p < 0.05$) were higher in	(2007)
1,850 mg)	Met420del		OCT1-variant subjects (carrier of any of the SNPs tested) vs.	
	Gly465Arg		subjects with only OCT1-reference alleles	
Metformin (two	Arg61Cys	Healthy subjects	Significant higher AUC, higher C _{max} , and lower V/F in OCT1-	Shu et al.
doses, total	Gly401Ser	(n = 20)	variant subjects (carrier of any of the SNPs tested) vs.	(2008)
1,850 mg	Met420del		subjects with only OCT1-reference alleles	
	Gly465Arg			
Metformin	Ser52Ser	Healthy male caucasians	CL_{ren} ($p = 0.032$) and net CL by tubular secretion ($p = 0.03$)	Tzvetkov
(single dose,	Arg61Cys	(n = 103)	increased with the number of inactive OCT1 alleles defined	et al.
500 mg)	Gly401Ser		by the presence of one or more of the amino acid	(2009)
	Met420del		substitutions at positions 61, 401, 420, and 465	
	Gly465Arg and other			
	tagging SNPs			
Imatinib	Arg61Cys Gly465Arg	Patients with GIST $(n = 74)$	No difference in oral clearance at steady state in patients with at least one of both variants compared to patients with the	Hu et al. (2008)
			reterence allele on both positions	
Treatment outcom	Je state i stat			
Metformin	Phe41Leu	Patients with type	The intron variant (rs4646272 T>G) was a negative and	Shikata et al.
	Glv81Glv	2 diadetes ($n = 3.3$)	Met408 val a positive outcome predictor in a stepwise discriminant functional analysis	(1007)
	Pro117Leu			
	rs4646272 (intron)			

t metformin Only the rs622342 A>C variant was associated with metformin Becker et al. response. For each minor C allele, the reduction in HbA1c (2009b) terdam Study) levels was 0.28% less ($p = 0.005$). After Bonferroni correction, the <i>p</i> -value was 0.045	s with type No clinically significant reduction to lower HbA1c levels, to Zhou et al. abetes and influence the chance of achieving a treatment target or the (2009) nable metformin hazard of therapy failure in patients carrying both SNPs onse $(n = 1531, compared to reference genotype DARTS study)$	t metformin The effect of MATE 1 rs2289669 polymorphism on glucose-Becker et al. s $(n = 98,$ lowering effect was larger in patients with the OCT1 (2010) rs622342 CC genotype $(p = 0.005)$ than in patients with the AA genotype	s with CML No association with the Arg61Cys variant and imatinib Zach et al. = 32) response (cytogenetic/major molecular response) (2008)	(continued)
Incident metformin Only th users (n = 102, resp Rotterdam Study) leve corr	Patients with type No clin 2 diabetes and influ- definable metformin hazi response $(n = 1531, \text{ cont}$ GoDARTS study)	Incident metformin The eff users $(n = 98,$ low Rotterdam Study) rs62 AA	Patients with CML No asso $(n = 32)$ resp	
Phe 160Leu Pro341Leu Met408Val rs36056065 (intron) rs622591 (intron) 11 tagging SNPs (Illumina 550k SNP array) rs3798174 (intron) rs3798168 (intron) rs3798168 (intron) rs3798167 (intron) rs3798167 (intron) rs143844 (intron) rs143844 (intron) rs1564348 (intron) rs1564348 (intron) rs156438 (intron) rs156438 (intron)	Arg61Cys Met420del	OCT1: rs622342 (intron) MATE1: rs2289669 (intron)	Arg61Cys	
Metformin	Metformin	Metformin	Imatinib Imatinib oral	

Table 9 (contin	(pənt			
	SLC22A1 (OCT1)	Population (n)	Results	References
	Arg61Cys	Patients with CML	Patients with the GG genotype for Phe160Leu showed a higher	Kim et al.
	Ser52Ser	(n = 229), median	risk of LOR (HR, 4.86; $p = 0.0008$) or treatment failure	(2009)
	Phe 160Leu	duration of therapy	(HR, 3.24; $p = 0.02$) compared to patients carrying at least	
	Pro341Leu	40.8 months, median	one C allele. No correlation with SLC22A1 haplotypes	
	Met408Val	follow-up 47.3		
		months		
CML chronic my	veloid lenkemia GIST oast	trointestinal stromal tumor	0GTT oral olucose tolerance test IOR loss of response HR haza	rd ratio

b D ζ

Table 10 Phenotype-g	enotype correlations of	SLC22A2 (OCT2) in hur	nans	
	SLC22A2 (OCT2)	Population (n)	Results	References
Pharmacokinetics/phan Metformin (single	macodynamics Thr1991le	Healthy Korean	Subjects with variant genotypes for the three SNPs showed higher	Song et al.
dose, 200 mg)	Ihr201Met Ala270Ser	subjects ($n = 20$)	values for C_{max} ($p = 0.0005$) and for AUC ($p = 0.0005$), but lower values for CL/F ($p = 0.0335$), Vd/F ($p = 0.0316$), CL _{ren} ($p = 0.0018$), and net CL by tubular secretion ($p = 0.001$) as	(2008)
Metformin (single dose, 500 mg)	Ala270Ser	Healthy Chinese subjects $(n = 14)$	compared to the reference genotype group Mean CL _{ren} and net CL by tubular secretion were 26.1% (p = 0.022) and $28%$ $(p = 0.036)$, resp., lower in TT vs. GG carriers	Wang et al. (2008b)
			After cimetidine coadministration CL_{ren} and net CL were significantly decreased in GG and GT carriers, respectively. Metformin AUC _{n,2} increased in GG carriers ($p = 0.043$).	
Metformin (single dose, 850 mg)	Ala270Ser	Healthy subjects $(n = 23)$	Mean CL _{ren} ($p = 0.005$) net CL by tubular secretion ($p = 0.002$) were lower in GG vs GT carriers	Chen et al. (2009a)
Metformin (single dose, 500 mg)	14 variants including Ala270Ser	Healthy male Caucasians (n = 103)	No significant association between CL _{ren} and OCT2 variants	Tzvetkov et al. (2009)
Treatment outcome				
Metformin	Thr201Met Ala270Ser	Patients with type 2 diabetes $(n = 33)$	No association with metformin response was found	Shikata et al. (2007)
Cisplatin	Ala270Ser	Patients with solid tumors and cisplatin-based therapy $(n = 78)$	Ala270Ser variant was associated with reduced cisplatin-induced nephrotoxicity and only patients with the reference sequence showed significant increase in serum creatinine level ($n = 68$, p = 0.0009)	Filipski et al. (2009)
Susceptibility Essential hypertension	Ala270Ser	Caucasian patients with cardiovascular diseases $(n = 607)$	Essential hypertension was less prevalent among patients carrying at least one Ser270 allele compared to patients with the reference sequence ($p = 0.028$). The effect was more prominent in patients without type 2 diabetes ($p = 0.013$)	Lazar et al. (2006)

