
Component Publications and Compositions�

Naijun Zhan1, Eun Young Kang2, and Zhiming Liu2

1 State Key Lab. of Computer Science, Institute of Software, CAS, Beijing, China
znj@ios.ac.cn

2 International Institute for Software Technology, United Nations University, Macau
{kang,lzm}@iist.unu.edu

Abstract. One of the major issues in component-based design is how to use
a component correctly in different applications according to the given interface
specification, called the publication, of the component. In this paper we formu-
late this as the problem of component publication composition and refinement.
We define the notion of publications of components that describes how a compo-
nent can be used by a third party in building their own components or in writing
their applications without access to the design or the code of the component. It
is desirable that different users of the components can be given different publi-
cations according to their need. The first contribution of this paper is to provide
a procedure, which calculates a weakest contract of the required interface of a
component from the contract of its provided interface and its code. The other
contribution, that is more significant from a component-based designer’s point of
view, is to define composition on publications so that the publication of a com-
posite component can be calculated from those of its subcomponents. For this
we define a set of primitive composition operators over components, including
renaming, hiding, internalizing, plugging and feedback. This theory is presented
based on the sematic model of rCOS, a refinement calculus of component and
object systems.

Keywords: Contracts, Components, Component Publications, and Composition.

1 Introduction

The widespread tendency in software and system engineering is towards component-
based design [12] by which systems are designed by combining small components into
bigger ones. The component-based technique allows a complex design problem to be
decomposed by separation of functionality into simpler design problems. It thus helps
to decrease the degree of coupling among components and reduce the probability of
major accidents caused by combinations of independent component failures [8].

rCOS [5,4,1] provides the notions of interfaces, contracts, components and compo-
nent publications. A component is explicitly specified in terms of the contracts of its
provided interface and required interface.

� Naijun Zhan is supported in part by the projects NKBRPC-2002cb312200, NSFC-60493200,
NSFC-60721061, NSFC-60573007, NSFC-90718041, and NSFC-60736017, and the other au-
thors are partially supported by the projects HighQSoftD and HTTS funded Macao S&T Fund,
STCSM No.08510700300 and NSFC-90718014.

A. Butterfield (Ed.): UTP 2008, LNCS 5713, pp. 238–257, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Component Publications and Compositions 239

In rCOS, a contract of an interface is a specification of the reactive behavior of the
component, including the interaction protocol that the environment is assumed to fol-
low, and the data and functionality of each method of the interface [1]. This extends the
concept of Meyer’s “Design-by-contract” [10], which started out specific to the Eiffel
programming language, but is now also used in other languages such as Java and JML
[9].

In [3], de Alfaro and Henzinger presented a general theory of composition and re-
finement of interfaces and components. They also developed a concrete interface the-
ory based on the interface automata in [2]. An rCOS contract can be understood as
an interface automaton, and a closed rCOS component (i.e. one that does not require
services) can be regarded as an I/O automaton of the component. However, a general
open component in rCOS has a provided interface and a required interface and each
has a specified contract, meaning that with the assumption of the contract for the re-
quired interface the component guarantees to deliver the specified by the contract of
the provided interface. Furthermore, rCOS adopts a declarative approach and denota-
tional semantics. The rCOS contracts also specify rich data structures and functionality
of the interface operations in terms of pre- and postconditions in an OO setting. It thus
directly supports OO design and implementation of component.

In [1], a procedure is given for an assumed contract of the required interface to cal-
culate a contract of the provided interface. Obviously, it is the strongest contract of the
provided interface for the given contract of the required interface. However, it is often
the case that a component is developed from a specification of its provided services,
i.e. a contract of its provided interface. Thus, for a given contract of the provided in-
terface of the component, we need to calculate from the code a contract of its required
interface such that the component guarantees the contract of the provided interface. The
first contribution in this paper is to give a procedure that for the code of a component
and a contract of its provided interface calculates the weakest contract of the required
interface of the component.

A component vendor normally only provides users with a specification of part of the
functionality (i.e. services) according to the users’ needs and budgets instead of source
code. Such a specification is called a publication and is an abstraction of the contracts
of the provided and required interfaces. A publication only states the static data func-
tionality of the provided and required methods and an interaction protocol with the
environment and it is written in a descriptive style as to serve as a manual for a user to
use and for an assembler to assemble it with other components. An assembler composes
several simpler components to form a composite component according to their publica-
tions. However, a publication of the composite component has to be provided. The other
contribution of this paper is to define a set of composition operators on publications. For
this, we change the definition of a publication of a component given in [4] such that a
publication (G,A,C) consists of specifications G and A of the data functionality of the
provided and required interfaces and an interaction protocol C. The protocol C speci-
fies the interactions with the environments as well as invocation relation of the required
methods by the provided methods. In [4], the interactions are separated as provided
protocol and the required protocol without the invocation dependency. An invocation
dependency oriented protocol C can be represented in different formalisms such as a

240 N. Zhan, E.Y. Kang, and Z. Liu

transition graph, a set of traces, a temporal formula, and a CSP process. In this paper,
we use a set of traces of the provided and required methods. In fact, if the set is a regular
language, it can also be represented by an automaton [2]. The composition operators we
are to define include renaming, hiding, internalizing , plugging and feedback. We then
show that they are consistent with the corresponding operators on components defined
in [4,1] in the sense that the composite publication is indeed a correct publication for
the corresponding composite component if the operand publications are correct for the
operand components.

Section 2 briefly introduces the unifying theories of programming (UTP) [7] and
some basic notions of traces. Section 3 presents the main modeling elements of com-
ponent based design in rCOS. Section 4 defines the notion of publications. Section 5
introduces an algorithm for calculating the weakest contract of the required interface of
a component from its provided contract and source code. Section 6 reviews the compo-
sition operators on components and define their counterparts for publications. We will
also investigate the correctness of the compositions on publications with respect to the
compositions of components. Section 7 discusses future work and concludes the paper.

2 Preliminaries

In UTP, a sequential program (but possibly nondeterministic) is represented by a design
D = (α, P), where

– α denotes the set of state variables (called observables). Each state variable comes
in an unprimed and a primed version, denoting respectively the pre- and the post-
state value of the execution of the program. In addition to the program variables
and their primed versions such as x and x′, the set of observables includes two
designated Boolean variables, ok and ok′, that denotes termination or stability of
the program.

– P is a predicate, denoted by p(x) � R(x, x′), and defined as (ok∧p(x))⇒ (ok′∧R(x, x′)).
It means that if the program is activated in a stable state, ok, where the precondition
p(x) holds, the execution will terminate, ok′, in a state where the postcondition R
holds; thus the post-state x′ and the initial state x are related by relation R. We use
pre.D and post.D to denote the pre- and post-conditions of D, respectively. If p(x) is
true, then P is shortened as � R(x, x′).

