
UTP Semantics for Handel-C

Juan Ignacio Perna and Jim Woodcock

Computer Science Department
The University of York
York - United Kingdom

{jiperna,jim}@cs.york.ac.uk

Abstract. Only limited progress has been made so far towards an ax-
iomatic semantics or discovering the algebraic rules that characterise
Handel-C programs. In this paper we present a UTP semantics together
with extensions we needed to include in order to express Handel-C prop-
erties that were not addressable with standard UTP. We also show how
our extensions can be abstracted to a more general context and prove a
set of algebraic rules that hold for them. Finally, we use the semantics
to prove some properties about Handel-C constructs.

1 Introduction

Handel-C [10] is a Hardware Description Language (HDL) based on the syntax
of the C language extended with constructs to deal with parallel behaviour
and process communications based on CSP [11]. The language is designed to
target synchronous hardware components with multiple clock domains, usually
implemented in Field Programmable Gate Arrays (FPGAs).

In this paper we present a denotational semantics for a subset of Handel-C.
Our semantics is based on the theory of designs as presented in the Unifying
Theories of Programming (UTP) [12]. Special attention is paid to the way in
which parallelism is captured, as the UTP model for parallel composition is
more restrictive than the one used in Handel-C. The major difference between
the two parallel models lies in the fact that the shared-variable parallel model
presented in UTP is based on the parallel processes terminating at the same
time. As this restriction does not hold for Handel-C programs, we propose an
extension of this UTP theory that is capable of handling the kind of parallelism
we required. We also used the semantics to prove a set of algebraic rules about
Handel-C programs.

We also generalise the notions in our parallel operator for Handel-C and pro-
vide a more general parallel operator that is able to handle processes that may
take a different amount of clock cycles to finish. We also address the algebraic
laws of our operator together with the healthiness conditions that it preserves.

The rest of this paper is organised as follows: section 2 presents the syntax of
the subset of Handel-C we address in this work together with an informal account
of its semantics. Section 3 presents our parallel-by-merge operator for Handel-C
that handles parallel composition of processes of different length. This section

A. Butterfield (Ed.): UTP 2008, LNCS 5713, pp. 142–160, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

UTP Semantics for Handel-C 143

also covers the algebraic laws we have proved about the operator together with
the healthiness conditions the operator preserves. Section 4 presents the UTP
semantics for Handel-C and motivates the changes we introduced in UTP in order
to be able to capture Handel-C’s timing model and restrictions. This section also
includes a set of algebraic laws we have proved from the semantics together with
examples of the semantics in action. In section 5 we propose an abstraction of our
parallel-by-merge operator suitable for more general synchronous environments.
Finally, section 6 presents the related research and section 7 the conclusions and
future extensions of this work.

2 Handel-C in More Detail

In order to provide semantics for the language, a simplified subset that captures
the major constructs in the Handel-C language is being used. Most constructs in
the language can be built by combining constructs in this subset, with exception
of the prioritised choice construct and function calls. Our subset of Handel-C
constructs is presented in figure 1.

〈program〉 ::= main { 〈statements〉 }
〈statements〉 ::= 〈statement〉 � 〈statements〉 | 〈statements〉 ‖

HC
〈statements〉 | 〈statement〉

〈statement〉 ::= if 〈boolean expression〉 then 〈statements〉 else 〈statements〉
| while 〈boolean expression〉 do 〈statements〉
| 〈variable list〉 :=

HC
〈expression list〉 | δHC | IIHC

| 〈channel name〉?〈variable name〉 | 〈channel name〉!〈expression〉

Fig. 1. Restricted syntax for Handel-C programs

As described in the language documentation [10], programs are comprised of
at least one main function and, possibly, some additional functions. Multiple
main functions (within the same file) produces the parallel execution of their
bodies under the same clock domain. It is possible to produce the same effect in
our reduced subset by means of the parallel operator.

All C-based constructs in Handel-C behave as defined in ANSI-C [14] but
with some additional restrictions regarding the clock-based, synchronous nature
of the language. In this sense, the evaluation of expressions is performed by
means of combinatorial circuitry and it is completed within the clock cycle in
which it is initiated (expressions are considered to be evaluated “for free” [10]
due to this semantic interpretation).

This way of evaluating conditions affects the timing of all the constructs in the
language. In the case of selection, the branch selected for execution (depending
on the condition) will start execution within the same clock cycle in which the
whole construct is initiated. The while construct behaves in a similar way when

144 J.I. Perna and J. Woodcock

its condition is true (i.e., it starts its body in the same clock cycle in which its
condition is evaluated) and, because of the same reason, terminates within the
same clock cycle in which its condition becomes false. Assignment, on the other
hand, happens at the end of the clock cycle. This definition of the assignment
construct allows swapping of variables without the need of temporary variables.

From the remaining non-C constructs, parallel composition of statements ex-
ecutes in a real parallel fashion as it refers to independent pieces of hardware
running in the same clock domain. Delay leaves the state unchanged but takes
a whole clock cycle to finish and IIHC leaves the state unchanged and finishes
immediately (in fact, no hardware is generated for it).

Finally, input and output have the standard blocking semantics: if the two
parts are ready to communicate, the value outputted at one end is assigned to the
variable associated with the input side. Both sides of the communication take one
full clock cycle to successfully communicate. A process trying to communicate
over a channel without the other side being ready will block (delay) for a single
clock cycle and try again.

3 Extended Parallel by Merge

As mentioned before, we intend to define the semantics of Handel-C constructs
in terms of synchronous UTP designs. The first problem we faced in this context
is the fact that the parallel-by-merge approach used in UTP (see [12] chapter
7), is only applicable to parallel processes that take the same amount of time to
terminate. This is a very strong restriction, especially in the context of Handel-C
where parallel composition is unrestricted in this sense.