Table 11 Phenoty _F	be-genotype correlations of 1	SLC22A3 (OCT3) in humans		
	SLC22A3 (OCT3)	Population (n)	Results	References
Tissue expression				
Liver	34 variants including rs3088442 (3' UTR)	Caucasian surgical liver samples $(n = 150)$	By multivariate analysis adjusted for multiple testing, four variants (rs2292334, rs2048327, rs1810126, rs3088442) were associated with reduced mRNA levels ($p = 0.03$)	Nies et al. (2009)
Pharmacokinetics/p.	harmacodynamics			
Metformin (single dose, 500 mg) Susceptibility	6 variants	Healthy male Caucasians $(n = 103)$	No significant association between CL _{ren} and OCT3 variants	Tzvetkov et al. (2009)
Methamphetamine	rs655185 (intron)	Japanese subjects with	Genotype ($p = 0.024$) and allele ($p = 0.011$) frequency	Aoyama et al.
dependence	rs509707 (intron) rs4709476 (intron)	methamphetamine (MAP) denendence	of rs509707, allele frequency of rs4709426 $(n = 0.037)$ and hanlotvnic frequencies for both	(2006)
	rs7745775 (intron)	(n = 213) and healthy	SNPs ($p = 0.0438$) differed significantly between	
	rs3106164 (intron)	controls $(n = 443)$	polysubstance and single-MAP users	
	rs2292334 (Ala411Ala)			
	rs3918286 (intron) rs3088442 (3' UTR)			
Obsessive-	rs60515630 (5' near gene)	Children/adolescents	Known SNPs and frequent haplotypes were not associated	Lazar et al. (2008)
compulsive	rs555754 (5' near gene)	(n = 84) with	with OCD. Two novel variants (rs60515630,	
disorder (OCD)	rs668871 (Arg120Arg)	childhood-onset OCD vs	Met370Ile) were exclusively found in OCD patients	
	rs3918291 (Phe201Phe) Met37011e	healthy Caucasian subjects $(n = 100)$		
	rs2292334 (Ala411Ala)			
	rs3918287 (intron)			
	rs2457574 (intron) rs1810126 (3' UTR)			
Prostate cancer	GWA study	Prostate cancer patients vs	Significant association of variant rs9364554 (intron)	Eeles et al. (2008)
		population-screened	with prostate cancer susceptibility (stage 1:	
		controls stage 1: 1854	$p = 9.3 \times 10^{-7}$, stage $1 + 2$: $p = 5.5 \times 10^{-10}$)	
		cases vs 1894 controls		
		Stage 2: 3268 cases vs 3366		
		controls		

GWA genomewide association, GWHA genomewide haplotype association

TADIC 17 LICII	ory pe-genory pe contenanons or a	LC4//MAIE III IIUIIIAIIS		
	SLC47A1 (MATE1)	Population (n)	Results	References
Tissue expressic Kidney Liver	n 152252281 (5' UTR)	Surgical kidney samples (n = 38), post-mortem liver samples $(n = 34)$	mRNA in TC ($n = 21$) or CC ($n = 5$) kidneys were significantly lower ($p = 0.015$) compared to TT genotype ($n = 12$). No effect was found in human liver	Ha Choi et al. (2009)
Pharmacokineti Metformin (single dose, 500 mg)	cs/pharmacodynamics rs2289669 (intron)	Healthy male Caucasians $(n = 103)$	No significant association between CL _{ren} and the rs2289669 G>A variant	Tzvetkov et al. (2009)
Treatment outco Metformin	<i>me</i> 12 tagging SNPs (Illumina 550k SNP array) rs894680 (intron) rs2018675 (intron) rs2440154 (intron) rs2440155 (intron) rs2440155 (intron) rs2440155 (intron) rs2440155 (intron) rs2453568 (intron) rs2289669 (intron) rs2289669 (intron) rs2453594 (intergenic region) rs2155894 (intergenic region) rs2155894 (intergenic region)	Incident metformin users (<i>n</i> = 116, Rotterdam Study)	Only the rs2289669 G>A variant was associated with metformin response. For each minor A allele, the reduction in HbA1c levels was 0.30% larger ($p = 0.005$). After Bonferroni correction, the p-value was 0.045	Becker et al. (2009a)
	1 1			

activity (White et al. 2007; Wang et al. 2008a), is the tyrosine kinase inhibitor imatinib, a mainstay in treatment of patients with chronic myeloid leukemia (CML). Although one study suggests a significant contribution of the OCT1-Phe160Leu variant related to loss of response to imatinib or treatment failure (Kim et al. 2009), further confirmatory studies are still missing, which are mandatory to support such an association.

Regarding OCT2 variants, the Ala270Ser polymorphism was investigated in several pharmacokinetic metformin studies with discrepant results (Table 10). The study with the most representative number of subjects included (n=103) did not show any association (Tzvetkov et al. 2009). Interestingly, the OCT2-Ala270Ser variant was also related to a significantly reduced cisplatin-induced nephrotoxicity in patients with solid tumors, which fits to the fact that cisplatin is indeed an OCT2 substrate and OCT2 is highly expressed in human kidney (Filipski et al. 2009).

