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Preface

This book constitutes the thoroughly refereed proceedings of the Second Inter-
national Symposium on Unifying Theories of Programming, UTP 2008, held at
Trinity College, Dublin, Ireland, in September 2008.

This symposium followed on the success of the first held at Walworth Castle
in 2006. Based on the pioneering work on unifying theories of programming of
Tony Hoare, He Jifeng, and others, the aims of this symposium series are to
continue to reaffirm the significance of the ongoing UTP project, to encourage
efforts to advance it by providing a focus for the sharing of results by those
already actively contributing, and to raise awareness of the benefits of such a
unifying theoretical framework among the wider computer science and software
engineering communities.

There were two invited talks, one of which appears here in full, the other in
abstract form. We would like to warmly thank both Jifeng He and Ralph-Johann
Back for their enthusiastic and engaged participation in this event.

There was a two-phase review process involved in assembling these proceed-
ings. A pre-symposium full review process selected a number of papers for inclu-
sion in these proceedings and for presentation at the symposium. The authors
of the remaining papers were invited to present their work at the symposium as
“work-in-progress” papers. Further work-in-progress papers were also solicited
for the symposium from the formal methods community, with screening for rele-
vance to the symposium’s aims. After the symposium, having received feedback
while presenting their papers, the work-in-progress authors were invited to sub-
mit expanded revised versions of their papers for inclusion in the proceedings,
subject to a similar rigorous full-review process as for the earlier full papers. The
13 papers in this proceedings volume were chosen from a total of 20 submissions,
of which 3 were rejected in the first review, presented as work-in-progress and
then re-submitted for full review. All papers had at least three reviewers.

The symposium was organized using, and these proceedings assembled with
the assistance of, EasyChair (www.easychair.org). I would like to thank them
for being there, particularly at the finish!

May 2010 Andrew Butterfield
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Refinement Calculus as a Theory of Contracts
(Invited Paper)

Ralph-Johan Back

Abo Akademi University, Turku

Abstract. We describe a foundation for refinement calculus where pro-
grams and systems are described as contracts, carried out by a collection
of interacting agents. The contract states explicitly what the agents are
allowed to do, and who is to blame if things go wrong. A contract can be
analyzed from the point of view of any participating agent or coalition
of agents, to see what kind of goals the agents can achieve by following
the contract. We give an intuitive overview of contracts in this setting,
and then continue to describe the mathematical and logical foundations
of the calculus. We show how contracts provide a unified framework for
a number of seemingly different paradigms in computer science, such
as concurrency, interactivity, games, temporal behavior vs input-output
computation and high level system design.

A. Butterfield (Ed.): UTP 2008, LNCS 5713, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Transaction Calculus
(Invited Paper)

Jifeng He�

Shanghai Key Laboratory of Trustworthy Computing
Software Engineering Institute

East China Normal University, China
jifeng@sei.ecnu.edu.cn

Abstract. Transaction-based services are increasingly being applied in
solving many universal interoperability problems. Compensation is one
typical feature for long-running transactions. This paper presents a de-
sign model for specifying the behaviour of compensable programs. The
new model for handling exception and compensation is built as conserva-
tive extension of the standard relational model. The paper puts forward a
mathematical framework for transactions where a transaction is treated
as a mapping from its environment to compensable programs. We pro-
pose a transaction refinement calculus, and show that every transaction
can be converted to a primitive one which simply consists of a forward
activity and a compensation module.

1 Introduction

With the development of Internet technology, web services and web-based appli-
cations play an important role to information systems. The aim of web services
is to achieve the universal interoperability between different web-based appli-
cations. Due to the provided interface, web services can be invoked across the
Internet. In recent years, in order to develop web-based information systems
and describe the infrastructure for carrying out business transactions, various
business modelling languages have been introduced, such as XLANG, WSFL,
BPEL4WS (BPEL) and StAC [7, 9, 16, 25].

Compensation is one typical feature for long-running transactions. Butler et
al. investigated the compensation feature in the style of process algebra CSP
[6–8]. StAC (Structured Activity Compensation) [6] is a business process mod-
elling language, where compensation acts as one of its main features. Its oper-
ational semantics has also been studied in [7]. Further, Bruni et al. studied the
transaction calculi for StAC programs in the form of Java API [4]. Qiu et al. car-
ried a deep formal analysis of the fault behaviour for BPEL-like processes [23].
� This work is partially supported by the National Basic Research Program of China

(No. 2005CB321904), the National High Technology Research and Development
Program of China (No. 2007AA010302), the National Natural Science Foundation
of China (No. 90718004) and Shanghai Leading Academic Discipline Project (No.
B412).

A. Butterfield (Ed.): UTP 2008, LNCS 5713, pp. 2–21, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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He et al. proposed a mathematical model for BPEL and explored its algebraic
properties in [12].

The π-calculus has been applied in describing various compensable program
models. Lucchi and Mazzara formalised the semantics of BPEL within the frame-
work of the π-calculus [19]. Laneve and Zavattaro explored the application of the
π-calculus in the formalisation of the compensable programs and the standard
pattern of composition [17].

This paper is an attempt at taking a step forward to gain some perspectives
on long-running transactions within the design calculus [15]. Our contributions
include

– providing a conservative extension of the standard relational model to deal
with fault handling and compensation

– establishing an algebraic system for exception handling and compensation.
– constructing a mathematical model for transactions and their combinators
– presenting a refinement calculus for transactions

The paper is organised as follows: Section 2 proposes an enriched design model
for compensable programs where new healthiness conditions are introduced to
identify such a subclass. We also show that this set of designs is closed under the
conventional programming combinators. We provide a behavioural semantics for
compensable programs, and present a set of new combinators in dealing with
compensation and coordination. Section 4 is devoted to transaction combinators
and their algebraic properties. The paper concludes with a short discussion.

2 An Enriched Design Model

In this section we work towards a precise characterisation of the class of de-
signs [15] that can handle new programming features such as program failure,
coordination and compensation.

A subclass of designs may be defined in a variety of ways. Sometimes it is
done by a syntactic property. Sometimes the definition requires satisfaction of
a particular collection of algebraic laws. In general, the most useful definitions
are these that are given in many different forms, together with a proof that
all of them are equivalent. This section will put forward additional healthiness
conditions to capture such a subclass of designs. We leave their corresponding
algebraic laws in Section 3.

2.1 Exception Handling

To handling exception requires a more explicit analysis of the phenomena of
program execution. We therefore introduce into the alphabet of our designs a
pair of Boolean variables ef lag and ef lag′ to denote the relevant observations:

– ef lag records the observation that the program is asked to start when the
execution of its predecessor halts due to an exception.
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– ef lag′ records the observation that an exception occurs during the execution
of the program.

The introduction of error states has implication for sequential composition: all
the exception cases of program P are of course also the exception cases of P ; Q.
Rather than change the definition of sequential composition given in [15], we
enforce these rules by means a healthiness condition: if the program Q is asked
to start in an exception case of its predecessor, it leaves the state unchanged

(Req1) Q = II � ef lag � Q

when the design II adopts the following definition

II =df true � (s′ = s)

where s denotes all the variables in the alphabet of Q.
A design is Req1-healthy if it satisfies the healthiness condition Req1. Define

H1(Q) =df (II � ef lag � Q)

Clearly H1 is idempotent. As a result, Q is Req1 healthy if and only if Q lies in
the range of H1.

The following theorem indicates Req1-healthy designs are closed under con-
ventional programming combinators.

Theorem 2.1

(1) H1(P � Q) = H1(P ) � H1(Q)

(2) H1(P � b � Q) = H1(P ) � b � H1(Q)

(3) H1(P ;H1(Q)) = H1(P );H1(Q)

2.2 Rollback

To equip a program with compensation mechanism, it is necessary to figure out
the cases when the execution control has to rollback. By adopting the tech-
nique used in the exception handling model, we introduce a new logical variable
forward to describe the status of control flow of the execution of a program:

– forward′ = true indicates successful termination of the execution of the
forward activity of a program. In this case, its successor will carry on with
the initial state set up by the program.

– forward′ = false indicates it is required to undo the effect caused by the ex-
ecution of the program. In this case, the corresponding compensation module
will be invoked.

As a result, a program must keep idle when it is asked to start in a state where
forward = false, i.e., it has to meet the following healthiness condition:

(Req2) Q = II � ¬forward � Q
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This condition can be identified by the idempotent mapping

H2(Q) =df II � ¬forward � Q

in the sense that a program meets Req2 iff it is a fixed point of H2

We can characterize both Req1 and Req2 by composing H1 and H2.
To ensure that their composition is an idempotent mapping we are going to
show that

Theorem 2.2

H2 ◦ H1 = H1 ◦ H2

Proof. From the fact that

H1(H2(Q)) = II � ef lag ∨ ¬foward � Q = H2(H1(Q))

Define H =df H1 ◦ H2.

Theorem 2.3

A design is healthy (i.e., it satisfies both Req1 and Req2) iff it lies in the range
of H.

The following theorem indicates that healthy designs are closed under the con-
ventional programming combinators.

Theorem 2.4

(1) H(P � Q) = H(P ) � H(Q)

(2) H(P � b � Q) = H(P ) � b � H(Q)

(3) H(P ;H(Q)) = H(P );H(Q)

In the following sections, we will confine ourselves to healthy designs only.

3 Programs

This section studies a simple programming language, which extends the Guarded
Command Language [10] by adding coordination constructs. The syntax of the
language is as follows:

P ::= skip | fail | throw | ⊥ | x := e |
P � P | P � b � P | P ; P | b ∗H P |
P else P | P catch P | P cpens P | P or P | P par P

In the following discussion, v will represent the program variables cited in the
alphabet of the program.

3.1 Primitive Commands

The behaviour of the chaotic program ⊥ is totally unpredictable

⊥ =df H(true)
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The execution of skip leaves program variables intact.

skip =df H(success)

where success =df true � ((v′ = v) ∧ forward′ ∧ ¬ef lag′)
The execution of fail rollbacks the control flow.

fail =df H(rollback)

where rollback =df true � ((v′ = v) ∧ ¬forward′ ∧ ¬ef lag′)
An exception case arises from the execution of throw

throw =df H(error)

where error =df true � ((v′ = v) ∧ ef lag′)

3.2 Nondeterministic Choice and Sequential Composition

The nondeterministic choice and sequential composition have exactly the same
meaning as the corresponding operators on the single predicates defined in [15].

P ; Q =df ∃m • (P [m/s′] ∧ Q[m/s])

P � Q =df P ∨ Q

The change in the definition of ⊥ and skip requires us to give a proof of the
relevant laws.

Theorem 3.1

(1) skip; P = P = P ; skip

(2) ⊥; P = ⊥
(3) ⊥ � P = ⊥
Proof. Let s = (v, forward, ef lag).

(1) skip; P {Theorem 2.4(3)}
= H(success; P ) {H(Q) = H((forward ∧ ¬ef lag)�; Q)}
= H((true � (s′ = s)); P ) {(true � (s′ = s); D = D}
= H(P ) {P is healthy}
= P

Besides the laws presented in [15] for composition and nondeterministic choice,
there are additional left zero laws for sequential composition.

Theorem 3.2

(1) throw; P = throw

(2) fail; P = fail
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Proof
(1) throw; P {Theorem 2.4(3)}
= H(error; P ) {Def of error}
= H(error; (ef lag)⊥; P ) {P = H(P )}
= H(error; (ef lag)⊥;H(P )[true/ef lag]) {Def of H}
= H(error; (ef lag)⊥) {Def of throw}
= throw

3.3 Assignment

Successful execution of an assignment relies on the assumption that the expres-
sion will be successfully evaluated.

x := e =df skip[e/x] � D(e) � throw

where the boolean condition D(e) is true in just those circumstances in which e
can be successfully evaluated [21]. For example we can define

D(c) =df true if c is a constant

D(e1 + e2) =df D(e1) ∧ D(e2)

D(e1/e2) =df D(e1) ∧ D(e2) ∧ e2 
= 0

D(e1 � b � e2) =df D(b) ∧ (b ⇒ D(e1)) ∧ (¬b ⇒ D(e2))

Notice that D(e) is always well-defined, i.e., D(D(e)) = true.

Definition 3.1

An assignment x := e is total if the expression e is well-defined, i.e., D(e) = true.

3.4 Conditional

The definition of conditional and iteration take the well-definedness of its Boolean
test into account

P � b � Q =df (D(b) ∧ b ∧ P ) ∨ (D(b) ∧ ¬b ∧ Q) ∨ ¬D(b) ∧ throw

b ∗H P =df μHX • (P ; X) � b � skip

where μHX•F (X) stands for the weakest Req− healthy solution of the equation
X = F (X).

The alternation is defined in a similar way

if(b1 → P1, .., bn → Pn)fi =df

⎛⎜⎝
∨

i (D(b) ∧ bi ∧ Pi)∨
D(b) ∧ ¬b ∧⊥ ∨
¬D(b) ∧ throw

⎞⎟⎠
where b =df

∨
i bi.
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The following theorem illustrates how to convert a conditional into an alter-
nation with well-defined boolean guards.

Theorem 3.3

P � b � Q =

if((b � D(b) � false) → P, (¬b � D(b) � false) → Q, ¬D(b) → throw)fi

A similar transformation can be applied to an assignment.

Theorem 3.4

x := e = (x, y, ..z := (e, y, .., z) � D(e) � (x, y, .., z)) � D(e) � throw

The previous theorems enable us to confine ourselves to well-defined expressions
in later discussion. For total assignment, we are required to reestablish the fol-
lowing laws.

Theorem 3.5

(1) (x := e; x := f(x)) = (x := f(e))

(2) x := e; (P � b(x) � Q) = (x := e; P ) � b(e) � (x := e; Q)

(3) (x := e) � b � (x := f) = x := (e � b � f)

(4) (x := x) = skip

The following laws for alternation are present in support of normal form reduc-
tion [13].

Theorem 3.6

Let G denote a list of alternatives, and x := e a total assignment.

(1) if(b1 → P1, ... P2, .. bn → Pn)fi = if(bπ(1) → Pπ(1), .., bπ(n) → Pπ(n))fi

where π is an arbitrary permutation of {1, .., n}.
(2) if(b → if(c1 → Q1, .., cn → Qn)fi, G)fi =

if(b ∧ c1 → Q1, .., b ∧ cn → Qn, G)fi provided that
∨

k ck = true

(3) if(b → P, b → Q, G)fi = if(b → (P � Q), G)fi

(4) (x := e); if(b1 → P1, .., bn → Pn)fi = if(b1[e/x] → (x := e; P1), ..., bn[e/x] →
(x := e; Pn))fi

(5) if(b1 → P1, .., bn → Pn)fi ; Q = if(b1 → (P1; Q), .., bn → (Pn; Q))fi

(6) if(b1 → P1, .., bn → Pn)fi � Q = if(b1 → (P1 � Q), .., bn → (Pn � Q)fi

(7) if(b1 → P1, .., bn → Pn)fi ∧ Q = if(b1 → (P1 ∧ Q), .., bn → (Pn ∧ Q))fi

provided that
∨

k bk = true

(8) if(false → P, G)fi = if(G)fi

(9) if(b1 → P1, .., bn → Pn)fi = if(b1 → P1, .., bn → Pn, ¬ ∨i bi → ⊥)fi

(10) if(true → P )fi = P
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3.5 Error Handling

Let P and Q be programs. The notation P catch Q represents a program which
runs P first. If its execution throws an exception case then Q is activated.

P catch Q =df H(P ; φ(Q))

where φ(Q) =df II � ¬ef lag � Q[false, true/ef lag, forward]

Theorem 3.7

Let x := e be a total assignment, and b a well-defined boolean expression, and
B =df (forward ∧ ¬ef lag).

(1) P catch (Q catch R) = (P catch Q) catch R

(2) (throw catch Q) = Q = (Q catch throw)

(3) P catchQ = P if P ∈ {⊥, fail, (x := e)}
(4) (P ; Q) catchR = P ; (Q catchR) if B�; P = B�; P ; B⊥.

(5) (P � b � Q) catch R = (P catchR) � b � (Q catchR)

(6) (P � Q) catch R = (P catch R) � (Q catch R)

(7) P catch (Q � R) = (P catch Q) � (P catch R)

Proof
(4) LHS {Def of catch}
= H(P ; Q; φ(R)) {B�; P = B�; P ; B⊥}
= H(P ; B⊥; Q; φ(R)) {Def of H}
= H(P ;H(Q; φ(R))) {Theorem 2.4(3)}
= H(P );H(Q; φ(R))) {Def of catch}
= RHS

3.6 Compensation

Let P and Q be programs. The program P cpensQ runs P first. If its execution
fails, then Q is invoked as its compensation.

P cpens Q =df H(P ; ψ(Q))

where ψ(Q) =df (II � forward ∨ ef lag � Q[true/forward])

Theorem 3.8

Let x := e be a total assignment, and b a well-defined boolean expression, and
B =df (forwaed ∧ ¬ef lag).
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(1) P cpens (Q cpens R) = (P cpens Q) cpens R

(2) P cpens Q = P if P ∈ {throw, ⊥, (x := e)}
(3) (failcpensQ) = Q = (Q cpens fail)

(4) (P ; Q) cpensR = P ; (Q cpensR) if B�; P = B�; P ; B⊥.

(5) (P � b � Q) cpensR = (P cpensR) � b � (Q catchR)

(6) (P � Q) cpensR = (P cpensR) � (Q cpensR)

(7) P cpens (Q � R) = (P cpensQ) � (P cpensR)

Proof
(1) RHS {Def of cpens}
= H(H(P ; ψ(Q)); ψ(R)) {Def of H}
= H(B�;H(P ; ψ(Q)); ψ(R)) {Q � false � P = P}
= H(P ; ψ(Q); ψ(R)) {ψ(Q); ψ(R) = ψ(Q; φ(R))}
= H(P ; ψ(Q; ψ(R))) {ψ(Q) = ψ(H(Q))}
= H(P ; ψ(H(Q; ψ(R)))) {Def of cpens}
= LHS

3.7 Coordination

Let P and Q be programs. The program P elseQ behaves like P if its execution
succeeds. Otherwise it behaves like Q.

P else Q =df (P ; forward�) ∨ (∃t′ • P [false/forward′] ∧ Q)

where t denotes the vector variable < ok, ef lag, v >.

Theorem 3.9

Let x := e be a total assignment, and b a well-defined boolean expression.

(1) P else P = P

(2) P else (Q else R) = (P else Q) else R

(3) P else Q = P if P ∈ {⊥, (x := e), (x := e; throw)}
(4) (x := e ; fail) else Q = Q

(5) (P � b � Q) else R = (P elseR) � b � (Q elseR)

(6) P else (Q � b � R) = (P elseQ) � b � (P elseR)

(7) (P � Q) else R = (P else R) � (Q else R)

(8) P else (Q � R) = (P else Q) � (P else R)
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Proof

(1) LHS {Def of else}
= P ; forward� ∨ ∃t′ • P [false/forward′] ∧ P {predicate calculus}
= (∃t′ • P [false/forward′] ∨ ¬∃t′ • P [false/forward′] ∧ ∃t′ • P [true/forward′])∧

(P ; forward�) ∨ ∃t′ • P [false/forward′] ∧ P {forward� ∨ II = II}
= (¬∃t′ • P [false/forward′] ∧ ∃t′ • P [true/forward′]) ∧ (P ; forward�) ∨

∃t′ • P [false/forward′] ∧ P {P ; II = P}
= (¬∃t′ • P [false/forward′] ∧ ∃t′ • P [true/forward′]) ∧ P ∨

∃t′ • P [false/forward′] ∧ P {predicate calculus}
= (∃t′ • P [true/forward′] ∨ ∃t′P [false/forward′]) ∧ P {∃t′, forward′ • P = true}
= RHS

The choice construct P orQ selects a successful one between P and Q. When
both P and Q succeed, the choice is made nondeterministically.

P or Q =df (P else Q) � (Q else P )

Theorem 3.10

Let b be a well-defined boolean expression.

(1) P or P = P

(2) P or Q = Q or P

(3) (P or Q) or R = P or (Q or R)

(4) (P � b � Q) or R = (P orR) � b � (Q orR)

(5) (P � Q) orR = (P orR) � (Q orR)

Proof

(1) From Theorem 3.9(1)

(2) From the symmetry of �
(3) From Theorem 3.9(2)

(4) From Theorem 3.9(7) and (8)

(5) From Theorem 3.9(9) and (10)

Let P and Q be programs with disjoint alphabet. The program P parQ runs P
and Q in parallel. It succeeds only when both P and Q succeed. Its behaviour
is described by the parallel merge construct defined in [15]:

P par Q =df (P‖MQ)

where the parallel merge operator ‖M is defined by

P ‖M Q =df (P [0.m′/m′]‖Q[1.m′/m′]); M(ok, 0.m, 1.m, m′, ok′)
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where m represents the shared variables forward and ef lag of P and Q, and ‖
denotes the disjoint parallel operator

(b � R)‖(c � S) =df (b ∧ c) � (R ∧ S)

and the merge predicate M is defined by

M =df

true �

⎛⎜⎝ (ef lag′ = 0.ef lag1∨ 1.ef lag)∧
(¬0.ef lag ∧ ¬1.ef lag) ⇒ (forward′ = 0.forward1 ∧ 1.forward)∧
(v′ = v)

⎞⎟⎠
Theorem 3.11

Let x := e be a total assignment, and b a well-defined boolean expression.

(1) (P par Q) = (Q par P )

(2) (P par Q) par R = P par (Q par R)

(3) ⊥ par Q = ⊥
(4) (P � b � Q) par R) = (P parR) � b � (Q parR)

(5) (P � Q) par R = (P par R) � (Q par R)

(6) (x := e; P ) par Q = (x := e); (P par Q)

(7) fail par throw = throw

(8) fail par fail = fail

(9) throw par throw = throw

(10) skipA parQ = Q+A

(b � R)+{x, ..,z} =df b � (R ∧ x = x′ ∧ .. ∧ z′ = z)

Proof

(1) and (2): From Theorem 7.2.10 of [15].

(3) From the fact that (⊥‖Q) = ⊥ and (⊥; M) = ⊥
(4) From Theorem 3.6(5) and the fact that

(P � b � Q)‖R = (P‖R) � b � (Q‖R)

(5) From the fact that (P � Q)‖R = (P ‖R) � (Q ‖R)

(6) From the fact that (x := e; P )‖Q = (x := e); (P‖Q)

4 Transaction

Let T be a transaction which consists of forward activity and compensation
module, and let X be a program. We use the notation T (X) denotes a program
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which runs the forward activity of T and X in sequel. If the execution of X fails,
then the compensation module of T will be executed.

Definition 4.1 (Transaction Refinement)

Let U and V be transactions. U refines V (denoted by U �T V ) if for all
programs X , U(X) is a refinement of V (X)

4.1 Primitive Transaction

Let A and C be programs. We use the notation T A
C to represent a primitive

transaction, where A and C represent its forward activity and compensation
activity respectively. We assume that the compensation activity is not allowed
to rollback, i.e.

C[true/forward] = C[true/forward]; (forward)⊥

The behaviour of T A
C (X) is defined by

T A
C (X) =df A ; (X cpens (C; fail)) ; end f lag

where f lag are the local variables introduced in A.

Theorem 4.1

Let v1 and v2 be local variables introduced by A1 and A2 respectively. T A1
C1 �

T A2
C2 if there exists a total relation ρ(v1, v′2) such that

(1) A1 � (A2; sim)

(2) (sim ; C1) � (C2; sim)

where sim =df (true � ρ)

Proof. T A1
C1

(X) {Condition (1)}
� A2; sim; (X cpens (C1; fail)); end v1 {Theorem 2.4(3) and 3.8(4)}
= A2; (sim;X) cpens (C1; fail)); end v1 {v1, v2 /∈ α(X)}
= A2; ((X; sim) cpens (C1; fail)); end v1 {Def of cpens}
= A2;H(X; (sim � forward ∨ eflag�

(sim;C1[true, false/forward, eflag]; fail))); end v1 {Condition (2)}
� A2;H(X; (sim � forward ∨ eflag�

(C2[true, false/forward, eflag]; sim; fail))); end v1 {v1, v2 /∈ α(fail)}
= A2; (X cpens (C2; fail)); sim; end v1 {sim; end v1 = end v2}

= T A2
C2

(X)

Theorem 4.2

(1) T A1�A2
C (X) = T A1

C (X) � T A2
C (X)

(2) T A1�b�A2
C (X) = T A1

C (X) � b � T A2
C (X)

(3) T A
C1�C2

(X) = T A
C1

(X) � T A
C2

(X)
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Proof. From the definition of T A
C and the disjunctivity of sequential composition.

Define

Skip =df T skip
skip

Fail =df T fail
C

Throw =df T throw
C

Abort =df T ⊥
C

Theorem 4.3

(1) Skip(X) = X

(2) Fail(X) = fail

(3) Throw(X) = throw

(4) Abort(X) = ⊥ Proof

(1) Skip(X) {Def of T A
C }

= skip; (X cpensfail) {Theorem 3.8.(3)}
= X

(2) Fail(X) {Def of T A
C }

= fail; (X cpensC) {Theorem 3.2}
= fail

4.2 Nondeterministic Choice

Let T and U be transactions. Their nondeterministic choice T � U is defined by

(T � U)(X) =df T (X) � U(X)

Theorem 4.4

(1) T � T = T

(2) T � U = U � T

(3) (T � U) � V = T � (U � V )

(4) T � Abort = Abort

Proof. (1), (2) and (3) follow from the fact the nondeterministic choice of designs
is idempotent, symmetric and associative. (4) comes from Theorem 4.3(4).

Theorem 4.5 (Closure)

T A1
C1

� T A2
C2

= T A
C , where
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A =df (var f lag := true ; A1) � (var f lag := false ; A2)

C =df (C1 � f lag � C2)

and f lag is a fresh variable which does not appear in A1, A2, C1 and C2.

Proof. Let P1 =df (var f lag := true ; A1) and P2 =df (var f lag := false ; A2)

T A
C (X) {Theorem 4.2}

= T P1
C (X) � T P2

C (X)

{(f lag := true; X) = (f lag := true; X ; f lag := true)}
= T P1

flag:=true;C(X) � T P2
flag:=false;C(X) {Theorem 3.5}

= T P1
flag:=true;C1

(X) � T P2
flag:=false;C2

(X)

{(f lag := true; X) = (f lag := true; X ; f lag := true)}
= T P1

C1
(X) � T P2

C2
(X) {(Q; end f lag) = (end f lag ; Q) if f lag /∈ α(Q)}

= T P1;end flag
C1

(X) � T P2;end flag
C2

(X)

{var f lag := true ; end f lag = skip}
= T A1

C1
(X) � T A2

C2
(X)

4.3 Conditional

Let T and U be transactions. Their conditional choice T � b � U is defined by

(T � b � U)(X) =df T (X) � b � U(X)

Theorem 4.6

(1) T � b � T = T

(2) T � b � U = U � ¬b � T

(3) (T � b � U) � c � V = T � b ∧ c � (U � c � V )

(4) T � b � (U � c � V ) = (T � b � U) � c � (T � b � V )

(5) T � true � U = T

(6) T � (U � b � V ) = (T � U) � b � (T � V )

(7) (T � U) � b � V = (T � b � V ) � (U � b � V )

Proof. From the corresponding laws of designs.

Theorem 4.7 (Closure)

T A1
C1

� b � T A2
C2

= T A
C , where

A =df var f lag := b ; (A1 � b � A2)

C =df (C1 � f lag � C2)

Proof. Similar to Theorem 4.5.
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4.4 Chain

Let T and U be transactions. The transaction T >> U runs T and U in sequel:

(T >> U)(X) =df T (U(X))

Theorem 4.8

(1) (T >> U) >> V = T >> (U >> V )

(2) T >> Skip = T = Skip >> T

(3) Throw >> U = Throw

(4) Fail >> U = Fail

(5) (T � U) >> V = (T >> V ) � (U >> V )

(6) (T � b � U) >> V = (T >> V ) � b � (U >> V )

(7) T >> (U � V ) = (T >> U) � (T >> V )

Proof
(2) (T >> Skip)(X) {Def of >>}
= T (Skip(X)) {Theorem 4.3(1)}
= T (X) {Theorem 4.3(1)}
= Skip(T (X)) {Def of >>}
= (Skip >> T )(X)

(3) (Throw >> U)(X) {Def of >>}
= Throw(U(X)) {Theorem 4.3(3)}
= throw {Theorem 4.3(3)}
= Throw(X)

Theorem 4.9 (Closure)

T A1
C1

>> T A2
C2

= T A
C , where

A =df A1; (A2 cpens (C1; fail))

C =df C2; C1

Proof. Let Ĉ =df C; fail.

LHS(X) {Def of >> and T A
C }

= T A1
C1

(A2; (X cpens Ĉ2)) {Def of T A
C }

= A1; ((A2; (X cpens Ĉ2)) cpens Ĉ1) {Def of cpens}
= A1;H(A2;H(X ; ψ(Ĉ2)); ψ(Ĉ1)) {�b � −−; distribution}
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= A1;H(A2; (ψ(Ĉ1) � ef lag ∨ ¬forward� {ψ(P ; ψ(Q)) = ψ(P ); ψ(Q)}
(X ; ψ(Ĉ2); ψ(Ĉ1)))) {ψ(P ) = ψ(H(P )) }

{and Theorem 3.8(4)}
= A1;H(A2;

if

⎛⎜⎜⎜⎜⎝
ef lag → II

¬ef lag ∧ ¬forward →
Ĉ1[true, false/forward, ef lag]

¬ef lag ∧ forward → (X ; ψ(C2; Ĉ1))

⎞⎟⎟⎟⎟⎠fi) {Theorem 3.6(5)}

= A1;H(A2;

if

⎛⎜⎜⎜⎜⎜⎝
ef lag → II

¬ef lag ∧ ¬forward →
Ĉ1[true, false/forward, ef lag]

¬ef lag ∧ forward → II

⎞⎟⎟⎟⎟⎟⎠fi;

H(X ; ψ(C2; Ĉ1))) {Def of ψ and cpens}
= A1;H(A2; ψ(C1); (X cpens (C2; Ĉ1))) {Theorem 2.4(3)}
= A1;H(A2; ψ(C1)); (X cpens (C2; C1; fail)) {Def of T A

C }
= RHS(X)

4.5 Else

Let T and U be transactions. The transaction T else U does U if T fails. From
the closure property of transaction combinators we are only required to discuss
the case where T and U are primitive transactions. In the following, we will use
the notations T.A and T.C to represent the forward activity and compensation
module of T .

T elseU =df T A
C , where

A =df var f lag; (f lag := true; T.A) else (f lag := false; U.A)

C =df (T.C � f lag � U.C)

Theorem 4.10

(1) T else T = T

(2) (T else U) else V = T else (U else V )

(3) Fail else T = T

(4) Skip else U = Skip

(5) Abort else U = Abort

(6) T else (U � V ) = (T else U) � (T else V )
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(7) (T � U) else V = (T elseU) � (U elseV )

(8) (T � b � U) else V = (T else U) � b � (U else V )

(9) T else (U � b � V ) = (T else U) � b � (T else V )

Proof
(2) LHS.A {Def of else}
= (var f lag1 := true; ((var f lag2 := true; T.A) else

(f lag2 := false; U.A)) else (f lag1 := false; V.A) {Theorem 3.8(4)}
= var f lag1, f lag2; (f lag1, f lag2 := true, true; T.A) else

(f lag1, f lag2 := true, false; U.A) else

(f lag1, f lag2 := false, false; V.A)

LHS.C {Def of else}
= (T.C � f lag2 � U.C) � f lag1 � V.C

In a similar way we obtain

RHS.A

= (var f lag3, f lag4; (f lag3 := true; T.A) else

(f lag3, f lag4 := false, true ; U.A) else

(f lag3, f lag4 := false, false ; V.A)

RHS.C

= T.C � f lag3 � (U.C � f lag4 � V.C)

Let

sim1 =df (f lag2 ⇒ f lag1) ∧ (f lag3′ = (f lag1 ∧ f lag2)) ∧

(f lag4′ = (f lag1 
= f lag2))

sim2 =df (f lag1′ = (f lag3∨ f lag4)) ∧ (f lag2 = f lag3)

We can show

(RHS.A � (LHS.A ; sim1)) and ((sim1; RHS.C) � (LHS.C; sim1))

and

(LHS.A � (RHS.A ; sim2)) and ((sim2; LHS.C) � (RHS.C; sim2))

The conclusion follows from Theorem 4.1.

4.6 Catch

Let T and U be transactions. T catch U fires T first. U will be invoked if T
throws an exception case:
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T catch U =df T A
C , where

A =df (var f lag := true ; T.A) catch (f lag := false; U.A)

C =df (T.C � f lag � U.C)

Theorem 4.11

(1) (T catch U) catch V = T catch (U catch V )

(2) Throw catch U = U

(3) Skip catch U = Skip

(4) Abort catch U = Abort

(5) T else (U � V ) = (T else U) � (T else V )

(6) (T � U) else V = (T elseU) � (U elseV )

(7) (T � b � U) else V = (T else U) � b � (U else V )

4.7 Choice

Let T and U be transactions. The transaction T or U makes a deferred choice
among T and U . When both succeed, the choice is made nondeterministically.
It fails when both T and U fail.

T or U =df T A
C , where

A =df (var f lag := true ; T.A) or (var f lag := false; U.A)

C =df (T.C � f lag � U.C)

Theorem 4.12

(1) (T orU) = (U orT )

(2) (T orU)orV = T or (U orV )

(3) (T orT ) = T

(4) AbortorU = Abort

(5) (T1 � T2)orU = (T1 orU) � (T2 orU)

(6) (T1 � b � T2)orU = (T1 orU) � b � (T2 orU)

4.8 Parallel

Let T and U be transactions without shared variables. The transaction T ‖U
runs T and U in parallel, it succeeds only when both T and U do so.

T par U =df T A
C , where

A =df (T.A par U.A)

C =df (T.C par U.C)
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Theorem 4.13

(1) T parU = U par T

(2) T par (U par V ) = (T parU)parV

(3) AbortparU = Abort

(4) (T � U)parV = (T par V ) � (U par V )

(5) (T � b � U)par V = (T parV ) � b � (U parV )

(6) T par Skip = T

(7) T par Chaos = Chaos

5 Conclusion

This paper presents a mathematical model for compensable programs and long-
running transactions. We add new logical variables ef lag and forward to the
standard design model to deal with the features of exception and failures. As
a result, we put forward new healthiness conditions Req1 and Req2 to char-
acterise those designs which can be used to specify the dynamic behaviour of
compensable programs. The notion of design matrix is introduced to describe
the various types of outcome of a program.

A long-running transaction consists of forward activity and compensation
module. It is defined as a mapping from the specification of its surrounding
environment to the behaviour of a compensable program. This paper introduces
a number of transaction combinators, and explores their properties. It is shown
that the primitive transactions are closed under these combinators.
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Abstract. In this paper we give an additional perspective to the formal
verification of programs through temporal logic model checking, which
uses Hoare and He Unifying Theories of Programming (UTP). Our per-
spective emphasizes the use of UTP designs, an alphabetised relational
calculus expressed as a pre/post condition pair of relations, to verify state
or temporal assertions about programs. The temporal model checking re-
lation is derived from a satisfaction relation between the model and its
properties. The contribution of this paper is that it shows a UTP per-
spective to temporal logic model checking. The approach includes the
notion of efficiency found in traditional model checkers, which reduced a
state explosion problem through the use of efficient data structures.

Keywords: Symbolic model checking, unifying theories of programming.

1 Introduction

Unifying Theories of Programming (UTP) [16] develops a consistent theory of
programming, based on an alphabetised relational calculus and strongly cen-
tered on refinement [1], which can be used to define a variety of programming
paradigms. The book introduces the relational calculus, and uses it to develop
concepts of program design, refinement of programs, and an algebra of pro-
gramming. A UTP theory consists of an alphabet recording names representing
possible observations of behaviour; a signature with the syntax of the language
being given semantics; and a set of healthiness conditions determining the scope
of the theory within the realm of relations. Specifications, designs, and imple-
mentations are all modelled as relations between initial and latter (i.e., interme-
diate or final) observations of behaviour. Various paradigms can be linked using
Galois Connections, hence giving a precise meaning when those paradigms are
combined. In the UTP, the slogan is “programs are predicates”, meaning that
both specification, designs, as well as implementations are viewed as predicates
with their scope restricted according to the corresponding set of healthiness con-
ditions. As everything in the UTP is a predicate, refinement is simply universally
closed reverse implication.

The work has been adopted by many researchers working in various areas of
computing. It has been used to formally define the semantics of the program-
ming/specification language Circus [25]. A series of other paradigms have also
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been formalised in the UTP: imperative, reactive, parallel, higher-order, and
declarative [16,24]; object oriented[15,6,20,21]; pointers [10]; real time [22,20];
synchronous [3]; hardware [4]; angelic nondeterminism [7,9]; control laws [5]; mo-
bility [23]; refinement model checking [13]; and so on.

The approach taken in the book is to formalise and characterize a class of
relations useful for program development. One such class of relations is called
a “design”: a precondition-postcondition pair describing imperative features of
specifications and programs. Another option is the reactive process, which has
a basic failures-divergences semantics, and is used to represent concurrency and
communication. Cavalcanti and Woodcock [8], present a theory of reactive de-
signs, representing reactive processes as a (pre-postcondition) design.

In this paper, our motivation is to provide the development of a unifying the-
ory, with an operational flavour, for model checking temporal logic formulae [11].
We link three components of model checking within UTP. Specifically, we outline
how to express:

– models and states of the implementation which we are verifying;
– temporal properties that we wish to check;
– the model checking relation |=.

We take the view that a model may be derived directly from a UTP design, and
that if a property is true for a particular UTP design, then it is also true for the
related implementations (other UTP designs).

In temporal logic (or classic) model checking, the main goal is to specify prop-
erties as a state assertion or a temporal assertion, that can then be (somewhat)
automatically discharged mechanically. It is not always fully automatic, since the
business of modelling may need to be hand crafted. However, since it can find in-
teresting counter-examples, it has become a quite popular verification technique,
principally in the hardware community.

A traditional presentation of temporal logic model checking [11] centers around
a finite state machine corresponding to a program, and data structures and algo-
rithms to efficiently verify that the structure satisfies a temporal logic formula.
By contrast, we show how to express state and temporal properties as a relation
between observations over a model, and then derive a model checking relation
between these properties and the model. In addition, the expectation we have
of this approach is that any UTP design is already a model.

Work is currently being done in finding an adequate set of healthiness condi-
tions, as well as a nice embedding of the theory presented here in the theory of
UTP designs.

In the next Section, we briefly summarise the main concepts for the UTP.
Section 3 presents basic notions from classical model checking. In Section 4,
model checking is reformulated within the unifying theory framework, showing
how model checking in UTP can be done using binary decision diagrams, closely
following the approach used for symbolic model checking [18]. Finally we con-
clude with remarks about the links between traditional temporal logic model
checking and our initial attempt to embedded it as a UTP theory.
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2 Unifying Theories of Programming

The components of the unified theory are alphabets, signatures and healthiness
conditions.

The alphabet is a set of names representing observations of behaviour made
by the program. These names may include relations between program variables,
and also between observational variables (i.e., those related to some occurrence
in the environment the program exists) not mentioned in the program text,
such as:

– ok the program has started;
– ok’ the program has terminated.

By convention, unprimed names indicate the initial observation of behaviour,
whereas corresponding primed names indicate later observations, such as inter-
mediate or final states.

The signature of a theory is a set of primitive operators and constants of
the theory, and the syntax used for combining them. In UTP, one starts with
the signature for the predicate calculus, and then extend it with new operators
as needed. For example, in developing the concept of a design in the unifying
theories, the connective � is introduced to indicate the relationship between a
pair of predicates p (for preconditions) and q (for postconditions):

p � q =̂ (ok ∧ p) ⇒ (ok′ ∧ q)

Healthiness conditions are idempotent functions over predicates. They select
sub-theories from a theory. For example, we may be able to specify all sorts of
programs from a particular alphabet and signature, but we are only interested
in programs that may be physically realized. For example, we can make no
observations about a program that has not yet started running. This may be
expressed as a healthiness condition for any observation o about a program:

o = (ok ⇒ o)

This condition selects a sub-theory of all the possible programs, isolating those
that are implementable if the healthiness condition is true.

2.1 Subtheories of Programming

We have already seen how the concept of a design is presented in UTP. Other
programming concepts may also be easily represented. For example, the Hoare
triple {p}C {q} representing the relation between a precondition p, a code seg-
ment C and a postcondition q, is defined in UTP as a relation between three
predicates p, C and q:

{p}C {q} =̂ [C ⇒ (p ⇒ q′)]

The square brackets are a notational convenience, indicating that the enclosed
expression is universally quantified over all variables in its alphabet.
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Note that this definition for the Hoare-triple, like mostly everything in the
UTP, can be reformulated as the refinement relation:

{p}C {q} =̂ (p ⇒ q′) � C

That is, the program C satisfies the specification that the precondition p im-
plies its postcondition q. Thus, the algebraic laws of Hoare logic can be nicely
understood in terms of refinement. Similarly, the refinement calculus [1] can be
embedded.

3 Traditional Temporal Logic Model Checking

Verification of programs may be viewed as the process of checking some property
P against either the program itself, or a sufficiently detailed model M of it. For
software in general, this is a hard problem, as the verification process may involve
in-depth reasoning, perhaps requiring theorem provers to confirm parts of the
verification.

The temporal logic model checking approach to verification [11,18] is to ab-
stract out key elements of the program and then to verify just these elements.
These key abstractions are binary predicates, and various techniques and struc-
tures have been developed to automatically and efficiently check the abstract
elements against specified properties, once one has carefully hand-crafted a good
model. As an example, we may be interested in checking that a certain program
variable v has the value 0 at a certain stage of the execution of our program. In
this case, the binary predicate v = 0 is checked against a representation (model)
of the program which indicates how such binary predicates are transformed.

It is not immediately apparent how this model checking technique outlined
above can be used to model-check the execution behaviour of programs. For
example, how can we use the strategy to check for the progress of a program, or
to establish if a section of code is ever executed? The solution to this is simple:
we label each line of the program (l0, l1, ..., ln), and add to our variable state
space a pseudo-variable pc for the program counter of the program. It ranges
over the labels together with an undefined value ⊥ (pc ∈ {l0, l1, ..., ln,⊥}), and
may be used and checked in exactly the same way as the other variables.

Given the underlying reliance on binary abstractions, it is no surprise that
model checking is being used in the analysis of digital electronic circuits, but
it has also proved effective in the software domain, particularly in the areas of
protocol analysis, the behaviour of reactive systems, and for checking concurrent
systems.

3.1 Traditional Notions of Model and State

It is difficult to find examples convincing enough to demonstrate a technique,
but which are small enough to fully describe in a short paper. We choose to use
as an example a simple mutual exclusion protocol in which two processes, P1
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and P2 share six (boolean) variables, and co-operate to ensure mutually exclusive
access to a critical section of code. A third process T1 monitors the variables and
changes a turn variable. The entire system is the parallel composition of these
three processes, and is continuous (indicated by the trailing recursive call). Each
line of code is considered to be atomic, and we use 1 to represent true, 0 to
represent false.

P1 = if idle1 then (wait1 := 1; idle1 := 0) else
if wait1 ∧ idle2 then (active1 := 1; wait1 := 0) else
if wait1 ∧ wait2 ∧ ¬turn then (active1 := 1; wait1 := 0);
if active1 then (CritSect; idle1 := 1; active1 := 0);

P2 = if idle2 then (wait2 := 1; idle2 := 0) else
if wait2 ∧ idle1 then (active2 := 1; wait2 := 0) else
if wait2 ∧ wait1 ∧ turn then (active2 := 1; wait2 := 0);
if active2 then (CritSect; idle2 := 1; active2 := 0);

T1 = if idle1 ∧ wait2 then turn := 1 else
if idle2 ∧ wait1 then turn := 0;

System = (P1 ‖ P2 ‖ T1); System;

The example is simple, but provides all the elements needed to demonstrate the
mechanism of model checking UTP reactive processes. In this introduction, we
give the protocol in pseudocode, but later in Section 4.1 it is reformulated in
UTP.

We can represent a state si of this system as a valuation of the relevant
variables. An initial state s0 for the system is defined to be (1, 0, 0, 1, 0, 0, 0)
with S denoting the set of all states. Though there are 128 possible valuations
of the relevant variables, given the specified starting state the system has only
16 reachable states. The states for this system are listed in Table 1.

Table 1. States for the complete system

State S P1 vars P2 vars T1 vars Next state(s)
idle1 wait1 active1 idle2 wait2 active2 turn

s0 1 0 0 1 0 0 0 s1, s2

s1 0 1 0 1 0 0 0 s3, s5

s2 1 0 0 0 1 0 0 s4, s5, s6

s3 0 0 1 1 0 0 0 s0, s7

s4 1 0 0 0 0 1 0 s0, s8

s5 0 1 0 0 1 0 0 s7

s6 1 0 0 0 1 0 1 s9, s10

s7 0 0 1 0 1 0 0 s2

s8 0 1 0 0 0 1 0 s1

s9 0 1 0 0 1 0 1 s11

s10 1 0 0 0 0 1 1 s11, s15

s11 0 1 0 0 0 1 1 s12

s12 0 1 0 1 0 0 1 s1, s9, s13

s13 0 0 1 1 0 0 1 s14, s15

s14 0 0 1 0 1 0 1 s6

s15 1 0 0 1 0 0 1 s6, s12
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We may also characterize this system using a Kripke structure/transition
diagram as in Figure 1. The labels on the transitions relate to the line-numbers
of the program, and the node annotations map each node to a set of properties
that hold in the corresponding state.
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Fig. 1. State transition diagram

The representations are equivalent1, but the next representation has provided
the basis for the mechanisms used in model checking software. In this represen-
tation, the transition relation is expressed (using short names for the variables)
as the following predicate m:

m = (i1 ∧ w′
1 ∧ i′1) ∨ (w1 ∧ i2 ∧ a′

1 ∧ w′
1) ∨ (w1 ∧ w2 ∧ t ∧ a′

1 ∧ w′
1) ∨ (a1 ∧ i′1 ∧ a′

1)

∨ (i2 ∧ w′
2 ∧ i′2) ∨ (w2 ∧ i1 ∧ a′

2 ∧ w′
2) ∨ (w2 ∧ w1 ∧ t ∧ a′

2 ∧ w′
2) ∨ (a2 ∧ i′2 ∧ a′

2)

∨ (i1 ∧ w2 ∧ t′) ∨ (i2 ∧ w1 ∧ t′)

The predicate has been ordered to correlate with the original program. The first
and seond lines correspond to P1 and P2 and the third to T1.

Any such predicate may also be encoded as a binary decision tree (BDT),
in which the levels denote the different variables, and paths through the tree
represent valuations of the transition relation. The BDT for the running example
is too large to show, as it would have 16384 leaves. Instead we will consider the
smaller predicate t using the variables (x, y, z, x′, y′ and z′) and given in
disjunctive normal form:

t = (x ∧ ȳ ∧ z̄ ∧ x′ ∧ ȳ′ ∧ z′)
∨ (x ∧ ȳ ∧ z ∧ x̄′ ∧ y′ ∧ z′)
∨ (x̄ ∧ y ∧ z ∧ x̄′ ∧ ȳ′ ∧ z̄′)
∨ (x̄ ∧ ȳ ∧ z̄ ∧ x′ ∧ ȳ′ ∧ z′)

1 Throughout this paper “m” (model) will be used to refer to this particular transition
relation, which is used as a running example.
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Starting at the top of the tree, we take the left path for x̄ and the right path for
x. In general we take the left path for a false component, and the right path for
a true component. In this diagram, the valid transitions are highlighted by the
darker lines. There is one darker line for each of the four components of t. All
other paths represent invalid transitions.

1 1 1

z’

x’

x

y

z

y’

xx

y y y y

1

Fig. 2. Binary decision tree for the predicate

Note that if we reorder the variables, we get a different decision tree, but this
new tree still represents a transition relation. The relation is independent of the
order of the variables.

The binary decision tree does not scale well, but there are optimizations that
may be done. A key optimization makes use of the likelihood that the tree is
often sparse. We can remove any parts of the decision tree that do not contribute
to the transition relation. This can be seen by considering the evaluation of
x ∧ y ∧ z ∧ x̄ ∧ ȳ ∧ z̄. If we begin to evaluate this by considering x and y, then
we can cut short the further evaluation of the predicate, as all other possible
valuations will be false. The resultant tree has only 18 nodes after removing the
non-contributing ones. An optimization to exploit repetition on BDTs is given by
the use of Reduced Ordered Binary Decision Diagrams (ROBDDs) to efficiently
represent the relation [2]. The ROBDDs provide a canonical form for the BDTs.

In summary, with the traditional presentation, a model is a finite state transi-
tion system M = (S,R, V ), where S represents a finite set of states, R represents
a transition relation between the states, and V is a valuation function defining
the truth values for each state.

3.2 Specification of Properties

We now consider how to express the desired properties of the model. In model
checking terms, this is the specification. Specifications are given as state and
temporal formulae in modal logics such as Computation Tree Logic (CTL) and
Linear Temporal Logic (LTL). These temporal logics are propositional languages
with modal operators and quantifiers related to time, and each is a sub-logic of
CTL*; CTL* in turn is a sublogic of the μ-Calculus [14].
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A CTL formula may either be a state formula or a path formula. A state
formula is one which is true in a particular state, whereas a path formula is one
which is true along a particular computation path.

There are several different notations used to express CTL expressions, how-
ever each notation expresses the same concept. For example in CTL, the path
quantifiers ∀ (all computation paths) and ∃ (at least one computation path) are
also found as the letters A and E. In addition, the path operators ♦ (at some
future time) and � (at all future times) are also found as the letters F and G.
The operators X (in the next state), U (one property holds until another holds)
and R (the dual of U) complete the set.

The CTL expressions are used to express properties of state transition dia-
grams that have been unfolded. If we unfold the diagram shown in Figure 1, we
get an infinite tree of computations as seen in Figure 3.
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Fig. 3. An unfolded state transition diagram

CTL expressions require every temporal operator to be preceded by a quan-
tifier. Since there are five temporal operators, and two quantifiers, we have ten
base expression types, but all of these may be expressed in terms of just three
expressions:

– EX p : For one computation path, property p holds in the next state;
– EG p : For one computation path, property p holds at every state;
– E[p U q] : For one computation path, property p holds until q holds.

For example, we can express:

– A[p U q] : For all computation paths, property p holds until q holds;
– AG p : For all computation paths, property p holds in every state;
– AF p : For all computation paths, property p will eventually hold.

in the following way:

A[p U q] = ¬E[¬q U (¬p ∧ ¬q)] ∧ ¬EG ¬q

AG p = ¬E[true U ¬p]
AF p = A[true U p]
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3.3 Model Checking of Properties

Model checking is commonly expressed as a ternary relation (|=):

M, sn |= P

The relation is true when the property P holds in state sn for a given model M.
The relation is normally defined inductively, with a set of interlocking rules for
state and path formulae.

A labelling algorithm operating on the Kripke diagram representation may
then be used to establish the set of states satisfying the relation. However, this
approach is not particularly efficient, in terms of the size of the structure used.

A more efficient technique relies on representing the relation as a ROBDD, and
constructing a checking procedure for the CTL. The checking procedure returns
a ROBDD structure which represents the states that satisfy the formula. This
technique is efficient as operations on ROBDDs are relatively efficient [2].

4 Model Checking in UTP

In the UTP theory of model checking explored here, we begin by defining the
notions of model and state, and the property to be checked for that model. We
follow the same path travelled in the previous section, with Section 4.1 mirroring
Section 3.1 and so on. We show how UTP designs may be used to create an
appropriate model, and work through the same model used in Section 3.

A major difference in the UTP model checking approach is that the checking
is performed using a transition relation derived directly from a UTP design.

4.1 UTP Notions of Model and State

In this section, the model is derived directly from a UTP design. A UTP design
expresses the relation between a pair of predicates representing the preconditions
(assumptions) and postconditions (commitments) for a program. This relation is
expressed as a predicate with unprimed state variables representing key observa-
tions over the program before the program starts, and primed variables standing
for the values when the program terminates.

Since a UTP design is already expressed as a predicate it is relatively easy to
derive the transition relation m of Section 3.1.

If we consider our example, we might express2 it in UTP terms as the parallel
composition of three components:

P1 =̂ true � (i1 ∧ w′
1 ∧ i′1) ∨ (w1 ∧ i2 ∧ a′

1 ∧ w′
1) ∨ (w1 ∧ w2 ∧ t ∧ a′

1 ∧ w′
1) ∨ (a1 ∧ i′1 ∧ a′

1)

P2 =̂ true � (i2 ∧ w′
2 ∧ i′2) ∨ (w2 ∧ i1 ∧ a′

2 ∧ w′
2) ∨ (w2 ∧ w1 ∧ t ∧ a′

2 ∧ w′
2) ∨ (a2 ∧ i′2 ∧ a′

2)

T1 =̂ true � (i1 ∧ w2 ∧ t′) ∨ (i2 ∧ w1 ∧ t′)

Xform =̂ P1 ‖ P2 ‖ T1

2 This might later be refined to an implementation: P1=̂(w1 := 1; i1 := 0) � i1 � . . ..
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Since the output alphabets of each of the components are disjoint, the paral-
lel composition of the components is easy to compute from the pre and post-
conditions, and we get:

Xform =̂ true � (i1 ∧ w′
1 ∧ i′1) ∨ (w1 ∧ i2 ∧ a′

1 ∧ w′
1) ∨ (w1 ∧ w2 ∧ t ∧ a′

1 ∧ w′
1) ∨ (a1 ∧ i′1 ∧ a′

1)

∨ (i2 ∧ w′
2 ∧ i′2) ∨ (w2 ∧ i1 ∧ a′

2 ∧ w′
2) ∨ (w2 ∧ w1 ∧ t ∧ a′

2 ∧ w′
2) ∨ (a2 ∧ i′2 ∧ a′

2)

∨ (i1 ∧ w2 ∧ t′) ∨ (i2 ∧ w1 ∧ t′)

This corresponds to the transition system for the system, and expresses a trans-
former which, when given values for i, w, a and t, returns the new primed val-
ues. However, we are more interested in the sequence of states when our system
runs continuously, and so we define a recursive design which mimics the system
precisely:

System =̂ Xform; System

We can view this design in an operational sense as a predicate transformer, trans-
forming an observation consistent with the assumptions of the design, into a new
observation consistent with the commitments of the design. If we begin with an
initial observation over the state variables matching state s0 from Section 3, then
the Xform asserts that the commitment will be either s1 or s2. Operationally,
we could view this as a transition from s0 to s1, or s0 to s2.

In the following presentation, the set S of program states represents a set of
valuations of all observations of the process. Formally speaking, we start with
an alphabet A of observation variables. In our case A = {i1, w1, a1, i2, w2, a2, t}.
These observation variables are evaluated according to a valuation function v :
A → {true, false}. We use t to express that v(t) = false, and t for v(t) = true.

An observation o ∈ O is a conjunction of valuations over the alphabet A. The
observations w1 or w1∧ t, are examples of observations that may be made about
the system. The observation w1 ∧ t is sometimes written as w1t for short, and
so we may write expressions such as w1t ∧ w2a2t, or (o ∧ s0) = o, where o is
an observation, and s0 is a state. The set of observations is larger than the set
of states. Each state is an observation, but there are observations that are not
states. Later in this presentation, when we consider a relation consisting of pairs
of observations, this is a more general, and larger set than a transition relation
which is a set of pairs of states.

The set S of states is given by all possible valuations over all observation
variables. We write individual states in S as sn or in shorthand as a string of
observation values. In our case, S = {i1w1a1i2w2a2t, . . . , i1w1a1i2w2a2t}.

We can (informally) derive the transition relation for the system by applying
the Xform to the initial state s0, collecting the original and transformed state
variables as a transition, and repeating with the new transformed variables until
no new transitions are returned. The transition relation is expressed as a set of
pairs of states in the usual way:

Trans = {(s0, s1), (s0, s2), . . . , (s15, s6), (s15, s12)}

This set-of-pairs notation will be re-used when we define model checking in UTP.
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In addition, if we retain the ordering of the observation variables, and con-
catenate the first and second elements, with the second elements primed as they
stand for observations after the program executes, then we can re-express the
transition relation as:

m = {(s0, s1), . . .}
= {i1w1a1i2w2a2ti′1w

′
1a

′
1i

′
2w

′
2a

′
2t

′, . . .}

This representation mirrors exactly the binary decision tree (BDT) structure
which we used to represent predicates. This set-of-strings notation will be used
in Section 4.4 where we define model checking using ROBDD representations for
UTP.

4.2 Specification of Properties in UTP

This section outlines how the properties in Section 3.2 may be expressed in UTP.
In UTP terms, a property P is an expression whose elements are observations,
and whose connectives are simple state ones (∧, ∨ and ¬) or the more complex
temporal ones (G, X and U).

For example, we may be interested in the property “x will be true until ȳ”.
This property would be written as x U ȳ.

4.3 Model Checking in UTP

We begin with the general structure of our presentation of UTP model checking.
The model checking relation is expressed as a ternary relation |= between a
design, a state and the property to be checked.

For state formulæ in UTP, the atomic components are observations, and we
use only the non-temporal connectives ∧, ∨ and ¬. Given a transition relation
r ∈ R for the design D, the model checking relation D, s |= P for a property
P ∈ P in state s is defined by

D, s |= P =̂ (map(r, s) � satmap(r, P )) �= ∅

Informally, we check that the state s belongs to the set of “satisfied pairs”. We
have not of course defined map, � or satmap, and these definitions follow.

The function map : 2R×S → 2R (where 2R is the set of all subsets of R) takes
as arguments a transition relation r and a state s and returns a subrelation in
which each element has the state s as a first component of the transition relation
pair:

map(r, s) =̂ {(s1, s2) ∈ r | s1 = s}

The function tmap : 2R × O → 2R takes as arguments a transition relation r
and an observation o and returns a subrelation of r in which the observation o
is “included” in the first component of the transition relation pair:

tmap(r, o) =̂ {(s1, s2) ∈ r | (o ∧ s1) = o}
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In this definition (o∧ s1) = o expresses the fact that the observation o is part of
the conjunction provided by s1. This is why we use the phrase “o is included in
the first component”. For instance,

tmap(Trans, a1w2t) = {(i1w1a1i2w2a2t, i1w1a1i2w2a2t)}
= {(s14, s6)}

The function fmap : 2R × O → 2R takes a transition relation r and an ob-
servation o and returns a subrelation of the complement r̄ of r, in which the
observation o is included in the first component of the transition relation pair:

fmap(r, o) =̂ {(s1, s2) ∈ r̄ | (o ∧ s1) = o}

Note that fmap could also be done using set minus.
Given two pairs of observations o = (o1, o2), and o′ = (o′1, o

′
2), we define

o � o′ =̂ ((o1 ∧ o′1) = o1) ∧ ((o2 ∧ o′2) = o2)

We now define a matching function �: 2O×O × 2O×O → 2O×O which takes two
sets of pairs of observations and returns a subset of the second one. The sets of
pairs of observations may be used to express transition relations, in which the
observations correspond exactly to the states. Given two such relations r1 and
r2, we define

r1 � r2 =̂ {o ∈ r2 | ∃o′ ∈ r1 : o′ � o}
For example:

{(a2t, a2t)} � Trans = {(i1w1a1i2w2a2t, i1w1a1i2w2a2t)}
= {(s10, s11)}

We observe that the first pair of r1 matches the second pair of r2, and that the
second pair of r1 also matches the second pair of r2. As a final result, we get the
second pair of r2.

State Formulae in UTP. We go on to show how to express state formulae
in UTP. When model checking a UTP design, a property P is given as a CTL
formula. For state formulae in UTP, the atomic components are observations,
and we use only the non-temporal connectives ∧, ∨ and ¬.

Given arbitrary properties p, q ∈ P , and a transition relation r ∈ R for the
design D, we define a satisfaction mapping function satmap : 2R×P → 2R by:

satmap(r, p) =̂ tmap(r, p) � r
satmap(r,¬p) =̂ fmap(r, p) � r

satmap(r, p ∧ q) =̂ tmap(r, p) � r ∩ tmap(r, q) � r
satmap(r, p ∨ q) =̂ tmap(r, p) � r ∪ tmap(r, q) � r
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This function returns a set of “satisfied pairs”, a subset of r satisfying the
property.

As a worked example of some checks on our design, let us try to see which
states satisfy a1∧t using the approach. We can calculate the satisfaction mapping
function:

satmap(m, a1 ∧ t) =̂ tmap(m, a1) � m ∩ tmap(m, t) � m

= {(s3, s0), (s3, s7), (s7, s2), (s13, s14), (s13, s15), (s14, s6)}
∩{(s6, s9), (s6, s10), . . . , (s14, s6), (s15, s6), (s15, s12)}

= {(s13, s14), (s13, s15), (s14, s6)}

Now, for each of the states there is a corresponding set of mapping functions:

map(m, s0) = {(s0, s1), (s0, s2)}
. . . = . . .

map(m, s14) = {(s14, s6)}
map(m, s15) = {(s15, s6), (s15, s12)}

We can now calculate the model checking relation in each state:

D, s0 |= a1 ∧ t = (map(m, s0) � satmap(m, a1 ∧ t)) �= ∅ = false
. . . = . . .

D, s14 |= a1 ∧ t = (map(m, s14) � satmap(m, a1 ∧ t)) �= ∅ = true
D, s15 |= a1 ∧ t = (map(m, s15) � satmap(m, a1 ∧ t)) �= ∅ = false

This may be confirmed by examining Table 1, and noting which states have both
a1 and t.

Temporal Formulae in UTP. For temporal formulae in UTP, we use the tem-
poral connectives EX, EG and EU. We begin with a pair of temporal functions
(F, P ) forming a Galois connection, and representing future3 and past respec-
tively. Karger and Hoare [17] demonstrate how these functions may be used to
express temporal relations. The interested reader is also directed to the section
on Galois connections in the UTP book [16]. Fr represents the future function
for the transition relation r, which returns a relation r′ with r in its immediate
future. Using the running example of transition relation m, we have that

Fm({(s8, s1)}) = {(s4, s8)}
Fm({(s5, s7)}) = {(s1, s5), (s2, s5)}

It is easy to understand the two examples by examining Figure 1.
3 Note that this function F is not to be confused with the CTL future operator F.

The font is different for each.
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Prq represents the past function for the relation r, which returns a relation
r′ with r in its past, and which satisfies EX q. Using the running example of
transition relation m, and using the observation q = w1 ∧ i2 we have that

Pmq(m) = {(s4, s8)}

Once again it is easy to understand the example by examining Figure 1. The
results of the Pmq function consist of the transition leading from state s4 to s8.
If we take the next transition, the observation q will be true.

The CTL temporal connectives may be characterized as the fixed point of
the temporal functions Fr and Prq [18]. We define the following two fixpoint
operators:

F♦(X) =̂ (νY • X � F (Y ))
P�(X) =̂ (μY • X � P (Y ))

Note that we use the ♦ and � symbols to highlight the function iterators. Given
properties p, q ∈ P , and a transition relation r ∈ R for a design D, we can
define the satisfaction mapping function satmap for CTL temporal formulae
by induction. For a start, let us express a satisfaction function for the required
temporal formulae of Section 3.2 in terms of the temporal functions and their
fixpoints:

satmap(r,EX p) =̂ Fr(satmap(r, p))
satmap(r,EG p) =̂ F♦

r (satmap(r, p)) {r}
satmap(r,E[p U q]) =̂ P�

rq(satmap(r, p)) ∅

The satisfaction function for the EG p temporal formula uses the future func-
tion iterator F♦

r , the greatest fixed point of Fr. The satisfaction function for the
E[p U q] temporal formula uses the past function iterator P�

rq, the least fixed
point of Prq. These functions provide a high-level description of the satisfaction
function for the temporal formulae, but not many clues in how to implement the
functions. A lower level description, closer to our approach, requires an appro-
priate function backstep to implement the core of the Fr function:

backstep(r, s) =̂ {(s1, s2) ∈ r | ∀a ∈ s : a = s2}

The function backstep : 2R×2S → 2R takes a transition relation r together with
a set of states, and returns a subrelation of r in which each pair has its second
element drawn from the set of states. We can view this as a backwards step in
the transition relation. If we have a set of states s which satisfy a property, then
we can take a backwards step, and determine the transitions leading to those
states. The iterator P�

rq may be expressed without requiring a new function.

Proposition 1. The satisfaction function for our temporal formulae may be
expressed in terms of the lower-level operators in the following way:
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satmap(r,EX p) ≡ {(s1, s2) ∈ r | satmap(backstep(r, s1), p) �= ∅}

satmap(r,EG p) ≡ satmap(r, p) ∩ satmap(r,EX EG p)
≡
⋂

i(λy.(satmap(r, p) ∩ satmap(y,EX p)))i {r}

satmap(r,E[p U q])
≡ satmap(r, q) ∪ (satmap(r, p) ∩ satmap(r,EX E[p U q]))
≡
⋃

i(λy.(satmap(r, q) ∪ (satmap(r, p) ∩ satmap(y,EX q))))i ∅

Proof. We provide here the intuition behind the technical details of the proof.
Firstly, the satmap(r,EX p) function definition just given returns those tran-
sitions from the transition relation which lead to a state in which the property
p holds. Secondly, the intuition behind the satmap(r,EG p) function definition
is that it returns those transitions from the transition relation which always in-
volve a state in which the property p holds. This is done by iteration, starting
from the entire transition relation until we reach the greatest fixed point. Fi-
nally, the intuition behind the satmap(r,E[p U q]) function definition is that it
returns those transitions from the transition relation which have p holding until
the property q holds. Again, this is done by iteration, starting from an empty
transition relation until we reach the least fixed point. �

As an example to check a temporal formula against our model, we calculate which
states satisfy EG ¬(a1a2). This expresses the idea that a1and a2 cannot both be
true at the same time, which is an essential requirement for the mutual exclusion
algorithm. We begin by calculating the function satmap(Trans,EG ¬(a1a2)).

satmap(Trans,EG ¬(a1a2)) =̂ F ♦
Trans(satmap(Trans,EG ¬(a1a2))) {Trans}

≡ ⋂i(λy.(satmap(Trans,¬(a1a2)) ∩ satmap(y,EX ¬(a1a2))))
i{Trans}

= (Trans ∩ satmap(Trans,EX ¬(a1a2))) ∩ . . .

= Trans ∩ (Trans ∩ satmap(Trans,EX ¬(a1a2))) ∩ . . .

= Trans

We can then calculate the model checking relation:

D, s0 |= EG ¬(a1a2) = map(Trans, s0) � satmap(Trans,EG ¬(a1a2)) �= ∅
= true

This may be confirmed by examining the table in Section 4.1.

4.4 Model Checking with ROBDDs

Our presentations of transition relations, state and properties do not rely on
any particular ordering of the variables, but it is easy to extend the approach
by imposing a discipline on the representation of the model and state. This
discipline does not amount to a healthiness condition for the theory. It does not
produce a subtheory: the UTP theory of model checking is equivalent to the
UTP theory of ROBDD-style model checking.
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The discipline is imposed by using strings to represent observations, states and
transition relations. Each element in the string corresponds to an observation,
and must occur in a specific order. By using corresponding mapBD and tmapBD

functions, and with a new matching relation �BD operating over strings, we can
closely follow the structures and algorithms used for symbolic model checking.
We include this section to emphasize the simpler and more elegant and program-
oriented approach in UTP.

We begin with the definition of the model checking relation |=BD. Given a
transition relation r ∈ R for the design D, the ROBDD model checking relation
D, sn |=BD P for property P ∈ P in state sn is defined by

D, sn |=BD P =̂ (mapBD(r, sn) �BD satmapBD(r, P )) �= ∅

The presentation in this section is necessarily brief, and we appeal to the use
of analogy rather than redefining at length all the new functions. Each function
or operator works in an analogous way to those in Section 4.3, except that they
now operate over strings and sets of strings, rather than over observations, pairs
of observations, and sets of pairs of observations. For example, in Section 4.3
we might refer to the observation a1a2 meaning a1 ∧ a2, but here we refer to
the string “a1a2” in which the order of the elements of the string is relevant.
This ordering becomes important when trying to characterize the behaviour of
ROBDD model checkers.

We now define properties of a binary decision tree structure used to represent
predicates. This structure is defined in such a way as to allow for BDT as well as
ROBDD representations of functions. A binary diagram B = (V, E) is a rooted,
directed, acyclic graph with vertices V and edges E satisfying

i) Vertices are of two types: either node or leaf;
ii) Each vertex is labelled with the strings that lead to it;
iii) Leaf vertices have as an attribute a value T or F (true or false).

We term any connected set of edges that begin at the root and terminate in a
leaf as a path. The valuation of a path is given by the attribute at the leaf. Such
a binary diagram is shown in Figure 4. The labelling language consists of strings
defined over an alphabet A whose elements are ordered.

We define a function mapBD over labelled vertices of a binary diagram repre-
senting the transition relation r, which returns the set of maps that pass through
the vertex. The tmapBD of the vertex li ∈ V is a function which returns the set
of paths that pass through the labelled vertex and terminate with a T-leaf. The
fmapBD of the vertex li ∈ V is a function which returns the set of paths that
pass through the labelled vertex and terminate with an F-leaf.

According to the binary diagram B in Figure 4:

mapBD(B, l5) = {īwā, īwa}
tmapBD(B, l7) = ∅
fmapBD(B, l3) = {iw̄ā, iwā, iwa}
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iwa iwa iwa iwa iwa iwa iwa

Fig. 4. Labelling of binary diagram B

Since the strings are all ordered, we say that a label m1 is included in m2 if each
non-null element of m1 is found in m2. Note that this inclusion relation just
allows us to check if one of the strings is contained within another, considering
possible gaps. We use this inclusion relation to define the function �BD which
returns a set of labels from one set which are inclusive of labels in the other set.

For example:

{ia} �BD {īwa, iw̄a, īw̄ā} = {iw̄a}
{ia, w̄a} �BD {iwa, iw̄a, īw̄ā} = {iwa, iw̄a}

In the first example, the string ia is only included in the middle label, so we
return the middle label. In the second example, the string ia is included in the
first two labels, and w̄a is included in the middle label, so we return the first
two labels.

These functions may now be directly used for similar definitions for satmap
as those given previously:

satmapBD(r, p) =̂ tmapBD(r, p) �BD r
satmapBD(r,¬p) =̂ fmapBD(r, p) �BD r

satmapBD(r, p ∧ q) =̂ tmapBD(r, p) �BD r ∩ tmapBD(r, q) �BD r
satmapBD(r, p ∨ q) =̂ tmapBD(r, p) �BD r ∪ tmapBD(r, q) �BD r

satmapBD(r,EX p) =̂ Fr(satmapBD(r, p))
satmapBD(r,EG p) =̂ F♦

r (satmapBD(r, p)) {r}
satmapBD(r,E[p U q]) =̂ P�

rq(satmapBD(r, p)) ∅

In this specification of |=BD, the interpretation is different from that in Section
4.3. In particular, the operations over the binary diagram structure closely follow
the operations used in traditional symbolic model checking using BDDs.
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5 Conclusion

Reactive systems provide an appealing abstraction for real-time and embedded
systems. Such systems are now found in nearly every facet of life, and their cor-
rectness has become critical. Four principal approaches are considered for the
correctness of reactive systems: simulation, testing, deductive verification and
model checking. In the case of complex reactive systems, simulation and test-
ing are widely used, but these techniques cover only a limited set of possible
behaviours. Deductive verification employs the use of axioms and proof rules to
verify the correctness of the system, and is rarely used. Model checking differs
from these verification methods in being fully algorithmic and of low compu-
tational complexity. Model checking employs an exhaustive search of the state
space of the system in order to determine if a specification is true or not. Since it
has been shown to be cost-efficient, model checking can be adopted as a efficient
procedure for the quality assurance of reactive systems.

Model checking is being used routinely to design and debug reactive systems,
usually by using specific algorithms for model checking, automata-theoretic ap-
proaches and linear temporal logic [19]. In [12], the checking algorithms are
enhanced by taking into account the abstractions that are involved in the design
of the program model/abstract semantics, and new reachability analysis and
abstract testing techniques are proposed. In this paper we describe model check-
ing of reactive processes with a simple set-based description of the models and
states of a reactive process, as well as of the properties that we wish to verify.
This emphasizes the mathematical properties of model checking, and a model
checking relation is derived from a satisfaction relation between the model and
its properties.

The unified theory of programming provides a basis for the presentation of
programming topics, unifying a wide range of diverse notations and concepts for
program development, in a single coherent notation. The approach taken here
adds to the development of verification for reactive processes within the theory.
A specific advantage of the model checking formalism presented in this paper is
that there is a direct relation between the UTP reactive process and its model.