The rest of this section outlines the definitions and algebraic laws that hold
for a new parallel-by-merge operator that can handle processes that do not
necessarily take the same amount of time to finish.

3.1 The Merge Predicate

The first step towards the definition of our operator is to instantiate the merge
predicate M that will join the results of two single-step parallel process. By
single-step we mean a process that performs all its actions in a single time unit
(e.g., a single clock cycle in the context of synchronous hardware). The intuition
behind our definition is that M will update the shared variables to the value of
the process that has modified it or will leave it unchanged if none of the parallel
processes modified it. More precisely, we define M as follows:

M(ok, m, 0.m, 1.m, m′, ok′) =
ok ⇒ ok′ ∧

((m′ = m) � m = 1.m � (m′ = 1.m))
�m = 0.m �
((m′ = 0.m) � m = 1.m � (m′ = 1.m �m′ = 0.m))

UTP Semantics for Handel-C 145

Handel-C semantics allows at most one write to any shared variable per clock
cycle. In this context, our definition for M behaves as expected as it will be
applied at the end of each clock cycle where we know that, at most, one of the
processes has changed the value in its local copy of m.

We “totalised” the definition of M in order to cover the (impossible) case
where the two parallel processes modify m, as we needed M to be symmetric
in order to prove our operators associative later in this section. In this context,
the result of multiple assignment to the same variable during the same clock
cycle is the internal choice of updating the store with either of the values being
assigned. This unexpected non-determinism can be explained at the hardware
level by the unpredictable value that will be stored in a register when it is fed
with more than one value at the same time.

Following Hoare and He [12], we define the single-step parallel composition
operator ‖M as P ‖M Q =df ((P ; U0) ‖ (Q; U1)); M . Here U0 and U1 are
separating simulations that will generate the local copies of the shared state.

We are interested in proving some standard algebraic laws about our merge
predicate:

L1 P ‖M Q = Q ‖M P ‖M -comm
L2 P ‖M (Q ‖M R) = (P ‖M Q) ‖M R ‖M -assoc
L3 (IIX ‖M IIY) = IIX∪Y ‖M -II
L4 true ‖M P = true ‖M -true
L5 (P � b � Q) ‖M R = ((P ‖M R) � b � (Q ‖M R)) ‖M -��
L6 (P �Q) ‖M R = (P ‖M R) � (Q ‖M R) ‖M -�
L7 (

⊔
S) ‖M R =

⊔

n

(Sn ‖M R) ‖M -
⊔

for any descending chain S = {Sn | n ∈ N}
L8 (x := e; P) ‖M Q = (x := e); (P ‖M Q)

provided that x := e does not mention m

Instead of proving all these laws for our operator, we can take advantage of an
already proved result from UTP that guarantees properties L1 - L7 above to
hold iff M is a valid merge. We proved M to be valid by showing it satisfies:

V1 (0.m, 1.m := 1.m, 0.m); M = M M is symmetric
V2 (0.m, 1.m, 2.m := 1.m, 2.m, 0.m); M3 = M3 M is associative

where M3 = ∃x, t •M(ok, m, 0.m, 1.m, x, t) ∧M(t, m, x, 2.m, m′, ok′)
V3 (var 0.m, 1.m := m, m; M) = II

We were also able to prove two expected properties from our definition of M : if
one of the branches remains idle (i.e., does not modify the shared variable), then
the shared variable will be updated according to the other branch (M -unit); and
if the two processes modify the variable in the same way then the shared variable
will be updated to that value (M -idemp). More formally stated:

146 J.I. Perna and J. Woodcock

(0.m = v); M(v, 0.m, 1.m, m′) = (m′ = 1.m) M -unit
(0.m, 1.m := v, v); M(m, 0.m, 1.m, m′) = m′ = v M -idemp

We also proved that M preserves healthiness conditions H1 to H4, by proving
(again, by a result from UTP) that ‖M is H1 to H4.

3.2 The Final Merge Predicate

In the context of UTP synchronous parallel process, time is captured by a global
counter c and each parallel process has its own copy of the store. Each process has
access to the global state by means of a pair of vectors indexed by time: in and
out that can be interpreted as the values of the global variables at the beginning
and end of the clock cycle respectively. Processes behave independently from
each other, signalling the end of their actions at each clock cycle by performing
a sync action. The merge predicate is then used to calculate the global value of
the store for that clock cycle and to propagate the value to the processes through
the in observation.

So far we have defined how to merge the result of a single step in the compu-
tations of parallel processes. The next step is to define a final merge predicate
M̂ (i.e., a predicate that will take the result of two arbitrary processes and will
compute the final outcome of their parallel execution) that is capable to handle
different-length parallel processes. The main issue when trying to define such an
operator is how to state that if one of the processes takes less clock cycles to
finish than the other one, then it should do nothing but wait. More important,
how to produce this “missing behaviour” while preserving properties L1 to L8
from the previous section.

The above idea could be expressed in the UTP by forcing the shorter process
to perform the missing sync actions it is not doing (i.e., advancing the local
counter c and updating outc and the shared resource m appropriately). There
are several alternative ways to achieve this effect but, even though all of them
are operationally correct, they fail when trying to prove some of the desired
properties for the parallel merge operator. The main reason for this being the
behavioural padding we are using to generate the missing behaviour for the
shorter process not being associative and not distributing over M̂ .

The evidence above suggests that we need a way of denoting the padding in
a less explicit way. In fact, we need to find a way to establish the right values
in the variables used to control the parallel execution for the shorter processes
and to denote the fact that the local copy of the shared resource m is keeping
its previous value while the clock counter is advancing.

