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Message from the Program Chairs

The 2010 Privacy-Enhancing Technologies Symposium was held at the Hotel
Berlin in Berlin during July 21-23, 2010. It was the 10th in this series of meetings,
and the third after the transition from workshop to symposium. PETS remains
a premier forum for publishing research on both the theory and the practice of
privacy-enhancing technologies, and has a broad scope that includes all facets of
the field.

The PETS program this year included a diverse set of 16 peer-reviewed pa-
pers, selected from 57 submissions. Each submission was reviewed by at least
three members of the Program Committee. This was the third year of the popu-
lar HotPETs session, designed as a venue to present exciting but still preliminary
and evolving ideas, rather than formal and rigorous completed research results.
HotPETs this year included a program of 11 presentations of 10–20 minutes
each; as was the case in each of the last two years, there were no published pro-
ceedings for HotPETs. PETS also included the traditional “rump session,” with
brief presentations on a variety of topics.

We are grateful to all of the authors who submitted, to the PETS and Hot-
PETs speakers who presented their work selected for the program, and to the
rump session participants. We are also grateful to the Program Committee mem-
bers, and to the external reviewers who assisted them, for their thorough reviews
and participation in discussions – they were central to the resulting high-quality
program. The following subset of these reviewers gracefully volunteered to con-
tinue their work as shepherds helping the authors improve their papers and ad-
dress the reviewer comments and suggestions: Nikita Borisov, Rachel Greenstadt,
Aaron Johnson, and Meredith Patterson. It is a also a pleasure to acknowledge
the contribution of our General Chair, Hannes Federrath, and our webmaster
since 2007, Jeremy Clark, who did his usual outstanding job at evolving and
maintaining the symposium’s website. Our gratitude also goes to the HotPETs
Chairs, Carmela Troncoso and Andrei Serjantov, who put together an outstand-
ing HotPETs program. Finally, we are particularly grateful to Microsoft for its
continued sponsorship and support.

May 2010 Mikhail Atallah
Nicholas Hopper
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How Unique Is Your Web Browser?

Peter Eckersley�

Electronic Frontier Foundation
pde@eff.org

Abstract. We investigate the degree to which modern web browsers
are subject to “device fingerprinting” via the version and configura-
tion information that they will transmit to websites upon request. We
implemented one possible fingerprinting algorithm, and collected these
fingerprints from a large sample of browsers that visited our test side,
panopticlick.eff.org. We observe that the distribution of our finger-
print contains at least 18.1 bits of entropy, meaning that if we pick a
browser at random, at best we expect that only one in 286,777 other
browsers will share its fingerprint. Among browsers that support Flash
or Java, the situation is worse, with the average browser carrying at least
18.8 bits of identifying information. 94.2% of browsers with Flash or Java
were unique in our sample.

By observing returningvisitors, we estimate how rapidly browser finger-
prints might change over time. In our sample, fingerprints changed quite
rapidly, but even a simple heuristic was usually able to guess when a finger-
print was an “upgraded” version of a previously observed browser’s finger-
print, with 99.1% of guesses correct and a false positive rate of only 0.86%.

We discuss what privacy threat browser fingerprinting poses in prac-
tice, and what countermeasures may be appropriate to prevent it. There
is a tradeoff between protection against fingerprintability and certain
kinds of debuggability, which in current browsers is weighted heavily
against privacy. Paradoxically, anti-fingerprinting privacy technologies
can be self-defeating if they are not used by a sufficient number of peo-
ple; we show that some privacy measures currently fall victim to this
paradox, but others do not.

1 Introduction

It has long been known that many kinds of technological devices possess subtle
but measurable variations which allow them to be “fingerprinted”. Cameras [1,2],
typewriters [3], and quartz crystal clocks [4,5] are among the devices that can be

� Thanks to my colleagues at EFF for their help with many aspects of this project, es-
pecially Seth Schoen, Tim Jones, Hugh D’Andrade, Chris Controllini, Stu Matthews,
Rebecca Jeschke and Cindy Cohn; to Jered Wierzbicki, John Buckman and Igor Sere-
bryany for MySQL advice; and to Andrew Clausen, Arvind Narayanan and Jonathan
Mayer for helpful discussions about the data. Thanks to Chris Soghoian for suggest-
ing backoff as a defence to font enumeration.

M.J. Atallah and N. Hopper (Eds.): PETS 2010, LNCS 6205, pp. 1–18, 2010.
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2 P. Eckersley

entirely or substantially identified by a remote attacker possessing only outputs
or communications from the device.

There are several companies that sell products which purport to fingerprint
web browsers in some manner [6,7], and there are anecdotal reports that these
prints are being used both for analytics and second-layer authentication pur-
poses. But, aside from limited results from one recent experiment [8], there is to
our knowledge no information in the public domain to quantify how much of a
privacy problem fingerprinting may pose.

In this paper we investigate the real-world effectiveness of browser fingerprint-
ing algorithms. We defined one candidate fingerprinting algorithm, and collected
these fingerprints from a sample of 470,161 browsers operated by informed par-
ticipants who visited the website https://panopticlick.eff.org. The details
of the algorithm, and our collection methodology, are discussed in Section 3.
While our sample of browsers is quite biased, it is likely to be representative of
the population of Internet users who pay enough attention to privacy to be aware
of the minimal steps, such as limiting cookies or perhaps using proxy servers for
sensitive browsing, that are generally agreed to be necessary to avoid having
most of one’s browsing activities tracked and collated by various parties.

In this sample of privacy-conscious users, 83.6% of the browsers seen had an
instantaneously unique fingerprint, and a further 5.3% had an anonymity set of
size 2. Among visiting browsers that had either Adobe Flash or a Java Virtual Ma-
chine enabled, 94.2% exhibited instantaneously unique fingerprints and a further
4.8% had fingerprints that were seen exactly twice. Only 1.0% of browsers with
Flash or Java had anonymity sets larger than two. Overall, we were able to place
a lower bound on the fingerprint distribution entropy of 18.1 bits, meaning that if
we pick a browser at random, at best only one in 286,777 other browsers will share
its fingerprint. Our results are presented in further detail in Section 4.

In our data, fingerprints changed quite rapidly. Among the subset of 8,833
users who accepted cookies and visited panopticlick.eff.org several times
over a period of more than 24 hours, 37.4% exhibited at least one fingerprint
change. This large percentage may in part be attributable to the interactive
nature of the site, which immediately reported the uniqueness or otherwise of
fingerprints and thereby encouraged users to find ways to alter them, particularly
to try to make them less unique. Even if 37.4% is an overestimate, this level of
fingerprint instability was at least momentary grounds for privacy optimism.

Unfortunately, we found that a simple algorithm was able to guess and follow
many of these fingerprint changes. If asked about all newly appearing fingerprints
in the dataset, the algorithm was able to correctly pick a “progenitor” finger-
print in 99.1% of cases, with a false positive rate of only 0.87%. The analysis of
changing fingerprints is presented in Section 5.

2 Fingerprints as Threats to Web Privacy

The most common way to track web browsers (by “track” we mean associate the
browser’s activities at different times and with different websites) is via HTTP
cookies, often set by with 3rd party analytics and advertising domains [9].

https://panopticlick.eff.org
panopticlick.eff.org
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There is growing awareness among web users that HTTP cookies are a seri-
ous threat to privacy, and many people now block, limit or periodically delete
them. Awareness of supercookies is lower, but political and PR pressures may
eventually force firms like Adobe to make their supercookies comply with the
browser’s normal HTTP cookie privacy settings.

In the mean time, a user seeking to avoid being followed around the Web
must pass three tests. The first is tricky: find appropriate settings that allow
sites to use cookies for necessary user interface features, but prevent other less
welcome kinds of tracking. The second is harder: learn about all the kinds of
supercookies, perhaps including some quite obscure types [10,11], and find ways
to disable them. Only a tiny minority of people will pass the first two tests, but
those who do will be confronted by a third challenge: fingerprinting.

As a tracking mechanism for use against people who limit cookies, fingerprint-
ing also has the insidious property that it may be much harder for investigators
to detect than supercookie methods, since it leaves no persistent evidence of
tagging on the user’s computer.

2.1 Fingerprints as Global Identifiers

If there is enough entropy in the distribution of a given fingerprinting algorithm
to make a recognisable subset of users unique, that fingerprint may essentially
be usable as a ‘Global Identifier’ for those users. Such a global identifier can
be thought of as akin to a cookie that cannot be deleted except by a browser
configuration change that is large enough to break the fingerprint.

Global identifier fingerprints are a worst case for privacy. But even users who
are not globally identified by a particular fingerprint may be vulnerable to more
context-specific kinds of tracking by the same fingerprint algorithm, if the print
is used in combination with other data.

2.2 Fingerprint + IP Address as Cookie Regenerators

Some websites use Adobe’s Flash LSO supercookies as a way to ‘regenerate’
normal cookies that the user has deleted, or more discretely, to link the user’s
previous cookie ID with a newly assigned cookie ID [12].

Fingerprints may pose a similar ‘cookie regeneration’ threat, even if those fin-
gerprints are not globally identifying. In particular, a fingerprint that carries no
more than 15-20 bits of identifying information will in almost all cases be suffi-
cient to uniquely identify a particular browser, given its IP address, its subnet,
or even just its Autonomous System Number.1 If the user deletes their cookies

1 One possible exception is that workplaces which synchronize their desktop software
installations completely may provide anonymity sets against this type of attack. We
were able to detect installations like this because of the appearance of interleaved
cookies (A then B then A) with the same fingerprint and IP. Fingerprints that use
hardware measurements such as clock skew [5] (see also note 4) would often be able
to distinguish amongst these sorts of “cloned” systems.
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while continuing to use an IP address, subnet or ASN that they have used pre-
viously, the cookie-setter could, with high probability, link their new cookie to
the old one.

2.3 Fingerprint + IP Address in the Absence of Cookies

A final use for fingerprints is as a means of distinguishing machines behind a
single IP address, even if those machines block cookies entirely. It is very likely
that fingerprinting will work for this purpose in all but a tiny number of cases.

3 Methodology

3.1 A Browser Fingerprinting Algorithm

We implemented a browser fingerprinting algorithm by collecting a number of
commonly and less-commonly known characteristics that browsers make avail-
able to websites. Some of these can be inferred from the content of simple, static
HTTP requests; others were collected by AJAX2. We grouped the measurements
into eight separate strings, though some of these strings comprise multiple, re-
lated details. The fingerprint is essentially the concatenation of these strings.
The source of each measurement and is indicated in Table 1.

In some cases the informational content of the strings is straightforward,
while in others the measurement can capture more subtle facts. For instance, a
browser with JavaScript disabled will record default values for video, plugins,
fonts and supercookies, so the presence of these measurements indicates that
JavaScript is active. More subtly, browsers with a Flash blocking add-on in-
stalled show Flash in the plugins list, but fail to obtain a list of system fonts
via Flash, thereby creating a distinctive fingerprint, even though neither mea-
surement (plugins, fonts) explicitly detects the Flash blocker. Similarly many
browsers with forged User Agent strings are distinguished because the other
measurements do not comport with the User Agent.3

An example of the fingerprint measurements is shown in Table 3. In fact,
Table 3 shows the modal fingerprint among browsers that included Flash or
Java plugins; it was observed 16 times from 16 distinct IP addresses.

There are many other measurements which could conceivably have been in-
cluded in a fingerprint. Generally, these were omitted for one of three reasons:

1. We were unaware of the measurement, or lacked the time to implement it
correctly — including the full use of Microsoft’s ActiveX and Silverlight APIs

2 AJAX is JavaScript that runs inside the browser and sends information back to the
server.

3 We did not set out to systematically study the prevalence of forged User Agents in our
data, but in passing we noticed 378 browsers sending iPhone User Agents but with
Flash player plugins installed (the iPhone does not currently support Flash), and
72 browsers that identified themselves as Firefox but supported Internet Explorer
userData supercookies.
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Table 1. Browser measurements included in Panopticlick Fingerprints

Variable Source Remarks

User Agent Transmitted by HTTP,
logged by server

Contains Browser micro-version, OS
version, language, toolbars and some-
times other info.

HTTP ACCEPT
headers

Transmitted by HTTP,
logged by server

Cookies enabled? Inferred in HTTP,
logged by server

Screen resolution JavaScript AJAX post

Timezone JavaScript AJAX post

Browser plugins,
plugin versions
and MIME types

JavaScript AJAX post Sorted before collection. Microsoft Inter-
net Explorer offers no way to enumer-
ate plugins; we used the PluginDetect
JavaScript library to check for 8 com-
mon plugins on that platform, plus ex-
tra code to estimate the Adobe Acrobat
Reader version.

System fonts Flash applet or Java
applet, collected by
JavaScript/AJAX

Not sorted; see Section 6.4.

Partial
supercookie test

JavaScript AJAX post We did not implement tests for Flash
LSO cookies, Silverlight cookies, HTML
5 databases, or DOM globalStorage.

to collect fingerprintable measures (which include CPU type and many other
details); detection of more plugins in Internet Explorer; tests for other kinds
of supercookies; detection of system fonts by CSS introspection, even when
Flash and Java are absent [13]; the order in which browsers send HTTP head-
ers; variation in HTTP Accept headers across requests for different content
types; clock skew measurements; TCP stack fingerprinting [14]; and a wide
range of subtle JavaScript behavioural tests that may indicate both browser
add-ons and true browser versions [15].

2. We did not believe that the measurement would be sufficiently stable within
a given browser — including geolocation, IP addresses (either yours or your
gateway’s) as detected using Flash or Java, and the CSS history detection
hack [16].

3. The measurement requires consent from the user before being collectable
— for instance, Google Gears supercookie support or the wireless router–
based geolocation features included in recent browsers [17] (which are also
non-constant).

In general, it should be assumed that commercial browser fingerprinting ser-
vices would not have omitted measurements for reason 1 above, and that as a
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result, commercial fingerprinting methods would be more powerful than the one
studied here.4

3.2 Mathematical Treatment

Suppose that we have a browser fingerprinting algorithm F (·), such that when
new browser installations x come into being, the outputs of F (x) upon them
follow a discrete probability density function P (fn), n ∈ [0, 1, .., N ].5 Recall that
the “self-information” or “ surprisal” of a particular output from the algorithm
is given by:

I
(
F (x) = fn

)
= − log2

(
P (fn)

)
, (1)

The surprisal I is measured here in units of bits, as a result of the choice of 2 as
the logarithm base. The entropy of the distribution P (fn) is the expected value
of the surprisal over all browsers, given by:

H(F ) = −
N∑

n=0

P (fn) log2
(
P (fn)

)
(2)

Surprisal can be thought of as an amount of information about the identity
of the object that is being fingerprinted, where each bit of information cuts
the number of possibilities in half. If a website is regularly visited with equal
probability by a set of X different browsers, we would intuitively estimate that a
particular browser x ∈ X would be uniquely recognisable if I

(
F (x)

)
� log2|X |.

The binomial distribution could be applied to replace this intuition with proper
confidence intervals, but it turns out that with real fingerprints, much bigger
uncertainties arise with our estimates of P (fn), at least when trying to answer
questions about which browsers are uniquely recognisable. This topic will be
reprised in Section 4.1, after more details on our methodology and results.

In the case of a fingerprint formed by combining several different measurements
Fs(·), s ∈ S, it is meaningful to talk about the surprisal of any particular
4 While this paper was under review, we were sent a quote from a Gartner report on

fingerprinting services that stated,

Arcot... claims it is able to ascertain PC clock processor speed, along with
more-common browser factors to help identify a device. 41st Parameter looks
at more than 100 parameters, and at the core of its algorithm is a time differ-
ential parameter that measures the time difference between a user’s PC (down
to the millisecond) and a server’s PC. ThreatMetrix claims that it can detect
irregularities in the TCP/IP stack and can pierce through proxy servers... Io-
vation provides device tagging (through LSOs) and clientless [fingerprinting],
and is best distinguished by its reputation database, which has data on millions
of PCs.

5 Real browser fingerprints are the result of decentralised decisions by software devel-
opers, software users, and occasionally, technical accident. It is not obvious what the
set of possible values is, or even how large that set is. Although it is finite, the set is
large and sparse, with all of the attendant problems for privacy that that poses [18].
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measurement, and to define entropy for that component of the fingerprint
accordingly:

Is(fn,s) = − log2
(
P (fn,s)

)
(3)

Hs(Fs) = −
N∑

n=0

P (fs,n) log2
(
P (fs,n)

)
(4)

Note that the surprisal of two fingerprint components Fs and Ft can only be
added linearly if the two variables are statistically independent, which tends not
to be the case. Instead, conditional self-information must be used:

Is+t(fn,s, fn,t) = − log2
(
P (fn,s | fn,t)

)
(5)

Cases like the identification of a Flash blocker by combination of separate plu-
gin and font measurements (see Section 3.1) are predicted accordingly, because
P (fonts = “not detected” | “Flash” ∈ plugins) is very small.

3.3 Data Collection and Preprocessing

We deployed code to collect our fingerprints and report them — along with sim-
ple self-information measurements calculated from live fingerprint tallies — at
panopticlick.eff.org. A large number of people heard about the site through
websites like Slashdot, BoingBoing, Lifehacker, Ars Technica, io9, and through
social media channels like Twitter, Facebook, Digg and Reddit. The data for
this paper was collected between the 27th of January and the 15th of February,
2010.

For each HTTP client that followed the “test me” link at
panopticlick.eff.org, we recorded the fingerprint, as well as a 3-month
persistent HTTP cookie ID (if the browser accepted cookies), an HMAC of
the IP address (using a key that we later discarded), and an HMAC of the IP
address with the least significant octet erased.

We kept live tallies of each fingerprint, but in order to reduce double-counting,
we did not increment the live tally if we had previously seen that precise fin-
gerprint with that precise cookie ID. Before computing the statistics reported
throughout this paper, we undertook several further offline preprocessing steps.

Firstly, we excluded a number of our early data points, which had been col-
lected before the diagnosis and correction of some minor bugs in our client side
JavaScript and database types. We excluded the records that had been directly
affected by these bugs, and (in order to reduce biasing) other records collected
while the bugs were present.

Next, we undertook some preprocessing to correct for the fact that some users
who blocked, deleted or limited the duration of cookies had been multi-counted
in the live data, while those whose browsers accepted our persistent cookie would
not be. We assumed that all browsers with identical fingerprints and identical
IP addresses were the same.

There was one exception to the (fingerprint, IP) rule. If a (fingerprint, IP)
tuple exhibited “interleaved” cookies, all distinct cookies at that IP were counted

panopticlick.eff.org
panopticlick.eff.org
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as separate instances of that fingerprint. “Interleaved” meant that the same
fingerprint was seen from the same IP address first with cookie A, then cookie B,
then cookie A again, which would likely indicate that multiple identical systems
were operating behind a single firewall. We saw interleaved cookies from 2,585
IP addresses, which was 3.5% of the total number of IP addresses that exhibited
either multiple signatures or multiple cookies.

Starting with 1,043,426 hits at the test website, the successive steps described
above produced a population of 470,161 fingerprint-instances, with minimal
multi-counting, for statistical analysis.

Lastly we considered whether over-counting might occur because of hosts
changing IP addresses. We were able to detect such IP changes among cookie-
accepting browsers; 14,849 users changed IPs, with their subsequent destinations
making up 4.6% of the 321,155 IP addresses from which users accepted cookies.
This percentage was small enough to accept it as an error rate; had it been
large, we could have reduced the weight of every non-cookie fingerprint by this
percentage, in order to counteract the over-counting of non-cookie users who
were visiting the site from multiple IPs.

4 Results

The frequency distribution of fingerprints we observed is shown in Figure 1. Were
the x axis not logarithmic, it would be a strongly “L”-shaped distribution, with
83.6% in an extremely long tail of unique fingerprints at the bottom right, 8.1%
having fingerprints that were fairly “non rare”, with anonymity set sizes in our
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Fig. 1. The observed distribution of fingerprints is extremely skewed, with 83.6% of
fingerprints lying in the tail on the right
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Fig. 2. Surprisal distributions for different categories of browser
(believing the User Agent naively; see note 3)

sample of 10, and 8.2% in the joint of the L-curve, with fingerprints that were
seen between 2 and 9 times.

Figure 2 shows the distribution of surprisal for different browsers. In gen-
eral, modern desktop browsers fare very poorly, and around 90% of these are
unique. The least unique desktop browsers often have JavaScript disabled (per-
haps via NoScript). iPhone and Android browsers are significantly more uni-
form and harder to fingerprint than desktop browsers; for the time being, these
smartphones do not have the variety of plugins seen on desktop systems.6 Sadly,
iPhones and Androids lack good cookie control options like session-cookies-only
or blacklists, so their users are eminently trackable by non-fingerprint means.

Figure 3 shows the sizes of the anonymity sets that would be induced if each
of our eight measurements were used as a fingerprint on its own. In general,
plugins and fonts are the most identifying metrics, followed by User Agent,
HTTP Accept, and screen resolution, though all of the metrics are uniquely
identifying in some cases.

6 Android and iPhone fonts are also hard to detect for the time being, so these are
also less fingerprintable.
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Fig. 3. Number of users in anonymity sets of different sizes, considering each variable
separately

4.1 Global Uniqueness

We know that in the particular sample of browsers observed by Panopticlick,
83.6% had unique fingerprints. But we might be interested in the question of
what percentage of browsers in existence are unique, regardless of whether they
visited our test website.

Mayer has argued [8] that it is almost impossible to reach any conclusions
about the global uniqueness of a browser fingerprint, because the multinomi-
nal theorem indicates that the maximum likelihood for the probability of any
fingerprint that was unique in a sample of size N is:

P (fi) =
1
N

(6)

A fingerprint with this probability would be far from unique in the global set
of browsers G, because G � N . This may indeed be the maximum subjective
likelihood for any single fingerprint that we observe, but in fact, this conclusion
is wildly over-optimistic for privacy. If the probability of each unique fingerprint
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in the sample N had been 1
N , the applying the multinomial expansion for those

392,938 events of probabilty 1
N , it would have been inordinately unlikely that we

would have seen each of these events precisely once. Essentially, the maximum
likelihood approach has assigned a probability of zero for all fingerprints that
were not seen in the sample N , when in fact many new fingerprints would appear
in a larger sample G.

What we could attempt to meaningfully infer is the global proportion of
uniqueness. The best way to do that would be to fit a very-long-tailed prob-
ability density function so that it reasonably predicts Figure 1. Then, we could
employ Monte Carlo simulations to estimate levels of uniqueness and fingerprint
entropy in a global population of any given size G. Furthermore, this method
could offer confidence intervals for the proposition that a fingerprint unique in
N would remain unique in G.

We did not prioritise conducting that analysis for a fairly prosaic reason:
the dataset collected at panopticlick.eff.org is so biased towards technically
educated and privacy-conscious users that it is somewhat meaningless to extrap-
olate it out to a global population size. If other fingerprint datasets are collected
that do not suffer from this level of bias, it may be interesting to extrapolate
from those.

5 How Stable Are Browser Fingerprints?

Many events can cause a browser fingerprint to change. In the case of the algorithm
we deployed, those events include upgrades to the browser, upgrading a plugin,
disabling cookies, installing a new font or an external application which includes
fonts, or connecting an external monitor which alters the screen resolution.

By collecting other tracking information alongside fingerprints, we were able
to observe how constant or changeable fingerprints were among Panopticlick
users. In particular, we used cookies to recognise browsers that were returning
visitors, and checked to see whether their fingerprints had changed.

Our observations probably overstate the rate at which fingerprints change
in the real world, because the interactive nature of the Panopticlick website
encourages to experiment with alterations to their browser configuration.

5.1 Changing Fingerprints as a Function of Time

Among our userbase, rates of fingerprint change for returning cookie-accepting
users were very high, with 37.4% of users who visited the site more than once7

exhibiting more than one fingerprint over time.
The time-dependence of fingerprint changes is illustrated in Figure 4, which

plots the proportion of fingerprints that was constant among cookies that were
seen by Panopticlick exactly twice, with a substantial time interval in between.
The population with precisely two time-separated hits was selected because this
7 Our measure of returning visitors was based on cookies, and did not count reloads

within 1–2 hours of the first visit.

panopticlick.eff.org


12 P. Eckersley

5 10 15

days between precisely two visits with a given cookie

40

60

80

100

pe
rc

en
ta

ge
 o

f 
fi

ng
er

pr
in

ts
 c

ha
ng

ed

Fig. 4. Proportion of fingerprints that change over given intervals
(area of datapoints indicates number of observations encompassed, N = 4,638)

group is significantly less likely to be actively trying to alter their browser fin-
gerprints (we assume that most people experimenting in order to make their
browsers unique will reload the page promptly at some point).

Upon first examination, the high rate of change for fingerprints — even if
it overstates the rate of change in the wider Internet population — appears to
constitute a powerful protection against fingerprinting attacks.

5.2 Following Changing Fingerprints

We performed a simple test to see whether a connection can be inferred between
the old and new values of fingerprints that change over time.

We implemented a very simple algorithm to heuristically estimate whether a
given fingerprint might be an evolved version of a fingerprint seen previously.

The algorithm (set out below) operated on an input fingerprint q, where
Fi(g), i ∈ {1..8} are the 8 fingerprint components illustrated in Table 1, and
G is the set of all browsers observed in our dataset. The algorithm did not at-
tempt to guess a preceding fingerprint if q indicated that the browser did not
have Flash or Java installed.

We ran our algorithm over the set of users whose cookies indicated that
they were returning to the site 1–2 hours or more after their first visit,
and who now had a different fingerprint. Excluding users whose fingerprints
changed because they disabled javascript (a common case in response to visit-
ing panopticlick.eff.org, but perhaps not so common in the real world), our
heuristic made a correct guess in 65% of cases, an incorrect guess in 0.56% of
cases, and no guess in 35% of cases. 99.1% of guesses were correct, while the false

panopticlick.eff.org
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Algorithm 1. guesses which other fingerprint might have changed into q

candidates ← [ ]
for all g ∈ G do

for i ∈ {1..8} do
if for all j ∈ {1..8}, j �= i : Fj(g) = Fj(q) then

candidates ← candidates + (g, j)
end if

end for
end for
if length(candidates) = 1 then

g, j ← candidates[0]
if j ∈ {cookies?, video, timezone, supercookies} then

return g
else

# j ∈ {user agent, http accept, plugins, fonts}
if SequenceMatcher(Fj (g), Fj(q)).ratio() < 0.85 then

return g
end if

end if
end if
return NULL

difflib.SequenceMatcher().ratio() is a Python standard library function for esti-
mating the similarity of strings. We used Python 2.5.4.

positive rate was 0.86%. Our algorithm was clearly very crude, and no doubt
could be significantly improved with effort.

6 Defending against Fingerprinting

6.1 The Paradox of Fingerprintable Privacy Enhancing Technologies

Sometimes, technologies intended to enhance user privacy turn out to make fin-
gerprinting easier. Extreme examples include many forms of User Agent spoofing
(see note 3) and Flash blocking browser extensions, as discussed in Section 3.1.
The paradox, essentially, is that many kinds of measures to make a device harder
to fingerprint are themselves distinctive unless a lot of other people also take
them.

Examples of measures that might be intended to improve privacy but which
appear to be ineffective or even potentially counterproductive in the face of
fingerprinting include Flash blocking (the mean surprisal of browsers with Flash
blockers is 18.7), and User Agent alteration (see note 3). A small group of users
had “Privoxy” in their User Agent strings; those User Agents alone averaged 15.5
bits of surprisal. All 7 users of the purportedly privacy-enhancing “Browzar”
browser were unique in our dataset.

There are some commendable exceptions to this paradox. TorButton has
evolved to give considerable thought to fingerprint resistance [19] and may be
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receiving the levels of scrutiny necessary to succeed in that project [15]. NoScript
is a useful privacy enhancing technology that seems to reduce fingerprintability.8

6.2 Enumeratable Characteristics vs Testable Characteristics

One significant API choice that several plugin and browser vendors made, which
strengthens fingerprints tremendously, is offering function calls that enumerate
large amounts of system information. The navigator.plugins object is one
example, as are the font lists returned by Flash and Java. Microsoft Internet
Explorer deserves an honourable mention for not allowing plugin enumeration,
and even though we collected version numbers for 8½ plugins,9 the plugin entropy
on IE was 16.5 bits, somewhat lower than the 17.7 seen in non-IE browsers.

The benefits of allowing Java and Flash to read exhaustive system font lists
is questionable. Any website that cares whether someone has the “False Positive
BRK” font installed10 could surely test for it explicitly.

There are probably stronger ease-of-development arguments for making plu-
gins enumeratable, but the example of IE shows that it is not strictly necessary.
We recommend that browsers switch to confirm-only testing for fonts and plu-
gins, with an exponential backoff to prevent exhaustive searches by malicious
javascript.

6.3 Fingerprintability ∝ Debuggability

Much of the entropy we observe in browsers comes from the precise micro-version
numbers of all of their plugins. This is somewhat true even in IE, where we were
limited to testing the version numbers of 8½ common plugins using PluginDetect
and custom JavaScript. A similar, though less severe, problem comes from precise
micro-version numbers in User Agent strings.

The obvious solution to this problem would be to make the version numbers
less precise. Why report Java 1.6.0 17 rather than just Java 1.6, or DivX Web
Player 1.4.0.233 rather than just DivX Web Player 1.4? The motivation for
these precise version numbers appears to be debuggability. Plugin and browser
developers want the option of occasionally excavating the micro-version numbers
of clients when trying to retrospectively diagnose some error that may be present
in a particular micro-version of their code. This is an understandable desire, but
it should now be clear that this decision trades off the user’s privacy against the
developer’s convenience.

There is a spectrum between extreme debuggability and extreme defense
against fingerprinting, and current browsers choose a point in that spectrum
close to the debuggability extreme. Perhaps this should change, especially when
users enter “private browsing” modes.
8 We did not try to devise a detection method for NoScript, though they probably

exist if users allow scripts from certain important domains.
9 Our version numbers for Acrobat were approximate and limited to the major version

number.
10 We noticed that font while grepping through the output of one of our analysis scripts.
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6.4 Font Orders as an Unnecessary Source of Entropy

When implementing our fingerprinting code, we observed that Adobe Flash and
Sun’s Java VM not only report complete lists of fonts installed on a system, but
return them in non-sorted order, perhaps due to a filesystem inode walk.

We tested the hypothesis that font orders are informative, by checking to see
if any returning, cookie-accepting users had font lists whose order had changed.
We found that only 30 returning browsers had font lists that were different
solely with respect to order. Interestingly, these font lists only varied in the
ordering of certain fonts from the “Lucida” family, and there was a related
population of about 200 browsers where the same fonts varied in ordering and
surrounding whitespace. All of these browsers had Mac OS X User Agent strings,
so we concluded that some application on OS X overwrites these font files, either
during upgrades or at other times. Aside from this group, our hypothesis that
font list orderings were stable turned out to be correct.

Next, we investigated whether a substantial reduction in font list entropy
could be achieved if plugins like Flash and Java began sorting these lists before
returning them via their APIs. Among browsers where the fonts were detectable,
the entropy of the fonts variable was 17.1 bits. We recalculated this quantity
after sorting to be 16.0, a decrease of only 1.1 bits. Confounding this calculation
slightly is the fact that the maximum possible entropy we could detect for either
of these numbers, given our dataset, was only 18.4. It is possible that sorting the
font lists would have made a much larger difference if the sample size had been
large enough for the font entropy and its conceivable ceiling to diverge further.

In contrast to the font case, our pre-launch testing seemed to indicate that
the ordering of navigator.plugins was not stable in all browsers, so, as noted
in Table 1, we sorted the plugin list before recording it. We subsequently read
Jonathan Mayer’s claims that Mozilla actually exposes two different plugin or-
derings based on different inode timestamps [8]. Unfortunately, having sorted
our plugin dataset, we cannot test his claims.

7 Conclusions

We implemented and tested one particular browser fingerprinting method. It
appeared, in general, to be very effective, though as noted in Section 3.1 there
are many measurements that could be added to strengthn it.

Browser fingerprinting is a powerful technique, and fingerprints must be con-
sidered alongside cookies, IP addresses and supercookies when we discuss web
privacy and user trackability. Although fingerprints turn out not to be particu-
larly stable, browsers reveal so much version and configuration information that
they remain overwhelmingly trackable. There are implications both for privacy
policy and technical design.

Policymakers should start treating fingerprintable records as potentially per-
sonally identifiable, and set limits on the durations for which they can be asso-
ciated with identities and sensitive logs like clickstreams and search terms.
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The Tor project is noteworthy for already considering and designing against
fingerprintability. Other software that purports to protect web surfers’ privacy
should do likewise, and we hope that the test site at panopticlick.eff.org
may prove useful for this purpose. Browser developers should also consider what
they can do to reduce fingerprintability, particularly at the JavaScript API level.

We identified only three groups of browser with comparatively good resistance
to fingerprinting: those that block JavaScript, those that use TorButton, and
certain types of smartphone. It is possible that other such categories exist in our
data. Cloned machines behind firewalls are fairly resistant to our algorithm, but
would not be resistant to fingerprints that measure clock skew or other hardware
characteristics.
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Table 3. A typical Panopticlick fingerprint

Variable Value
User Agent Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.1.7) Gecko/20100106

Ubuntu/9.10 (karmic) Firefox/3.5.7
HTTP ACCEPT
headers

text/html, */* ISO-8859-1,utf-8;q=0.7,*;q=0.7 gzip,deflate en-
us,en;q=0.5

Cookies enabled? Yes
Screen resolution 1280x800x24
Timezone 300
Browser plugins Plugin 0: DivX Web Player; DivX Web Player version 1.4.0.233; libtotem-mully-plugin.so; (AVI video; video/divx;

divx). Plugin 1: QuickTime Plug-in 7.2.0; The <a href=”http://www.gnome.org/projects/totem/”>Totem</a> 2.28.2

plugin handles video and audio streams.; libtotem-narrowspace-plugin.so; (QuickTime video; video/quicktime; mov)

(MPEG-4 video; video/mp4; mp4) (MacPaint Bitmap image; image/x-macpaint; pntg) (Macintosh Quickdraw/PICT

drawing; image/x-quicktime; pict, pict1, pict2) (MPEG-4 video; video/x-m4v; m4v). Plugin 2: Shockwave Flash;

Shockwave Flash 10.0 r42; libflashplayer.so; (Shockwave Flash; application/x-shockwave-flash; swf) (FutureSplash

Player; application/futuresplash; spl). Plugin 3: VLC Multimedia Plugin (compatible Totem 2.28.2); The <a

href=”http://www.gnome.org/projects/totem/”>Totem</a>2.28.2 plugin handles video and audio streams.; libtotem-cone-

plugin.so; (VLCMultimedia Plugin; application/x-vlc-plugin; ) (VLCMultimedia Plugin; application/vlc; ) (VLCMultimedia

Plugin; video/x-google-vlc-plugin; ) (Ogg multimedia file; application/x-ogg; ogg) (Ogg multimedia file; application/ogg;

ogg) (Ogg Audio; audio/ogg; oga) (Ogg Audio; audio/x-ogg; ogg) (Ogg Video; video/ogg; ogv) (Ogg Video; video/x-

ogg; ogg) (Annodex exchange format; application/annodex; anx) (Annodex Audio; audio/annodex; axa) (Annodex Video;

video/annodex; axv) (MPEG video; video/mpeg; mpg, mpeg, mpe) (WAV audio; audio/wav; wav) (WAV audio; audio/x-wav;

wav) (MP3 audio; audio/mpeg; mp3) (NullSoft video; application/x-nsv-vp3-mp3; nsv) (Flash video; video/flv; flv) (Totem

Multimedia plugin; application/x-totem-plugin; ). Plugin 4: Windows Media Player Plug-in 10 (compatible; Totem); The <a

href=”http://www.gnome.org/projects/totem/”>Totem</a> 2.28.2 plugin handles video and audio streams.; libtotem-gmp-

plugin.so; (AVI video; application/x-mplayer2; avi, wma, wmv) (ASF video; video/x-ms-asf-plugin; asf, wmv) (AVI video;

video/x-msvideo; asf, wmv) (ASF video; video/x-ms-asf; asf) (Windows Media video; video/x-ms-wmv; wmv) (Windows

Media video; video/x-wmv; wmv) (Windows Media video; video/x-ms-wvx; wmv) (Windows Media video; video/x-ms-wm;

wmv) (Windows Media video; video/x-ms-wmp; wmv) (Windows Media video; application/x-ms-wms; wms) (Windows Me-

dia video; application/x-ms-wmp; wmp) (Microsoft ASX playlist; application/asx; asx) (Windows Media audio; audio/x-ms-

wma; wma).

System fonts wasy10, UnDotum, Century Schoolbook L, OpenSymbol, msam10, Mukti Narrow, Vemana2000, KacstQurn, Umpush, De-

jaVu Sans Mono, Purisa, msbm10, KacstBook, KacstLetter, cmr10, Norasi, Loma, KacstDigital, KacstTitleL, mry KacstQurn,

URW Palladio L, Phetsarath OT, Sawasdee, Tlwg Typist, URW Gothic L, Dingbats, URW Chancery L, FreeSerif, ori1Uni,

KacstOffice, DejaVu Sans, VL Gothic, Kinnari, KacstArt, TlwgMono, Lohit Punjabi, Symbol, Bitstream Charter, KacstOne,

Courier 10 Pitch, cmmi10, WenQuanYi Zen Hei Mono, Nimbus Sans L, TlwgTypewriter, VL PGothic, Rachana, Standard

Symbols L, Lohit Gujarati, kacstPen, KacstDecorative, Nimbus Mono L, Mallige, Nimbus Roman No9 L, KacstPoster, Mukti

Narrow, WenQuanYi Zen Hei, FreeSans, cmex10, KacstNaskh, Lohit Tamil, Tlwg Typo, UnBatang, KacstFarsi, Waree, Kac-

stTitle, Lohit Hindi, DejaVu Serif, Garuda, KacstScreen, FreeMono, URW Bookman L, cmsy10 (via Flash)

(Partial) supercookie
tests

DOM localStorage: Yes, DOM sessionStorage: Yes, IE userData: No
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Abstract. Web Search is one of the most rapidly growing applications
on the internet today. However, the current practice followed by most
search engines – of logging and analyzing users’ queries – raises serious
privacy concerns. One viable solution to search privacy is query obfusca-
tion, whereby a client-side software attempts to mask real user queries via
injection of certain noisy queries. In contrast to other privacy-preserving
search mechanisms, query obfuscation does not require server-side mod-
ifications or a third party infrastructure, thus allowing for ready de-
ployment at the discretion of privacy-conscious users. In this paper, our
higher level goal is to analyze whether query obfuscation can preserve
users’ privacy in practice against an adversarial search engine. We focus
on TrackMeNot (TMN) [10,20], a popular search privacy tool based on
the principle of query obfuscation. We demonstrate that a search engine,
equipped with only a short-term history of a user’s search queries, can
break the privacy guarantees of TMN by only utilizing off-the-shelf ma-
chine learning classifiers.

Keywords: Web Search Privacy, Query Obfuscation, Noisy Queries.

1 Introduction

With an enormous amount and wide variety of data available on the web today,
web search has emerged as one of the most important services. In the recent past,
the prevalent practice followed by search engines – of logging and analyzing users’
web search queries – has received considerable attention from media and public
as well as researchers all over the world. The issue was first brought into limelight
in August 2005 in the wake of US Department of Justice’s subpoena to Google
for a week’s worth of search query records [15]. This was followed by publishing
of AOL’s three month (pseudonymized) search query logs, from which identities
of certain users had been extracted based on personal information embedded
in their queries [9,2]. Right after, other media reports shed more light on how
several major search engines (Yahoo!, AOL, MSN and Google) log, store and
analyze individual search query logs.

Archiving search queries, from search engine’s perspective, is inherently useful
for improving the efficiency of search and quality of search results, and for rev-
enue generation through sponsored search advertising. However, it has serious

M.J. Atallah and N. Hopper (Eds.): PETS 2010, LNCS 6205, pp. 19–37, 2010.
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privacy implications for the users of the search services. Some common examples
of search behavior that can have an explicit adverse effect on a user’s privacy,
when queries are logged, include – searching for information on a particular dis-
ease the user or a family member might be suffering from, searching for one’s
social security number or phone number just to verify if it exists on the web,
locating directions, subscribing to news items, and “ego-surfing1.” Additionally,
and perhaps more seriously, query logs can also be used for implicit privacy vio-
lations. By implicit, we mean that the sensitive information can not be learned
directly, but has to be extracted from a user’s queries via profiling and aggre-
gation methods or data mining techniques. For instance, it is possible to infer a
user’s income level from the brands of products he or she often searches for [21].

A number of techniques have been proposed to address the problem of search
privacy. One class of these techniques involves third-party infrastructure such as
a proxy, e.g., Scroogle [18] or an anonymizing network [17], e.g. Tor [19]. These
approaches, however, require the user to impose (unwanted) trust onto third-
party servers and usually have performance penalties. Another body of work
applicable to web search privacy is on private information retrieval (PIR) proto-
cols [14]. Current PIR protocols, unfortunately, are not feasible to be deployed
in practice due to high computation and communication overheads.

A third class of solutions, which is the focus of this paper, is based on the
principle of query obfuscation. Basically, the idea is that a client-side software
injects noisy queries into the stream of queries transmitted to the search engine;
if the engine is unable to distinguish between noisy queries and real user queries,
user profiling may not be possible, thereby preventing implicit privacy violations.
A query obfuscation technique does not require any server-side modifications and
allows for ready deployment at the discretion of privacy-conscious users.

Our Contributions: A higher level goal of this work is to analyze how effective
query obfuscation can be – in preserving users’ privacy in practice – against an
adversarial search engine. To this end, we focus on TrackMeNot (TMN) [10,20],
a real-world search privacy tool based on query obfuscation (the only one we are
aware of). TMN is implemented as Mozilla Firefox plugin that attempts to hide
user queries in a stream of programmatically generated search queries, which
mimic or simulate the user’s search behavior.

As we discuss in the following section, TMN has taken necessary measures
to simulate user’s search behavior and generate noisy queries as similar as pos-
sible to user’s queries. TMN has also evolved considerably over time shaping
into a potentially robust and popular query obfuscation tool.2,3 We set out to
investigate whether it is still possible (and to what extent) for an adversarial
search engine – equipped with users’ search histories – to filter out TMN queries

1 It is the prevalent practice of searching for one’s own name, on a popular search
engine, to see what results appear.

2 Currently, TMN’s plugin version 0.6.719 has been downloaded 390,909 times.
3 We refer the reader to Bruce Schneier’s criticism of TMN and subsequent discussion,

following TMN’s introduction back in 2006 [3].
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using off-the-shelf machine learning classifiers and thus undermine the privacy
guarantees provided by TMN.

We answer the above question affirmatively. We selected 60 users from the
publicly-available AOL search logs and treated them as users of the TMN soft-
ware. For each of these users, we measured the efficiency of some known machine
learning classifiers with respect to two metrics: (1) percentage of correctly iden-
tified user queries, and (2) percentage of TMN queries incorrectly identified as
user queries. If there are u user queries and t TMN queries, recorded by the
search engine, and a classifier predicted u′ + t′ queries as user queries, where u′

corresponds to correctly identified user queries and t′ corresponds to incorrectly
identified TMN queries, then our two metrics are given by u′/u and t′/t, respec-
tively. The classifier is said to be doing a good job if u′/u is close to 1 and t′/t
is close to 0, i.e, percentage of correctly classified user queries is close to 100%
and percentage of incorrectly classified TMN queries is close to 0%. Through
our current experiments, we are able to achieve an average accuracy of 48.88%
for identifying user queries, while the percentage of incorrectly classified TMN
queries is only 0.02%. We also observed that queries corresponding to some of the
users could be identified with 100% and greater than 80% accuracies, whereas
for others, the identification rate was less than 10%. Based on our results, we
can conclude that most users are susceptible to privacy violations even while
using TMN, some of them being significantly more vulnerable than others.

In terms of related work, we find that theoretical models have previously been
developed to bring insights into the effectiveness of query obfuscation for search
privacy [24]. We are also recently made aware of a short paper [4], which presents
a brief analysis of TMN using search logs from a single user (see Section 2.1 of
[4]). Current paper represents the first step, to the best of authors’ knowledge,
towards a larger scale analysis of TMN using existing classifiers.

We also note that the problem considered in this paper is different from the
problem of identifying queries from an anonymized search log (see, e.g., [12,11]).
First, an adversary in our application is the search engine itself and not a third
party attempting to de-anonymize a search log. Second, unlike a third party, the
search engine is already in possession of users’ search history using which it can
effectively train a classifier. Moreover, the goals of our study are also different;
we are interested in evaluating known classifiers to study our problem so as to
keep our attacks simple and easy enough for an unsophisticated adversary.

The rest of this paper is organized as follows. In Section 2, we discuss TMN’s
query generation. In Section 3, we present our experimentation methodology
and set-up, user selection criteria and query logging methods. This is followed
by Section 4, where we put forward our query classification results, and finally,
some discussion based on our results in Section 5.

2 Background: TMN Query Generation

In this section, we discuss TMN query generation process. We first try to un-
derstand this process based on what was reported in [10], and then, for deeper
insights, inspect TMN’s source code [20].
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2.1 Understanding TMN from the Literature

As mentioned earlier, TMN hides the user queries in a stream of programmati-
cally generated search queries, which mimic or simulate the user’s search behavior.
TMN maintains a dynamic query list, which is instantiated with an initial seed list
of queries obtained from popular RSS feeds and publicly available recent searches.
Later, individual queries from this list are randomly selected and substituted with
query-like words from HTTP response messages returned by the search engine for
actual user queries. Over time, each TMN instance develops a unique set of queries
and adapts itself to the user’s search behavior and mimics the user more closely.

TMN employs a “Selective Click-Through” mechanism, which simulates the
user behavior of clicking on the query results returned and listed by the search
engine. It uses regular expressions to avoid clicking on revenue generating adver-
tisements, and thus claims to leave the web business model unharmed. It keeps
track of the user searches by monitoring all outgoing HTTP requests from the
browser using the “Real Time Search Awareness” mechanism. The “Live Header
Maps” feature enables TMN to adapt dynamically to the specific client browser
data, such as browser version and operating system details, helping TMN to
use the exact set of headers that the browser uses. TMN also implements “Burst
Mode” queries in order to incorporate the common user behavior of firing related
queries in immediate succession as part of a query session.

With all these features, TMN is believed to be a good simulator of user’s
searching behavior. However, it has certain drawbacks as mentioned in [10].
TMN can not mask a user’s private information (e.g., names or phone numbers)
included in the search queries themselves, and it can not prevent user identifica-
tion based on the IP address or cookies typically used by search engines. In order
to hide one’s IP address while searching, TMN developers [10] recommend the
use of anonymizing networks, such as Tor [19]. Bruce Schneier, in his blog [3],
also commented about the weaknesses of TMN. Though most of the raised ob-
jections have already been addressed in the latest version of TMN, some of them
are noteworthy, such as the problem of “hot-button issue” searches. This prob-
lem may occur when TMN itself generates sensitive search queries, e.g., those
involving “HIV”,“drug-use” and “bombings”, and which might be problematic
for TMN users. The TMN authors claim that this problem can be prevented by
configuring the initial RSS input feeds and thus controlling the type of queries
sent by TMN. Based on these discussions, we can say that TMN (potentially)
only provides protection against aggregation and profiling of individual search
queries by adversarial search engines. With and without the use of TMN, user’s
area of interest would be exposed to the adversary, but when using TMN, the
actual search queries would be masked in a stream of related queries. The better
the simulated queries resemble the actual user queries, the better are the chances
for TMN to hide the actual user queries.

2.2 Understanding TMN from the Source Code

In order to obtain a deeper understanding of TMN, we analyzed the supporting
code of TMN’s Firefox extension. Mozilla extensions which are written in XUL
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and JavaScript, provide an easy way to develop new applications on top of
the basic Firefox browser platform. The XUL language extends the GUI of the
browser while the JavaScript helps in defining the functionality.

When TMN is installed on the Firefox browser, it creates a default query
seed file along with a query list. This query list is initialized with some queries
extracted from the default or supplied RSS feeds and this list is padded with
some queries from the default seed file if the queries extracted are less in number.
Once the query list is generated, a search is scheduled immediately without any
delay (delay is 0 seconds). (Later on, some non-zero delay values are specified
to schedule a new search based on the query generation frequency chosen by the
user, using the TMN control panel, and some random offset value).

After the delay timeout, a random query from the query list is selected to
perform a search. With some probability, the query is modified to be only the
longest word or a negated word is concatenated to the query, such as “word1
word2 - word2” or quotation marks are added. Sometimes, if “Burst Mode”
is enabled, a sequence of related queries might be generated from the selected
query by omitting some keywords at random. These Burst Mode queries are sent
within short intervals of time, so as to form a chain of related searches.

TMN maintains a list of headers and URLs for each search engine, and an
entry in these lists gets updated with new headers and URLs when the user
performs a search on the corresponding search engines. The previously selected
and modified query is added to the URL, which is then encoded and an XML-
HttpRequest is generated for the encoded URL with updated header fields. TMN
saves this last query fired and displays it on the Firefox status bar; it also stores
this URL in search history for later reference. When there is a state change in
the XMLHttpRequest sent, i.e., when a response is received from the server,
an appropriate action is taken based on the HTTP status response. If an error
occurs, it is logged. If the HTTP status response is OK, based on some probabil-
ity, TMN tries to simulate the user click-throughs. To this end, TMN identifies
the links on the HTML response sent by the search engine, processes these links
and picks one of them at random. After some delay, another XMLHttpRequest is
generated with the selected link, thereby simulating the user behavior of clicking
a link. TMN does not process the returned html response for this click-through
link. If Burst Mode is enabled, TMN schedules the next search with the follow-
ing keyword in sequence. If it is not under Burst Mode, the HTML response is
processed, and keywords from the textual content on the web page are identified
and extracted. TMN then picks at random a new keyword from this extracted
keyword list and adds it to the query list by replacing a query at a randomly
picked index in the querylist. This new query list is saved and written to the
TMN seed file. TMN again schedules new search at a timeout value with an
offset and this procedure is repeated.

In this way, the TMN seed file gets updated with keywords extracted from
the web results returned by the search engine, for the queries fired by the user.
In the long run, TMN gets adapted to a query content the user is interested in
and generates better queries making it (potentially) much harder for the search
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engine to differentiate the noisy queries from the original user queries. Because
some form of randomization occurs at each and every step, it is impossible for
two TMN instances to generate the same set of TMN queries.

3 Experimental Study of TMN: Preliminaries

Based on our discussion in previous section, we find that TMN has taken nec-
essary measures to simulate user’s search behavior and generate noisy queries
as similar as possible to user’s queries. TMN has also evolved considerably over
time resulting in a potentially robust and popular query obfuscation tool. In this
work, we set out to investigate whether it is still possible (and to what extent) for
an adversarial search engine – equipped with users search histories – to filter out
TMN queries using off-the-shelf machine learning classifiers and thus undermine
the privacy guarantees provided by TMN. In our adversarial model, we assumed
that the search engine is adversarial and its goal is to distinguish between TMN
and user queries for profiling and aggregation purposes. We also assumed that
the engine would have access to user’s search histories for a certain duration
until the point the user starts using the TMN software. We considered a passive
adversarial search engine, the one who only works with and analyses the queries
received from the users, and in particular, does not inject manipulated responses
to the user in an attempt to distinguish between TMN and user queries.

In order to pursue our study, we should work with real user queries. To this
end, one possibility was to seek users who may volunteer to use TMN and let
us record all outgoing (user as well as TMN) search queries fired from their
machines. However, due to the privacy concerns (which form the basis for our
work), it was not feasible to recruit such volunteering users.

To address the above problem, we used a novel experimental methodology.
We worked with the AOL search data [1] and modeled or simulated the existing
user queries in a way they would have appeared to the search engine if the users
were using TMN. The AOL search data was well suited for this purpose because
it consists of a large number of real user queries (21 million), corresponding
to a large user base (650,000) and spanning over a reasonably long period of
time (3 months). Though the AOL logs correspond to a different time period
(year 2006), it does not affect our experiment because we concentrate on the
query content alone and do not consider the associated query timestamps, as
we discuss later in the paper (see Section 4.3). Since most queries do not have
temporal dependence, we proceed with the use of historical AOL search logs for
our experiments.

We selected a few users from the AOL logs and simulated their behavior
of issuing queries to the search engine while TMN is installed and running on
their machines. TMN is a Mozilla extension and these extensions, installed on
a Firefox browser, operate only on one user profile – the one on which it was
installed. Hence, we can have multiple Firefox user profiles, each with its own
independent TMN instance, simulating a different user.

Due to the resource limitations on a single machine, it was difficult to run many
Firefox user profiles simultaneously. To remedy this, we used the PlanetLab [16]
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system, a global distributed research network used by researchers to develop net-
work applications and run network simulations. PlanetLab resources are assigned
to the users as a resource slice, and these slices are instantiated by assigning nodes
to it. Each of these nodes need to be configured with the experimental environ-
ment, which in our case is a working Mozilla Firefox browser with the TMN plugin
installed.

3.1 Categorizing AOL Data

As mentioned earlier, the AOL logs span across three months: March, April and
May of 2006. We use the last month’s data for simulating the user and reserve the
data from the first two months as the user history which we assume is available
to the search engine before the user started using TMN. The former will be used
as a test set and the latter as a training set, in case of our supervised machine
learning classifiers (see Section 4.3). We selected a set of 60 test users from the
AOL logs. This selection is based on AOL users’ behavior as observed across four
different categories (discussed below) so that a wide variety of users are covered.
These categories are directly or indirectly related to TMN’s query generation
process. For obtaining the statistics across each category, we considered all the
650,000 AOL users, and thus each user falls into one user group in each category.
While choosing our 60 test users, we made sure that there exist as few user
intersections as possible across different categories so as to report the results for
60 different users.

Number of Queries: Over a period of time, different users fire different number
of queries. TMN’s efficiency in masking real user queries depends on the number
of searches performed by the user. More the number of queries sent by the user,
better are the chances for TMN to adapt itself to the user search categories and
the content the user is interested in. We calculated the total number of searches
performed by each user and plotted the number of users across different query
bands. From Figure 1 (a power law distribution), we can see that most users
lie below the 500 query mark with the bulk of them performing less than 100
searches over a three month duration. The rest are spread across the graph in
small numbers. The same characteristics are also seen in the graphs plotting the
maximum number of queries fired in a day, a week and one month versus the
number of users in each query band. We thus combined these four into the same
category (i.e., number of queries over a 3 month period).

Average Query Frequency: Users have different querying rates, which may
turn out to be an identifying feature for TMN. TMN provides an option to set the
frequency at which (noisy) queries are sent to the search engine. If this frequency
varies significantly from the actual user’s timing pattern, then it becomes easy
to filter out the TMN queries. Hence, we computed the average timing difference
between successive queries for each user and plotted the number of users across
different time bands, as shown in Figure 2.
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Fig. 1. Number of Queries

Fig. 2. Average Query Frequency

Sensitive Query Content: The contents of search queries obviously varies
from user to user and TMN should be successful in masking these queries, espe-
cially those which are sensitive in nature. We considered two broad classes for
the query content: sensitive and insensitive. Sensitive queries are those, which a
user may not be willing to reveal to the outside world, such as his/her medical
condition, interest in weaponry (considering the alarming increase in terrorism),
those related to child abuse and pornography, and so on. On the other hand, a
user may not mind the public taking notice of his/her insensitive queries, such
as those related to movie interests, sports, and education.

Manually identifying the sensitive/insensitive query distribution for each user
is very cumbersome. To remedy this, we resorted to machine learning techniques
for classification of query content. We manually labeled a small subset of queries
into sensitive and insensitive categories (we referred to various press articles
discussing sensitive queries that appeared in the AOL logs [9,2]), and trained a
Naive Bayes classifier with this data . This classifier was later used to classify
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the rest of the user queries. The cross-validation accuracy of this classifier on
the manually labeled set was 68.0095%. Having identified each user’s queries
into the sensitive and insensitive categories, we plotted a graph indicating the
number of users across different sensitive/insensitive percentages (see Figure 3).
The graph is alarming and contrary to what one would normally expect. A large
number of users were classified to be making sensitive queries. This anomaly
could be because of the way we trained the classifier; while training, we labeled
the complete query in the training set to be sensitive or insensitive instead of
just selecting some relevant keywords, because we did not want the filtering
mechanism to miss queries – such as “how to kill your wife” – which are not
necessarily keyword sensitive.

Fig. 3. Sensitive/Insensitive Distribution

Weekday/Weekend Distribution: Some users perform web search only dur-
ing their office hours over the weekdays and some only over the weekends. If
such users start using TMN on their desktop machines (neglecting laptops or
notebooks, due to frequent periods of inactivity when these devices are put to
sleep), it may be easier to separate out the TMN queries. Speculating this as
an important issue, we calculated the number of queries fired by each user over
weekdays and weekends. We categorized users into three groups – those who

Fig. 4. Weekday/Weekend Distribution
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search only over weekdays, those who search only over weekends and those who
distribute their queries between weekdays and weekends. Figure 4 provides a
graphical distribution of this data.

3.2 Selecting Users

Having observed different statistics, we next needed to select various users for our
study. We decided to select 15 AOL users from each category discussed above,
i.e., a total of 60 users.

Number of Queries: From Figure 1, we find that most users are below the 100
query mark, and of these, more than 70% perform less than 30 searches during
the three month period. Thus, we selected 8 users at random from the set of
users who fire less than 30 queries, 5 users from the set of users who fire less
than 100 queries and 2 users who pose more than 100 queries.

Average Query Frequency: The graph in Figure 2 is smooth everywhere except
for a sharp peak at 200 seconds. To take this into account, we randomly selected
5 users from the set of users with an average query frequency of less than 200
seconds, 5 users lying near the second rounded peak at 35000 seconds, and the
remaining 5 from the set with more than a million seconds average gap between
successive queries.

Sensitive Query Content: Since there are a large number of users in the 100%
sensitive band (Figure 3), we randomly selected six users from this set. Five users
are selected from the 30% insensitive - 70% sensitive band, two users from 10%
sensitive - 90% insensitive band, and the remaining two from 100% insensitive
query set.

Weekday/Weekend Distribution: Based on the distribution in Figure 4, we equally
divided the choice of users among those who fire all their queries over weekdays,
those who distribute 40% on weekday and 60% on weekend, and those who search
only during weekends.

3.3 Experimental Set-Up and Implementation

After the user selection, the task ahead was to simulate the user logs while a
TMN instance per user is running, and record all the resulting queries. We are
using PlanetLab to run multiple Firefox instances. Once a resource “slice” has
been assigned to a PlanetLab user account, “nodes” need to be allocated to the
slice to utilize the resources. Each allocated node behaves as a separate Unix
operating system, with basic utilities pre-installed and a provision to install any
necessary softwares and updates.

Sixty nodes (corresponding to each selected user) were allocated to the slice,
and each of these nodes maintains one Firefox user profile. Since Mozilla is a GUI
application and X11 forwarding (necessary to run GUI applications over SSH
connections) is not enabled on the PlanetLab machines due to security reasons,
we had to install a VNC server on each of the nodes, which provides a GUI
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enabled remote access to these machines. Google was chosen as our (adversarial)
search engine.

To simulate user’s search behavior as per AOL log files, another Mozilla exten-
sion has been developed which reads the user logs and fires the queries at their
respective timestamps listed in the logs. Similar to the TMN plugin, the new
plugin also generates the user queries as XmlHttpRequests. The html response
– from the server – to these queries is processed by TMN, since TMN does not
find the corresponding request URL in its database (see Section 2). TMN treats
the webpage to be a valid response to an actual user query and adapts itself
to the new data – the exact behavior we need. Since the AOL user logs belong
to a different time frame (year 2006), they were translated to the present time.
The average query frequencies of TMN instances were chosen at random so as to
keep them as close as possible to the real user behavior. We also ran 5 additional
TMN instances with varying average TMN query frequency, for the same user,
on our local machines in order to evaluate the effect of query frequency on the
level of privacy provided by TMN. After configuring the necessary settings on
PlanetLab machines, both the user log simulator and TMN were started. These
experiments were conducted for a period of one month, and backup of the logs
was taken at regular intervals.

4 Classification of User and TMN Queries

For our machine learning requirements, we used WEKA [23], an open source
software which supports many machine learning algorithms and data prepro-
cessing options. We used this off-the-shelf machine learning toolkit in order to
estimate the accuracy with which we (adversarial search engine) can filter user
queries, from the pool of user and TMN queries we obtained as described in
previous section.

Two main categories of machine learning algorithms which can be used for our
application are clustering and classification algorithms. Classification algorithms
assign labels to quantities after being trained on a labeled training set. Cluster-
ing algorithms, without any prior knowledge of labeled data, try to group the
data into groups (clusters), such that elements in a group share some common
features. Classification is a supervised mechanism, where we need to train the
classifier on some labeled training set, and determine its classification accuracy
by labeling data in the test set. Clustering is the unsupervised version which
gathers information about the data from an unlabeled training set and divides
the test set into clusters [23].

4.1 Preparing the Data

The pool of simulated user and TMN query logs, collected over the one month
period (as discussed in previous section), form our test data which needs to
be clustered or classified. We labeled each query in the test data as a user or
TMN query, since we want to test the accuracy of machine learning algorithms
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after categorizing the queries. The data includes the query, its label and the
timestamp when the query was fired. For indicating the time, we used WEKA’s
DATE attribute in “yyyy-MM-dd HH:mm:ss” format. The queries are strings
and WEKA can not directly handle string attributes. So we used a preprocessing
filter, called StringToWordVector, which breaks down the words in the string and
converts them into numeric attributes. Each string gets converted into a word
vector of 1s and 0s in these attributes, where ‘1’ indicates the presence and ‘0’
indicates the absence of the word in the string.

4.2 Clustering Algorithms

We started with the unsupervised/clustering schemes since they are simple and
potentially more powerful (as no labeled training is needed). We tested the per-
formance of well known clustering algorithms, such as SimpleKMeans, Farthest
First and EMClusterer [6] with default parameters using the Classes-to-Clusters
evaluation mode. In this testing mode, the pre-assigned labels are masked and
the data gets processed using the other attributes. Once the clusters are formed,
the labels are unmasked and the majority class in each cluster is determined to
find the accuracy of the algorithm as per these labels. However, the clustering
algorithms with default parameters could not distinguish user queries from those
of TMN and placed both types of queries into the same (TMN) cluster, for all
of our test users. We note that it is possible to achieve better user query iden-
tification results by fine tuning the parameters of the clustering algorithms or
applying other procedures, such as n-grams. However, since our goal is to identify
the efficiencies using simple off-the-shelf machine learning tools with no param-
eter optimization, we defer this task to future work, and rather concentrate on
classification algorithms.

4.3 Classification Algorithms

Since clustering with default parameters performed poorly, we decided to work
with supervised/classification algorithms which are trained on prior labeled data.
While training the classifiers, we need to have sample data corresponding to both
the user and TMN classes (labels). If only one of user or TMN training data is
used, all the queries would get classified into the same class since there are no
identifying features available about the other class. The training set for the user
queries was obtained from AOL two month user history, as discussed in Section
3.1. To obtain the TMN training set, we used the logs from a TMN instance
which was run independently of all our simulations on a desktop machine for a
period of one week.

With the training and test sets at our disposal, we next needed to choose
the classifiers for our study. Out of several classifiers applicable to our scenario,
based on their performance in few preliminary tests, we selected five algorithms:
Logistic (Regression), Alternating Decision Trees (ADTree), Random Forest,
Random Tree and ZeroR. For the sake of completeness, a brief description of
each of these classifiers is provided below:



On the Privacy of Web Search Based on Query Obfuscation 31

– Logistic (Regression): Regression classifier models are used to predict the
probability of occurrence of an event by trying to fit the data to a logisitic
curve. Logistic regression is mainly used when there are two classes of data,
but multinomial versions also exist [5].

– Alternating Decision Trees: It is a decision tree algorithm containing decision
and prediction nodes. These decision nodes specify a condition while the
prediction nodes contain a number. In traditional decision trees, we travel
along one path from the root, but here we simultaneously travel along many
paths upto the leaf prediction nodes and the end result is determined by
considering all the prediction node values covered [22].

– RandomForest: It is a collection of classification trees, in which the input is
made to travel across all the trees and the final decision is made based on
voting [13].

– RandomTree: It considers K randomly chosen attributes at each node in the
tree and provides an estimation of class probabilities [8].

– ZeroR: This algorithm identifies the majority class label and classifies every
element with the majority label, thereby providing the threshold accuracy
that should be provided by other classifiers [7].

Query and Date Attributes: To check for the influence of each of the attributes
(query and date) on the classification, we tested the performance of the above
four classifiers (except ZeroR as its user accuracy is 0% due to a large TMN query
set) across the following three settings for a couple of test users. Our goal was
to determine to what extent these attributes might be useful for classification.

1. Considering only date and label value attributes
2. Considering only query and label value attributes
3. Considering both query and date along with label value attributes.

The results obtained are indicated in Table 1. (The percentages indicate the
fractions of user queries correctly identified by the classifiers; the TMN query
misclassification rates were close to 0% in most cases and are not listed). We can
clearly see that out of the three settings, considering only query attribute along
with label values provides the maximum accuracy. Including the date attribute
reduces the accuracy and considering only the date attribute yields the worst
accuracy. Therefore, for the analysis of rest of the experimental data, we neglect
the date attribute and consider only query and label values as the data to be
classified. Since Naive Bayes is a standard classifier which can be used when date
attribute is not considered, we replaced ADTree with Naive Bayes classifier for
the rest of our analysis.

TMN Average Query Frequency: To test for the effect of TMN’s average query
frequency in protecting users’ privacy, we ran another 5 simulations apart from
the 60 simulations considered before. Each of these 5 simulations, simulated
the same user but with different TMN query frequencies – 10 per minute, 5
per minute, 1 per minute, 30 per hour and 1 per hour. After one month, these
TMN logs were analyzed using the shortlisted classifiers. The results obtained
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Table 1. % of user queries correctly classified with different attributes

Classifier Accuracies
Logistic ADTree Random Random

Forest Tree

User1
Only Query 92.59% 82.22% 92.59% 89.63%
Only Date 14.44% 13.7% 13.7% 13.7%

Both Query and Date 92.59% 13.7% 89.63% 46.30%

User2
Only Query 85.19% 85.71% 86.77% 86.24%
Only Date 3.17% 0.53% 0.53% 0.53%

Both Query and Date 10.58% 0.53% 68.25% 0.53%

for Naive Bayes and Logistic (Regression), which yielded the best accuracies,
are depicted in Table 2. Though the performance of Naive Bayes was varying a
little, the Logistic regression classifier was found to have a constant accuracy.
This suggests that using different query frequencies would more or less provide
the same level of accuracy. In other words, higher TMN frequency may not help
in hiding user’s query, contrary to one’s intuition.

Table 2. % of user queries correctly classified for different TMN query frequencies

TMN Query User Query Accuracies TMN Query Misclassifications
Frequency Naive Bayes Logistic Naive Bayes Logistic

(Regression) (Regression)

10 per Minute 6.25% 56.25% 0% 0.06%
5 per Minute 0% 56.25% 0% 0.02%
1 per Minute 56.25% 56.25% 0% 0.12%
30 per Hour 56.25% 56.25% 0% 0%
10 per hour 56.25% 56.25% 0% 0%

Independent User History: Since using an independent TMN log for training
the classifier turned out to be helpful in identifying the user queries with good
accuracies, we performed a test to validate whether any user log data other than
the actual user history would also give similar results (if this were the case,
the search engine would not need access to every user’s history of searches).
To this end, we considered four users, user1, user2, user3 and user4, from the
AOL log data. Now, instead of using a user’s history to train the classifier for
that user, we used the history of user4 as the training data and tried to classify
user1, user2 and user3 simulated queries from their respective TMN query pools
using Logistic, RandomForest, RandomTree and Naive Bayes (substituted with
ADTree, as described before) classifiers. In all the cases, none of the user queries
were identified correctly, however. That is, the accuracy turned out to be 0%.

Our analysis above shows that an independent user log is not helpful in distin-
guishing between user and TMN queries, but an independent TMN log is. One
reason for this could be that the independent TMN log was functional around
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the same time frame as other TMN instances (i.e., it was run along with other
TMN instances). Note that an adversarial search engine can also produce such
updated TMN log from time to time for training the classifiers.

We note that many users are not likely to pay attention to the RSS feeds
chosen for query generation and may use the default ones. Thus, in our experi-
ments, we used the default RSS feeds thereby generating the same initial seed list
of queries. We have not closed the browsers while conducting our experiments
because of the common practice among users to put their computers to sleep
and re-invoke them instead of switching them off and rebooting the machines
each time, and also due to their tendency to continue using the browser with-
out restarting unless it crashes. We acknowledge that not closing the browsers
might affect the efficiency of TMN, because TMN updates the query list with
new keywords from RSS feeds every time the browser restarts.

4.4 Classification Results

After collecting the query and label data from the 60 user simulations, we were
ready to execute the selected classifiers. We built the training set with user
history log and an independent TMN log as discussed previously. The results of
classifiers over the test data are depicted in Table 3. For simplicity, we have not
listed the results for all the classifiers; rather we only report the performance
of the standard Naive Bayes classifier and the maximum accuracy achieved by
the other three classifiers (Random Forest, Random Tree and Logistic). Also, the
accuracies shown are the mean accuracies of the users belonging to different AOL

Table 3. Mean accuracies of user queries and mean misclassifications of TMN queries
for each category of users

No. User TMN Average User TMN
of Users Accuracy (%) Misclassif. (%) Query Users Accuracy (%) Misclassif. (%)
Queries Naive

Bayes
Max. Naive

Bayes
Max. Freq. (sec) Naive

Bayes
Max. Naive

Bayes
Max.

0-10 8 6.15 11.52 0 0.07 0-100 5 28.16 40.41 0.03 0.01
11-100 5 7.08 33.14 0 0.25 35000 5 30.83 71.86 0.01 0.01
100+ 2 18.71 33.86 0.06 0.29 > 106 5 9.23 36.28 0 0

Senst. User TMN Weekday/ User TMN
Query Users Accuracy (%) Misclassif. (%) Weekend Users Accuracy (%) Misclassif. (%)
Content Naive

Bayes
Max. Naive

Bayes
Max. Dist. Naive

Bayes
Max. Naive

Bayes
Max.

0% 2 60 60 0 0 Only week-
days

5 12.28 12.28 0 0

10% 2 61.46 64.79 0 0 Only week-
ends

5 23.2 99.99 57.26 0.08

70% 5 45.53 63.96 0.02 0.14 Distributed 5 1.22 99.92 86.94 0.08
100% 6 23.97 39.02 0 0.16
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categories (as defined in Section 3.2). We find that for all users, the classifiers did
a very good job of correctly identifying almost all TMN queries; average TMN
query misclassification rate was close to 0.02%. In other words, there were only
a very few TMN queries which were wrongly classified.

The accuracies for identifying the user queries were not very high in general;
average accuracy over all users was 48.88%. In most cases, the classifier was able
to identify a reasonable fraction of user queries correctly. However, there were
indeed some cases (e.g., the one for Sensitive Query Content and one for Average
Query Frequency categories) where 100% accuracy was achieved in identifying
the user queries. There were 4 other user instances for which more than 80%
accuracies were achieved.

5 Discussion of Results

In this section, we discuss and attempt to interpret the results obtained in Section
4. The first key insight from our results is that the classifiers were very accurate in
identifying the TMN queries (mean misclassification rate over all users was only
0.02%). In other words, very few TMN queries were wrongly identified as user
queries. This is perhaps because the TMN query log – using which the classifiers
were trained – consisted of a reasonably large number (42334) of TMN queries
(although only corresponding to a week’s period) which was likely sufficient to
extract features for identifying TMN queries. Recall that this log was generated
around the same time frame as our test user instances, which might have been
helpful in correct classification of TMN queries. Note that an adversarial search
engine can also produce such updated TMN log from time to time for training
the classifiers. A very low rate of misclassification of TMN queries implies that
any query classified as a user query is indeed a user query with a significantly
high probability.

The classification accuracies for user queries, on the other hand, were not as
good as they were for TMN queries (we obtained a mean user query identifica-
tion accuracy of 48.88% over all users). One possible reason for relatively low
accuracy in this case is that we were only able to leverage users’ two-month
history for training purposes. Since a large number of users only fired less than
100 queries (as seen from Figure 1) over 3 months, the classifiers did not have
a large number of user queries to work with. Due to this reason, perhaps it was
not possible to derive identifying characteristics for user queries in a number
of cases. We believe that, in practice, the search engines can utilize long-term
search histories available to them prior to a user starts using the TMN software,
resulting in much better accuracies. Even with our current average identification
rates of about 50%, the search engine can identify 50% of user queries (since
almost no TMN queries were incorrectly classified, as discussed above) and still
use them for profiling and aggregation purposes. Note also that our accuracies
were found to vary significantly across different users. We observed that queries
corresponding to some of the users could be identified with 100% and greater
than 80% accuracies, whereas for others, the identification rate was less than
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10%. Based on our current experiments, we can conclude that most users are
susceptible to privacy violations even while using TMN, and some of these users
are significantly more vulnerable than others (as we discuss below).

Looking at Table 3, we can make inferences regarding which users are pos-
sibly more vulnerable based on our different categories: number of queries, av-
erage query frequency, sensitive query content and weekday/weekend distribu-
tions. User query identification accuracies seem to be slightly improving with
the number of queries posed by the users. Although the misclassification rates
are increasing very slightly, we can ignore them considering a good improvement
in user query classification rate. These results are justifiable because more the
number of queries sent by a user, more are the chances to identify user query
patterns and hence better are the accuracies. Users with very fast (less than
100 sec) and very slow (more than 1 million seconds) average querying frequen-
cies seem significantly less vulnerable compared to those with mediocre (35,000
seconds) frequencies. The very fast and very slow category users are those who
send very few queries in immediate succession or spread their queries across 3
months duration. Since the queries available for analysis are few, the accura-
cies are bound to be less for these users compared to the ones belonging to the
mediocre category.

We do not notice any significant effect of the sensitivity of query content on
classification accuracies. However, for users who did not pose any insensitive
queries (based on our categorization in Section 3.1), accuracies were found to be
relatively lower. Therefore, based on our sensitive query classification, the users
who fire a larger fraction of sensitive queries were better camouflaged by TMN
than those who fire a larger fraction of insensitive queries. This might be because
of the presence of many sensitive queries in the initial query set generated from
the default RSS feeds.

Users who engage in web search only during weekdays turned out to be much
better protected compared to those who pose queries only over weekends (queries
of such users can be identified with almost 100% success). This is because if users
send queries only during weekends, then whatever queries are seen during week-
day must be generated by TMN, allowing for easy identification. Finally, from
Table 2, we also observed that using different TMN average query frequencies
would more or less provide the same level of accuracy. In other words, higher
TMN frequency may not help in hiding user’s query, contrary to one’s intuition.

In summary, our results indicate that TMN is very susceptible to machine
learning attacks. In fact, TMN could be weaker than what our attacks imply.
This is because we only used some simple off-the-shelf classifiers with default
parameters and this itself resulted in considerable accuracies. Use of better and
stronger machine learning algorithms, with optimized parameters, is very likely
to further increase the accuracies.

6 Conclusions and Future Work

In this paper, we focused on TrackMeNot (TMN), a real-world search pri-
vacy tool based on query obfuscation. We demonstrated that a search engine,
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equipped with only a short-term history of user’s search queries, can break the
privacy guarantees of TMN by only utilizing off-the-shelf machine learning clas-
sifiers. More specifically, by treating a selected set of 60 users – from the publicly-
available AOL search logs – as users of the TMN software, we showed that user
queries can be identified with an average accuracy of 48.88%, while the average
TMN query misclassification rate was only 0.02%.