Definition 1. Let D1 = (α, P1) and D2 = (α, P2) be two designs with the same alphabet.
D2 is a refinement of D1, denoted by D1 � D2, if the following closed implication holds
∀x, x′, ok, ok′ · (P2 ⇒ P1). Let D1 = (α1, P1) and D2 = (α2, P2) be two designs with possible
different alphabets α1 = {x, x′} and α2 = {y, y′}. D2 is a data refinement of D1 over α1 × α2,
denoted by D1 �d D2, if there is a relation ρ(y, x′) s.t. ρ(y, x′); D1 � D2; ρ(y, x′).

It is proven in UTP that the domain of designs forms a complete lattice with the refine-
ment partial order, and true is the smallest (worst) element of the lattice. Furthermore,
this lattice is closed under the classical programming constructs, and these constructs
are monotonic operations on the lattice. These fundamental mathematical properties en-
sure that the domain of designs is a proper semantic domain for sequential programming

Component Publications and Compositions 241

languages. There is a nice link from the theory of designs to the theory of predicate
transformers with the definition wp(p � R, q) =̂ p ∧ ¬(R;¬q) that defines the weakest
precondition of a design for a post condition q.

Semantics of concurrent and reactive programs is defined by the notion of reactive
designs with an additional Boolean observable wait that denotes suspension of a pro-
gram. A design P is a reactive design if it is a fixed point of H , i.e. H(P) = P, where
H(p � R) =̂ (true � wait′) � wait � (p � R). Here, P1 � b � P2 is a conditional statement,
which means if b holds then P1 else P2, where b is a Boolean expression and P1 and P2

are designs. We define a guarded design D = (α, g& P), where P is a design, to specify
the reactive behavior H(P) � g � (true � wait′), meaning that if the guard g is false, the
program stays suspended, otherwise it behaves like H(P). We use guard.D to denote the
guard g and func.D to denote its functionality P. A reactive design is to ensure that a
synchronization of a method invocation by the environment and the execution of the
method can only occur when the guard is true and wait is false. The domain of reactive
designs enjoys the same closure properties as the domain of sequential designs, and also
refinement is defined as logical implication. This allows us reactive designs to define
the semantics of concurrent programming languages of guarded commands of the form
g&c. For details, we refer the reader to our earlier work in [6].

2.1 Notations for Traces

Given a set Σ of events, we use Σ∗ to denote the set of all finite traces generated out of
Σ in which 〈 〉 is a special one, i.e. the empty trace, and Σ∞ the set of all infinite traces
generated from Σ. For a trace s1 ∈ Σ∗ and a trace s2 ∈ Σ∗ ∪ Σ∞, s1ˆs2 is the conventional
concatenation operation. We use sk to denote the concatenation of s k times, where
k ∈ N ∧ k ≥ 0. If k = 0, then sk is denoted by 〈 〉. s∗ denotes ∃k ∈ N.k ≥ 0 ∧ s∗ = sk, whereas
s+ denotes ∃k ∈ N.k > 0 ∧ s+ = sk. This operation is also conventionally overloaded to
operate on sets T1ˆT2 and EˆT2, where T1 is a subset of Σ∗, T2 a subset of Σ∗ ∪ Σ∞, and
E a subset of Σ. A trace s1 is a prefix of s2, denoted by s1 � s2, if there exists a trace
s such that s2 = s1ˆs, and s is called a suffix of s2. We use tail(s) and head(s) to stand
for the tail and the head of s, respectively. We use s[b/a] to denote the trace obtained
from s by replacing all occurrences of a with b, and T [b/a] the set of traces obtained
from T by replacing a with b in each trace of T . The projection of a trace s on a set E
of events, denoted by s � E, is the trace obtained from s by removing from it all events
that are not in E, and we write s � a when E contains only one element a. We also
overload this operation and extend it to define the projection of a set T of traces on a
set E of events T � E. The restriction of a trace set T on a set of events M, denoted by
T\M, is defined by {s | s � M = 〈〉 ∧ (∃t ∈ T∃a ∈ M.sˆ〈a〉 � t ∨ s ∈ T)}. If M is a singleton
{m}, T\M is shortened by T\m. For simplicity, we denote s1 + s2 as {s1} ∪ {s2}, and T1 + T2

as T1 ∪ T2. We now define the synchronization between s1 and s2 via a set E of events,
denoted s1‖E s2, as follows:

s1‖E s2 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

〈 〉 if (s1 = 〈〉 ∧ s2 = 〈〉) ∨ (s1 = 〈〉 ∧ s2 = 〈a〉ˆs′2 ∧ a ∈ E)∨
(s2 = 〈〉 ∧ s1 = 〈a〉ˆs′1 ∧ a ∈ E),

〈a〉ˆ(s
′
1 ‖E s2) if s1 = 〈a〉ˆs

′
1 ∧ a � E

〈a〉ˆ(s1‖E s′2) if s2 = 〈a〉ˆs
′
2 ∧ a � E

〈a〉ˆ(s
′
1‖E s′2) if s1 = 〈a〉ˆs

′
1 ∧ s2 = 〈a〉ˆs

′
2 ∧ a ∈ E

When E is empty, s1‖E s2 represents the interleaving of s1 and s2, shortened by s1�s2.

242 N. Zhan, E.Y. Kang, and Z. Liu

3 Contract and Component

We provide models of components at different levels of abstraction. A component is a
unit of software that implements a functionality via its provided interface. The function-
ality is specified as a contract of the provided interface. A component, to implement the
specified contract, may also require or assume services from other components. The
required services are specified by a contract of the required interface of the component.

3.1 Contract

An interface I = 〈F, M〉 provides the syntactic declarations of a set of fields and a set
of signatures of operations (or methods). Each field is declared with type x : T , and a
signature of an operation is given by a method name, some input and output parameters.
For theoretical treatment, we assume one operation has only one input parameter and at
most one output parameter and is written as m(in; out), where each of in and out declares
a variable with a type. We use field.I and Meth.I to refer to the fields and operations of
interface I.

A contract of an interface specifies the functionality of the methods declared in the
interface, the protocol of the interaction with the environment, and the reactive behavior
of the component.

Definition 2. A contract is a tuple C = (I, θ,S,T), where

– I is an interface, denoted by IF.C; and we use Meth.C for Meth.IF.C and field.C for
field.IF.C,

– θ, denoted by init.C, is a design � R ∧ ¬wait′ that initializes the values of field.C, i.e.
defines the initial states,

– S, denoted by spec.C, specifies each method m(in; out) in IF.C by a guarded design
S(m),

– T is called the protocol and denoted by prot.C, which is a set of traces of the events
over Meth.C1.