We have presented our encoding of reactive process verification for UTP
along the lines of the traditional model checking paradigm. UTP reactive pro-
cesses are structured around predicates representing intermediate observations.
These predicates provide an appropriate basis for creating the transition relation
needed for model checking, and we have shown how to automatically generate
this transition relation.

We have deliberately structured the presentation with an implementation in
mind. At an abstract level we compactly characterize the temporal operators
using function iterators, but in addition we have re-expressed them in an im-
plementable fashion. More technical results could be established, but at this
stage we emphasize the conceptual approach, introducing a starting platform
for further theoretical and practical steps.



40 H. Anderson, G. Ciobanu, and L. Freitas

References

1. Back, R.-J., von Wright, J.: Refinement Calculus, A Systematic Introduction.
Springer, Heidelberg (1998)

2. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

3. Butterfield, A., Sherif, A., Woodcock, J.: Slotted-Circus. In: Davies, J., Gibbons,
J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 75–97. Springer, Heidelberg (2007)

4. Butterfield, A., Woodcock, J.: A “Hardware Compiler” Semantics for Handel-C.
Electronic Notes on Theoretical Computer Science 161, 73–90 (2006)

5. Cavalcanti, A., Clayton, P., O’Halloran, C.: Control Law Diagrams in Circus. In:
Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp.
253–268. Springer, Heidelberg (2005)

6. Cavalcanti, A., Sampaio, A., Woodcock, J.: Unifying Classes and Processes. Soft-
ware and System Modeling 4(3), 277–296 (2005)

7. Cavalcanti, A., Woodcock, J.: Angelic Nondeterminism and Unifying Theories of
Programming. Electr. Notes on Theoretical Computer Science 137(2), 45–66 (2005)

8. Cavalcanti, A., Woodcock, J.: A Tutorial Introduction to CSP in Unifying Theories
of Programming. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) PSSE 2004.
LNCS, vol. 3167, pp. 220–268. Springer, Heidelberg (2006)

9. Cavalcanti, A., Woodcock, J., Dunne, S.: Angelic Nondeterminism in the Unifying
Theories of Programming. Formal Aspects of Computing 18(3), 288–307 (2006)

10. Cavalcanti, A., Harwood, W., Woodcock, J.: Pointers and Records in the Unifying
Theories of Programming. In: Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS,
vol. 4010, pp. 200–216. Springer, Heidelberg (2006)

11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

12. Cousot, P., Cousot, R.: Software Analysis and Model Checking, pp. 37–56. Springer,
Heidelberg (2002)

13. Freitas, L.: Model Checking Circus. Ph.D. thesis. Department of Computer Science,
University of York (2005)

14. Goldblatt, R.: Modal Logics of Programs. Research Report 94-146, Victoria Uni-
versity of Wellington (1994)

15. He, J., Liu, Z., Li, X.: rCOS: A refinement calculus of object systems. Theoretical
Computer Science 365, 109–142 (2006)

16. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Engle-
wood Cliffs (1998)

17. von Karger, B., Hoare, C.A.R.: Sequential calculus. Information Processing Let-
ters 53(3), 123–130 (1995)

18. McMillan, K.L.: Symbolic Model Checking: An Approach to the State Explosion
Problem. PhD thesis, School of Computer Science, Carnegie Mellon University
(1992)

19. Merz, S.: Model Checking Techniques for the Analysis of Reactive Systems. Syn-
these, 173–201 (2002)

20. Qin, S., Dong, J.-S., Chin, W.-N.: A Semantic Foundation for TCOZ in Unifying
Theories of Programming. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003.
LNCS, vol. 2805, pp. 321–340. Springer, Heidelberg (2003)

21. Santos, T.L.V.L., Cavalcanti, A., Sampaio, A.: Object-Orientation in the UTP. In:
Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 18–37. Springer,
Heidelberg (2006)



UTP and Temporal Logic Model Checking 41

22. Sherif, A., He, J.: Towards a Time Model for Circus. In: George, C.W., Miao, H.
(eds.) ICFEM 2002. LNCS, vol. 2495, pp. 613–624. Springer, Heidelberg (2002)

23. Tang, X., Woodcock, J.: Travelling Processes. In: Kozen, D. (ed.) MPC 2004.
LNCS, vol. 3125, pp. 381–399. Springer, Heidelberg (2004)

24. Woodcock, J.: Unifying Theories of Parallel Programming. In: Logic and Algebra
for Engineering Software. IOS Press, Amsterdam (2002)

25. Woodcock, J., Cavalcanti, A.: The Semantics of Circus. In: Bert, D., P. Bowen, J.,
C. Henson, M., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp.
184–203. Springer, Heidelberg (2002)



A Note on Traces Refinement and the conf

Relation in the Unifying Theories of
Programming

Ana Cavalcanti1 and Marie-Claude Gaudel2

1 University of York, Department of Computer Science
York YO10 5DD, UK

2 LRI, Université de Paris-Sud and CNRS
Orsay 91405, France

Abstract. There is a close relation between the failures-divergences and
the UTP models of CSP, but they are not equivalent. For example, mira-
cles are not available in the failures-divergences model; the UTP theory is
richer and can be used to give semantics to data-rich process algebras like
Circus. Previously, we have defined functions that calculate the failures-
divergences model of a CSP process characterised by a UTP relation. In
this note, we use these functions to calculate the UTP characterisations
of traces refinement and of the conf relation that is widely used in test-
ing. In addition, we prove that the combination of traces refinement and
conf corresponds to refinement of processes in Circus. This result is the
basis for a formal testing technique based on Circus; as usual in testing,
we restrict ourselves to divergence-free processes.

1 Introduction

Formal specifications have been widely explored as a starting point for software
testing; the works reported in [8,11,3,4,2,14] give a few examples. In our own
previous work [5], we have instantiated Gaudel’s long-standing theory of formal
testing [12] to CSP [19]. We now face the challenge of a richer language: Circus [6],
which combines CSP with Z [20] and Morgan’s refinement calculus [17] to provide
a notation that supports refinement of reactive systems with state.

The Circus semantic model [18] is based on the UTP [13]; a Circus process
is characterised by a relation in a restriction of the UTP theory for CSP. In
this model, we can define, for example, the application of CSP constructs like
external choice to processes that involve operations on a local state. We can also
accommodate miraculous specifications from Morgan’s refinement calculus.

In previous work, to study the relationship between the UTP and the canonical
failures-divergences model of CSP, we have defined functions that calculate the
failures-divergences model of a UTP relation that characterises a CSP process [7].
The UTP theory for CSP is richer than the failures-divergences model. In addi-
tion, refinement in the UTP is in close correspondence with failures-divergences
refinement, but the other two main refinement relations that support compo-
sitional and stepwise reasoning in CSP, namely traces and failures refinement,
have not been studied in the UTP.
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Traces refinement is useful for reasoning about safety properties of a process;
it ensures that the implementation does not engage in any interactions with the
environment that are not allowed by the specification. Failures refinement, on
the other hand, is used for reasoning about liveness: the interactions in which
an implementation has to be prepared to engage.

Our interest is in a testing technique based on Circus specifications; our long-
term goal is to provide automated support for test generation with the objective
of verifying that a system under test implements a Circus specification correctly.
In other words, we are interested in testing for refinement using Circus.

It is usual for testing techniques to assume that the specification and the sys-
tem under test are divergence free. In addition, testing for trace inclusion and for
reduction of deadlock is typically carried out separately to simplify the individ-
ual tests. Trace inclusion is, of course, traces refinement in the context of CSP,
and reduction of deadlock, is captured by a relation usually called conf (for con-
formance). For CSP, we have proved that traces refinement and conf , together,
are equivalent to failures-divergences refinement for divergence-free processes.

For Circus, we follow a similar approach, but there is no accepted definition
of traces refinement and conf in the UTP. In this note, we calculate definitions
for these relations, and prove that their combination corresponds to refinement
of divergence-free Circus processes. Our calculations are based on functions that
map UTP relations to components of the failures-divergences model. A perhaps
surprising result is that the combination of traces refinement and conf do not
correspond to the refinement relation in the UTP, but to refinement when state
components are encapsulated; this is the notion of process refinement in Circus.

In the next section, we discuss the requirements and assumptions that are
common to testing techniques based on process algebra. Afterwards, in Section 3,
we give a brief and informal presentation of our process algebra of choice: Circus.
Sections 4, 5, and 6 present our main results: the calculations of UTP char-
acterisations of traces refinement and conf , and a proof that, together, they
correspond to process refinement. Finally, in Section 7, we summarise our re-
sults and discuss our plans for future work. An appendix presents a few lemmas
used in the proofs of our main theorems.

2 Process-Algebra Based Formal Testing

In this section we briefly recall some basic principles of specification-based testing.
In testing, an executable system, called the system under test (SUT) is given

as a black-box. We can only observe the behavior of the SUT on any chosen
input, or input sequence, and then decide whether it is acceptable or not with
respect to some description of its intended behavior.

Given a formal specification SP and an SUT , any testing activity is, explicitly
or not, based on a satisfaction relation: SUT sat SP . Since the SUT is a black-
box, the testing process consists in using the specification SP to construct a set
of tests, such that the SUT passes them if, and only if, it satisfies SP .
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The tests are derived from the specification on the basis of the satisfaction
relation, and often on the basis of some additional knowledge of the SUT and
of its operational environment called testability hypothesis. Such test sets are
called exhaustive in [12] or complete by other authors [4].

In the case of specifications based on some process algebra, tests are processes
built on the same alphabet of events as the specification (possibly enriched by
some special symbols). The execution of a given test consists in running it and the
SUT in parallel. This can be done under the assumption (testability hypothesis)
that the SUT behaves as some unknown, maybe infinite, transition system.

This testability hypothesis builds a bridge between the notions of satisfac-
tion, (as introduced above, between a system and a specification) and refinement
between two models: a specification model and an implementation model. Refine-
ment has the advantage of being formalisable and well studied, while satisfaction
is less easily formalisable, since it relates a model and a system.

The verdict about the success or not of a test execution depends on the ob-
servations that can be made, and it is based on the satisfaction relation. Most
testing methods based on process algebras consider that two kinds of observa-
tions are possible: external events, and deadlock (that is, refusal of some external
events). Deadlock is observed via time-out mechanisms: it is assumed that if the
SUT does not react after a given time limit, it is blocked.

Divergences raise problems of observability; generally, it is not possible to dis-
tinguish a divergent from a deadlocked system using testing. So, most methods
assume that the SUT is divergence free. This is equivalent to identifying diver-
gence with deadlock in the unknown models of the systems under test; most
authors, including us in [5], circumvent the problem of observability in this way.
If the SUT is divergent, the divergence is detected as a (probably forbidden)
deadlock and reported as such by the verdict of the tests.

Exhaustive test sets are often infinite, or too large to be used in practice.
They are, however, used as references for selecting finite, practical, test subsets
according to a variety of criteria, such as additional hypotheses on the SUT [2],
coverage of the specification [8,14], or test purposes [10].

3 Circus

A Circus program is a sequence of paragraphs just like in Z, but we can declare
channels and processes. A system is specified in Circus as a process: it encapsu-
lates a state, and exhibits some behaviour. Figure 1 gives a small example: the
specification of a fresh identifier generator; it has four paragraphs. The first
paragraph declares a given set ID containing all valid identifiers. The second
and third paragraphs declare a few channels: req is used to request a fresh iden-
tifier, which is output by the system using the channel out ; and the channel ret
is used to return an identifier that is no longer required. The type of a channel
determines the values that it can communicate; in the case of req, the absence
of a type declaration indicates that it is used only for synchronisation.
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[ID ]

channel req

channel ret , out : ID

process FIG =̂ begin

state S == [ idS : P ID ]

Init =̂ idS := ∅
Out
ΔS
v ! : ID

v ! /∈ idS
idS ′ = idS ∪ {v !}

Remove
ΔS
x? : ID

idS ′ = idS \ {x?}

• Init ;
var v : ID • (μX • (req → Out ; out !v → Skip � ret?x → Remove) ;X )

end

Fig. 1. Simple Circus specification: fresh identifier generator

The process FIG specifies the system; it is a basic process defined as a sequence
of process paragraphs that specify its state and behaviour. The state is defined
using a (horizontal) Z schema; in our example it contains just one component: the
set idS of identifiers currently in use.

The behaviour of a process is given by a main action at the end of its specifi-
cation. In our example, first of all, it uses the action Init to initialise the state: it
assigns the empty set to idS . Afterwards, a local variable v is declared, and a
recursion is used to define that FIG repeatedly offers to its environment the
choice of requesting or returning an identifier. After a request via a synchroni-
sation on req, the action Out , which is specified by a Z schema, is used to define
the value of v to be that of any unused identifier, which is then recorded in idS .
The value of v is output via the channel out . If, on the other hand, an identifier
x is returned via ret , then the action Remove is used to update the state.

As shown in our small example, an action can be defined using a combination
of Z, CSP, and imperative programming constructs. It can be a data opera-
tion specified in Z, or an assignment for example. It can also be Skip, the action
that terminates immediately, without interacting with the environment, or Stop,
the action that deadlocks. More interestingly, an action can interact with the
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environment via channels that can be used for input and output of values. Pro-
cess algebra constructs like parallelism and external choice can be used to com-
bine actions that involve both communications and data operations.

In addition, processes can also be combined using CSP operators. For example,
we can combine FIG in parallel with another process that uses it to provide
identifiers for new employees, for instance. In this case, the channels req, ret ,
and out are likely to be internal to the system, and can be hidden like in CSP.

Actions are modelled as predicates of a restriction of the UTP theory for CSP,
in which the state components and local variables in scope, and their dashed
counterparts, are part of the alphabet, in addition to the extra variables ok , wt ,
tr , and ref , and their dashed counterparts. Action refinement is characterised by
reverse implication just like in the UTP. Process refinement, on the other hand,
is characterised by refinement of the main actions, with the state components
taken as local variables. This follows from the fact that the state of a process is
encapsulated, and its behaviour is given by the main action.

In the sequel, we calculate a characterisation of traces refinement and conf
for the UTP theory for CSP, and, therefore, for Circus actions and processes. We
also establish that, jointly, they are equivalent to process refinement.

4 Traces Refinement

In the Circus, or CSP, theory of the UTP, the boolean variable ok records whether
or not a process is in a divergent state (of another process that has already
started). If the state is not divergent, that is, if ok holds, then wt , also a boolean
observational variable, determines whether the previous process is waiting for
interaction or has terminated. The sequence of events tr gives the history of
interactions of the previous process, and finally, ref gives a set of events in
which it may refuse to engage. Similarly, the dashed variables ok ′, wt ′, tr ′ and
ref ′ give similar information about the current process.

A number of healthiness conditions characterise first reactive processes in
general, and then those that are in the CSP theory. The Circus theory has an
extra healthiness condition. Here we use the healthiness conditions R2 and
CSP4 , which we describe below. A complete discussion can be found in [18].

The healthiness condition R2 requires that an action does not rely on the
history of interactions that passed before its activation, that is, tr , and restricts
only the new events to be recorded since the last observation, that is, tr ′ − tr .
It has two different formulations; we use the one shown below.

R2 (A) =̂ A[〈〉, tr ′ − tr/tr , tr ′]

This requires that the action A is not changed if tr is taken to be the empty
sequence, and tr ′ to be just the new events arising from the execution of A.
The condition CSP4 requires that Skip is a right-unit for sequence.

CSP4 (A) =̂ A ; Skip
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In more intuitive terms, CSP4 requires that, on termination or divergence,
the value of ref ′ is irrelevant. The following lemma [7] makes this clear; for
completeness its proof is presented in the appendix, along with the proof of all
other lemmas used in this paper.

Lemma 1

A ;Skip = (∃ ref ′ • A) ∧ ok ′ ∧ ¬ wt ′ ∨ A ∧ ok ′ ∧ wt ′ ∨ (A ∧ ¬ ok ′) ; tr ≤ tr ′

This result shows that, if A = A ;Skip, then if A has terminated without diverg-
ing, the value of ref ′ is not relevant. If A has not terminated, then the value of
ref ′ is as defined by A itself. Finally, if it diverges, then the only guarantee is
that the trace is extended; the value of the other variables is irrelevant.

We define An =̂ ok ∧ ¬ wt ∧ A ∧ ok ′ as the predicate that gives the behaviour
of the action A when its preceding action has not diverged and has terminated,
and when A itself does not lead to divergence. This is the normal behaviour
of A; behaviour in other situations is defined by healthiness conditions. The
terminating, non-diverging behaviour of A is At =̂ An ∧ ok ′ ∧ ¬ wt ′, and
finally, the diverging behaviour of A is Ad =̂ ok ∧ ¬ wt ∧ A ∧ ¬ ok ′. We define
that an action A is divergence free if, and only if, [¬ Ad ].

The function traces defined below [7] gives the set of traces of a Circus action
defined as a UTP predicate A. This gives a traces model to A compatible with
that adopted in the failures-divergences model of CSP.

As already said, the behaviour of the action itself is that prescribed when
ok and ¬ wt . The behaviour in the other cases is determined by healthiness
conditions of the UTP theory. For example, in the presence of divergence, that
is, when ¬ ok , every action can only guarantee that the trace is only extended,
so that past history is not modified. This behaviour is not recorded by traces(A).

traces(A) = { tr ′ − tr | An } ∪ { (tr ′ − tr) � 〈� 〉 | At }

As mentioned above, tr records the history of interactions before the start of
the action; tr ′ carries this history forward. Therefore, the traces in traces(A) are
sequences tr ′ − tr obtained by removing from tr ′ its prefix tr . In addition, if
tr ′− tr leads to termination, then traces(A) also includes (tr ′− tr)� 〈� 〉, since
� is used in the failures-divergences model to signal termination.

The properties of traces(A) depend on those of A. Since the UTP actions do
not satisfy all healthiness conditions imposed on the failures-divergences model,
there are sets of traces that do not correspond to any of those of a CSP process.
For example, R(true � tr ′ = tr � 〈 a, b 〉 ∧ ¬ wt ′) is an action that engages in
the events a and b and then terminates. Its behaviour does not allow for the
traces 〈 〉 and 〈 a 〉, so its set of traces does not include the empty trace and is
not prefix closed as required in the failures-divergences model.

The divergent behaviour of a UTP action in the theory of CSP processes
does not enforce ¬ ok ′; the healthiness condition CSP2 enforces exactly that,
whenever ¬ ok ′ is possible, so is ok ′. This means that no process is required to
diverge, and that one of the possible behaviours of a divergent process is not to
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diverge or even terminate. For example, the behaviour of the divergent process
Chaos, when ok and ¬ wt hold, is given simply by tr ≤ tr ′. This means that
traces(Chaos), for example, includes every possible trace. This is in contradiction
with the traces model of CSP, where the process that diverges immediately is
identified with Stop in the traces model [19]; its only trace is the empty trace.

In this work, however, since we are interested only in divergence-free actions,
this is not an issue. In [7], we have actually introduced the set traces⊥(A), which
is defined as follows to include all traces that lead to divergence.

traces⊥(A) = traces(A) ∪ divergences(A)
divergences(A) = { tr ′ − tr | Ad }

For CSP2 reactive actions A, the sets traces(A) and traces⊥(A) are the same,
because the traces that lead to divergence may also lead to non-divergence, and
so are included in traces(A). Since divergence-free actions are CSP2 , and in
any case we are interested in (models of) Circus actions and processes, which
are CSP2 , it is adequate for us to use traces(A) in our work. In addition, for
divergence-free actions A, the set traces(A) is that in the traces model of CSP,
which is also the set traces⊥(A) defined in the failures-divergences model.

Here, using the connection between the UTP theory and the CSP traces model
defined by traces , we now calculate a characterisation for traces refinement in the
UTP for divergence-free actions. Refinement in the UTP is defined for predicates
on the same alphabet. In the case of traces refinement, it is defined for CSP
processes, and so, for Circus actions in particular, but there is no need to assume
that the programming variables in their alphabets are the same. In what follows,
we consider actions A1 and A2, whose alphabets include the lists v1 and v2 of
undashed variables. Both v1 and v2 include ok , wt , tr , and ref , but also possibly
different (lists of) variables x1 and x2 representing state components.

The proof of the theorem below, and of the others in the sequel, use a few
lemmas stated and proved in the appendix; in particular, the next theorem uses
Lemma 2. We use [ A ] as an abbreviation for a universal quantification over all
variables v1, v ′

1, v2, and v ′
2. As expected, for a list of variables v , the list v ′

contains the corresponding dashed variables.

Theorem 1

A1 �T A2 ⇔ [An
2 ⇒ (∃w1,w ′

1 • An
1 ) ∧ (¬ wt ′ ⇒ ∃w1,w ′

1 • At
1)]

where the variable list v1 = w1, tr , and provided A1 and A2 are divergence free.

Proof

A1 �T A2

⇔ traces(A2) ⊆ traces(A1) [definition of traces refinement]

⇔ { tr ′ − tr | An
2 } ∪ { (tr ′ − tr) � 〈� 〉 | At

2 }
⊆ { tr ′ − tr | An

1 } ∪ { (tr ′ − tr) � 〈� 〉 | At
1 }

[definition of traces ]
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⇔ { tr ′ − tr | An
2 } ⊆ { tr ′ − tr | An

1 } ∧ { tr ′ − tr | At
2 } ⊆ { tr ′ − tr | At

1 }
[property of sets and � not in the range of tr or tr ′]

⇔
(

(∀ t • (∃ v2, v ′
2 • An

2 ∧ t = tr ′ − tr) ⇒ (∃ v1, v ′
1 • An

1 ∧ t = tr ′ − tr)) ∧
(∀ t • (∃ v2, v ′

2 • At
2 ∧ t = tr ′ − tr) ⇒ (∃ v1, v ′

1 • At
1 ∧ t = tr ′ − tr))

)
[property of sets]

⇔
(
∀ t , v2, v ′

2 | t = tr ′ − tr ∧ An
2 •
(

(∃ v1, v ′
1 • An

1 ∧ t = tr ′ − tr) ∧
(¬ wt ′ ⇒ ∃ v1, v ′

1 • At
1 ∧ t = tr ′ − tr)

))
[predicate calculus, and definitions of At

2 and An
2 ]

⇔
(
∀ t , v2, v ′

2 | t = tr ′ − tr ∧ An
2 •
(

(∃w1,w ′
1 • An

1 [〈 〉, t/tr , tr ′]) ∧
(¬ wt ′ ⇒ ∃w1,w ′

1 • At
1[〈 〉, t/tr , tr ′])

))
[Lemma 2]

⇔
(
∀ v2, v ′

2 • An
2 ⇒
(

(∃w1,w ′
1 • An

1 [〈 〉, tr ′ − tr/tr , tr ′]) ∧
(¬ wt ′ ⇒ ∃w1,w ′

1 • At
1[〈 〉, tr ′ − tr/tr , tr ′])

))
[predicate calculus]

⇔ ∀ v2, v ′
2 • An

2 ⇒ (∃w1,w ′
1 • An

1 ) ∧ (¬ wt ′ ⇒ ∃w1,w ′
1 • At

1) [R2 ]

⇔ [An
2 ⇒ (∃w1,w ′

1 • An
1 ) ∧ (¬ wt ′ ⇒ ∃w1,w ′

1 • At
1)] [predicate calculus]

�

In words, this characterisation of traces refinement establishes that if t is a trace
of A2, then it is a trace of A1, and if it leads to termination for A2, then it also
leads to termination for A1.

We observe that, if a trace is not terminating for A2, then it may or may not
be terminating for A1. If it is not terminating for A2 because A2 deadlocks, but
it is terminating for A1, we have a situation in which termination is refined by
deadlock. Indeed, in the simplest case, we observe that Skip is refined by Stop;
in fact, Stop is the most refined CSP process according to the traces refinement
relation. If, on the other hand, a trace is not terminating for A2 because it
proceeds to carry out further interactions, but A1 terminates, for the extension
of the trace, the required property for traces refinement does not hold.

5 The conf Relation

The well-studied satisfaction relation [4] called conf , for conformance relation,
can be defined in terms of failures. A failure of a process P is a pair (t ,X ), where
t is a trace of P , and X is a set of events in which it may refuse to engage after
performing the events in t (in the order determined by t).
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The conf relation is defined for divergence-free processes. The function defined
below gives the set of failures of a divergence-free action A.

failures(A) = { ((tr ′ − tr), ref ′) | An }∪
{ ((tr ′ − tr), ref ′ ∪ {� }) | An ∧ wt ′ }∪
{ ((tr ′ − tr) � 〈� 〉, ref ′) | At }∪
{ ((tr ′ − tr) � 〈� 〉, ref ′ ∪ {� }) | At }

In a state that is not terminating, for every refusal set ref ′, there is an extra set
ref ′∪{� }. This is because � is not part of the UTP model and is not considered
in the definition of ref ′, just as it is not considered in the definition of tr ′. As
before, for a terminating state, the extra trace (tr ′ − tr) � 〈� 〉 is recorded.
Finally, after termination, � is also refused, and so ref ′ ∪ {� } is included.

For actions A1 and A2, conf can be defined as follows.

A2 conf A1 =̂ ∀ t : traces(A1) ∩ traces(A2) • Ref (A2, t) ⊆ Ref (A1, t)
where Ref (A, t) =̂ {X | (t ,X ) ∈ failures(A) }

The above definition of Ref (A, t) is compatible with the definition of refusals(P)
in CSP, for the process P/t [19, pages 94,197]. Intuitively, the action A2 conforms
to another action A1 if, and only if, whenever A2 performs a trace of events that
is also possible for A1, it does not refuse more events than A1. In other words,
deadlock is reduced or maintained after common traces.

The following theorem gives a characterisation of conf for the UTP. It is a
relation between divergence-free actions.

Theorem 2

A2 conf A1 ⇔
[
(∃w1,w ′

1 • An
1 ) ∧ An

2 ⇒
(

(∃ k1, k ′
1, ref • An

1 ) ∧
(wt ′ ⇒ ∃ k1, k ′

1, ref • An
1 ∧ wt ′)

)]
where v1 = w1, tr , and w1 = k1, ref , and A1 and A2 are divergence free.

Proof

A2 conf A1

⇔ ∀ t : traces(A1) ∩ traces(A2) • Ref (A2, t) ⊆ Ref (A1, t) [definition of conf ]

⇔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀ t : traces(A1) ∩ traces(A2) •⎛⎜⎜⎜⎜⎜⎜⎝∀ v2, v ′
2•

⎛⎜⎜⎜⎜⎜⎜⎝

(
An

2 ∧ t = tr ′ − tr ⇒
∃ u1, u ′

1, ref • An
1 ∧ t = tr ′ − tr

)
∧(

An
2 ∧ t = tr ′ − tr ∧ wt ′ ⇒
∃ u1, u ′

1, ref • An
1 ∧ t = tr ′ − tr ∧ wt ′

)
∧(

At
2 ∧ t = (tr ′ − tr) � 〈�〉 ⇒
∃ u1, u ′

1, ref • At
1 ∧ t = (tr ′ − tr) � 〈�〉

)

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
[Lemma 3]
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⇔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∀ t •

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
(∃ v1, v ′

1 • An
1 ∧ (t = tr ′ − tr ∨ ¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉)) ∧

(∃ v2, v ′
2 • An

2 ∧ (t = tr ′ − tr ∨ ¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉))

)
⇒⎛⎜⎜⎜⎜⎜⎜⎝∀ v2, v ′

2•

⎛⎜⎜⎜⎜⎜⎜⎝

(
An

2 ∧ t = tr ′ − tr ⇒
∃ u1, u ′

1, ref • An
1 ∧ t = tr ′ − tr

)
∧(

An
2 ∧ t = tr ′ − tr ∧ wt ′ ⇒
∃ u1, u ′

1, ref • An
1 ∧ t = tr ′ − tr ∧ wt ′

)
∧(

At
2 ∧ t = (tr ′ − tr) � 〈�〉 ⇒
∃ u1, u ′

1, ref • At
1 ∧ t = (tr ′ − tr) � 〈�〉

)

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
[definition of traces and property of sets]

⇔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∀ t •

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝ (∃ v1, v ′
1 • An

1 ∧ t = tr ′ − tr) ∧ (∃ v2, v ′
2 • An

2 ∧ t = tr ′ − tr) ∨(
(∃ v1, v ′

1 • At
1 ∧ t = (tr ′ − tr) � 〈�〉) ∧

(∃ v2, v ′
2 • At

2 ∧ t = (tr ′ − tr) � 〈�〉)

) ⎞⎠
⇒⎛⎜⎜⎜⎜⎜⎜⎝∀ v2, v ′

2•

⎛⎜⎜⎜⎜⎜⎜⎝

(
An

2 ∧ t = tr ′ − tr ⇒
∃ u1, u ′

1, ref • An
1 ∧ t = tr ′ − tr

)
∧(

An
2 ∧ t = tr ′ − tr ∧ wt ′ ⇒
∃ u1, u ′

1, ref • An
1 ∧ t = tr ′ − tr ∧ wt ′

)
∧(

At
2 ∧ t = (tr ′ − tr) � 〈�〉 ⇒
∃ u1, u ′

1, ref • At
1 ∧ t = (tr ′ − tr) � 〈�〉

)

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
[predicate calculus]

⇔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀ t , v2, v ′
2•⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(∃ v1, v ′
1 • An

1 ∧ t = tr ′ − tr)
⇒⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(∃ v2, v ′
2 • An

2 ∧ t = tr ′ − tr) ⇒⎛⎜⎜⎜⎜⎜⎜⎝

(
An

2 ∧ t = tr ′ − tr ⇒
∃ u1, u ′

1, ref • An
1 ∧ t = tr ′ − tr

)
∧(

An
2 ∧ t = tr ′ − tr ∧ wt ′ ⇒
∃ u1, u ′

1, ref • An
1 ∧ t = tr ′ − tr ∧ wt ′

)
∧(

At
2 ∧ t = (tr ′ − tr) � 〈�〉 ⇒
∃ u1, u ′

1, ref • At
1 ∧ t = (tr ′ − tr) � 〈�〉

)

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∧

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀ t , v2, v ′
2•⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(∃ v1, v ′
1 • At

1 ∧ t = (tr ′ − tr) � 〈�〉) ∧
⇒⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(∃ v2, v ′
2 • At

2 ∧ t = (tr ′ − tr) � 〈�〉) ⇒⎛⎜⎜⎜⎜⎜⎜⎝

(
An

2 ∧ t = tr ′ − tr ⇒
∃ u1, u ′

1, ref • An
1 ∧ t = tr ′ − tr

)
∧(

An
2 ∧ t = tr ′ − tr ∧ wt ′ ⇒
∃ u1, u ′

1, ref • An
1 ∧ t = tr ′ − tr ∧ wt ′

)
∧(

At
2 ∧ t = (tr ′ − tr) � 〈�〉 ⇒
∃ u1, u ′

1, ref • At
1 ∧ t = (tr ′ − tr) � 〈�〉

)

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
[predicate calculus]
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⇔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝∀ t , v2, v ′
2•

⎛⎜⎜⎝
(∃ v1, v ′

1 • An
1 ∧ t = tr ′ − tr) ∧ An

2 ∧ t = tr ′ − tr
⇒(
(∃ u1, u ′

1, ref • An
1 ∧ t = tr ′ − tr) ∧

(wt ′ ⇒ ∃ u1, u ′
1, ref • An

1 ∧ t = tr ′ − tr ∧ wt ′)

)
⎞⎟⎟⎠
⎞⎟⎟⎠∧⎛⎜⎜⎝∀ t , v2, v ′

2•

⎛⎜⎜⎝
(

(∃ v1, v ′
1 • An

1 ∧ ¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉) ∧
An

2 ∧ ¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉

)
⇒
(∃ u1, u ′

1, ref • An
1 ∧ ¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉)

⎞⎟⎟⎠
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
[predicate calculus]

⇔

⎛⎝(∀ v2, v ′
2 • (∃w1,w ′

1 • An
1 ) ∧ An

2 ⇒
(

(∃ k1, k ′
1, ref • An

1 ) ∧
(wt ′ ⇒ ∃ k1, k ′

1, ref • An
1 ∧ wt ′)

))
∧

(∀ v2, v ′
2 • (∃w1,w ′

1 • At
1) ∧ At

2 ⇒ ∃ k1, k ′
1, ref • At

1)

⎞⎠
[Lemma 2, R2 , v1 = w1, tr and v1 = k1, tr , ref ]

⇔

⎛⎝(∀ v2, v ′
2 • (∃w1,w ′

1 • An
1 ) ∧ An

2 ⇒
(

(∃ k1, k ′
1, ref • An

1 ) ∧
(wt ′ ⇒ ∃ k1, k ′

1, ref • An
1 ∧ wt ′)

))
∧

(∀ v2, v ′
2 • (∃ k1, k ′

1, ref • At
1) ∧ At

2 ⇒ ∃ k1, k ′
1, ref • At

1)

⎞⎠
[Lemma 4]

⇔
[
(∃w1,w ′

1 • An
1 ) ∧ An

2 ⇒
(

(∃ k1, k ′
1, ref • An

1 ) ∧
(wt ′ ⇒ (∃ k1, k ′

1, ref • An
1 ∧ wt ′))

)]
[predicate calculus]

�

This establishes that, if a trace of A2 is also a trace of A1, with any refusal,
then (1) it must be possible for A1 to have that trace with the same refusal; and
(2) if the trace leads to an intermediate state of A2, then it should also lead to
an intermediate state of A1 (with the same refusal). If it leads to a terminating
state of A2, then A1 may or may not terminate, but must have the same refusals.
This stresses the fact that Skip conf Stop, but not Stop conf Skip, a fact that
is perhaps not so obvious in the original definition.

6 Process Refinement

Refinement of Circus processes is defined as shown below, where we consider two
processes P1 and P2 whose (lists of) states components are x1 and x2, and whose
main actions are A1 and A2; for simplicity, we omit types.

P1 �P P2 =̂ (var x1 • A1) � (varx2 • A2)

The variable blocks make the state components local to the actions. Precisely,
the UTP model of a Circus variable block is defined as follows.

(var x • A) =̂ (∃ x , x ′ • A)
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In the definition of process refinement, the alphabets of the actions (var x1 • A1)
and (var x2 • A2) are the same; it includes no programming variables. The
refinement relation between actions is the standard UTP relation.

Below, we establish that process refinement can be characterised in terms
of traces refinement and conf . This establishes that we can determine refine-
ment just by examining the traces and refusals of a process. We do not need
information about its internal state, to which an observer has no access.

As already mentioned, in our previous work, we have established that traces
refinement and conf correspond to failures-divergences refinement in CSP. Here,
we show that they do not establish refinement in the richer model of Circus pro-
cesses in the UTP. Instead, it corresponds to processes refinement; this clarifies
the role of data in testing for traces inclusion and deadlock reduction.

Theorem 3. Provided P1 and P2 are divergence-free Circus processes with main
actions A1 and A2, we can characterise refinement as follows.

P1 �P P2 ⇔ A1 �T A2 ∧ A2 conf A1

Proof

A1 �T A2 ∧ A2 conf A1

⇔

⎛⎝ [An
2 ⇒ (∃w1,w ′

1 • An
1 ) ∧ (¬ wt ′ ⇒ ∃w1,w ′

1 • At
1)] ∧[

(∃w1,w ′
1 • An

1 ) ∧ An
2 ⇒
(

(∃ k1, k ′
1, ref • An

1 ) ∧
(wt ′ ⇒ ∃ k1, k ′

1, ref • An
1 ∧ wt ′)

)]⎞⎠
[Theorems 1 and 2]

⇔

⎡⎣ (An
2 ⇒ (∃w1,w ′

1 • An
1 ) ∧ (¬ wt ′ ⇒ ∃w1,w ′

1 • At
1)) ∧(

(∃w1,w ′
1 • An

1 ) ∧ An
2 ⇒
(

(∃ k1, k ′
1, ref • An

1 ) ∧
(wt ′ ⇒ ∃ k1, k ′

1, ref • An
1 ∧ wt ′)

))⎤⎦
[predicate calculus]

⇔

⎡⎢⎢⎣
(An

2 ⇒ (∃w1,w ′
1 • An

1 ) ∧ (¬ wt ′ ⇒ ∃w1,w ′
1 • At

1)) ∧⎛⎝((∃w1,w ′
1 • An

1 ) ⇒
(

(∃ k1, k ′
1, ref • An

1 ) ∧
(wt ′ ⇒ ∃ k1, k ′

1, ref • An
1 ∧ wt ′)

))
∨

(An
2 ⇒ ((∃ k1, k ′

1, ref • An
1 ) ∧ (wt ′ ⇒ ∃ k1, k ′

1, ref • An
1 ∧ wt ′)))

⎞⎠
⎤⎥⎥⎦

[predicate calculus]

⇔

⎡⎢⎢⎢⎢⎢⎢⎣

⎛⎝ (An
2 ⇒ (∃w1,w ′

1 • An
1 ) ∧ (¬ wt ′ ⇒ ∃w1,w ′

1 • At
1)) ∧(

(∃w1,w ′
1 • An

1 ) ⇒
(

(∃ k1, k ′
1, ref • An

1 ) ∧
(wt ′ ⇒ ∃ k1, k ′

1, ref • An
1 ∧ wt ′)

))⎞⎠ ∨⎛⎝An
2 ⇒

⎛⎝ (∃ k1, k ′
1, ref • An

1 ) ∧
(¬ wt ′ ⇒ ∃w1,w ′

1 • At
1) ∧

(wt ′ ⇒ ∃ k1, k ′
1, ref • An

1 ∧ wt ′)

⎞⎠⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎦
[predicate calculus]
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⇔

⎡⎢⎢⎢⎢⎢⎢⎣

⎛⎝ (An
2 ⇒ ∃w1,w ′

1 • An
1 ) ∧ (An

2 ⇒ (¬ wt ′ ⇒ ∃w1,w ′
1 • At

1)) ∧(
(∃w1,w ′

1 • An
1 ) ⇒

(
(∃ k1, k ′

1, ref • An
1 ) ∧

(wt ′ ⇒ ∃ k1, k ′
1, ref • An

1 ∧ wt ′)

)) ⎞⎠ ∨⎛⎝An
2 ⇒

⎛⎝ (∃ k1, k ′
1, ref • An

1 ) ∧
(¬ wt ′ ⇒ ∃w1,w ′

1 • At
1) ∧

(wt ′ ⇒ ∃ k1, k ′
1, ref • An

1 ∧ wt ′)

⎞⎠⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎦
[predicate calculus]

⇔

⎡⎢⎢⎢⎢⎢⎢⎣

⎛⎝((An
2 ∨ (∃w1,w ′

1 • An
1 )) ⇒

(
(∃ k1, k ′

1, ref • An
1 ) ∧

(wt ′ ⇒ ∃ k1, k ′
1, ref • An

1 ∧ wt ′)

))
∧

(An
2 ⇒ (¬ wt ′ ⇒ ∃w1,w ′

1 • At
1))

⎞⎠ ∨⎛⎝An
2 ⇒

⎛⎝ (∃ k1, k ′
1, ref • An

1 ) ∧
(¬ wt ′ ⇒ ∃w1,w ′

1 • At
1) ∧

(wt ′ ⇒ ∃ k1, k ′
1, ref • An

1 ∧ wt ′)

⎞⎠⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎦
[predicate calculus]

⇔

⎡⎣⎛⎝An
2 ⇒

⎛⎝ (∃ k1, k ′
1, ref • An

1 ) ∧
(¬ wt ′ ⇒ ∃w1,w ′

1 • At
1)

(wt ′ ⇒ ∃ k1, k ′
1, ref • An

1 ∧ wt ′)

⎞⎠⎞⎠⎤⎦ [predicate calculus]

⇔

⎡⎣⎛⎝An
2 ⇒

⎛⎝ (∃ k1, k ′
1, ref • An

1 ) ∧
(¬ wt ′ ⇒ ∃w1, ok ′, ref ′, x ′ • An

1 [false/wt ′])
(wt ′ ⇒ ∃ k1, ok ′, x ′ • An

1 [true/wt ′])

⎞⎠⎞⎠⎤⎦ [one-point rule]

⇔

⎡⎣⎛⎝An
2 ⇒

⎛⎝ (∃ k1, k ′
1, ref • An

1 ) ∧
(¬ wt ′ ⇒ ∃w1, ok ′, ref ′, x ′ • An

1 )
(wt ′ ⇒ ∃ k1, ok ′, x ′ • An

1 )

⎞⎠⎞⎠⎤⎦ [predicate calculus]

⇔

⎡⎣⎛⎝An
2 ⇒

⎛⎝ (∃ k1, k ′
1, ref • An

1 ) ∧
(¬ wt ′ ⇒ ∃ x1, x ′

1 • An
1 )

(wt ′ ⇒ ∃ x1, x ′
1 • An

1 )

⎞⎠⎞⎠⎤⎦
[ok , wt , ref , ok ′, and ref ′ are not free in ¬ wt ′ and wt ′]

⇔ [An
2 ⇒ (∃ k1, k ′

1, ref • An
1 ) ∧ (∃ x1, x ′

1 • An
1 )] [predicate calculus]

⇔ [An
2 ⇒ (∃ x1, x ′

1 • An
1 )] [predicate calculus]

⇔ [(∃ x2, x ′
2 • An

2 ) ⇒ (∃ x1, x ′
1 • An

1 )] [x2 and x1 are not free in A1]

⇔ P1 �P P2 [definition of process refinement]

�

Actions do not represent systems in Circus. Their effects on state are visible, and
refinement is only defined for actions on the same state. Therefore, an account
of system testing based on Circus needs to rely on process refinement. This does
not mean, however, that data does not play a part in a testing technique based
on Circus; we further discuss this issue in the next section.
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7 Conclusions

In this paper we have established the foundation of a testing theory for Circus, by
calculating definitions for traces refinement and conf and proving that, together,
they characterise process refinement. We are now in a position to consider how
the standard techniques of test generation to establish traces refinement and
conformance can be applied to the state-rich operational semantics of Circus.

Formalisation of testing techniques in the UTP has also been considered in [1].
That work is concerned with fault-based testing using mutations; it goes well
beyond what we present here, in that it already provides test-case generation
techniques. It is not, however, concerned with testing for refinement in state-rich
reactive languages. The formalisation is conducted in the theory of designs for
total correctness of sequential imperative programs.

A predicative account of traces refinement is also presented in [9]. In that
work, traces refinement is defined for abstract data types, and characterised
using simulation relations. It is also observed that conf cannot be treated in the
same way, because it is not a preorder.

We have already defined exhaustive test sets for CSP processes in [5]. For
Circus, the operational semantics is defined symbolically, with events referring
to values that are constrained by the state and local variable definitions and by
the data operations. It supports the integration of model checking and theorem
proving techniques in reasoning about Circus processes and actions. For testing,
the symbolic operational semantics provides guidance for the coverage of traces
(by giving structure to the set of traces of an action) and, therefore, for the
construction of tests to establish both traces refinement and conf .

In the case of CSP, values are part of event names, and are treated indis-
tinctively. For example, c.0, c.1, and so on, are just event names. In the case
of Circus, symbolic traces like 〈 c.w0, d .w1 〉, for instance, represent collections
of traces; this example, in particular, defines a family of traces that record a
communication over a channel c followed by a communication over a channel d ,
of values w0 and w1. The symbolic representation and the constraints that w0

and w1 are required to satisfy give us an indication of how to produce test data
to achieve acceptable coverage of the collection of traces.

These constraints are raised by the local state of the processes, and by its
data operations. Therefore, even though testing for process refinement does not
require observation of internal state, the valid traces reflect restrictions that
arise from the state operations. It is in our immediate plans to adapt to Circus
the test generation strategy based on a combination of IOLTS (Input-Output
Labelled Transition Systems) and algebraic specifications provided in [16,15].
We will formalise the proposed technique based on the results presented here.

Traces refinement and conf also have value as tools for reasoning about safety
and liveness properties of actions; we are yet to explored this aspect of the
UTP theory. For traces refinement, further work on healthiness conditions are
necessary to allow a closer correspondence with the CSP traces model. Algebraic
laws of traces refinement and conf is also an interesting topic for future work.
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10. Fernandez, J.-C., Jard, C., Jéron, T., Viho, G.: An Experiment in Automatic Gen-
eration of Conformance Test Suites for Protocols with Verification Technology.
Science of Computer Programming 29, 123–146 (1997)

11. Gannon, J., McMullin, P., Hamlet, R.: Data abstraction implementation, specifica-
tion and testing. ACM Transactions on Programming Languages and Systems 3(3),
211–223 (1981)

12. Gaudel, M.-C.: Testing can be formal, too. In: Mosses, P.D., Schwartzbach, M.I.,
Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915,
pp. 82–96. Springer, Heidelberg (1995)

13. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall, En-
glewood Cliffs (1998)

14. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
A survey. Proceedings of the IEEE 84, 1090–1126 (1996)

15. Lestiennes, G.: Contributions au test de logiciel basé sur des spécifications
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A Some Lemmas

Lemma 1

A ;Skip = (∃ ref ′ • A) ∧ ok ′ ∧ ¬ wt ′ ∨ A ∧ ok ′ ∧ wt ′ ∨ (A ∧ ¬ ok ′) ; tr ≤ tr ′

Proof. We take v to be a list of the undashed variables in the alphabet of A,
including ok , wt , tr , ref , and programming variables x .

A ; Skip

= ∃ v0 • A[v0/v
′] ∧ R(true � tr ′ = tr ∧ ¬ wt ′ ∧ x ′ = x )[v0/v ]

[definition of sequence and Skip (as a reactive design [18])]

=

⎛⎝∃ v0 •

⎛⎝A[v0/v
′] ∧(

(wt0 ∧ ((¬ ok0 ∧ tr0 ≤ tr ′) ∨ II [v0/v ])) ∨
(¬ wt0 ∧ (ok0 ⇒ ok ′ ∧ tr ′ = tr0 ∧ ¬ wt ′ ∧ x ′ = x0) ∧ tr0 ≤ tr ′)

)⎞⎠⎞⎠
[definition of R and property of substitution]

=

⎛⎜⎜⎝∃ v0 •

⎛⎜⎜⎝
A[v0/v

′] ∧ wt0 ∧ ¬ ok0 ∧ tr0 ≤ tr ′ ∨
A[v0/v

′] ∧ wt0 ∧ ok ′ ∧ II [v0/v ] ∨
A[v0/v

′] ∧ ¬ wt0 ∧ ¬ ok0 ∧ tr0 ≤ tr ′ ∨
A[v0/v

′] ∧ ¬ wt0 ∧ ok0 ∧ ok ′ ∧ tr ′ = tr0 ∧ ¬ wt ′ ∧ x ′ = x0

⎞⎟⎟⎠
⎞⎟⎟⎠

[predicate calculus]

=

⎛⎝∃ v0 •

⎛⎝A[v0/v
′] ∧ ¬ ok0 ∧ tr0 ≤ tr ′ ∨

A[v0/v
′] ∧ wt0 ∧ ok0 ∧ ok ′ ∧ II [v0/v ] ∨

A[v0/v
′] ∧ ¬ wt0 ∧ ok0 ∧ ok ′ ∧ tr ′ = tr0 ∧ ¬ wt ′ ∧ x ′ = x0

⎞⎠⎞⎠
[predicate calculus]

=

⎛⎝ (∃ v0 • A[v0/v
′] ∧ ¬ ok0 ∧ tr0 ≤ tr ′) ∨

(∃ v0 • A[v0/v
′] ∧ wt0 ∧ ok0 ∧ II [v0/v ]) ∨

(∃ v0 • A[v0/v
′] ∧ ¬ wt0 ∧ ok0 ∧ ok ′ ∧ tr ′ = tr0 ∧ ¬ wt ′ ∧ x ′ = x0)

⎞⎠
[predicate calculus]

=

⎛⎝ (A ∧ ¬ ok ′); (tr ≤ tr ′) ∨
A ∧ wt ′ ∧ ok ′ ∨
(∃ ref ′ • A) ∧ ¬ wt ′ ∧ ok ′)

⎞⎠ [definition of sequence and one-point rule]

�
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Lemma 2

(∃ tr , tr ′ • A ∧ t = tr ′ − tr) = A[〈 〉, t/tr , tr ′]

provided A is R2 -healthy.

Proof

∃ tr , tr ′ • A ∧ t = tr ′ − tr

= ∃ tr1, tr ′
1 • A[tr1, tr ′

1/tr , tr ′] ∧ t = tr ′
1 − tr1 [predicate calculus]

= ∃ tr1, tr ′
1 • A[〈 〉, tr ′ − tr/tr , tr ′][tr1, tr ′

1/tr , tr ′] ∧ t = tr ′
1 − tr1 [R2 ]

= ∃ tr1, tr ′
1 • A[〈 〉, tr ′

1 − tr1/tr , tr ′] ∧ t = tr ′
1 − tr1 [property of substitution]

= ∃ tr1, tr ′
1 • A[〈 〉, t/tr , tr ′] ∧ t = tr ′

1 − tr1 [property of equality]

= A[〈 〉, t/tr , tr ′] ∧ ∃ tr1, tr ′
1 • t = tr ′

1 − tr1 [predicate calculus]

= A[〈 〉, t/tr , tr ′] [property of sequences]

�

Lemma 3

Ref (A2, t) ⊆ Ref (A1, t) ⇔⎡⎣ (An
2 ∧ t = tr ′ − tr ⇒ ∃ u1, u ′

1, ref • An
1 ∧ t = tr ′ − tr) ∧

(An
2 ∧ t = tr ′ − tr ∧ wt ′ ⇒ ∃ u1, u ′

1, ref • An
1 ∧ t = tr ′ − tr ∧ wt ′) ∧

(At
2 ∧ t = (tr ′ − tr) � 〈�〉 ⇒ ∃ u1, u ′

1, ref • At
1 ∧ t = (tr ′ − tr) � 〈�〉)

⎤⎦
Proof

Ref (A2, t) ⊆ Ref (A1, t)

⇔ {X | (t ,X ) ∈ failures(A2)} ⊆ {X | (t ,X ) ∈ failures(A1)}
[definition of Ref (A, t)]

⇔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨⎪⎪⎩X | (t ,X ) ∈

⎛⎜⎜⎝
{ ((tr ′ − tr), ref ′) | An

2 }∪
{ ((tr ′ − tr), ref ′ ∪ {� }) | An

2 ∧ wt ′ }∪
{ ((tr ′ − tr) � 〈� 〉, ref ′) | At

2 }∪
{ ((tr ′ − tr) � 〈� 〉, ref ′ ∪ {� }) | At

2 }

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

⊆

⎧⎪⎪⎨⎪⎪⎩X | (t ,X ) ∈

⎛⎜⎜⎝
{ ((tr ′ − tr), ref ′) | An

1 }∪
{ ((tr ′ − tr), ref ′ ∪ {� }) | An

1 ∧ wt ′ }∪
{ ((tr ′ − tr) � 〈� 〉, ref ′) | At

1 }∪
{ ((tr ′ − tr) � 〈� 〉, ref ′ ∪ {� }) | At

1 }

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
[definition of failures and property of sets]
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⇔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∀X•

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎝∃ v2, v ′
2•

⎛⎜⎜⎜⎜⎝
An

2 ∧⎛⎜⎜⎝
t = tr ′ − tr ∧ X = ref ′ ∨
t = tr ′ − tr ∧ wt ′ ∧ X = ref ′ ∪ {�} ∨
¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ∧ X = ref ′ ∨
¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ∧ X = ref ′ ∪ {�}

⎞⎟⎟⎠
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

⇒⎛⎜⎜⎜⎜⎝∃ v1, v ′
1•

⎛⎜⎜⎜⎜⎝
An

1 ∧⎛⎜⎜⎝
t = tr ′ − tr ∧ X = ref ′ ∨
t = tr ′ − tr ∧ wt ′ ∧ X = ref ′ ∪ {�} ∨
¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ∧ X = ref ′ ∨
¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ∧ X = ref ′ ∪ {�}

⎞⎟⎟⎠
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
[predicate calculus]

⇔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∀X , v2, v ′

2•

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝An
2 ∧

⎛⎜⎜⎝
t = tr ′ − tr ∧ X = ref ′ ∨
t = tr ′ − tr ∧ wt ′ ∧ X = ref ′ ∪ {�} ∨
¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ∧ X = ref ′ ∨
¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ∧ X = ref ′ ∪ {�}

⎞⎟⎟⎠
⎞⎟⎟⎠

⇒⎛⎜⎜⎜⎜⎝∃ v1, v ′
1•

⎛⎜⎜⎜⎜⎝
An

1 ∧⎛⎜⎜⎝
t = tr ′ − tr ∧ X = ref ′ ∨
t = tr ′ − tr ∧ wt ′ ∧ X = ref ′ ∪ {�} ∨
¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ∧ X = ref ′ ∨
¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ∧ X = ref ′ ∪ {�}

⎞⎟⎟⎠
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
[predicate calculus]

⇔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀ v2, v ′
2 •

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎝
An

2 ∧ t = tr ′ − tr ⇒⎛⎜⎜⎝
∃ u1, u ′

1, ref , refX•⎛⎝An
1 [refX /ref ′] ∧(
t = tr ′ − tr ∧ ref ′ = refX ∨
¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ∧ ref ′ = refX

)⎞⎠
⎞⎟⎟⎠
⎞⎟⎟⎟⎟⎠ ∧

⎛⎜⎜⎜⎜⎝
An

2 ∧ t = tr ′ − tr ∧ wt ′ ⇒⎛⎜⎜⎝
∃ u1, u ′

1, ref , refX•⎛⎝An
1 [refX /ref ′] ∧(
t = tr ′ − tr ∧ wt ′ ∧ ref ′ = refX ∨
¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ∧ ref ′ = refX

)⎞⎠
⎞⎟⎟⎠
⎞⎟⎟⎟⎟⎠ ∧

⎛⎜⎜⎜⎜⎝
An

2 ∧ ¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ⇒⎛⎜⎜⎝
∃ u1, u ′

1, ref , refX•⎛⎝An
1 [refX /ref ′] ∧(
t = tr ′ − tr ∧ ref ′ = refX ∨
¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ∧ ref ′ = refX

)⎞⎠
⎞⎟⎟⎠
⎞⎟⎟⎟⎟⎠ ∧

⎛⎜⎜⎜⎜⎝
An

2 ∧ ¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ⇒⎛⎜⎜⎝
∃ u1, u ′

1, ref , refX•⎛⎝An
1 [refX /ref ′] ∧(
t = tr ′ − tr ∧ wt ′ ∧ ref ′ = refX ∨
¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ∧ ref ′ = refX

)⎞⎠
⎞⎟⎟⎠
⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
[predicate calculus, v1 = u1, ref , and � is not ref ′]
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⇔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀ v2, v ′
2 •⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎝
An

2 ∧ t = tr ′ − tr ⇒⎛⎜⎜⎝
∃ u1, u ′

1, ref , refX•⎛⎝An
1 [refX /ref ′] ∧(
t = tr ′ − tr ∧ ref ′ = refX ∨
¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ∧ ref ′ = refX

)⎞⎠
⎞⎟⎟⎠
⎞⎟⎟⎟⎟⎠ ∧

⎛⎜⎜⎜⎜⎝
An

2 ∧ t = tr ′ − tr ∧ wt ′ ⇒⎛⎜⎜⎝
∃ u1, u ′

1, ref , refX•⎛⎝An
1 [refX /ref ′] ∧(
t = tr ′ − tr ∧ wt ′ ∧ ref ′ = refX ∨
¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ∧ ref ′ = refX

)⎞⎠
⎞⎟⎟⎠
⎞⎟⎟⎟⎟⎠ ∧

⎛⎜⎜⎜⎜⎝
An

2 ∧ ¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ⇒⎛⎜⎜⎝
∃ u1, u ′

1, ref , refX•⎛⎝An
1 [refX /ref ′] ∧(
t = tr ′ − tr ∧ wt ′ ∧ ref ′ = refX ∨
¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ∧ ref ′ = refX

)⎞⎠
⎞⎟⎟⎠
⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
[predicate calculus]

⇔

⎛⎜⎜⎜⎜⎝∀ v2, v ′
2•

⎛⎜⎜⎜⎜⎝
(An

2 ∧ t = tr ′ − tr ⇒ ∃ u1, u ′
1, ref • An

1 ∧ t = tr ′ − tr) ∧(
An

2 ∧ t = tr ′ − tr ∧ wt ′ ⇒
∃ u1, u ′

1, ref • An
1 ∧ t = tr ′ − tr ∧ wt ′

)
∧(

An
2 ∧ ¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉 ⇒
∃ u1, u ′

1, ref • An
1 ∧ ¬ wt ′ ∧ t = (tr ′ − tr) � 〈�〉

)
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

[predicate calculus]

⇔

⎡⎣ (An
2 ∧ t = tr ′ − tr ⇒ ∃ u1, u ′

1, ref • An
1 ∧ t = tr ′ − tr) ∧

(An
2 ∧ t = tr ′ − tr ∧ wt ′ ⇒ ∃u1, u ′

1, ref • An
1 ∧ t = tr ′ − tr ∧ wt ′) ∧

(At
2 ∧ t = (tr ′ − tr) � 〈�〉 ⇒ ∃ u1, u ′

1, ref • At
1 ∧ t = (tr ′ − tr) � 〈�〉)

⎤⎦
[definition of At

2 and At
1]

�

Lemma 4

(∃ ref ′ • At ) = At

provided A is CSP4 -healthy.

Proof

(∃ ref ′ • At)

= ok ∧ ¬ wt ∧ (∃ ref ′ • A) ∧ ok ′ ∧ ¬ wt ′ [definition of At ]

= ok ∧ ¬ wt ∧ (∃ ref ′ • ((∃ ref ′ • A) ∨ ((A ∧ ¬ ok ′); tr ≤ tr ′))) ∧ ok ′ ∧ ¬ wt ′

[Lemma 1]
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= ok ∧ ¬ wt ∧ ((∃ ref ′ • A) ∨ ((A ∧ ¬ ok ′); tr ≤ tr ′)) ∧ ok ′ ∧ ¬ wt ′

[ref ′ is not free in (∃ ref ′ • A) ∨ ((A ∧ ¬ ok ′); tr ≤ tr ′)]

= ok ∧ ¬ wt ∧ A ∧ ok ′ ∧ ¬ wt ′ [Lemma 1]

= At [definition of At ]

�
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Abstract. We introduce a calculus for reasoning about programs in to-
tal correctness which blends UTP designs with von Wright’s notion of
a demonic refinement algebra. We demonstrate its utility in verifying
the familiar loop-invariant rule for refining a total-correctness specifi-
cation by a while loop. Total correctness equates non-termination with
completely chaotic behaviour, with the consequence that any situation
which admits non-termination must also admit arbitrary terminating
behaviour. General correctness is more discriminating in allowing non-
termination to be specified together with more particular terminating
behaviour. We therefore introduce an analogous calculus for reasoning
about programs in general correctness which blends UTP prescriptions
with a demonic refinement algebra. We formulate a loop-invariant rule
for refining a general-correctness specification by a while loop, and we
use our general-correctness calculus to verify the new rule.

1 Introduction

In this paper we introduce a calculus for reasoning about programs in total cor-
rectness which blends UTP designs [15] with von Wright’s notion of a demonic
refinement algebra [27]. We demonstrate the utility of such a calculus in veri-
fying succinctly the familiar loop-invariant rule for refining a total-correctness
specification by a while loop. The rule itself is by no means new, but we believe
that both our formulation of it and —even more particularly— our algebraic
style of its verification are of interest.

Total correctness equates non-termination with completely chaotic behaviour,
with the consequence that any situation which admits non-termination must
also admit arbitrary terminating behaviour. In contrast, general correctness is
more discriminating in allowing non-termination to be specified together with
more particular terminating behaviour, or even without any allowed terminating
behaviour at all. We introduce an analogous calculus for reasoning about pro-
grams in general correctness which blends UTP prescriptions [9] with a demonic
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refinement algebra. We formulate a loop-invariant rule for refining a general-
correctness specification by a while loop —the first time, as far as we are aware,
that this has been done. We then use our general-correctness calculus to verify
the new rule, whose significance is that it completes our general-correctness re-
finement calculus by allowing us to verify the refinement of a UTP prescription
all the way to an actual implementation in executable code.

The rest of the paper is organised as follows. After disposing of certain neces-
sary preliminary issues in Section 2, in Section 3 we develop our total-correctness
calculus, then in Section 4 we formulate and prove our version of the classical
total-correctness variant-invariant while-loop refinement rule. In Section 5 we de-
velop a corresponding general-correctness calculus based on UTP prescriptions
instead of designs, and in Section 6 we formulate and verify our new general-
correctness while-loop refinement rule, and illustrate its application on a small
example refinement. We conclude Section 6 by deriving an interesting subsidiary
general-correctness while-loop refinement rule.

2 Preliminaries

Here we clarify the symbolic conventions we employ throughout the rest of the
paper, and we also give a brief historical summary of program algebras.

2.1 Systematic Decoration

We note here a typographical convention that we adopt throughout the paper,
namely the systematic dash-decoration of variables and metavariables which is
usual in UTP. So if b, for example, represents a condition on the plain (i.e.
undashed) variables of a program’s before-state, then b′ represents the corre-
sponding condition on the dashed variables of that program’s after-state.

2.2 Logical Notation

We use ⇒ only as the material implication connective between propositions in
our relational term language. On the other hand, we use 	 and its typograph-
ical inverse 
 in rules and proofs to signify logical entailment between factual
assertions about relations. Similarly, we use ≡ to assert mutual logical entail-
ment in both directions. However, we employ the ordinary equality symbol =
to assert equivalence between individual computation-denoting relations such as
UTP designs and prescriptions, because this is more natural when treating such
entities algebraically.

Although we use ∧ as the conjunction connective between propositions in our
relational term language, we also employ it in rules and proofs to conjoin factual
assertions about relations. Its latter use is always distinguished by generous white
spacing around it.
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2.3 About Refinement in UTP

The most important single unifying feature of UTP is that refinement is always
modelled simply by universally quantified reverse logical implication. In this pa-
per we encounter refinement in three separate semantic contexts: namely, partial
correctness, total correctness and general correctness. In each case refinement is
denoted by the same symbol � because this always signifies universally quanti-
fied reverse logical implication. All that varies between the three contexts is the
family of alphabetised relations being related by � . In the case of partial correct-
ness, the relations concerned are just the binary relations on the alphabet {v , v ′}
where v is the list of program state variables. In the case of total correctness,
the relations concerned are designs, which, as we shall see, are a family of binary
relations over the alphabet {v , ok , v ′, ok ′}1 which are characterised by certain
healthiness conditions. Similarly, in the case of general correctness the relations
concerned are prescriptions, which are another family of binary relations over
the same alphabet {v , ok , v ′, ok ′} characterised by different healthiness condi-
tions. In any appearance of � in a formula within the ensuing text its operands
there will enable us to determine whether it signifies partial-, total- or general-
correctness refinement in that particular case.

2.4 Precedence

We adopt the conventional order of precedence for the binding powers of our
propositional connectives: namely (in descending order), negation ¬ , conjunc-
tion ∧ , disjunction ∨, material implication ⇒ and material bi-implication ⇔.
These all precede our design constructor � and prescription constructor ��,
which in turn precede the equality operator = and refinement operator � be-
tween computation-denoting relations such as designs and prescriptions. These in
turn precede our widely-spaced conjunction “ ∧ ” between factual assertions
about relations. Lowest in precedence we have our logical entailment metasym-
bols 	 , 
 and ≡ . In our program algebra sequential composition, denoted
by “ ; ” or more usually by simple juxtaposition, has a higher precedence than
nondeterministic choice 	 . Where we believe it improves readability, especially
in designs and prescriptions, we sometimes use parentheses even when they are
superfluous in the light of these precedence rules.

2.5 History of Program Algebras

Kleene Algebras (KA) were developed first by Conway [5] and later by Kozen
[18] in response to the American mathematician Stephen Kleene’s challenge to
find a complete axiomatisation of regular expressions. As well as binary oper-
ators representing choice, sequence, etc, KA has a postfix unary operator “∗”
(star) to represent finite repetition. More recently, KA was extended by Kozen

1 ok ′ and ok are auxiliary boolean variables introduced to record the observation of
termination respectively of the current program and of its sequential predecessor.
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[19,20], who added tests to provide “Kleene Algebra with Tests” (KAT) for rea-
soning about programs in partial correctness. Subsequently von Wright [26,27]
developed a variation of KAT called Demonic Refinement Algebra (DRA), in-
tended as a framework for reasoning about programs in total correctness, in
which he introduces a second unary postfix operator ω (omega) to represent ar-
bitrary (i.e. finite or infinite) repetition. To accommodate the latter he discards
the right-zero axiom of KAT. As von Wright points out, DRA is in many ways
similar to Cohen’s omega algebra [4], save that the latter, being a conservative
extension of KAT, requires finite and infinite executions to be reasoned about
separately. From DRA von Wright has gone on to develop General Refinement
Algebra (GRA), so called because it incorporates a second choice operator to
model angelic as well as demonic nondeterminism, but this is beyond the scope
of our work here. In particular, the “General” in von Wright’s GRA is not to
be confused with with the semantics of general correctness which we address in
this paper.

3 A Total-Correctness Program Calculus

Our program calculus models conjunctive programs, i.e. those which may exhibit
demonic but not angelic nondeterminism. The basic statements of our calculus
are H3-healthy UTP designs [15]. Let v be the list of state variables of the state
space and ok be an additional auxiliary boolean variable which when initially
true (ok) signifies that, its predecessor having terminated, the present compu-
tation has started, and when finally true (ok ′) signifies the present computation
has itself subsequently terminated. Then a design is an alphabetised relation
over an alphabet {v , ok , v ′, ok ′} which is expressible in the form

ok ∧ p ⇒ ok ′ ∧ q

where p and q are subsidiary predicates respectively over v and {v , v ′}. We
abbreviate the above to p � q, which can be informally interpreted as

If the program starts in circumstances satisfying p, it will terminate in
a state satisfying q.

The design p � q is semantically equivalent, for example, to the Morgan specifi-
cation statement [23]

v : [p, q]

or the B Abstract Machine Notation (AMN) [1] substitution

PRE p THEN ANY v ′ WHERE q THEN v := v ′ END END

In particular, for convenience the following designs have their own special rep-
resentations:
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skip =def true � v ′ = v
abort =def false � true
magic =def true � false
[p ] =def true � p ∧ v ′ = v guard
{p} =def p � v ′ = v assertion

Our operational intuitions about these primitive statements are as follows:

– skip terminates without changing the state;
– abort is completely chaotic and may even fail to terminate;
– magic behaves everywhere miraculously;
– The guard statement [p ] behaves like skip from states where p holds, while

from states where p doesn’t hold it behaves miraculously. We note that magic
could equivalently be expressed as [ false ].

– The assertion statement {p} also behaves like skip from states where p holds,
but from states where p doesn’t hold it behaves like abort. We note that abort
could equivalently be expressed as {false}.

Our program calculus has the following binary operators:

nondeterministic choice s 	 t
sequential composition s ; t

We usually omit the “ ; ” in a sequential composition when no confusion arises,
relying instead on simple juxtaposition. Thus we write, for example, simply s t
instead of s ; t . We give sequential composition a higher precedence than 	 .
The familiar conditional construct can be expressed in terms of our primitive
constructs as

if b then s else t end =def [b ]s 	 [¬ b] t

As we have seen, in UTP each conjunctive program is modelled predicatively as
an alphabetised binary relation between undashed before-state and dashed after-
state variables which is “design-healthy”, i.e. semantically equivalent to one in
the form of a design. In particular 	 is modelled by disjunction and sequential
composition by alphabetised relational composition. Designs enjoy the following
algebraic properties:

s 	 t = t 	 s commutativity
(s 	 t) 	 v = s 	 (t 	 v) associativity
s 	 s = s idempotence
s 	 magic = s = magic 	 s unit of choice
s 	 abort = abort = abort 	 s zero of choice
(s t)v = s (t v) associativity
s skip = s = skip s unit of composition
abort s = abort left zero of composition
magic s = magic left zero of composition
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(s 	 t)v = s v 	 t v distributivity
s (t 	 v) = s t 	 s v distributivity

In addition we make use of the following specific properties of UTP designs,
where a, b, c and p are simple conditions, i.e. predicates over the undashed
state variables, and q is an alphabetised binary relation, i.e. a predicate relating
before-states represented by undashed variables to after-states represented by
dashed variables:

(p � q) [b ] = p � q ∧ b′ (1)

{b} (p � q) = p ∧ b � q (2)

The relationship between the refinement ordering on programs and nondeter-
ministic choice is expressed by the following property:

s � t ≡ s = s 	 t (3)

The associativity, commutativity and idempotence of 	 respectively guarantee
that � is transitive, antisymmetric and reflexive, so ensuring that it is a partial
order. Its bottom is abort and its top is magic :

abort � s � magic (4)

It is easy to show that 	 is a meet operator for � :

(s � t) ∧ (s � u) ≡ s � t 	 u (5)

Composition and 	 are monotonic with respect to � , and the following refine-
ment properties of designs are easily verified:

p � p′ � skip (6)

a � c′ � (a � b′) (b � c′) (7)

This equality follows from the previous two properties and the monotonicity of
composition with respect to � :

(p � p′) (p � p′) = p � p′ (8)

This trading rule captures the duality between assertions and guards:

{p}s � t ≡ s � [p ] t (9)

This rule captures the equivalence between two ways of expressing that a given
program s is always guaranteed to terminate:

magic � s magic ≡ true � true � s (10)

The set of conjunctive programs over the state space spanned by state variable(s)
v forms a complete lattice with respect to � .



68 S.E. Dunne, I.J. Hayes, and A.J. Galloway

3.1 Fixed-Point Definitions in Total Correctness

We define the following unary operators as fixed points with respect to � , where
νref and μref denote respectively greatest fixed point and least fixed point:

s∗ =def νref x . s x 	 skip weak iteration (11)

s∞ =def μref x . s x infinite repetition (12)

sω =def μref x . s x 	 skip strong iteration (13)

The Knaster-Tarski theorem [25] guarantees that the above fixed-point defini-
tions are sound. We give these three unary operators a higher precedence than
either sequential composition or 	 . Our operational intuition of them is as
follows:

– s∗ signifies zero or finitely more repetitions of s ;
– s∞ signifies infinite repetition of s ;
– sω signifies arbitrary general (i.e. zero, finite or infinite) repetition of s .

The ∗, ∞ and ω operators are themselves monotonic with respect to � . They
are related by the property [21, Lemma 13]

sω = s∗ 	 s∞ (14)

The ∗, ∞ and ω operators enjoy the following standard pre- and post-fixpoint
induction properties respectively of greatest and least fixed points cf [15, Laws
2.6L1 and 2.7L1] :

t � s t 	 skip ≡〉 t � s∗ (15)

s t � t ≡〉 s∞ � t (16)

s t 	 skip � t ≡〉 sω � t (17)

The following property is a consequence of the definition of s∗, see [3, Lemma
21.2] :

s∗ t = νref x . s x 	 t (18)

3.2 Well-Foundedness in Total Correctness

We describe a program s as well-founded if its infinite repetition is everywhere
miraculous: that is, s∞ = magic . Also, if p is a condition on the state we
describe a program s as well-founded on p if its infinite repetition is miraculous
from all states which satisfy p : that is, if [p ]s∞ = magic . Note that [p ]s∞ is
not the same as ([p ]s)∞, so saying s is well-founded on p is not the same as
saying [p ]s is well-founded.



Reasoning about Loops in Total and General Correctness 69

4 Loop Refinement in Total Correctness

Before we can formulate any loop refinement rule we must determine the for-
mal meaning of the loop construct in question. The appropriate way to do so
is to interpret the construct concerned as a recursive expression obtained by
“unfolding” it, whose meaning is then taken as a least fixed-point with respect
to total-correctness refinement. In this way, we define our while loop as follows:

while b do s end =def μref x . if b then s x else skip end

Such a while-loop turns out to be closely related to strong-iteration. This is
exposed by the following equality [3, Lemma 21.8]:

while b do s end = ([b ]s)ω [¬ b] (19)

4.1 A Total-Correctness Loop-Refinement Rule

Identifying an invariant condition and a variant expression by which to demon-
strate that a particular while loop refines a given abstract specification is a
familiar and long-established technique in formal development. There are nu-
merous presentations of such a technique: among the very first must be those
of Floyd [12] expressed using flowcharts and of Hoare [14] —the latter in par-
tial correctness only, while more recent ones include those in [23,17,1]. In our
calculus the technique can be expressed succinctly by the following rule:

p � p′ ∧ ¬ b′ � while b do s end TC Loop
provided
1. p � p′ � [b ]s
2. [b ]s is well-founded on p.