In the future, we are interested in exploring designs of novel classifiers which
can take into account other attributes (such as query timestamps) and possibly
improve identification of users’ queries. Classifier and clustering accuracies can
be improved by selecting better classifiers and fine tuning their parameters. We
defer this task of improving the efficiency by optimized parameter selection to
future work.
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Abstract. As the amount of personal information stored at remote service
providers increases, so does the danger of data theft. When connections to remote
services are made in the clear and authenticated sessions are kept using HTTP
cookies, intercepting private traffic becomes easy to achieve. In this paper, we fo-
cus on the world largest service provider – Google. First, with the exception of a
few services only accessible over HTTPS (e.g., Gmail), we find that many Google
services are vulnerable to simple session hijacking attacks. Next, we present the
Historiographer, a novel attack that reconstructs the web search history of Google
users – Google’s Web History – even though this service is supposedly protected
from session hijacking by a stricter access control policy. The Historiographer
uses a reconstruction technique inferring search history from the personalized
suggestions fed by the Google search engine. We validate our technique through
experiments conducted over real network traffic and discuss possible counter-
measures. Our attacks are general and not only specific to Google, and highlight
privacy concerns of mixed architectures mixing secure and insecure connections.

1 Introduction

With the emergence of cloud-based computing, users store an increasing amount of
information at remote service providers. Cloud-based services often come at no cost
for the users, while service providers leverage considerable amounts of user profiling
information to deliver targeted advertisement. However, storing large amounts of per-
sonal information to external providers raises privacy concerns. Privacy advocates have
highlighted the conceptual and practical dangers of personal data exposure over the
Internet [12,14,15,16].

In this paper, we analyze private information potentially leaked from web searches
to third parties, rather than focusing on data disclosed to service providers.

Being the world’s largest service provider, we focus on the case of Google. In partic-
ular, we analyze one Google service: Web History: It provides users with personalized
search results based on the history of their searches and navigation. The history is ac-
cessible at http://google.com/history.

Web searches have been shown to be often sensitive [16]. Any information leaked
from search histories could endanger user privacy. For example, it is likely that search
histories contain personal health-related information: a recent research has, in fact, suc-
cessfully correlated the spread of influenza and the number of related search queries
divided by region [18]. Similarly, searches may be related to political or religious
views, sexual orientation, etc. Also, AOL’s release in 2006 of 20 million nominally
anonymized searches underlined that search queries contain private information [10].

M.J. Atallah and N. Hopper (Eds.): PETS 2010, LNCS 6205, pp. 38–55, 2010.

http://google.com/history
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The privacy of personal data stored by service providers has been long threatened
by the well-known attacks consisting of hijacking user’s HTTP cookies.1 These attacks
have been addressed by Google in several ways. For instance, “sensitive” services such
as Gmail now enforce secure HTTPS communication by default and transmit authen-
tication cookies only over encrypted connections. Regarding Google Web History, the
login page states: “To help protect your privacy, we’ll sometimes ask you to verify
your password even though you’re already signed in. This may happen more frequently
for services like Web History which involves your personal information”. Frequently
requesting users to re-enter their credentials can thwart the session hijacking attack.
However, as illustrated in this paper, such an attack can still be effective if a user has
just signed in. Moreover, we show that search histories can still be reconstructed even
though the Web History page is inaccessible by hijacking cookies.

The Historiographer.To this end,we successfully design theHistoriographer, an attack
that reconstructs the history of web searches conducted by users on Google. TheHistori-
ographer uses the fact that users signed in anyGoogle service receive suggestions for their
search queries based on previously-searchedkeywords. Since GoogleWeb Search trans-
mits authentication cookies in the clear, theHistoriographer—monitoring the network—
can capture this cookie and use the search suggestions to reconstruct a user’s search his-
tory. We refer to Section 3 for more details on the reconstruction technique.

Contributions. This paper makes the following contributions:

1. We show that the Google infrastructure is vulnerable to the Historiographer, a new
attack that reconstructs part of the search history of users.

2. We show that the well known session hijacking attack is still applicable to many
Google services. More specifically, we evaluate the security of several Google ser-
vices, including Web History, against this simple attack and report the number of
services vulnerable along with the amount and type of information potentially dis-
closed by each service.

3. We conduct an experimental analysis over network traces from a research institu-
tion, a Tor [1] exit node, and the 20 million anonymized searches released by AOL
in 2006, in order to assess the number of potential victims and the accuracy of our
attack. Results show that almost one third of monitored users were signed in their
Google accounts and, among them, a half hadWeb History enabled, thus being vul-
nerable to our attack. Finally, we show that data from several other Google services
can be collected with a simple session hijacking attack.

Paper Organization. The rest of the paper is organized as follows. Section 2 presents
the necessary technical background. Section 3 details the new Historiographer attack.
Section 4 describes our experimental evaluations on real network traffic, and estimates
the number of potential victims and the accuracy of the Historiographer. Independently
of Historiographer, this section also evaluates the additional information leaked from
Google’s services through simple session hijacking. Section 5 discusses possible coun-
termeasures to thwart the Historiographer attack, while Section 6 overviews related

1 In a session hijacking attack, an attacker monitoring the network captures an authentication
cookie and impersonates a user. In Section 6, we will discuss several related vulnerabilities.
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work. Section 7 concludes the exposition. Finally, in Section 8, we discuss the actions
taken by Google in response to our findings.

2 Background

In the following, we present background information on several aspects discussed
throughout the rest of the paper: the HTTP cookies, and the Google architecture.

2.1 HTTP Cookies

The need of maintaining sessions in HTTP emergedwith the creation of the first web ap-
plications (e.g., e-commerce websites), as HTTP is a stateless protocol. RFC2109 [22]
and RFC2965 [23] specified a standard way to create stateful sessions with HTTP re-
quests and responses. They describe two new headers, Cookie and Set-Cookie, which
carry state information between participating origin servers and user agents. A Cookie,
which contains a unique identifier, is typically used to store user preferences or to store
an authentication token. Cookies are set by the server as follows. After an incoming
HTTP request, a server sends back a HTTP response containing an HTTP header, re-
ferred to as Set-Cookie, requesting the browser to store one or several cookies. Such a
header is in the form of name=value, the so-called “cookie crumb”. As a result, pro-
vided that the user agent enables cookies, every subsequent HTTP request to a server on
the same domain will include the cookie in the Cookie HTTP header. A cookie may also
include an expiration date2, or a flag to mark it secure. In the latter case, the browser will
send the secure cookie only over encrypted channels, such as SSL. A set-cookie header
may optionally contain a domain attribute, which specifies the domain validity of the
cookie. If this attribute is set, the cookie is referred to as domain cookie, as opposed
to host cookie which is not specific to any particular sub-domain. For example, as we
will present in Table 1, a user accessing Google’s Calendar receives a domain cookie
for calendar.google.com as an authentication token. Such a cookie is then to be
included in every subsequent HTTP requests to the domain. In contrast, other Google’s
applications (such as the Search, History or Maps) only set host cookies, which are
used across different services and domains. Finally, a set-cookie header may specify a
path attribute to identify the subset of URLs for the cookie’s validity. For example, as
we will present in Table 2a, a user that signs in Google receives three cookies, namely
SID, SSID, and LSID. While the latter only applies to the path “/account”, the other
two are can be used for different paths.

2.2 Google Architecture

As we mention in Section 1, we focus on the case of the world’s largest service provider,
i.e., Google. This section describes the Google architecture3.

2 If an expiration date is provided, cookies survive across browser sessions, and are then called
“persistent”. Otherwise, the cookie is deleted when closing the browser.

3 Since not all the components of the Google architecture are public, some of the details pre-
sented in this section might not be completely accurate.

calendar.google.com
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Google Web Products. Google offers more than 40 free Web services, including sev-
eral search engines (e.g. Google Web Search), maps (Google Maps), as well as per-
sonalized subscription-based services like email (Gmail), documents (Google Docs),
photos (Picasa), videos (Youtube), Web history. Even though some services can be
used without registration (e.g., search), other are user-specific (e.g. Gmail) and require
user authentication. Most of the services can be used by means of a single Google ac-
count, a combination of username and password. However, services that do not mandate
registration provide extra features if users are signed in. For instance, an authenticated
user can obtain personalized, potentially more accurate, search results on Google Maps
based on her default location.

Google Web History. This opt-out service – previously known as Google Search His-
tory and Personalized Search – is implemented by Google to provide signed-in users
with personalized search results based on the history of their searches and navigation.
Furthermore, users typing search queries in the Web interface are prompted with sug-
gestions resulting from their history. To this end, Google tracks all Web searches per-
formed by a signed-in user (with Web History service enabled), as well as the target
web pages clicked from the search result page. This service may be further enhanced by
installing the Google Toolbar, allowing Google to also track all visited web sites, inde-
pendently from the use of the search engine. Google Web History also provides a Web
interface at google.com/history, allowing users to view and delete their history.
Users are given the choice to pause Web History by accessing their account. Never-
theless, Google customizes searches and provides suggestions based on data recorded
before pause. Note that Google is offering Personalized Search not only to signed-in
but also to signed-out users. In fact, for these users Google performs the customization
using the information linked to the user’s browser with the help of an “anonymous”
cookie. Specifically, Google stores up to 180 days of activity linked to such cookie.
Again, users can explicitly disable this feature [3].

Google Authentication.Google services are accessible with a single set of credentials,
composed by a pair username/password. Different services are usually hosted as sub-
domains of google.com (or other Top-Level Domains for different countries) and
offer seamless integration between each other to minimize the need for users to re-
enter their credentials. Integration is achieved through the Accounts service. In practice,
requests to authenticate to a Google service are redirected to the Accounts page where
the user is asked to enter her username and password. If authentication succeeds, a
browser cookie is set (or refreshed) to track the session and the user is redirected back
to the page that was originally requested. An illustration of this mechanism is provided
in Fig. 1.

Access to Google Accounts is always secured using HTTPS. However, subsequent
connections might revert back to simple HTTP depending on the requested service. For
example connection to Maps Search are established with HTTP whereas HTTPS access
to Gmail is enforced.

Table 1 compares several Google Services. It may be the case that services con-
sidered more sensitive are protected by HTTPS, whereas those judged less sensitive are
left unencrypted. In particular, we noticed that the use of HTTPS is mandatory for some
services (e.g., Gmail), while impossible for others (e.g., Search). Additionally, there are

google.com/history
google.com
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Fig. 1. The Google Accounts authentication management for Google services

Table 1. Some of Google’s services

Service Default HTTPS Domain specific PurposeName Connect. Support cookie
Search HTTP no no Web search
Maps HTTP no no Maps search
Reader HTTP yes no RSS/Atom feed reader
Contacts HTTP yes no Address book manager
History HTTP yes no Search history manager
Gmail HTTPS mand. no Web mail application

Accounts HTTPS mand. no Google account manager
News HTTP no no News aggregator

Bookmarks HTTP yes no Bookmark manager
Docs HTTP yes yes Office application

Calendar HTTP yes yes Calendar application
Groups HTTP yes yes Discussion groups application
Books HTTP no no Personalized digital library

services accessed on HTTP by default, but users may force a secure connection speci-
fying https:// in the URL.

Google cookies. Authenticated sessions are kept by means of cookies that are set by
Accounts upon successful authentication. Two cookies, called SID and SSID, are used
as authentication tokens across most services4 for unencrypted and encrypted connec-
tions, respectively. We believe their names might stand for Session ID and Secure Ses-
sion ID5.

A description of several Google cookies is reflected in Tables 2a and 2b. Note that:
(1) SID and SSID are valid for all Google sub-domains and are used to authenticate
users to several services, (2) SID is not a secure cookie, i.e., it is sent on every con-
nection to Google, while SSID is only sent over encrypted connections, and (3) NID
represents the ”anonymous” cookie used to track unlogged users. There are also a num-
ber of cookies not reported, which are used for miscellaneous purposes, e.g., to store
language or search interface preferences.

In our study, we will focus on the SID cookie, providing authenticated access to
most unencrypted services. In particular the SID cookie is sent in all web searches. It is

4 All services that do not use domain cookies, such as Maps, History, Search, Reader, Books
and Contacts – see Table 1.

5 An additional list of domain-specific cookies, such as those for docs.google.com or
calendar.google.com, are sent in the clear text but are set only over a secure connection
upon user access.

https://
docs.google.com
calendar.google.com
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Table 2. Description of the type and purposes of some cookies used in the Google platform

(a) Google’s cookies for signed in users

Cookie-Name Secure Domain Path Purpose
SID no google.com / authentication token
SSID yes google.com / secure authentication token
LSID yes google.com /accounts secure authentication token

(b) Google’s cookies for not signed in users

Cookie-Name Secure Domain Path Purpose
NID no google.com / track unlogged users
PREF no google.com / store search settings (e.g., language)

used by Google to identify the requesting account, populate the account’s Web History
and provide personalized web results and suggestions.

3 Historiographer: Reconstructing Search History

3.1 Attack Overview

In the following, we present the Historiographer, an attack aiming to reconstruct users’
search histories stored by Google. The attack consists of two steps.

First, it hijacks a session stealing the victim’s SID cookie. This can be done, for
example, by eavesdropping on her traffic, and in particular on any request to a Google
service, such as Google search. Eavesdropping can be performed by listening on a local
wired network, an open wireless network, such as a campus network, or by deploying a
Tor exit node (as detailed in Section 4). This does not necessary involve compromising
nodes, and therefore does not require special skills.

Second, it reconstructs the Web History using a partial precise inference attack [17].
We recall that an inference attack is a technique used to disclose sensitive and protected
information from presumably non-sensitive data. In this setting, we reconstruct part
of the potentially privacy-sensitive Web History from web searches. The technique is
partial, because, as shown in Section 3.2, it does not always reconstruct the whole
history. Finally, it is precise since it infers accurate items from the Web History without
introducing errors, as opposed to imprecise inference techniques that do it with a certain
probability.

Note that any user, in particular if equipped with a mobile device, is likely to ac-
cess the Internet via an unencrypted wireless channel at some point of time. As soon
as she signs in Google when connected to such unprotected networks, she becomes
vulnerable to our attack. Furthermore, the attack is effective even if the user is careful
and never inputs sensitive information during “insecure” browsing sessions over unen-
crypted wireless channels.

google.com
/
google.com
/
google.com
/accounts
google.com
/
google.com
/
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Fig. 2. An example of Google Search Suggestions

3.2 Reconstructing the Web History through Inference

Web history access control. Authenticated users can consult, modify, pause or delete
their complete history by accessing the Web History service. The history can be con-
sulted as an HTML page or an RSS feed. However, as mentioned above, Google access
control policy for Web History differs from the one implemented in other services.
In fact, users are frequently asked to re-enter their credentials even though they are
already authenticated. Preliminary tests showed that this mechanism is used quite fre-
quently, and in such a case a session hijacker would be prevented from downloading the
history.

Exploiting the search suggestion feature. However, a feature provided by Google,
namely the search suggestions, helped us circumvent the access control enforced for
Web History. As mentioned in Section 2, Google search engine offers contextual in-
formation in the search interface that can be derived from the user’s search history.
Specifically, whenever a prefix is typed in the search box, an Ajax [21] request is sent
to a Google server, which replies with a list of associated keywords. Fig. 2 presents
an example of a user typing the prefix “privac” in the search box. The user is then
prompted with a list of related keywords to auto-complete the search, i.e., search sug-
gestions. These keywords can either be based: (1) on Google’s ranking of similarity (we
call them generic search suggestions), or (2) on user’s search history (we call them his-
tory search suggestions). Note that history search suggestions are only sent to the user
if the typed prefix corresponds to search queries that are in the Web History and were
followed by a “click” on one of the results. We call these queries: “clicked” queries.
History search suggestions are visually distinguishable from the generic ones, since
they include a link to remove them. This is reflected in the Javascript code, as history
search suggestions have a flag set to differentiate them. The access to the web server
that implements suggestions is carried out using Ajax and every request is authenticated
sending an SID cookie, which can be easily eavesdropped and hijacked. Therefore,
once an SID cookie has been captured, the user’s Web History can be reconstructed us-
ing the suggestion service: Historiographer steals a user authentication cookie and then
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sequentially requests possible prefixes to the suggestion server to recover keywords
coming from the history.

Reconstruction algorithms. In order to reconstruct a search history, theHistoriographer
needs to ask for suggestions for different prefixes. Hence, we need to carefully select
the list of possible prefixes to use, since the keywords in the history are unknown. We
encounter the following obstacles: (1) the number of requests for suggestions should
be kept to a minimum, in order to be as stealthy as possible; (2) at most three replies
come from the suggestion history upon each suggestion request, limiting the amount
of information discovered with each request; and (3) suggestions are only returned for
two-letter (or longer) prefixes, preventing from simply looking for all letters in the given
alphabet. A naı̈ve (brute-force) approach would involve requesting all the possible two-
or three-letter prefixes to harvest the replies coming from the history. However, this
would already require 262 = 676 requests for two-letter and 263 = 17, 576 for three-
letter combinations in the English alphabet, hence relatively high numbers that might
lead to detection. Instead, the Historiographer employs a more sophisticated technique:
it requests only prefixes that are common in a given language. For instance, if one
considers English, there are only 7 words starting with the two-letter prefix oo, while
no word starts with the prefix qr. Whereas, the most used prefix results to be co, used
in 3223 words. It is then reasonable to expect that in the search history there are more
entries starting with the letters co than with qr. As a result, we proceed as follows:
We extract all two-letter prefixes from a reference corpus, order them by frequency,
and we select only the prefixes in the 90th percentile. We used two different reference
corpora in our experiments: the English dictionary and the AOL dataset of 20 million
anonymized searches that was released in 2006 [10]. However, they both achieved very
similar performance. For the English dictionary, this yields a total of 121 two-letter
combinations and reduces the number of requests and the fingerprint of the attack6.
Further, we notice that at most 3 search suggestions can come from the history for
each requested prefix. Thus, if we get exactly 3 suggestions from the history, there
are either 3 or more search queries starting with the corresponding prefix. This is a
potential indication that this prefix is particularly frequent in the history, and it is worth
being further explored. Hence, whenever we encounter a two-letter prefix producing 3
suggestions, we add another letter to the prefix and we repeat the request. Note that the
resulting three-letter prefix is again generated by extracting the most common three-
letter prefixes from the dictionary and not by simply adding every possible letter in the
alphabet. Fig. 3 visually depicts this procedure: The prefix co produces 3 results and
is further explored, contrary to de and ya who produce only 2 (resp., 1) results. A
description of the achieved accuracy and the related overhead in terms of requests is
provided in Section 4.2.

Implementation. We implemented the Historiographer as a Perl application. It is part
of a more complete tool that: (i) captures traffic from a network interface, (ii) recognizes
cookies sent to and from Google servers, and (iii) then uses them to hijack sessions and

6 Different languages can be supported by simply changing the alphabet and the reference
corpus.
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Fig. 3. Smart tree approach. To reconstruct large portions of the search history, we start with the
most common two-letter prefixes (1). If a prefix produces 3 suggestions, then we descend in the
tree (2).

retrieve personal information. Web History is only one of the services the software
collects data from.

3.3 Beyond the Historiographer: Exploiting Personalized Results

The Historiographer attack uses Personalized Search to leak information from a user’s
Web History. However, one could also use the so-called Personalized Results, i.e., the
fact that search queries on Google often produce different results based on the user’s
search history. We present an example of this in Fig. 4. If the results contain at least one
linked page previously accessed by the user, the “View customizations” link appears at
the top right corner of the result page. One can easily identify the visited linked pages
(e.g., http://petsymposium.org/2010/ in Fig. 4) since they are marked with
a tag reporting the number of visits (e.g., 8), and the date of the last visit (e.g., March
1st). Therefore, an adversary can verify that specific keywords belonging to a user’s
search history using the Personalized Results. We call such an attack a targeted check.
Note that the adversary does not have to test the exact matching keyword searched by
the user. It is enough to make a related search that includes the visited linked page in
the results. For instance, assuming that a user has searched for PETS 2010 and Oakland
2010, and has then clicked on the related links http://petsymposium.org/
2010/ and http://oakland09.cs.virginia.edu/. A subsequent search for
the keyword Privacy would produce a result page with the “View customizations” link.
Looking at the result page produced by only one request, an adversary can find out that
the above pages were visited and conclude that the user is interested in privacy, in PETS
2010 and IEEE Security and Privacy. The adversary could then try other keywords and
broaden the information leakage or profile user’s interests. Note that this attack can be
amplified with the exploitation of the new Google’s Star service that allows users to
mark their favorite web sites. With stars, a user can mark his favorite sites by simply
clicking the star marker on any search result or map. As a result of this action, these
sites will appear in a special list next time the identical or a related search is performed.
This feature gives even more power to the adversary. Note that this attack only applies
to signed-in Google users with Web History enabled (a significant proportion of
Google users as showed in Sec. 4). However, as discussed in Sec. 2, Google provides
customized searches to signed-out users too, using an “anonymous” cookie. Therefore,

http://petsymposium.org/2010/
http://petsymposium.org/2010/
http://petsymposium.org/2010/
http://oakland09.cs.virginia.edu/
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Fig. 4. An example of Google Personalized Results

we believe that a similar attack can be designed for signed-out users as well, although
the history would be limited to the life of this cookie.

4 Measurements and Analysis

Given the private nature of the information gathered and the difficulty of having users
willing to disclose them, we conducted four different experiments. These experiments
were aimed at collecting data to estimate: (1) the number of potential victims that access
Google services while being signed-in and, among them, how many have Web History
enabled; (2) the accuracy and the cost of the Historiographer; (3) the amount of private
data that can be retrieved from other services with the simple session hijacking attack;
(4) the applicabity of the Historiographer on smart phones.

4.1 Estimating the Number of Potential Victims

In order to estimate the number of potential victims of our attack, we conducted an ex-
perimental analysis on the network traces collected from a research center with about
500-600 daily users and a Tor exit node. We collected one week of network traffic dur-
ing February 2010. The goal was to measure the percentage of users using Google while
signed-in, and that having the Web History service enabled. Note that only aggregate
data was stored. The data collected from the research center was analyzed passively,
i.e., no session was actually hijacked.

In order to count the number of users from a network trace, one needs reliable iden-
tifiers to filter out duplicate queries or changes of network identifiers, e.g. IP churn.
Luckily we could use cookies gathered from the network captures to identify single
users. As explained above, Google issues persistent cookies both to signed-in and not
signed-in users. Among them we chose to use SID cookies to identify signed-in users
and NID cookies to identify not signed-in ones. Furthermore, in order to count the
number of users with history enabled, our application looked for a particular link to
the History service that is included in each search result page. The results of test are
presented in Table 3a. Around one third of the users resulted to be signed-in while us-
ing Google services, including web searches. Furthermore, about half of the users with
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Table 3. Results from the three experiments

(a) Measurements on network traces

Experiment Number of Number of users Number of signed-in users
Google users signed-in with History enabled

Research center 1502 543 (36.1%) 223 (14.8%)
Tor Exit Node 1893 872 (46.1%) 441 (23.29%)

(b) Results from volunteers

User ID nh nc ns Recall nrequests History
Activation date

1 751 442 308 0.69 680 Aug 08, 2009
2 318 142 99 0.69 368 Mar 10, 2008
3 621 321 176 0.54 483 May 16, 2009
4 520 248 169 0.68 400 May 22, 2007
5 657 309 231 0.75 601 Feb 06, 2009
6 389 202 130 0.64 365 Fen 12, 2009
7 690 337 201 0.60 560 Jul 18, 2008
8 416 219 143 0.65 399 Aug 09, 2006
9 228 127 69 0.54 211 Aug 20, 2008
10 306 164 118 0.72 334 Sep 27, 2009
11 1567 930 506 0.54 740 Oct 26, 2009
12 1163 680 533 0.78 823 Dec 4, 2009

(c) Aggregate Information analyzed from 872 Tor users

Type of information Corresponding Number of Accounts Mean number
leaked service accessible of entries collected

Complete (unrestricted) Search History History 45(5%) 123
Blogs followed on Reader Reader 139(15%) 14

Address book Contacts 766(87%) 189
Maps search history Maps 696(79%) 22

Default address on Maps Maps 52(5%) 1
Financial portfolio Portfolio 11(1%) 8
First/Last name Maps profile 661(75%) 1
Bookmarks Bookmarks 236(27%) 79

an account have history enabled. The limited size and the lack of randomness in the
choice of our sample, does not allow us to draw conclusions about the entire population
of users. However, if we combine our results with the above mentioned popularity of
Google services, it would appear that a significant portion of web users are at risk.

4.2 Estimating Historiographer’s Accuracy

Volunteers. In order to evaluate the extent of potential leakage of private information
from Google web searches, we turned to volunteers. It would have been otherwise im-
possible to conduct our study on uninformed users without incurring legal and ethical is-
sues. We aimed at evaluating the accuracy of the Historiographer at reconstructing web
histories. To this end, we “attacked” the accounts of 10 volunteers using our software
and measured its accuracy. The performance of the Historiographer at reconstructing
search histories can be measured in terms of recall. For every user u, we call H the set
of entries in u’s history,Hc the subset of searches whose results were clicked by u, and
S the set of entries reconstructed from suggestions. We denote nh = |H |, nc = |Hc|
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and ns = |S|. Since suggestions are only given for “clicked” queries, the recall R of
our reconstruction algorithm can be measured as the ratio R = ns

nc
. Results are reflected

in Table 3b. The Historiographer reconstructs a significant portion of a user’s history,
with a mean recall of 0.65. The mean number of requests per user to reconstruct the
history was 440. Since users are kept signed-in for two weeks, these requests can be
made at a low pace to increase stealthiness. For instance, an attacker could issue a re-
quest every hour and still expect to retrieve 65% of the “clicked” queries. Also, the
recall can arbitrarily be increased by increasing the number of requests. On average,
with about 2000 requests, we can obtain a mean recall of 0.81. The mean recall lowers
to 0.34 when considering the ratio of reconstructed entries over the complete set H .
Recall that the Historiographer can only recover “clicked” queries, although a complete
history typically contains more information and additionally stores the time and the
frequency of searches. We argue that only recovering “clicked” queries is not a tremen-
dous limitation. When inspecting volunteers’ history, we noticed that “clicked” queries
are often corrections of generic or misspelled queries. A more accurate analysis of this
phenomenon is left for future work. Note also that the Google’s algorithm producing
keyword suggestions is based on several parameters, such as dates and frequencies of
searches and visited web sites. Therefore, we believe that the accuracy and the amount
of information that can be retrieved by the Historiographer could be further improved
with a deeper understanding of the underlying algorithm. On the other hand, it appears
that the likelihood that an entry in the history is returned as a suggestion decreases over
time, which could negatively affect the recall for older entries.

AOL Dataset. Next, we tested our attack on a wider sample. We used the anonymized
query dataset released by AOL in 2006, containing 20 million searched made by
650, 000 users. From the dataset, we constructed the search history of each user. Then,
simulating the search suggestions fed by Google drawing from the histories, we esti-
mated the recall of our reconstruction technique. The mean recall was 0.64, an accuracy
similar to that obtained for the volunteers.

4.3 Additional Information Leakage via Session Hijacking

As mentioned above, in addition to the Historiographer, an attacker can hijack a user’s
session to access several Google services. This section evaluates the extent of the infor-
mation leaked. We ran our software for a week on a Tor exit node, and we analyzed 872
Google accounts. We stress that our software only generated aggregate data automati-
cally and discarded the information immediately. Note that we used Tor only as a way
to collect anonymized network traces. This cannot, by any means, be considered as an
attack against Tor. In fact, even considering a malicious Tor exit node, the attacks can
be prevented by using the appropriate tool configuration to block cookies transmitted
over HTTP. (For more information, we refer to [4,5]). However, we point out that a
significant number of users are not aware of the dangers. In fact, they authenticate to
Google while connected in Tor and do not block HTTP cookies, thus endangering their
anonymity and privacy to potential malicious Tor exit nodes. In fact, a malicious entity
could set up a Tor exit node to hijack cookies and reconstruct search histories. The se-
curity design underlying the Tor network guarantees that the malicious Tor exit node,
although potentially able to access unencrypted traffic, is not able to learn the origin
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of such traffic. However, it may take the malicious node just one Google SID cookie
to reconstruct a user’s search history, the searched locations, the default location, etc.,
thus significantly increasing the probability of identifying a user. Additional example
applications include RIAA tracking users that ever searched—although connected into
Tor—for torrent files related to unlicensed material.

Session Hijacking Attack. By means of session hijacking, we tried to access the fol-
lowing information: locations searched on Maps (along with the “default location”,
when available); blogs followed on Reader; full Web History (when accessible without
re-entering credentials); finance portfolio; bookmarks. For each of them, we counted
the number of entries retrieved and reported the mean over the 872 accounts. Table 3c
summarizes the obtained results. We point out that for 5% of the accounts, we accessed
the Web History page without being asked to re-enter credentials (simply replaying the
SID cookie). We stress that the session hijack had a significant success rate for many
popular services. For instance, we retrieved 79% of the searched locations on Maps and
the 87% of address books (Contacts). Also, we were able to retrieve the first and last
name associated to the account in 75% of cases. Unfortunately, these numbers translate
into a significant amount of personal (and identifying) information leaked through ses-
sion hijacking. Notably, the information collected from the Maps service was composed
of maps queries coming from the histories of the users. Similarly to history suggestions,
users that access Maps are presented with entries that come from the locations they pre-
viously searched for. Differently from search suggestions, Maps suggestions are not the
result of an prefix based Ajax query to a remote Google server. Instead, for signed-in
users, the page at maps.google.com includes a Javascript array that includes all
previous searches. Accessing this information only requires retrieving the web page
once and does not require the use of the Historiographer. The provided information is
very detailed and includes: the exact location searched (address:), the time, in seconds
since the Epoch, it was searched (created:) and the number of times the location was
searched (count:). The information collected this way is of the same kind of the one
collected by the Historiographer but referred to maps searches instead of generic web
searches. However, the specifics of the design of Maps suggestions make the attack on
this service much easier. We can only speculate on the reasons behind such a design.
One could be that, since Maps history is relatively small in mean size 3c, it is more
efficient to send all the information at once, rather than relying on multiple Ajax re-
quests and replies. Whatever the reasons, this design makes location information stored
on Google more vulnerable to session hijacking than search history.

4.4 Web History and Smart Phones

With the increasing number of smart phones users, search history is likely to be strongly
correlated with users’ location of the users. We noticed that Google maintains a sepa-
rated Web History when the search page is accessed from an iPhone. Such a history
has a less strict access control policy. Similarly to Google Maps, the whole search his-
tory is sent as a Javascript list embedded in the page. Supposedly, this information is
presented only when using the iPhone. However, one just needs to set the appropriate
user agent string when accessing Google (for example through the User Agent Switcher
Firefox extension [7]. Then, replaying the SID cookie, the whole Web History becomes

maps.google.com
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accessible, with a single page access. We tested this strategy on the set of volunteers.
We were able to retrieve their iPhone search history from a regular PC by switching
the PC’s browser user agent to an iPhone user agent, and hijacking the victims’ SID
cookies.

5 Possible Countermeasures

The vulnerability targeted by the Historiographer is difficult to address because of the
complexity and scale of the Google architecture, as well as the performance and usabil-
ity requirements. However, we discuss some possible countermeasures. For instance,
users could take the following precautions, simultaneously: (i) always log out from any
Google service when performing a search, (ii) disable the Web History service, and
(iii) disable personalization from anonymous cookies or always delete Google cook-
ies, similarly to what is suggested by the Electronic Frontier Foundation On the other
hand, Google could either: (i) discontinue the Personalized Search service, or (ii) let the
users choose to enforce HTTPS for web searches (for instance, by clicking on a special
link when surfing from insecure networks) and trade off speed with privacy. However,
one can argue that solutions preventing personalized searches may degrade the service,
whereas the use of HTTPS on Web Search7 may be too expensive to put in place. Evi-
dence of this is given by the impossibility of accessing Google search page via HTTPS
and by the concerns already expressed by Google regarding the performance of using
HTTPS for Gmail [9].

Compartmentalized Searches. We propose an additional mitigation technique that
would allow to keep the Personalized Search service. Specifically, we propose that
Google could keep separate histories based on the networks from which user’s searches
originate. Then, it can provide different search suggestions (and personalized results)
based on different locations. We imagine an extension to the google.com/history
web page to allow a user to configure such locations and the privacy settings related to
them. Although this would not solve all possible information leakage, it would com-
partmentalize user’s private information: Consider for instance an employee reluctant
to reveal personal information to her employer (e.g., that she is looking for another
job). Fearing that her navigation within the company network is monitored, she might
avoid accessing potentially “compromising” information. If she signs in Google from
the company network, however, her search history —containing for instance “compro-
mising” searches made from home—(and more) can be leaked.

Binding authentication cookies to IP addresses. Several web sites, e.g., LiveJournal
[2], allow user agents to bind the authentication cookies to the current IP address. In
other words, the server does not accept an authentication cookie that originates from a
different IP address. However, this technique is not always enforced due to drawbacks
on the usability of the service. For example, “mobile” users, whose IP address often
changes, would be forced to frequently re-enter their credentials. However, depending
on the network configuration, binding cookies to IP addresses could not be enough to

7 Note that adopting HTTPS only for the Web History web page would not prevent the
Historiographer, but only the access to the page.

google.com/history
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prevent session hijack. For instance, an attacker operating on a local network could
succeed by poisoning the ARP table on the local Ethernet switch. Note also that at the
moment Google allows a single account to be signed-in from multiple locations and
with multiple IP addresses (although some services such as Gmail display the number
of simultaneous connections at the bottom of the page).

6 Related Work

To the best of our knowledge, this work is the first to focus on the private information
leaked fromweb searches to third parties. In the following, we present the most relevant
work to several concepts and tools that we use.

Session hijacking. Since their early appearances, the use of cookies to maintain au-
thenticated sessions has lead the way to session hijacking attacks (see for instance [19]).
These attacks are quite simple: an attacker monitoring network traffic may sniff an au-
thentication cookie and replay it to impersonate another user. For this reason, sensitive
web applications should always employ secure cookies, i.e., authentication cookies that
are only transmitted over encrypted channels. However, this simple countermeasure is
not always effective. For instance, in 2008 the Cookiemonster attack [24] highlighted
vulnerabilities derived from an improper mixed support of secure and insecure connec-
tions. In response to this work, Google sett HTTPS in Gmail by default [26]. Although
this attack—as well as simple session hijacking—could not be be used to hijack the
Web History, it is an interesting example of vulnerabilities in web applications that do
not properly provide mixed HTTP/HTTPS support.

Privacy Threats. Recent work has discussed potential privacy threats related to cloud
service providers. For instance, [14] discussed potential threats and countermeasures
associated with many forms of web activity—focusing on Google—related to the in-
formation collected by service providers. However, as opposed to our work, this paper
focuses on the privacy threats against the service provider. Another direction was taken
in [16,15] to assess user perception on alleged privacy threats by interviewing users.
Among the other interesting results, it has been shown that more than 80% of users
admitted to having conducted searches for information they would not want disclosed
to their current or future employer. Finally, independently of our work, it was recently
shown that popular online applications may leak private data to a network eavesdrop-
per even over encrypted web connections [13]. In particular, an adversary could exploit
the autocompletion mechanism of popular search engines to infer the victim’s search
queries. When a user types the first letter in a search query, the search engine sends that
character to the server, and the server replies with a list of suggested completions. As
the size of that list depends on the character typed, an attacker can deduce which letter
was typed. When the second letter is entered, another request is sent to the server, and
another encrypted response sent back to the client, which allows the attacker to infer the
second character; and so on. As a result, the attacker guesses the search query, despite
the communication is encrypted. This result is complementary to our work: It allows
recovering search requests over encrypted channels. However, the attack does not work
if the victim is logged-in and the suggestions received are personalized. In contrast, our
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attack retrieves parts of the victim’s search history using these personalized suggestions,
although our attack does not work over encrypted links.

Limiting personal information disclosure. Several techniques have been proposed to
avoid user profiling and reduce the amount of information potentially leaked. For in-
stance, the Firefox extension Trackemenot [20] periodically issues randomized search-
queries to search engines to populate a user’s search history with (non-clicked) queries
and hide real queries. However, this would not prevent the Historiographer from retriev-
ing “clicked” queries from the history and retrieve sensitive information.

7 Discussion

This paper has presented a study of the private information disclosed to third parties
from web searches. We showed that the well known session hijacking attack is still
applicable to many Google services, and we presented the Historiographer, an attack
that reconstructs Google’s search histories from simple web searches.We have validated
our technique through a large-scale experimental analysis.

We argue that solutions should be quickly deployed to protect users against these two
types of attacks. The session hijacking attack is harmful not only because it allows an
attacker to collect a lot of private information, including sometimes the search history,
but also because it can be exploited to add potentially compromising entries [25]. It can
also be used to modify the search results displayed to the victim. In fact, Google allows
to delete or promote—i.e., show as first—results using a button associated to them. An
adversary hijacking a session cookie can perform searches on the victim’s behalf and
influence the results corresponding to these searches as she wishes. For instance, this
attack can be a powerful tool for censorship, as it can be used to remove or promote
some pages displayed after a Google search.

The Historiographer can be used to reconstruct part of the Web History, when, for
example, the simple session hijacking attack is not applicable. In addition, it can be used
as an oracle to perform targeted checks, e.g., to verify the existence in the search history
of specific keywords. The Historiographer is an amplification attack, and therefore is
much more powerful than a simple eavesdropping attack: It not only allows an attacker
to eavesdrop on the victim’s search requests, but also allows him to retrieve the victim’s
previous search requests, possibly performed from different networks and even different
computers. Also, the Historiographer is non-destructive, i.e., it does not affect user data.
The number of potential victims is very high, since any signed-in user is at risk as soon
as she issues a single Google search request from an unencrypted network, such as an
open wireless network at an airport or a cafe.

These attacks deserve serious attention since Web Histories contain sensitive infor-
mation. Any information leaked from Web search histories could endanger user pri-
vacy. Information retrieved from the search history could also be combined with other
publicly available data, such as that published on social networks to accurately pro-
file and/or identify target users. Furthermore, since the Historiographer also works for
Google searches performed from mobile devices and such searches contain also local-
ized results, one could use location-based services to also track users’ movements and
locations.
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Although the Historiographer builds on features specific to the Google architecture,
our goal is not to attack Google nor any particular service provider. Instead, we high-
light the general problem of protecting the privacy of sensitive data when using a mixed
architecture with both secure and insecure connections. As mentioned in [8], Google is
not the only provider which leaves its customers vulnerable to data theft and account
hijacking. As a matter of fact, the Bing search engine recently added a similar function-
ality to Personalized Suggestions. Users receive suggestions based on their previous
searches and they can access the full search history [6]. Differently from Google, Bing
only uses anonymous cookies for this purpose and stores the search history only up to
29 days. However, in Bing the full history is accessible via a simple session hijacking.
We defer to future work a complete analysis of Bing and other search engines.

8 Afterword

While this paper was under submission (March 2010) we disclosed it to Google to
allow them to react to it. Google has been very responsive to our research and has
taken some actions to fix some of the highlighted issues. After receiving a preliminary
report, Google temporarily disabled the personalized suggestions (note, however, that
they were never disabled on smart phones), and switched the Web History and Book-
mark services to HTTPS (thus, preventing session hijacking on these services)8. Later
on, Google countered the Historiographer attack by encrypting back-end server requests
associated with the personalizedMaps and Search suggestion services.We provide a de-
tailed description and discussion on the possible shortcomings of this solution in [11].
We also detail a possible way the Historiographer could work against Google’s solu-
tion, albeit with a different and slightly more powerful attacker. It is also noteworthy
that the proposed solutions do not prevent potential leakage resulting from personalized
results (see Section 4.3). Furthermore, as of today (beginning of May), searches con-
ducted from smart phones are still vulnerable (see Section 4.4) and session hijacking is
still effective on the following services: Reader, Contacts and Portfolio.
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Abstract. Combining and analyzing data collected at multiple administrative lo-
cations is critical for a wide variety of applications, such as detecting malicious
attacks or computing an accurate estimate of the popularity of Web sites. How-
ever, legitimate concerns about privacy often inhibit participation in collaborative
data aggregation. In this paper, we design, implement, and evaluate a practical
solution for privacy-preserving data aggregation (PDA) among a large number of
participants. Scalability and efficiency is achieved through a “semi-centralized”
architecture that divides responsibility between a proxy that obliviously blinds the
client inputs and a database that aggregates values by (blinded) keywords and
identifies those keywords whose values satisfy some evaluation function. Our so-
lution leverages a novel cryptographic protocol that provably protects the privacy
of both the participants and the keywords, provided that proxy and database do
not collude, even if both parties may be individually malicious. Our prototype
implementation can handle over a million suspect IP addresses per hour when
deployed across only two quad-core servers, and its throughput scales linearly
with additional computational resources.

1 Introduction

Many important data-analysis applications must aggregate data collected by multiple
participants. ISPs and enterprise networks may seek to share traffic mix information to
more accurately detect and localize anomalies. Similarly, collaboration can help iden-
tify popular Web content by having Web users—or proxies monitoring traffic for an
entire organization—combine their access logs to determine the most frequently ac-
cessed URLs [1]. Such distributed data analysis is similarly important in the context of
security. For example, victims of denial-of-service (DoS) attacks know they have been
attacked but cannot easily distinguish the malicious source IP addresses from the good
users who happened to send legitimate requests at the same time. Since compromised
hosts in a botnet often participate in multiple such attacks, victims could potentially
identify the bad IP addresses if they combined their measurement data [39]. Coopera-
tion is also useful forWeb clients to recognize they have received a bogus DNS response
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or a forged self-signed certificate, by checking that the information they received agrees
with that seen by other clients accessing the same Web site [34,41]. In this paper, we
present the design, implementation, and evaluation of an efficient, privacy-preserving
system that supports these kinds of data analysis.

Today, these kinds of distributed data aggregation and analysis lack privacy protec-
tions. Existing solutions often rely on a trusted (typically centralized) aggregation node
that collects and analyzes the raw data, thereby learning both the identity and inputs
of participants. There is good reason to believe this inhibits participation. ISPs and
Web sites are notoriously unwilling to share operational data with one another, because
they are business competitors and are concerned about compromising the privacy of
their customers. Many users are unwilling to install software from Web analytics ser-
vices such as Alexa [1], as such software would track and report every Web site they
visit. Unfortunately, even good intentions may not translate to good privacy protec-
tions, demonstrated all too well by the fact that large-scale data breaches have become
commonplace [35]. There certainly are non-Internet applications as well. Patients could
benefit from the aggregated analysis of medical data, but significant privacy concerns—
and regulation in the form of HIPAA and laws—understandably limit deployment in
practice. As such, we believe that many useful distributed data-analysis applications
will not gain serious traction unless privacy can be ensured.

Fortunately, many of these collaborative applications have a common pattern: ag-
gregating participants’ inputs on common input keys and potentially analyzing the re-
sulting intersection. When designed with privacy in mind, we refer to this problem as
privacy-preserving data aggregation (PDA). Namely, each participant pj (or client) au-
tonomously makes observations about values associated with keys, i.e., input key-value
tuples 〈ki, vi〉. The system jointly computes a two-column input table T. The first col-
umn of T is a set comprised of all unique keys belonging to all participants (the key
column). The second, value column is comprised of values T[ki] that are the sum or
union of all participant’s values for ki. This is akin to a database join on matching keys
across each participant’s input (multi)set.

We consider two different forms of this functionality: (1) aggregation-only (PDA),
where the output is just the value column, and (2) conditional-release (CR-PDA), where
the protocol also outputs a key ki if and only if some evaluation function f(∀j|vi,j) is
satisfied. For example, our botnet anomaly detection is an instance of over-threshold
set intersection—also known as the heavy-hitter or iceberg detection problem—where
the goal is to detect keys that occur more than some threshold number of times across
all participants. Here, the keys ki refer to IP addresses, each value vi,j is 1, and f
is true iff its cardinality exceeds some threshold τ (i.e., if values are aggregated as
T[ki] ← T[ki] + 1, is T[ki] ≥ τ?)1

1 In fact, since CR-PDA also releases the value column of all keys, one can choose the function f
based on the value table itself. (For example, in the case of anomaly detection the dataset may
naturally expose a clear gap between frequency counts of normal and anomalous behavior, and
so it makes sense to set the frequency threshold τ correspondingly.) This increases the utility
of the system by letting the data operators “play” with raw data (without seeing the keys).
However, one should note that in some scenarios this additional information may be seen as a
privacy violation.
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Table 1. Comparison of proposed schemes for privacy-preserving data aggregation

Keyword Participant Lack of
Approach Privacy Privacy Efficiency Flexibility Coordination

Garbled-Circuit Evaluation [42,3] Yes Yes Very Poor Yes No
Multiparty Set Intersection [16,26] Yes Yes Poor No No

Hashing Inputs [17,2] No No Very Good Yes Yes
Network Anonymization [11] No Yes Very Good Yes Yes

This paper Yes Yes Good Yes Yes

A practical PDA system should provide the following:

– Keyword privacy: No party should learn anything about inputted keys. That is,
given the above aggregated table T, each party should only learn the value column
T[ki] at the conclusion of the protocol. In the case of CR-PDA, parties should only
learn the keys ki whose corresponding value T[ki] satisfies f .

– Participant privacy: No party should learn which key inputs belongs to which par-
ticipant (except for information which is trivially deduced from the output of the
function). This is formally captured by showing that the protocol leaks no more in-
formation than an ideal implementation that uses a trusted third party, a convention
standard in secure multi-party computation [19].

– Efficiency: The system should scale to large numbers of participants, each gener-
ating and inputting large numbers of observations (key-value tuples). The system
should be scalable both in terms of the bandwidth consumed (communication com-
plexity) and the computational complexity of executing the PDA.

– Flexibility: There are a variety of computations one might wish to perform over
each key’s values T[ki], other than the sum-over-threshold test. These may include
finding the maximum value for a given key, or checking if the median of a row
exceeds a threshold. A single protocol should work for a wide range of functions.

– Lack of coordination: Finally, the system should operate without requiring that
all participants coordinate their efforts to jointly execute some protocol at the same
time, or even all be online around the same time. Furthermore, no set of participants
should be able to prevent others from executing the protocol.

Classes of solutions. In this work, we consider privacy-preserving data aggregation
as a form of the general secure multiparty computation problem, where multiple par-
ticipants wish to jointly compute some value based on individually-held secret bits of
informationwithout revealing their secrets to one another. The theoretical cryptographic
literature provides generic solutions for this problem which also satisfy very strong no-
tions of security [42,20,4,7]. In general, however, these tools are not efficient enough to
be used in practice. Few have ever been implemented ([28,18,3]), let alone operated in
the real world [5]. Moreover, they do not scale well either to large data sets or to a large
number of participants. More efficient solutions exist for special cases of the PDA prob-
lem, such as secure set intersection [13,30,27,16,26,15,23,10]. However, while some of
these solutions are quite efficient when the number of participants is small (e.g., 2),
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none of them achieve practical efficiency in our setting where there are hundreds or
thousands of participants each generating thousands of inputs.2

On the other extreme, ad-hoc solutions for PDA can be highly efficient. Rather than
building fully decentralized protocols, we could aggregate data and compute results
using a centralized server. One approach is to simply have clients first hash their keys
before submitting them to the server (e.g., using SHA-256), so that a server only sees
H(ki) [2]. While it may be difficult to find the hash function’s pre-image, brute-force
attacks may be possible. In our intrusion detection application, for instance, a server can
easily compute the hash values of all four billion IP addresses and build a simple lookup
table. Thus, while efficient, this approach fails to achieve either keyword or participant
privacy, with the latter not achieved because a client submits its inputs directly to the
server. That said, one possible approach for participant privacy would be to proxy a
client’s request through one or more intermediate proxies that hide the client’s identity
(e.g., its IP address), as done in network anonymity systems such as Tor [11].

Table 1 summarizes these design points. An important goal of this work is to provide
a solution between these two extremes, i.e., a protocol that is efficient enough to be
used in practice and at large scale, yet also provide a meaningful level of security that is
formally provable. There are various ways one could imagine weakening the strongest
notions of secure multi-party computation, which provide privacy guarantees against
any malicious participant. A standard relaxation would be to only guarantee privacy
against honest-but-curious parties, in which participants learn no information provided
that they faithfully execute the correct protocol. Another approach would be to provide
privacy against all small coalitions of malicious parties. But in the large settings we con-
sider, it may be easy for a single party to forge multiple identities and thus circumvent
such protections, the so-called Sybil attack [12].

Instead, we focus on providing security against any malicious participant, provided
that there exists a small set of well-known parties that do not collude. This is a natural
model that already appears in real-world scenarios, such as Democrats and Republicans
jointly comprising election boards in the U.S. political system. For our specific exam-
ples, business competitor ISPs like AT&T and Sprint could jointly provide a service like
cooperative DoS detection. Or, it could be offered by third-party entities who have no
incentive to collude. Such non-collusion assumptions already appear in several crypto-
graphic protocols [8,14]. It should be emphasized that these well-known parties should
not be treated as trusted: we only assume that they will not collude. Indeed, jumping
ahead, our protocols do not reveal sensitive information to either party.

Contributions. In this paper, we design, implement, and evaluate privacy-preserving
data aggregation—through logical centralization over a small number of non-colluding
parties—that provably offers privacy-preserving data aggregation without sacrificing
efficiency. Rather than full decentralization (as in secure multi-party computation) or
full centralization (as typical in trusted-party solutions), our PDA architecture is split
between well-known entities playing two different roles: a proxy and a database (DB).
The proxy plays the role of obliviously blinding client inputs, as well as transmitting
blinded inputs to the DB. The DB, on the other hand, builds a table that is indexed by

2 For example, a careful protocol implementation of [16] found two sets of 100 items each took
213 seconds to execute [18].
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the blinded key and aggregates each row’s values (either incrementally or after some
time). While most of the paper will focus on the case of only two entities—one proxy
and one DB—we also show how to extend the protocol to larger numbers of parties.

The resulting system provides strong keyword and participant privacy guarantees,
provided that the well-known entities—which operate the proxy and the database—do
not collude. Specifically, we describe two variants of the protocol which provides the
following notions of security (see Appendix A for more details):

– Privacy of PDA against malicious entities and malicious participants: Even an ar-
bitrary coalition of malicious participants, together with either a malicious proxy or
DB, learn nothing about other participants’ inputs (except that implied by the pro-
tocols’ output). Such a coalition may violate correctness in almost arbitrary ways,
however. Similar notions of security have appeared before [32,15,23].

– Privacy of CR-PDA against honest-but-curious entities and malicious partici-
pants: Our CR-PDA protocol achieves full security in the “ideal-real” framework.
This holds with respect to malicious coalitions of participants, as well as honest-
but-curious coalitions between participants and the DB or proxy.

Using a semi-centralized architecture greatly reduces operational complexity and
simplifies the liveness assumptions of the system. Clients can asynchronously provide
inputs without our system requiring any complex scheduling. Despite these simplifica-
tions, the cryptographic protocols necessary to provide strong privacy guarantees are
still non-trivial. Specifically, our solution makes use of oblivious pseudorandom func-
tions [33,15,23], amortized oblivious transfer [31,24], and homomorphic encryption
with re-randomization. In summary, the contributions of this paper include:

– We demonstrate a tradeoff between efficiency and security in multi-party compu-
tation. Our protocols achieve a relatively strong notion of provable security, while
remaining practical for large numbers of participants with large input sets.

– At an abstract level, we introduce and implement a new cryptographic primitive
that extends the notion of oblivious pseudorandom function (OPRF) as follows: A
sender with input k communicates with a receiver via a mediator who holds a PRF
key s. At the end of the protocol, the receiver learns Fs(k), and the sender and
mediator learn nothing. We believe that this notion, as well as our specific imple-
mentation, are of independent cryptographic interest and may be useful elsewhere.

– There are very few implementations of secure multi-party computation ([28,3,5]),
and our system is one of the first to demonstrate practical efficiency. To our knowl-
edge, it also includes the first implementation of some cryptographicmachinery we
use as sub-protocols (e.g., amortized oblivious transfer [24]); our evaluation show
that they realize significant benefits in practice.

– Finally, we illustrate that our system provides a level of performance that is suf-
ficient for several applications of interest, including anomaly detection, certificate
cross-checking, and distributed ranking.

The remainder of this paper is organized as follows. Section §2 describes our PDA
protocols and sketches proofs of their privacy. We describe our system architecture and
implementation in §3, evaluate its performance in §4, and conclude in §5. The appendix
details some security definitions, protocol extensions, and proofs.
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Fig. 1. High-level system architecture and protocol. Conditional release extensions to PDA are
steps 4 and 5, as well as additional input in step 2 (all shown in blue). Fs is a keyed hash function
whose secret s is known only to the proxy.

2 Our Protocols

In this section, we describe our protocols and analyze their security. We first describe
a simplified version of the CR-PDA protocol that achieves somewhat weaker security
properties, and we then extend this protocol to support a stronger notion of security.
We conclude by explaining how to adopt the CR-PDA protocol to support the (simpler)
case of the PDA functionality and sketch an extension to the case of t > 2 mutually-
distrustful parties. Formal security proofs are deferred to the full version of this paper.

2.1 The Basic CR-PDA Protocol

Our protocol consists of five basic steps (see Figure 1). In the first two steps, the proxy
interacts with the participants to collect the blinded keys together with their associated
values encrypted under the DB’s public key, and then passes these encrypted values
on to the DB. Then, in the next two steps, the DB aggregates the blinded keys with the
associated values in a table, and it decides which rows should be revealed according to a
predefined function f . Finally, the DB asks the proxy to unblind the corresponding keys.
Since the blinding scheme Fs is not necessarily invertible, the revealing mechanism
uses additional information sent during the first phase. The specific steps are as follows.

– Parties: Participants, Proxy, Database.
– Cryptographic Primitives: A pseudorandom function F , where Fs(ki) denotes
the value of the function on input ki with a key s. A public-key encryption E,
where EK(x) denotes an encryption of x under the public key K.

– Public Inputs: The proxy’s public key PRX, the database’s public key DB.
– Private Inputs. Participant: A list of key-value pairs 〈ki, vi〉. Proxy: key s of PRF

F and secret key for PRX; Database: secret key for DB.

1. Each participant interacts with the proxy as follows. For each entry 〈ki, vi〉 in its
list, the participant and the proxy run a sub-protocol for oblivious evaluation of
the PRF (OPRF). At the end of this sub-protocol, the proxy learns nothing and
the participant learns only the value Fs(ki) (and nothing else, not even s). The
participant computes EDB(Fs(ki)), EDB(vi), and EDB(EPRX(ki)), and it sends
them to the proxy. (The last entry will be used during the revealing phase.) The
proxy adds this triple to a list and waits until most/all participants send their inputs.
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2. The proxy randomly permutes the list of triples and sends the result to the DB.
3. The DB decrypts all the entries of each triple. Now, it holds a list of triples of the

form
〈
Fs(ki), vi, EPRX(ki)

〉
. If a value vi is not valid (i.e., vi /∈ D, where D is

the domain of legal values), the corresponding triple is omitted. The DB inserts
the valid values into a table which is indexed by the blinded key Fs(ki). At the
end, the DB has a table of entries of the form

〈
Fs(ki),T[ki],E[ki]

〉
. T[ki] is some

aggregation of all vi’s that appeared with ki (e.g., the actual values or, for threshold
set intersection, simply the number of times that ki was inputted). E[ki] is a list of
values of the form EPRX(k).

4. The DB uses some predefined function f to partition the table into two parts: R,
which consists of the rows whose keys should be revealed, and H, which consists
of the rows whose keys should remain hidden. It publishes the value column of the
table H (without the blinded-keys) and sends R to the proxy.

5. The proxy goes over the received table R and replaces all the encrypted EPRX(ki)
entries with their decrypted key ki. It then publishes the updated table.

Security Guarantees. This protocol guarantees privacy against the following:

Coalition of honest-but-curious (HBC) participants.Consider the view of an HBC par-
ticipant during the protocol. Due to the security of the OPRF, a single participant sees
only a list of pseudorandom values Fs(ki), and therefore this view can be easily simu-
lated by using truly random values. The same holds for any coalition of participants. In
fact, this protocol achieves reasonable security against malicious participants as well.
The interaction of the proxy with a participant is completely independent of the inputs
of other participants. Hence, even if participants are malicious, they still learn noth-
ing about other participants’ inputs. Furthermore, even malicious participants will be
forced to choose their inputs independently of other honest participants. (See [31,23]
for similar security definitions.) However, malicious participants can still violate the
correctness of the above protocol. We fix this issue in the extended protocol.

HBC coalition of proxy and participants. The proxy’s view consists of three parts: (1)
the view during the execution of the OPRF protocol—this gives no information due
to the security of the OPRF; (2) the tuples that the participants send—these values are
encrypted under the DB’s key and therefore reveal no information to the proxy; and (3)
the value column of the table H and the key-value pairs that the DB sends during the
last stage of the protocol (encrypted under the proxy’s key)—this information should
be revealed anyway as part of the the actual output of the protocol.

This argument generalizes to the case where the proxy colludes with HBC partici-
pants: their joint view reveals nothing about the inputs of the honest participants.

HBC database. The DB sees a blinded list of keys encrypted under his public key DB,
without being able to relate blinded entries to their owners. For each blinded key Fs(ki),
the DB sees the list of its associated values T[ki] and encryptions of the keys under the
proxy’s key PRX. Finally, the DB also sees the key-values pairs that were released by
the proxy (i.e., , the table R which is chosen by f ). The values Fs(ki) and EPRX(k)
bear no information due to the security of the PRF and the encryption scheme. Hence,
the DB learns nothing but the table R and the value column of H, as it should.
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2.2 A More Robust Protocol

We now describe how to immunize the basic protocol against stronger attacks.

HBC coalition of participants and DB. The previous protocol is vulnerable against
such coalitions for two main reasons.

First, a participant knows the blinded version Fs(ki) of its own keys ki, and, in ad-
dition, the DB can associate all the values T[ki] to their blinded keys Fs(ki). Hence, a
coalition of a participant and a DB can retrieve all the values T[ki] that are associated
with a key ki that the participant holds, even if this key should not be revealed accord-
ing to f . To fix this problem, we modify the first step of the protocol. Instead of using
an OPRF protocol, we will use a different sub-protocol in which the participant learns
nothing and the proxy learns the value EDB(Fs(ki)) for each ki. This solves the prob-
lem as now that participant himself does not know the blinded version of his own keys.
To the best of our knowledge, this version of an encrypted-OPRF protocol (abbreviated
EOPRF and detailed in §2.3) has not previously appeared in the literature.

Second, we should eliminate subliminal channels, as these can be used by partici-
pants and the DB to match the keys of a participant to their blinded versions. To solve
this problem, we use an encryption scheme that supports re-randomization of cipher-
texts; that is, given an encryption of x with randomness b, it should be possible to
recompute an encryption of x under fresh randomness b′ (without knowing the private
key). Now we eliminate the subliminal channel by asking the proxy to re-randomize the
ciphertexts—EDB(Fs(ki)), EDB(vi), and EDB(EPRX(ki))—which are encrypted un-
der the DB’s public key (at Step 1). We should also be able to re-randomize the internal
ciphertext EPRX(ki) of the last entry as well.

Coalition of malicious participants. As we observed, malicious participants can vi-
olate the correctness of our protocol, e.g., by trying to submit ill-formed inputs. Re-
call that the participants are supposed to send to the proxy triples 〈a, b, c〉, of the
form a = EDB(Fs(ki)), b = EDB(vi) and c = EDB(EPRX(ki)) for some ki and
vi. However, a cheating participant might provide an inconsistent tuple, in which
a = EDB(Fs(ki)) while c = EDB(EPRX(k′

i)) for some k′
i 	= ki. To prevent this

attack, we let the proxy apply a consistency check to R in the last step of the protocol.
The proxy makes sure that EPRX(k′

i) and Fs(ki) match, and otherwise omits the in-
consistent values. Then the DB checks again if the corresponding row should still be
revealed.

A cheating participant might also try to replace b with some “garbage” value b′ =
EDB(v′) which is not part of the legal domain D or for which he does not know the
plaintext v′. (While this might not seem beneficial in practice, we must prevent such
an attack to meet strong definitions of security.) To prevent such attacks, we use an
encryption scheme which supports only messages taken from the domain D, and ask
the participant to provide a zero-knowledge proof of knowledge (ZK-POK) that he
knows the plaintext v to which b decrypts. As seen later, this does not add too much
overhead.
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2.3 Concrete Instantiation of the Cryptographic Primitives

In the following section, we assume that the input keys are represented by m-bit strings.
We assume that m is not very large (e.g., less than 192–256); otherwise, one can hash
the input keys and apply the protocol to resulting hashed values.

Public Parameters. We mostly employ Discrete-Log-based schemes. In the following,
g is a generator of a multiplicative group G of prime order p for which the decisional
Diffie-Hellman assumption holds. We publish (g, p) during initialization and assume
that algorithms for multiplication (and thus for exponentiation) in G exist.

El-Gamal Encryption.We will use El-Gamal encryption over the groupG. The private
key is a random element a from Z∗

p, and the public key is the pair (g, h = ga). In
case we wish to “double-encrypt” a message x ∈ G under two different public keys
(g, h1) and (g, h2), we will choose a random b from Z∗

p and compute (gb, x · hb) where
h = (h1 · h2). This ciphertext as well as standard ciphertexts can be re-randomized
by multiplying the first entry (resp. second entry) by gb′ (resp. hb′ ), where b′ is chosen
randomly from Z∗

p.

Goldwasser-Micali Encryption. The values vi which are taken from the domainD will
be encrypted under the Goldwasser-Micali (GM) Encryption scheme [21]. Specifically,
if the domain size is 2�, we represent the values of D by all possible �-bit strings,
and encrypt such strings under GM in a bit-by-bit manner. The GM scheme provides
ciphertext re-randomization, and it allows the party who generates a ciphertext c to
prove in zero-knowledge that he knows the decryption of c and that c is valid (i.e.,
decrypts to an � bit string) [22]. Furthermore, both these operations and encryption cost
only � modular multiplications.3 Decryption costs 2� modular exponentiations, but �
is typically bounded by a very small integer in our protocols. Finally, the ZK proof
consists of 3 moves and can run in parallel with the EOPRF.

Naor-Reingold PRF [33]. The key s of the function Fs : {0, 1}m → G contains m
values (s1, . . . , sm) chosen randomly from Z∗

p. Given m-bit string k = x1 . . . xm, the

value of Fs(k) is g
∏

xi=1 si , where the exponentiation is computed in the group G.

Oblivious-Transfer [36,31] and Batched Oblivious Transfer [24]. To implement the
sub protocol of Step 1, we need an additional cryptographic tool called Oblivious Trans-
fer (OT). In an OT protocol a sender holds two strings (α, β), and a receiver has a selec-
tion bit c. At the end of the protocol, the receiver learns a single string: α if c = 0, and β
if c = 1. The sender learns nothing (in particular, it does not learn c). In general, OT is
an expensive public-key operation (e.g., it may take two exponentiations per invocation
and, in the above protocol, we would execute OT for each bit of the participant’s input
ki). However, Ishai et al. [24] show how to reduce the amortized cost of OT to be as
fast as matrix multiplication. This “batch OT” protocol uses a standard OT protocol as
a building block; we implemented our batch OT on top of [31].

3 For the case of zero-knowledge, the protocol of [22] provides only weak soundness at the cost
of � multiplications. However, [9] provides strong soundness guarantees with amortized cost
of � modular multiplications. Our setting naturally allows such an amortization.
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2.4 The Encrypted-OPRF Protocol

Our construction is inspired by a protocol for oblivious evaluation of the PRF
F [15,30,31]. We believe that this construction might have further applications.

– Parties: Participant, Proxy.
– Inputs. Participant: m-bit string k = (x1 . . . xm); Proxy: secret key s =

(s1, . . . , sm) of a Naor-Reingold PRF F .

1. Proxy chooses m random values u1, . . . , um from Z∗
p and an additional random

r ∈ Z∗
p. In parallel, for each 1 ≤ i ≤ m: the proxy and the participant invoke the

OT protocol where proxy is the sender with inputs (ui, si · ui) and receiver uses xi

as his selector bit. (i.e., the participant learns ui if xi = 0, and si · ui otherwise.)
The proxy also sends the value ĝ = gr/Πui .

2. The participant computes the product M the values received in the OT stage. Then
it computes ĝM = (gΠxi=1si)r = Fs(k)r , encrypts Fs(k)r under the DB’s public
key DB = (g, h), and sends the result (ga, Fs(k)r · ha) to the proxy.

3. The proxy raises the received pair to the power of r′, where r′ is the multiplicative
inverse of r modulo p. It also re-randomizes the resulting ciphertext.

Correctness. SinceG has a prime order p, the pair (ga, Fs(x)r ·ha) raised to the power
of r′ = r−1, results in (gar′

, Fs(k) · har′
), which is exactly EDB(Fs(k)).

Privacy.All the proxy sees is the random tuple (u1, . . . , um, r) and EDB(Fs(k)r). This
view gives no additional information except of EDB(Fs(k)). The participant, on the
other hand, sees the vector (sx1

1 · u1, . . . , s
xm
m · um), whose entries are randomly

distributed over G, as well as the value ĝ = (g1/Πui )r. Since r is randomly and in-
dependently chosen from Z∗

p, and since G has a prime order p, the element ĝ is also
uniformly and independently distributed over G. Hence, the participant learns nothing
but a sequence of random values. The protocol supports security against malicious par-
ticipants (in the sense that was described earlier) and malicious proxy as long as the
underlying OT is secure in the malicious setting.

2.5 Efficiency of Our Protocol

In both the basic and extended protocol, the round complexity is constant, and the com-
munication complexity is linear in the number of items. The protocol’s computational
complexity is dominated by cryptographic operations. For each m-bit input key, we
have the following amortized complexity: The participant (who holds the input key),
proxy and DB compute a small constant number of exponentiations and perform O(m)
modular multiplication / symmetric-key operations. In the extended protocol, the DB
computes another 2 lg |D| exponentiations whereD is the domain of legal values. (One
can optimize the exact number of exponentiations in the basic protocol by employing
RSA instead of El-Gamal.)

2.6 Extensions and Variations

PDA Protocol. Our PDA protocol is based on the CR-PDA protocol. The proxy and
participant first use an EOPRF to send the proxy a list of pairs EDB(Fs(ki)) and
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EDB(vi). (The value EDB(EPRX(ki)) is not needed in this case.) Then, the proxy
passes the (randomly shuffled) list to the DB, which aggregates the tuples according to

the blinded keys in the table
〈
Fs(ki),T[ki]

〉
and outputs the tuples T[ki] in a random

order. Security analysis (details omitted) is similar to the previous: malicious behavior
of either proxy or DB does not affect its own view or that of a colluding participant.

Using many mutually-distrustful servers. One might want a generalized protocol
with t > 2 proxies/DBs (hereafter referred to as servers), in which privacy holds as
long as not all of the servers collude. We now sketch one such simple extension of
our PDA protocol which works for HBC servers. This change increases the complexity
by a multiplicative factor of t, and so we get a smooth tradeoff between security and
efficiency.

The basic idea is to make sure that both the key of the PRF (s) and the public key
of the database (DB) remain hidden from any coalition of t − 1 servers. Specifically,
each server holds a random share of an El-Gamal private key for DB (i.e., the sum
of the shares equals to the private key), and a key si for the Naor-Reingold PRF. We
define a PRF Fs(x) to be the product of Fs1 (x), . . . , Fst(x). The protocol proceeds
as follows: (1) For each input 〈k, v〉, each participant performs the first EOPRF step
of the previous PDA protocol with all the servers, and broadcasts the value EDB(v).
Thus, the i-th server learns the ciphertexts 〈EDB(Fsi(k)), EDB(v)〉. In addition, the
participant supplies to each server a POK for knowing a corresponding legal value v.
(Some overhead can be saved here by using a single invocation of non-interactive ZK-
POK.) (2) Now, the servers use the homomorphism properties of El-Gamal to compute
EDB(Fs(k)); they can pass the EDB(Fsi (k))’s to each other in a chain-like order or
via a broadcast. (3) Then, the servers emulate the second step of the previous protocol
to get a randomly-ordered list of decrypted pairs 〈Fs(k), v〉. This is done in t rounds:
At the i-th round, the i-th server decrypts each pair under his share of the private key
(removes the i-th “layer” of encryption), rerandomizes the encryption, shuffles the list
in a random order, and passes the result to the next server. The final server aggregates
the values according to the blinded keys and broadcasts the result.

Fig. 2. Distributed proxy and database architecture
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3 Distributed Implementation

This section describes our design and implementation of a scalable PDA architecture.
For simplicity, we present the case of two administrative entities, one running a single
logical proxy and the other a database. Both of these proxy and database logical com-
ponents can be physically replicated in a relatively straightforward manner, however.
In particular, our design can scale out horizontally to handle higher loads, by increas-
ing the number of proxy and/or database replicas, and then distributing requests across
these replicas. (Note that this replication strategy differs from the extension for t> 2 ad-
ministrative entities, per Section 2.6.) Our distributed architecture is shown in Figure 2.
Our current implementation covers all details described in the basic protocol, as well
as some security improvements of the extended version (e.g., including the EOPRF, but
not ciphertext re-randomization, proofs of knowledge, or the final consistency check).

3.1 Proxy: Client-Facing Proxies and Decryption Oracles

One administrative domain can operate any number of proxies. Each proxy’s function-
ality may be logically divided into two components: handling client requests and, in the
case of CR-PDA, serving as decryption oracles for the DB when a particular key should
be revealed. None of these proxies need to interact, other than having all client-facing
proxies use the same secret s to key the pseudorandom function F and all decryption-
oracle proxies use the same public/private key PRX. In fact, these two proxies play
different logical roles and could even be operated by two different administrative do-
mains. Currently, all proxies register with a single group membership server, although
a fault-tolerant, distributed membership service could be implemented [6].

To discover a client-facing proxy, a client contacts this group membership service,
which returns a proxy IP address in round-robin order (this could be replaced by any
technique for server selection, including DNS, HTTP redirection, or a local load bal-
ancer). To submit its inputs, a client connects with this proxy and then executes an
amortized Oblivious Transfer (OT) protocol on its input batch. This results in the proxy

learning
〈
EDB(Fs(ki)), EDB(vi), EDB(EPRX(ki))

〉
for each input tuple, with the fi-

nal element only present for CR-PDA protocols. The proxy pushes this tuple onto an
internal queue. (While Section 2.3 only described the use of ElGamal encryption, its
special properties are only needed for EDB(Fs(ki)); the other public-key operations
can be RSA, which we use in our implementation.) When this queue reaches a certain
length—10,000 in our implementation—the proxy randomly permutes the items in the
queue, and sends them to a database server.

Conditional-release PDA protocols have one final step. The database, upon determin-
ing that a key ki’s value satisfies f , sends EPRX(ki) to a proxy-decryption oracle. The
proxy-decryption oracle decrypts EPRX(ki) and returns ki to the database for storage
and potentially for subsequent release to other participants in the system.

3.2 Database: Front-end Decryption and Back-end Storage

The database component can also be replicated. Similar to the proxy, we sepa-
rate database functionality into two parts: the front-end module that handles proxy
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submissions and decrypts inputs, and a back-end module that acts as a storage layer.
Each logical module can be further replicated in a manner similar to the proxy.

The servers comprising the front-end DB tier do not need to interact, other than
being configured with the same public/private keypair DB. Thus, any front-end DB can
decrypt the EDB(Fs(ki)) input supplied by a proxy, and the proxies can load balance
input batches across these servers.

The back-end DB storage, on the other hand, needs to be more tightly coordinated,
as we ultimately need to aggregate all Fs(ki)’s together, no matter which proxy or
front-end DB processed them. Thus, the back-end storage tier partitions the keyspace
of all 1024-bit strings over all storage nodes (using consistent hashing). All such front-
end and back-end DB instances also register with a groupmembership server, which the
front-end servers contact to determine the list of back-end storage nodes. Upon decrypt-
ing an input, the front-end node determines which back-end storage node is assigned

the resulting key Fs(ki), and sends the tuple
〈
Fs(ki), vi, EPRX(ki)

〉
to this storage

node (the final element again present only for CR-PDA protocols). As these storage
nodes each accumulate a horizontal portion of the entire table T , they can aggregate the
values of each table row accordingly. In the case of CR-PDA, they can test the value
column for their local table to see if any keys satisfy f . For each such row, the storage

node sends the tuple
〈
Fs(ki), T [ki], EPRX(ki)

〉
to a proxy-decryption oracle.

3.3 Prototype Implementation

Our design is implemented in roughly 5,000 lines of C++. All communication is per-
formed over TCP using BSD sockets, and concurrency is achieved through Linux
pthreads. We use the GnuPG library for large numbers (bignums) and cryptographic
primitives (e.g., RSA, ElGamal, and AES). The Oblivious Transfer protocol (and its
amortized variant) were implemented from scratch, comprising 625 lines of code. All
RSA encryption used a 1024-bit key, and ElGamal used a 1024-bit group size. AES-256
was used in the batch OT and its underlying OT primitive. The back-end DB currently
stores table rows only in memory.

4 Performance Evaluation

In this section, we evaluate system throughput (number of updates/queries per second)
as a function of the number of keys and system participants. We also investigate how
throughput scales with greater resources. In each case, we are concerned with both
how long it takes for clients to send key-value pairs to the proxy during the OT phase
(proxy throughput), as well as how long it takes for the DB to decrypt and identify
keys with values that satisfy the function f (DB throughput). Our experiments were run
on multiple machines. The proxy and DB were run on quad-core Intel Xeon 2 GHz
machines running CentOS Linux. These machines can perform a 1024-bit ElGamal
encryption in 2.2 ms, ElGamal decryption in 2.5 ms, RSA encryption in 0.5 ms, and
RSA decryption in 2.8 ms. Clients were run on separate local machines.

As discussed earlier, our system can be used in different contexts. One potential ap-
plication of collaborative anomaly detection. As modern botnets can range up to roughly
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Fig. 3. Scaling effect of number of (a) keys, (b) participants, and (c) proxy/database replicas

100,000 unique hosts [37], we would like our system to be able to correlate suspicions
of hundreds of participating networks within a few hours. Thus, our implementation
should be able to process millions of keys in the span of hours, or hundreds of keys per
second. We revisit the feasibility of supporting applications in Section 4.2.

4.1 Scaling and Bottleneck Analysis

Effect of number of keys (Figure 3a). Figure 3a measures throughput of a single
proxy and DB (each running on a single core) as a function of the number of keys. The
throughput of the OT primitive is exceedingly low—less than 1 key per second—and
was thus not evaluated on the full range of input sizes. However, when using the amor-
tized OT, proxy throughput significantly improves. Throughput increases with larger
numbers of keys per batch, as the amortized OT calls the primitive OT a fixed number
of times regardless of the number of input keys. DB throughput, on the other hand, does
not increase with larger input batches. The DB must perform a fixed number of decryp-
tions per input tuple—initiated when it receives a batch of encrypted inputs from the
proxy—and thus its computational cost is relatively constant per input. Figure 3a shows
our DB processes about 90 keys per second (and then becomes CPU limited).

The amortized OT protocol [24] introduces a trade-off between message overhead
and memory consumption. The memory footprint of this protocol per client-proxy in-
teraction for n keys is n× 32× 2× 1024/8 = 8196n bytes (i.e., we assume 32 bits per
key, the 2 values for the OT primitive, and 1024-bit encryption lengths). For n=10, 000
keys, for example, this requires 82 MB on both the proxy and the client. To reduce this
memory footprint, a user of the protocol could choose to execute the amortized OT
protocol in stages by sending k keys at a time.