Example 1. A contract of one-place buffer B1 = (I, θ,S,T) is described as follows:

I =̂ 〈{buff :int∗}, {put(in x:int), get(out y:int)}〉
θ =̂ � buff ′ = 〈 〉

S(put(in x:int)) =̂ buff = 〈 〉&(� buff ′=〈x〉ˆbuff)
S(get(out y:int)) =̂ buff � 〈 〉&(� buff ′ = tail(buff) ∧ y′ = head(buff))

T =̂ (〈put〉ˆ〈get〉)∗+(〈put〉ˆ(〈get〉ˆ〈put〉)∗)

Given a contract C = (I, θ,S,T), let Meth.C+ =̂ {m(u; v) | m(x : T1; y : T2) ∈ Meth.I ∧ u ∈
T1 ∧ v ∈ T2}. The dynamic semantics of C is given by a divergence setD(C) and a failure
set F (C). D(C) is the set of all traces m1(u1; v1), . . . ,mk(uk; vk) over Meth.C+ such that the
execution of these invocations of a prefix of the trace in consecution from the initial
state enters a diverging state. Also, the failure set of C is the set of pairs 〈s, X〉 such that
either after the execution of the trace s over Meth.C+, all the events in X ⊆ Meth.C+ are

1 Notice that this is an abstract version of the protocol in our earlier versions [6,1].

Component Publications and Compositions 243

not enabled, i.e their guards are disabled, or s is a divergence. The failure-divergence
semantics of contracts allows us to use the CSP failure-divergence partial order [11] as a
refinement relation between contracts [1], denoted by C1 � C2. C1 and C2 are equivalent,
denoted C1 ≡ C2, if C1 � C2 ∧ C2 � C1. It is noted that this refinement relation requires
that the interfaces Meth.IF.C1 and Meth.IF.C2 have exactly the same set of methods.

A contract C has to be consistent in the sense that no execution of a trace in the
protocol from an initial state may enter a blocking state in which wait is true or a di-
verging state in which ok′ is false. The notion of consistency is defined in [1] and a
theorem of separation of concerns is proven there that allows the refinement of a design
func.spec.C(m) without violating the consistency, and C = (I, θ,S,T1 + T2) is consistent iff
Ci = (I, θ,S,Ti) are both consistent, i = 1, 2. Furthermore, for a triple (I, θ,S) there exists
a largest protocol T such that contract C = (I, θ,S,T) is consistent, and called a com-
plete contract. A complete contract can be simply written as C = (I, θ,S) by omitting its
protocol, and we use trace.C to denote the largest protocol of C.

For a trace tr over Meth.C+, we define an abstraction tr−, that is a trace over the events
Meth.C+: 〈〉− = 〈〉, and (〈m(u; v)〉ˆtr)− = 〈m〉ˆtr−. Thus, we have the following theorem of
the relation between the traces and the failure set for a complete contract.

Theorem 1. For a complete contract C, trace.C = {tr− | (tr, X) ∈ F (C) ∧ tr � D(C)}.

Example 2. For the one-place buffer in Example 1, we can further give the following
two contracts B2 = (IF.B1, init.B1,S2,T2) and B3 = (IF.B1, init.B1,S3,T3) , where

S2(put(in x:int)) =̂ (� buff ′=〈x〉ˆbuff) � buff = 〈 〉� (� buff ′=buff)
S2(get(out y:int)) =̂ buff � 〈 〉&(� buff ′ = tail(buff) ∧ y′ = head(buff))

T2 =̂ (〈put〉ˆ〈put〉∗ˆ〈get〉)∗

S3(put(in x:int)) =̂ buff = 〈 〉&(� buff ′=〈x〉ˆbuff)
S3(get(out y:int)) =̂ (� buff ′ = tail(buff) ∧ y′ = head(buff)) � buff � 〈 〉�

(� ∃c ∈ int.buff ′=buff ∧ y′ = c)
T3 =̂ (〈get〉+(〈put〉ˆ〈get〉))∗

We see that B1, B2 and B3 are complete contracts satisfying B1 � B2 ∧ B1 � B3, but
B2 � B3 and B3 � B2. �

The following theorem indicates that any contract is equivalent to a complete contract.

Theorem 2. Given a contract C = (I, θ,S,T), let C′ be (〈field.C ∪ {tr : Meth.C∗},Meth.C〉,
init.C ∧ tr′ = 〈 〉,S′,T), where S′(m) = (∃s ∈ T .trˆ〈m〉 � s ∧ guard.S(m))&(pre.S(m) �
post.S(m) ∧ tr′ = trˆ〈m〉). Then, C′ is complete, and trace.C′ = T ∧ C′ ≡ C.

Based on this theorem, in what follows, we will only focus on complete contracts, and
therefore all contracts are referred to as complete contracts, if not otherwise stated.

3.2 Component

A component K is an implementation of a contract of an interface that provides services
to other components. This interface is called the provided interface. In order to imple-
ment the provided services, K may use services provided by other components via an
interface, called the required interface.

244 N. Zhan, E.Y. Kang, and Z. Liu

Definition 3. A component is a tuple K = (I,M, c0,C, J), where

– I is an interface, called the provided interface of K and denoted by pIF.K. We also
write pMeth.K for Meth.pIF.K and pfield.K for field.pIF.K.

– M is a set of method signatures, called the private methods of K and denoted by
priMeth.K.

– c0 is the initialization statement of the component, denoted by init.K, that initializes
the set of states of the component.

– C is called the coding function and denoted as code.K that maps each method in
pMeth.K ∪ priMeth.K to a guarded command.

– J is an interface, called the required interface of K and denoted by rIF.K. We also
write rMeth.K for Meth.rIF.K and rfield.K for field.rIF.K. It is required that rMeth.K
contains all the methods that occur in the code of the methods given by code.K, but
not declared in pMeth.K ∪ priMeth.K.

The code in guarded command of each method can be defined as a reactive design. For
a given contract Cr of the required interface rIF.K of K, a contract Cp of the provided
interface pIF.K can be calculated from the code of the methods given by code.K. This
determines a function λCr · spec.K such that for a complete contract Cr of rIF.K, spec.K.Cr

is a complete contract of pIF.K. We take the function spec.K as the semantics of com-
ponent K[6]. This semantics enjoys the following property that for two contracts C1 and
C2 of rIF.K, if C1 � C2 then spec.K.C1 � spec.K.C2.

We say that a component K implements a contract Cp of its provided interface pIF.K
with a contract Cr of its provided interface rIF.K if Cp � spec.K.Cr, and K implements Cp

if there exists such a contract Cr. Obviously, spec.K.Cr is the strongest contract that K
implements with Cr.

Example 3. The following three components K1, K2 and K3 respectively implement
the contracts B1 in Example 1 and B2 and B2 in Example 2. For convenience, we shall
rename some method and field in the interface.

pIF.K1 = IF.B1,

priMeth.K1 = ∅,
init.K1 = buff := 〈 〉,
code.K1(put) = buff=〈〉 → (buff :=〈x〉),
code.K1(get) = buff�〈〉 → (y:=head(buff); buff :=〈 〉)
rIF.K1 = ∅

pIF.K2 = IF.B2[buff1/buff , get1/get],
priMeth.K2 = ∅,
init.K2 = buff 1 := 〈 〉,
code.K2(put) = buff1:=〈x〉� buff1=〈〉� put1(head(buff1)); buff1 := 〈x〉
code.K2(get1) = buff1�〈〉 → (y:=head(buff1); buff1:=〈 〉)
rIF.K2 = 〈{put1(in x:int)}〉
pIF.K3 = IF.B3[buff2/buff , put1/put],
priMeth.K3 = ∅,

Component Publications and Compositions 245

init.K3 = buff 2 := 〈 〉,
code.K3(put1) = buff 2=〈〉 → buff 2:=〈x〉
code.K3(get) = (y:=head(buff 2); buff 2:=〈〉) � buff 2�〈〉� get1(y)
rIF.K3 = 〈{get1(out y:int)}〉

4 Publications of Components

To compose components and use components to write applications, one does not need
to know their code or even their design. However, one needs a specification to some
extent about what services are provided and what services are required and the protocol
that describes the interactions with the environments. The idea is that the less details
specified the better. In this section we define such as specification, called a publication
of a component. For a generic representation, we first define the notion of a specification
of a component.