To achieve this effect we first introduce a new variable f recording the clock
cycle count in which the whole program finishes. In this way, we keep the local
copies of the counter c to the actual termination times for each branch while
we are able to express actions for the whole duration of the program. We also
introduce the 0.m.in inspired after the in vector in the UTP formulation. We
initialise 0.m.in to behave like the standard feedback loop in a flip-flop (at each
clock cycle, it holds the same value it had during the previous clock cycle). In

UTP Semantics for Handel-C 147

this way, we are avoiding an explicit mention of how the variable is preserving
its previous value during the cycles in which the process is inactive.

We also need to account for the communication primitives and how our par-
allel operator handles them. We define the input and output commands to rely
upon a set of special variables that are not included in the list of program
variables. The special set of variables associated to a given channel ch include
ch?, ch! and ch standing, respectively, for the requests for inputting, outputting
and the value to be transmitted over ch. We also assume that ch?, ch! (the re-
quests for communication) will remain in the logical value false unless they are
used. This assumption is consistent with the hardware implementation of com-
munications, where the requests are wires that remain in a “low state” unless
they are explicitly fed with current when the request is done.

Finally, we introduce the fixed, but arbitrary value ARB. As with the false log-
ical value for the communication requests, this value will be the default value for
all channels when they are not being used. This is a refinement of what happens
at the hardware level where the value of this kind of buses is left unconstraint
when they are not being used.

We now extend the standard definition of the separating simulation U0 (and
similarly U1) to include m.in together with the channel request wires:

U0 =df var 0.m.in, 0.c, 0.ch?, 0.ch!, 0.ch := m.in, c, ch?, ch!, ch;
end m.in, c, ch?, ch!, ch

With these definitions in place we now define the final merge predicate:

M̂ =df (c := max(0.c, 1.c) ‖
{M(mi−1, 0.m.ini, 1.m.ini, m.in′

i)|c ≤ i ≤ f} ‖
{M(false, 0.chi, 1.chi, ch

′
i)|c ≤ i ≤ f} ‖

{M(false, 0.ch?i, 1.ch?i, ch?′i)|c ≤ i ≤ f} ‖
{M(ARB, 0.ch!i, 1.ch!i, ch!′i)|c ≤ i ≤ f});
end 0.c, 1.c, 0.ch?, 1.ch?, 0.ch!, 1.ch!, 0.ch?, 1.ch?, 0.ch, 1.ch;
{IIm.ini,mi,com(ch)i

|i < c}

There are several aspects of this definition that are worth noticing:

– Even though the introduction of f in our model allows the local counters
(0.c and 1.c) to be different, we know one of them (the bigger one) matches
the actual cycle count for the parallel execution of both processes. We choose
the longest execution time to update the global cycle counter.

– All our updates to the shared store (generically referred to as m) are based on
the value of the resource being updated at the previous clock cycle. Updates
to the communication requests and bus values, on the other hand, are based
on their respective default values.

148 J.I. Perna and J. Woodcock

The rationale behind the behaviour for the store is that we are modelling
sequential hardware, where the next value of registers (variables) will depend
on the state of the machine in the previous clock cycle. A similar explanation
holds for communication requests and buses, where the default values are
used to detect if any of the processes has changed them. In both cases, M
acts as a multiplexer that selects between preserving the old/default value
or routing the updated value.

– Regarding Hoare and He’s initial formulation, we removed the presence of
the out sequence in our model. In UTP, the out vector is used to record the
intermediate results produced by the process over the shared variables and
avoid variable capture. The fact that our variables are themselves sequences
allows us to remove out and reuse the local copy of m for this purpose.

Finally, we define the parallel-by-merge operator as:

P ‖M̂ Q =df ((P ; U0) ‖ (Q; U1)); M̂

3.3 Algebraic Laws and Healthiness Conditions

In this section we provide the set of laws we proved about our parallel-by-merge
operator. Most of the laws are similar to the ones presented earlier in the paper
for the ‖M operator, but we recast them here for clarity.

L1 P ‖M̂ Q = Q ‖M̂ P ‖M̂ -comm
L2 P ‖M̂ (Q ‖M̂ R) = (P ‖M̂ Q) ‖M̂ R ‖M̂ -assoc

provided that P , Q and R are H4

L3 (II ‖M̂ P) = P ‖M̂ -II
L4 true ‖M̂ P = true ‖M̂ -true

L5 (P � b � Q) ‖M̂ R = ((P ‖M̂ R) � b � (Q ‖M̂ R)) ‖M̂ -��
L6 (P �Q) ‖M̂ R = (P ‖M̂ R) � (Q ‖M̂ R) ‖M̂ -�
L7 (

⊔
S) ‖M̂ R =

⊔

n

(Sn ‖M̂ R) ‖M̂ -
⊔

for any descending chain S = {Sn | n ∈ N}
L8 x := e; (P ‖M̂ Q) = (x := e; P) ‖M̂ Q :=-‖M̂
L9 (P ‖M{m,ch} Q); tick; (R ‖M̂ S) = (P ; tick; R) ‖M̂ (Q; tick; S) ‖M -‖M̂

provided that P and Q do not perform any tick event
where ‖M{m,ch}=df M(m, 0.m.in, 1.m.in, m.in′) ‖

M(com(ch), 0.com(ch), 1.com(ch), com(ch)′)

UTP Semantics for Handel-C 149

We start by proving two of the three validity properties of the ‖M̂ operator by
showing:

(0.st, 1.st := 1.st, 0.st); M̂ = M̂ M̂ -symmetric
where st =df m0..f , c, ch?, ch!, ch

(0.st, 1.st, 2.st := 1.st, 2.st, 0.st); M̂3 = M̂3 M̂ -associative

where M̂3 =df ∃x.st • M̂(st, 0.st, 1.st, x.st) ∧ M̂(st, x.st, 2.st, st′)

With these results, we easily proved (‖M̂ -comm) and (‖M̂ -assoc).
The key result regarding our parallel-by-merge operator’s capability to handle

processes of different length lies in property 3.3L3, as the spreadsheet principle
(3.3L9) will eventually reduce the shorter process to IIHC.