Effect of number of participants (Figure 3b). We next evaluate the throughput of our
system as a function of the number of clients submitting inputs. In this experiment, we
limit the proxy and DB to one server machine each. Four client-facing proxy processes
are launched on one machine and four front-end DB processes are launched on the
other. Figure 3b shows that the proxy scales well with the number of clients, increasing
by nearly a factor of two between 8 and 32 clients. When communicating with a single
client, a proxy spends a substantial fraction of its time idling (largely while the client
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is performing its cryptographic operations). The four proxies in this experiment are not
CPU limited until they handle 32 clients, at which time the throughput approaches 900
keys per second. The DB, however, is CPU-bound throughout these experiments. It has
a throughput of about 350 keys per second, independent of the number of clients (a like
amount of work per core as that seen in Figure 3a).

Effect of number of replicas (Figure 3c). Finally, we analyze how our distributed
architecture scales with computing resources. Here, we provide up to 8 cores on 2 ma-
chines to each of the proxy and DB front-ends. While the proxy functionality alone is
evaluated using 64 clients, computing resource constraints meant that the DB (which
also required proxies to test) is evaluated using 32 clients. Performance of both the
proxy and DB scale linearly with the number of CPU cores allocated to them, enabling
a few servers to handle inputs on the order of a few million keys per hour.

Micro-benchmarks. To understand the factors limiting our design’s performance, we
instrumented the code to account for how CPU cycles are spent. While the DB is en-
tirely CPU bound by the cost of decrypting inputs, the proxy and client engage in the
oblivious transfer protocol whose bottlenecks are less clear. When communicating with
a single client, we found that the client-facing proxy spends more than 60% of its time
idling while waiting for the client (some of the OT time is also spent waiting on clients).
The 60% idle time is primarily due to waiting for the client to encrypt ki and Fs(ki).
The single largest computational expense for the proxy is performing modular expo-
nentiations at 16%; the remaining non-OT tasks add up to 15%. Given that concurrent
clients will reduce the proxy’s waiting state, achieving higher proxy throughput will
require either more efficient cryptographic operations or faster bignum libraries.

We noted earlier that the GnuPG cryptographic library we used performed public-
key operations in approximately 2.5–2.8 ms. On the same servers, we benchmarked the
Crypto++ library to performRSA decryption in only 1.2 ms, increasing speed by 130%.
Crypto++ would also allow us to take advantage of elliptic curve cryptography, which
would increase system throughput. In future work, we plan to modify our implementa-
tion to use this library.

4.2 Feasibility of Supporting Applications

Anomaly detection. Network operators commonly run systems to detect and localize
anomalous behavior by dynamically tracking traffic characteristics. For example, Mao
et al. [29] found that most DDoS attacks observed within a large ISP were sourced by
fewer than 10,000 source IPs, and generated 31,612 alarms over a four-week period
(0.8 events per hour). Ramachandran et al. [38] were able to localize 4,963 Bobax-
infected host IPs sending spam from a single vantage point. We envision our system
could be used to improve the accuracy of these techniques by correlating anomalies
across ISP boundaries. This correlation may be done on the level of IP addresses (given
DoS attackers typically do not spoof source IPs given ingress filtering [29] and for
applications such as email spam that require bidirectional TCP connections), or on the
level of subnets. Our system could handle 10,000 IP addresses as keys, with a request
rate of several hundred keys per second, even with several hundred participants.
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Cross-checking certificates. Multiple vantage points may be used to validate authen-
ticity of information (such as a DNS reply or ssh certificate [34,41]) in the presence
of “man-in-the-middle” attacks. Such environments demand privacy—DNS responses
reveal domains that clients access, ssh keys reveal host connection patterns—as well
as present scaling challenges due to the potentially large number of keys that could be
inserted. Under typical workloads [25,40] (15 key updates per hour, with 30 keys per
participating host), our system scales to support several hundred hosts with a single
proxy. Extrapolating out to larger workloads, our system can handle tens of thousands
of clients storing tens of thousands of keys with under fifty proxy/database pairs.

Distributed ranking. Search tools such as Alexa and Google Toolbar collect informa-
tion about user behavior to refine search results returned to users. Users have incentive
to install these tools, as they provide benefits (simplified searching and other features).
However, they are sometimes labeled as spyware as they reveal information about the
contents of queries performed by users. Our tool may be used to improve privacy of user
submissions to these databases. Alexa Toolbar has an estimated 180,000 active users,
and average web users browse 120 pages per day. Roughly extrapolating this data to
our results and assuming that users batch their daily usage, our system could handle
this daily workload with a single 4-core proxy and DB pair.

5 Conclusions

In this paper, we presented the design, implementation, and evaluation of a collabo-
rative data-analysis system that is both scalable and privacy preserving. Since a fully-
distributed solution would be complex and inefficient, our design divides responsibility
between a small number of well-known, independent parties—most commonly, a proxy
that obliviously blinds the client inputs and a database that aggregates the inputs based
on the (blinded) keys. The functionality of both the proxy and the database can be eas-
ily distributed for greater scalability and reliability. Experiments with our prototype
implementation show that our system performs well under increasing numbers of keys,
participants, and proxy/database replicas. The performance is well within the require-
ments of our motivating applications for collaborative data analysis.
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A Security Assumptions

We now motivate and clarify some security assumptions and privacy definitions.

Security against coalitions. We insist on providing security against any coalition of
an arbitrary number of participants together with either the database or the proxy. This
is essential as otherwise the DB (or proxy) can perform a Sybil attack [12], i.e., create
many dummy participants and use their views, together with his own view, to reveal
sensitive information. On the other hand, in order to have an efficient and scalable sys-
tem, we are willing to tolerate vulnerability against a coalition of the DB and the proxy,
which could otherwise break participant and keyword privacy.

Power of the adversaries: honest-but-curious vs. malicious adversaries. In our CR-
PDA protocol, both proxy and DB are expected to act as HBC. We believe this model
is very appropriate for our semi-centralized system architecture. In many deployments,
the DB and proxy may be well-known and trusted to act to the best of their abilities, as
opposed to simply another participant amongst a set of mutually-distrusted parties. Of
course, these trust assumptions do not extend to the potentially large number of partici-
pants, and therefore we require security against any coalition of malicious participants
(who are allowed to deviate arbitrarily from the protocol). We mention that our PDA
protocol provides security even when the DB or proxy are malicious. More generally,
security holds against any arbitrary coalition of malicious participants that include ei-
ther a malicious proxy or a malicious DB. Typically, security against fully malicious

http://www.privacyrights.org/ar/ChronDataBreaches.htm
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behavior comes at a great computational cost. We avoid this overhead by providing a
weaker notion of security as discussed next.

Notions of security: ideal-real framework vs. input indistinguishability. In cryp-
tography, the security of a protocol is usually defined via the ideal-real framework.
Roughly speaking, the protocol should be as secure as an ideal-world implementation
in which the players can employ a fully trusted party. This means that any attack that
can be carried against the real protocol should be simulatable in the ideal world as well.
This notion is very strong, as it shows that the protocol essentially achieves the highest
possible level of security. Our CR-PDA protocol provides this notion of security.

A weaker notion (recently studied in [32,15,23]) tries to deal separately with pri-
vacy and correctness in order to improve efficiency. In particular, malicious parties
are allowed to arbitrarily corrupt the correctness of the protocol as long as they do
not learn anything about the inputs of honest players. (Formally, this is captured by
an indistinguishability-based definition [23].) This is motivated by the fact that a ma-
licious party can often violate semantic correctness in an ideal implementation, e.g.,
by adding, changing, or omitting inputs to the function—by “lying,” in more informal
terms. Therefore, it may be reasonable to give up completely on correctness against
malicious parties (proxies and DBs) and gain significant computational savings.4

4 For technical reasons this relaxation makes sense mainly when the malicious parties do not
get any output. Since in our PDA functionality only the DB gets an output, we may adopt this
relaxed notion and provide privacy (at the form of input indistinguishability) against malicious
participants and/or malicious proxy, and full security (at the form of the ideal-real framework)
for coalitions that include a malicious DB.
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1 Introduction

Most software systems request sensitive information from users to construct a
query, but privacy concerns can make a user unwilling to provide such informa-
tion. The problem addressed by private information retrieval (PIR) [3,9] is to
provide such a user with the means to retrieve data from a database without
the database (or the database administrator) learning any information about
the particular item that was retrieved. Development of practical PIR schemes is
crucial to maintaining user privacy in important application domains like patent
databases, pharmaceutical databases, online censuses, real-time stock quotes,
location-based services, and Internet domain registration. For instance, the cur-
rent process for Internet domain name registration requires a user to first disclose
the name for the new domain to an Internet domain registrar. Subsequently, the
registrar could then use this inside information to preemptively register the new
domain and thereby deprive the user of the registration privilege for that do-
main. This practice is known as front running [17]. Many users, therefore, find
it unacceptable to disclose the sensitive information contained in their queries
by the simple act of querying a server.

Users’ concern for query privacy and our proposed approach to address it
are by no means limited to domain names; they apply to publicly accessible
databases in several application domains, as suggested by the examples above.
Although ICANN claims the practice of domain front running has subsided [17],
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we will, however, use the domain name example in this paper to enable head-to-
head performance comparisons with a similar approach by Reardon et al. [23],
which is based on this same example.

While today’s most developed and deployed privacy techniques, such as onion
routers and mix networks, offer anonymizing protection for users’ identities, they
cannot preserve the privacy of the users’ queries. For the front running example,
the user could tunnel the query through Tor [12] to preserve the privacy of his
or her network address. Nevertheless, the server could still observe the user’s
desired domain name, and launch a successful front running attack.

The development of a practical PIR-based technique for protecting query pri-
vacy offers users and service providers an attractive value proposition. Users
are increasingly aware of the problem of privacy and the need to maintain pri-
vacy in their online activities. The growing awareness is partly due to increased
dependence on the Internet for performing daily activities — including online
banking, Twittering, and social networking — and partly because of the rising
trend of online privacy invasion. Privacy-conscious users will accept a service
built on PIR for query privacy protection because no currently deployed secu-
rity or privacy mechanism offers the needed protection; they will likely be willing
to trade off query performance for query privacy and even pay to subscribe for
such a service. Similarly, service providers may adopt such a system because of
its potential for revenue generation through subscriptions and ad displays. As
more Internet users value privacy, most online businesses would be motivated to
embrace privacy-preserving technologies that can improve their competitiveness
to win this growing user population. Since the protection of a user’s identity
is not a problem addressed by PIR, existing service models relying on service
providers being able to identify a user for the purpose of targeted ads will not
be disabled by this proposal. In other words, protection of query privacy will
provide additional revenue generation opportunities for these service providers,
while still allowing for the utilization of information collected through other
means to send targeted ads to the users. Thus, users and service providers have
plausible incentives to use a PIR-based solution for maintaining query privacy.
In addition, the very existence of a practical privacy-preserving database query
technique could be enough to persuade privacy legislators that it is reasonable
to demand that certain sorts of databases enforce privacy policies, since it is
possible to deploy these techniques without severely limiting the utility of such
databases.

However, the rudimentary data access model of PIR is a limiting factor in
deploying successful PIR-based systems. These models are limited to retrieving
a single bit, a block of bits [3,9,18], or a textual keyword [8]. There is therefore
a need for an extension to a more expressive data access model, and to a model
that enables data retrieval from structured data sources, such as from a relational
database. We address this need by integrating PIR with the widely deployed
SQL.

Dynamic SQL is an incomplete SQL statement within a software system,
meant to be fully constructed and executed at runtime [26]. It requires only a
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single compilation that prepares it for subsequent executions. It is therefore a
flexible, efficient, and secure way of using SQL in software systems. We observe
that the shape or textual content of an SQL query prepared within a system is
not private, but the constants the user supplies at runtime are private, and must
be protected. For domain name registration, the textual content of the query is
exposed to the database, but only the textual keyword for the domain name is
really private. For example, the shape of the dynamic query in Listing 1 is not
private; the question mark ? is used as a placeholder for a private value to be
provided before the query is executed at runtime.

Listing 1. Example Dynamic SQL query (database schema as in [22])
SELECT t1.domain, t1.expiry, t2.contact

FROM regdomains t1, registrar t2

WHERE (t1.reg_id = t2.reg_id) AND (t1.domain = ? )

Our approach to preserving query privacy over a relational database is based
on hiding such private constants of a query. The client sends a desensitized
version of the prepared SQL query appropriately modified to remove private
information. The database executes this public SQL query, and generates ap-
propriate cached indices to support further rounds of interaction with the client.
The client subsequently performs a number of keyword-based PIR operations [8]
using the value for the placeholders against the indices to obtain the result for
the query.

None of the existing proposals related to enabling privacy-preserving queries
and robust data access models for private information retrieval makes the noted
observation about the privacy of constants within an otherwise-public query.
These include techniques that eliminate database optimization by localizing
query processing to the user’s computer [23], problems on querying Database-
as-a-Service [16,15], those that require an encrypted database before permitting
private data access [25], and those restricted to simple keyword search on textual
data sources [4]. This observation is crucial for preserving the expressiveness and
benefits of SQL, and for keeping the interface between a database and existing
software systems from changing while building in support for user query privacy.
Our approach improves over previous work with additional database optimiza-
tion opportunities and fewer PIR operations needed to retrieve data. To the best
of our knowledge, we are the first to propose a practical technique that lever-
ages PIR to preserve the privacy of sensitive information in an SQL query over
existing commercial and open-source relational database systems.

Our contributions. We address the problem of preserving the privacy of sensi-
tive information within an SQL query using PIR. In doing this, we address two
obstacles to deploying successful PIR-based systems. First, we develop a generic
data access model for private information retrieval from a relational database
using SQL. We show how to hide sensitive data within a query and how to use
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PIR to retrieve data from a relational database. Second, we develop an approach
for embedding PIR schemes into the well-established context and organization
of relational database systems. It has been argued that performing a trivial PIR
operation, which involves having a database send its entire data to the user,
and having the user select the item of interest, is more efficient than running a
computational PIR scheme [1,27]; however, information-theoretic PIR schemes
are much more efficient. We show how the latter PIR schemes can be applied
in realistic scenarios, achieving both efficiency and query expressivity. Since re-
lational databases and SQL are the most influential of all database models and
query languages, we argue that many realistic systems needing query privacy
protection will find our approach quite useful.

The rest of this paper is organized as follows: Section 2 provides background
information on PIR and database indexing. Section 3 discusses related work,
while Section 4 details the threat model, security, and assumptions for the paper.
Section 5 provides a description of our approach. Section 6 gives an overview of
the prototype implementation, results of microbenchmarking and the experiment
used to evaluate this prototype in greater depth. Section 7 concludes the paper
and suggests some future work.

2 Preliminaries

2.1 Private Information Retrieval (PIR)

PIR provides a means to retrieve data from a database without revealing any
information about which item is retrieved. In its simplest form, the database
stores an n-bit string X , organized as r data blocks, each of size b bits. The
user’s private input or query is an index i ∈ {1, ..., r} representing the ith data
block. A trivial solution for PIR is for the database to send all r blocks to the
user and have the user select the block of interest at index i (i.e., Xi), but this
carries a very poor communication complexity.

The three important requirements for any PIR scheme are correctness (returns
the correct block Xi to the user), privacy (leaks no information to the database
about i and Xi) and non-triviality (communication complexity is sublinear in
n) [10]. An additional requirement, which is not often addressed in the published
literature, is implementation (i.e., computational) efficiency [1,27]. While the
performance of information-theoretic PIR schemes are generally better [14], this
neglect of computational overhead has led to single-database PIR schemes that
are slow for large databases [27]. On the other hand, multi-server information-
theoretic PIR schemes are much more efficient than the trivial solution and
their use is justified in situations where the user lacks the bandwidth and local
storage for the trivial download of data. Recent attempts at building practical
single-database PIR [31] using general-purpose secure coprocessors offers several
orders of magnitude improvement in performance. Nevertheless, the potential
application of PIR in several practical domains has been largely unrealized with
no “fruitful” or “real world” practical application.
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A related cryptographic construction to PIR is oblivious transfer (OT) [20,21].
In OT, a database (or sender) transmits some of its items to a user (or chooser),
in a manner that preserves their mutual privacy. The database has assurance
that the user does not learn any information beyond what he or she is entitled
to, and the user has assurance that the database is unaware of which particular
items it received. OT and the related Symmetric PIR (SPIR) [19] can thus be
seen to be generalizations of PIR. Those protocols could easily be used in place
of PIR in our work, with the concomitant extra computational cost.

2.2 Indexing

Data can be indexed by a key formed either from the values of one or more
attributes or from hashes (generally not cryptographic hashes) of those values.
Indices are typically organized into tree structures, such as B+ trees where in-
ternal or non-leaf nodes do not contain data; they only maintain references to
children or leaf nodes. Data are either stored in the leaf nodes, or the leaf nodes
maintain references to the corresponding tuples (i.e., records) in the database.
Furthermore, the leaf nodes of B+ trees may be linked together to enable se-
quential data access during range queries over the index; range queries return
all data with key values in a specified range.

Hashed indices are specifically useful for point queries, which return a single
data item for a given key. For many situations where efficient retrieval over a
set of unique keys is needed, hashed indices are preferred over B+ tree indices.
However, it is challenging to generate hash functions that will hash each key to
a unique hash value. Many hashed indices used in commercial databases, for this
reason, use data partitioning (bucketization) [16] techniques to hash a range of
values to a single bucket, instead of to individual buckets. Recent advances [5,6]
in perfect hash functions (PHF) have produced a family of hash functions that
can efficiently map a large set of n key values (on the order of billions) to a set
of m integers without collisions, where n is less than or equal to m.

3 Related Work

A common assumption for PIR schemes is that the user knows the index or
address of the item to be retrieved. However, Chor et al. [8] proposed a way to
access data with PIR using keyword searches over three data structures: binary
search tree, trie and perfect hashing. Our work extends keyword-based PIR to
B+ trees and PHF. In addition, we provide an implemented system and combine
the technique with the expressive SQL. The technique in [8] neither explores
B+ trees nor considers executing SQL queries using keyword-based PIR.

Reardon et al. [23] similarly explore using SQL for private information re-
trieval, and proposed the TransPIR prototype system. This work is the closest
to our proposal and will be used as the basis for comparisons. TransPIR performs
traditional database functions (such as parsing and optimization) locally on the
client; it uses PIR for data block retrieval from the database server, whose func-
tion has been reduced to a block-serving PIR server. The benefit of TransPIR
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is that the database will not learn any information even about the textual con-
tent of the user’s query. The drawbacks are poor query performance because the
database is unable to perform any optimization, and the lack of interoperability
with any existing relational database system.

An interesting attempt to build a practical pseudonymous message retrieval
system using the technique of PIR is presented in [24]. The system, known
as the Pynchon Gate, helps preserve the anonymity of users as they privately
retrieve messages using pseudonyms from a centralized server. Unlike our use
of PIR to preserve a user’s query privacy, the goal of the Pynchon Gate is to
maintain privacy for users’ identities. It does this by ensuring the messages a
user retrieves cannot be linked to his or her pseudonym. The construction resists
traffic analysis, though users may need to perform some dummy PIR queries to
prevent a passive observer from learning the number of messages she has received.

4 Threat Model, Security and Assumptions

4.1 Security and Adversary Capabilities

Our main assumption is that the shape of SQL queries submitted by the users is
public or known to the database administrator. Applicable practical scenarios in-
clude design-time specification of dynamic SQL by programmers, who expect the
users to supply sensitive constants at runtime. Moreover, the database schema
and all dynamic SQL queries expected to be submitted to, for example, a patent
database, are not really hidden from the patent database administrator. Simul-
taneous protection of both the shape and constants of a query are outside of the
scope of this work, and would likely require treating the database management
system as other than a black box.

The approach presented in this paper is sufficiently generic to allow an applica-
tion to rely on any block-based PIR system, including single-server, multi-server,
and coprocessor-assisted variants. We assume an adversary with the same capa-
bility as that assumed for the underlying PIR protocol. The two common adver-
sary capabilities considered in theoretical private information retrieval schemes
are the curious passive adversary and the byzantine adversary [3,9]. Either of
these adversaries can be a database administrator or any other insider to a PIR
server.

A curious passive adversary can observe PIR-encoded queries, but should be
incapable of decoding the content. In addition, it should not be possible to differ-
entiate between queries or identify the data that makes up the result of a query.
In our context, the information this adversary can observe is the desensitized
SQL query from the client and the PIR queries. The information obtained from
the desensitized query does not compromise the privacy of the user’s query, since
it does not contain any private constants. Similarly, the adversary cannot obtain
any information from the PIR queries because PIR protocols are designed to be
resistant against an adversary of this capability.

A byzantine adversary with additional capabilities is assumed for some multi-
server PIR protocols [3,14]. In this model, the data in some of the servers could
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be outdated, or some of the servers could be down, malfunctioning or malicious.
Nevertheless, the client is still able to compute the correct result and determine
which servers misbehaved, and the servers are still unable to learn the client’s
query. Again, in our specific context, the adversary may compromise some of
the servers in a multi-server PIR scenario by generating and obtaining the result
for a substitute fake query or executing the original query on these servers,
but modifying some of the tuples in the results arbitrarily. The adversary may
respond to a PIR request with a corrupted query result or even desist from
acting on the request. Nevertheless, all of these active attack scenarios can be
effectively mitigated with a byzantine-robust multi-server PIR scheme.

4.2 Data Size Assumptions

We service PIR requests using indexed data extracted from relational databases.
The size of these data depends on the number of tuples resulting from the desen-
sitized query. We note that even in the event that this desensitized query yields
a small number of tuples (including just one), the privacy of the sensitive part
of the SQL query is not compromised. The properties of PIR ensure that the
adversary gains no information about the sensitive constants from observing the
PIR protocol, over what he already knew by observing the desensitized query.

On the other hand, many database schemas are designed in a way that a
number of relations will contain very few rows of data, all of which are meant
to be retrieved and used by every user. Therefore, it is pointless to perform PIR
operations on these items, since every user is expected to retrieve them all at
some point. The adversary does not violate a user’s query privacy by observing
this public retrieval.

4.3 Avoiding Server Collusion

Information-theoretic PIR is generally more computationally efficient than com-
putational PIR, but requires that the servers not collude if privacy is to be pre-
served; this is the same assumption commonly made in other privacy-preserving
technologies, such as mix networks [7] and Tor [12]. We present scenarios in
which collusion among servers is unlikely, yielding an opportunity to use the
more efficient information-theoretic PIR.

The first scenario is when several independent service providers host a copy of
the database. This applies to naturally distributed databases, such as Internet
domain registries. In this particular instance, the problem of colluding servers
is mitigated by practical business concerns. Realistically, the Internet domain
database is maintained by different geographically dispersed organizations that
are independent of the registrars that a user may query. However, different reg-
istrars would be responsible for the content’s distribution to end users as well as
integration of partners through banner ads and promotions. Since the registrars
are operating in the same line of business where they compete to win users and
deliver domain registry services, as well as having their own advertising models
to reap economic benefits, there is no real incentive to collude in order to break
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the privacy of any user. In this model, it is feasible that a user would perform
a domain name registration query on multiple registrars’ servers concurrently.
The user would then combine the results, without fear of the queries revealing
its content. Additionally, individual service agreements can foreclose any chance
of collusion with a third party on legal grounds. Users then enjoy greater confi-
dence in using the service, and the registrars in turn can capitalize on revenue
generation opportunities such as pay-per-use subscriptions and revenue-sharing
ad opportunities.

The second scenario that offers less danger of collusion is when the query needs
to be private only for a short time. In this case, the user may be comfortable
with knowing that by the time the servers collude in order to learn her query,
the query’s privacy is no longer required.

Note that even in scenarios where collusion cannot be forestalled, our system
can still use any computational PIR protocol; recent such protocols [1,31] offer
considerable efficiency improvements over previous work in the area.

5 Hiding Sensitive Constants

5.1 Overview

Our approach is to preserve the privacy of sensitive data within the WHERE and
HAVING predicates of an SQL query. For brevity, we will focus on the WHERE
clause; a similar processing procedure applies to the HAVING clause. This may
require the user (or application) to specify the constants that may be sensitive.
For the example query in Listing 2, the domain name and the creation date may
be sensitive.

Our approach splits the processing of SQL queries containing sensitive data
into two stages. In the first stage, the client computes a public subquery, which
is simply the original query that has been stripped of the predicate conditions
containing sensitive data. The client sends this subquery to the server, and the
server executes it to obtain a result for the subquery. The desired result for the
original query is contained within the subquery result, but the database is not
aware of the particular tuples that are of interest.

In the second stage, the client performs PIR operations to retrieve the tuples
of interest from the subquery result. To enable this, the database creates a cached
index on the subquery result and sends metadata for querying the index to the
client. The client subsequently performs PIR retrievals on the index and finally
combines the retrieved items to build the result for the original query.

Listing 2. Example query with a WHERE clause featuring sensitive constants
SELECT t1.contact, t1.email, t2.created, t2.expiry

FROM registrar t1, regdomains t2

WHERE (t1.reg_id = t2.reg_id) AND (t2.created > 20090101) AND

(t2.domain = ’anydomain.com’)
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Alice PIR Server Database File System

ServerClient

subquery

subquery

subquery result
index on subquery result

index helper data
PIR query q(i) on index

PIR retrieval of q(i)

PIR result

PIR result

... ... ...

compute query result

Fig. 1. A sequence diagram for evaluating Alice’s private SQL query using PIR

The important benefits of this approach as compared with the previous ap-
proach [23] are the optimizations realizable from having the database execute the
non-private subquery, and the fewer number of PIR operations required to re-
trieve the data of interest. In addition, the PIR operations are performed against
a cached index which will usually be smaller than the complete database. This
is particularly true if there are joins and non-private conditions in the WHERE
clause that constrain the tuples in the query result. In particular, a single PIR
query is needed for point queries on hash table indices, while range queries on
B+ tree indices are performed on fewer data blocks. Figure 1 illustrates the
sequence of events during a query evaluation.

We note that often, the non-private subqueries will be common to many users,
and the database does not need to execute them every time a user makes a
request. Nevertheless, our algorithm details, presented next in Section 5.2, show
the steps for processing a subquery and generating indices. Such details are
useful in an ad hoc environment, where the shape of a query is unknown to
the database a priori; each user writes his or her own query as needed. Our
assumption is that revealing the shape of a query will not violate users’ privacy
(see Section 4).

5.2 Algorithm

We describe our algorithm with an example by assuming an information-theoretic
PIR setup with two replicated servers. We focus on hiding sensitive constants
in the predicates of the WHERE clause. The algorithm details for the SE-
LECT query in Listing 2 follows. We assume the date 20090101 and the domain
anydomain.com are private.

Step 1: The client builds an attribute list, a constraint list, and a desensitized
SELECT query, using the attribute names and the WHERE conditions of the
input query. We refer to the desensitized query as a subquery.
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To begin, initialize the attribute list to the attribute names in the query’s SE-
LECT clause, the constraint list to be empty, and the subquery to the SELECT
and FROM clauses of the original query.

– Attribute list: {t1.contact, t1.email, t2.created, t2.expiry}
– Constraint list: {}
– Subquery: SELECT t1.contact, t1.email, t2.created, t2.expiry

FROM registrar t1, regdomains t2

Next, consider each WHERE condition in turn. If a condition features a pri-
vate constant, then add the attribute name to the attribute list (if not already
in the list), and add (attribute name, constant value, operator) to the constraint
list. Otherwise, add the condition to the subquery.

On completing the above steps, the attribute list, constraint list, and subquery
with reduced conditions for the input query become:

– Att. list: {t1.contact, t1.email, t2.created, t2.expiry, t2.domain}
– Con. list: {(t2.created,20090101,>),(t2.domain,’anydomain.com’,=)}
– Subquery:

SELECT t1.contact,t1.email,t2.created,t2.expiry,t2.domain
FROM registrar t1, regdomains t2 WHERE (t1.reg id = t2.reg id)

Step 2: The client sends the subquery, a key attribute name, and an index file
type to each server.

The key attribute name is selected from the attribute names in the constraint
list — t2.created, t2.domain in our example. The choice may either be ran-
dom, made by the application designer, or determined by a client optimizer
component with some domain knowledge that could enable it to make an opti-
mal choice. One way to make a good choice is to consider the selectivity — the
ratio of the number of distinct values taken to the total number of tuples —
expected for each constraint list attribute, and then choose the one that is most
selective. This ensures the selection of attributes with unique key values before
less selective attributes. For example, in a patent database, the patent number
is a better choice for a key than the author’s gender. A poor choice of key can
lead to more rounds of PIR queries than necessary. Point queries on a unique
key attribute can be completed with a single PIR query. Similarly, a good choice
of key will reduce the number of PIR queries for range queries. For the example
query, we choose t2.domain as the key attribute name.

For the index file type, either a PHF or a B+ tree index type is specified.
Other index structures may be possible, with additional investigation, but these
are the ones we currently support. More details on the selection of index types
is provided below.

Step 3: Each server: executes the subquery on its relational database, generates a
cached index of the specified type on the subquery result, using the key attribute
name, and returns metadata for searching the indices to the client.

The server computes the size of the subquery result. If it can send the entire
result more cheaply than performing PIR operations on it, it does so. Otherwise,
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it proceeds with the index generation. For hash table indices, the server first com-
putes the perfect hash functions for the key attribute values. Then it evaluates
each key and inserts each tuple into a hash table. The metadata that is returned
to the client for hash-based indices consists of the PHF parameters, the count
of tuples in the hash table, and some PIR-specific initialization parameters.

For B+ tree indices, the server bulk inserts the subquery result into a new
B+ tree index file. B+ tree bulk insertion algorithms provide a high-speed tech-
nique for building a tree from existing data [2]. The server also returns metadata
to the client, including the size of the tree and its first data block (the root).
Generated indices are stored in a disk cache external to the database.

Step 4: The client receives the responses from the servers and verifies they are
of the appropriate length. For a byzantine robust multi-server PIR, a client may
choose to proceed in spite of errors resulting from non-responding servers or from
responses that are of inconsistent length.

Next, the client performs one or more keyword-based PIR queries, using the
value associated with the key attribute name from the constraint list, and builds
the desired query result from the data retrieved with PIR.

The encoding of a private constant in a PIR query proceeds as follows. For
PIR queries over a hash-based index, the client computes the hash for the private
constant using the PHF functions derived from the metadata1. This hash is also
the block number in the hash table index on the servers. This block number
is input to the PIR scheme to compute the PIR query for each server. For a
B+ tree index, the user compares the private value for the key attribute with
the values in the root of the tree. The root of the tree is extracted from the
metadata it receives from the server. Each key value in this root maintains block
numbers for the children blocks or nodes. The block number corresponding to
the appropriate child node will be the input to the PIR scheme.

For hash-based indices, a single PIR query is sufficient to retrieve the block
containing the data of interest from the hash table. For B+ tree indices, however,
the client uses PIR to traverse the tree. Each block can hold some number m
of keys, and at a block level, the B+ tree can be considered an m-ary tree. The
client has already been sent the root block of the tree, which contains the top m
keys. Using this information, the client can perform a single PIR block query to
fetch one of the m blocks so referenced. It repeats this process until it reaches
the leaves of the tree, at which point it fetches the required data with further
PIR queries. The actual number of PIR queries depends on the height of the
(balanced) tree, and the number of tuples in the result set. Traversals of B+ tree
indices with our approach are oblivious in that they leak no information about
nodes’ access pattern; we realize retrieval of a node’s data as a PIR operation
over the data set of all nodes in the tree. In other words, it does not matter which
particular branch of a B+ tree is the location for the next block to be retrieved.
We do not restrict PIR operations to the subset of blocks in the subtree rooted
1 Using the CMPH Library [5] for example, the client saves the PHF data from the

metadata into a file. It reopens this file and uses it to compute a hash by following
appropriate API call sequences.
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at that branch. Instead, each PIR operation considers the set of blocks in the
entire B+ tree. Range queries that retrieve data from different subtrees leak no
information about to which subtree a particular piece of data belongs. The only
information the server learns is the number of blocks retrieved by such a query.
Therefore, specific implementations may utilize dummy queries to prevent the
server from leaning the amount of useful data retrieved by a query [24].

To compute the final query result, the client applies the other private con-
ditions in the constraint list to the result obtained with PIR. For the example
query, the client filters out all tuples with t2.created not greater than 20090101
from the tuple data returned with PIR. The remaining tuples give the final query
result.

Capabilities for dealing with complex queries can be built into the client. For
example, it may be more efficient to request a single index keyed on the con-
catenation of two attributes than separate indices. If the client requests separate
indices, it will subsequently perform PIR queries on each of those indices, using
the private value associated with each attribute from the constraint list. Finally,
the client combines the partial results obtained from the queries with set opera-
tions (union, intersection), and performs local filtering on the combined result,
using private constant values for any remaining conditions in the constraint list
to compute the final query result. The client thus needs query-optimization ca-
pabilities in addition to the regular query optimization performed by the server.

6 Implementation and Microbenchmarks

6.1 Implementation

We developed a prototype implementation of our algorithm to hide the sensitive
portions of SQL queries using generally available open source C++ libraries and
databases. We developed a command-line tool to act as the client, and a server-
side database adapter to provide the functions of a PIR server. For the PIR
functions, we used the Percy++ PIR Library [13,14], which offers three varieties
of privacy protection: computational, information theoretic and hybrid (a com-
bination of both). We extended Percy++ to support keyword-based PIR. For
generating hash table indices for point queries, we used the C Minimal Perfect
Hash (CMPH) Library [5,6], version 0.9. We used the API for CMPH to gener-
ate minimum perfect hash functions for large data sets from query results; these
perfect hash functions require small amounts of disk storage per key. For build-
ing B+ tree indices for range queries on large data sets, we used the Transparent
Parallel I/O Environment (TPIE) Library [11,30]. Finally, we base the imple-
mentation on the MySQL [28] relational database, version 5.1.37-1ubuntu5.1.

6.2 Experimental Setup

We began evaluating our prototype implementation using a set of six whois-
style queries from Reardon et al. [23], which is the most appropriate existing
microbenchmark for our approach. We explored tests using industry-standard
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database benchmarks, such as the Transaction Processing Performance Coun-
cil (TPC) [29] benchmarks, and open-source benchmarking kits such as Open
Source Development Labs Database Test Suite (OSDL DTS) [32], but none of
the tests from these benchmarks is suitable for evaluating our prototype, as their
test databases cannot be readily fitted into a scenario that would make applying
PIR meaningful. For example, a database schema that is based on completing
online orders will only serve very limited purpose to our goal of protecting the
privacy of sensitive information within a query.

We ran the microbenchmark tests using two whois-style data sets, similar
to those generated for the evaluation of TransPIR [23]. The smaller data set
consists of 106 domain name registration tuples, and 0.75 × 106 registrar and
registrant contact information tuples. The second data set similarly consists of
4 × 106 and 3 × 106 tuples respectively. We describe the two database relations
and the evaluation queries, as well as the results for the smaller data set, in the
extended version [22].

In addition to the microbenchmarks, we performed an experiment to eval-
uate the behaviour of our prototype on complex input queries, such as aggre-
gate queries, BETWEEN and LIKE queries, and queries with multiple WHERE
clause conditions and joins. Each of these complex queries has varying privacy
requirements for its sensitive constants.

We ran the all experiments on a server with two quad-core 2.50 GHz Intel
Xeon E5420 CPUs, 8 GB RAM, and running Ubuntu Linux 9.10. We used the
information-theoretic PIR support of Percy++, with two database replicas. The
server also runs a local installation of a MySQL database.

6.3 Result Overview

The results from our evaluation indicate that while our current prototype incurs
some storage and computational costs over non-private queries, the costs seem
entirely acceptable for the added privacy benefit (see Tables 1 and 2). In addition
to being able to deal with complex queries and leverage database optimization
opportunities, our prototype performs much better than the TransPIR prototype
from Reardon et al. [23] — between 7 and 480 times faster for equivalent data
sets. The most indicative factor of performance improvements with our prototype
is the reduction in the number of PIR queries in most cases. Other factors
that may affect the validity of the result, such as variations in implementation
libraries, are assumed to have negligible impact on performance. Our work is
based on the same PIR library as that of [23]. Our comparison is based on the
measurements we took by compiling and running the code for TransPIR on the
same experimental hardware platform as our prototype. We also used the same
underlying PIR library as TransPIR.

6.4 Microbenchmark and Complex Query Experiments

For the benchmark tests, we obtained measurements for the time to execute the
private query, the number of PIR queries performed, the number of tuples in the
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Table 1. Experimental results for microbenchmark tests compared with those of Rear-
don et al. [23]. BTREE = timing for our B+ tree prototype, HASH = timing for our
hash table prototype, and TransPIR = timing from TransPIR [23]; Time = time to
evaluate private query, PIRs = number of PIR operations performed, Tuples = count
of rows in query result, QI = timing for subquery execution and index generation, Xfer
= total data transfer between the client and the two PIR servers.

Query Approach Time (s) PIRs Tuples QI (s) Xfer (KB)

Q1 HASH 2 1 1 16 128
BTREE 4 3 1 38 384
TransPIR 25 2 1 1,017 256

Q2 BTREE 5 4 80 32 512
TransPIR 999 83 80 1,017 10,624

Q3 BTREE 5 4 168 32 512
TransPIR 2,055 171 168 1,017 21,888

Q4 BTREE 6 5 236 37 640
TransPIR 2,885 240 236 1,017 30,720

Q5 BTREE 5 3 1 67 384
TransPIR 37 3 1 1,017 384

Q6† BTREE 5 4 168 66 512

TransPIR 3,087 253 127 —† 32,384

query results, the time to execute the subquery and generate the cached index,
and the total data transfer between the client and the two PIR servers.

Table 1 shows the results of the experiment. The cost of indexing (QI) can be
amortized over multiple queries. The indexing measurements for BTREE (and
HASH) consist of the time spent retrieving data from the database (subquery exe-
cution), writing the data (subquery result) to a file and building an index from this
file. Since TransPIR is not integrated with any relational database, it does not in-
cur the same database retrieval and file writing costs. However, TransPIR incurs
a one-time preprocessing cost (QI) which prepares the database for subsequent
query runs. Comparing this cost to its indexing counterpart with our BTREE and
HASH prototypes shows that our methods are over an order of magnitude faster.

For the experiment on queries with complex conditions, we used a number of
synthetic query scenarios having different requirements for privacy (see [22] for de-
tails). The measurements, as reported in Table 2, show execution duration for the
original query without privacy provision over the MySQL database, and several
other measurements taken from within our prototype using a B+ tree index.

6.5 Discussion

The empirical results for the benchmark tests reflect the benefit of our approach.
For all of the tests, we mostly base our comparison on the timings for query

† We reproduced TransPIR’s measurements from [23] for query Q6 because we could
not get TransPIR to run Q6 due to program errors. The ‘—’ under QI indicates
measurements missing from [23].
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evaluation with PIR (Time), and sometimes on the index generation timings
(QI). The time to transfer data between the client and the servers is directly
proportional to the amount of data (Xfer), but we will not use it for comparison
purposes because the test queries were not run over a network.

Our hash index (HASH) prototype performs the best for query Q1, followed
by our B+ tree (BTREE) prototype. The query of Q1 is a point query having a
single condition on the domain name attribute.

Query Q2 is a point query on the expiry date attribute, with the query
result expected to have multiple tuples. The number of PIR queries required to
evaluate Q2 with BTREE is 5% of the number required by TransPIR. A similar
trend is repeated for Q3, Q4 and Q6. Note that the HASH prototype could not
be used for Q2 because hash indices accept unique keys only; it can only return
a single tuple in its query result.

Query Q3 is a range query on expiry date. Our BTREE prototype was ap-
proximately 411 times faster than TransPIR. Of note is the large number of
PIR queries that TransPIR needs to evaluate the query; our BTREE prototype
requires only 2% of that number. We observed a similar trend for Q4, where
BTREE was 480 times faster. This query features two conditions in the SQL
WHERE clause. The combined measured time for BTREE — the time taken to
both build an index to support the query and to run the query itself — is still
67 times faster than the time it takes TransPIR to execute the query alone.

Query Q5 is a point query with a single join. It took BTREE only about
14% of the time it took TransPIR. We observed the time our BTREE spent in
executing the subquery to dominate; only a small fraction of the time is spent
building the B+ tree index.

Our BTREE prototype similarly performs faster for Q6, with an order of
magnitude similar to Q2, Q3, and Q4.

In all of the benchmark queries, the proposed approach performs better than
TransPIR because it leverages database optimization opportunities, such as for
the processing of subqueries. In contrast, TransPIR assumes a type of block-
serving database that cannot give any optimization opportunity. Therefore,
in our system, the client is relieved from having to perform many traditional
database functions, such as query processing, in addition to its regular PIR
client functions.

Results for queries with complex conditions. We see from Table 2 that in most
cases, the cost to evaluate the subquery and create the index dominates the to-
tal time to privately evaluate the query (BTREE), while the time to evaluate the
query on the already-built index (Time) is minor. An exception is CQ2, which has
a relatively small subquery result (rTuples), while having to do dozens of (conse-
quently smaller) PIR operations to return thousands of results to the overall range
query. Note that in all but CQ2, the time to privately evaluate the query on the
already-built index is at most a few seconds longer than performing the query with
no privacy at all; this underscores the advantage of using cached indices.

We note from our results that it is much more costly to have the client simply
download the cached indices. We observe, for example, that it will take about 5
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Table 2. Measurements taken from executing five complex SQL queries with varying
requirements for privacy. oQm = timing for executing original query directly against
the database, BTREE = overall timing for meeting privacy requirements with our
B+ tree prototype, Time = time to evaluate private query within BTREE, PIRs
= number of PIR operations performed, Tuples = number of records in final query
result, rTuples = number of indexed records in subquery result, Xfer = total data
transfer between the client and the two PIR servers, Size = storage for index.

Query oQm BTREE Time PIRs Tuples rTuples Xfer Size

(s) (s) (s) (KB) (MB)

CQ1 2 31 2 3 1 1,753,144 384 579.63

CQ2 1 15 13 41 3,716 72,568 5,248 25.13

CQ3 0 80 3 3 1 631,806 384 209.38

CQ4 2 25 5 3 1 1,050,300 384 348.63

CQ5 2 69 3 3 6 4,000,000 384 1,324.13

times as long, for a user with 10 Mbps download bandwidth, to download the
index for CQ5. Moreover, this trivial download of data is impractical for devices
with low bandwidth and storage (e.g., mobile devices).

One way to improve query performance is by revealing a prefix or suffix of
the sensitive keyword in a query. Revealing a substring of a keyword helps to
constrain the result set that will be indexed and retrieved with PIR. Making
this trade-off decision in a privacy-friendly manner necessarily requires some
knowledge of the data distribution in terms of the number of tuples there are for
each value in the domain of values for a sensitive constant. These information
can be included in the metadata a server sends to the client and the client can
make this trade-off decision on behalf of the user based on the user’s preset
preferences. We are considering this extension as part of our future work.

6.6 Limitations

Our approach can preserve the privacy of sensitive data within the WHERE and
HAVING clauses of an SQL query, with the exception of complex LIKE query
expressions, negated conditions with sensitive constants, and SELECT nested
queries within a WHERE clause. The complexity of complex search strings for
LIKE queries, such as (LIKE ’do%abs%.c%m’), and negated WHERE clause
conditions, such as (NOT registrant = 45444) are beyond the current capabil-
ity of keyword-based PIR. Our solution to dealing with these conditions in a
privacy-friendly manner is to compute them on the client, after the data for the
computation has been retrieved with PIR; converting NOT = queries into their
equivalent range queries is generally less efficient than our proposed client-based
evaluation method. In addition, our prototype cannot process a nested query
within a WHERE clause. We propose that the same processing described for
a general SQL query be recursively applied for nested queries in the WHERE
clause. The result obtained from a nested query will become an input to the client
optimizer, for recursively computing the enclosing query for the next round.
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There is need for further investigation of the approach for nested queries return-
ing large result sets and for deeply nested queries.

7 Conclusion and Future Work

We have provided a privacy mechanism that leverages private information re-
trieval to preserve the privacy of sensitive constants in an SQL query. We de-
scribed techniques to hide sensitive constants found in the WHERE clause of an
SQL query, and to retrieve data from hash table and B+ tree indices using a pri-
vate information retrieval scheme. We developed a prototype privacy mechanism
for our approach offering practical keyword-based PIR and enabled a practical
transition from bit- and block-based PIR to SQL-enabled PIR. We evaluated
the feasibility of our approach with experiments. The results of the experiments
indicate our approach incurs reasonable performance and storage demands, con-
sidering the added advantage of being able to perform private SQL queries. We
hope that our work will provide valuable insight on how to preserve the privacy
of sensitive information for many existing and future database applications.

Future work can improve on some limitations of our prototype, such as the
processing of nested queries and enhancing the client to use statistical informa-
tion on the data distribution to enhance privacy. The same technique proposed
in this paper can be extended to preserve the privacy of sensitive information
for other query systems, such as URL query, XQuery, SPARQL and LINQ.
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Abstract. Mobile smartphone users frequently need to search for
nearby points of interest from a location based service, but in a
way that preserves the privacy of the users’ locations. We present
a technique for private information retrieval that allows a user to
retrieve information from a database server without revealing what
is actually being retrieved from the server. We perform the retrieval
operation in a computationally efficient manner to make it practical for
resource-constrained hardware such as smartphones, which have limited
processing power, memory, and wireless bandwidth. In particular, our
algorithm makes use of a variable-sized cloaking region that increases
the location privacy of the user at the cost of additional computation,
but maintains the same traffic cost. Our proposal does not require the
use of a trusted third-party component, and ensures that we find a good
compromise between user privacy and computational efficiency. We
evaluated our approach with a proof-of-concept implementation over
a commercial-grade database of points of interest. We also measured
the performance of our query technique on a smartphone and wireless
network.

Keywords: Location based service, private information retrieval,
various-size grid Hilbert curve.

1 Introduction

Users of mobile devices tend to frequently have a need to find Points Of Interest
(POIs), such as restaurants, hotels, or gas stations, in close proximity to their
current locations. Collections of these POIs are typically stored in databases ad-
ministered by Location Based Service (LBS) providers such as Google, Yahoo!,
and Microsoft, and are accessed by the company’s own mobile client applications

� An extended version of this paper is available [27].

M.J. Atallah and N. Hopper (Eds.): PETS 2010, LNCS 6205, pp. 93–110, 2010.
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or are licensed to third party independent software vendors. A user first estab-
lishes his or her current position on a smartphone such as a RIM BlackBerry,
Apple iPhone, or Google Android device through a positioning technology such
as GPS (Global Positioning System) or cell tower triangulation, and uses it as
the origin for the search. The problem is that if the user’s actual location is
provided as the origin to the LBS, which performs the lookup of the POIs, then
the LBS will learn that location. In addition, a history of locations visited may
be recorded and could potentially be used to target the user with unexpected
content such as local advertisements, or worse, used to track him or her. The
user’s identity may be divulged through the inclusion of the originating dynamic
IP address, e-mail address, or phone number in requests to the LBS server so
that the results of an LBS query can be routed back to the correct user via a
TCP data connection, e-mail reply, or SMS reply, respectively. If a location can
always be correlated to each request, then the user’s current pattern of activ-
ity and even personal safety is being entrusted to a third party, potentially of
unknown origin and intent. Although search engines routinely cache portions of
previous queries in order to deliver more relevant results in the future, we are
concerned when the user’s exact location history is tracked, and not just the key
words used in the search.

For many users, this constitutes an unacceptable violation of privacy, and
efforts should be made to avoid it. As location technology becomes commonplace,
users will become increasingly aware of and concerned about location privacy.
Not only are privacy and personal safety important considerations, but recent
advances in mobile advertising have even opened the possibility of location-based
spam. In February 2010, the Energy and Commerce Joint Subcommittee of the
U.S. House of Representatives held a joint hearing on the implications of location-
based services on the privacy of consumers1. Our challenge has been to design
a system whereby a user can retrieve useful POI information without having
to disclose his or her exact location to a third party such as the LBS server.
The user should also not have to reveal what particular POIs were searched for
and found, as each POI record typically includes precise location coordinates.
Thus, the server will be unable to infer the user’s current location or likely
destination, or accumulate a history of requests made for profiling purposes.
Generally speaking, a user will typically be comfortable with a certain degree of
privacy, meaning that the user could be expected to be anywhere within a certain
geographic area, such as a city or neighbourhood without fear of discovery.

Today’s smartphones have high-performing processors which are suitable for
cryptographic operations that can enable location privacy. For instance, the Ap-
ple iPhone 3GS contains a Samsung ARM 833 MHz CPU, while the BlackBerry
Storm 2 contains a Qualcomm 528 MHz CPU. However, these devices have
limited memory and bandwidth. For instance, the iPhone and Storm are both
limited to 256 MB of dynamic RAM, 32 GB of flash memory, and operate on
3G wireless networks no faster than the (theoretical) 7.2 Mbps HSDPA network.
Consider these data limits with respect to a typical commercial POI database

1 http://energycommerce.house.gov/
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for the U.S. and Canada, which can contain 6 to 12 million entries and require 1
to 2 GB or more of flash data storage. Requiring that the smartphone download
the entire database for each request so as not to provide information about its
current location is clearly not practical [31]; nor is requiring that it periodically
download just the updated data to ensure accuracy of results, given the practical
bandwidth limits, data usage limits, and associated overage charges (penalties
for exceeding the limits) of smartphone data plans. Thus, it is desirable to pro-
vide a cryptographic way for a mobile user to request local information while
preserving location privacy. Although extra server-side processing demands must
be anticipated on a privacy-enhanced LBS server, it may easily be scaled to mul-
tiple computers in a distributed fashion, which is a reasonable tradeoff.

1.1 Requirements and Assumptions

Our basic scenario entails a mobile device user who operates a smartphone with
location technology and wireless data transfer capability. The user searches for
nearby POIs (i.e., nearest neighbour) by first constructing and sending a query
to a known LBS server over the wireless network. The LBS server retrieves the
query, performs a search of its POI database, and returns a set of results to the
user containing all POIs found in the specified region. Our protocol must meet
the following requirements:

– The LBS server must not learn the user’s exact location. It may only identify
a general region that is large enough, in terms of area and the number of POIs
it contains, to confer a sufficient level of privacy to the user’s satisfaction.

– There must be no third parties, trusted or otherwise, in the protocol between
the user and the server.

– The implementation must be computationally efficient on hardware, such as
smartphones, which are resource constrained. A user may be expected to
tolerate a delay of no more than several seconds for any kind of query.

– The approach cannot rely on a secure processor that is not typically found
on a commercial smartphone.

Clearly, these requirements present the need for a mechanism to directly re-
trieve information in a secure and private way without revealing the contents of
the query results, and without the need for an intermediary between the user
and the database server to provide some kind of a masking function. Fortunately,
there is a branch of cryptography that is associated with retrieving information
from a database without revealing which item is being retrieved; it is known
as Private Information Retrieval (PIR) [7]. Our proposed solution is sufficiently
generic to allow an application to rely on any PIR scheme. We make the same
assumptions as that of the underlying PIR scheme, where retrieval is either by
object index or keyword [6]. We describe a server that can find the relevant POI
entries based on the user’s location of interest included in the request; this is
possible because the entries in the POI database are indexed by their location.

Although PIR satisfies our baseline privacy constraints, current implementa-
tions of it fail to satisfy our third condition, which is usable performance on
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modern smartphone hardware. Our challenge has been to complement PIR with
a new algorithmic approach that effectively reduces the amount of computations
without significantly sacrificing the user’s location privacy.

Note that we make no effort to hide the user’s identity from the location-
based service. We assume that it is acceptable to reveal the user’s identity for
the purpose of routing the response to a location-based request, and for offering
a customized LBS experience. A user that also wishes to hide his or her identity
to some extent may wish to make use of an onion router, such as Tor [10].
However, we note that there are application domains where the protection of
a user’s location using our proposed technique is superior to anonymizing the
user’s identity. For example, it is easy to try to identify a user who made a
query with a particular geographical coordinate, simply by looking up the user
who lives at the corresponding residential address and assuming the request did
not originate elsewhere. On the other hand, our proposed technique hides query
contents from the LBS, and leaves no useful clues for determining the user’s
current location.

When a typical mobile phone accesses a third-party LBS provider through
a wireless 3G data connection, we assume that it reveals only its identity and
the query itself to the provider. Unavoidably, a mobile communications carrier
is always aware of the user’s location based on the cell towers in contact, and so
it must not collude with the LBS provider. Our assumption relies on the LBS
provider not being integrated into the carrier’s infrastructure, such as a traffic
reporting service using cell tower data that discovers a user’s location passively.
Our assumption is valid for the vast majority of LBS applications, which are
unaffiliated with the carrier; these include search portals, social applications,
travel guides, and many other types. When communicating with such an ap-
plication, the mobile user’s IP address is of no help in determining the user’s
physical location, as it is dynamically assigned independent of location. Only
a central gateway that is administered by the telecommunications carrier will
be identified. We assume that no other information will be gleaned by the LBS
provider. In the case where a mobile user utilizes Wi-Fi instead, the user will be
assigned an address that points to the nearby access point, however, and may
need to employ other techniques, such as Tor, to mask the address.

1.2 Our Results

We propose a novel hybrid LBS technique that integrates location cloaking and
private information retrieval. We have also implemented and evaluated our pro-
posal to determine its practicality on resource-constrained hardware. The results
show that users can achieve a good compromise between privacy and computa-
tional efficiency with our technique unlike all other existing LBS proposals.

2 Related Work

We provide a brief overview of cloaking- and PIR-based approaches for location
privacy. A survey and classification of methods for location privacy in LBS can
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be found in [33]. Similarly, in a position paper in 2008 [11], Ghinita introduced
a taxonomy for LBS privacy techniques.

2.1 Location Cloaking Techniques

Location cloaking in general seeks to prevent an attacker from being able to
match queries to particular users and to thus compromise their privacy. The
attacker may be in a position to observe traffic flowing through the network or
even be situated at the LBS provider endpoint.

One popular cloaking technique is based on the principle of k -anonymity,
where a user is hidden among k-1 other users. Queries from multiple users are
typically aggregated at an anonymity server which forms an intermediary be-
tween the user and the LBS provider. This central anonymity server can pro-
vide spatial and temporal cloaking functions, so that an attacker will encounter
difficulty matching multiple queries that are observed with users at particular
locations and at particular points in time. Many cloaking solutions for location
privacy suggest either a central anonymity server as described [18,34], or other
means such as decentralized trusted peers [9] or distributed k -anonymity [35].

The chief problem is that the anonymity server must normally be part of the
trusted computing environment and represents a single point of vulnerability. If
it is successfully attacked, or collusion with the LBS server occurs, then the lo-
cations of all users may be divulged. It is also observed that although a cloaking
technique by itself is advantageous in that it does not result in increased compu-
tational cost on the server, it can carry with it a high communication cost from
the LBS provider to the client. This can mean a large and unacceptable penalty
for mobile phone users. Finally, if a reduced sample population results from the
number of active users in a particular geographic area, it may not suffice to sat-
isfy the desired degree of anonymity. If the anonymity server delays execution of
a request until the k -anonymity condition is satisfied, then this delay may prove
to be unacceptable to the user from a feature interaction point of view.

2.2 PIR-Based Techniques

A PIR technique can be used to ensure that queries and their results are kept
private. Specifically, PIR provides a user with a way to retrieve an item from a
database, without the database (or the database administrator) learning any infor-
mation about which particular item was retrieved. PIR satisfies our requirements
for privacy and low communication cost. However, existing PIR techniques have
drawbacks of high computational cost for applications that require low latency.

The PIR database is typically organized as an n-bit string, broken up into
r blocks, each n/r bits long. The user’s private input or query is typically an
index i ∈ {1, ..., r} representing the ith block of bits. A trivial solution for PIR
is for the database to send all r blocks to the user and have the user select the
desired block at index i, but this carries a maximum cost of communication and
is unsuitable in a resource-constrained environment such as a wireless network.

When the PIR problem was first introduced in 1995 [7], it was proven that
a single-database solution with information theoretic privacy and a sub-linear
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communication complexity (between the user and the database) is impossible
to achieve. Information theoretic privacy assures user privacy even for an ad-
versary with unlimited computational capability. Using at least two replicated
databases, and some form of restrictions on how the databases can communicate,
PIR schemes with information theoretic privacy are possible, and sometimes hold
attractive properties like byzantine robustness [3,15]. The first single-database
PIR proposal was in 1997 [5]; its PIR scheme only assures privacy against an
adversary with limited computational capability (i.e., polynomially bounded at-
tackers). The type of privacy protection known as computational privacy, where
computational capability is expected to be limited, is a weaker notion of pri-
vacy compared to information theoretic privacy. Nonetheless, computational PIR
(CPIR) [5,22] offers the benefit of fielding a single database. Basic PIR schemes
place no restriction on information leaked about other items in the database
that are not of interest to the user; however, an extension of PIR, known as
Symmetric PIR (SPIR) [24], adds that restriction. The restriction is important
in situations where the database privacy is equally of concern. The only work in
an LBS context that attempts to address both user and database privacy is [12].
Although, not strictly an SPIR scheme, it adopts a cryptographic technique to
determine if a location is enclosed inside a rectangular cloaking region. The goal
of the paper was to reduce the amount of POIs returned to the user by a query.
Unlike ours, the approach fails to guarantee a constant query result size which
defeats correlation attacks, and it requires dynamic partitioning of the search
space which may be computationally intensive. It also requires two queries to be
executed, whereas a single query-response pair is sufficient in ours.

PIR has been applied to solving the problem of keeping a user’s location pri-
vate when retrieving location-based content from a PIR database. This content
typically consists of points of interest (POI’s), with each entry consisting of a
description of a place of interest as well as its geographical location. The only
work cited for PIR in the survey from [33] which does not utilize a third party
is [13]. Our approach differs from the PIR approach in [13] in three important
ways. First, the approach is specifically based on the 1997 computational PIR
scheme by Kushilevitz et al. [22]. It would require considerable re-invention be-
fore it could be used with recent and more efficient PIR schemes. For instance,
it re-organizes a POI database into a square matrix M despite the reduced com-
munications costs attainable from using a rectangular matrix.

On the other hand, our approach is flexible and supports any block-based
PIR schemes. Secondly, the costs of computation and communication with the
approach are O(n) and O(

√
n), respectively, where n is the number of items, or

POIs, in the database. The user has no flexibility for dealing with this linear
computational cost for large n and it reveals too many POIs to the user; it is
too costly for low-bandwidth devices. Our hybrid technique departs from this
one-size-fits-all approach and enables users to negotiate their desired level of
privacy and efficiency with LBS providers. Thirdly, the scope of the approach
did not consider a privacy-preserving partitioning approach for the data set.
It considers partitioning with kd-tree and R-tree in the general sense, without
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specific privacy considerations (see Section 4.2 in [13]). On the other hand, we
will show how to use a different method of partitioning of POI data that permits
cloaking, and offers privacy protection when used in conjunction with PIR.

Most of the PIR-based approaches for location privacy rely on hardware-
based techniques, which typically utilize a secure coprocessor (SC) at the LBS
server host [1,19]. This hardware creates a computing space that is protected
from the LBS, to realize query privacy. A major drawback of SC-based PIR
is that it requires the acquisition of specialized tamperproof hardware and it
usually requires periodic reshuffling of the POIs in the database, which is a
computationally expensive operation [1,20].

2.3 Hybrid Techniques

Hybrid techniques [11] permit privacy-efficiency tradeoff decisions to be made
by combining the benefits of cloaking- and PIR-based techniques. Chor et al. [8]
conjectured a tradeoff between privacy and computational overhead as a means
of reducing the high computational overhead for some application areas of PIR.
Our work concretizes and validates their conjecture in the context of LBS, and
also realizes the future work left open in [11], which is to further reduce the
performance overhead of PIR techniques. The authors’ own optimization of PIR
in [13] (paper previously mentioned above) reuses partial computation results
(i.e., multiplications of large numbers) and parallelizes the computations. This
optimization reduces CPU cost by 40%, but the overall query response time
is still impractical [23,29]. Ghinita [11] suggests improving the performance of
PIR-based techniques for LBS privacy through a hybrid method that includes a
PIR phase on a restricted subset of the data space. Our work answers the open
question of how to reduce the processing cost of PIR, without requiring the LBS
to have multiple CPUs to take advantage of parallelization. Parallel processors
are not typically found on smartphones, either.

3 Our Tradeoff Solution

We have developed a hybrid solution that consists of PIR to achieve query pri-
vacy in the context of a location-based service, and a cloaking technique to
reduce the computational cost of PIR to a feasible level. Our technique essen-
tially describes how the user creates a cloaking region around his or her true
location, and performs a PIR query on the contents of the cloaking region only.
The benefits are numerous: the user’s location is kept hidden from the server to
an acceptable degree regardless of the number of other users in the area; there is
no intermediary server that is responsible for cloaking and that would need to be
trusted; and the computational cost of the cryptographic algorithms employed
is still practical. We ensure that the user downloads only the POIs that are of
interest to the smartphone, keeping wireless traffic to a minimum to reduce costs
and conserve the battery. We describe our solution in this section.

The approach that we propose entails two phases. First, there is a pre-
processing phase in which the system is set up for use. The pre-processing
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operation must be carried out whenever significant changes are made to the
POI database on the server. In practice, it can occur every few months during
a period of low usage on the server such as nighttime maintenance activities.
Second, there is an execution phase, in which the LBS server responds to queries
for POIs from users. At a high level, the pre-processing phase consists of the
following steps:

1. A geographic region is projected onto a two-dimensional plane.
2. A suitable grid is formed on the plane.
3. A collection of POIs is saved in a database such that each row corresponds

to one POI.
4. Each cell of the grid is mapped to a portion of the database, i.e., a particular

set of database rows (each containing a POI).
5. The grid structure is transmitted and saved on the client device in a local

mapping database so that it can be referenced in a subsequent query.

The execution phase, in which a query is made for a set of nearby POIs,
consists of the following steps:

1. The user determines the area of interest, either based on the current physical
position as determined through GPS, or some other arbitrary area that the
user may be traveling to in the future.

2. The user chooses a desirable level of privacy.
3. The client creates a cloaking region corresponding to this level of privacy,

which will enclose the area of interest.
4. The client sends the cloaking region to the server. Also, the client identifies

which portion of the cloaking region contains the area of interest, in a way
that is hidden from the server.

5. The server receives the request, and finds the database portion corresponding
to the cloaking region. A block of rows is retrieved from this portion based
on the user’s specified location of interest. The POIs present in these rows
are transmitted back to the client.

6. The client decodes the result, and automatically finds the nearest neighbour
POI, or presents the full list of POIs returned to the user to choose amongst.

3.1 Level of Privacy for the PIR Query

To defeat a server’s ability to narrow down the search space for the item of
interest to the user, PIR protocols typically process every item, or POI, in the
PIR database. This results in a computational complexity that is linear in n
(where n is the number of items in the PIR database). This is the main hindrance
to practical PIR deployment [31].

We propose a tradeoff, in the tradition of PIR development over the years, to
make PIR-based solutions practical. For example, information theoretic privacy
necessitates replacing a single database with at least two replicated databases;
another option is to compromise information theoretic privacy for lower privacy
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(i.e., attain computational privacy). Our proposal is to offer users the choice
of trading off privacy for better query performance, by specifying the levels
of privacy that they want for their queries. A level of privacy for the query
determines the number of items that the PIR server must process in order to
provide a response. Setting levels of privacy is a common practice in several
domains where privacy is important (e.g., web browsers). In the specific case
of location privacy, we argue that resource-constrained device users are willing
to trade off privacy to obtain reasonable performance. On the other hand, such
users are equally willing to trade off some levels of performance to gain some
levels of privacy support.

A user sets the desired privacy level by specifying the size of the cloaking
region. The ratio of the number of POIs inside this region to the number of
POIs in the entire POI database defines the level of privacy. The privacy level
can be specified in terms of cities/towns (city level), states/provinces (provincial
level), and so on, to enhance user-friendliness. Thus, a privacy level value of 1
indicates that the user desires query privacy at the same level as that offered by
a typical PIR protocol. Similarly, if a user sets the query privacy level to 0.6,
the PIR query will execute faster. Although the cost is still linear in the number
of items in terms of computational complexity, the constant term is modified
(i.e. in terms of Big-O notation), leading to significant performance gains. At
the same time, it will be disclosed to the server that a particular amount of
0.4n items are not of interest to the user; this leakage of information does not
necessarily constitute a significant breach of location privacy.

The cloaking region is thus identified as a subset of the entire world described
by the database. If we imagine that the world is mapped as a grid of so-called
geographic grid cells that are equally distributed, then one of these cells will
be chosen to comprise the cloaking region. If a higher privacy level is desired,
then the cloaking region may be expanded to include multiple geographic grid
cells, and thus a larger portion of the database that describes the world. It is
sufficient to identify each grid cell by its cell number if the mapping is static and
published. The process of mapping the world to a geographic grid occurs during
the pre-processing phase, described next.

3.2 Pre-processing and Location Cloaking

The first step in the pre-processing phase is to represent a geographic area such as
the United States and Canada on a two-dimensional plane using a map projection
method such as the commonly used Miller cylindrical projection [32]. Once that
is done, the user’s location of interest may be found on this plane. It is necessary
to obscure the user’s location by creating a cloaking area around the user’s true
position or area of interest. POIs will be found anywhere by the LBS server
within this cloaking region. The region must be sufficiently large in order to
achieve sufficient privacy for the user, but at the same time it must be sufficiently
small to minimize the amount of computation required on the user’s mobile
device to process the query results, as well as to constrain the amount of wireless
data traffic required to transport them.
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(a) (b)

Fig. 1. (a) A Various-size-grid Hilbert Curve (VHC) mapping with uniform POI den-
sity. (b) A user’s true position inside VHC cell 25 (shaded) and within a cloaking region
bounded by the single geographical grid cell 2. The POI results for VHC cell 25 only
will be returned in a query. If a larger cloaking region consisting of geographic grid
cells 1 to 4 was specified (for privacy), the same POI results would still be returned.

Several techniques allow POIs to be mapped to a cloaking region. One tech-
nique is quad-tree mapping [18], but it has the disadvantage (from its use in
Casper [25]) of forming an unnecessarily large cloaking region which can im-
pair performance [2]. Another technique is called VHC (Various-size-grid Hilbert
Curve) mapping [28], which suits our purpose. In particular, it solves the prob-
lem of the density of POIs varying by geographic area. If the density of POIs is
significantly higher for a given region (such as a city), then a higher data traffic
cost will result if the size of the cloaking region remains constant, and the query
will be much slower. If on the other hand, the density becomes significantly lower
(such as in a sparsely populated region like the countryside), then the result size
may be so minimal that the server may guess the user’s likely destination with
a high degree of confidence, leading to loss of privacy. VHC solves this problem
by creating variable-sized regions that can be used for cloaking, based on the
density of the POIs in the geographic area.

Essentially, in VHC, the two-dimensional geographic grid is mapped to a one-
dimensional space such that it has equal POI density everywhere (see Fig. 1a).
Assume that a typical POI database that covers the regions of Canada and the
U.S. will have 6 million POIs. If each VHC cell must contain the same number
of POIs, such as 60, then there will be a total of 100,000 VHC cells that will
cover this geographic region. Suppose that the lowest POI density found in the
database is 60 POIs per 40,000 km2. Thus, the maximum size of a VHC cell will
be 40,000 km2.

Now, we create a geographic grid overlaying the U.S. and Canada regions with
fixed-size square cells that are 200 km in length (the area of each is 40,000 km2).
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This corresponds to the maximum size of a single VHC cell as described above.
Each geographic grid cell, however, may contain any number of smaller-sized
VHC cells if the POI density of the region is greater (see Fig. 1b).

Finally, the client determines a cloaking region based on a particular privacy
level which will dictate the number of geographic grid cells to include inside the
cloaking region. Suppose that the client chooses a privacy level such that the cloak-
ing region consists of four geographic grid cells. The user’s true location is in one
of these grid cells. Inside of the geographic grid cell, there is a set of variable-sized
VHC cells according to the distribution of the POIs in the geographic grid cell.
The user’s area of interest, in which POIs will be searched, will be the single cur-
rent VHC cell found inside the geographic grid cell. The number of POIs per VHC
cell is known, and in our case, it is 60. Thus, the user will initiate a request that will
reference the cloaking region, as well as the specific VHC cell in which the user is
located or interested in. The user will receive a set of 60 POIs that are found in his
or her currentVHC cell only. The server will only know that the location of interest
is somewhere within the cloaking region defined by the geographic grid cells.

The geographic grid is useful in specifying the size of the cloaking region and for
identifying which VHC cells will comprise the cloaking region. The level of privacy,
defined from 0 to 1, establishes the size of the cloaking region.The client then sends
this cloaking region to the server, by identifying the bounding coordinates (i.e.,
the longitude and latitude of the top-left and bottom-right corners). The server
will then be able to identify which VHC cells belong to this cloaking region, and
therefore which portion of the database must be read. The client must also encode
the VHC cell containing the area of interest inside a PIR query. (Each VHC cell
in the system is uniquely identified by a numeric value.) Fig. 2 further illustrates
the relationships among a geographical grid, VHC cells and POIs.

Thus, our cloaking technique provides a way of reducing the search space of
the POI database by employing multiple levels of database segmentation. The
cloaking region itself is described as a single, or multiple, geographic grid cell or
cells. Inside each geographic grid cell are found one or multiple VHC cells, the
number depending on the POI density. The user’s true location is inside one of
these VHC cells, and the user retrieves POI’s corresponding to that VHC cell
only. As far as the LBS server is concerned, though, the user could be located
anywhere within the larger geographic grid cell.

The geographic grid is fixed. The initial grid cell dimensions are configured
based on the maximum size of each VHC cell, but once established, will not need
to change. Both the client and server must have the same knowledge of the geo-
graphic grid. It can be distributed offline (along with the software for the user’s
smartphone). A simple approach to determining grid cell dimensions is to use
a geographic coordinate system such as Degrees-Minutes-Seconds (DMS) [21].
For instance, each grid cell may be two latitude degrees in length, which roughly
equates to 200 km at the 30 degree latitude. A population of tens of thousands
to millions of users may typically inhabit and stay within the bounds of a grid
cell that is 200 km2 in size, leading to excellent privacy. Cells of larger size will
afford province- and state-level privacy if desired.
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Fig. 2. Illustration of the relationship between geographical grid cells, VHC cells, and
POIs as stored in database rows

Both the client and server must agree on the same VHC mapping, and this
mapping must be done off-line in advance. Because it is dependent on population
density, it will remain relatively static over time even as the population grows,
and can be dynamically updated on the client if necessary. In order to contain
knowledge of the mapping to define the cloaking region, the user may make use
of a pre-computed map file that is stored locally on the device. This mapping
technique is a replacement for a cloaking region that is simply based on cells of
constant size, and ensures that a constant and predictable number of results are
returned for the user’s grid cell.

The idea of using VHC to address the general problem of location privacy
was proposed in [28], but in a way that is very different from ours. Specifically,
VHC was used to map the user’s current location to a 1-dimensional space. Ran-
dom perturbation was then applied on the 1-dimensional value, which was then
mapped back to 2-dimensional space according to the VHC mapping, to repre-
sent the user’s true location. In essence, the random perturbation was applied
to create confusion for an attacker about the user’s true location. Our technique
differs in that VHC is used for a different purpose; it defines the storage of POI
entries of interest within a geographic cell, which comprises the cloaking region,
in a way that allows proximate POIs to be stored as adjacent database entries.
We then utilize this cloaking region within the context of a privacy-preserving
PIR protocol. We do not perform perturbation of the location, which we argue
would result in decreased privacy. Indeed, a non-stationary user whose true loca-
tion is randomly perturbed is still subject to correlation attack. In our approach,
we will demonstrate that the cost of computational and communication overhead
through our use of PIR is acceptable, as we provide a method for retrieving only
a subset of entries of the entire POI database for each query. Our technique is
also impervious to correlation attacks.

The device must store a copy of the VHC map in local non-volatile memory,
but the storage requirements are very reasonable. The current geographic grid
cell encapsulating the user can be derived from the user’s current latitude and
longitude coordinate, if the mapping convention is known. A single coordinate
for the intersection point of each VHC cell inside (i.e. one of its corners) can then
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be recorded. Hence, a single coordinate would suffice to store each VHC cell in
device memory. For quick lookup and to minimize storage requirements, the
coordinates of all VHC cells only in the current geographic cell could be stored.
Assuming that the smallest VHC cell size is 1 km2 in size, then the worst case
is that 40,000 coordinates will need to be stored to account for all VHC’s. Two
bytes will be sufficient to store each VHC coordinate, because the origin of the
geographic grid cell is known, so that the total cost will be approximately 80,000
bytes to store all VHC cells. This is the worst theoretical case; in practice, small
VHC cells will only be encountered in very dense metropolitan areas, and they
will not occupy an entire geographic cell.

3.3 Variable Level of Privacy

The size of the cloaking region and the performance of a query depend on the
user’s specified level of privacy. If the user wishes to obtain a higher level of
privacy, then the size of the cloaking region can be defined to be larger, and to
encompass a larger number of geographic grid cells (and thus VHC cells), but
the amount of computation on the server will increase accordingly, delaying the
response. Nevertheless, the chief benefit is that the processing time of the query
on the server is predictable, because each VHC cell in each request contains the
same number of POIs. The key fact is that the amount of data transmitted will
be roughly proportional to the number of POIs in a single VHC cell (depend-
ing on the details of the PIR scheme being employed), but the server will only
learn the client’s location to the resolution of the cloaking region. The amount
of variation allowed in the size of the cloaking region should be kept to a min-
imum, as this variable may be used to form part of a fingerprint of a target in
a correlation attack. Allowing a one-cell or two-by-two-cell region only may be
a good compromise. The latter could be employed by the user on a permanent
basis to avoid the threat of inter-cell movement being discovered.

Our proposed algorithms for privacy-preserving queries, which allow the user
to specify a level of privacy, are explained in detail in the extended version of
this paper [27].

4 Experimental Evaluation

4.1 Implementations

We developed a C++ prototype and a Java prototype for our proposal using
two available implementations of the PIR protocol. The evaluation of our ap-
proach in terms of feasibility and scalability is based on the C++ prototype.
The point of the Java prototype is to demonstrate the successful porting of our
implementation to a smartphone platform. We did not intend to compare these
implementations or run them with the same set of parameters.

The C++ prototype is based on Percy++, an open source PIR protocol writ-
ten in C++ [14,15]. The Percy implementation offers computational, information
theoretic and hybrid (a mix of both) PIR. We modified Percy++ to support our
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proposal for allowing PIR queries to be based on a database portion defined
by the cloaking region and added code for instrumentation. We measured the
computational performance of the PIR algorithm when it does take into account
the query level of privacy, and when it does not take it into account. We ran the
PIR implementation against a database of 6 million synthetic POIs, the typical
number of POIs in a commercial POI database for the U.S. and Canada [16,17].
We note that a similar experiment in [13] considers a much smaller database;
only 10,000 and 100,000 POIs. A head-to-head comparison with [13] is infeasible
because we used different PIR implementations and test data. Each POI con-
sists of 256 bytes that we generated randomly. Again, this size is a conservative
representation of practical POI sizes. In comparison, the POIs from [13] are only
64 bits in length. The (x, y) location coordinates are stored with each POI.