Definition 4. A specification of a component K is a triple S = (P,R,C), where

– P is a complete contract of pIF.K, denoted by pCtr.S ;
– R is a complete contract of rIF.K, denoted by rCtr.S ;
– C ⊆ (pMeth.K + rMeth.K)∗, denoted by causal.S, is a protocol that specifies the inter-

actions with the environments as well as invocation relation of the required methods
by the provided methods of K, called the invocation dependency oriented protocol
of S ,

such that the following conditions are satisfied

1. P � spec.K.R; and
2. causal.S � pMeth.K ⊇ trace.pCtr.S ∧ causal.S � rMeth.K ⊆ trace.rCtr.S.

The first condition indicates that with K’s required contract, K implements its provided
contract, while the second condition says that projecting the invocation dependency ori-
ented protocol onto the provided methods results in a protocol of the provided contract
that is consistent with the specification of the methods; but projecting the invocation
dependency oriented protocol onto the required methods results in a protocol that is a
subset of the largest protocol of the required contract. This is just an analog of the law
of strengthening the postcondition and weakening the precondition in Hoare logic of
programs. Verifying the two conditions can be done by checking a design document of
the component that contains the verification of the refinement relation, by verification
of the source code 2. The refinement relation between specifications of component can
be defined from the refinement of contracts.

Definition 5. For two specifications S 1 and S 2 of K, S 1 � S 2, if

1. pCtr.S 2 is a refinement of pCtr.S 1;
2. rCtr.S 1 is a refinement of rCtr.S 2; and
3. ∀c ∈ C2.c�Meth.P2 ∈ prot.P1 ⇒ c ∈ C1.

2 Such a verification should be part of the certification of the component.

246 N. Zhan, E.Y. Kang, and Z. Liu

The conditions 1&2 say a refined specification should have a stronger provided con-
tract and a weaker required contract. Condition 3 indicates that a refined specification
provides more services to and requires less services from the environment and it is
equivalent to

causal.S1 � pMeth.K ⊆ causal.S2 � pMeth.K ∧ causal.S1 � rMeth.K ⊇ causal.S2 � rMeth.K.

The complete contracts in a specification are given in terms of reactive designs. There-
fore, they are not easy to be used for checking their compatibility with the specifications
of other components. Further, the guards in the method specification and the protocol
provide duplicated information to the user. Therefore, one does not need to have both
when they compose and use components. We thus define the notion of publication by
removing the guards in the method specification. We first define each part of a compo-
nent publication as publication contract.

Definition 6. A publication contract C is a tuple (I, θ,D,T), where

– I is an interface and θ is an initialization design,
– D is a function, denoted by spec.C that defines each method m of I with a design (no

guard) D(m),
– T is a set of traces over the Meth.I, denoted by prot.C.

Definition 7. A publication of component K is U = (G,A,C) where

– G is a publication contract of an interface I such that Meth.I ⊆ pMeth.K,
– A is a publication contract of an interface J such that Meth.J ⊇ rMeth.K, and
– C is a causal relation over Meth.I +Meth.J, denoted by causal.U, such that

causal.U � Meth.I = prot.G ∧ causal.U � Meth.J = prot.A.

Definition 7 allows the component vendor to give different publications to different
component users. This is characterized by the refinement relation between publications.

Definition 8. For a component K, let U1 = (G1,A1,C1) and U2 = (G2,A2,C2) be publica-
tions of K. U2 is a refinement of U1, U1 � U2, if

1. Meth.pCtr.U1 ⊆ Meth.pCtr.U2, Meth.rCtr.U1 ⊇ Meth.rCtr.U2,
2. init.pCtr.U1 � init.pCtr.U2, and init.rCtr.U1 � init.rCtr.U2,
3. ∀m ∈ Meth.pCtr.U1.spec.pCtr.U2(m) � spec.pCtr.U2(m), and
∀n ∈ Meth.rCtr.U2.spec.rCtr.U1(n) � spec.rCtr.U2(n),

4. prot.pCtr.U1 ⊆ prot.pCtr.U2, and prot.rCtr.U1 ⊇ prot.rCtr.U2,
5. ∀c ∈ C2.c�Meth.G2 ∈ prot.G1 ⇒ c ∈ C1.

Condition 1 says that a refined publication has more provided methods and less required
methods; Condition 2 indicates that a refined publication has a stronger initial condition
on the provided fields and a weaker initial condition on the required fields; Condition
3 expresses that a refined publication assigns a stronger specification (design) to each
provided method, while a weaker specification (design) to each required method; Con-
ditions 4&5 indicate that a refined publication is more likely to provide services to its
environment, but less likely to invoke services provided by environment.

Component Publications and Compositions 247

4.1 Specification vs. Publication

A publication of a component has to be certified and this is done by the verification of
the validity of a specification of the component. This is done by relating a contract and
a publication contract.

Definition 9. We define a mappingM from the domain of complete contracts to that of
publication contracts as: for a given complete contract C = (I, θ,S),M(C) is a publica-
tion contract defined by

1. IF.M(C) = IF.C = I;
2. init.M(C) = init.C[false/wait, f alse/wait′] = θ[false/wait, f alse/wait′];
3. spec.M(C))(m) = P[false/wait, f alse/wait′], if spec.C(m) = g&P, for any m ∈ Meth.C;
4. prot.M(C) = trace.C.

Then we have the following equivalence relation in terms of contracts.

Theorem 3. For any complete contract C, we have C ≡ M(C).

This theorem indicates that we can use a protocol instead of the guards of the pro-
vided methods of a component to control the interaction between the component and its
environment.

Definition 10. Conversely, we define a mapping L from the domain of publication
contracts to the domain of complete contracts as: for a given publication contract
C = (I, θ,D,T), L(C) is a complete contract defined by

1. IF.L(C) = 〈field.I ∪ {tr : Meth.C∗},Meth.I〉;
2. init.L(C) = init.C ∧ tr′ = 〈 〉 ∧ ¬wait′ = θ ∧ tr′ = 〈 〉 ∧ ¬wait′;
3. spec.L(C))(m) = (∃s ∈ T .trˆ〈m〉 � s)&D(m) ∧ tr′ = trˆ〈m〉, for any m ∈ Meth.C.

Note that the idea of this definition is similar to Theorem 2 by strengthening the guard
of each method to obtain a complete contract. We also have

Theorem 4. For any publication contract C, we have C ≡ L(C).