Although the physiological role of OCTs and MATEs is not fully resolved, it is conceivable that membrane transporters determine intracellular concentration of potentially efficient and/or toxic agents and metabolites. In this context it is plausible to hypothesize that genotype-dependent OCT/MATE expression may also contribute to a certain disease susceptibility. Of interest, susceptibility for diseases was repeatedly related to OCT3 (Table 11), whereas convincing data for both, OCT1 and OCT2, are lacking. The *SLC22A3* gene was identified as a potential risk factor for prostate cancer as well as coronary artery disease by genomewide association studies (GWA), including thousands of index cases and confirmed by independent control groups (Eeles et al. 2008; Tregouet et al. 2009).

Taken together, compared with other transport proteins the research on the impact of OCT and MATE variants is only at the beginning. Comprehensive genotype–phenotype correlation studies including different human tissues as well as clinical response data are required in the future.

Acknowledgments The authors' work on the importance of transporters in drug therapy is supported by the Robert-Bosch Foundation Stuttgart, the IZEPHA Grants #6-0-0/672 and #8-0-0/674, the Federal Ministry for Education and Research (BMBF, Berlin, Germany) grant 03 IS 2061C, the German Research Foundation Grant SFB487/A4, and the Deutsche Krebshilfe (grant 107150). We thank Dr. Elke Schaeffeler for helpful discussions.

References

- Abel S, Nichols DJ, Brearley CJ, Eve MD (2000) Effect of cimetidine and ranitidine on pharmacokinetics and pharmacodynamics of a single dose of dofetilide. Br J Clin Pharmacol 49:64–71
- Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of *Escherichia coli*. Science 301:610–615
- Ahlin G, Karlsson J, Pedersen JM, Gustavsson L, Larsson R, Matsson P et al (2008) Structural requirements for drug inhibition of the liver specific human organic cation transport protein. J Med Chem 51:5932–5942
- Alnouti Y, Petrick JS, Klaassen CD (2006) Tissue distribution and ontogeny of organic cation transporters in mice. Drug Metab Dispos 34:477–482

- Amphoux A, Vialou V, Drescher E, Bruss M, La Mannoury CC, Rochat C et al (2006) Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology 50:941–952
- Aoyama N, Takahashi N, Kitaichi K, Ishihara R, Saito S, Maeno N et al (2006) Association between gene polymorphisms of SLC22A3 and methamphetamine use disorder. Alcohol Clin Exp Res 30:1644–1649
- Asaka J, Terada T, Tsuda M, Katsura T, Inui K (2007) Identification of essential histidine and cysteine residues of the H+/organic cation antiporter multidrug and toxin extrusion (MATE). Mol Pharmacol 71:1487–1493
- Ayrton A, Morgan P (2008) Role of transport proteins in drug discovery and development: a pharmaceutical perspective. Xenobiotica 38:676–708
- Bachmakov I, Glaeser H, Fromm MF, König J (2008) Interaction of oral antidiabetic drugs with hepatic uptake transporters: focus on OATPs and OCT1. Diabetes 57:1463–1469
- Bachmakov I, Glaeser H, Endress B, Morl F, König J, Fromm MF (2009) Interaction of betablockers with the renal uptake transporter OCT2. Diabetes Obes Metab 11:1080–1083
- Baganz NL, Horton RE, Calderon AS, Owens WA, Munn JL, Watts LT et al (2008) Organic cation transporter 3: keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice. Proc Natl Acad Sci U S A 105:18976–18981
- Ballestero MR, Monte MJ, Briz O, Jimenez F, Gonzalez-San MF, Marin JJ (2006) Expression of transporters potentially involved in the targeting of cytostatic bile acid derivatives to colon cancer and polyps. Biochem Pharmacol 72:729–738
- Barendt WM, Wright SH (2002) The human organic cation transporter (hOCT2) recognizes the degree of substrate ionization. J Biol Chem 277:22491–22496
- Bayer M, Kuci Z, Schömig E, Gründemann D, Dittmann H, Handgretinger R et al (2009) Uptake of mIBG and catecholamines in noradrenaline- and organic cation transporter-expressing cells: potential use of corticosterone for a preferred uptake in neuroblastoma- and pheochromocytoma cells. Nucl Med Biol 36:287–294
- Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH (2009a) Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucoselowering effect of metformin in patients with diabetes: a preliminary study. Diabetes 58:745–749
- Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH (2009b) Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J 9:242–247
- Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH (2010) Interaction between polymorphisms in the OCT1 and MATE1 transporter and metformin response. Pharmacogenet Genomics 20:38–44
- Bednarczyk D, Ekins S, Wikel JH, Wright SH (2003) Influence of molecular structure on substrate binding to the human organic cation transporter, hOCT1. Mol Pharmacol 63:489–498
- Biermann J, Lang D, Gorboulev V, Koepsell H, Sindic A, Schroter R et al (2006) Characterization of regulatory mechanisms and states of human organic cation transporter 2. Am J Physiol Cell Physiol 290:C1521–C1531
- Bourdet DL, Pritchard JB, Thakker DR (2005) Differential substrate and inhibitory activities of ranitidine and famotidine toward human organic cation transporter 1 (hOCT1; SLC22A1), hOCT2 (SLC22A2), and hOCT3 (SLC22A3). J Pharmacol Exp Ther 315:1288–1297
- Boyer JL, Graf J, Meier PJ (1992) Hepatic transport systems regulating pHi, cell volume, and bile secretion. Annu Rev Physiol 54:415–438
- Budiman T, Bamberg E, Koepsell H, Nagel G (2000) Mechanism of electrogenic cation transport by the cloned organic cation transporter 2 from rat. J Biol Chem 275:29413–29420
- Busch AE, Quester S, Ulzheimer JC, Waldegger S, Gorboulev V, Arndt P et al (1996) Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J Biol Chem 271:32599–32604
- Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C et al (1998) Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol 54:342–352