Proof of 3.3L3: For the proof, consider:

P =df c, m.in, ch, ch?, ch! :=
c + t, P.m.in � 〈m.inc+t+1, ..., m.inf〉, P.chc..c+t � 〈ARB, ..., ARB〉,
P.ch?c..c+t � 〈false, ..., false〉, P.ch!c..c+t � 〈false, ..., false〉))

Then we have:

II{m.in,com(ch),c} ‖M̂ P

= [‖M̂ ’s definition, U0 and U1 definition and predicate calculus]
((0.c, 0.m.inc..f , 0.chc..f , 0.ch?c..f , 0.ch!c..f :=

c, 〈m.inc−1, ..., m.inf−1〉, 〈ARB, ..., ARB〉, 〈false, ..., false〉, 〈false, ..., false〉) ‖
(1.c, 1.m.inc..f , 1.chc..f , 1.ch?c..f , 1.ch!c..f :=
c + t, P.m.in � 〈m.inc+t+1, ..., m.inf〉, P.chc..c+t � 〈ARB, ..., ARB〉,
P.ch?c..c+t � 〈false, ..., false〉, P.ch!c..c+t � 〈false, ..., false〉)); M̂

= [M̂ -unit]
(c, m.inc..f , chc..f , ch?c..f , ch!c..f :=

c + t, P.m.in � 〈m.inc+t+1, ..., m.inf〉, P.chc..c+t � 〈ARB, ..., ARB〉,
P.ch?c..c+t � 〈false, ..., false〉, P.ch!c..c+t � 〈false, ..., false〉)

= [Definition of P]
P

Laws L4-L8 can be easily proved from the fact that M̂ is defined in terms of ‖
and these properties hold for the disjoint-alphabet parallel operator. L9 can be
proved following the proof sketched in [12].

Regarding the healthiness conditions and their preservation through the ‖M̂
operator, we begin by observing that even though we have not explicitly stated
that M̂ is a design, this can be easily shown if we first note that all the parallel
elements in its definition are designs:

150 J.I. Perna and J. Woodcock

M̂

= [M̂ ’s definition]
(true � c := max(0.c, 1.c)) ‖
{(true �M(mi−1, 0.mi, 1.mi, m.in′

i))|c ≤ i ≤ f} ‖
{(true �M(chi−1, 0.chi, 1.chi, chi))|0 < i < f} ‖
{(true �M(ch?i−1, 0.ch?i, 1.ch?i, ch?i))|0 < i < f} ‖
{(true �M(ch!i−1, 0.ch!i, 1.ch!i, ch!i))|0 < i < f} ‖
end 0.c, 1.c, 0.ch?, 1.ch?, 0.ch!, 1.ch!, 0.ch?, 1.ch?, 0.ch, 1.ch

= [‖ composition of designs, M for M̂ ’s body]
(true �M)

By being a design, M̂ satisfies H1 and H2. M̂ ’s simple assumption (true) makes
it trivial to prove that it also satisfies H3. Finally, H4 follows naturally from M
being H4. We use these results together with the fact that our definition of ‖M̂
follows the UTP parallel-by-merge template to ensure that ‖M̂ is implementable
and preserves the four healthiness conditions.

4 Handel-C Semantics

In this section we present the semantic expressions that give meaning to Handel-
C constructs. The first problem we face when trying to produce a UTP-based
semantics is the property of the assignment design that allows us to flatten a
sequence of assignments to a single (possibly multiple) assignment (law 3.1.L2
in UTP). For example, UTP algebraic laws for assignment and sequential com-
position allow us to reduce (x := 1; x := x + 1) to x := 2. Even though the
equivalent Handel-C program also finishes by storing the value 2 in x, it does
so after two clock cycles and we are interested in preserving the information
about x = 1 for a whole clock cycle before changing into its final value (this is
fundamental when parallel composition is taken into account).

We address this problem by turning the variables in the program into se-
quences of values indexed by clock cycle. In this way, it does not hold that
(x :=

HC1 � x :=
HCx + 1) = x :=

HC2. For this idea to work we need to introduce a way to
keep track of the current clock cycle and how each construct behaves with re-
spect to it. With this in mind, we extend the scope of the observational variable
c from just parallel regions to the full scope of the program. We also add a single
action capturing the notion of the clock ticking :

tick =df c := c + 1

We also take advantage of the in vector as defined in section 3.2. In the context
of the semantics, it plays a key role because it allows us to unify the sequential
and parallel worlds and preserve the compositionality of the approach (we will
address this issue in more detail at the end of this section).

UTP Semantics for Handel-C 151

To keep the presentation compact, we introduce the notation com(ch) to stand
for all the variables associated to channel ch (ch?,ch!,ch) and comidle to the set
of values associated to a channel when it is idle (i.e., it’s default values).

In these terms, the semantics of assignment, the one-clock-cycle delay and
IIHC can be stated as follows:

�x :=
HCe� =df (x.inc, v.inc, com(c) := �e�, vc−1, comidle); tick

�δHC
� =df (v.inc, com(c) := vc−1, comidle); tick

�IIHC� =df IID

Here v stands for the remaining variables in the state space of the program.
Thus, vc refers to the values of the variables mentioned in v at clock cycle c and
v.inc+1 to the value for the in vectors associated to each of them at clock cycle
c + 1. On the other hand, the semantics of an expression e are defined in the
usual way with the exception that variable accesses (i.e., reads) are indexed by
the clock cycle in which they happen.