This theorem indicates that we can add a guard to each of the provided methods of a
component instead of its protocol to control the interaction between the component and
its environment.

Theorem 3 and Theorem 4 indicate that M and L form a Galois connection, and
imply that interaction between a component and its environment can be done either
decentralizedly by the guards of its provided methods or centralizedly by a protocol.

Corollary 1. (Contract and Publication Contract)

1. L(M(C)) is a complete contract for any complete contract C, and C ≡ L(M(C)); and
2. M(L(C)) is a publication contract for any publication contract C, and C ≡ M(L(C)).

The connection between specification and publication of component is expressed as
follows:

248 N. Zhan, E.Y. Kang, and Z. Liu

Theorem 5. (Specification vs. Publication)

1. If S = (P,R,C) is a specification of K, then U = (M(P),M(R),C) is its publication;
2. If U = (G,A,C) is a publication of K, then P = (L(G),L(A),C) is a specification of

K[IF.G/IF.K, IF.A/rIF.K], where K[IF.G/IF.K, IF.A/rIF.K] is the component derived
from K by restricting its provided methods to IF.G and extending its required meth-
ods to IF.A.

5 Calculate Weakest Required Contract and Publication

To calculate the weakest required contract, wrc.K.pCtr for a component K to implement
a given provided contract pCtr, we first calculate the invocation dependency oriented
protocol ioprot.K.pCtr of K from its code and the protocol of pCtr. We then derive from
this protocol and the functionality specification of the methods in pCtr the weakest
required contract.

5.1 Calculating Invocation Dependency Oriented Protocol

Let K be a component and assume pMeth.K = {m1, · · · ,mk}, priMeth.K = {n1, · · · , n�} and
rMeth.K = {r1, · · · , re}. For any method m ∈ pMeth.K, we calculate the set Xm of sequences
of invocations to methods in rMeth.K which are the possible invocation sequences to
required methods in the execution of the code code.K(m) of m. We define a function
that for a program command c computes the set Tr(c) of invocation sequences in the
execution of c:

Tr(c) =̂

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

〈m〉 if c = m(x, y) or c = z := m(x, y), where m ∈ rMeth.K
Xm if c = m(x, y) or c = z := m(x, y),

where m ∈ pMeth.K ∪ priMeth.K
Tr(c1)ˆTr(c2) if c = c1; c2

Tr(B)ˆ(Tr(c1) + Tr(c2)) if c = if B then c1 else c2

(Tr(B)ˆTr(c1))∗ if c = while B do c1

〈〉 otherwise

Using function Tr, we define the following k + � trace equations for the provided and
private methods of component K:

Xm1 = Tr(code.K(m1)), . . . , Xmk = Tr(code.K(mk)),
Xn1 = Tr(code.K(n1)), . . . , Xn� = Tr(code.K(n�)).

Note that since a provided method could call required methods implicitly via calling pri-
vate methods of K, we have to consider the provided methods together with the private
methods in the trace equations (1). It is easy to see that these trace equations contain
recursion because a provided or a private method can call any other provided or private
methods, including themselves. Since all trace operations used in Tr are monotonic
w.r.t the set containment. The least fixed points of the above trace equations exist and
are taken to be the solutions to the variables Xmi and Xn j for 1 ≤ i ≤ k and 1 ≤ j ≤ l, and
each of them is a subset of (rMeth.K)∗.

Component Publications and Compositions 249

(a)

s1 s2

get1

put

put;put1

(b)

s1’ s2’

get

put1

get;get1

Fig. 1. (a) Transition Graph of code.K2, (b) Transition Graph of code.K3

For example, for K2 and K3 in Example 3, we have Xput = 〈〉 + put1, Xget1 = 〈〉 for K2

and Xget = 〈〉 + get1, Xput1 = 〈〉 for K3.
For each provided method m, the solution to Xm contains all possible sequences of

the invocations to the methods in rMeth.K in the code of m. However, in an invocation
sequence of the provided methods, each execution (occurrence) of a provided method
m might contain only part of the invocation sequences in Xm. This is due to, for instance,
a conditional. Thus, we have to calculate this subset Xi

m of Xm for each occurrence mi of
each provided method m in prot.pCtr according to the transition graph of the component.
The invocation dependency oriented protocol ioprot.K.pCtr can be obtained by replacing
each occurrence of a provided method m in prot.pCtr with mˆXi

m that is the event m
concatenated with the invocation sequences of this occurrence of m.

Example 4. According to the code of put, we know the fact that if buff1 = 〈〉 then put
does not invoke put1, otherwise it indeed invokes put1. On the other hand, we have
Xput = 〈〉 + 〈put1〉 and if we directly replace put in prot.B2 with 〈put〉ˆXput, the resulting
execution trace prot.B2[〈put〉/Xput] will violate the above fact.

The transition graphs for code.K2 and code.K3 in Example 3 are given in Fig.1. Ac-
cording to Fig.1. (a), we know in the cases of its first execution and each execution
following get1, put does not invoke put1, and in other cases it invokes put1. Therefore,
we have to replace the first occurrence of put by put, and any other occurrences of put
with put; put1 in the subexpression 〈put〉; 〈put〉∗; 〈get1〉 of prot.B2. This derives ioprot.K.B2

as (〈put〉ˆ〈put; put1〉∗ˆ〈get1〉)∗, written as CB2 . Similarly, the invocation dependent protocol
ioprot.K3.B3of K3 for B3 is ((〈put1〉ˆ〈get〉) + (〈get; get1〉)∗)∗ . �

5.2 Calculating Weakest Required Contract

After calculating the invocation dependency oriented protocol ioprot.K.pCtr, we can eas-
ily obtain the protocol of the required contract wrc.K.pCtr by projecting it onto the
required methods: prot.wrc.K.pCtr =̂ ioprot.K.pCtr� rMeth.K. With this protocol and The-
orem 2, we only need to calculate the specification of the data functionality of the
required methods. In other words, if we obtain the unguarded designs of the required
methods in rMeth.K, together with ioprot.K.pCtr we form a publication contract, and then
wrc.K.pCtr is the contract of the required interface obtained from Theorem 2.

Let rMeth.K = {r1, . . . , rt}, and for each r ∈ rMeth.K let Dr represent the design for r.
Then, Dr1 , . . . ,Drt are calculated as the weakest solution to the following equation family.

250 N. Zhan, E.Y. Kang, and Z. Liu

[[n1]] ≡ [[code.K(n1)]][Dr1 , · · · ,Drt/r1, · · · , rk],

...

[[n�]] ≡ [[code.K(n�)]][Dr1 , · · · ,Drt/r1, · · · , rt],

spec.pCtr(m1) � [[code.K(m1)]][Dr1 , · · · ,Drt/r1, · · · , rt], (1)

...

spec.pCtr(mk) � [[code.K]](mk)[Dr1 , · · · ,Drt/r1, · · · , rt]

Solving the equations (1) is essentially equivalent to the problem of decomposition
of sequential programs in the denotational setting. In general, the equations are not
solvable. Nevertheless under some special restrictions, such as each occurrence of Dri ,
i = 1, · · · , t is linear, the equations can be solvable. The initial condition of rCtr can be
derived from init.pCtr and init.K.