The Java prototype is based on a computational SPIR protocol implementa-
tion [30]. This SPIR protocol was derived from the oblivious transfer protocol by
Naor and Pinkas [26] and is the only publicly available Java implementation to our
knowledge. This second prototype development consists of both a server compo-
nent and a client component that we deployed on a smartphone platform. Specif-
ically, we ported the implementation from [30] to Google’s Android smartphone
platform, which supports the Java programming language. The only aspect of the
implementation that could not be adapted without lightmodification was the RMI
mechanism, which we replaced with HTTP socket communication between the
Android client process and a server process running on a desktop computer.

4.2 Results and Discussion

We measured query roundtrip times for the C++ prototype on a machine with
a 2.91 GHz dual-core AMD CPU, 3GB RAM, and running Ubuntu Linux. Since
the Percy++ PIR uses replicated databases, we set the number of databases
to 2 [15]. Fig. 3 shows query roundtrip times and levels of privacy for queries
returning various numbers of POIs. The number of POIs returned for each query
is equivalent to the number of POIs in a VHC cell. Similarly, the number of
POIs returned by a query is equivalent of the number of blocks (in bytes), that
a traditional PIR query returns. A block of 10 POIs is equivalent to 2560 bytes
of data (each POI consists of 256 bytes).

The query roundtrip or response times for block sizes 5, 10, 25, 50, 100, 250, and
500, at query level of privacy 1, are between 25 and 70 seconds. This is because each
PIR request runs against the entire database of 6 million synthetic POIs. However,
the query roundtrip time improves with lower levels of privacy. For example, the
query response times for the above block sizes at a privacy level of 0.17 are between
4 and 12 seconds. One must observe that setting the query level of privacy to 0.17
is equivalent to privately querying a block of POIs from a portion of the database
consisting of 1.02 million POIs. If we assume there are equal number of POIs in all
the provinces and states of Canada and US, a level of privacy set to 0.17 implies
a cloaking region that covers approximately 10 provinces and/or states. Under
a similar assumption, a user who intends to hide his or her query in a cloaking
region consisting of one province or state will simply set his or her query level
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Fig. 3. Query roundtrip time and level of privacy for various numbers of POIs returned
per query. A single measurement was taken per data point.

of privacy to a much lower value of 0.02. The query response time for this level of
privacy is approximately 0.3 seconds for an optimal block size, which in our testing
configuration consists of 256 POIs. It is easy to observe from the graph that the
block that consists of 250 POIs gives the best performance. Furthermore, the worst
performing block size is the one consisting of 5 POIs, the reason being that smaller
block sizes require more rounds of computations to process the individual blocks,
compared to larger block sizes. On the other hand, large block sizes, such as 500,
carry performance penalties and overheads which depend on the characteristics
of the underlying PIR scheme, and also on the resource constraints of the runtime
hardware (e.g., RAM, disk and memory cache sizes, and network bandwidth). The
network cost in the C++ implementation was negligible since the measurements
were taken on a LAN.

We also installed the client for the Java prototype on a G1 Android smart-
phone from T-Mobile, which features a Qualcomm ARM processor running at
528 MHz, and includes 192 MB DDR SDRAM, and 256 MB flash memory. Al-
though our locked smartphone was capable of running on T-Mobile’s 3G network
in the U.S., it did not support the 3G frequency bands in operation in Canada.
We ran our tests using the Rogers EDGE network, which is slower by up to
a factor of ten. We created an Android application with a user interface that
allows the user to specify the server address and query parameters such as the
size of the cloaking region and the size of the portion of the cloaking region to
fetch. We observed that when the cloaking region was reduced to a quarter of
its original size (i.e. a quarter of the POIs were returned), the query generation
became 2.15 times slower, but the roundtrip time became 3.32 times quicker.
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Overall, the implementation was usable even though it had not been originally
designed and optimized for the Android platform, and we were restricted to a
non-3G network. Further details of our implementation are available in [27].

4.3 Privacy and Size of the Cloaking Region

Our solution preserves the privacy of the user’s location irrespective of the num-
ber of other users initiating queries for the same location. The server can infer
only the user’s location based on the cloaking region. The user may adjust the
size of the cloaking region based on his or her personal preferences (i.e., the
desired level of privacy, query performance, and cost), because a larger region
will entail more computation.

The size of the cloaking region is based on a particular size of geographic area and
does not need to be adjusted based on the known distribution of POIs within the
region. The user only establishes a reasonable level of privacy based on the number
of geographic grid cells that define a geographic area.The boundary of the cloaking
region utilized in a request is established by the user and is based on the geographic
cell map contained on the user’s end and the level of privacy parameter. The size
of the cloaking region and its boundaries are not controlled by the server.

5 Conclusions

In this paper, we have proposed an algorithm for private information retrieval
that achieves a good compromise between user location privacy and computa-
tional efficiency. We have implemented and evaluated our algorithm and shown
that it is practical on resource-constrained hardware. Our approach of using a
variable-sized cloaking region divided into VHC cells results in greater location
privacy than the traditional approach of a single cloaking region, while at the
same time decreasing wireless data traffic usage from an amount proportional
to the size of the cloaking region to an amount proportional to the size of a
VHC cell. It also allows the user to dynamically choose various levels of privacy.
Although increasing the size of the cloaking region does result in higher compu-
tation in processing the query, we believe that this tradeoff is very reasonable,
given that the processing power of today’s smartphones is still less of a concern
than the speed and cost of wireless network connectivity.
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Abstract. We propose a new system modeled after Nymble. Like
Nymble, our scheme provides a privacy-preserving analog of IP address
blocking for anonymizing networks. However, unlike Nymble, the user
in our scheme need not trust third parties to maintain their anonymity.
We achieve this while avoiding the use of trusted hardware and without
requiring an offline credential issuing authority to guarantee that users
do not obtain multiple credentials.

We use zero-knowledge proofs to reduce the capabilities of collud-
ing third parties, and introduce a new cryptographic technique that we
call verifier-efficient restricted blind signatures, or VERBS, to maintain
efficiency. Signature verification with our VERBS are 1–2 orders of mag-
nitude faster than existing restricted blind signatures.

Keywords: Privacy, anonymity, authentication, anonymous blacklisting,
revocation, anonymous credentials, zero-knowledge proofs.

1 Introduction

Anonymity networks provide users with a means to communicate privately over
the Internet. The Tor network [13] is the largest deployed anonymity network;
it aims to defend users against traffic analysis attacks by encrypting users’
communications and routing them through a worldwide distributed network of
volunteer-run relays [29].

The ability to communicate without fear of network surveillance makes it pos-
sible for many users to express ideas or share knowledge that they might otherwise
not be willing to reveal for fear of persecution, punishment or simply embarrass-
ment. On the other hand, some users use the veil of anonymity as a license to
perform mischievous deeds such as trolling forums or cyber-vandalism. For this
reason, some popular websites (for example, Wikipedia [33] and Slashdot [14])
proactively ban any user connecting from a known anonymous communications
network from contributing content, thus limiting freedom of expression.1

� An extended version of this paper is available [18].
1 Some IRC networks also block access to anonymous users (for example, see
https://wiki.torproject.org/noreply/TheOnionRouter/BlockingIrc)

M.J. Atallah and N. Hopper (Eds.): PETS 2010, LNCS 6205, pp. 111–129, 2010.

https://wiki.torproject.org/noreply/TheOnionRouter/BlockingIrc
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Therefore, a real need exists for systems that allow anonymous users to con-
tribute content online, while preserving the ability of service providers to se-
lectively (and subjectively) ban individual users without compromising their
anonymity. Not only would such a system benefit the estimated hundreds of
thousands of existing Tor users, but it might also be a boon to wider acceptance
of Tor. Indeed, the need for an anonymous blacklisting mechanism has been ac-
knowledged by several key people involved with The Tor Project [11,12]. Thus, it
is reasonable to expect that the operators of Tor might be willing to provide the
infrastructure necessary to realize such a system, a situation that would greatly
reduce the burden on service providers and lead to greater adoption.

Several schemes (e.g., [19,20,30,31,32]) have been proposed with the goal of
allowing anonymous blacklisting of Tor users. The most well-known of these is
Nymble [20,32], which is the system after which we model our own.

1.1 An Overview of Nymble

Suppose a user Alice wishes to connect anonymously to a Service Provider (SP),
such as a website, while the SP will allow connections only if it can ban a misbe-
having user by IP address. To facilitate this, the Nymble system introduces two
TTPs, the Pseudonym Manager (PM) and the Nymble Manager (NM). Before
connecting to the SP, Alice connects directly to the PM, thus proving she has
control over the specified IP address. The PM then issues Alice a pseudonym
called a Nym, which is deterministically generated from her IP in such a way
that the NM is able to verify that the pseudonym was in fact issued to Alice
by the PM, but learns no information about Alice’s IP. Alice then connects to
the NM over an anonymous channel and presents her Nym along with the name
of the SP to which she wishes to connect. Using the pair (Nym, SP ), the NM
computes and issues to Alice a set of nymbles — one for each time period left
in the current linkability window. Within a linkability window, each successive
nymble is generated from the previous one using a one way function (a hash
function) and two secrets; one secret is known only to the NM, while the other is
shared by the NM and the SP. In order to connect to the SP, Alice presents the
nymble which corresponds to the current time period. The shared secret allows
the SP to verify the validity of Alice’s nymble but not learn her IP address,
nor compute or identify any of her other nymbles. Therefore, Alice’s connections
within a time period are linkable, while her accesses across different time periods
are not. The SP records the nymble used during a session; if it is later found
that Alice misbehaved, the SP can complain to the NM by presenting it with a
copy of the recorded nymble. The NM then issues the SP a linking token, which
is essentially a trapdoor that allows the SP to compute all of Alice’s subsequent
nymbles starting from the time period in which the complaint was made (up
until the end of the linkability window). The one-way nature of hash functions
guarantees that the trapdoor provides no way for the SP to compute previous
nymbles; thus, backwards anonymity is preserved, while further connections from
a misbehaving user can be detected and blocked.
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1.2 The Not-So-Nymble Side of Nymble

Nymble provides an efficient framework for banning users of an anonymizing
network; however, the simplicity and efficiency come at a cost. Recall that the
PM knows the pair (IP, Nym) while the NM knows the pair (Nym, SP ). There-
fore, if the NM and PM collude, it is trivial for them to determine which SP the
user associated with a given IP address is accessing. Further, because it is trivial
for an NM to retroactively compute a user’s nymbles, a colluding NM and SP
can easily break backwards anonymity and link a user’s connections. If all three
parties collude (i.e., the PM, NM, and SP), they can trivially link all actions of
a given user back to that user’s IP, thus completely breaking anonymity.

1.3 Our Contributions

We present a new Nymble-like system, unimaginatively called Nymbler, that
minimizes the capabilities of the PM, NM, and SP when colluding. This is ac-
complished through the use of anonymous credentials and a new verifier-efficient
restricted blind signature scheme that we use to permit users to construct their
own nymbles. Thus, our scheme eliminates the need to trust third parties with
anonymity while maintaining the essential properties of Nymble.

Outline. The remainder of this paper is outlined as follows: Previous work re-
lated to restricted blind signature schemes and blacklisting anonymous users are
presented in §2, followed by an overview of the approach taken in this work in
§3. We describe in detail our approach to verifier-efficient restricted blind signa-
tures in §4 while our Nymbler scheme and the protocols involved are described
in §5. In §6 we suggest appropriate values for security parameters and analyze
the performance of our system with these choices. We conclude in §7 and outline
some potential areas for future work.

2 Related Work

2.1 Restricted Blind Signature Schemes

In his seminal work [9], Chaum introduced the notion of a blind signature scheme;
the idea was later elaborated in [10], where the first construction (based on RSA
signatures) was given. Chaum’s scheme allows a user to obtain a cryptographic
signature on a message without revealing any information about the message
to the signer. Later, Brands [5] proposed restricted blind signatures in which a
user obtains a blind signature on a message, while the signer gets to see certain
parts of the structure of the message before signing. If this structure does not
conform to certain rules, the signer can refuse to provide a signature; thus,
the choice of message to be signed can be restricted by the signer. However,
unlike Chaum’s blind signature scheme, where verification costs just one modular
exponentiation (where the exponent can be chosen to be as small as 3), verifying
Brands’ restricted blind signatures has a computational cost dominated by a
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multi-exponentiation where each exponent is essentially random (modulo a large
prime) and depends on the message to be signed.

Camenisch and Lysyanskaya [7] presented a versatile signature scheme (CL-
signatures) that allows a re-randomizable restricted blind signature to be issued.
The well-known CL-credential [3,7] scheme is based on CL-signatures. In their
scheme, the cost of verifying a signature is effectively one exponentiation and
one multi-exponentiation, with each exponent approximately equal in size to the
message to be signed.

Recently, Groth and Sahai [17] presented a zero-knowledge proof system based
on bilinear pairings. Belenkiy et al. [2] proposed a restricted blind signature
scheme called P-signatures and noninteractive anonymous credential system
based on the Groth-Sahai framework. The cost of verification in their scheme is
about one elliptic curve exponentiation and three pairing operations.

Our approach uses RSA-based signatures similar to Chaum’s, combined with
zero-knowledge proofs that allow the user to prove certain properties about the
message before it is signed. The key advantage of our approach over other re-
stricted blind signature schemes is its extremely low cost verification algorithm
(i.e., almost as efficient as Chaum’s non-restricted blind signatures with expo-
nent 3). In particular, verifying a signature in our scheme costs just four modular
multiplications, which is 1–2 orders of magnitude faster than any previously pro-
posed restricted blind signature scheme.2

2.2 Systems for Anonymous Blacklisting

Unlinkable Serial Transactions [28] was one of the first systems to allow anony-
mous blacklisting. The scheme prevents an SP from tracking the behaviour of
its users, while protecting it from abuse due to simultaneous active sessions by a
single user. Users are issued blind tokens from the SP and, in normal operation,
these tokens are renewed at the end of a user’s transaction. If a user is judged to
have misbehaved, the SP can block future connections from that user by refusing
to issue further tokens. However, the scheme provides no way for the SP to ban a
user if misbehaviour is detected after the end of the session in which it occurred.

The Nym system [19] was a first attempt at solving the problem of allowing
anonymous edits on Wikipedia; it represents one of the first attempts at bringing
accountability to users of anonymity networks. Unlike later approaches, Nym
only provides pseudonymity, and thus is not an ideal solution. Later schemes —
most notably Nymble — improve upon Nym to provide full anonymity.

Blacklistable Anonymous Credentials (BLAC) [30], proposed by several of
the authors of Nymble, provides an anonymous credential system that does not
make use of any TTP who can revoke the anonymity of all users. Instead, the
system allows an SP to add a credential to its blacklist if the owner of that

2 In §6.2, we present experimental results indicating that the cost of verifying a sig-
nature in our scheme is almost forty times faster than computing a single modular
exponentiation — an operation that is less expensive than the verification of any of
the restricted blind signatures discussed above.
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credential is judged to have misbehaved. However, BLAC suffers from two major
drawbacks. The first of these is the loss of efficiency when compared to a system
like Nymble; if the blacklist grows large, say one thousand users, then several
hundred kilobytes of communication and several seconds of computation are
required (per access) to prove that a user is not on the blacklist [32]. For large
services with many users, such as Wikipedia, the performance of this approach
is unacceptable. The second downside is that the credentials are not tied to
an IP address. Instead, the system assumes that some offline credential issuing
authority will ensure that no user obtains more than a single credential.

Privacy-Enhanced Revocation with Efficient Authentication (PEREA) [31] is
another system proposed by the same authors as BLAC. It improves upon BLAC
by providing similar functionality but utilizing a cryptographic accumulator to
offer computational requirements at the SP that do not depend on the size of
the blacklist. To make this possible the system makes use of an authentication
window, which is similar in concept to that of a linkability window, except that it
specifies the maximum number of subsequent connections a user may make before
it becomes impossible to block them due to behaviour during a previous session,
instead of the maximum time duration that can elapse. However, although the
cost of verification at the SP is constant regardless of the size of the blacklist, it is
still several orders of magnitude slower than Nymble, taking about 0.16 seconds
per authentication when the authentication window is 30 [31]. Moreover, as with
BLAC, the credentials used in PEREA are not tied to an IP address and are
issued by an offline credential authority that ensures no user can obtain more
than one credential. In the next section we touch on the technical reasons why
BLAC and PEREA cannot be adapted to use IP addresses as a unique resource.

3 Our Approach

This section provides a high-level overview of our scheme. Further details about
how this approach is realized are presented in §4 and §5.

As a first step, we replace the pseudonymous Nym with an anonymous cre-
dential; thus, the PM is replaced by a Credential Manager (CM). The CM learns
Alice’s IP address and issues a credential stating this fact, but the CM is unable
to recognize this credential at a later time. This modification prevents the CM
and NM from colluding to learn which SP a particular user is accessing.

We emphasize that our use of anonymous credentials — and the role of the CM
in general — is fundamentally different from in BLAC and PEREA. For example,
the CM is not required to keep track of the unique resources for which a credential
has been issued; instead, the CM encodes each user’s unique resource directly
in the credential that it issues. This prevents the enrolment issues addressed
in [30], wherein a user’s credential is misplaced or compromised, from causing
problems in our approach. In such a case, the CM simply issues the user with
a new credential encoding the same unique resource, and all of their previous
bans remain in effect. It is this property that allows us to continue to use IP
addresses as the unique resource (as in Nymble). Note that in BLAC and PEREA
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this choice of unique resource is unrealistic, since in those schemes an SP would
have no way to distinguish two credentials encoding the same IP address from
ones encoding different IP addresses.

Using her credential, our scheme allows Alice to construct her own set of
nymbles in such a way that the NM is convinced of their validity without ever
actually seeing them. The NM then issues Alice with verifier-efficient restricted
blind signatures (VERBS) on her nymbles so that the SP can also be convinced
of their validity. Note that from a security point of view there is no reason why
the NM, and not the SP, must be responsible for verifying the integrity of Alice’s
nymbles; indeed, the SP could verify Alice’s proofs directly and thus eliminate
the role of the NM at this stage. Our motivation for using the NM at this stage
in the protocol is simply to offload work from the SP to the NM.

In the case that Alice misbehaves and the SP wishes to ban her, the SP can
present a nymble to the NM, who then performs a non-trivial amount of com-
putation — i.e., solving a discrete log — to recover sufficient information to
calculate Alice’s remaining nymbles. This is accomplished through the use of a
trapdoor discrete log group, where parameters are selected so that performing
discrete logs is possible using the NM’s private key but even so is sufficiently
expensive that wholesale deanonymization is impractical. We emphasize that
although the NM can compute subsequent nymbles from a starting point, even
with the ability to solve discrete logs the NM cannot go backwards. Thus, break-
ing backwards anonymity in our system is much more difficult than in Nymble.

4 Verifier-Efficient Restricted Blind Signatures

In this section we introduce verifier-efficient restricted blind signatures (VERBS),
a restricted blind signature scheme with an efficient verification protocol. Our
scheme makes use of commitments, which can be Feldman commitments [15]
(the commitment to x is CF(x) = sx for a known group element s) or Peder-
sen commitments [24] (the commitment to x is CP(x) = sxrγ for known group
elements s, r where logs r is unknown, and γ is random).

We use several standard zero-knowledge proofs from the literature; in par-
ticular, we use the standard proof of knowledge of a committed value (i.e., a
discrete logarithm) [27], proof that a commitment opens to a product of com-
mitted values [8], and proof of knowledge of a committed value that lies in a
particular range [4]. We note that no proof is necessary for addition or scalar
multiplication of committed values, as those operations are easily accomplished
by multiplication or exponentiation of the commitments, respectively.

We also utilize a proof of nested commitments (a “nest proof”); that is, given
A, B, prove that you know x such that A is a commitment to a commitment to
x and B is a commitment to the same x. That is (for simplicity, we only show
the Feldman case; the Pedersen case is similar), that you know x and G such
that G = gx, A = sG, and B = tx. (All operations are in appropriate groups,
and g, s, t are generators of those groups.)
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This proof works the same way as the ordinary proof of equality of discrete
logarithms: the prover chooses v and outputs gv and tv; the verifier (or a hash
function if the Fiat-Shamir [16] method is used) chooses a challenge c; the prover
outputs r = v − cx; the verifier accepts if Gcgr = gv and Bctr = tv. The twist
in our scenario is that G is not available to the verifier; only its commitment
(A = sG) is. We solve this problem by having the prover output sgv

instead of
gv, and having the prover compute sGc

(the commitment to Gc) and prove in
zero-knowledge that it was done correctly (see below). Then the verifier checks
that (sGc

)gr

= sgv

(along with the unchanged Bctr = tv). In the event that g
and t have different orders (which will be true in general, and in our case), the
above range proof is also utilized to show that 0 ≤ x < ord(t).

For the proof of an exponentiation of a committed value, we use a simplified
version of the algorithm from [8]. In that paper, the exponent was also hidden
from the verifier. In our situation, the exponent c is known, which makes matters
considerably easier. The prover just performs any addition-and-multiplication-
based exponentiation routine, and proves that each step was done correctly.

We next describe the four algorithms that make up VERBS. The full details
are presented in [18]. We will state the algorithms in their noninteractive zero-
knowledge form (such as by using Fiat-Shamir [16]); the adaptation of VERBS-
Blind and VERBS-Sign to interactive zero-knowledge is straightforward. (The
other two algorithms do not change.)

All computations are performed modulo an RSA number, ρ, whose factor-
ization is known only to the signer. The VERBS-Blind algorithm is executed
by the client. The algorithm takes as input a group element g, a commitment
C(x) (either Feldman or Pedersen) to a secret value x, and x itself (plus γ in
the case of a Pedersen commitment). The role of this algorithm, much like its
Chaumian counterpart, is to produce the blinded message S = f(ν) · α3 mod ρ,
where ν = gx and the random blinding factor α are hidden from the signer, and
f(z) = z2 + 1 is a one-way function. (It is one-way since the factorization of the
modulus ρ is unknown to the client.) It also produces Π , a zero-knowledge proof
that the computation of S was performed correctly.

The VERBS-Sign protocol is run by the NM. It takes the tuple (S, p, q, ξ, Π)
as input. S ∈ Z

∗
ρ is a blinding of the message to be signed. p and q are the

factors of ρ. ξ ∈ Z∗
ρ is a context element that encodes meta-information about

the signature (see §5.1). Π is a zero-knowledge proof that S was correctly formed.
It outputs the blinded signature σ′ = (ξ · S)

1
3 mod ρ if all proofs in Π are valid;

otherwise, it outputs ⊥. Note that σ′ is essentially just a Chaum blind signature.
The VERBS-Unblind protocol is run by the client. The algorithm takes the

tuple (σ′, α) as input. σ′ is a blind signature and α is the blinding factor used
to blind the signature. It outputs σ = σ′ · α−1 mod ρ, the unblinded signature.

The VERBS-Verify algorithm is run by the SP. It takes the tuple (ν, σ, ξ) as
input; ν is the message that was signed, σ is the (unblinded) signature, and ξ is
the context element. It outputs true iff σ3 mod ρ

?= ξ · (ν2 + 1) mod ρ. Note
that the cost of VERBS-Verify is just four modular multiplications.
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5 An Improved Nymble

We next present our new anonymous blacklisting scheme modeled after Nymble.
Our scheme aims to meet the same goals as Nymble, while making deanonymiza-
tion of a user infeasible, regardless of which subset of third parties might collude
against her. Before describing the approach in any detail, we briefly describe the
third parties involved and explain their roles. Note that the SP must trust third
parties to properly carry out their respective responsibilities; however, unlike in
the original Nymble, the user need not trust them not to collude in order for her
anonymity to be maintained.

The third parties are called the Credential Manager (CM) and the Nymble
Manager (NM). The CM is responsible for issuing an anonymous credential to
the user which encodes two pieces of information: an obfuscated version of the
user’s IP address, and an expiration time. For added security, the CM may
be distributed as outlined below. At any time before this expiration, the user
can present her credential to the NM to receive a set of mutually unlinkable
authentication tokens called nymbles, which can be used to anonymously access
the services offered by a Service Provider (SP). The NM never sees the nymbles
that it issues, but it does supply the user with a verifier-efficient restricted blind
signature on each of them, which allows the user to efficiently convince the SP of
their legitimacy. When the user connects to the SP over an anonymous channel
she must present a valid nymble. The SP records the nymble that was used during
each session. In the event of user misbehaviour, it presents a nymble to the NM,
who then computes all subsequent nymbles for that user (and hence prevents
her from connecting to the SP for the remainder of the linkability window).

5.1 System Parameters

In this subsection we introduce the system parameters used in our protocols. In
§6.1 we discuss technical considerations in the selection of these parameters and
suggest some reasonable values.

The system has a publicly known modulus n, where n is the product of two
unknown (to anyone) large safe primes, and N = 2n+1 is prime. Such a modulus
can be generated using a distributed protocol as described in [1], or with one-
time trust in an entity which generates it, such as used in the erstwhile RSA
Factoring Challenge [26]. Under the assumption that n is hard to factor, squaring
modulo n is a one-way function. Thus, squaring modulo n is a one-way function
that admits efficient zero-knowledge proofs of knowledge of preimages [8]. We
fix a, b ∈ QRN , the set of quadratic residues modulo N , so that loga b mod N is
unknown. Choosing (a, b) = (4, 9) is fine.

Since IP addresses tend to change frequently, the system-wide parameter Δt

specifies the maximum time period for which an issued credential is valid. That
is, after a time period of Δt has elapsed, the user must reauthenticate with
the CM to obtain a fresh credential encoding her current IP address, herein
denoted IP.
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As in the original Nymble, our scheme uses the concept of linkability windows.
This prevents a malicious NM and SP from computing a trapdoor for a user
that can be used to link that user’s actions indefinitely. The duration W of each
linkability window is a parameter that can vary from SP to SP based on their own
policies; reasonable values for this parameter might be, for example, twenty-four
hours or one week. Each linkability window is indexed by a value d, which is used
in the computation of nymbles during that time period. For example, d might
be equal to the current year concatenated with the current day of the year, or
the current year concatenated with the current week of the year (if twenty-four
hour or one-week linkability windows are used, respectively). The method used
to determine d for a given date and time should be public and easily computable
by any user. Each linkability window d is further subdivided into Γ uniform-
sized time periods, denoted τd,1, τd,2, . . . , τd,Γ . A reasonable duration for these
time periods might be fifteen minutes (in which case W = Γ ·15 minutes). Their
duration determines how often a user is able to unlinkably access the service,
as exactly one unique and unlinkable nymble is issued per IP address per time
period in each linkability window.

Each SP possesses a linking list L of the future nymbles associated with users
who have misbehaved; these nymbles will not be accepted. The SP also possesses
a blacklist B, which contains one canonical nymble for each user in the linking
list (i.e., that user’s nymble for the last time period of the linkability window),
and is signed by the NM and published by the SP. Before attempting to connect
to the SP a user will download a copy of this blacklist and confirm that she is not
presently banned. (This is important since otherwise, if a user does not realize
she is presently on the blacklist, the SP could link the user’s actions without her
knowledge.) When receiving a request for a connection from a Nymble user, the
SP consults the linking list to determine if the user is blacklisted. The techniques
of [32] can be used to ensure that the user receives an up-to-date blacklist.

In our description of the protocols we assume that the credentials are Camen-
isch-Lysyanskaya (CL) credentials [3,7], although our approach could be easily
adapted to other credential systems. The CM’s public key is, therefore, the tuple
(S, Z, R1, R2, m), where m = mpmq is an �m-bit product of two large safe primes
of equal size, 〈S〉 = QRm (i.e., S is a randomly chosen generator of the group
QRm) and Z, R1, R2 ∈R QRm are randomly chosen quadratic residues modulo
m. Here �m is a security parameter; in [3] the authors recommend �m = 2048.
The CM’s private key is the tuple (mp, mq, sk), i.e., the factorization of m and
a secret Message Authentication Code (MAC) key. For a distributed CM, each
CM node would have an independent key pair.

The NM has public key ρ = pq, where ρ is an �ρ-bit product of �B-smooth
primes p and q (that is, p−1 and q−1 are products of �B-bit primes), such that
R = 4ρ + 1 is a prime.3 It is required that ρ > n, but being just barely larger
is sufficient. We note that a different ρ can be used in conjunction with each
SP and linkability window, but for brevity, we will use a single ρ value in our

3 We use 4ρ + 1 because it is easy to see that p and q must be congruent to 2 mod 3,
and so 2ρ + 1 must be divisible by 3.
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descriptions. Here �B is chosen so that computing discrete logarithms modulo ρ
in subgroups of order ≈ 2�B is costly but feasible. In other words, given knowledge
of the factorization of p − 1 and q − 1, computing discrete logs modulo p and q
(and hence, modulo ρ) is feasible (but costly) using a technique like the parallel
rho method of van Oorschot and Wiener [23]. g is a generator of QRρ, and r
and s are generators of the order-ρ subgroup of Z∗

R such that logr s is unknown.
The NM’s private key is then (p, q) and the factorization of φ(ρ) (into �B-bit
primes), so Z∗

ρ is a trapdoor discrete logarithm group with the NM’s private key
as its trapdoor.

Each SP is tied to a value h, which changes once per linkability window.
Here h ∈ Z∗

n and it is required that h has large order in Z∗
n. More precisely,

we require that ord(h) ≥ (p−1)(q−1)
4 . This requirement is guaranteed to hold if

gcd(h, n) = gcd(h2 − 1, n) = 1, which can easily be confirmed by any user. In
practice, we also need to be sure that the relative discrete logarithm between
the h values of different SPs, or the same SP at different linkability windows, is
unknown. For this reason, we let h be the result of a strong cryptographic hash
function applied to a concatenation of d and the SP’s name (where d is the index
of the linkability window for which nymbles derived from h will be valid). In the
unlikely event that the result of the hash does not satisfy the order requirement,
the hash is applied iteratively until an appropriate value for h is produced.

Every pair (SP, τd,j) is associated with a context element denoted by ξSP
d,j ∈

Z∗
ρ. As the notation suggests, this context element encodes the SP, linkability

window, and time period for which a particular nymble is valid; without it, the
SP has no way to distinguish, for example, nymbles issued for a time period that
has already passed or those intended for a different SP altogether. The values
for ξSP

d,j can be precomputed and must be known by both the NM and the SP,
as they are required in the VERBS-Sign and VERBS-Verify protocols. The client
must also know ξSP

d,j in order to verify its own nymbles. A reasonable value for
ξSP
d,j might be as simple as a hash of the SP’s name, d, and j.4

5.2 Credential Issuing Protocol

When a user Alice wishes to gain anonymous access to an SP, she must first
prove possession of IP to obtain a valid signed CL-credential from the CM. The
following protocol describes this process.

1. Alice connects directly to the CM; this proves to the CM that Alice is in
possession of IP.

2. The CM computes x = MACsk(IP) and texp = tcur + Δt, where MACsk(·)
denotes a Message Authentication Code keyed by the CM’s private key sk5,

4 The security requirement is that the cube root modulo ρ of the ratio of any two of
the ξ should be computable only with negligible probability if the factorization of ρ
is unknown.

5 A MAC of Alice’s IP address is used instead of her plaintext IP address to frustrate
brute-force attacks performed by a colluding NM and SP.
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tcur is the current time, and texp is the expiration time of the credential to
be issued. The tuple (x, texp) is transmitted to Alice.

3. The CM then issues Alice a CL-credential Cred(x, texp) = (A, e, v) encoding
x and texp, where e ∈R [2�e−1, 2�e−1 + 2�′e−1] is a randomly chosen prime,

v ∈R Zφ(m), and A =
(

Z
R1

x·R2
texp ·Sv

)1/e

mod m . Recall that R1, R2 and S

and Z are part of the CM’s public key. Here �e and �′e are security parameters;
see §6.1 and [3] for more details.

5.3 Nymble Acquisition Protocol

Once a valid credential is obtained from the CM, the next step is for Alice to
compute a set of nymbles and receive VERBS on each of them from the NM.
These nymbles are computed using values associated with the SP to which she
wishes to gain access, the time period and linkability window in which they
will be valid, and Alice’s IP address. Alice may choose to request any number
of nymbles, provided that this number does not cause her nymble set to span
multiple linkability windows and does not exceed a predefined limit K imposed
by the particular SP. Let k be the number of nymbles which Alice requests,
and let j ≥ 1 be the index of the time period τd,j within the current linkability
window (d), for which the first nymble will be valid.

1. Alice rerandomizes Cred(x, texp) as follows [3]:
(a) she chooses v′ ∈R {0, 1}�m+�∅ , where �∅ is a security parameter;
(b) she computes A′ = A · Sv′

mod m and v′′ = v − ev′ (in Z).
Her rerandomized credential is then Cred′(x, texp) = (A′, e, v′′) .

2. Alice computes the public value h using the name of the SP and the index
d of the linkability window during which she wishes to connect. That is, she
computes h = hash(d||name), where name is the canonical name associated
with the SP. She also verifies that these values satisfy the order require-
ments from §5.1, and iteratively reapplies the hash function otherwise. She
transmits (h, name, k, j) to the NM.

3. The NM verifies that k ≤ K and j + k ≤ Γ , and aborts otherwise.
4. Alice verifiably computes her unique seed value hj = hx2j

as follows:
(a) she picks a random γ ∈ Zn, computes the Pedersen commitment (to hj)

Yj = a

(
hx2j

mod n
)
bγ mod N , and transmits Yj to the NM;

(b) next she performs the statistical zero-knowledge proof of knowledge

PK

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(e, v′′, x, texp, γ) :

Z ≡ R1
x · R2

texp · Sv′′ · (A′)e mod m
∧ tcur ≤ texp

∧ Yj ≡ a

(
hx2j

mod n
)
bγ mod N

∧ x ∈ ±{0, 1}�MAC

∧ texp ∈ ±{0, 1}�t

∧ e − 2�e−1 ∈ ±{0, 1}�′e+�∅+�H+2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.
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In the case of a distributed CM, this proof is repeated once for each CM
node, except that the third statement is replaced by a single nest proof
to the sum of the x values received from each CM. The first statement
in this proof of knowledge convinces the NM that Alice does indeed
possess a credential from the CM; the second statement asserts that this
credential is not yet expired; the third statement (a nest proof) proves
that Yj does indeed encode the secret x from the credential and the first
time period for which the credential should be valid; the remaining three
statements are just length checks to show that the credential is validly
formed. For full details on how this statistical zero-knowledge proof is
performed we refer the reader to §4 and to [3].

If the proof succeeds, the NM is convinced that Yj is a Pedersen commitment
to hj = hx2j

mod n and encodes the same secret x as Alice’s credential;
otherwise, the NM terminates. Note that the NM has learned no nontrivial
information regarding the values of x and hj .

5. Alice computes her sequence of nymbles using hj as a seed value. This pro-
ceeds as follows:

(a) Alice computes the sequence (hj+i)
k−1
i=1 where hj+i =

(
hj+(i−1)

)2 mod

n = hj
2i

mod n. Note that given any element of this sequence, it is easy
to compute the next element, but being able to compute the previous
element is equivalent to factoring n [22, Chap. 3]. She computes Pedersen
commitments Yj+i = ahj+ibγj+i mod N (γj+i ∈R Zn) to each hj+i and
transmits them, along with zero-knowledge proofs of multiplication to
show that they were computed correctly, to the NM.

(b) The NM verifies each of the proofs, and terminates if any proof fails.

6. Alice computes (but does not send) her nymbles νj+i = ghj+i mod ρ, for
0 ≤ i < k. (Here, the exponent is just taken as an integer in [1, n).) She
computes (αj+i, Sj+i, Πj+i) = VERBS-Blind(g, Yj+i, νj+i, γj+i), and sends
each blinded value Sj+i and proof Πj+i to the NM.

7. For 0 ≤ i < k, the NM computes (or looks up) its context element ξSP
d,j+i,

and computes the blind signature σ′
j+i = VERBS-Sign(Sj+i, p, q, ξSP

d,j+i, Πj+i)
(Recall that p, q is part of the NM’s secret key, and ρ = pq.)

8. Alice unblinds the blind signatures σ′
j+i by computing

σj+i = VERBS-Unblind(σ′
j+i, αj+i) for 0 ≤ i < k.

9. If all steps are completed successfully, the tuple (νj+i, σj+i) is a valid nymble
for time period j+i for linkability window d and the given SP. Alice can verify
the validity of the nymble by checking VERBS-Verify(νj+i, σj+i, ξ

SP
d,j+i) .

10. If j + k − 1 	= Γ (i.e., τd,j+k−1 is not the last time period in the current
linkability window), then Alice also computes νΓ . This is the value that the
NM will compute and place on the blacklist if Alice is, or becomes, banned
from the SP. Note that the NM need not see or verify this value, nor provide
a signature on it, since Alice will never be expected to present it to the SP.
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5.4 Nymble Showing Protocol

The nymble showing protocol is extremely simple; Alice presents her nymble to
the SP, the SP confirms that it is valid, that the associated context element ξSP

d,i

matches the current time period and linkability window, and that the nymble
does not appear on the linking list. If each of these conditions is met, Alice is
granted access.

1. Alice anonymously queries the NM for the current version number of the
blacklist, and computes the current linkability window and time period τd,i.

2. Alice then connects anonymously to the SP and requests a copy of the black-
list B. She confirms its legitimacy and that it is up-to-date by verifying
the version number and a signature from the NM encoded in the blacklist.
Once convinced of the freshness of the blacklist, she verifies that she is not
presently blacklisted. More specifically, she checks that νΓ 	∈ B. If she dis-
covers that she is on the blacklist, she disconnects immediately. In this case,
the SP learns only that “some blacklisted user” attempted to connect.

3. If she is not on the blacklist, Alice transmits the tuple (νi, σi) to the SP.
4. The SP consults the linking list L and confirms that Alice is not on the

blacklist by checking that νi 	∈ L. If this check fails, the SP terminates and
Alice is denied access.

5. The SP confirms that the given nymble is valid for the current time period
i and linkability window d by confirming that VERBS-Verify(νi, σi, ξ

SP
d,i ) is

true. If so, Alice is granted access for the remainder of the time period;
otherwise, Alice is denied access.

6. The SP adds the tuple (νi, σi, i) to a log file, so that if it determines at
a later time (in the current linkability window) that Alice’s behaviour in
τd,i constitutes misbehaviour, it can present it to the NM to have Alice
blacklisted.

5.5 Blacklisting Protocol

Suppose that Alice misbehaves in time period i∗ and her misbehaviour is dis-
covered in time period i′ of the same linkability window. In this case, the SP
initiates the following protocol with the NM to have Alice added to the blacklist.

1. The SP transmits the tuple (SP, νi∗ , σi∗ , i∗, h,B,L) to the NM.
2. The NM verifies that h is valid for the SP and the current linkability window,

that B and L are up-to-date, and that VERBS-Verify(νi∗ , σi∗ , ξSP
d,i∗) is true. If

so, the NM uses its private knowledge (the factorization of ρ = pq and the
factorization of φ(ρ) into �B-bit primes) to solve the discrete logarithm of
νi∗ = ghi∗ mod ρ with respect to g to recover the exponent hi∗ ; otherwise,
the NM terminates.

3. The NM then computes hi∗+1, . . . , hΓ using the recurrence equation hi+1 =
h2

i mod n and computes νi′ , . . . νΓ as νi = ghi mod ρ.
4. The NM computes the set L = {νi′ , νi′+1, . . . , νΓ } and then computes the

new linking list L′ = L ∪ L and the new blacklist B′ = B ∪ {νΓ }.
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5. The NM increments the version number and signs the new blacklist and then
returns both the signed blacklist and the linking list to the SP.6

6 Implementation

We have implemented the key components of our system in order to measure
its performance. In the next subsection we discuss reasonable choices for various
system parameters, while in the following subsection we present performance
benchmarks carried out using these values.

6.1 Parameter Choices

First let us examine the relevant computations in more detail. In order to place a
user on the blacklist, the NM needs to compute a discrete log in a trapdoor group.
We intentionally make this non-trivial in order to deter bulk deanonymization
(in the sense that the users would become linkable, but not have their identities
revealed); our target is about one minute of computation (wall-clock time) per
discrete log computation. We also seek to ensure that, without the NM’s private
key, factoring and computing discrete logs mod ρ are infeasible; thus, we suggest
setting �ρ = 1536. The CM’s public key n should be as large as possible, while
ensuring that n < ρ, so we pick �n = 1534.

The discrete log computation takes about c · �ρ/�B · 2�B/2 modular multipli-
cations, which are almost completely parallelizable, for some constant of pro-
portionality c. If the NM has a parallelism factor of P (i.e., P is the number of
cores available to the NM), this will be about �ρ

�B
· c·2�B/2

P ·M minutes to compute
a discrete log, where M is the number of modular multiplications that can be
computed by one core in one minute. So we want to choose �B such that

2�B/2

�B
≈ T · M · P

�ρ · c , (1)

where T is the desired wall-clock time (in minutes) to solve a discrete log. (In
§6.2, we measure c ≈ 0.57 and M to be about 23.1 million for �ρ = 1536.) Thus,
for T = 1 and P = 32 we get �B ≈ 50; for T = 1 and P = 64 we get �B ≈ 52.

On the other hand, it takes at least about 3
5 · 2�B modular multiplications to

factor ρ, taking advantage of its special form by using Pollard’s p − 1 factoring
algorithm [25]. However, this algorithm is inherently sequential [6]; only a small
speedup can be obtained, even with a very large degree of parallelism.7 This
6 We adopt the same approach as the original Nymble system in order to ensure to

the user that the blacklist they view is up-to-date, however, we omit many of the
details here for brevity. In a later version of Nymble the authors propose the use
of “daisies” to ensure blacklist freshness. This approach could easily be used in our
scheme as well. The interested reader should consult [20,32] for these details.

7 Of course, with arbitrarily large parallelism, other algorithms can factor ρ more
quickly without taking advantage of the special form of ρ; massively parallel trial
division is an extreme example.
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means it will take about 3
5 · 2�B

M minutes to factor ρ. Assuming M = 23100000,
then �B = 50 yields over 55 years to factor ρ, and �B = 52 yields over 222 years
to factor ρ. (Remember again that this is wall-clock time, not CPU time.) Note
also that a different ρ can be used for each SP and for each linkability window,
thus reducing the value of expending even that much effort.

The reason we seem to be making the unusual claim that 250 security is suffi-
cient is twofold: first, a minor point, these are counts of multiplications modulo
an �ρ-bit modulus, each of which takes about 212.8 cycles for our suggested
�ρ = 1536; thus, we are really proposing about 262 security here. More impor-
tantly, these are counts of sequential operations. When one typically speaks of
280 security (of a block cipher, for example), one assumes that the adversary can
take advantage of large degrees of parallelism, which is not the case here.

Moreover, as noted in [21, §4], since the complexity of factoring increases with
2�B while the complexity of computing discrete logs increases with 2�B/2, as cores
get faster (M increases) and more numerous (P increases), the time to factor ρ
only goes up with respect to the time to compute discrete logs. In particular, if
M can be increased by a factor of f , then this leads to a net security increase of
a factor of f , whereas if P can be increased by a factor of g, this leads to a net
security increase of a factor of g2. These calculations suggest that the Nymbler
construction will get even more secure over time.

Suggested values for parameters related to CL-credentials are taken directly
from [3]. In particular, reasonable choices are �m = 2048, �∅ = 80, �e = 596,
�′e = 120, and �H = 256. We also suggest using �MAC = 256 and �t = 24.

6.2 Performance Evaluation

In this subsection we present measurements obtained with our C++ implemen-
tation of the protocol. These include the average times taken to: 1) compute a
nymble (and the associated proof of correct computation) at the client; 2) verify
the client’s proofs and issue a VERBS at the NM; 3) verify the signature on a
nymble at the SP; and, 4) solve an instance of the discrete log problem at the
NM. In order to compute M used in the previous subsection, and for comparison
with other restricted blind signature schemes, we also show the time required to
compute modular multiplications and exponentiations, respectively. Note that
the bulk of the computation in our scheme is in the Nymble Acquisition Protocol
— particularly in computing and verifying the zero-knowledge proofs.

We emphasize that our implementation is incomplete and unoptimized; it is
used simply to demonstrate that both the time-sensitive and cost-intensive por-
tions of our protocols can be carried out in an acceptable amount of time. In
particular, there is still significant room for optimizations in our implementation
of the VERBS-Blind algorithm and perhaps elsewhere in the protocols. For exam-
ple, in order for the user to prove correct exponentiation of a committed value,
our prototype implementation uses the naive “square-and-multiply” algorithm,
but more efficient algorithms can be plugged in very simply. Moreover, all of our
computations are single-threaded despite the highly parallelizable nature of the
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Table 1. Timings for essential computations in Nymbler

Operation Host Mean Time Trials Reps/trial

Compute k nymbles Client 360 ms + 397k ms (R = .9974) 10 1
Issue k blind signatures NM 300 ms + 252k ms (R = .9803) 10 1

Verify signature SP 11.2 μs ± 0.3 μs 10 100,000
Solve DL instancea NM 25 m 38 s ± 2 m 16 s 10 1

Modular exponentiationb — 403 μs ± 6 μs 10 100,000
Modular multiplicationc — 2.59 μs ± 0.02 μs 10 100,000

a This is the time to solve discrete logs with the parallel rho method on a single core
and a 1536-bit 50-smooth modulus; using 32 cores should reduce this time to about
48 s ± 5 s. Solving for c in §6.1, Equation 1 with this value yields c ≈ 0.57.

b Computed using a 1536-bit base, 160-bit exponent and 1536-bit modulus.
c Computed using random 1536-bit multiplicands and 1536-bit modulus; this yields

M ≈ 23, 100, 000 ± 100, 000 modular multiplications per minute.

protocols. Finally, we note that the as-of-yet unimplemented components of the
system are not expected to significantly alter these measurements.

The performance benchmarks in Table 1 were obtained on a 2.83GHz Intel
Core 2 Quad Q9550 running Ubuntu 9.10 64-bit.

These measurements compare favourably with BLAC and PEREA. In BLAC,
the time required for a user to construct a proof that she is not banned, and for
the SP to verify the proof, scales linearly with the size of the blacklist. In [30]
the authors give measurements which indicate that the cost is about 1.8 ms and
1.6 ms per entry on the blacklist, at the user and SP, respectively. Thus, when
the blacklist reaches a size of 385 entries8, the cost per authentication in BLAC
is roughly equal to the cost of obtaining a nymble in our scheme. (Half of the
cost in our scheme is constant overhead which can be amortized over the cost of
acquiring several nymbles.) We also note that, in this case, the cost at the SP is
about 142 times higher in BLAC. In PEREA (with an authentication window of
30), [31] reports that an authentication takes about 160 ms at the SP (regardless
of blacklist size) and up to 7 ms per entry on the blacklist for the user.

7 Conclusion and Future Work

We have presented a new system, inspired by Nymble, for providing an anony-
mous implementation of IP blocking over an anonymity network. Our approach
is based on anonymous credentials, verifier-efficient restricted blind signatures,
and a trapdoor discrete logarithm group. Compared to the original Nymble, our
scheme severely limits the ability of malicious third parties to collude in order to
break a user’s anonymity. Although our system is not as efficient as the original

8 An appendix in the extended version of this paper [18] gives recent usage and banning
statistics from Wikipedia, which indicate that the average size of the blacklist is
currently around 1200 entries — more than a factor of four larger than this figure.
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Nymble, most of the added cost has been introduced in the Nymble Acquisition
Protocol; verifying a nymble’s authenticity at the SP is still very inexpensive.

One may pursue several directions to further improve our system.9 For ex-
ample, if the NM detects that a user has attempted to cheat in the Nymble
Acquisition Protocol, we would like to be able to temporarily ban this user
from any further use of Nymbler. One way that this could potentially be accom-
plished would be to use another Nymbler-like system (i.e., a meta-Nymbler) to
allow blacklisting of Nymbler users from the system; however, this approach is
actually overkill. Since this type of misbehaviour can always be detected during
a session, a simpler technique, such as Unlinkable Serial Transactions [28], would
be sufficient. We leave further investigation of this idea to future work.

Eventually, we envision that the CM services may be offered by the Tor di-
rectory servers, or the Tor entry nodes themselves, as they are already trusted
with users’ IP addresses. If we use P-signatures [2] instead of CL-signatures in
the credentials obtained from the CM, each entry node can have its own public
key, certified by the directory server, and the NM will not be able to tell which
entry node certified the user’s IP address. There are nontrivial issues with this
simple proposal, however, and we leave addressing them to future work as well.
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Abstract. Webs of trust constitute a decentralized infrastructure for es-
tablishing the authenticity of the binding between public keys and users
and, more generally, trust relationships among users. This paper intro-
duces the concept of anonymous webs of trust – an extension of webs of
trust where users can authenticate messages and determine each other’s
trust level without compromising their anonymity. Our framework com-
prises a novel cryptographic protocol based on zero-knowledge proofs, a
symbolic abstraction and formal verification of our protocol, and a pro-
totypical implementation based on the OpenPGP standard. The frame-
work is capable of dealing with various core and optional features of
common webs of trust, such as key attributes, key expiration dates, exis-
tence of multiple certificate chains, and trust measures between different
users.

1 Introduction

Over the last years, the Web has evolved into the premium forum for freely dis-
seminating and collecting data, information, and opinions. Not all information
providers, however, are willing to reveal their true identity: For instance, some
may want to present their opinions anonymously to avoid associations with their
race, ethnic background, or other sensitive characteristics. Furthermore, people
seeking sensitive information may want to remain anonymous to avoid being stig-
matized or other negative repercussions. The ability to anonymously exchange
information, and hence the inability of users to identify the information providers
and to determine their credibility, raises serious concerns about the reliability of
exchanged information. Ideally, one would like to have a mechanism for assigning
trust levels to users, allowing them to anonymously exchange data and, at the
same time, certifying the trust level of the information provider.

Webs of trust. Webs of trust (WOT) constitute a well-established approach to
bind public keys to their owners and, more generally, to establish trust relation-
ships among users in a decentralized manner: Each participant decides which
public keys are considered trustworthy. This trust is expressed by signing the
trustworthy public keys along with a set of user and key attributes (e.g., user

M.J. Atallah and N. Hopper (Eds.): PETS 2010, LNCS 6205, pp. 130–148, 2010.
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name and key expiration date). These certificates can be chained in order to
express longer trust relationships:1 For instance, the certificate chain

sig((pk1,A1), sk2), sig((pk2,A2), sk3)

says that the owner of pk3 has certified the binding between the public key pk2
and the set A2 of attributes, and the owner of pk2 has certified the binding be-
tween pk1 and A1. Such certificate chains are a salient technique for expressing
transitive trust relationships, e.g., to use webs of trust to implement friendship
relations in social networks such as Facebook, where transitive friendship rela-
tions are common; in this example, the owner of pk1 would be a friend of a friend
of the owner of pk3.

After receiving a signature on message m that can be verified using pk1, the
owner of pk3 knows that m comes from a user of trust level 2 bound to the
attributes A1.2 Hence for authenticating a message in the context of a WOT,
the sender has to find a chain of certificates starting with a certificate released
by the intended recipient and ending with a certificate for the sender’s key.

Our contributions. In this work we introduce the concept of anonymous webs
of trust – an extension of webs of trust that allows users to authenticate messages
and determine each other’s trust level without compromising their anonymity.
Our framework comprises:

– a cryptographic protocol based on the Camenisch-Lysyanskaya signa-
ture scheme [14] and a novel zero-knowledge proof 3 that allows users
to efficiently prove the existence of certificate chains without com-
promising user anonymity. For instance, given the certificate chain
sig((pk1,A1), sk2), sig((pk2,A2), sk3) and a message m that the owner of pk1
wants to authenticate with the owner of pk3, our protocol allows the owner
of pk1 to prove a statement of the form “there exist certificates C1, C2, a
signature S, keys K1, K2, and attributes A1, A2 such that (i) C1 is a certifi-
cate for (K1, A1) that can be verified with key K2, (ii) C2 is a certificate
for (K2, A2) that can be verified with key pk3, and (iii) S is a signature on
m that can be verified with K1”. This statement reveals only the length of

1 In the OpenPGP standard [13], trust relationships may be transitive and their valid-
ity is ruled by trust signatures, which we describe in Appendix A. In our setting, the
trust relationship is more sophisticated and, in fact, it is parametrized by a number
of factors including the length of the chain (i.e., the longer the chain, the smaller
the conveyed trust). This allows us to accommodate fine-grained trust models, as
discussed in Section 4.

2 For the sake of simplicity, we identify the trust level of a certificate chain with its
length here. In Section 4, we will consider the more sophisticated trust measure
proposed in [18].

3 A zero-knowledge proof combines two seemingly contradictory properties. First, it
is a proof of a statement that cannot be forged, i.e., it is impossible, or at least
computationally infeasible, to produce a zero-knowledge proof of a wrong statement.
Second, a zero-knowledge proof does not reveal any information besides the bare fact
that the statement is valid [29]. A non-interactive zero-knowledge proof is a zero-
knowledge protocol consisting of one message sent by the prover to the verifier.
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the chain, i.e., the trust level of the sender, the authenticated message m,
and the public key pk3 of the intended recipient. We provide a prototypical
implementation of our protocol as an extension of the OpenPGP standard.
The tool is freely available at [6].

– a number of extensions of our protocol to achieve fine-grained anonymity
and trust properties. In some situations, a controlled release of additional
information is desired or even required, e.g., proving that the keys involved
in a chain have not expired. We propose variants of our zero-knowledge
proof that allow for selectively revealing additional properties of the certifi-
cate chains, such as the validity of the keys with respect to their expiration
date, the existence of multiple certificate chains, and the trust level that the
certificate chains are assigned according to a realistic trust model. These
extensions demonstrate the expressiveness and generality of our approach.

The potential application scenarios of our protocol include distributed
social networks, where people may want to share opinions or information in
an anonymous fashion while being able to prove their trust relationships,
applications for anonymous message exchange, and services for anonymous
yet trustworthy reports or reviews.

– a symbolic abstraction and a formal verification of our protocol. We specify
our protocol in the applied pi-calculus [3], and we formalize the trust prop-
erty as an authorization policy and the anonymity property as an observa-
tional equivalence relation. We consider a strong adversarial setting where
the attacker has the control over the topology of the web of trust, some of
the protocol parties, and the certificate chains proven in zero-knowledge by
honest parties. Security properties are verified using ProVerif [11], an auto-
mated theorem prover based on Horn clause resolution that provides security
proofs for an unbounded number of protocol sessions and protocol parties.

Related work. Although the setting is different, our approach may at a first
glance resemble the delegatable anonymous credential scheme [9]. This protocol
relies on an interactive protocol between each pair of users along the certificate
chain. In contrast, our protocol is fully non-interactive, and provers do not need
any interactions with other principals except for the intended recipient. In ad-
dition, our approach allows the prover to selectively reveal partial information
on attributes in the certificate chain, which is crucial to achieve anonymity in
realistic trust models without compromising their expressiveness.

Group signature schemes [19,37,5,10] provide a method for allowing a member
of a group to anonymously sign a message on behalf of the group. In contrast to
our approach, these schemes require the presence of a group manager; moreover,
two users in the same group are completely interchangeable. A similar argument
holds for HIBE/HIBS schemes [27,12], where anonymity could be obtained by
replacing user identifiers with generic anonymous attributes.

Ring signature schemes [34,31,32] are similar to group signatures but do not
require a group manager. As for group signatures, two users in the same group
are completely interchangeable. It would be interesting, nevertheless, to explore
the usage of ring signature schemes to achieve k-anonymity in webs of trust.
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Social networks constitute a particularly promising application scenario for
our protocol; we thus briefly relate our approach to recent works on privacy
and anonymity in social networks. The (somewhat) orthogonal problem of cre-
ating encrypted data that can be read by people who are n degrees away in a
social network has been recently addressed [25]. Several techniques have been
proposed to keep the social network graph private while enforcing access control
policies based on trust degrees [22,21,41]. In contrast to our approach, the pro-
posed protocols are interactive, similar to the delegatable anonymous credential
scheme [9]. In other works, trust relationships are instead assumed to be public,
e.g., [35,4,17]. Our approach does not put any constraints on the way certificates
are distributed (for instance, they could be exchanged by private communica-
tion). We just assume that the prover can retrieve the certificates composing the
chain proven in zero-knowledge. In the specific context of webs of trust such as
GnuPG [38], public keys and attached certificates are uploaded on key servers
and are thus publicly available. Finally, the recently proposed Lockr protocol [40]
achieves access control and anonymity in social networks and file-sharing appli-
cations, such as Flickr and BitTorrent. Lockr provides weaker anonymity guar-
antees compared to our framework, since the prover has to reveal her identity to
the verifier; moreover, Lockr does not support certificate chains but only direct
trust relationships.

Outline of the paper. Section 2 introduces the notion of anonymous webs
of trust and provides a high-level overview of our protocol. Section 3 describes
the cryptographic setup and describes the implementation. Section 4 presents
extensions of our protocol that accommodate some advanced properties of webs
of trust. Section 5 proposes a symbolic abstraction of our protocol and conducts
a formal security analysis. Section 6 concludes and gives directions of future
research. The full-version of this paper is available at [6].

2 Anonymous Webs of Trust

In this section, we introduce the notion of anonymous webs of trust and we give
an overview of our protocol.

A web of trust is a decentralized public-key infrastructure. Each user u holds
a public key pku and a secret key sku. Trust is distributed via certificates. User
u expresses her belief that a given public key pkv actually belongs to user v by
signing pkv along with a set Av of user and key attributes. Hence, certificates
establish the relation between public keys and users and, depending on the ap-
plications, they can also be used to witness specific trust relationships between
users. These certificates are attached to the signed public key and uploaded all
together onto key servers. Every user having access to such a server can partici-
pate in the web of trust.

Trust into public keys not directly signed by a user is established using cer-
tificate chains. A certificate chain from A to B consists of all the certificates that
link (pkA,AA) to (pkB,AB), thus establishing a trust relation between those keys.
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A B
C

sig(pkB , skA) sig(pkC , skB)

S

m
Transmission of message m

Trust relation certified by S sig(pkI , skJ): J ’s signature on I’s key

Witnesses: α1 ← pkB α2 ← sig(pkB , skA) α3 ← pkC α4 ← sig(pkC , skB)

ZK (∃α1, . . . , α4 : ver(α1, α2, pkA) ∧ ver(α3, α4, α1))

Fig. 1. Protocol for anonymous proof of a certificate chain of length 2

Definition 1 (Certificate Chain). A certificate chain or simply chain from
(pk1,A1) to (pk�,A�) is a sequence of certificates C = (C1, ...,C�−1) of length
� − 1, where Ci = sig((pki+1,Ai+1), ski) and � ≥ 2. We say that (pk�,A�) has
trust level �−1. We assume to know the binding between sk1 and (pk1,A1), which
can be captured by an additional self-generated certificate sig((A1, pk1), sk1).

The fundamental idea of our approach is to provide anonymity in webs of trust
by deploying zero-knowledge proofs to demonstrate the existence of valid cer-
tificate chains without revealing any information that might compromise the
anonymity of users. We consider a setting where users want to anonymously
exchange messages, yet guaranteeing the receiver the trust level of the sender.

For the sake of simplicity, we initially focus on certificates on public keys
without attributes. In Section 4, we will extend our zero-knowledge proof scheme
to certificates binding a key to a set of attributes, and subsequently show how
to selectively hide some of them while revealing the others.

In order to authenticate a message m with the owner of pk1, the owner of pk�

has to retrieve a certificate chain from pk1 to pk� and to prove in zero-knowledge
the existence of this chain as well as the knowledge of a signature on message m
done with the signing key corresponding to pk�. Notice that the signature cannot
be sent in plain, since this would compromise the anonymity of the sender. If
we denote by ver(m,C, pk) the successful verification of certificate C on message
m with public key pk, the statement that the owner of pk� has to prove can be
formalized by the following logical formula:

ver(pk2,C1, pk1) ∧
[∧�−1

i=2 ver(pki+1,Ci, pki)
]
∧ ver(hash(m), sig(hash(m), sk�), pk�) (1)

which can be read as “the verification of signature C1 on message pk2 with
verification key pk1 succeeds and for all i from 2 to � − 1, the verifications of
Ci on pki+1 with pki succeed and the verification of the signature on the hash
of m with pk� succeeds.” For efficiency reasons, the sender signs the hash of the
message she is willing to authenticate. Since the proof should not reveal the user
identities, we weaken this statement by existentially quantifying over all secret
witnesses:4

4 Here and throughout the paper, we use the convention introduced in [16] that Greek
letters denote those values that are kept secret by the proof.
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∃ α1, ..., α2�−1 :

ver(α1, α2, pk1) ∧
[∧�−1

i=2 ver(α2i−1, α2i, α2i−3)
]
∧ ver(hash(m), α2�−1, α2�−3)

(2)

This statement only reveals the public key pk1 of the intended recipient, the hash
of the authenticated message m, and the length of the chain (i.e., the trust level
of the sender). The zero-knowledge proof of this statement is sent to the verifier,
who, after successful verification, will authenticate message m as coming from a
principal of level �−1. Figure 1 schematically shows our protocol for a certificate
chain of length 2. To execute this algorithm, we solely assume that the prover
can efficiently retrieve the certificates composing the chain. In an established
web of trust, public keys and attached certificates are usually uploaded on key
servers and are thus publicly available. Our approach, however, is general and
does not put any constraints on the way certificates are distributed (for instance,
they could be exchanged by private communication). We just require that the
prover has access to the certificate chain linking her key to the verifier’s one.

3 Cryptographic Protocol

For implementing the ideas described in the previous sections, we need (i) a
digital signature scheme that allows for efficient zero-knowledge proofs and (ii)
an expressive set of zero-knowledge proofs that can be combined together in
conjunctive and disjunctive forms. For signing messages, we rely on the
Camenisch-Lysyanskaya signature scheme [14] while, for proving statements
about certificate chains, we propose a novel non-interactive zero-knowledge proof
of knowledge based on Σ-protocols [30]. We first review the basic building blocks
and subsequently describe the construction of our zero-knowledge proof scheme.

3.1 Camenisch-Lysyanskaya Signature

This signature scheme was introduced in [14] together with some zero-knowledge
proofs. None of them, however, deals with situations in which every value in-
volved in the verification (and, in particular, the verification key) must be kept
secret, as required by the statements considered in this paper. This circumstance
required us to develop a novel zero-knowledge proof.

We will now give a short overview of this signature scheme. A public key is
a tuple pk = (a, b, c, n) where n = p · q is a special RSA modulus and a, b, c are
random elements from a large subgroup of Z∗

n. The corresponding secret key is
sk = p. Since factorizing n is assumed to be hard, the attacker cannot efficiently
compute sk. To sign a given message m ∈ [0, ..., 2�m), one chooses a random
prime e of length �e ≥ �m + 2 and a random number s ∈ [0, ..., 2�m+�n+�) where
�n is the bit-length of n and � is a security parameter. In practice, � = 160 is
considered secure. Finally, one computes v such that:

v ≡n (am · bs · c)1/e (3)
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Here and throughout this paper, we write v ≡n u to say that u is equivalent to v
modulo n. Notice that the factorization of n is used to efficiently compute 1/e.
The signature on message m is the tuple sigm = (e, s, v). Given pk = (a, b, c, n),
m, and sigm = (e, s, v), the verification of the signature sigm is performed by
checking that 2�e−1 < e < 2�e along with the following equivalence:

ve ≡n (am · bs · c) (4)

This equation constitutes the cryptographic instantiation of the symbolic predi-
cate ver(m, sigm, pk) discussed in Section 2. Under the strong RSA assumption,
the Camenisch-Lysyanskaya signature scheme is secure against existential forgery
attacks. Security against existential forgery is the standard notion of security
when dealing with signature schemes.

3.2 Zero-Knowledge Proofs and Σ-Protocols

Zero-knowledge proofs were first introduced in [30] and have since then become
a key element of many cryptographic protocols. A zero-knowledge proof is an
interactive proof system (P, V ) between two parties: The prover P and the ver-
ifier V . Both parties obtain the statement to be proven as input, the prover
additionally receives a witness to the given statement. Besides the usual com-
pleteness and soundness properties, the zero-knowledge property ensures that
even a malicious verifier cannot learn any information on the prover’s witness.5
Our zero-knowledge scheme builds on a class of zero-knowledge protocols, called
Σ-protocols [28,20], which allow one to prove certain properties of committed
values without opening the commitments. We briefly review below the basic
building blocks of our scheme.

Σ-protocols and their properties. The proofs outlined below belong to the
class of Σ-protocols, i.e., protocols composed of three message exchanges: com-
mitment, challenge, and response, sent by the prover, the verifier, and the prover
respectively. These protocols enjoy the special soundness and the special honest
verifier statistical zero-knowledge (SHVSZK) properties [28,20].

Special soundness is a strong form of proof of knowledge and guarantees that a
prover is in possession of a witness. Honest verifier zero-knowledge is a variant of
the zero-knowledge property where the verifier chooses the challenge uniformly
at random from the according challenge space and, in particular, independently
of the commitment sent by the prover.6 We write {PK(α̃) : S} to denote a proof
of knowledge of witnesses α̃ for statement S.
5 The zero-knowledge property is formalized using a simulator that, without having

access to the witness to a given statement, creates simulated proof transcripts that
are indistinguishable from actual protocol transcripts. Intuitively, this guarantees
that the proof cannot be used to gain any information on the witness.

6 In general, zero-knowledge implies honest-verifier zero-knowledge but the converse
does not necessarily hold. In our setting, however, focusing on honest verifiers does
not restrict the power of the attacker since the proof will be eventually made non-
interactive using the Fiat-Shamir heuristic [24], which lets the prover herself choose
the challenge by using the random oracle, without interacting with the verifier.
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As shown in [20], Σ-protocols can be combined together to prove logical con-
junctions and disjunctions of their respective statements.

Lemma 1 (Logical Combination of Σ-protocols [20]). Assume that
(P1, V1) and (P2, V2) are SHVSZK and have special soundness and overwhelm-
ing completeness for relations R1 and R2 respectively. Assume that M1 ⊇ LR1

and M2 ⊇ LR2 where LR := {(x, y) | xRy}. Assume that for both schemes, the
verifier accepts the output of the simulator with overwhelming probability.

Then there exist SHVSZK proof schemes for the relations R∧ := R1∧M1,M2 R2

and R∨ := R1 ∨M1,M2 R2.

Intuitively, the Mi represent well-formed inputs and are needed for completeness
reasons.

Commitments. A commitment scheme consists of the commit phase and the
open phase. Intuitively, it is not possible to look inside a commitment until it is
opened (hiding property) and the committing principal cannot change the con-
tent while opening (binding property). We use the integer commitment scheme
described in [33]. In the following, we let �c� denote the value committed to in c.

Range proofs. We use the range proofs proposed in [26]. A range proof guar-
antees that a certain committed value lies in the interval (A, B), where A and
B are integers. This proof will be denoted by {PK(α) : �c� = α ∧ A < α < B}
Notice that this proof does not reveal α, just the commitment c and the bounds
A and B of the interval.

Proofs of arithmetic operations. Our protocol also uses some of the pro-
tocols presented in [15] for proving sums, multiplications, and exponentiations
of committed values in zero-knowledge (i.e., without opening the commitments
and revealing the witnesses). These proofs will be denoted by

{PK(α, β, δ, ν) : �ca� = α ∧ �cb� = β ∧ �cd� = δ ∧ �cn� = ν ∧ α + β≡νδ}
{PK(α, β, δ, ν) : �ca� = α ∧ �cb� = β ∧ �cd� = δ ∧ �cn� = ν ∧ α · β≡νδ}
{PK(α, β, δ, ν) : �ca� = α ∧ �cb� = β ∧ �cd� = δ ∧ �cn� = ν ∧ αβ≡νδ}

3.3 Our Protocol

Our goal is to compute the verification equation (4) in zero-knowledge. This is
achieved by the zero-knowledge protocol (5). We first recompute the exponenti-
ations in the signature verification equation, i.e., τ1 � am, τ2 � bs, τ4 � ambs,
and τ3 � ve, and check if ve ≡n ambsc (cf. line (a)). We then test whether the
signed message and the verification prime number are in the appropriate ranges
(cf. line (b)). This protocol constitutes the cryptographic instantiation of the
symbolic proof for the statement ∃ αm, αsig, αpk : ver(αm, αsig, αpk) discussed in
Section 2 with αm = μ, αsig = (ν, σ, ε), and αpk = (α, β, γ, η).⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

PK(α, β, γ, ε, η, μ, ν, σ, τ1, τ2, τ3, τ4) : �ca� = α ∧ �cb� = β∧
�cc� = γ ∧ �cn� = η ∧ �cm� = μ ∧ �cv� = ν ∧ �cs� = σ ∧ �ce� = ε
∧�c(am)� = τ1 ∧ �c(bs)� = τ2 ∧ �c(ve)� = τ3 ∧ �c(ambs)� = τ4
τ1 ≡η αμ ∧ τ2 ≡η βσ ∧ τ3 ≡η νε ∧ τ4 ≡η τ1 · τ2 ∧ τ3 ≡η τ4 · γ (a)
∧ 0 ≤ μ < 2�m ∧ 2�m+1 < ε < 2�m+2 (b)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5)
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Zero-knowledge proofs for single chain elements are combined together in con-
junctive form to prove the existence of a valid certificate chain, as formalized
in equation (2). In particular, every occurrence of value u is instantiated with
the same commitment cu. This ensures the equality of the values appearing in
different chain element proofs. We reveal the public key of the verifier and the
hash of the signed message by opening the corresponding commitments.

Theorem 1. Let ca, cb, cc, cm, cs, cv, ce, and cn be integer commitments and
let c(am), c(bs), c(ve), and c(ambs) be auxiliary commitments. Then, the protocol
from equation (5) is a special honest verifier statistical zero-knowledge proof with
special soundness that the values committed to in ca, cb, cc, cm, cs, cv, ce, and
cn fulfill the Camenisch-Lysyanskaya signature scheme verification equation.

Proof. The completeness follows from inspection of the protocol and the verifi-
cation equation of the signature scheme. Special soundness and SHVSZK follow
from the special soundness and the SHVSZK property of the individual proofs
by applying Lemma 1.

Finally, we apply the Fiat-Shamir heuristic [24] to make our protocol non-
interactive.

3.4 Implementation

We implemented our protocol as an extension of the OpenPGP standard. Our
system relies on key servers that provide standard OpenPGP functionality and
additionally maintain the certificates from the anonymous web of trust. The
authenticity of anonymous web of trust keys is established by OpenPGP certifi-
cates. Arithmetic operations are performed by using MIRACL [36]. The imple-
mentation is in Java and comprises roughly 6000 lines of code. A prototypical
implementation is freely available at [6].

4 Partial Disclosure: Beyond the All-or-Nothing Barrier

The cryptographic protocol described so far allows the prover to show the ex-
istence of a certificate chain without revealing anything other than the length
of the chain. In some situations, however, the length of the chain might reveal
too much about the prover’s identity while in some other scenarios, users might
desire more precise trust measures, even at the price of sacrificing a little their
anonymity. There is indeed an inherent trade-off between anonymity and trust.
In this section we develop extensions of our protocol that allow users to fine-tune
the degree of anonymity and trust.

Hiding the chain length. The length of the chain might actually reveal some
information about the sender, depending on the topology of the web of trust. For
instance, in the extreme scenario where the intended recipient has certified just
one key and the length of the chain is 1, the intended recipient knows exactly the
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identity of the sender. In this case, the prover can arbitrarily increase the length
of the chain proven in zero-knowledge by attaching self-generated certificates.
Note that the keys used in these certificates need not be uploaded onto a server
as the verifier does not need them to check the proof and, after the proof is
generated, these keys can be discarded. Indeed, a proof for a certificate chain of
length n does not guarantee that the prover is n hops away from the verifier,
but that she is at most n hops away.

Partial release of secrets. To achieve fine-grained trust properties, we now
consider certificate attributes, such as user name and key expiration date, and
show how to reveal some of them while keeping the others secret. For instance, we
might want to reveal the key expiration date while hiding confidential informa-
tion such as the user name. We recall that participants in a web of trust place the
signature on the concatenation of a public key and a set of attributes. Intuitively,
instead of proving ∃ αm, αsig, αpk : ver(αm, αsig, αpk), we would like to prove a
statement of the form ∃ αS, αsig, αpk, αK, αA.ver(αS, αsig, αpk) ∧ αS = (αK, αA)
and then reveal (part of) the attributes αA. The concatenation of the public
key and the attributes is implemented as b = k · 2� + A where � is an a pri-
ori fixed upper bound on the length of the attribute set. The idea is to split b
in zero-knowledge and to reveal some of the components to the verifier. Given
commitment ckA on public key k and attributes A, commitment ck on k, and
commitment cA on A, we execute the following zero-knowledge protocol:{
PK(α, κ, τ) : �ck� = κ ∧ �cA� = α ∧ �ckA� = τ ∧ τ = κ · 2� + α ∧ 0 ≤ α < 2�

}
We can then open cA and release all the attributes A to the verifier or apply the
protocol again on cA to select which attributes have to be revealed.

Dynamic trust relationships and key expiration. Since trust relationships
may vary over time, it is important to provide users with the possibility to
periodically update their certificates. Our system incorporates two distinct key
expiration mechanisms.

The first mechanism is based on a global version number that is attached to
all public keys as an attribute. Periodically after a fixed interval, all keys have
to be generated from scratch, re-signed, and tagged with the updated version
number. Proving a key valid translates into showing that it is tagged with the
most recent version number. This version number is revealed using our partial
secret release protocol. As the interval is globally fixed, revealing the version
number does not leak any information about the key.

In order to provide the user with the possibility to independently decide the
validity of each certificate, we also support a second mechanism based on a key
expiration date. Users can use our partial secret release protocol to selectively
reveal the expiration date of a key. Since the exact expiration date might uniquely
identify the public key, one can also prove {PK(ε) : �ce� = ε ∧ current date <
ε < ub} given a commitment ce on the expiration date attribute ε and a suitable
upper bound ub for all possible key expiration dates.

Notice that the OpenPGP standard [13] incorporates a key revocation mech-
anism, which is implemented by a special signature (also called revocation
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signature) that is attached to the revoked key by the revoking principal. Al-
though conceptually appealing, such a revocation mechanism is not compatible
with our framework since there is no way to prove in zero-knowledge that a
certain key has not been revoked. In particular, even if revoked, the key and the
according certificates could still be used in our zero-knowledge proof.

Conjunctive and disjunctive statements over certificate chains. Σ-
protocols allow us to prove logical conjunction and disjunction of statements.
Proving a conjunctive statement over certificate chains strengthens trust at the
price of decreasing anonymity guarantees, whereas a disjunctive statement en-
hances the anonymity guarantees but diminishes trust.

In a way of example, consider Figure 2 (a) where A is trusted by both C1 and
C2, and D is only trusted by C2. Assume A is interested in authenticating to a
party B trusting both C1 and C2 and suppose also that A does not know the
public key of B. If A proves that she is trusted by C1 or C2, a curious principal
will not be able to distinguish whether the message originated from D or A. The
trust guarantee provided by the proof, however, may be low if, for instance, the
link between C2 and D is weak (cf. the following discussion on trust measures).

A proof that A is trusted by C1 and C2 strengthens the trust guarantee.
One can, however, compute the intersection of the principals trusted by C1

and C2, potentially reducing the anonymity guarantees. In this example, the
intersection uniquely identifies A as the prover. This example shows that there
is often an inherent trade-off between trust and anonymity. The expressiveness of
our zero-knowledge proof scheme is crucial to fine tune the security requirements
according to the application scenario.

Trust measures. In the following, we extend our approach to trust measures.
We will focus in particular on the trust model from [18]. The examples in this
section are intentionally borrowed from [18] in order to show the applicability of
our framework to existing trust models. Consider the web of trust in Figure 2 (b).
As shown by the weight of the two links, the trust of B in C is higher than the
trust of A in B. The trust measure proposed in [18] is based on the multiplication
of the trust values of the individual links. Therefore the trust degree provided
by the chain between A and C is 95% · 99% = 94.05%.