- Cetinkaya I, Ciarimboli G, Yalcinkaya G, Mehrens T, Velic A, Hirsch JR et al (2003) Regulation of human organic cation transporter hOCT2 by PKA, PI3K, and calmodulin-dependent kinases. Am J Physiol Renal Physiol 284:F293–F302
- Chen Y, Zhang S, Sorani M, Giacomini KM (2007) Transport of paraquat by human organic cation transporters and multidrug and toxic compound extrusion family. J Pharmacol Exp Ther 332:695–700
- Chen Y, Li S, Brown C, Cheatham S, Castro RA, Leabman MK et al (2009a) Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenet Genomics 19:497–504
- Chen Y, Teranishi K, Li S, Yee SW, Hesselson S, Stryke D et al (2009b) Genetic variants in multidrug and toxic compound extrusion-1, hMATE1, alter transport function. Pharmacogenomics J 9:127–136
- Cheng Y, Wright SH, Hooth MJ, Sipes IG (2009) Characterization of the disposition and toxicokinetics of *N*-butylpyridinium chloride in male F-344 rats and female B6C3F1 mice and its transport by organic cation transporter 2. Drug Metab Dispos 37:909–916
- Ciarimboli G (2008) Organic cation transporters. Xenobiotica 38:936-971
- Ciarimboli G, Struwe K, Arndt P, Gorboulev V, Koepsell H, Schlatter E et al (2004) Regulation of the human organic cation transporter hOCT1. J Cell Physiol 201:420–428
- Ciarimboli G, Ludwig T, Lang D, Pavenstädt H, Koepsell H, Piechota HJ et al (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167:1477–1484
- Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B et al (2010) Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is target for protective interventions. Am J Pathol 176(3):1169–1180
- Dresser MJ, Xiao G, Leabman MK, Gray AT, Giacomini KM (2002) Interactions of n-tetraalkylammonium compounds and biguanides with a human renal organic cation transporter (hOCT2). Pharm Res 19:1244–1247
- Dudley AJ, Bleasby K, Brown CD (2000) The organic cation transporter OCT2 mediates the uptake of beta-adrenoceptor antagonists across the apical membrane of renal LLC-PK(1) cell monolayers. Br J Pharmacol 131:71–79
- Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, Guy M, Jugurnauth SK et al (2008) Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 40:316–321
- Feng B, Obach RS, Burstein AH, Clark DJ, de Morais SM, Faessel HM (2008) Effect of human renal cationic transporter inhibition on the pharmacokinetics of varenicline, a new therapy for smoking cessation: an in vitro–in vivo study. Clin Pharmacol Ther 83:567–576
- Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A (2009) Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther 86:396–402
- Fujita T, Urban TJ, Leabman MK, Fujita K, Giacomini KM (2006) Transport of drugs in the kidney by the human organic cation transporter, OCT2 and its genetic variants. J Pharm Sci 95:25–36
- Fukushima-Uesaka H, Maekawa K, Ozawa S, Komamura K, Ueno K, Shibakawa M et al (2004) Fourteen novel single nucleotide polymorphisms in the SLC22A2 gene encoding human organic cation transporter (OCT2). Drug Metab Pharmacokinet 19:239–244
- Giacomini KM, Sugiyama Y (2006) Membrane transporters and drug response. In: Brunton LL, Lazo JS, Parker RL (eds) Goodman and Gilman's. The pharmacological basis of therapeutics, 11th edn. McGraw Hill, New York, pp 41–70
- Giacomini KM, Hsyu PH, Gisclon LG (1988) Renal transport of drugs: an overview of methodology with application to cimetidine. Pharm Res 5:465–471
- Giacomini KM, Brett CM, Altman RB, Benowitz NL, Dolan ME, Flockhart DA et al (2007) The pharmacogenetics research network: from SNP discovery to clinical drug response. Clin Pharmacol Ther 81:328–345

- Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S et al (1997) Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16:871–881
- Gorboulev V, Volk C, Arndt P, Akhoundova A, Koepsell H (1999) Selectivity of the polyspecific cation transporter rOCT1 is changed by mutation of aspartate 475 to glutamate. Mol Pharmacol 56:1254–1261
- Gorboulev V, Shatskaya N, Volk C, Koepsell H (2005) Subtype-specific affinity for corticosterone of rat organic cation transporters rOCT1 and rOCT2 depends on three amino acids within the substrate binding region. Mol Pharmacol 67:1612–1619
- Gorbunov D, Gorboulev V, Shatskaya N, Mueller T, Bamberg E, Friedrich T et al (2008) Highaffinity cation binding to organic cation transporter 1 induces movement of helix 11 and blocks transport after mutations in a modelled interaction domain between two helices. Mol Pharmacol 73:50–61
- Gründemann D, Schömig E (2000) Gene structures of the human non-neuronal monoamine transporters EMT and OCT2. Hum Genet 106:627–635
- Gründemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H (1994) Drug excretion mediated by a new prototype of polyspecific transporter. Nature 372:549–552
- Gründemann D, Schechinger B, Rappold GA, Schömig E (1998) Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nat Neurosci 1:349–351
- Gründemann D, Liebich G, Kiefer N, Köster S, Schömig E (1999) Selective substrates for nonneuronal monoamine transporters. Mol Pharmacol 56:1–10
- Gründemann D, Hahne C, Berkels R, Schomig E (2003) Agmatine is efficiently transported by non-neuronal monoamine transporters extraneuronal monoamine transporter (EMT) and organic cation transporter 2 (OCT2). J Pharmacol Exp Ther 304:810–817
- Ha Choi J, Wah Yee S, Kim MJ, Nguyen L, Ho LJ, Kang JO et al (2009) Identification and characterization of novel polymorphisms in the basal promoter of the human transporter, MATE1. Pharmacogenet Genomics 19:770–780
- Hardman JG, Limbird LE, Gilman AG (eds) (2001) Goodman & Gilman's. The pharmacological basis of therapeutics, 10th edn. New York, McGraw Hill
- Harlfinger S, Fork C, Lazar A, Schömig E, Gründemann D (2005) Are organic cation transporters capable of transporting prostaglandins? Naunyn Schmiedebergs Arch Pharmacol 372:125–130
- Hasannejad H, Takeda M, Narikawa S, Huang XL, Enomoto A, Taki K et al (2004) Human organic cation transporter 3 mediates the transport of antiarrhythmic drugs. Eur J Pharmacol 499:45–51
- Hayer M, Bönisch H, Brüss M (1999) Molecular cloning, functional characterization and genomic organization of four alternatively spliced isoforms of the human organic cation transporter 1 (hOCT1/SLC22A1). Ann Hum Genet 63:473–482
- Hayer-Zillgen M, Brüss M, Bönisch H (2002) Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol 136:829–836
- Hesselson SE, Matsson P, Shima JE, Fukushima H, Yee SW, Kobayashi Y et al (2009) Genetic variation in the proximal promoter of ABC and SLC superfamilies: liver and kidney specific expression and promoter activity predict variation. PLoS One 4:e6942
- Ho RH, Kim RB (2005) Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 78:260–277
- Hu S, Franke RM, Filipski KK, Hu C, Orwick SJ, de Bruijn EA et al (2008) Interaction of imatinib with human organic ion carriers. Clin Cancer Res 14:3141–3148
- Inazu M, Takeda H, Matsumiya T (2003) Expression and functional characterization of the extraneuronal monoamine transporter in normal human astrocytes. J Neurochem 84:43–52
- International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861
- Ionita-Laza I, Lange C, Laird M (2009) Estimating the number of unseen variants in the human genome. Proc Natl Acad Sci U S A 106:5008–5013