Example 5. We apply the above calculation procedure to Example 4. First from Theo-
rem 2, IF.wrc.K2.B2 = 〈{tr : put∗1}, {put1(in x:int)}〉, and the protocol prot.wrc.K2.B2 = put∗1, the
design of the method put1 is � tr′ = trˆ〈put1〉 , and the initial condition is tr = 〈〉.

Similarly, for K3 and B3, the interface IF.wrc.K3.B3 = 〈{tr : get∗1}, {get1(out y:int)}〉, the
initial condition init.wrc.K3.B3 = tr = 〈〉, the design of get1 is � tr′ = trˆ〈get1〉, and protocol
prot.wrc.K3.B3 = get∗1. �

6 Compositions of Components and Their Publications

Composing a composite component from existing simpler ones via connectors plays a
key role in component-based methods. In this section, we first review and revise the
compositions on component given in [4,1]. However, the main contribution in this sec-
tion is to define composition on component publications and present their relation to
the compositions of components.

6.1 Compositions of Components

We define the basic operators of components including renaming, hiding, internalizing,
plugging and feedback.

Renaming. Renaming an interface method of a component is a simple connector de-
fined as follows.

Definition 11. Let K be a component and m(x : T1; y : T2) a method signature that does
not occur in priMeth.K.

1. Renaming a provided n(u : T1, v : T2) in pMeth.K gives a component K[m/n] such that
– pIF.K[m/n] = 〈field.pIF.K, Meth.pIF.K + {m} − {n}〉, priMeth.K[m/n] = priMeth.K and

rIF.K[m/n] = rIF.K;
– init.K[m/n] = (init.K)[m/n];

Component Publications and Compositions 251

– code.K[m/n](m) = (code.K(n))[m/n], and code.K[m/n](op) = (code.K(op))[m/n] for
any other op in pMeth.K[m/n] ∪ priMeth.K[m/n].

2. Renaming a required method n(u : T1, v : T2) in rMeth.K gives the component K[m/n]
such that

– pIF.K[m/n] = pIF.K, priMeth.K[m/n] = priMeth.K and rIF.K[m/n] = 〈field.rIF.K,
Meth.rIF.K − {n} + {m}〉;

– init.K[m/n] = (init.K)[m/n];
– code.K[m/n](op) = code.K(op)[m/n] for any op in pMeth.K[m/n]∪ priMeth.K[m/n].

Where c[m/n] is the command obtained from c by replacing each occurrence of n with
m.

Notice that in the above definition, the code of a provided method, a private method, or
the initiation statement may contain some invocations to n, so we have to rename n to
m in the corresponding code of the renamed component. Besides, K[m/n] = K if n does
not occur in K.

A renamed component K[m/n] can be easily implemented by using a connector,
which is a component that provides the method with the fresh name m and the body
of m calls the provided method n of K.

Hiding. We sometimes restrict a user from using some provided methods of a com-
ponent by hiding these methods (K\m). Hiding is semantically the same as moving the
hidden methods from the provided interface to the set of private methods of the compo-
nent. Formally,

Definition 12. Let K = (I,M, c0,C, J) be a component, m ∈ Meth.I. Hiding m in K is de-
noted by K\m and defined as (〈Meth.I − {m}, field.I〉,M ∪ {m}, c0,C, J).

The hiding operator is associative. Therefore hiding a set of provided methods is same
as hiding them one by one. Notice that hiding should be used carefully as hiding a
method may result in a dead component. E.g. in Example 3, K1\put results in a deadlock.

K\m can be implemented by renaming each provided method n of K to a fresh method
n1, and by adding a connector component that provides all the methods n that K provides
except for m, and each n calls its code, which is the renamed method n1 of the renamed
component.

Internalizing. Similar to hiding, internalizing a method m in a component K is to re-
move it from the provided interface of K and add it into the private method set, denoted
by K↙m. However, unlike hiding, internalizing just changes all explicit invocations to
the internalized method to implicit invocations to the method. For example, in Example
3, internalizing get in K1 results in a new component that provides only put, but every
execution of put will implicitly be followed by an execution of get, therefore it allows
any number of put operations on consecution. Formally,

Definition 13. For a component K and a set of methods M in its provided interface, we
define the component K↙M as

– pIF.K↙M = (pIF.K)\M, priMeth.K↙M = priMeth.K + M, rIF.K↙M = rIF.K,

252 N. Zhan, E.Y. Kang, and Z. Liu

– init.K↙M = init.K,
– (code.K↙M)(n) can be defined in different ways:
• (code.K↙M)(n) = �s∈M∗code.K(s); code.K(n);�s∈M∗code.K(s) for n ∈ pMeth.K↙M,

where code.K(s) stands for the sequential execution of the methods in sequence
s and � is the nondeterministic choice operator in the program language,

• (code.K↙M)(n) = code.K(n) for n ∈ priMeth.K
• (code.K↙M)(m) = code.K(m) for m ∈ M

The above definition indicates internalizing essentially changes all explicit invocations
to the internalized methods to implicit invocations. This is semantically equivalent to
reprogramming all provided methods in pMeth.K − M by adding possible sequences of
invocations to M before and after the code of n, i.e. code.K(n), for each n ∈ pMeth.K − M.
However, instead of changing the code, the internalizing connector is implemented by
programming a scheduling processes that synchronizes with the component on the in-
ternalized methods.

In most cases, the number of invocations to these internalized methods before and
after a noninternalized method should be finite; otherwise internalizing must give rise to
an divergence, i.e. livelock. We can see this by further investigating the example given
in the above. After internalizing get in K1, it is clear that put can execute infinite many
times. Thus, internalizing put in K1↙{get} will cause a divergence.

Plugging. The most often used composition in component construction is to plug the
provided interface of a component K1 into the required interface of another K2, denoted
by K1	
K2. A component can plug into another component only if they have no name
conflicts.

Definition 14. A component K1 is pluggable to a component K2 if the following condi-
tions hold:

1. (field.pIF.K1 ∩ field.pIF.K2) = ∅, and (pMeth.K1 ∩ pMeth.K2) = ∅;
2. (priMeth.K1 ∩ priMeth.K2) = ∅;
3. (field.rIF.K1 ∩ field.rIF.K2) = ∅, and (rMeth.K1 ∩ rMeth.K2) = ∅;
4. priMeth.Ki ∩ (pMeth.Kj + rMeth.Kj + priMeth.Kj) = ∅, where i � j and i, j = 1, 2.

Notice that the above conditions can always be guaranteed by renaming conflicting
names.