Proviso 1 requires that, under the assumption of the loop guard b, the loop body,
s , preserves the loop invariant p ; its purpose is to ensure that if and when the
loop terminates the resulting final state will satisfy p. Proviso 2 requires that
infinite repetition of s under the assumption of b is impossible starting from a
state which satisfies p ; its purpose is to guarantee termination from any starting
state which satisfies the loop invariant p.

There is no explicit notion of a variant in this formulation of the rule. How-
ever, a standard technique for demonstrating well-foundedness of a computation
is to formulate a variant expression, i.e. a natural-number-valued or similar
well-founded-domain-valued expression over the state space which is strictly de-
creased by that computation. Our formulation of the rule therefore neatly sep-
arates our twin concerns of correctness and termination. We verify the rule by
the following reasoning in our total-correctness calculus.

Proof:
p � p′ ∧ ¬ b′ � while b do s end

〈≡ { (1), (19) }
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(p � p′) [¬ b] � ([b ]s)ω [¬ b]
〈≡ { monotonicity of seq comp wrt � }

p � p′ � ([b ]s)ω

≡ { (14) }
p � p′ � ([b ]s)∗ 	 ([b ]s)∞

≡ { (2) }
{p}(p � p′) � ([b ]s)∗ 	 ([b ]s)∞

≡ { (9) }
p � p′ � [p ] (([b ]s)∗ 	 ([b ]s)∞)

≡ { distributivity }
p � p′ � [p ] ([b ]s)∗ 	 [p ] ([b ]s)∞

≡ { Proviso 2 }
p � p′ � [p ] ([b ]s)∗ 	 magic

≡ { magic is unit of 	 }
p � p′ � [p ] ([b ]s)∗

≡ { (9) }
{p}(p � p′) � ([b ]s)∗

≡ { (2) }
p � p′ � ([b ]s)∗

〈≡ { (15) }
p � p′ � [b ]s (p � p′) 	 skip

≡ { (5), (6) }
p � p′ � [b ]s (p � p′)

≡ { (8) }
(p � p′)(p � p′) � [b ]s (p � p′)

〈≡ { monotonicity of seq comp wrt � }
p � p′ � [b ]s { Proviso 1 } �

So much for total correctness. In the next sections we move on to consider general
correctness.

5 A General-Correctness Program Calculus

Whereas the total-correctness semantics of programs is captured in predicate-
transformer terms by the weakest-precondition (wp) transformer alone, for gen-
eral correctness the weakest-liberal-precondition (wlp) transformer is also
required [7,16,24]. In [9] prescriptions were introduced as the general-correctness
counterparts of Hoare and He’s total-correctness designs, and their properties
have since been further explored in [6] and [13]. Let v be the list of state variables
of the state space and ok be an additional auxiliary boolean variable with the
same interpretation as that already described in Section 3 for designs. Then a
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prescription is an alphabetised relation over (v , ok , v ′, ok ′) whose predicate can
be expressed in the form

(ok ∧ p ⇒ ok ′) ∧ (ok ′ ⇒ q ∧ ok)

where p and q are subsidiary predicates not referring to ok or ok ′. We abbreviate
this as p �� q . If p is simply a condition — i.e. it constrains only the undashed
state variables v — then we call p �� q a normal prescription. From here on
we only consider normal prescriptions. Intuitively, we can then interpret p �� q
operationally as follows:

If the computation starts from an initial state satisfying p it must in-
evitably terminate; moreover, if it terminates —whether inevitably from
an initial state satisfying p or just fortuitously from any other— then q
will be satisfied, and the computation must certainly have started.

General-correctness specifications are more expressive than total-correctness ones
because among other things they can express non-termination requirements
as well as termination requirements. For example, the extreme prescription
false �� false describes a computation which can start from any initial state
but must then never terminate. Our general-correctness calculus like our earlier
total-correctness one models conjunctive programs. Its basic statements are pre-
scriptions. In particular, for convenience the following prescriptions have these
special representations, where v is the list of all state variables and p is a pred-
icate on the state:

skip =def true �� v ′ = v
abort =def false �� true
magic =def true �� false
[p ] =def true �� p ∧ v ′ = v guard
{p} =def p �� v ′ = v assertion
loop =def false �� false

Our operational intuitions about the first five of these primitive statements are
the same as before. The last one loop is particular to general correctness and rep-
resents an infinite loop which never terminates. Our new calculus has the same
binary operators 	 and “ ; ” modelling nondeterministic choice and sequential
composition, all of whose algebraic properties are the same as before, and its
conditional construct is defined in the same way. We define our refinement or-
dering � exactly as in total correctness. Properties (4), giving us the bottom
and top of our � ordering, and (9), our trading rule for guards and assertions,
remain the same in general correctness as in total correctness. We make use of
the following properties of UTP prescriptions, which are the direct counterparts
of those we saw earlier for designs:

(p �� q) ; [b ] = p �� q ∧ b′ (20)
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{b} ; (p �� q) = p ∧ b �� q (21)

a �� c′ � (a �� b′) ; (b �� c′) (22)

5.1 Splitting a Prescription

A general-correctness specification can be projected without loss of informa-
tion into its total-correctness and partial-correctness components. We adopt a
subscripting convention that, if u denotes a general-correctness specification,
we write upar and utot to denote respectively its partial-correctness and total-
correctness components. In terms of prescriptions, the prescription p �� q can
be projected into its total-correctness and partial-correctness components as
follows:

(p �� q)tot =def p � q

(p �� q)par =def q

The following equivalence relates refinement of prescriptions in general cor-
rectness to refinement of designs in total correctness and relations in partial
correctness:

p �� q � u ≡ (p � true � utot) ∧ (q � upar) (23)

It can easily be verified by unpacking the prescription and designs into their
underlying predicative forms and interpreting � as reverse implication.

5.2 Fixed-Point Definitions in General Correctness

We introduce a different ordering with respect to which we make our fixed-
point definitions in general correctness, namely the Egli-Milner approximation
ordering ≤em . This has long been recognised as the appropriate ordering for the
interpretation of recursions in general correctness [24]. We define it as follows:

s ≤em t =def (stot � ttot) ∧ (tpar � spar) (24)

Expressing this equivalently in terms of prescriptions we have

p1 �� q1 ≤em p2 �� q2 ≡ [q1 ⇒ q2] ∧ [p1 ⇒ p2] ∧ [p1 ⇒ (q1 ⇔ q2)] (25)

where the square brackets [...] on the right-hand side denote universal quantifi-
cation over the alphabet of variables. The set of conjunctive programs over the
state space spanned by state variable(s) v forms a complete partial order (cpo)
with respect to ≤em . The bottom of the ≤em ordering is loop, but we note that
≤em has no overall top, because any everywhere-terminating program is maxi-
mal. Our composition and 	 operators are monotonic with respect to ≤em . We
define the following unary operators as least fixed points with respect to ≤em :

s∞ =def μem x . s x infinite repetition
sω =def μem x . s x 	 skip strong iteration
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Because ≤em induces a cpo rather than a complete lattice we need the gener-
alisation of Tarski’s fixed-point theorem given in [24] to ensure that the above
definitions are sound. Our operational intuitions of them remain the same as
before, namely that

– s∞ signifies infinite repetition of s ;
– sω signifies arbitrary general (i.e. finite or infinite) repetition of s .

However, these operational interpretations must be made in the context of gen-
eral correctness rather than total correctness. This means, for example, than
skip∞ is loop rather than abort as it would be in total correctness. Our use of the
Egli-Milner ordering ≤em rather than the refinement ordering � in the formal
definitions of these fixed points reflects this.

Our ∞ and ω operators here also again enjoy the standard post-fixpoint in-
duction property of least fixed points, although the ordering in question is now
≤em rather than � :

s t ≤em t ≡〉 s∞ ≤em t (26)

s t 	 skip ≤em t ≡〉 sω ≤em t (27)

5.3 Well-Foundedness in General Correctness

For general correctness we again describe a program s as well-founded if its
infinite repetition is everywhere miraculous: that is, s∞ = magic . Also, if p is a
condition on the state we describe a program s as well-founded on p if its infinite
repetition is miraculous from all states which satisfy p : that is, [p ]s∞ = magic .
In fact, a general-correctness program is well-founded exactly when its projection
in total correctness is well-founded, so there is no need in practice to distinguish
well-foundedness in general correctness from that in total correctness.

5.4 Partitioning the Egli-Milner Ordering

Let E (x ) be any expression in our general-correctness calculus built using any
of its primitive statements and its binary operators of 	 and “; ” as well as
the variable x denoting any general-correctness computation. Then λ x .E (x ) is
monotonic with respect to ≤em and therefore has a well-defined ≤em-least fixed
point μem x .E (x ). Moreover, the definition in (24) of the Egli-Milner ordering
ensures that a sufficient condition for a general-correctness computation u to be
such a fixed point is that utot = μref x .E (x ) and upar = νref x .E (x ). That is to
say, we have that

utot = μref x .E (x ) ∧ upar = νref x .E (x ) ≡〉 u = μem x .E (x ) (28)

If we now apply property (28) above to the case where E (x ) is ([b ]s x 	 skip)
and apply the definitions of strong and weak iteration, we obtain

utot = ([b ]s)ω ∧ upar = ([b ]s)∗ ≡〉 u = ([b ]s)ω (29)



74 S.E. Dunne, I.J. Hayes, and A.J. Galloway

Notice that because utot is a total-correctness computation the first occurrence
of ([b ]s)ω in (29) above is interpreted in total correctness, whereas its second
occurrence is interpreted in general correctness because u is a general-correctness
computation.

6 Loop Refinement in General Correctness

As in the case of total correctness, in general correctness we again interpret a
while loop by “unfolding” it, and its meaning is then again taken as a least
fixed-point, although “least” now means least with respect to the Egli-Milner
ordering ≤em :

while b do s end =def μem x . if b then s x else skip end

Again our while-loop turns out to be intimately related to our strong-iteration
construct via the following equality, which is analogous to property (19) for the
total-correctness case:

while b do s end = ([b ]s)ω [¬ b] (30)

We must remember, though, that both the while loop and the strong iteration
in (30) have different meanings from their total-correctness counterparts in (19),
because they are defined with respect to ≤em rather than � . Nevertheless prop-
erty (30) can be proved in a similar manner to (19) in [3, Lemma 21.8]. This
requires only that the Fusion Theorem cited in the associated [3, Lemma 21.2]
is replaced by the Transfer Lemma2 of [2].

6.1 A General-Correctness Loop-Refinement Rule

One might reasonably ask why we need a new loop-refinement rule for gen-
eral correctness at all. After all, can we not simply translate the existing total-
correctness rule directly into a general-correctness setting? Indeed we can, giving
us the following rule:

p �� (p ⇒ p′ ∧ ¬ b′) � while b do s end
provided
1. (p ⇒ p′) � [b ]s
2. [b ]s is well-founded on p.

However, such a rule is inadequate for proving any refinements involving required
non-termination. The simplest of these, remembering that loop is the prescription
false �� false, would be
2 The proof also relies on the fact that the relevant “transfer” function used in [3,

Lemma 21.2], namely (λ X .X ; T ), is continuous with respect to ≤em. Fortunately,
this is so, because, as observed in [24], sequential composition is indeed continuous
with respect to ≤em in its left argument.



Reasoning about Loops in Total and General Correctness 75

false �� false � while true do skip end

Any putative general-correctness loop-refinement rule that cannot be applied
to verify even so simple a refinement as this is hardly worth our consideration
at all. We therefore propose instead the following general-correctness while-loop
refinement rule:

p �� (j ⇒ j ′ ∧ ¬ b′) � while b do s end GC Loop 1
provided
1. (j ⇒ j ′) � [b ]s
2. [b ]s is well-founded on p.

We note that Proviso 1 involves only partial-correctness refinement because the
relation j ⇒ j ′ on its left-hand side is simply a before-after relation on the
state space. As far as we are aware no such practical general-correctness loop
refinement rule has been formulated before. An interesting feature of the rule is
that the loop invariant j is entirely separate from the termination precondition p.
We verify the rule by the following reasoning in our general-correctness calculus.

Proof:
p �� (j ⇒ j ′ ∧ ¬ b′) � while b do s end

≡ { (30) }
p �� (j ⇒ j ′ ∧ ¬ b′) � ([b ]s)ω [¬ b]

〈≡ { relax postcondition }
p �� (j ⇒ j ′) ∧ ¬ b′ � ([b ]s)ω [¬ b]

≡ { (20) }
(p �� j ⇒ j ′) [¬ b] � ([b ]s)ω [¬ b]

〈≡ { monotonicity of seq comp wrt � }
p �� (j ⇒ j ′) � ([b ]s)ω

〈≡ { (23) }
p � true � ([b ]s)ω ∧ (j ⇒ j ′) � (([b ]s)ω)par

≡ { (29) }
p � true � ([b ]s)ω ∧ (j ⇒ j ′) � ([b ]s)∗ A

We now prove each of the two conjuncts of A above separately. First, we prove
the right-hand conjunct:

(j ⇒ j ′) � ([b ]s)∗

〈≡ { (15) }
(j ⇒ j ′) � [b ]s (j ⇒ j ′) 	 skip

〈≡ { j ⇒ j ′ � skip }
(j ⇒ j ′) � [b ]s (j ⇒ j ′)

≡ { (j ⇒ j ′)(j ⇒ j ′) = (j ⇒ j ′) }
(j ⇒ j ′)(j ⇒ j ′) � [b ]s (j ⇒ j ′)

〈≡ { monotonicity of seq comp wrt � }
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(j ⇒ j ′) � [b ]s { Proviso 1 }
Secondly, we prove the left-hand conjunct of A:

p � true � ([b ]s)ω

≡ { (14) }
p � true � ([b ]s)∗ 	 ([b ]s)∞

≡ { (2), noting that p � true is p ∧ true � true }
{p}(true � true) � ([b ]s)∗ 	 ([b ]s)∞

≡ { (9) }
true � true � [p ](([b ]s)∗ 	 ([b ]s)∞)

≡ { distributivity }
true � true � [p ]([b ]s)∗ 	 [p ]([b ]s)∞

≡ { Proviso 2 }
true � true � [p ]([b ]s)∗ 	 magic

≡ { magic is unit of 	 }
true � true � [p ]([b ]s)∗

≡ { (10) }
magic � [p ]([b ]s)∗magic

≡ { (9) }
{p}magic � ([b ]s)∗magic

≡ { (18) }
{p}magic � νref x . [b ]s x 	 magic

≡ { magic is unit of 	 }
{p}magic � νref x . [b ]s x

〈≡ { μ f � νf , transitivity of � }
{p}magic � μref x . [b ]s x

≡ { (12) }
{p}magic � ([b ]s)∞

≡ { (9) }
magic � [p ]([b ]s)∞

≡ { (4) }
[p ]([b ]s)∞ = magic { Proviso 2 } �

6.2 An Application of the General-Correctness Loop Rule

Concert. In previous works such as [11,8,10] Dunne et al. have already de-
scribed combining two general-correctness computations “in concert” under a
termination pact by which the overall result, if any, of their parallel executions
on separate copies of the state space is determined entirely by whichever of them
happens to terminate first. Such a concert operator # can be simply defined in
terms of prescriptions by

(p1 �� q1) # (p2 �� q2) =def (p1 ∨ p2) �� (q1 ∨ q2) (31)
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What may at first sight seem surprising about the definition of concert here
in (31) is that the preconditions of the two prescriptions on the left-hand side
appear in the right-hand prescription to have lost their particular association
with their respective postconditions. This is indeed so, and reflects the fact that
even if the concerted execution takes place from an initial state where only,
say, its first component p1 �� q1 is guaranteed to terminate, it is still possible
that its other component p2 �� q2 will terminate first entirely fortuitously. In
such a case the result delivered by p2 �� q2 must under general correctness still
satisfy q2 despite its termination being fortuitous rather than guaranteed. This
is in contrast to the analogous situation in total correctness where the result
delivered by any fortuitous termination of a design p � q from an initial state
outside its precondition p is unconstrained by its postcondition q.

Our concert operator # is both well-defined (because p �� q is a canoni-
cal form for prescriptions3) and monotonic on the refinement ordering � on
prescriptions.

An example refinement using concert. To illustrate the use of our concert
operator # we consider an impoverished computing environment in which values
can be tested only for equality (or inequality) with zero, and where variables can
only be modified by incrementing or decrementing by one. In such an austere
environment even something as simple as setting an integer variable to zero, as
specified by the prescription true �� x ′ = 0 , poses a considerable programming
challenge. However, rising to that challenge we observe that

true �� x ′ = 0
= { integer property }

(x ≤ 0 ∨ x ≥ 0) �� x ′ = 0
= { defn of # }

(x ≤ 0 �� x ′ = 0) # (x ≥ 0 �� x ′ = 0)

Interestingly, the two concerted specifications above can each be implemented
by a while loop within our austere computing environment. Intuitively

x ≤ 0 �� x ′ = 0 � while x �= 0 do x := x + 1 end (32)

x ≥ 0 �� x ′ = 0 � while x �= 0 do x := x − 1 end (33)

This means that we can fulfil our original requirement to set x to zero within the
constraints imposed by our impoverished computing environment by executing
the two loops above in concert on separate copies of the state space. But how do
we verify these putative refinements (32) and (33) formally? In the case of (32)
we do so by applying GC Loop 1 with p as x ≤ 0, j as true, b as x �= 0 and s as
x := x + 1. This gives us an obligation to discharge the provisos

1. (true ⇒ true) � [x �= 0] x := x + 1

3 That is to say, two prescriptions p1 

 q1 and p2 

 q2 are equal if and only if p1 = p2

and q1 = q2, as shown in [9].
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and
2. [x �= 0] x := x + 1 is well-founded on x ≤ 0,

which are both trivial. In the case of (33), on the other hand, we again apply GC
Loop 1 but this time with p as x ≥ 0, j as true, b as x �= 0 and s as x := x − 1.
This then gives us an obligation to discharge the provisos

1. (true ⇒ true) � [x �= 0] x := x − 1
and

2. [x �= 0] x := x − 1 is well-founded on x ≥ 0,

which again are both trivial.

What the example shows. We would stress that the purpose of the above
example is not the refinement per se, which is —in operational terms at least—
obviously quite trivial. Rather, it lies in the refinement’s formal verification.
This is simply not possible within the confines of total correctness. Only with
our new general-correctness loop-refinement rule GC Loop 1 can we establish the
refinement’s correctness. The point of the example is therefore to illustrate the
necessity of such a rule in verifying even such “obvious” refinements.

6.3 Another General-Correctness Loop Rule

We can derive more specialised general-correctness loop rules from our primary
rule GC Loop 1. For example if we simply re-write it with ¬ j replacing j we
obtain this version of the rule:

p �� (¬ j ⇒ ¬ j ′ ∧ ¬ b′) � while b do s end GC Loop 1a
provided
1. (¬ j ⇒ ¬ j ′) � [b ]s
2. [b ]s is well-founded on p.

Now combining GC Loop 1 and GC Loop 1a we obtain this further version:

p �� (j ⇔ j ′) ∧ ¬ b′ � while b do s end GC Loop 1b
provided
1. (j ⇔ j ′) � [b ]s
2. [b ]s is well-founded on p.

If we then strengthen our provisos with the requirement that ¬ j ⇒ b, from
which it follows immediately that ¬ j ′ ⇒ b′, we can then further simplify the
postcondition of the prescription on the left-hand side of GC Loop 1b to obtain
the following rule:

p �� j ∧ ¬ b′ � while b do s end GC Loop 2
provided
1. ¬ j ⇒ b
2. (j ⇔ j ′) � [b ]s
3. [b ]s is well-founded on p.



Reasoning about Loops in Total and General Correctness 79

In the next subsection we illustrate the use of this rule by applying it to verify
another “intuitively obvious” general-correctness refinement.

6.4 An Application of the GC Loop 2 Rule

A prescription of the particular form p �� (p ∧ q) , where as usual p is a condition
on the the initial state v and q is a binary relation on {v , v ′}, has a commitment
which demands that the initial state of any execution which terminates must have
satisfied p . It therefore has the following interesting operational interpretation:

From any initial state which satisfies p the program must terminate in
a final state which satisfies q, whereas from any other initial state the
program must not terminate.

From our operational intuition it therefore seems obvious that the while loop

while x �= 0 do x := x − 1 end

which we saw earlier will terminate in a final state with x = 0 when started from
any initial state where x ≥ 0, whereas it will fail to terminate from any other
initial state. In other words, it implements the prescription

x ≥ 0 �� (x ≥ 0 ∧ x ′ = 0).

Yet our GC Loop 1 rule cannot be applied directly to verify such a refinement
because the above prescription doesn’t match the form p �� (j ⇒ j ′ ∧ ¬ b′) .
On the other hand, by setting p and j both to x ≥ 0 and b to x �= 0 it does
match the form p �� j ∧ ¬ b′ of our GC Loop 2 rule. Moreover, all three of this
rule’s provisos, namely

1. ¬ (x ≥ 0) ⇒ x �= 0 ,
2. (x ≥ 0 ⇔ x ′ ≥ 0) � [x �= 0] x := x − 1

and
3. [x �= 0] x := x − 1 is well-founded on x ≥ 0 ,

are then satisfied. Hence we can apply GC Loop 2 to verify this implementation.

7 Conclusion

We have presented a calculus for reasoning about programs in total correctness,
and demonstrated its utility in verifying succinctly the familiar loop-invariant
rule for refining a specification in total correctness by a while loop. We have
also presented an analogous calculus for reasoning about programs in general
correctness, which we then used to verify our new loop-invariant rule for refining
a specification in general correctness by a while loop. We believe our verification
proofs of our rules demonstrate that our algebraically-inspired calculi provide
an apt framework for reasoning about such rules.

Finally, it is perhaps worth noting that we are not the only ones to have
espoused an algebraic style in reasoning about general correctness. In [22], for
example, Möller and Struth apply a notably abstract algebraic approach to rea-
soning about wp and wlp. It would certainly be interesting to explore further
the relationship of their work to ours.
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Abstract. We integrate non-strict computations into the Unifying The-
ories of Programming. After showing that this is not possible with
designs, we develop a new relational model representing undefinedness in-
dependently of non-termination. The relations satisfy additional health-
iness conditions that model dependence in computations in an elegant
algebraic form using partial orders. Programs can be executed accord-
ing to the principle of lazy evaluation, otherwise known from functional
programming languages. We extend the theory to support infinite data
structures and give examples to show their use in programs.

1 Introduction

Our goal is to extend the Unifying Theories of Programming (UTP) by non-strict
computations. Consider the statement P =def (x1, x2:=1/0, 2) that simultaneously
assigns an undefined value to x1 and 2 to x2. In UTP and most conventional lan-
guages its execution fails, but we want undefined expressions to remain harmless
if their value is not needed. This is standard in functional programming languages
with lazy evaluation like Haskell [25], Clean [26] and Miranda [37]. Yet also in an
imperative language the equation P ; (x1:=x2) = (x1, x2:=2, 2) can be reasonable
since the value of x1 after the execution of P is never used. This is confirmed by
the following Haskell program that implements P ; (x1:=x2) in monadic style:

import Data.IORef;
main = do r <- newIORef (div 1 0 , 2)

modifyIORef r (\(x1,x2) -> (x2,x2))
x <- readIORef r
print x

It prints (2,2) terminating successfully, but would abort if (x2,x2)was changed
to (x1,x1). With non-strict computations available, programs can be expressed
more freely since less attention has to be paid to avoid non-termination. For
example, in functional programming languages they enable the use of infinite
data structures. They too are not supported by UTP so far.

Regarding the statement P again, we have to address that UTP models un-
definedness as non-termination [15, page 78]. In particular, P = (false � true)
holds, hence P is the never terminating program (the solution of the recursive
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specification X = X). In consequence there is no distinction between unde-
finedness of individual variables; actually P = (x1, x2 :=2, 1/0) holds. Moreover,
computations are strict in the sense that P ; (x1:=x2) is again the endless loop.

In some contexts such a uniform treatment of non-termination and undefined-
ness is not appropriate. UTP’s point of view is that of the specifier who does not
care whether a program loops indefinitely or aborts due to an error, since in both
cases it does not fulfil its objective. We can, however, argue for a differentiation
between finite and infinite failure. From the users’ point of view, errors can actu-
ally be observed about executions of programs whereas non-termination cannot.
From the programmers’ and language designers’ point of view, errors might be
recovered from, for example, by exception handling. From the theorists’ point
of view, error detection is semidecidable in contrast to non-termination which
is not semidecidable. We therefore strive for a theory that separates undefined-
ness and non-termination. It is then manifest to regard variables individually to
obtain an even finer distinction.

As explained in Section 2, UTP’s designs are not adequate to support non-
strict computations. Let us therefore describe our new approach. As usual, we
represent undefinedness of individual variables by adding a special value ⊥ to
their ranges. We add another special element ∞ to distinguish non-termination
from undefinedness. The difficulty is to choose the relations and operations (that
model computations) such that, on the one hand, they handle these special values
correctly and, on the other hand, they are continuous. The latter is required to
iteratively approximate the solutions to recursive equations, which corresponds
to the evaluation of recursion in practice. Furthermore, key constructs such as
composition and choice should retain their familiar relational meaning to obtain
nice algebraic properties. We solve this problem by introducing a partial order
on the ranges of variables and states, and forming the closure of relations with
respect to this order.

Section 3 gives the relational basics. A compendium of relations modelling
the programming constructs known from UTP is presented in Section 4. We
identify several healthiness conditions they satisfy, starting with isotony and the
left and right unit laws. In Section 5 we derive further properties, namely finite
branching, continuity and totality. We thus obtain a theory similar to that of
designs, but describing non-strict computations, able to yield defined results in
spite of undefined inputs. Moreover, it is sufficient to execute only those parts of
a program necessary to calculate the final results, which can improve efficiency.

Our framework can also be applied to programs with infinite data structures.
Several examples constructing and modifying infinite lists are discussed in Sec-
tion 6. We also show how to express in our framework the class of fold- and
unfold-computations on (finite and infinite) lists. They are well-known in func-
tional programming languages and include such operations as map and filter ,
the building blocks of list comprehensions.

With lazy execution comes the need to consider dependences between indi-
vidual computations. Such dependences also play a role in optimising program
transformations like those performed in compilers. Their structure is investigated
in Section 7. Starting from the observation that non-strict computations with
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defined results cannot depend on undefined inputs, we derive two additional
healthiness conditions. Using another partial order we develop an equivalent,
algebraically elegant form of these properties. All our programming constructs
satisfy them, but they are also applicable to relations modelling new constructs.

In short, the contributions of this paper are an extension of UTP by non-strict
computations, appropriate healthiness conditions and infinite data structures.

This paper uses material obtained as a part of the author’s PhD thesis [11].
A condensed account of that part is given in [12]. Substantial extensions of the
present paper include the connections to UTP, a theory extended to more general
orders, and programs using infinite data structures. Proofs of our results can be
adapted from [11] to the present, more general setting (although some claims
are considerably harder to show).

2 Designs

We have seen the need to separate undefinedness from non-termination. Already
modelling non-termination, UTP’s designs are obvious candidates for a modi-
fied treatment of undefinedness. In this section we show that although such an
extension is possible, it leads to a fundamental problem. The conclusion is that
designs cannot adequately model non-strict computations. In Section 3 we there-
fore introduce the relational foundations of an alternative model which is used
in the remainder of this paper.

Before we investigate designs, and for further reference, recall that the health-
iness conditions H1–H4 of UTP are equivalent to the following four algebraic
restrictions with respect to sequential composition:

H1a. ID ; R = R H3. R = R ; ID

H1b. OD ; R = OD H4. OD = R ; OD

The skip design ID = (true � �x=�x′) should be left- and right-neutral and the
design OD = (false � true) should be left- and right-absorbing. The design
OD is also denoted true by [15] which is correct but confusing in the following
discussion. We intend to explain in detail why the law H1b is incompatible with
non-strictness; the reader who takes this for granted may jump to Section 3.

Consider the design (P � Q) where the precondition P represents the termi-
nating states, while Q represents the possible transitions starting in those states.
Let us focus on the type of the relation Q between program states. Assume for
the sake of exposition that the program has two variables x1 and x2 ranging
over the natural numbers �. A state then is an element of �2 =def �×�, and
the transition relation Q is an element of �2 ↔ �

2. No provisions are made to
represent variables with undefined values. Indeed, there is no reason to, since
undefinedness is modelled as non-termination in the component P of designs.

To separate undefinedness from non-termination we have to provide means
to represent undefined values in the transition relation Q of designs. This is
achieved by modifying the set of states in either of two ways. Both start by
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extending the range of each variable to � ∪ {⊥}, where the special element ⊥
represents the undefined value.

The first approach uses the smash product of both variable ranges �2 ∪ {⊥}
as the set of states. A transition relation then is an element of (�2 ∪ {⊥}) ↔
(�2 ∪{⊥}). In this case ⊥ models undefinedness of the state as a whole but not
of its constituents, the individual variables.

To achieve the latter, we instead take the Cartesian product (� ∪ {⊥})2 as
the set of states (the problem we exhibit below remains also with the smash
product). Thus undefined and defined variables may coexist as exemplified by

(x1, x2:=1/0, 2) ; (x1:=x2)
= {((x1, x2), (x′

1, x
′
2)) | x′

1=⊥ ∧ x′
2=2} ; {((x1, x2), (x′

1, x
′
2)) | x′

1=x2 ∧ x′
2=x2}

= {((x1, x2), (x′
1, x

′
2)) | x′

1=2 ∧ x′
2=2}

= (x1, x2:=2, 2) .

Note that the assignment here is regarded as a plain transition relation, not as a
design, because termination is not treated yet. The special element ⊥ represents
that x1 has been assigned an expression with undefined value. However, this
first assignment to x1 has no effect since its value is never used but immediately
overwritten. It is not even necessary to evaluate the corresponding right hand
side. Unaffected by these considerations is the value of x2.

The transition relations, now elements of (� ∪ {⊥})2 ↔ (� ∪ {⊥})2, are
built into designs to deal with non-termination. For the following argument, we
redefine the assignment as the design

(x1, x2:=e1, e2) =def (true � x′
1=e1 ∧ x′

2=e2) ,

reflecting the fact that an assignment always terminates as opposed to the orig-
inal assignment of UTP. To complete the separation of undefinedness and non-
termination, also conditional statements would have to be redefined, since their
conditions are expressions and can have undefined values, too. We leave out this
definition, because it does not affect the following two facts. First,

(x1:=1/0) ; (x1, x2:=2, 3) = (true � x′
1=⊥ ∧ x′

2=x2) ; (true � x′
1=2 ∧ x′

2=3)
= (true � x′

1=2 ∧ x′
2=3) = (x1, x2:=2, 3) ,

using the composition formula of designs. The undefined value of x1 has no effect,
which is just what we expect from a non-strict computation. Second,

OD ; (x1, x2:=2, 3) = (false � true) ; (true � x′
1=2 ∧ x′

2=3)
= (false � true) = OD ,

recalling that the design OD represents non-termination. It is left absorbing,
which is just what we expect from designs according to H1b. We now argue that
the latter equation, although it is algebraically elegant, does not co-operate well
with the first one, and hence cannot be upheld in a non-strict setting.

Consider the possible execution strategies for a program R ; (x1, x2 :=2, 3),
assuming we do not know whether R = (x1 := 1/0) or R = OD holds, since
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this is undecidable in general. Conventionally, one would first execute R and
then (x1, x2 := 2, 3). This leads to non-termination if R = OD, but aborts if
R = (x1:=1/0), which is inconsistent with the first fact derived above. To avoid
this error, one could alternatively start with (x1, x2 :=2, 3), realising that the
values of the variables prior to this assignment are not needed. The execution of
R is thus omitted, which is inconsistent with the second fact if R = OD.

The conflict between both facts is summarised as follows: According to the
first, it is possible to recover from undefinedness, but according to the second,
it is impossible to recover from non-termination. To observe the latter, other-
wise unnecessary calculations have to be performed. They possibly abort due to
undefined expressions, contradicting the former.

Since it is our aim to model non-strict computations, we are forced to give up
an equation like OD ; (x1, x2:=2, 3) = OD. This is an instance of the healthiness
condition OD ; R = OD that every design R satisfies, called H1b above. ‘However,
a lazy functional language does not satisfy this law.’[14, page 24] Although we are
not specifically concerned with functional programming languages, we therefore
cannot use UTP’s designs for our purpose.

3 Relational Preliminaries

In this section we set up the context of the investigation of non-strictness. We
describe the relational model of imperative, non-deterministic programs in detail
and introduce terminology, notation and conventions used in this paper.

Characteristic features of imperative programming are variables, states and
statements. We assume an infinite supply x1, x2, . . . of variables. Associated with
each variable xi is its type or range Di, a set comprising all values the variable
can take. Each Di shall contain two special elements ⊥ and ∞ with the following
intuitive meaning: If the variable xi has the value ⊥ and this value is needed,
the execution of the program aborts. If the variable xi has the value ∞ and
this value is needed, the execution of the program does not terminate. Further
structure is imposed on Di in Sections 4.1 and 7.

A state is given by the values of a finite but unbounded number of variables
x1, . . . , xm which we abbreviate as �x. Let 1..m denote the first m positive inte-
gers. Let �xI denote the subsequence of �x comprising those xi with i ∈ I for a
subset I ⊆ 1..m. By writing �x=a where a ∈ {∞,⊥} we express that xi=a for
all i ∈ 1..m. Let DI =def

∏
i∈I Di denote the Cartesian product of the ranges of

the variables xi with i ∈ I. A state is an element �x ∈ D1..m.
The effect of statements is to transform states into new states. We therefore

distinguish the values of a variable xi before and after the execution of a state-
ment. The input value is denoted just as the variable by xi and the output value
is denoted by x′

i. In particular, both xi ∈ Di and x′
i ∈ Di. Composed of the

output values, the output state (x′
1, . . . , x

′
n) is abbreviated as �x′. Statements

may introduce new variables into the state and remove variables from the state;
then m �= n. Using UTP terminology, the input alphabet is {x1, . . . , xm} and
the output alphabet is {x′

1, . . . , x
′
n} with possibly different m and n.
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A computation is modelled as a relation R = R(�x, �x′) ⊆ D1..m × D1..n. An
element (�x, �x′) ∈ R intuitively means that the execution of R with input values
�x may yield the output values �x′. The image of a state �x is given by R(�x) =def

{�x′ | (�x, �x′) ∈ R}. Non-determinism is modelled by having |R(�x)| > 1. Compared
to designs, the new models get by with just one relation instead of two, and this
is compensated by the additional special elements ⊥ and ∞.

Another way to state the type of the relation is R : D1..m ↔ D1..n. The frame-
work employed is that of heterogeneous relation algebra [31,32]; a homogeneous
model would complicate the treatment of local variables in recursive calls (by
stacks) and parallel composition (by merge). We omit any notational distinction
of the types of relations and their operations and assume type-correctness in
their use.

We denote the identity and universal relations by I and ��, respectively. Lattice
join, meet and order of relations are denoted by ∪, ∩ and ⊆, respectively. The
Boolean complement of R is R, and the converse (transposition) of R is R�.
Relational (sequential) composition of P and Q is denoted by P ; Q and PQ.
Converse has highest precedence, followed by sequential composition, followed
by meet and join with lowest precedence.

A relation R is a vector iff R�� = R, total iff R�� = �� and univalent iff
R�R ⊆ I. A relation is a mapping iff it is both total and univalent. Note that
totality is exactly the healthiness condition H4.

Relational constants representing computations may be specified by set com-
prehension as, for example, in

R = {(�x, �x′) | x′
1=x2 ∧ x′

2=1} = {(�x, �x′) | x′
1=x2} ∩ {(�x, �x′) | x′

2=1} .

We abbreviate such a comprehension by its constituent predicate, that is, we
write R = (x′

1=x2)∩(x′
2=1). In doing so, we use the identifier x in a generic way,

possibly decorated with an index, a prime or an arrow. It follows, for example,
that �x=�c is a vector for every constant �c.

To form heterogeneous relations and, more generally, to change their dimen-
sions, we use the following projection operation. Let I, J , K and L be index
sets such that I ∩ K = ∅ = J ∩ L. The dimensions of R : DI∪K ↔ DJ∪L are
restricted by

(∃∃�xK , �x′
L : R) =def {(�xI , �x

′
J ) | ∃�xK , �x′

L : (�xI∪K , �x′
J∪L) ∈ R} : DI ↔ DJ .

We abbreviate the case L = ∅ as (∃∃�xK : R) and the case K = ∅ as (∃∃�x′
L : R).

See Section 4.4 for the correspondence to variable (un)declaration.
Defined in terms of the projection, we furthermore use the following relational

parallel composition operator, similar to that of [2,3,28]. The parallel composi-
tion of the relations P : DI ↔ DJ and Q : DK ↔ DL is

P‖Q =def (∃∃�x′
K : I) ; P ; (∃∃�xL : I) ∩ (∃∃�x′

I : I) ; Q ; (∃∃�xJ : I) : DI∪K ↔ DJ∪L .

If necessary, we write P
I
‖

K
Q to clarify the partition of I ∪ K (a more detailed

notation would also clarify the partition of J ∪ L). In our theory of non-strict
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computations the ‖ operator corresponds to conjunction rather than the parallel
composition of disjoint processes in [15, Section 7.1].

Recall that a non-empty subset S of a partially ordered set is directed iff each
pair of elements of S has an upper bound in S. We apply the dual notion to
the lattice of relations only: A set S of relations is co-directed iff it is directed
with respect to ⊇, that is, if S �= ∅ and any two relations P, Q ∈ S have a lower
bound R ∈ S with R ⊆ P and R ⊆ Q.

4 Programming Constructs

We present a relational model of non-strict computations. Since we cannot use
UTP’s designs, we have to reformulate the respective theory. In particular, we
give new definitions for most programming constructs and identify several health-
iness conditions they satisfy. The latter starts with isotony and the unit laws in
Section 4.5, followed by boundedness, continuity and totality in Section 5 and
two dependence conditions in Section 7.

4.1 Values

The state of an imperative program is given by the values of its variables, taken
from the ranges Di introduced above. They contain the special elements ⊥ and
∞ modelling undefinedness and non-termination. Instead of regarding Di as an
unstructured set, we augment the ranges to partially ordered structures. This
is usual, for example, in the semantics of functional programming languages.
Among the various suggested structures are directed or ω-complete (pointed)
partial orders [1,30] or complete lattices [36]. We choose the algebraic semilattices
of [6], which are complete semilattices having a basis of finite elements. They are
closed under the constructions described below and adequate for our results.

In particular, each Di is a partial order with a least element in which suprema
of directed sets and infima of non-empty sets exist. We denote by � : Di ↔ Di

the order on Di, let ∞ be its least element, and write sup S for the supremum
of the directed set S with respect to �. The dual order of � is denoted by
� =def �� . An order similar to �, in which ⊥ is the least element, is introduced
in Section 7.

Our data types are constructed as follows. Elementary types, such as the
Boolean values Bool =def {∞,⊥, true, false} and the integer numbers Int =def

� ∪ {∞,⊥}, are flat partial orders, that is, x�y ⇔def x=∞ ∨ x=y. Thus ⊥ is
treated like any other value except ∞, with regard to �. The union of a finite
number of types Di is given by their separated sum {∞,⊥} ∪ {(i, x) | x ∈ Di}
ordered by x�y ⇔def x=∞∨ x=⊥=y ∨ (x=(i, xi) ∧ y=(i, yi) ∧ xi�Di

yi). The
product of a finite number of types Di is DI =

∏
i∈I Di ordered by the pointwise

extension of �, that is, �xI ��yI ⇔def ∀i ∈ I : xi�Di
yi. Values of function types

are ordered pointwise and �-continuous, that is, they distribute over suprema
of directed sets. Recursive data types are built by the inverse limit construction,
see [30].
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Some results can be strengthened if we restrict our constructions to union
and product. It is then easily proved by induction that every chain C ⊆ Di

ordered by � is finite (a chain is a totally ordered subset). Even more, the
lengths of the chains are bounded, so that the variable ranges are partial orders
with finite height. Our previous work [11,12] restricts Di to flat orders for reasons
explained in Section 5. The new extension to more general orders is indispensable
for infinite data structures, see Section 6.

The product construction plays a double role. It is not only used to build
compound data types but also to represent the state of a computation with
several variables. Hence the elements of the state �x ∈ D1..m are ordered by �
and we may write �x��x′ to express that xi�x′

i for each variable xi.

4.2 Skip

In this and the following sections, we successively define our programming con-
structs using relations on the state and discuss essential algebraic properties. In
particular, the order � is a relation on states which turns out to be fundamental.
Indeed, we take it as the definition of the new relation modelling skip, denoted
also by � =def �. While this action may appear strange, it can be compared
to the redefinition of skip in [15, Section 9.1] to support procedure values. Al-
though we do not treat such values in this paper, � can be interpreted as a
kind of refinement [20,22]. Further explanation of � is provided by the following
connection to designs.

Remark. The intention underlying the definition of � is to enforce an upper
closure of the image of each state with respect to �. Traces of such a procedure
can be found in the healthiness conditions of designs: ‘The healthiness condition
H2 states formally that the predicate R is upward closed in the variable ok ′: as
ok ′ changes from false to true, R cannot change from true to false.’[15, page 83]
Since H3 implies H2, every H3-design is upper closed in this way. For H3-designs,
[10] shows how to replace the auxiliary variables ok and ok ′ by a special element
that corresponds to ∞ in our present discussion. In particular, [10, Lemma 9.2]
formulates the upper closure as R�� ∩ R ⊆ V � , where V corresponds to the
vector �x=∞. By the Schröder law of relation algebra,

R�� ∩ R ⊆ V � ⇔ R�� ∩ V � ⊆ R ⇔ RV � ⊆ R
⇔ RV ⊆ R ⇔ RV ∪ R = R ⇔ R(V ∪ I) = R .

If the state is a flat order, V ∪ I = (x=∞) ∪ (x=x′) = (x�x′), and we obtain
the right unit law R ; � = R. Our definition of � refines this by distinguishing
individual variables and non-flat orders. The refined right unit law corresponding
to the healthiness condition H3 of designs is stated in the following definition.

As usual, skip should be a left and a right unit of sequential composition.

Definition 1. HL(P ) ⇔def � ; P = P and HR(P ) ⇔def P ; � = P .
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By reflexivity of � it suffices to demand ⊆ instead of equality. We furthermore
use HE(P ) ⇔def HL(P )∧HR(P ). It follows that for X ∈ {E, L, R} the relations
satisfying HX form a complete lattice. The next sections define programming
constructs that satisfy or preserve these healthiness conditions.

4.3 Expressions

The assignment statement of UTP is the mapping (�x:=�e) =def (�x′=�e), where
each expression e ∈ �e may depend on the input values �x of the variables, and
yields exactly one value e(�x) from the expression’s type.

Our new relation modelling the assignment is (�x←�e) =def � ; (�x:=�e) ; �. We
assume that each expression e ∈ �e is �-continuous, hence also �-isotone. We
write (�x←e) to assign the same expression e to all variables. The upper closure
of the images perspicuously appears in the following lemma which intuitively
states that �� models the never terminating program.

Lemma 2. We have (�x←∞) = �� and (�x←�c) = (�x′=�c) = (�x:=�c) for every
�-maximal �c ∈ D1..n. Moreover, (�x←�e) ; (�x←f(�x)) = (�x←f(�e)) holds.

Resuming our introductory example we now obtain (x1, x2←⊥, 2) ; (x1←x2) =
(x1, x2←2, 2) and furthermore �� ; (x1, x2←2, 2) = (x1, x2, �x3..n←2, 2,∞). If
all expressions �e are constant we have �� ; (�x←�e) = (�x←�e). These properties
hold instead of the healthiness condition H1b of designs, and demonstrate that
computations in our setting are indeed non-strict.

Let us elaborate the assignment (�x←�e) using � ; (�x′=�e) ⊆ (�x′=�e) ; � which
relationally states that the expressions �e are �-isotone [20]. The assignment then
simplifies to (�x←�e) = (�x:=�e) ; � since

� ; (�x′=�e) ; � ⊆ (�x′=�e) ; � ; � = (�x′=�e) ; � ⊆ � ; (�x′=�e) ; � .

Hence (�x←�e) = (�x′=�e) ; � = {(�x, �x′) | ∃�y : �y=�e(�x)∧�y��x′} = {(�x, �x′) | �e(�x)��x′}.
This means that the successor states of �x under this assignment comprise the
usual successor �e(�x) and its upper closure with respect to �.

Consider the conditional statement (P�b�Q) = (b∩P )∪(b∩Q) of UTP, where
the condition b is treated as a vector. In common terms this reads as ‘if b then
P else Q’ but the definition does not take into account the possibility of b being
undefined. Its extension to designs (P � b �Q) = (Db ⇒ (b∩P )∪ (b∩Q)) does,
but yields non-termination whenever the condition b is undefined. We therefore
have to adapt the definition.

To this end, we no longer treat conditions as vectors but as �-continuous
expressions with values in Bool that may depend on the input �x. Nevertheless,
if b is a condition, the relation b=c is a vector for each c ∈ Bool . Using �x1..m

as input variables, we obtain that (b=c) = {(�x, �x′) | b(�x)=c} : D1..m ↔ D1..n

for arbitrary D1..n depending on the context. The new relation modelling the
conditional ‘if b then P else Q’ is

(P � b  Q) =def b=∞∪ (b=⊥ ∩ �x′=⊥) ∪ (b=true ∩ P ) ∪ (b=false ∩ Q) .
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The effect of an undefined condition in a conditional statement is to set all
variables of the current state undefined. By Lemma 2 we can indeed replace
b=∞∪ (b=⊥∩�x′=⊥) with (b=∞∩�x←∞)∪ (b=⊥∩�x←⊥). This models the fact
that the evaluation of b is always necessary if the execution of the conditional
is. Any non-termination or undefinedness is thus propagated.

As in UTP, the law (P � b  P ) = P holds if b is defined, but not in general
since an implementation cannot check if both branches of a conditional are equal.
The conditional shall have lower precedence than sequential composition.

4.4 Variables

Variables are added to and removed from the current state by UTP’s variable
declaration var xi = (∃∃xi : I) and undeclaration end xi = (∃∃x′

i : I). These
relations are not homogeneous: The declaration includes x′

i in its range but not
xi in its domain, and the undeclaration the other way round.

Again we have to adapt the statements to respect the healthiness conditions
HL and HR. The new relations modelling the simultaneous (un)declaration of
the variables �xK are var �xK =def (∃∃�xK : �) and end �xK =def (∃∃�x′

K : �).
Since var �xK = � ; (∃∃�xK : I) can be shown, the declaration itself does

not impose any restriction on the new variables. This means that accessing a
declared but uninitialised variable results in non-termination. A more appro-
priate statement that yields undefinedness instead can be obtained by using
var �xK ; (�xK←⊥). Alternatively, the language designer may opt to allow only
initialised variable declarations (var �xK ←�eK) =def var �xK ; (�xK ←�eK). The
expressions �eK must not refer to the new variables �xK in this case.

The alphabet extension is UTP’s mechanism to hide local variables from re-
cursive calls. It is given by P+xi = (x′

i=xi)∩end xi ; P ; var xi, making explicit
the change of P ’s type. The domain of P is extended by xi and the range by x′

i,
and both are equated.

To adapt the alphabet extension to our setting, let P : DI ↔ DJ be a (possibly
heterogeneous) relation and K such that I ∩K = J ∩K = ∅. The new alphabet
extension of P by the variables �xK is P+�xK : DI∪K ↔ DJ∪K given by

P+�xK =def end �xI ; var �xJ ∩ end �xK ; P ; var �xK .

Intuitively, the part end �xI ; var �xJ preserves the values of �xK and the part
end �xK ; P ; var �xK applies P to �xI to obtain �xJ . Just as the variable un-
declaration may be seen as a projection, the alphabet extension is an instance
of relational parallel composition. This follows since P+�xK = (�P�)

I
‖

K
�, which

simplifies to P
I
‖

K
� if HE(P ) holds. While this resembles [15, Definition 9.1.3],

the parallel composition of designs is different as regards termination. It is typ-
ically as complex to prove a result for the more general P‖Q as it is for P+�xK .

4.5 Isotony and Neutrality

We have introduced a selection of programming constructs as summarised in the
following definition. This selection subsumes the imperative, non-deterministic
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core of UTP and hence is rich enough to yield a basic programming and speci-
fication language.

Definition 3. We use the following relations and operations:

skip � =def �
assignment (�x←�e) =def � ; (�x:=�e) ; �
variable declaration var �xK =def (∃∃�xK : �)
variable undeclaration end �xK =def (∃∃�x′

K : �)
parallel composition P‖Q
sequential composition P ; Q
conditional (P � b  Q) =def b=∞∪ (b=⊥ ∩ �x′=⊥) ∪

(b=true ∩ P ) ∪ (b=false ∩ Q)
non-deterministic choice P ∪ Q
conjunction of co-directed set S

⋂
P∈S P

greatest fixpoint νf =def

⋃
{P | f(P ) = P}

No new definitions are given for sequential composition, the non-deterministic
choice and the fixpoint operator. They are just the familiar operations of relation
algebra. This simplifies reasoning because it enables applying familiar laws, like
distribution of ; over ∪, also to programs. We use the greatest fixpoint to de-
fine the semantics of specifications given by recursive equations, and thus obtain
demonic non-determinism. This is consistent with UTP, which uses the term
‘weakest fixed point’ and the notation μ, but with the reverse order. The spec-
ification P = f(P ) is resolved as ν(λP.f(P )) which we abbreviate as νP.f(P ).
For example, the iteration while bdo P is just νX.(P ; X � b  �).

We conclude our compendium of programming constructs by two useful re-
sults. The first states isotony of functions on programs with respect to refinement
⊆, which is important for the existence of fixpoints needed to solve recursive
equations. Corresponding to the healthiness conditions H1a and H3 of designs,
the second result establishes � as a left and a right unit of sequential composition,
which is useful to terminate iterations and to obtain a one-sided conditional.

Theorem 4. All functions composed of the constructs of Definition 3 are ⊆-
isotone. All relations composed of these constructs satisfy HL and HR.

Actually, these results hold for more constructs than those of Definition 3, for
example, also for the infinite choice

⋃
, least fixpoints, arbitrary conjunctions

and any constant relations satisfying HL and HR, including assignments and
conditionals with isotone expressions. These additional constructs are further
investigated in [11] for flat Di. The theory presented in this section is a proper
generalisation of the previous results to arbitrary partial orders containing ⊥
and a least element ∞. Most results below also apply to further constructs.

5 Continuity

A function f on relations is called co-continuous iff it distributes over infima of
co-directed sets of relations, formally f(

⋂
S) =

⋂
P∈S f(P ) for each co-directed
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set S. The importance of continuity comes from the permission to represent
the greatest fixpoint νf by the constructive

⋂
n∈� fn(��). This enables the ap-

proximation of νf by repeatedly unfolding f , which simulates recursive calls of
the modelled computation. However, unbounded non-determinism breaks conti-
nuity as shown, for example, in [7, Chapter 9] and [4, Section 5.7]. Sources of
unbounded non-determinism in our theory are the use of

– unrestricted non-deterministic choice
⋃

and
– finite choice ∪ within (recursively constructed) infinite data structures.

Considering Definition 3, we have already banned
⋃

and are about to replace
its use by

⋂
for the greatest fixpoint. The remaining source of unbounded non-

determinism can be neutralised in either of two ways: by restriction to orders
with finite height or to deterministic programs.

Our previous work [11] pursues the first approach by assuming Di to be flat
orders (actually, finite height suffices). Before presenting its main result, we
characterise boundedly non-deterministic programs, see [7,13,35]. Traditionally,
this requires that each state �x has finitely many successor states P (�x), given by
the image under the relation P . We adapt this to our context using the pointwise
minima with respect to �.

Definition 5. HB(P ) ⇔def ∀�x : |min P (�x)| ∈ �, where the minimal elements
of A ⊆ D1..n are min A =def {x | x ∈ A ∧ ∀y : (y ∈ A ∧ y � x) ⇒ y = x}.

This way the condition HB accounts for the proper successor states, excluding
those that have been added for technical reasons by forming the upper closure.
Using HB we can show the following statements.

Theorem 6. Assume that the ranges Di have finite height.

1. Relations composed of the constructs of Definition 3 satisfy HB .
2. Functions composed of the constructs of Definition 3 are co-continuous, that

is, they distribute over infima of co-directed sets of relations satisfying HE

and HB .
3. Relations composed of the constructs of Definition 3 are total.

The former approach suffices for basic data structures, but excludes functions
as values and infinite data structures. However, the problem is not caused by
the orders with infinite height, but by having non-determinism at the same
time, since this introduces relations with infinitely many proper successor states.
Our new proposal therefore is to restrict relations to represent deterministic
programs. This is sufficient to show continuity even in the presence of infinite
data structures. While the restriction to deterministic programs may seem harsh,
it is characteristic of many programming languages and does not preclude the use
of non-deterministic choice for specification purposes. Similarly to HB above,
we characterise deterministic computations in our context by the following HD.

Definition 7. HD(P ) ⇔def (lea P )�� = ��, where leaP =def P ∩ P ;� is the
pointwise least elements of P with respect to �. Moreover, let HC(P ) hold iff
(∀�x ∈ S : (�x, �x′) ∈ P ) ⇒ (sup S, �x′) ∈ P for every directed set S ordered by �.
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By taking the pointwise least elements, also HD accounts for the proper successor
states. The condition HC is needed to prove part 2 of the following result and
generalises �-continuity to relations. If P satisfies HR and HD, the relation
leaP is a mapping that is �-continuous iff P satisfies HL and HC .

Theorem 8. Consider Definition 3 without the choice operator.

1. Relations composed of these constructs satisfy HD and HC . In particular,
they are total.

2. Functions composed of these constructs are co-continuous, that is, they dis-
tribute over infima of co-directed sets of relations satisfying HE and HD

and HC .

We thus obtain a theory of non-strict computations over infinite data structures
by restricting ourselves to deterministic programs. Future work shall investigate
whether another trade-off is possible to reconcile non-determinism and infinite
data structures. Theorems 4 and 8 are the main results to guarantee that the
application of our theory in the next section is meaningful.

6 Infinite Data Structures

Supporting infinite data structures in a theory is nice, but one also needs means
to construct and use them in programs. In this section we focus on lists, but our
discussion also applies to more general structures such as infinite trees.

To see the difficulties involved, let us start with a simple example, the infinite
list ones = 1 : ones . We assume that the type of lists of integers has been defined
as IntList = Nil + (Int : IntList) with non-strict constructors : and Nil . Our
first attempt is a program P with one variable xs whose final value should be
the required list:

P = (xs←1:xs) ; P .

However, its solution νP.(xs←1:xs) ; P equals �� by totality of the assignment.
Obviously, non-strict computations do not prohibit programs from running into
endless loops. But endless loops have no effect if their results are not needed, so
we might instead try

P = P ; (xs←1:xs) .

And this works indeed, which we can confirm by calculating the greatest fixpoint
of f(P ) = P ; (xs←1:xs). Using Theorem 8.2 we obtain νf =

⋂
n∈� fn(��) where

f0(��) = ��
f1(��) = �� ; (xs←1:xs) = (xs←∞) ; (xs←1:xs) = (xs←1:∞)
f2(��) = f(xs←1:∞) = (xs←1:∞) ; (xs←1:xs) = (xs←1:1:∞)
f3(��) = f(xs←1:1:∞) = (xs←1:1:∞) ; (xs←1:xs) = (xs←1:1:1:∞)

Lemma 2 is applied to calculate f1(��). Thus fn(��) = (xs←(1:)n∞) and we
have νf = (xs←ones).
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Let us try to obtain the infinite list of natural numbers nats = 0 : 1 : 2 : 3 : . . .
next. Our program should have two variables xs and c to hold the result and to
count, respectively. Again the obvious first try P = (xs←c:xs) ; (c←c+1) ; P ,
assuming the initial value 0 for c, does not work. The above trick to reverse the
construction is fruitless in this case, yielding

P = P ; (xs←c:xs) ; (c←c+1) .

In fact, this program assigns the infinite list ∞ : ∞ : ∞ : . . . to xs. For example,
if we try to access the first element of xs, the computation does not terminate,
because to obtain the final value of c one has to unfold P infinitely. Even if the
computation terminated, two further problems would arise: The constructed list
would be decreasing (for example, the first element of xs is one larger than the
second), and there is no initial value of c where this decreasing sequence could
start. This could be avoided by using

P = P ; (c←c−1) ; (xs←c:xs) ,

and somehow ensuring that the final value of c is 0. Such a procedure we do not
pursue, since not every computation can be inverted (like the increment of c by
its decrement). The solution is to compute the value of c before the recursive
call and to construct the sequence afterwards, as in

P = (c←c+1) ; P ; (xs←c:xs) .

We only have to make sure that the value of c is saved across the recursive call,
so that it can be prepended to the list. The alphabet extension comes in handy:

P = (var t←c) ; (c←c+1) ; P+t ; (xs←t:xs) ; end t .

Using f(P ) = (var t←c) ; (c←c+1) ; P+t ; (xs←t:xs) ; end t, we obtain

f0(��) = ��
f1(��) = (var t←c) ; (c←c+1) ; ��+t ; (xs←t:xs) ; end t

= (var t←c) ; (c←c+1) ; (��xs,c‖t�) ; (xs←t:xs) ; end t
= (var t←c) ; (c←c+1) ; (xs , c, t←∞,∞, t) ; (xs←t:xs) ; end t
= (var t←c) ; (c←∞) ; (xs←t:∞) ; end t
= (xs , c←c:∞,∞)

f2(��) = (var t←c) ; (c←c+1) ; (xs , c←c:∞,∞)+t ; (xs←t:xs) ; end t
= (var t←c) ; (xs , c, t←c+1:∞,∞, t) ; (xs←t:xs) ; end t
= (xs , c←c:c+1:∞,∞)

f3(��) = (xs , c←c:c+1:c+2:∞,∞)

Thus fn(��) = (xs , c←c : c+1 : c+2 : . . . : c+n−1 : ∞,∞) and we obtain
(c←0) ; νf = (xs , c←nats,∞).

The above program to construct nats is motivated by the recursive definition
nats(c) = c : nats(c+1) of the natural numbers from c, also called enumFrom
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in Haskell. Its recursion pattern is the well-known symmetric linear recursion,
which is sufficiently general to subsume cata-, ana-, hylo- and paramorphisms
[19] or folds and unfolds [9] on lists. For example, in functional programming
languages the latter are characterised by

unfold(p, f, g, x) = if p(x) then Nil else f(x) : unfold(p, f, g, g(x)) ,

where the parameter p represents the terminating condition, f constructs the
values of the list and g modifies the seed x. Note that p, f and g are constant
parameters. We may realise unfold by the program

P = (xs←Nil � p(x)  var t←f(x) ; x←g(x) ; P+t ; xs←t:xs ; end t) .

Instantiating p(x) = false , f(x) = x and g(x) = x+1 we obtain the program for
nats. Also ones may be recovered by p(x) = false and f(x) = g(x) = 1. In such
instances, where termination is not available or not guaranteed, our program P
is more general than in strict UTP. Moreover, it is not necessary to compute the
result entirely, but only to the required precision.

Let us now consider several further examples, starting with the list-consuming
counterpart

foldr (f, z, xs) = if isNil(xs) then z else f(head(xs), foldr (f, z, tail(xs))) .

We may realise foldr by the program

P = (r←z � isNil(xs)  var t←head(xs) ; xs←tail(xs) ; P+t ;
r←f(t, r) ; end t)

that is able to process finite and infinite xs, provided f is non-strict. The dual
foldl immediately returns from its recursive calls and therefore does not work on
infinite lists in general, but scanl does. Instantiating foldr with f(t, r) = g(t) : r
and z = Nil we obtain a program to compute map(g, xs), leaving the result in r.
Instantiating foldr with f(t, r) = if p(t) then t : r else r and z = Nil we obtain
filter(p, xs). This shows that we can program using list comprehensions, even on
infinite lists. For example, [ f(x) | x ← xs, p(x) ] is obtained by

P = (ys←Nil � isNil(xs)  var t←head(xs) ; xs←tail(xs) ; P+t ;
(ys←f(t):ys � p(t)  �) ; end t) .

It consumes the input list xs and produces the output list ys . We could also
call the result xs, but generally its type differs from that of xs , hence P is a
heterogeneous relation. Note that only the value of the variable xs is updated
during the recursion, but there is no destructive update to the original list that
is persistent and could be referenced by another variable.

As our final example, here is the ‘unfaithful’ prime number sieve [24], entirely
in terms of the constructs of Section 4:

primes = from2 ; sieve
from2 = var c←2 ; (νR. var t←c ; c←c+1 ; R+t ; xs←t:xs ; end t) ; end c
sieve = νR. var p←head(xs) ; xs←tail (xs) ; remove ; R+p ; xs←p:xs ; end p

remove = νR. var q, t←p, head(xs) ; xs←tail (xs) ; R+q,t ; p←q ; div ; end q, t
div = (� � p|t  xs←t:xs)
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This may seem verbose compared to its Haskell equivalent, but it uses neither
parameters and pattern matching, nor concise notations such as [ 2.. ] for from2
and [ t | t ← xs, p � t ] for remove available in Haskell. Such concepts shall be
added to our language in the future. Our program can be executed in such a way
that only so many prime numbers are computed as actually required. But also
with finite data structures a lazy execution may be advantageous. For example,
we have devised versions of mergesort and heapsort in our framework which, for
lists of length n, perform at most O(n log n) comparisons, but fewer if only the
initial elements of the sorted sequence are required.

7 Dependence

Undefined and defined variables may coexist according to our relational theory
of computations. In this section we discuss two aspects of non-strictness that can
be described in terms of dependence of variables. We first illustrate the issue for
the case m = n = 1, that is, a single input and output variable, and then present
the resulting, additional healthiness conditions.

Consider a relation R with an x′
1 �=⊥ such that (⊥, x′

1) ∈ R, thus R produces
a defined output for an undefined input. If x′

1 is to be computed by a program,
its value must not depend on the value of x1 or else the input x1=⊥ would result
in the output x′

1 =⊥. In other words, there must be a constant assignment to
x′

1. We therefore obtain the condition (x1, x
′
1) ∈ R for all x1. Note that we do

not conclude that R equals this constant assignment, since in general R may be
composed by non-deterministic choice from the constant assignment and some
non-constant computation.

Now consider a relation R with (⊥,⊥) /∈ R, thus R does not produce an
undefined output for an undefined input. Then indeed there cannot be non-
constant computations and the value of x′

1 must not depend on the value of the
input x1 at all. Hence we must ensure that only constant assignments occur.
This is achieved by requiring (x1, x

′
1) ∈ R for all x1, if (x1, x

′
1) ∈ R for some x1.

Note that choosing x1=⊥ yields a special case of the first condition, while x′
1=⊥

is prevented since it implies (⊥,⊥) ∈ R.
Both conditions can be generalised to arbitrary m and n, but the resulting

formulae are very unwieldy. Fortunately, they have an elegant counterpart in
order-theoretic terms, derived in [11] for flat orders, which we use directly. To
this end, we introduce an order similar to �, but now with respect to ⊥. However,
we have to restrict our data types by disallowing the use of functions as values.

The partial order � : Di ↔ Di with least element ⊥ is constructed as follows.
Elementary types are flat, that is, x�y ⇔def x=⊥∨ x=y. The finite union of Di

is ordered by x�y ⇔def x=⊥ ∨ x=∞=y ∨ (x=(i, xi) ∧ y=(i, yi) ∧ xi�Di
yi). The

finite product of types Di is ordered by the pointwise extension of �, that is,
�xI��yI ⇔def ∀i ∈ I : xi�Di

yi. The constituents of the inverse limit construction
for recursive data types are ordered pointwise. Using the new order, we obtain
an algebraic characterisation of the healthiness conditions, where � =def ��

denotes the dual order of �.
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Definition 9. HN (R) ⇔def � ; R ⊆ R ; � and HA(R) ⇔def � ; R ⊆ R ; �.

If R is a mapping, the condition HN (R) is equivalent to HA(R) and states that
R is isotone with respect to �. Actually, a relation R satisfying ER ⊆ RE and
E�R ⊆ RE� for a partial order E is also called an ‘isotone relation’ [38] and
an ‘order preserving multifunction’ [34]. These works investigate the ‘relational
fixed point property’ [33], a property of the order E rather than of functions
over relations.

Remark. The new healthiness conditions are related to the Egli-Milner order
on powerdomains built from flat domains [27,30]. Indeed, one can interpret the
conjunction of HN and HA as imposing the Egli-Milner order on the image
sets of relations. This order is frequently used in semantics to define the least
fixpoint of functions. Let us therefore emphasise that � serves to support our
reasoning about undefinedness, that is, finite failure. It is not used to approxi-
mate fixpoints, which we do by the subset order ⊆ that (with closure under �)
corresponds to an order based on wp. In [23] two orders based on wp and wlp
are combined for approximation. In fact the Egli-Milner order models erratic
non-determinism or general correctness, but UTP’s and our definitions model
demonic non-determinism or total correctness. The difference is expounded in
[23,35] in more detail. A general correctness variant of UTP is explored in [8].

We can show that our programming constructs satisfy HN and HA. To deal
with the assignment and the conditional, we assume that the expressions are
�-isotone in addition to being �-continuous.

Theorem 10. Relations composed of the constructs of Definition 3 without the
choice operator satisfy HN and HA.

The conditions HN and HA can also be seen as expressing an information preser-
vation principle. In this interpretation � is the definedness information order and
HN and HA convey definedness information. Corresponding healthiness condi-
tions for the termination information order � are discussed in [11] and can also
be generalised to the present setting of more general orders.

8 Conclusion

We have proposed a new relational approach to define the semantics of impera-
tive programs. Let us summarise its key properties and its extensions to UTP.

– Undefinedness and non-termination are treated independently of each other.
Finite and infinite failure can thus be distinguished, which is closer to prac-
tice and allows one to model recovery from errors. A fine distinction is offered
by dealing with undefinedness separately for individual variables.

– The theory provides a relational model of dependence in computations. Ad-
ditional healthiness conditions are stated in a compact algebraic form and
can therefore be applied easily to new programs given as relations.
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– The relations model non-strict computations in an imperative context. Ef-
ficiency can thus be improved by executing only those parts of programs
necessary to obtain the final results. Programs can construct and process in-
finite data structures. The theory can serve as a basis to link to the semantics
of functional programming languages.

The disadvantages of a possibly lazy evaluation are of course a potential overhead
and reduced predictability of execution time, space and order.

We thus obtain a theory similar to that of designs but modelling non-strict
computations. In particular, the left and right unit laws HL and HR and the
totality property correspond to the healthiness conditions H1–H4 of designs with-
out the left zero law �� ; R = ��. For elementary, sum and product types, all
functions composed of programming constructs are continuous and all relations
composed of programming constructs are boundedly non-deterministic. With
infinite data types, continuity holds for the functions composed of determinis-
tic programming constructs. Additionally, the relations satisfy the healthiness
conditions HN and HA modelling the dependence of variables.

Our programming constructs introduced in Definition 3 are sufficiently similar
to the original constructs of UTP to show that they yield the same results
whenever the computations are defined and terminate. This correspondence is
formally stated in [11] for elementary data types, but can be extended to the
present, more general case. As another measure to ensure the adequacy of our
framework, an operational semantics is outlined to describe the execution of
programs. Future work shall extend the operational semantics to cover infinite
data structures.

These observations also show the advantage of the UTP approach: We are able
to compare different theories describing the semantics of programs within the
same framework. Their similarities and differences are particularly apparent in
the effective healthiness conditions. Such characterising properties are expressed
concisely due to the fact that UTP is based on relations.

Connections to related work have been pointed out throughout this paper.
In [12] we compare our work with further relational and functional approaches,
including the Z notation [16,39], Haskell’s I/O monad [17,25] and state trans-
formers [18], and the multi-paradigm language Oz [29]. This is extended by the
following notes.

Relations satisfying HE are called ‘ideal relations’ by [20] and used to model
higher order programming. The investigation aims at defining the semantics by
predicate transformers rather than relations [21]. Accordingly, there is no special
value to treat non-termination, which is not distinguished from undefinedness.
Elementary data types have a discrete order. In [22], ideal relations are also used
as ‘couplings’ to connect state spaces for data refinement.

Let us finally point out two topics that deserve further investigation. One of
them is to explore our relational model as an intermediate for the translation of
functional programming languages. The other is concerned with the connections
to data flow networks [15, Section 8.3] and, in particular, to the algebra of stream
processing functions [5].
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Monadic Maps and Folds for Multirelations
in an Allegory

Clare E. Martin and Sharon A. Curtis
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Abstract. This paper contributes to the unification of semantic models
and program development techniques by making a link from multire-
lations and predicate transformer semantics to algebraic semantics and
the derivation of programs by calculation, as used in functional program-
ming and relational program development. Two common ways to charac-
terise iteration, namely the functional programming operators map and
fold, are extended to multirelations, using concepts from category theory,
power allegories and monads.

1 Introduction

Multirelations were introduced by Rewitzky [1] in the context of complete atomic
boolean algebras, and they generalise relations in the same way that relations
generalise functions: they are relations whose target type is a powerset type.
Whilst ordinary relations model specifications by relating inputs to output val-
ues, multirelations relate inputs to guarantees (predicates) on the outputs, and
are thus able to model two kinds of nondeterminism: angelic choices made in
“our” interest, and demonic choices made by another party. The ability to ex-
press dual nondeterminism is extremely useful for modelling many different kinds
of two-party transactions, and indeed multirelations have been used for a variety
of such purposes. For example, Dunne [2] uses them to develop an extended sub-
stitution language, and in Martin and Curtis [3,4] they are used for specification
of and calculation with resource-sharing and voting protocols.

In the Unifying Theories of Programming (UTP) [5], however, programs are
modelled as alphabetised relations expressed as predicates, and only demonic
nondeterminism is modelled in Hoare and He’s work in [5]. Cavalcanti et al
[6,7] extended the UTP model to include angelic nondeterminism, providing an
explicit embedding of UTP predicates into the predicate transformer model,
which is known to be isomorphic to the multirelational semantic model (see [8],
or Section 3) and also to the choice semantics, as presented by Back and von
Wright [9].

So why investigate properties of multirelations if they are isomorphic to other
semantic models? And what contribution does this make to UTP?

The answer can be seen when considering the differences between different
semantic models: the style of program development and proof in the UTP model
or in that of predicate transformer semantics [10] is very different from that
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c© Springer-Verlag Berlin Heidelberg 2010
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in algebraic semantics, where programs are directly manipulated within the se-
mantic model. To achieve greater unification between different semantic models
it would be greatly beneficial to be able to calculate with and reason about
algebras that incorporate more kinds of nondeterminism than functional and
relational algebras, for example the dual angelic and demonic nondeterminism
seen in predicate transformers, choice semantics and multirelations.

It remains to be seen which semantic model of dual nondeterminism best suits
the calculational style, but multirelations would seem to be a good candidate.
As will be seen later in this paper, they have clean algebraic definitions, facil-
itating point-free calculation, and unlike weakest precondition semantics that
transform postcondition predicates into precondition predicates, multirelations
express programs in a forward manner, relating inputs to predicates on outputs,
which is more convenient for humans to think about and manipulate.

Thus, this paper contributes to the unification of semantic models and pro-
gram development techniques by expanding the multirelational calculus with
operators and algebraic laws found within the algebraic style of calculation used
for functional and relational program development by Bird and de Moor [11,12].
The resulting laws could then be mapped back into the UTP framework.

To that end, we (i) use point-free definitions of multirelations and their opera-
tors, engendering elegant and streamlined proofs, and (ii) extend common func-
tional programming operators to the multirelational model, hopefully paving
the way for similar treatment for more such operators. In particular, this pa-
per addresses the map and fold operators, which have a more familiar form in
multirelations than in predicate transformers.

Maps and folds are useful standard computations on datatypes: maps sys-
tematically alter data whilst leaving the overall data structure unchanged, and
folds perform a computation over a whole data structure yielding a result value.
This paper includes a monadic construction of multirelational maps and folds.
Multirelational maps and folds are not new, in fact a different construction for
them, using span categories, was presented in [4]. So why are we interested in a
second construction? The answer is that ultimately, we hope that this monadic
approach will help with the construction of a multirelational version of a further
operator from functional programming: the unfold operator.

An unfold is a dual kind of computation to a fold [13]: in contrast to a fold,
an unfold takes an input value and produces a data structure result. The unfold
operator is particularly desirable for a calculus of multirelations because several
application areas of angelic and demonic nondeterminism naturally involve an
unfold type of computation. For example, many two-player games, with the angel
and demon as the two players, are naturally expressed as an unfold: the input
value is the starting position of the game, and as the game unfolds, the data
structure that emerges is the history of the moves played in the game.