- Ito S, Kusuhara H, Kuroiwa Y, Wu C, Moriyama Y, Inoue K et al (2010) Potent and specific inhibition of mMate1-mediated efflux of type I organic cations in the liver and kidney by pyrimethamine. J Pharmacol Exp Ther 333:341–350
- Itoda M, Saito Y, Maekawa K, Hichiya H, Komamura K, Kamakura S et al (2004) Seven novel single nucleotide polymorphisms in the human SLC22A1 gene encoding organic cation transporter 1 (OCT1). Drug Metab Pharmacokinet 19:308–312
- Iwai M, Minematsu T, Narikawa S, Usui T, Kamimura H (2009) Involvement of human organic cation transporter 1 in the hepatic uptake of 1-(2-methoxyethyl)-2-methyl-4, 9-dioxo-3-(pyrazin-2-ylmethyl)-4, 9-dihydro-1H-napht ho[2, 3-d]imidazolium bromide (YM155 monobromide), a novel, small molecule survivin suppressant. Drug Metab Dispos 37:1856–1863
- Jonker JW, Wagenaar E, Mol CA, Buitelaar M, Koepsell H, Smit JW et al (2001) Reduced hepatic uptake and intestinal excretion of organic cations in mice with a targeted disruption of the organic cation transporter 1 (Oct1 [Slc22a1]) gene. Mol Cell Biol 21:5471–5477
- Jonker JW, Wagenaar E, Van ES, Schinkel AH (2003) Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol Cell Biol 23:7902–7908
- Jung N, Lehmann C, Rubbert A, Knispel M, Hartmann P, van Lunzen J et al (2008) Relevance of the organic cation transporters 1 and 2 for antiretroviral therapy in HIV infection. Drug Metab Dispos 36:1616–1623
- Kaiser J (2008) DNA sequencing. A plan to capture human diversity in 1000 genomes. Science 319:395
- Kajiwara M, Terada T, Ogasawara K, Iwano J, Katsura T, Fukatsu A et al (2009) Identification of multidrug and toxin extrusion (MATE1 and MATE2-K) variants with complete loss of transport activity. J Hum Genet 54:40–46
- Kang HJ, Song IS, Shin HJ, Kim WY, Lee CH, Shim JC et al (2007) Identification and functional characterization of genetic variants of human organic cation transporters in a Korean population. Drug Metab Dispos 35:667–675
- Kekuda R, Prasad PD, Wu X, Wang H, Fei YJ, Leibach FH et al (1998) Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem 273:15971–15979
- Kerb R (2006) Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Lett 234:4–33
- Kerb R, Brinkmann U, Chatskaia N, Gorbunov D, Gorbulev V, Mornhinweg E et al (2002) Identification of genetic variations of the human organic cation transporter hOCT1 and their functional consequences. Pharmacogenetics 12:591–595
- Khamdang S, Takeda M, Noshiro R, Narikawa S, Enomoto A, Anzai N et al (2002) Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther 303:534–539
- Kim DH, Sriharsha L, Xu W, Kamel-Reid S, Liu X, Siminovitch K et al (2009) Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res 15:4750–4758
- Kimura H, Takeda M, Narikawa S, Enomoto A, Ichida K, Endou H (2002) Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J Pharmacol Exp Ther 301:293–298
- Kimura N, Masuda S, Tanihara Y, Ueo H, Okuda M, Katsura T et al (2005a) Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet 20:379–386
- Kimura N, Okuda M, Inui K (2005b) Metformin transport by renal basolateral organic cation transporter hOCT2. Pharm Res 22:255–259
- Kimura N, Masuda S, Katsura T, Inui K (2009) Transport of guanidine compounds by human organic cation transporters, hOCT1 and hOCT2. Biochem Pharmacol 77:1429–1436