We devise a proof that reveals the trust degree provided by a given chain,
without disclosing the weight of individual links, since this might compromise
the anonymity of participants. In case even the exact trust degree is considered
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too informative on the identity of the parties involved in the chain, we can
approximate this value using range proofs (cf. key expiration).

In addition to proving the validity of the certificate chain of Figure 2 (b), the
prover executes the following protocol:

{PK(α, β, γ) : �ct� = α ∧ �ct1� = β ∧ �ct2� = γ ∧ α ≡P β · γ}
where ct1 and ct2 are the commitments to the certificate attributes 95 and 99, P
is a large publicly known prime, and ct is a commitment to 9405, which is opened
by the prover. Since we cannot reason on rational numbers and consequently on
divisions,7 the verifier has to perform the remaining computation on the value
�ct� = 9405, namely, 1 − (1 − 9405/10000) = 94.05%.

We now show how our protocol can be extended to deal with even more
complex scenarios. Consider the graph in Figure 2 (c): Z has to show that there
exist two distinct paths from A to Z. The total trust degree is computed as
1 − (1 − 95% · 99%) · (1 − 80% · 95%) ≈ 98.6%.

The corresponding zero-knowledge proof is computed as follows. Given the
commitments cs1 , cs2 , cs3 , and cs4 on the certificates certAB , certAC , certCZ ,
and certBZ , where certIJ denotes the certificate issued by I on J ’s public key,
and the commitments ct1 , ct2 , ct3 , and ct4 on the corresponding trust values, in
addition to showing that both chains are valid we run the following protocol:{

PK(α1, α2, α3, α4, β1, β2) : �ct1� = α1 ∧ �ct2� = α2 ∧ �ct3� = α3 ∧ �ct4� = α4∧
�cs1� = β1 ∧ �cs2� = β2 ∧ β1 �= β2 ∧ �cr� ≡P (�c10000� − α1 · α3) · (�c10000� − α2 · α4)

}

Proving �cs1� 	= �cs2� ensures that the first two signatures, and therefore the two
chains, are different. The rest of the proof computes in zero-knowledge the total
trust value as follows: �cr� = (10000−95 ·99) · (10000−80 ·95) = 1428000 (c10000
is a commitment to 10000). The verifier then computes (108−�cr�)/108 ≈ 98.6%.
Although the numbers grow quickly with the chain length and the number of
parallel paths, P � 10100 is large enough for any reasonably sized chain.

5 Formal Verification

The cryptographic proof from Section 3 ensures that our scheme enjoys the spe-
cial soundness and honest verifier statistical zero-knowledge properties. It is im-
portant to verify, however, that the protocol as a whole guarantees the intended
trust and anonymity properties. We conducted a formal security analysis by
modeling our protocol in the applied pi-calculus [1], formalizing the trust prop-
erty as an authorization policy and the anonymity property as an observational
equivalence relation, and verifying our model with ProVerif [11,2], a state-of-the-
art automated theorem prover that provides security proofs for an unbounded
number of protocol sessions. We model zero-knowledge proofs following the ap-
proach proposed in [7], for which computational soundness results exist [8]. For
7 Computing 1/m for a given m results in a number u such that m · u = 1 mod q,

e.g., 1/4 = 5 mod 19.
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easing the presentation, in this section we focus on certificate chains without
attributes.

Attacker model. In our analysis, we consider a standard symbolic Dolev-Yao
active attacker who dictates the certificates released by each party (i.e., the at-
tacker controls the web of trust), the certificate chains proven in zero-knowledge,
and the proofs received by each verifier.

Verification of trust. We partition the set of parties into honest and compro-
mised. Honest parties generate a fresh key-pair, publish the public component,
and engage in three distinct activities: Certificate generation, proof generation,
and proof verification.

We decorate security-related protocol events with logical predicates, which
constitute the building blocks of the authorization policy formalizing the trust
property (cf. Figure 3). The event TRUST(x, y) describes the point in the proto-
col where the honest party associated with public key x releases a certificate for
public key y. The event COMPR(x) tracks the compromise of the party associ-
ated with public key x (i.e., this party is under the control of the attacker, which
also knows the corresponding private key). The event SENDi(x, y, z) describes
the point in the protocol where the party associated with public key x sends a
zero-knowledge proof for a certificate chain of length i to the party associated
with public key y to authenticate message z. Finally, the event AUTHi(x, y)
describes the point in the protocol where the party associated with public key
x authenticates message y as coming from a party of trust level i. The trust
property is formalized as the following authorization policy:

AUTH2(id2, x) ⇒ SEND2(id1, id2, x) & TRUST(id2, id3) & TRUST(id3, id1)) (1)
| (TRUST(id2, id3) & TRUST(id3, id1) & COMPR(id1)) (2)
| (TRUST(id2, id3) & COMPR(id3)). (3)

For the sake of simplicity, we focus on certificate chains of length 2: The ex-
tension to arbitrary chain lengths is straightforward. This policy says that in
all execution traces, the event AUTH2(id2, x) has to be preceded by either
(1) SEND2(id1, id2, x) and TRUST(id2, id3) and TRUST(id3, id1) (i.e., all par-
ties are honest), or (2) TRUST(id2, id3) and TRUST(id3, id1) and COMPR(id1)
(i.e., all parties except for the prover are honest), or (3) TRUST(id2, id3) and
COMPR(id3) (i.e., the party trusted by the verifier is compromised and the at-
tacker has chosen to lengthen the certificate chain by an additional, possibly
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fake, certificate). In other words, this policy says that whenever the verifier au-
thenticates a message as coming from a party of trust level i, then indeed a
party of trust level i or less has started a protocol session with the verifier to
authenticate that message.

This authorization policy is successfully verified by ProVerif and the analysis
terminates in 3 seconds. The formal analysis highlighted a couple of important
requirements for the safety of our protocol. First, the verifier has to check that the
authenticated message is not a public key,8 otherwise the following attack would
be possible: The attacker gathers a certificate chain of length i + 1 and builds
a zero-knowledge proof for a certificate chain of length i, authenticating the
public key signed in the i + 1-th certificate as coming from the party associated
with the public key signed in the i-th certificate. For a similar reason, signatures
on messages other than public keys cannot be sent in plain or must be tagged
differently from the signatures proven in zero-knowledge.

Verification of anonymity. Intuitively, we formalize the anonymity property
as a cryptographic game where two principals act in a web of trust set up by the
attacker and one of them authenticates by proving in zero-knowledge a certificate
chain chosen by the attacker. If the attacker cannot guess which of the two
principals generated this zero-knowledge proof, then the protocol guarantees
anonymity. Our model includes an arbitrary number of honest and compromised
parties as well as the two (honest) principals engaging in the anonymity game.

The anonymity game is defined by two distinct processes that are replicated
(i.e., spawned an unbounded number of times) and in parallel composition (i.e.,
concurrently executed). In the first process, each of the two principals releases
certificates as dictated by the attacker. Since the attacker controls also the certifi-
cates released by the other parties in the system, both honest and compromised
ones, the attacker controls the topology of the whole web of trust. In the sec-
ond process, the two principals receive two (possibly different) certificate chains
from the attacker. If both certificate chains are valid and of the same length, we
non-deterministically choose one of the two principals and we let it output the
corresponding zero-knowledge proof. The observational equivalence relation ≈
(cf. Figure 4) says that the attacker should not be able to determine which of
the two principals output the zero-knowledge proof.

ProVerif successfully verifies this observational equivalence relation. This im-
plies that our protocol guarantees the anonymity of users even against our strong
adversarial model. Since processes are replicated and the two principals may

8 We recall that parties sign the hash of messages and these are shorter than keys.
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output an unbounded number of zero-knowledge proofs, our protocol addition-
ally provides unlinkability, that is, the attacker is not able to tell if two zero-
knowledge proofs come from the same principal or not.

6 Conclusion

We have proposed a cryptographic protocol for anonymous communication in
webs of trust. We reconcile trust and anonymity, two seemingly conflicting re-
quirements, using a novel zero-knowledge proof that allows the sender to prove
the existence of a certificate chain without revealing her identity and the re-
ceiver to verify the trust level of the sender. The zero-knowledge proof scheme is
general and accommodates different aspects of webs of trust, such as key expira-
tion, trust measures, and existence of multiple certificate chains. We conducted
a formal security analysis of our protocol, showing that trust and anonymity are
guaranteed even in a strong adversarial setting.

Our approach inherently requires that the certificates comprising the certifi-
cate chain are accessible to the prover, since they have to be proven in zero-
knowledge. While public relationships are not a problem in a company (e.g.,
boss, employee, trainee, etc.), there might be privacy issues in other settings,
e.g., in the context of social networks where users may want to keep their social
relationships secret. We stress that our approach does not require the whole
relationship graph to be public; only the certificates used in the proof need to
be accessible to the prover.

In a distributed social network, for instance, we envision the following local
certificate distribution mechanism: A expresses her friendship with B by signing
B’s public key and sending the corresponding certificate CAB to him. If A wants
her profile to be available only to her friends (this corresponds to a “friends
only” policy in Facebook [23]), then B is expected to keep CAB to himself.
Should A instead opt for a “friends of friends” policy (which is also available in
Facebook [23]), then A authorizes B to release CAB to his friends in order to let
them anonymously authenticate with A (with a zero-knowledge proof of length
2). B’s friends might express interest in authenticating with A, after looking at
a preview of A’s profile, which could be made available by B.

In general, there is an inherent trade-off between the privacy of the relation-
ship graph and the anonymity guarantees of our scheme. On the one hand, if
the relationship graph is fully private, then the prover does not know how many
other principals have her own trust level. Hence, in the extreme scenario in which
the verifier and all the principals in the chain have issued just one certificate,
the prover is just anonymous in the set of principals occurring in the chain (due
to the chain enlargement technique discussed in Section 4). On the other hand,
if the relationship graph is public, as in GnuPG, the prover can be certain of
her anonymity guarantees. As a future work, it would be interesting to investi-
gate techniques to solve this tension, e.g., by selectively disclosing parts of the
relationship graph in order to ensure meaningful anonymity properties.
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A Trust Model

One of the core motivations behind webs of trust as public key infrastructures
is the fact that there is no central authority one has to trust. Every participant
bases trust decisions on her own policy.

However, this poses problems: Consider a simple web of trust where Alice
signed Bob’s key and Bob signed Charlie’s key. Alice trusts Bob only marginally,
i.e., she is not convinced that her signing policy is fully compatible with Bob’s
policy. What does this say about Charlie’s key? Probably Alice should not accept
it as a valid key if it is only signed by Bob. In the following, we use trust and
validity on the basis of the GnuPG Handbook [39]: Trust denotes the belief
that the owner of a key acts in accordance with our signing policy and validity
denotes our belief that a key actually belongs to the designated owner.

Our work is based on the OpenPGP standard [13], which stipulates a method
for conveying and expressing trust, namely, trust signatures. Such signatures
allow the signer to assert a transitivity level and a trust level. The former rules
the transitivity of trust relationships while the latter allows one to publicly
state the amount of trust set in the owner of a key. (Typical trust values are
unknown, no trust, marginal, and full.) For instance, a level one trust signature
on key k means that k can be used to sign another key k′, which will inherit
the same trust level as k. Key k′, however, is not trusted to sign further keys.
In general, a level n trust signature asserts that the owner of a key is trusted to
issue level n− 1 trust signatures. Figure 5 depicts a trust signature chain with a
constant trust level. Note that the OpenPGP standard does not require the trust
level to remain constant throughout a chain. In practice, common transitivity
levels are 0 (direct friendship relation) and 1 (friend of a friend relation). A
level zero signature is equivalent to a standard signature in the web of trust.
Higher transitivity levels may be useful in certain applications where they have
a clear and meaningful interpretation (e.g., reflecting the hierarchical structure

S(n,t) S(n−1,t) S(1,t)S(2,t)

S(i,j) : Trust signature with transitivity level i and trust level j

Fig. 5. Trust signature chain

http://www.gnupg.org/
http://www.gnupg.org/gph/en/manual.pdf
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of a company). PGP, since version 5, as well as GnuPG, depending on user
preferences, use transitivity levels and trust levels to calculate the validity of
keys. The specific details of these computations are implementation dependent.

Our approach is compatible with the trust signature mechanism and a variety
of validity calculation algorithms. In fact, we can selectively reveal both transi-
tivity levels and trust levels in our zero-knowledge proofs as well as compute in
zero-knowledge the validity of keys as described in Section 4.
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Abstract. In Secret Handshakes (SH) and Affiliation-Hiding Authenti-
cated Key Exchange (AH-AKE) schemes, users become group members
by registering with Group Authorities (GAs) and obtaining membership
credentials. Group members then use their membership credentials to
privately authenticate each other and communicate securely. The dis-
tinguishing privacy property of SH and AH-AKE is that parties learn
each other’s groups affiliations and compute common session keys only if
their groups match. Current SH and AH-AKE schemes consider GAs to
be fully trusted, especially, with regard to (i) security of the registration
phase (no phantom members), (ii) secrecy of established session keys, and
(iii) privacy. The impact of possible “big brother” ambitions of malicious
GAs has not been investigated so far. In this paper, we discuss implica-
tions on group members’ privacy and security of their communication in
the presence of possible GA corruptions. We demonstrate problems aris-
ing from relaxed GA trust assumptions and propose an efficient — yet
provably secure — AH-AKE protocol with enhanced privacy properties.

1 Introduction

Affiliation-Hiding Key Exchange. In the public-key setting, traditional
Authenticated Key Exchange (AKE) protocols offer secure key establishment
while usually revealing the identities and certificates of participants. Affiliation-
Hiding AKE (AH-AKE) schemes [11,12] that combine Secret Handshakes (SH)
[3,8,21,20,19,2,13,14] with secure key establishment offer stronger privacy guar-
antees. In both SH and AH-AKE, users are members of groups administrated
by Group Authorities (GAs). Prior to participation, users register with the GA
to obtain their membership credentials. The goal of SH and AH-AKE is to
ensure private matching (e.g. exact, or dynamic matching [2]) between the af-
filiations (groups) of participants. Privacy stems from the requirement to hide
these affiliations from outsiders or members of non-matching groups. AH-AKE
protocols provide stronger privacy than Secret Handshakes, since they guaran-
tee the affiliation-hiding property, even if established session keys are disclosed.
Additionally, AH-AKE protocols provide traditional AKE-security goals [7] for
the established keys. SH and AH-AKE schemes come in two flavors: linkable and

M.J. Atallah and N. Hopper (Eds.): PETS 2010, LNCS 6205, pp. 149–165, 2010.
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unlinkable. Linkable protocols [3,8,11,12], which are useful if participants wish to
be recognized across different sessions, employ re-usable pseudonyms that mem-
bers obtain during the registration process with the GA. In contrast, unlinkable
protocols [21,13,2,14] aim at preventing any correlation among multiple sessions
of the same participant.

The GA Role. We assume that each GA manages one group. It is respon-
sible for the registration of new members and for any subsequent membership
revocation [3,8,21,12,14]. While in linkable AH-AKE members can be efficiently
revoked by black-listing their pseudonyms on public revocation lists, unlinkable
AH-AKE supports revocation either by restricting the number of unlinkable
sessions of users, e.g. [21], or by regularly updating unrevoked membership cre-
dentials, e.g. [13].

Current protocols assume that GAs are fully trusted. This becomes clear by
inspecting the underlying security models [13,12,14] where GA corruptions are
not among the adversary’s options. We first discuss what exactly the GA is
trusted with, and whether this trust is justifiable and/or offers space for mean-
ingful relaxations.

Security of Registration/Revocation. Among GA duties is the registration and
revocation of group members. Clearly, if the GA misbehaves and introduces
phantom members, then security of session keys computed by honest partici-
pants in sessions with phantom members can no longer represent a meaningful
requirement. Therefore, GA must be trusted with regard to security of the reg-
istration (and revocation) in that it does not enroll phantom (or revoke honest)
members. This is similar to the usual trust placed into the Certification Author-
ity (CA) in public-key based AKE schemes.

However, we believe that possible GA misbehavior during registration of new
(honest) members must be taken into account. Note that the registration process
is the only step where GA interacts directly with users. Therefore, information
obtained or issued by the GA during registration may be later misused to the
detriment of members’ privacy.

Security of Session Keys. An AH-AKE instance between two honest members
should result in a secure session key. For obvious reasons, it is desirable for this
key to be kept secret from the GA. This requirement subsumes forward secrecy
of session keys with respect to any future GA corruptions. Although this issue
has not been formally addressed so far, we note that some recent results [11,12]
seem to satisfy this extended form of forward secrecy. Whereas, in many other
protocols, e.g. [3,8,2], private secrets of the GA can be used to immediately
recover session keys.

Privacy of Group Members. The central privacy requirement of AH-AKE pro-
tocols is to hide the group membership (affiliation) of participants from out-
siders. However, it is also meaningful to extend this requirement towards the GA.
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As long as GA is trusted with the security of the registration, it makes sense for
transcripts of sessions among honest members not to reveal their affiliations to
the GA. This requirement is of particular importance for linkable schemes where
participants communicate via pseudonyms. Current linkable schemes, such as
[3,8,20,12], do not provide this stronger privacy notion, since the GA learns (or
even specifies) the pseudonyms of its members during the registration process.

Finally, there is an even more significant threat to privacy of group members,
that stems from the fact that, during the registration process, GA learns users’
real identities. In particular, we believe that handshake sessions involving honest
members should not reveal any information about their real identities to the
GA (even though the GA knows the real identities of all group members). In
other words, users should remain untraceable throughout their communication
sessions.

Untraceability is a new privacy requirement that does not appear in current
AH-AKE security models; in fact, all current linkable protocols that we are
aware of do not provide it. We observe that untraceability is an individual goal
of members, while affiliation-hiding is a goal shared by all members of the same
group. Therefore, untraceability is desirable even if the GA deliberately engages
in sessions with genuine group members.

The above discussion shows that unconditional trust in GA by group members,
as imposed by current AH-AKE security models, can be problematic and needs
to be re-examined. In particular, mitigation of potential GA misbehavior (aimed
to undermine privacy of group members and security of their communication) is
an important goal which motivates our present work.

Contributions and Organization. Our work makes two contributions. First,
in Section 2, we present three intuitive security goals for AH-AKE schemes (key
secrecy, affiliation-hiding and user untraceability) that explicitly consider GA
misbehavior. These goals can be viewed as strengthening those of the recent
model of [12] where GA corruptions are not considered. We summarize two cur-
rent protocols [12,8] and discuss why they are not strong enough to achieve these
new goals. Based on this observation, as our second contribution, in Section 3
we propose a new AH-AKE scheme that operates in the Discrete Logarithm
(DL) setting. Although some central design ideas are similar, the new proto-
col is fairly different from the one proposed by Castellucia, et al. [8]. In short,
one novel factor is the decoupling of the registration phase, where pseudonyms
are generated, from later protocol sessions by adopting blinding techniques for
Schnorr signatures [18,17]. We show that an anonymized registration process is
in fact necessary to preserve affiliation-hiding and untraceability against GAs.
We also show that the latter can be achieved unconditionally. Efficiency and key
security of our technique stem from a key establishment process where session
keys are derived similarly to the Unified Model [4], thus achieving forward se-
crecy (not provided by [8]). Then, in Section 4, we prove security and privacy
of our protocol in the random oracle model (ROM) using the computational
variant of the Oracle Diffie-Hellman assumption from [1].
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Related Work. Linkable Secret Handshake (LSH) schemes [3,8,20] provide
group members with credentials composed of a pseudonym and additional se-
crets. These schemes have been designed with authentication in mind, and,
although some of them offer session key establishment, no formal security treat-
ment of the latter has been provided. Aforementioned schemes provide efficient
revocation using certificate/pseudonym revocation lists. An extension of LSH
to Linkable AH-AKE (LAH-AKE) schemes has been formally modeled and ana-
lyzed in [12]. The scheme in [12] works in the safe RSA setting and offers forward
secrecy as well as revocation, under the trusted GA assumption.

In unlinkable Secret Handshakes [2,13,19,14] credentials are reused while still
precluding the correlation of multiple sessions involving the same participant.
The challenging part is the process of revocation of protocol participants, which
is completely disregarded in [2], handled via synchronization of revocation epochs
in [13], and addressed in [19] with group signatures and broadcast encryption.
Jarecki and Liu [14] recently constructed a scheme that supports more efficient
revocation and unlinkable reusable credentials using group signature-related
techniques. We remark that unlinkability generally can be obtained from linkable
protocols by using one-time pseudonyms; however, this is clearly impractical.

There are also a couple of Linkable Group Secret Handshake schemes [10,11]
that extend the security model from two-party to multi-party authentication
and key establishment scenarios. The approach in [10] uses credentials that em-
ploy Schnorr signatures issued by the GA (this is, in some sense, related to [8]),
whereas, the scheme in [11] applies similar ideas to the RSA setting. Both ap-
proaches achieve session group key establishment based on a variant of the well-
known Burmester-Desmedt [5] technique.

The first result on privacy protection against misbehaving GAs is due to
Kawai, et al. [15]. It deviates from the traditional setting by splitting the GA role
among the issue authority (responsible for registration and certificate issuance)
and the tracing authority (responsible for tracing users based on their handshake
transcripts). Since we treat the GA as a single instance, the setting of our work
is more consistent with earlier results.

2 Malicious GAs: Impact and Challenges

After describing LAH-AKE syntax, we illustrate challenges stemming from ma-
licious GAs using, as our running example, a concrete LAH-AKE scheme from
[12]. We also highlight techniques necessary to protect against malicious GAs
that are later used in our own construction.

2.1 SH and AH-AKE

The main syntactical difference between AH-AKE and SH schemes is the session
key computation during protocol execution. Although many SH schemes provide
participants with a session key, doing so is not mandatory for the purpose of pure
authentication. An LAH-AKE scheme includes four components:
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CreateGroup(1κ) a probabilistic algorithm that sets up a new group G. It is
executed by the corresponding GA. On input of the security parameter 1κ, it
generates a public/private group key-pair (G.pk, G.sk), initializes the group’s
pseudonym revocation list G.prl to ∅ and outputs public group parameters
G.par = (G.pk, G.prl) along with the private key G.sk.

AddUser(U, G) a protocol executed between a prospective group member U and
the GA of G. The algorithm on U ’s side is denoted AddUserU(U, G.par),
and on GA’s side by AddUserG(U, G.sk). Let π be a session of AddUserU or
AddUserG. The state of π is represented with a variable π.state and can take
running or accepted values. Initially π.state = running. Once AddUserU session
π reaches π.state = accepted its variable π.result contains a pair (id, id.cred)
where id is a pseudonym and id.cred is a membership credential enabling U
to authenticate as id in group G in future Handshake sessions. A user can
have several registered pseudonyms in the same group.

Handshake(params1, params2) a protocol (handshake) executed between two
users, U1 and U2, on inputs paramsi = ((idi, idi.cred), Gi.par, ri), i ∈ {1, 2},
with Gi.par = (Gi.pk, Gi.prl), r1 = init and r2 = resp. Each Ui executes
its own part Handshake′(parami). Note that idi is the pseudonym previously
registered to group Gi using the AddUser algorithm. The protocol verifies
that both users are members of the same group (i.e. G1 = G2) and possess
valid membership credentials. If so, the protocol accepts with an established
shared session key. Otherwise, it rejects. Users keep track of the state of
created Handshake protocols π through session variables that are initialized
as follows: π.state ← running, π.key ← ⊥, π.id ← id (where id is the own
pseudonym) and π.partner ← ⊥. At some point, the protocol completes and
π.state is updated to either rejected or accepted. In the latter case, π.key is
set to the established session key (of length κ) and the pseudonym of the
handshake partner is assigned to π.partner. State accepted cannot be reached
if the protocol partner is revoked (π.partner ∈ G.prl).

Revoke(G.sk, G.prl, id) a revocation algorithm executed by the GA of G. It out-
puts the updated pseudonym revocation list G.prl ← G.prl ∪ {id}.

Definition 1 (Correctness). Suppose that two users, U1 and U2, register as
members of groups G1 and G2, and obtain their credentials (id1, id1.cred) and
(id2, id2.cred), respectively, via corresponding AddUser executions. Further sup-
pose that U1 and U2 participate in a Handshake protocol and let π1 and π2 de-
note their corresponding sessions. The LAH-AKE scheme is called correct if
(a) π1 and π2 complete in the same state: accepted iff G1 = G2 and id1 �∈
G2.prl and id2 �∈ G1.prl and r1 �= r2, and (b) if both sessions accept, then
(π1.key, π1.partner, π1.id) = (π2.key, π2.id, π2.partner).

2.2 Impact of GA Corruptions

LAH-AKE with Honest GAs. One state-of-the-art LAH-AKE scheme is due
to Jarecki, et al. [12]. It is very efficient and offers a number of valuable security
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properties. In particular, it satisfies the following standard requirements, which
we state here informally.

Authenticated Key Exchange (AKE) Security with Forward Secrecy. It should
be infeasible for an active PPT adversary to distinguish the session key
computed in some test session from a random key with a probability non-
negligibly exceeding 1

2 . AKE-security has been modeled in [12] following the
general approach for key exchange protocols (e.g. [7]) via an indistinguisha-
bility game, that precludes all “trivial” attacks via which the adversary could
obtain the key computed in the test session. The (sub)requirement of forward
secrecy is typically modeled by allowing user corruptions, while preventing
active participation of the adversary in the test session.

Linkable Affiliation-Hiding (LAH). It should be infeasible for an active PPT
adversary to decide the group membership of an uncorrupted user from
its handshake sessions or from knowledge of computed session keys. This
requirement has been modeled in [12] via the simulation approach where the
simulator executes handshake sessions without knowing the affiliation (and
secret membership credentials) of participants.

We now briefly overview the LAH-AKE scheme from [12]. During setup, the
GA creates public group parameters (n, g, e), where n is a safe RSA modulus
of length 2κ′′, i.e., an RSA modulus n = pq where p, q are safe κ′′ bit primes,
and e ∈ �ϕ(n) is an RSA exponent satisfying gcd(e, ϕ(n)) = 1. Element g ∈ �∗

n

is chosen such that �∗
n = 〈−1〉 × 〈g〉 (and hence ord(g) ≈ n/2). In addition,

for each group, a specific hash function Hn : {0, 1}∗ → �
∗
n is specified. When

a user registers with the group, the pseudonym id it obtains is just a random
string in {0, 1}κ. The corresponding credential id.cred = σid issued by the GA
is the RSA signature on the full-domain hash of id: σid = Hn(id)d mod n (where
d = e−1 mod ϕ(n)). The handshake protocol is sketched in Figure 1. Note that
H1 is a hash function {0, 1}∗ → {0, 1}κ, and pad is a probabilistic function
that maps its first argument θ′ to a random element θ within a certain interval
such that θ ≡ θ′ (mod n). This padding function is necessary to hide the RSA
modulus sent in protocol messages. Correctness follows from rA = g2exAxB = rB

which holds iff both participants employ valid credentials and consistent group
parameters (n, g, e).

This protocol satisfies AKE- and LAH-security in the appropriate formal
model, assuming random oracles and the hardness of the RSA problem with
safe moduli. In our context, it is more important that the [12] model does not
allow the adversary to corrupt relevant GAs. Our goal is to illustrate the impact
of corrupted GAs on protocol sessions of honest users. We stress that our dis-
cussion does not mean that the original scheme is insecure. In our description,
we distinguish between GAs malicious from the beginning (which is important
if one considers that group parameters might be generated in some rogue way)
and GAs that generate group parameters honestly but misbehave later.

Impact of GA corruptions on AKE-Security. Suppose that the GA is ma-
licious during setup. In particular, it might choose RSA modulus n or generator g
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User A

Input: (nA, gA, eA), idA, σidA
, init

(bA, xA) $
← {0, 1} ×ZnA

θ′
A
← (−1)bA(gA)xAσidA

mod nA

θA ← pad(θ′
A
, nA)

User B

Input: (nB, gB, eB), idB, σidB
, resp

(bB, xB) $
← {0, 1} ×ZnB

θ′
B
← (−1)bB (gB)xBσidB

mod nB

θB ← pad(θ′
B

, nB)

−
m1 = (θA, idA)
−−−−−−−−−−−−→

←−
m2 = (θB , idB)
−−−−−−−−−−−−

sidA ← m1 ‖m2

rA ←
(
(θB)eAHnA

(idB)−1
)2xA

vA ← H1(rA ‖sidA ‖ init)

sidB ← m1 ‖m2

rB ←
(
(θA)eB HnB

(idA)−1
)2xB

vB ← H1(rB ‖sidB ‖ resp)

−
vA

−−−−−−−−−−−→

←−
vB

−−−−−−−−−−−
accept with K = H1(rA ‖sidA) if

vB = H1(rA ‖sidA ‖ resp); else reject.
accept with K = H1(rB ‖sidB) if

vA = H1(rB ‖sidB ‖ init); else reject.

Fig. 1. RSA-based Handshake protocol from [12]

in a way that later facilitates computing session keys exchanged between honest
members. For instance, if g is chosen to have small order (this is trivially feasible
if n has more than two factors, or, if the factors are not safe primes), then the
CDH-analog of computing rA from θ′A and θ′B becomes tractable. Therefore, in
general, public verifiability of group parameters is desirable for the registration
of new members. In the RSA-based setting of [12], this is achievable using slight
modifications of the zero-knowledge proofs from [6], as presented in [16]. How-
ever, this makes the registration process less efficient and, since our construction
uses a DL-based setting, we refrain from investigating this idea further. As men-
tioned in Section 1, a malicious GA can always create phantom members and
compute session keys exchanged between them and honest members. This is un-
avoidable since GA is typically trusted not to introduce new users to the system
(similar to the CA in the classical PKI-setting). However, GA may be interested
in learning the communication contents between two honest members and, in
this sense, the protocol should ensure security of session keys in the presence of
a passive GA that can corrupt group members. This requirement also implies
forward secrecy with respect to GA corruptions. We observe that [12] provides
this protection since the session key is derived from the ephemeral secret g2exAxB

(assuming that public group parameters have been generated correctly). Nev-
ertheless, forward secrecy against GA corruptions is an important security goal
and should be considered in the design of AH-AKE schemes. For example, the
SH scheme of [8], which we modify to obtain our solution, is not forward secure
if the GA is malicious.

Impact of GA Corruptions on LAH-Security. It seems impossible for af-
filiation of honest members to remain secret if these members are involved in
handshake sessions with phantom members created by the malicious GA. In fact,
this is similar to the case where the adversary corrupts a member and communi-
cates with other users on behalf of that member. This case is typically excluded
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from the definition of LAH-security. On the other hand, it is still desirable for
sessions between two honest users not to reveal their affiliations to the GA, i.e.,
no information about the affiliation of a handshake participant should be deriv-
able from a session transcript. Considering the registration process in [12], we
observe that, since the GA learns the pseudonym id of each new member U ,
it can always decide whether some honest handshake participant is a member
of its group by simply observing the communication and the transmission of
pseudonyms in the clear. A possible remedy is to prevent the GA from learning
pseudonyms of group members upon their registration. This can be achieved
by blinding the registration process. One natural approach (in the context of
[12]) it to combine blind RSA signatures coupled with a full-domain hash [9,17].
However, the adversary could then register any pseudonym with any group. In
particular, the adversary would be able to obtain membership credentials for
some pseudonym id that is already in use by an honest group member, with-
out explicitly corrupting any parties. This, in turn, would allow the adversary
to mount (active) attacks on LAH-security and AKE-security of honest group
members (since the adversary would be able to impersonate honest users without
corrupting them or the GA). We stress that, in [12], this problem would arise
not because of the blind registration process, but due to the specific construction
of pseudonyms. In fact, our approach includes a blind registration process where
no such problems occur, due to certain differences in pseudonym generation.

Impact of GA Corruptions on Traceability. As noted in Section 1, con-
sideration of malicious GAs motivates a new privacy requirement — member
untraceability, which we define informally as follows:

Member Untraceability: It is infeasible for an active PPT adversary to learn
the real identity U of an honest group member from handshake sessions
involving that member. Note that untraceability is an individual privacy
goal motivated by the fact that the GA learns members’ real identities during
their registration processes.

In [12], untraceability is not provided for the same reason that handshake tran-
scripts reveal the participants’ affiliation to the GA: the link between a member’s
real identity U and its pseudonym id is known by the GA from the registration
process. We believe that this is avoidable by adopting a blinded registration pro-
cess. However, it requires us to further examine group membership revocation.
In LAH-AKE schemes, revocation is attained by adding members’ pseudonyms
to the revocation list maintained by the GA. In schemes like [12] where the GA
knows the link between U and id anyway, there is no difference between revoking
members and revoking their pseudonyms. The consequence of untraceability is
that revoking a specific member U is no longer possible (since neither the GA nor
a protocol participant can link U to id). However, it is still possible for the GA to
revoke pseudonyms. Since members participate in handshakes using pseudonyms
and revocation can be seen as a tool to prevent misbehavior of participants, it
is still sufficient for the GA to revoke “misbehaving” pseudonyms, effectively
preventing further participation of the member who “owns” them. This works
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only if the scheme ensures uniqueness of pseudonyms. However, if the scheme
of [12] is amended with blind signatures in the registration process, uniqueness
of pseudonyms can no longer be guaranteed. Although some workaround might
be possible [16] (commensurate with lower efficiency), we do not investigate
this direction, since our approach (which builds upon [8]) does not have such
problems.

2.3 Challenges and Design Rationale

Based on our discussion above, we identify some issues and sketch potential
solutions. The first issue is how to avoid possible attacks resulting from rogue
generation of group parameters by the GA. Since, in the RSA setting (e.g.,
[12]), a suitable solution would have to involve inefficient zero-knowledge proofs,
it seems that moving to the DL-based setting would be more advantageous. The
second issue is how to blind the registration process, while ensuring unique-
ness of pseudonyms. An intuitive solution based on blind signatures works only
if the registration process prevents the prospective member from choosing its
pseudonyms freely. For reasons alluded to above, the scheme in [12] does not
yield a straightforward solution to these issues. On the other hand, we observe
that the SH scheme in [8] is amenable to modifications that do not introduce sig-
nificant overhead. Below, we briefly describe this scheme and the design rationale
for our modifications, introduced in the subsequent section.

Let G = 〈g〉 denote a cyclic group of prime order q. Let H : {0, 1}∗ → �q

and H1 : {0, 1}∗ → {0, 1}κ denote hash functions. Upon group initialization, the
GA picks a private key x ∈ �q \ {0} and publishes its public key yG = gx. To
issue a credential for pseudonym id the GA computes a Schnorr signature (ω, t)
on id, i.e. (ω, t) = (gr, r + xH(ω ‖ id)) for some r ∈R �q \ {0}, and hands it
out to the corresponding user. Note that gt = ω(yG)H(ω‖id). In [8], element ω is
considered as a public value associated with id from which gt can be computed
as described above, while t acts as a trapdoor for this value and is only known
to the owner of id. The handshake protocol shown in Figure 2 treats (gt, t) as
public/private key pair for ElGamal encryption. In essence, it is the protocol
proposed in [8], expanded from a four-move to a six-move protocol, for the sake
of better readability.

Since its goal is Secret Handshakes, this scheme has not been analyzed with
regard to session key security. We note that this scheme does not provide forward
secrecy, since the session key is derived from encrypted nonces, which can be de-
crypted later upon corruption of participants. Similar to [12], it does not provide
affiliation-hiding and member untraceability in the face of GA corruptions.

Section 3 describes our LAH-AKE protocol which incorporates two impor-
tant modifications to [8] that address aforementioned challenges stemming from
GA corruptions. First, we introduce a blinded registration process using blind
Schnorr signatures [18,17]. One nice property of blind Schnorr signatures is that
both the signer and the verifier (i.e., the GA and the new member) contribute
to the values (ω, t) of the resulting signature (see Figure 3). It follows that ω
can serve as the unique identifier of a group member. Therefore, we consider as
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User A

Input: (idA, ωA), tA
nA

$
← {0, 1}κ

User B

Input: (idB, ωB), tB
nB

$
← {0, 1}κ

−
idA, ωA, nA

−−−−−−−−−−−→

←−
idB , ωB, nB

−−−−−−−−−−−
yB = ωB (yGA

)H(ωB‖idB)

rA

$
← G, xA

$
← Zq

(CA,1, CA,2) ← (gxA , rA yB
xA)

yA = ωA (yGB
)H(ωA‖idA)

rB

$
← G, xB

$
← Zq

(CB,1, CB,2) ← (gxB , rB yA
xB )

−
(CA,1, CA,2)
−−−−−−−−−−−→

←−
(CB,1, CB,2)
−−−−−−−−−−−

rB ← CB,2/(CB,1)
tA

vA = H1(rA ‖rB ‖nB)
rA ← CA,2/(CA,1)

tB

vB = H1(rA ‖rB ‖nA)

−
vA

−−−−−−−−−−−→

←−
vB

−−−−−−−−−−−
accept with K = H1(rA ‖rB) if

vB = H1(rA ‖rB ‖nA); else reject.
accept with K = H1(rA ‖rB) if

vA = H1(rA ‖rB ‖nB); else reject.

Fig. 2. DL-based Handshake protocol from [8]

user pseudonyms only the ω part of the signature, excluding all other identi-
fiers. In other words: member pseudonyms together with secret user credentials
form Schnorr signatures on the empty string. Our second tweak concerns the
way session keys are computed. In our protocol they are derived from ephemeral
Diffie-Hellman keys and only their authentication is performed using group cre-
dentials. The construction is similar to the Unified Model [4] and ensures forward
secrecy with regard to later corruptions of both the GA and group members.

3 Untraceable LAH-AKE Protocol with Untrusted GAs

Our untraceable LAH-AKE scheme is inspired by the Secret Handshake proto-
col from [8] in which membership credentials are defined via Schnorr signatures.
In order to meet stronger security and privacy requirements we make several
substantial changes to the registration and key exchange procedures (for differ-
ences and design rationale see Section 2). We proceed with the description of
algorithms and protocols.

Algorithm Setup(1κ). This algorithm selects and publishes global parameters
that are common to all users and group authorities. This is done by selecting
security parameter κ′ (polynomially dependent on κ), and by specifying a prime
order cyclic group (G, g, q) ← GGen(1κ′

) and two hash functions H∗ : {0, 1}∗ →
�q and H : {0, 1}∗ → {0, 1}3κ.

Algorithm CreateGroup( ). The group authority GA picks a random secret key

G.sk
$← �q \ {0} and calculates the public key as G.pk = gG.sk. The algorithm

initializes the group’s revocation list G.prl to ∅ and outputs G.par = (G.pk, G.prl)
as public group parameters, and G.sk as private group key.
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Protocol AddUser(U, G). This protocol admits an user U to group G. The
protocol as specified in Figure 3 is basically the blind variant of the Schnorr
signature scheme [18,17] where the empty message is signed by the group au-
thority’s secret key G.sk. The communication between U and G is assumed to
be authentic. Due to the blinding factors α and β the resulting signature (r′, s′)
remains unknown to both eavesdroppers and the group authority. The output of
this algorithm is the pair (id, id.cred) = (r′, s′) ∈ G ×�q where id will be used as
U ’s pseudonym in group G and id.cred as his secret credential. Note from inspec-
tion of the protocol that from r′ = gk+α+βG.sk and s′ = k+(H∗(r′)+β)G.sk+α
it follows that

id(G.pk)H∗(id) = r′(G.pk)H∗(r′) = gs′
= gid.cred.

Note that neither U nor GA have exclusive control over the resulting values for
id and id.cred.

User U Authority of G

k
$
← Zq

r ← gk

←−
r

−−−−−−−−−−−

α, β
$
← Zq

r′ ← rgα(G.pk)β

e′ ← H∗(r′)
e ← e′ + β

−
e

−−−−−−−−−−−→
s ← k + eG.sk

←−
s

−−−−−−−−−−−
s′ ← s + α

(id, id.cred) ← (r′, s′)

Fig. 3. Specification of our AddUser(U, G) protocol

Protocol Handshake((idA, idA.cred, GA.par, init), (idB, idB.cred, GB.par, resp)).
The handshake protocol is executed between two users A and B, holding pseudo-
nyms idA and idB, private credentials idA.cred and idB.cred and public group
parameters GA.par = (GA.pk, GA.prl) and GB .par = (GB .pk, GB .prl), respec-
tively. The protocol is specified in Figure 4. Observe that the equality LA =
gidA.cred·idB .cred = LB is implied by property id(G.pk)H∗(id) = gid.cred, which is
inherent for the correctness of the protocol.

Algorithm Revoke(G.sk, G.prl, id). The revocation of a pseudonym id from the
group is handled by the particular group authority by including id in the cor-
responding pseudonym revocation list G.prl. It is assumed that this list is dis-
tributed authentically.
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User A

Input: idA, idA.cred, GA.par

tA
$
← Zq \ {0}
θA ← gtA

User B

Input: idB, idB.cred, GB.par

tB
$
← Zq \ {0}
θB ← gtB

−
m1 = (idA, θA)
−−−−−−−−−−−−→

←−
m2 = (idB, θB)
−−−−−−−−−−−−

sidA ← m1 ‖m2

LA ← (idB(GA.pk)H
∗(idB))idA.cred

(KA, μA, μ′

B
) ← H(LA ‖θB

tA ‖sidA)

sidB ← m1 ‖m2

LB ← (idA(GB .pk)H
∗(idA))idB .cred

(KB, μ′

A
, μB) ← H(LB ‖θA

tB ‖sidB)

−
μA

−−−−−−−−−−−→

←−
μB

−−−−−−−−−−−
If μB = μ′

B
and idB �∈ GA.prl then

(key, partner, state) ← (KA, idB, accepted)
else (key, partner, state) ← (⊥,⊥, rejected)

If μA = μ′

A
and idA �∈ GB .prl then

(key, partner, state) ← (KB, idA, accepted)
else (key, partner, state) ← (⊥,⊥, rejected)

Fig. 4. Specification of our Handshake(UA, UB) protocol

4 Security Analysis and Performance Comparison

Security Analysis of our Protocol. In order to prove security of our protocol,
we need an extension of the classical CDH assumption where we provide CDH-
adversary A with two exponentiation oracles H ′

a and H ′
b (that will be realized

with a hash function H ′ and modeled as random oracles). The stronger decisional
version of this assumption was named Oracle Diffie-Hellman Assumption in [1],
for which it has been shown that, in the random oracle model, such hash oracles
do not provide additional advantage for distinguishing the challenge. Therefore,
it seems reasonable to assume that these oracles are not helpful for breaking the
CDH challenge either.

Definition 2 (Oracle CDH (OCDH) Assumption). Let GGen(1κ′
) denote

an algorithm that outputs the specification of a group (G, ·) = 〈g〉 of prime order
q ≥ 2κ′

, let H ′ : G → {0, 1}κ denote a public hash function where κ is polynomial
in κ′. We define SuccocdhGGen,H′(κ′) =

max
A

Pr
[
(G, g, q) ← GGen(1κ′

); a, b
$← �q; h ← AH′

a,H′
b

G (ga, gb) with h = gab
]

where H ′
a : x �→ H ′(xa) and H ′

b : x �→ H ′(xb) are oracles available to A. The
OCDH assumption states that there exist GGen and H ′ such that SuccocdhGGen,H′(κ′)
is negligible in κ′.

Presuming the hardness of the OCDH problem, our construction presented in
Section 3 satisfies the AKE-/LAH security and Untraceability goals introduced in
Section 2 and formalized in the full version of this paper. The proof of Theorem 3
(with estimated attack probability) is given in Appendix A.3. For proofs of
Theorems 1 and 2 we again refer to the full version.

Theorem 1 (AKE-Security). Our LAH-AKE scheme is AKE-secure in the
random oracle model under the OCDH assumption.
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Theorem 2 (LAH-Security). Our LAH-AKE scheme is LAH-secure in the
random oracle model under the OCDH assumption.

Theorem 3 (Untraceability). Our LAH-AKE scheme is unconditionally un-
traceable.

Efficiency of our Protocol. Our protocol offers strong security and privacy
for users and remains very efficient at the same time. Some computations can
be even further optimized. The registration protocol is performed only once per
user and takes three exponentiations in G. The handshake protocol requires two
exponentiations for the computation of the Diffie-Hellman value gtAtB plus two
additional exponentiations for the computation of the shared long-term authen-
tication key LA = gidA.cred·idB .cred = LB. The latter two exponentiations can
be omitted in future sessions with the same partner by caching long-term keys.
Furthermore, if user pseudonyms are publicly listed then long-term keys can be
pre-computed.

Comparison with [8] and [12]. Table 1 compares security, privacy, and effi-
ciency of the three protocols treated in this paper. We see that in respect to key
security forward secrecy (FS) is provided only by [12] and our protocol, presum-
ing honest behavior of the GA — denoted by hGA — for the former (otherwise,
small group order attacks would be possible, see Section 2.2). In contrast, our
protocol offers AKE security with forward secrecy even in the presence of cor-
rupted GAs — denoted by cGA. As the user registration process in [8] and [12]
is not blinded both protocols cannot provide LAH security if GAs are corrupted
(as malicious GAs could record AddUser transcripts and later recognize affiliated
pseudonyms). The same holds for user untraceability. The converse is correct for
our protocol, which offers both properties even in the presence of corrupted GAs.
As pointed out in Section 2.2, through the deployment of the blinding process
revocation can be only performed based on pseudonyms.

The security advantage of our protocol is gained very efficiently: our protocol
has best message and computational complexity (using optimal arrangement of
messages and not counting cacheable computations). In practice security param-
eters κ = 80, κ′′ = 1024 and κ′ = 1024 (standard group setting) or κ′ = 2κ = 160
(ECC group setting) would be chosen. In the latter case our protocol has the

Table 1. Security and Performance Comparison with [8] and [12]

Protocol Security & Privacy Revocation of Complexity

AKE1 FS2 LAH3 UT4 Transf. bits5 # passes6 # exps7

CJT [8] hGA ✗ hGA ✗ users,pseudonyms 2(3κ′ + 3κ) 4 3 short
JKT [12] hGA ✓ hGA ✗ users,pseudonyms 2(κ′′ + 3κ) 3 2 long
Ours cGA ✓ cGA ✓ pseudonyms 2(2κ′ + κ) 3 2 short
1AKE-Security; 2Forward Secrecy; 3LAH-Security; 4Untraceability; 5Total number of
transferred bits per handshake; 6Number of message passes per protocol run; 7Number
of exponentiations (with short (≈ 2κ bit) or long (≈ κ′′ bit) exponents)
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smallest bandwidth complexity of all named protocols (of about 10κ = 800 bits
per full handshake).

5 Conclusion

SH and AH-AKE schemes provide useful privacy-preserving authentication mech-
anisms coupled with the establishment of secure session keys. These schemes are
becoming more important due to the increasing popularity of multi-user collab-
orative and group-based applications. Existing approaches and security models
assume unconditional trust in Group Authorities. In this paper, we demonstrated
that such trust assumptions might become problematic. We illustrated that these
assumptions can be relaxed in a meaningful way resulting in more secure and
private (yet efficient and practical) AH-AKE schemes. Our work opens a new
research direction: Consideration of untrusted Group Authorities in unlinkable
[2,13,14] and multi-party AH-AKE schemes [10,11].
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A Model and Proof for Untraceability

In the appendix of the full version of this paper formal security models and
proofs for AKE-security, LAH-security and Untraceability are given. While, in
respect to the two former models, we extend the work of [12], the property of
untraceability is newly introduced here. Due to space limitations, in this version,
we restrict the focus on model and proof of the latter.

A.1 Adversary Model

The adversary A is modeled as a PPT machine that interacts with parties via
the set of the following basic queries. Unless explicitly noted, we assume that A
always has access to up-to-date exhaustive (system-wide) lists of groups GLi and
pseudonyms IDLi (these lists do not disclose the mapping between pseudonyms
and groups).

CreateGroup() This query sets up a new group G and publishes its public pa-
rameters G.par. The group is added to GLi.
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AddUserU(U, G.par) This query models the actions of U initiating the AddUser
protocol with given target group G. A new protocol session π is started.
Optionally, a first protocol message M is output. G is also added to GLi
if it is a new group; this allows A to create its own groups with arbitrary
(possibly malicious) public parameters.

AddUserG(G, U) This query differs from AddUserU in that it models GA’s actions
on the AddUser protocol. We require that G has been already established
through the CreateGroup query.

Handshake(id, G.par, r) This query lets pseudonym id start a new session π of the
Handshake protocol. It receives as input the public parameters of the group
G wherein the handshake shall take place (given that id has credentials for
that group) and a role identifier r ∈ {init, resp} that determines whether
the session will act as protocol initiator or responder. Optionally, this query
returns a first protocol message M .

Send(π, M) Message M is delivered to session π. After processing M , the even-
tual output is given to A. This query is ignored if π is not waiting for input.
Note that π is either an AddUserU, an AddUserG or a Handshake protocol
session. If π is an AddUserU session and accepts after processing M then id
from π.result is added to IDLi.

Reveal(π) This query is defined only if π is a handshake session. Then, if π.state �=
running it returns π.state and π.key; otherwise the query is ignored.

Corrupt(∗) The input is either a pseudonym id or a group identifier G:

Corrupt(id): If id ∈ IDLi then, for any group G where id is registered, the
corresponding credential id.cred is given to A.

Corrupt(G): For a group G created by CreateGroup() this query hands G’s
long term secret G.sk and control over G’s revocation list G.prl over to A.

Revoke(G, id) This query lets the GA of G include id ∈ IDLi in its pseudonym
revocation list G.prl.

A.2 Definition of Untraceability

The idea behind untraceability is that, even in the presence of a malicious GA,
any member remains untraceable throughout its AH-AKE sessions. As discussed
in Section 1, this is a new (individual) privacy requirement, distinct from AKE-
and LAH-security. We formalize it using the indistinguishability approach: we
let A specify group parameters for a group G and pick two users U0 and U1

that are then enrolled into G by the challenger that obtains their respective
pseudonyms id0 and id1. Untraceability means the inability of A to trace idb

where b ∈R {0, 1}.

Definition 3 (Untraceability). Let LAH-AKE = {CreateGroup,AddUser,
Handshake,Revoke}, b a randomly chosen bit, and Q = {CreateGroup,AddUserU,
AddUserG,Handshake, Send,Reveal,Corrupt,Revoke} the set of queries available
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to A. By Gametrace,bA,LAH-AKE(κ) we denote the following interaction of A with par-
ticipants, where, for obvious reasons, we prevent A from accessing the up-to-date
pseudonym list IDLi:

– AQ(1κ) interacts with all participants using the queries in Q and outputs a
triple (G.par, U0, U1) where G.par are public parameters of a group G and U0

and U1 are two distinct users.
– U0 and U1 are admitted to G through the execution of AddUser(U0, G) and

AddUser(U1, G) protocols in which the corresponding pseudonyms id0 and
id1 are generated. Note that, during this process, protocol sessions on behalf
of G can be executed by A, however, the game does not proceed until the
corresponding protocol sessions executed on behalf of U0 and U1 accept.

– A is given idb and continues to interact with all participants via queries until
it terminates and outputs bit b′, which is also the output of the game.

We define: AdvtraceA,LAH-AKE(κ) :=
∣∣∣2 Pr[Gametrace,bA,LAH-AKE(κ) = b] − 1

∣∣∣
and denote by AdvtraceLAH-AKE(κ) the maximum advantage over all PPT adversaries
A. We say that LAH-AKE is untraceable if this advantage is negligible (in κ).

A.3 Proof of Untraceability (Theorem 3)

It is well known that blind Schnorr signatures (see Figure 3) offer unconditional
blinding [18,17]. In fact the two blinding values α and β as used in the AddUser
protocol act as one-time-pad encryption in �q and therefore offer perfect secrecy.
It follows directly that the group authority of G cannot learn any information
about id or id.cred as established by an AddUser protocol session. Therefore, the
probability that for a given pseudonym idb in Gametrace,bA,LAH-AKE(κ) an Untraceabil-
ity adversary A can output b = b′ is strictly the probability of a random guess,
i.e. 1/2. Hence our LAH-AKE protocol offers unconditional untraceability, i.e.
we have

AdvtraceA,LAH-AKE(κ) = 0 (for all κ)

Observe that Handshake sessions are completely independent of the user run-
ning them and depend solely on the deployed pseudonym id and membership
credential id.cred. Even a Corrupt(id) query does not reveal the owning user of
the given id.
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Abstract. Low-latency anonymous communication protocols in gen-
eral, and the popular onion-routing protocol in particular, are broken
against simple timing attacks. While there have been few proposed so-
lutions to this problem when the adversary is active, several padding
schemes have been proposed to defend against a passive adversary that
just observes timing patterns. Unfortunately active adversaries can break
padding schemes by inserting delays and dropping messages.

We present a protocol that provides anonymity against an active ad-
versary by using a black-box padding scheme that is effective against a
passive adversary. Our protocol reduces, in some sense, providing anony-
mous communication against active attacks to providing a padding
scheme against passive attacks.

Our analytical results show that anonymity can be made arbitrarily
good at the cost of some added latency and required bandwidth. We
also perform measurements on the Tor network to estimate the real-
world performance of our protocol, showing that the added delay is not
excessive.

1 Introduction

Anonymous communication protocols are designed primarily to allow users to
communicate with destinations anonymously. They face, however, the challenge
of optimizing over several competing criteria: anonymity, latency, and band-
width. High latency and limited bandwidth are unacceptable for many popular
Internet applications, and onion routing [12], despite its vulnerability to correla-
tion attacks, has become a successful protocol for anonymous communication on
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the Internet. To design a useful protocol, we focus on providing better anonymity
than onion routing while maintaining acceptable latency and bandwidth.

Low-latency protocols in general have been vulnerable to several attacks based
on the timing of events in the system. Typically, the user in these protocols
chooses a set of routers to mediate between the user and the destination, for-
warding data between the two and obscuring their relationship. The essential
problem is that timing patterns in these data are conserved between the source
and destination. Therefore an adversary only needs to observe the incoming
stream of data (the consecutive messages exchanged during a communication
session), from the user and the outgoing stream of data to the destination to use
patterns to link the two. In a passive timing attack, an adversary relies on timing
patterns that are generated by the user. Because the user creates these patterns,
he can prevent this attack by adding dummy packets and delays into the stream
to make his traffic look similar to the traffic of other users [27]. However, the
adversary can defeat this by performing an active attack, in which he inserts
timing patterns into the traffic as it passes through routers under his control.

As a result of this sort of active attack, existing low-latency anonymity proto-
cols do not provide anonymity when the adversary controls the routers that the
user communicates with directly and the routers that the destination communi-
cates with directly. Suppose the adversary controls a fraction b of the network.
In onion routing, users select routers uniformly at random, and the adversary
compromises anonymity with probability b2.

This probability is fixed and cannot be improved by trading off performance
elsewhere, and it can be quite insufficient. Consider Tor [7], the popular imple-
mentation of onion-routing and the associated volunteer network. In Tor, a user
sends a message over a sequence of routers he sets up in advance called a circuit.
Suppose the adversary runs just two routers. If we take into account the way Tor
chooses circuits, the size of the network [28], and the number of users observed
on Tor in one day [17], we expect the adversary to compromise 15 users at least
once in that day. If the adversary provides the top two routers by bandwidth,
the expected number of compromised users increases to 9464.1 Thus, the system

1 Roughly, circuits are selected in Tor as follows: the first hop is chosen from a set
of guard routers, the second hop is chosen from the entire network, and the third
and final hop is chosen from a set of exit routers. As of April 2010, the Tor network
consists of around 1500 routers, of which around 250 are guard routers and around
500 are exit routers. Suppose that the adversary runs one guard router and one exit
router. McCoy et al. observed 7571 unique clients while running a guard router for one
day. The expected number of these that would lose anonymity is 7571/500 = 15.142.
Moreover, Tor weights by bandwidth, and so suppose that the adversarial routers
are the top two by bandwidth. McCoy et al. observed that the top 2% of routers
transported about 50% of the traffic. Then, very roughly, the probability of choosing
the adversary in a guard set would increase from 1/250 to .5/(250*.02), and so the
expected number of users observed would be 25*7571=189275. By similar rough
approximation, for every circuit, the adversary’s exit router would be selected with
probability .5/(500*.02)=.05, and so the expected number of deanonymized users
would be 189275*.05=9463.75.
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provides poor anonymity against a wide variety of realistic opponents, such as
governments, ISPs, and criminals willing to purchase the use of botnets.

We consider the very weak anonymity provided by low-latency protocols
against an active adversary to be a fundamental and critical challenge in anony-
mous communication. In this paper, we present a low-latency protocol that pro-
vides arbitrarily good anonymity against an adversary that can observe and
create timing patterns. The protocol makes black-box use of a padding scheme
to prevent passive timing attacks. Several padding schemes that defeat passive
timing attacks have been proposed [27,25,30], and furthermore we believe that
there is still potential for substantial improvement. The protocol provides two-
way stream communication.

A two-way protocol requires different defenses, depending on the direction of
communication, because of an asymmetry in the communication between the
user and destination. The user can talk directly to many routers and will add
padding correctly. We will require that the destination communicate with just
one router, and that router can’t be trusted to pad the stream correctly. As a
result, our protocol uses a somewhat different scheme for traffic on the way from
the user as on the way to the user. The essential features of our solution are

1. Packets have timestamps with their intended send time.
2. Packets from the user to the destination are sent in several copies over a

layered mesh topology . This balances limiting view of the stream to a small
number of routers while providing redundancy against malicious delays.

3. Packets from the destination to the user are sent over a path that performs
in-stream padding.

For simplicity, we describe forming the layered mesh as a cascade: a fixed ar-
rangement of routers that all users use to send data. The biggest drawback to
using cascades is that the resource constraints of the cascade routers obviously
limit the number of feasible users and therefore limit anonymity. Another draw-
back is that cascades make long-term intersection attacks easier because only
two known endpoints need to be watched. Giving users freedom to choose the
meshes, analogous to free routes, is an important future extension to our scheme.

We evaluate the anonymity provided by our protocol in a network model that
incorporates timing and an active adversary. The theoretical results suggest that
the approach has good asymptotic efficiency and that a promising next step is
to optimize within the framework of the scheme we describe. Moreover, because
we are concerned with eventual practicality, we do measure a component of the
system over which we have no control and which could have made our protocol
unusable, delay variations in the host network. Specifically, we measured the
likely latency costs of running our protocol on the existing Tor [7] network. This
provides a strenuous, real-world scenario to evaluate our protocol’s performance.

Our results are therefore a mix of the theoretical and experimental:

1. We show that the user can be made anonymous with arbitrarily high prob-
ability as long as b is less than 1/2. The user is anonymous within the set
of users with identical traffic patterns as produced by the input padding
scheme.
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2. We prove that our mesh topology in the forward direction is optimal for
anonymity in a limit sense.

3. The latency of our protocol is proportional to the length of the mesh and
return path. We show that the probability of compromise decreases to zero
polynomially in that length. This compares well with onion routing, which
adds latency proportional to its path length.

4. The bandwidth used is 2w + (l− 1)w2 + 1, where l is the mesh/path length,
and w = Θ(log l). This compares well asymptotically to the l +2 copies that
are sent in an onion-routing path of the same total length.

5. For most of our measurements, we observe that added packet delay would
need to be less than a factor of two to achieve satisfactory reliability.

The results suggest that our approach indeed has the potential to mitigate ac-
tive timing attacks. Our results are presented here without proofs and detailed
measurement procedures because of space limitations. Please see our Technical
Report [9] for these details.

2 Related Work

Timing attacks are a major challenge in low-latency anonymous communication
[16]. They have been observed in some of the earliest low-latency systems [1],
including initial versions of onion routing [12]. These attacks are also closely
related to traffic analysis in mix networks [24].

In a passive timing attack, the adversary observes timing patterns in a network
flow, and then correlates them with patterns in other traffic that it observes. If
the adversary is able to observe both the user and the destination, he can thereby
link the two. The ability of the adversary to perform this correlation has been
experimentally demonstrated several times [32,16,23,21,2].

A solution to passive timing attacks is to get rid of identifying patterns in
the traffic by padding and delaying it. The drawbacks to such an approach are
added latency and bandwidth overhead. Our protocol relies on the existence of
some acceptable and effective padding scheme. Constant-rate padding, in which
traffic is sent at a constant rate by filling in the gaps with dummy packets, is
probably the most obvious such scheme. It has appeared multiple times in the
literature [27,11,16]. Levine et al. [16] propose a “defensive dropping” mechanism
which adds dummy packets at the start of the circuit and drops them at various
routers before the end. This reduces the correlation between any patterns in
the incoming streams and patterns in the outgoing streams. Shmatikov and
Wang [25] propose a variable-rate padding scheme. In their scheme, packets from
the user are forwarded with little delay, and dummy packets are added by the
intermediate routers according to a probability distribution on the packet inter-
arrival times. Wang et al. [30] describe a link-padding scheme for low-latency
systems, but their system is designed for a situation in which the adversary is
not active and the destination participates in the protocol. This situation does
not reflect the kind of Internet communications that have proven useful and that
we target.
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All of these schemes are vulnerable to an adversary that actively delays pack-
ets from the user. Yu et al. [31] show that this can be done in a way that makes
it difficult for the user or the system to detect that the attack is occurring. One
approach to this problem is to change the timing patterns within the network
by adding, dropping, or delaying packets ([25,16]). However, dropping or delay-
ing packets can’t hide very long delays without adding unacceptable latency or
bandwidth overhead. Adding dummy packets can, in our case, be detected by the
final router, and therefore do not help. A final router can detect them because,
in our case, the destination does not participate in the protocol; there must be
one last router in the system that provides the point of contact to the destina-
tion. Moreover, Wang et al. [29] experimentally show that many such schemes
for internal traffic shaping are still vulnerable to an active timing attack.

Simply delaying packets that pass directly through adversarial routers isn’t
the only active timing attack that has been demonstrated. Murdoch and Danezis
[20] show that in onion routing the adversary can actively add delay patterns
to the data by sending bursts of traffic through a router. This can be used to
determine the routers on a given circuit. Fu et al. [10] describe how the presence
of a flow on a router can also be determined by ping times to the router. Borisov
et al. [4] look at the case that the adversary doesn’t just delay, but drops packets
in a denial-of-service (DoS) attack aimed at forcing users to move to circuits that
the adversary can deanonymize. Such an attack was also discussed by Dingledine
et al. [8]. We do not address such attacks in this paper, and they are outside of
our model.

A related timing attack by Hopper et al. [13] uses congestion to exploit differ-
ent network latencies between hosts. They show that the latencies from multiple
hosts to a user can be very identifying. The user in our protocol communicates
with several routers as a first hop, and in light of this attack we took care not
to allow the adversary to infer these latencies.

One key feature of our protocol is the use of a layered mesh to provide re-
dundancy. The use of redundancy for several purposes has been also explored in
previous protocols. Syverson [26] suggests using router “twins,” pairs of routers
that share the same key, to provide a backup in case a router fails. Two re-
dundancy schemes to manage failures, K-Onion and Hydra-Onion, are proposed
by Iwanik et al. [14]. Redundancy to support failure is not our goal, and such
schemes are in some ways complementary to our own. However, the redundancy
in our protocol does protect against honest node failures as well as malicious
ones. Nambiar and Wright [22] use redundancy in the host lookup of Salsa to
protect against route capture. Interestingly, an analysis by Mittal and Borisov
[19] of this technique uncovers the tradeoff between preventing active and passive
attacks that we face as well.

Another critical feature of our protocol is the use of explicit timing to co-
ordinate the users and routers. This is similar to the timing instructions of
Stop-and-Go mixes [15]. Such mixes are given a time window within which the
packets must arrive, and they delay forwarding by an exponentially-distributed
amount of time. Although the techniques are similar, this scheme is designed
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for mix networks and not stream communication, and this scheme does give the
adversary some slack time within which a timing signature could possibly be
placed. Moreover, the lack of any redundancy means that any slowdowns within
the network, even of benign origin, can quite easily kill a connection.

The timing approach we take is also similar to the use of synchronicity in mix
networks by Dingledine et al. [8]. They describe synchronous batching on free
routes and show that it typically provides better anonymity than cascades. Our
scheme can be viewed as low-latency synchronous batching.

3 Model

We will express and analyze our anonymity protocol in a model of network and
adversary behavior. A particular advantage of this approach is the ability to
make convincing guarantees of security when we cannot predict the tactics that
an adversary will use.

3.1 Network

Let the network consist of a set of onion routers R, a user population U , and
a set of destinations D. The network is completely connected, in that every
host can send a message directly to every other host. Each event in the network
occurs at some global time. We assume that each user and router has a local
clock that accurately measures time, and that these clocks have run some sort
of synchronization protocol [18]. Let δsync be the largest difference between two
synchronized clocks in the network.

There is some probabilistic network delay dnet(r, s) between every pair (r, s)
of routers. This models the unpredictable delay between routers due to factors
such as route congestion and route instability. There is also some probabilistic
processing delay dproc(r) at every router r. This reflects changes in delay at a
router due to local resource contention among anonymous messages and among
multiple processes. The delay of a message is the sum of delays drawn indepen-
dently from these two distributions. We also let the delay of one message be
independent of the delays of the other messages. We assume the distributions of
both sources of delay is known to the system. In practice, this may be achievable
via network measurements.

We assume that all hosts (in particular, all destinations) respond to a simple
connection protocol. One host h1 begins the connection by sending to another
host h2 the pair < n, M >, where n ∈ N+ is a number and M is a message. Any
responses M ′ from h2 are sent back as < n, M ′ >. Once established, connections
in the anonymity protocol cannot be closed by anyone to prevent distinctions of
one from another by open and close times. All connections thus stay open for
a fixed amount of time and then close automatically. Application connections
running over these can of course be closed by the ultimate source and destination;
although this will not close the anonymity circuit, and padding messages will
continue to be sent until connection timeout.
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3.2 Users

User communication drives the operation of the anonymity network. We view
the communication of a user as a sequence of connections. Each connection is
to one destination, and it includes messages to and from the destination. ‘User’
refers to both human users and software running on their behalf.

3.3 Adversary

The adversary controls some subset A ⊆ R of the routers, where b = |A|/|R|.
It seems plausible that an adversary can run routers that are at least as fast as
the other routers on the network, and that it may dedicate them to running the
protocol. Therefore, in contrast to non-adversarial routers, we pessimistically as-
sume that the adversary has complete control over the processing delay dproc(a)
of routers a ∈ A. If needed, we reflect compromise of links between routers by
the compromise of an adjacent router.

3.4 Padding Scheme

The padding scheme P is a black box that initially takes as input a connection
start time and outputs the timing of the return traffic. Then every time step it
takes the presence of data from the user and returns whether or not a packet
should be sent. Note that this requires the scheme to determine in advance
the length of the connection. Let Su be the set of users that start connections
at the same time as user u and have the same traffic pattern. Our proposed
protocol relies on the effectiveness of the padding scheme. At best, it makes u
indistinguishable within the set Su supplied by P .

Some of the padding schemes previously proposed in the literature can provide
the black box P . For example, to use basic constant-rate padding, in which
packets get sent at constant rate in both directions, we simply need to choose
a fixed length for the connection when it starts. This approach typically causes
high added latency and/or message overhead, however. As another example,
the padding scheme of Shmatikov and Wang [25] could be used by fixing the
connection length and return scheme. In this padding scheme, inter-packet delays
are sampled from a distribution, which is adjusted if a packet arrives early.
Dummy packets are sent after the sampled delay, and real packets from the user
are sent immediately. In the direction from the user, this scheme could be used
directly. In the return direction, we could just skip shifting the distribution for
early packets. Then we would send each return router the same sequence of
random bits to use in sampling the distribution. Alternatively, we could relax
our requirements for the return scheme and allow it to be updated periodically.
The user could then use the forward mesh to update the distribution of packet
arrival times.

It is not hard to conceive of novel padding schemes that might satisfy these
requirements, although getting a good mix of anonymity and performance cer-
tainly does not seem easy.



Preventing Active Timing Attacks 173

4 Problem

The problem in this model is to design an anonymity protocol that supports
the low-latency, two-way, stream communication that has made Tor [7] popular.
In order to allow communication with hosts that are ignorant of the protocol,
we require that only one host communicates with the final destination, and
that the communication is only the original messages generated by the user. We
evaluate our protocol by three criteria: anonymity, latency, and the amount of
data transferred. We evaluate the anonymity in our protocol according to its
relationship anonymity, that is, the extent to which it prevents an adversary
from determining which user-destination pairs are communicating. For latency,
we consider the amount of time it takes for a message to reach the destination
from a user. For the amount of data transferred, we consider the total amount
of data that to be transferred during a single user connection.

5 A Time-Stamping Solution

The padding scheme gives us sets of users that have traffic streams with identical
timing patterns. However, the model we have described gives the adversary the
ability to modify these patterns as the traffic travels through its routers towards
the destination. To prevent this, we try to enforce the desired timing pattern on
packets sent by including the times that the routers should forward them. Any
honest node that receives the packet will obey the instructions, removing any
delays inserted by the adversary. For traffic sent from the user to the destination
we can trust the user to correctly encode the padding-scheme times. Traffic
sent from the destination to the user must, by our requirements, pass initially
through a single router. Because it may be compromised, we cannot trust it to
use a proper padding scheme. However, this traffic is destined for an anonymity-
protocol participant, the user; therefore, unlike traffic from the user, we can
destroy inserted timing patterns by re-padding it all the way to the user. Observe
that re-padding does not work for traffic from the user, because the final router
sees which packets are real and which are padding.

5.1 From the User

First, consider what we could do if propagation and processing delays were de-
terministic. The user could send through a path in the network a layered data
structure called an onion which, for each packet, includes in the ith layer the
time that the onion should arrive at the ith router. Then each router on the
path could unwrap the onion to make sure that the initial timing sequence was
being preserved and, if so, forward the onion.

Unfortunately, in real networks, delays are somewhat unpredictable. For ex-
ample, an onion might be delayed by congestion in the underlying network.
However, if the distribution of delays is known, we know how long we need to
wait at a router for onions to arrive with any fixed probability. We will set that
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probability to balance decreasing added latency with decreasing the chance of a
successful timing attack. Then we add in this buffer time to the send time.

Another problem is that the adversary could drop onions entirely in a pattern
the propagates down the path. Our approach to this problem is to send multiple
copies of an onion down redundant, intersecting paths. A router on a path needs
only one copy of the onion to arrive in time from any incoming path in order to
forward it by its send time.

This approach has limits, because each redundant router adds another chance
for the adversary to observe an entire path from source to destination. For ex-
ample, suppose that we simply send onions over k paths of length l that intersect
at a final router, where every router is chosen uniformly at random. Let b be the
fraction of routers that are controlled by the adversary. The probability that at
least one path is entirely composed of compromised routers is b(1− (1− bl−1)k).
This quickly goes to b as k increases. We use a layered-mesh topology to bal-
ance the ability of the adversary to passively observe a path with his ability to
actively perform a timing attack.
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Fig. 1. Layered-mesh topology

Topology. The layered-mesh topology we propose is pictured in Figure 1. For
some length l and width w, user u sends a copy of each onion to the w members
r1j of the first layer. Then, in layer i, each router rij sends one copy of every
onion it receives to each router r(i+1)k of the next layer. Finally, the routers rlj

in the last layer send a copy of each onion received to a single router r, which
finishes decrypting them and sends the data on to the destination d. We call this
structure the layered mesh.

Timestamps. As described, the user sets timestamps to instruct routers to
maintain a specific timing pattern. A user may have different latencies to the
different routers in the first layer. If the time that one of these routers is in-
structed to forward the packet only depended on the network and processing
delays of that router, the first-layer routers could send copies of the same packet
at different times. This would provide information to the next layer about the
identity of the user. Similarly, the adversary could use different times between
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layers to link other layers in the mesh. Therefore, we set the send time for each
layer to be the send time of the previous layer plus the longest delay at our
chosen reliability level p. We must also add some extra delay to allow for clock
skews.

Let d∗(r, s) be the amount of delay we need to ensure that a packet from r is
processed at s with success probability p:

p = Pr[dnet(r, s) + dproc(s) ≤ d∗(r, s)].

At time t, let user u be instructed by P to send a message. The user chooses the
same send time for all routers in the same layer. The send time for routers r1j

in the first layer is
t1 = t + max

j
d∗(u, r1j) + δsync.

The send time for routers rij in the ith layer is

ti = ti−1 + max
j,k

d∗(r(i−1)j , ri,k) + δsync.

If a router receives its first copy of an onion after the send time has passed,
it immediately forwards the onion to the routers in the next layer. At worst,
the delay is the result of attempts by the adversary to delay certain packets.
Sending the packet later or not at all in that case would only make it easier for
the adversary to observe its lateness later in the mesh. Forwarding it immediately
might even allow the onion to eventually get back on schedule. At best, the delay
is just a result of network delays and forwarding has no effect on anonymity.

Onions. Let M be the message to be sent. We will encrypt the message with a
public key shared by all members of a layer. Given that the layers are set up in
advance and known to all, such a key can be generated by a trusted third party
or by electing a leader to do it. Let {M}ri denote the encryption of M with the
public key of layer i. Let nri , ns1 ∈ N be random numbers and kr be a private
key. Then the onion that u sends to the routers in layer 1 is

{nr1 , t1, {nr2 , t2, · · · {nr, d, ns1 , kr, M}r · · · }r2}r1

For each layer i, a user generates the random number nri ∈ N as an onion
identifier. The routers keep track of the onion identifiers they have seen. When
they receive an onion, they decrypt it and examine the identifier. Routers only
forward an onion if its identifier ni has not been seen before. ns1 is the identifier
that r should use with s1 when sending back any reply, and kr is a private key
that will let r encrypt the return message for u.

The onion encoding and forwarding scheme should hide routing information,
prevent forgery, prohibit replay attacks, and hide message content. For clarity of
presentation, we have described a simple scheme that achieves this. We observe,
however, that several improvements to the protocol could be made. For exam-
ple, the protocol could do a more explicit stream open and close to reduce the
lists of identifiers that routers have to maintain. Also, symmetric keys could be
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exchanged to speed up onion processing. Another improvement that we could
incorporate is forward secrecy. Numerous cryptographic details must be carefully
set out (e.g. as in [5]) for our protocol to have a cryptographically secure and
efficient implementation. These are not the focus of this paper.

5.2 To the User

Traffic returning to the user from the destination must first pass through the
one router that is selected to communicate directly with the destination. This
router may be compromised, and it may try to insert timing patterns in the
return traffic. We manage this by giving the intermediate routers the pattern of
the return traffic. They enforce it by fitting the return onions into the pattern,
adding dummy packets when necessary. We note again that this doesn’t work for
the traffic from the user because any added delays translate into delays in the
underlying data, and this can be viewed by the final router. We choose a simple
path of length k for the return traffic (Fig. 1), because there is no anonymity
advantage to adding redundancy here. We call this structure the return path.

To communicate the desired traffic pattern to the return path, we take advan-
tage of the one-way communication protocol already developed. The user takes
the return traffic pattern that is given by the padding scheme P and sends it
via the layered mesh to every router in the return path. At the same time, the
user generates the random numbers nsi ∈ N, 1 ≤ i < k, and sends two random
numbers nsi , nsi+1 and a key ksi to each router si. The numbers will be the
incoming and outgoing identifiers for the onion. The user also sends nk and u to
sk. Let M be the message to be sent back from d to u. The return onion sent to
si is

Oi =< nsi , {· · · {{M}kr}ks1
· · · }ksi−1

> .

After r receives M from d, it will take ns1 and kr out of the inbound onion from
the user and send O1 to s1. When si receives Oi it looks for a matching nsi

in the pairs of number it has received and then forms Oi+1 to send when the
padding scheme instructs it to.