Definition 15. Let K1 be a component that is pluggable to a component K2. Then plug-
ging K1 to K2, denoted K = K1	
K2, is defined as follows:

– filed.pIF.K = filed.pIF.K1 + field.pIF.K2;
– pMeth.K = pMeth.K1 + pMeth.K2 − rMeth.K1 − rMeth.K2;
– priMeth.K = priMeth.K1+priMeth.K2 + (pMeth.K1 ∩ rMeth.K2) + (rMeth.K1 ∩ pMeth.K2);
– filed.rIF.K = filed.rIF.K1 + field.rIF.K2;
– rMeth.K = rMeth.K1 + rMeth.K2 − pMeth.K1 − pMeth.K2;
– init.K = init.K1 ∧ init.K2; and
– code.K(m) = (code.K1 ⊕ code.K2)(m) for each m ∈

∑2
i=1 pMeth.Ki + priMeth.Ki, where ⊕

is the union of two functions.

Notice that we do not allow calling circles in the above definition.

Component Publications and Compositions 253

The above definition indicates that the provided methods of K1 that are plugged to the
required methods of K2 become private and not available to the environment anymore,
and vice versa.

Example 6. From the above definition, we know that the components K2 and K3 in
Example 3 are pluggable, K2	
K3 can be defined as:

pIF.K2	
K3 = 〈{buff 1, buff 2:int∗}, {put(in x:int), get(out y:int)}〉
priMeth.K2	
K3 = {put1(in x:int), get1(out, y:int)}
init.K2	
K3 = buff 1 := 〈 〉; buff 2 := 〈 〉
code.K2	
K3(put) = (buff1:=〈x〉) � buff1=〈〉� (put1(head(buff1)))
code.K2	
K3(get) = (y:=head(buff 2); buff 2:=〈〉) � buff 2�〈〉� get1(y)
code.K2	
K3(get1) = (buff1�〈〉)→ (y:=head(buff1); buff1:=〈 〉)
code.K2	
K3(put1) = (buff 2=〈〉)→ buff 2:=〈x〉
rIF.K2	
K3 = ∅.

The transition graph of K2	
K3 is given in Fig.2, which is a two-place buffer. �

s2s1’

s1s2’s1s1’

s2s2’

put get

put

get

get

put

Fig. 2. Transition Graph of K2	
K3

Feedback. Let K be a component, suppose its provided method m has the same signa-
ture as the required method n. We use the notion K[m ↪→ n] to represent the component
which feeds back its provided service m to the required one n such that whenever n
is invoked in K, m is invoked in K[m ↪→ n]. This feedback can be defined by using the
plugging operator. Let F be the component, which only provides n, and the code of n be
n(){m()}, i.e. F only requires m. Then K[m ↪→ n] =̂ K	
F.

6.2 Composition of Publications

In this subsection, we investigate these operators at the level of publications from the
user’s point of view.

Renaming. Since a publication contains two publication contracts, renaming a method
in a publication definitely involves renaming a method in a publication contract. So, we
first define renaming in (publication) contract.

Definition 16. Given a contract C and n∈Meth.C, renaming n to m in C, denoted C[m/n],
is defined as

254 N. Zhan, E.Y. Kang, and Z. Liu

– IF.C[m/n] = (IF.C)[m/n];
– init.C[m/n] = init.C;
– spec.C[m/n](n) = spec.C(n), and spec.C[m/n](op) = spec.C(op) for any other method of

the interface;
– prot.C[m/n] = (prot.C)[m/n],

where m is a fresh method name, with the parameter type as n.

Definition 17. Let U = 〈G,A,C〉. Renaming a method n ∈ Meth.G ∪Meth.A gives the
publication U[m/n] = 〈G[m/n],A[m/n],C[m/n]〉.

Hiding. Hiding a provided method in a publication is semantically equivalent to re-
moving this method from its provided interface. Formally,

Definition 18. Let U = (G,A,C) be a publication, and m ∈ Meth.G. Hiding m in U, de-
noted U\m, is defined by U\m = 〈G\m,A ,C\m)〉, where G\m is defined by

– IF.G\m = 〈field.G,Meth.G − {m}〉,
– init.G\m = init.G,
– spec.G\m(n) = spec.G(n) for each method n in Meth.G − {m}, and
– prot.G\m = (prot.G)\m.

Note that hiding required methods in a component or publication does not make sense
as required methods can be looked as bound variables (names) from a logical point of
view.

Internalizing. Internalizing a set of methods in a publication is via internalizing these
methods in its provided contract and hiding them in its invocation dependency oriented
protocol. Internalizing methods in a publication contract is quite similar to internaliz-
ing methods in a component by changing all explicit invocations to these internalized
methods to implicity invocations. Thus, from outside, these methods are invisible, but
their impacts are still there.

Given a publication contract C = (I, θ,D,T), let M ⊆ Meth.I be internalized in C and
m ∈ Meth.I − M. Then, all possible sequences of invocations to these internalized meth-
ods in M before and after each execution of m can be calculated according to T as
follows:

maxT(T ,m,M) =̂ {�ˆeˆr | � ∈ M∗ ∧ r ∈ M∗ ∧ ∃tr1, tr2 ∈ Meth.I∗.tr1ˆ(�ˆeˆr)ˆtr2 ∈ T }

Definition 19. Let G be a publication contract and M ⊆ Meth.G. Internalizing M in G,
denoted G↙M, is the publication such that

– IF.G↙M = (IF.G)\M,
– init.G↙M = init.G,
– spec.G↙M(n) = �s∈maxT(prot.G,n,M)spec.G(s) for each method n in Meth.G − M, and
– prot.G↙M = prot.G � (Meth.G − M)

Then, internalizing on a publication can be defined

Definition 20. For a publication U = (G,A ,C), U↙M = (G↙M,A,C � (Meth.G − M)).

Component Publications and Compositions 255

Plugging. We now define the plugging operator on publications. A publication U1 can
plug into another publication U2 only if on one hand, U1 and U2 have no naming con-
flicts; on the other hand, if a method m is respectively specified in U1’s provided contract
and U2’s required contract, then the former must be a refinement of the latter, and vice
versa. Formally,

Definition 21. Let Ui, i = 1, 2, be publications. U1 and U2 are pluggable if

1. (field.pCtr.U1 ∩ field.pCtr.U2) = ∅, and (Meth.pCtr.U1 ∩Meth.pCtr.U2) = ∅;
2. (field.rCtr.U1 ∩ field.rCtr.U2) = ∅, and (Meth.rCtr.U1 ∩Meth.rCtr.U2) = ∅;
3. spec.pCtr.Ui(m) � spec.rCtr.U j(m), for each m ∈ pMeth.Ui ∩ rMeth.U j, where i, j = 1, 2

and j � i.

Definition 22. Given two publications U1 and U2, which are pluggable. Then plug U1

to U2 is denoted by U1	
U2, and defined as U1	
U2 = 〈G,A,C〉, where

– field.G = filed.pCtr.U1 + field.pCtr.U2,
– Meth.G = pMeth.U1 + pMeth.U2 − rMeth.U1 − rMeth.U2,
– Meth.A = rMeth.U1 + rMeth.U2 − pMeth.U1 − pMeth.U2,
– spec.G(m) = spec.pCtr.U1(m) ⊕ spec.pCtr.U2(m), for m ∈ Meth.G,
– spec.A(m) = spec.rCtr.U1(m) ⊕ spec.rCtr.U1(m), for m ∈ Meth.A,
– prot.G = causal.U1	
U2 � (pMeth.U1 − rMeth.U2),
– prot.A = causal.U1	
U2 � (rMeth.U1 − pMeth.U2),
– causal.U1	
U2 = causal.U1 ‖(rMeth.U1∩pMeth.U2)∪(pMeth.U1∩rMeth.U2) causal.U2.