- Kindla J, Fromm MF, König J (2009) In vitro evidence for the role of OATP and OCT uptake transporters in drug–drug interactions. Expert Opin Drug Metab Toxicol 5:489–500
- Klein K, Lang T, Saussele T, Barbosa-Sicard E, Schunck WH, Eichelbaum M et al (2005) Genetic variability of CYP2B6 in populations of African and Asian origin: allele frequencies, novel functional variants, and possible implications for anti-HIV therapy with efavirenz. Pharmacogenet Genomics 15:861–873
- Kobara A, Hiasa M, Matsumoto T, Otsuka M, Omote H, Moriyama Y (2008) A novel variant of mouse MATE-1 H+/organic cation antiporter with a long hydrophobic tail. Arch Biochem Biophys 469:195–199
- Koehler MR, Wissinger B, Gorboulev V, Koepsell H, Schmid M (1997) The two human organic cation transporter genes SLC22A1 and SLC22A2 are located on chromosome 6q26. Cytogenet Cell Genet 79:198–200
- Koepsell H (1998) Organic cation transporters in intestine, kidney, liver, and brain. Annu Rev Physiol 60:243–266
- Koepsell H, Endou H (2004) The SLC22 drug transporter family. Pflugers Arch 447:666-676
- Koepsell H, Schmitt BM, Gorboulev V (2003) Organic cation transporters. Rev Physiol Biochem Pharmacol 150:36–90
- Koepsell H, Lips K, Volk C (2007) Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227–1251
- Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081
- Lai MY, Jiang FM, Chung CH, Chen HC, Chao PD (1988) Dose dependent effect of cimetidine on procainamide disposition in man. Int J Clin Pharmacol Ther Toxicol 26:118–121
- Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948
- Lazar A, Gründemann D, Berkels R, Taubert D, Zimmermann T, Schömig E (2003) Genetic variability of the extraneuronal monoamine transporter EMT (SLC22A3). J Hum Genet 48:226–230
- Lazar A, Zimmermann T, Koch W, Gründemann D, Schömig A, Kastrati A et al (2006) Lower prevalence of the OCT2 Ser270 allele in patients with essential hypertension. Clin Exp Hypertens 28:645–653
- Lazar A, Walitza S, Jetter A, Gerlach M, Warnke A, Herpertz-Dahlmann B et al (2008) Novel mutations of the extraneuronal monoamine transporter gene in children and adolescents with obsessive-compulsive disorder. Int J Neuropsychopharmacol 11:35–48
- Leabman MK, Huang CC, Kawamoto M, Johns SJ, Stryke D, Ferrin TE et al (2002) Polymorphisms in a human kidney xenobiotic transporter, OCT2, exhibit altered function. Pharmacogenetics 12:395–405
- Lee WK, Reichold M, Edemir B, Ciarimboli G, Warth R, Koepsell H et al (2009) Organic cation transporters OCT1, 2, and 3 mediate high-affinity transport of the mutagenic vital dye ethidium in the kidney proximal tubule. Am J Physiol Renal Physiol 296:F1504–F1513
- Li Q, Sai Y, Kato Y, Muraoka H, Tamai I, Tsuji A (2004) Transporter-mediated renal handling of nafamostat mesilate. J Pharm Sci 93:262–272
- Lips KS, Volk C, Schmitt BM, Pfeil U, Arndt P, Miska D et al (2005) Polyspecific cation transporters mediate luminal release of acetylcholine from bronchial epithelium. Am J Respir Cell Mol Biol 33:79–88
- Masuda S, Terada T, Yonezawa A, Tanihara Y, Kishimoto K, Katsura T et al (2006) Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephrol 17:2127–2135
- Matsumoto T, Kanamoto T, Otsuka M, Omote H, Moriyama Y (2008) Role of glutamate residues in substrate recognition by human MATE1 polyspecific H+/organic cation exporter. Am J Physiol Cell Physiol 294:C1074–C1078

- Matsushima S, Maeda K, Inoue K, Ohta KY, Yuasa H, Kondo T et al (2009) The inhibition of human multidrug and toxin extrusion 1 is involved in the drug–drug interaction caused by cimetidine. Drug Metab Dispos 37:555–559
- Meyer-Wentrup F, Karbach U, Gorboulev V, Arndt P, Koepsell H (1998) Membrane localization of the electrogenic cation transporter rOCT1 in rat liver. Biochem Biophys Res Commun 248:673–678
- Minematsu T, Iwai M, Umehara KI, Usui T, Kamimura H (2010) Characterization of human organic cation transporter 1 (OCT1/SLC22A1)-, and OCT2 (SLC22A2)-mediated transport of YM155 monobromide, a novel survivin suppressant. Drug Metab Dispos 38:1–4
- Ming X, Ju W, Wu H, Tidwell RR, Hall JE, Thakker DR (2009) Transport of dicationic drugs pentamidine and furamidine by human organic cation transporters. Drug Metab Dispos 37:424–430
- Minuesa G, Volk C, Molina-Arcas M, Gorboulev V, Erkizia I, Arndt P et al (2009) Transport of lamivudine (3TC) and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J Pharmacol Exp Ther 329:252–261
- Moore KH, Yuen GJ, Raasch RH, Eron JJ, Martin D, Mydlow PK et al (1996) Pharmacokinetics of lamivudine administered alone and with trimethoprim-sulfamethoxazole. Clin Pharmacol Ther 59:550–558
- Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M et al (2002) Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol 13:866–874
- Müller J, Lips KS, Metzner L, Neubert RH, Koepsell H, Brandsch M (2005) Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol 70:1851–1860
- Nagel G, Volk C, Friedrich T, Ulzheimer JC, Bamberg E, Koepsell H (1997) A reevaluation of substrate specificity of the rat cation transporter rOCT1. J Biol Chem 272:31953–31956
- Neuhoff S, Ungell AL, Zamora I, Artursson P (2003) pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug–drug interactions. Pharm Res 20:1141–1148
- Nies AT, Herrmann E, Brom M, Keppler D (2008) Vectorial transport of the plant alkaloid berberine by double-transfected cells expressing the human organic cation transporter 1 (OCT1, SLC22A1) and the efflux pump MDR1 P-glycoprotein (ABCB1). Naunyn Schmiedebergs Arch Pharmacol 376:449–461
- Nies AT, Koepsell H, Winter S, Burk O, Klein K, Kerb R et al (2009) Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology 50:1227–1240
- Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet 20:452–477
- Ogasawara K, Terada T, Motohashi H, Asaka J, Aoki M, Katsura T et al (2008) Analysis of regulatory polymorphisms in organic ion transporter genes (SLC22A) in the kidney. J Hum Genet 53:607–614
- Ohta KY, Inoue K, Hayashi Y, Yuasa H (2006) Molecular identification and functional characterization of rat multidrug and toxin extrusion type transporter 1 as an organic cation/H+ antiporter in the kidney. Drug Metab Dispos 34:1868–1874
- Okabe M, Szakacs G, Reimers MA, Suzuki T, Hall MD, Abe T et al (2008) Profiling SLCO and SLC22 genes in the NCI-60 cancer cell lines to identify drug uptake transporters. Mol Cancer Ther 7:3081–3091
- Okuda M, Kimura N, Inui K (2006) Interactions of fluoroquinolone antibacterials, DX-619 and levofloxacin, with creatinine transport by renal organic cation transporter hOCT2. Drug Metab Pharmacokinet 21:432–436
- Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y (2005) A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A 102:17923–17928