5.3 Choosing the Routes

A simple method to select the layered mesh and return path is for it to be chosen
by the network and shared among all users. This is analogous to cascades in mix
networks [3]. A disadvantage of cascades is that number of users that can be
confused with one another, i.e., the size of the anonymity set, is at most the
number of users that can simultaneously be handled by a router [8]. Allowing
users to choose the cascades with some freedom should allow anonymity sets to
grow with the size of the network, similar to free routes in onion routing, but we
leave this to future work.

6 Analysis

The purpose of our protocol is to provide better anonymity than onion routing at
reasonable cost in latency and bandwidth. A major drawback to onion routing is
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that the probability of compromise is b2 and cannot be improved, e.g. by choosing
a longer path. We will show how in fact our scheme can provide arbitrarily good
probability by increasing the length and width of the layered mesh.

First, the design of the protocol onions essentially limits the adversary to
traffic analysis. For traffic from the user, the use of encryption and unique iden-
tifiers forces onions to be passed through the required layers and limits them
to being forwarded by an honest router at most once. It also hides the source
and destination from all but the first and last routers, and it makes messages
leaving one layer unlinkable to messages leaving another layer. For traffic to the
user, the source and destination are not included in the packets, and encryption
prevents messages leaving one router from being linked with messages leaving
another router.

For the adversary to break a user’s anonymity, then, he will need to either
observe traffic on an entire path between source to destination or link traffic at
different steps on that path. The latter depends on his ability to introduce delays
in the packet stream. To evaluate this possibility, we will make the simplifying
assumption that the network and processing delay between two routers r, s never
falls above the time allowed for it d∗(r, s). In our model, such failures can happen
with probability 1− p, where p can be set arbitrarily close to 1. Certainly, if the
adversary can deanonymize a user even under this assumption, he can do so with
possible link failures. When such failures do occur, they open up the chance for an
adversary to successfully delay packets and insert a timing pattern. However, late
packets are typically irrelevant because the same packet will have been forwarded
by another router in the previous layer. Also, late packets that are the first of
their type to arrive are immediately forwarded, thus benign delays are somewhat
self-correcting, and we estimate that they do not open up a large opportunity for
an active timing attack. However, if we wish to make a conservative estimation,
we can expect that for any given packet a fraction 1−p of the packet copies will
fail to arrive in time. We can estimate the combined probability of malicious or
benign delay or dropping of packets by (1 − p) + b.

Assuming no link failures, then, the anonymity of a user only depends on which
routers the adversary controls. Because all users on the same cascade use the
same routers, the adversary can either deanonymize all users in the anonymity
set Su, or he can not deanonymize any of them. Because the routers in the
cascade are selected randomly, there is some probability that the adversary can
deanonymize the users. Let C be the event that the adversary can compromise
anonymity. We can quantify the probability of C.

Theorem 1

Pr[C] = bk+1 + b(1− bk)
[
bw 1 − (1 − (1 − b)w − bw)l

bw + (1 − b)w
+ (1− (1− b)w − bw)l

]

Theorem 1 shows that, when less than half of the routers are compromised, we
can make the probability that a user is anonymous arbitrarily high by setting
w, l, and k large enough. (Recall that all proofs are in our technical report [9].)
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Corollary 2

lim
w,l,k→∞

Pr[C] =

⎧⎨
⎩

0 b < 1/2
1/4 b = 1/2
b b > 1/2

Corollary 2 shows that anonymity can be made arbitrarily good when b < 1/2,
but that it is worse than onion routing when b ≥ 1/2. Therefore assume from
now on that b < 1/2. We would like to determine how big the layered mesh
and return path grow as we increase our desired level of anonymity. First, we
will consider how wide the mesh must be for a given depth to achieve optimal
anonymity. This affects the number of messages that need to be sent. Also, it will
allow us to evaluate anonymity as a function of the lengths k and l, quantities
which we would like to keep small to provide good latency. Luckily, it turns out
that the optimal width w∗ grows slowly as a function of l.

Theorem 3. w∗ = O(log(l))

Thm. 3 shows that the total number of messages sent for every message from
the user is O(2 log(l) + (l− 1) log(l)2 + 1). This compares well asymptotically to
the l + 2 copies that are sent in an onion-routing path of the same total length.

Network users are particularly sensitive to latency, and each additional step
in the layered mesh and return path represents a potentially global hop on our
network. To keep the lengths l and k of the mesh and return path small, then,
we would like for Pr[C] to converge quickly to its limit. As suggested by Thm. 3,
let w = log l, and consider the convergence of Pr[C]. It is clear that the first
term shrinks exponentially with k. The convergence time of the second term is
polynomial, although it does improve as b gets smaller.

Theorem 4. Let c1 = log b and c2 = log(1 − b). Then

Pr[C] = Θ(lc1−c2).

Table 1. Mesh routing vs. Onion routing

Mesh Onion Routing
b l w Pr[C] Msgs. Pr[C] Msgs.

.05 3 3 .0002 29 .0025 8

.05 4 3 .00003 39 .0025 10
.1 4 3 .0007 39 .01 10
.25 4 2 .0303 22 .0625 10

Table 1 compares the performance of
our mesh topology to that of onion
routing using some reasonable param-
eter values. In it, we let both the
mesh length and the onion-routing-
path length be l, we let the length of
the return path from the mesh equal
the mesh length (i.e. k = l), and the
width w of the mesh is set to optimize
anonymity. We use small values of l to make the number of hops close to the
three hops that have proven to be usable in the current Tor system. The num-
bers show clear decreases in the probability of compromise when using the mesh,
especially with larger values of l. We can see that larger compromised fractions
b will require somewhat longer paths for significantly improved anonymity. The
total number of messages sent in each scheme for every message-response pair
between the user and destination is also given.



Preventing Active Timing Attacks 179

Our analysis shows how our scheme can provide arbitrarily good probability
for b < 1/2. Is it possible to improve this to include values of b greater than
1/2? First, we observe that some other plausible topologies do not perform as
well. For example, suppose the user sends onions to k routers, each of which
forwards it to the same next router, and then from then on there is a path to the
destination. The probability that anonymity is compromised in this situation
is b2(1 − (1 − b)k + bk−1(1 − b)). As k grows, the anonymity goes to b2, the
probability that the second-layer router and final router are both compromised.
As another example, consider using a binary tree, where the user sends to the
leaves of the tree, and each node forwards to its parent at most one copy of
the onions it receives. It can be shown that as the depth of the tree increases the
probability that anonymity is compromised goes to zero when b ≤ 1/4, b(4b− 1)
when 1/4 ≤ b ≤ 1/2, and b when b ≥ 1/2.

The following theorem shows that the layered mesh is optimal in the limit
among all topologies.

Theorem 5. Let c(b) be the probability of anonymity compromise in some for-
warding topology when the fraction of adversarial routers is b. Then, if b < 1/2,
c(b) < ε implies that c(1 − b) > 1 − b − 1−b

b ε.

Theorem 5 implies that if the probability of compromise for a topology goes to
zero for b ∈ [0, β], then it must go to b for b ∈ [1 − β, 1]. This is achieved by the
layered-mesh topology for the largest range of b possible, [0, 1/2).

7 Latency Measurements

Our protocol requires routers to hold messages until a specified send time. La-
tency between routers varies, and therefore this send time must be set high
enough to guarantee that with sufficiently high probability that it occurs after
the packet actually arrives. The amount of time that packets spend being de-
layed before the send time depends on the variability of latency. Because network
performance is critical to realizing effective anonymous communication [6], we
wish to evaluate the latency in our protocol.

In order to do so, we have measured latency in the Tor [7] network. Perfor-
mance data in the Tor network gives us reasonable estimates for the performance
of our protocol because the essential router operation in both protocols is de-
crypting and forwarding packets and the network is globally distributed and
therefore includes a wide variety of network and host conditions.

7.1 Methodology

During each experiment, we made three measurements on all Tor routers from
our test host. First, we measured round-trip time (RTT ) by opening TCP con-
nections to the hosts. Second, we measured the connection delay, that is, the
time between sending the stream-open request to the router and receiving the
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TCP connection from the router, by creating a circuit from our test host to the
router and opening a TCP stream over that circuit from the router back to the
test host. Third, we measured packet delay by sending five 400-byte segments of
data up the established TCP stream.

We took measurements hourly in the Tor network from February 22, 2009, to
March 21, 2009.

7.2 Results

Round-trip times for the experiments are shown in Figure 2(a), with the top 1%
removed to show the rest in greater detail. The mean of these times is 161ms
and the median is 110ms. We see a peak bin centered at 100ms. A histogram
of all the connection delays measured is shown in Figure 2(b), with the top 5%
of delays removed. It shows that nearly all delays are less than 1s. Also, we can
see that the distribution is bimodal, with peaks at about 120ms and 860ms. The
connection delays over time for a one such router - b0b3r (193.221.122.229) -
is shown in Figure 2(c). The clear and uniform timing stratification suggests a
cause other than varying Internet-route congestion or host-resource contention.
We believe that this is due to read/write rate-limiting that Tor servers manage
by periodically filling global token buckets. We can use the RTT and connection
delay measurements, assuming they are independent, to estimate the distribution
of host processing delays. Considering the distribution over all routers, there is
almost a 40% probability of having a processing delay of nearly zero. Thus

(a) Round-trip times
(w/o top 1%)

(b) Connection delays
(w/o top 5%)

(c) Connection delays -
b0b3r

(d) Packet delays
(w/o top 1%)

(e) Relative connection
delays, p=0.95

(f) Relative packet delays,
p=0.95

Fig. 2. Measurement results
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processing delays are due to limited resources at the routers and not to inherent
costs of the protocol.

The delays of the 400-byte packets that were successfully forwarded is shown in
Figure 2(d). We again see times that cluster around certain levels. Here, there are
six obvious levels. If we examine the delay time series of individual routers we see
that again the different levels are interleaved. Thus, this phenomenon is probably
due to the same mechanism underlying the similar pattern in connection delays.

From the delay measurements we can estimate the added delay that would
have resulted from our protocol. The protocol chooses a time t that must elapse
from the time the packet is originally sent before the packet is forwarded. It is set
such that with some success probability p the packet arrives at the forwarding
router in less than t time. In our data, we examine the tradeoff that varying t
sets up between the fraction p of packets that arrive in time and the forwarding
delay that gets added to them.

We divide the delay measurements by router and into 6 hour periods. Within
each period, to achieve success probability p we set the send time t to be the
smallest value that is larger than at least a fraction p of delays. We look at the
relative increase in delay, i.e., the total new delay divided by the original delay.

The distribution over all successfully-opened streams of relative connection
delays to achieve a success probability of 0.95 is shown in Figure 2(e). At the
50th percentile, the relative connection delay is less than 1.48. Also, at the 50th
percentile, we observe a failure rate of less than 0.005. The data for relative
packet delays appears in Figure 2(f). At the 50th percentile, the relative packet
delay is just over 2.95. The failure rate stays below 0.005 until the 99th per-
centile. The reason for this is that packet sends are not even attempted when
the connection fails.

8 Future Work

There are several developments that fit within our approach and have to poten-
tial to make it truly useful and effective. Foremost among these is to design and
evaluate a usable padding scheme, with large anonymity sets and low overhead.
It should also allow a predetermined, or perhaps only periodically updated, re-
turn padding scheme. Also, we have avoided for now optimizing the efficiency
of processing at the routers. Onion routing, in particular, has developed good
techniques to make this aspect of the protocol fast. For example, we could use
persistant circuits to speed up detecting duplicate packets, or we could switch
to private keys. Our analysis could be improved in some areas as well. First, we
could consider the positive effect of forwarding late packets immediately. Un-
derstanding this process better could improve the expected anonymity of the
protocol. Also, Tor is not optimized for latency, and therefore understanding its
resource congestion issues would help us better determine the added latencies of
our protocol.
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21. Murdoch, S.J., Zieliński, P.: Sampled traffic analysis by internet-exchange-level
adversaries. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 167–
183. Springer, Heidelberg (2007)

22. Nambiar, A., Wright, M.: Salsa: a structured approach to large-scale anonymity.
In: Proceedings of the 13th ACM Conference on Computer and Communications
Security (CCS 2006), pp. 17–26 (2006)

23. Øverlier, L., Syverson, P.: Locating hidden servers. In: 2006 IEEE Symposium on
Security and Privacy (SP 2006), pp. 100–114 (2006)

24. Raymond, J.-F.: Traffic analysis: Protocols, attacks, design issues, and open prob-
lems. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS,
vol. 2009, pp. 10–29. Springer, Heidelberg (2001)

25. Shmatikov, V., Wang, M.-H.: Timing analysis in low-latency mix networks: Attacks
and defenses. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006.
LNCS, vol. 4189, pp. 18–33. Springer, Heidelberg (2006)

26. Syverson, P.: Onion routing for resistance to traffic analysis. In: Proceedings of the
3rd DARPA Information Survivability Conference and Exposition (DISCEX-III),
vol. 2, pp. 108–110 (2003)

27. Syverson, P., Tsudik, G., Reed, M., Landwehr, C.: Towards an analysis of onion
routing security. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies.
LNCS, vol. 2009, pp. 96–114. Springer, Heidelberg (2001)

28. TorStatus - Tor network status (April 2010), http://torstatus.kgprog.com/
29. Wang, X., Chen, S., Jajodia, S.: Network flow watermarking attack on low-latency

anonymous communication systems. In: 2007 IEEE Symposium on Security and
Privacy (SP 2007), pp. 116–130 (2007)

30. Wang, M.M.W., Srinivasan, V.: Dependent link padding algorithms for low latency
anonymity systems. In: Proceedings of the 15th ACM Conference on Computer and
Communications Security (CCS 2008), pp. 323–332 (2008)

31. Yu, W., Fu, X., Graham, S., Xuan, D., Zhao, W.: DSSS-based flow marking tech-
nique for invisible traceback. In: 2007 IEEE Symposium on Security and Privacy
(SP 2007), Washington, DC, USA, pp. 18–32 (2007)

32. Zhu, Y., Fu, X., Graham, B., Bettati, R., Zhao, W.: On flow correlation attacks
and countermeasures in mix networks. In: Martin, D., Serjantov, A. (eds.) PET
2004. LNCS, vol. 3424, pp. 207–225. Springer, Heidelberg (2005)

http://torstatus.kgprog.com/


Impact of Network Topology on Anonymity and

Overhead in Low-Latency Anonymity Networks

Claudia Diaz1, Steven J. Murdoch2, and Carmela Troncoso1

1 K.U. Leuven/IBBT, ESAT/SCD-COSIC
firstname.lastname@esat.kuleuven.be

2 Computer Laboratory, University of Cambridge, UK
Steven.Murdoch@cl.cam.ac.uk

Abstract. Low-latency anonymous communication networks require pa-
dding to resist timing analysis attacks, and dependent link padding has
been proven to prevent these attacks with minimal overhead. In this
paper we consider low-latency anonymity networks that implement de-
pendent link padding, and examine various network topologies. We find
that the choice of the topology has an important influence on the pad-
ding overhead and the level of anonymity provided, and that Stratified
networks offer the best trade-off between them. We show that fully con-
nected network topologies (Free Routes) are impractical when dependent
link padding is used, as they suffer from feedback effects that induce dis-
proportionate amounts of padding; and that Cascade topologies have the
lowest padding overhead at the cost of poor scalability with respect to
anonymity. Furthermore, we propose an variant of dependent link pad-
ding that considerably reduces the overhead at no loss in anonymity with
respect to external adversaries. Finally, we discuss how Tor, a deployed
large-scale anonymity network, would need to be adapted to support
dependent link padding.

1 Introduction

Anonymous communication systems protect the privacy of their users by hid-
ing who is communicating with whom. These systems support applications with
strong privacy requirements such as e-voting protocols, intelligence gathering
(e.g., law enforcement agents infiltrated in criminal organizations) or high secu-
rity military communications. Additionally, anonymous communication systems
help individuals in difficult situations (e.g., journalists who must protect their
sources) and provide privacy for ordinary people seeking to protect themselves
from unwanted eavesdropping. The importance of such systems is increasing,
and the largest deployed anonymity network, Tor [6], has attracted an estimated
250 000 users.

Many network services, such as web-browsing or online chat, require low-
latency communication to remain usable. Low-latency anonymous communica-
tion networks are vulnerable to timing analysis, which can be performed by a
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passive adversary to find correlations between streams and uncover communi-
cation partners [10,12]. Furthermore, an active adversary can trace communica-
tions by embedding a ‘watermark’ on the packet flow by delaying, dropping or
adding packets to influence these timings [9,24].

A common solution to thwart timing analysis is the use of padding, i.e.,
dummy packets indistinguishable from (encrypted) real data. In this paper we
consider Dependent Link Padding (DLP), a variant of padding in which the
amount of dummy traffic generated at the output of a node depends on its input
traffic.

We examine low-latency anonymous communication networks that implement
DLP. We find that the topology of the network has a strong influence on both
overhead and anonymity. Cascade networks introduce the lowest overhead, but
at the cost of poor scalability in terms of anonymity. Fully connected networks
(Free Routes) offer high anonymity, but suffer from feedback effects that cause
huge overhead. Stratified networks are the best anonymity vs. overhead trade-off.
Of all topologies, this provides the best level of anonymity, and its overhead is
much lower than Free Routes. We introduce a restricted variant of the Stratified
topology that further reduces the overhead at almost no cost in anonymity.
Moreover, restricted topologies have better scalability.

In anonymity networks, connections between two routers are commonly en-
crypted and carry multiple data flows. We propose Reduced Overhead Depen-
dent Link Padding (RO-DLP), a variant of dependent link padding that takes
advantage of this property. RO-DLP provides the same level of protection as
DLP towards external adversaries – who can observe communications but do
not control any router – while substantially reducing the overhead. In the case
of Stratified topologies the overhead factor is reduced from 27 using DLP to 8
using RO-DLP, and in its restricted version the reduction is from 23 to just 1.5.

Finally, we argue that, while the onion routing network protocol used by Tor
supports padding, it is not compatible with DLP. We outline the modifications
that are needed for supporting dependent link padding, and discuss their prac-
tical implications.

The remainder of the paper is organized as follows: we give an overview of
anonymous communications, padding, and anonymity metrics in Section 2. Our
system and adversary models are presented in Section 3. Section 4 introduces
RO-DLP, our variant of dependent link padding. Section 5 describes our experi-
mental setup, and we present the results in Section 6. We discuss the applicability
of dependent link padding to Tor in Section 7. Finally, we conclude in Section 8.

2 Background and Related Work

Low-latency Anonymous Communications. Goldschlag, Reed, and Syver-
son introduced onion routing in 1996 [8], and a second generation protocol [6]
has been implemented in the Tor network. Onion routing is designed to provide
a bidirectional, low-latency anonymous communication channel that can be used
for applications like web browsing. Onion routers perform cryptographic opera-
tions on the data they relay, so that the relationship between input and output
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data packets cannot be inferred from analyzing their content. The feasibility for
delaying and reordering packets in onion routing is however limited by latency
constraints, and therefore incoming and outgoing packets may be linked in these
systems by means of timing analysis or end-to-end correlation attacks [10].

An important property of a multi-hop anonymity network is the network topol-
ogy. One approach is Cascades, as adopted by AN.ON/JonDo [1], where clients
select one out of several entry routers, but after that point the path through
the remaining routers is fixed. An alternative is Free Routes, as adopted by
Mixmaster [11], Mixminion [4], and Tor [6], where all routers in the network
are connected to each other. Intermediate solutions have also been proposed,
such as Restricted routing topologies based on expander graphs [3], or Stratified
networks [7]. Dingledine et al. [7] showed that the topology of a high-latency
anonymity network has a significant impact on traffic analysis resistance, relia-
bility, scalability, and resistance to compromise. However, neither Cascades nor
Free Routes have been shown to be conclusively superior, and the issue has long
been a matter of debate [2].

Padding to Resist Timing Analysis. Let us consider a low-latency onion
routing network that carries data flows of variable rate. To satisfy quality of
service requirements, packets cannot be delayed too much, or dropped. There-
fore, to conceal the relationship between incoming and outgoing flows, dummy
traffic (padding) must be added to the data flows. Data packets leaving each
node are augmented by dummy packets which the adversary cannot distinguish
from (encrypted) real data packets. In addition, the start and end time of the
flows must be obscured to prevent traffic analysis attacks based on correlating
the timing of these events [12]. This can be achieved by synchronizing session
start and end between all clients [13].

With respect to the rate of the padding, research in this field has centered on
Independent Link Padding (ILP,) where all flows in the network are padded to a
pre-arranged rate [13,19,21]. Because the timing and rate of packets in outgoing
flows is not dependent on the timing and rate at the input, an adversary cannot
correlate inputs and outputs. These padding strategies are however impractical
if the traffic flows being routed by the network are bursty (e.g., web traffic), as
any lulls would need to be filled with padding, at the same rate as the maximum
throughput.

A more promising approach is Dependent Link Padding (DLP.) As with ILP,
all traffic flows leaving a router are at the same rate, so as to provide timing
analysis resistance. However, unlike ILP, this rate is different for each router, and
it is a function of the traffic it is routing. This approach permits the amount of
padding to be reduced, because when there is no input traffic, no output traffic
needs to be generated. Similarly, bursts of traffic are permitted, and the burst
is transmitted on all outputs.

An algorithm for performing DLP, whilst guaranteeing a maximum latency
Δ at each node, and minimizing the amount of padding, was independently
discovered by Venkitasubramaniam and Tong [22] and Wang et al. [23]. Their
algorithm is to, when a packet is received at time t, check whether a padding
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packet has been scheduled to be transmitted on the corresponding outgoing link.
If it is, the padding packet is replaced with the real packet. If not, the real packet
is scheduled at time t + Δ and padding packets are scheduled at the same time
on all other outgoing links. In this way, no packet will be delayed for more than
Δ and the scheme is optimal (as proven in [23]) in that it achieves mixing with
the minimal amount of padding.

Besides packet timing, it is also important to consider other properties of
padding schemes, such as the source and destination of padding, and which
entities can distinguish dummy packets from real ones. Several variants have
been proposed in the literature to address different trust and adversary models.
For example, ISDN Mixes [13] use dummy traffic only in the link between the
initiator and the local exchange, which discards the dummy packets, and assumes
that at least one router in the path is honest. Partial-route padding and defensive
dropping [10,19] propose that dummy traffic be generated by the initiator and
dropped by intermediate routers – and consider that some routers in the path
may be malicious.

In both adaptive padding [18] and DLP schemes [22,23], dummy packets are
generated by intermediate routers, instead of the initiator. Subsequent routers
cannot distinguish these dummy packets from (encrypted) real packets, and thus
they are routed all the way to the end recipient, who discards them. The pad-
ding schemes in [18,22,23] consider trusted recipients and resist adversaries who
compromise a subset of the routers.

Anonymity Metrics. By observing – or actively attacking – an anonymous
communication system, the adversary typically obtains a probability distribu-
tion linking the initiator of a communication to all possible recipients, and vice
versa. Then, one can use Shannon entropy [17] (or simply “entropy”) as a mea-
sure of the adversary’s uncertainty on who is the initiator (or recipient) of a
communication [5,16].

The analysis presented by Wang et al. [23] studied a single-node network,
which offers high anonymity but no resistance to router compromise, low re-
silience to failures, and poor scalability. The anonymity provided by a single
node is straightforward to compute with the metrics in [5,16]: in a single-hop
network routing C circuits, the probability of an initiator corresponding with
each recipient is uniformly distributed, and anonymity is maximum (the en-
tropy of the distribution is log2(C).) Venkitasubramaniam and Tong [22] did
examine multi-hop networks, but considered only the “information leaked by
the timing of packets within a flow.” “Anonymity” as defined in [22] is assumed
to be maximum when the timing of packets does not leak any information – as
is the case when dependent link padding is implemented.

Computing the anonymity of communications in complex networks while tak-
ing into account all information available to the adversary is infeasible to do
analytically [15], as it requires enumerating all possible combinations of inter-
nal states in the routers, as well as initiator-recipient relationships. Previous
comparisons of network topologies [7] avoided this problem by simplifying the
analyzed scenario – e.g., assuming that the load on each internal link within the
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network is exactly equal to the statistically expected load given a particular net-
work topology. The Markov Chain Monte Carlo methodology recently proposed
in [20] is based on sampling possible internal states and initiator-recipient corre-
spondences that satisfy all constraints. This allows the efficient estimation (for
a given confidence interval) of the adversary’s probability distribution, taking
into account all the available information. The model in [20] considers high-
latency threshold mix networks. We note that the adversary’s observation of
a low-latency anonymity network that implements DLP, and has synchronous
starts and ends of connections, is equivalent to that of a high-latency network
made of threshold mixes. Therefore, the methodology can be used without major
modifications to extend the analysis in [22] to consider routing constraints.

3 Model

System Model. We consider an anonymity system based on onion routing
that implements dependent link padding and has synchronous starts and ends
of connections. For simplicity, we assume that the path length of circuits is
always three and require that all three routers in the path are distinct, but we
note that our analysis is generalizable to other routing constraints [20].

When a client wishes to make a request, the system works as follows. First,
it constructs a route selecting three routers (nodes) from the list of all available
nodes, subject to topology constraints. It then connects to the first node (entry,)
and exchanges keys to form an encrypted tunnel. Over this encrypted tunnel,
the client connects to the second node (middle,) and then the third node (exit,)
exchanging keys at each point such that each node knows the previous and next
hops, but no more.

The connection through the three nodes, along with the corresponding keys,
is known as a circuit. Once the circuit is established, the client requests that
the last node creates a stream to carry the application data. Data is packaged
into fixed length cells which are subsequently encrypted under the keys shared
with the recipient, exit, middle, and entry nodes, and sent to the entry node. At
each hop, one layer is removed until the recipient finally decrypts the payload.
Note that DLP requires that the recipient be able to decrypt data cells, and to
discard the dummy cells that have been added to the stream.

Multiple circuits may be carried on the link between any given pair of nodes. In
addition to the circuit-level cryptography, which is end-to-end, there is also hop-
by-hop link-level cryptography protecting the traffic between nodes. An external
adversary will therefore not be able to tell, based on content, whether two cells
correspond to the same circuit or to different ones.

Attacker Model. We assume that the adversary is global : it observes traffic on
all communication links and knows the number of circuits routed over each of
them. Furthermore, the adversary is active, and may introduce, delay, or drop
cells. We note that DLP [22,23] protects against active attacks, as all streams
coming out of a node are identical – e.g., if the adversary deploys traffic wa-
termarking attacks [9,24], then all outgoing streams will carry the watermark.
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Throughout the analysis, we also assume that all nodes are trustworthy, and thus
the adversary is external and has no knowledge of node keys or other internal
state information.

Note that denial of service attacks, long-term disclosure attacks, attacks in-
volving corrupted nodes, and attacks on other protocol layers (e.g., dropping
cells to force end-to-end retransmissions,) are not considered in this paper and
left as a subject of future work.

4 RO-DLP: Reducing Padding Overhead in DLP

In the original DLP proposals [22,23], nodes pad every outgoing circuit in the
same way, independently of whether or not some circuits are being multiplexed
over the same link. In anonymity networks however, nodes typically use link
encryption, which hides the correspondence of cells to circuits within a link. In
this section we present the Reduced Overhead Dependent Link Padding (RO-
DLP) algorithm.1 Compared to simple DLP, RO-DLP reduces the amount of
dummy traffic sent over links that multiplex several circuits, while achieving the
same level of security against global external adversaries that do not control
nodes.

Fig. 1. Original DLP (left) and RO-DLP (right)

The goal of link padding is to prevent the adversary from learning the cor-
respondence between incoming and outgoing circuits. Given that at time t the
node forwards Rt cells, we show that it is enough to send Rt cells over links that
contain a number ci of circuits that is larger than Rt.

Let us consider a node n that routes C circuits over L links (note that L ≤
C,) and let ci denote the number of circuits multiplexed over the same link li
(1 ≤ i ≤ L, and

∑L
i=1 ci = C.) Initially, RO-DLP schedules a cell for each of the

C outgoing circuits, as in DLP. Thus, at time t a set of C cells are scheduled, of
which Rt correspond to cells that are being forwarded, and C − Rt are dummy
cells generated by node n. RO-DLP removes ri dummy cells from link li as
follows:
1 We note that the term “Link Padding” has been used in the past [6] to mean padding

that exists only on a single link and is not relayed to other nodes. In this paper, we use
the terminology introduced by Wang et al. [23] where Dependent Link Padding refers
to padding that, once generated, travels along the path until the end destination.
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ri =
{

0 if ci ≤ Rt

ci − Rt if ci > Rt

The intuition behind this algorithm is the following. The adversary monitors
the number of cells arriving at node n and can predict the number Rt of cells
that will be forwarded at time t. When ci > Rt cells are sent over link li, the
adversary knows that (at least) ci − Rt of these are dummy cells generated by
n, and thus these do not provide any additional protection.

Consider a node that routes eight circuits over two outgoing links, such that
c1 = 6 and c2 = 2, as shown in Figure 1. If only one cell is to be forwarded at time
t (i.e., Rt = 1,) it is enough to send one cell on each of the outgoing links for the
adversary to gain no information on the destination of the forwarded cell. One of
the two cells sent will be the real cell, and the other will be a dummy cell going
on one of the circuits of the other link. If, as in the example shown in the figure,
three real cells are to be sent (i.e., Rt = 3,) then no padding can be removed
from l2, but we can still save three dummy cells in link l1. From the perspective
of the adversary, no additional information is leaked on the destination of the
forwarded cells, compared to the case in which six cells are sent over l1: in both
cases, it could be that the three circuits for which there is a cell are routed over
l1, that one is routed over l1 and two over l2, or that two are routed over l1 and
one over l2.

Note that if each link contains only one circuit, then no dummies can be re-
moved and RO-DLP’s overhead is the same as DLP’s [22,23]. If all circuits going
through a node are routed over one single link (e.g., in a Cascade topology,) then
no dummies would be sent by that node and RO-DLP would not generate any
overhead. In Section 6.3 we present an evaluation of the reduction in overhead
when RO-DLP is used with real traffic streams.

5 Experimental Setup

We have implemented a simulator to evaluate the anonymity and dummy traffic
overhead in anonymity networks that implement dependent link padding. Our
simulator generates networks of N nodes, where N is an input parameter. Users
create circuits that traverse three nodes before reaching their destination. We
call entry node the first node in the circuit path, middle node the second, and
exit node the third and last node. We consider four possible topologies, shown
in Figure 2:
– Free Routes (FR): Any combination of three distinct nodes is a valid

circuit path. Given an entry node, we choose, uniformly at random, a middle
node from the remaining N − 1 nodes, and an exit node from the remaining
N − 2 nodes.

– Stratified (S): Nodes are divided into entries, middle nodes, and exits (N/3
nodes in each category,) such that any entry connects to any middle, and
any middle to any exit. Given an entry node, we choose uniformly at random
one of the N/3 middle nodes, and one of the N/3 exits.



Impact of Network Topology on Anonymity 191

Fig. 2. Network topologies for N = 12

– Stratified Restricted (SR): As in the previous case, nodes are divided
into entry, middle and exit nodes. We have chosen values of N of the form
N = 3K2, where K is an integer. Each entry node is connected to K =√

N/3 middle nodes, and each middle node to K exits. An entry node i
(0 ≤ i ≤ N/3 − 1) is connected to middle nodes N/3 + [(i + j) mod N/3],
with j = 0 . . .K−1; and a middle node i (N/3 ≤ i ≤ 2N/3−1) is connected
to exit nodes 2N/3 + [(i + j ·K) mod N/3], with j = 0 . . .K − 1. Given an
entry node we construct the circuit paths choosing uniformly at random one
of the N/3 exits, and then finding the middle node that connects the entry
to the exit (in this topology each entry is connected to each exit by exactly
one middle node.) The intuition behind this topology is to allow every entry
node to connect to any exit node, while minimizing the number of links.

– Cascades (C): We consider N/3 parallel cascades of three nodes each.
Given an entry node, the middle and exit nodes are fixed by the topology.

To make our evaluation as realistic as possible, we use as input real traffic data
logged by a deployed Tor [6] node for a period of 24 hours. In particular, we have
logged a timestamp and a circuit identifier2 for each cell routed by the node. We
consider sessions of 60 seconds – i.e., we divide the input into slices of 60-seconds
duration, and assume that the traffic of sessions sufficiently separated in time is
independent. We take into account both the forward and the backward traffic
(i.e., requests and responses) in the bi-directional circuits that appear in that
session.

We consider that the comparison of network topologies is fair when both indi-
vidual nodes, as well as the network as a whole, carry the same amount of traffic,
and we design our experiments in such a way that this condition is fulfilled. In
the Stratified and Cascade topologies, we feed each of the N

3 entry nodes with
the traffic of a session, with that node as first in the path, and the remainder of
the path selected according to the network topology constraints. In Free Routes
we follow a slightly different approach in order to keep the comparison fair: we
distribute the circuits of a session among three entries. In this way, both individ-
ual nodes and the overall network route the same amount of real traffic as in the

2 To anonymize the logs, the circuit ID and peer IP address were encrypted on col-
lection, under a key which was discarded after logging was completed. This dataset
will be made available by the authors upon request.
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other topologies. In Stratified and Cascade networks, nodes route (on average)
C circuits either as entry, middle or exit node, and the total number of circuits
in the network is CT = C · N

3 (N
3 is the number of entry nodes.) In Free Routes,

each node routes (on average) C
3 circuits as entry (plus C

3 as middle and C
3 as

exit,) and the total number of circuits is CT = C
3 · N (all N nodes are entry

nodes.)
The nodes in our simulator implement the DLP and RO-DLP algorithms. We

record the amount of traffic routed by the network per second, distinguishing
between real and dummy traffic; and between intra-network traffic (sent be-
tween nodes) and traffic at the edge of the network (between nodes and end
destinations.)

6 Results

We examine networks in terms of anonymity loss and dummy traffic (padding)
overhead factor. The anonymity loss is the difference between the maximum
achievable anonymity given the total number of circuits routed by the network
and the actual anonymity that the network provides to its circuits. We note that
when DLP is deployed, the timing of packets does not leak any information, and
the anonymity provided by the system depends only on the routing constraints.
Given a circuit cx, we compute its anonymity loss as Hloss = Hmax−H(cx). The
maximum achievable anonymity is given by Hmax = log2(CT), where CT is the
total number of circuits routed by the network [5,16]. For Stratified and Free
Route networks, H(cx) is estimated by the method presented in [20], using the
obtained lower bound as our estimation. In Cascades, we compute the anonymity
H(cx) of a circuit cx routed by cascadei as H(cx) = log2(Ci), where Ci is the
number of circuits routed by cascadei (note that

∑
i Ci = CT.)

To present the results for the dummy traffic (padding) overhead, we use the
overhead factor, which is computed as Dum

Real , where Dum is the number of dummy
cells sent in the network every second, and Real is the number of real data cells
sent over the same time period. Thus, the overhead factor indicates the number
of padding cells sent for each real data cell.

6.1 Feedback Effects in Free Route Networks

If dependent link padding is implemented in a Free Route network, feedback
effects are likely to happen. The feedback effect occurs both with DLP and
RO-DLP, and it provokes dummy traffic to be generated even in the absence
of real traffic (this case leads to infinite padding overhead.) To illustrate this
effect, consider two nodes routing two circuits in opposite directions, as shown
in Figure 3. One real cell is sent into node A, on circuit Y. This cell is relayed

to node B. Node B will, after a delay of Δ, relay this cell onto the next
hop of circuit Y, but also generate a padding cell on circuit X. When node A
receives this cell, it cannot tell that the cell is padding. Thus, A sends it onto
the next hop of circuit X, and also generates a new dummy cell that is sent back
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to B, repeating the cycle. Note that feedback loops may form not only between
pairs of nodes, but also in more complex structures involving several nodes.

Fig. 3. Feedback loop with two nodes

Figure 4(a) compares the total traffic (number of cells per second) in a Strat-
ified and a Free Route network that route the same input traffic (the networks
have N = 12 nodes, route a total of CT = 12 circuits, and there are 10 cells per
circuit within the first 3 seconds.) Although there is no more input traffic after
t = 4, we can see that the Free Route network continues to generate dummy
traffic that quickly becomes stationary. In the Stratified network, traffic stops
once the last real cell has left the network (this happens at most 3 · Δ seconds
after it has entered, and in our case Δ is 1 second and thus the last cell leaves
before t = 7.)
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Fig. 4. Traffic in a Free Route and a Stratified network with the same input traffic
(left.) Anonymity / Overhead tradeoffs for different topologies (right)

6.2 Comparison of Network Topologies

It is common for anonymity systems to offer a clear tradeoff between the level
of anonymity and cost (with cost being in terms of delay and/or dummy traffic
overhead,) such that more anonymity comes at a higher cost. In the scenarios
considered in our analysis, the delay costs are fixed and identical for all the
network topologies, and thus we focus on the tradeoff between anonymity and
dummy traffic overhead.
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Figure 4(b) shows the tradeoff offered by the four considered topologies in a
network with 12 nodes that implement RO-DLP. The x axis shows the overhead
factor (i.e., number of padding cells sent in the network for each real cell, taking
into account both the traffic between nodes and the traffic in the edges of the
network.) The y axis shows the anonymity loss with respect to the maximum
achievable level in each of the experiments (note that the maximum depends
on the total number of circuits CT routed by the network in each experiment.)
Therefore, lower values in the y axis correspond to networks that come closer
to providing maximum anonymity to the circuits they are routing. The symbol
at the center of the plot for each topology represents the median values for
anonymity and overhead, the lines indicate the first and third quartiles. Although
it is not shown in the figure, the overhead of Free Routes tends to infinity when
the real traffic is very low.

As we can see in the figure, the overhead is lowest in Cascades, and it increases
as more routes are possible in the network (i.e., the next best is Stratified Re-
stricted, then Stratified, and worst is Free Route.) This is rather intuitive, as
restricting the routing implies that more circuits are routed (multiplexed) over
fewer links, and thus less overhead is generated by the RO-DLP algorithm. The
fact that Free Routes has a much higher overhead than the other topologies is
due to the feedback effects explained in the previous section.

A more interesting effect appears when we look at anonymity. A priori, one
could expect topologies with more overhead to provide better anonymity. How-
ever, this is not the case: the best anonymity is provided by Stratified topologies
(closely followed by its Restricted variant,) instead of Free Routes. In Stratified
networks, circuit routes going through the same node are always mixed, because
the node is in the same path hop for both routes. In Free Routes however, cir-
cuits may pass by the same node and not be mixed if the node is at a different
hop in the circuit paths. Consider for example a node n that is the entry node
for circuit ca and exit node for circuit cb. Given that routes always have three
hops, the adversary knows that the circuit ca entering the network at n cannot
go out of the network immediately, and thus the outgoing cb cannot possibly be
the exit of ca – i.e., ca and cb are not mixed in n.

We note that all topologies except Cascades consistently provide very high
anonymity levels: the anonymity loss is less than 0.4 bits, and its variance is very
small. For Cascades, the median loss is 2 bits, which corresponds to partitioning
the anonymity set in four. Indeed, a network consisting of four parallel cascades
partitions the total anonymity set of circuits in four subsets, with each subset
being routed by a separate cascade.

Overall, Stratified topologies provide the best anonymity / overhead tradeoffs,
with restrictions in the routing reducing the overhead at the cost of slightly worse
anonymity. Cascades are better than Stratified topologies in terms of overhead,
but this comes at a high cost in anonymity (a problem that becomes worse as the
network grows, as shown in Section 6.4.) Free Routes are worse than Stratified
topologies both in terms of anonymity as well as overhead.
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6.3 Dummy Traffic Overhead with DLP and RO-DLP

In Section 4 we proposed a RO-DLP algorithm to reduce the overhead when
several circuits are multiplexed over the same link. We note that multiplexing
only happens in the links between network nodes, which typically carry many
circuits. In our experiments, we assume that the links on the edges of the network
– i.e., between nodes and external entities (initiators and responders) – carry
only one circuit. Therefore, no multiplexing happens on the network edges and
RO-DLP produces a similar overhead to DLP.

The boxplots3 of Figure 5(a) show the intra-network overhead (i.e., only con-
sidering links between nodes) of RO-DLP compared to DLP. The results were
obtained performing several dozens of simulation experiments on networks of 12
nodes, using real traffic as input, and having each node route the same amount
of traffic as the Tor router from which the data was collected.
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Network scalability vs. anonymity (right.)

In Cascades, all circuits going through a node are multiplexed over one link
leading to the next node, which explains why RO-DLP reduces the intra-network
overhead factor from 20 to zero (note that RO-DLP still generates padding cells
on the edges, which is not shown, and thus the overall overhead is greater than
zero.)

The overhead reduction of RO-DLP over DLP is rather significant in Stratified
networks too. In Stratified Restricted topologies, the median overhead factor is
reduced from 23 to 1.5 (i.e., from sending 23 padding cells for each real cell, to
just sending 1.5 padding cells per real cell;) and in Stratified from 27 to 8. As
we can see, there is a very direct relationship between the number of possible
routes (i.e., amount of circuit multiplexing) and the reduction in overhead: the
fewer the possible routes, the lower the overhead.
3 The line in the middle of the box represents the median of the distribution of values

over many experiments. The lower and upper limits of the box correspond, respec-
tively, to the first and third quartiles of the distribution.
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RO-DLP does not have a beneficial effect in Free Route topologies though.
This is due to two effects. First, because Free Routes allow many more possible
circuit paths, circuits are more spread over links and thus links multiplex fewer
circuits. This mitigates to a large extent the benefits of RO-DLP. Furthermore,
RO-DLP fails to counter the feedback effects explained in Section 6.1, because it
only affects the removal of padding cells at the node where they are generated.
Once these cells have been sent to other nodes, they are treated as real traffic
and bounced back and forth in the network (just as in simple DLP.)

6.4 Network Scalability: Anonymity and Overhead

We have performed most of our experiments on networks of only 12 nodes, given
that the simulation time of experiments on bigger networks increases rapidly
with the network size. In this section we show results on how anonymity and
overhead varies with the size of the network that implements RO-DLP.

Figure 5(b) shows the anonymity loss for the four topologies and network sizes
of 12, 27, 48 and 300 nodes. The y axis represents the anonymity loss in these
networks with respect to the maximum achievable Hmax = log2(CT), where CT

is the total number of circuits routed by the network. Note that larger networks
route more circuits and thus have a bigger Hmax. We can see in Figure 5(b)
that Stratified, Stratified Restricted, and Free Route topologies scale very well
in terms of anonymity – their anonymity remains very close to the maximum
when the network size grows. In networks of 300 nodes, the anonymity loss for
any of those topologies is less than one bit.4

Cascade topologies however, have poor scalability in terms of anonymity. In this
topology a larger network implies more parallel cascades. Given that cascades are
independent of each other, they provide a constant level of anonymity, and thus
a bigger anonymity loss as Hmax increases. Consider a network consisting of N
nodes and N

3 cascades, and assume for simplicity that all cascades route the same
number C of circuits; i.e., the total number of circuits routed by the network is
CT = N

3 C. The anonymity provided by the cascades is Hcascade = log2(C), and
the maximum achievable anonymity is Hmax = log2(CT) = Hcascade + log2(

N
3 ).

The anonymity loss is thus log2(
N
3 ) on average; i.e., log2(4) = 2 bits for N = 12

nodes, log2(9) = 3.17 bits for N = 27 nodes, etc.
We show in Figure 6(a) and Figure 6(b) the overhead in intra-network links

(that multiplex several circuits,) and at the edge of networks of 12, 27 and 48
nodes. As expected, overhead is unaffected by the growth of the network in
Cascade topologies. The overhead factor remains at zero in the links between
cascade nodes, as all circuits are multiplexed over a single link; and it remains
constant at the network edges, as circuits routed by parallel cascades do not mix
with each other: bursts in the traffic of one circuit only produce padding in the
circuits going through the same cascade.

4 An anonymity loss of one bit is equivalent to the adversary partitioning the anony-
mity set of CT circuits in two subsets.



Impact of Network Topology on Anonymity 197

In the other three topologies, we can observe that network size has a negative
impact on the overhead factor of the network. This is because a traffic burst in
a single circuit produces a burst of dummy traffic in all other circuits, and as
more circuits are routed by the network, bursts occur at a higher frequency. The
overhead factor is particularly large for the traffic on the edges of the network
(Figure 6(a)) because links to clients and destinations contain a single circuit,
and thus do not benefit from the optimization based on circuit multiplexing.
In the case of intra-network traffic (Figure 6(b),) we can see that Stratified
restricted topologies manage to keep the overhead factor just over 8 when the
network grows to 48 nodes – while overhead reaches 30 in Stratified networks,
and over 80 in Free Routes.
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Fig. 6. Network scalability: overhead in intra-network links (left.) Overhead at the
network edge right.)

7 Applying DLP to Tor

Although Tor is the most widely deployed anonymity network, it offers fairly
weak protection against a global adversary, because traffic is not mixed. Tor aims
to minimize latency and network load, so nodes neither add padding nor delay
cells, hence it is trivial to perform timing analysis, either on an end-to-end or
hop-by-hop basis. The Tor designers made these choices because latency would
make interactive use intolerable, and existing ILP schemes had unacceptable
overhead. However DLP, with the optimizations we have proposed in this paper,
is a more promising approach.

In DLP, edge nodes need not generate padding, but they do need to con-
sume it. Moreover, an adversary should not be able to distinguish padding from
normal traffic. If we consider only internal circuits – where both the initiator
and destination run the Tor software, though they do not necessarily need to
route anyone else’s traffic – DLP is straightforward to implement. Tor already
uses internal circuits for connecting to hidden services (where the destination
server wishes to hide its identity), and when the destination server is known to
be running a Tor node.
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It may also be possible to implement DLP without the destination being aware
of Tor, provided there is end-to-end encryption and the exit node can inject
padding which will be ignored by the destination. This option is more complex,
because it requires that the exit node be aware of the encryption protocol. In
particular, if the end-to-end encryption scheme implemented at the destination
silently drops malformed packets, then it can consume padding without any
changes being necessary.

Network Topology. The original Tor design was a free-route network, however
for efficiency reasons it has now moved to a more complex topology. Currently
only a subset of nodes can act as the entry (because they must be fast and be
highly reliable), and only a subset can act as the exit (because nodes must opt
in to allowing exit traffic). To balance load over the network, nodes which can
neither be entry nor exit are preferentially selected as middle nodes. Strictly
speaking, entry and exit nodes can be selected for the middle position, provided
that there is sufficient entry and exit bandwidth, respectively. However, most of
the time this is not the case and in practice Tor has a network topology very
close to Stratified. For this reason, it would not be a significant change to move
to a fully Stratified topology.

Implementation of Padding Modes in Tor. In order to implement DLP, it
is necessary that connections between nodes are encrypted, so that an external
adversary cannot tell whether two cells belong to the same circuit or different
ones. Tor uses TLS for protecting both confidentiality and integrity on links, so
complies with this requirement.

With respect to the creation of padding, the Tor protocol does permit dummy
cells to be inserted, although the current implementation does not generate pad-
ding nor are there any plans to do so. Two types of padding cells are offered:
link padding and circuit padding. However neither meet our requirements; the
former is detected as padding by nodes and dropped, and the latter can only be
injected by the initiator. There is no way for a node to inject a padding cell such
that subsequent nodes on the path cannot distinguish it from data cells sent by
the initiator.

The fundamental problem for implementing DLP in Tor is that the variant
of onion routing adopted uses a stream cipher. Each Tor relayed cell contains a
circuit ID that identifies which circuit the message pertains to, and an encrypted
payload. On receiving such a cell, the Tor node checks if a key has been negotiated
for the given circuit ID. If so, the node uses AES CTR mode to decrypt the cell
with the counter being the number of ciphertext blocks seen in that circuit.
Then, the node verifies whether a 32 bit digest in the cell matches the SHA-1
hash of all valid cells in the circuit.

Therefore, if a cell is injected by an intermediate node, the counter will be
desynchronized, the data corrupted, and the digest check will fail. To resolve
this problem, a simple addition to the Tor protocol would be another type of
link padding cell which triggers a new padding cell to be emitted for the same
circuit on the output link. In this way, each hop could add their own padding,
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which would be maintained all the way to the last hop. As links are protected
using TLS, an adversary cannot distinguish padding cells from real cells, and so
the goal of the padding would be maintained. In the implementation, care would
need to be taken that the processing time for a padding cell would be identical
to that for a real cell, to resist side-channel attacks leaking information on cell
type.

This approach would resist the external adversary considered in the anonymity
analysis of RO-DLP. However, in a more realistic scenario the adversary may
control some routers, and any corrupt node on the path would be able to trivially
tell which cells are padding. Circuit padding cannot be used to resolve this
weakness because intermediate nodes cannot inject new cells. However, if instead
of CTR mode, a per-cell IV was used, this problem would not exist – i.e., padding
would not affect the decryption of other cells. Intermediate nodes do not know
the key shared by the sender and other nodes in the path, hence the padding will
fail the integrity check at the final hop and be discarded. A node would therefore
be able to add padding cells with a random IV, and intermediate nodes will be
unable to distinguish them from real data cells. A downside of this approach is
that there is the overhead of a IV per-cell. Nevertheless, it has the advantage
that there is no longer any need for a reliable transport protocol between nodes,
provided there is an end-to-end error recovery mechanism. Moving from TCP
to UDP for node-to-node communication has been shown to offer significant
performance benefits, especially under congestion [14].

8 Conclusions and Future Work

Dependent link padding prevents timing analysis in low-latency anonymity net-
works while minimizing the overhead. However, the impact of complex topolo-
gies [2,7] on the performance of this technique had not yet been assessed. In this
work we have analyzed anonymity / overhead trade-offs in low-latency anon-
ymity systems that implement dependent link padding, and compared three
topologies: Cascades, Free Routes and Stratified networks.

We have found that feedback effects appear in Free Route networks, leading
to disproportionate padding overhead – a phenomenon not previously discussed
in the literature. In contrast, Stratified networks and Cascades do not suffer
from this problem, making them substantially more efficient. However, the level
of anonymity provided by Cascades decreases severely when the network grows
– while the other topologies maintain high anonymity, with Stratified networks
being the best. We conclude that Stratified topologies offer the best trade-off
between anonymity and overhead.

We have introduced a Restricted topology based on Stratified networks, which
further reduces the overhead with almost no loss of anonymity. In addition,
we have proposed RO-DLP, which takes advantage of circuit multiplexing in
anonymity networks to reduce the amount of padding. Our experiments show
that in Stratified Restricted topologies, RO-DLP reduces the overhead factor
from 23 to just 1.5.
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While dependent link padding is ideal for onion routing, as it offers good secu-
rity without causing high latency, we have argued that the current Tor protocol
cannot accommodate it. We have outlined modifications to the Tor protocol,
such as moving from a per-stream IV to a per-cell IV, and discussed other ap-
plicability issues.

In this work we have assumed that all the nodes in the network are trustwor-
thy. This is essential for RO-DLP to achieve the same level of protection against
an external adversary, when compared to previous dependent link padding pro-
posals. If the adversary has control over some of the nodes in the network [7],
she would see partially padded circuits, and potentially correlate traffic based
on timing analysis. Strategies for assigning padding to circuits in ways that
minimize the effectiveness of this attack are left for future work.
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Abstract. We present Drac, a system designed to provide anonymity
and unobservability for real-time instant messaging and voice-over-IP
communications against a global passive adversary. The system uses a
relay based anonymization mechanism where circuits are routed over a
social network in a peer-to-peer fashion, using full padding strategies and
separate epochs to hide connection and disconnection events. Unlike es-
tablished systems, Drac gives away the identity of a user’s friends to guar-
antee the unobservability of actual calls, while still providing anonymity
when talking to untrusted third parties. We present the core design and
components of Drac, we discuss the key ways in which it challenges our
current concepts of anonymity and provide an initial simulation-based
security analysis.

1 Introduction

Anonymous communications are important since the addressing, timing and vol-
ume of traffic can in some cases leak as much information as its content [37].
This is particularly true for real-time communications, as instant messages or
phone calls can be indicative of imminent intentions or plans, e.g. in military
command and control systems, or sensitive personal information, like medical
status or family life, in civilian settings. Despite this, few systems have been
proposed to provide strong anonymity against global passive adversaries for pri-
vate communications.

Drac aims to provide strong anonymity and traffic analysis guarantees for
real-time communications. This is achieved though a peer-to-peer relay based
architecture. We assume that the traffic relayed is regular or low volume such as
voice-over-IP (VoIP) or instant messaging (IM) respectively. This allows us to
use a traffic padding regime and destroy any information leaking from patterns of
traffic. Communication sessions are started and ended synchronously to further
limit the information leakage.

We also design the trust model of Drac around a friend-of-a-friend architec-
ture: communications between friends are unobservable, and communications

M.J. Atallah and N. Hopper (Eds.): PETS 2010, LNCS 6205, pp. 202–219, 2010.
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with further contacts in the network are anonymous. Despite the anonymity
sets being smaller, they are harder than random anonymity sets, in that they
are correlated between sessions and an adversary has to infiltrate the social cir-
cle of a user to perform insider attacks. Finally, we assume that both parties to
a conversation use Drac for their communications and have incentives to stay
on-line and relay third party traffic even when they are not communicating: this
provides unobservability [27] and is a natural architecture to support incoming
voice calls or instant messages.

The aim of this work is to introduce the Drac design and provide a preliminary
analysis of anonymity and unobservability. Unobservability is an unusual prop-
erty, and even defining it or measuring it in a system represents novel challenges.
Three aspects of the system are studied though simulations: the anonymity pro-
vided against the presence system, and the anonymity and unobservability of
communications towards a global passive adversary.

The paper is organised as follows: Sect. 2 presents previous work and building
blocks used in Drac; Sect. 3 presents a high level model of Drac and its compo-
nents; Sect. 4 shows the preliminary evaluation results; finally we discuss some
further aspects of Drac in Sect. 5 and offer our conclusions in Sect. 6.

2 Drac and Related Work

High-latency anonymous communications were introduced by David Chaum [6],
and have been implemented in deployed systems such as mixmaster [22] and
later mixminion [8]. Those systems are economical in that they do not require
cover traffic. On the downside, they delay communications significantly, making
it difficult to have a real-time conversation as is required for IM or VoIP.

Onion Routing systems, including Tor [13], provide low latency communica-
tions for web-browsing cheaply, by sacrificing security against a global passive
adversary. Yet such adversaries are realistic and can be implemented through
sampling [24], indirect network measurements [23], or eavesdropping on key Au-
tonomous Systems (AS) [15]. Web browsing loads are bursty and high-bandwidth
such that any traffic padding regime would be uneconomical. IM and VoIP loads
on the other hand are more regular, or simply low-bandwidth, allowing link and
end-to-end padding strategies to be affordable if high security is required.

The ISDN-mix system [26] was specifically designed to provide real-time
anonymous communications. As ISDN-mixes, Drac creates connections synchro-
nously in epochs to maintain connection anonymity, but does not implement
cascades and does not use the custom ISDN infrastructure to support its oper-
ation – instead we assume that the communications are taking place over IP,
using off-the-shelf routers.

In this work we are not overly concerned with the cryptographic details of
Drac. There exist well established, provably secure, cryptographic constructions
to support relaying anonymized messages [9] and extending anonymous con-
nections [16,18]. Similarly we assume that a padding regime is established that
makes the output channels traffic statistically independent of the input chan-
nels [31,34,36]. This can be done simply by sampling a traffic schedule for the
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output channel independently and before even seeing the input channels, and
sticking to it by adding cover traffic if there is not enough, or dropping messages
if the queues become too long.

The trust model Drac uses is a version of restricted routes [7], where paths
are created over friendship links. The impact of social networks on anonymity
has been studied before [12], and recent work [17] has looked at modifying the
global trust assumption common in contemporary anonymous channels. Yet we
are the first to propose boldly making use of a social network as the backbone
of anonymous paths.

Finally, the analysis we provide follows the information theoretic metrics pro-
posed in [30,11]. The probabilistic analysis we perform is very much a first analy-
sis of the system, as it is heuristic, and does not take into account all constraints
known to the adversary. A full Bayesian analysis [32] would be required to do
this, and is the subject of future work. A full analysis of the impact of long term
disclosure attacks [19] is also necessary: Drac is designed to provide smaller, but
harder anonymity sets, than other systems. The fact that anonymity sets of dif-
ferent epochs are highly correlated (as routing is embedded over a social graph)
invalidates previous results and performance bounds of these attacks [25]. These
models have so far assumed anonymity sets contain random users, whereas in
Drac these are highly correlated and composed of the social surroundings of
users.

3 The Drac System

At the core of Drac we have a social network formed by N users (or nodes.)
Each user ui in this social network is connected to a set of friends Fi. We
assume that friends have a strong trust relation, and that they use each other
to relay communications. For this purpose, friends share cryptographic keys (or
at least a weak secret to bootstrap a cryptographic key) that they can use to
establish secure communication links. Besides communicating with her friends,
a user ui also interacts with a set of contacts Ci to whom she is not connected in
the social network. Contacts are people that a user may wish to talk to, but does
not necessarily trust for relaying her connections (e.g., a relationship between a
patient and her doctor.) We consider that contacts exchange their pseudonyms
and establish a long term symmetric key offline (e.g., the patient meets the doctor
at the clinic.) Finally, we assume that relationships with friends are public, thus
known to the adversary (e.g., extracted from a social network web site [3],) but
that relationships with contacts are secret and must be concealed by Drac.

3.1 Establishing Communications with Drac

Upon connection to the network, a user establishes low bandwidth bi-directional
heartbeat connections with each of her friends in order to make her availability
known to them. These connection are padded at a very low rate, and are used
for signaling purposes (creating and extending connections, starting communi-
cations, etc,) as well as for establishing connections with the private presence
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server (as explained in Sect. 3.2.) In Drac we strictly separate the control plane
from the data plane: signalling and presence packets are embedded and routed
in the heartbeat traffic such that an external observer cannot differentiate be-
tween dummy heartbeat packets and actual messages. Figure 1(left) shows the
heartbeat connections between six users {uA, . . . , uF } in which FA = {uC , uF},
FB = {uC , uE}, FC = {uA, uB, uD}, and so forth. By observing heartbeat con-
nections, an adversary does not gain extra knowledge about users, as the friend-
ships are considered public, and the timing and volume of heartbeat traffic does
not leak any further information.

Users wish to communicate with contacts, but they are not connected to them
in the network. For this purpose each ui has an entry point Ei that she uses to
indirectly establish communications. In each epoch users build a circuit of depth
D to their entry points (using their heartbeat channels.) We describe the circuit
creation process using the example network shown in Fig. 1:

1. User uA selects at random one of her friends to be the first hop of the circuit.
Say she chooses uC from FA = {uC , uF }. They establish a secure link using
their long-term key KAC , and generate a session key kAC .

2. uA requests uC to choose a friend at random and extend the circuit to her.
3. User uC selects a friend at random, say uD, and creates a new secure link

using KCD. Through the extended circuit, uA and uD establish a session
key kAD. As uC chooses one of her friends at random to route uA’s traffic,
it may be the case that uA is chosen to participate in her own circuit.

4. Steps 2 and 3 are iterated D times using friends of friends as next hops in the
path. The last user in the circuit is the entry point EA of uA. In the example
above, if D = 2, we say that uD is uA’s entry point EA. As members of the
circuit are chosen at random, uA may end up being her own entry point.

We note that uA needs to know her entry point to establish communications
with contacts, and thus EA needs to provide its identity to uA at the end of the
circuit creation process.

The circuit depth D is a security parameter of the system. Longer circuits in-
crease the anonymity provided by Drac as they make tracing communications to
their originator more difficult, while shorter circuits result in smaller anonymity
sets, as shown in Sect. 4. We consider that the adversary can observe all links,
and knows how many circuits are routed through each of them, but does not
know the correspondences between inputs and outputs at each node.

Friends communicate with each other through direct links. To ensure that
the communication is fully unobservable, both users still establish circuits of
depth D in the network, but at least one of them has to choose the other as
first hop. When a user ui with entry point Ei, wants to communicate with one
of her contacts uj with entry point Ej , she requests Ei to extend the circuit to
Ej . We call the connection between two entry points bridge, and denote it as
Bij . We note that bridges between users that are not friends are visible, as they
stand out with respect to the edges in the underlying social network, and the
heartbeat channels that the adversary observes. If the entry points of ui and uj

are friends, an adversary can still observe that there is an extra circuit in the
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Fig. 1. Underlying social network and connection to the presence server (left.) Adver-
sary’s observation of an epoch (right.)

system. However, she cannot distinguish this bridge from other links that are
part of a connection between a user and her entry point. Further, when Ei is
the same as Ej , no bridge is created and an adversary cannot detect that there
is a communication.

To ensure confidentiality of communications, ui and uj encrypt messages using
the keys that they share with each other, and with the nodes that they use for
transit. We denote by Ek(M) the encryption of message M under key k. Upon
receiving a message, an intermediate node processes it using the session key
shared with the originator of the message. After processing, the node checks
whether the message is addressed to itself. If the result is still a ciphertext the
message is relayed to the next node in the circuit, or dismissed at the last node.

Example. Let us consider that uX talks to uW through two of her friends uY

and uZ (which whom she shares session keys kXY and kXZ respectively,) and
two of uW ’s friends uU and uV (with whom uW shares kWU and kWV .) uX and
uW share a session key kXW that they create as explained in Sect. 3.2. The route
can be depicted as:

uX → uY → uZ ⇒ uU → uV → uW

where a bridge BXW has been created between uZ and uU .
If uX wishes to package a message M for uW she encrypts it under kXW ,

kXZ , and kXY , and sends:

uX → uY : EkXY (EkXZ (EkXW (M)))

The message gets relayed and decrypted by uY and uZ . User uZ sends to uU

EkXW (M) through the bridge BXW . Then, the message is encrypted under the
keys of uU and uV . The following message arrives to uW :

uV → uW : EkWV (EkW U (EkXW (M)))
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3.2 Private Presence Server

Users can establish communications with their friends or contacts, and thus
need to be reachable by them. To communicate with friends, users can use their
direct heartbeat channels. For initiating communications with a contact, we
require a private presence server that allows ui to be reachable by her contact
uj. The presence server is assumed to be cooperative (i.e., follows the protocols)
but untrustworthy (i.e., it could be colluding with the adversary in order to
deanonymize its users.) In our scheme, we draw some ideas from the Apres [20]
system, but we introduce several modifications in order to adapt it to the context
of Drac. For simplicity, we only consider one presence server in this work, but
we note that Drac could be trivially extended to support several servers.

Each user ui has a long term identifier IDi that is known by all her contacts,
but not by the presence server. We note that a user ui may have several IDs,
each corresponding to a circle of contacts, so that contacts belonging to differ-
ent “circles” cannot find out that they know the same user. In order to have
unlinkability between time periods and avoid long-term pseudonymous profiling
by the presence server, the identifier IDJi of ui in a given time period T is
computed as IDJi = H(T, IDi), where H(x, y) is an HMAC of x with key y. As
T is published by the presence server, ui and her contacts are able to compute
IDJi from her long term identifier IDi.

In order to be reachable by her contacts, ui creates a circuit of depth Dp (Dp

may or may not be equal to D) to her presence server PS using the heartbeat
channels. This presence circuit is built following the same procedure as the one
used to construct communication circuits from users to entry points. When the
connection is Dp hops long, ui instructs the last node, EPi , to send the IDJi

encrypted with the key of PS to PS. At this point, ui has an open connection
to her presence server, who can list IDJi as online.

In Fig. 1(left) we show the heartbeat connections in one epoch. These connec-
tions carry presence circuits that are unobservable to the attacker. For instance,
let us consider that the presence circuit from uA runs through users uF and
uE. An adversary can see the bridge between uE and PS, but cannot distin-
guish whether this connection comes from uA (through uA-uF -uE), uC (through
uC-uB-uE or uC -uD-uE), or uE (through uE-uB-uE, uE-uF -uE, or uE-uD-uE.)

Let us assume uB wants to communicate with her contact uA. First, uB

constructs a circuit to PS through the heartbeat channels in a similar way as
uA did to register her presence. We assume that uA and uB share a long-term
secret key KAB, and that they know each other’s long-term IDs (IDA and IDB.)
User uB creates a message for PS with the form:

EPKPS (IDJA, EKAB (EB , grB)) ,

where PKPS is the public key of PS, KAB is the shared secret between uA and
uB, EB is the entry point of uB, and rB is a randomly generated number. PS
decrypts the message with its private key, and checks if a user with identifier
IDJA is connected. If this is the case, then it forwards EKAB (EB , grB) through
the presence circuit of uA; otherwise, it ignores uB’s request.
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When uA gets the message from PS, she tries to decrypt it with all her contact
keys. When she identifies that the right key is the one corresponding to uB, she
retrieves the entry point EB of uB and grB . uA may now decide to communicate
with uB. We note that, if uA decides to ignore uB’s request for communication,
uB does not know whether or not uA received the request, or even whether she is
online. Should uA be willing to talk to uB, she requests her entry EA to prepare
a bridge to EB for the next epoch. At the beginning of the communication,
uA sends the second part of the Diffie-Hellman key exchange, grA , so that the
conversation is encrypted with a session key kAB = grArB .

In order to preserve forward secrecy of requests for communications, uA and
uB update their shared key KAB. In this way, neither of them can be coerced
to decrypt an earlier intercepted message. The new key K ′

AB is computed as:
K ′

AB = H(kAB, KAB).
There are some differences between Drac’s presence mechanism and Apres [20].

The most important one concerns the way ID’s are managed. In Apres, the ID’s
correspond to relationships (i.e., uA and uB share IDA+B,) and when uA con-
nects to the presence server she provides all the ID’s she shares with her contacts,
plus some extra ones to prevent the server from identifying her by her number
of ID’s. The main disadvantage of this approach is that, even in the absence of
communications, the presence server can see the number of online user relation-
ships. Given a clustered group of contacts who are often online, the presence
server may be able to identify the relationships and link the identities between
epochs.

3.3 An Epoch in Drac

Figure 1(right) shows the adversary’s observation of an epoch in which users
{uA, . . . , uF} are online in Drac using D = 2 (for simplicity, we denote user uX

as X in the reminder of this section.) We omit the connections to the presence
server in the figure for the purpose of this example. The communication circuits
(represented as - - -) created by the users are the following: A-C-D, B-C-B, C-
D-E, D-E-F, E-B-C, and F-E-B. The last node in each circuit is the entry point
of the initiator of the circuit, e.g., D is EA, the entry point of A. Besides, a
secure link (represented as ) has been created between every pair of nodes
that route a circuit. Note that there is no link between A and F, because no
circuit is relayed through them. However, the adversary can still observe the
heartbeat connection between them (represented as · · · .)

In the epoch shown in the figure two communications are taking place. First, F
and B are communicating. As both share the same entry point (EF =EB=B,) no
bridge is created and the communication is fully unobservable for the attacker.
A and D are having the second conversation, and they have created a bridge
between their entry points EA=D and ED=F (represented as .) Although
this bridge is distinguishable by the attacker, it is not possible to determine from
the observation that A and D are the communication end points. For example, a
plausible alternative that would yield the same observation would be that there
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is only one communication between D and F, and that the circuits are as follows:
A-C-D, B-C-D, C-B-C, D-E-F, E-B-E, and F-E-D.

By looking at the circuit connections, the adversary is not able to link users
with their entry points because they not only send messages through their own
circuit, but also act as “mixes” [6] relaying the traffic of others. Thus, when
several circuits traverse a node it is not possible for the adversary to distinguish
which input circuit corresponds to which output. As noted in the previous sec-
tion, all connections must be activated synchronously at the beginning of an
epoch. Otherwise, the adversary would see connections ripple down the network
when they are created and be able to link users with their entry points. Thus,
users must prepare connections in advance during the previous epoch, using the
heartbeat channels. For this they have to i) perform key exchanges with all nodes
in the circuit to their entry points, ii) find the entry points of the contacts with
whom they want to communicate, and iii) instruct their entry point to prepare
a bridge to their contact’s entry points. We note that this procedure requires
users to register their identities for the next epoch when they sign up in the
presence server. If two friends want to communicate, they do not need to find
their corresponding entry points, but just inform each other through their direct
heartbeat connection.

In this paper we restrict our analysis to one epoch, and leave the study of the
epoch duration’s impact on performance, usability, and security as a subject of
future work.

4 Evaluation

4.1 Experimental Setup

In order to perform a preliminary analysis of the anonymity and unobservability
properties provided by Drac, we have implemented a software simulator.1 We
have tested three topologies for the network graph that describes how users
are connected to their friends: small-world networks [35], scale-free networks [2],
and random networks. We note that although these topologies do not necessarily
resemble real social networks, they are still of theoretical interest as they allow
us to study separately the effects of clustering and power law distributions on
the security properties of Drac. Experiments with real social network’s graphs
should be conducted in order to understand the level of protection offered by a
potential deployment of Drac.

The simulator generates networks of N nodes (users) with an average of f
edges (friends) selected according to the network topology, and f randomly se-
lected contacts. We simulate a single epoch per experiment. First we simulate
the epoch preparation phase, in which each user ui prepares a communication
circuit of depth D hops to her entry node Ei. In addition, users register at the
presence server through a heartbeat circuit of depth Dp. We denote the last
node in the presence circuit as EPi. We consider scenarios in which 10% of the
1 The code will be made available by the authors upon request.
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N users are communicating with contacts through bridges that connect their
respective entry nodes.

Second, we record the observation of the adversary after connections have been
activated in the beginning of the epoch. We recall that the adversary observes:

– The heartbeat connections between each pair of users ui and uj who share
a friendship relationship.

– The connections from the end of the presence circuits (i.e., from the entry
nodes EPi) to the presence server.

– The number of communication circuits routed between each pair of nodes ui

and uj , which is inferred by looking at the amount of bandwidth used.
– The bridge links Bij that connect the entry nodes Ei and Ej in a commu-

nication between two contacts ui and uj.

Given the observation of the adversary, in each experiment we randomly select
a target user and compute her presence anonymity, communication anonymity,
and communication unobservability as described in the next three sections. The
results shown in the following sections combine samples from a thousand ex-
periments for each simulation scenario. The baseline simulation scenario is a
small-world network of 500 users, with 10 friends and 10 contacts each, and cir-
cuit depths D and Dp of three hops. These are the default parameters used in
the experiments unless indicated otherwise.

4.2 Anonymity towards the Presence Server

We first examine the anonymity provided by Drac towards the presence server.
Let us consider a user uA who registers at the presence server with pseudonym
IDJA in a given epoch. The presence server knows that IDJA corresponds to a
node that is connecting to it through a presence circuit of depth Dp, which is
routed over the heartbeat connections. The last node in this circuit is visible to
the presence server, and we denote it by EPA.

In addition, we assume that the adversary can see all the heartbeat connec-
tions in the network. We recall that, as explained in Sect. 3, heartbeat connec-
tions exist between any two users who share a friendship relationship, and that
heartbeat traffic is always the same regardless of whether one, several, or no
presence circuits are routed over the heartbeat connection.

Given this information, IDJA may correspond to any of the users ui connected
to EPA by Dp hops in the network of heartbeat channels. Let Pri[EPA] be the
probability that user ui is uA. We compute Pri[EPA] by enumerating all possible
circuits that start at EPA and lead to ui after Dp hops, taking into account that
nodes may appear several times in the paths. Let Pi be the total number of such
paths leading to ui, Pri[EPA] is computed as:

Pri[EPA] =
Pi∑N

j=1 Pj

, 1 ≤ i ≤ N
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We compute the anonymity of uA towards the presence server as the entropy
HA of the distribution of Pri[EPA] over all users [11,30].

HA = −
N∑

i=1

Pri[EPA] log2 Pri[EPA]

Figure 2(left) shows the anonymity of Drac towards the presence server for small-
world (SW), scale-free (SF), and random (R) networks of sizes between N = 100
and N = 1000. The dashed horizontal line indicates the maximum achievable
anonymity for a network of size N , which is computed as log2 N . The ‘x’ marks
the median anonymity for 1000 experiments (each corresponding to an indepen-
dent target user,) and the vertical line traversing the ‘x’ indicates the first and
third quartiles of the distribution of anonymity results.
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Fig. 2. Anonymity towards the presence server, depending on the network size and
topology (left;) and on the depth of the circuits with the baseline parameters (right.)

As we can see in the figure, small-world network topologies provide the lowest
anonymity for any network size, and as the network grows their performance be-
comes worse compared to the other two topologies. This is due to the high degree
of clustering of small-world networks, which prevents Drac from taking full ad-
vantage of bigger networks: independently of the network size, uA’s connections
stay mostly in its own neighborhood. Random networks provide near-optimal
anonymity for small network sizes, but as the networks grow the best anonymity
performance is shown by scale-free networks. Scale-free networks show a power
law degree distribution and grow with preferential attachment. This implies that
these networks have some nodes with a very high degree, which grows with
the size of the network. High-degree nodes act as mixing hubs that increase
anonymity. We choose small-world network topologies in the remaining simu-
lation scenarios in order to test Drac in the least favorable conditions (highly
clustered networks) and estimate a lower bound on the anonymity that it offers.

The critical security parameter of the Drac system is the depth of the circuits
– which is a system design parameter, as opposed to the network topology or the
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average number of friends per user. As shown in Figure 2(right) longer presence
circuit depths increase the anonymity provided by Drac, at the cost of more com-
munication latency – as the messages need to travel more hops before reaching
their destination. In an real-world implementation of Drac, the depth parameter
Dp can be tuned to trade bandwidth, latency, and anonymity requirements for
any given network, as discussed in Section 5.

4.3 Contact Communication Anonymity

We recall that communications between friends are unobservable to the adver-
sary (see Sect. 3.1.) Let us consider that users uA and uF are contacts who are
communicating in a given epoch. We assume that the bridge connection BAF

between their respective entries, EA and EF , is observable to the adversary (i.e.,
we assume that EA and EF are not friends.) Note that this is a worst-case sce-
nario, as the bridge BAF may not be distinguishable to the adversary if EA and
EF are friends, and it is fully unobservable when both users share the same
entry; i.e., when EA = EF .

Starting from the fact that an observable bridge BAF evidences that two
contacts are communicating, we evaluate the anonymity of each of the two com-
municating users separately. This is done by analyzing which users may have
constructed a communication path ending, respectively, in entries EA and EF .
Note that this evaluation does not measure end-to-end anonymity. The reason
why it is not straightforward to compute end-to-end anonymity is because in
Drac the adversary does not have certainty that a given user is communicating,
as opposed to systems that do not use dummy traffic [8,14,29]. Information theo-
retic anonymity metrics [11,30] operate under the assumption that the adversary
knows that user uA is communicating, and then measure the uncertainty of the
adversary in identifying the other end of the communication (i.e., who talks to
whom.) In contrast, Drac provides communication unobservability properties,
implying that the adversary is not certain of who is talking in the first place.
The next section provides a preliminary analysis of unobservability in Drac. In
this section, we evaluate the anonymity of user uA with respect to an adversary
that observes the bridge at EA.

The analysis methodology is similar to the presence anonymity explained in
the previous section. The adversary explores all possible circuit paths of depth
D and records the frequency with which each user ui appears as initiator of the
candidate circuit that ends in EA. The main difference with the computation
of presence anonymity is that in this case the adversary can see the number
of circuits routed between each pair of nodes (by looking at the amount of
bandwidth used.)