The basic sequential constructs of the language can be given semantics by
their UTP counterparts:

�P � Q� =df �P �; �Q�

�if c then P else Q� =df �P � � �c� � �Q�

�while c do P � =df μX • (�P �; X) � �c� � II

We use the communication requests introduced in section 3.2 and include three
new signals

←−
ch,
−→
ch and

←→
ch standing for the granted request for input and output

over ch together with the actual value transmitted over the bus ch. In this
context, the semantics of the input/output primitives can be stated as follows:

�ch?m� =df

μX • ch?c := true;

((m.inc, v.inc, ch!c, chc :=
←→
ch ′

c, vc−1, false, ARB; tick)

�−→ch′
c = true �

(v.inc, ch!c, chc := vc−1, false, ARB; tick; X))
�ch!x� =df

μX • ch!c, chc := true, �x�;
((v.inc, ch?c := vc−1, false; tick)

�←−ch′
c = true �

(v.inc, ch?c := vc−1, false; tick; X))

It is worth noticing that none of the granted-request variables are modified by
the communicating processes (i.e., they do not appear in the output alphabet

152 J.I. Perna and J. Woodcock

of the processes). In this way, the same variable can be mentioned in multiple
parallel without risking to interfere with each other.

The semantics for parallel composition is defined in terms of the ‖M̂ operator:

�P ‖
HC Q� =df �P � ‖M̂ �Q�

We have addressed ‖M̂ in full detail in section 3.2. For the present discussion it
is relevant to highlight that it produces local copies of the state and the channels
(thanks to the separating simulations) that each process will access and modify.
The merge predicate M̂ is then be used to merge these copies back into the
original shared variables.

Finally, we use the top-level main function to introduce the clock cycle count
c together with the traces for the store, their associated in variables and the
channel request/granted signals. We also initialise the shared variables (with
their corresponding in vectors) to behave like a flip-flop. We apply a similar
technique to establish the default value for channel requests and to set the de-
fault value transmitted over the channels to ARB. In this way, we satisfy the
assumptions about default values we made when defining ‖M̂ in section 3.2.

�main {P}� =df

var c, m, m.in, f, ch?, ch!, ch,
←−
ch,
−→
ch,
←→
ch ; ch?, ch!, ch;

c, m0..f , m.in0..f := 1, λc • ARB� c = 0 � mc−1, λc • ARB� c = 0 � mc−1;
ch?0..f , ch!0..f , ch0..f := λc • false; λc • false; λc • ARB;
�P � ∧ (m = m.in′) ∧ (f = c′) ∧ (

−→
ch′ = ch!′) ∧ (

←−
ch′ = ch?′) ∧ (

←→
ch ′ = ch′);

end m.in, f, ch?, ch!, ch,
←−
ch,
−→
ch,
←→
ch

It is worth noting the mapping we are producing between m and m.in′. In this
way, the register storing m is copying what is fed to it through the in channel at
every clock cycle. The simple relation this equation establishes is the key for the
compositionality of the approach. In the context of sequential fragments, each
sub-process will modify in according to its needs and this will be reflected in
m. In the context of parallel processes, the in variable will be replicated (i.e.,
locally copied), generating multiple inputs to the same register. The M̂ operator
will appropriately merge (select) the right one and transfer the final value to the
global in, ensuring homogeneous operation and compositionality.

We also constrain the value of f to the final value of the clock counter, mak-
ing it consistent with our requirements in section 3. Regarding granted/request
signals, they are used to avoid variable-capture when producing the local copies
of the state within the parallel operator. The restrictions imposed here to keep
them equal to the communication requests at all times, allows the feedback of the
merged result (captured in the primed version of the requests) to the recursive
equations used in the communication.

UTP Semantics for Handel-C 153

4.1 Properties about the Semantics

So far we have introduced a way to express the semantics for Handel-C in the
theory of designs in UTP. At this point we are interested in using the semantics
to find out which properties hold true for Handel-C syntactic constructs. We
devote the rest of this section to describe the results we have proved so far
towards this goal.

L1 P � (Q � S) = (P � Q) � S �-assoc
L2 P ‖

HC
Q = Q ‖

HC
P ‖

HC
-comm

L3 (P ‖
HCQ) ‖

HCR = P ‖
HC (Q ‖

HC R) ‖
HC -assoc

L4 P � IIHC = P = IIHC
‖
HCP �-skip

L5 IIHC
‖
HCP = P ‖

HC -IIHC

L6 x :=
HCe � (P ‖

HCQ) = (x :=
HC e � P) ‖

HC (x :=
HCe � Q) ‖

HC - :=
HC

L7 x :=
HCe � (P ‖

HCQ) = (x :=
HC e � P) ‖

HC (δ
HC

� Q) ‖
HC - :=

HC -δHC

L8 x, y :=
HCe1, e2 � (P ‖

HC Q) = (x :=
HCe1 � P) ‖

HC (y :=
HCe2 � Q) ‖

HC -multiple- :=
HC

L9 (ch?x � P) ‖
HC

(ch!e � Q) =
(x, ch?, ch!, ch :=

HCe, true, true, e) � (P ‖
HCQ) ?!- :=

HC

Provided that (ch?′, ch!′, ch′ =
←−
ch′,
−→
ch′,
←→
ch ′)

L10 (ch?x � P) ‖
HC (ch!e � Q) ‖

HC (ch?y � R) =
(x, y, ch?, ch!, ch :=

HCe, e, true, true, e) � (P ‖
HCQ

‖
HCR) ?!-multiple-readers

Provided that (ch?′, ch!′, ch′ =
←−
ch′,
−→
ch′,
←→
ch ′)

L11 (ch?x � P) ‖
HCQ =

((ch?, ch!, ch :=
HC true, false, ARB) � ch?x � P) ‖

HC
Q ?-copy-rule

Provided that there is no process writing into ch during the first clock
cycle in the execution of the parallel region

L12 (ch!e � P) ‖
HC Q =

((ch?, ch!, ch :=
HCfalse, true, e) � ch?x � P) ‖

HCQ !-copy-rule
Provided that there is no process reading from ch during the first clock
cycle in the execution of the parallel region

The proofs for L1 to L5 are straightforward from our definition of the semantics
and the properties of the underlying sequential and parallel composition opera-
tors. In particular, L4 holds because the semantics of all our constructs in the
language can be expressed as designs (II is a left unit) that are also H3 healthy
(IID is a right unit).