- Popp C, Gorboulev V, Muller TD, Gorbunov D, Shatskaya N, Koepsell H (2005) Amino acids critical for substrate affinity of rat organic cation transporter 1 line the substrate binding region in a model derived from the tertiary structure of lactose permease. Mol Pharmacol 67:1600–1611
- Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894–3900
- Sakata T, Anzai N, Shin HJ, Noshiro R, Hirata T, Yokoyama H et al (2004) Novel single nucleotide polymorphisms of organic cation transporter 1 (SLC22A1) affecting transport functions. Biochem Biophys Res Commun 313:789–793
- Sata R, Ohtani H, Tsujimoto M, Murakami H, Koyabu N, Nakamura T et al (2005) Functional analysis of organic cation transporter 3 expressed in human placenta. J Pharmacol Exp Ther 315:888–895
- Schaeffeler E, Eichelbaum M, Brinkmann U, Penger A, Asante-Poku S, Zanger UM et al (2001) Frequency of C3435T polymorphism of MDR1 gene in African people. Lancet 358:383–384
- Schmitt BM, Koepsell H (2005) Alkali cation binding and permeation in the rat organic cation transporter rOCT2. J Biol Chem 280:24481–24490
- Schmitt A, Mossner R, Gossmann A, Fischer IG, Gorboulev V, Murphy DL et al (2003) Organic cation transporter capable of transporting serotonin is up-regulated in serotonin transporterdeficient mice. J Neurosci Res 71:701–709
- Schmitt BM, Gorbunov D, Schlachtbauer P, Egenberger B, Gorboulev V, Wischmeyer E et al (2009) Charge-to-substrate ratio during organic cation uptake by rat OCT2 is voltage dependent and altered by exchange of glutamate 448 with glutamine. Am J Physiol Renal Physiol 296:F709–F722
- Shikata E, Yamamoto R, Takane H, Shigemasa C, Ikeda T, Otsubo K et al (2007) Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J Hum Genet 52:117–122
- Shnitsar V, Eckardt R, Gupta S, Grottker J, Muller GA, Koepsell H et al (2009) Expression of human organic cation transporter 3 in kidney carcinoma cell lines increases chemosensitivity to melphalan, irinotecan, and vincristine. Cancer Res 69:1494–1501
- Shu Y, Leabman MK, Feng B, Mangravite LM, Huang CC, Stryke D et al (2003) Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. Proc Natl Acad Sci U S A 100:5902–5907
- Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA et al (2007) Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 117:1422–1431
- Shu Y, Brown C, Castro R, Shi R, Lin E, Owen R et al (2008) Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin Pharmacol Ther 83:273–280
- Siva N (2008) 1000 Genomes project. Nat Biotechnol 26:256
- Somogyi A, Stockley C, Keal J, Rolan P, Bochner F (1987) Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol 23:545–551
- Song I, Shin H, Shim E, Jung I, Kim W, Shon J et al (2008) Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin Pharmacol Ther 84:559–562
- Sturm A, Gorboulev V, Gorbunov D, Keller T, Volk C, Schmitt BM et al (2007) Identification of cysteines in rat organic cation transporters rOCT1 (C322, C451) and rOCT2 (C451) critical for transport activity and substrate affinity. Am J Physiol Renal Physiol 293:F767–F779
- Suhre WM, Ekins S, Chang C, Swaan PW, Wright SH (2005) Molecular determinants of substrate/ inhibitor binding to the human and rabbit renal organic cation transporters hOCT2 and rbOCT2. Mol Pharmacol 67:1067–1077
- Tachampa K, Takeda M, Khamdang S, Noshiro-Kofuji R, Tsuda M, Jariyawat S et al (2008) Interactions of organic anion transporters and organic cation transporters with mycotoxins. J Pharmacol Sci 106:435–443