From the above definition, you can see that once a required method of a publication is
provided by another publication, then the method does not appear in the plugging of
the two publications. This is consistent with plugging two components makes a method
required by one and provided by the other private to the composite component.

Example 7. From the above definition, we know that the publications UB2 and UB3 in
Example 5 are pluggable, and UB2	
UB3 is:

pIF.UB2	
UB3 = 〈{buff 1, buff 2:int∗}, {put(in x:int), get(out y:int)}〉
rIF.UB2	
UB3 = ∅,

spec.pCtr.UB2	
UB3 (put(in x:int)) = (� buff ′1=〈x〉ˆbuff 1) � buff 1 = 〈 〉� (� buff ′1=buff 1)
spec.pCtr.UB2	
UB3 (get(out y:int)) = (� buff ′2 = tail(buff 2) ∧ y′ = head(buff 2)) � buff 2 � 〈 〉�

(� buff ′2=buff 2 ∧ ∃c ∈ int.y′ = c)
causal.UB2	
UB3 = CB2 ‖{get1;put1} CB3

= [(〈put; get〉)∗ˆ(ε + 〈put〉ˆ(〈put; get〉)∗+
〈put〉ˆ(〈put; get〉)∗ˆ〈get〉)]∗.

We can see UB2	
UB3 is exactly a publication of K2	
K3. �

Feedback. Feedback for publications can be defined similarly to the definition for
components.

A publication of a component tells the user what component does and how to use
it. Therefore, it must be certified that the component does indeed do what is said in
its publication. The following theorem shows that if the subcomponents conform to
their publications, a composition of them will conform to the composition of their
publications.

256 N. Zhan, E.Y. Kang, and Z. Liu

Theorem 6. (Certification of Publication) All the operators defined above are com-
positional. That is,

1. if U is a publication of K, then U[m/n] is a publication of K[m/n];
2. if U is a publication of K, then U\m is a publication of K\m;
3. if U is a publication of K, U↙M is a publication of K↙M;
4. if U1 is a publication of K1 and U2 is a publication of K2, then U1	
U2 is a publication

of K1	
K2;
5. if U is a publication of K, then U[m ↪→ n] is a publication of K[m ↪→ n].

7 Conclusion and Future Work

This paper presents our further investigation on component publications and compo-
sitions of rCOS. We proposed a general approach on how to calculate the weakest
required contract of a component according for a given provided contract. Then, we
defined a set of composition operators on components and on their publications, and
we studied the relation between compositions of components and their publications.

We hope the definitions and theorems in this paper set up the foundation for our
ongoing research on the following problems

– Decomposition. The semantic equation (1) in Section 5 is in general unsolvable
(undecidable). We have shown that the equations is solvable under some special
cases. We will study further conditions under which it is solvable. This is significant
to the general problem of program decomposition.

– Refinement Theories. The refinement relation between contracts and components
in rCOS [5,1] is essentially the failure/divergence partial order of CSP [11]. The
disadvantages of such a refinement relation include: 1) it can only be used to
compare two components with the same interface; 2) it mainly concerns safety
property, but in component-based methods, we have to consider the reactivity to
invocations of services from the environment, which is liveness property. To illus-
trate the second disadvantage, consider the example: let m1 and m2 be two simple
stateless methods, without divergence and deadlock. Let C1 = {false&m1, false&m2},
C2= {true&m1,false&m2}, C3= {true&m1, true&m2} be complete contracts. Then, prot.C1

= ∅, prot.C2= {m1}∗, and prot.C3= {m1,m2}∗. It is easy to getD(C1) = D(C2) = D(C3)=∅,
and F (C1) = {(〈〉, {m1,m2})} ∧ F (C2)= {(〈mn

1〉, {m2}) | n ≥ 0} ∧ F (C3) = ∅. According to
the definition, obviously, C1 � C3 and C2 � C3, but C1 cannot be compared with C2.
But from a user’s point of view, C2 should be better than C1.

We often need to support incremental design by extending a component to pro-
vide more services. Therefore, we are currently studying a more general refinement
theory with the concepts of strongest provided contracts and weakest required con-
tracts.

– Glue Theory. We are interested in developing a coordination model for specifica-
tion and verification of glue code in the framework of rCOS.

Component Publications and Compositions 257

Acknowledgments

We thank Prof. Jifeng He for so much fruitful discussions on the topic with him and
his useful comments on early version of this paper. We are also grateful to the anony-
mous referees for their criticisms and constructive comments that has led to substantial
improvements of the presentation of this paper.

References

1. Chen, X., He, J., Liu, Z., Zhan, N.: A model of component-based programming. In: Arbab, F.,
Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 191–206. Springer, Heidelberg (2007)

2. de Alfaro, L., Henzinger, T.: Interface automata. In: Proceedings of the Ninth Annual Sym-
posium on Foundations of Software Engineering (FSE’01), January 2001. ACM Press, New
York (2001)

3. de Alfaro, L., Henzinger, T.: Interface theories for component-based design. In: Henzinger,
T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–165. Springer, Heidel-
berg (2001)

4. He, J., Li, X., Liu, Z.: Component-based software engineering. In: Van Hung, D., Wirsing,
M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 70–95. Springer, Heidelberg (2005)

5. He, J., Li, X., Liu, Z.: rCOS: a refinement calculus of object systems. Theor. Comput.
Sci. 365(1-2), 109–142 (2006)

6. He, J., Li, X., Liu, Z.: A theory of reactive components. Electr. Notes Theor. Comput.
Sci. 160, 173–195 (2006)

7. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Englewood Cliffs
(1998)

8. Holzmann, G.J.: Conquering complxity. Software technology, pp. 111–113 (December 2007)
9. Leavens, G.T., Leino, K.R.M., Poll, E., Ruby, C., Jacobs, B.: JML: notations and tools sup-

porting detailed design in Java. In: OOPSLA 2000, pp. 105–106. ACM Press, New York
(2000)

10. Mandrioli, D., Meyer, B.: Design by Contract. Prentice-Hall, Englewood Cliffs (1991)
11. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Englewood Cliffs

(1997)
12. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-

Wesley, Reading (1998)

	Component Publications and Compositions
	Introduction
	Preliminaries
	Notations for Traces

	Contract and Component
	Contract
	Component

	Publications of Components
	Specification vs. Publication

	Calculate Weakest Required Contract and Publication
	Calculating Invocation Dependency Oriented Protocol
	Calculating Weakest Required Contract

	Compositions of Components and Their Publications
	Compositions of Components
	Composition of Publications

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