Figure 3 shows the results of our simulations for the contact communication
anonymity provided by Drac in various network conditions. The left-hand side
of the figure compares contact communication anonymity for small-world (SW),
scale-free (SF), and random networks (R), of N = 100 to N = 1000 users. We
can see that small-world networks provide the lowest anonymity, while scale-free
networks provide the best anonymity of the three topologies, for similar reasons
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as pointed out in the previous section. We note the anonymity sets in this case are
smaller than for the presence circuits. The first factor reducing anonymity is that
the adversary has additional information with respect to presence – the number
of circuits per link. Another factor that reduces communication anonymity with
respect to presence anonymity is that communication links are more sparse than
heartbeat links. Users route on average D+1 communication circuits – regardless
of the size of the network and the average number of friends f – and several
circuits may be routed to the same friend. Thus, nodes will maintain fewer
communication links with friends than heartbeat connections – and at most, the
same.
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Fig. 3. Anonymity of contact communications towards a global passive adversary, de-
pending on the network size and topology (left;) and on the depth of the circuits with
the baseline parameters (right.)

For a constant circuit depth D, Drac provides more anonymity in bigger
networks (particularly for scale-free topologies.) We note though that the gap
grows between the achieved contact communication anonymity, and the maxi-
mum achievable (represented in the figure by dashed horizontal lines) – indicat-
ing that longer connection depth would be required to fully take advantage of
bigger networks.

In Figure 3(right) we show the variation of anonymity with the security pa-
rameter D. As we can see, increasing the depth of the circuits can push the
contact communication anonymity of Drac arbitrarily close to the maximum
achievable (for a given network size.)

4.4 Contact Communication Unobservability

In this section we provide a preliminary analysis of the unobservability of com-
munications between contacts provided by Drac. In particular, we look at how
well the adversary can correctly guess whether or not user uA is communicating
with a contact.
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Let C be the total number of contact communications taking place in a given
epoch, and let E be the set of entry nodes routing bridge connections for those
communications. If all communications create a bridge connection, then |E| =
2C; if m pairs of communicating contacts share the same entry node, then |E| =
2(C − m).

We denote by Pri[Ej ] the probability that ui is the user whose entry node is
Ej ∈ E . We compute Pri[Ej ] by enumerating all possible circuits that start at Ej

and lead to ui after D hops (note that
∑N

i=1 Pri[Ej ] = 1, but that
∑|E|

j=1 PrA[Ej ]
is not necessarily one.) The probability Pr[uA] that uA is one of the |E| users
communicating with a contact through any of the entry nodes in E is computed
as:

Pr[uA] =

∑|E|
j=1 PrA[Ej ]

∏|E|
k=1,k �=j(1 − PrA[Ek])∑|E|

j=1 PrA[Ej ]
∏|E|

k=1,k �=j(1 − PrA[Ek]) +
∏|E|

k=1(1 − PrA[Ek])

We assume that the adversary knows the total number of contact communi-
cations C, and can correctly identify all bridge connections. We construct the
following test to compare Drac to an ideal system that provides perfect unob-
servability – in which the adversary’s best guess is to choose at random:

– First, the adversary computes Pr[ui] for all users ui, 1 ≤ i ≤ N .
– The adversary constructs a set S with the 2C users with higher probabilities,

and another set R with 2C randomly chosen users. The set R models the
guess of the adversary for the ideal system.

– We randomly select a user uA who is communicating with a contact, and
we test if uA ∈ S, and if uA ∈ R. We repeat this experiment a thousand
times and compare the success rate of the Drac adversary with respect to
the success rate of ideal system’s (random) adversary.

– We perform the same experiment choosing a user uZ who is not communi-
cating, and compare the success rate of the adversaries of Drac and the ideal
system by testing the rate with which uZ ∈ S, and uZ ∈ R.

Figure 4 shows the results of our tests for a small-world network of 500 nodes
in which there are C = 25 contact communications, each involving two users.
The left-hand side of the figure shows the results of our test for a user uA who
is communicating. As we can see, when connections have depth D = 1 the
adversary is able to correctly guess that uA is communicating in more than half
of the experiments. When the depth increases to D = 4, the advantage of the
Drac adversary becomes negligible with respect to the adversary of the ideal
system (who guesses at random.)

The right-hand side of the Figure 4 shows the results when testing a user
uZ who is not communicating. As in the previous case, the Drac adversary has
an advantage for small circuit depths D, but as D increases her success rate
becomes no better than random guessing.
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Fig. 4. Comparison of Drac and random adversary success rate in determining that a
user is communicating, given that when 10% of the users are communicating. The left-
hand side shows the results for a user uA who is communicating, and the right-hand
side for a user uZ who is not communicating.

5 Discussion

We have so far provided a high-level description of Drac. In this section we
discuss some specifics regarding real world performance, trade-offs, overheads
and details of the trust model.

Drac is designed to support real-time, low-volume communications such as
IM and controversially VoIP. What makes VoIP different from web-traffic is the
extreme predictability of the traffic of a VoIP call, despite the tighter require-
ments to make it useable. A mouth-to-ear delay of more than 50 ms makes voice
reflection annoying and a delay of more than 250 ms makes a two-way conver-
sation difficult. As an indication the free Speex2 codec allows for a sampling
rate of 8 kHz and a bit rate of 2.15 kbps (say 3 kbps to take into account some
cryptographic overhead). A compressed sample is generated for every 20 ms of
speech, with a look-ahead of 10 ms; i.e., 50 packets a second at a sampling rate
of 8 kHz, which corresponds to telephony quality. Each node in Drac needs to
establish two such channels (2 kpbs) one for incoming and one for outgoing voice,
relayed though multiple nodes. This bandwidth is well within the capabilities of
contemporary broadband connections, and a dedicated infrastructure could be
cheaply built using off-the-shelf routers to support large number of calls (e.g., for
a diplomatic network). Since VoIP is delay sensitive, it is reasonable for nodes
to discard packets that have been sitting in a queue for longer than 250 ms,
indicating that a UDP based implementation [28] would be preferable for Drac.
IM traffic has much less stringent requirements, with a couple of messages a
second being necessary, each only a few hundreds of bytes long.

As discussed in the evaluation section the length of the path of each circuit
is a key security parameter in Drac. This length is also the key contributor to

2 http://www.speex.org

http://www.speex.org
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the overhead of the system: D + 1 hops per node would mean that the system
would consume N · (D + 1) · 2 · 3 kbps at any time, even if there are no calls in
progress (each node will be expected to carry (D + 1) · 2 · 3 kbps on average.)
Research suggests that denial-of-service attacks become more likely when paths
are longer [4], but the friend-of-a-friend topology used to route makes it less likely
that malicious nodes are present on any hop of short paths. Finally, although
in this paper we have assumed that D and Dp are constant for all users, there
might be some advantages in allowing users to specify their own circuit lengths,
as the adversary has to guess the length as well as the exact sequence of nodes
in the circuit.

The trust model used in Drac is one of the most novel, and controversial
design choices. We argue that relaying communications over a friend-of-a-friend
network provides some security advantages. First, it makes denial-of-service and
related attacks [4] less likely, and social defenses against sybil attacks can be
readily deployed [10]. Moreover, circuit creation does not require a centralized
directory and trust infrastructure, which favors network scalability. Drac also
avoids network discovery and random sampling attacks present in other peer-to-
peer designs [21]. Users have incentives to route traffic [1] for their friends, and
the relative stability of a social graph allows for tit-for-tat strategies to penalise
free-loading. Finally, the stability of the social graph also invalidates the models
of many traffic analysis attacks that assume anonymity sets to contain a random
selection of users alongside the target: filtering out the correlated “noise” from
those anonymity sets will be nuch more difficult under Drac.

On the down side, paths over social graphs need to be longer to achieve good
levels of anonymity, and the length depends on the mixing properties of the
social graph [7]. Finally, this design choice exposes the long term social network
of the user to the adversary: in many cases the purpose of an anonymity network
is hiding exactly those relationships. We have taken the view that long term
relations are doomed to be exposed through long term attacks [19]. We instead
opt to make those visible to better anonymize casual conversations with unusual
contacts. Despite the fact that a relation is visible, actual communication events
between friends are designed to be unobservable – a stronger guarantee than the
usual anonymity. These choices present a novel trust and protection profile in
the anonymity design space.

6 Conclusions

Drac is the first system to be designed to withstand a global passive adversary to
protect instant messaging or voice-over-IP conversations. The low-volume and
regularity of such traffic makes the use of padding practical, compared with
padding high variance connections carrying web-traffic. The overhead of Drac
is still high, as users relay circuits over each other all the time. We argue that
for IM this overhead is still practical, since the original traffic volumes are low
to start with. For VoIP a broadband connection should suffice to participate in
Drac, following the current “volunteer” model of Tor [14]. For other deployments
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a dedicated IP infrastructure could also be reasonable – as some high-profile
recent communication security failures illustrate, even some well funded state
level actors do not currently have a secure traffic analysis resistant diplomatic
network [33]. Our design for Drac could perfectly well fulfill that role.

The design of Drac also borrows features from peer-to-peer designs that sup-
press the distinction between users and infrastructure, with the novel twist of
using a friend-of-a-friend network as a communication and trust backbone. This
seriously limits the potential for sybil attacks, provides incentives for relaying
traffic, and leads to more stable anonymity sets. All these features require a re-
newed analysis of past attacks to incorporate them, but we are hopeful they will
present advantages over the traditional model of routing over a random graph.

Finally, Drac is fundamentally different from other designs regarding the se-
curity properties it provides: it reveals the social graph to the adversary, but
provides a stronger property – unobservability of communications. Anonymity
is provided when pseudonymous contacts have a conversation. This mixture
of properties is likely to be useful in different contexts from the traditional
anonymity properties that try to hide relationships against a partial adversary.
Our analysis of these properties, albeit preliminary, seems promising but many
of the definitions, attacks, and analysis frameworks in the literature will have to
be adapted to this new context. This work is a first contribution in this direction.
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Abstract. Web search has become an integral part of our lives and
we use it daily for business and pleasure. Unfortunately, however, we
unwittingly reveal a huge amount of private information about ourselves
when we search the web. A look at a user’s search terms over a period of
a few months paints a frighteningly clear and detailed picture about the
user’s life. In this paper, we build on previous work by Castellà-Roca et
al. (Computer Communications 2009) and show how to achieve privacy
in web searches efficiently and practically without resorting to full-blown
anonymous routing. In contrast to previous work, our protocol is secure
in the presence of malicious adversaries.

1 Introduction

It is well known that users’ search terms to web search engines contain significant
amounts of sensitive information and, as such, the aggregation and use of these
terms constitutes a severe privacy breach. The only way that a user can protect
him or herself from this breach today is to use an anonymous routing system like
Tor [7]. However, this can sometimes be an “overkill” measure. This is especially
the case since in order to achieve a high level of security, such systems cause a
considerable slowdown.

Recently, an interesting model for solving this problem was suggested by [2].
Essentially, their proposal is for a group of users to first shuffle their search words
amongst themselves. After the shuffle, each user has someone’s search word (but
doesn’t know whose), and the parties then query the search engine with the
word obtained. Finally, the parties all broadcast the result to all others. This
model is especially attractive because it doesn’t involve the overhead of installing
a full-blown anonymous routing system, and can be provided as a simple web
service.

In [2], the authors present a protocol for private web search in the above
model that is secure in the presence of semi-honest adversaries. That is, users’
privacy is maintained only if all parties follow the protocol specification exactly.
We argue that this level of security is not sufficient, especially due to the fact
that the protocol of [2] has the property that a single adversarial participant
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can easily learn the queries of all users, without any malicious behavior being
detected. This means that an adversarial entity who is a participant in many
searches can learn all of the users’ queries without any threat of retribution.

Our results. In this paper we construct a protocol for private web search in the
model of [2] that is secure in the presence of malicious adversaries that may
arbitrarily deviate from the protocol specification in order to attack the system.
Our main technical tool is a highly efficient cryptographic protocol for parties
to mix their inputs [3] that guarantees privacy in the presence of malicious
adversaries. Unlike the usual setting of mix-nets, here the parties themselves
carry out the mix. The novelty of our approach is based on the observation that,
unlike the setting of voting where mix-nets are usually applied, the guarantee of
correctness is not necessary for private web search. That is, we allow a malicious
participant to carry out a “denial of service” type attack, causing the search
to fail. In return, we are able to omit the expensive zero-knowledge proofs of
correctness in every stage of the mix.

We stress that simply removing the correctness proofs from a standard mix
protocol yields a completely insecure protocol that provides no privacy. For ex-
ample, we still have to deal with “replacement attacks” where the first party
carrying out the mix replaces all of the encrypted search words with terms of
its own, except for the one ciphertext belonging to the user under attack. In
this case, the result of the mix completely reveals the search word of the tar-
geted user (because all other search words belong to the attacker). Our solution
to this problem (and others that arise; see Section 3) is based on the following
novel idea: instead of inputting search words into the mix, each party inputs
an encrypted version of its search word. Then, after all stages of the mix are
concluded, each party checks that its encrypted value appears. If yes, it sends
true to all parties, and if not it sends false. If all parties send true, they can then
proceed to decrypt the search words because this ensures that no honest party’s
search word was replaced. However, this raises a new challenge regarding how
to decrypt the encrypted search word. Namely, a naive solution to the problem
fails. For example, if each party encrypted their search word using a one-time
symmetric key, then sending this key for decryption reveals the identity of the
party whose search word it is. We therefore use a “one-time” threshold encryp-
tion scheme based on ElGamal [8] and have the parties encrypt the search words
with the combined key. The parties then send their key-part in the case that
all parties sent true (a similar idea to this appears in [2] but for a different pur-
pose). We call this a private shuffle in order to distinguish it from a standard
mix-net. We provide a formal definition of security for a private shuffle and have
a rigorous proof of security under this definition.

As we have mentioned, the private shuffle is the main technical tool used for
obtaining private web search. However, as is often the case, the cryptographic
protocol at its core does not suffice for obtaining a secure overall solution. In
Section 5 we therefore discuss how a private shuffle primitive can be used to
obtain private web search, and in particular how to bypass non-cryptographic
attacks that can be fatal. One major issue that arises is how to choose the group
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of participants, and in particular, how to prevent the case that the adversary
controls all but one participant (in which case the adversary will clearly learn
the input of the sole honest party). This issue was not addressed in previous
solutions.

Related work. A number of different anonymity-preserving techniques can be
used in principal for private web search. For example, private information re-
trieval [4,11] provides the appropriate guarantees. However, it is far too ineffi-
cient. A more natural candidate is a to use a mix-net [3]. However, as we have
mentioned, considerable expense goes into proving correctness in these protocols.
In addition, doing this efficiently and securely turns out to be quite a challenge;
see for example [10,6]. For further comparisons of existing techniques to the
model that we adopt here, we refer the reader to [2] and the reference within.
We remark that our protocol is about twice as expensive as the protocol of [2],
and thus the efficiency comparisons between their solution and other existing
techniques can be extrapolated to our solution. (For some reason, however, they
used ElGamal over Z

∗
p with a large p instead of an Elliptic curve group that

would be considerably more efficient.) Our solution has some similarities to that
of [2]. However, their protocol suffers from a number of attacks in the case of
malicious adversaries, as described below in Section 3.

2 Definitions

In this section we present our definition of security for a private shuffle primitive.
The shuffle functionality is simply the n-ary probabilistic function f(x1, . . . , xn)
= (y1, . . . , yn), such that for every i, yi = xπ(i) where π is a random permutation
over [n]. Intuitively, a shuffle is private if an adversary cannot link between the
inputs of the protocol and the outputs of the protocol. Namely, the adversary
should not be able to link yj to an honest party Pi where j = π(i). Denoting
the number of corrupted parties by t, we have that a random guess regarding a
“link” is correct with probability 1

n−t . Thus, we formalize security by requiring
that an adversary controlling t parties can output (i, j) where Pi is honest and
j = π(i) with probability that is at most negligibly greater than 1

n−t .

The security experiment. We assume that the parties communicate over an
open network with unauthenticated channels. We model this network by having
all communication go through an adversary that can listen to all the communica-
tion, delete messages and inject messages of its choice. This is formally modeled
by providing the adversary with stateful oracles that model the honest parties, as
in [1]. The experiment modeling the success of the adversary appears in Figure 1.

Defining security. We are now ready to define security. First, we require non-
triviality, meaning that if all parties are honest, then the protocol output is a
permuted vector of the inputs. Next, we require that an adversary controlling t
out of the n parties can succeed in the experiment ExptShuffle with probability
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FIGURE 1 (The Security Experiment ExptShufflet,n
A,π(k))

1. Invoke the adversary A with input 1k and with parameters t and n (k is
the security parameter determining the key sizes).

2. Receive from A a set of t indices I ⊂ [n] designating the corrupted parties
(note that |I | = t), and a vector of n − t distinct inputs w1, . . . , wn−t for
the honest parties.

3. Choose a random permutation π over {1, . . . , n − t} and initialize the ith
honest-party oracle with input wπ(i).

4. Execute the shuffle protocol, where A interacts with the n − t oracles
(who each runs the shuffle protocol honestly based on messages received
from A).

5. When it concludes, the adversary outputs a pair (i, j) for any i, j of his
choice.

We say that the adversary succeeds in the experiment, in which case the output
of the experiment ExptShufflet,n

A,π(k) equals 1, if and only if π(i) = j.

that is only negligibly greater than 1
n−t (where negl is a negligible function if for

every polynomial p and all large enough k’s it holds that negl(k) < 1/p(k)):

Definition 2. A protocol π is a private shuffle if it is non-trivial, and if for
every probabilistic polynomial-time algorithm A, every integer n ∈ N and every
0 < t < n, there exists a negligible function negl(·) such that:

Pr
[
ExptShufflet,n

A,π(k) = 1
]
≤ 1

n − t
+ negl(k)

3 Constructing a Private Shuffle

In order to motivate our construction, we begin by describing the protocol of [2]
that is secure in the presence of semi-honest adversaries. We then describe the
difficulties that arise when moving to the malicious model. A basic tool that is
used is called ElGamal remasking. Intuitively, a remasking operation is a pro-
cedure that takes a ciphertext and rerandomizes it so that the result cannot be
linked to the original ciphertext. Recall that an ElGamal encryption of a mes-
sage M with public-key (g, y) is computed by choosing a random r ∈ Z∗

q (where
the group has order q) and computing u = gr and v = yr · M ; the ciphertext is
the pair c = (u, v). The remasking operation is computed as follows:

remask(u, v) = (u · gr′
, yr′ · v)

where r′ ∈R Z∗
q . Observe that when (u, v)=(gr, yr ·M) it follows that remask(u, v)

= (gr+r′
, yr+r′ ·M) and so it is a valid encryption of the same message under the

same public key. The fact that remask(u, v) cannot be linked to (u, v) is due to
the fact that r′ is random and follows from the decisional Diffie-Hellman (DDH)
assumption. An informal description of the protocol of [2] appears in Protocol 3.
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Protocol 3 (The protocol of [2] for semi-honest adversaries (overview))

• Parties P1, . . . , Pn generate a joint ElGamal public key y =
∏n

i=1 gxi , where
xi denotes the private key of each party.

• Every party Pj encrypts its search word wj using the joint public key,
obtaining c0j = (u0

j , v
0
j ), and sends it to everyone.

• For every i = 1, . . . , n, party Pi does the following:
– Remasks the ciphertexts (ci−1

1 , . . . , ci−1
n ) it received from Pi−1.

– Randomly permutes the remasked ciphertexts.
– Sends the shuffled and remasked ciphertexts to Pi+1, except for party Pn

who broadcasts the result to all the parties.

• Given the shuffled and remasked ciphertexts (cn
1 , . . . , cn

n), each party Pi

decrypts a single ciphertext cn
i = (un

i , vn
i ). This is carried out as follows:

– Each party Pj sends each Pi the share (un
i )xj for every i, j ∈ {1, . . . , n},

where xj is Pj ’s private key.

– Given the shares from all parties, each Pi computes wi =
vn

i∏n
j=1(u

n
i )

xj

Although Protocol 3 was defined for the semi-honest model, it is instructive
to see what attacks can be carried out by a malicious party:
Stage-skipping attack: A malicious party Pn may remask and permute the

initial vector of ciphertexts sent by the parties instead of the vector that it
received from Pn−1. In this case, when the vector is decrypted Pn will know
exactly which party sent which message. Observe that this behavior would
not be detected because the remask operation looks identical when applied
once or n times.

Input-replacement attack: A malicious party P1 can learn the input wj of
an honest party Pj by replacing all the ciphertexts in the input vector with
individually remasked copies of the initial ciphertext (u0

j , v
0
j ). In this case,

all of the parties receive wj ; in particular P1 receives wj and so knows the
search term of Pj .

Targeted public-key attack: A malicious Pn may compute its share of the
public key after given all of the gxi values of the other parties. Specifically,
Pn sets its share of the public-key to be h = gxn/(

∏n−1
i=1 gxi) for a random xn.

Observe that any encryption under y =
∏n

i=1 gxi is actually an encryption
under gxn only because h · y = gxn . Thus, Pn can decrypt the values of all
parties and learn who sent what. Once again, this attack would go completely
unnoticed.

Private shuffle for malicious adversaries. We now motivate our protocol
for private shuffle that achieves security in the presence of malicious adver-
saries. First, in order to guarantee privacy, we need to ensure that at least one
honest user remasks and permutes all of the ciphertext values. This involves
ensuring that all parties take part in the shuffle and that the parties shuffle the
actual input values (that is, we need to ensure that neither a stage-skipping nor
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Protocol 4 (Private Shuffle with Malicious Adversaries)

Input: Each Pj has a search word wj , and auxiliary input (g, q) as described.

Initialization Stage:

1. Each party Pj chooses random αj , βj ∈ Z∗
q , sends gαj , gβj to all the other

parties and proves knowledge of αj , βj using a zero-knowledge proof of
knowledge. Pj signs the message it sends together with the identifier sid
using its certified private signing key (from the PKI).

2. Each party verifies the signatures on the messages that it received and
aborts unless all are correct.

3. Each party Pj encrypts its input wj using the public gαi shares of all the
other parties. That is, it chooses a random ρj ∈R Z∗

q and computes an

encryption cj = (gρj , gρj ·
∑n

i=1 αi ·wj). (The value g
∑n

i=1 αi is computed by
multiplying all of the gαi values received in the previous stage.)

4. Each party Pj re-encrypts its ciphertext cj using the public gβi shares:
(a) The party computes Δ0 =

∏n
i=1 gβi = g

∑n
i=1 βi

(b) It chooses a random value ρ′
j ∈R Z∗

q

(c) It encrypts cj by computing (u0
j , v

0
j ) = (gρ′

j , (Δ0)
ρ′

j · cj) and sends the
result to all the other parties.

The output of this phase is the list of the encrypted cj ’s of all the parties,
denoted μ0 = 〈(u0

1, v
0
1), . . . , (u

0
n, v0

n)〉.
Shuffle stage: For j = 1, . . . , n, party Pj receives vector μj−1 and computes
a shuffled version μj as follows:

1. For every (uj−1
i , vj−1

i ) in μj−1, party Pj carries out the following steps:
(a) Remask: it chooses a random ri

j ∈ Z∗
q and computes

(u′
i, v

′
i) = (uj−1

i · gri
j , vj−1

i · (Δj−1)
ri

j ) where Δj−1 = g
∑n

i=j βi

where the computation of Δj−1 can be carried out using the gβi values
sent in the initialization phase.

(b) Remove βj : it computes (uj
i , v

j
i ) = (u′

i, u
′(−βj)

i · v′
i)

2. Pj chooses a random permutation πj over {1, . . . , n} and applies it to the
list of values (uj

i , v
j
i ) computed above; denote the result by μj .

3. Pj sends μj to Pj+1.

The last party Pn sends μn to all parties.

Verification stage:

1. Every party Pj checks that its encryption cj of wj under public key∏n
i=1 gαi is in the vector μn. If yes it sends (sid, Pj , true), signed with

its private signing key, to all the other users. Otherwise it sends (Pj , false).
2. If Pj sent false in the previous step, or did not receive a validly signed

message (sid, Pi, true) from all other parties Pi, then it aborts. Otherwise,
it proceeds to the next step.

Reveal stage:

1. For every (ui, vi)
def
= (un

i , vn
i ) in μn, party Pj removes its αj from the en-

cryption by sending sj
i = u

αj

i to Pi (including sending sj
j = u

αj

j to itself).

2. After receiving all the shares si
j , every party Pj computes wj =

vj∏n
i=1 si

j
,

thereby removing the second layer of encryption and recovering the clear-
text word wj (here j denotes the current index in μn and not the index of
the party who had input wj at the beginning of the protocol).
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input-replacement attack is carried out). The classic way of achieving this in
the mix-net literature [3,10,6] is to have each party Pi prove (at each stage)
that the values that it passed onto Pi+1 are indeed a remasked and permuted
version of what Pi received from Pi−1. However, this is a costly step that we
want to avoid. We therefore provide an alternative solution that is based on a
two-stage protocol with double encryption of each input. In the first stage the
parties shuffle the inputs without verifying correctness, while gradually removing
the outer encryption. Then, at the end of this stage there is a verification step in
which all parties check that their input value is still in the shuffled array (under
the inner encryption). If all parties acknowledge that their value is present then
we are guaranteed that all parties participated in the shuffle and that no inputs
were replaced. We can therefore safely proceed to the second stage of the protocol
where the inner encryption is privately removed, revealing the shuffled inputs. In
addition to the above, we prevent the aforementioned targeted public-key attack
by having each party prove that it knows its associated secret key.

We note that in order to prevent a powerful man-in-the-middle adversary from
playing the role of all parties except for one, we assume the existence of a PKI
for digital signatures; see Section 5 for a discussion of how to achieve this in
practice. In addition, we assume that all parties hold a unique session identifier
sid (e.g., this could be a timestamp), and a generator g and order q of a group
for ElGamal.

Remarks on the protocol:

1. For the sake of efficiency, the zero-knowledge proof in the initialization stage
can be implemented by applying the Fiat-Shamir heuristic [9] to Schnorr’s
protocol for discrete log [12]. In order to achieve independence, we also in-
clude the sid and the party ID of the prover inside the hash for generating
the “verifier query”. It is also possible to use the methodology of [5] at the
expense of log n rounds of communication.

2. Observe that each input wj is encrypted twice under ElGamal. However,
the result cj of the first encryption is actually two group elements. Thus,
if the same group is used for both layers of encryption, then we need to
separately encrypt the two elements in cj . For the sake of clarity, we present
the protocol as if the second encryption under Δ0 is a larger group in which
encryption of both elements is achieved in a single operation.

3. In the first stage of the protocol every party participates in the shuffle.
However, as we will see in the proof it suffices to ensure that one honest
party participated. Thus, if we assume that at most t parties are malicious
(for t < n), then we can run the shuffle stage for j = 1 to t+1 only, reducing
the number of rounds from n to t + 1.

Non-triviality. The non-triviality requirement of a private shuffle is that if
all parties are honest then the output is a permutation of the input values
(w1, . . . , wn). We prove that this property holds for our protocol by following
a single message w� that goes through the protocol, and showing that all the
layers of encryption that are added are properly removed. For clarity, we present
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this for the case that no permutations are applied (and thus the indices remain
the same); this clearly makes no difference.
1. In the initialization phase the message w� is encrypted first with g

∑n
i=1 αi

(using random ρ�) resulting in c�, and then c� is encrypted with g
∑n

i=1 βi

(using random value ρ′�) yielding the pair (u0
� , v

0
� ) where u0

� = gρ′
� and v0� =

(Δ0)ρ′
� · c� = gρ′

�·
∑n

i=1 βi · c�.
2. Assume that before the jth iteration begins, the pair (uj−1

� , vj−1
� ) is an en-

cryption of c� under the ElGamal public key Δj−1 = g
∑n

i=j βi . This clearly
holds for j = 1 by the way (u0

� , v
0
� ) are generated. We show that this holds

after the jth iteration concludes. By the above assumption, before the jth
iteration begins, there exists a value r ∈ Z∗

q such that uj−1
� = gr and vj−1

� =
(Δj−1)r · c�. In the jth iteration of the shuffle stage, party Pj computes
u′

� = uj−1
� · gr�

j = gr+r�
j and v′� = vj−1

� · (Δj−1)r�
j = (Δj−1)r · c� · (Δj−1)r�

j =
(Δj−1)r+r�

j · cj . Thus (u′
�, v

′
�) constitute an encryption of c� under public-key

Δj−1.
Next Pj computes uj

� = u′
� = gr+r�

j and vj
� = u′−βj

� · v′�. It follows that vj
� =

g−βj(r+r�
j) ·Δr+r�

j

j−1 ·c� = g−βj(r+r�
j) ·g(r+r�

j)
∑n

i=j βi ·c� = g(r+r�
j)

∑n
i=j+1 βi ·c� =

Δ
r+r�

j

j · c�. We therefore conclude that after the jth iteration, the result is
an encryption of c� under Δj , as required.

3. From the above, we have that after all n iterations are concluded the value
c� is obtained in the clear (observe that Δn = g0 = 1).

4. Next, if all the parties are honest, then they all send true in the verification
stage, and all send P� the values si

� = uαi

� (for every i). Recall that c� =
(u�, v�) where u� = gρ� and v� = gρ�·

∑n
i=1 αi ·w�. Now,

∏n
i=1 si

� =
∏n

i=1 uαi

� =∏n
i=1 gρ�·αi . Thus, v� =

∏n
i=1 si

� ·w�, implying that v�∏n
i=1 si

�

= w�, as required.

We have proven that the output of the protocol consists of all the original inputs.
The shuffle function definition also requires that these be in a randomly permuted
order. However, since each party applies a random permutation to the vector of
ciphertexts, this immediately follows. We conclude that when all parties are
honest, the protocol computes the shuffle functionality as defined.

4 Privacy of Shuffle Protocol

The security of the protocol is based on the decisional Diffie-Hellman (DDH)
assumption. Informally, this states that an adversary can distinguish tuples of
the type (g, ga, gb, gab) from tuples of the type (g, ga, gb, gc), where a, b, c are
random in Z∗

q , with probability that is negligible in k (where k is the bit-length
of q). We have the following theorem:

Theorem 5. Assume that the decisional Diffie-Hellman (DDH)assumption holds
in the group of order q generated by g. Then, for every probabilistic polynomial-time
algorithm A, every integer n ∈ N and every 0 < t < n, there exists a negligible
function negl(·) such that:
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Pr
[
ExptShufflet,n

A,π(k) = 1
]
≤ 1

n − t
+ negl(k)

We now provide intuition as to why the above theorem holds. The most impor-
tant point is that as long as at least one honest party carries out the shuffle
(remask and permute) operation on the vector of inputs, the adversary can suc-
ceed in ExptShuffle with probability at most negligibly greater than 1/(n − t).
This is due to the fact that by the DDH assumption, no polynomial-time adver-
sary can link between an ElGamal encryption (ui, vi) and its remasked version
(u′

i, v
′
i), without knowing all βi values. Thus, after an honest party remasks and

permutes the values, the trail from the party who initially sent the relevant
encryption is lost. Of course, it is necessary to show that the reveal stage at
the end does not de-anonymize the values; however, this is straightforward. In
order to show that at least one honest party carried out the shuffle, we show
that unless the vector μn is the result of all parties carrying out the shuffle in
turn, the honest parties all abort (except with negligible probability). In order
to see this, we first argue that if an adversary carries out an input-replacement
or stage-skipping attack (as described above), then the honest parties all abort
except with negligible probability.

1. Input-replacement attack: The honest parties all encrypt their inputs wj

under g
∏n

i=1 αj and then re-encrypt the result under g
∏n

i=1 βj . Thus the ad-
versary does not know the value of the ciphertext cj which is the encryption
of wj under g

∏n
i=1 αj . Since this ciphertext value is of high entropy (even if

wj is not), it follows that if an honest party’s input Pj is replaced at any
stage of the computation, the correct cj will not appear in the verification
stage. In this case, Pj will send (Pj , false) and all honest parties will abort.
Note that since the true confirmation messages are signed, an adversary that
controls the communication channels cannot send a true message when the
actual Pj sends false.

2. Stage-skipping attack: This attack refers to a malicious party Pj remasking
and permuting a vector μi instead of μj−1, where i < j − 1 and an honest
party P� is between Pi and Pj (note that such an attack is not a replacement
attack). In order to see why such an attack is detected, recall that the gβj

component of the outer encryption is removed iteratively in each stage. Thus,
if Pj takes μi it follows that the encryption under gβ� is not removed. In
such a case, none of the correct ciphertexts (encrypted under g

∏n
i=1 αj ) will

be obtained and all honest parties will send false and abort. (This explains
why the βj components are removed iteratively, and not all together at the
end.)

The intuition is completed by observing that if an adversary does not carry
out an input-replacement or stage-skipping attack, then it holds that all honest
parties participated in the shuffle, as required. The full proof is omitted here due
to lack of space in this extended abstract; the full proof will appear in the full
version.
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5 Private Web Search

In this section we show how to use a private shuffle in order to achieve private
web search. As we will show below, a system for private web search needs to take
into account additional considerations that are not covered by the notion of a
private shuffle (or even a fully secure mix-net). In this section we address these
considerations, describe the assumptions that we make, and present a general
scheme that models real-world threats and is thus implementable in practice.

5.1 Background

As in [2], the basic idea of the scheme is to allow many users who wish to submit
a web query to team up in a group, shuffle their queries in a private manner
and then have each of them perform one of the queries without knowing who it
belongs to. Upon receiving back the query results, each party just sends them to
all others in the group so that the original party who sent the query can learn
the result. This methodology prevents the search engine from linking between
a user and its search query. Furthermore, the users in the group do not know
on whose behalf they send a query; all they know is that it belongs to someone
within the group. An important question in such a system is how to group users
together. One possibility is to do this in a peer-to-peer way, so that whenever a
user has a query it can notify the peer network in order to find out who else has
a query at this time. The parties with queries can then join in an ad-hoc way in
order to privately shuffle them before sending them to the search engine. (Note
that parties who are currently idle can help by sending dummy queries, if they
like.) This is a feasible model, but has significant implementation difficulties.
The alternative suggested by [2], and one that we follow for the remainder of
this section, is to use a central server whom anyone interested in searching can
approach. The server then notifies the parties wishing to currently search of
each others’ identities so that they can form a group in order to carry out a
private shuffle. This model is easily implemented by simply having the server be
a website offering a “private search” utility.

As we mentioned in the introduction, the problem with the scheme suggested
by [2] was that it assumed that all parties are semi-honest. In our view this is
highly unrealistic, especially since a single corrupt party can completely break
the privacy of the scheme and learn every party’s search query. We now show
how to achieve private web search in the presence of malicious adversaries. In
order to do this, we use the private shuffle protocol presented in Section 3 that
maintains privacy in the presence of malicious adversaries. We stress that private
shuffle within itself does not suffice for obtaining private web search in practice
for the following reasons:

1. A malicious central server can choose the group so that it controls all but one
user. As we explain below, this completely bypasses the security guarantees
of the shuffle.
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2. The result of the web search queries must be sent to all parties because we
don’t know which user sent which query. This means that users learn the
search results for all the members in their group, which is much more infor-
mation than necessary (although the search engine must learn all queries,
this is not the case for users).

Below, we will present a system for web search that uses the private shuffle
protocol, while addressing the above concerns.

5.2 A Private Web Search System

Our solution is comprised of four phases that together enable private web search:
• Phase 0: Installation and initialization

• Phase 1: Ad-hoc group setup

• Phase 2: Private shuffle of the search queries

• Phase 3: Query submission and private response retrieval
We remark that an ad-hoc group can be used for many searches, and ideally
would be used for a session of a reasonable amount of time. This enables us to
reduce the overhead due to running phase 1.

Phase 0 – installation and initialization: Our private shuffle protocol re-
quires a PKI and communication with a central server. A natural realization of
this would be as an Add-on to a web browser that would supply a functionality
which is similar to the search window in the most common web browsers. This
Add-on would contain the address of a central server (or a list of servers). Re-
garding the PKI, since most users do not have a certificate for digital signatures,
we have to generate one. The most practical way to do this would be to use a
one-time activation of the Add-on after installation, in which a key pair is gener-
ated and a digital certificate then downloaded from a CA. Recall that without a
PKI, the efficient verification in our private shuffle protocol does not guarantee
that it was the honest parties in the group that sent true in the verification of
the shuffle stage. We stress that a different certificate can be installed on every
machine using the Add-on.

Phase 1 – ad-hoc group setup: As mentioned above, users group together
with the help of a server S that aggregates the identities of users that wish to
currently engage in private web search. Conceptually speaking, in terms of role
and trust, the server should be no more than a bulletin board for anonymous
users who wish to create an ad-hoc group. In [2], the server was assumed to be
a trusted entity who does not collude with any of the users nor with the web
search engines. However, the role of grouping users together carries with it a
lot of power that can easily be abused. Specifically, consider a server that has
t ≥ n machines at its disposal (or even a single machine that can pretend to be
t different users), where n is the size of the group. Then, the server can always



Private Web Search with Malicious Adversaries 231

group some single honest user with n−1 of the t server-owned users. If an honest
user runs a private shuffle in this way, then its privacy is completely lost because
the server knows the search queries of all the users except for the honest one.
Thus, at the end of the protocol when all queries are revealed, the server knows
the exact query made by the honest user. We stress that this holds even if the
mix carried out is perfectly secure.

In order to prevent the server from grouping the users as it wishes, we have all
parties run a type of joint coin tossing protocol so that the t parties controlled
by a malicious server are uniformly distributed within all the groups running the
shuffle. Let N denote the overall number of parties in the system, let t denote
the overall number of parties under the control of the malicious server, and let n
be the size of each group running the shuffle. Our coin-tossing protocol uses two
random oracles H1 and H2. Each party Pi sends H1(IPi, PKi, ri) to the server
to be posted (where ri is a long random string). Then, the groups are formed by
applying H2 to all the values H1(IP1, PK1, r1), . . . , H1(IPN , PKN , rN ). Denote
the output of H2 by o = (o1, . . . , oN ) where each oi is of length log N . Letting
oi be the temporary name of party Pi, we have that the output of H2 induces
an order on the parties by taking the lexicographic ordering of the temporary
names. Using this order the users are grouped into groups of size n. Observe that
the server can choose the rj values in H1(IPj , PKj, rj) after it received all of the
honest parties’ H1 values (where Pj is a party under its control). Furthermore,
it can do so many times in an attempt to obtain a “bad group” in which all
but one party are under its control We therefore need to make sure that the
probability that a group is “bad” is very small (e.g., 10−40). This will ensure
that the server, after seeing the inputs from the honest users, still cannot find
input values that would create a “bad group” in sufficient time. The reason that
we use the random oracle H1 in the process of sending the inputs, instead of
just having the parties send (IPi, PKi, ri) is in order to protect the identities
of the users. Specifically, the server S will send the relevant IP addresses only
to the relevant group, and so only the server S providing the service knows the
history of which party participated in each group. As we will see below, it is
important to prevent this information from being leaked, especially to the web
search engine. Otherwise, statistical attacks can be carried out; see below for
more details. The group setup appears in Protocol 6.

We now analyze the security of Protocol 6. Recall that in the random oracle
model, the output of H2 is uniformly distributed every time that it is applied to
a new value. We begin by analyzing the probability that a bad grouping occurs
for a given set of values {(IPi, PKi, ri)}N

i=1. (Below we will analyze what this
means when the server is malicious.) We call a group “bad” if it consists of
n − 1 malicious parties together with a single honest party. Clearly, this is bad
because the server S then learns the search query of that party. The cases that a
group has only a few honest parties is also quite bad, but there is still ambiguity
regarding each user’s search term. Furthermore, in Section 5.3 we discuss how
to further improve this.
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Protocol 6 (Group setup protocol)
Let H1 and H2 be two random oracles where H1 : {0, 1}∗ → {0, 1}k and
H2 : {0, 1}∗ → {0, 1}N·logN . Let n be the size of each group for the shuffle. We
set the initial indexing of the parties according to the lexicographical order of
their IP addresses.

1. Each Pi chooses a random ri and sends H1(IPi, PKi, ri) to the center.
2. After a short predefined time everyone queries the center for the list of

parties who have registered.
3. Each party computes o = H2(H1(IP1, PK1, r1), . . . , H1(IPN , PKN , rN ))

and divides the result o into chunks of size log N , denoted o1, . . . , oN . Party
Pi is associated with oi and the list is sorted according to the oi values.

4. Grouping is carried out by taking groups of n parties according to the
sorting. That is, for i = 1, . . . , �N/n, the ith group Gi is set to be the
parties associated with the values (on·(i−1)+1, . . . , on·i).

5. The center sends the IP addresses of the group members to the members
of each group (i.e. each member gets only the IP addresses of the members
in its group).

6. Members of each group send each other their IP address, public key and
randomness that were used when registering with the center.

7. Each group member computes H1(IPj , PKj , rj) for every party Pj in its
group and verifies that it matches what was recorded by the center during
registration. In addition, it verifies that it received the IP address of all
parties that are in its group, by the computation of H2. If no, then it sends
abort to all the parties in its group.

Let badi denote the event that the ith group is bad as defined above. We
begin by computing the probability that the first group is bad; i.e., that bad1
occurs. Since the output of H2 is uniformly distributed, we can compute this
by counting the number of ways to choose n − 1 parties out of t malicious ones
times the number of ways to choose a single honest party, divided by the total
number of ways to choose a group of size n out of N parties. That is, we have:

Pr [bad1] =

(
N−t
1

) · ( t
n−1

)
(
N
n

) =
(N − t) · t!

(t−n+1)!(n−1)!

N !
(N−n)!n!

=
∏n−2

i=1 (t − i)∏n−1
j=1 (N − j)

· (N − t) · n

=
n−2∏
i=1

(t − i)
(N − i)

· N − t

N − n + 1
· n

Noting again that H2 is a random function, it follows that the above calculation
is true for any fixed group. Thus, the above gives the probability of badi for
every i = 1, . . . , �N/n	. As we have mentioned, a grouping is bad if there exists
a bad group. Thus, applying the union bound over all �N/n	 groups we have
that:
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Pr [∃ i : badi] ≤
N/n∑
i=1

Pr [badi] =
N

n
Pr [bad1] =

n−2∏
i=1

(t − i)
(N − i)

· N − t

N − n + 1
· N

Assuming now that N >> t, we have that Pr [∃ i s.t. badi] is approximately
( t

N )n−2 ·N . Concretely, consider the case of millions of users running this proto-
col, a malicious server S that controls a few thousand of them, and a group size
of about 20. In this case, we have that the probability that there exists a bad
group for a given set of H1 values is smaller than 106 · (103106 )18, which is 10−48.

We stress that the above analysis alone is not sufficient. This is due to the fact
that, as we have mentioned, it is possible for a malicious server S to modify the
H1 values many times in the aim of obtaining a bad grouping. Specifically, once all
honest parties have submitted their values, the server can repeatedly modify the
rj portion of party Pj ’s input to H1, where Pj is a malicious user under its control.
Since any change to any of the H1 values results in a completely different ordering
of the parties (because H2 is a random function), we have that the probability of
a bad grouping is T times the above, where T equals the number of hashes that
the server can compute in the required time interval. With the above example
parameters where the probability of a bad grouping is 10−48, the probability that
a malicious server achieves a bad grouping within seconds is very small.

Phase 2 – private shuffle of the search queries: Once the users have been
grouped together, they run the private shuffle protocol of Section 3. However, as
we discussed earlier in Section 5.1 (item 2 at the end of the section), we would
like to prevent the group members from learning all the search results. This
seems problematic because the parties do not know whose query they have and
they must therefore broadcast the result to everyone. We overcome this problem
by instructing each party to first choose a random symmetric encryption key kj

and then input the pair wkj = (wj , kj) to the shuffle. As we will see next, kj

will be used to encrypt the search result.

Phase 3 – query submissionand private response retrieval: After the shuf-
fle protocol is completed, each party holds a pair (w′, k′). Each party then submits
the search query w′ to the search engine and receives back the result. The search
result along with the original search term is then encrypted using the key k′ with
a symmetric encryption scheme (e.g., AES) and broadcast to all group members.
Each party attempts to decrypt all search results; the one that decrypts correctly
is its own result. In this way, each party only learns its own result and the result
of one other random user. Thus, privacy of the queries is better preserved.

5.3 Additional Considerations

We now address some of the issues that concern deployment of our scheme in
the real world and discuss the privacy that it provides.

Blending into a crowd: The main idea of our scheme is blending into a crowd.
The fact that millions of people from all over the world can participate in the
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protocol provides a strong sense of privacy, but consideration should be given to
the way different populations are grouped together. If 20 people from all over the
world are grouped together and all submit the query in their native language,
then it is easy to learn the query of each party based on the geographic location
of its IP address. When deploying such a system, consideration should be given
to these issues and blending into a crowd should actually be blending into a
crowd of people with similar characteristics.

The size of a group: Our private shuffle protocol provides anonymity with
respect to the size of the group; thus the bigger the group the more anonymity
one enjoys. Since the size of the group affects both the number of modular
operations each party needs to perform and the number of rounds in the private
shuffle protocol, the size of the group is bounded by the computing power of
the users’ computers and the acceptable latency. Nevertheless, it is possible to
hide in a larger group at the expense of more modular exponentiations but
without increasing the number of rounds, as follows. As we have described in
remark 3 after Protocol 4, if we can assume that the number of malicious parties
within a group is some t′ < n, then it suffices to run the shuffle stage for t′ +
1 rounds. Performing a similar analysis to the one above, we have that the
probability of having 19 malicious parties within a group of size 50 is actually
very close to the probability of having 19 malicious parties within a group of size
20 (when the total number of parties is about a million and the total number
of malicious parties is several thousand). Thus, if one can afford the additional
number of modular exponentiations that comes with increasing the group size,
we can enhance privacy significantly by increasing the size of the group, without
paying much more in latency. Observe that in this calculation a group is “bad” if
there are t′+1 malicious parties. Thus, if a group is not bad, each honest party’s
search query is guaranteed to be hidden amongst n − t′ other search queries.

Lifetime of a group: Our scheme creates ad-hoc groups that can be changed
over time. In terms of efficiency, it is easy to see that remaining within a group for
a while saves the cost of running the group selection process. However, users may
submit a query to the search engine and logout. In this case the group size would
shrink and if it is too small then privacy is compromised. This can be dealt with
by starting with a larger group and regrouping once the group becomes too small.

Statistical analysis and changing groups: In terms of privacy, it may seem
that the more often people change groups, the more privacy they gain. However,
this actually may not always be the case. Consider a central server that colludes
with the web search engine. The server S and search engine can then run a
statistical analysis to group together queries that are likely to belong to the
same user (e.g., by grouping together very low-probability queries). Now, if these
queries are carried out in different groups, then the server S can find the (most
likely) unique IP address that appears in all of the different groups, and conclude
that the queries originated from this address. Thus, changing groups can be
problematic. (Of course, without such collusion, this problem does not arise.)
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An additional privacy enhancement: The system presented above has the
property that each user’s search query is revealed to one other random group mem-
ber. However, in some cases a user may prefer to be able to say which user will sub-
mit and therefore learn their query (and which users will not learn their query). We
can extend our system for private web search to allow this by adding one more layer
of encryption to the messages, using the public key of the designated party. Specif-
ically, if a party Pj wishes to have party Pi be the one who submits its query, then
it encrypts wkj along with some redundancy (to verify the correctness when open-
ing) using gαi . Then Pj executes the private shuffle protocol with the encrypted
wkj . After the messages are shuffled, each party sends the message it received to
everyone else, and all parties decrypt the results. In this way, only the designated
party Pi is the one that can learn wkj and it will send the query.
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Abstract. As the popularity of social networks expands, the informa-
tion users expose to the public has potentially dangerous implications
for individual privacy. While social networks allow users to restrict ac-
cess to their personal data, there is currently no mechanism to enforce
privacy concerns over content uploaded by other users. As group photos
and stories are shared by friends and family, personal privacy goes be-
yond the discretion of what a user uploads about himself and becomes an
issue of what every network participant reveals. In this paper, we exam-
ine how the lack of joint privacy controls over content can inadvertently
reveal sensitive information about a user including preferences, relation-
ships, conversations, and photos. Specifically, we analyze Facebook to
identify scenarios where conflicting privacy settings between friends will
reveal information that at least one user intended remain private. By ag-
gregating the information exposed in this manner, we demonstrate how
a user’s private attributes can be inferred from simply being listed as
a friend or mentioned in a story. To mitigate this threat, we show how
Facebook’s privacy model can be adapted to enforce multi-party privacy.
We present a proof of concept application built into Facebook that auto-
matically ensures mutually acceptable privacy restrictions are enforced
on group content.

1 Introduction

In the last decade the popularity of online social networks has exploded. Today,
sites such as Facebook, MySpace, and Twitter combined reach over 500 million
users daily [1,2,3]. As the popularity of social networks continues to grow, con-
cerns surrounding sharing information online compound. Users regularly upload
personal stories, photos, videos, and lists of friends revealing private details to
the public. To protect user data, privacy controls have become a central feature
of social networking sites [4,5], but it remains up to users to adopt these features.

The sheer volume of information uploaded to social networks has triggered
widespread concern over security and privacy [6,7]. Personal data revealed on
social networks has been used by employers for job screening [8] and by local
law enforcement for monitoring and implicating students [9]. More sophisticated
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applications of social network data include tracking user behavior [10] and gov-
ernment funded monitoring [11]. Criminals have also capitalized on the trust
users place in social networks, exploiting users with phishing attacks and mali-
cious downloads [12,13].

The diverse set of threats posed to users has resulted in a number of refine-
ments to privacy controls [14]. However, one aspect of privacy remains largely
unresolved: friends. As photos, stories, and data are shared across the network,
conflicting privacy requirements between friends can result in information be-
ing unintentionally exposed to the public, eroding personal privacy. While social
networks allow users to restrict access to their own data, there is currently no
mechanism to enforce privacy concerns over data uploaded by other users. As
social network content is made available to search engines [15] and mined for
information [16], personal privacy goes beyond what one user uploads about
himself; it becomes an issue of what every member on the network says and
shares.

In this paper, we examine how the lack of multi-party privacy controls for
shared content can undermine a user’s privacy. We begin by analyzing situa-
tions in Facebook where asymmetric privacy requirements between two friends
inadvertently weaken one user’s privacy. This results in friends, tagged content,
and conversations being unintentionally exposed to the public and crawlers. Us-
ing our examples as a foundation, we develop a formal definition of privacy
conflicts to explore both the frequency and risk of information leaked by friends
which cannot be prevented with existing privacy controls.

The presence of privacy conflicts between friends results in scattered references
about a user appearing to the public, including being mentioned in a story,
listed as a friend, or tagged in a photo. While a single conflict may pose a
minimal risk to privacy, we show how the aggregate data revealed by conflicts
can be analyzed to uncover sensitive information. We develop a classification
system that uses publicly disclosed links between friends and the content of
leaked conversations to build predictions about a user’s gender, religious views,
political leaning, and media interests. While predicting personal attributes based
on friends has previously been examined [17,18,19,20], we present refinements
to these techniques that utilize auxiliary information about mutual friends and
the frequency and content of conversations to produce more accurate results.
Our techniques highlight how various leaks of seemingly innocuous data can
unintentionally expose meaningful private data, eroding personal privacy.

Using a data set of over 80,000 Facebook profiles, we analyze the frequency
of asymmetric privacy requirements between friends, uncovering millions of in-
stances where one user may potentially violate another user’s privacy. We then
process the aggregate information exposed by conflicts with our data analytic
techniques, finding we are able to predict a user’s personal attributes with up to
84% accuracy by simply using references and conversations exposed by friends.

To mitigate the threat of privacy conflicts, we show how the current Facebook
privacy model can be adapted to enforce multi-party privacy. We present two
proof of concept applications built into Facebook. One application simulates
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Facebook’s popular wall functionality, while the other simulates a user’s list of
friends. The applications automatically determine a mutually acceptable privacy
policy between groups of friends, only displaying information that all parties
agree upon. Policy arbitration and enforcement is completely transparent to
users, removing the risk of privacy conflicts without requiring user intervention.

2 Background and Motivation

Before describing the limitations of privacy in social networks, we present a brief
overview of privacy controls currently available to users. While the prospect of
friends and family weakening a user’s privacy exists in all social networks, we
restrict our analysis to Facebook given its status as the largest network with
over 400 million users [1].

Facebook provides each user with a profile consisting of a page containing
personal information, a list of the user’s friends, and a wall where friends can
post comments and leave messages, similar to a blog. A typical profile will contain
information pertaining to the user’s gender, political views, work history, and
contact information. Additionally, users can upload stories, photos, and videos
and tag other Facebook members that appear in the content. Each tag is an
unambiguous reference that links to another user’s profile, allowing a crawler to
easily distinguish between Bob, Alice’s friend and Bob, Carol’s friend.

Privacy restrictions form a spectrum between public and private data. On
the public end, users can allow every Facebook member to view their personal
content. On the private end, users can restrict access to a specific set of trusted
users. Facebook uses friendship to distinguish between trusted and untrusted
parties. Users can allow friends, friends of friends, or everyone to access their
profile data, depending on their personal requirements for privacy.

Despite the spectrum of available privacy settings, users have no control over
information appearing outside their immediate profile page. When a user posts
a comment to a friend’s wall, he cannot restrict who sees the message. Similarly,
if a user posts a photo and indicates the name of a friend in the photo, the
friend cannot specify which users can view the photo. For both of these cases,
Facebook currently lacks a mechanism to satisfy privacy constraints when more
than one user is involved. This leads to privacy conflicts, where asymmetric
privacy requirements result in one user’s privacy being violated. Privacy conflicts
publicly expose personal information, slowly eroding a user’s privacy.

3 Multi-party Privacy

To understand the risks posed by the lack of joint privacy controls in social net-
works, we construct a formalism for privacy conflicts that defines the situations
where a user’s privacy can be violated and the extent of information leaked.
To develop this formalism, we begin by analyzing scenarios in Facebook where
users can unintentionally violate one another’s privacy. We then deconstruct
these examples into a formalism that captures all potential privacy conflicts.
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This formalism plays an important role in Section 4 where we examine how in-
formation leaked by privacy conflicts can be analyzed to infer a user’s personal
attributes and in Section 6 where we show how Facebook can be adapted to
enforce multi-party privacy.

3.1 Exploring Privacy Conflicts

Social networks are inherently designed for users to share content and make
connections. When two users disagree on whom content should be exposed to,
we say a privacy conflict occurs. Multiple privacy conflicts can occur between
a user and his friends, each revealing a potentially unique sensitive detail. We
specifically analyze two scenarios in Facebook — friendship and wall posts — to
understand the types of information exposed by conflicts.

Friendship: A central feature of social networks is the ability of users to disclose
relationships with other members. Each relationship carries potentially sensitive
information that either user may not wish revealed. While Facebook provides
a mechanism to conceal a user’s list of friends, the user can only control one
direction of an inherently bidirectional relationship.

Consider a scenario where a user Alice adopts a policy that conceals all her
friends from the public. On the other hand, Bob, one of Alice’s friends, adopts a
weaker policy that allows any user to view his friends. In this case, Alice’s rela-
tionship with Bob can still be learned through Bob. We say that a privacy conflict
occurs as Alice’s privacy is violated by Bob’s weaker privacy requirements.

Wall Posts and Tagging: Wall posts and status updates provide users with a
built-in mechanism to communicate and share comments with other users. Each
post consists of a sender, receiver, and the content to be displayed. Facebook
currently allows only the receiver to specify a privacy policy. When Alice leaves
a message on Bob’s wall, she relinquishes all privacy control over her comments.
Similarly, if Alice posts to her own wall, she has sole control over who can view
the message, even if she references other users who wish to remain anonymous.
By ignoring the privacy concerns of all but one user, information can be exposed
that puts other friends at risk.

Consider an example where Alice makes a public comment on her own profile
stating “Skipping work with @Bob and hitting the bars at 9am”. Bob is unam-
biguously identified by the message, but cannot specify that the message should
not be broadcast to the public per his privacy policy. Alternatively, if Alice posts
on Bob’s profile about current relationship trouble, she cannot specify that the
message should only be visible by her friends, not all of Facebook.

Additional Conflicts: Friendship and wall posts represent only two of numer-
ous situations where Facebook and other social networks lack multi-party pri-
vacy. Group membership, fan pages, event attendance, photo tagging, and video
tagging are additional situations where multiple parties can be referenced by
data, but cannot control its exposure. Each exposure leaks sensitive information
about a user even if the strictest privacy controls available are adopted.
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3.2 Formalizing Privacy Conflicts

We now formalize multi-party privacy, creating a language to understand how
existing privacy controls can still lead to undesired exposures. Consider a single
social network user u in the set of all possible users U . We denote the pages owned
by u such as the user’s wall or friend list as the set Gu. For each page g ∈ Gu,
the user u can specify a privacy policy Pu(g) indicating set of users including u
who can view the page. For instance, Alice can create a policy stating everyone
can view her wall page. Here, u is Alice, g is the wall page, and Pu(g) is the set
of all of users u ∈ U . We call the policy Pu(g) the owner policy, as Alice controls
access to the data and can remove it at any time.

Each page g ∈ Gu contains a grouping of information I which may uniquely
reference one or more users represented by the set S(I). Here, Alice tagging Bob
and Carol in a wall post i can be represented by S(i) = {Bob, Carol}. In this
case, I is the set of all wall posts on the wall page g.

While the owner u of a page specifies the access restriction Pu(g), each user
referenced in the page will have a separate, potentially distinct privacy policy.
For instance, while Alice may allow all users to view her wall page, Bob may
desire all references of him be visible only to his direct friends. To capture this
variation, we say that for each user w ∈ S(I) there exists an exposure policy
Vw(g, I) that specifies a set of users permitted by w to view references in I
about w on page g. This allows both an owner and exposed user to specify a
policy for how data should be accessed, even if their policies are different. The
lack of exposure policies in existing social networks is what allows information
to be disseminated against a user’s will.

We state that a privacy conflict occurs between the owner u of a page g and
the users S(I) referenced by the page if:

∃i ∈ I : Pu(g) �
⋂

w∈S(i)

Vw(g, i) (1)

That is to say, if an owner policy allows any users other than those accepted
by all exposure policies to view a piece of information i ∈ I, there is at least
one exposure policy being violated on page g. Returning to our example, Alice’s
owner policy Pu(g) = U allows all users to view her wall page. This is in direct
conflict with Bob’s exposure policy Vw(g, I) ⊂ U which requires his posts to
be accessible only to his friends, not all users. Conversely, if Carol adopts an
exposure policy Vw(g, I) = U , then Alice and Carol are in agreement on the set
of users who can view the the information I on page g and no privacy conflict
exists.

An important consequence of Equation 1 is that as the number of users refer-
enced by a piece of information increases, in the absence of mutual friends, the
intersection of all exposure policies tends to the empty set. This implies that for
photos or wall posts referencing multiple users, it is likely that at least one user
is being exposed against their will to undesired parties.

Currently, Facebook and other social networks lack a mechanism to specify
an exposure policy. Instead, we can derive these policies based on the owner
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policy of each user. If Alice allows everyone to view her wall posts, her exposure
policy is the same; all references to her in other wall posts should be visible to
everyone. By using the formalism of owner policies and exposure policies, we
can systematically examine Facebook to identify privacy conflicts and show how
these violations can expose sensitive information.

3.3 Formalizing Exposed Data

Using our formalism of privacy conflicts, we can identify the set of all information
pertaining to a particular user w that violates w’s exposure policy. We denote
this set E(w) which contains all Facebook pages including friendships, wall posts,
and tags that leak information about w. We define E(w) as:

E(w) = {∀(u ∈ U, g ∈ G, i ∈ I) : Pu(g) � Vw(g, i)} (2)

The exposure set E(w) represents every piece of information throughout a social
network uploaded by other users that contains information about w despite w’s
intent to keep the information private. While a single leaked friendship or wall
post may pose a minimal risk to a user’s privacy, we show in Section 4 how the
entire exposure set can be used to infer a user’s personal attributes.

An important aspect of the exposure set E(w) is distinguishing information
visible to the entire social network from information exposed to a limited number
of users. Consider a situation where Alice posts a photo and tags Bob. If Alice
allows all users u ∈ U to view her photos and is in conflict with Bob’s exposure
policy, we say a global exposure has occurred. In this case, Bob’s information is
revealed to Facebook users that have no prior relationship with either Alice or
Bob. Conversely, if Alice exposes Bob’s information to a set of users that are
friends or friends of friends, we say a local exposure has occurred. While Bob’s
information is still being revealed against his will, only users that have some
pre-existing relationship with Alice can view the data, not all of Facebook.

4 Inference Techniques

While scattered details about relationships and conversations between users may
not pose an obvious threat to privacy, we present two classification systems that
utilize the aggregate information exposed by privacy conflicts to infer a user’s
sensitive attributes. These techniques highlight how seemingly innocuous data
leaked by friends can be used to infer meaningful private data, illustrating the
necessity of multi-party privacy in social networks. While predicting a user’s per-
sonal attributes based on friends has been previously examined [17,18,19,20], we
present improvements to these techniques that utilize auxiliary information in-
cluding wall posts, mutual friends, and the frequency of communication between
users to further refine predictions.
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4.1 Threat Model

The goal of classification is to infer properties about a user based on information
either intentionally revealed or unintentionally exposed due to privacy conflicts.
We assume that a user restricts access to his list of friends and wall posts and
that no a priori information about the user exists. Under this scenario, aggre-
gating personal data requires scouring a social network for privacy conflicts that
link back to the user. To accomplish this task, we assume the parties involved
are marketers, political groups, and monitoring agencies [10,11,16] who have the
resources, sophistication, and motivation to glean as much information from so-
cial networks as possible. We also assume the interested parties do not form
relationships with users or their friends to circumvent privacy controls. When
considering the success of gathering privacy conflicts and inferring a user’s per-
sonal information, we avoid any qualitative analysis of privacy risks such as the
damage incurred by a photo being made public. Instead, we attempt to predict
eight private attributes from data exposed by privacy conflicts. Four of the at-
tributes target personal information, including a user’s gender, political views,
religious views, and relationship status. The other four attributes target media
interests, including a user’s favorite music, movies, television shows, and books.

4.2 Analytic Techniques

In this section, we describe the development of two classifiers that take the set
of information exposed about a user throughout Facebook by friends and output
predictions about the user’s attributes. Currently, we restrict our classifiers to
analyzing leaked friend lists and wall posts. A successful prediction using leaked
data means that the details exposed by friends contain enough information to
further violate a user’s privacy, while an unsuccessful prediction means that the
leaked data was too limited to draw a meaningful conclusion about a user’s at-
tributes. When predicting personal attributes, only one prediction is correct; a
user can either be liberal or conservative, but not both. Conversely, media inter-
ests represent a multi-label classification problem where users can have multiple
favorite books and movies. When predicting media interests, we return up to ten
predictions and evaluate whether any one of them is correct.

Baseline Classifier. In order to quantify how access to auxiliary information
helps to improve predictions about a user’s attributes, we compare the accuracy
of each classifier we develop against a baseline classifier. For each attribute, the
baseline predicts the most frequent class within our data set. For multi-label
attributes such as a user’s favorite books where multiple predictions may be
correct, the baseline returns the top ten most likely classes.

Friend Classifier. Using links between friends that are publicly exposed by
privacy conflicts, the friend classifier attempts to predict a user w’s attributes
based on other Facebook members w associates with. While a link between two
users carries no explicit private data, the friend classifier builds on the assump-
tion that if two users are friends, they likely share correlated interests. The friend
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Fig. 1. Classification models for inference. Relationships and wall posts leaked by
friends can be used to determine properties about the user w. These values can then
be weighted based on the number of mutual friends or the frequency of communication
between two friends.

classifier begins by aggregating the publicly accessible features u appearing in
all of w’s friends’ profiles as shown in Figure 1(a). During single-label classifica-
tion, we limit the set of features aggregated to a friend’s gender, political view,
religious denomination, and relationship status. Multi-label classification takes a
different approach, where to predict a user’s musical interests, we only consider
the musical interests of his friends; all other features are ignored.

Rather than naively treating each of a user’s friends as being equally influ-
ential, classification attempts to distinguish between strong and weak relation-
ships and weight features appropriately. Given a relationship (w, f) between a
user w and a friend f , each feature u aggregated from f is represented as a tuple
(u, mu, wu). The weight mu equals the number of mutual friends shared between
(w, f) that are publicly known, as shown in Figure 1(b). The goal of including
mu is to reinforce clique structures which historically share similar interests [21],
while removing incidental relationships that are not part of the clique and likely
to perturb classification. A similar approach is taken for communication fre-
quency where the weight wu is set to the number of wall messages that w has
sent to f , as shown in Figure 1(c). Including wu helps to filter out friends that
rarely communicate, which was previously identified as a strong indicator of a
weak relationship [22].

The resulting list of tuples (u, mu, wu) is binned based on distinct features
and converted into a feature vector. For single-label classification, a multinomial
logistic regression [23] is used to classify every user and segment the feature space
into types of friends associated with a user having a specific attribute, such as
being male or female. For multi-label classification where the feature space is
much larger, a linear regression selects the ten most likely media interests from a
user’s friends exclusively, ignoring trends identified from classifying other users
and their friends. Successful classification for both techniques hinges on users
being biased in their selection of friends due to sharing similar interests, while
unsuccessful classification would indicate a user selects friends at random.

Wall Content Classifier. The wall content classifier attempts to predict a
user w’s personal attributes based on text recovered from w’s conversations with
friends. Classification begins by gathering all the wall posts written by w, but
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Fig. 2. Profile feature disclosure rates. Users readily supply their gender and media
interests, but rarely reveal religious views.

exposed to the public by w’s friends. Each post is then concatenated to create
a single document containing all of w’s discussion that is treated as a bag of
words. Using classic document classification techniques, the set of wall posts is
converted into a word vector where the associated frequencies of each word are
weighted using term frequency–inverse document frequency [24]. The resulting
word vectors from every user are classified using a multinomial logistic regression
that attempts to segment the feature space into words typically used by women
rather then men, or liberals rather than conservatives. Accurate classification
hinges on conversations between users differing along attribute boundaries, while
inaccurate classification indicates conversations between users are homogeneous
despite varying attributes among users.

5 Experimentation

Using the classifiers presented in Section 4, we analyze the accuracy of each
technique on two real world Facebook data sets.1 We begin by providing an
overview of our data set and the frequency of potential privacy conflicts, find-
ing that asymmetric privacy settings are common throughout Facebook. We
then examine the accuracy of each classifier and whether the intuition behind
each technique proved correct. Our results show classification using information
gleaned from privacy conflicts consistently outperforms predictions that lack the
auxiliary information, proving that conflicts can be analyzed to expose meaning-
ful sensitive information. Further, we find that accuracy is directly related to the
number of conflicts between a user and his friends. As more information is un-
intentionally exposed to the network, we can construct an increasingly accurate
image about a user, highlighting the necessity of multi-party privacy.

5.1 Data Set

Our experimental data set consists of over 83,000 real world Facebook user pro-
files as shown in Table 1. The profiles are drawn from two Facebook subnetworks
1 It is possible – if tedious – to manually or semi-manually gather Facebook profile data

without violating Facebook’s Terms of Service which prohibits automated crawling.



unFriendly: Multi-party Privacy Risks in Social Networks 245

Table 1. Our data set consists of two geographically distinct subnetworks of Facebook,
amounting to over 80,000 profiles used to identify privacy conflicts and infer personal
attributes

Statistic Network A Network B

Profiles in data set 42,796 40,544
Fraction of Facebook subnetwork 57.70% 52.92%
Number of friends 4,353,669 3,290,740
Number of wall posts 1,898,908 1,364,691

Fraction of profiles public 44% 35%
Fraction of profiles private 56% 65%

distinguished by geographic location, with 43,000 users associating themselves
with Network A and another 40,000 users with Network B. In addition to profile
pages, our data set contains over 7.5 million links between friends and 3.3 million
wall posts. Of the profiles in our data set, 44% of Network A members allow a
public user to view their data as opposed to 35% of Network B. This provides
us with a subset of over 33,000 profiles with publicly accessible information to
analyze for privacy conflicts. The rates which users reveal personal information
in their profiles are shown in Figure 2. We find that users readily supply their
gender (required when signing up for an account) and media interests, while less
than 15% reveal a religious affiliation. After a brief preprocessing phase to cor-
rect spelling errors, group semantically similar terms, and prune unlikely labels,
we identify 22 labels to describe personal attributes and over a thousand labels
for media interests.

5.2 Frequency of Privacy Conflicts

Analyzing our data set, we verify that asymmetric privacy requirements between
friends are a common occurrence. Using each profile in our data set, we examine
public lists of friends for references to private users. We repeat this same process
for wall pages, identifying messages written by private users that are exposed
by public pages. The results of our analysis are shown in Table 2. We identify
over 1.7 million relationships and roughly 700,000 wall posts referencing private
profiles that are publicly exposed by friends due to the lack of multi-party privacy
controls. This amounts to approximately 96 references per user in Network A

Table 2. Frequency of privacy conflicts between public and private users. An average
private profile in our data set has over 80 references publicly exposed by friends with
weaker privacy requirements.

Statistic Network A Network B

Number of exposed friends 1,012,280 612,387
Average exposed friends per profile 42.18 23.24

Number of exposed posts 407,278 289,877
Average exposed posts per profile 53.85 43.12
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Table 3. Classifier accuracy for profiles with more than 50 privacy conflicts, repre-
senting the upper 25% of our data set. Classifiers using leaked private information
consistently outperforms the baseline.

Profile Attribute # of Labels Baseline Friend Wall Content

Gender 2 61.91% 67.08% 76.29%
Political Views 6 51.53% 58.07% 49.38%
Religious Views 7 75.45% 83.52% 53.80%
Relation Status 7 39.45% 45.68% 44.24%

Favorite Music 604 30.29% 43.33% -
Favorite Movies 490 44.30% 51.34% -
Favorite TV Shows 205 59.19% 66.08% -
Favorite Books 173 42.23% 44.23% -

and 66 references in Network B. The skew in Network B towards fewer conflicts
is a result of fewer publicly accessible pages for the network, as described earlier
in Table 1. Analyzing each user’s list of friends, we find on average that our data
set contains information for only 35% of friends, leaving another 65% of friends
with profiles that may leak private information and increase the frequency of
conflicts.

5.3 Classifier Accuracy

To test the accuracy of using auxiliary information leaked by friends for pre-
dicting private attributes, we run each of the classifiers presented in Section 4
on both networks in our data set. We simulate closed profiles by concealing an
open profile’s attributes during classification, after which we compare the classi-
fier’s results against the true profile values. We measure the predictive success of
our classifiers using standard cross-validation techniques; each classifier builds
a model using 90% of the profiles in a network and is tested on the remaining
10%. This process is repeated ten times, using a different 10% of the network
each round to ensure that every profile is used only once, averaging the results
from each run.

The accuracy of each classifier for profiles with over 50 privacy conflicts can
be seen in Table 3. We find that the friend classifier consistently outperforms the
baseline classifier, predicting profile attributes with up to 84% accuracy. Compar-
ing the results, the wall classifier performs the best at predicting a user’s gender,
but fails to draw meaningful conclusions about other attributes due to the homo-
geneity of conversations. Accuracy for both classifiers hinges on having enough
auxiliary information leaked by friends to draw meaningful predictions. Plotting
accuracy as a function of privacy conflicts, we find that accuracy grows roughly
linearly with the amount of exposed information, as shown in Figure 3(a). As our
data set contains only 35% of potentially conflicting friends, in practice, classi-
fication will be far more accurate given a more complete data set, assuming the
trend toward accuracy remains constant. We now examine each of the classifiers
in detail, validating the assumptions behind each technique.
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Fig. 3. (a) Accuracy of the friend classifier grows roughly linearly as a function of
the number of privacy conflicts. (b) Correlation of attributes between two friends. Our
classifiers rely on the assumption that two friends share similar interests. This is largely
true with religion, but not for books.

Friend Classifier. The friend classifier operates on the assumption that friends
have correlated features, capitalizing on information exposed by a user’s friends
to infer properties about the user. The friend classifier consistently outperforms
the baseline, by up to 13%, for predicting a user’s musical interests.

Accuracy of the friend classifier is intrinsically tied to the probability that
two friends share the same feature. We measured the rates at which friends
share attributes and present the results in Figure 3(b). The friend classifier
can predict religion relatively well even for a limited number of samples due
to the strong likelihood that two friends will share the same faith when listed.
Conversely, predicting a user’s gender requires far more samples to overcome
the fact that most users are friends with roughly equal numbers of men and
women. Surprisingly, the cross-correlation between any pair of attributes is below
20%. This means that using a friend’s religion to predict a user’s gender is less
effective than had the friend’s gender been available, but is still useful to include
in classification.
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Fig. 4. (a) Analyzing the improvement of feature correlation as a function of mutual
friends. Friends with large cliques of mutual friends are more likely to share features,
compared to the average. (b) Analyzing the improvement of feature correlation as a
function of wall posts. Friends with frequent communication tend to have stronger
correlated media interests, compared to the average.
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To weight relationships where users are more likely to share correlated inter-
ests, the friend classifier includes information about the number of mutual friends
and the frequency of communication between two users. To validate the use of
both weights, we measured the correlation of attributes between two friends as a
function of mutual friends, shown in Figure 4(a), and communication frequency,
shown in Figure 4(b). Both figures show a tendency toward shared interests for
higher numbers of mutual friends and frequent communication. To understand
how these weights improve accuracy, we re-classified our data set using a friend
classifier that ignored both mutual friends and wall posts. On average, including
the additional weights resulted in 1-2% more accurate predictions.

Wall Classifier. The wall classifier analyzes conversations leaked between friends
to determine properties about a user. The results presented in Table 3 show that
the classifier performs best when predicting a user’s gender, but fails to produce
meaningful results for all other attributes. Successful prediction of a user’s gender
derives from differences between the words used by women and men, while the
remaining attributes such as religion or political view show no overwhelming ten-
dency towards discussions that result in different word frequencies. Nevertheless,
the appearance of terms such as sports, television shows, and news articles all ex-
pose a users’s interests and can erode privacy. We leave the application of more
sophisticated document classification models for future work.

6 Enforcing Multi-party Privacy

Having explored the extent that privacy conflicts appear throughout social net-
works and their potential risk, we now present a solution for enforcing multi-
party privacy. Using the formalism presented in Section 3, we define a new access
control framework for social network data. The framework enforces the mutual
privacy requirements of all users referenced by a piece of data to prevent privacy
violations, mitigating any risk of aggregating leaked information. We prototype
our solution as a Facebook application that transparently enforces multi-party
privacy without requiring interaction from users.

6.1 Mutual Privacy Requirements

Privacy conflicts currently arise in social networks because only the owner u
of data can specify a privacy policy Pu, regardless of whether multiple users
have an interest in keeping the data private. To adopt a mutually acceptable
privacy policy for all parties, each user w referenced in content must be able to
augment the policy set by u. To achieve multi-party privacy, we allow every user
w to specify an exposure policy Vw(g, i) for each page g and the information
on that page i. The policy Vw’s granularity can be page and reference specific,
or alternatively, represent a policy for all pages throughout the social network.
For example, a user w can specify that only w’s friends can view wall posts
written by w, encompassing the set of all wall pages, g, and the individual posts
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i. Our framework can also accommodate fine-grained policies; for example, a
user w can set a policy that allows only friends and not family to view pictures
posted by w’s friends. In practice, we expect most users to set coarse rather than
fine-grained exposure policies that restrict access to all information for a user w.

For each piece of information i on page g, the largest set of users who can view
i without violating any user’s privacy policy can be represented by the mutual
privacy policy Pm(g, i):

Pm(g, i) = Pu(g)
⋂
w

Vw(g, i) (3)

Pm represents the set of users that the content owner u and all the associated
parties w ∈ S(i) mutually trust with their personal data. In the absence of
mutually trusted friends, Pm tends towards the empty set, resulting in i being
hidden from every user. However, the majority of the privacy conflicts we identi-
fied involve only two users, such as bidirectional links between friends, reducing
the number of policies which must be satisfied. Photos and wall posts that refer
to multiple users present a more complex situation where access to content is
highly restricted due to multiple exposure policies. The potentially limited size
of Pm is a byproduct of satisfying every user’s privacy without bias; otherwise,
a larger Pm would only violate one user’s expectation of privacy.