- Tahara H, Kusuhara H, Endou H, Koepsell H, Imaoka T, Fuse E et al (2005) A species difference in the transport activities of H2 receptor antagonists by rat and human renal organic anion and cation transporters. J Pharmacol Exp Ther 315:337–345
- Takeda M, Khamdang S, Narikawa S, Kimura H, Kobayashi Y, Yamamoto T et al (2002) Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther 300:918–924
- Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K (2007) Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol 74:359–371
- Tanihara Y, Masuda S, Katsura T, Inui KI (2009) Protective effect of concomitant administration of imatinib on cisplatin-induced nephrotoxicity focusing on renal organic cation transporter OCT2. Biochem Pharmacol 78:1263–1271
- Taubert D, Grimberg G, Stenzel W, Schömig E (2007) Identification of the endogenous key substrates of the human organic cation transporter OCT2 and their implication in function of dopaminergic neurons. PLoS One 2:e385
- Terada T, Inui KI (2008) Physiological and pharmacokinetic roles of H(+)/organic cation antiporters (MATE/SLC47A). Biochem Pharmacol 75:1689–1696
- Terada T, Masuda S, Asaka J, Tsuda M, Katsura T, Inui K (2006) Molecular cloning, functional characterization and tissue distribution of rat H+/organic cation antiporter MATE1. Pharm Res 23:1696–1701
- Thomas J, Wang L, Clark RE, Pirmohamed M (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104:3739–3745
- Tregouet DA, Konig IR, Erdmann J, Munteanu A, Braund PS, Hall AS et al (2009) Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat Genet 41:283–285
- Tsuda M, Terada T, Mizuno T, Katsura T, Shimakura J, Inui KI (2009a) Targeted disruption of the multidrug and toxin extrusion 1 (Mate1) gene in mice reduces renal secretion of metformin. Mol Pharmacol 75:1280–1286
- Tsuda M, Terada T, Ueba M, Sato T, Masuda S, Katsura T et al (2009b) Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells. J Pharmacol Exp Ther 329:185–191
- Tzvetkov MV, Vormfelde SV, Balen D, Meineke I, Schmidt T, Sehrt D et al (2009) The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther 86:299–306
- Umehara KI, Iwatsubo T, Noguchi K, Usui T, Kamimura H (2008) Effect of cationic drugs on the transporting activity of human and rat OCT/Oct 1–3 in vitro and implications for drug–drug interactions. Xenobiotica 38:1203–1218
- Urakami Y, Kimura N, Okuda M, Inui K (2004) Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney. Pharm Res 21:976–981
- van Crugten J, Bochner F, Keal J, Somogyi A (1986) Selectivity of the cimetidine-induced alterations in the renal handling of organic substrates in humans. Studies with anionic, cationic and zwitterionic drugs. J Pharmacol Exp Ther 236:481–487
- van Montfoort JE, Muller M, Groothuis GM, Meijer DK, Koepsell H, Meier PJ (2001) Comparison of "type I" and "type II" organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J Pharmacol Exp Ther 298:110–115
- Verhaagh S, Schweifer N, Barlow DP, Zwart R (1999) Cloning of the mouse and human solute carrier 22a3 (Slc22a3/SLC22A3) identifies a conserved cluster of three organic cation transporters on mouse chromosome 17 and human 6q26–q27. Genomics 55:209–218
- Vialou V, Amphoux A, Zwart R, Giros B, Gautron S (2004) Organic cation transporter 3 (Slc22a3) is implicated in salt-intake regulation. J Neurosci 24:2846–2851
- Vialou V, Balasse L, Callebert J, Launay JM, Giros B, Gautron S (2008) Altered aminergic neurotransmission in the brain of organic cation transporter 3-deficient mice. J Neurochem 106:1471–1482

- Volk C, Gorboulev V, Kotzsch A, Muller TD, Koepsell H (2009) Five amino acids in the innermost cavity of the substrate binding cleft of organic cation transporter 1 interact with extracellular and intracellular corticosterone. Mol Pharmacol 76:275–289
- Wang DS, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y (2002) Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 302:510–515
- Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y (2003) Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol Pharmacol 63:844–848
- Wang L, Giannoudis A, Lane S, Williamson P, Pirmohamed M, Clark RE (2008a) Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia. Clin Pharmacol Ther 83:258–264
- Wang ZJ, Yin OQ, Tomlinson B, Chow MS (2008b) OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet Genomics 18:637–645
- White DL, Saunders VA, Dang P, Engler J, Zannettino AC, Cambareri AC et al (2006) OCT-1mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 108:697–704
- White DL, Saunders VA, Dang P, Engler J, Venables A, Zrim S et al (2007) Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood 110:4064–4072
- Wu X, Huang W, Ganapathy ME, Wang H, Kekuda R, Conway S et al (2000) Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney. Am J Physiol Renal Physiol 279:F449–F458
- Wultsch T, Grimberg G, Schmitt A, Painsipp E, Wetzstein H, Breitenkamp AF et al (2009) Decreased anxiety in mice lacking the organic cation transporter 3. J Neural Transm 116:689–697
- Yokoo S, Masuda S, Yonezawa A, Terada T, Katsura T, Inui KI (2008) Significance of OCT3/ SLC22A3, organic cation transporter 3, expression for the cytotoxic effect of oxaliplatin in colorectal cancer. Drug Metab Dispos 36:2299–2306
- Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui KI (2006) Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and MATE family). J Pharmacol Exp Ther 319:879–886
- Zach O, Krieger O, Foedermayr M, Zellhofer B, Lutz D (2008) OCT1 (SLC22A1) R61C polymorphism and response to imatinib treatment in chronic myeloid leukemia patients. Leuk Lymphoma 49:2222–2223
- Zhang L, Dresser MJ, Gray AT, Yost SC, Terashita S, Giacomini KM (1997) Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol 51:913–921
- Zhang L, Schaner ME, Giacomini KM (1998) Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa). J Pharmacol Exp Ther 286:354–361
- Zhang L, Gorset W, Washington CB, Blaschke TF, Kroetz DL, Giacomini KM (2000) Interactions of HIV protease inhibitors with a human organic cation transporter in a mammalian expression system. Drug Metab Dispos 28:329–334
- Zhang S, Lovejoy KS, Shima JE, Lagpacan LL, Shu Y, Lapuk A et al (2006) Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res 66:8847–8857
- Zhang X, Cherrington NJ, Wright SH (2007) Molecular identification and functional characterization of rabbit MATE1 and MATE2-K. Am J Physiol Renal Physiol 293:F360–F370
- Zhou K, Donnelly LA, Kimber CH, Donnan PT, Doney AS, Leese G et al (2009) Reducedfunction SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: a GoDARTS study. Diabetes 58:1434–1439

- Zolk O, Solbach TF, König J, Fromm MF (2008) Structural determinants of inhibitor interaction with the human organic cation transporter OCT2 (SLC22A2). Naunyn Schmiedebergs Arch Pharmacol 379:337–348
- Zolk O, Solbach TF, König J, Fromm MF (2009) Functional characterization of the human organic cation transporter 2 variant p. 270Ala>Ser. Drug Metab Dispos 37:1312–1318
- Zwart R, Verhaagh S, Buitelaar M, Popp-Snijders C, Barlow DP (2001) Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice. Mol Cell Biol 21:4188–4196