154 J.I. Perna and J. Woodcock

Proof of L6 (the proofs of L7 and L8 follow the same proof outline).

(x :=
HCe � P) ‖

HC (x :=
HCe � Q)

= [Semantics of :=
HC , � and ‖

HC]
(xc, vc, com(c) := e, vc−1, comidle; tick; P) ‖M̂
(xc, vc, com(c) := e, vc−1, comidle; tick; Q)

= [‖M -‖M̂]
((xc, vc, com(c) := e, yc−1, comidle) ‖M{x,v,com(ch)}

(xc, vc, com(c) := e, vc−1, comidle)); tick; (P ‖M̂ Q)
= [M -idemp]

(xc, vc, com(c) := e, vc−1, comidle); tick; (P ‖M̂ Q)
= [Semantics of :=

HC , � and ‖
HC]

x :=
HC e � (P ‖

HCQ)

4.2 The Semantics in Action

In this section we present two simple cases to illustrate the way the semantics
work on an environment of shared variables. The first example shows a program
that first initialises one of the shared variables to them modify them in an
uneven-length parallel subprocess:

main {x :=
HC8 � ((x :=

HCx + 1) ‖
HC (y :=

HC1 � x :=
HCx + y + 1))}

= [‖
HC -multiple- :=

HC]
main {x :=

HC8 � (x, y :=
HCx + 1, 1) � (IIHC

‖
HC x :=

HC x + y + 1)}
= [‖

HC
-IIHC]

main {x :=
HC8 � (x, y :=

HCx + 1, 1) � x :=
HC x + y + 1}

As expected, the program can be flattened into a sequence of parallel assign-
ments. We can apply the semantic expressions for the constructs in Handel-C to
obtain the trace:

var c, x, y := 3, 〈ARB, 8, 9, 11〉, 〈ARB, ARB, 1, 1〉

Our next example addresses the case where one process is trying to communicate
with another one that is not ready:

main {(ch?x) ‖
HC (y := 10 � ch!y)}

= [?-copy-rule]
main {(ch?, ch!, ch :=

HC true, false, ARB � (ch?x)) ‖
HC (y := 10 � ch!y)}

= [‖
HC

-multiple- :=
HC]

main {(y, ch?, ch!, ch :=
HC 10, true, false, ARB) � (ch?x ‖

HCch!y)}

UTP Semantics for Handel-C 155

= [?!- :=
HC]

main {(y, ch?, ch!, ch :=
HC10, true, false, ARB) �

(x, ch?, ch!, ch :=
HCy, true, true, y) � (IIHC

‖
HC IIHC)}

= [‖
HC -IIHC, �-skip]

main {(y, ch?, ch!, ch :=
HC10, true, false, ARB)�(x, ch?, ch!, ch :=

HCy,

true, true, y)}
From the final equation above, it is easy to see that there was a failed attempt
of communication during the first clock cycle, and that the communication was
carried out during the following clock cycle. Expanding the semantics of the
main function and assignment we can get the actual trace of the program:

var c, x, y, ch?, ch!, ch := 2, 〈ARB, ARB, 10〉, 〈ARB, 10, 10〉,
〈false, true, true〉, 〈false, false, true〉, 〈ARB, ARB, 10〉

5 Generalising the Parallel by Merge Operator

Up to this point we have presented an extension of the parallel-by-merge theory
presented in [12] that is able to handle different-length parallel processes in the
context of the semantic expressions we are generating for Handel-C.

In this section we explore the possibilities of extending this notion to a more
general case in order to make our results available to a broader application
domain.

For the remainder of this section, we return to the framework in which this
theory was initially developed by assuming a context in which inter-process
communication, as described in earlier sections of this paper, is not required1.
We are also going to remove the need to use sequences to represent the store, as
it was introduced because of a particular need of the semantics for Handel-C.

Recasting from the previous section, we need to establish the properties that
the merge predicate M must satisfy. Apart from being a valid merge (to guaran-
tee properties 3.1.L1, 3.1.L2 and 3.1.L4 to 3.1.L7) we also require M to satisfy
M -unit and M -idemp. We need the former to ensure that II is the unit for
parallel composition inside shared regions and the later to prove that equality
distributes over parallel composition with final merge.

We can interpret (M -unit) as defining the behaviour of the merge predicate
when one of the parallel processes is idle. As the M̂ operator is based on M , we
can easily lift the property to M̂ and prove:

(0.st = st); M̂(st, 0.st, 1.st, st′) = (st′ = 1.st) M̂ -unit
provided that 1.c = j, f > c and j > 0

Based on M satisfying the properties above, we intend to produce a final-
merge operator that satisfies the laws 3.3.L1 to 3.3.L8 in this paper. In this

1 We also assume the reader is familiar with the contents in chapter 7: Concurrency
of UTP.

156 J.I. Perna and J. Woodcock

sense, we still need to provide a valid M̂ predicate and, hence, we still have
the problem of handling the behavioural padding of the shorter processes in the
parallel composition. We take advantage of the f variable introduced earlier to
deal with this problem and define our more general formulation as:

U0(m) =df var 0.out, 0.c, 0.m;
0.c := c;
{0.outi := ini−1|0 < i ≤ f};
0.out = 0.out⊕ out; 0.out0.c = m; (1)
0.m = 0.outf ; (2)

end out, c, m

Not surprisingly, we needed to re-introduce the out variable and we use the
same trace-like approach we defined before to perform the behavioural padding.
We also keep the same overriding behaviour we used before (line (1)) but we
also include the final value of the local copy of m at the end of out (note that
process 0 modifies the out sequence only within the index range [0..(0.c − 1)]).
The reason for transferring the value of m to the out sequence is to cover the case
where 0.c < f (the process finishes earlier than other processes in the parallel
composition). In this context, the value of the local copy of m should be merged
with the corresponding outcome of the other processes at clock cycle 0.c, and
these values are stored in the corresponding copies of out at this particular index
(clock cycle).