For social networks that allow a user w to remove references to himself, such
as with Facebook photos, multi-party privacy policies represent a stronger al-
ternative. A user removing a reference to himself from a compromising image
still leaves the privacy violating content exposed, if only harder to identify. Con-
versely, multi-party privacy guarantees that every user’s privacy requirements
are satisfied. This extends to situations where users cannot remove themselves
such as with friendships, group membership, and comments, guaranteeing that
privacy is always satisfied.

6.2 Prototyping Multi-party Privacy

To demonstrate the feasibility of multi-party privacy, we create two Facebook
applications that reproduce the functionality of a friend list and wall page while
enforcing mutual privacy policies. These prototypes serve to show how Facebook
could implement multi-party privacy; they do not replace the existing friend and
wall pages which Facebook prevents from being modified by applications.

Assuming the applications are installed on a fully public profile, the privacy-
enhanced friend list conceals the names of friends with exposure policies that pro-
hibit a third party from seeing the relationship. Similarly, the privacy-enhanced
wall conceals wall posts if the original sender prohibits a third party’s access.
Currently, if an exposure policy for a user is not specified, the application places
privacy as a priority and automatically conceals references pertaining to the
user. For non-public profiles where the owner policy is more restrictive than an
exposure policy, the owner policy takes precedent. The result of each of these
policies is a system that guarantees a user’s wall posts and friends cannot be
exposed against his will.
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By modifying friend and wall pages to restrict access based on a reader’s per-
missions, we are potentially changing static structures into dynamic documents
that must be reprocessed each access. There is already a precedent for imple-
menting tailored pages in Facebook, such as the news feed, which provides each
user a distinct set of stories based on their interests and friends that changes as
the day goes by. Enforcing multi-party privacy can thus be seen as an extension
of news feeds, where the content displayed is based on privacy controls rather
than interests. By adopting the enforcement of multi-party privacy, Facebook
users gain control over all their private information, even if it is uploaded by
another party.

7 Related Work

There is an extensive body of research on protecting and examining privacy in
social networks. The most related of these works to our research are attempt to
demonstrate flaws in the current privacy controls of social networks. Zheleva et
al. [17] examine the risks of revealing group membership and friendships, while
He et al. model correlated features between friends as a Bayesian network [18].
Adapting previous approaches to attribute inference, Mislove et al. [20] looked
at community structures among friends, finding that tight-knit communities of-
ten shared highly correlated features. Our work can be seen as a refinement of
their techniques, presenting new ways to identify meaningful friends and filter
relationships that are likely to impede inference. We also examine previously
unexplored avenues such as wall posts for inference, pointing out that any rela-
tionship or tag between two users can potentially violate privacy.

While we limit our discussion to preventing crawling and mining by third
parties, other researchers have looked at how to protect information from so-
cial network providers and server break-ins. flyByNight [25], NOYB [26], and
FaceCloak [27] all use encryption or steganography to protect a user’s personal
information to prevent a social network operator such as Facebook from reading
or mining personal data. Keys are then distributed to trusted friends out of band
from the social network operator, allowing friends to decrypt profile information.
Despite the potential added privacy from encryption, each of these protection
mechanisms rely on the social network to keep track of friends and do not extend
to content posted by friends, leaving users exposed to the inference techniques
we describe.

Other research in extending social network privacy includes protecting users
from third party applications. Social networks such as MySpace and Facebook
allow users to install applications such as games or media plugins, in turn grant-
ing the application access to all of their personal data. Applications currently
lack access control restrictions, allowing programs to offload all of a user’s data
in addition to that of a user’s friends. Felt et al. [28] and Singh et al. [29] both
propose new application architectures to restrict personal data available to appli-
cations. Because applications are granted access to both the installer’s data and
the installer’s friend’s data, application security must address the requirements
of multi-party privacy to guarantee users are not put at risk by their friends.
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In addition to privacy protections within social networks, data released by
network operators to the public also poses a significant challenge to user privacy.
De-anonymization efforts [30,31,32,33] have shown that publishing anonymized
or restricted social graph information is riddled with complications. These same
techniques for de-anonymization can also be used for inferring properties about
data leaked by users within social networks, highlighting the need for better
privacy controls that suit the range [34,35] of each users privacy expectations.

8 Conclusion

In this paper, we have shown how existing privacy controls in social networks
fail to protect a user from personal content leaked by friends. As photos, stories,
and data are shared across the network, conflicting privacy requirements between
friends can result in information being unintentionally exposed to the public. We
formalized multi-party privacy requirements which guarantee that the privacy
concerns of all users affected by an image or comment are mutually satisfied.
The current lack of multi-party privacy results in scattered references to users
throughout social networks that can be collected by adversaries who have the
resources, sophistication, and motivation to glean as much information from so-
cial networks as possible. We have shown how seemingly innocuous references to
users can be aggregated and analyzed to construct meaningful predictions about
a user’s personal attributes and media interests. This slow erosion of personal
privacy can be prevented by the adoption of multi-party privacy controls. We
prototyped these controls for Facebook, showing how multi-party privacy can be
adopted, returning control over personal data in social networks to users.
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Abstract. We consider the threat model of a mobile-adversary drawn
from contemporary computer security literature, and explore the dynam-
ics of community detection and hiding in this setting. Using a
real-world social network, we examine the extent of network topology
information an adversary is required to gather in order to accurately
ascertain community membership information. We show that selective
surveillance strategies can improve the adversary’s efficiency over ran-
dom wiretapping. We then consider possible privacy preserving defenses;
using anonymous communications helps, but not much; however, the
use of counter-surveillance techniques can significantly reduce the adver-
sary’s ability to learn community membership. Our analysis shows that
even when using anonymous communications an adversary placing a se-
lectively chosen 8% of the nodes of this network under surveillance (using
key-logger probes) can de-anonymize the community membership of as
much as 50% of the network. Uncovering all community information with
targeted selection requires probing as much as 75% of the network. Fi-
nally, we show that a privacy conscious community can substantially dis-
rupt community detection using only local knowledge even while facing
up to the asymmetry of a completely knowledgeable mobile-adversary.

1 Introduction

Anonymous communications are useful in building resistance against a global
passive adversary who can subject the targets to traffic analysis. In the con-
text of communication channels, anonymity is described in terms of the channel
properties of unlinkability and unobservability, with many schemes as well as
deployed systems [8, 10] focusing their efforts on providing the former property.

While anonymous communications plays an important role in ensuring traf-
fic analysis resistance properties of a communication channel, ensuring user
anonymity requires much more work. For instance, traffic data collected by com-
promising a user’s personal computer necessarily impacts the privacy of others
in the user’s social network. If a small fraction of end-user computers are com-
promised then how does this impact user anonymity? This is the main question
we attempt to answer in this paper.

M.J. Atallah and N. Hopper (Eds.): PETS 2010, LNCS 6205, pp. 253–272, 2010.
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It is well known that the practical risk to user privacy increases with the
aggregation of personal data. One such instance is that of modern email service
providers with huge storage allowances and accessible user interfaces attracting a
large number of users. This results in the aggregation of a large amount of social
network information within the administrative power of a very small number of
people running the service. An attacker who has partial or complete knowledge
of the social network can cause significant damage to user privacy.

Analyzing large amounts of social traffic data such as a large corpus of emails
is a highly time consuming task. However, if the attacker can also accurately
determine community membership then he can massively reduce his work load
by reducing only clustering traffic flows one community at a time. Indeed the ad-
versary’s capability in detecting community membership brings him significantly
closer to significant privacy invasion than the mere discovery of nodes and inter-
node relations (substantiated further in Section 3). Thus the combined use of
text analysis methods along with accurate community detection algorithms con-
stitutes an important threat to user privacy. As we shall see, this threat is only
slightly mitigated by the use of current anonymous communications technology.
To what extent is the risk diminished and what can users do to defend them-
selves? We develop a graph-theoretic framework to analyse a mobile adversary
and apply it to a real-world social network dataset to find out.

The threat model of a mobile adversary is further justified by the increasing
popularity of social-malware attacks [27]. In their report, Nagaraja and Anderson
describe a case of malware-based electronic surveillance of a political organiza-
tion. By exploiting the social network connecting members within the victim
organization, the mobile adversary moved from member to member and man-
aged to copy off entire hard-drives worth of information from most individuals.
Subsequently, similar attacks have been reported by hundreds of organizations
and individuals in the popular press and in private communications.

The results of this paper only apply to adversarial community detection on
social networks alone and not to similar sounding applications in very different
contexts such as anomaly or misuse detection.

2 Community Detection

The problem of splitting a network into a number of sub-communities is not a
new one. The first algorithm for graph partitioning was proposed by Kernighan
and Lin [21]. A detailed survey of partitioning algorithms in computer science
can be found in [12]. The problem of community detection has also been studied
in the context of many graph-theoretic clustering algorithms. In its simplest
form, a community may be considered as a group of nodes which are densely
connected by edges. For example a variety of node clustering algorithms for
graphs with the use of shingling techniques, matrix co-clustering techniques, and
tile determination in matrices [5, 16, 17] can be used for community detection
in graphs. A related problem is that of local triangle counting [2], which can be
leveraged to determine an idea of the unit dense structures (triangles) in the
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underlying graph. The problem is also related to that of finding dense cliques or
dense regions in the underlying graph [1, 31, 38]. These techniques are designed
for generic graphs rather than the specific case of social networks. The problem
of community detection [7, 22, 24, 35, 36] in social networks has also been widely
studied because of the increasing importance of social networking applications. A
survey of a number of important algorithms for community detection is provided
in [36]. A note on the important statistical properties of web communities is
discussed in [24].

3 Motivation and Context

In this paper, we shall study how the topology of the social network of users
affects the amount of effort on the attacker’s part to uniquely identify the com-
munity association of each user, using graph topology information alone. The
effectiveness of community detection attacks depends heavily on the topology of
the underlying network. If the attacker is not able to detect communities and as-
sociate each user with a particular community, then the social network topology
is said to be resistant to community detection attacks under the given threat
model. Among other things, the threat model specifies how much information is
available to the attacker.

The attacker might also employ additional traffic-flow attacks such as cap-
turing and directly clustering network data flows instead of working with the
social network topology, we do not consider such attacks here. Traffic flow anal-
ysis [18, 33] can be used to cluster flows and ultimately classify users into com-
munities using information related to the protocol or mechanism in use. Similar
clustering (attack) methods [6, 11, 25, 39] can be applied to human communica-
tion in order to de-anonymize the community membership of a social network.
However such clustering methods do not scale very well. The reason is simple: the
effort expended by an adversary depends on the amount of information processed
by the attacker per pair of communicating users Alice and Bob. The community
detection attacks we consider here, only use one bit of information: does Alice
communicate with Bob, or not? These attack algorithms can be readily extended
to also consider the magnitude of communication between Alice and Bob. Such
algorithms have two advantages: (a) they are more scalable than traffic flow at-
tack algorithms whilst requiring lesser storage and lesser processing power, and
(b) they are robust to variances traffic flow information.

Community detection algorithms are not an end to themselves and they must
be used in conjunction with communication traffic flow analysis and/or text
classification algorithms for successfully de-anonymizing community membership
in a social network. For a standard reference on inductive learning algorithms
see Dumais et.al [11].

Applying such algorithms to social network communications is a two stage
process. In the first stage, the attacker constructs a (per edge) vector of features
from traffic data (say email messages) for every pair of communicating users.
In the second stage, he applies a clustering algorithm over the edge vectors.
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A popular method from the datamining community is the agglomerative hier-
archical clustering [39] which runs in O(N2 log(N) time and can be applied to
cluster edges into communities in a bottom-up manner, where N is the number
of vertices in the social network. An alternate approach is the use of stochastic
inference techniques [6, 25] that provide extensions to handle classification of
document networks and various other features, however these have even higher
computational complexity.

While these algorithms have higher computational complexity, they are of
much interest in confirming that the communities identified by the membership
detection algorithms are actually interesting to the attacker. Instead of running
these flow analysis algorithms on the entire communication traffic data, he sim-
ply analyzes (the much smaller amount of) traffic flow information corresponding
to the identified communities. By reducing the size of the input traffic data, the
attacker can not only scale-up traffic flow analysis but also reduce the amount
of input noise. This opens up the problem space to sensitive flow-analysis algo-
rithms that might otherwise be unusable in the presence of noisy data.

4 Analytical Framework for Hidden Communities

4.1 Modularity

We consider social networks comprising of people and relations. The social net-
work is represented by a graph G(V, E), where people are represented as nodes,
while relationships between people are represented as edges. Sets V and E are
the set of all nodes and and the set of all edges, respectively. Each edge is associ-
ated with an integer weight which is an indicator of the quantity of information
exchanged between the two end-points.

In this paper, we will study the problem of adversarial community detection in
large-scale networks. As discussed earlier, we would like to determine naturally
forming communities in the network. We note that such properties are naturally
satisfied by utilizing the concept of modularity of vertex sets which previously
been used with some success. Before discussing the definition of communities,
we will first define some notations and definitions, and explain the concept of
modularity in an intuitive way.

Modularity is a notion of community structure where communities are not
defined by dense clusters of vertices connected by a small number of edges (small
cuts ). Rather, communities are defined by vertex sets that have either less than
expected number of edges across each other. Informally, a module is a subgraph
whose nodes are more likely to be connected to one another than to the nodes
outside the subgraph.

We assume that the entire network from which the communities are defined
is denoted by G = (V, E), where V is the universal set of nodes, and E is the
set of edges defined on V . For ease in explanation, we assume that edges are
undirected, although the technique can also be generalized to the directed case.
Modularity is defined on a vertex set with respect to only the subgraph induced by
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a particular set of nodes. Therefore, let us first define the concept of an induced
edges and induced subgraph for a vertex subset.

Definition 1 (Induced Edges). Let G = (V, E) be a given graph with node set
V and undirected edge set E. Let S ⊆ V be a subset of vertices from G. Then, the
induced edge set L(S, E) for the vertex set V is defined as all the edges R ⊆ E,
such that both ends of any edge in R lie in S in the original graph G. The set R
is denoted by L(S, E).

Thus, the induced edge set uses only the edges for which both edges lie within
a given vertex subset. All other edges are ignored. The induced edges can be
immediately used to define the induced graph I(G, V ).

Definition 2 (Induced Graph). Let G = (V, E) be a given graph with node
set V and undirected edge set E. Let S ⊆ V be a subset of vertices from G.
Then the induced graph I(G, S) for the vertex set S is defined as the subgraph
including only the vertex set S and all induced edges on this vertex set, which
have both ends within S. Thus, the induced graph I(G, S) essentially corresponds
to the graph (S, L(S, E)) with vertex set S and induced edge set L(S, E).

A given network might have several embedded subgraphs with a range of con-
nectivity characteristics. In general, we would like to determine the embedded
networks, which have high level of information flow, but whose edges are a result
of local emergent processes rather than defined by a globally agreed blueprint
to achieve such a flow. Therefore, we define the concept of modularity of a set of
nodes S, with respect to the induced graph for vertex set V .

Using previously defined terms, consider graph G = (V, E) where V is the
universal set of nodes, and E is the set of edges defined on V , consider the
induced graph I(G, S) for a vertex set S. Let dG

i be the sum of edges incident on
vertex i in graph G. Given G, we define a graph Grandom with the same number
of vertices, but where every possible edge is created with probability didj/2|V |.
That is, the endpoints are randomly selected.

Definition 3 ((S, V )-modularity). The (S, V )-modularity of a set of vertices
S ⊆ V in G is the difference between the number of edges whose endpoints lie
entirely in S computed over induced graph I(G, S) and the expected number
of edges whose endpoints lie in S computed over induced graph I(Grandom, V )
. Therefore, if a(S) be the sum of degrees of vertices S in the induced graph
I(G, S), and r(S) be the expected sum of degrees of vertices S in induced graph
I(Grandom, S) then the (S, V )-modularity is defined as follows:

Q(S, V ) =
a(S) − r(S)∑

i∈S dG
i

(1)

We note that a high value of Q(S, V ) implies that most of the edges are used
in mixing information within S rather than between S and V − S. A low value
of Q(S, V ) implies that S is a rather poor choice for a community of nodes.
Formally, we can now define the problem of determining all the vertex subsets
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which are relatively sparse and have modularity above a certain user-defined
threshold. We define the (α, β)-hidden community as follows:

Definition 4 ((α, β)-hidden community). Consider a graph G = (V, E). We
define the (α, β)-hidden community as a subset S of vertices, which satisfies the
following properties:

– The set S is a subset of the universal set of vertices V .
– The total number of edges in the induced graph I(G, S) is at most α · |V |.
– The induced graph I(G, S) has modularity at least β. In other words, we have

Q(S, V ) ≥ β.

We note that the above definition is focussed on determining an edge structure
in the community which is focussed on high amount of information flow, in
the presence of edge formation based on social communication; i.e. no DHTs
or random-graph topologies. Clearly, the level of information flow implies the
presence of a community, but the relatively sparse presence of edges (compared to
highly dense graphs) ensures that such a community is hidden to methods which
work purely with techniques such as the clustering coefficient. The definition
above can then be used to create a problem definition on determining hidden
communities with respect to the parameters α and β.

Problem 1 (Hidden Community Detection). Consider a network G = (V, E).
We wish to determine all the vertex subsets S = {S1 . . . Sr} which satisfy the
following properties:

– Each vertex subset Si is an (α, β)-hidden community with respect to the
graph G with α = 0.25 and β = .10.

– Each vertex set Si is maximal with respect to S. In other words, there is no
other vertex set T ∈ S, such that T ⊃ Si.

The principle of maximality is useful in reducing the size of the output, and
ensuring that redundant subsets are not unnecessarily reported.

The choice of β is based on empirical observation that most detected commu-
nities have β > .25 (a complete graph has a modularity of 1).

Finally, we note that the above model of hidden communities is not designed
to take covert networks into account, but rather members of the general
public whose privacy is easily compromised due to the network externalities
of electronic surveillance programs [9]. We seek to understand and address the
latter category of risks.

4.2 Threat Model – Mobile Passive Adversary

Our threat model is based on the mobile adversary model first proposed by
Ostrovsky and Yung [30]. The attacker is a malicious global passive adversary
whose goal is to detect (α, β)-hidden communities in the network. Our model is
inspired by an ISP level adversary that wishes to detect hidden communities.
Our study deals with two scenarios, the case of the fully knowledgeable adversary
and the partially knowledgeable adversary.
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Adversary with full knowledge: Since the attacker is global, he is aware of the
existence of people (vertices) in the social network graph. When communicating
parties make no attempt at anonymizing communication, the attacker is also
aware of the social relations (interconnecting edges) between them.

Adversary with partial knowledge: If anonymous channels [8, 10, 32] guarantee-
ing unlinkability1 are used, then the attacker is only aware of all the vertices of
the graph but does not have any information about the edges. To successfully de-
tect hidden communities the attacker must uncover as much information about
edge relationships as possible. He does so by placing probes on vertices of the
graph. This might be achieved by a strategically placed keylogger on a victim’s
computing device as in the case of the Tibetan attacks [27], for example. Fur-
ther, the attacker has finite probing capability and cannot simultaneously probe
everyone. In any time interval t, the attacker can only probe a fraction of people
on the social network to uncover topology information.

Additionally, our attacker is mobile, which means he can remove a probe
from one vertex and place it on a different vertex of the attacker’s choice at time
t′ > t. The number of probes ε is finite, hence the attacker can only compromise
a fraction of vertices at any point in time. However as the attacker is mobile,
he can progressively learn about the entire network over an extended period of
time. Each time interval corresponds to a round.

Definition 5 (mobile ε-attacker:). Consider a graph G = (U, A) and 0 <
ε ≤ 1, the ε-attacker is a global passive adversary who can probe(observe all
communications originating from) a set of vertices ft ⊆ U upper bounded at
|ft| = ε|U | at round t > 0.

In other words an attacker is allowed to place probes over a constant fraction of
vertices, and also, move the probes from vertex to vertex at the beginning of a
new round.

Definition 6 ((ε, t)-view:). Consider graph G = (U, A) and an ε-attacker. The
(ε, t)-view is defined as the graph I(G, V ) induced by vertex set V , where V =
{f0 ∪ f1 · · · ∪ ft} is the set of all vertices probed by the attacker by round t.

Finally, an attack involves the use of two types of strategies. In every round, a
surveillance strategy drives probe placement while a community detection strat-
egy processes the information gathered by the attacker. At each round t, the
surveillance strategy (is an algorithm) that accepts an (ε, t)-graph and outputs
the set of vertices T that shall be probed in round t+1. Similarly, the community
detection strategy (a different algorithm) accepts an (ε, t)-graph and outputs a
set of (α, β)-hidden communities. Essentially, the attacker builds a graph using
all the edge and vertex knowledge gained in previous rounds and then analyzes
it using a community detection algorithm to discover any hidden communities.
1 When nodes of a network communicate via anonymous channels that offer unlinkabil-

ity, an attacker monitoring network traffic cannot identify communication endpoints
but knows traffic volume information. When unobservable channels are used the
attacker cannot distinguish between communicating and non-communicating users.
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4.3 Measuring Anonymity

Measuring anonymity in the context of this paper, is the measurement of the
efficiency of community detection – the fraction of hidden-community detected.

As described in previous sections, the attacker combines various surveillance
and community detection strategies to discover the community structure of a so-
cial network. Privacy sensitive users might wish to keep their community mem-
bership anonymous. However network topology inherently contains information
about community memberships, and a mobile ε-adversary can gain access to this
information. On the other hand privacy conscious members of a social network
might wish not to be identified as belonging to a certain community or club even
as they participate in it.

There are several ways in which one can express the anonymity a system
provides. The notion of anonymity within Crowds [34] is close to the notion
of anonymity we consider here – instead of being identified as a member of a
specific community, the anonymity seeking user would wish to be identified as
being part of a significantly larger community of users. However instead of a
qualitative metric we measure anonymity quantitatively.

The adversary is said to have successfully de-anonymized the social network
membership if he can accurately uncover vertex sets corresponding to one or
more embedded communities. The false negative rate FN is defined as the frac-
tion of (α, β)-community nodes being misclassified as being part of the larger
community of vertices V − S.

Definition 7 (Community anonymity). Invoking the concept of anonymity
sets, the anonymity of a (α, β)-hidden community under a specific community
detection strategy Ω is defined as follows:

A((α, β), Ω) =
V − FN ∗ S

|V − S| (2)

We shall also refer to A using the term miss-ratio.

5 Newman’s Community Detection Algorithm

As we have explained previously, a modularity based community detection
method can be used to de-anonymize community membership in a social network
by identifying vertex subsets corresponding to high modularity scores. Modular-
ity based methods are fairly accurate among the scalable methods of community
detection. They have been well tested and studied in a variety of social and
biological networks within the complex networks community [14, 28].

Modularity reflects the extent, relative to a random network, to which edges
are formed within communities rather than across them. By using modularity
as a metric, we can assess the quality of any assignment of nodes to the same
community (Eqn. 1). Hence, identifying community membership becomes a mod-
ularity maximization problem. Accordingly, Newman [28] proposed a community
detection algorithm that optimizes the selection of S by calculating the second
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eigenvector over a matrix of modularity scores for each edge in G(V, E). Let
N = |V | and we assume each vertex has log(N) edges as a rough approximation
in a social network, Newman’s algorithm computes scales as O(N2 +N log(N)).

Due to shortage of space, we refer the interested reader to the full description
of Newman’s algorithm in the original paper [28].

5.1 Alternate Algorithms and Approaches to Community Detection

Apart from Newman’s modularity algorithm, we did consider edge importance
based community structure detection approaches as well. In these approaches,
the attacker iteratively removes the edges with the highest importance, which can
be defined in different ways. Girvan and Newman [29] defined edge importance by
its shortest path betweenness. The idea is that the edge with higher betweenness
is typically responsible for connecting nodes from different communities. The
fastest algorithm to calculate betweenness centrality is credited to Brandes [4],
it has a computational complexity of O(N2 log(N)).

Fortunato [13] proposed information centrality to measure edge importance,
defined as the relative network efficiency [23] drop caused by the removal of
an edge. The time complexity of his algorithm is O((N log(N))3 × N). As the
time complexity of betweenness and information centrality algorithms is not
acceptable for community detection in massive networks, we removed these from
our evaluation.

Further, preliminary experiments we conducted showed that when communi-
ties in G are separated by a small-cut, Newman’s community detection algorithm
performed fairly well in the presence of random errors (edges and nodes randomly
added/removed across the cut) in the input topology – a linear increase in ran-
dom noise in the network topology results in a linear increase in number of false
positives, as opposed to an exponential increase of false positive rate we observed
in the case of min-cut based methods.

Conductance based techniques such as SybilInfer [37] and SybilGuard [37] are
interesting approaches that can be used for community detection based on the
metric of graph conductance [20]. While these approaches are good for analyzing
structured tightly knit communities that are separated by small cuts (such as
DHTs and Sybil networks), their applicability in our context needs further study.
One possible hurdle might be that conductance of the cut separating the hidden
community (see section 5.2 ) and the rest of the graph is 0.0998. The SybilInfer
work used a cutoff threshold of 0.10 to identify a cut between a Sybil community
and the rest of the graph, while other cuts in the social network tended to have
conductance in excess of 0.9.

5.2 Email Communication Network

Our network dataset [19] comprises of a social network harvested from email
exchanges within a mid sized university of 1700 researchers, graduate students
and staff. Each email address was mapped to a person. We discarded all email
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messages where either the sender or the receiver email address was not a univer-
sity email address. This means we have left out relationships where two persons
at the university might be connected via an outsider, and this could impact our
results. We disregarded unidirectional email messages which removed bulk email
messages as well as most spam. We added an edge between every two nodes that
had sent at least one message in each direction. The weight of the edge was set
as the sum total of messages exchanged between two nodes.

Next, we extracted the largest connected component or giant component con-
sisting of 1133 people and 10903 relation. The data we obtained contained emails
from two different departments, and this was correctly detected by the modu-
larity community detection algorithm. We shall consider the smaller of the two
partitions as the “hidden” community (in the sense that community members
desire privacy) as far as our experiments are concerned, and the larger one as
the “main” network into which the nodes of the hidden community will attempt
to blend into. The giant component consists of two partitions: partition GM

with 831 nodes and 6807 edges shall be our main network and GC , will be our
(α, β)-hidden community of 302 nodes and 2574 edges.

6 Efficiency of Community Membership
De-anonymization

In our model, the adversary’s goal is to accurately determine the membership
of each community in the network. Our first experiment attempts to measure
the efficiency of community detection by different surveillance strategies. The
ε-mobile adversary is limited by the number of probes (ε), which in turn limits
his rate of gathering topology information. This in turn affects the success of
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Fig. 1. De-anonymization efficiency
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community de-anonymization goals, and we wish to measure how the adversary’s
success varies as the fraction of the network being directly probed increases.

We wish to determine the minimum ε value at which the ε-mobile adversary
can fully determine community membership. To do so, we first establish the
upper bound of attacker efficiency. For this purpose we consider the ε-mobile
adversary in the context of full knowledge, as discussed in section 4.2. This
might seem like a trivial exercise since the fully knowledgeable adversary learns
little by probing. However full knowledge allows the attacker to compute the op-
timal probing sequence. Therefore this represents the best possible performance
(upper bound) an ε bounded adversary might possibly come up with. We plot
the fraction of nodes and edges discovered by the fully-knowledgeable adversary
using the probes alone, in figure- 1.a, to show the upper bound of attacker
efficiency. We also plot the fraction of the hidden-community detected (this is
simply 1−missratio) using the graph uncovered by probing. Later in the section
we will compare these with the efficiency of the epsilon-mobile adversary in the
case of partial knowledge in figure- 1.b.

Of the many possible centrality measures that could be used to generate the
optimal probing sequence, the most appropriate from the perspective of infor-
mation flow is the flow betweenness centrality measure devised by Freeman [15].
The betweenness centrality Cv

b of a node v is defined as the number of all pairs
shortest paths that pass through v:

Cv
B =

∑
x∈V

∑
y �=x∈V

σxy(v)
σxy

(3)

Where σxy is the number of shortest paths between nodes x and y.
The upper bound of de-anonymizing community membership using this strat-

egy is shown in figure- 1.a. After probing 8% of the nodes in the decreasing order
of betweenness centrality, the adversary is aware of the existence of 76% of the
nodes and 85% of the edges. This partially confirms one of the results of an
earlier study by Danezis and Wittneben [9].

Interestingly, our study reveals that the community membership of only 50%
of the nodes is correctly identified. The adversary then makes further progress
as shown in table 1.

Table 1. Knowledge gained by attacker using optimal probing strategy

%probed = tε|V | % nodes % edges %Community uncovered

8 76 85 48
28 96 99 95
38 100 100 100

We now measure the adversary’s accuracy in discovering community member-
ship under the case of partial information. The ε-adversary with partial knowl-
edge performs surveillance with a (non-optimal) probing sequence generated
using traffic volume information. The adversary sorts the nodes in descending
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Table 2. Knowledge gained by attacker using probe placement based on traffic volumes

%probed = tε|V | % nodes % edges %Community uncovered

8 73 84 45
28 96 90 58
38 97 91 86

order of traffic volumes and places a constant fraction of nodes under surveillance
in successive rounds.

Figure- 1.b, shows the fruits of the adversary’s efforts. The lack of full topology
knowledge particularly dents the adversary’s ability to effectively spy on the
network as summarized in table 2: When 8% of the nodes are spied upon, 45%
of the hidden community nodes are correctly identified whilst uncovering 73% of
nodes and 84% of edges. However, while 90% of the nodes and 96% of the edges
are known to the adversary by putting 28% of the nodes under surveillance, the
only 58% of the hidden community known.

In terms of pure numbers the adversary is able to acquire a significant amount
of topology knowledge by putting 28% of the network under surveillance in both
threat models. However, hidden-community discovery is much harder. In the
partial case, it requires the adversary to put almost 80% of the nodes under direct
surveillance to enable him to accurately localize 99% of the hidden community
nodes. This is in stark contrast to the upper bound provided by the case of the
fully knowledgeable adversary who only needs to place 37% of the nodes under
surveillance to gain the same amount of membership information.

6.1 Discussion

Does this mean that the use of anonymous communications increases the work
load of the adversary by almost 100%? No, this is true only when the adversary
needs to uncover the membership information of all nodes within the network.
Our results show that in both the adversary models, placing 8% of the nodes
under direct surveillance compromises the community membership of almost
50% of the nodes.

Since close to 80% of the population must be monitored to detect all the
communities, it means that in the short run, government surveillance budgets
are more likely to cause harm to privacy than to uncover hardened cells. On the
other hand, it also means the social malware will be significantly successful even
if only a small fraction of the user base is infected.

We are therefore interested in the privacy preserving countermeasures for
larger user communities rather than for covert communities which will be
invisible anyway. Being larger they are associated with higher detection rates,
and are more difficult to hide. This is the reasoning behind the choice of com-
munity sizes for our experiments in section 5.2.

We note that the adversary’s efficiency in community membership assignment
in the case of partial knowledge is not only markedly lower than that of full
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topology knowledge, but has a slower growth rate. This is not surprising given
the relatively complex structural characteristics of the information the adversary
is trying to uncover.

7 The Efficiency of Counter-Detection Measures

We shall now consider defense responses to the ε-mobile community detecting
adversary. To do so, we allow the (α, β)-hidden community to rewire itself in
order to disrupt community detection.

We adopt the following defense model with multiple rounds: members of the
hidden community can employ one of a number of counter-detection strategies
involving topological rewiring, limited by a counter-detection budget at the be-
ginning of every round. The adversary then runs community detection algorithms
to deduce membership in every round.

Several topological manipulation options are open to the (α, β)-hidden com-
munity. Since the community is defined by vertex sets we do not explore counter-
detection strategies based on removing vertices from the community. We also
discount edge removal as a countermeasure since that would also disrupt in-
formation flow. Therefore, we shall focus our analysis on various strategies of
edge-addition alone. The strategy of edge-addition can be also be understood as
a method of selectively adding cover traffic to the network. Note that depending
on the context of the social network this may not be a feasible defense in all
contexts.

7.1 Counter-Detection Strategies Based on Edge Addition

The application of any counter-detection strategy consists of adding C additional
edges (defense budget) whose end-points are chosen as follows.

Each end point is chosen according to a vertex centrality metric. We have
previously discussed flow betweenness centrality, see Eqn. 3. We shall consider
two more vertex centrality metrics: eigenvector centrality and degree centrality.
A fourth option is to treat vertex centrality as a random value.

Degree centrality of a vertex i, dG
i , is the sum of edges incident on vertex i in

graph G.
Eigenvector centrality score [3] of a vertex corresponds to the values of the

first eigenvector of the graph adjacency matrix; these scores may, in turn, be
interpreted as arising from a reciprocal process in which the centrality of each
vertex is proportional to the sum of the centralities of those vertices with whom
he or she shares an edge.

Let W = {HB, HE, HD, RAND} be a set of centrality measure functions.
Let c be the set of hidden community nodes, and m be the set of main network
nodes, corresponding to the entire vertex set of graphs GC and GM from Sec-
tion 5.2. Each strategy involves adding an edge (i, j) with edge endpoints i and
j chosen either from sequence RX∈M (c) the sequence of nodes in decreasing or-
der of centrality measure X from the hidden-community vertex set, or similarly
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from RX∈W (m) the sequence of nodes drawn from the main network vertex set
in decreasing order of centrality measure X . Also, each edge has one end-point
in GC and another in GM .

For instance, RHB(c) defines a sequence of ordered vertices over c with de-
creasing of high-betweenness centrality values. Similarly, we have sequences
RHD(c), RHE(c), RRND(c), RHD(m), RHE(m) , and RRND(m) .

An edge addition strategy is denoted as Xx − Y y where X, Y ∈ W and x, y ∈
c, m. Counter-detection strategy HBc-HBm involves adding an edge with an
endpoint in RHB(c) and the other in RHB(m). Counter-detection strategiesHDc-
HDm, HEc-HEm, RNDc-RNDm, and hybrid measures, RNDc-HBm,
RNDDc-HDm, RNDc-HEm, HBc-RNDm, HDc-RNDm, HEc-RNDm
are similarly defined.

The effect of countermeasures on the anonymity of community membership is
shown in figure 2. Each graph is averaged over 50 iterations. We note here that
some of the graphs in figure 2 exhibit high kurtosis with the result that they
appear to have abrupt rises and falls. While we could have removed those values
to make the graphs smoother, without changing the conclusions we have drawn
from our results, we have chosen to retain them in order to better understand
the reason for high kurtosis.

7.2 Evaluating Counter-Detection Defense Measures

Let us first consider the case of the adversary with full topology knowledge and
an unlimited surveillance budget, which will provide us with an upper bound in
our results.

The first strategy we analyzed for hiding GC was the naive RNDc-RNDm
strategy: edge addition with random end points selected from either GC or GM .
Figure 2 shows the privacy gains brought by this strategy, indicated by the blue
line with an ’x’ motif. This curve shows the resilience of the modularity detection
algorithm to the presence of random errors – a linear increase in random error
leads to a linear increase of injected faults. Therefore it makes for a poor defense
strategy and is the worst performer among the strategies we considered; the
addition of a 1000 random edges (50% of hidden community edge budget) results
in a miss-ratio of only 20%.

Having learnt that the naive strategy is of little use in hiding the hidden com-
munity in a real world network, we proceeded to apply the next set of techniques,
namely the purely centrality based strategies. The betweenness centrality strat-
egy HBc-HBm (black line with circle motif) and HDc-HDm (red line with trian-
gle motif) are average performers, with a peak miss-ratio of 50%, for additional
edges of 10% of the hidden community. In addition, HDc-HDm also requires
relatively larger amount of resources before delivering a miss-ratio above 30%.

Finally we look at the four hybrid strategies of edge addition, combining
random node selection in one community with strategic selection in the other. Of
the three strategies involving strategic selection in the main partition (requiring
knowledge of popular nodes), RNDc-HBm (blue line with a diamond) and RNDc-
HDm (pink line and triangle motif) perform equally well, with 78% of the hidden
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Fig. 2. Anonymity of hidden community under modularity based community detection

community nodes hidden from detection with only an additional edge budget of
1% of the hidden community.

The final three hybrid strategies involve local topology knowledge: HBc-RNDm
indicated by the ’*’ motif and HDc-RNDm indicated by solid diamond. They
work almost as well as the previous hybrid strategies on this network, however
they require almost twice as many edges to offer the same level of protection.
Even more interestingly, these strategies offer a high anonymity with 93% of
the hidden community being wrongly classified as being part of the larger com-
munity. This indicates that strategies with local knowledge can be as efficient
at countering community detection as strategies dependent on global topology
information which bodes well for increased privacy.

Our counter-detection defense measures show that, if the defenders have full
topology knowledge, then at a cost of 3 additional communication links per hid-
den community node, the modularity of the graph can be rewired leading to
increasing the miss-ratio up to 90%, in the adversary’s membership calculations.
In both cases, of partial and full topology knowledge, the defenders can drive up
the miss-ratio to 80%, with a investment of only 0.01 edges per hidden commu-
nity node or approximately 1% of existing hidden community edge resources.

Figure 3 shows the efficiency of surveillance when counter-detection tactics are
deployed by hidden communities. Strikingly, while people and relations are dis-
covered rapidly, the percentage of community membership information available
to the attacker remains limited to 12% in the best performing counter-detection
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Fig. 3. Effects of counter-detection measures on adversarial community detection

tactic. The RNDc-HDm strategy, where random members in the hidden commu-
nity connect with hub nodes in the larger community, is attractive as a counter
strategy in several ways. First, hub nodes with high degrees of connectivity are
well known; and second, since hidden community members bearing responsibil-
ity for implementing the strategy do so in a decentralized manner and are easily
replaceable if removed [26].

Further, we observe that the use of current anonymous communications tech-
nology by the hidden community does not change their privacy gains against
community detection. As such, mere unlinkability falls short of the required
level of security, and full unobservability is required to prevent the adversary’s
success. Since current anonymous communication networks do not provide un-
observability, the best defenses lie in modifications at the fundamental level of
network topology.

It is worth noting that as the size of the network increases, modularity based
community detection can meet with a lower degree of success [14]. This is because
as the network grows, it reaches a point where the expected number of edges
between communities drops below 1. Past this point, modularity based detection
does not give good results. Therefore while the small network of thousand or so
nodes worked out well in our study, the results (of counter-surveillance) may not
directly apply to larger social networks.

Why do these countermeasures work? So far, we have avoided all discussion of
how the countermeasures work from a theoretical viewpoint. We now address
this aspect. Going back to the definition of modularity in Eqn. 1, we can see
that community boundaries are delineated on the basis of where there are fewer
edges than expected. Edges between high centrality nodes are expected with a
lower probability than those between nodes with lower centrality scores. When
the number of edges connecting high-centrality nodes (or even random nodes)



The Impact of Unlinkability on Adversarial Community Detection 269

with other high-centrality nodes increases the number of actual edges becomes
closer to the “expected” number of edges as per eqn. 1. This is the theory behind
the successful countermeasures we have considered.

It is interesting to note that, in Fig. 2, community detection sometimes drops
before increasing again. It appears that additional topology knowledge can some-
times be detrimental to community detection. We see similar non-linear behavior
in Fig. 3, where extra defense edges can sometimes cause a decrease in commu-
nity anonymity. We have no explanation for this phenomena.

8 Related Work

Past work by Danezis and Wittneben [9] highlighted the privacy compromis-
ing network externalities involved in computer insecurity when police execute
wiretapping warrants. Their work considered the risk of privacy invasion due
to indirect surveillance concluding that the privacy of a large fraction of users
would be compromised once unlinkability was broken.

We take a markedly different approach by extending the definition of user
privacy to include information about community memberships in a social net-
work. We show the close link between the use of anonymous communications and
its impact on the success of a community detecting adversary. Additionally, we
also consider countermeasures and empirically demonstrate their effectiveness in
enhancing user privacy.

9 Discussion and Conclusions

We have presented a model of surveillance and privacy preservation based on
the detection of community structure in social networks. We have studied the
network externalities of privacy compromise from a new angle, the detection of
community structure and membership. In this paper, we have analyzed the inter-
play between detection and counter-detection strategies. We have some concrete
results to present. We have shown that while structural elements of a network
such as nodes and edges are easily discovered when small fractions of the net-
work are placed under surveillance, discovering community structure information
requires the adversary to invest in a significantly higher surveillance budget.

We have also shown that, regardless of whether network members communi-
cate through an anonymous communications channel, placing 8% of the network
under selective surveillance based on traffic volume is enough to compromise the
community membership information of at least 45% of the nodes in the network.
Our results also show that where the adversary is interested in understanding
the community membership information of a far higher fraction of the nodes,
the use of anonymous communication networks can increase the adversary’s cost
by almost 100% (80% of nodes under surveillance to uncover 99% community
membership information).

Further, we have analyzed the dynamics of community hiding. First, we have
shown that naive strategies of edge addition between randomly selected pairs of
nodes from either partition have limited community hiding capability.
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Hybrid strategies involving a combination of random and high centrality end-
points work best – edges are added between randomly chosen community nodes
and a high centrality nodes in the main network allowing thus requiring only
local knowledge on the part of the hidden community. Specifically, up 80% of
the hidden community went undetected with a counter-detection budget of only
1% of total hidden community network edge resources. A variant strategy that
associates high centrality hidden community nodes to randomly chosen nodes in
the main delivers a more striking result: Up to 93% of the hidden community
remained hidden with 10% additional edge resources (too expensive) while 80%
could be hidden with a mere 2% additional edges (reasonable).

Our results show that membership de-anonymization attacks based on ex-
ploiting partial link knowledge as well as full link knowledge can be success-
fully repelled if the hidden community carries out selective topological rewiring.
Counter-detection mechanisms merely require local knowledge and can bring
clear privacy gains even when faced by an adversary with global knowledge.
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Abstract. Personalised social search is a promising avenue to increase
the relevance of search engine results by making use of recommendations
made by friends in a social network. More generally a whole class of
systems take user preferences, aggregate and process them, before pro-
viding a view of the result to others in a social network. Yet, those sys-
tems present privacy risks, and could be used by spammers to propagate
their malicious preferences. We present a general framework to preserve
privacy while maximizing the benefit of sharing information in a social
network, as well as a concrete proposal making use of cohesive social
group concepts from social network analysis. We show that privacy can
be guaranteed in a k-anonymity manner, and disruption through spam
is kept to a minimum in a real world social network.

1 Introduction

A fundamental problem contemporary web-based information retrieval (IR) face
is ranking. Given a user query, the IR system has to produce a ranked subset of
documents that are most likely to satisfy the user’s information needs. To achieve
this, techniques beyond simple indexing are required and there are benefits in
taking into account social structure when searching for information [15]. Recent
research [20] suggests that users’ information needs are correlated: it is likely
that a document that has been accessed by Alice will also be relevant to her
friend or colleague Bob. If only Alice and Bob were able to make use of this
information, their search results could be improved.

Two key security problems have to be addressed to enable the sharing of
preferences about search results and documents in a social network, namely
privacy and quality.

Privacy is necessary to ensure that users do not learn about each others’ exact
search patterns or retrieved documents. It is unacceptable to allow particular
query items or documents to be linked with certainty to a user by third parties.
In this work we consider privacy guarantees against both adversarial sybil nodes
that infiltrate the network, as well as curious coalitions of the users’ friends.

M.J. Atallah and N. Hopper (Eds.): PETS 2010, LNCS 6205, pp. 273–290, 2010.
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Quality in the context of security means that the ranking system should not be
overly influenced by nodes that maliciously inject information to manipulate the
ranking of certain resources. Search engine spamming is a serious problem, and
any sharing of information has the potential to provide the spammers with an
additional tool. The key goal of our scheme is to limit the influence of spammers
to mostly those nodes that consider them as ‘friends’ and limit any further spread
of their poisoned preferences.

Our approach to solving this problem involves propagating the user’s useful
search results—more generally we call this the user’s preferences—within a ran-
dom subgroup of the user’s social network. We create those subgroups carefully
to ensure they are cohesive, i.e., with very high density of links between all nodes.
The subgroups form a core anonymity set, and are infiltration resistant to pre-
vent spammers from being able to send their preferences to everyone. We present
a general model that can be instantiated in many ways depending on the choice
of cohesive subgroup – our concrete solution uses the k-plex definition [24].

We note that the problem of anonymously propagating information with a
social network is far from unique. Similar systems are required for viral market-
ing, where products are recommended to users according to whether someone
socially related to them bought them. Restaurant or movie recommendations
are another example of systems that benefit from users socially sharing their
preferences, without leaking specifics about what they see or where they are.
Generally our solution applies to any system that (a) collects user preferences,
(b) aggregates them centrally or locally on a social graph, (c) does some pro-
cessing operation on the aggregate, (d) and returns the result, or influences the
output to users. We will use the concrete example of personalised social search
throughout this work, while engineering our solution to be general to the full
class of problems.

After reviewing the literature on personalised social search in Section 2, we
define an abstract model of our problem and the families of solutions we con-
sider in Section 3. Then in Section 4 we propose a concrete strategy for sharing
information in personalised search using cohesive social sub-groups and study
the extent to which it satisfies our goals. In the final section we discuss some
nuances of such system and offer conclusions.

2 Related Work

Personalized search, that tailors web search results based on preferences of users,
is already widely deployed by major search engines [27,30]. Personalized social
search goes a step further and determines the ranking of documents based on the
preferences within the social network of users. It is already piloted by smaller on-
line search engines, like Eurekster [29]. Google is currently piloting a mechanism
that allows users to re-rank results [16]. The re-rankings are not directly shared
but used centrally to increase the quality of the overall results. The Microsoft
Research U Rank prototype [18] allows users to re-rank their results, and share
them with their direct friends, without any further provision for privacy.
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Many studies have looked into the privacy preferences of users, in relation to
information they share over social networks [21,1]. They conclude that search
preferences are considered sensitive, and the controversy surrounding AOL search
data leak confirms this1.

Eurekster [29] allows users to designate search mates, with whom they share
their search preferences. Effectively any query and subsequent information is
shared within this group of friends. Some primitive privacy features are provided
through the ability to perform private searches, as well as the ability to delete
past searches from being visible to others. Our approach, on the other hand,
allows users to share, to some degree, their preferred search results, without
compromising their privacy. Additional privacy controls, based on opt-outs like
in Eurekster, are orthogonal to our scheme and can be applied independently.

Social networking site, like Facebook,2 have also tried to share user preferences
amongst friends, but for the purposes of viral marketing. The “Facebook Bea-
con” system caused controversy by sharing user’s preferences, often generated
outside of the Facebook site, with their network of friends. The initial privacy
strategy of an opt-out mechanism was turned into an opt-in mechanism after
some pressure [10].

We use the naive sharing strategy of simply broadcasting preferences to the
sets of friends or friends-of-friends of a node as a benchmark to assess the se-
curity benefits of our proposal. Without better privacy and quality preserving
techniques, this naive scheme is the one most likely to be deployed, as has been
the case in Facebook Beacon and Eurekster.

A serious body of scientific work is concerned with preserving privacy in on-
line services. Our schemes borrow privacy notions like k-anonymity from the
literature on data sanitation and anonymization [23,2]. The basic premise of
those schemes is that any inference drawn by an observer should be attributable
to at least k participants, effectively forming an anonymity set. To our knowl-
edge, this is the first time that k-anonymity is used in the context of data mining
on social networks.

The adversary model we consider—an attacker is assumed to control a very
large number of nodes in the network—was first introduced in the context of
peer-to-peer systems by Douceur as the Sybil attack [13]. Our approach is cen-
tralised, and admission control [3] as well as intrusion detection methods could
be used to keep the number of corrupt nodes down. Despite this, we aim to re-
sist attacks without such measures, keeping the cost of running the system down
and relying on distributed trust decisions for security. These two approaches are
complementary and can be combined.

Our security assumptions to combat sybil attacks aiming to degrade privacy
and quality are based on the tradition of SybilGuard [33], SybilLimit [32] and
SybilInfer [7]. They assume that honest nodes form a connected social graph,
and only few misguided nodes introduce an unbounded number of adversary

1 CNN money included AOL releasing search data as #57 of its “101 Dumbest Mo-
ments in Business” for the year 2007.

2 http://facebook.com

http://facebook.com
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nodes. This small number of nodes or links to bad nodes can be used as a ‘choke
point’ to limit the impact of the adversary on the running of the system. The
idea of using the social structure itself to fend systems against those attacks was
first proposed in [6] and [19].

For privacy we also consider a more traditional threat model, in which a
coalition of a user’s friends is curious to find out her preferences. The assumption
of a limited fraction of dishonest or misguided nodes in a set goes back to work on
secret sharing [26], threshold cryptography [28] and double entry book keeping
in banking [22].

3 Model of Anonymity in Preference Sharing

Preference sharing has often been implemented with little regard to privacy.
In this section we cast the problem of sharing preferences privately against an
adversary (sections 3.1 and 3.2). We discuss how to correctly measure anonymity
(section 3.3), as well as a generic framework that achieves privacy and utility for
preference sharing (section 3.4). Finally, we discuss how quality is preserved in
our model (section 3.5).

3.1 Preference Sharing

The most basic concepts in our model are the universe of users U and the universe
of preferences P . We say that a user u ∈ U may set a preference p ∈ P . The
system then propagates the preference from the source u to a set of users T ⊆ U ,
which is called the target group. We also say that the source user has an initial
preference and the target users have propagated preferences.

We assume that users submit their preferences to a trusted centralised system,
that is in charge of performing the search and ranking of results, as current search
engines are. The target group for the propagated preferences is chosen by the
system from possible target groups Groups(u, p) ⊆ P(P(U)) (a set of sets of
users). We also assume that each preference is set by only one user at a time,
which simplifies the model greatly, as we will see, without loss of generality.

Note that the source user itself does not decide the possible target groups
or the actual target group. The system chooses the target group based on a
propagation policy, which is partly specified by the function Groups. The goal of
this paper is to find a propagation policy that meets several sometimes conflicting
criteria:

1. First, the policy should preserve privacy.
2. Second, the policy should take into account social relations between the users

to increase the relevance of propagated policies to the target users.
3. Third, the policy should be easy to implement.

The selection of the target group may be deterministic or nondeterministic. With
deterministic target selection, |Groups(u, p)| = 1 for all u and p. With nondeter-
ministic selection, there can be multiple possible target groups and the actual tar-
get group is chosen randomly from them. (For the time being, let’s assume uniform
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random selection.) An interesting case is one where the target group is selected
from multiple possibilities based on a pseudorandom function and a secret key. In
that case, the selection process is similar to a random oracle: the target group T
is chosen randomly from Groups(u, p) for each new u, p pair but, if the selection is
repeated for the same parameters, the target group will not change.

3.2 Anonymity and the Adversary Model

After the preference setting and propagation, each user has a set of initial prefer-
ences, which remains secret to that user, and propagated preferences, which are
considered public3. The adversary is a coalition of users that observe the propa-
gated preferences and try to determine which user initially sets each preference.
We base our analysis on a rather strong adversary that knows the function
Groups and can observe all the propagated preferences. Real-world systems can
of course make it difficult for the adversary to observe all preferences through
access control, network security and cryptography.

The assumption that each preference is set by at most one user at a time, is
explained by the following: we assume that the attacker can observe the target
group for each instance of setting the preference, rather than observing only
the end result of multiple users setting the preference. This is a kind of worst-
case scenario, but also corresponds with the fact that users are unlikely to set
their preferences at exactly the same time and each act of setting may affect the
propagated preferences for other users.

After observing a preference p propagated to a target group T , the adversary
can narrow down the identity of the source to the following set:

Uanon = {u′ ∈ U | T ∈ Groups(u′, p)} (1)

This set is called the anonymity group. The adversary knows that one member of
the anonymity group initially set the preference. The size of the anonymity group
|Uanon| can be used as a measure of anonymity. This is similar to k-anonymity in
computer-security literature [4]. Note that here Uanon and k depend on u and p.
We say that a preference propagation policy preserves k-anonymity if k ≤ |Uanon|
for all u and p.

The relation between the members of the anonymity group must be symmetric
in the sense that, for a given preference and target group, if u′ is in the anonymity
group when the real source is u, then u is in the anonymity group when the real
source is u′. This is natural because an anonymity group arises from the fact
that any one of them could be the real source.

The adversary defined above corresponds to an outsider who can require all
users to reveal their propagated preferences but does not have access to anyone’s
initial preferences. This could, for example, be someone who demands that users
show their current search results, which are influenced by propagated preferences.

3 This is a modeling assumption, and real world systems may further limit their
visibility.
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We are also interested in an adversary that has, additionally, access to the
initial preferences of some colluding users. These could, for example, be a set
of friends who try to figure out the source of a preference propagated to them.
For an adversary with the combined knowledge of a coalition of users Ubad, the
anonymity set is reduced to Uanon \ Ubad. In practical situations, however, we
expect the size of the coalition to be small, often just a single user. This is
because the members of the coalition need to trust each other to tell the truth
about their initial preferences, and because sybil attacks will be prevented by
the user of social networks (see section 3.4).

From equation 1, we make the important observation that privacy does not
depend on the random selection of the target group T . A deterministic algorithm
could be just as anonymity-preserving, as long as it picks the same target group
for several users. Randomized selection does not guarantee anonymity either:
it needs to be carefully designed to produce anonymity sets of sufficient size.
This is why we consider both deterministic and nondeterministic propagation
algorithms.

Finally, we make a couple of further observations. First, the target groups
cannot be selected independently for each source user because they need to
coincide, or otherwise the anonymity sets will be small. This has implications
to the extent that the target group selection can be distributed. Second, the
possible target groups for each preference can be selected independently of other
preferences. The parameter p is carried in the notation as a reminder of this fact.
Third, if privacy is the only goal, we could just as well select the empty target
group (no preference sharing) or the all-users group U (share with everyone).
This is in fact the current practice of recommender systems (such as Amazon or
Netflix). The reasons for selecting something in between, which will be discussed
in section 3.4, are unrelated to privacy, but crucial for adding value to search
while preventing spam.

3.3 Probabilistic Anonymity Model

Above, we have not considered the probability distribution between different
choices of target groups. This lead to using k-anonymity as the measure of pri-
vacy: the anonymity group includes everyone who might be the source, no matter
how unlikely it is. Now, we extend the model to take into account probabilities.
Given a source u and a preference p, the probability distribution of target groups
is denoted by P (u, p, T ). The function Groups can now be defined as

Groups(u, p) = {T ⊆ U | P (u, p, T ) > 0}

As established in the literature [25,11], anonymity in the probabilistic model is
measured by entropy, i.e., the adversary’s uncertainly about the identity of the
source. Entropy is measured in bits, i.e., how many more bits of information
would the adversary need to be certain of the source identity. We assume that
all users are initially equally likely to be the source (equal a-prior probabilities),
and that only one at a time sets the preference. When the adversary observes a
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preference p propagated to a target group T , the entropy for the source can be
calculated as follows.

H(u|p, T )=
∑

u∈Uanon

(
P (u, p, T )

S
) · (− log2(

P (u, p, T )
S

)) where S =
∑

u∈Uanon

P (u, p, T )

What can we learn from this? Obviously, the larger the anonymity set, the
higher the entropy. Analogous to our earlier comparison of deterministic and
nondeterministic propagation policies, we also note that it makes no difference
how many different choices |Groups(u, p)| there are for T . The most important
lesson from the above formula is that, given a fixed-size anonymity set, the
entropy is maximized when all members of the anonymity set are equally likely
to choose the specific target group. It does not matter how or whether this
probability is large or small, as long as it is uniform across the possible sources.

3.4 Preference Sharing in a Social Network

The privacy model above does not explain why we want to propagate the pref-
erences in the first place. Our aim is to select a target group that is by some
measure close to the source, so that the propagated preferences are relevant to
the group. This will not only result in more effective use of the preference infor-
mation but also in spam resistance. It is important to note, however, that there
is no simple right way for defining closeness between users. Before considering
possible definitions, we will consider some general factors in propagation policies
that are based on the concept.

Since the preferences set by a user are naturally closest to its own needs, we
only consider propagation policies that are reflexive in the sense that each user
is in all of its own propagation targets:

T ∈ Groups(u, p) implies u ∈ T. (2)

In a reflexive propagation policy, the anonymity group is always a subset of the
target group.

For a given target group T , we denote Uext = T \ Uanon. Thus, the target
group is the disjoint union of the anonymity group and an extended group: T =
Uanon∪̇Uext.

The discussion so far gives one possible outline for constructing propagation
algorithms. The algorithm can be executed independently for each preference p,
or the same groups can be used for many preferences:

1. Select anonymity groups in such a way that they cover all users U . Members
of the anonymity set should be close to each other, based on some arbitrary
social metric.

2. For each anonymity set, decide on the extended groups. The members of the
extended groups should be close to the members of the anonymity set, but
not necessarily to each other.
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It makes sense to start by fixing the anonymity groups because that is an easy
way to guarantee k-anonymity. If we instead expected anonymity to arise prob-
abilistically, it would be difficult to guarantee that they all will be sufficiently
large. The members of each anonymity group need to be all close to each other
because any one of them could be the source. The members of the extended
group, on the other hand, are targets and need to be close to potential sources.

A simpler model would be one where Uext = ∅ and T = Tanon. In this restricted
model, preferences are shared mutually among a sets of users who are close to
each other, such as the members of a club or a clique of users who all know each
other. An advantage of the more general model, especially when |T | � |Uanon|,
is that the preferences can be propagated to a larger number of target users
without any reduction in anonymity. In practical social networks, we are looking
at anonymity sets of around ten users and target groups that are one order of
magnitude larger (as studied is section 4.3).

We are particularly interested in social networks that are based on a friendship
graph G ⊆ U × U . The friendship relations in this kind of graph are typically
symmetric, which means that any metric of closeness between members will be
symmetric as well. In the above outline for propagation algorithms, the first step
is to select anonymity sets in such a way that all their members are close to each
other.

3.5 Spam Resistance

For the purposes of modeling spam resistance, we categorise nodes in the system
as being in one of three categories: honest nodes genuinely share their preferences,
and dishonest nodes try to propagate to honest nodes spam preferences. We
consider that a class of honest nodes are misguided in that they have created
friendship links with dishonest nodes.

We can use this intuition to build anonymity sets Uanon and broadcast groups
Uext that are infiltration resistant. This means that once a number of honest
nodes are part of a group they are unlikely to form links with dishonest nodes,
thus disallowing them from broadcasting their preferences within the group. Part
of our security analysis is concerned with validating this property in a real-world
social network.

4 Outline of Solution

We propose a concrete nondeterministic propagation strategy that is based on
broadcasting users’ preferences within socially cohesive subgroups. The sub-
groups can be overlapping, and are formed by k-plexes of some s-minimal size. A
k-plex is a sub-graph of size gs ≥ s of the social network in which all nodes link
to at least gs − k other nodes in the sub-graph. It is an established relaxation
of cliques (which are a special case for k = 1) that defines robust and cohesive
subgroups, extensively used in social network analysis [24].

The properties of s-minimal size k-plexes make them a very good fit for sup-
porting our security and functional properties. The parameters k, defining how
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many links can be missing within a subgroup, as well as s, the minimal size of
the subgroup, are naturally related to quality and privacy.

First, k-plexes of a minimum size s are infiltration resistant. For a single node
of a coalition of c nodes to be part of a k-plex they need to form a large number
of links lc:

lc = max(s − k, [(s − k) − (c − 1)] · c) ≥ s − k (3)

This has a direct security implication for quality since a small number of mis-
guided nodes in a k-plex forming links with adversary nodes, will not allow those
nodes to infiltrate the k-plex, containing other honest nodes. (Although mis-
guided nodes can be conned into joining k-plexes dominated by corrupt nodes.)
Therefore limiting broadcast of preferences within those sub-groups curbs the
potential for abuse and spam – an adversary will have to invest a lot of effort to
infiltrate them, and a few vigilant members of each group will be able to thwart
such actions.

While a set of k-plexes form the anonymity groups Uanon each of them is
augmented by a set of additional nodes i.e., the extended broadcast group Uext.
Membership of nodes to the extended broadcast group is parameterized by a
threshold T on the number of friends a node has that belong to the anonymity
group Uanon. If a node has T or more friends in Uanon then it belongs to the
extended broadcast group Uext.

4.1 The Preference-Sharing Algorithm

The preference sharing algorithm works in two phases. First a pre-computation
extracts cohesive sub-groups that are used to form anonymity sets Uanon, and
their corresponding extended broadcast groups Uext. Only the structure of the
social network is required to perform group extraction. In a second phase pref-
erences are continuously set by users and are propagated to other users through
the extracted groups. Only propagated preferences are collected to compute
the ranking of resources for each user, and the initial preferences can even be
forgotten.

The parameters of the preference-sharing algorithm are:

– k, the parameters of the k-plexes we use.
– sa, the size of the anonymity set required.
– T , a threshold that defines the extended broadcast groups membership.

We require sa > 2k and T > 1 (in our analysis we use k = 2, sa = 8 and
T = 2). These conditions ensure that the diameter of the sub-groups extracted
is at most 2 [31]. This in turn enforces strong locality and makes the extraction
of the cohesive subgroups faster.

Sub-group extraction. First the anonymity sets are extracted. Given the so-
cial graph G a set of k-plexes of size sa is extracted and associated with each
user. These are the sets Uanon that form the core anonymity sets providing pri-
vacy for preference propagation. Second the extended broadcast groups for each
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Fig. 1. An illustration the anonymity groups and the broadcast groups selected to
propagate a single preference

anonymity set are extracted. For each cohesive subgroup Uanon we define a broad-
cast set Uext containing all nodes that are friends with at least T members of the
cohesive subgroup. This defines a ‘wider circle’ of people around each subgroup
to which preferences will also be broadcast.

Sub-group extraction is not necessarily real-time and can be performed peri-
odically depending on how often the social graph changes. The anonymity sets
for each user contained in Uanon as well as their broadcast groups Uext can be
reused for propagating multiple preferences. Sub-group extraction does not need
to be exhaustive either. In this work we chose to extract the set of k-plexes for
each user that contain at least all neighbours of each node which share a k-plex
with the user. This strategy ensures that all the friends that share a cohesive
subgroup with a node could possibly be receiving the user’s preferences.

Preference-propagation. At some point in time, a user u sets a preference for a
p. Our system chooses at random a k-plex containing the user g ∈R {Uanon} to act
as the anonymity set for this preference. If there is no such k-plex no propagation
of results takes place, and the algorithm ends. Otherwise, the preference of node
u is broadcast to all nodes in Uanon∪Uext, i.e., the anonymity set and the extended
broadcast group corresponding to the selected anonymity set Uanon.

Each node v ∈ bg aggregates all preferences broadcast in a multiset of prefer-
ence Pvi relating to a resource i. Each broadcast updates the multiset with the
received preference P ′

vi = {f(i, u)}⊎
Pvi. A simple function can then be applied

to this multi-set of preferences to determine the final preference of this each node
relating to each resource g(i, v).

4.2 Privacy Analysis

Our first task is to evaluate the privacy offered by the preference-sharing al-
gorithm, against two types of adversaries. The first is a very powerful global
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adversary, that can see the preferences output by the preference sharing algo-
rithm for every single node in the network. Yet this adversary is passive in that
it does not know the private inputs to the algorithm and tries to infer them. The
second threat we consider is a curious coalition of a user’s friends, that wants to
infer what her preferences are.

Global passive adversary. We assume that an eavesdropper can see all the prop-
agated preferences. Through those they can extract the sub-group g (of size
sa) that formed the core of the anonymity set used to propagate a particular
preference f(i, u).

Any of the members of g could have been the originators of the preference.
This already ensures some plausible deniability and privacy to the real originator.
To be more specific one has to calculate the probability a user set a preference
given that it was broadcast in sub-group g, that we will denote as Pr[u|g]. By
applying Bayes theorem we can express it in terms of known quantities:

Pr[u|g] =
Pr[g ∈R Gu] Pr[u]∑

w∈g Pr[g ∈R Gw] Pr[w]
(4)

Pr[g ∈R Gu] is the probability that a user u chooses group g and Pr[u] is the
a-prior probability we assign to user u being the originator of a preference i. If
we assume that the a-prior probability over all users is uniform, and that they
all choose the sub-groups g ∈R Gu uniformly out of the sets Gu we get:

Pr[u|g] =
1

|Gu|
∑

w∈g
1

|Gw|
(5)

In case all users chose amongst a set of fixed size |Gu| = c, this expression
simplifies, and the sought probability becomes: Pr[u|g] = 1/sa. This related
nicely the parameter sa of the algorithm with the privacy provided. The larger
sa the larger the anonymity provided, when measured information theoretically.

Yet there is likely to be an imbalance between the sizes of the sets Gu for
different users. We try to establish what the worse case scenario is, assuming
that we have some maximal size of max |Gu| = cmax as well as some minimal
size min |Gu| = cmin. In those cases we still have that:

Pr[u|g] <
cmax

cmin(sa − 1) + cmax
(6)

This expression makes it possible to compute the probability a preference is
associated with a user. A system can either try to keep it low by choosing
carefully sub-groups to guarantee cmin ≤ |Gw| ≤ cmax, or simply not propagate
preferences in case this probability is higher than a threshold.

The adversary model assumed is extremely conservative, assuming that most
information in the system is available to pinpoint g. It is most likely that coali-
tions of dishonest nodes will receive much less information. In particular a single
node in the system will not be able to distinguish which of the nodes in its set
bu was the originator of a preference.



284 G. Danezis et al.

Yet an important concern is the possibility that nodes in the anonymity set g
are in fact corrupt. We assume this is very difficult since k-plexes are infiltration
resistant. Sharing a k-plex of size sa with sa dishonest nodes, requires a mis-
guided node to make sa − k + 1 bad friends. In any case such an attack would
only affect misguided nodes in the system, which we assume are in a minority.

Honest nodes (with mostly honest friends) will never find themselves in a
k-plex dominated by dishonest nodes. Even a misguided node with fewer than
sa − k + 1 dishonest friends will never have their privacy totally compromised
through infiltration.

Coalition of curious friends. The second key threat to the privacy to users are
their very own friends. A collection of a user’s friends may exchange information
about their private preferences in an attempt to infer the preferences of a user.

First we note a very strong privacy property against such attacks. In any
case coalitions of fewer than sa − 1 users will fail to attribute a preference with
certainty to a single user. This is a very strong result that sets a lower bound
on the size of the conspiracy.

At least sa − 1 nodes are necessary to fully de-anonymize a preference, but
this condition is not sufficient to perform an actual attack. It is also necessary
that the coalition of node coincides exactly with the members of the cohesive
sub-group used as an anonymity set to broadcast the preference. This places
additional restrictions and difficulties in creating such a malevolent coalition.

Through simulations we try to estimate the quality of anonymity remaining
after such an attack. For those we use about 100000 user profiles downloaded
through the livejournal public interfaces using snowball sampling. Only sym-
metric links were kept to form a social graph. We assume that a fraction f of all
users collude to deanonymize users. These users are curious but make no special
effort to place themselves in the social graph to maximise the information they
receive (they are not as such sybil nodes – just curious friends.) Therefore we
assume they are randomly distributed across the network.

Fig. 2. The sizes of the anonymity sets remaining after a colluding coalition of friends
tries to de-anonymize a preference. The fraction f represents the probability a friend
is participating in the adversary coalition.



How to Share Your Favourite Search Results 285

Figure 2 summarises the results of attack simulations on a real-world social
network. The Preference Propagation (PP.) algorithm (yellow, right hand size
columns) is compared with the naive strategy (Std.) of broadcasting preferences
to all friends (red, left hand side columns.) When a very low number of nodes
collude to infer a user’s preference (f = 1%) the naive scheme provides good
anonymity, since on average a corrupt users cannot narrow down the originator
of a preference beyond his full circle of friends. Yet as the fraction of curious nodes
grows (f = 10%, 20%, 30%) the anonymity sets for the standard strategy shrink
to zero aside from some exceptional cases. On the other hand the anonymity
sets of the Preference Propagation algorithm remain large with high probability.
Their reduction is only due to the fraction of curious nodes actually being in the
anonymity set of the propagated preference.

4.3 Quality Analysis

The second security objective of the proposed preference propagation algorithm
is to limit the potential for the propagation of spam. Our objective is to limit the
propagation of preferences from dishonest nodes mostly to the misguided nodes,
but to make it difficult for such preferences to travel any further in the social graph.

The simple minded 1-hop propagation algorithm, in which users only broad-
cast their preferences to their neighbours, by definition achieves this property. Its
down side is that the number of nodes that could benefit from the shared pref-
erence is limited to the number of friends. The simple extension of this scheme
to a 2-hop broadcast extends the reach of the shared preferences but also makes
it very likely that nodes are the recipients of some spam. Figure 3 (right) plots
the number of nodes that are affected by users with different degrees in each
mechanism. As expected the preference propagation algorithm affects a wider
circle per node than the simple 1-hop propagation. At the same time the number
of nodes included in a extended broadcast group is smaller than the reach of the
2-hop naive propagation.

Despite the order of magnitude increase in the nodes affected by the preference
propagation algorithm compared with the 1-hop scheme, quality is to a large
extent maintained, even for larger fractions of misguided nodes all connected to
collaborating dishonest nodes. Figure 3 (left) illustrates the probability that a
node receives spam for all systems, as the fraction of misguided nodes grows,
in a real social network. In the 2-hop scheme receiving spam becomes quasi-
certain even when a small minority of users are misguided (f = 1%− 10%). For
the preference propagation scheme on the other hand the probability of receiving
spam remains low even for large fractions of misguided nodes. It is in fact closely
tracking the probability of being misguided for low rates of infiltration (f =
1%−10%). For higher rates of infiltration (f = 10%−30%) the probability non-
misguided honest nodes receive spam increases slowly (marked at “PP. (Non
Misg.)” on the illustration.)

There is a further fine, but important, difference between the proposed pref-
erence propagation algorithm and the traditional 1-hop or 2-hop schemes. In our
approach the dishonest nodes, connected to the misguided honest nodes, must
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Fig. 3. The probability of honest nodes receiving malicious preferences, depending on
the fraction of malicious nodes in the system (Left). The size of the naturally occurring
broadcast groups as a function of node degree, compared with the 1-hop and 2-hop
neighborhood (right).

all be acting in a coordinated way to spam the system. They need to form cohe-
sive subgroups between themselves and the users to broadcast their preferences.
In effect it means that a single adversary must be connected to a fraction f of
the honest nodes, unless they start applying social engineering to target related
nodes to form cohesive subgroups.

The standard 1-hop and 2-hop propagation on the other hand does not require
adversaries to coordinate in any way to spam. This means that the total fraction
of misguided nodes, connecting to even unrelated adversaries, needs to be f for
the probability of attack illustrated in figure 3 (left) to hold. It is much more
likely that the total number of misguided nodes reaches a fraction f , than the
number of misguided nodes connected to a single adversary’s nodes reaches the
same fraction. Unless there is a conspiracy at a massive scale it is difficult to
imagine a single adversary connecting sybils to more than 10% of honest nodes
in a larger network, at which point purpose built sybil attack defenses based on
social networks should be employed [7].

Even in the absence of other sybil defenses the proposed system offers excellent
guarantees against spam, as 10% of misguided nodes would lead to barely more
than 10% of nodes being spammed (Figure 3 (left)). At the same time our
strategy affords honest preferences a wide reach, of an order of magnitude above
simply propagating preferences to friends (Figure 3 (right)).

4.4 Future Work: Adversarial Profiling

As preferences are propagated in groups it might be possible for adversaries to
modify established disclosure attacks [17,8] to try to de-anonymize or profile
users. For example if a user keeps receiving preferences about rare comic books,
or another relatively rare subject, from many anonymity sets they might assume
a single user is the originator and try to intersect the anonymity sets to de-
anonymize them. The general attack considers users on one side, each with some
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abstract interests, and propagated preferences on the other side. Every time a
preference is propagated to a broadcast group, this is modeled as a communica-
tion though a mix with the same anonymity set. Then the statistical disclosure
attacks can be applied to extract user profiles in the long term.

The effectiveness of this attack in this new context is not clear, as the ad-
versary has to ascribe preferences to categories – a fuzzy step that was not pre-
viously necessary. Subgroups are also likely to be coherent in their preferences
which creates dependencies in the anonymity sets not previously considered by
disclosure attacks. Adapting those traffic analysis techniques to extract prefer-
ence profiles could be a valuable contribution to the literature. Bayesian models
of such attacks are likely to be the most amenable to this setting [9].

5 Conclusions

We presented a general framework for anonymously sharing information in a so-
cial network. Our framework guarantees some k-anonymity, maintains high value
by allowing information to be shared based on social proximity, and increases
the cost of spamming the network. Our approach, extracting special cohesive so-
cial structures to protect users, adds to a body of work that uses social network
information for security, as SybilInfer does for sybil defenses [7], and other pro-
posals for automatically extracting privacy policies in social networks [5]. In the
absence of a top-down trust structure we believe that the hints the users provide
as to who they know and trust are the only way to bootstrap such policies, even
though they might not be as bullet proof as traditional mandatory access con-
trol systems. Notions of differential privacy [14] can also be used to show that a
published statistic leaks no identifiable information, and the application of this
framework to our problem would be an interesting avenue for future work.

The framework we provide can be extended through alternative definitions of
broadcast groups, that may provide a different anonymity, quality and spam-
resistance trade-offs. Some structures could make use of explicit user hints of
groups and communities, or even try to route preferences to groups that would
most benefit from those (i.e., preferences about technical searches staying within
technical communities). A further open question remains: how can traditional
long term traffic analysis attacks be adapted, from inferring patterns of commu-
nications, to inferring users profiles despite the anonymization?

Acknowledgments. Dogan Kesdogan was the first to relate to the authors the idea
that anonymity and privacy really comes down to “anonymity set engineering”,
which this work contributes to.
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A Measuring k-Plexes in the Wild

The privacy offered by our scheme against passive adversaries as well as dishonest
nodes is closely related to the minimal size of the cohesive subgroups defining
our anonymity sets, namely sa. This parameter is not up to the designer of
the system to tune, and is heavily dependant on the natural sizes of cohesive
subgroups appearing within real-world social networks. Choosing sa to be too
large means that few nodes can broadcast their preferences, but choosing it to
be too small results in lower degrees of anonymity for preferences.

To better understand the range of possible subgroup sizes sa we measure the
number of nodes reachable through a k-plex with parameters k = 2, sa > 4
and sa > 7. We use the Live Journal (LJ) data set4, where edges represent
the mutual consent of two LJ users to read each others’ private journal entries.
Figure 4 illustrates the number of users reachable for these two parameters. It
is clear that the number of nodes sharing cohesive subgroups with a user grows
roughly linearly with the degree of the node. As expected the a higher sa leads to
fewer nodes being in cohesive subgroups of that size. We use sa > 7 throughout
all our experiments, since it seems to offer a good trade-off between privacy and
reachability.

The natural emergence of social structures that are large and cohesive could
be of great importance for other security designs. Traditional threshold cryp-
tosystems, or secret sharing schemes, assume that their processes are distributed
across a number of participants out of whom some are honest. Yet there has been
little research in measuring the natural sizes of subgroups in a social network
over which such functions could be distributed. Our work is the first to inform
the debate with such figures.

Fig. 4. Reach of cohesive groups per node degree and sa value

4 http://www.livejournal.com/

http://www.livejournal.com/
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