This is still work in progress; we do not currently have a multirelational un-
fold. The construction method used to define maps and folds in [4] does not
obviously dualise, and so in this paper we consider a different technique that
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is sometimes known as the monadic extension [14], which is a method that has
been successfully dualised in some different domains [15,16].

For this work we choose the setting of power allegories. Allegories [17] serve the
algebra of sets and relations in the same way as categories serve the algebra of sets
and total functions. Power allegories have some additional properties, including
the existence of a power object, but excluding negation. The attraction of this
setting (covered in more depth in [18]) is that it lends itself well to point-free
reasoning, which engenders elegant and streamlined proofs.

Thus the contribution of this paper is two-fold: to give a clear and readable
account of how to extend maps and folds to multirelations using a lax variant of
the monadic method in the power allegory setting, and to also illustrate the ele-
gance of point-free algebraic reasoning in the multirelational model. This paves
the way for future work on the definition of unfolds.

For any readers not so familiar with the category theory that this work is based
on, it is hoped that this paper will still provide a glimpse into the links between
the algebraic semantics traditionally used in calculational program development
and the semantic models of the UTP framework. In addition, such readers can
feel reassured of the existence of solid mathematical foundations behind the
development of the calculus of multirelations, including the familiar map and
fold operators.

The paper is structured as follows. Some preliminary definitions are given in
Section 2, and the definition of a multirelation in a power allegory is introduced
in Section 3. This is followed in Section 4 by the introduction of an equivalent
model in which multirelations are viewed as set-valued functions. The resulting
Kleisli category is derived in Section 5, and maps and folds for this model are
defined in Section 6. For all proofs of laws and lemmas contributed by this paper,
please refer to the appendix.

2 Preliminaries

Binary multirelations have previously been defined in the context of sets and
relations [1,3], but in this paper we choose the more general setting of power
allegories, because it lends itself well to point-free reasoning in the style of Bird
and de Moor [12]. Therefore we begin by covering the basic definition of an
allegory as seen in [17], as well as looking at two particular varieties: division
allegories and power allegories.

Familiarity with basic category theory is assumed; for more details see [19]
for example. The notation p ; q will be used for the composition of each pair of
arrows p : A → B and q : B → C, and id

A
is the identity arrow on object A.

Function application will be denoted by juxtaposition.

2.1 Allegories

Recall that a category can be thought of as an abstraction of sets and functions,
with objects of the category being analogous to sets, and arrows being analogous
to functions. Similarly, an allegory is an abstraction of sets and relations:
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Definition 2.1. An allegory A is a category endowed with three additional op-
erators ⊆, ∩ and ◦, as follows:

– Any two arrows with the same source and target objects can be compared
with a partial order ⊆, with respect to which composition is monotonic.

– For every pair of arrows r, s : X → Y there is an arrow r ∩ s : X → Y ,
called the meet of r and s, and this is characterised by the following universal
property, for all arrows q : X → Y :

q ⊆ r ∩ s ≡ (q ⊆ r) ∧ (q ⊆ s)

– For each arrow r : X → Y there is a converse arrow r◦ : Y → X such that
for all s : X → Y , t : Y → Z and u : X → Z

(r◦)◦ = r

r ⊆ s ≡ r◦ ⊆ s◦

(r ; t)◦ = t◦ ; r◦

(r; t) ∩ u ⊆ (r ∩ (u; t◦)); t (modular law)

The first of the above axioms, concerning the partial order ⊆, says that A is an
order-enriched category. Such an ordering can be useful for modelling program
semantics: it is typically used to define a refinement ordering between arrows.

The category Rel of sets and relations is thus the archetypal example of
an allegory: the ordering ⊆ is the familiar subset inclusion, the meet of two
relations is their intersection and the converse is the relational converse. One
important subcategory of Rel is the category of sets and total functions (Set).
The corresponding subcategory of an allegory is characterised via the following
definitions:

Definition 2.2. An arrow m : X → Y in an allegory A is a function arrow iff

id
X

⊆ m ; m◦ and m◦ ; m ⊆ id
Y
.

In particular, note that for any allegory A, its function arrows will include its
identity arrows.

Definition 2.3. Given an allegory A, Fun(A) is defined to be the subcategory
of A consisting of the objects and function arrows of A.

For example, the function arrows of the allegory Rel are simply those relations
which are also total functions. Thus we have Fun(Rel) = Set.

2.2 Division Allegories

There are several varieties of allegory given in [17]. A distributive allegory has
the property that the collection of all arrows with the same source and target
type form a distributive lattice [20]:
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Definition 2.4. A distributive allegory is an allegory together with two opera-
tors: a nullary operator ∅ and a binary operator ∪ (called join). For every pair
of objects, there is an arrow ∅

X,Y
: X → Y such that for every arrow r : X → Y ,

∅
X,Y

⊆ r and r ; ∅
Y,Z

= ∅
X,Z

. Also, for every pair of arrows r, s : X → Y there
is an arrow r ∪ s : X → Y , which is characterised by the following universal
property for all arrows q : X → Y :

r ∪ s ⊆ q ≡ (r ⊆ q) ∧ (s ⊆ q)

and which satisfies the following laws for all p : W → X and q, r, s : X → Y :

p ; (r ∪ s) = p ; r ∪ p ; s
q ∩ (r ∪ s) = (q ∩ r) ∪ (q ∩ s)

In Rel, ∅ returns the empty relation, and join is relational union.

Definition 2.5. A division allegory is a distributive allegory with an additional
binary division operator \, such that for each pair of arrows with common source
r : Z → Y and s : Z → X, s\r : X → Y is defined by the universal property

t ⊆ s\r ≡ s ; t ⊆ r

The interpretation of s\r in Rel is x (s\r) y ≡ ∀z : z s x ⇒ z r y.
This division operator is especially useful for specifications that involve uni-

versal quantification. This operator is sometimes known as left division [12], or
weakest postspecification [5]. There is a dual right division operator; we use left
division because we will use it to define multirelations in Section 3.

2.3 Power Allegories

A power allegory [17] is a division allegory that contains an analogue of the
familiar notion of a powerset. Specifically,

Definition 2.6. A division allegory A is a power allegory if there is

– for each object X, an object PX called the power-object of X
– a power transpose Λ that for each arrow r : X → Y returns a function arrow

Λr : X → PY
– a membership arrow !

X
: PX → X,

These three things are defined up to isomorphism by the universal property:

(f = Λr) ≡ (f ;! = r) (2.1)

The converse of ! (the subscript X will usually be omitted for brevity) is denoted
by ∈ and in Rel this represents the familiar set membership relation, with the
power-object being the powerset. The power transpose in Rel is the function
that defines the isomorphism between relations and set-valued functions via the
universal property (2.1). The following functor is also useful:

Definition 2.7. The existential image functor E : A → Fun(A) is defined as:

Er =̂ Λ(! ; r)
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3 Multirelations

Set Theoretic Definition
In Rel, a multirelation is a relation with a powerset target, and a multirelation
r : X → PY is said to be up-closed if for all x ∈ X and U, V ⊆ Y

x r U ∧ U ⊆ V ⇒ x r V

Specifications can be modelled by up-closed multirelations [1], as follows.

Interpretation
A multirelation r relates a value x to a set U if and only if, given input x,
the angel can ensure that the program r will terminate with an output value
that satisfies postcondition U , where the set U is interpreted as a predicate. Of
course, if an output value satisfies U and U ⊆ V , then it must also satisfy V ,
hence the up-closure property. This interpretation of multirelations thus relates
input values to guarantees (predicates) on the output, one of which is chosen by
the angel. The actual output value is chosen by the demon amongst values in
the angel’s chosen guarantee set.

Predicate Transformer Correspondence
The weakest precondition predicate transformer wp.r that corresponds to the
multirelation r : X → PY is given by

x ∈ wp.r.U ≡ (x, U) ∈ r

When multirelations are used to model programs and specifications, the up-
closure property corresponds to the monotonicity requirement of predicate trans-
former models.

3.1 Multirelations in an Allegory

The above set-theoretic definition of a multirelation is useful from an intuitive
point of view, but it is difficult to reason about equationally, as was seen in
[3], because the associated definition of multirelation composition is unwieldy to
calculate with. Therefore we now give a new alternative pointfree definition in
the setting of a power allegory, which is easier to reason about.

In allegories, multirelations are modelled as arrows whose targets are power
objects, and we have the corresponding definition:

Definition 3.1 (multirelation). An up-closed multirelation with source X
and target Y is an arrow r : X → PY in a power allegory such that

r ;�
Y

= r

where �
Y

=̂ ∈
Y
\ ∈

Y
; the subscript will usually be omitted.

Note that the family of arrows � coincides with the family of arrows ⊆ in Rel.
We will abbreviate ‘up-closed multirelation’ by ‘multirelation’, and denote the
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type of all multirelations with source X and target Y in a power allegory by
X ⇒ Y . Multirelations cannot be composed using ordinary composition for
obvious type reasons. Instead, we have:

Definition 3.2 (multirelation composition). The composition of two mul-
tirelations r : X ⇒ Y, s : Y ⇒ Z, denoted by r o

9 s : X ⇒ Z, is defined by

r o
9 s =̂ r ; (∈ \s)

Interpreting composition in set-theoretic terms, for all x : X and V : PZ, we
have x (r o

9 s) V ⇔ (∃U : x r U : (∀y : y ∈ U : y s V )). So, given input x,
the angel can guarantee that r o

9 s will output a value satisfying V when he can
ensure that r will establish an intermediate postcondition U such that, given
any input value from U , he can guarantee that s will establish V . Whilst this
pointwise definition provides useful intuition, laws like the following are more
easily deduced from Definition 3.2 in the point-free style:

(r ; s) o
9 t = r ; (s o

9 t)

Definition 3.3 (multirelation identity). The identity multirelation arrow is
∈

X
for each object X.

It is the case that multirelations form a category:

Lemma 3.4 (multirelations category). The multirelations in a power alle-
gory A form an order-enriched category with identity and composition as given
in Definitions 3.2 and 3.3, and ordering ⊆. This category will be referred to as
Mul(A).

However, multirelations do not form a sub-category of the power allegory, be-
cause the category composition operator is different to that of the allegory.

4 Multifunctions in an Allegory

Relations can be interpreted as set-valued functions (multifunctions), and the
arrows in a power allegory can be represented as function arrows in a similar way.
So every multirelation can also be represented as a function, as shown below.

Definition 4.1 (up-closed multifunction). An up-closed multifunction with
source X and target Y is a function arrow p : X → P2Y in a power allegory
such that

p ; ↑
Y

= p

where the up-closure operator ↑Y =̂ E �Y ; the subscript will usually be omitted.

Note that we may abbreviate ‘up-closed multifunction’ by ‘multifunction’.
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In Rel, ↑ is the standard up-closure function (e.g. see [20]). That is, for all
W ∈ P2Y , ↑ W = {V | (∃U : U ∈ W : U ⊆ V )}. So a function p : X → P2Y is
an up-closed multifunction if and only if for all x ∈ X the set p x is up-closed: if
U ∈ p x and U ⊆ V then V ∈ p x. This is precisely the kind of function used in
the choice semantics [9]; p x produces a set of predicates (guarantees) that the
angel can choose from.

Identity and composition for multifunctions are defined as follows:

Definition 4.2 (multifunction identity). The identity multifunction arrow
for each type X is denoted by ι

X
, where ι

X
=̂ Λ∈

X
.

In set theory, the identity multifunction for all x ∈ X is given by ι
X

x =↑ {{x}}.

Definition 4.3 (multifunction composition). The composition of each pair
of up-closed multifunctions p : X → P2Y and q : Y → P2Z is defined by

p � q =̂ p ; E2q ; E∩ ;∪

where ∩ =̂ Λ(∈ \ !) and ∪ =̂ Λ(! ;!).

In set theory the arrows ∩ and ∪ represent generalised intersection and union, so
for all x : X , the value of (p � q)x is

⋃
{
⋂
{q w | w ∈ W} | W ∈ p x}. Hence given

input x, the angel can only ensure that p � q will establish a postcondition U if
he can choose a postcondition W for p (given input x) such that he can ensure
that q establishes U for every input value in W . The following two laws would
be fiddly to prove using set-theoretic notation, but in this allegorical setting, are
immediate from Definition 4.3:

(p ; q) � r = p ; (q � r) (4.1)
(p ; E2q) � r = p � (q ; r) (4.2)

Multifunctions also form a category within a power allegory:

Lemma 4.4 (multifunctions category). The up-closed multifunctions in a
power allegory A form an order-enriched category MFun(A), with identity and
composition as in Definitions 4.2 & 4.3, where the ordering ≤ on the arrows
p, r : X → P2Y is defined by

p ≤ r =̂ p ;! ⊆ r ;!

The isomorphism between multirelations and multifunctions is stated below:

Lemma 4.5. There is an order-isomorphism of categories MFun(A) ∼= Mul(A)
as given by the universal property (2.1) for Λ and !.

There are a number of useful operators for converting between functions, rela-
tions, multirelations and multifunctions, but the only one we require here is a
lifting operator to convert a function to its multifunction equivalent:
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Definition 4.6 (lifting). Let f : X → Y in Fun(A), for power allegory A.
Then the lifting f̂ : X → P2Y in MFun(A) is defined by

f̂ =̂ f ; ι

The lifting operator is a functor and satisfies many elegant algebraic properties,
some of which are listed below for subsequent use:

f̂ � m = f ; m (4.3)

f̂ � ĝ = f̂ ; g (4.4)

m � f̂ = m ; E2f ; ↑ (4.5)

f̂ ;! = f ;∈ (4.6)

To recap, we have now arrived at the point where, given any power allegory
A, we can characterise its multirelation arrows by Mul(A), and its multifunc-
tion arrows by MFun(A). Futhermore, these two categories arising within A
are order-isomorphic to each other. The semantic models of multirelations and
multifunctions are not new, but their presentation in the context of allegories
is new. We have defined MFun(A) because it provides a useful stepping stone
to cast Mul(A) as a Kleisli category of multirelations, in order to construct the
monadic maps and folds, as will be seen in the following section.

5 Kleisli Categories

This section constructs a Kleisli category order-isomorphic to that of multifunc-
tions, and thus also to that of multirelations. In order to describe what Kleisli
categories are, we will need the concept of a monad (e.g. see [19]):

Definition 5.1 (monad). A monad 〈M, η, μ〉 in a category C consists of a func-
tor M : C → C and two natural transformations, the unit η : IC

.→ M and
multiplication μ : M2 .→ M such that

Mη ; μ = id = ηM ; μ and μM ; μ = Mμ ; μ

Every monad can be used to form a Kleisli category in the following way:

Definition 5.2 (Kleisli category). Given a monad 〈M, η, μ〉 in a category C,
the Kleisli category CM has the same objects as C and the arrows from X to Y
in CM are the arrows of type X → MY in C. Each object X has identity arrow
η

X
, and for each f : X → MY and g : Y → MZ, their Kleisli composition

f ;
M

g : X → MZ is defined by

f ;
M

g =̂ f ; Mg ; μ

Some laws derivable from the definition of ;
M

can be found in [21].
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Example 5.3. If A is a power allegory then the triple 〈P, η,∪〉 is a monad in
Fun(A), where η = Λid, ∪ = Λ(! ;!) and P = J ; E, where J is the embedding
functor J : Fun(A) → A.

Translating this to set theory, taking A to be Rel, η is the function that maps
each element to its singleton set, ∪ returns the generalised union of a set of sets,
and P is the functor that maps each object to its powerset and applies each
function to all the elements of a set: P f X = {f x | x ∈ X}. Thus Fun(Rel)P,
also known as SetP, is the category of sets and set-valued functions.

Note that the universal property (2.1) defines an isomorphism between the
Kleisli category of this monad and the original allegory A. 	$

The example above was a relatively simple illustration of a monad and its cor-
responding Kleisli category. The monad required to build the Kleisli category
corresponding to multifunctions (and hence multirelations) is not so simple.

5.1 Multifunctions as a Kleisli Category

We will approach the construction of multifunctions as a Kleisli category in small
steps. Firstly, in Fun(A) we will need the existence of equalisers:

Definition 5.4 (equaliser). The equaliser of a pair of arrows f, g : Y → Z in
a category is an arrow eq : X → Y such that for all h : W → Y with h ; f = h ; g
there is a unique k : W → X with k ; eq = h. The source object of eq, namely
X, is called the object of the equaliser.

Rel is an allegory such that Fun(Rel) has equalisers; there are others, for
example every tabular allegory A has equalisers in Fun(A) (see [17] for details).

We will need a suitable monad 〈N, η, μ〉 to form the Kleisli category for multi-
functions in Fun(A). The definition below of N : Fun(A) → Fun(A) is presented
separately on objects and arrows:

Definition 5.5 (action of N on objects). Let A be a power allegory such that
Fun(A) has equalisers. For each object Y in A, N Y is defined to be the object
of the equaliser of id

P2Y
and ↑

Y
in Fun(A).

Interpreting the above with A = Rel, N Y = {Z ∈ P2Y | Z is up-closed}.
From Definition 4.1 and the definitions above we can now define the following:

Definition 5.6 (embedding e, projection ′). Let A be a power allegory such
that Fun(A) has equalisers. Then there is an arrow eY : N Y → P2Y for each
object Y in A, such that e

Y
is an up-closed multifunction. Furthermore, for all

p : W → P2Y in MFun(A) there is a unique p′ : W → N Y characterised by the
universal property

u = p′ ≡ u ; e
Y

= p

We are now ready to complete the definition of N:
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Definition 5.7 (action of N on arrows). Let A be a power allegory such that
Fun(A) has equalisers. For each arrow f : Y → Z in Fun(A),

N f =̂ (eY � f̂)′

Interpreting the above definition with A = Rel using property (4.5), applying Nf
to an up-closed set of sets Z results in N f Z =↑ {{E f z} | z ∈ Z}. This applies
f to all the values in the sets belonging to Z and then takes their upclosure.

Lemma 5.8. N : Fun(A) → Fun(A) as defined above is a functor.

The functor N can now be used to form a monad:

Lemma 5.9. Let A be a power allegory such that Fun(A) has equalisers, and
let N be defined as above. For each object Y in A, let η : IFun(A)

.→ N and
μ : N2 .→ N be defined by

η
Y

=̂ ι′
Y
,

μ
Y

=̂ (e
NY

� e
Y
)′.

Then 〈N, η, μ〉 is a monad.

The set-theoretic interpretations of η and μ are as follows: η y = ↑ {{y}} and
μY =

⋃
{
⋂

X | X ∈ Y }.
The universal property from Definition 5.6 shows that for each object X ,

there is a one-to-one correspondence between the up-closed multifunctions with
target X and the functions with target N X . This can be extended to an order-
isomorphism of categories:

Theorem 5.10. Suppose the monad 〈N, η, μ〉 is defined as in Lemma 5.9 and
let the ordering on arrows in Fun(A)N be defined for all u, v : W → N Y by

u %
N

v ≡ u ; e
Y

;! ⊆ v ; e
Y

;!

Then there is an order-isomorphism of categories Fun(A)N ∼= MFun(A) given
by the universal property from Definition 5.6.

Corollary 5.11. There is an order-isomorphism of categories Fun(A)N ∼=
Mul(A).

6 Monadic Extensions

It is known [14,15] that if 〈M, η, μ〉 is a monad in some category C, then every
functor F : C → C can be extended to FM : CM → CM, which is a functor under
certain conditions. In this section we examine the properties of the extension
FM for the monad of Lemma 5.9 for a restricted class of functors. We start by
recalling some standard definitions concerning functors and datatypes.
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6.1 Functors and Initial Algebras

Definition 6.1 (polynomial functor). A polynomial functor in a category
with products and coproducts is one of the following:

– The identity functor Id,
– A constant functor KX for some object X,
– The composition FG, pointwise sum F + G or pointwise product F×G of two

polynomial functors F and G.

Here the juxtaposition FG denotes F after G, so (FG)f = F(Gf).

Definition 6.2 (initial algebra). Let F : C → C be a functor. By definition,
an F-algebra is an arrow of type FX → X. An F-algebra α : FT → T is initial
if, for each F-algebra p : FX → X, there exists a (unique) arrow ([p]) : T → X
that satisfies the equivalence

α ; q = Fq ; p ≡ q = ([p])

That is, α is an initial object in the category of F-algebras.

Arrows of the form ([p]) are called catamorphisms, and are also known as folds.

Example 6.3. Consider the recursively defined datatype of cons-lists over an ar-
bitrary type X :

list X ::= nil | cons(X, list X)

From this description, we can construct a functor LX , where LX(Y ) = 1+(X×Y )
and LX(f) = id + (id × f). If we are working within a category that supports
the existence of initial algebras, such as Set, then the above definition of list X
describes the datatype of cons-lists as an initial LX -algebra that is the coproduct
[nil, cons]

X
: LX(list X) → list X . 	$

Initial algebras are used to characterise datatypes, but they can also be used
to construct functors. Suppose the datatype’s functor is written as a bifunctor;
for example, writing LX(Y ) above as L(X, Y ). In general, if F is a bifunctor with
initial algebra α

X
: F(X, TX) → TX , then a type functor T can be defined, such

that TY is the target object of αY , and for all f : X → Y

Tf =̂ ([F(f, id
TY

) ; α
Y
]) (6.1)

Example 6.4. Given the datatype definition of list X above in the category Set,
equation (6.1) translates to:

list f [ ] = [ ]
list f (x : xs) = f a : list f xs,

where [ ] is the empty list constructed by nil, and x : xs is an abbreviation
for cons (x, xs). Thus the type functor list is the well-known map operator of
functional programming, where list f applies f to every element of the list. 	$

The class of functors we will consider in the remainder of this section are polyno-
mial functors, type functors, or those obtained via the closure of such operations.
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6.2 The Monadic Extension of a Functor

The monadic extension of a functor is defined [14,15] as follows:

Definition 6.5 (monadic extension). Let F : C → C be a functor, let 〈M, η, μ〉
be a monad in C, and let δF : FM .→ MF. The extension FM : CM → CM is defined
for any object X and arrow f : Y → Z as

FMX =̂ FX

FMf =̂ Ff ; δF
Z

To explain, note that the arrow f : Y → Z in CM is an arrow f : Y → MZ in
the category C. Applying F to f results in an arrow Ff : FY → FMZ, but the
extension FM : CM → CM requires the type of FMf to be FY → MFZ. Thus Ff
is composed with a suitable δF

Z
: FMZ→MFZ, which obtains an arrow of the

correct type.
Naturally, we would like FM to be a functor, and this requires conditions

on δF:

Definition 6.6 (lifting). FM as defined above is called a lifting when it is a
functor in CM, which is the case if and only if it satisfies the following conditions:

Fη
X

; δF
X

= η
FX

(6.2)

Fμ
X

; δF
X

= δF
MX

;
M

δF
X

(6.3)

Note that the above definitions generalise to functors of types F : Cn → C in an
obvious way, where Cn = C × ... × C (n times), and δF : FMn .→ MF.

The following definition [14,15] gives an inductive way to define the natural
transformation δF associated with the lifting of any functor defined using the
polynomial and/or type functor constructors. The definition is valid for any
monad; the only value that depends on the chosen monad is the choice of φM in
the definition of δF×G:

Definition 6.7. Let 〈M, η, μ〉 be a monad, then δ is given by

δKX
X

=̂ η
X

δF+G
(X,Y )

=̂ [δF
X

; M inl , δG
Y

; M inr]

δId
X

=̂ id
MX

δF×G
(X,Y )

=̂ (δF
X
× δG

Y
) ; φM

δFG
X

=̂ FδG
X

; δF
GX

δT
X

=̂ ([δ
H

X
TX ; Mα

X
])

Above, inl and inr are the injection arrows of the coproduct. The natural trans-
formation φM : MX × MY

.→ M(X × Y ) is associated with monad M. T is the
type functor for a bifunctor H, with initial algebra αX : H(X, TX) → TX and
associated functor HX(Y ) = H(X, Y ).

It is known [14,15] that all of the components of the above definition, apart
from φM , are natural transformations that satisfy appropriately typed forms of
conditions (6.2) and (6.3). Moreover, if F is defined using any of the constructors
used in the above definition, then δF is a natural transformation if φM is one,
and properties (6.2) and (6.3) hold for δF if they are true for φM .
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6.3 Lax Liftings of Functors on Multirelations

The monadic extension of functors described in the previous section cannot
be applied directly to the monad associated with multirelations of Lemma 5.9.
Instead, we introduce a weaker definition which we will call a lax lifting.

Definition 6.8 (lax lifting). Let 〈M, η, μ〉 be a monad in a category C and
suppose that CM is enriched with an ordering %. Let F : C → C be a functor
and let δF be a family of arrows such that for every object X there is an arrow
δF

X
: FMX → MFX, and for all p : X → Y in C,

FMp ; δF
Y
% δF

X
; MFp (6.4)

Suppose further that

Fη
X

; δF
X

= η
FX

(6.5)

Fμ
X

; δF
X
% δF

MX
;
M

δF
X

(6.6)

Then we define the lax lifting FM : CM → CM on objects as FMX = FX and on
arrows f : Y → Z in CM as FMf = Ff ; δF

Z
.

Lemma 6.9. If FM is a lax lifting then it preserves identities, and for all p, q
it is the case that FM(p ;

M
q) % FMp ;

M
FMq.

If F is defined using constructors from polynomial and/or type functors, then
properties (6.4), (6.5) and (6.6) will hold for F provided that they hold for ×,
since it is known that all the other constructors are natural transformations that
satisfy the stronger analogues (6.2) and (6.3).

It remains to define the transformation φ in the Kleisli category associated
with multirelations and examine its properties. The definition of φ given be-
low requires the existence of relational products in the allegory A, which are
constructed using the left and right projections outl and outr of the product in
Fun(A), provided that it has finite products. These exist if A is a unitary tabular
allegory, for example Rel (see [12] for details).

r × s =̂ (outl ; r ; outl◦) ∩ (outr ; s ; outr◦)

The relational product is a monotonic bifunctor, but it is not a categorical prod-
uct. We can now define φN for multirelations:

Definition 6.10. Suppose that 〈N, η, μ〉 is the monad of Lemma 5.9. Using the
notation of (5.6), φN is defined by

φN

(X,Y )
=̂ ((e

X
× e

Y
) ; Λ((! × !) ; ((∈ × ∈)\ ∈)))′

To understand φN , it may help to consider the relation (! × !) ; ((∈ × ∈)\ ∈)),
in a set-theoretic setting:

(A, B) ((! × !) ; ((∈ × ∈)\ ∈))) Z ≡
∃p

A
, p

B
: p

A
∈ A ∧ p

B
∈ B ∧ (∀a, b : a ∈ p

A
∧ b ∈ p

B
: (a, b) ∈ Z)
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Thus for two sets A, B of postconditions, Z contains (but is not limited to)
all pairs of outcomes (a, b) where a satisfies p

A
and b satisfies p

B
. The rest

of the definition of φN involves Λ, which returns all possible such Zs, and the
embeddings and projection, which convert between the appropriate types of
arrows and ensure upclosure of the output of φN .

Lemma 6.11. φN satisfies conditions (6.4), (6.5) and (6.6).

It follows that if A is a power allegory then any functor extension defined in
Fun(A)N using any of the constructors of Definition 6.7 is a lax lifting.

6.4 Monadic Multirelational Maps

It is now possible for us to construct multirelational map operators for datatypes.
We shall illustrate how to do this for lists, by constructing a lax lifting of the
list functor, otherwise known as map.

Taking LX as the base functor for lists as defined in Example 6.3, we have

δLX

list X = [ η ; N inl , (η × id) ; φN ; N inr ]

Then from the definition of δ (Definition 6.7), we obtain

δlist
X

= ([ δLX

list X ; N[nil, cons]
X

])

In SetN this definition can be expanded as follows:

δlist
X

= (list e
X

; Λ((listr !) ; ((listr ∈)\ ∈)))′

where list was defined in Example 6.4, and listr is defined for relations as follows:

[ ] (listr r) [ ] ≡ true
(x : xs) (listr r) (y : ys) ≡ x r y ∧ xs (listr r) ys

Having defined δlist, Definition 6.8 can be used to calculate the monadic exten-
sion of the list functor in SetN. Suppose p : X → NY , then we have

listN p [ ] = ↑ {{[ ]}}
listN p (x : xs) = {U | ∃Z, V : Z ∈ p x ∧ V ∈ listN p xs

∧ (∀w, ws : w ∈ Z ∧ ws ∈ V : (w : ws) ∈ U)}

This completes the derivation of the list (or map) functor for SetN where N was
defined in Lemma 5.9.

The corresponding definition for listN applied to an up-closed multifunction
p : X → P2Y is textually the same as the above, it is only the types that change,
and when translated back to multirelations this gives the same definition as in
[4]. There may be other choices for φN that generate alternative definitions for
listN but it is beyond the scope of this paper to examine these.

The above illustrated a multirelational map operator for lists; it is of course
possible to obtain multirelational map operators for other datatypes in a similar
way, by using the construction functors for those datatypes in place of the list
functor.
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6.5 Monadic Multirelational Folds

Folds in the Kleisli category can be derived from folds in the base category.
This definition is the same as that in [14], except that the functor extension is
replaced by a lax lifting:

Lemma 6.12. Let 〈M, η, μ〉 be a monad in category C. Then if F : C → C has
initial algebra α then the lax lifting FM : CM → CM has initial algebra α ; η. If
ψ : FX → X in CM, then the fold in CM is given by ([ψ])M = ([δF

X
;
M

ψ]).

Now the above lemma can be used to find the foldr operator on lists in a Kleisli
category, since foldr is defined as the fold associated with the base functor
for lists LX of Example 6.3. Let 〈N, η, μ〉 be the monad of Lemma 5.9 and let
f : LX(Y ) → Y in SetN. If we let g =̂ δLX

Y
;
N
f , then by Lemma 6.12, ([f ])N = ([g])

and by Definition 6.2

[nil, cons]X ; ([g]) = (1 + id × ([g])) ; g

In a set-theoretic setting, this definition can be expanded to the point level using
the definition from Section 6.4 and Kleisli composition to give the following
(where the arrow f : LX(Y ) → Y in SetN has been replaced by two components
p and a): Let p : X × Y → NY and a : NY then

foldr p a [ ] = a

foldr p a (x : xs) =
⋃

{
⋂

{p x y | y ∈ Y } | Y ∈ foldr p a xs}

Intuitively, Y is a postcondition established from the fold so far on xs, y is an
outcome satisfying Y , and p x y is the (upclosed) set of possible postconditions
after performing this step p of the fold on intermediate result y with the list
element x. Thus the set

⋂
{p x y | y ∈ Y } contains postconditions that can be

guaranteed whatever the choice of y satisfying Y , and the
⋃

ensures the inclusion
of all possible such guaranteed postconditions, for all choices of Y .

It follows from the isomorphism between the category of multifunctions and
the Kleisli category that the definition of foldr for multifunctions is textually the
same as the above, if p : X → P2Y is a multifunction and a : P2Y is an up-closed
set. This multirelational definition of foldr is identical to that constructed by
the alternative method of [4].

The above illustrated a multirelational fold operator for lists; similarly, the
use of other functors to construct datatypes results in multirelational folds over
more general datatypes.

It is interesting to analyse the relationship between maps and folds since
in functional and relational programming algebras, it is the case that the map
functor is an instance of a fold. The following lemma gives a lax analogue of some
results of [14] and shows that for type functors, map is an instance of a fold in
the base category but is only related to the monadic fold by an inequation:
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Lemma 6.13. Let T be the type functor associated with base bifunctor F with
initial algebra α

X
: F(X, TX) → TX and let FM be a lax lifting in the category

CM which is order-enriched with %, then if f : X → Y in CM

TMf = ([F(f, id
MTY

) ; δF
(Y,TY )

; Mα
Y
])

TMf % ([FM(f, η
TY

) ;
M

(α
Y

; η
TY

)])M

6.6 Unfolds

The technique of extending folds as described in the previous section has been
dualised to unfolds in [15] and [16], but unfortunately the methods used there do
not apply here. The problem with [15] is that it only applies to a strong monad,
and the monad described in Section 5 is not strong. The more recent method
of [16] fails on two counts. First, it requires a strictness property that does not
generally hold for multifunctions: it is not generally the case that p ;

M
abort =

abort where abort = (Λ∅)′ and as a result the category of multifunctions does
not have a terminal object. The other problem is that the extension of the list
functor is not itself a functor, it is only a lax functor. So the search for the
definition of unfold continues. It is hoped that one of these existing methods
could be generalised to produce a lax unfold of some kind, but it is beyond the
scope of this paper to construct such a definition.

7 Conclusions

Much of the material presented above is standard theory, included in order to
provide sufficient background information to make it possible to present this
paper’s contribution of monadic multirelational maps and folds. To be precise,
the definitions of allegories in Section 2 are standard [17], as are the definitions
of Kleisli categories in Section 5 [19] and monadic extensions in Section 6.1 [14].
Moreover, the multifunctional model of Section 4 was previously discovered by
Back and von Wright [9], the associated monad has been described by Dawson
[22] and even the multirelational definitions of map and fold have been docu-
mented elsewhere [4].

However, the particular contributions of this paper are several. Firstly, look-
ing from an overall perspective, this paper draws together these varied strands of
work from within different semantic models into the setting of power allegories,
thus contributing to unification work between different models of program se-
mantics. In particular, through the isomorphism between up-closed multirela-
tions and monotonic predicate transformers [8], multirelations have strong links
to UTP [5] and predicate transformer semantics. Thus being able to provide
algebraic semantics for multirelations, including all the algebraic definitions and
datatypes and operators and laws that make it possible to reason about multire-
lations to use them for calculational program development, is a very important
link.
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Secondly, looking at the details of the work in this paper, this construction of
maps and folds for multirelations using a monadic extension is also new. Whilst
it may seem futile to construct new definitions of map and fold for multirelations
when such operators already exist, this work should not be seen as an end in it-
self, but rather as a firm foundation from which to explore the existence of other
operators and algebraic laws, in particular concerning the potentially useful un-
fold. This paper has given a rigorous treatment of monadic extensions for mul-
tirelations, which has resulted in a weakened version of the standard theory. The
definition given here was chosen to be compatible with previous work [4], but the
monadic extension is not unique, and preliminary investigations suggest that there
are other definitions that may also yield useful operators. Through this work, it
has been possible to see precisely why previous methods for dualising monadic
catamorphisms fail here, but it remains to be seen whether these methods might
also be weakened in some way that could be applied to multirelations.

Finally, this paper illustrates the use of point-free definitions and calculation
for multirelations. This results in elegant definitions and a style of reasoning
more transparent than that used in traditional set-theoretic proofs. In particu-
lar, the set-theoretic definition of composition is so cumbersome that it renders
calculations at best error-prone and at worst virtually impossible. The point-free
alternative is much more concise and manageable, and any doubts of its value
can easily be dispelled by attempting any of the proofs using the set-theoretic
definitions instead.

To summarise, this paper contains a contribution to the development of the
algebra of multirelations, presenting a different view of maps and folds from that
described in [4], and this has resulted in a weakening of the standard monadic
extension. Future work includes establishing whether an unfold operator can
be defined, and this would further contribute to unification of the functional,
relational and multirelational calculi.
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Appendix

To keep within space constraints, and also because pages of calculational proofs
can be tedious, we include one sample proof to illustrate the point-free calcula-
tional style. The full proofs for all results contributed by this paper can be found
online in a supplement for this paper [21].

Proof. of Lemma 5.8 To show that N is a functor, we need to demonstrate
that it preserves identities and distributes through composition. For identity
preservation, we have:

http://cms.brookes.ac.uk/staff/SharonCurtis/publications/mf-supp.pdf
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N id

= {Action of N on arrows (Definition 5.7)}
(e

Y
� îd)′

= {Definition (4.6)}
(e

Y
� ι)′

= {Identity of �}
e′

Y

= {(5.6)}
id

As for composition, first note that by Definition 5.6, every up-closed multifunc-
tion p : X → P2Y has the property that p′ ; e = p, and so using equation (4.1)
we can see that for all q : Y → P2Z,

p′ ; (e
Y

� q)′ ; e
Z

= p � q (A.1)

Definition 5.6 also implies that for any p, q : X → NY ,

(p = q) ≡ (p ; e
Y

= q ; e
Y
) (A.2)

So now we can calculate

N f ; N g ; e
Z

= {Action of N on arrows (Definition 5.7)}
(e

X
� f̂)′ ; (e

Y
� ĝ)′ ; e

Z

= {Equation (A.1)}
e

X
� f̂ � ĝ

= {Equation (4.4)}

e
X

� ̂(f ; g)
= {Actions of N (Definitions 5.5 and 5.7)}

N(f ; g) ; e
Z

which establishes the result by equation (A.2). 	$
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Abstract. The concept of an interrupt is one that appears across many
paradigms, and used in many different areas. It may be used as a device to
assist specifications to model failure, or to describe complex interactions
between non co-operating components. It is frequently used in hardware
to allow complex scheduling patterns. Although interrupts are ubiquitous
in usage, the precise behaviour of a system incorporating interrupts can
be difficult to reason about and predict. In this paper, a complete theory
of the interrupt operator presented by Hoare in his original treatment of
CSP is proposed. The semantics are given in the CSP model in Unifying
Theories of Programming. New and existing algebraic laws are proposed
and justified. The contribution of the paper is therefore a denotational
semantics of an interrupt operator, and a collection of algebraic laws that
assist in reasoning about systems incorporating interrupts.

1 Introduction

The concept of an interrupt is useful in modelling reactive systems. For instance,
an operating system may be interrupted by a user pressing a key, or by a high
priority job becoming ready for processing. Alternatively, a piece of hardware
may have an interrupt line built in to require it to process inputs immediately
they become available. Interrupts may also be used to model component fail-
ure in specifications—where a system is suddenly, and unexpectedly, required
to evolve into one with very different behaviour. For instance, a piece of equip-
ment failing may cause it to refuse to offer the service for which it was intended:
here, the interrupt is used to describe the occurrence of the failure. Furthermore,
interrupts can be used to model more abstract situations in software. In object-
oriented programming, it is common to build exception handlers that may, or
may not, choose to respond to the act of another component indicating an er-
roneous situation. If the event handler is the process which can be interrupted,
then the willingness, or otherwise, to respond immediately to an exception can
be modelled by enabling, or disabling, interrupt events.

The theory of Communicating Sequential Processes (CSP) is presented by
Hoare in [4], although it was originally presented in earlier works [3]. It is further
built on by Roscoe in [8]. It is a mathematical formalism for reasoning about
concurrent, communicating entities in a system. Each entity in the system is
represented by a process, which engages in atomic actions, called events. An event
is an observable action in the life of a process, and acts as a communication, or
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synchronisation between co-operating processes. An alphabet is a set of events.
The role of alphabets in the semantic domain differs between [4] and [8]. In the
former, processes have alphabets, while in the latter, it is the process combinators
that are alphabetised.

Complex descriptions of behaviour are built up as networks of processes, using
CSP operators. CSP is a process algebra: descriptions of processes can be re-
written and manipulated in accordance with algebraic laws; the correctness of
these laws being justified within the semantic models associated with CSP.

The interrupt operator ̂ is introduced into CSP in [4]. It is described as
being an unusual form of sequential composition, where the termination of a
process is not required for the initiation of a latter process: the latter process
can be thought of as forcing the termination of the former. In a sequential
composition such as P ; Q , the successful termination of P is required before
execution of Q may begin. However, in the expression P̂Q , the initials of Q
(i.e, the set of events in which Q is initially willing to engage) can interrupt P
at any time. Hoare presents a traces model of this operator, defining it in terms
of the observable interactions recorded with the environment, along with several
algebraic laws. The most significant of these laws is a step law. This step law
uniquely defines the operator.

This is followed by a variation of the operator, called the catastrophic inter-
rupt : P ÊQ . In this version, the interrupt event E is unique, and its appearance
in a trace of P ÊQ signals the termination of P and the initiation of Q . The step
law for this version of the operator uniquely characterizes it for deterministic
processes, although it may be extended to non-deterministic processes where it
is shown to be strict, and to distribute over non-determinism in both arguments.

The catastrophic operator is the one used in [8], where a failures semantics
for the operator is given. This version takes the form P &i Q , and describes the
situation where the process P can be interrupted by the event i , and subsequent
behaviour is that of Q . It can be seen that Ê and &i are the same (given that
E describes a unique event, which equates to i) as they both adhere to the
same step law. In this paper, the syntax of [8] (&i) is adopted for the interrupt
operator. In doing so, we adhere to the operator precedences of [5], which follow
from [8].

The main contribution of this paper is to define a semantics for the interrupt
operator &i in the Unifying Theories of Programming model of CSP. This is
achieved firstly by adopting the step law as the definitive characterization, and
showing that some obvious and desirable laws fall trivially out of this character-
ization. Following this, a new denotational semantics is given which is correct
with respect to the step law. The semantics is also shown to be sufficient and
complete in theoretical terms as it is shown to be strict and to distribute over
disjunction in both arguments. A definition of a conditional version of this oper-
ator is given where the interruptible process can enable or disable the possibility
of an interrupt, and the justification is extended to this version of the operator.
For clarity and ease of reading, proofs are omitted from this paper.
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The paper is structured as follows: Section 2 presents an overview of reactive
processes in the Unifying Theory, and the CSP model is given in Section 3.
Section 4 presents the step law for the unconditional and conditional versions
of the interrupt operator and some relevant laws. Denotational semantics for
the unconditional version of the operator, along with the justification that the
semantics is correct with respect to the step law are given in Section 5, and this
is followed by the same for the conditional version in Section 6. Conclusions are
drawn, and areas in need of further consideration are highlighted in Section 7.

1.1 Examples

Example 1. Interruptible and interrupting processes: P &i Q

We use the name interrupting process to refer to the behaviour of the pro-
cess resulting after the interrupt event has occurred. This is the process Q of
Example 1, and the event i is the interrupt event. The name interruptible process
refers to the normal behaviour that may be interrupted: this is the process P
of Example 1. Therefore in this example, the event i can occur during execution
of P , and subsequent behaviour will then be Q , with no further observations of
P being possible.

Example 2. A simple process and an interrupt: a → b → STOP &i STOP

In Example 2 the interruptible process is a → b → STOP . The possible traces
which may be observed of this process are {〈〉, 〈a〉, 〈a, b〉}. However, this process
may be interrupted by the process i → STOP . Therefore the possible traces
of the composition are those of the interruptible process, and those which may
be observed if the interrupt occurs. These are: {〈〉, 〈a〉, 〈a, b〉, 〈i〉, 〈a, i〉, 〈a, b, i〉}.
These traces show that the occurrence of the interrupt event passes control to
the process on the right hand side of the operator.

Example 3. Restartable processes: PR(i) =̂ μX • (P &i X )

One possible requirement of a process is to be able to restart it: for instance,
a user of a computer may wish to reboot it after an error. Example 3 shows
that interrupt extends easily to this notion, as in [4]. Here, P is the process to
be made restartable. The recursively defined process X behaves as P until an
interrupt occurs, after which its behaviour is that of X again. The notation PR

denotes a restartable version of P , parameterised by the interrupt i .

2 Reactive Processes

The fundamental property of a sequential process is that behaviour may be ade-
quately described by observations made only at initialization and at termination.
A reactive process however is characterized by the fact that it also admits inter-
mediate observations between initialization and termination. These intermediate
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observations are typically interactions with the environment. A reactive program
may not be characterized by its final state alone: information about interactions
with the environment must also be recorded as many reactive programs never
terminate, and therefore have no final state.

A sequence of interactions with the environment is called a trace, and is
recorded by the variable tr . The variable tr contains the sequence of interac-
tions before the process started, and the variable tr ′ contains the sequence of
interactions recorded so far. The expression tr ′− tr therefore gives the sequence
of interactions performed by the current process up to the current point in time.

The boolean variable wait describes the quiescence of a process, indicating
whether or not the observations made are intermediate or final. If wait is true,
the preceding process is in an intermediate state and no observations of this
process can be made. If it is false, the predecessor terminated and the process
may begin. Similarly, if wait ′ is true, all observations of the current process
are intermediate, and when it is false, observations are of the process in its
terminating state. For instance, all the intermediate states of a given process P
(when P .wait = true) are also intermediate states of the process P ; Q , for any
given Q . For control to pass from P to Q , P must be in a terminating state: i.e.
P .wait ′ = false.

In any non-terminated state, a process may refuse to engage in a specific event,
or set of events. The variable ref (an abbreviation of refusals) records the set of
events in which a process may refuse to engage. The value of ref ′ indicates the
events in which a process is refusing to engage in any of its intermediate states,
or its final terminating state. The behaviour of a process, is not dependent upon
the initial value of ref , as it is not dependent upon the refusals of the predecessor.

The final observational variable of reactive processes is one which describes
program stability—the variable okay. If, for a given process P , P .okay = true,
then the process P has started, and the predecessor terminated in a stable state;
if P .okay = false, then P has not started and even the initial values of the process
variables are unobservable. In the case where P .okay ′ = true and P .wait ′ = true,
the process is in a stable state and is awaiting interaction with the environment.
In the case where P .okay ′ = true and P .wait ′ = false, the process has terminated
in a stable state. In the case where P .okay ′ = false, the process is in a non-
stable state and the value of the other observational variables are meaningless—
commonly known as divergence.

Not every relation including these observational variables in its alphabet de-
scribes a reactive process. In order to be considered a reactive process, a predi-
cate must satisfy a number of conditions—referred to as healthiness conditions.
A healthiness condition restricts the lattice of relations that can be described in
the theory. Processes that do not satisfy these conditions are not in the lattice of
reactive processes. The healthiness conditions presented in this section are taken
from [5].

Definition 1. R1: P = P ∧ tr ≤ tr ′

The first healthiness condition for a reactive process R1 ensures that processes
only ever extend the trace—they can not change the record of events that have
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already happened. The simplicity of R1 leads to many obvious algebraic laws:
for instance, it distributes through conjunction and disjunction; and its scope
may be extended over other conjunctions. The result of applying any of the
reactive program combinators to an R1 healthy process is another R1 healthy
process. That is, R1 is closed under conjunction, disjunction, conditional and
sequence.

Definition 2. R21: R21(P , (tr , tr ′)) = 	s• P(s , s � (tr ′ − tr))

Definition 3. R22: R22(P(tr , tr ′)) = P(〈〉, tr ′ − tr)

Whilst a reactive process is sensitive to the value of okay—it cannot be started
until okay is true—there is no reason why it needs to be sensitive to the value
of tr . The healthiness condition R2 therefore requires a reactive process is not
sensitive to the value of tr . In fact, there are two definitions for R2 given in [5].
The first of these states that behaviour should not change if tr is replaced by an
arbitrary value, and the same change is made to tr ′. The second requires that
behaviour is not changed if tr is replaced with the empty sequence.

A relation that is R21 healthy is also R22 healthy—for every relation P ,
R22(P) is a fixed point of R21. In this paper we assume Definition 3 for R2. Not
all properties that hold for R22 hold for R21—this point is discussed further in
[2], but is not directly relevant to the remainder of this paper. The programming
operators are closed with respect to R2.

Definition 4. J : J =̂ (okay ⇒ okay ′) ∧ II

The predicate J of Definition 4 is a special case of a reactive process. The role
played by J is that it permits a change in the value of okay whilst keeping
the other variables constant. If okay is changed, it may be weakened, but not
strengthened. One might capture this point by stating that a process may not be
made to recover from instability; and becoming unstable does not change history.
J is R2 healthy. Furthermore, it is a left unit of sequential composition. This
predicate is later used to build a healthiness condition for CSP processes. II is
the identity: it ensures that all other observational variables remain unchanged.

Definition 5. R3: R3(P) = (II � wait � P)

The third and final healthiness condition for a reactive process is one that makes
sequential composition well-defined, given in Definition 5. If the process on the
left of the sequential composition is in a wait state, then the program on the
right is also. This is intuitively what one might expect from a reactive process:
if this were not true, then the right hand side would be able to engage in some
activity before its predecessor had successfully and stably terminated.

The healthiness condition R3 is of vital importance to this paper: the in-
terrupt operator both requires, and violates, some conditions of R3. Like all
healthiness conditions, R3 is idempotent. R3 distributes through disjunction.
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3 A Unified Model of CSP

The model of reactive processes in the previous section has been used in [5] to
describe a number of paradigms, including the Algebra of Communicating Pro-
cesses [1], and the well known Calculus of Communicating Systems[6,7]. The
Unifying Theories model of CSP follows directly from that of reactive processes.
In fact, a CSP process is a reactive process that observes some additional health-
iness conditions—the healthiness conditions for reactive processes coupled with
those for CSP processes define what it means for an alphabetised relation to be
a CSP process. In this section, these conditions are presented and explained.

3.1 Healthiness Conditions

Definition 6. CSP1: P = (¬ okay ∧ tr ≤ tr ′) ∨ P

R1 insisted that a process will only ever extend the trace. However, CSP pro-
cesses also model divergence, and in the presence of divergence the final values
of variables cannot be meaningfully observed. The first healthiness condition,
CSP1, ensures (like R1) that a process can only ever extend the trace. However
it also states that if the process is in a divergent state (¬ okay) then there are
no other guarantees. CSP1 distributes over disjunction and conjunction.

Definition 7. CSP2:
P = P ; okay ⇒ okay ′ ∧ tr ′ = tr ∧ ref ′ = ref ∧ wait ′ = wait

Definition 8. Alternative CSP2: CSP2(P) = P ; J

The second condition necessary for a CSP process is given in Definition 7. A CSP
process cannot explicitly be required to diverge: processes must be monotonic in
okay ′. CSP2 enforces this condition. Where the predecessor diverged (okay =
false) nothing may be assumed about okay ′, but in the case where it did not,
okay ′ cannot be required to be false. CSP2 may also equivalently be defined in
terms of Definition 4, J , given in Definition 8. CSP2 is closed over disjunction,
sequential composition and conditional.

3.2 Stop, Skip, and Chaos

In this section, some well known CSP processes are presented in terms of their
semantics in the Unifying Theories model.

Definition 9. The identity process IICSP :

IICSP =̂
(okay ′ = okay ∧ tr ′ = tr ∧ ref ′ = ref ∧ wait ′ = wait) � okay � tr ≤ tr ′
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Definition 9 is the identity process for CSP. In the event that the predecessor
did not diverge, then nothing changes. In the event that it did, then the only
guarantee is that the trace may be extended. The heathiness condition Definition
5 must be reformulated for CSP processes to take into account this identity.

Definition 10. The process SKIP: SKIP =̂ ∃ ref • IICSP

The process commonly known as SKIP is a special example of the identity,
where the refusals of the previous process are ignored—the existential quantifier
has the effect of making the final refusals of the previous process—therefore the
initial refusals of this process—irrelevant to its behaviour. The unit law for left
composition of the identify follows from this; as does the well known left unit
law for SKIP . Another interesting law concerns external choice and SKIP : if one
component may terminate immediately, then a refinement is the program that
may terminate immediately.

Definition 11. The process STOP: STOP =̂ R1 ◦ R2 ◦ R3(wait := true)

The deadlock process STOP is one which is always in a wait state. No observation
can be made of this process which extends the trace so that tr ′ is longer than
tr . The expected left zero law for STOP exists.

Definition 12. The process CHAOS: CHAOS =̂ R1 ◦ R2 ◦ R3(true)

The worst CSP process imaginable can perform any action in its alphabet at
will. It may non-deterministically choose to perform any action, or to perform
no action and deadlock, or even to perform infinite internal actions. This is the
process CHAOS of Definition 12. Surprisingly, this definition is strictly stronger
than the predicate true: even a process as non-deterministic as this is still re-
quired to preserve the healthiness conditions for CSP processes. For instance, it
may not begin until the previous process has terminated and it may not change
history even though its future is unpredictable.

3.3 Choice

Definition 13. Internal choice: P 	 Q =̂ P ∨ Q

An internal (non-deterministic) choice between two CSP processes is the dis-
junction of the two processes.

Definition 14. External choice: P � Q =̂ CSP2((P ∧ Q)�STOP �(P ∨ Q))

An external choice between two CSP processes P and Q is given in Definition
14. This definition states that the external choice has both possible behaviours
of P and Q if no choice has been made—that is, if no observation has been
made and termination has not occurred. This is characterized by the condition
where STOP = true—recalling that STOP is merely a predicate in this semantic
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model, then its use in a conditional statement such as this one is simply a short-
hand notation. Alternatively, if an observation had been made—characterized by
the observational variables not representing STOP then behaviour will be either
that of P or that of Q depending upon which choice was made. The purpose of
CSP2 in this definition is one of closure: the negation of STOP is not a CSP2
healthy process. By applying CSP2, then only those points in the resultant
lattice that are healthy are permitted.

3.4 Communication, Events, and Prefixing

Event prefixing is a powerful tool in building the description of a CSP process.
The prefix operator is a binary infix operator: it takes an event as the left hand
argument and a process as the right. The result is a process that will engage
in the left hand operand, and afterwards its behaviour is described by the right
hand process.

The definition of prefixing in the Unifying Theory relies on several related
definitions: in this section these are presented and explained.

Definition 15. B: B =̂ ((tr ′ = tr) ∧ wait ′) ∨ (tr < tr ′)

Definition 16. Φ: Φ =̂ (R1 ◦ R2 ◦ R3) ∧ B

Definition 15 insists that while a process is waiting, the trace remains unchanged.
After it has terminated it will have extended the trace. Φ insists that in addition
to this, the whole process observes the healthiness conditions for reactive pro-
cesses. The two important conditions are that the construction does not tamper
with the other observational variables while it is in a waiting state, and partic-
ularly that it is not dependent upon the initial value of tr . The application of
R2 and R3 ensures that this is the case.

Definition 17. do: doA(a) =̂ Φ(a /∈ ref ′ � wait ′ � tr ′ = tr � 〈a〉)

Definition 17, doA, describes the effect of observing the occurrence of the event
a: there are exactly two stable states. Either wait ′ = true and the process has
not terminated and was not refusing an a, or it has terminated and a has been
appended to the trace.

Definition 18. Simple prefix: a → SKIP =̂ CSP1(okay ′ ∧ doA(a))

The construction a → SKIP is referred to as simple prefix, and its behaviour
is described in terms of the observational variables, given in Definition 18. On
termination, the simple prefix has not diverged (okay ′), and the changes to the
other observational variables are described by the function doA.

Definition 19. Prefix: a → P =̂ a → SKIP ; P

Definition 19 gives the real meaning of prefix operator. It is actually a shorthand
way of writing a sequential composition, and comprises the process a → SKIP
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and P . The process a → SKIP waits to perform an a, after which it terminates
successfully and passes control to P using sequential composition.

CSP processes are closed under sequential composition. A consequence of this
is that CSP processes are also closed under prefixing as this has been defined in
terms of sequential composition.

3.5 Additional Healthiness Conditions

The healthiness conditions CSP1 and CSP2 are not alone strong enough to
characterize a model containing only relations corresponding to processes that
can be written using CSP operators. Three further conditions are needed—these
are given below.

Definition 20. CSP3: CSP3(P) =̂ SKIP ; P

The condition CSP3 states that the behaviour of a process does not depend on
the initial value of the refusals; i.e. it should be the case that when a process P
starts, whatever the previous process could, or did refuse should be irrelevant.
This follows intuitively from the definition of SKIP , which throws away the value
of the refusals on termination. Expanding this condition gives ¬ wait ⇒ (P =
∃ ref • P). If the previous process diverged (¬ okay) then CSP1 guarantees
the behaviour of P is already independent of ref . So CSP3 is relevant to the
situation okay ∧ ¬ wait—when the process has started and is in a stable state.

Several laws are relevant to CSP3. Firstly, as expected it is idempotent. The
others concern closure properties: as CSP processes are not closed with respect
to conjunction (hence the CSP2 clause in Definition 14), closure is concerned
with disjunction, conditional, and sequential composition. The laws for closure
all carry the proviso that P = CSP3(P) and Q = CSP3(Q).

Definition 21. CSP4: CSP4(P) =̂ P ; SKIP

CSP4 requires that on termination or divergence, the value of ref ′ is irrelevant.
If P terminates without diverging then the value of ref ′ is irrelevant; whereas
if P has not terminated then the value of ref ′ is that of P . If P diverges the
only guarantee is that the trace is extended: all other observational variables are
irrelevant.

SKIP , STOP , and CHAOS are all CSP4 healthy. Additionally, the usual
closure properties also hold, with the usual proviso that P = CSP4(P) and
Q = CSP4(Q).

Definition 22. Interleaving (|||):

P ||| Q =̂
( wait ′ = (P .wait ∨ Q .wait) ∧

ref ′ = (P .ref ∩ Q .ref ) ∧
tr ′ − tr ∈ (P .tr ′ − tr ||| Q .tr ′ − tr) ∧
ok ′ ∧ (P .ok ∧ Q .ok) ); SKIP
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Definition 22 presents the interleaving operator. In this definition. Each of the
actions of the interleaving of P and Q is an action of either P or of Q . If one
of either P or Q can not have engaged in an action, then it must have been
performed by the other; if both could have engaged in the action then the choice
between them is non-deterministic. An action can only be refused when it is
refused by P and Q , and terminates only when both P and Q terminate.

Definition 23. CSP5: CSP5(P) =̂ P ||| SKIP

Finally, CSP5 has the effect of insisting that refusals of a process are subset
closed. That is to say, at an arbitrary subsequent observation—which may be
an intermediate state or a terminating one—a process may have been refusing
any of the events in ref ′; it must also therefore have been able to refuse all the
events in any subset of ref ′—including the empty set. The interleaving operator
used in Definition 23 is given in Definition 22.

4 Unconditional and Conditional Interrupts

In this section, the existing step law of [4,8] for the interrupt operator is pre-
sented. This is extended to a conditional version of the operator. Several obvious
and practically useful laws are shown to follow.

4.1 Characterizing Unconditional Interrupt

Law 1. &i-step: (a → P) &i Q = (a → (P &i Q)) � (i → Q)

Law 1 presents the step law given in [4,8]. This recursive law states that the
interrupt event i is available as an external choice in all states in the interruptible
process.

[4] states that this law is sufficient to uniquely characterize the operator for
deterministic processes. This may be seen to follow intuitively: if a process is
interruptible, it should be interruptible in all states—and this is achieved by the
recursion in the law. Moreover, the interruptible process should not itself be able
to control when it is interrupted—the external choice with the interrupt event i
ensures that it is the environment that chooses when the interrupt event happens,
if it happens at all. Furthermore, both [4] and [8] argue that if the operator is
shown to distribute through non-determinism, and is shown to be strict, then
the law is also a unique characterization of the operator for non-deterministic
processes.

It follows that where this is shown to be the case, the step law is sufficient
to establish a notion of theoretical completeness for the operator—it may be
used in any situation to eliminate the operator from any specification. This is
demonstrated by the normal form for CSP processes—in which the operator may
be eliminated—presented in [8].
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4.2 Laws of Unconditional Interrupt

A couple of laws follow from this definition.

Law 2. STOP-&i: STOP &i Q = i → Q

Firstly, the deadlock process STOP may be interrupted: if a process is inter-
ruptible and it is not engaging in any activity and waiting indefinitely, then only
the interrupt event may occur.

Definition 24. Refinement (�): P � Q =̂ [Q ⇒ P ]

Law 3. SKIP-&i: SKIP &i Q � SKIP

An attempt to interrupt SKIP may not succeed: it may terminate before the
interrupt occurs. The only useful information that may be determined is that
SKIP is itself a possible implementation of the scenario. The proofs of these laws
are trivial, and rely on the step law and laws of external choice.

4.3 Characterizing Conditional Interrupt

Another useful operator is one where the interruptible process may choose
whether to enable or disable the interrupt. Such a situation may be, for instance,
a high priority process running on a processor disabling the outside world from
de-scheduling it, and this is a common occurrence in modern, pre-emptive sched-
ulers. In this section, a characterization of this version of the operator is given,
along with the related versions of the laws in the previous section.

Definition 25. Guard & : x&Y =̂ (Y � x � STOP)

Law 4. &c&i-step: (a → P) &c&i Q = (a → (P &c&i Q)) � (c & i → Q)

A conditional interrupt is one where the interrupting process can assign to a
boolean control variable c, and the value of c indicates whether or not it is
willing to engage in an interrupt.

This characterization, not presented in either [4] or [8], draws from the step
law for unconditional interrupt, and therefore follows that it too is sufficient to
uniquely characterize this operator. The environment is responsible for choosing
when an interrupt event happens, if at all. However, importantly, the interrupt-
ible process has the ability to enable or disable this choice, depending on the
value of the guard c. This value need not be fixed: for instance it may be true
initially, and later false in P(x ). In this way, it is possible for the interruptible
process to enable and disable its potential to be interrupted.

4.4 Laws of Conditional Interrupt

As with unconditional interrupt, the same couple of laws fall out of this
definition.
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Law 5. STOP-&c&i: STOP &c&i Q = c & i → Q

Firstly, the deadlock process STOP may or may not be be interrupted: if a pro-
cess is interruptible and it is not engaging in any activity and waiting indefinitely,
then only the interrupt event may occur. However, if the guard c is false, then
the interrupt event may be refused and the deadlocked process cannot progress.

Law 6. SKIP-&c&i: SKIP &c&i Q � SKIP

The condition with SKIP is more complicated: if the guard were enabled, then
the attempt to interrupt it may or may not succeed; if the guard were disabled
then it will certainly fail. As before, the proofs of these laws rely on the step
law, and those for external choice.

5 A Denotational Semantics for Interrupt

In the previous sections, definitions of interrupt were given that relied on the
step law in [4,8]. In this section, a denotational semantics for unconditional
interrupt is given. This denotational semantics is correct as it respects the step
law. Furthermore, by showing that the definition meets those requirements to
allow it to uniquely characterize non-deterministic systems, it is shown to be
theoretically complete. Whilst [4] argues that the step law is sufficient, it may
also be the case that other laws are found to be useful for pragmatic reasons—
and the denotational semantics allows for the proving of these laws. The section
opens by presenting a new healthiness condition that allows a process to interfere
with behaviours of the processes preceding it. This is followed by an operator
that allows alphabets of a process to be added to, and finally a new operator
called interrupt prefix that allows events to be forced into choice with preceding
events is given. Together these are used to give the semantics of the interrupt
operator in a style similar to that of sequential composition, choice and prefixing
for regular CSP processes.

5.1 A Healthiness Condition Allowing Interference

Definition 26 presents a new healthiness condition I3. An I3 healthy process
may interfere with the behaviours of its predecessor, and may only execute while
the predecessor is in a wait state—i.e. has not terminated. If the predecessor
has terminated—i.e. P .wait = false it behaves as the identity. We name this
condition I3 to reflect its relation to R3.

Definition 26. I3: I3(P) = P � wait � IICSP

Example 4. I3 processes left-commuting through history: P ; R3(Q ; I3(R))

In Example 4, for all processes P , Q , and R, the process (P ; R3(Q ; I3(R)))
is R3 healthy along with any additional assumptions about P , Q , and R. The
process R is made I3 healthy by an application of I3. The behaviours of R can
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therefore left-commute through history, and an observation of Q may contain
some observation of R. This is not what would have been expected had R been a
process that was R3 healthy: normally no observations of R would be expected
until Q had terminated. The composition of Q and R is made R3 healthy to
stop the behaviours of R left-commuting further—into the observations of P .

Law 7. R3(I3(P)) = IICSP

Although a process X of the form I3(X ) is not a CSP (or even reactive) process
as it contradicts R3, it can form part of a process that is, as in Law 7, which
states that an I3 process that is required to be R3 healthy will in fact behave
as the identity. The proof follows from the definitions of R3 and I3.

Law 8. I3-∨-dist: I3(P ∨ Q) = I3(P) ∨ I3(Q)

Moreover, I3 distributes over disjunction—given as Law 8. The proof follows
from the disjunctive properties of the conditional operator.

5.2 Extending Alphabets

The alphabet of a process P is the observational variables and AP , the set of
events in which P can potentially engage.

Definition 27. Alphabet extension +: P+i =̂ P ∧ (i /∈ ref ′ � wait ′ � P)

Definition 27 presents a new operator, alphabet extension, +. This operator takes
a given process and adds an event i into its alphabet. In ensuring that the
expression is well defined, several considerations must be made. During execution
of P , the event i was not in the alphabet of P ; therefore the event is added to
AP on termination. It is certainly the case that P was not willing to engage in
i during execution—therefore the event may be added to the final refusals of P .

Law 9. +-∨-dist: (P ∨ Q)+i = P+i ∨ Q+i

Law 10. +-;-dist: (P ; Q)+i = P ; Q+i

Alphabet extension distributes through disjunction. In the case of sequential
composition however, it does not distribute leftwards: this is because it affects
the final refusals of a process, and these are always the final refusals of the
rightmost process in the sequential composition. Of course, by CSP3 these are
in general not relevant to the behaviour of the process—but are in fact crucial
to the behaviour of an interruptible process.

5.3 Communication, Events, and Prefixing

The prefix operator → given in Definition 18 describes standard CSP prefixing
of events. However this definition is not sufficient for describing the case where
an event is forced to occur despite apparent opposition—precisely the situation
when a process is being interrupted. In this section, we develop the definition of
a new operator, interrupt prefix (&) to describe this.
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Definition 28. try(a,P) =̂ ((a /∈ ref ′ ∧ IICSP ) � wait ′ � tr ′ = tr � 〈a〉); P

Definition 29. try(a) =̂ (a /∈ ref ′ ∧ IICSP ) � wait ′ � tr ′ = tr � 〈a〉

The process try(a,P) of Definition 28 does not refuse to communicate a before
termination; and when it has terminated, an a has been appended to the trace.
Following this will be the process P . This is similar to the use of doA in simple
prefixing (Definition 17), except that the reactive healthiness conditions are not
imposed. Definition 29 presents the special case where P is SKIP .

Definition 30. force(a,P) =̂ I3(try(a,P))

Definition 31. force(a) =̂ I3(try(a))

The definition of force in Definition 30 is a process that can interact with its envi-
ronment only in the event that its predecessor has not terminated—by requiring
it to be I3 healthy. In this scenario it behaves as try(a,P); when the prede-
cessor terminates it behaves as the identity, meaning that the whole construct
terminates. Definition 29 presents the special case where P is SKIP .

Definition 32. Interrupt prefix: i & Q =̂ CSP1(ok ′ ∧ force(i ,Q))

Definition 33. Simple interrupt prefix: i & SKIP =̂ CSP1(ok ′ ∧ force(i))

Definition 32 presents the Interrupt prefix operator. This is similar in style to
Definition 18: when the process is not diverging, behaviour is well defined—given
by the function force of Definition 30. By ensuring that it is CSP1 healthy,
behaviour in the event of divergence is also well defined. Definition 33 presents
the equivalent definition for the simple interrupt prefix.

Example 5. Care with interrupt prefix

(P ; (i → Q)) = (P ; (i → SKIP); Q)
(P ; (i & Q)) �= (P ; (i & SKIP); Q)

Example 5 shows that care needs to be taken with the interrupt prefix operator—
in particular with associative properties of sequential composition that do not
hold. Prefixing for normal events (→) is defined in terms of a simple prefix se-
quentially composed with subsequent behaviours. In the case where Q �= SKIP ,
this is not true of the interrupt prefix (&). The definition of I3 states that a
process which is I3 healthy may be active before its predecessor terminated. In
the case where the predecessor P successfully terminates, the I3 healthy process
is never observed. Therefore, in the case P ; i & Q , if P successfully termi-
nates then no behaviours of i & Q will ever be observed. This is not true of
P ; i & SKIP ; Q . In this case, if P terminates successfully, no behaviours of
i & SKIP may be observed, and control is immediately passed to Q.
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5.4 Definition of Unconditional Interrupt

Definition 34. Unconditional interrupt &i :

P &i Q =̂ R3 ◦ CSP2(P+i ; i & Q)

In this definition an unconditional interrupt is the interruptible process P with
the interrupt event i added to its alphabet, sequentially composed with the
I3 healthy interfering process i & Q .

If the interrupting process (i & Q) has not done anything, it terminates
when the interruptible process (P+1) terminates. Therefore the whole construct
terminates. This is a consequence of i & Q being I3 healthy. Should an i have
been observed however, subsequent behaviour is only that of Q , so the construct
terminates when Q terminates. It is necessary to require the whole construct to
be R3 healthy. In doing so, as in Example 4, it ensures P &i Q is a valid CSP
process. If the whole construct were not required to be R3 healthy then the
interrupt prefix could left commute through the predecessors of P—in Example
4 it would allow the interrupting process R to not only interrupt the process
Q—which was the intention—but also to interrupt the process P , which was
not. The purpose of the CSP2 is is to preserve properties of divergence that
would normally be imposed on an external choice.

5.5 Proving the Correctness of the Denotational Semantics

In order to prove that this denotational semantic model of the interrupt operator
is correct, it is necessary to prove that it respects the step law, Law 1. As the
step law is accepted to uniquely characterize the operator, we assert that if the
denotational semantics respects this step law, then it is correct. The full proof is
very long and is omitted from this paper; however in this section we present some
new laws and corollaries that support the proof, and we conclude this section by
briefly discussing the structure of the proof.

Law 11. &i -;-dist:

(P ; Q) &i R = ((P ∧ wait ′) &i R) ∨ (P ∧ ¬ wait ′; (Q &i R))

The expression (P ; Q) &i R describes the situation where the sequential com-
position of P and Q may be interrupted by i & R. Three possibilities exist:
either P is interrupted before it has terminated normally, or P terminated nor-
mally and Q is interrupted, or both processes terminated normally. In the case
where P is interrupted, subsequent behaviour is i & R, and no observations
are made of Q . However, if P terminated normally, Q may be interrupted, and
subsequent behaviour is i & R. In the third case, where Q terminates normally,
the whole construct terminates and no observations of i & R are ever made.

Law 12. &i -elim: a → SKIP &i Q = a → SKIP � i → Q

If the intention is to interrupt the simple prefix a → SKIP , then the choice of
both a → SKIP and i → Q is available. This allows for the elimination of the
interrupt operator in specific situations.
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Corollary 1. &i -elim1:

(a → SKIP ∧ wait ′) &i Q = (a → SKIP ∧ wait ′) � i → Q

Corollary 2. &i -elim2:

(a → SKIP ∧ ¬ wait ′) &i Q = (a → SKIP ∧ ¬ wait ′) � i → Q

Two corollaries follow from this and the law of the excluded middle. In
Corollary 1, the interruptible process has not terminated and the external choice is
still possible. In Corollary 2 the interruptible process has terminated successfully,
but the external choice was still a possibility.

Law 13. &i -step:

(a → P) &i Q = (a → (P &i Q)) � (i → Q)

The proof of the correctness of the denotational semantics relies on these corol-
laries. Firstly, it observes that the process a → P can be rewritten as a simple
prefix—meaning that the laws for distribution of interrupt through sequential
composition apply. The most useful and applicable law therefore is the elimina-
tion of the interrupt operator, resulting in the introduction of an external choice
with the waiting simple prefix. Once the external choice has been factored out
of the internal choice, the final two steps of the proof reconstruct the definition
of interrupt.

5.6 Proving Properties of Distribution and Strictness

In Section 4, conditions were stated which must be met in order to prove that
an operator is applicable to both non-deterministic and deterministic systems.
These conditions are that non-determinism must distribute through the oper-
ator, and that the operator must be strict. In this section, laws are presented
that justify these claims about the denotational semantics for the interrupt op-
erator. The conclusion is that the denotational semantics are sufficient for non-
deterministic systems, and therefore Law 1 (&i -step) is shown to be theoretically
sufficient: i.e, it is applicable to the interrupt operator in all circumstances.

Law 14. 	 − &i -dist: (P 	 Q) &i R = (P &i R) 	 (Q &i R)

Example 6. Multiple interrupts: (P &i Q &j R) = ((P &i Q) &j R)

Law 14 considers the distribution of disjunction through the left hand operand
of the interrupt operator. The syntax of the interrupt operator requires that
the choice of interrupt event i is unique. If a model requires multiple interrupt
events, then multiple interrupts need to be specified (and the interrupt operator
binds as tightly as the prefix operator), and this is demonstrated in Example 6.
Given then, that i → P 	 i → Q = i → (P 	 Q), the right hand will always be
deterministic with regards to the interrupt event. Therefore Law 14 is the only
one necessary to satisfy the requirements for distribution through disjunction.
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Law 15. CHAOS-&i: CHAOS &i Q = CHAOS

The second requirement for applicability to non-deterministic systems is that
the operator is strict: that f (⊥) = ⊥. Law 15 describes this for the left operand
(the interruptible process).

In a similar manner to that for non-determinism in the left argument, it is not
necessary to consider strictness in the right argument as the interrupting process
may not be chaotic. This follows from the fact that the interrupt event i must
be unique, and i → CHAOS �= CHAOS—the syntax of the operator therefore
does not permit interrupting behaviour to be urgently chaotic—the first event
observed is deterministic.