Finally, line (2) sets the value of the local copy of m to the outcome of the
current process at clock cycle f . In this way, we make 0.m’s value independent
of the actual execution time for process 0 (we will take advantage of this fact to
define an associative M̂ operator).

We are now ready to define the final-merge operator M̂ as:

M̂ =df c′ = max(0.c, 1.c) ‖
M(m � f = c � inf−1, 0.m, 1.m, m′) ‖ (3)
{M(m � i = c � ini−1), 0.outi, 1.outi, out′i|c ≤ i < f} ‖ (4)
{I{outi}|i < c};
end 0.c, 1.c, 0.out, 1.out

Apart from the change in the way the clock is handled (already introduced in
the previous section), the main point to be noted here is that we changed Hoare
and He’s initial formulation by replacing m with m � f = c � inf−1 as the
first argument for M . The reason for this change is the fact that the initial
formulation by Hoare and He will ignore the intermediate changes to the shared
store and will calculate m’s final value based on its value before the parallel
branches started executing (i.e., the value in m).

As mentioned earlier, we are interested in a clock-wise update of the shared
variable. To achieve this goal, assignments consume a clock cycle (i.e., they

UTP Semantics for Handel-C 157

produce a sync event) so synchronisation (and, hence, merging) happens on
every clock cycle.

Moreover, our definition of M calculates the next value of m based on the
local copy of the store that changed during the previous clock cycle. Thus, the
final value for m should be calculated from the last update (stored in the in
sequence at the current clock cycle minus one 0.c− 1) rather than based on the
value of m before the execution of the parallel processes (as several changes from
that value may have happened to m since the parallel composition started and
it would be impossible to find out which process made a modification during the
last clock).

Finally, we need to define the way in which f is introduced (and calculated).
As it only makes sense to mention f in the context of parallel processes sharing
variables, we add it to the set of variables introduced in the shared declaration.
In turn, we use the same “loop-back” approach used by Hoare and He to feed-
back the out values produced by the parallel composition into the in vector to
update f and define:

(shared m � P � end m) =df var c, in, out, f �

(c := 0) � (P ∧ (in = out′) ∧ (f = c′)) �

end c, in, out, f

5.1 Validity, Algebraic Laws and Healthiness Conditions

Based on the properties we assumed for the merge predicate together with the
associativity and commutativity of the max function, it is easy to show that
our definition of M̂ satisfies the symmetric and associative properties from the
valid merge definition. Regarding the last valid property, the presence of f in
the definition makes it impossible to be proved unless M satisfies (M -idemp).

Even though we can prove the third property in the valid merge definition,
this result is not useful in the proof we intend to conduct. Instead, the proof
relies on M satisfying (M -unit) as defined at the beginning of this section.

With the results above together with the laws for ‖ we can prove that our
general ‖M̂ satisfies 3.3.L1 to 3.3.L7.

The proof of 3.3.L8 relies in the following additional results we have proved
about the UTP:

(v, m := x, v′) = (v := x; m := v) Primed assignment unfold
var v; v0..j := 〈v0, v1, ..., vj−1, vj〉; P (vj−1); end v = Partial end of scope
var v; v0..j−1 := 〈v0, v1, .., vj−1〉 ∧ P (vj−1); end v

Regarding the healthiness of our operator, we follow the same approach we
used for the parallel-by-merge operator we defined for Handel-C. By a similar
argument, our general final merge predicate can also be expressed as a design
with trivial precondition true. In this way, we are sure it is H1 to H3 healthy.
The proof of H4 is based on the fact that M̂ is a design and that M is also H4.

158 J.I. Perna and J. Woodcock

6 Related Work

Operational [7] and denotational [6,4,5] semantics have been proposed for Handel-
C, providing interpretations for most constructs, ranging from simple assignments
to prioritised choices (priAlts). Denotational semantics have also been proposed
for the compilation into hardware [15] and used to formally verify some correct-
ness properties of the generated hardware [16]. All these papers describe works
based either in a branching-sequences semantic domain or a flattened version of
the branching structure based on merge functions. In general, all these works were
based on the notion of state-transformers, were each step in the semantics was ex-
pressing the effect of the construct over the state space of the program. The time
model of Handel-C also directed all these works towards adopting a clock cycle as
a unit and to split it into two disjoint sets of actions (i.e., combinatorial and se-
quential actions). The complexity of this kind of semantic domains made it quite
difficult to use the semantics to validate/discover algebraic laws about Handel-C
programs. In fact, only [8] used the semantics to prove some standard algebraic
properties that also hold for Handel-C (e.g., [II-; unit], [‖-assoc], etc).

In [9], initial steps towards the unification of most of these works in seman-
tics are presented. The goal of this work is to provide a framework where a
timed version of Circus [18] can be used as the specification language and several
lower level languages (Handel-C among them) can be used to implement such
a specification. The work is based on the reactive processes model provided in
UTP. The rationale behind the selection of a reactive processes formalism lies
in the need to cope with nondeterminism and refusals (present in the Circus
language). The expressiveness of the acceptance-refusals model underlying the
reactive theory in UTP is also likely to allow this framework to cover the recent
trend in hardware design of interconnecting hardware working at different clock
speeds (multiple clock domains). The price to be paid for this richness in expres-
sivity is a more complicated theory, where it is necessary to deal with several
intermediate observation points during each process’ execution.