5.7 Distribution of Interrupt Through Variable Scope

The Unifying Theories model of CSP allows for the declaration of variables, and
the ending of variable scope. This introduces a piece of syntax not considered
in the applicability of the step law of [4,8]. However, the denotational semantics
allow for a law that demonstrates that this additional piece of syntax does not
affect the applicability of the step law.

Law 16. var -&i -dist

( var x ; P ; end x ) &i Q = var x ; P &i Q ; end x
[ provided x /∈ αQ ]

If P contains some state that is in scope until P terminates, then that scope also
extends to the interrupting process. In other words, the local state will remain
in scope until Q terminates.

Therefore, the step law may now be applied to the interrupt operator inside
the variable declaration. In fact, although this law is necessary to show that the
new syntax does not affect the applicability of the law, its use extends further
than this: to the preservation of user state through the modelling of failure.

6 Conditional Interrupt, Denotationally

In the conditional version of the operator, c is the condition that enables or dis-
ables the interrupt, and i is the interrupting event. When c is true, the interrupt
prefix i & Q is enabled, and when c is false, it behaves as the identity.

Definition 35. Conditional interrupt &c&i :

P &c&i Q =̂ R3 ◦ CSP2(P+i ; (i & Q) � c � IICSP )

Similar laws apply to the conditional version of the operator as to the uncon-
ditional version. It left-distributes through sequential composition. It may be
eliminated when interrupting a simple prefix—the difference is that the interrupt
event i is guarded by the condition c. In the case where c is always true, these
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laws reduce to the laws given in the previous section for the unconditional ver-
sion of the operator. Therefore the unconditional version of the operator can be
regarded as a special case of the conditional version, with the added condition
that c = true is invariant.

Law 17. &c&i-;-dist:

(P ; Q) &c&i R = ((P ∧ wait ′) &c&i R) ∨ (P ∧ ¬ wait ′; (Q &c&i R))

Law 18. &c&i-elim: a → SKIP &c&i Q = a → SKIP � c & i → Q

Corollary 3. &c&i-elim1:

(a → SKIP ∧ wait ′) &c&i Q = (a → SKIP ∧ wait ′) � c & i → Q

Corollary 4. &c&i-elim2:

(a → SKIP ∧ ¬ wait ′) &c&i Q = (a → SKIP ∧ ¬ wait ′) � c & i → Q

Law 19. &c&i-step denotationally:

(a → P) &c&i Q = (a → (P &c&i Q)) � (c & i → Q)

6.1 Proving Properties of Distribution and Strictness

Law 20. 	 − &c&i-dist: (P 	 Q) &c&i R = (P &c&i R) 	 (Q &c&i R)

Law 21. CHAOS-&c&i: CHAOS &c&i Q = CHAOS

Properties of distribution and strictness also hold for the conditional version.
That is, non-determinism distributes through the left hand operand; and it is
strict. The syntax does not allow for non-determinism or urgently chaotic be-
haviour in the right hand operand due to the uniqueness of the interrupting
event.

6.2 Distribution of Conditional Interrupt through Variable Scope

As expected, the fact that the interrupt is conditional does not affect the preser-
vation of local state; as shown by the following law.

Law 22. var -&c&i-dist

( var x ; P ; end x ) &c&i Q = var x ; P &c&i Q+x ; end x
[ provided x /∈ αQ ]
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7 Summary

In this paper, a semantics for the interrupt operator of CSP was given in the
Unifying Theory. A traces semantics was given in [4], and failures semantics in
[8]; the definition in this paper is equivalent to a failures-divergences semantics
and is the most complete treatment of the operator recorded. Existing algebraic
laws hold, in particular the step law—concluding that the definition presented
in this paper respects all the properties of that in [4,8].

An interesting aspect of the semantics is that a new construct (healthiness
condition I 3) was required for the definition. This healthiness condition is not
suitable for a CSP process—in fact it contravenes some conditions necessary for
a process to be considered a CSP process. However, the aggregate construct of
an interruptible and interrupting process is still a CSP process. The ability to
construct this definition, in particular the ability to include a non-CSP process
in this manner, is itself evidence that the Unifying Theories semantic model of
CSP is more expressive than the well accepted failures-divergences model of [8].

Other works such as [11] have shown the usefulness of the interrupt operator
in modelling systems failures and faults. Therefore including a definition of this
operator in the Unifying Theories semantic model of CSP allows its application
in these areas. Moreover, as the semantic model of Circus[9,10] is based on this
model, we postulate that this definition will be applicable to Circus processes.

[2] demonstrates how the failures-divergences of a Unifying Theories CSP
process can be calculated from its semantics. We have not attempted to calculate
the failures-divergences of our operator in this paper, but to do so, and compare
the failures-divergences semantics with the failures semantics of [8] would be an
interesting future exercise. Another exercise that we leave for future work is to
compare the behaviours of our operator with other notions of interrupts—both
in formal notations, and in programming languages and hardware systems, and
to investigate how our notion of interrupt generalizes across different languages
and paradigms.
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Abstract. Only limited progress has been made so far towards an ax-
iomatic semantics or discovering the algebraic rules that characterise
Handel-C programs. In this paper we present a UTP semantics together
with extensions we needed to include in order to express Handel-C prop-
erties that were not addressable with standard UTP. We also show how
our extensions can be abstracted to a more general context and prove a
set of algebraic rules that hold for them. Finally, we use the semantics
to prove some properties about Handel-C constructs.

1 Introduction

Handel-C [10] is a Hardware Description Language (HDL) based on the syntax
of the C language extended with constructs to deal with parallel behaviour
and process communications based on CSP [11]. The language is designed to
target synchronous hardware components with multiple clock domains, usually
implemented in Field Programmable Gate Arrays (FPGAs).

In this paper we present a denotational semantics for a subset of Handel-C.
Our semantics is based on the theory of designs as presented in the Unifying
Theories of Programming (UTP) [12]. Special attention is paid to the way in
which parallelism is captured, as the UTP model for parallel composition is
more restrictive than the one used in Handel-C. The major difference between
the two parallel models lies in the fact that the shared-variable parallel model
presented in UTP is based on the parallel processes terminating at the same
time. As this restriction does not hold for Handel-C programs, we propose an
extension of this UTP theory that is capable of handling the kind of parallelism
we required. We also used the semantics to prove a set of algebraic rules about
Handel-C programs.

We also generalise the notions in our parallel operator for Handel-C and pro-
vide a more general parallel operator that is able to handle processes that may
take a different amount of clock cycles to finish. We also address the algebraic
laws of our operator together with the healthiness conditions that it preserves.

The rest of this paper is organised as follows: section 2 presents the syntax of
the subset of Handel-C we address in this work together with an informal account
of its semantics. Section 3 presents our parallel-by-merge operator for Handel-C
that handles parallel composition of processes of different length. This section
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also covers the algebraic laws we have proved about the operator together with
the healthiness conditions the operator preserves. Section 4 presents the UTP
semantics for Handel-C and motivates the changes we introduced in UTP in order
to be able to capture Handel-C’s timing model and restrictions. This section also
includes a set of algebraic laws we have proved from the semantics together with
examples of the semantics in action. In section 5 we propose an abstraction of our
parallel-by-merge operator suitable for more general synchronous environments.
Finally, section 6 presents the related research and section 7 the conclusions and
future extensions of this work.

2 Handel-C in More Detail

In order to provide semantics for the language, a simplified subset that captures
the major constructs in the Handel-C language is being used. Most constructs in
the language can be built by combining constructs in this subset, with exception
of the prioritised choice construct and function calls. Our subset of Handel-C
constructs is presented in figure 1.

〈program〉 ::= main { 〈statements〉 }
〈statements〉 ::= 〈statement〉 � 〈statements〉 | 〈statements〉 ‖

HC
〈statements〉 | 〈statement〉

〈statement〉 ::= if 〈boolean expression〉 then 〈statements〉 else 〈statements〉
| while 〈boolean expression〉 do 〈statements〉
| 〈variable list〉 :=

HC
〈expression list〉 | δHC | IIHC

| 〈channel name〉?〈variable name〉 | 〈channel name〉!〈expression〉

Fig. 1. Restricted syntax for Handel-C programs

As described in the language documentation [10], programs are comprised of
at least one main function and, possibly, some additional functions. Multiple
main functions (within the same file) produces the parallel execution of their
bodies under the same clock domain. It is possible to produce the same effect in
our reduced subset by means of the parallel operator.

All C-based constructs in Handel-C behave as defined in ANSI-C [14] but
with some additional restrictions regarding the clock-based, synchronous nature
of the language. In this sense, the evaluation of expressions is performed by
means of combinatorial circuitry and it is completed within the clock cycle in
which it is initiated (expressions are considered to be evaluated “for free” [10]
due to this semantic interpretation).

This way of evaluating conditions affects the timing of all the constructs in the
language. In the case of selection, the branch selected for execution (depending
on the condition) will start execution within the same clock cycle in which the
whole construct is initiated. The while construct behaves in a similar way when
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its condition is true (i.e., it starts its body in the same clock cycle in which its
condition is evaluated) and, because of the same reason, terminates within the
same clock cycle in which its condition becomes false. Assignment, on the other
hand, happens at the end of the clock cycle. This definition of the assignment
construct allows swapping of variables without the need of temporary variables.

From the remaining non-C constructs, parallel composition of statements ex-
ecutes in a real parallel fashion as it refers to independent pieces of hardware
running in the same clock domain. Delay leaves the state unchanged but takes
a whole clock cycle to finish and IIHC leaves the state unchanged and finishes
immediately (in fact, no hardware is generated for it).

Finally, input and output have the standard blocking semantics: if the two
parts are ready to communicate, the value outputted at one end is assigned to the
variable associated with the input side. Both sides of the communication take one
full clock cycle to successfully communicate. A process trying to communicate
over a channel without the other side being ready will block (delay) for a single
clock cycle and try again.

3 Extended Parallel by Merge

As mentioned before, we intend to define the semantics of Handel-C constructs
in terms of synchronous UTP designs. The first problem we faced in this context
is the fact that the parallel-by-merge approach used in UTP (see [12] chapter
7), is only applicable to parallel processes that take the same amount of time to
terminate. This is a very strong restriction, especially in the context of Handel-C
where parallel composition is unrestricted in this sense.

The rest of this section outlines the definitions and algebraic laws that hold
for a new parallel-by-merge operator that can handle processes that do not
necessarily take the same amount of time to finish.

3.1 The Merge Predicate

The first step towards the definition of our operator is to instantiate the merge
predicate M that will join the results of two single-step parallel process. By
single-step we mean a process that performs all its actions in a single time unit
(e.g., a single clock cycle in the context of synchronous hardware). The intuition
behind our definition is that M will update the shared variables to the value of
the process that has modified it or will leave it unchanged if none of the parallel
processes modified it. More precisely, we define M as follows:

M(ok, m, 0.m, 1.m, m′, ok′) =
ok ⇒ ok′ ∧

((m′ = m) � m = 1.m � (m′ = 1.m))
�m = 0.m �
((m′ = 0.m) � m = 1.m � (m′ = 1.m 	 m′ = 0.m))
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Handel-C semantics allows at most one write to any shared variable per clock
cycle. In this context, our definition for M behaves as expected as it will be
applied at the end of each clock cycle where we know that, at most, one of the
processes has changed the value in its local copy of m.

We “totalised” the definition of M in order to cover the (impossible) case
where the two parallel processes modify m, as we needed M to be symmetric
in order to prove our operators associative later in this section. In this context,
the result of multiple assignment to the same variable during the same clock
cycle is the internal choice of updating the store with either of the values being
assigned. This unexpected non-determinism can be explained at the hardware
level by the unpredictable value that will be stored in a register when it is fed
with more than one value at the same time.

Following Hoare and He [12], we define the single-step parallel composition
operator ‖M as P ‖M Q =df ((P ; U0) ‖ (Q; U1)); M . Here U0 and U1 are
separating simulations that will generate the local copies of the shared state.

We are interested in proving some standard algebraic laws about our merge
predicate:

L1 P ‖M Q = Q ‖M P ‖M -comm
L2 P ‖M (Q ‖M R) = (P ‖M Q) ‖M R ‖M -assoc
L3 (IIX ‖M IIY ) = IIX∪Y ‖M -II
L4 true ‖M P = true ‖M -true
L5 (P � b � Q) ‖M R = ((P ‖M R) � b � (Q ‖M R)) ‖M -��
L6 (P 	 Q) ‖M R = (P ‖M R) 	 (Q ‖M R) ‖M -	

L7 (
⊔

S) ‖M R =
⊔
n

(Sn ‖M R) ‖M -
⊔

for any descending chain S = {Sn | n ∈ N}
L8 (x := e; P ) ‖M Q = (x := e); (P ‖M Q)

provided that x := e does not mention m

Instead of proving all these laws for our operator, we can take advantage of an
already proved result from UTP that guarantees properties L1 - L7 above to
hold iff M is a valid merge. We proved M to be valid by showing it satisfies:

V1 (0.m, 1.m := 1.m, 0.m); M = M M is symmetric
V2 (0.m, 1.m, 2.m := 1.m, 2.m, 0.m); M3 = M3 M is associative

where M3 = ∃x, t • M(ok, m, 0.m, 1.m, x, t) ∧ M(t, m, x, 2.m, m′, ok′)
V3 (var 0.m, 1.m := m, m; M) = II

We were also able to prove two expected properties from our definition of M : if
one of the branches remains idle (i.e., does not modify the shared variable), then
the shared variable will be updated according to the other branch (M -unit); and
if the two processes modify the variable in the same way then the shared variable
will be updated to that value (M -idemp). More formally stated:
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(0.m = v); M(v, 0.m, 1.m, m′) = (m′ = 1.m) M -unit
(0.m, 1.m := v, v); M(m, 0.m, 1.m, m′) = m′ = v M -idemp

We also proved that M preserves healthiness conditions H1 to H4, by proving
(again, by a result from UTP) that ‖M is H1 to H4.

3.2 The Final Merge Predicate

In the context of UTP synchronous parallel process, time is captured by a global
counter c and each parallel process has its own copy of the store. Each process has
access to the global state by means of a pair of vectors indexed by time: in and
out that can be interpreted as the values of the global variables at the beginning
and end of the clock cycle respectively. Processes behave independently from
each other, signalling the end of their actions at each clock cycle by performing
a sync action. The merge predicate is then used to calculate the global value of
the store for that clock cycle and to propagate the value to the processes through
the in observation.

So far we have defined how to merge the result of a single step in the compu-
tations of parallel processes. The next step is to define a final merge predicate
M̂ (i.e., a predicate that will take the result of two arbitrary processes and will
compute the final outcome of their parallel execution) that is capable to handle
different-length parallel processes. The main issue when trying to define such an
operator is how to state that if one of the processes takes less clock cycles to
finish than the other one, then it should do nothing but wait. More important,
how to produce this “missing behaviour” while preserving properties L1 to L8
from the previous section.

The above idea could be expressed in the UTP by forcing the shorter process
to perform the missing sync actions it is not doing (i.e., advancing the local
counter c and updating outc and the shared resource m appropriately). There
are several alternative ways to achieve this effect but, even though all of them
are operationally correct, they fail when trying to prove some of the desired
properties for the parallel merge operator. The main reason for this being the
behavioural padding we are using to generate the missing behaviour for the
shorter process not being associative and not distributing over M̂ .

The evidence above suggests that we need a way of denoting the padding in
a less explicit way. In fact, we need to find a way to establish the right values
in the variables used to control the parallel execution for the shorter processes
and to denote the fact that the local copy of the shared resource m is keeping
its previous value while the clock counter is advancing.

To achieve this effect we first introduce a new variable f recording the clock
cycle count in which the whole program finishes. In this way, we keep the local
copies of the counter c to the actual termination times for each branch while
we are able to express actions for the whole duration of the program. We also
introduce the 0.m.in inspired after the in vector in the UTP formulation. We
initialise 0.m.in to behave like the standard feedback loop in a flip-flop (at each
clock cycle, it holds the same value it had during the previous clock cycle). In
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this way, we are avoiding an explicit mention of how the variable is preserving
its previous value during the cycles in which the process is inactive.

We also need to account for the communication primitives and how our par-
allel operator handles them. We define the input and output commands to rely
upon a set of special variables that are not included in the list of program
variables. The special set of variables associated to a given channel ch include
ch?, ch! and ch standing, respectively, for the requests for inputting, outputting
and the value to be transmitted over ch. We also assume that ch?, ch! (the re-
quests for communication) will remain in the logical value false unless they are
used. This assumption is consistent with the hardware implementation of com-
munications, where the requests are wires that remain in a “low state” unless
they are explicitly fed with current when the request is done.

Finally, we introduce the fixed, but arbitrary value ARB. As with the false log-
ical value for the communication requests, this value will be the default value for
all channels when they are not being used. This is a refinement of what happens
at the hardware level where the value of this kind of buses is left unconstraint
when they are not being used.

We now extend the standard definition of the separating simulation U0 (and
similarly U1) to include m.in together with the channel request wires:

U0 =df var 0.m.in, 0.c, 0.ch?, 0.ch!, 0.ch := m.in, c, ch?, ch!, ch;
end m.in, c, ch?, ch!, ch

With these definitions in place we now define the final merge predicate:

M̂ =df (c := max(0.c, 1.c) ‖
{M(mi−1, 0.m.ini, 1.m.ini, m.in′

i)|c ≤ i ≤ f} ‖
{M(false, 0.chi, 1.chi, ch

′
i)|c ≤ i ≤ f} ‖

{M(false, 0.ch?i, 1.ch?i, ch?′i)|c ≤ i ≤ f} ‖
{M(ARB, 0.ch!i, 1.ch!i, ch!′i)|c ≤ i ≤ f});
end 0.c, 1.c, 0.ch?, 1.ch?, 0.ch!, 1.ch!, 0.ch?, 1.ch?, 0.ch, 1.ch;
{IIm.ini,mi,com(ch)i

|i < c}

There are several aspects of this definition that are worth noticing:

– Even though the introduction of f in our model allows the local counters
(0.c and 1.c) to be different, we know one of them (the bigger one) matches
the actual cycle count for the parallel execution of both processes. We choose
the longest execution time to update the global cycle counter.

– All our updates to the shared store (generically referred to as m) are based on
the value of the resource being updated at the previous clock cycle. Updates
to the communication requests and bus values, on the other hand, are based
on their respective default values.
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The rationale behind the behaviour for the store is that we are modelling
sequential hardware, where the next value of registers (variables) will depend
on the state of the machine in the previous clock cycle. A similar explanation
holds for communication requests and buses, where the default values are
used to detect if any of the processes has changed them. In both cases, M
acts as a multiplexer that selects between preserving the old/default value
or routing the updated value.

– Regarding Hoare and He’s initial formulation, we removed the presence of
the out sequence in our model. In UTP, the out vector is used to record the
intermediate results produced by the process over the shared variables and
avoid variable capture. The fact that our variables are themselves sequences
allows us to remove out and reuse the local copy of m for this purpose.

Finally, we define the parallel-by-merge operator as:

P ‖M̂ Q =df ((P ; U0) ‖ (Q; U1)); M̂

3.3 Algebraic Laws and Healthiness Conditions

In this section we provide the set of laws we proved about our parallel-by-merge
operator. Most of the laws are similar to the ones presented earlier in the paper
for the ‖M operator, but we recast them here for clarity.

L1 P ‖M̂ Q = Q ‖M̂ P ‖M̂ -comm
L2 P ‖M̂ (Q ‖M̂ R) = (P ‖M̂ Q) ‖M̂ R ‖M̂ -assoc

provided that P , Q and R are H4

L3 (II ‖M̂ P ) = P ‖M̂ -II
L4 true ‖M̂ P = true ‖M̂ -true

L5 (P � b � Q) ‖M̂ R = ((P ‖M̂ R) � b � (Q ‖M̂ R)) ‖M̂ -��
L6 (P 	 Q) ‖M̂ R = (P ‖M̂ R) 	 (Q ‖M̂ R) ‖M̂ -	

L7 (
⊔

S) ‖M̂ R =
⊔
n

(Sn ‖M̂ R) ‖M̂ -
⊔

for any descending chain S = {Sn | n ∈ N}
L8 x := e; (P ‖M̂ Q) = (x := e; P ) ‖M̂ Q :=-‖M̂

L9 (P ‖M{m,ch} Q); tick; (R ‖M̂ S) = (P ; tick; R) ‖M̂ (Q; tick; S) ‖M -‖M̂

provided that P and Q do not perform any tick event
where ‖M{m,ch}=df M(m, 0.m.in, 1.m.in, m.in′) ‖

M(com(ch), 0.com(ch), 1.com(ch), com(ch)′)
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We start by proving two of the three validity properties of the ‖M̂ operator by
showing:

(0.st, 1.st := 1.st, 0.st); M̂ = M̂ M̂ -symmetric
where st =df m0..f , c, ch?, ch!, ch

(0.st, 1.st, 2.st := 1.st, 2.st, 0.st); M̂3 = M̂3 M̂ -associative

where M̂3 =df ∃x.st • M̂(st, 0.st, 1.st, x.st) ∧ M̂(st, x.st, 2.st, st′)

With these results, we easily proved (‖M̂ -comm) and (‖M̂ -assoc).
The key result regarding our parallel-by-merge operator’s capability to handle

processes of different length lies in property 3.3L3, as the spreadsheet principle
(3.3L9) will eventually reduce the shorter process to IIHC.

Proof of 3.3L3: For the proof, consider:

P =df c, m.in, ch, ch?, ch! :=
c + t, P.m.in � 〈m.inc+t+1, ..., m.inf〉, P.chc..c+t � 〈ARB, ..., ARB〉,
P.ch?c..c+t � 〈false, ..., false〉, P.ch!c..c+t � 〈false, ..., false〉))

Then we have:

II{m.in,com(ch),c} ‖M̂ P

= [‖M̂ ’s definition, U0 and U1 definition and predicate calculus]
((0.c, 0.m.inc..f , 0.chc..f , 0.ch?c..f , 0.ch!c..f :=

c, 〈m.inc−1, ..., m.inf−1〉, 〈ARB, ..., ARB〉, 〈false, ..., false〉, 〈false, ..., false〉) ‖
(1.c, 1.m.inc..f , 1.chc..f , 1.ch?c..f , 1.ch!c..f :=
c + t, P.m.in � 〈m.inc+t+1, ..., m.inf〉, P.chc..c+t � 〈ARB, ..., ARB〉,
P.ch?c..c+t � 〈false, ..., false〉, P.ch!c..c+t � 〈false, ..., false〉)); M̂

= [M̂ -unit]
(c, m.inc..f , chc..f , ch?c..f , ch!c..f :=

c + t, P.m.in � 〈m.inc+t+1, ..., m.inf〉, P.chc..c+t � 〈ARB, ..., ARB〉,
P.ch?c..c+t � 〈false, ..., false〉, P.ch!c..c+t � 〈false, ..., false〉)

= [Definition of P ]
P

Laws L4-L8 can be easily proved from the fact that M̂ is defined in terms of ‖
and these properties hold for the disjoint-alphabet parallel operator. L9 can be
proved following the proof sketched in [12].

Regarding the healthiness conditions and their preservation through the ‖M̂
operator, we begin by observing that even though we have not explicitly stated
that M̂ is a design, this can be easily shown if we first note that all the parallel
elements in its definition are designs:
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M̂

= [M̂ ’s definition]
(true � c := max(0.c, 1.c)) ‖
{(true � M(mi−1, 0.mi, 1.mi, m.in′

i))|c ≤ i ≤ f} ‖
{(true � M(chi−1, 0.chi, 1.chi, chi))|0 < i < f} ‖
{(true � M(ch?i−1, 0.ch?i, 1.ch?i, ch?i))|0 < i < f} ‖
{(true � M(ch!i−1, 0.ch!i, 1.ch!i, ch!i))|0 < i < f} ‖
end 0.c, 1.c, 0.ch?, 1.ch?, 0.ch!, 1.ch!, 0.ch?, 1.ch?, 0.ch, 1.ch

= [‖ composition of designs, M for M̂ ’s body]
(true � M)

By being a design, M̂ satisfies H1 and H2. M̂ ’s simple assumption (true) makes
it trivial to prove that it also satisfies H3. Finally, H4 follows naturally from M
being H4. We use these results together with the fact that our definition of ‖M̂
follows the UTP parallel-by-merge template to ensure that ‖M̂ is implementable
and preserves the four healthiness conditions.

4 Handel-C Semantics

In this section we present the semantic expressions that give meaning to Handel-
C constructs. The first problem we face when trying to produce a UTP-based
semantics is the property of the assignment design that allows us to flatten a
sequence of assignments to a single (possibly multiple) assignment (law 3.1.L2
in UTP). For example, UTP algebraic laws for assignment and sequential com-
position allow us to reduce (x := 1; x := x + 1) to x := 2. Even though the
equivalent Handel-C program also finishes by storing the value 2 in x, it does
so after two clock cycles and we are interested in preserving the information
about x = 1 for a whole clock cycle before changing into its final value (this is
fundamental when parallel composition is taken into account).

We address this problem by turning the variables in the program into se-
quences of values indexed by clock cycle. In this way, it does not hold that
(x :=

HC1 � x :=
HCx + 1) = x :=

HC2. For this idea to work we need to introduce a way to
keep track of the current clock cycle and how each construct behaves with re-
spect to it. With this in mind, we extend the scope of the observational variable
c from just parallel regions to the full scope of the program. We also add a single
action capturing the notion of the clock ticking :

tick =df c := c + 1

We also take advantage of the in vector as defined in section 3.2. In the context
of the semantics, it plays a key role because it allows us to unify the sequential
and parallel worlds and preserve the compositionality of the approach (we will
address this issue in more detail at the end of this section).
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To keep the presentation compact, we introduce the notation com(ch) to stand
for all the variables associated to channel ch (ch?,ch!,ch) and comidle to the set
of values associated to a channel when it is idle (i.e., it’s default values).

In these terms, the semantics of assignment, the one-clock-cycle delay and
IIHC can be stated as follows:

�x :=
HCe� =df (x.inc, v.inc, com(c) := �e�, vc−1, comidle); tick

�δHC� =df (v.inc, com(c) := vc−1, comidle); tick
�IIHC� =df IID

Here v stands for the remaining variables in the state space of the program.
Thus, vc refers to the values of the variables mentioned in v at clock cycle c and
v.inc+1 to the value for the in vectors associated to each of them at clock cycle
c + 1. On the other hand, the semantics of an expression e are defined in the
usual way with the exception that variable accesses (i.e., reads) are indexed by
the clock cycle in which they happen.

The basic sequential constructs of the language can be given semantics by
their UTP counterparts:

�P � Q� =df �P �; �Q�
�if c then P else Q� =df �P � � �c� � �Q�
�while c do P � =df μX • (�P �; X) � �c� � II

We use the communication requests introduced in section 3.2 and include three
new signals

←−
ch,

−→
ch and

←→
ch standing for the granted request for input and output

over ch together with the actual value transmitted over the bus ch. In this
context, the semantics of the input/output primitives can be stated as follows:

�ch?m� =df

μX • ch?c := true;

((m.inc, v.inc, ch!c, chc :=
←→
ch ′

c, vc−1, false, ARB; tick)

�−→
ch′

c = true �
(v.inc, ch!c, chc := vc−1, false, ARB; tick; X))

�ch!x� =df

μX • ch!c, chc := true, �x�;
((v.inc, ch?c := vc−1, false; tick)

�←−
ch′

c = true �
(v.inc, ch?c := vc−1, false; tick; X))

It is worth noticing that none of the granted-request variables are modified by
the communicating processes (i.e., they do not appear in the output alphabet
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of the processes). In this way, the same variable can be mentioned in multiple
parallel without risking to interfere with each other.

The semantics for parallel composition is defined in terms of the ‖M̂ operator:

�P ‖
HC Q� =df �P � ‖M̂ �Q�

We have addressed ‖M̂ in full detail in section 3.2. For the present discussion it
is relevant to highlight that it produces local copies of the state and the channels
(thanks to the separating simulations) that each process will access and modify.
The merge predicate M̂ is then be used to merge these copies back into the
original shared variables.

Finally, we use the top-level main function to introduce the clock cycle count
c together with the traces for the store, their associated in variables and the
channel request/granted signals. We also initialise the shared variables (with
their corresponding in vectors) to behave like a flip-flop. We apply a similar
technique to establish the default value for channel requests and to set the de-
fault value transmitted over the channels to ARB. In this way, we satisfy the
assumptions about default values we made when defining ‖M̂ in section 3.2.

�main {P}� =df

var c, m, m.in, f, ch?, ch!, ch,
←−
ch,

−→
ch,

←→
ch ; ch?, ch!, ch;

c, m0..f , m.in0..f := 1, λc • ARB� c = 0 � mc−1, λc • ARB� c = 0 � mc−1;
ch?0..f , ch!0..f , ch0..f := λc • false; λc • false; λc • ARB;
�P � ∧ (m = m.in′) ∧ (f = c′) ∧ (

−→
ch′ = ch!′) ∧ (

←−
ch′ = ch?′) ∧ (

←→
ch ′ = ch′);

end m.in, f, ch?, ch!, ch,
←−
ch,

−→
ch,

←→
ch

It is worth noting the mapping we are producing between m and m.in′. In this
way, the register storing m is copying what is fed to it through the in channel at
every clock cycle. The simple relation this equation establishes is the key for the
compositionality of the approach. In the context of sequential fragments, each
sub-process will modify in according to its needs and this will be reflected in
m. In the context of parallel processes, the in variable will be replicated (i.e.,
locally copied), generating multiple inputs to the same register. The M̂ operator
will appropriately merge (select) the right one and transfer the final value to the
global in, ensuring homogeneous operation and compositionality.

We also constrain the value of f to the final value of the clock counter, mak-
ing it consistent with our requirements in section 3. Regarding granted/request
signals, they are used to avoid variable-capture when producing the local copies
of the state within the parallel operator. The restrictions imposed here to keep
them equal to the communication requests at all times, allows the feedback of the
merged result (captured in the primed version of the requests) to the recursive
equations used in the communication.
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4.1 Properties about the Semantics

So far we have introduced a way to express the semantics for Handel-C in the
theory of designs in UTP. At this point we are interested in using the semantics
to find out which properties hold true for Handel-C syntactic constructs. We
devote the rest of this section to describe the results we have proved so far
towards this goal.

L1 P � (Q � S) = (P � Q) � S �-assoc
L2 P ‖

HC
Q = Q ‖

HC
P ‖

HC
-comm

L3 (P ‖
HCQ) ‖

HCR = P ‖
HC (Q ‖

HC R) ‖
HC -assoc

L4 P � IIHC = P = IIHC
‖
HCP �-skip

L5 IIHC
‖
HCP = P ‖

HC -IIHC

L6 x :=
HCe � (P ‖

HCQ) = (x :=
HC e � P ) ‖

HC (x :=
HCe � Q) ‖

HC - :=
HC

L7 x :=
HCe � (P ‖

HCQ) = (x :=
HC e � P ) ‖

HC (δ
HC � Q) ‖

HC - :=
HC -δHC

L8 x, y :=
HCe1, e2 � (P ‖

HC Q) = (x :=
HCe1 � P ) ‖

HC (y :=
HCe2 � Q) ‖

HC -multiple- :=
HC

L9 (ch?x � P ) ‖
HC

(ch!e � Q) =
(x, ch?, ch!, ch :=

HCe, true, true, e) � (P ‖
HCQ) ?!- :=

HC

Provided that (ch?′, ch!′, ch′ =
←−
ch′,

−→
ch′,

←→
ch ′)

L10 (ch?x � P ) ‖
HC (ch!e � Q) ‖

HC (ch?y � R) =
(x, y, ch?, ch!, ch :=

HCe, e, true, true, e) � (P ‖
HCQ

‖
HCR) ?!-multiple-readers

Provided that (ch?′, ch!′, ch′ =
←−
ch′,

−→
ch′,

←→
ch ′)

L11 (ch?x � P ) ‖
HCQ =

((ch?, ch!, ch :=
HC true, false, ARB) � ch?x � P ) ‖

HC
Q ?-copy-rule

Provided that there is no process writing into ch during the first clock
cycle in the execution of the parallel region

L12 (ch!e � P ) ‖
HC Q =

((ch?, ch!, ch :=
HCfalse, true, e) � ch?x � P ) ‖

HCQ !-copy-rule
Provided that there is no process reading from ch during the first clock
cycle in the execution of the parallel region

The proofs for L1 to L5 are straightforward from our definition of the semantics
and the properties of the underlying sequential and parallel composition opera-
tors. In particular, L4 holds because the semantics of all our constructs in the
language can be expressed as designs (II is a left unit) that are also H3 healthy
(IID is a right unit).
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Proof of L6 (the proofs of L7 and L8 follow the same proof outline).

(x :=
HCe � P ) ‖

HC (x :=
HCe � Q)

= [Semantics of :=
HC , � and ‖

HC ]
(xc, vc, com(c) := e, vc−1, comidle; tick; P ) ‖M̂

(xc, vc, com(c) := e, vc−1, comidle; tick; Q)
= [‖M -‖M̂ ]

((xc, vc, com(c) := e, yc−1, comidle) ‖M{x,v,com(ch)}

(xc, vc, com(c) := e, vc−1, comidle)); tick; (P ‖M̂ Q)
= [M -idemp]

(xc, vc, com(c) := e, vc−1, comidle); tick; (P ‖M̂ Q)
= [Semantics of :=

HC , � and ‖
HC ]

x :=
HC e � (P ‖

HCQ)

4.2 The Semantics in Action

In this section we present two simple cases to illustrate the way the semantics
work on an environment of shared variables. The first example shows a program
that first initialises one of the shared variables to them modify them in an
uneven-length parallel subprocess:

main {x :=
HC8 � ((x :=

HCx + 1) ‖
HC (y :=

HC1 � x :=
HCx + y + 1))}

= [ ‖
HC -multiple- :=

HC ]
main {x :=

HC8 � (x, y :=
HCx + 1, 1) � (IIHC

‖
HC x :=

HC x + y + 1)}
= [ ‖

HC
-IIHC]

main {x :=
HC8 � (x, y :=

HCx + 1, 1) � x :=
HC x + y + 1}

As expected, the program can be flattened into a sequence of parallel assign-
ments. We can apply the semantic expressions for the constructs in Handel-C to
obtain the trace:

var c, x, y := 3, 〈ARB, 8, 9, 11〉, 〈ARB, ARB, 1, 1〉

Our next example addresses the case where one process is trying to communicate
with another one that is not ready:

main {(ch?x) ‖
HC (y := 10 � ch!y)}

= [?-copy-rule]
main {(ch?, ch!, ch :=

HC true, false, ARB � (ch?x)) ‖
HC (y := 10 � ch!y)}

= [ ‖
HC

-multiple- :=
HC ]

main {(y, ch?, ch!, ch :=
HC 10, true, false, ARB) � (ch?x ‖

HCch!y)}
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= [?!- :=
HC ]

main {(y, ch?, ch!, ch :=
HC10, true, false, ARB) �

(x, ch?, ch!, ch :=
HCy, true, true, y) � (IIHC

‖
HC IIHC)}

= [ ‖
HC -IIHC, �-skip]

main {(y, ch?, ch!, ch :=
HC10, true, false, ARB)�(x, ch?, ch!, ch :=

HCy,

true, true, y)}
From the final equation above, it is easy to see that there was a failed attempt
of communication during the first clock cycle, and that the communication was
carried out during the following clock cycle. Expanding the semantics of the
main function and assignment we can get the actual trace of the program:

var c, x, y, ch?, ch!, ch := 2, 〈ARB, ARB, 10〉, 〈ARB, 10, 10〉,
〈false, true, true〉, 〈false, false, true〉, 〈ARB, ARB, 10〉

5 Generalising the Parallel by Merge Operator

Up to this point we have presented an extension of the parallel-by-merge theory
presented in [12] that is able to handle different-length parallel processes in the
context of the semantic expressions we are generating for Handel-C.

In this section we explore the possibilities of extending this notion to a more
general case in order to make our results available to a broader application
domain.

For the remainder of this section, we return to the framework in which this
theory was initially developed by assuming a context in which inter-process
communication, as described in earlier sections of this paper, is not required1.
We are also going to remove the need to use sequences to represent the store, as
it was introduced because of a particular need of the semantics for Handel-C.

Recasting from the previous section, we need to establish the properties that
the merge predicate M must satisfy. Apart from being a valid merge (to guaran-
tee properties 3.1.L1, 3.1.L2 and 3.1.L4 to 3.1.L7) we also require M to satisfy
M -unit and M -idemp. We need the former to ensure that II is the unit for
parallel composition inside shared regions and the later to prove that equality
distributes over parallel composition with final merge.

We can interpret (M -unit) as defining the behaviour of the merge predicate
when one of the parallel processes is idle. As the M̂ operator is based on M , we
can easily lift the property to M̂ and prove:

(0.st = st); M̂(st, 0.st, 1.st, st′) = (st′ = 1.st) M̂ -unit
provided that 1.c = j, f > c and j > 0

Based on M satisfying the properties above, we intend to produce a final-
merge operator that satisfies the laws 3.3.L1 to 3.3.L8 in this paper. In this

1 We also assume the reader is familiar with the contents in chapter 7: Concurrency
of UTP.
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sense, we still need to provide a valid M̂ predicate and, hence, we still have
the problem of handling the behavioural padding of the shorter processes in the
parallel composition. We take advantage of the f variable introduced earlier to
deal with this problem and define our more general formulation as:

U0(m) =df var 0.out, 0.c, 0.m;
0.c := c;
{0.outi := ini−1|0 < i ≤ f};
0.out = 0.out⊕ out; 0.out0.c = m; (1)
0.m = 0.outf ; (2)

end out, c, m

Not surprisingly, we needed to re-introduce the out variable and we use the
same trace-like approach we defined before to perform the behavioural padding.
We also keep the same overriding behaviour we used before (line (1)) but we
also include the final value of the local copy of m at the end of out (note that
process 0 modifies the out sequence only within the index range [0..(0.c − 1)]).
The reason for transferring the value of m to the out sequence is to cover the case
where 0.c < f (the process finishes earlier than other processes in the parallel
composition). In this context, the value of the local copy of m should be merged
with the corresponding outcome of the other processes at clock cycle 0.c, and
these values are stored in the corresponding copies of out at this particular index
(clock cycle).

Finally, line (2) sets the value of the local copy of m to the outcome of the
current process at clock cycle f . In this way, we make 0.m’s value independent
of the actual execution time for process 0 (we will take advantage of this fact to
define an associative M̂ operator).

We are now ready to define the final-merge operator M̂ as:

M̂ =df c′ = max(0.c, 1.c) ‖
M(m � f = c � inf−1, 0.m, 1.m, m′) ‖ (3)
{M(m � i = c � ini−1), 0.outi, 1.outi, out′i|c ≤ i < f} ‖ (4)
{I{outi}|i < c};
end 0.c, 1.c, 0.out, 1.out

Apart from the change in the way the clock is handled (already introduced in
the previous section), the main point to be noted here is that we changed Hoare
and He’s initial formulation by replacing m with m � f = c � inf−1 as the
first argument for M . The reason for this change is the fact that the initial
formulation by Hoare and He will ignore the intermediate changes to the shared
store and will calculate m’s final value based on its value before the parallel
branches started executing (i.e., the value in m).

As mentioned earlier, we are interested in a clock-wise update of the shared
variable. To achieve this goal, assignments consume a clock cycle (i.e., they
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produce a sync event) so synchronisation (and, hence, merging) happens on
every clock cycle.

Moreover, our definition of M calculates the next value of m based on the
local copy of the store that changed during the previous clock cycle. Thus, the
final value for m should be calculated from the last update (stored in the in
sequence at the current clock cycle minus one 0.c− 1) rather than based on the
value of m before the execution of the parallel processes (as several changes from
that value may have happened to m since the parallel composition started and
it would be impossible to find out which process made a modification during the
last clock).

Finally, we need to define the way in which f is introduced (and calculated).
As it only makes sense to mention f in the context of parallel processes sharing
variables, we add it to the set of variables introduced in the shared declaration.
In turn, we use the same “loop-back” approach used by Hoare and He to feed-
back the out values produced by the parallel composition into the in vector to
update f and define:

(shared m � P � end m) =df var c, in, out, f �
(c := 0) � (P ∧ (in = out′) ∧ (f = c′)) �

end c, in, out, f

5.1 Validity, Algebraic Laws and Healthiness Conditions

Based on the properties we assumed for the merge predicate together with the
associativity and commutativity of the max function, it is easy to show that
our definition of M̂ satisfies the symmetric and associative properties from the
valid merge definition. Regarding the last valid property, the presence of f in
the definition makes it impossible to be proved unless M satisfies (M -idemp).

Even though we can prove the third property in the valid merge definition,
this result is not useful in the proof we intend to conduct. Instead, the proof
relies on M satisfying (M -unit) as defined at the beginning of this section.

With the results above together with the laws for ‖ we can prove that our
general ‖M̂ satisfies 3.3.L1 to 3.3.L7.

The proof of 3.3.L8 relies in the following additional results we have proved
about the UTP:

(v, m := x, v′) = (v := x; m := v) Primed assignment unfold
var v; v0..j := 〈v0, v1, ..., vj−1, vj〉; P (vj−1); end v = Partial end of scope
var v; v0..j−1 := 〈v0, v1, .., vj−1〉 ∧ P (vj−1); end v

Regarding the healthiness of our operator, we follow the same approach we
used for the parallel-by-merge operator we defined for Handel-C. By a similar
argument, our general final merge predicate can also be expressed as a design
with trivial precondition true. In this way, we are sure it is H1 to H3 healthy.
The proof of H4 is based on the fact that M̂ is a design and that M is also H4.
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6 Related Work

Operational [7] and denotational [6,4,5] semantics have been proposed for Handel-
C, providing interpretations for most constructs, ranging from simple assignments
to prioritised choices (priAlts). Denotational semantics have also been proposed
for the compilation into hardware [15] and used to formally verify some correct-
ness properties of the generated hardware [16]. All these papers describe works
based either in a branching-sequences semantic domain or a flattened version of
the branching structure based on merge functions. In general, all these works were
based on the notion of state-transformers, were each step in the semantics was ex-
pressing the effect of the construct over the state space of the program. The time
model of Handel-C also directed all these works towards adopting a clock cycle as
a unit and to split it into two disjoint sets of actions (i.e., combinatorial and se-
quential actions). The complexity of this kind of semantic domains made it quite
difficult to use the semantics to validate/discover algebraic laws about Handel-C
programs. In fact, only [8] used the semantics to prove some standard algebraic
properties that also hold for Handel-C (e.g., [II-; unit], [‖-assoc], etc).

In [9], initial steps towards the unification of most of these works in seman-
tics are presented. The goal of this work is to provide a framework where a
timed version of Circus [18] can be used as the specification language and several
lower level languages (Handel-C among them) can be used to implement such
a specification. The work is based on the reactive processes model provided in
UTP. The rationale behind the selection of a reactive processes formalism lies
in the need to cope with nondeterminism and refusals (present in the Circus
language). The expressiveness of the acceptance-refusals model underlying the
reactive theory in UTP is also likely to allow this framework to cover the recent
trend in hardware design of interconnecting hardware working at different clock
speeds (multiple clock domains). The price to be paid for this richness in expres-
sivity is a more complicated theory, where it is necessary to deal with several
intermediate observation points during each process’ execution.

Our work is similar to [9] in the sense that it tends towards unifying the
existing semantics for Handel-C and is oriented towards the algebraic rules sat-
isfied by Handel-C programs. On the other hand, we have based our work on
the theory UTP designs, preempting us from covering multiple clock domains
but allowing a more compact and elegant representation of Handel-C programs
aiming at single-clocked domains. We believe we will be able to profit from the
elegance of our model when trying to prove algebraic laws about Handel-C op-
erators/constructs.

UTP denotational semantics has also been been proposed for a subset of
Verilog [13] that is similar to ours but includes guarded events (a non existing
feature in Handel-C) and excludes recursion. The semantics are derived from
an operational semantics model and they also include some algebraic reduction
rules for parallel composition. The work is based in the reactive-processes the-
ory of UTP (a subset of it, as they avoid healthiness condition R2). Our work
is based on the simpler theory of designs and our focus is not in the derivation of
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the semantics from existing operational ones but in finding a comprehensive set
of deduction rules for Handel-C.

Regarding other HDL languages (such as VHDL or SystemC), their semantics
are informally provided in terms of a simulator [1,2]. Most works on the semantics
of these languages follow these simulation models [3,17], making them quite
different in purpose in comparison to our work.

7 Conclusions and Future Work

We have presented semantics for a subset of Handel-C including parallelism
and communication. We have done so by using UTP’s theory of designs as the
semantic domain. The main contribution of this work is a denotational seman-
tics for Handel-C that is well suited for reasoning and finding properties about
the constructs of the language. Our usage of the theory of designs to describe
the semantics for a HDL is also novel, as all existing works in the field address
the semantics from the more powerful, yet more complex, theory of reactive
processes (or a subset of it).

In the process of capturing the semantics of Handel-C in UTP we found
several points in which we needed to extend or modify some aspects of UTP.
The most interesting of these extensions is a parallel-by-merge operator that can
handle parallel processes of uneven length. We have provided such an operator
for the context of the semantics and proved a significant set of algebraic laws
and healthiness conditions about it.

We also abstracted the key features of our parallel-by-merge operator and
provided a more general formulation that we expect to be useful in a larger
application domain. We also summarised the additional constraints that has to
be satisfied by the single-step merge predicate in order for the general parallel
merge to satisfy additional rules.

Finally, we have been able to take advantage of existing algebraic laws from
UTP together with the rules provided in this work to easily prove an interesting
set of algebraic laws about Handel-C programs. Some of these laws have been
used to derive the semantics of example programs involving fixed-points in a few
steps.

As future work we intend to keep on exploring the set of algebraic laws we
can prove about the semantics. We are also interested in completing our work
on semantics for Handel-C by covering priorities and procedure calls.
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Abstract. We present a Unifying Theories of Programming (UTP)
model of locations, where a location is either shareable or containable
depending on whether its value can be dereferenced by a pointer. Our
model of locations is similar to previous work on pointers within the
UTP; the main difference is that the previous work on pointers only
modelled shareable locations. We explain why containable locations
(whose values must be copied rather than aliased) are useful, present
an outline of our UTP model, and compare it to existing work on UTP.
We hope to convince the reader that a general model of pointers within
the UTP ought to be able to represent both shareable and containable
locations.

1 Introduction

Hoare and He’s Unifying Theories of Programming (UTP) [3] uses the notion
of a relational predicate to model various programming paradigms and features,
such as imperative, functional, and parallel programming. Here, a relational
predicate is a predicate that defines a relationship between observable input and
output variables (i.e. the variables in the predicate’s alphabet). For example,
the UTP model in [1] supports the notion of a compound data structure via
the introduction of a record datatype, which essentially maps distinct labels to
values. These labels are also used when unambiguously specifying the location
of a value and determining whether it is shared.

An object can be modelled in a similar manner to that of the record. For
example, in C++ and C# the object and record types are defined by the class
and struct datatype constructors respectively. Here, a variable of an object type
contains a pointer to an object, whereas a variable of a record type contains
the record itself. It is this distinction between variables of object and record
types that we believe is important to explicitly model in a general theory of
UTP pointers. Specifically, the contents of a record are duplicated, whereas the
contents of an object are aliased (shared).

The UML class diagram in Figure 1 provides a high level overview of our
model, which ensures that: each location has precisely one value; only shareable
locations can be directly accessed via a reference value; and field names (labels)
of a compound value represent containable locations. Such a model of locations
can be used to support our earlier UTP model of objects [9].

A. Butterfield (Ed.): UTP 2008, LNCS 5713, pp. 161–180, 2010.
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Fig. 1. Location Model – Class Diagram

1.1 Scope

The model of locations we present in this paper is not intended to support
the concepts of object ownership or reference containment, such as discussed in
ownership models [2,5] and separation logics [7]. Nor is this model of locations
intended to support low-level pointer operations, such as those operations that
create a new pointer by adding an arbitrary offset to an existing pointer (e.g.
p = p+2) or get the address of a record’s element (e.g. p = &(r .x )). Having said
this, it is straightforward to write C++ and C# programs that do not directly use
such low-level pointer operations and this ought to be syntactically checkable.
For example, in C# this could be achieved by banning the use of the unsafe
keyword.

1.2 Family Tree

Within this paper we use instances of the family tree class diagram in Figure 2
to provide data structures for us to model. Here, shareable (hollow diamond)
and composite (solid diamond) aggregations are used to distinguish between
shareable and containable locations, respectively; aggregations that have any
number of instances are represented by lists.

Fig. 2. Family Tree Example – Class Diagram

1.3 Structure

This paper continues by presenting a concrete model of locations (Section 2),
which is abstracted (Section 3) and then integrated into the UTP (Section 4).



Unifying Theories of Locations 163

Having done this, the work is related to other UTP work on pointers (Section 5)
and summarised (Section 6).

2 Concrete Representation

2.1 Concrete Value Notation

The two types of literal value used within this paper are the integers (e.g. −32)
and the strings (e.g. "Some text"). There is also a special unset literal constant,
denoted by ¿; this is used to represent the contents of a freshly created location,
and the value of a missing element.

The two remaining types of concrete value are the compound and reference
values. A compound value is represented by a partial map from field names
(which we identify with containable locations) to concrete values. It is denoted
by {k

i=1 nmi = vi}, where the name nmi indexes the concrete value vi . A name
is denoted by an alpha-numeric word starting with a letter or the dollar symbol.
The name represented purely by a single dollar symbol, which we refer to as the
‘dollar name’, is reserved for denoting a shareable location, and thus cannot be
used as a compound value’s field name.

A reference value is either null or an index to a shareable location. Such values
are denoted by � and �i respectively, where two non-null reference values �i and
�j index distinct shareable locations whenever i �= j .

Figure 3 provides both an instance of the family tree’s Dates class and a
concrete value representation of this instance (object). Here, the Dates object
explicitly sets only one of its two optional Date fields, birth, to 12 Aug 1980. The
other optional field, death, is left unset. This data structure can be drawn as a
graph, as illustrated in Figure 4, where: a literal value is denoted by a boxed
node containing the literal; and a compound value is denoted by a circular node,
whose outgoing edges are labelled with its distinct field names. Reference values
are denoted by a diamond node that contains the reference (Figures 6 & 8).

{ birth = { day = 12,
month = "Aug",
year = 1980 },

death = ¿
}

Fig. 3. Dates – object diagram and concrete representation

In addition to defining the concrete representations of the values used within
this paper, it is useful to provide some meta-variables for representing each of
the different types of value. Here we use i , j and k to represent integers; s
to represent strings; lv to represent literal values; cv to represent compound
values; rv to represent reference values; and v to represent a concrete value.
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birth "Aug"

1980¿
death

year

month

day
12

Fig. 4. Dates – concrete graph representation

We also use meta-variable t for representing a concrete term, where a concrete
term includes the concrete values, field names, and the yet-to-be terms such
as location graphs. These meta-variables are typically used to define functions,
as illustrated by the following example, which extracts the shareable locations
contained within a term. This example also uses the generalised term notation,
t{k

i=1ti}, which denotes a term t with k sub-terms, t1, . . . , tk , where a term that
has no subterms is denoted by either t{} or t{0

i=1ti}.

sLocs �i =̂ {�i}
sLocs t{k

i=1ti} =̂
⋃
{k
i=1sLocs ti}

We read such definitions by pattern-matching from top to bottom, accepting the
first equation that matches an actual argument. Thus, the order in which the
lines of a function are presented may affect its meaning. In this case, swapping
the order would produce a function that returns the empty set.

The sLocs function is applied to terms that are yet to be defined, such as the
heap value term in Section 2.2. Note that this does not require an update to
the sLocs function as these terms are already handled by the second definitional
line, which can be applied to any term (i.e. a general term).

2.2 Concrete Location Heap

A location heap is a partial map from shareable locations to values; it is denoted
by {i:N �i (→ vi}, where N is some finite subset of the natural numbers. For
example, the object diagram in Figure 5 illustrates that Jane Doe is married
to John Doe, where only the instances of the Person class are considered to
be shareable. It can be represented by the following concrete location heap,
where the contents of shared locations �3 and �5 contain the John Doe and Jane
Doe Person objects respectively.

Fig. 5. Marriage example – object diagram
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{ �3 �→ { name = "John Doe", gender = "male", dates = �, rels = ¿ },
�5 �→ { name = "Jane Doe", gender = "female", dates = �,

rels = { $1 = { rel = "married", person = �5, with = { people = { $1 = �3 } } } }
}

}

rels

rels

"married"

with
�3

�3

�

�

$

$

gender

gender

dates

dates

"female"

$1

$1

people

"male"

"Jane Doe"
name

name

rel

�5

�5

"John Doe"

person

Fig. 6. Marriage example – concrete heap graph

Figure 6 provides the alternative graph representation of the example, where the
dashed edges are used to link a reference value to its contents. Note that these
edges are labelled with the dollar name ($) as discussed in Section 2.1.

Before moving on to present the concrete location model, we observe that a
concrete heap can reference a shareable location that it does not define; i.e. a
concrete heap can contain reference values that are not in the domain of the
heap’s partial map. In order to classify location heaps that do not have this
undesirable property, we introduce a healthiness condition, which considers a
heap to be healthy whenever all references to shared locations within the graph’s
values are defined by the graph itself.

HCh H =̂ sLocs H ⊆ domH

where:

H is the meta variable representing a concrete location heap
dom returns the domain of a relation or function

Further, any heap can be made healthy by adding an entry for each missing
shared location and setting that location’s value to the unset value (¿), as follows:

MHh H =̂ H ∪ {r (→ ¿ | r ∈ (sLocs H ) \ (domH )}
Note that a healthy heap is unaffected by the application of MHh (and vice-
versa), because all the shareable locations in the heap are contained within its
domain; i.e. (MHh H = H ) ⇔ HCh H .
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The notion of equivalence ( ≡ ) between location heaps is more complex
than that for concrete values, which is mathematical equality (where the ordering
of elements within a set or map is not significant). Here, the equivalence relation-
ship between heaps allows for the renaming of shareable locations. Specifically,
two heaps are considered to be equivalent if there exists a bijective map (f ) that
can be applied to one heap to produce the other.

H1 ≡ H2 ⇔ ∃ f • H1 = rename(H2, f )

where

rename(�i , f ) =̂ �f (i)
rename(t{k

i=1ti}, f ) =̂ t{k
i=1rename(ti , f )}

2.3 Concrete Location Model

Location models extend this notion of the heap by adding a starting point, which
is represented by a concrete value. Therefore, a location model is denoted by a
value-heap pair (v ,H ). Here, the idea is that the value v represents the root of
a computational unit, such as a program, whose elements can share data via the
shareable locations in the heap H .

Like the location heap that preceded it, location models have a healthiness
condition which ensures that the heap is valid; that is, all the shareable locations
referenced within a model are defined by the heap.

HC1l(v ,H ) =̂ sLocs(v ,H ) = domH

A location model can be made HC1l-valid in a similar manner to a heap.

MH1l(v ,H ) =̂ (v ,H ∪ {r (→ ¿ | r ∈ sLocs(v ,H ) \ (domH )})

Locations in the model are considered to be reachable if they are either con-
tained within the starting value v or indirectly contained within the contents
of v ’s reference values. For HC1l-healthy models, this can be formalised by
the following functions, where R and R′ represent the shareable locations that
have already been taken into account and are contained within a value
respectively.

reachable(v ,H ) =̂ reachValue(v ,H , ∅)
reachValue(v ,H ,R) =̂ sLocs v ∪ reachDeref (sLocs v ,H ,R)
reachDeref (R′,H ,R) =̂

⋃
{reachValue(H r ,H ,R′ ∪ R) | r ∈ R′ \ R}

The following normal-form healthiness condition ensures that there is no un-
reachable information within the model; i.e. every shareable location that is
defined by a model’s heap is reachable.
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HC2l(v ,H ) =̂ domH = reachable(MH1l(v ,H ))

Note that we apply the MH1l healthiness constructor prior to performing the
reachability calculation, in order to ensure that HC2l calculation is defined. If
a location model is not in normal form (i.e. HC2l-healthy), it can be made
so by ensuring that it is HC1l-healthy and then removing all the unreachable
locations.

MH2l(v ,H ) =̂ let (v1,H1) =̂ MH1l(v ,H ) in
( v1, {rv | rv ∈ H1 ∧ (first rv) ∈ reachable(v1 ,H1)} )

where first(x , y) =̂ x .
We are now in a position to define an equivalence relation over location models.

It is similar to that of heaps, except that we first ensure that models are made
healthy before performing the check, as we only want to consider reachable
elements in a model’s heap. In other words, two location models are equivalent
iff there exists some bijective shareable-location-renaming function f that enables
two normalised heaps to be made equal.

(v1,H1) ≡ (v2,H2)
⇔
∃ f • MH2l(v1,H1) = rename(MH2l(v2,H2), f )

It is this notion of equivalence up to which our UTP model of locations is fully
abstract, as described in Section 4.3.

The family tree example can now be extended to illustrate a concrete location
model, by adding an object to represent the family tree, as illustrated in Figure 7.
The concrete graph representation of this example is provided by Figure 8, where
the explicit visualisation of the heap has been removed, as it is no longer required
for representing the shareable locations. Such locations are now represented by
the dashed edges within the graph, which are now guaranteed to exist due to
the reachability healthiness condition.

Fig. 7. Family tree example – object diagram

2.4 Paths and Their Operations

A compound value path describes a route from a compound value to one of
its elements, via a non-empty dot-separated sequence of field names. Compound
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Fig. 8. Family tree example – concrete model graph

value paths are essentially used to describe routes to contained locations, which
we can access and update by using the following functions:

∗cv .nm =̂ cv nm
cv .nm := v =̂ cv ⊕ {nm (→ v}
cv .nm.p := v =̂ cv ⊕ {nm (→ (∗cv .nm).p := v}

where p is the meta-variable for paths, ( ) is the function or map application
operation, and ( ⊕ ) is the function override operation. This notion of a path
is extended to define location model update and access functions as follows:

∗(v ,L) =̂ v
∗(v ,L).p =̂ ∗v .p
∗(v ,L).�i =̂ L �i

∗(v ,L).�i .p =̂ (L �i).p
(v ,L) := v ′ =̂ (v ′,L)
(v ,L).p := v ′ =̂ (v .p := v ′,L)
(v ,L).�i := v ′ =̂ (v ,L ⊕ {�i (→ v ′})
(v ,L).�i .p := v ′ =̂ (v ,L ⊕ {�i (→ (L �i).p := v ′})

Further, it is possible to extend this notion to copy a value from one location to
another, as follows:

(v ,L).lp := (v ,L).lp′ =̂ (v ,L).lp := ∗(v ,L).lp′

where: ∅ denotes the empty path and lp denotes either a path (p), a shareable
location index (�i), or a shareable location index followed by a path (�i .p); and
(v ,L).∅ denotes (v ,L).
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It is also straightforward to define other operations, such as for deleting el-
ements from compound values and the heap; we omit these constructions for
reasons of space.

3 Abstract Model

In Section 2.3, graphs represented healthy concrete location models, where:

– the solid and dashed edges denote distinct compound and potentially shared
shareable locations, respectively;

– the rectangular, circular, and diamond nodes denote literal, compound, and
reference values, respectively.

This section presents: a brief overview of the trace-based graph abstraction; some
utility operations for manipulating traces; a model of nodes as a set of traces;
and an overview of the trace-based location graph model.

3.1 Graph Abstraction

We can determine the value of dereferencing a reference node of a concrete
location graph by following that node’s outbound edge (as shown in Figure 8).
That is, the shareable location index contained within a reference node is not
required. Thus, this unused data can, and will, be ignored in our abstraction.

We observe that the outbound edges of each node within a healthy concrete
location graph have distinct labels. Therefore, we can use a finite non-empty
sequence of names to unambiguously define a path from a graph’s root node to
any other node. Such a path is from now on referred to as an absolute path.

The location of a node within a concrete location graph can be modelled by
the set of all absolute paths to that node, which we from now on refer to as an
absolute path-set. Hence, one way of providing a UTP model of locations would
be as a partial map from such an absolute path-set to an appropriate abstraction
of the data directly associated with its corresponding node. For example, the data
associated with:

– a literal or null-reference node could be modelled by its concrete value;
– a compound node could be modelled by its set of outbound edge labels;
– a non-null reference node could be modelled by its outbound edge label.

Such a model of locations is similar to that presented in [1], which uses the idea
of an entity group to model shared locations. Here each group contains the set
(equivalence class) of fully qualified variables that share the same location.

Another approach is to change the notion of an absolute path-set, from rep-
resenting the location of a node to representing both the location and contents
of a node. To avoid confusion, we refer to such paths as traces. Here, the idea is
that the last value in a trace represents its content, and the front of the trace its
location. In other words, a trace is a path p followed by a trace label l , where l
represents either a name, a literal value, or the null-reference value; it is denoted
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by p.l . This is the basis of the UTP model of locations we present in this paper
(Section 4). Such a model of locations is similar to that presented in [4], which
uses trace-sets to model both locations and values. Here, the main difference is in
our introduction of a containable location and its effect on assignment (which [4]
refers to as ‘pointer swing’). Specifically, within our model the contents of con-
tained locations need to be duplicated, whereas the contents of shared locations
are referenced.

3.2 Traces

As previously stated, a trace is denoted by p.l , where p is a path and l is a trace
label (i.e. a name, a literal, a null-reference). One consequence of this is that it is
only possible to concatenate two traces (denoted by tr1.tr2) when the last label
in the first trace tr1 is a name, as only names are allowed within a path.

The remainder of this section defines some utility operations on traces and
trace-sets, that are used in the construction of our abstract model of locations.
First we introduce two operations front and last for extracting the location and
content components of a non-empty trace.

front p.l =̂ p last p.l =̂ l

The front operation can be used to generate the set of locations visited by a trace,
as characterised by their paths, where each path within this set is considered to
be a prefix of the original trace. Such a set of paths is referred to as the proper
prefixes of the given trace. The function prefixest defines the non-proper version
of the prefix set.

prefixest ∅ =̂ {∅}
prefixest tr =̂ {tr} ∪ prefixest(front tr)

The prefixes also provide a natural ordering over traces.

tr1 <t tr2 =̂ prefixest(tr1) ⊂ prefixest(tr2)
tr1 ≤t tr2 =̂ prefixest(tr1) ⊆ prefixest(tr2)

Having defined an ordering over traces, it is now possible to use that ordering
to define a subtraction operation. This is eventually used to define the relative
paths between nodes in a set.

( −t ) =̂ λ tr1, tr2 | tr2 ≤t tr1 • pick{tr | tr1 = tr2.tr}

where the pick function picks the singleton element from a set (i.e. pick{x} =̂ x ).
Before leaving the trace utilities, we lift the definitions of the front, last, and

prefixest operations to trace-sets. The first two are lifted by applying their defini-
tions to each non-empty trace with the set. The latter one is lifted to a trace-set
(denoted by TR) by applying the prefixes operation to each trace within the set
and merging the results.
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frontTracesTR =̂ {front tr | tr ∈ (TR \ {∅})}
lastLabelsTR =̂ {last tr | tr ∈ (TR \ {∅})}
prefixesn TR =̂

⋃
{prefixest tr | tr ∈ TR}

3.3 Trace-Based Node

A trace-based graph node is modelled by a set of traces that satisfies two health-
iness conditions. Both of these conditions follow from the observation that the
only way a concrete location graph node may have more than one incoming edge,
is if all these edges are labelled with the dollar name. Consequently, every trace
to a node is guaranteed to end with the same label, except for the root node
which has no label. This is modelled by the first healthiness condition, which
states that all incoming edges to a node have the same label.

HC1n(n) =̂ # lastLabels(n) ≤ 1

Another consequence of the observation is that a node may only have multiple
parents if it is stored in a shareable location. This is modelled by the second
healthiness condition, which states that the trace to any node that has more
than one parent must end with the special shareable location label.

HC2n(n) =̂ # lastLabels(frontTraces(n)) > 1 ⇒ lastLabels(n) = {$}

Any healthy node can be denoted by P .l , where each path in the path-set P is
extended by the trace-label l to form the trace-set {p.l | p ∈ P}. The remainder
of this section now presents some useful utility relations and operations on nodes.

Node relations: The child-of and descendant-of relations test whether one node
is an immediate child of or a descendant of another node. These tests assume
that the nodes come from a healthy graph, where all the routes to the parent
are contained within the child.

n1 childOf n2 =̂ n2 ∈ frontTraces(n1)
n1 descendantOf n2 =̂ n2 ∈ prefixesn(frontTraces(n1))

In addition to knowing whether two nodes are related, it is sometimes useful to
identify the relative traces from a parent to child node.

tracesn(n1,n2) =̂ {tr2 −t tr1 | tr1 ∈ n1 ∧ tr2 ∈ n2 ∧ tr1 ≤t tr2}

Such trace-sets are used to determine whether two nodes are related via shareable
or via containable locations. Here, two nodes are related by a shareable location
if one of the traces within the trace-set includes the dollar label. Similarly they
are related by a containable location if one of the traces within the trace-set
does not contain the dollar label.

n1 shareDescOf n2 =̂ n1 descendantOf n2 ∧ $ ∈t tracesn(n2,n1)
n1 containDescOf n2 =̂ n1 descendantOf n2 ∧ $ �∈t tracesn(n2,n1)

where l ∈t tr =̂ ∃ p • p.l ∈ prefixest tr .
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Note that the only way a node can be both a shareable and a containable
descendant of another node, is if the nodes are both contained in the same cycle.
In this case, all the containable descendants are also shareable descendants.

Node unlinking (deletion): Part of the assignment process involves the removal
of previously held data. This is the purpose of the following unlinking operations,
which remove all traces of either a node (n1) or its children from the specified
target node (n2).

unlinkn n1 from n2 =̂ n2 \ {tr2 | tr1∈n1 ∧ tr2∈n2 ∧ tr1≤t tr2}
unlinkChildrenn n1 from n2 =̂ n2 \ {tr2 | tr1∈n1 ∧ tr2∈n2 ∧ tr1 <t tr2}

These operations can be lifted to the graph context by unlinking a given node
from a node-set.

unlinkg(N ,n) =̂ {(unlinkn n from n ′) | n ′ ∈ N }
unlinkChildreng(N ,n) =̂ {(unlinkChildrenn n from n ′) | n ′ ∈ N }

Node duplication (replacement): It is sometimes useful to construct a new node
from a pair of existing nodes, a source node (n2) and one of its descendants (n3).
Here the idea is to extract the traces between the source and descendant nodes,
and then append them to a new source node (n1), which is the target of the
duplication.

replacen n1 for n2 in n3 =̂ {tr1.tr | tr1 ∈ n1 ∧ tr ∈ tracesn(n2,n3)}

Instead of replacing one parent for another, we may want to add a parent; for
example, when copying a reference to a shareable location. This is essentially
achieved by performing the replacement operation and merging in the original
data.

addn n1 to n2 in n3 =̂ (replacen n1 for n2 in n3) ∪ n3

These operations can then lifted so that they operate on node-sets, by reparent-
ing each node in the set.

replaceg n1 for n2 in N =̂ {(replacen n1 for n2 in n) | n ∈ N }
addg n1 to n2 in N =̂ {(addn n1 to n2 in n) | n ∈ N }

We use these operations to prepare a subgraph for being moved or copied to a
new location.

3.4 Trace-Based Graph

A trace-based graph is a set of trace-based nodes that satisfies four healthiness
conditions. The first healthiness condition states that each of the graph’s nodes
is healthy.

HC1g(G) =̂ ∀n | n ∈ G • HC1n(n) ∧ HC2n(n)
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The second healthiness condition states that the nodes of a graph are disjoint.
This ensures that an absolute trace can be used to identify a single node.

HC2g(G) =̂ ∀n1,n2 | {n1,n2} ⊆ G ∧ n1 �= n2 • n1 ∩ n2 = ∅

For a graph (G) that satisfies condition HC2g, it is possible to define an operation
for extracting the node (n) that has an absolute trace (p), so long as the trace
is within the graph.

nodeg(G, tr) =̂ λ G, tr | HC2g(G) ∧ tr �g G • pick({n | tr ∈ n ∈ G})

where the ( �g ) relation determines whether a trace is in the graph:

p �g G =̂ p ∈ (
⋃

G)

The third healthiness condition states that each of a node’s traces is consistently
extended; i.e. if it is possible to take an edge with label l from node n1 to node
n2, then the trace-set formed by appending the label l to each of n1’s traces is
a subset of n2’s trace-set.

HC3g(G) =̂ ∀n1,n2, tr1, tr2, l |
{n1,n2} ⊆ G ∧ {tr1, tr2} ∈ n1 •

tr1.l ∈ n2 ⇒ tr2.l ∈ n2

The fourth healthiness condition states that the parents of a node are contained
within the graph; in other words, the traces within a graph are prefix closed.

HC4g(G) =̂ ∀ tr , l | tr .l �g G • tr �g G

The combination of the first three graph healthiness conditions defines what it
means for the trace model to have a consistent, but not necessarily complete, set
of nodes. Thus, these conditions should be satisfied by any healthy subgraph.

The remainder of this section provides operations for manipulating the con-
tents of a location graph model, such as operations for: extracting a subgraph;
extracting the value at a location; and assigning a value to a location.

Children and descendants subgraphs: Subgraphs can be formed by selecting only
some of a graph’s nodes. The childOf and descendantOf relations can be used to
filter a graph to form children and descendants subgraphs respectively.

children =̂ λG,n | n ∈ G • {n ′ | n ′ ∈ G ∧ n ′ childOf n}
descendants =̂ λG,n | n ∈ G • {n ′ | n ′ ∈ G ∧ n ′ descendantOf n}

Note that a node can be a descendant of itself if, and only if, there is a non-empty
sequence of edges back to itself.
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Dereferencing a location’s value: A location is represented by a healthy node
whose last label is either a field name or the dollar name. Such a node can
be represented by a path-set, as each trace within this node may only contain
names. The value of a location node is determined by recursively examining its
children, or more specifically its child labels. There are three cases to consider.

1. There is a single null-reference or literal value (nlv) child label. In this case,
the label value is returned as the location’s value.

2. There is a single child label that contains the dollar name. In this case the
path-set (reference value) that models the child node is returned.

3. There is a set of child-labels that contain field names. In this case a compound
value is recursively constructed from its children.

∗g(G, p) =̂ ∗g(G, nodeg(G, p))
∗g(G,P) =̂ ∗g(G, children(G,P))
∗g(G, {P .nlv}) =̂ nlv
∗g(G, {P .$}) =̂ P .$
∗g(G, {k

i=1 P .nmi}) =̂ {k
i=1 nmi = ∗g(G,P .nmi)}

Recall that we introduced P .l as an alternative notation for denoting a healthy
node, in Section 3.3, where P .l =̂ {p.l | p ∈ P}.

Preparing a location for assignment: The preparation required for assigning a
value to a location depends on a number of factors, such as whether the location
already exists. We could limit assignments to existing locations, but then this
would not mirror our concrete model, which defined assignment in terms of the
map overriding operation ( ⊕ ). Instead we categorise a potential location as
either existing (Epm), freshly containable (Cpm ), freshly shareable (Spm), or
invalid (Upm), as follows:

prepMode(G,P .nm) =̂

⎧⎪⎪⎨⎪⎪⎩
Epm , if P .nm∈G
Spm , if P .nm /∈G ∧ nm =$
Cpm , if P .nm /∈G ∧ nm �=$ ∧ ∗g(G,P)∈CV
Upm , otherwise

where CV denotes the set compound values (i.e. the compound value type). Note
that the above definition of freshly created locations ensures that a compound
value may only contain containable locations (and vice versa). In general, a
path-set P is considered to represent an assignable location within a graph G
whenever it has a valid assignable location mode.

P assignableIng G =̂ prepMode(G,P) �= Upm

It is now possible to define the preparation for an assignable location by ensuring
that it exists and contains no contents. This can involve the clearing (unlinking)
of an existing node’s contents and the creation of a new location node.
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prepg(G,P) =̂ prep(G,P , prepMode(G,P))
prep(G,P ,Epm ) =̂ unlinkChildreng(G,P)
prep(G,P .l ,Spm ) =̂ unlinkChildreng(G,P) ∪ {P .$}
prep(G,P .l ,Cpm ) =̂ G ∪ {P .l}

Assigning a null-reference or literal value: A null-reference or literal value (nlv)
can be assigned to a graph location by preparing the location and setting its
contents to the given value.

(G, p) :=g nlv =̂ (G, nodeg(G, p)) :=g nlv
(G,P) :=g nlv =̂ prepg(G,P) ∪ {P .nlv}

Assigning an encapsulated compound value: An encapsulated compound value is
a concrete compound value that contains no shareable locations (i.e. a compound
value in the set {cv | sLocs cv = ∅}). Such values are represented by the meta-
variable ecv . It can be assigned to a location by preparing the location and
setting its contents to the subtree that represents the compound value.

(G, p) :=g ecv =̂ (G, nodeg(G, p)) :=g ecv
(G,P) :=g ecv =̂ prepg(G,P) ∪

⋃
{P .tr | tr ∈ (cvTrs ecv)}

where the cvTrs function converts an encapsulated compound value into a pre-
fix closed set of traces, representing each trace through the compound value’s
structure.

Assigning the contents of an existing location: In the concrete model, we referred
to this as the copying of a location’s value. This is more tricky than the previous
cases for a number of reasons. One significant reason is that the location we are
copying may be contained within the target location that we are assigning to. In
such a case, the location preparation process could remove (clear) the location
we want to copy. This limitation can be overcome by a three-step process. First,
copy the value to a fresh temporary location, which is not contained within the
contents of the target location. Second, prepare the target location and copy the
value of the temporary location to it. Last, remove the temporary location.

What would make a good temporary location is dependant on what the loca-
tion graph is being used to model, so in general we cannot specify this. Having
said that, what we can do is specify how to assign the contents of a location to
a prepared location node.

Assigning to a cleared location node: When assigning the contents of a cleared
location, care has to be taken to ensure that the contents of reference values are
pointed to rather than duplicated. In order to facilitate this, two utility opera-
tions are defined: one for identifying the referenced nodes (copyRefSG); and the
other to add the copied pointer (path) to these identified nodes (copyRefNodes).
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copyRefSG(G,n) =̂ {n ′ | n ′ ∈ G ∧ n ′ shareDescOf n}
copyRefNodesn1 to n2 in G =̂ addg n2 for n1 in copyRefSG(G,n1)

Care also has to be taken to ensure that a duplicate of the value nodes are added
to the copy node. This is facilitated by two utility operations: one for identifying
the nodes to be duplicated (copyValSG); and the other to perform the duplication
(copyValNodes) using the node replacement operation.

copyValSG(G,n) =̂ {n ′ | n ′ ∈ G ∧ n ′ containDescOf n}
copyValNodesn1 to n2 in G =̂ replaceg n2 for n1 in copyValSG(G,n1)

It is now possible to define the graph transformation operation of copying the
contents of a source node to the empty location as the union of: the appropriately
updated reference nodes; the descendant nodes that were not updated; the non-
descendant nodes; and the duplicated value nodes.

copyg n1 to n2 in G =̂ (copyRefNodesn1 to n2 in G)
∪ descendants(G,n1) \ copyRefSG(G,n1)
∪ G \ descendants(G,n1)
∪ (copyValNodesn1 to n2 in G)

Now given that the location with path $copy is an assignable location that does
not exist within the graph, the copy assignment can be defined as follows:

(G, p) :=g p′ =̂ (G, p) :=g nodeg(G, p′)
(G, p) :=g P ′ =̂ (G, nodeg(G, p)) :=g P ′

(G,P) :=g P ′ =̂ let G1 =̂ (copyg P ′ to {$copy} in (G ∪ {$copy}))
G2 =̂ (copyg{$copy} to P in prepg(G1,P))

in unlinkg(G2, {$copy})

4 UTP Model

Our UTP model of locations uses the Abstract Location Trace Graph (ALTG)
of Section 3.4 to provide a semantics of locations, where the special logical vari-
ables altg and altg ′ to represent the before and after states of the graph. The
contents of this ALTG are then linked to the normal UTP program variables,
using a technique inspired by [1]. In our case, the values of normal program
variables are mirrored by correspondingly named first-level nodes in the graph.
For example, the logical input and output variables for a UTP program variable
x are represented by the node {x} in the altg and altg ′ graphs respectively. Note
that whenever there could be confusion between whether a variable is being used
to denote its name rather than its value, we prefix the variable with a dash to
get its name. For example, the predicate x = ∗g(altg, 'x ) holds whenever the
value of variable x equals the value of extracting its corresponding element from
the graph altg (i.e. the one with the path name 'x ).
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The remainder of this section introduces the healthiness conditions on the
UTP model of locations, provides the definitions for a few operations, such as
assignment, and relates the abstract and concrete models. Here the meta variable
Q denotes a relational predicate that defines a UTP location model program.

4.1 Healthiness Conditions

Before we formalise the relationship between a program’s variables and the
ALTG, it is worth introducing a healthiness condition to ensure that both the
altg and altg ′ graphs are healthy (as defined in Section 3.4).

HC1u(Q) =̂ Q = ( Q ∧ HCu(altg) ∧ HCu(altg ′) )
HCu(G) =̂ HC1g(G) ∧ HC2g(G) ∧ HC3g(G) ∧ HC4g(G)

The first step in formalising the link between the graph and program variables
is by insisting that the first-level nodes within the graph correspond precisely to
the UTP program variables other than the model variables (i.e. altg and altg ′).

HC2au(Q) =̂ Q = ( Q ∧ {'x | x ∈ invαQ} = labelsg(altg, ∅) )
HC2bu(Q) =̂ Q = ( Q ∧ {'x | x ′ ∈ outvαQ} = labelsg(altg ′, ∅) )
HC2u(Q) =̂ HC2au(Q) ∧ HC2bu(Q)

where: invαQ and outvαQ represent the input and output alphabets of program
Q except for the model variables altg and altg ′ respectively; and the child labels
of graph path are defined by labelsg(G, p) =̂ {l | P .l ∈ children(G, nodeg(G, p))}.

The second, and last, step in formalising the link between the graph and
program variables is to ensure that the value of a variable is the same as the
value stored within the ALTG.

HC3au(Q) =̂ Q = ( Q ∧ (
∧

x∈invαQ x = ∗g(altg, 'x )) )
HC3bu(Q) =̂ Q = ( Q ∧ (

∧
x ′∈outvαQ x ′ = ∗g(altg ′, 'x )) )

HC3u(Q) =̂ HC3au(Q) ∧ HC3bu(Q)

4.2 Operations

Due to space limitations, we only present those operations that significantly differ
from those of the standard UTP relational model, as presented in Chapter 2 of
[3]: specifically, the assignment and program variable management operations.

The assignment operation is broken down into three cases, depending on the
type of the r-value (i.e. the value to be assigned). These mirror the three cases
presented in the trace-based graph model, except that the location is always
defined in terms of a possibly empty path from a UTP program variable. It is
defined as follows:

x .p := nlv =̂ HCsu(altg ′ = ((altg, 'x .p) :=g nlv))
x .p := ecv =̂ HCsu(altg ′ = ((altg, 'x .p) :=g ecv))
x .p := y.p1 =̂ HCsu(altg ′ = ((altg, 'x .p) :=g 'y.p1))
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where x .∅ = x and HCsu(Q) =̂ HC3u(HC2u(HC1u(Q))). Note that the com-
bined healthiness condition ensures that the consequences of updating shared
values can be seen by all participating UTP program variables.

The variable introduction and elimination operations are also defined in terms
of their effects on the ALTG. Here the variable introduction operation provides
a default unset value to the introduced variable; and the variable elimination
operation removes all references to the value from the graph.

var x =̂ ∃ x • HCsu(altg ′ = ((altg, 'x ) :=g ¿))
end x =̂ ∃ x ′ • HCsu(altg ′ = unlinkg(altg, 'x ))

4.3 Full Abstraction

The ALTG-based UTP model of locations, outlined here, is fully abstract in the
sense described earlier: two concrete location graphs are equivalent, as defined in
Section 2.3, iff their corresponding ALTGs are equal. This is essentially because
the underpinning ALTG model is fully abstract by design; it removes the need
for explicitly indexed shareable locations. Here, each location has precisely one
path-set that represents it.

5 Related Work

Our model of locations was inspired by Hoare and He’s trace-based model of
pointers [4]. It introduces the notion of a containable location. This significantly
complicates the — already non-trivial — notion of assignment, which in [4] is
defined in terms of swinging the pointer of the assigned location to its new
contents. In our model, several contained pointers can be swung at once by an
assignment operation, as the contents of:

– a containable location are duplicated on assignment;
– a shareable location are referenced (shared) on assignment;
– a location can include many shareable and containable locations.

The benefit of this extra complexity is that our location model enables the
atomicity of assignment to be directly specified (or supported). For example,
the copying of a struct in C++ or a record in Pascal can be captured.

Schieder has also adapted Hoare and He’s work on trace-based pointers to
provide a weakest precondition semantics for pointers [8]. Here, the object maps
have been totalised in order to avoid undefinedness; this leads to the null pointer
being modelled by a node that has outbound edges (all of which point to itself).
However, like [4] it does not support the notion of a containable location.

Cavalcanti, Harwood, and Woodcock have an entity group [6] inspired model
of pointers and records [1]. Here, an entity group contains the set of path names
that can be used to access the same value, where a path name is either:
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1. a simple name of a UTP user variable; or
2. a rooted field name, which is a simple name extended by a dot-separated

sequence of record field labels.

This notion of a path is similar to the one we use, in the sense that both use
dot-separated labels to define a route from a given starting point to a location.
The main difference is that every location in [1] is potentially shareable, whereas
only some of the locations within our model are shareable. Specifically, [1] does
not support the notion of a containable location.

A further difference between our model and those of [4], [8] and [1] is that we
have an explicit notion of a pointer value (i.e. sharable location), as represented
by a path-set of the form ‘P .$’. One consequence of this is that our model directly
supports the notion of a handle, which is a pointer to a pointer. Here the second
pointer value (path-set) includes a path of the form ‘p.$.$’.

6 Conclusions

6.1 Summary

This paper augments the general relational model of the UTP with an Abstract
Location Trace Graph (ALTG), which enables complex relationships between
locations and their data to be represented. Here, both shareable and containable
locations are modelled by a path-set. They differ in that only shareable locations
can be dereferenced by a pointer, whose value is the shareable location’s path-set
itself. The key point is that containable locations actually contain rather than
reference their contents, thus when they are copied their contents are duplicated
rather than referenced. This mirrors situations where the whole of a compound
value, such as a Pascal record or a C++ struct, is duplicated on assignment.
In general, being able to control the amount of data that gets duplicated on as-
signment provides a means for directly supporting different levels of containment
within a data structure.

One consequence of modelling a pointer’s value as the path-set that defines
its location is that it is possible to directly represent the concept of a handle (i.e.
a pointer to a pointer). The combination of having direct support for contained
locations and pointer values mirrors the features of our UTP model of objects
[9]; it is what led to the development of this model from [4] and [1].

Overall, we argue that a general UTP model of pointers ought to consider
both shareable and containable locations. Such models will provide support for
languages like C# (and our UTP object model), which have language constructs
for building containable locations and handles.

6.2 Future Work

In this paper we have presented both concrete and abstract models of locations.
What we have not done is prove that the two models are consistent. We have
also not shown how this model of locations can be applied to either UTP designs
or objects [3,9]. Finally, we have not considered the issues of:
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– location ownership and encapsulation (e.g. as presented in [2,5,7]);
– location typing (e.g. augment a location with the type of its contents);
– location visibility (e.g. augment a location with read-only or scope modifiers).

Augmenting the UTP model of locations to handle any of these issues is left as
future work.
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Abstract. Model-based conformance testing aims to assess the correct-
ness of an implementation with respect to a specification. This raises
the question of a proper conformance relation that should be established
between implementations and specifications. One commonly used confor-
mance relation is the so-called input output conformance (ioco), which
is defined over labeled transition systems. In this paper we investigate
a denotational semantics of the input output conformance relation over
reactive processes. We formalize the underlying assumptions of the ioco
relation in terms of formal healthiness conditions and by adopted choice
operators. Finally, we show that our denotational version of ioco can be
generalized in the same way as the original relation. Our work aims to
provide a unification of input output conformance by lifting the definition
from labeled transition systems to reactive processes.

Keywords: Input output conformance, ioco, unifying theories of pro-
gramming, reactive processes, quiescence, fairness, model-based testing.

1 Introduction

Software development is a complex and error-prone task. Failures in safety-
critical applications may be life-threatening. At least software failures cause high
costs during and after the software development process. Therefore, software en-
gineers need the support of tools, techniques, and theories in order to reduce the
number of software failures.

Model-based black-box testing techniques aim to assess the correctness of a
reactive system, i.e., the implementation under test (IUT), with respect to a
given specification. The IUT is viewed as a black-box with an interface that
accepts inputs and produces outputs. The goal of model-based black-box testing
is to check if the observable behavior of the IUT conforms to a specification with
respect to a particular conformance relation.

Industrial specifications are mostly incomplete and due to abstraction non-
deterministic. Hence, a conformance relation being useful in industry needs to
cope with incompleteness and non-determinism. One of the most popular of such
conformance relations is the input output conformance (ioco) relation [1].

Mature research prototypes (e.g. [2,3]) and successful industrial case studies
(e.g. [4,5]) have shown the usability of this conformance relation in practice.
� Authors are listed in reverse alphabetical order.
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However, the used theory is given in an operational semantics and some of the
underlying assumptions have been stated informally only. It is the contribution
of this paper to redefine ioco in the denotational predicative semantics of UTP.
The benefits of this new theory can be summarized as follows: (1) Instead of de-
scribing the assumptions of ioco informally, the UTP formalization presents the
underlying assumptions as unambiguous healthiness conditions and by adopted
choice operators over reactive processes; (2) A UTP formalization naturally re-
lates ioco and refinement in one theory; (3) The denotational version of ioco
enables formal, machine checkable, proofs. (4) Due to the predicative semantics
of UTP, test case generation based on the presented theory can be seen as a
satisfiability problem. This facilitates the use of modern sat modulo theory tech-
niques (e.g. [6]) for test case generation. (5) Finally, the UTP version of ioco
broadens the scope of ioco to specification languages with similar UTP seman-
tics, e.g. to generate test cases from Circus [7] specifications. Hence our work
enriches UTP’s reactive processes with a practical testing theory.

The rest of this paper is structured as follows. Section 2 reviews the input
output conformance relation. Section 3 comprises the formalization of ioco in the
UTP-framework. Finally, we discuss our results and further research in Section 4.

2 Conformance of Labeled Transition Systems

This section reviews the ioco relation [1] which is defined over labeled transition
system (LTS). When testing reactive systems one distinguishes between inputs
and outputs. Thus, the alphabet of an LTS is partitioned into inputs and outputs.

Definition 1 (Labeled transition system with inputs and outputs). A
labeled transition system is a tuple M = (Q, A ∪ {τ},→, q0), where Q is a finite
set of states, A = AI ∪AO a finite alphabet partitioned into an input alphabet AI

and an output alphabet AO where AI ∩ AO = ∅. τ �∈ A an unobservable action,
→⊆ Q× (A∪ {τ})×Q is the transition relation, and q0 ∈ Q is the initial state.

The class of labeled transition systems with inputs AI and outputs in AO is
denoted by LT S(AI , AO) [1]. We use the following common notations for LTSs:

Definition 2. Given a labeled transition system M = (Q, AI ∪AO ∪{τ},→, q0)
and let q, q′, qi ∈ Q, a(i) ∈ AI ∪ AO and σ ∈ (AI ∪ AO)∗.

q
a→ q′ =df (q, a, q′) ∈→
q

a→ =df ∃q′ • (q, a, q′) ∈→

q
a

�→ =df �∃q′ • (q, a, q′) ∈→
q

ε⇒ q′ =df (q = q′) ∨ ∃q0, . . . , qn • (q = q0
τ→ q1 ∧ · · · ∧ qn−1

τ→ qn = q′)

q
a⇒ q′ =df ∃q1, q2 • q

ε⇒ q1
a→ q2

ε⇒ q′

q
a1...an⇒ q′ =df ∃q0, . . . , qn • q = q0

a1⇒ q1 . . . qn−1
an⇒ qn = q′

q
σ⇒ =df ∃q′ • q

σ⇒ q′
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Fig. 1. Examples of input output labeled transition systems

According to [1], we use init(q) to denote the actions enabled in state q and
traces(q) to denote the traces enabled in state q. Furthermore, we denote the
states reachable by a particular trace σ by q after σ. More precisely,

Definition 3. Given a labeled transition system M = (Q, AI ∪AO ∪{τ},→, q0)
and let q ∈ Q, C ⊆ Q and σ ∈ (AI ∪ AO)∗.

init(q) =df {a ∈ AI ∪ AO ∪ {τ}|q a→}
q after σ =df {q′| q

σ⇒ q′}
traces(q) =df {σ|q σ⇒}

C after σ =df

⋃
q∈C

(q after σ)

Note that we will not always distinguish between an LTS and its initial state
and write M ⇒ instead of q0 ⇒.

Example 1. Figure 1 shows four labeled transition systems o, p, q, and r. The
input alphabet is given by AI = {1, 2} and the output alphabet is AO = {c, t}.
We denote input actions by the prefix ”?”, while output actions have the prefix
”!”. For example, p0 after ?1 = {p1} while q0 after ?1 = {q1, q2}.
The ioco conformance relation employs the idea of observable quiescence. That
is, it is assumed that a special action, i.e. θ, is enabled in the case where the
labeled transition system does not provide any output action. This θ-labeled
transitions allow to detect implementations that do not provide outputs while
the specification requires some output (see Example 4: ¬(y ioco s)). The input
output conformance relation identifies quiescent states as follows: A state q of a
labeled transition system is quiescent if neither an output action nor an internal
action (τ) is enabled in q.

Definition 4. Let M be a labeled transition system M = (Q, AO ∪AI ∪ {τ},→
, q0), then a state q ∈ Q is quiescent, denoted by θ(q), if ∀a ∈ AO ∪ {τ} • q � a→.

Usually, δ is used as special action denoting quiescence. Because of a name clash
with UTP’s deadlock symbol δ [8] we use θ for representing quiescence. By adding
θ-labeled transitions to LTSs the quiescence symbol can be used as any other
action. By the use of suspension automata θ becomes observable.

Definition 5 (Suspension automata). Let M be a labeled transition system
M = (Q, AI ∪ AO ∪ {τ},→, q0) then the suspension automaton Mθ is given by



184 M. Weiglhofer and B.K. Aichernig

s0ss

s1

s2

?1

!c

θ

θ

t0tt

t1 t2

t3 t4

?1 ?2

!c !t

θ

θθ

u0uu

u2u1

u4u3

u5

?1

?1

!t

?1

!c

θ

θ

θ

θ

v0vv

v2v1

v4v3

v5 v6

?1

?1

!t!c

?1

!c

θ

θ

θ

θ θ

Fig. 2. Examples of suspension automata

(Q, AI ∪ AO ∪ {τ, θ},→ ∪ →θ, q0) where →θ=df {q θ−→ q|q ∈ Q ∧ θ(q)}. The
suspension traces of Mθ are Straces(Mθ) =df {σ ∈ (AI ∪ AO ∪ {θ})∗|Mθ

σ=⇒}.

Unless otherwise indicated, we use from now on Mθ instead of M , i.e. we usually
include θ in the transition relations.

Example 2. Fig. 2 shows the suspension automata for the LTSs illustrated in
Fig. 1. For example, the states u0, u2, u3, and u5 are quiescent states since they
do not have outgoing edges labeled with an output nor with a τ action. Among
others, u comprises the suspension traces 〈?1, !c, θ〉 and 〈θ, ?1, θ, ?1, !t, θ〉.
A major hypothesis of the input output conformance relation is that the imple-
mentation can be represented as a labeled transition system. It is not assumed
that this LTS is known in advance, but only its existence is required. This is
known as a testing hypothesis [9,10].

The models used for representing implementations are input output transition
systems. Since implementations are not allowed to refuse inputs, their models
obey to the same restriction. This means that implementations are assumed to
be input-enabled and so are their models.

Definition 6 (Input output transition system). An input output transition
system is an LTS M = (Q, AI ∪ AO ∪ {τ},→, q0) where all input actions are
enabled (possibly preceded by τ-transitions) in all states: ∀a ∈ AI , ∀q ∈ Q• q

a=⇒

The class of input output transition systems with inputs AI and outputs in AO

is given by IOT S(AI , AO) ⊆ LT S(AI , AO) [1].

Example 3. The IOTSs for the suspension automata of Fig. 2 are depicted in
Fig. 3. Note that the reason for the τ transitions in state z4 is not input-
enabledness but the restrictions on choices (see Section 3.3).

Before giving the definition of the ioco relation we need to define what are the
outputs of a particular state and what are the outputs of a set of states.

Definition 7. Given an LTS M = (Q, AI ∪AO ∪ {τ},→, q0) and let q ∈ Q and
C ⊆ Q, then out(q) =df {a ∈ AO| q

a→}∪ {θ|θ(q)} and out(C) =df

⋃
q∈C(out(q)).

Now we are ready to give the definition of the ioco relation. Informally, the input
output conformance relation states, that an implementation under test (IUT)
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Fig. 3. Examples of input output transition systems (input-enabled by definition)

conforms to a specification S, iff the outputs of the IUT are outputs of S after
an arbitrary suspension trace of S. More formally,

Definition 8 (Input output conformance). Given a set of inputs AI and a
set of outputs AO then ioco ⊆ IOT S(AI , AO) × LT S(AI , AO) is defined as:

IUT ioco S =df ∀σ ∈ Straces(S) • out(IUT after σ) ⊆ out(S after σ)

Example 4. Consider the LTSs of Figure 2 to be specifications and let the IOTSs
of Figure 3 be implementations. Then we have w ioco s and x ioco t. We
also have x ioco s because ?2 is not a trace of s. Thus, this branch is not
relevant with respect to ioco. y does not conform to s, i.e. ¬(y ioco s), because
out(y0 aftery ?1) = {!c, θ} �⊆ {!c} = out(s0 afters ?1). Furthermore ¬(z ioco s)
because out(z0 afterz ?1) = {!c, θ} �⊆ {!c} = out(s0 afters ?1). Due to the use
of suspension traces we also have ¬(z ioco u) because out(z0 afterz ?1̂θ̂?1) =
{!c, !t} �⊆ {!t} = out(u0 afteru ?1̂θ̂?1).

The ioco definition from above can be lifted to a more general definition where
different instantiations correspond to different conformance relations:

Definition 9 (Generic input output conformance). Given a set of inputs
AI and a set of outputs AO then iocoF ⊆ IOT S(AI , AO) × LT S(AI , AO) is
defined as: IUT iocoF S =df ∀σ ∈ F • out(IUT after σ) ⊆ out(S after σ)

Using iocoF we can now express different relations by selecting a proper set of
sequences for F . The input output testing relation (≤iot) is given by iocoA∗ ,
while the input output refusal relation (≤ior) can be defined as ioco(A∪{θ})∗ .
ioconf is given by iocotraces(S).

Example 5. The IOTS y and the IOTS z of Fig. 3 serve to illustrate the differ-
ences between these conformance relations: z ≤iot y, ¬(z ≤ior y), z ioconf y,
¬(z ioco y), x ioconf w, x ioco w, ¬(x ≤iot w) and ¬(x ≤ior w).

By the use of a particular set of test cases one wants to test if a given implemen-
tation conforms to its specification. In the ioco framework a test case is again
a labeled transition system [1]:
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Definition 10 (Test case). A test case t is an LTS t = (Q, AI ∪AO ∪ {θ},→
, q0) such that (1) t is deterministic and has finite behavior; (2) Q contains
terminal states pass and fail; and (3) for any state q ∈ Q where q �= pass and
q �= fail, either init(q) = {a} for some a ∈ AI , or init(q) = AO ∪ {θ}

Test cases are extracted from specifications by some algorithm (e.g. [1,3]). Ba-
sically, test cases consist of some trace of the specification where at each state
allowed outputs lead to pass verdict states, while forbidden outputs lead to fail
verdict states. Testing is then conducted by running a test case t in parallel
with the implementation i. A test run is a trace of the synchronous parallel
composition t*|i leading to a terminal state of t.

3 Input Output Conformance of Processes

This section presents our denotational version of the ioco conformance relation.
We formulate ioco over UTP’s reactive processes. As ioco, the denotational
version is applicable to incomplete specifications. That is, implementations may
behave arbitrarily after unspecified inputs.

3.1 Reactive Processes

Basically, the process of testing is modelled as an interaction between two reac-
tive processes, the implementation under test (IUT) and the test case. A reactive
process with respect to the unified theories of programming is defined as follows:

Definition 11 (Reactive process). A reactive process P is one which satis-
fies the healthiness conditions R1, R2, R3 where R1(X) =df X ∧ (tr ≤ tr′),
R2(X(tr, tr′)) =df

�
s X(s, ŝ(tr′ − tr)), and R3(X) =df I � wait � X. The

alphabet of P consists of the following:

– A, the set of events in which it can potentially engage.
– tr : A∗, the sequence of events which have happened up to the time of

observation.
– ref : PA, the set of events refused by the process during its wait.
– wait : Bool, which distinguishes its waiting states from its terminated states.
– ok, ok′ : Bool, indicating start and termination of a process

The skip predicate (I) is defined as in [8]: I =df ¬ok ∧ (tr ≤ tr′) ∨ ok′ ∧ (tr′ =
tr) ∧ · · · ∧ (wait′ = wait).

The input output conformance relation distinguishes between inputs and out-
puts. Outputs are actions that are initiated by and under control of an imple-
mentation under test, while input actions are initiated by and under control of
the system’s environment [1]. Hence, the alphabet A of a process consists of two
disjoint sets A = Ain ∪ Aout. In addition, we will also differentiate between re-
fused inputs refin =df ref∩Ain and refused outputs refout =df ref ∩Aout. Thus,
also refusals form a partition: refin ∩ refout = ∅ and ref = refin ∪ refout. Note
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that we use ? and ! to indicate inputs and outputs for processes. For example, a
process having as input alphabet Ain = {1} and as output alphabet Aout = {c}
is written as doA(?1); doA(!c).

A process offering a single event a ∈ A for communication is expressed in
terms of doA(a), where

doA(a) =df Φ(a �∈ ref ′ � wait′ � tr′ = tr̂ 〈a〉)
Φ =df R ◦ andB = andB ◦ R, B =df ((tr′ = tr) ∧ wait′ ∨ (tr < tr′))
R =df R1 ◦ R2 ◦ R3

For sequential composition we rely on UTP’s standard sequential composition
operator: P (v, v′); Q(v, v′) =df ∃v0 • (P (v, v0) ∧ Q(v0, v

′)).

3.2 IOCO Specifications

For technical reasons, that is the computability of particular sets during the
test case generation, the reactive processes used in the ioco framework need to
satisfy an additional healthiness condition. The processes need to be strongly
responsive, i.e. processes do not comprise livelocks. If there is a livelock a pro-
cess may execute while it never offers communication. Hence, the healthiness
condition for specifications excludes livelocks:

IOCO1 P = P ∧ (ok ⇒ (wait′ ∨ ok′))

Within Tretmans theory [1] quiescence denotes the absence of outputs and the
absence of internal actions. Quiescence is encoded by the presence of a particular
action θ. Although, quiescence can be classified by wait′ and ref ′ it is necessary
to include θ into the traces of processes (see Example 4 ¬z ioco u).

Since ioco uses traces containing quiescence we need to include θ in the traces
of our processes. Thus, we extend set of events for reactive processes A by θ.
In the sequel we use the following abbreviation Aθ =df A∪ {θ}. A UTP process
is quiescent after a particular trace iff either it has finished its execution or it
refuses to do any output action

quiesence =df ¬wait′ ∨ ∀o ∈ Aout • o ∈ ref ′

Quiescent communication is expressed in terms of doθ
A, which adds quiescence

(θ) to the traces and to the refusal set of a process.

Definition 12 (Quiescent communication). Let a ∈ A be an action of a
process’ alphabet, then

doθ
A(a) =df

⎧⎨⎩
Φi(doA(a)) if a ∈ Aout

Φi({θ, a} �⊆ ref ′ ∧ tr′ − tr ∈ θ∗ � wait′�
tr′ − tr ∈ θ∗̂ 〈a〉) if a ∈ Ain

where Φi =df IOCO1 ◦R ◦ andB
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Consider the case where a is an input action, i.e., a ∈ Ain: In the case of wait′

the process doθ
A(a) allows an arbitrary number of θ events (see the θ-loops in

Fig. 2). After termination the event a has happened preceded by an arbitrary -
possible empty sequence - of quiescence events, i.e. tr′−tr ∈ θ∗̂ 〈a〉. For the sake
of simplicity we sometimes write θ∗ instead of {θ}∗. Note that θ∗̂ 〈a〉 denotes
the set of events where every element of θ∗ is concatenated with 〈a〉.

The possible occurrence of θ events is formalized as follows:

IOCO2 P = P ∧ (¬wait ⇒ (wait′ ⇒ (θ �∈ ref ′ ⇒ quiescence)))
IOCO3 P = P ∧ (¬wait ⇒ (wait′ ⇒ (θ �∈ ref ′ ⇒ ∃s • tr′ − tr = ŝθ∗)))

The antecedence ¬wait is necessary due to the same reasons as in R3.
By introducing the observability of quiescence we need to change the defini-

tion of the skip (I) element: Processes always need to respect the properties of
quiescence. Even in the case of divergence θ can be observed if and only if there
is no output. This leads to Iθ, which is defined as follows.

Iθ =df

(
¬ok ∧ (tr ≤ tr′) ∧ (wait′ ⇒ (θ �∈ ref ′ ⇒

(quiescence ∧ (∃s • tr′ − tr = ŝθ∗))))
)
∨
(

ok′∧
(v′ = v)

)
In the above definition the variables v and v′ denote the observation vectors,
i.e., v = {ok, wait, tr, ref} and v′ = {ok′, wait′, tr′, ref ′}, respectively.

By introducing a new skip element we also need to change the definition of
the healthiness condition R3. We will denote this modified healthiness condition
as R3θ(P ) =df Iθ � wait � P .

Since the quiescence event θ encodes the absence of output events it may
occur at any time. This is even true for the deadlock process.

Definition 13 (Quiescent deadlock)

δθ =df R3θ(tr′ − tr ∈ θ∗ ∧ wait′)

Consequently, the classical deadlock process indicating absolute inactivity does
not exist within the ioco theory.

Although quiescence is preserved by sequential composition, we need to re-
define internal and external choices in order to preserve the properties of quies-
cence. Basically, the composition of processes that start with input actions (i.e.
the processes are quiescent initially) is quiescent. If one of the two composed
processes is not quiescent initially, the composition is not quiescent either.

For our quiescence preserving composition operators (	θ, +θ) we use an ap-
proach similar to parallel by merge [8]. The idea of parallel by merge is to run two
processes independently and merge their results afterwards. In order to express
independent execution we need a relabeling function. Given an output alphabet
{v′1, v′2, . . . , v′n}, Ul is defined as follows

Definition 14 (Relabelling)

αUl({v′1, v′2, . . . , v′n}) =df {v1, v2, . . . , vn, l.v′1, l.v
′
2, . . . , l.v

′
n}

Ul({v′1, v′2, . . . , v′n}) =df (l.v′1 = v1) ∧ (l.v′2 = v2) ∧ · · · ∧ (l.v′n = vn)
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Independent execution of P and Q is now expressed by relabeling:

Definition 15 (Independent execution)

P � Q =df P ; U0(outαP ) ∧ Q; U1(outαQ)

An internal choice, which takes care of θ within the resulting process, can be
defined as follows:

Definition 16 (Quiescence preserving internal choice)

P 	θ Q =df (P � Q); M	 with M	 =df M δθ

	 � δθ � M¬δθ

As this definition illustrates we need two merge relations for the quiescence
preserving internal choice: M δθ

	 and M¬δθ

. M δθ

	 merges the very beginning of
the two processes P and Q. After that, M¬δθ

takes care that P 	θ Q behaves
like P or Q. As proven in [11], this operator is idempotent and commutative.

M δθ

	 and M¬δθ

share some common properties, formalized by Mθ: (1) Parts
of P and Q are only merged if their wait′ values are equal, and (2) potentially
the initial θ has to be removed from all traces.

Definition 17 (Internal choice - Common merge)

Mθ =df (0.wait ⇔ 1.wait) ∧ wait′ = 0.wait ∧ (ok′ = (0.ok ∧ 1.ok)) ∧
((¬initQuiet(0.tr − tr) ∨ ¬initQuiet(1.tr − tr)) ⇒ ¬initQuiet(tr′ − tr))

where initQuiet(t) =df t �∈ ({ŝu|s ∈ A ∧ u ∈ A∗
θ} ∪ {〈〉})

M δθ

	 is defined by the use of Mθ. In addition to Mθ, M init	 merges traces and
refusal sets of P and Q into new traces and new refusal sets.

Definition 18 (Internal choice - Initial merge)

M δθ

	 =df Mθ ∧ M init
	

M init
	 =df ((tr′ = 0.tr ∧ ref ′ = (0.ref \ {θ}) ∪ ({θ} ∩ (0.ref ∪ 1.ref))) ∨

(tr′ = 1.tr ∧ ref ′ = (1.ref \ {θ}) ∪ ({θ} ∩ (0.ref ∪ 1.ref))))

By adding {θ} ∩ (0.ref ∪ 1.ref) to the set of refused actions the new process
refuses θ only if one of the two processes refuse to exhibit a θ event. In other
words, only if both processes do not refuse θ, i.e., θ �∈ 0.ref ∧ θ �∈ 1.ref , the
resulting process does not refuse θ as well, i.e., θ �∈ ref ′.

M¬δθ

takes care that finally P 	θ Q behaves like P or Q. Additionally, Mθ

is applied in order to potentially remove θ from the traces.

Definition 19 (Internal choice - Terminal merge)

M¬δθ

=df Mθ ∧ M term

M term =df ((tr′ = 0.tr ∧ ref ′ = 0.ref) ∨ (tr′ = 1.tr ∧ ref ′ = 1.ref))



190 M. Weiglhofer and B.K. Aichernig

A quiescence preserving external choice operator is given by

Definition 20 (Quiescence preserving external choice)

P +θ Q =df (P � Q); M+ with M+ =df M δθ

+ � δθ � M¬δθ

Except the merge relation M δθ

+ the external choice is equivalent 	θ. The differ-
ence is how the very beginning of P and Q is combined to form P +θ Q. The
external choice operator is idempotent and commutative [11].

Definition 21 (External choice merge relation)

M δθ

+ =df Mθ ∧ M init
+

M init
+ =df (ref ′ = ((0.ref ∩ 1.ref) \ {θ}) ∪ ({θ} ∩ (0.ref ∪ 1.ref))) ∧

(tr′ = 0.tr ∨ tr′ = 1.tr)

Specification processes for the ioco framework are defined as follows:

Definition 22 (ioco specification). An ioco specification is a reactive process
satisfying the healthiness conditions IOCO1, IOCO2 and IOCO3. In addition
its set of possible events is partitioned into the quiescent event, input events, and
output events: A = Aout ∪Ain ∪ {θ} where Aout ∩ Ain = ∅ and θ �∈ Aout ∪ Ain

Processes expressed in terms of doθ
A, ;, +θ and 	θ are ioco specifications. ioco

specifications are closed under these operators. For proofs we refer to [11].

Remark 1. The class of labeled transition systems (LTS) used for the ioco re-
lation is restricted to image finite LTSs [12]. Image finite LTSs are limited in
their possible non-deterministic choices, i.e. image finite LTSs are bounded in
terms of non-determinism. This requirement is only due to the properties of Tret-
mans’ test case generation algorithm. Since we are interessted in a predicative
semantics we do not face the problem of image-finiteness.

Remark 2. The tgv tool [3], which claims to generate test cases with respect to
ioco, uses a different notion of quiesence: quiesenceTGV =df quiesence∨ (¬ok′∧
¬wait′). Note that we rely on quiescence rather than on quiescenceTGV .

3.3 IOCO Implementations

The input output conformance relation uses labeled transition systems to rep-
resent implementations. As mentioned in Section 2, it is not assumed that this
LTS is known in advance, but only its existence is required. Our formalization
requires something similar: implementations can be expressed as processes.

Processes for representing implementations in terms of the ioco relation need
to satisfy the properties of specifications plus three additional properties: some
restrictions on allowed choices, input-enabledness, and fairness.



Unifying Input Output Conformance 191

Restrictions on choices. An implementation is not allowed to freely choose be-
tween the actions enabled in a particular state. The ioco relation distinguishes
between inputs and outputs not only by partitioning a process’ alphabet, but
also by assigning responsibilities to these two alphabets (see Section 3.1.

In terms of choices this means that for implementations choices between out-
puts are internal choices. Internal choices are represented by a disjunctions over
the refused actions, thus we restrict the choices between outputs:

IOCO4 P = P ∧ (¬wait ⇒ (wait′ ⇒ (|Aout| − 1) ≤ |ref ′
out|))

Example 6. Because of this healthiness condition the τ transitions in state z4

of Figure 3 are required, i.e. the choice between !t and !c is an internal choice.
Thus, as required by IOCO4, after the trace 〈?1, θ, ?1〉 z does not offer !t and
!c for communication, i.e. !t �∈ ref ′∧!c �∈ ref ′. Instead, it non-deterministically
offers only one of the two actions for communication, i.e. !t �∈ ref ′∨!c �∈ ref ′.

Contrary, input actions are under control of the system’s environment. That
is, choices between inputs are external choices. This restriction is enforced by
requiring input-enabledness (see IOCO5).

In addition, if there are inputs and outputs enabled in a particular state of an
implementation the choice between input and output is up to the environment.
That is, choices between inputs and outputs are external choices. Again, this
restriction is covered by having input-enabled implementations (see IOCO5).

Remark 3. Note that, as identified in [13], external choices between inputs and
outputs allows the environment to prevent the system from providing an output.
Therefore, the constraints on the semantics of choices within implementations
have been relaxed [12]. By changing the properties of test cases (see Remark 4
in Section 3.5), choices between inputs and outputs are now choices of the im-
plementation. Our work focuses on the original definition of ioco.

Input-enabledness. Input-enabledness requires that an implementation accepts
every input in every (waiting) state. More precisely, an implementation cannot
prevent the environment from providing an input, while running.

IOCO5 P = P ∧ (¬wait ⇒ (wait′ ⇒ (ref ′
in = ∅)))

As for specifications we need to redefine I such that even in the case of divergence
the additional properties of implementations are satisfied.

Iθ
ι =df

⎛⎝¬ok ∧ (tr ≤ tr′)∧
(wait′ ⇒ (((|Aout| − 1) ≤ |ref ′

out) ∧ (ref ′
in = ∅))∧

(θ �∈ ref ′ ⇒ (quiescence ∧ (∃s • tr′ − tr = ŝθ∗))))
⎞⎠ ∨
(

ok′∧
(v′ = v)

)

Using this new version of the I-relation within the healthiness condition R3 leads
to R3θ

ι which is used for implementations

R3θ
ι (P ) =df Iθ

ι � wait � P
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While specifications are expressed in terms of doθ
A, implementations use ιA. More

precisely, we express implementations by the use of ιθA. But let us start with ιA
first. ιA takes care of the input-enabledness of processes.

For the sake of simplicity we use the following abbreviation to denote a se-
quence of inputs without a particular action: A∗

in\a =df (Ain \ {a})∗.

Definition 23 (Input-enabled communication). Let a ∈ A be an action of
a process’ alphabet, then

ιA(a) =df Φi(ref ′
in = ∅∧a �∈ ref ′∧tr′−tr ∈ A∗

in\a �wait′�tr′−tr ∈ A∗
in\a

̂ 〈a〉)
ιA(a) is similar to doA(a). It denotes that the process ιA(a) cannot refuse to
perform an a-action. Furthermore, ιA(a) cannot refuse to perform any input
action. After executing any input action sequence ended by an a action the
process ιA(a) terminates successfully.

Input enabledness also affects the representation of a deadlock. An input-
enabled process needs to accept an input action at any time. That is an input-
enabled process can only deadlock on outputs. Therefore, the deadlock process
δι, which substitutes δ in the case of input-enabled processes, is given by:

Definition 24 (Output deadlock)

δι =df R3θ
ι (tr

′ − tr ∈ A∗
in ∧ wait′)

Again, as for the non-input-enabled case, we need a quiescent version of ιA.
ιθA(a) has θ events within its traces if a is an input event.

Definition 25 (Input-enabled quiescent communication). Let a ∈ A be
an action of a process’ alphabet, then

ιθA(a) =df

⎧⎪⎨⎪⎩
ιA(a) if a ∈ Aout

Φi(ref ′
in = ∅ ∧ θ �∈ ref ′ ∧ tr′ − tr ∈ (Ain\a ∪ θ)∗

�wait′ � tr′ − tr ∈ (Ain\a ∪ θ)∗̂ 〈a〉) if a ∈ Ain

Combining input-enabledness with quiescence again requires a slight modifica-
tion of the deadlock process. This leads to the output quiescent deadlock:

Definition 26 (Quiescent output deadlock)

δθ
ι =df R3θ

ι (tr
′ − tr ∈ (Ain ∪ θ)∗ ∧ wait′)

Fairness. Fairness is especially important for allowing theoretical exhaustive
test case generation algorithms. The fairness assumption for the ioco relation re-
quires that an implementation eventually shows all its possible non-deterministic
behaviors when it is re-executed with a particular set of inputs. Without as-
suming fairness of implementations there is not even a theoretical possibility of
generating a failing test case for any non-conforming implementation. An unfair
implementation may always lead a test case away from its errors. To express
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this fairness on an implementation we use a probabilistic choice operator similar
to He and Sanders [14]. According to [14] a probabilistic choice between two
processes A and B is expressed with A p⊕ B where 0 ≤ p ≤ 1. This expression
equals A with probability p and B with probability 1−p. For example, A 0.9⊕ B
denotes that during execution A is chosen in 90% of the cases.

The probabilistic version of our quiescence preserving internal choice, i.e. 	θ,
is given by p

θ. The laws for p
θ are similar to the laws for p⊕, i.e.,

P 1
θ Q = P

P p
θ Q = Q 1−p

θ P

P p
θ P = P

(P p
θ Q) q

θ R = P pq
θ (Q r

θ R), r = ((1 − p)q)/(1 − (pq))
(P p

θ Q); R = (P ; R) p
θ (Q; R))

A quiescence preserving internal choice is given by the non-deterministic choice
of all possible probabilistic choices, i.e.

P 	θ Q = 	{P p
θ Q|0 ≤ p ≤ 1} � P p

θ Q

Relying on probabilistic choices means that when one implements a choice the
specification is refined by choosing a particular probability for this choice. Fair-
ness is expressed by restricting the probabilities p to 0 < p < 1:

Definition 27 (Internal fair (quiescence preserving) choice)

P 	θ
f Q =df 	{P p

θ Q|0 < p < 1}

Thus, when executing a test case on the implementation the implementation will
eventually exhibit all its possible behavior. As stated by the following lemma
fair internal quiescence preserving choices are valid implementations of inter-
nal quiescence preserving choices. This guarantees that our internal quiescence
preserving choice can be safely implemented by its fair version.

Lemma 1. P 	θ Q � P 	θ
f Q

Proof

P 	θ
f Q = {definition of 	θ

f}
= 	{P p

θ Q|0 < p < 1} {definition of 	}
� 	{P p

θ Q|0 < p < 1} 	 P 	 Q {laws for p
θ}

= 	{P p
θ Q|0 < p < 1} 	 P 1

θ Q 	 P 0
θ Q {definition of 	}

= 	{P p
θ Q|0 ≤ p ≤ 1} {laws for p

θ}
= P 	θ Q

Given the notion of input-enabledness and fairness we can now define which
processes serve to represent ioco testable implementations:
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Definition 28 (ioco testable implementation). An ioco testable implemen-
tation is a reactive process satisfying the healthiness conditions IOCO1-IOCO5.
In addition, an ioco testable implementation must be fair.

Processes expressed in terms of ιθA, ;, +θ, and 	θ
f are ioco testable implementa-

tions if their choices obey to the following rules: (1) Choices between outputs are
fair internal choices (	θ

f ); (2) Choices between inputs and choices between in-
puts and outputs are external choices (+θ). Implementation processes are closed
under these operators. For proofs please refer to [11].

3.4 Predicative Input Output Conformance Relation

Recall that informally an IUT conforms to a specification S, iff the outputs of
the IUT are outputs of S after an arbitrary suspension trace of S.

Thus, we need the (suspension) traces of a process, which are obtained by
hiding all observations except the traces

Definition 29 (Traces of a process)

Trace(P ) =df ∃ref, ref ′, wait, wait′, ok, ok′ • P

In addition to all traces of a particular process we need the traces after which
a process is quiescent. Due to the chosen representation of quiescence (see Sec-
tion 3.2) we use the following predicate in order to obtain the traces after which
a process is quiescent

Definition 30 (Quiet traces of a process)

Quiet(P ) =df ∃ref ′
in • (P [false/wait′] ∨ P [Aout/ref ′

out])

Using these two predicates the input output conformance relation between im-
plementation processes (see Definition 28) and specification processes (see Defi-
nition 22) can be defined as follows:

Definition 31 (�ioco). Given an implementation process I and a specification
process S, then

S �ioco I =df [ ∀t ∈ A∗
θ, ∀o ∈ Aout•

((Trace(S)[t/tr′] ∧ Trace(I)[t̂o/tr′]) ⇒ Trace(S)[t̂o/tr′])∧
((Trace(S)[t/tr′] ∧ Quiet(I)[t/tr′]) ⇒ Quiet(S)[t/tr′]) ]

In order to distinguish the input output conformance given in denotational se-
mantics from its operational semantics version we use different symbols. Note
that because �ioco is related to refinement I ioco S is given by S �ioco I.

ioco relates the outputs (including quiescence) of I and S for all suspension
traces of S. Contrary, our �ioco definition comprises two different parts. The
first part considers only outputs while the second part deals with quiescence.

Using the predicative definition �ioco we can now show the relation between
the input output conformance relation and refinement.
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Theorem 1. � ⊆ �ioco

Proof. In order to prove � ⊆ �ioco, we have to show that S � I ⇒ S �ioco I

S � I {definition of � and propositional calculus}
= [I ⇒ S] ∧ ([I ⇒ S] ∨ [I ⇒ S]) {substitution}
= [I ⇒ S]∧[(I[false/wait′] ⇒ S[false/wait′])]∨

[(I[Aout/ref ′
out] ⇒ S[Aout/ref ′

out])] {def. of [] and prop. calculus}
= [I ⇒ S] ∧ [ (I[false/wait′] ∧ I[Aout/ref ′

out]) ⇒
(S[false/wait′] ∨ S[Aout/ref ′

out])] {propositional calculus}
⇒ [(I ⇒ S) ∧ ((∃ref ′

in • (I[false/wait′] ∨ I[Aout/ref ′
out])) ⇒

(∃ref ′
in • (S[false/wait′] ∨ S[Aout/ref ′

out])))]
{propositional calculus and definition of Quiet}

⇒ [((∃ref, ref ′, wait, wait′, ok, ok′ • I) ⇒ (∃ref, ref ′, wait, wait′, ok, ok′ • S))∧
(Quiet(I) ⇒ Quiet(S))] {prop. calculus and def. of Trace}

⇒ [∀t ∈ A∗
θ • (Trace(I)[t/tr′] ⇒ Trace(S)[t/tr′])∧

∀t ∈ A∗
θ • (Quiet(I)[t/tr′] ⇒ Quiet(S)[t/tr′])] {propositional calculus}

⇒ [∀t ∈ A∗
θ, ∀o ∈ Aout • (Trace(I)[t̂ o/tr′] ⇒ Trace(S)[t̂ o/tr′])∧

∀t ∈ A∗
θ • (Quiet(I)[t/tr′] ⇒ Quiet(S)[t/tr′])]

{propositional calculus and definition of Trace}
⇒ [ ∀t ∈ A∗

θ , ∀o ∈ Aout•
((Trace(S)[t/tr′] ∧ Trace(I)[t̂ o/tr′]) ⇒ Trace(S)[t̂ o/tr′])∧

∀t ∈ A∗
θ • ((Trace(S)[t/tr′] ∧ Quiet(I)[t/tr′]) ⇒ Quiet(S)[t/tr′])]

{distributivity of ∀}
= [∀t ∈ A∗

θ, ∀o ∈ Aout•
(((Trace(S)[t/tr′] ∧ Trace(I)[t̂ o/tr′]) ⇒ Trace(S)[t̂ o/tr′])∧
((Trace(S)[t/tr′] ∧ Quiet(I)[t/tr′]) ⇒ Quiet(S)[t/tr′]))] {def. of �ioco}

= S �ioco I

Although, �ioco and ioco are not transitive in general, an interesting property
is that refining a conforming implementation does not break conformance.

Theorem 2. ((S �ioco I2) ∧ (I2 � I1)) ⇒ S �ioco I1

Proof. S �ioco I2 ∧ I2 � I1 {definition of � and propositional calculus}
= (S �ioco I2) ∧ [I1 ⇒ I2] ∧ [I1 ⇒ I2] {def. of ∃, Trace, and Quiet}
⇒(S �ioco I2) ∧ [Trace(I1) ⇒ Trace(I2)] ∧ [Quiet(I1) ⇒ Quiet(I2)]

{propositional calculus}
⇒ [ ∀t ∈ A∗

θ , ∀o ∈ Aout•
( ((Trace(S)[t/tr′] ∧ Trace(I2)[t̂ o/tr′]) ⇒ Trace(S)[t̂ o/tr′])∧

(Trace(I1)[t̂ o/tr′] ⇒ Trace(I2)[t̂ o/tr′]))∧
∀t ∈ A∗

θ • ( ((Trace(S)[t/tr′] ∧ Quiet(I2)[t/tr′]) ⇒ Quiet(S)[t/tr′])∧
(Quiet(I1)[t/tr′] ⇒ Quiet(I2)[t/tr′]))] {prop. calculus}

⇒ [∀t ∈ A∗
θ , ∀o ∈ Aout•

(((Trace(S)[t/tr′] ∧ Trace(I1)[t̂ o/tr′]) ⇒ Trace(S)[t̂ o/tr′])∧
((Trace(S)[t/tr′] ∧ Quiet(I1)[t/tr′]) ⇒ Quiet(S)[t/tr′]))] {def. of �ioco }

= S �ioco I1
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Although, the definition of �ioco corresponds to the definition of ioco we can
reformulate our definition to a more generic version �P

ioco which corresponds to
iocoF . Like F in iocoF , P is used to select the proper set of traces.

Definition 32 (�P
ioco). Given an implementation process I and a specification

process S, then

S �P
ioco I =df [ ∀t ∈ A∗

θ, ∀o ∈ Aout•
((P (S, I, t) ∧ Trace(I)[t̂o/tr′]) ⇒ Trace(S)[t̂o/tr′])∧
((P (S, I, t) ∧ Quiet(I)[t/tr′]) ⇒ Quiet(S)[t/tr′]) ]

The conformance relations listed in Section 2 can now be defined as follows:

Definition 33 (Conformance relations)

S �iot I =df S �Piot

ioco I, where Piot(S, I, t) = t ∈ A∗
θ

S �ior I =df S �Pior

ioco I, where Pior(S, I, t) = t ∈ A∗

S �ioconf I =df S �Pioconf

ioco I, where Pioconf (S, I, t) = Trace(S)[t/tr′] ∧ t ∈ A∗

S �ioco I =df S �Pioco

ioco I, where Pioco(S, I, t) = Trace(S)[t/tr′] ∧ t ∈ A∗
θ

3.5 Test Cases, Test Processes, and Test Suites

Testing for conformance is done by applying a set of test cases to an implemen-
tation. Test cases are processes satisfying additional properties.

A test process has finite behavior such that testing can be eventually stopped.
In the case of divergence one needs to interrupt testing externally.

TC1 P (tr, tr′) = P ∧ (∃n ∈ � • length(tr′ − tr) ≤ n)

Furthermore, a test case either accepts all responses from an implementation,
i.e., inputs from the view of the test case, or it accepts no inputs at all:

TC2 P = P ∧ (¬wait ⇒ (wait′ ⇒ (ref ′
in = Ain ∨ ref ′

in = ∅)))
If the test case has to provide a particular stimuli to the IUT it is always clear
which output (from the view of the test case) should be send:

TC3 P = P ∧ (¬wait ⇒ (wait′ ⇒ (|ref ′
out| ≥ |Aout| − 1)))

Furthermore, testing should be a deterministic activity, i.e. test cases should be
deterministic. Determinism includes that a tester can always deterministically
decide what to do: send a particular stimuli to the IUT or wait for a possible
response. This is ensured by the following two healthiness conditions.

TC4 P =P∧(¬wait ⇒ (wait′ ⇒ ((|ref ′
out| = |Aout| − 1) ⇔ ref ′

in = Ain)))
TC5 P = P ∧ (¬wait ⇒ (wait′ ⇒ ((ref ′

in = ∅) ⇔ (ref ′
out = Aout))))

After termination a test case should give a verdict about the test execution

TC6 P = P ∧ (¬wait′ ⇒ (pass′ ⇒ ¬fail′))
Note that we use separate variables because some test case selection strategies
(e.g. [3]) make use of inconclusive verdicts, i.e., ¬pass′ ∧ ¬fail′.
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As for specifications and implementations we make I suitable for test cases:

ITC =df

⎛⎜⎜⎜⎜⎜⎜⎝
¬ok ∧ (tr ≤ tr′) ∧ (∃n ∈ � • length(tr′ − tr) ≤ n)∧
wait′ ⇒ ((ref ′

in = Ain ∨ ref ′
in = ∅)∧

(|ref ′
out| ≥ |Aout| − 1)∧

((|ref ′
out| = |Aout| − 1) ⇔ ref ′

in = Ain)∧
((ref ′

in = ∅) ⇔ (ref ′
out = Aout)))∧

(¬wait′ ⇒ (pass′ ⇒ ¬fail′))

⎞⎟⎟⎟⎟⎟⎟⎠ ∨
(

ok′∧
(v′ = v)

)

ITC ensures that even in the case of divergence we respect the properties of test
cases. For test cases R3 becomes R3TC =df ITC � wait � P .
Definition 34 (Test process). A test process P is a reactive process, which
satisfies the healthiness conditions TC1. . .TC6 and IOCO1. The set of events
in which a test case can potentially engage is given by A, where A = Aout ∪Ain,
Aout∩Ain = ∅ and θ ∈ Ain. The observations are extended by: pass, fail : Bool,
which denote the pass and fail verdicts, respectively.

Remark 4. Due to the results of Petrenko et al. [13], the properties of test cases
have been changed recently [12]. Test cases are now input-enabled, i.e. they are
not able to block any input (i.e. outputs of the IUT) anymore. Hence, test cases
accept every output of the IUT in every state. Note that this conflicts with
healthiness condition TC5 and TC6. During the test execution one has now to
decide non-deterministically whether to send an input or to wait for an output.
However, we use the original version of ioco in this paper.

Test cases are reactive processes expressed in terms of doA(a). We use the fol-
lowing abbreviations for indicating pass (✓) and fail (✗) verdicts.

✓ =df (¬wait′ ⇒ pass′) ✗ =df (¬wait′ ⇒ fail′)

Due to the properties of test cases the only choices of a test case are choices
between inputs. Since the chosen input to a test case, i.e. output of the IUT, are
up to the IUT this choice is given in terms of an external choice:

P + Q =df P ∧ Q � δ � P ∨ Q with δ =df R3(tr′ = tr ∧ wait′)

Test cases are closed under {+, ; }. For proofs please refer to [11].

Example 7. A test case T with Ain = {c, t, θ} and Aout = {1} that sends a
stimulus and subsequently accepts a c but neither accepts t nor θ is given by

T =!1; ((?c ∧ ✓) + (?t ∧ ✗) + (θ ∧ ✗)) = {def. of doA, ✓, ✗, and +}

=
(

!1 �∈ ref ′ ∧ tr′ = tr∨
{?c, ?t, θ} �⊆ ref ′ ∧ tr′ = tr̂ 〈!1〉

)
� wait′ �

⎛⎝ tr′ = tr̂ 〈!1, ?c〉 ∧ pass′∨
tr′ = tr̂ 〈!1, ?t〉 ∧ fail′∨
tr′ = tr̂ 〈!1, θ〉 ∧ fail′

⎞⎠
A test suite is a set of test cases. Because of the use of global verdicts (see
Definition 38), a test suite is given by the nondeterministic choice of a set of test
cases.
Definition 35 (Test suite). Given a set of N test processes T1, . . . , TN , then
a test suite TS is defined as: TS =df

�
i=1,...,N Ti
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3.6 Testing Implementations

Test case execution in the input output conformance testing framework is mod-
eled by executing the test case in parallel to the system under test. We model
this parallel execution again as parallel merge (see Section 3.2).

The execution of a test case t on an implementation i is denoted by t*|i. This
new process t*|i consists of all traces present in both, the test case and the im-
plementation. Furthermore, t*|i gives fail′ and pass′ verdicts after termination.

Such an execution operator is inspired by CSPs parallel composition [15], i.e,
the parallel composition of a test case and an implementation can only engage
in a particular action if both processes participate in the communication.

Since a test case swaps inputs and outputs of the IUT we need to rename
alphabets. Therefore, we define an alphabet renaming operator for a process P
denoted by P as follows: AP =df AP ; AoutP =df AinP ; AinP =df AoutP .

Definition 36 (Test case execution). Let TC be a test case process and
IUT be an implementation process, then A(TC*|IUT ) =df ATC ∪ AIUT and
TC*|IUT =df (TC � IUT ); Mti.

The relation Mti merges the traces of the test case and the implementation.
The result comprises the pass and fail verdicts of the test case as well as traces
that are allowed in both, the test case and the implementation. Because of our
representation of quiescence, there is no θ that indicates termination of the IUT,
i.e., ¬1.wait. Mti takes care of that when merging the traces.

Definition 37 (Test case/impl. merge)

Mti =df pass′ = 0.pass ∧ fail′ = 0.fail ∧ wait′ = (0.wait ∧ 1.wait) ∧
ref ′ = (0.ref ∪ 1.ref) ∧ ok′ = (0.ok ∧ 1.ok) ∧
(∃u • ((u = (0.tr − tr) ∧ u = (1.tr − tr) ∧ tr′ = tr̂u) ∨

(ûA∗
in
̂ 〈θ〉 = (0.tr − tr) ∧ u = (1.tr − tr) ∧ tr′ = tr̂ 〈u, θ〉) ∧ ¬1.wait))

Due to the lack of symmetry of our merge operator the test case execution
operator *| is not symmetric. However, it still distributes over 	, i.e., let T1, T2 be
test cases and let P be an implementation, then (T1	T2)*|P = (T1*|P )	(T2*|P ).

This law allows one to run a set of N test cases T1, . . . , TN , i.e. a test suite
TS =df

�
i=1,...,N Ti, against an implementation process P :

TS*|P =
	

i=1,...,N

Ti*|P = (T1 	 . . . 	 TN )*|P

Since our test cases do not consist of a single trace but of several traces there
may be different verdicts given at the end of different traces. An implementation
passes a test case if all possible test runs lead to the verdict pass:

Definition 38 (Global verdict). Given a test process (or a test suite) T and
an implementation process IUT , then

IUT passes T =df ∀r ∈ A∗
θ • (((T *|IUT )[r/tr′] ∧ ¬wait′) ⇒ pass′)

IUT fails T =df ∃r ∈ A∗
θ • (((T *|IUT )[r/tr′] ∧ ¬wait′) ⇒ fail′)
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Example 8. Now we can calculate verdicts by executing test cases on implemen-
tations. For example, consider the test case of Example 7, i.e. T =!1; ((?c∧✓)+
(?t ∧ ✗) + (θ ∧ ✗)), and the IUT Pw = ιθA(?1); ιθA(!c) (representing the IUT w of
Figure 3). Executing T on the IUT Pw, i.e. T *|Pw, is conducted as follows:

T *|Pw = {def. of *| and renaming}
= (?1; ((!c ∧ ✓) + (!t ∧ ✗) + (θ ∧ ✗)) � ιθA(?1); ιθA(!c)); Mti {def. of � and Mti}

=
(

?1 �∈ ref ′ ∧ tr′ = tr∨
!c �∈ ref ′ ∧ tr′ = tr̂ 〈?1〉

)
� wait′ � (tr′ = tr̂ 〈?1, ?c〉 ∧ pass′)

Thus, we have Pw passes T because

Pw passes T {def. of passes}
= ∀r ∈ A∗

θ • (((T *|Pw)[r/tr′] ∧ ¬wait′) ⇒ pass′) {t*|Pw}
= ∀r ∈ A∗

θ • ((¬wait′ ∧ r = tr̂ 〈?1〉̂ 〈?c〉 ∧ pass′) ⇒ pass′) {prop. calc.}
= ∀r ∈ A∗

θ • TRUE = TRUE

4 Conclusion and Future Work

This paper lifts the input output conformance (ioco) theory of Tretmans [1] for
functional black-box testing of reactive systems to UTP’s reactive processes [8].

The presented operators make the absence of output events, i.e. quiescence,
observable for reactive processes. Furthermore, we show how to express input
enabled processes and introduce a formal notion of fairness. By the use of spec-
ification processes and implementation processes we define �ioco. This confor-
mance relation gives a notion of correctness of an implementation with respect
to a specification in terms of UTP’s reactive processes.

Although, the presented theory is more complex than Tretmans’ original for-
mulation there are many benefits in embedding ioco in UTP. First, the presented
healthiness conditions are mostly simple and formalize the assumptions behind
ioco. To the best of our knowledge, this is the first time that these assumptions
have been presented in a formal way. Second, we can formally prove properties
of �ioco, and check proofs automatically. For example, particular steps of some
proofs of [11] have been checked using satisfiability solvers (e.g. [6]). Thanks to
the predicative style of �ioco such decision procedures cannot only be used for
proof checking, but also for test case generation by expressing test case genera-
tion as a satisfiability problem. Finally, formulating ioco in terms of UTP make
specifications with a UTP semantics useable for ioco testing.

Although, this paper gives the basic notion of specifications, implementations,
test cases and conformance there is plenty of work left. While we related refine-
ment and �ioco, there are many other laws that should be investigated. Another
open task is to instantiate this framework for a particular process algebra, e.g.,
CSP. Furthermore, there are many extensions to the ioco theory. For example,
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Lestiennes and Gaudel [16] presented rioco, which relaxes the property of input-
enabledness. Another variation of ioco considers the presence of time, i.e. tioco
[17]. It would be interesting to study these conformance relations in terms of
UTP and compare arising healthiness conditions to the presented healthiness
conditions.
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Abstract. Reactive miracles are rather unexplored in Unifying Theories
of Programming. We present two simple properties: prefixing a miracle
with an event, and offering an external choice between a process and a
miracle. Both are strange processes, each violating an important axiom
of the standard failures-divergences model for CSP.

1 Introduction

Communicating Sequential Processes (CSP) is a formal language for describ-
ing patterns of interaction in concurrent systems. It was first introduced by
Tony Hoare in 1978 [Hoa78], although that view of CSP has changed much
in 30 years. The most useful textbooks are by Hoare [Hoa85], Roscoe [Ros97],
and Schneider [Sch00]. As well as an axiomatic and operational semantics (see,
e.g., [Sch00]), the language has a variety of different denotational semantic
models reflecting, for instance, untimed [BHR84], timed [RoR88], probabilis-
tic [Low93], and synchronous behaviour [Bar93]. The three major denotational
models of untimed CSP are the traces, stable failures, and failures-divergences
models (see both [Ros97] and [Sch00] for accounts of each of these models).

The traces model defines the meaning of a process as the set of traces of events
that the process can be observed to perform. The stable failures model extends
the traces model with refusal sets, which are sets of events that a process can
refuse to perform. A failure is a pair consisting of a trace and a set of events that
the process may refuse after the trace. The failures-divergences model extends
the failures model with another set of traces, each of which leads to a divergence
of the process.

More recently, Hoare & He have given a new semantics to CSP in Unifying
Theories of Programming (UTP) [HoH98] in the style of Hehner’s Predicative
Programming [Heh84a, Heh84b]. The semantic setting provided by the UTP is
the theory of alphabetised relations, and interesting sub-theories are built by
defining mappings corresponding to healthiness conditions capturing different
aspects of the sub-theory. Hoare and He first build a sub-theory of precondition-
postcondition pairs within the relational calculus; this is the theory of designs
(see [WoC04] for a tutorial introduction to designs). Next, they build a theory
of reactive processes, which is disjoint from the theory of designs. Finally, they
use the reactive healthiness conditions to embed designs within the theory of

A. Butterfield (Ed.): UTP 2008, LNCS 5713, pp. 202–217, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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reactive processes. The result is the theory of CSP processes (see [CaW04] for a
tutorial account of this embedding).

All three theories are complete lattices, rather than the complete partial orders
of the standard models for CSP. As complete lattices, they each have a top
element. The top of the design lattice is the familiar miracle from the refinement
calculus:w : [ true, false ] [Mor88]. This design is always guaranteed to terminate
if it is started, and when it does terminate, it achieves the impossible. As well
as representing intermediate results in refinement, it gives a semantics to naked
guarded commands, allowing them to wait [Mor90].

The tops of the reactive and the CSP lattices are, to the best of our knowledge,
completely unexplored. In this paper, we give an insight into the nature of the
reactive miracle and give just a glimpse into how it might be useful in developing
reactive systems.

The paper is structured as follows. We begin by introducing the theory of
designs in UTP in Sect. 2, followed by the theory of reactive processes in Sect. 3.
In Sect. 4, we describe the semantics of CSP in terms of reactive designs. In
Sect. 5 and Sect. 6 we give our two small properties of reactive miracles. In
Sect. 7, we discuss some novel applications of these properties, and in Sect. 8,
we conclude the paper.

2 Designs in Unifying Theories of Programming

Relations in the sub-theory of designs can be split into assumption-commitment
pairs, which are called designs. These are very similar to the specification state-
ments of the refinement calculus (see, e.g., [Mor90]). The theory of designs
in UTP unifies various theories of programming, such as the assertional tech-
nique [Gri81], B [Abr96], the refinement calculus [Mor90], VDM [Jon90], and
Z [Spi88, Spi92, WoD96].

Designs have two observations: ok and ok ′ record the observations that the
program has started and has terminated, respectively. For predicates P and Q
not containing ok or ok ′, the design with precondition P and postcondition Q
is defined as:

(P � Q ) =̂ ( ok ∧ P ⇒ ok ′ ∧ Q )

This definition may be read as “if the program starts in a state satisfying P ,
then it will terminate, and on termination Q will be true”.

Refinement in UTP is universal inverse-implication. That is, one relation P is
refined by another Q , denoted P � Q , providing [Q ⇒ P ], where the brackets
indicate universal quantification over all variables in the alphabet. Refinement
of designs is just the same, giving rise to the familiar laws for refinement of
specification statements.

P1 � Q1 � P2 � Q2

= { definition of �}



204 J. Woodcock

[ (P2 � Q2 ) ⇒ (P1 � Q1 ) ]
= { design, twice}

[ ( ok ∧ P2 ⇒ ok ′ ∧ Q2 ) ⇒ ( ok ∧ P1 ⇒ ok ′ ∧ Q1 ) ]
= { case split ok }

[ (P2 ⇒ ok ′ ∧ Q2 ) ⇒ (P1 ⇒ ok ′ ∧ Q1 ) ]
= { case split ok ′ }

[ (¬ P2 ⇒ ¬ P1 ) ∧ ( (P2 ⇒ Q2 ) ⇒ (P1 ⇒ Q1 ) ) ]
= { propositional calculus }

[ (P1 ⇒ P2 ) ∧ ( (P2 ⇒ Q2 ) ⇒ (P1 ⇒ Q1 ) ) ]
= { predicate calculus }

[P1 ⇒ P2 ] ∧ [P1 ∧ Q2 ⇒ Q1 ]

The final conjuncts can be read as the familiar slogan “weaken preconditions,
strengthen postconditions”.

Designs are closed under the program operators of sequential composition,
nondeterministic choice, conditional, and (least-fixed point) recursion. We give
the two of these properties:

(P � Q) ; (S � T ) = (P ∧ (Q wp S )) � (Q ; T )

(P1 � P2) � b � (Q1 � Q2) = (P1 � b � Q1) � (P2 � b � Q2)

We assume that neither P nor S contain dashed variables. This is actually the
subject of another (optional) healthiness condition [HoH98]. Hoare & He use the
convention that P is a relation (predicate on dashed and undashed variables,
and p a condition (predicate on undashed variables only0.

The bottom of the design lattice is the extreme point, true, which arises from
the design (false � P), a design with precondition false and postcondition P ,
which may be arbitrary.

false � false

= { definition of design }
ok ∧ false ⇒ ok ′ ∧ false

= { false zero for conjunction}
false ⇒ ok ′ ∧ false

= { vacuous implication}
true

This is the imperative program abort, and as it is the bottom of the lattice, we
denote it by ⊥D . The other extreme point is ¬ ok , which arises from the design
(true � false), as we now show:
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true � false

= { definition of design }
ok ∧ true ⇒ ok ′ ∧ false

= { true unit for conjunction}
ok ⇒ ok ′ ∧ false

= { false zero for conjunction}
ok ⇒ false

= { contradiction}
¬ ok

This is the imperative program miracle, and as it is the lattice top, we denote
it by �D . The design miracle is an interesting program. Originally, Dijkstra
proposed a healthiness condition for his predicate transformers, The Law of
the Excluded Miracle, to outlaw such a program [Dij76] (he wasn’t considering
specifications). This healthiness condition also exists in UTP, where it is known
as H4 (feasibility):

P ; true = true

This states (perhaps a little cryptically) that for every initial value there is a final
value satisfying the postcondition, as we can see from the following derivation
characterising the H4 healthiness condition:

P ; true = true

= { universal truth }
[P ; true ]

= { relational calculus}
[ ∃ ok ′, v ′ • P ]

where v ′ is the list of program variables. So H4 excludes miracles. Designs may
or may not satisfy H4; those that do are implementable; those that don’t aren’t.

Dijkstra expressed his healthiness condition using his weakest precondition
predicate transformer, which may be defined in terms of designs as

(P1 � P2 wp r) = (P1 ∧ ¬ (P2 ; ¬ r))

His healthiness condition can then be stated as:

Q wp false = false

We can see that this follows from our formulation. Consider the design (Q1 � Q2),
and assume that it is H4, and that Q1 has no dashed variables. This has the
following consequence:

(Q1 � Q2) ; true = true
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= { design bottom, twice }
(Q1 � Q2) ; (false � true) = (false � true)

= { design sequence}
((Q1 ∧ ¬ (Q2 ; true)) � (Q2 ; true)) = (false � true)

= { design bottom}
¬ (Q1 ∧ ¬ (Q2 ; true))

= {weakest precondition}
¬ ((Q1 � Q2) wp false)

Miracles are used to give semantics to naked guarded commands, which are de-
fined as [Mor90]:

b → P =̂ b ∧ P

Notice that this really is a design:

b ∧ (P1 � P2)
= { conditional}

(P1 � P2) � b � false
= { design bottom}

(P1 � P2) � b � (true � false)
= { design closure }

(P1 � b � true) � (P2 � b � false)
= { conditional}

b ⇒ P1 � b ∧ P2

The naked guarded command P is enabled in states where it behaves non-
miraculously. To see this, first consider the wp-semantics for the naked guarded
command:

(b → (P1 � P2)) wp q
= {weakest precondition}

(b ⇒ P1) ∧ ¬ ((b ∧ P2) ; ¬ q)
= { relational calculus}

(b ⇒ P1) ∧ ¬ (b ∧ (P2 ; ¬ q))
= { propositional calculus }

(b ⇒ P1) ∧ (b ⇒ ¬ (P2 ; ¬ q))
= { propositional calculus }

b ⇒ P1 ∧ ¬ (P2 ; ¬ q)
= {weakest precondition}

b ⇒ ((P1 � P2) wp q)

Now think about the case where the guard is false:
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(false → P) wp false

= false ⇒ (P wp false)
= true

One of the characteristic properties of the theory of designs is that true is a left
unit for sequential composition. So, once a guard is false, control flow is stuck.
As Morgan puts it, miracles can wait [Mor90].

3 Reactive Processes

Reactive process have four pairs of observational variables; tr , ref , ok , wait , and
their dashed counterparts. The tr and ref observations constitute a failure in
the sense explained in Sect. 1. The ok and wait observations (and their dashed
cousins) describe whether a process is started (or finishes) in a stable, waiting,
or unstable state. Reactive processes have three healthiness conditions:

R1 P = P ∧ tr ≤ tr ′

R2 P(tr , tr ′) = 	s
• P(s , s � (tr ′ − tr))

R3 P = (II � wait � P)

(Here, IIR is the identity relation.) The first healthiness condition ensures that
once an event is observed in a trace it can’t be forgotten: the trace only gets
longer. The second says that, while history is important, a process can’t depend
on the previous value of the trace taking a particular form. The final healthiness
condition says that, if a process is initiated in the waiting state of a predecessor,
then it too will have to wait.