Our work is similar to [9] in the sense that it tends towards unifying the
existing semantics for Handel-C and is oriented towards the algebraic rules sat-
isfied by Handel-C programs. On the other hand, we have based our work on
the theory UTP designs, preempting us from covering multiple clock domains
but allowing a more compact and elegant representation of Handel-C programs
aiming at single-clocked domains. We believe we will be able to profit from the
elegance of our model when trying to prove algebraic laws about Handel-C op-
erators/constructs.

UTP denotational semantics has also been been proposed for a subset of
Verilog [13] that is similar to ours but includes guarded events (a non existing
feature in Handel-C) and excludes recursion. The semantics are derived from
an operational semantics model and they also include some algebraic reduction
rules for parallel composition. The work is based in the reactive-processes the-
ory of UTP (a subset of it, as they avoid healthiness condition R2). Our work
is based on the simpler theory of designs and our focus is not in the derivation of

UTP Semantics for Handel-C 159

the semantics from existing operational ones but in finding a comprehensive set
of deduction rules for Handel-C.

Regarding other HDL languages (such as VHDL or SystemC), their semantics
are informally provided in terms of a simulator [1,2]. Most works on the semantics
of these languages follow these simulation models [3,17], making them quite
different in purpose in comparison to our work.

7 Conclusions and Future Work

We have presented semantics for a subset of Handel-C including parallelism
and communication. We have done so by using UTP’s theory of designs as the
semantic domain. The main contribution of this work is a denotational seman-
tics for Handel-C that is well suited for reasoning and finding properties about
the constructs of the language. Our usage of the theory of designs to describe
the semantics for a HDL is also novel, as all existing works in the field address
the semantics from the more powerful, yet more complex, theory of reactive
processes (or a subset of it).

In the process of capturing the semantics of Handel-C in UTP we found
several points in which we needed to extend or modify some aspects of UTP.
The most interesting of these extensions is a parallel-by-merge operator that can
handle parallel processes of uneven length. We have provided such an operator
for the context of the semantics and proved a significant set of algebraic laws
and healthiness conditions about it.

We also abstracted the key features of our parallel-by-merge operator and
provided a more general formulation that we expect to be useful in a larger
application domain. We also summarised the additional constraints that has to
be satisfied by the single-step merge predicate in order for the general parallel
merge to satisfy additional rules.

Finally, we have been able to take advantage of existing algebraic laws from
UTP together with the rules provided in this work to easily prove an interesting
set of algebraic laws about Handel-C programs. Some of these laws have been
used to derive the semantics of example programs involving fixed-points in a few
steps.

As future work we intend to keep on exploring the set of algebraic laws we
can prove about the semantics. We are also interested in completing our work
on semantics for Handel-C by covering priorities and procedure calls.

References

1. Multivalue Logic System for VHDL Model Interoperability (Std logic 1164). IEEE
Standard 1164-1993 (1993)

2. Standard SystemC Language Reference Manual (LRM). IEEE Standard 1666-2005
(2005)

3. Breuer, P.T., Fernández, L.S., Kloos, C.D.: Proof theory and a validation condition
generator for VHDL. In: Euro-VHDL ’94, pp. 512–517 (1994)

160 J.I. Perna and J. Woodcock

4. Butterfield, A.: Denotational semantics for prialt-free Handel-C. Technical report,
The University of Dublin, Trinity College (December 2001)

5. Butterfield, A., Woodcock, J.: Semantic domains for Handel-C. Electronic Notes
in Theoretical Computer Science, vol. 74 (2002)

6. Butterfield, A., Woodcock, J.: Semantics of prialt in Handel-C. In: Concurrent
Systems Engineering. IOS Press, Amsterdam (2002)

7. Butterfield, A., Woodcock, J.: Prialt in handel-c: an operational semantics. Inter-
national Journal on Software Tools Technology Transfer 7(3), 248–267 (2005)

8. Butterfield, A., Woodcock, J.: A Hardware Compiler Semantics for Handel-C. In:
MFCSIT 2004, Dublin, Ireland, August 2006. ENTCS, vol. 161, pp. 73–90 (2006)

9. Butterfield, A., Sherif, A., Woodcock, J.: Slotted-circus. In: IFM, pp. 75–97 (2007)
10. Celoxica Ltd. DK3: Handel-C Language Reference Manual (2002)
11. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 26(1), 100–

106 (1983)
12. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall, En-

glewood Cliffs (1998)
13. Huibiao, Z., Bowen, J.P., Jifeng, H.: From operational semantics to denotational

semantics for verilog. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS,
vol. 2144, pp. 449–471. Springer, Heidelberg (2001)

14. Kernighan, B.W.: The C Programming Language. Prentice Hall Professional Tech-
nical Reference (1988)

15. Perna, J.I., Woodcock, J.: A denotational semantics for Handel-C hardware com-
pilation. In: ICFEM, pp. 266–285 (2007)

16. Perna, J.I., Woodcock, J.: Wire-Wise Correctness for Handel-C Synthesis in HOL.
In: ETAPS’08 - Seventh International Workshop on Designing Correct Circuits
(DCC), March 2008, pp. 86–100 (2008)

17. Salem, A.: Formal semantics of synchronous systemc. In: DATE ’03: Proceedings
of the conference on Design, Automation and Test in Europe, Washington, DC,
USA, p. 10376. IEEE Computer Society, Los Alamitos (2003)

18. Woodcock, J., Cavalcanti, A.: A concurrent language for refinement. In: Butterfield,
A., Strong, G., Pahl, C. (eds.) IWFM, Workshops in Computing. BCS (2001)

	UTP Semantics for Handel-C
	Introduction
	Handel-C in More Detail
	Extended Parallel by Merge
	The Merge Predicate
	The Final Merge Predicate
	Algebraic Laws and Healthiness Conditions

	Handel-C Semantics
	Properties about the Semantics
	The Semantics in Action

	Generalising the Parallel by Merge Operator
	Validity, Algebraic Laws and Healthiness Conditions

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