CSP processes are a special kind of reactive process that satisfy two additional
healthiness conditions:

CSP1 P = (¬ ok ∧ tr ≤ tr ′) ∨ P
CSP2 P = P ; J
where J =̂ (ok ⇒ ok ′) ∧ II(tr , ref ,wait , v)

which are analogues of the design healthiness conditions:

H1 P = ¬ ok ∨ P
H2 P = P ; JD

where JD =̂ (ok ⇒ ok ′) ∧ II(v)

Every design satisfies these two conditions. A predicate has the healthiness con-
dition H1 if it is a fixed point of the equation; in this case, if the program hasn’t
started (¬ ok), then no further observation can be made. If the predicate is
H2, then it is monotonic in the value of ok ′. This rules out predicates such as
¬ ok ′, which, although it appears to insist on nontermination, isn’t a design at
all: it cannot be expressed in the form P � Q . The nonterminating program is
described by the lattice bottom, true, which doesn’t constrain ok ′ at all. The
intuition for this comes from refinement, which says when one design Q is bet-
ter than another P : it terminates more often, and with more strongly defined
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results. Every other design is better than true, and this must include all those
designs that require termination.

Reactive programs are not designs: the two theories are disjoint. This follows
from the antagonistic nature of H1 and R1. In general, a theory of CH -healthy
predicates must be disjoint from the theory of designs, since on abortion a design
provides no guarantees, but a CH -healthy predicate still requires ψ to hold, al-
though there is an approximate relationship between the two theories [HCW08].
It can be shown that the image of designs through the reactive healthiness con-
ditions gives the lattice of CSP processes (those reactive predicates that also
satisfy CSP1 and CSP2 [HoH98, CaW04].

We can make the difference between designs and reactive processes smaller
by reformulating R3 to restrict designs to those predicates sensitive to the wait
observation. This leaves R1 as the only impediment to design-hood. Recall the
definition of the design identity from [HoH98]:

IID =̂ H1(II)

and that of the reactive identity:

IIrea =̂ R1(IID )

The reactive identity is clearly not a design: it always guarantees tr ≤ tr ′, even
when ¬ ok . So, in the R3 healthiness condition:

R3(P) =̂ (IIrea � wait � P)

even if P is a design, R3(P) isn’t. We therefore introduce a new healthiness
condition to make a design behave like the design identity when waiting:

R3j(P) =̂ (IID � wait � P)

Clearly, R3j(P) is a design if P is. Two simple properties follow from this:

R1 ◦ R3j = R3 ◦ R1

R1 ◦ R3j = R1 ◦ R3

The second result is a consequence of the first, and the fact that R1 and R3
commute. The first result follows from the fact that R1 is conjunctive, and
therefore distributes through the conditional.

Proof

R1 ◦ R3j(P)
= { definition of R3j }

R1 (IID � wait � P)
= { property of R1 }
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(R1(IID ) � wait � R1(P))
= { definition of IIrea }

(IIrea � wait � R1(P))
= { definition of R3 }

R3 ◦ R1(P)

The purpose of reformulating R3 is to reduce reactive designs to R1-designs

(P |= Q) =̂ R1(P � Q)

This definition describes three possible behaviours:

– If the program is started in an unstable state, or in a state not satisfying the
precondition, then only R1-behaviour is guaranteed:

R1(¬ ok ∨ ¬ P)

– Otherwise, the program must terminate, and when it does so it will satisfy
Q and the trace will be treated properly:

R1(ok ′ ∧ Q)

The properties of R1-designs are similar to those of standard designs. For ex-
ample, the space of designs is closed under sequential composition, and a similar
result holds for R1-designs:

(p |= Q) ; (s |= T ) = (p ∧ (R1(Q) wpR1 s)) |= (R1(Q) ; R1(T ))

where the predicate transformer wpR1 is defined to give us:

R1(Q) wpR1 s = ¬ (R1(Q) ; R1(¬ s))

The term R1(Q) ; R1(¬ s) chops the interval in two parts, both of which are
R1. In this context, Q fails to establish s .

4 Reactive Design Semantics

[OCW07] gives a denotational semantics for the Circus language, essentially im-
perative CSP, in the form of reactive designs. We present a similar result, but
here we use R1-designs. The semantics for simple prefix is

a → Skip = R3

⎛⎝true |=

⎛⎝ tr ′ = tr ∧ a /∈ ref ′

� wait ′ �
tr ′ = tr � 〈a〉

⎞⎠ ∧ v ′ = v

⎞⎠
The postcondition describes two stable states. In one state, the process has
terminated (¬ wait ′), and the trace is extended with the occurrence of a; the
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value of the refusal set ref ′ is irrelevant, since the process has terminated. In the
other state, the process is waiting for interaction with its environment (wait ′).
The trace is unchanged, since nothing has happened. Significantly, it is not
refusing to perform a in this state. In both cases, the program variables v are
unchanged.

The semantics for the reactive miracle is

�R1D =̂ R3(true |= false)

This can be simplified somewhat:

�R1D

=
{�R1D

}
R3(true |= false)

= {R1-design}
R3 ◦ R1(true � false)

= { above property }
R1 ◦ R3j(true � false)

= {R3j }
R1 (IID � wait � (true � false))

= { IID }
R1 ((true � II) � wait � (true � false))

= { conditional design}
R1 ((true � wait � true) � (II � wait � false))

= { conditional}
R1 (true � wait ∧ II)

= {R1-design}
(true |= wait ∧ II)

This is, by definition, R1/R3-healthy. But it’s not H4. Let’s simplify it one
step further:

�R1D = tr ≤ tr ′ ∧ (¬ ok ∨ (ok ′ ∧ wait ∧ II))

Now we can see that this is infeasible. Consider the case where the predecessor
has terminated cleanly. In this state, the reactive miracle is properly initiated
with the ok variable true and the wait variable false. Clearly,

�R1D [false, true/wait , ok ] = false

which is not feasible.
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5 Prefixing a Miracle

In the last section we looked at the semantics of the reactive miracle. In this
section, we combine the miracle with a simple CSP operator: proper prefixing.
The operator constructs a process that engages in an event, say a, and then
behaves like another process, say P . It’s defined in terms of the simpler prefixing
operation a → Skip.

a → P =̂ a → Skip ; P

What happens if we perform a and then behave miraculously? Is it a miracle?
The following theorem provides an answer:

Theorem 1

a → �R1D = R3 (true |= (tr ′ = tr ∧ a /∈ ref ′ ∧ wait ′ ∧ v ′ = v))

Proof

a → �R1D

= { compound prefixing }
a → Skip ;�R1D

= {R1-design simple prefix }⎛⎝true |= R3j

⎛⎝⎛⎝ tr ′ = tr ∧ a /∈ ref ′

� wait ′ �
tr ′ = tr � 〈a〉

⎞⎠ ∧ v ′ = v

⎞⎠⎞⎠ ; (true |= wait ∧ II)

= {R1-design sequence }

true |=

⎛⎝R3j

⎛⎝⎛⎝ tr ′ = tr ∧ a /∈ ref ′

� wait ′ �
tr ′ = tr � 〈a〉

⎞⎠ ∧ v ′ = v

⎞⎠ ; wait ∧ II

⎞⎠
= { property of R3j }

true |=

⎛⎝R3j

⎛⎝⎛⎝ tr ′ = tr ∧ a /∈ ref ′

� wait ′ �
tr ′ = tr � 〈a〉

⎞⎠ ∧ v ′ = v ; wait ∧ II

⎞⎠⎞⎠
= { relational calculus}

true |= R3j (tr ′ = tr ∧ a /∈ ref ′ ∧ wait ′ ∧ v ′ = v)

The result is clearly feasible, so it is not a miracle (all the variables are given
explicitly, and it’s easy to find a value for ref ′). But this is a very strange process:
it waits for interaction with the environment (wait ′ is true in every final state),
it never refuses to do the event a (a /∈ ref ′ in every final state), but it never
actually does a (tr ′ = tr in every final state)! It violates an axiom of CSP’s
failures-divergences model, namely:

(s ,X ) ∈ F ∧ Y ⊂ A ∧ (∀ a ∈ Y • (s � 〈a〉, ∅) /∈ F ) ⇒ (s ,X ∪Y ) ∈ F
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We can see that the miracle has pruned the a-transition. Operationally, we could
consider that we’ve backtracked after trying the a and then hitting the miracle.
We could control the backtracking to some extent by guarding the miracle with
a predicate on the state. That way, we undo the a conditionally.

It’s interesting to compare prefixed miracle with prefixed divergence:

a → Chaos = R3(¬ (tr � 〈a〉 ≤ tr ′) |= tr ′ = tr ∧ a /∈ ref ′ ∧ wait ′)

At first sight this is a rather strange process too, since it’s made from a design
with an unusual precondition: it’s a relation on two states, not a condition on just
one state. Actually, it fails H3, an optional healthiness condition that requires
a design (P � Q) to satisfy (P = P ; true) [HoH98, p.82–84]. Our non-H3
precondition records the fact that the process can diverge in states other than
just the initial state: it can visit a series of stable intermediate states before
diverging. This record of interaction is a predicate on traces, in the usual way.
In this case it says, “Every interaction that starts with an a-event leads to
divergence.”

6 External Choice with a Miracle

Now we consider what happens when we offer a choice between a miracle and
engaging in some event. Here is the reactive design semantics for external choice:

P � Q =̂ R1 ◦ R3

⎛⎜⎜⎝¬ P f
f ∧ ¬ Q f

f �

⎛⎜⎜⎝
(
P t

f ∧ Q t
f

)
� tr ′ = tr ∧ wait ′ �(

P t
f ∨ Q t

f

)
⎞⎟⎟⎠
⎞⎟⎟⎠

where

– The predicate ¬ P f
f = ¬ P [false, false/wait , ok ′ ] is P’s precondition.

– The predicate P t
f = P [false, true/wait , ok ′] is P’s postcondition.

The semantics can be recast as an R1-design:

P � Q =

⎛⎜⎜⎝
(
¬ wait ⇒ ¬ P f

f ∧ ¬ Q f
f

)
|=(
II � wait �

((
P t

f ∧ Q t
f

)
� tr ′= tr ∧ wait ′ �

(
P t

f ∨ Q t
f

)))
⎞⎟⎟⎠

We can now prove the following theorem:

Theorem 2

(a → Skip) � �R1D

= (true |= (II � wait � ¬ wait ′ ∧ tr ′ = tr � 〈a〉 ∧ v ′ = v))
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This is another very strange process: it terminates immediately, having per-
formed the event a. There is no state in which the process is waiting for the
environment to perform a, it simply happens instantly. Intuitively, we can think
of this as an urgent event. But it violates another important axiom of the stan-
dard failures-divergences model of CSP:

– Traces are prefix closed: (s � t ,X ) ∈ F ⇒ (s , ∅) ∈ F .

7 Applications

In this section we consider a few applications of miracles.

7.1 Ordered Simultaneity

Burns’s timebands model is a way of describing systems whose requirements
are structured according to different granularities of time (see [BHB+05]). The
model makes use of a notion of simultaneous, but ordered, events, and we can
describe such events in CSP using miracles. First, define an operator to make b
an urgent event.

b → Skip =̂ (b → Skip) � �R1D

Now we can write a process to require that a and b are simultaneous but ordered:

a → b → Skip

Clearly a happens before b, but there is no state in which a has occurred without
b having occurred. For example, in the 100ms timeband it appears to us that
the light is on when we open the fridge door. Of course, we happen to know
that opening the door causes the fridge light to come on, but the two events are
simultaneous with this granularity of time:

open → light .on → Skip

We could add a motion sensor to anticipate our opening the fridge. Now, the
light will come on simultaneously with opening the door, and we might notice
one before the other:

sense.motion → open → light .on → Skip
�

light .on → open → Skip

7.2 Deadlines

In Timed CSP, the timeout operator (b → Skip) �10 Skip offers the event b
for 10 seconds; if it hasn’t occurred within this period, then the attempt to
synchronise on b is abandoned. A stronger requirement would be to say that b
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must occur within 10 seconds. We can model this using miracles in Timed CSP
by introducing a deadline operator:

(b deadline 10) =̂ ((b → Skip) �10 �R1D)

In this process, there is no state 10 seconds from initiation in which b hasn’t
happened. This is really a very strong requirement in which there is no alternative
to meeting the deadline. This may be useful in describing how the real world
works. Jackson describes the world according to two moods (in the grammatical
sense): indicative and optative [Jac95, Jac01]. The indicative mood refers to the
way the world is—or as Jackson calls it, the problem context. The optative mood
refers to the way in which we want to change the world—the requirement. Our
deadline operator could be used to capture indicative models. For example, if
today is Friday, then within the next 24 hours it will change to being Saturday:

(today = Friday) & (change → today := Saturday) deadline 24hrs

Here, the decision has been taken that the calendar is not within our system,
but that it constitutes part of the problem context. And it has physical laws,
like the one described here.

Given the wiring and power supply, it may be a physical law of our fridge
that the light comes on 10ms after opening the door:

open → ((light .on → Skip) deadline 10ms)

This isn’t a requirement, but a reflection of the laws of physics.
Hayes has also used miracles in the timed refinement calculus to describe

deadlines for sequential programs [Hay02]. His deadline command takes no time
to execute and always guarantees to meet the specified time. If the deadline has
been missed, then the command is miraculous.

7.3 External Choice and State

What’s the meaning of the following?

(x := 0 ; a → Skip) � (x := 1 ; b → Skip)

Both sides of the external choice try to update the same variable x . The semantics
of the left-hand choice is easily calculated:

x := 0 ; a → Skip
= {R3j assignment and simple prefix}

R3 (true |= ¬ wt ′ ∧ x ′ = 0 ∧ tr ′ = tr) ;
R3 (true |= (tr ′ = tr ∧ a /∈ ref ′ � wt ′ � tr ′ = tr � 〈a〉) ∧ x ′ = x )

= {R3j sequence }

R3

⎛⎜⎜⎝
true
|=
¬ wt ′ ∧ x ′ = 0 ∧ tr ′ = tr ;
(tr ′ = tr ∧ a /∈ ref ′ � wt ′ � tr ′ = tr � 〈a〉) ∧ x ′ = x

⎞⎟⎟⎠
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= { relational calculus}
R3 (true |= (tr ′ = tr ∧ a /∈ ref ′ � wt ′ � tr ′ = tr � 〈a〉) ∧ x ′ = 0)

The right-hand choice has a similar semantics.

x := 1 ; b → Skip
=
R3 (true |= (tr ′ = tr ∧ b /∈ ref ′ � wt ′ � tr ′ = tr � 〈b〉) ∧ x ′ = 1)

In both cases, we see that the state change is observable only after the choice
has been made by the environment by synchronising on either a or b. We can
prove the following theorem:

Theorem 3

(x := 0 ; a → Skip) � (x := 1 ; b → Skip)

= R3

(
true |=

(
¬ wt ′ ∧ tr ′ = tr � 〈a〉 ∧ x ′ = 0
∨ ¬ wt ′ ∧ tr ′ = tr � 〈b〉 ∧ x ′ = 1

))
This is yet another strange process. Operationally, either side may update the
common variable before the choice is made, in which case there will be a conflict
between the values of x in the two branches. But the apparent conflict on x ’s
value simply doesn’t exist, and in order to make this happen, the choice between
the two events has become urgent.

8 Conclusions

This is work in progress. We have started to explore the nature of the reactive
miracle in UTP, and we’ve shown how it gives rise to some strange processes. In
particular, the presence of miracles leads to violating two of the usual axioms of
CSP. In fact, these two axioms are not formulated in UTP: they simply weren’t
needed for the laws presented in [HoH98]. These laws are rather difficult to
express in the UTP point-wise predicative style, but we have shown a connection
with miraculous behaviour, and this may lead to a suitable expression of all the
axioms of CSP. In the future, we will continue to explore the relationship between
miracles and other CSP combinators and study the role of miracles in healthiness
conditions.

Finally, we have what seems to be a promising contribution to Burns’s time-
bands model [BHB+05]. The use of ordered simultaneous events is one way of
connecting two timebands where atomic events at the higher level are decom-
posed into activities at the lower level. But that is a topic for another paper.
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Encoding Circus Programs in ProofPower-Z
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Abstract. Circus combines elements from sequential and reactive pro-
gramming, and is especially suited for the development and verification
of state-rich, reactive systems. In this paper we illustrate, by example,
how a mechanisation of the UTP, and of a Circus theory, more specifically,
can be used to encode particular Circus specifications. This complements
previous work which focused on using the mechanised UTP semantics to
prove general laws. We propose a number of extensions to an existing
mechanisation by Oliveira to deal with the problems of type constraints
and theory instantiation. We also show what the strategies and practical
solutions are for proving refinement conjectures.

Keywords: UTP, semantics, Z, theorem proving, refinement.

1 Introduction

The Circus language combines elements from sequential programming and pro-
cess algebra [4]. Its key notion is that of a process, which encapsulates state and
behaviour, defined by actions that operate on the state and communicate with
the environment. Actions may be specified as Z operation schemas, Dijkstra’s
guarded commands, or constructs of the CSP language. Circus is particularly
suitable for reasoning about state-rich, reactive systems [13,6] using refinement.

In [16] Oliveira presents a semantics for Circus based on the UTP, and an
extensive encoding of definitions and laws in the ProofPower-Z theorem prover.
ProofPower is a versatile and powerful mechanical theorem prover based on HOL
that has been successfully used in industry. ProofPower-Z is an extension of
ProofPower that additionally embeds the theory of Z. The work involved the
creation of a hierarchy of UTP theory encodings, namely for the theories of
relations, designs, reactive designs, CSP, and, on top of the hierarchy, Circus.
Each embedded UTP theory gives rise to a collection of axiomatic Z definitions,
and a ProofPower theory is used in each case to hold the definitions.

The motivation for this work was primarily to prove equality and refinement
laws which are generally valid within the various UTP theories. To this end it
has been successfully employed in proving a large repository (≥ 500) of such
laws. Little experience has, however, been gained so far in encoding and proving
properties of particular Circus specifications and programs.

As a motivating example, we consider the process presented in Fig. 1 whose
purpose is to compute and output the series of Fibonacci numbers on a channel

A. Butterfield (Ed.): UTP 2008, LNCS 5713, pp. 218–237, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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channel out : N

process Fib =̂ begin

state FibState =̂ [x, y : N]

InitFibState =̂ [FibState ′ | x′ = 1 ∧ y′ = 1]

InitFib =̂ out!1 → out!1 → InitFibState

OutFibState =̂
[ΔFibState ; next! : N | x′ = y ∧ y′ = x + y ∧ next! = x + y]

OutFib =̂ μ X • var next : N • OutFibState ; out!next → X

• InitFib ;OutFib
end

Fig. 1. Specification of the Circus process Fib

out . After declaration of the channel in a channel paragraph, the process first
declares its state components by means of a state process paragraph; here, they
consist of the variables x and y both of integer type. This is followed by a se-
quence of actions: first to initialise the state of the process (InitFibState and
InitFib), and further to calculate and communicate the next Fibonacci num-
ber (OutFibState and OutFib). A special action is the main action at the end,
following ‘•’, which defines the process behaviour.

Initialisation in InitFibState is specified by a Z operation that assigns 1 to
the state components. InitFib outputs the first two Fibonacci numbers prior
to initialising the state. OutFibState, again defined by a Z schema, computes
the next Fibonacci number, stores it in the local variable next , and updates
the state. The shriek is merely syntactic sugar for output variables in schemas,
and when interpreting a schema as an action treated as referring to the after-
state variable (here next′). The rôle of OutFib is then to invoke OutFibState
and output the calculated number over out ; it does so repetitively being defined
using recursion. The variable block conceals the next and next′ components
introduced by OutF ibState making them local to the action. The main action
first calls InitFib, and afterwards OutFib; it does not terminate.

The encoding of Fib in Oliveira’s mechanisation of the UTP framework raises
a few problems. One of them is that it does not support well the case where
predicates of different UTP theories coexist in the same ProofPower scope of
definitions. For example, the UTP characterisation of the actions of Fib are
predicates that belong to a specific family of UTP theories that fulfil certain
healthiness conditions (those of Circus), but at the same time have possibly
different alphabets (of programming variables). An example is the variable block
that defines OutFib, whose body is a predicate including next and next ′ in
its alphabet, whereas the resulting predicate does not have these variables in
the alphabet. In addition, the predicates of Z operation schemas used in the
definition of Fib actions belong to another family of UTP theories (namely that
of relations) with no healthiness conditions, but possibly different variables.
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To address this problem, we require a dynamic notion of UTP theory instan-
tiation. In the original work of Oliveira, the closest we get is the by nature static
inclusion of the corresponding ProofPower theory. This is problematic mostly
since constraints imposed by such ‘instantiations’ apply globally, and thus affect
all other UTP theories in scope. Typically, the theory of designs may require the
auxiliary variables okay and okay ′ to be of boolean type; however, such a con-
straint would in the existing treatment a priori affect instances of all other UTP
theories, as, for example, the ones of plain predicative or relational theories. In
the Fib process this problem equally arises if we assume the local variable next
is reused somewhere else but with a different type. An illustrating example for
this is the construct (var next • next := 1 ;P ) 	 (var next • next := true ;Q)
in which the type of next differs in each branch of the choice operator, and for
this reason cannot be statically fixed.

In this paper, we first present a revised mechanisation of the UTP Circus
theory that deals with the problem of instantiation and local type constraints.
We then show how the new framework can be used to encode Circus processes in
a way that the problems mentioned above largely disappear. Finally, we discuss
some practical aspects of refinement proofs.

The revisions that we propose follow the approach discussed and justified in
detail in [18]. The agenda in this paper is mainly to view them in the light of the
Circus theory, and apply them to the concrete encoding of a Circus specification
such as Fib. We also address the concern of refinement proofs.

The structure of the paper is as follows. In Section 2 we present the exten-
sions we propose to the original mechanisation of Oliveira. Section 3 explains
the embedding of the UTP theory of Circus in our modified settings; Section 4
discusses the encoding of Circus processes using that embedding; and Section 5
addresses refinement proofs. In Section 6 we draw our conclusions.

2 Extended Mechanised UTP Semantics

In the UTP [9], the fundamental objects are alphabetised predicates representing
observable behaviour. We represent them as a set of bindings (functions) that
map variable names to values, and a universe, used to define type constraints.

Z

ALPHA PREDICATE =̂ {bs : BINDINGS ; u : UNIVERSE |
(∀ b : bs • dom b = AlphabetU u) ∧ bs ⊆ u}

BINDINGS is the set of all binding sets, and UNIVERSE the set of all binding
sets which are valid universes. A universe contains all well-typed bindings and so
determines the types of the variables in the bindings. Its definition is as follows.

Z

UNIVERSE =̂ {bs : BINDINGS | ∅ ∈ bs ∧
(∀ b1 : bs; b : BINDING | b ⊆ b1 • b ∈ bs) ∧
(∀ b1 , b2 : bs • b1 ⊕ b2 ∈ bs)}
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The empty set of bindings is a valid universe. Additionally, universes have to be
subset closed, formalising our intuition that the binding resulting from restricting
the domain of a well-typed binding remains well typed. Finally, the type of one
variable cannot be sensitive to values taken by another variable, that is type
restriction has to be orthogonal to binding (function) overriding.

In the specification of ALPHA PREDICATE we state that the binding set has
to be a subset of the universe in order to respect the type constraints imposed by
it. Moreover, the universe must not retain information about types of variables
outside the alphabet of the predicate. (The alphabet AlphabetU u of a universe
u is the union of the domains of all its bindings.) This avoids anomalies when
combining predicates with different universes. In general, this is only possible if
the predicates agree on the types of their shared variables, and we do not want
variables irrelevant to the predicate’s meaning to cause clashes. In our model,
alphabets are identified with universes; namely, we may conceptually think of
universes as alphabets with additional type information attached to them.

A UTP theory is defined by a new schema type as follows.
Z

UTP THEORY

THEORY UNIVERSE : UNIVERSE ;

HEALTH CONDS : P HEALTH COND

UTP theory instances are too associated with universes: the universe of the
predicates of the theory. The type HEALTH COND comprises all partial idem-
potent functions on the set ALPHA PREDICATE , and HEALTH CONDS ac-
cordingly records the healthiness conditions of the theory. We have to restrict
ourselves to partial functions here since some healthiness conditions may not be
applicable to predicates with certain variables or type constraints. For example,
applying H1(P ) = okay ⇒ P is only sensible if the type of okay in P is boolean.

UTP THEORY does not record the predicates of the theory. We can derive
them from the universe and healthiness conditions using the function below.

Z

TheoryPredicates : UTP THEORY → P ALPHA PREDICATE

∀ th : UTP THEORY • TheoryPredicates th =

{p : ALPHA PREDICATE | p.2 = th.THEORY UNIVERSE ∧
(∀ h : th.HEALTH CONDS • p ∈ dom h ∧ h p = p)}

As mentioned before, the predicates of a theory share its universe, and are the
common fixed points of all the healthiness functions.

The instantiation of UTP theories is simply carried out by constructing a bind-
ing of UTP THEORY . To achieve modularity we provide instantiation functions
for every encoding of a UTP theory, for example InstRelTheory u for the plain
theory of relations, InstDesTheory u for the theory of designs, and so on. The
functions are solely parameterised in terms of a universe since the healthiness
conditions for specific UTP theory families are usually fixed.
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Our encoding provides further useful functions which allow for modular con-
struction of a UTP theory hierarchy. For example StrengthenTheory (th, hs) en-
riches an existing theory instance th with a set of additional healthiness con-
ditions hs. The main benefit of constructing theories in such a manner is that
proofs about lower-level predicates and operators can be easily reused in higher-
level theories, and moreover interesting properties can be formulated regarding
theory dependencies. It is also an approach we will adopt discussing the encoding
of the UTP theory of Circus in the following section.

3 Semantic Embedding of Circus

Our encoding of Circus is in essence a recast of Oliveira’s Circus encoding [16]
that takes into account the alterations of the previous section. Our version of the
ProofPower-Z theory for Circus acts solely as a carrier for the various definitions
for instantiating Circus theories. When instantiating concrete UTP theories we
pursue a uniform approach that suggests a certain structure in the definitions.
It is mirrored by the order in which definitions are presented here.

We first define the sets CIRCUS ALPHABET and CIRCUS UNIVERSE
of possible alphabets and universes of theory instances. Since they are simi-
lar to those for reactive designs, we equate them with REA ALPHABET and
REA UNIVERSE — the corresponding sets for the theory of reactive processes.

The set REA ALPHABET includes all alphabets that contain the auxil-
iary variables okay , wait , tr and ref , including their primed versions. The
variables themselves are introduced as distinct elements of the type NAME
which represents variable names. Since REA ALPHABET is a restriction of
REL ALPHABET (the type of relational alphabets), we only consider alpha-
bets consisting of input (undashed) and output (single dashed) variables.

The set REA UNIVERSE is defined as shown below.
Z

REA UNIVERSE =̂

{u : DES UNIVERSE |
AlphabetU u ∈ REA ALPHABET ∧
typeof (wait , u) = BOOL VAL ∧
typeof (tr , u) = SEQ EVENT VAL ∧
typeof (ref , u) = SET EVENT VAL}

The alphabet of the universe of an instance of a reactive process theory has to be
in REA ALPHABET , and the types of the auxiliary variables are as we expect.
To express the type constraints, we use the function typeof .

Z

typeof : (NAME × UNIVERSE ) → P VALUE

∀ n : NAME ; u : UNIVERSE • typeof (n, u) = {b : u | n ∈ dom b • b n}
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It takes a variable name and a universe, and returns the type of the variable: the
set of values it can have in the respective universe.

In a DES UNIVERSE , okay has type BOOL VAL, so we do not need to con-
strain it. For the primed variables, as DES UNIVERSE is a REL UNIVERSE ,
a constraint on relational universes ensures that dashed variables, if present,
have similar types to their undashed counterparts.

In order to define the instantiation function for Circus theories, we need to
encode their healthiness conditions. The UTP theory for Circus is a restriction of
the theory of CSP requiring additional healthiness conditions C1 , C2 and C3 ,
which we omit here. Assuming their encoding, the theory instantiation function
yielding elements of UTP THEORY is defined as follows.

Z

InstCircusTheory : CIRCUS UNIVERSE → UTP THEORY

∀ u : CIRCUS UNIVERSE •
InstCircusTheory u =

StrengthenTheory (InstCSPTheory u, {C1 , C2 , C3})

Instantiation is performed by strengthening a corresponding instance of the UTP
theory of CSP. Instantiation is defined only if a suitable universe is provided;
here, it must be one from the set CIRCUS UNIVERSE . The instantiation func-
tion easily allows us to define the set CIRCUS THEORY containing all possible
instantiations of Circus theories: it is the range of InstCircusTheory .

We can now define the subset of alphabetised predicates that characterise
valid Circus actions and processes: all predicates that belong to some instantia-
tion of a Circus theory. They satisfy the healthiness conditions of Circus and all
subordinate UTP theories i.e. those for CSP, reactive processes, and relations.

Z

CIRCUS ACTION =̂

{p : ALPHA PREDICATE |
(∃ th : CIRCUS THEORY • p ∈ TheoryPredicates th)}

The semantics of a Circus process is given by hiding the state components in its
main action. Therefore, models of processes are actions whose alphabets include
only the auxiliary variables okay , wait , tr and ref , and their dashed counterparts.
The definition is obtained by further restricting CIRCUS ACTION .

Z

CIRCUS PROCESS =̂

{p : CIRCUS ACTION | AlphabetP p = ALPHABET OWTR}

This concludes the presentation of the core definitions that support instanti-
ation of Circus theories. In defining the operators on Circus actions, we reuse
the definitions of [16], but adapt them to take into consideration universes
where required. An example is the function that encodes Skip, which takes a
universe as a parameter: the universe of the state components of the process.
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Z

SkipC : WF SkipC → CIRCUS ACTION

∀ u : WF SkipC •
SkipC u = R (TrueP u 
D TReqTR′ ∧P (¬P WAIT ′) ∧P ΠR u)

Skip is defined in terms of applying R, the healthiness condition for reactive
processes, to a design that determines the behaviour of the action. The design has
a true precondition TrueP u, meaning that it never diverges. The postcondition
specifies that Skip immediately terminates: the only observable behaviour is that
Skip is not in an intermediate state (¬P WAIT ′) while the trace is not altered
(TReqTR′ encodes the predicate tr = tr ′). The relational Skip ΠR u on the
state universe u ensures that the state variables are not changed. The rôle of
WF SkipC is to restrict the domain of the function as to require homogeneous
universes that must only mention state variables but not auxiliary ones.

A second example is the function →C which encodes prefixing of Circus ac-
tions. Prefixing is used, for example, in the InitFib action of the Fib process.

Z

→C : WF PREFIXINGC → CIRCUS ACTION

∀ n : CHANNEL NAME ; e : EXPRESSION ; p : CIRCUS ACTION |
((n, e), p) ∈ WF PREFIXINGC •

(n, e) →C p = R (TrueP p.2 
D

(do C (p.2 , n, e)) ∧P

(ΠR (p.2 �U ALPHABET OWTR))) ;C p

Prefixing requires a channel name n, an expression e whose value is output on
the channel, and the prefixed action predicate p. WF PREFIXINGC captures
the restriction on the arguments that the free variables in e must be contained
in the universe of the predicate to ensures evaluation of e is well-defined. The
operator is specified by sequentially composing a reactive process with p that
carries out the communication and then terminates. This process as before is
specified by applying R to a design. The true precondition of the design indicates
again the absence of divergence, and the postcondition makes use of a function
doC (u, n, e) being the encoding of the predicate

(tr = tr ′ ∧ (n, e) �∈ ref ′) � WAIT ′ � tr ′ = tr � 〈(n, e)〉.

The reactive behaviour is thus to be initially (tr = tr ′) in a waiting state refusing
all events other than (n, e), and to terminate when the process has engaged in
the communication event (n, e). The conjunction with Skip on the universe of
the state components, obtained by removing the auxiliary variables from the
universe of p, ensures that values of state variables remain unchanged.

The presence of universes results in many places in additional restrictions
on the domains of semantic functions characterising the various UTP theory
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operators of Circus and subordinate theories. In the lower-level theory of alpha-
betised predicates and relations (utp-alpha and utp-rel), binary operators such
as conjunction, disjunction, and so on are defined for predicate pairs whose uni-
verses are compatible, but not necessarily the same. This enables us to combine
predicates from different theories. In specific theories, we require the arguments
of operators in most cases to be of the same theory instance. Consequently,
we need new definitions describing such argument restrictions. For example,
WF CIRCUS ACTION PAIR is the set of all predicate pairs for which there
exists a Circus theory to which both predicates belong. It is used, for instance,
as the domain of action operators modelling internal and external choice.

The amendments to definitions were mainly motivated by the need to prove
properties and laws, and, as a minimal requirement, to ensure well-definedness of
the underlying function applications. We did not try and identify the strongest
condition for sensibly applying operators, but one which is consistent without
incurring too heavy a burden on proofs. This is justified by assuming that pro-
cesses and actions are well typed. If proofs later require stronger restrictions, we
will tighten the domain definitions appropriately.

Besides we specify operators in a way that allows us to infer easily that their
application yields a predicate within the correct UTP theory: we restrict their
range to CIRCUS ACTION . The proof of this is pushed into the consistency
theorem for the definition (see Section 5), and closure properties follow trivially
from operator definitions and need not be separately formulated as theorems.

4 Encoding of Circus Programs

In this section we illustrate how we use the semantic encoding of Circus described
in the previous section to encode the Fib process given in Fig. 1. The ProofPower
theory source for all definitions presented here and elsewhere in the paper can
be downloaded from http://www.cs.york.ac.uk/circus/tp/tools.html.

To accommodate the ProofPower-Z definitions, we create a new ProofPower
theory utp-fib as a child of utp-circus. We begin by creating definitions that
introduce channel names, state components and local variables. For our example,
we use an axiomatic definition to declare a name out : CHANNEL NAME
for the out channel. CHANNEL NAME provides an inexhaustible supply of
names (elements from the NAME type) to represent channel identifiers. This
set is disjoint from Z VAR NAME which contains names of Z schemas as well
as local variables and state components. We declare all the names used in the
process description to be of type Z VAR NAME .

Z

x , x ′ , y , y ′ : Z VAR NAME

x ′ = dash x ∧ y ′ = dash y ∧ distinct 〈x , y〉

When introducing new variables, it is important to ensure they are mutually
distinct from any existing ones that may be used in the same predicate. We

http://www.cs.york.ac.uk/circus/tp/tools.html
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achieve this by virtue of a predicate distinct on sequences of names which holds
true for all injective sequences. Since the dash function modelling decoration is
injective too, it is sufficient to enforce uniqueness of the undashed names. By
selecting names from Z VAR NAME we already ensure that they are distinct
from any of the auxiliary variables for Circus actions. We introduce the local
variables exactly in the same way as illustrated in the above definition.

Next, we instantiate the Circus theory for the main and auxiliary actions. To
do so we define the universe of the main action. It is as follows in our example.

Z

FIB UNIVERSE : CIRCUS UNIVERSE

AlphabetU FIB UNIVERSE = FIB ALPHABET ∧
typeof (x , FIB UNIVERSE ) = INT VAL ∧
typeof (y , FIB UNIVERSE ) = INT VAL

FIB ALPHABET is the set containing both the auxiliary and state variables.
Since universes which are selected from CIRCUS UNIVERSE already ensure
that auxiliary variables are typed correctly, the only type constraints to be for-
mulated here are the ones restricting the state variables.

We are now able to define the UTP theories for the actions of Fib. It is not
just one UTP theory that is used to model them, since actions like OutFibState
mention extra variables apart from the state components. We need a theory
instance for each possible extension of FIB UNIVERSE .

Z

FIB THEORY =̂

{u : CIRCUS UNIVERSE |
CompatibleU (u, FIB UNIVERSE ) • InstCircusTheory u}

Intuitively, this definition constructs the family of all instances of the Circus
theory that have a universe which at least contains the state components of Fib,
and imposes the correct type constraints on them. We recall that two universes
are compatible if they agree on the types of their shared variables.

The main benefit of FIB THEORY is that it permits us to state (or verify)
that actions such as InitFib, OutFib, and so on, are characterised by predicates
that belong to one of the Circus theories for the Fib process, encapsulating health-
iness conditions as well as type constraints on the state components. For this we
define the set FIB ACTION which contains all such predicates characterising
valid actions in the context of Fib.

Z

FIB ACTION =̂
⋃

(TheoryPredicates (|FIB THEORY |))

It is simply the union of all predicates of UTP theories in FIB THEORY . A
more specific action of Fib is its main action, because it only has the auxiliary
variables and state components in the universe. We include another definition
FIB MAIN ACTION , comprising the potential predicates for main actions.
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We now turn to encoding the actions actually used in Fib. We first look at the
ones which are defined through Z operation schemas. Considering, for example,
the action InitFibState, the corresponding schema [FibState ′ | x′ = 1 ∧ y′ = 1]
has to be lifted to become a Circus action, and a valid predicate of a Circus theory
in FIB THEORY . The schema itself is encoded by a relational predicate over
the universe that contains its components x′ and y′ with the right type.

The semantic function SchemaExpC performs this lifting; it takes a relational
predicate and an instance of VAR DECLS encapsulating the declaration of the
schema components. The universe of the predicate has to be compatible with
the variable declarations. The latter are encoded by a pair of sequences: the first
component listing the variable names, and the second, their types.

Z

Fib InitFibState VAR DECLS =̂

(〈x , y , x ′, y ′〉, 〈INT TYPE , INT TYPE , INT TYPE , INT TYPE 〉)

Types are represented as values (elements of VALUE). Here, INT TYPE is the
set of integer values. The encoding of InitFibState is as follows.

Z

Fib InitFibState : FIB ACTION

Fib InitFibState =

SchemaExpC (Fib InitFibState VAR DECLS ,

(=P (CreateU {x ′ �→INT VAL}, x ′, Val(Int(1 )))) ∧P

(=P (CreateU {y ′ �→INT VAL}, y ′, Val(Int(1 )))))

In the above =P is the semantic function used to construct alphabetised pred-
icates for equalities between variables and expressions. It needs to be provided
with a universe, namely that of the resulting relation. For this purpose, CreateU

ad-hocly creates a universe from a set of name/type pairs.
Notably, the universe of the schema predicate has x′ and y′ in its alphabet,

since ∧P merges the universes of the constituent predicates. The universe of
the schema itself comprises x, y, x′, and y′. Finally, the predicate defined by
SchemaExpC additionally includes in its universe the auxiliary variables and
fulfils the healthiness conditions for Circus actions. This illustrates how predicates
of different UTP theories coexist in the same definition.

By introducing Fib InitFibState as an element of FIB ACTION we ensure
that irrespective of how we define it, that is, using Circus operators or plain
predicate connectives, it has to characterise a valid action of Fib. This is effec-
tively discharged by the consistency proof of the axiomatic definition generated
by ProofPower-Z. Fib InitFibState �∈ FIB ACTION would result in a contra-
diction and hence the existential proof to fail.

The encoding of schemas that include extra components, besides those of the
state, like Fib OutFibState for instance, is similar. To simplify the encoding of
the schema predicate, we define a universe Fib OutFibState UNIV (used by
all three equalities) containing exactly the variables of the schema. A function
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UnivFromVAR DECLS defines the conversion of a VAR DECL to an element of
UNIVERSE ; we omit its definition and that of Fib OutFibState UNIV itself.

Z

Fib OutFibState : FIB ACTION

Fib OutFibState =

SchemaExpC (Fib OutFibState VAR DECLS ,

(=P (Fib OutFibState UNIV , x ′, Var(y))) ∧P

(=P (Fib OutFibState UNIV , y ′, Fun2 (( +V ), Var(x), Var(y)))) ∧P

(=P (Fib OutFibState UNIV , next ′, Fun2 (( +V ), Var(x), Var(y)))))

Terms such as Var(y) and Fun2(( +V ),Var(x),Var(y)) encode expressions in
the semantics, here y and x+y. The shriek, which introduces an output variable
in the operation schema, is generally translated into a corresponding pair of
variables to render the alphabet of the action homogeneous. The same applies
to input variables decorated with a question mark should they occur.

Not all encoded actions are required to be equipped with an action-specific
universe. Examples of actions that do not require a universe are InitFib and
OutFib; the encoding of the latter is given below.

Z

Fib OutFib : FIB ACTION

Fib OutFib =

μC (λ X : CIRCUS ACTION •
varC (next , Fib OutFibState ;C (out , Var(next)) →C X ))

Here, the universe of the sequential composition is inferred from its arguments,
Fib OutFibState and out !next → X . This case again illustrates how predicates
of different UTP theories coexist in the same ProofPower definitional scope. The
body of the variable block is an action whose universe includes the extra variables
next and next ′, which are concealed by the varC construct. Hence the universe
of Fib OutFib only comprises the auxiliary variables and the state variables.

Crucially, we could indeed have another variable block declaring next within
the same predicate but with a different type. In the original work [15] such would
not have been possible since type constraints are globally attached to variable
names. Above, the types of next and next ′ are deduced from the universe of the
underlying relation of the body of the variable block. Thus the association of
types and variable names takes place upon construction of the predicate and, in
fact, is local with respect to the encoded predicate, and thus not static.

Z

Fib MainAction : FIB MAIN ACTION

Fib MainAction = Fib InitFib ;C Fib OutFib
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Again this action does not require a universe as it is inferred by ;C from those of
Fib InitFib and Fib OutFib. Since Fib MainAction is declared to be an element
of FIB MAIN ACTION , that universe has to be FIB UNIVERSE , though.

Fib MainAction does not truly characterise the process as such since it still
contains the state components in its universe. Since these are local to the process
they should be hidden it its semantic description. This is achieved by the operator
beginC endC . Utilising it we obtain the following definition for the process Fib.

Z

Fib Process : CIRCUS PROCESS

Fib Process = beginC Fib MainAction endC

The set CIRCUS PROCESS defined in utp-circus contains all predicates of the
Circus theory obtained by instantiation with a minimal universe; this is the
universe which only comprises auxiliary variables, but no state components.

In this section we have demonstrated how particular Circus processes can
be encoded using our embedding of the UTP theory of Circus. It is possible
to automate all steps involved, and that is the next step in our work agenda.
The encoding requires that type information is deduced prior to translation
and consequently exploited in the construction of universes; this can be easily
achieved using the Circus type checker [17,7]. In the next section we will examine
how properties of the encoded process may be formulated and proved.

5 Reasoning about Circus Specifications

In our investigation so far, we have considered two primary possibilities in which
mechanical reasoning about Circus processes may be exploited. First, the encod-
ing strategy which was informally presented in the previous section gives rise
to a number of consistency proof obligations that establish the soundness of
the encoding. ProofPower-Z is capable of generating the proof obligations au-
tomatically, and more importantly prevents axiomatic definitions from being
unconditionally used unless their respective consistency theorem has been dis-
charged. The second possibility is to carry out refinement proofs of actions and
processes. We address these two opportunities separately in this section.

5.1 Soundness of Process Encodings

Most of our encoding is based on functions that are defined using Z axiomatic
descriptions. In general, an axiomatic description introducing a new global con-
stant DefName is of the following form, where S is a set and P a predicate.

Z

DefName : S

P(DefName)

The notation P (DefName) highlights that DefName is assumed to be free in P .
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Consistency proofs ensure that there exists some element DefName ∈ S for
which the predicate P (DefName) holds. If this is not true, we would be able
to conclude false from the axiom of the definition allowing us to prove any-
thing. The corresponding consistency proof obligation hence establishes that
∃ DefName : T • DefName ∈ S ∧ P . In Z, arbitrary sets S can be used in
declarations (of constants), but their types do not include any constraints em-
bodied in these sets. For example, if we declare a function f of type A (→ B,
where A and B are given sets, then the type of f is P(A × B); the functional
property is a constraint on f , rather than part of its type. A process called nor-
malisation provides axiomatic descriptions whose declarations define types, and
all constraints are given in the predicate. Assuming that the axiomatic descrip-
tion initially is not normalised, T , instead of S, is the actual type of DefName
after normalisation. The given proof obligation is not exactly how ProofPower
expresses the consistency goal when first generated. For brevity we omit the less
concise ProofPower goal since it can be easily reduced to this one.

All encoded actions of a process are of the general form below.
Z

ActionName : PROC ACTION

ActionName = ActionExpr

ActionName is the name of the action. PROC ACTION is the set of predi-
cates of the instances of the UTP Circus theory that have a universe compatible
with the state components declaration; for Fib, this is FIB ACTION . Finally,
ActionExpr is the alphabetised predicate that models the action defined by ap-
plying the functions for Circus operators in our encoding. The consistency proof
obligations for action encodings are, therefore, always of the following form.

∃ ActionName : P (NAME ↔ VALUE ) × P (NAME ↔ VALUE ) •
ActionName ∈ PROC ACTION ∧ ActionName = ActionExpr

Proving this subgoal is achieved by providing an existential witness for the
quantified variable ActionName. From the shape of the predicate it is apparent
that there can only be one choice of witness that possibly render it true; that
is precisely ActionExpr — the right hand side of the action definition. Using
ActionExpr as a witness, the consistency proof reduces to merely showing that
ActionExpr ∈ PROC ACTION which verifies the encoded action belongs to the
set of valid actions for the process; it thus is guaranteed to fulfil the healthiness
conditions of Circus, and possesses a permissible alphabet that includes the state
components and imposes the correct type constraints on them.

To give a concrete example, we consider the consistency proof for InitFib.
Z

Fib InitFib : FIB ACTION

Fib InitFib = (out , Val(Int(1 ))) →C (out , Val(Int(1 ))) →C Fib InitFibState
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As previously explained, (c, e) →C p encodes the prefixing operator outputting
the value of e on channel c, and Val(Int(1)) simply encodes the expression 1.
Fib InitFibState refers to the encoding of the InitFibState action presented in
Section 4. The proof obligation which hence needs to be discharged is

(out , Val(Int(1 ))) →C (out , Val(Int(1 ))) →C Fib InitFibState ∈ FIB ACTION

We establish the truth of this goal in essence by exploiting closure properties
of the operators. The base case Fib InitFibState ∈ FIB ACTION we, notably,
get from its definition as it follows from Fib InitFibState : FIB ACTION in the
declaration of the encoding of the InitFibState schema action. It is verified by
the consistency proof of that definition.

In general, the suggested proof strategy relying on closure laws is symptomatic
for any consistency proof that arises from the action encodings. (Up to the point
where we have to show ActionExpr ∈ FIB ACTION all steps are very easily
automated.) The core part of the proof requires nevertheless more sophisticated
mechanisms (but we claim that it can be automated too!).

More specifically, after unfolding the definition of FIB ACTION , another
witness needs to be provided to supply the universe of the Circus theory of
which the action is deemed to be a member. FIB UNIVERSE can be directly
used in this instance since InitFib does not include any extra variables. If it
did, typing information can be used to determine the right universe. The proof
reduces then to showing that the given predicate belongs to the set of predicates
of the Circus theory InstCircusTheory FIB UNIVERSE . The general closure of
Circus operators establishes that the defined action is a member of some Circus
theory instance, and properties of universes of the applied operators establish
that it is exactly the theory under consideration.

As a concluding remark, it is worth noting that we are not constrained to use
exclusively Circus operators in defining actions. For example, we may use plain
predicative constructs instead if we desire, reflecting the unified view of any com-
putation being a predicate in the UTP. An advantage of the discussed approach
is that soundness is established irrespective of the specific way of representing
actions, but automation of the proof may only be feasible if closure theorems
are available for the underlying operators. If not, the alternative approach is to
show membership to the theory of Circus by explicitly proving the predicate is
a fixed point of the healthiness functions; due to the complexity of this proof in
particular for Circus theory instances this normally requires human interaction.

5.2 Action and Process Refinement

Refinement is uniformly characterised by (universal) reverse implication in the
UTP; consequently it is a property of alphabetised predicates and therefore
can be established independently of any particular UTP theory membership. A
simple proof approach involves unfolding theory-specific operators in terms of
their underlying lower-level relational and predicative operator definitions.

Although in principle feasible, this is not a practical approach which lends
itself easily for proof automation, in particular if we deal with more complex op-
erator definitions such as parallelism or interleaving of Circus actions. To manage
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the complexity of refinement proofs involving Circus action and process predi-
cates, we have pursued two alternative approaches.

The first approach is to formulate and prove a collection of algebraic re-
finement and equality laws applying in situations where the predicates are of a
certain form. In practice, the provisos that need to be established for application
of the laws are (a) memberships to some Circus theory, and (b) other restrictions
guarding the application of the law which are usually syntactic. The purpose
of the provisos in (a) is to guarantee that applications of functions for theory-
specific operators are well defined. For example, the following law establishes
distribution of Circus guarded actions through conjunctions of their guards.


 ∀ g1 , g2 : CIRCUS CONDITION ; p : CIRCUS ACTION |
(g1 , p) ∈ WF GuardC ∧ (g2 , p) ∈ WF GuardC •

(g1 ∨P g2 ) &C p = (g1 &C p) �C (g2 &C p)

WF GuardC is the domain of the function that encodes the guarded action
construct, namely (g &C p); it is restricted to guards and actions on the same
universe. The symbol +C denotes external choice.

If we apply laws like the above to actions a of Fib, we obtain the proof obliga-
tion a ∈ CIRCUS ACTION from the stronger condition a ∈ FIB ACTION ; the
definition of the actions allows us to discharge such proof obligations directly. If,
however, we apply laws to sub-expressions, membership to CIRCUS ACTION
has to be shown and depends on the particular sub-expression.

The alphabetised predicates of a UTP theory are not characterised syntacti-
cally, but by the healthiness conditions of the corresponding theory, and indeed
we do not embed the syntax of the operators in our encoding. Therefore, there
is no generic theorem that can be formulated to establish membership of arbi-
trary predicates to particular theories based on their syntax. Instead, we tackle
this problem using specialised, high-level recursive tactics. The tactics selectively
apply the closure theorems for the various Circus operators, and then proceed
recursively on the generated subgoals. Similarly, the definition of laws often re-
quire the universes of the involved predicates to be compatible, giving rise to
proof obligations asserting compatibility of the underlying universes.

Refinement laws can be equality laws as the above, or genuine refinements.
ProofPower facilitates the rewriting of terms through the application of equality
laws using its in-built rewrite and conversion mechanisms. On the other hand,
we also want to be able to replace sub-expressions of a predicate if the law
is not an identity but genuine refinement. In this case, however, we have to
justify the application of the law by monotonicity of operators with respect to
refinement. This, once again, is a process which cannot be encapsulated by a
single theorem but needs to be performed by high-level tactics, guided by the
structure of Circus actions. Monotonicity also gives rise to a second approach to
establish action refinement which in particular exploits the monotonicity of R,
the healthiness function for reactive designs.

The underlying idea is to express both actions of a refinement A1 � A2 as
applications of R, so that the proof reduces to R(P1 � Q1) � R(P2 � Q2) which,
because of monotonicity, is implied by P1 � Q1 � P2 � Q2, and in turn can
be reduced to P1 ⇒ P2 and (P1 ∧ Q2) ⇒ Q1. The semantic definition of the
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Circus operators supports this approach by expressing most operators in terms
of applying R to some design. The uniformity fosters automation.

To illustrate this approach in the context of Fib, we consider the refinement
Fib InitFibState � Fib InitFibState Ref where Fib InitFibState Ref is the as-
signment x, y := 1, 1. Its encoding is shown below.

Z

Fib InitFibState Ref : FIB ACTION

Fib InitFibState Ref =

AssignC (FIB UNIVERSE , 〈x , y〉, 〈Val(Int(1 )), Val(Int(1 ))〉)

After rewriting the definitions of Fib InitFibState and Fib InitFibState Ref ,
the initial refinement goal is expressed as follows.

ProofPower Output

(∗ ?
 ∗) �ZSchemaExpC (Fib InitFibState VAR DECLS ,

(=P (Fib InitFibState UNIV , x ′, Val (Int 1 ))) ∧P

(=P (Fib InitFibState UNIV , y ′, Val (Int 1 ))))

� AssignC (FIB UNIVERSE , 〈x , y〉, 〈Val (Int 1 ), Val (Int 1 )〉)�

Unfolding the semantic functions for Circus operators then yields the following.
ProofPower Output

�Z(∗ ?
 ∗) R (∃P (ran Fib InitFibState VAR DECLS .1 ∩ dashed ,

(=P (Fib InitFibState UNIV , x ′, Val (Int 1 )) ∧P

=P (Fib InitFibState UNIV , y ′, Val (Int 1 ))) ⊕P ...)


D

((=P (Fib InitFibState UNIV , x ′, Val (Int 1 )) ∧P

=P (Fib InitFibState UNIV , y ′, Val (Int 1 ))) ⊕P ...) ∧P

TReqTR′ ∧P ¬P WAIT ′ ∧P ΠR (...) ))

�
R (TrueP FIB UNIVERSE


D AssignR (FIB UNIVERSE , 〈x , y〉, 〈Val (Int 1 ), Val (Int 1 )〉) ∧P

TReqTR′ ∧P ¬P WAIT ′)�

Upon closer inspection we see that both sides of the refinement were rewritten
into expressions of the form R(P �D Q). The precondition of the first design orig-
inates from calculating the precondition of the corresponding schema, hence the
existential quantification over the dashed variables of the schema corresponding
to ran Fib InitFibState VAR DECLS .1 ∩ dashed. The postcondition is simply
the predicate of the schema with some additional conjuncts to correctly render
the behaviour of the defined reactive process.

The formulas in place of the ellipses have been omitted; their purpose is
merely to make some adjustments in order to homogenise universes in cases
where the universe of the schema predicate is non-homogeneous. The right hand
of the refinement corresponds to the definition of Circus assignment; the underly-
ing design has a true precondition since assignment always terminates, and the



234 F. Zeyda and A. Cavalcanti

postcondition conjoins the relational assignment with the predicates tr = tr ′

and ¬ wait ′, again to appropriately establish the reactive behaviour.
A sketch of the proof first verifies that the precondition of the second de-

sign is TrueP FIB UNIVERSE . The fact that the preconditions have different
universes does not compromise the proof since the universes are compatible. In
general, we use laws within the lower-level theories of relations and plain pred-
icates, or otherwise unfold the operators further into the underlying semantic
model of alphabetised predicates. Regarding the postcondition, the approach is
similar. Here, this requires some rewriting of the AssignR operator which results
in unfolding it into a predicate resembling the postcondition of the first design.
A minor simplification is proving that ΠR (...) above has no effect.

Process Refinement. Process refinement is simply a special case of action
refinement where the involved (process) actions only contain auxiliary variables,
hence we do not need a special treatment here. An alternative way of establishing
process refinement is by reducing it to action refinement of the respective main
actions providing their state variables are disjoint; this can be formulated as a
theorem and effectively exploited in proofs.

In summary there are at least three different conceptual approaches towards
proving Circus action refinement which operate on different semantic levels, and
vary in terms of the effort that has to be invested. The most convenient is, not
surprisingly, to work at the most abstract level — that is the level of high-level
algebraic laws. Whether this is possible in specific cases depends on how spe-
cialised the conjecture is. The difference between previous work, which encoded
Circus mostly for the sake of proving general laws, and our present work is that
we cannot consider proofs as static entities that have to be established once and
for all. Instead we need to provide generic means that automate all aspects of a
proof not requiring human interaction so that the user may solely focus on those
aspects which are difficult or beyond automation.

6 Conclusions

We have illustrated, by example, how a modified version of Oliveira’s mechani-
sation of the UTP, including its embedding of the Circus language can be used to
encode particular Circus specifications. The encoding is uniform and transparent,
and automatically produces consistency proof obligations which guarantee the
soundness of encoded programs on a per case basis. Although we did not present
a formal translation strategy, the principles we outlined are indeed generalisable
to semantically encode arbitrary Circus specifications using our extension of the
mechanised Circus semantics. We have also discussed issues regarding the refine-
ment proof of actions and processes, in particular in the light of automation. The
latter is important to affirm feasibility for the development of scalable techniques
and industrial tools using our extended mechanisation to verify the correctness
of realistic, safety-critical systems. A good example of this is the ClawZ sys-
tem [1] which has been successfully used in the formal verification of non-trivial
control systems in the avionics sector.
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To solve the problem of predicates from different UTP theories being present
in the same ProofPower theory scope (or even in the same definition), we for-
malised and integrated the notions of UTP theory and typing universes in the
semantic model. Revisiting one of the motivating examples given in the intro-
duction, the following predicate

(var next • next := 1 ;P ) 	 (var next • next := true ;Q)

declares different types for next in the branches of the choice, namely N and B.
Whereas in the original work such predicates could not be represented since the
type of next would have to be statically (and globally) identified with either N
or B, our encoding of the predicate creates a suitable universe for each of the
bodies of the variable blocks in which the type of next is dynamically bound.
The type information for next is erased by the var blocks, which hide next by
contracting the universes; thus no clashes arise in the overall encoding.

An alternative approach to solve the above problem is to eliminate conflicting
uses of variables with clashing types through renaming. This would, however,
still require the facility to constrain the type of the variable. A main restriction
of the original encoding is the inability to take into account typing constraints
in the general theory of relations. Constraints introduced a posteriori are, un-
like our definitions, not automatically checked in ProofPower-Z for consistency.
In addition, elimination of naming clashes would complicate the translation of
Circus syntax into its semantic characterisation making it more susceptible to
errors, and produce less readable and tractable encodings. Another challenge
with this approach is to ensure uniqueness of names across separate translations
in order to be able to combine them without interference on a semantic level.
Even more generally, we could think of a shallow embedding of alphabetised
predicates themselves. This, however, could be problematic because they do not
naturally map to predicates of the host logic (HOL) carrying more information,
namely, an alphabet and associated types.

What became clear though in attempting proofs for particular refinements is
that even for simple conjectures as the one considered in Section 5, the theo-
rems incidentally become very large to a point where they are not manageable
anymore. Our experience suggests that it is crucial to interleave certain simpli-
fication steps for alphabets and universes with steps performing a deeper un-
folding (rewriting) of functions representing operators. The simplifications can
in many cases eliminate operator invocations exploiting certain theorems. As an
example, the alphabet of a conjunction may be rewritten as the union of the al-
phabets of the conjuncts. We are currently experimenting with the development
of simplification tactics for automating the rewrite of semantic functions.

Related Work. Closely related work is Nuka’s mechanisation of the alphabe-
tised relation calculus and UTP [11,12]. It presents a deep semantic embedding of
alphabetised predicates and core operators mechanised in ProofPower-Z. Nuka’s
semantic model shares commonalities with ours in that predicates are repre-
sented as sets of bindings which themselves are partial functions from names to
values. It mostly differs in that no type information is attached to predicates. The
lack of type information prevents it, for example, from proving type-dependant
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properties such as ¬ (okay = TRUE ) ⇔ okay = FALSE1. Furthermore, to our
knowledge Nuka’s embedding has not been used so far in proving properties of
particular UTP specifications; doing so would be interesting, in particular to
investigate possible ramifications of its untyped view.

In [3,2] Camilleri reports on a mechanisation of the CSP traces and failure-
divergence model in HOL. Its primary focus is on proving standard CSP laws
that are valid within the two semantic models, and another concern is to deeply
encode the syntax of CSP. In these publications, however, similarly no account
is given on how the mechanisation performs in proving particular CSP process
refinements. An alternative embedding of the CSP traces model into PVS is pre-
sented in [5] where the authors additionally illustrate its application in verifying
robustness properties of an authentication protocol. In doing so they realise the
need for specific proof tactics (strategies in PVS) to conduct the proof at a
more abstract level, and the scope for proof automation via tactics driven by
the structure of proof goals. This coincides with our experience.

In [8] Groves et al. report on a tactic-driven tool implemented in Prolog that
aids in performing program derivation in Morgan’s refinement calculus [10].
The tool is illustrated by applying it to the example of a simple sorting al-
gorithm. Interestingly, the authors postulate a hierarchy of refinement tactics
which categorises them into “derived rules”, “goal-directed rules” and high-level
“strategies”, corresponding to different levels of automation at which subsequent
refinements are constructed. We currently do not consider the automation of re-
finement proofs at a comparably high level, but the experience gained in this
work could ultimately be useful when tackling similar goals in the future.

Future Work. Future work will focus on two primary aspects. First, the trans-
lation of Circus processes such as Fib into the semantic encoding shall be auto-
mated. There is no fundamental reason why this may not be possible, however
the automation would need to type check the specification in order to infer the
necessary information to construct universes of predicates and actions where
needed. In [13] a step into this direction is made by defining a set of formal
translation rules. The aim will be to extend and recast these in the light of the
informal strategy we propose, and thereby formalise the translation.

A second important area for future work is the development of tools assisting
refinement proofs. We already explained the usefulness of powerful ProofPower
tactics for this purpose, but in certain cases a proof mostly consists of the appli-
cation of high-level algebraic refinement laws. In this case, the ArcAngelC tactic
language provides a more abstract and expressive notation for specifying tactics
for Circus refinements [14]. It is a tactic language that supports backtracking
through angelic choice, and is in this aspect superior to ProofPower’s tactic
language which does not entail backtracking. We have already developed a pro-
totype implementation of ArcAngelC in ProofPower-Z giving some encouraging
results; subsequent publications will report on this work.

1 Note that this does not invalidate the law of the excluded middle in the relational
algebra of Nuka’s encoding; okay = TRUE ∨ ¬ (okay = TRUE) is still provable.
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Abstract. One of the major issues in component-based design is how to use
a component correctly in different applications according to the given interface
specification, called the publication, of the component. In this paper we formu-
late this as the problem of component publication composition and refinement.
We define the notion of publications of components that describes how a compo-
nent can be used by a third party in building their own components or in writing
their applications without access to the design or the code of the component. It
is desirable that different users of the components can be given different publi-
cations according to their need. The first contribution of this paper is to provide
a procedure, which calculates a weakest contract of the required interface of a
component from the contract of its provided interface and its code. The other
contribution, that is more significant from a component-based designer’s point of
view, is to define composition on publications so that the publication of a com-
posite component can be calculated from those of its subcomponents. For this
we define a set of primitive composition operators over components, including
renaming, hiding, internalizing, plugging and feedback. This theory is presented
based on the sematic model of rCOS, a refinement calculus of component and
object systems.

Keywords: Contracts, Components, Component Publications, and Composition.

1 Introduction

The widespread tendency in software and system engineering is towards component-
based design [12] by which systems are designed by combining small components into
bigger ones. The component-based technique allows a complex design problem to be
decomposed by separation of functionality into simpler design problems. It thus helps
to decrease the degree of coupling among components and reduce the probability of
major accidents caused by combinations of independent component failures [8].

rCOS [5,4,1] provides the notions of interfaces, contracts, components and compo-
nent publications. A component is explicitly specified in terms of the contracts of its
provided interface and required interface.
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In rCOS, a contract of an interface is a specification of the reactive behavior of the
component, including the interaction protocol that the environment is assumed to fol-
low, and the data and functionality of each method of the interface [1]. This extends the
concept of Meyer’s “Design-by-contract” [10], which started out specific to the Eiffel
programming language, but is now also used in other languages such as Java and JML
[9].

In [3], de Alfaro and Henzinger presented a general theory of composition and re-
finement of interfaces and components. They also developed a concrete interface the-
ory based on the interface automata in [2]. An rCOS contract can be understood as
an interface automaton, and a closed rCOS component (i.e. one that does not require
services) can be regarded as an I/O automaton of the component. However, a general
open component in rCOS has a provided interface and a required interface and each
has a specified contract, meaning that with the assumption of the contract for the re-
quired interface the component guarantees to deliver the specified by the contract of
the provided interface. Furthermore, rCOS adopts a declarative approach and denota-
tional semantics. The rCOS contracts also specify rich data structures and functionality
of the interface operations in terms of pre- and postconditions in an OO setting. It thus
directly supports OO design and implementation of component.

In [1], a procedure is given for an assumed contract of the required interface to cal-
culate a contract of the provided interface. Obviously, it is the strongest contract of the
provided interface for the given contract of the required interface. However, it is often
the case that a component is developed from a specification of its provided services,
i.e. a contract of its provided interface. Thus, for a given contract of the provided in-
terface of the component, we need to calculate from the code a contract of its required
interface such that the component guarantees the contract of the provided interface. The
first contribution in this paper is to give a procedure that for the code of a component
and a contract of its provided interface calculates the weakest contract of the required
interface of the component.

A component vendor normally only provides users with a specification of part of the
functionality (i.e. services) according to the users’ needs and budgets instead of source
code. Such a specification is called a publication and is an abstraction of the contracts
of the provided and required interfaces. A publication only states the static data func-
tionality of the provided and required methods and an interaction protocol with the
environment and it is written in a descriptive style as to serve as a manual for a user to
use and for an assembler to assemble it with other components. An assembler composes
several simpler components to form a composite component according to their publica-
tions. However, a publication of the composite component has to be provided. The other
contribution of this paper is to define a set of composition operators on publications. For
this, we change the definition of a publication of a component given in [4] such that a
publication (G,A,C) consists of specifications G and A of the data functionality of the
provided and required interfaces and an interaction protocol C. The protocol C speci-
fies the interactions with the environments as well as invocation relation of the required
methods by the provided methods. In [4], the interactions are separated as provided
protocol and the required protocol without the invocation dependency. An invocation
dependency oriented protocol C can be represented in different formalisms such as a
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transition graph, a set of traces, a temporal formula, and a CSP process. In this paper,
we use a set of traces of the provided and required methods. In fact, if the set is a regular
language, it can also be represented by an automaton [2]. The composition operators we
are to define include renaming, hiding, internalizing , plugging and feedback. We then
show that they are consistent with the corresponding operators on components defined
in [4,1] in the sense that the composite publication is indeed a correct publication for
the corresponding composite component if the operand publications are correct for the
operand components.

Section 2 briefly introduces the unifying theories of programming (UTP) [7] and
some basic notions of traces. Section 3 presents the main modeling elements of com-
ponent based design in rCOS. Section 4 defines the notion of publications. Section 5
introduces an algorithm for calculating the weakest contract of the required interface of
a component from its provided contract and source code. Section 6 reviews the compo-
sition operators on components and define their counterparts for publications. We will
also investigate the correctness of the compositions on publications with respect to the
compositions of components. Section 7 discusses future work and concludes the paper.

2 Preliminaries

In UTP, a sequential program (but possibly nondeterministic) is represented by a design
D = (α, P), where

– α denotes the set of state variables (called observables). Each state variable comes
in an unprimed and a primed version, denoting respectively the pre- and the post-
state value of the execution of the program. In addition to the program variables
and their primed versions such as x and x′, the set of observables includes two
designated Boolean variables, ok and ok′, that denotes termination or stability of
the program.

– P is a predicate, denoted by p(x) � R(x, x′), and defined as (ok∧p(x))⇒ (ok′∧R(x, x′)).
It means that if the program is activated in a stable state, ok, where the precondition
p(x) holds, the execution will terminate, ok′, in a state where the postcondition R
holds; thus the post-state x′ and the initial state x are related by relation R. We use
pre.D and post.D to denote the pre- and post-conditions of D, respectively. If p(x) is
true, then P is shortened as � R(x, x′).

Definition 1. Let D1 = (α, P1) and D2 = (α, P2) be two designs with the same alphabet.
D2 is a refinement of D1, denoted by D1 � D2, if the following closed implication holds
∀x, x′, ok, ok′ · (P2 ⇒ P1). Let D1 = (α1, P1) and D2 = (α2, P2) be two designs with possible
different alphabets α1 = {x, x′} and α2 = {y, y′}. D2 is a data refinement of D1 over α1 × α2,
denoted by D1 �d D2, if there is a relation ρ(y, x′) s.t. ρ(y, x′); D1 � D2; ρ(y, x′).

It is proven in UTP that the domain of designs forms a complete lattice with the refine-
ment partial order, and true is the smallest (worst) element of the lattice. Furthermore,
this lattice is closed under the classical programming constructs, and these constructs
are monotonic operations on the lattice. These fundamental mathematical properties en-
sure that the domain of designs is a proper semantic domain for sequential programming
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languages. There is a nice link from the theory of designs to the theory of predicate
transformers with the definition wp(p � R, q) =̂ p ∧ ¬(R;¬q) that defines the weakest
precondition of a design for a post condition q.

Semantics of concurrent and reactive programs is defined by the notion of reactive
designs with an additional Boolean observable wait that denotes suspension of a pro-
gram. A design P is a reactive design if it is a fixed point of H , i.e. H(P) = P, where
H(p � R) =̂ (true � wait′) � wait � (p � R). Here, P1 � b � P2 is a conditional statement,
which means if b holds then P1 else P2, where b is a Boolean expression and P1 and P2

are designs. We define a guarded design D = (α, g& P), where P is a design, to specify
the reactive behavior H(P) � g � (true � wait′), meaning that if the guard g is false, the
program stays suspended, otherwise it behaves like H(P). We use guard.D to denote the
guard g and func.D to denote its functionality P. A reactive design is to ensure that a
synchronization of a method invocation by the environment and the execution of the
method can only occur when the guard is true and wait is false. The domain of reactive
designs enjoys the same closure properties as the domain of sequential designs, and also
refinement is defined as logical implication. This allows us reactive designs to define
the semantics of concurrent programming languages of guarded commands of the form
g&c. For details, we refer the reader to our earlier work in [6].

2.1 Notations for Traces

Given a set Σ of events, we use Σ∗ to denote the set of all finite traces generated out of
Σ in which 〈 〉 is a special one, i.e. the empty trace, and Σ∞ the set of all infinite traces
generated from Σ. For a trace s1 ∈ Σ∗ and a trace s2 ∈ Σ∗ ∪ Σ∞, s1ˆs2 is the conventional
concatenation operation. We use sk to denote the concatenation of s k times, where
k ∈ N ∧ k ≥ 0. If k = 0, then sk is denoted by 〈 〉. s∗ denotes ∃k ∈ N.k ≥ 0 ∧ s∗ = sk, whereas
s+ denotes ∃k ∈ N.k > 0 ∧ s+ = sk. This operation is also conventionally overloaded to
operate on sets T1ˆT2 and EˆT2, where T1 is a subset of Σ∗, T2 a subset of Σ∗ ∪ Σ∞, and
E a subset of Σ. A trace s1 is a prefix of s2, denoted by s1 � s2, if there exists a trace
s such that s2 = s1ˆs, and s is called a suffix of s2. We use tail(s) and head(s) to stand
for the tail and the head of s, respectively. We use s[b/a] to denote the trace obtained
from s by replacing all occurrences of a with b, and T [b/a] the set of traces obtained
from T by replacing a with b in each trace of T . The projection of a trace s on a set E
of events, denoted by s � E, is the trace obtained from s by removing from it all events
that are not in E, and we write s � a when E contains only one element a. We also
overload this operation and extend it to define the projection of a set T of traces on a
set E of events T � E. The restriction of a trace set T on a set of events M, denoted by
T\M, is defined by {s | s � M = 〈〉 ∧ (∃t ∈ T∃a ∈ M.sˆ〈a〉 � t ∨ s ∈ T )}. If M is a singleton
{m}, T\M is shortened by T\m. For simplicity, we denote s1 + s2 as {s1} ∪ {s2}, and T1 + T2

as T1 ∪ T2. We now define the synchronization between s1 and s2 via a set E of events,
denoted s1‖E s2, as follows:

s1‖E s2 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

〈 〉 if (s1 = 〈〉 ∧ s2 = 〈〉) ∨ (s1 = 〈〉 ∧ s2 = 〈a〉ˆs′2 ∧ a ∈ E)∨
(s2 = 〈〉 ∧ s1 = 〈a〉ˆs′1 ∧ a ∈ E),

〈a〉ˆ(s
′
1 ‖E s2) if s1 = 〈a〉ˆs

′
1 ∧ a � E

〈a〉ˆ(s1‖E s′2) if s2 = 〈a〉ˆs
′
2 ∧ a � E

〈a〉ˆ(s
′
1‖E s′2) if s1 = 〈a〉ˆs

′
1 ∧ s2 = 〈a〉ˆs

′
2 ∧ a ∈ E

When E is empty, s1‖E s2 represents the interleaving of s1 and s2, shortened by s1�s2.
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3 Contract and Component

We provide models of components at different levels of abstraction. A component is a
unit of software that implements a functionality via its provided interface. The function-
ality is specified as a contract of the provided interface. A component, to implement the
specified contract, may also require or assume services from other components. The
required services are specified by a contract of the required interface of the component.

3.1 Contract

An interface I = 〈F, M〉 provides the syntactic declarations of a set of fields and a set
of signatures of operations (or methods). Each field is declared with type x : T , and a
signature of an operation is given by a method name, some input and output parameters.
For theoretical treatment, we assume one operation has only one input parameter and at
most one output parameter and is written as m(in; out), where each of in and out declares
a variable with a type. We use field.I and Meth.I to refer to the fields and operations of
interface I.

A contract of an interface specifies the functionality of the methods declared in the
interface, the protocol of the interaction with the environment, and the reactive behavior
of the component.

Definition 2. A contract is a tuple C = (I, θ,S,T ), where

– I is an interface, denoted by IF.C; and we use Meth.C for Meth.IF.C and field.C for
field.IF.C,

– θ, denoted by init.C, is a design � R ∧ ¬wait′ that initializes the values of field.C, i.e.
defines the initial states,

– S, denoted by spec.C, specifies each method m(in; out) in IF.C by a guarded design
S(m),

– T is called the protocol and denoted by prot.C, which is a set of traces of the events
over Meth.C1.

Example 1. A contract of one-place buffer B1 = (I, θ,S,T ) is described as follows:

I =̂ 〈{buff :int∗}, {put(in x:int), get(out y:int)}〉
θ =̂ � buff ′ = 〈 〉

S(put(in x:int)) =̂ buff = 〈 〉&(� buff ′=〈x〉ˆbuff )
S(get(out y:int)) =̂ buff � 〈 〉&(� buff ′ = tail(buff ) ∧ y′ = head(buff ))

T =̂ (〈put〉ˆ〈get〉)∗+(〈put〉ˆ(〈get〉ˆ〈put〉)∗)

Given a contract C = (I, θ,S,T ), let Meth.C+ =̂ {m(u; v) | m(x : T1; y : T2) ∈ Meth.I ∧ u ∈
T1 ∧ v ∈ T2}. The dynamic semantics of C is given by a divergence setD(C) and a failure
set F (C). D(C) is the set of all traces m1(u1; v1), . . . ,mk(uk; vk) over Meth.C+ such that the
execution of these invocations of a prefix of the trace in consecution from the initial
state enters a diverging state. Also, the failure set of C is the set of pairs 〈s, X〉 such that
either after the execution of the trace s over Meth.C+, all the events in X ⊆ Meth.C+ are

1 Notice that this is an abstract version of the protocol in our earlier versions [6,1].
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not enabled, i.e their guards are disabled, or s is a divergence. The failure-divergence
semantics of contracts allows us to use the CSP failure-divergence partial order [11] as a
refinement relation between contracts [1], denoted by C1 � C2. C1 and C2 are equivalent,
denoted C1 ≡ C2, if C1 � C2 ∧ C2 � C1. It is noted that this refinement relation requires
that the interfaces Meth.IF.C1 and Meth.IF.C2 have exactly the same set of methods.

A contract C has to be consistent in the sense that no execution of a trace in the
protocol from an initial state may enter a blocking state in which wait is true or a di-
verging state in which ok′ is false. The notion of consistency is defined in [1] and a
theorem of separation of concerns is proven there that allows the refinement of a design
func.spec.C(m) without violating the consistency, and C = (I, θ,S,T1 + T2) is consistent iff
Ci = (I, θ,S,Ti) are both consistent, i = 1, 2. Furthermore, for a triple (I, θ,S) there exists
a largest protocol T such that contract C = (I, θ,S,T ) is consistent, and called a com-
plete contract. A complete contract can be simply written as C = (I, θ,S) by omitting its
protocol, and we use trace.C to denote the largest protocol of C.

For a trace tr over Meth.C+, we define an abstraction tr−, that is a trace over the events
Meth.C+: 〈〉− = 〈〉, and (〈m(u; v)〉ˆtr)− = 〈m〉ˆtr−. Thus, we have the following theorem of
the relation between the traces and the failure set for a complete contract.

Theorem 1. For a complete contract C, trace.C = {tr− | (tr, X) ∈ F (C) ∧ tr � D(C)}.

Example 2. For the one-place buffer in Example 1, we can further give the following
two contracts B2 = (IF.B1, init.B1,S2,T2) and B3 = (IF.B1, init.B1,S3,T3) , where

S2(put(in x:int)) =̂ (� buff ′=〈x〉ˆbuff ) � buff = 〈 〉� (� buff ′=buff )
S2(get(out y:int)) =̂ buff � 〈 〉&(� buff ′ = tail(buff ) ∧ y′ = head(buff ))

T2 =̂ (〈put〉ˆ〈put〉∗ˆ〈get〉)∗

S3(put(in x:int)) =̂ buff = 〈 〉&(� buff ′=〈x〉ˆbuff )
S3(get(out y:int)) =̂ (� buff ′ = tail(buff ) ∧ y′ = head(buff )) � buff � 〈 〉�

(� ∃c ∈ int.buff ′=buff ∧ y′ = c)
T3 =̂ (〈get〉+(〈put〉ˆ〈get〉))∗

We see that B1, B2 and B3 are complete contracts satisfying B1 � B2 ∧ B1 � B3, but
B2 � B3 and B3 � B2. �

The following theorem indicates that any contract is equivalent to a complete contract.

Theorem 2. Given a contract C = (I, θ,S,T ), let C′ be (〈field.C ∪ {tr : Meth.C∗},Meth.C〉,
init.C ∧ tr′ = 〈 〉,S′,T ), where S′(m) = (∃s ∈ T .trˆ〈m〉 � s ∧ guard.S(m))&(pre.S(m) �
post.S(m) ∧ tr′ = trˆ〈m〉). Then, C′ is complete, and trace.C′ = T ∧ C′ ≡ C.

Based on this theorem, in what follows, we will only focus on complete contracts, and
therefore all contracts are referred to as complete contracts, if not otherwise stated.

3.2 Component

A component K is an implementation of a contract of an interface that provides services
to other components. This interface is called the provided interface. In order to imple-
ment the provided services, K may use services provided by other components via an
interface, called the required interface.
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Definition 3. A component is a tuple K = (I,M, c0,C, J), where

– I is an interface, called the provided interface of K and denoted by pIF.K. We also
write pMeth.K for Meth.pIF.K and pfield.K for field.pIF.K.

– M is a set of method signatures, called the private methods of K and denoted by
priMeth.K.

– c0 is the initialization statement of the component, denoted by init.K, that initializes
the set of states of the component.

– C is called the coding function and denoted as code.K that maps each method in
pMeth.K ∪ priMeth.K to a guarded command.

– J is an interface, called the required interface of K and denoted by rIF.K. We also
write rMeth.K for Meth.rIF.K and rfield.K for field.rIF.K. It is required that rMeth.K
contains all the methods that occur in the code of the methods given by code.K, but
not declared in pMeth.K ∪ priMeth.K.

The code in guarded command of each method can be defined as a reactive design. For
a given contract Cr of the required interface rIF.K of K, a contract Cp of the provided
interface pIF.K can be calculated from the code of the methods given by code.K. This
determines a function λCr · spec.K such that for a complete contract Cr of rIF.K, spec.K.Cr

is a complete contract of pIF.K. We take the function spec.K as the semantics of com-
ponent K[6]. This semantics enjoys the following property that for two contracts C1 and
C2 of rIF.K, if C1 � C2 then spec.K.C1 � spec.K.C2.

We say that a component K implements a contract Cp of its provided interface pIF.K
with a contract Cr of its provided interface rIF.K if Cp � spec.K.Cr, and K implements Cp

if there exists such a contract Cr. Obviously, spec.K.Cr is the strongest contract that K
implements with Cr.

Example 3. The following three components K1, K2 and K3 respectively implement
the contracts B1 in Example 1 and B2 and B2 in Example 2. For convenience, we shall
rename some method and field in the interface.

pIF.K1 = IF.B1,

priMeth.K1 = ∅,
init.K1 = buff := 〈 〉,
code.K1(put) = buff=〈〉 → (buff :=〈x〉),
code.K1(get) = buff�〈〉 → (y:=head(buff ); buff :=〈 〉)
rIF.K1 = ∅

pIF.K2 = IF.B2[buff1/buff , get1/get],
priMeth.K2 = ∅,
init.K2 = buff 1 := 〈 〉,
code.K2(put) = buff1:=〈x〉� buff1=〈〉� put1(head(buff1)); buff1 := 〈x〉
code.K2(get1) = buff1�〈〉 → (y:=head(buff1); buff1:=〈 〉)
rIF.K2 = 〈{put1(in x:int)}〉
pIF.K3 = IF.B3[buff2/buff , put1/put],
priMeth.K3 = ∅,
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init.K3 = buff 2 := 〈 〉,
code.K3(put1) = buff 2=〈〉 → buff 2:=〈x〉
code.K3(get) = (y:=head(buff 2); buff 2:=〈〉) � buff 2�〈〉� get1(y)
rIF.K3 = 〈{get1(out y:int)}〉

4 Publications of Components

To compose components and use components to write applications, one does not need
to know their code or even their design. However, one needs a specification to some
extent about what services are provided and what services are required and the protocol
that describes the interactions with the environments. The idea is that the less details
specified the better. In this section we define such as specification, called a publication
of a component. For a generic representation, we first define the notion of a specification
of a component.

Definition 4. A specification of a component K is a triple S = (P,R,C), where

– P is a complete contract of pIF.K, denoted by pCtr.S ;
– R is a complete contract of rIF.K, denoted by rCtr.S ;
– C ⊆ (pMeth.K + rMeth.K)∗, denoted by causal.S, is a protocol that specifies the inter-

actions with the environments as well as invocation relation of the required methods
by the provided methods of K, called the invocation dependency oriented protocol
of S ,

such that the following conditions are satisfied

1. P � spec.K.R; and
2. causal.S � pMeth.K ⊇ trace.pCtr.S ∧ causal.S � rMeth.K ⊆ trace.rCtr.S.

The first condition indicates that with K’s required contract, K implements its provided
contract, while the second condition says that projecting the invocation dependency ori-
ented protocol onto the provided methods results in a protocol of the provided contract
that is consistent with the specification of the methods; but projecting the invocation
dependency oriented protocol onto the required methods results in a protocol that is a
subset of the largest protocol of the required contract. This is just an analog of the law
of strengthening the postcondition and weakening the precondition in Hoare logic of
programs. Verifying the two conditions can be done by checking a design document of
the component that contains the verification of the refinement relation, by verification
of the source code 2. The refinement relation between specifications of component can
be defined from the refinement of contracts.

Definition 5. For two specifications S 1 and S 2 of K, S 1 � S 2, if

1. pCtr.S 2 is a refinement of pCtr.S 1;
2. rCtr.S 1 is a refinement of rCtr.S 2; and
3. ∀c ∈ C2.c�Meth.P2 ∈ prot.P1 ⇒ c ∈ C1.

2 Such a verification should be part of the certification of the component.
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The conditions 1&2 say a refined specification should have a stronger provided con-
tract and a weaker required contract. Condition 3 indicates that a refined specification
provides more services to and requires less services from the environment and it is
equivalent to

causal.S1 � pMeth.K ⊆ causal.S2 � pMeth.K ∧ causal.S1 � rMeth.K ⊇ causal.S2 � rMeth.K.

The complete contracts in a specification are given in terms of reactive designs. There-
fore, they are not easy to be used for checking their compatibility with the specifications
of other components. Further, the guards in the method specification and the protocol
provide duplicated information to the user. Therefore, one does not need to have both
when they compose and use components. We thus define the notion of publication by
removing the guards in the method specification. We first define each part of a compo-
nent publication as publication contract.

Definition 6. A publication contract C is a tuple (I, θ,D,T ), where

– I is an interface and θ is an initialization design,
– D is a function, denoted by spec.C that defines each method m of I with a design (no

guard) D(m),
– T is a set of traces over the Meth.I, denoted by prot.C.

Definition 7. A publication of component K is U = (G,A,C) where

– G is a publication contract of an interface I such that Meth.I ⊆ pMeth.K,
– A is a publication contract of an interface J such that Meth.J ⊇ rMeth.K, and
– C is a causal relation over Meth.I +Meth.J, denoted by causal.U, such that

causal.U � Meth.I = prot.G ∧ causal.U � Meth.J = prot.A.

Definition 7 allows the component vendor to give different publications to different
component users. This is characterized by the refinement relation between publications.

Definition 8. For a component K, let U1 = (G1,A1,C1) and U2 = (G2,A2,C2) be publica-
tions of K. U2 is a refinement of U1, U1 � U2, if

1. Meth.pCtr.U1 ⊆ Meth.pCtr.U2, Meth.rCtr.U1 ⊇ Meth.rCtr.U2,
2. init.pCtr.U1 � init.pCtr.U2, and init.rCtr.U1 � init.rCtr.U2,
3. ∀m ∈ Meth.pCtr.U1.spec.pCtr.U2(m) � spec.pCtr.U2(m), and
∀n ∈ Meth.rCtr.U2.spec.rCtr.U1(n) � spec.rCtr.U2(n),

4. prot.pCtr.U1 ⊆ prot.pCtr.U2, and prot.rCtr.U1 ⊇ prot.rCtr.U2,
5. ∀c ∈ C2.c�Meth.G2 ∈ prot.G1 ⇒ c ∈ C1.

Condition 1 says that a refined publication has more provided methods and less required
methods; Condition 2 indicates that a refined publication has a stronger initial condition
on the provided fields and a weaker initial condition on the required fields; Condition
3 expresses that a refined publication assigns a stronger specification (design) to each
provided method, while a weaker specification (design) to each required method; Con-
ditions 4&5 indicate that a refined publication is more likely to provide services to its
environment, but less likely to invoke services provided by environment.
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4.1 Specification vs. Publication

A publication of a component has to be certified and this is done by the verification of
the validity of a specification of the component. This is done by relating a contract and
a publication contract.

Definition 9. We define a mappingM from the domain of complete contracts to that of
publication contracts as: for a given complete contract C = (I, θ,S),M(C) is a publica-
tion contract defined by

1. IF.M(C) = IF.C = I;
2. init.M(C) = init.C[false/wait, f alse/wait′] = θ[false/wait, f alse/wait′];
3. spec.M(C))(m) = P[false/wait, f alse/wait′], if spec.C(m) = g&P, for any m ∈ Meth.C;
4. prot.M(C) = trace.C.

Then we have the following equivalence relation in terms of contracts.

Theorem 3. For any complete contract C, we have C ≡ M(C).

This theorem indicates that we can use a protocol instead of the guards of the pro-
vided methods of a component to control the interaction between the component and its
environment.

Definition 10. Conversely, we define a mapping L from the domain of publication
contracts to the domain of complete contracts as: for a given publication contract
C = (I, θ,D,T ), L(C) is a complete contract defined by

1. IF.L(C) = 〈field.I ∪ {tr : Meth.C∗},Meth.I〉;
2. init.L(C) = init.C ∧ tr′ = 〈 〉 ∧ ¬wait′ = θ ∧ tr′ = 〈 〉 ∧ ¬wait′;
3. spec.L(C))(m) = (∃s ∈ T .trˆ〈m〉 � s)&D(m) ∧ tr′ = trˆ〈m〉, for any m ∈ Meth.C.

Note that the idea of this definition is similar to Theorem 2 by strengthening the guard
of each method to obtain a complete contract. We also have

Theorem 4. For any publication contract C, we have C ≡ L(C).

This theorem indicates that we can add a guard to each of the provided methods of a
component instead of its protocol to control the interaction between the component and
its environment.

Theorem 3 and Theorem 4 indicate that M and L form a Galois connection, and
imply that interaction between a component and its environment can be done either
decentralizedly by the guards of its provided methods or centralizedly by a protocol.

Corollary 1. (Contract and Publication Contract)

1. L(M(C)) is a complete contract for any complete contract C, and C ≡ L(M(C)); and
2. M(L(C)) is a publication contract for any publication contract C, and C ≡ M(L(C)).

The connection between specification and publication of component is expressed as
follows:
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Theorem 5. (Specification vs. Publication)

1. If S = (P,R,C) is a specification of K, then U = (M(P),M(R),C) is its publication;
2. If U = (G,A,C) is a publication of K, then P = (L(G),L(A),C) is a specification of

K[IF.G/IF.K, IF.A/rIF.K], where K[IF.G/IF.K, IF.A/rIF.K] is the component derived
from K by restricting its provided methods to IF.G and extending its required meth-
ods to IF.A.

5 Calculate Weakest Required Contract and Publication

To calculate the weakest required contract, wrc.K.pCtr for a component K to implement
a given provided contract pCtr, we first calculate the invocation dependency oriented
protocol ioprot.K.pCtr of K from its code and the protocol of pCtr. We then derive from
this protocol and the functionality specification of the methods in pCtr the weakest
required contract.

5.1 Calculating Invocation Dependency Oriented Protocol

Let K be a component and assume pMeth.K = {m1, · · · ,mk}, priMeth.K = {n1, · · · , n�} and
rMeth.K = {r1, · · · , re}. For any method m ∈ pMeth.K, we calculate the set Xm of sequences
of invocations to methods in rMeth.K which are the possible invocation sequences to
required methods in the execution of the code code.K(m) of m. We define a function
that for a program command c computes the set Tr(c) of invocation sequences in the
execution of c:

Tr(c) =̂

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎨

⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

〈m〉 if c = m(x, y) or c = z := m(x, y), where m ∈ rMeth.K
Xm if c = m(x, y) or c = z := m(x, y),

where m ∈ pMeth.K ∪ priMeth.K
Tr(c1)ˆTr(c2) if c = c1; c2

Tr(B)ˆ(Tr(c1) + Tr(c2)) if c = if B then c1 else c2

(Tr(B)ˆTr(c1))∗ if c = while B do c1

〈〉 otherwise

Using function Tr, we define the following k + � trace equations for the provided and
private methods of component K:

Xm1 = Tr(code.K(m1)), . . . , Xmk = Tr(code.K(mk)),
Xn1 = Tr(code.K(n1)), . . . , Xn� = Tr(code.K(n�)).

Note that since a provided method could call required methods implicitly via calling pri-
vate methods of K, we have to consider the provided methods together with the private
methods in the trace equations (1). It is easy to see that these trace equations contain
recursion because a provided or a private method can call any other provided or private
methods, including themselves. Since all trace operations used in Tr are monotonic
w.r.t the set containment. The least fixed points of the above trace equations exist and
are taken to be the solutions to the variables Xmi and Xn j for 1 ≤ i ≤ k and 1 ≤ j ≤ l, and
each of them is a subset of (rMeth.K)∗.
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(a)

s1 s2

get1

put

put;put1

(b)

s1’ s2’

get

put1

get;get1

Fig. 1. (a) Transition Graph of code.K2, (b) Transition Graph of code.K3

For example, for K2 and K3 in Example 3, we have Xput = 〈〉 + put1, Xget1 = 〈〉 for K2

and Xget = 〈〉 + get1, Xput1 = 〈〉 for K3.
For each provided method m, the solution to Xm contains all possible sequences of

the invocations to the methods in rMeth.K in the code of m. However, in an invocation
sequence of the provided methods, each execution (occurrence) of a provided method
m might contain only part of the invocation sequences in Xm. This is due to, for instance,
a conditional. Thus, we have to calculate this subset Xi

m of Xm for each occurrence mi of
each provided method m in prot.pCtr according to the transition graph of the component.
The invocation dependency oriented protocol ioprot.K.pCtr can be obtained by replacing
each occurrence of a provided method m in prot.pCtr with mˆXi

m that is the event m
concatenated with the invocation sequences of this occurrence of m.

Example 4. According to the code of put, we know the fact that if buff1 = 〈〉 then put
does not invoke put1, otherwise it indeed invokes put1. On the other hand, we have
Xput = 〈〉 + 〈put1〉 and if we directly replace put in prot.B2 with 〈put〉ˆXput, the resulting
execution trace prot.B2[〈put〉/Xput] will violate the above fact.

The transition graphs for code.K2 and code.K3 in Example 3 are given in Fig.1. Ac-
cording to Fig.1. (a), we know in the cases of its first execution and each execution
following get1, put does not invoke put1, and in other cases it invokes put1. Therefore,
we have to replace the first occurrence of put by put, and any other occurrences of put
with put; put1 in the subexpression 〈put〉; 〈put〉∗; 〈get1〉 of prot.B2. This derives ioprot.K.B2

as (〈put〉ˆ〈put; put1〉∗ˆ〈get1〉)∗, written as CB2 . Similarly, the invocation dependent protocol
ioprot.K3.B3of K3 for B3 is ((〈put1〉ˆ〈get〉) + (〈get; get1〉)∗)∗ . �

5.2 Calculating Weakest Required Contract

After calculating the invocation dependency oriented protocol ioprot.K.pCtr, we can eas-
ily obtain the protocol of the required contract wrc.K.pCtr by projecting it onto the
required methods: prot.wrc.K.pCtr =̂ ioprot.K.pCtr� rMeth.K. With this protocol and The-
orem 2, we only need to calculate the specification of the data functionality of the
required methods. In other words, if we obtain the unguarded designs of the required
methods in rMeth.K, together with ioprot.K.pCtr we form a publication contract, and then
wrc.K.pCtr is the contract of the required interface obtained from Theorem 2.

Let rMeth.K = {r1, . . . , rt}, and for each r ∈ rMeth.K let Dr represent the design for r.
Then, Dr1 , . . . ,Drt are calculated as the weakest solution to the following equation family.
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[[n1]] ≡ [[code.K(n1)]][Dr1 , · · · ,Drt/r1, · · · , rk],

...

[[n�]] ≡ [[code.K(n�)]][Dr1 , · · · ,Drt/r1, · · · , rt],

spec.pCtr(m1) � [[code.K(m1)]][Dr1 , · · · ,Drt/r1, · · · , rt], (1)

...

spec.pCtr(mk) � [[code.K]](mk)[Dr1 , · · · ,Drt/r1, · · · , rt]

Solving the equations (1) is essentially equivalent to the problem of decomposition
of sequential programs in the denotational setting. In general, the equations are not
solvable. Nevertheless under some special restrictions, such as each occurrence of Dri ,
i = 1, · · · , t is linear, the equations can be solvable. The initial condition of rCtr can be
derived from init.pCtr and init.K.

Example 5. We apply the above calculation procedure to Example 4. First from Theo-
rem 2, IF.wrc.K2.B2 = 〈{tr : put∗1}, {put1(in x:int)}〉, and the protocol prot.wrc.K2.B2 = put∗1, the
design of the method put1 is � tr′ = trˆ〈put1〉 , and the initial condition is tr = 〈〉.

Similarly, for K3 and B3, the interface IF.wrc.K3.B3 = 〈{tr : get∗1}, {get1(out y:int)}〉, the
initial condition init.wrc.K3.B3 = tr = 〈〉, the design of get1 is � tr′ = trˆ〈get1〉, and protocol
prot.wrc.K3.B3 = get∗1. �

6 Compositions of Components and Their Publications

Composing a composite component from existing simpler ones via connectors plays a
key role in component-based methods. In this section, we first review and revise the
compositions on component given in [4,1]. However, the main contribution in this sec-
tion is to define composition on component publications and present their relation to
the compositions of components.

6.1 Compositions of Components

We define the basic operators of components including renaming, hiding, internalizing,
plugging and feedback.

Renaming. Renaming an interface method of a component is a simple connector de-
fined as follows.

Definition 11. Let K be a component and m(x : T1; y : T2) a method signature that does
not occur in priMeth.K.

1. Renaming a provided n(u : T1, v : T2) in pMeth.K gives a component K[m/n] such that
– pIF.K[m/n] = 〈field.pIF.K, Meth.pIF.K + {m} − {n}〉, priMeth.K[m/n] = priMeth.K and

rIF.K[m/n] = rIF.K;
– init.K[m/n] = (init.K)[m/n];
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– code.K[m/n](m) = (code.K(n))[m/n], and code.K[m/n](op) = (code.K(op))[m/n] for
any other op in pMeth.K[m/n] ∪ priMeth.K[m/n].

2. Renaming a required method n(u : T1, v : T2) in rMeth.K gives the component K[m/n]
such that

– pIF.K[m/n] = pIF.K, priMeth.K[m/n] = priMeth.K and rIF.K[m/n] = 〈field.rIF.K,
Meth.rIF.K − {n} + {m}〉;

– init.K[m/n] = (init.K)[m/n];
– code.K[m/n](op) = code.K(op)[m/n] for any op in pMeth.K[m/n]∪ priMeth.K[m/n].

Where c[m/n] is the command obtained from c by replacing each occurrence of n with
m.

Notice that in the above definition, the code of a provided method, a private method, or
the initiation statement may contain some invocations to n, so we have to rename n to
m in the corresponding code of the renamed component. Besides, K[m/n] = K if n does
not occur in K.

A renamed component K[m/n] can be easily implemented by using a connector,
which is a component that provides the method with the fresh name m and the body
of m calls the provided method n of K.

Hiding. We sometimes restrict a user from using some provided methods of a com-
ponent by hiding these methods (K\m). Hiding is semantically the same as moving the
hidden methods from the provided interface to the set of private methods of the compo-
nent. Formally,

Definition 12. Let K = (I,M, c0,C, J) be a component, m ∈ Meth.I. Hiding m in K is de-
noted by K\m and defined as (〈Meth.I − {m}, field.I〉,M ∪ {m}, c0,C, J).

The hiding operator is associative. Therefore hiding a set of provided methods is same
as hiding them one by one. Notice that hiding should be used carefully as hiding a
method may result in a dead component. E.g. in Example 3, K1\put results in a deadlock.

K\m can be implemented by renaming each provided method n of K to a fresh method
n1, and by adding a connector component that provides all the methods n that K provides
except for m, and each n calls its code, which is the renamed method n1 of the renamed
component.

Internalizing. Similar to hiding, internalizing a method m in a component K is to re-
move it from the provided interface of K and add it into the private method set, denoted
by K↙m. However, unlike hiding, internalizing just changes all explicit invocations to
the internalized method to implicit invocations to the method. For example, in Example
3, internalizing get in K1 results in a new component that provides only put, but every
execution of put will implicitly be followed by an execution of get, therefore it allows
any number of put operations on consecution. Formally,

Definition 13. For a component K and a set of methods M in its provided interface, we
define the component K↙M as

– pIF.K↙M = (pIF.K)\M, priMeth.K↙M = priMeth.K + M, rIF.K↙M = rIF.K,
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– init.K↙M = init.K,
– (code.K↙M)(n) can be defined in different ways:
• (code.K↙M)(n) = �s∈M∗code.K(s); code.K(n);�s∈M∗code.K(s) for n ∈ pMeth.K↙M,

where code.K(s) stands for the sequential execution of the methods in sequence
s and � is the nondeterministic choice operator in the program language,

• (code.K↙M)(n) = code.K(n) for n ∈ priMeth.K
• (code.K↙M)(m) = code.K(m) for m ∈ M

The above definition indicates internalizing essentially changes all explicit invocations
to the internalized methods to implicit invocations. This is semantically equivalent to
reprogramming all provided methods in pMeth.K − M by adding possible sequences of
invocations to M before and after the code of n, i.e. code.K(n), for each n ∈ pMeth.K − M.
However, instead of changing the code, the internalizing connector is implemented by
programming a scheduling processes that synchronizes with the component on the in-
ternalized methods.

In most cases, the number of invocations to these internalized methods before and
after a noninternalized method should be finite; otherwise internalizing must give rise to
an divergence, i.e. livelock. We can see this by further investigating the example given
in the above. After internalizing get in K1, it is clear that put can execute infinite many
times. Thus, internalizing put in K1↙{get} will cause a divergence.

Plugging. The most often used composition in component construction is to plug the
provided interface of a component K1 into the required interface of another K2, denoted
by K1	
K2. A component can plug into another component only if they have no name
conflicts.

Definition 14. A component K1 is pluggable to a component K2 if the following condi-
tions hold:

1. (field.pIF.K1 ∩ field.pIF.K2) = ∅, and (pMeth.K1 ∩ pMeth.K2) = ∅;
2. (priMeth.K1 ∩ priMeth.K2) = ∅;
3. (field.rIF.K1 ∩ field.rIF.K2) = ∅, and (rMeth.K1 ∩ rMeth.K2) = ∅;
4. priMeth.Ki ∩ (pMeth.Kj + rMeth.Kj + priMeth.Kj) = ∅, where i � j and i, j = 1, 2.

Notice that the above conditions can always be guaranteed by renaming conflicting
names.

Definition 15. Let K1 be a component that is pluggable to a component K2. Then plug-
ging K1 to K2, denoted K = K1	
K2, is defined as follows:

– filed.pIF.K = filed.pIF.K1 + field.pIF.K2;
– pMeth.K = pMeth.K1 + pMeth.K2 − rMeth.K1 − rMeth.K2;
– priMeth.K = priMeth.K1+priMeth.K2 + (pMeth.K1 ∩ rMeth.K2) + (rMeth.K1 ∩ pMeth.K2);
– filed.rIF.K = filed.rIF.K1 + field.rIF.K2;
– rMeth.K = rMeth.K1 + rMeth.K2 − pMeth.K1 − pMeth.K2;
– init.K = init.K1 ∧ init.K2; and
– code.K(m) = (code.K1 ⊕ code.K2)(m) for each m ∈

∑2
i=1 pMeth.Ki + priMeth.Ki, where ⊕

is the union of two functions.

Notice that we do not allow calling circles in the above definition.
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The above definition indicates that the provided methods of K1 that are plugged to the
required methods of K2 become private and not available to the environment anymore,
and vice versa.

Example 6. From the above definition, we know that the components K2 and K3 in
Example 3 are pluggable, K2	
K3 can be defined as:

pIF.K2	
K3 = 〈{buff 1, buff 2:int∗}, {put(in x:int), get(out y:int)}〉
priMeth.K2	
K3 = {put1(in x:int), get1(out, y:int)}
init.K2	
K3 = buff 1 := 〈 〉; buff 2 := 〈 〉
code.K2	
K3(put) = (buff1:=〈x〉) � buff1=〈〉� (put1(head(buff1)))
code.K2	
K3(get) = (y:=head(buff 2); buff 2:=〈〉) � buff 2�〈〉� get1(y)
code.K2	
K3(get1) = (buff1�〈〉)→ (y:=head(buff1); buff1:=〈 〉)
code.K2	
K3(put1) = (buff 2=〈〉)→ buff 2:=〈x〉
rIF.K2	
K3 = ∅.

The transition graph of K2	
K3 is given in Fig.2, which is a two-place buffer. �

s2s1’

s1s2’s1s1’

s2s2’

put get

put

get

get

put

Fig. 2. Transition Graph of K2	
K3

Feedback. Let K be a component, suppose its provided method m has the same signa-
ture as the required method n. We use the notion K[m ↪→ n] to represent the component
which feeds back its provided service m to the required one n such that whenever n
is invoked in K, m is invoked in K[m ↪→ n]. This feedback can be defined by using the
plugging operator. Let F be the component, which only provides n, and the code of n be
n(){m()}, i.e. F only requires m. Then K[m ↪→ n] =̂ K	
F.

6.2 Composition of Publications

In this subsection, we investigate these operators at the level of publications from the
user’s point of view.

Renaming. Since a publication contains two publication contracts, renaming a method
in a publication definitely involves renaming a method in a publication contract. So, we
first define renaming in (publication) contract.

Definition 16. Given a contract C and n∈Meth.C, renaming n to m in C, denoted C[m/n],
is defined as



254 N. Zhan, E.Y. Kang, and Z. Liu

– IF.C[m/n] = (IF.C)[m/n];
– init.C[m/n] = init.C;
– spec.C[m/n](n) = spec.C(n), and spec.C[m/n](op) = spec.C(op) for any other method of

the interface;
– prot.C[m/n] = (prot.C)[m/n],

where m is a fresh method name, with the parameter type as n.

Definition 17. Let U = 〈G,A,C〉. Renaming a method n ∈ Meth.G ∪Meth.A gives the
publication U[m/n] = 〈G[m/n],A[m/n],C[m/n]〉.

Hiding. Hiding a provided method in a publication is semantically equivalent to re-
moving this method from its provided interface. Formally,

Definition 18. Let U = (G,A,C) be a publication, and m ∈ Meth.G. Hiding m in U, de-
noted U\m, is defined by U\m = 〈G\m,A ,C\m)〉, where G\m is defined by

– IF.G\m = 〈field.G,Meth.G − {m}〉,
– init.G\m = init.G,
– spec.G\m(n) = spec.G(n) for each method n in Meth.G − {m}, and
– prot.G\m = (prot.G)\m.

Note that hiding required methods in a component or publication does not make sense
as required methods can be looked as bound variables (names) from a logical point of
view.

Internalizing. Internalizing a set of methods in a publication is via internalizing these
methods in its provided contract and hiding them in its invocation dependency oriented
protocol. Internalizing methods in a publication contract is quite similar to internaliz-
ing methods in a component by changing all explicit invocations to these internalized
methods to implicity invocations. Thus, from outside, these methods are invisible, but
their impacts are still there.

Given a publication contract C = (I, θ,D,T ), let M ⊆ Meth.I be internalized in C and
m ∈ Meth.I − M. Then, all possible sequences of invocations to these internalized meth-
ods in M before and after each execution of m can be calculated according to T as
follows:

maxT(T ,m,M) =̂ {�ˆeˆr | � ∈ M∗ ∧ r ∈ M∗ ∧ ∃tr1, tr2 ∈ Meth.I∗.tr1ˆ(�ˆeˆr)ˆtr2 ∈ T }

Definition 19. Let G be a publication contract and M ⊆ Meth.G. Internalizing M in G,
denoted G↙M, is the publication such that

– IF.G↙M = (IF.G)\M,
– init.G↙M = init.G,
– spec.G↙M(n) = �s∈maxT(prot.G,n,M)spec.G(s) for each method n in Meth.G − M, and
– prot.G↙M = prot.G � (Meth.G − M)

Then, internalizing on a publication can be defined

Definition 20. For a publication U = (G,A ,C), U↙M = (G↙M,A,C � (Meth.G − M)).
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Plugging. We now define the plugging operator on publications. A publication U1 can
plug into another publication U2 only if on one hand, U1 and U2 have no naming con-
flicts; on the other hand, if a method m is respectively specified in U1’s provided contract
and U2’s required contract, then the former must be a refinement of the latter, and vice
versa. Formally,

Definition 21. Let Ui, i = 1, 2, be publications. U1 and U2 are pluggable if

1. (field.pCtr.U1 ∩ field.pCtr.U2) = ∅, and (Meth.pCtr.U1 ∩Meth.pCtr.U2) = ∅;
2. (field.rCtr.U1 ∩ field.rCtr.U2) = ∅, and (Meth.rCtr.U1 ∩Meth.rCtr.U2) = ∅;
3. spec.pCtr.Ui(m) � spec.rCtr.U j(m), for each m ∈ pMeth.Ui ∩ rMeth.U j, where i, j = 1, 2

and j � i.

Definition 22. Given two publications U1 and U2, which are pluggable. Then plug U1

to U2 is denoted by U1	
U2, and defined as U1	
U2 = 〈G,A,C〉, where

– field.G = filed.pCtr.U1 + field.pCtr.U2,
– Meth.G = pMeth.U1 + pMeth.U2 − rMeth.U1 − rMeth.U2,
– Meth.A = rMeth.U1 + rMeth.U2 − pMeth.U1 − pMeth.U2,
– spec.G(m) = spec.pCtr.U1(m) ⊕ spec.pCtr.U2(m), for m ∈ Meth.G,
– spec.A(m) = spec.rCtr.U1(m) ⊕ spec.rCtr.U1(m), for m ∈ Meth.A,
– prot.G = causal.U1	
U2 � (pMeth.U1 − rMeth.U2),
– prot.A = causal.U1	
U2 � (rMeth.U1 − pMeth.U2),
– causal.U1	
U2 = causal.U1 ‖(rMeth.U1∩pMeth.U2)∪(pMeth.U1∩rMeth.U2 ) causal.U2.

From the above definition, you can see that once a required method of a publication is
provided by another publication, then the method does not appear in the plugging of
the two publications. This is consistent with plugging two components makes a method
required by one and provided by the other private to the composite component.

Example 7. From the above definition, we know that the publications UB2 and UB3 in
Example 5 are pluggable, and UB2	
UB3 is:

pIF.UB2	
UB3 = 〈{buff 1, buff 2:int∗}, {put(in x:int), get(out y:int)}〉
rIF.UB2	
UB3 = ∅,

spec.pCtr.UB2	
UB3 (put(in x:int)) = (� buff ′1=〈x〉ˆbuff 1) � buff 1 = 〈 〉� (� buff ′1=buff 1)
spec.pCtr.UB2	
UB3 (get(out y:int)) = (� buff ′2 = tail(buff 2) ∧ y′ = head(buff 2)) � buff 2 � 〈 〉�

(� buff ′2=buff 2 ∧ ∃c ∈ int.y′ = c)
causal.UB2	
UB3 = CB2 ‖{get1;put1} CB3

= [(〈put; get〉)∗ˆ(ε + 〈put〉ˆ(〈put; get〉)∗+
〈put〉ˆ(〈put; get〉)∗ˆ〈get〉)]∗.

We can see UB2	
UB3 is exactly a publication of K2	
K3. �

Feedback. Feedback for publications can be defined similarly to the definition for
components.

A publication of a component tells the user what component does and how to use
it. Therefore, it must be certified that the component does indeed do what is said in
its publication. The following theorem shows that if the subcomponents conform to
their publications, a composition of them will conform to the composition of their
publications.
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Theorem 6. (Certification of Publication) All the operators defined above are com-
positional. That is,

1. if U is a publication of K, then U[m/n] is a publication of K[m/n];
2. if U is a publication of K, then U\m is a publication of K\m;
3. if U is a publication of K, U↙M is a publication of K↙M;
4. if U1 is a publication of K1 and U2 is a publication of K2, then U1	
U2 is a publication

of K1	
K2;
5. if U is a publication of K, then U[m ↪→ n] is a publication of K[m ↪→ n].

7 Conclusion and Future Work

This paper presents our further investigation on component publications and compo-
sitions of rCOS. We proposed a general approach on how to calculate the weakest
required contract of a component according for a given provided contract. Then, we
defined a set of composition operators on components and on their publications, and
we studied the relation between compositions of components and their publications.

We hope the definitions and theorems in this paper set up the foundation for our
ongoing research on the following problems

– Decomposition. The semantic equation (1) in Section 5 is in general unsolvable
(undecidable). We have shown that the equations is solvable under some special
cases. We will study further conditions under which it is solvable. This is significant
to the general problem of program decomposition.

– Refinement Theories. The refinement relation between contracts and components
in rCOS [5,1] is essentially the failure/divergence partial order of CSP [11]. The
disadvantages of such a refinement relation include: 1) it can only be used to
compare two components with the same interface; 2) it mainly concerns safety
property, but in component-based methods, we have to consider the reactivity to
invocations of services from the environment, which is liveness property. To illus-
trate the second disadvantage, consider the example: let m1 and m2 be two simple
stateless methods, without divergence and deadlock. Let C1 = {false&m1, false&m2},
C2= {true&m1,false&m2}, C3= {true&m1, true&m2} be complete contracts. Then, prot.C1

= ∅, prot.C2= {m1}∗, and prot.C3= {m1,m2}∗. It is easy to getD(C1) = D(C2) = D(C3)=∅,
and F (C1) = {(〈〉, {m1,m2})} ∧ F (C2)= {(〈mn

1〉, {m2}) | n ≥ 0} ∧ F (C3) = ∅. According to
the definition, obviously, C1 � C3 and C2 � C3, but C1 cannot be compared with C2.
But from a user’s point of view, C2 should be better than C1.

We often need to support incremental design by extending a component to pro-
vide more services. Therefore, we are currently studying a more general refinement
theory with the concepts of strongest provided contracts and weakest required con-
tracts.

– Glue Theory. We are interested in developing a coordination model for specifica-
tion and verification of glue code in the framework of rCOS.
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Abstract. As a system-level modelling language, SystemC possesses
several novel features such as delayed notifications, notification can-
celling, notification overriding and delta-cycle. It is challenging to for-
malise SystemC. In this paper, we study the denotational semantics for
SystemC using Unifying Theories of Programming (abbreviated as UTP)
[6]. Two trace variables are introduced, one is to record the state be-
haviours and another is to record the event behaviours. The timed model
is formalised in a three-dimensional structure. A set of algebraic laws is
explored, which can be proved via the achieved denotational semantics.

1 Introduction

SystemC is a system-level modelling language, which can be used to model a
system at different abstract levels. Modelling and simulation in SystemC gives
the designers early insights about the potential design problems that could arise.
Compared with traditional hardware description languages, SystemC possesses
several new and interesting features, including delayed notifications, notification
cancelling, notification overriding and delta-cycle.

In SystemC, processes can trigger events actively while in Verilog [7] events
are generated based on the changes of states. In SystemC, events represent some
general condition during the execution of the program. An event can be noti-
fied on many separate occasions. There are three kinds of event notifications:
immediate event notifications, delta-cycle delayed notifications and timed notifi-
cations. Delayed notifications can be cancelled via cancel statements before they
are triggered. Delayed notifications on the same event override each other and
only one delayed notification survives.

Although SystemC comes with a user manual ([9,10]), a formal semantics
of SystemC is mandatory for various applications in simulation, synthesis, and
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formal verification. Müller et al presented an ASM-based SystemC simulation
semantics [12]. That semantics covers method, thread, and clocked thread be-
haviour as well as their interactions with the simulation kernel process. Gawan-
meh et al extended the work in [12] to deal with more complex components
of SystemC [2]. Habibi and Tahar presented a semantics of the main part of
SystemC in terms of fixed points [3]. We have also provided an operational se-
mantics for SystemC [11], where a set of algebraic laws has been explored via
the concept of bisimulation [8].

This paper considers the denotational semantics of SystemC, where our ap-
proach is based on Unifying Theories of Programming (abbreviated as UTP)
[6]. UTP was developed by Hoare and He in 1998 [6] and has been successfully
applied in studying the semantics of programming languages and their algebraic
laws, as well as the refinement calculus of different level programs. The new fea-
tures of SystemC make it worthwhile to formalise its denotational semantics via
UTP approach.

The rest of this paper is organized as follows. In section 2 we select a kernel
subset of SystemC and present an introduction for the language. We also provide
the denotational semantic model in this section. The timed model of SystemC
is considered in a three-dimensional structure. A set of healthiness conditions
is explored in order to achieve the denotational semantics. Section 3 is devoted
to the denotational semantics using the UTP approach. Two traces are applied
for the formalization, one is to record the state behaviour and another is to
record the event behaviour. Section 4 explores the algebraic laws of SystemC,
which can be proved via the achieved denotational semantics. A set of algebraic
laws is studied, including the algebraic laws concerning the distinct features for
SystemC. Section 5 concludes the paper.

2 The Semantic Model of SystemC

2.1 The Syntax of SystemC

In this paper we select a kernel subset of SystemC for exploring its semantics. Al-
though it is a subset of SystemC, it still covers the interesting and main features,
such as delay notifications, notification cancelling, notification overriding, chan-
nel, concurrent processes and delta-cycle. In this section, we present the syntax
of the selected subset and give a brief introduction of its interesting features.

For simplicity, we omit the syntactic elements for representing the architecture
of a SystemC program. The subset language adopts a C-like syntax:

PP ::= P | PP ‖ PP

P ::= Skip |v := exp | chan stmt | event stmt | wait stmt

| P ;P | if b then P else P | while b do P

chan stmt ::= ch??v | ch!!exp

event stmt ::= notify(eΔ0) | notify(eΔ1) | notify(e�T ) | cancel(e)
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wait stmt ::= wait(Δ1) | wait(	T ) | wait(e list)

e list ::= single e |ori∈I{single ei}
single e ::= e | pe(ch) | ne(ch)

For statements such as Skip, assignment statement (v := exp), sequential com-
position (P ; Q), conditional statement (if b then P else Q) and iteration state-
ment (while b do P ), their meanings are similar to the conventional program-
ming language.

Channel output statement ch!!exp is executed in evaluation phase, which gen-
erates a request to update the channel. These update requests will be carried
out in the following update phase. Channel input statement ch??v assigns the
current value of channel ch to variable v.

An event is notified by statement notify. An event can be notified immediately
(i.e., notify(eΔ0)) or after a period of time (i.e., notify(eΔ1)) or notify(eT )).
Statement cancel(e) cancels the delayed notifications on event e.

A process may wait for the arriving or firing of an event. These events can be
classified into two types; i.e., single events or complex events. Single events can
have three forms; i.e., e, pe(ch) and ne(ch), where event e can be generated by
event notifications. wait(pe(ch)) is fired only when the current value of channel
ch is greater than its previous value, whereas wait(ne(ch)) stands for the op-
posite firing case. Complex events can be of the form ori∈I{single ei}. For the
waiting of complex events, if anyone is fired or becomes active, the whole waiting
behaviour becomes fired or active.

Different from traditional hardware description language, time delay has two
types; i.e., micro time advance and macro time advance. wait(Δ1) stands for
one unit micro time advancing, whereas wait(#T ) stands for T units macro
time advancing.

P ‖ Q means P runs in parallel with Q. Their communication is through
channels and variables. Further, their synchronization is based on events.

If there exist branch processes of a parallel process ready to run, one branch
will be selected to be executed. The selection is nondeterministic. Channels will
be updated when a waiting command is encountered during the current execu-
tion. If all branch processes are still waiting, then time will be advanced. Micro
time (Delta-cycle) will be advanced first. If that does not activate any processes,
then macro time will be advanced. The executed is proceeded by the following
steps.
(1) Evaluation Phase. Select a ready process to execute. The order of the se-

lection is nondeterministic. The selected process does its execution until a
waiting command is encountered. This sequence of instantaneous commands
form an atomic action, which is uninterrupted.

The execution of a process may cause immediate event notifications to
occur. It may also generate pending requests to update channels in the fol-
lowing update phase.

(2) Update Phase. Carry out all pending channel update requests generated in
last evaluation phase, which may generate some events pe(ch) or ne(ch).
Then go to step (1).
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(3) Micro Time (Delta-cycle) Advancing Phase. If there are no processes ready to
run and no pending channel update requests, but there exist pending delta-
cycle notifications or delta-cycle timeouts, advance the delta-cycle. Then
determine which processes are ready to run and go to step (1).

(4) Macro Time Advancing Phase. If there are no processes ready to run, no
pending channel update requests, no pending delta-cycle notifications and no
delta-cycle timeouts, advance the current macro time by one time unit. And
determine which processes become ready to run due to events or timeouts
that are triggered at the current time. If there exist processes ready to run,
then go to step 1, otherwise advance the current macro time by one time
unit again.

2.2 The Denotational Semantics Model

SystemC possesses the feature of shared-variable concurrency. In order to deal
with this feature, we introduce a sequence type variable tr1 for recording the
behaviour of state change of a program. Moreover, SystemC not only has the
feature of traditional time delay, it also contains the feature of Δ time delay (i.e.,
micro time delay). Therefore, the structure of tr1 can be depicted as Figure 1.

0 1 n Marc o-tim e

Mic ro
T im e

1

2

m

0 0 1

2

m

1

2

m

0

Fig. 1.

At the relative macro time “i” point, time may also advance in Δ time step,
standing for the micro-time advancing. Therefore, a sequence of behaviours may
be recorded at each Δ time point. These behaviours can be classified into two
types; i.e., contributed by the process itself or its environment. In Figure 1, the
symbol “⊕” and “◦” stand for the contribution by the process itself and its
environment respectively.

In order to record these behaviours, the concept of snapshot is introduced,
expressed as (σ, f), where σ stands for the contribution of the behaviour and
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f stands for the flag. “f = 1” indicates that the behaviour is contributed by
the process itself and “f = 0” indicates that the behaviour is contributed by its
environment. Below is the formal structure of trace tr1.

Element1 = {(σ, f)|σ ∈ State ∧ f ∈ {0, 1}},
tr1 ∈ seq(seq(seq(Element1)))

Here, seq(T ) stands for a sequence type, where each sequence is composed of
elements from type T .

We select the components of a snapshot using projections.
π1((σ, f)) =df σ and π2((σ, f)) =df f

In SystemC, waiting guards can be triggered by events, which can be generated
by the process itself or its environment. We use the trace variable tr2 to record
all the events generated by the process or its environment. tr2 has the same time
structure, as shown in the above Figure 1. It can be defined as below.

Element2 = {(e, f)|e ∈ Event ∧ f ∈ {0, 1}}
tr2 ∈ seq(seq(seq(Element2)))

For any tr1 (or tr2) type trace s, len(s) stands for the length of sequence s; i.e.,
it stands for the length of macro-time advancing. s[0] and s[len(s) − 1] stand
for traces of the start point and end point of the current macro-time observa-
tion interval. Furthermore, s[i][j] stands for the trace behaviour at the point of
macro-time i and micro-time j.

Example 2.1. Let Pi = notify(eiΔ0) ; notify(fiΔ0) ; ui := ui + 1 ; vi :=
vi + 2 (i = 1, 2). Assume that the initial states for the above four shared vari-
ables are 0. Consider the traces tr1, tr2 for process P1, P2 and P1 ‖ P2.

As the four statements in P1 and P2 form an atomic action respectively. Ei-
ther notify(e1Δ0) or notify(e2Δ0) can be scheduled first. For all these considered
traces, their lengths are 0, and their lengths at the current macro time point are
also 0.

If notify(e1Δ0) is scheduled first, below are the three tr1 traces at the point
of macro time 0 and micro time 0 for P1, P2 and P1 ‖ P2 respectively.

〈(σ1, 1)〉̂〈(σ2, 0)〉, 〈(σ1, 0)〉̂〈(σ2, 1)〉, 〈(σ1, 1)〉̂〈(σ2, 1)〉
where, σ1 = {u1 (→ 1, v1 (→ 2, u2 (→ 0, v2 (→ 0},

σ2 = {u1 (→ 1, v1 (→ 2, u2 (→ 1, v2 (→ 2}
At this case, three tr2 traces at the point of macro time 0 and micro time 0 for
P1, P2 and P1 ‖ P2 are shown below respectively.

〈(e1, 1)〉̂ 〈(f1, 1)〉̂ 〈(e2, 0)〉̂〈(f2, 0)〉, 〈(e1, 0)〉̂〈(f1, 0)〉̂〈(e2, 1)〉̂〈(f2, 1)〉
〈(e1, 1)〉̂〈(f1, 1)〉̂〈(e2, 1)〉̂〈(f2, 1)〉

On the other hand, if notify(e2Δ0) is scheduled first, the analysis is similar. �
As tr1 and tr2 have three dimensional structure, now we introduce the prefix
definition between two tr1 (or tr2) type traces, denoted as %1.
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Definition 2.2

s %1 t =df ∃m, n •

⎛⎜⎜⎜⎜⎜⎝
m = len(s) ∧ n = len(t) ∧ m ≤ n ∧
∀i ∈ {0..m− 2} • s[i] = t[i] ∧

∃k •

⎛⎜⎝k = len(s[m− 1]) ∧
∀l ∈ {0..k − 2} • s[m − 1][l] = t[m − 1][l] ∧
s[m − 1][k − 1] % t[m − 1][k − 1]

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎠
For traditional sequences s and t, t − s stands for the sequence that subtracts
sequence s from t with respect to the traditional prefix structure %. On the other
hand, if s and t are the sequences of tr1 (or tr2) type structure, t − s has the
similar meaning with respect to the new %1 prefix structure.

The execution of an atomic action is represented by a single snapshot. In order
to describe the behaviour of individual shared variable assignment, we introduce
a variable ttr to model the accumulated change made by the statements of
the atomic action. An assignment is simply formulated as storing the result
in variable ttr. Meanwhile, the current value of channel ch is also stored in
variable ttr. On the completion of an atomic action, the corresponding snapshot
is attached to the end of the trace to record its behaviour.

The event generated by channel receiving will not be immediately attached
to the end of the trace variable tr2. After all the behaviours in an atomic action
complete, the process enters into the update phase. Hence we use a trace variable
RQ to record new channel states due to the channel receiving.

Three kinds of event notifications are introduced in SystemC for generating
events. notify(eΔ0) is used to generate event e, which will be active immediately.
For notify(eΔ1), it can generate event e that will be active in one micro time
unit. Moreover, notify(e#T ) also generates event e. However, it can only be
active in T macro time units. For recording the events contributed by the above
last two notification commands, we introduce two set type variables, EN2 and
EN3. Here, EN2 records the generated events, which will be active in one micro
time unit. EN3 contains the pairs (e, T ), which indicates that event e will be
active in T macro time units.

Example 2.3
Let P = notify(e1Δ0) ; notify(e2 Δ1) ; notify(e3#2) ; notify(f1#4). Assume
that EN2 = {e1} and EN3 = {(e3, 1), (f1, 5)}. Here e1, e2, e3 and f1 are all
events. Now we consider new EN2 and EN3 after the execution of all these
notifications.

The first immediate notification will record event e1 in the trace variable
tr2, which may fire the environment’s waiting command immediately. Moreover,
event e1 should also be removed from EN2, while EN3 remains unchanged. The
execution of the second notification command will add event e2 to EN2 and also
keep EN3 unchanged.

As (e3, 1) has already belonged to EN3, the execution of the third command
will not add anything to EN3. Furthermore, the fourth command will remove
pair (f1, 5) from EN3 and add (f1, 4) to EN3 because the time stamp in (f1, 4)
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is smaller than the time stamp in (f1, 5). Therefore, the final values of EN2 and
EN3 are:

EN2 = {e2} and EN3 = {(e3, 1), (f1, 4)} �
The execution of a SystemC process can never undo an atomic action that has
already been performed. A formula P which identifies a program must therefore
imply this fact; i.e., it has to meet the following healthiness condition:

(H1) P = P ∧ Inv(tr1, tr2)
where, Inv(tr) =df (tr1 %1 tr1′) ∧ (tr2 %1 tr2′)

Here Inv(tr1, tr2) indicates tr1 and tr2 are the prefix of tr1′ and tr2′ respec-
tively, which indicates that trace can only get longer. As in relational calculus,
for any denotational variable u, we use u and u′ to stand for the initial value
and final value for the current execution respectively.

A SystemC process may perform an infinite computation and enter a divergent
state. To distinguish its chaotic behaviour from the stable ones we introduce the
variables ok, ok′ : Bool into the semantical model, where ok = true indicates
that the process has been started, and ok′ = true states that the process is stable
currently. ok = false means that the program has never started and even the
initial values are unobservable.

Definition 2.4. Let Q and R be formulae not containing ok and ok′. Define

Q � R =df ¬ok ∧ Inv(tr1, tr2) ∨ ¬Q ∨ (ok′ ∧ R)

A design is a formula that is expressed in this form. �
A timing controlled statement cannot start its execution before its guard is trig-
gered. To distinguish its waiting behaviour from terminating one, we introduce
another pair of variables wait, wait′ : Bool. When wait is true the program is
started in an intermediate state, and when wait′ is true the program is idle.
Therefore, for sequential composition “R ; P”, all the intermediate observations
of R are also the intermediate observations of “R ; P”. Control can pass from
R to P only when R is in its terminating state, distinguished by the fact that
wait′ is false. If program P is asked to start in a waiting state of R, it leaves the
state unchanged.

(H2) P = II � wait � P , where
II =df true � (

∧
s∈{tr1,tr2,ttr,X,RQ,EN2,EN3,wait} s′ = s)

and P � b � Q =df (P ∧ b) ∨ (¬b ∧ Q)
Here, X stands for the vector containing all the local variables for the current
program. X ′ = X indicates that all the local variables remain unchanged.

Definition 2.5. Formula P is healthy iff there exists a design D = (Q �
(W � wait′ � T )) such that P = H(D), where

H(Y ) =df (II � wait � (Y ∧ Inv(tr1, tr2)) �
Theorem 2.6. H(Y ) satisfies healthiness condition (H1) and (H2). �
Now we give the definition for sequential composition.
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Definition 2.7. Let P1 and P2 be formulae. Define

P1 ; P2 =df ∃S • (P1[S/V ′] ∧ P2[S/V ])

where, V stands for the list of all denotational variables in our model; i.e., ok,
tr1, tr2, ttr, X , RQ, EN2,EN3, wait. �

Now we provide a simple refinement calculus for healthy formulae and show that
they are closed under sequential composition, conditional choice, disjunction and
conjunction.

Theorem 2.8. If ¬Qi = ¬Qi ∧ Inv(tr1, tr2), Wi = Wi ∧ Inv(tr1, tr2),
Ti = Ti ∧ Inv(tr1, tr2) for i = 1, 2, then
(1) H(Q1 
 W1 � wait′ � T1) ; H(Q2 
 W2 � wait′ � T2)

= H(¬(¬Q1 ; Inv(tr1, tr2)) ∧ ¬(T1 ; ¬Q2) 
 (W1 ∨ (T1 ; W2)) � wait′ � (T1 ; T2))

(2) H(Q1 
 W1 � wait′ � T1) � b � H(Q2 
 W2 � wait′ � T2)

= H((Q1 � b � Q2) 
 (W1 � b � W2) � wait′ � (T1 � b � T2))

(3) H(Q1 
 W1 � wait′ � T1) ∨ H(Q2 
 W2 � wait′ � T2)

= H((Q1 ∧ Q2) 
 (W1 ∨ W2) � wait′ � (T1 ∨ T2))

(4) H(Q1 
 W1 � wait′ � T1) ∧ H(Q2 
 W2 � wait′ � T2)

= H((Q1 ∨ Q2) 
 ((Q1 ⇒ W1) ∧ (Q2 ⇒ W2)) � wait′ � ((Q1 ⇒ T1) ∧ (Q2 ⇒ T2)))�
The laws for disjunction and conjunction can be generalised to the union and
intersection of arbitrary set. This indicates that healthy formulae form a com-
plete lattice under the implication order. We use HF to denote the set of all
healthy formulae. The weakest fixed point of a monotonic function Φ on HF can
be defined by

μHF X • Φ(X) =df 	{F | F ⇒ Φ(F ) and F ∈ HF}
In the subsequent sections we will formalize a SystemC process P as a healthy
formula of the form

H(¬div(P ) � wait(P ) � wait′ � ter(P ))
where, div(P ), wait(P ) and ter(P ) stand for the divergent behaviour, waiting
behaviour and termination behaviour of P respectively.

3 The Denotational Semantics for SystemC

3.1 Sequential Constructs

Program variables can be classified into two types; i.e., shared variable assign-
ment and local variable assignment.
Let

Env(s) =df ∀i, j • ( (0 ≤ i ≤ len(s)) ∧ (0 ≤ j ≤ len(s[i])) ) ⇒ π2(s[i][j]) ∈ 0∗

Instenv(s) =df len(s) = 0 ∧ len(s[0]) = 0 ∧ Env(s)

Env(s) is used to describe the phenomena that the new states (or new events) are
generated by the environment. Instenv(s) behaves like Env(s), and the macro
time and micro time do not advance.
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InstEnv =df H

⎛⎜⎝true �

⎛⎜⎝¬wait′ ∧
∧

t∈{tr1,tr2} Instenv(t′ − t)
∧ ttr′ = π1(last(last(last(tr1′))))
∧ same({X, RQ, EN2, EN3})

⎞⎟⎠
⎞⎟⎠

where, same(A) =df

∧
x∈A (x′ = x). Here last(s) stands for the last element of

sequence s.
Formula InstEnv indicates that the trace behaviours of tr1 and tr2 should

all satisfy a condition expressed in the function Instenv and the state of the
last snapshot of trace tr1 is assigned to variable ttr. All other variables remain
unchanged.

Now we consider the behaviour of Skip. If it is the first statement of an atomic
action, its behaviour can be formalised using formula InstEnv. Otherwise, it be-
haves like II.

Skip =df InstEnv � ttr = null � II

Next we consider the definition of shared variable assignment. Let

sassign(v, e) =df H
(
true �

( ¬wait′ ∧ ttr′ = ttr[e/v]∧
same({tr1, tr2, X, RQ, EN2, EN3})

))
Formula sassign(v, e) indicates that the value of expression e is assigned to v
via the state variable ttr. Based on this, we can have the definition of shared-
variable assignment v := e.

v := e =df Skip ; sassign(v, e)

For considering the definition of local variable assignment, we introduce function
lassign(x, f).

lassign(x, f) =df H

⎛⎜⎝true �

⎛⎜⎝ ¬wait′ ∧ x′ = f ∧
same({tr1, tr2, ttr, X\{x},

RQ, EN2, EN3})

⎞⎟⎠
⎞⎟⎠

The definition of local variable assignment x := f can be described as:
x := f =df Skip ; lassign(x, f)

(P ; Q) behaves like P before P terminates, and then behaves like Q afterwards.
(P ; Q) =df (P ) ; (Q)

The definition of conditional can be defined based on Skip.
if b then P else Q =df Skip ; (P � b � Q)

The iteration construct is defined in the same way as its counterpart in conven-
tional programming languages

while b do P =df μHF X • if b then (P ; X) else Skip

where the notation μHF X • F (X) denotes the weakest fixed point of the mono-
tonic function F over the set of healthy formulae.

3.2 Channel Communication

Firstly, we consider the message output via channel. Let
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RqUpdate1(ch, exp)

=df H

⎛⎜⎝true �

⎛⎜⎝¬wait′ ∧
∧

x∈{tr1,tr2} Instenv(x′ − x)
∧ same({ttr, X, EN2, EN3})

∧RQ′ = RQ\(ch,−)̂〈(ch, exp(y))〉

⎞⎟⎠
⎞⎟⎠

RqUpdate2(ch, exp)

=df H
(
true �

(¬wait′ ∧ same({tr1, tr2, ttr, X, EN2, EN3})
∧RQ′ = RQ\(ch,−)̂〈(ch, exp(y))〉

))
where:
(1) y in the above two formulae stands for expression π1(last(last(last(tr1)))).
(2) ̂ stands for the concatenation of two traditional sequences.
(3) “\” is used to remove the pairs from the update sequence. It can be defined
as below:

〈〉\(ch, m) =df 〈〉
(〈(ch,−)〉̂t)\(ch, m) =df t\(ch, m)
(〈(ch1, n)〉̂t)\(ch, m) =df 〈(ch1, n)〉̂(t\(ch, m))

Here, ch1 �= ch and “−” matches to any elements.

For channel output command, its execution can be classified into two cases.
One is the case that the channel is in the first statement of an atomic ac-
tion, while another stands for the opposite. Formulae RqUpdate1(ch, exp) and
RqUpdate2(ch, exp) stand for the above two cases respectively.

The last line in the above two formulae indicates that, before appending the
value and its associate channel ch to the trace variable, the snapshots concerned
with the corresponding channel need to be removed because of the recording of
the new value of the channel. Furthermore, if channel output command is the first
statement of an atomic action, the environment can have the chance to do vari-
ables update and events generating. This is reflected via function “Instenv( )”.
Based on the above definitions, we can have the definition of channel output.

ch!!exp =df RqUpdate1(ch, exp) � ttr = null � RqUpdate2(ch, exp)

Next we can consider the message input via a specific channel ch??w, which can
be considered as assigning the value on channel.
If w is the shared variable, then

ch??w =df Skip ; sassign(w, ch)

If w is the local variable, then
ch??w =df Skip ; lassign(w, ch)

3.3 Event Notification

In order to define the semantics of event notifications, we first define formula
InstEnv1 as below. Compared with formulae InstEnv, the formula below does
not concern the issue about assigning a value to variable ttr. It keeps the value
of ttr unchanged.
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InstEnv1 =df H
(
true �

(¬wait′ ∧
∧

t∈{tr1,tr2} Instenv(t′ − t)
∧ same({ttr, X, RQ, EN2, EN3})

))
Then we can define a formula Skip1 as below, which can be used to define the
semantics of event notifications.

Skip1 =df InstEnv1 � ttr = null � II

Now we consider the immediate event notification notify(eΔ0).

InstEApp(e) =df H

⎛⎜⎜⎜⎝true �

⎛⎜⎜⎜⎝
¬wait′ ∧ len(tr2′ − tr2) = 0∧

len((tr2′ − tr2)[0]) = 0∧
(tr2′ − tr2)[0][0] = 〈(e, 1)〉 ∧

same(tr1, ttr, X, RQ, EN2, EN3)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

Formula InstEApp(e) indicates that event e is attached to the end of trace vari-
able tr2 without macro and micro time advancing.

EveUpd0(e) =df H

⎛⎜⎝true �

⎛⎜⎝¬wait′ ∧ same(tr1, tr2, ttr, X, RQ)
∧EN2′ = f1(EN2, e)
∧EN3′ = g1(EN3, e)

⎞⎟⎠
⎞⎟⎠

where, f1(A, e) =df {x | x ∈ A ∧ x �= e}
g1(A, e) =df {(x, T ) | (x, T ) ∈ A ∧ x �= e}

Formula EveUpd0(e) models the case below. For the immediate event notifica-
tion notify(eΔ0), after event e is attached to the end of the trace variable, two
set type variables EN2 and EN3 need to be modified due to the attachment of
event e to trace variable tr2. This modification is reflected from the above two
functions f1(A, e) and g1(A, e).

Then notify(eΔ0) can be defined as below:

notify(eΔ0) =df Skip1 ; InstEApp(e) ; EveUpd0(e)

Now we consider the definition of notify(eΔ1). Firstly we can give the defini-
tion for function EveUpdΔ(e). It models the behaviour that event e needs to be
added to EN2, while removing the event e related pairs from EN3.

EveUpdΔ(e) =df H

⎛⎜⎝true �

⎛⎜⎝¬wait′ ∧ same(tr1, tr2, ttr, X, RQ)
∧EN2′ = f2(EN2, e)
∧EN3′ = g2(EN3, e)

⎞⎟⎠
⎞⎟⎠

where, f2(A, e) =df A ∪ {e}
g2(A, e) =df {(x, T ) | (x, T ) ∈ A ∧ x �= e}

Different from notify(eΔ0), the execution of notify(eΔ1) only makes the changes
for variable EN2 and EN3, while leaving other variables unchanged. Then
notify(eΔ1) can be defined as below:

notify(eΔ1) =df Skip1 ; EveUpdΔ(e)

For considering the definition of notify(e#T ), we first give the definition for
function EveUpd#((e, T )) below.
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EveUpd#((e, T ))=df H

⎛⎝true �

⎛⎝¬wait′ ∧ same(tr1, tr2, ttr, X, RQ)
∧EN2′ = f3(EN2, e, T )

∧EN3′ = g3(EN2, EN3, e, T )

⎞⎠⎞⎠
where:

f3(A, e, T ) =df A

g3(A,B, e, T )

=df

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B ∪ {(e, T )} if e /∈ A ∧ ∀T1 ∈ N • (e, T1) /∈ B

B if e ∈ A or ∃T1 ∈ N • T1 ≤ T ∧ (e, T1) ∈ B

B\{(e, T3) | ∃T3 ∈ N• if ∃T2 ∈ N • T2 > T ∧ (e, T2) ∈ B

(e, T3) ∈ B} ∪ {(e, T )}
The behaviour of macro time event notification notify(e#T ) is mainly repre-
sented by the above two functions (f3 and g3) via formula EveUpd#((e, T )).
Macro time event notification does not affect set variable EN2. However, it
affects the set variable EN3, which can be dealt with in several cases shown
above.

For function g3(EN2, EN3, e, T ), its behaviour can be classified into three
cases. The first one expresses the case that EN2 does not contain event e and
EN3 does not contain event e related pairs. Then the result of this macro time
event notification simply adds the pair (e, T ) to EN3. The second expresses the
case that either e is already in EN2 or there exist event e related pairs whose
macro time stamp is not greater than T in EN3. For this case, EN3 remains
unchanged. Furthermore, if there exist event e related pairs whose macro time
stamp is greater than T , then EN3 needs to be modified. For this case, event
e related pairs need to be removed from EN3, and the considered pair (e, T )
needs to be added.

Then notify(e#T ) can be defined as below:
notify(e#T ) =df Skip1 ; EveUpd#((e, T ))

Finally we consider the event cancel statement cancel(e). The cancellation is
mainly represented by formula EveUpd0(e).

cancel(e) =df Skip1 ; EveUpd0(e)

3.4 Event Waiting

This section considers the semantics of event waiting statement. Firstly, we give
some preliminary definitions.

attach

=df H

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
true �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

¬wait′ ∧ ttr = null∧
same(tr2, X, RQ, EN2, EN3)∧
tr1′ = tr1 � ttr = null ∨ last(y) = ttr�⎛⎜⎝ y′ = ŷ〈(ttr, 1)〉 ∧

len(tr′ − tr) = 0∧
len((tr′ − tr)[0]) = 0

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where, y = last(last(tr)) and y′ = last(last(tr′)) in the above formula. The
purpose of the behaviour of attach is to append the contribution stored in ttr
to the end of trace variable tr1.

Next we define update(RQ), which is used to generate events from sequence
RQ. The generated events will be appended to the end of trace variable tr2.
update(s) can be defined as:

if s = 〈〉, then update(s) =df II

otherwise,

update(s) =df H

⎛⎜⎝true �

⎛⎜⎝ ¬wait′ ∧ s′ = tail(s)∧
(
∨

i∈{1,2,3} CompAtt(s, i) )∧
same(tr1, ttr, X, EN2, EN3)

⎞⎟⎠
⎞⎟⎠ ; update(s)

where, tail(s) stands for the sequence s but the first element.

Here, CompAtt(s, op) can be defined as:

(1) if op = 1, then
CompAtt(s, op)

=df ttr(π1(head(s))) < π2(head(s)) ∧ y′ = ŷ〈(pe(π1(head(s))), 1)〉 ∧
ttr′ = ttr[π2(head(s))/π1(head(s))]

(2) if op = 2, then
CompAtt(s, op)

=df ttr(π1(head(s))) > π2(head(s)) ∧ y′ = ŷ〈(ne(π1(head(s))), 1)〉 ∧
ttr′ = ttr[π2(head(s))/π1(head(s))]

(3) if op = 3, then
CompAtt(s, op)

=df ttr(π1(head(s))) = π2(head(s)) ∧ (tr2′ = tr2) ∧ (ttr′ = ttr)

where, y′ = last(last(tr2′)) and y = last(last(tr2)) in the above definition. Here
head(s) stands for the first element of sequence s.

The behaviour of ComAtt(s, op) is to generate the exact event based on the
two values recorded in ttr and the first element of trace s for the corresponding
channel. If the first value is less than the second, positive edge event on the chan-
nel will be generated. Inversely, negative edge event will be generated. Further,
if the two values are the same, no event will be generated.

Now we consider the semantics for the triggering for single event wait(et).
There are two event triggering cases. The first case is the self-triggering case; i.e.,
the event is triggered by the process itself, which indicates that the event is gen-
erated by the most recent completed atomic actions. We use formula selftrig(et)
to represent this case. In this case, the update based on sequence RQ needs to be
executed, as well as attaching the result of the recent completed atomic action.
It should also need to be judged whether the current situation belongs to the
self-triggering case.
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selftrig(et)=df Skip2 ; update(RQ) ; (ttr �=null)∧attach ; selfjudge(et)

where:
Skip2 =df InstEnv2 � ttr = null � II

and
InstEnv2

=df H
(
true �

(¬wait′ ∧ ttr′ = π1(last(last(last(tr1))))
∧ same({tr1, tr2, X, RQ, EN2, EN3})

))
and

selfjudge(et)

=df H
(
true �

(¬wait′ ∧ last(last(last(tr2))) = (et, 1)
∧ same(tr1, ttr, X, RQ, EN2, EN3)

))
The second case is the environment triggering case; i.e., an event is generated by
the environment and this event triggers the waiting behaviour. For this case, the
update based on sequence RQ and the attachment for the recent atomic action
need to be executed. Then the process waits for the environment to generate
the event which can trigger the current waiting command. The whole behaviour
can be partitioned into two phases. One is the waiting period, during which the
environment can generate events and these events can not trigger our waiting
command. The second phase is the triggering behaviour.

await(et)
=df Skip2 ; update(RQ) ;

(ttr = null ∨ last(last(last(tr2))) �= (et, 1)) ∧ attach ; aawait(et)

and

aawait(et) =df H

⎛⎜⎝true �

⎛⎜⎝∀i, j • et /∈ π1((tr2′ − tr2)[i][j])∧∧
x∈{tr1,tr2} Env(x′ − x)∧

same(RQ, X, ttr, EN2, EN3)

⎞⎟⎠
⎞⎟⎠

trig(et) =df H

⎛⎜⎝true �

⎛⎜⎝ Instenv(tr2′ − tr2)∧
last(last(last(tr2′ − tr2))) = 〈(et, 0)〉 ∧

same(tr1, ttr, RQ, EN2, EN3)

⎞⎟⎠
⎞⎟⎠

Therefore, we can have:

wait(et) =df selftrig(et) ∨ (await(et) ; trig(et))

Next we consider the semantics of compound event “or”. Let

selfjudge(ori∈I{eti})

=df H

(
true �

(
¬wait′ ∧ same(tr1, X, ttr, EN2, EN3)
∧ (
∨

i∈I last(last(last(tr2))) = (eti, 1) )

))
aawait(ori∈I{eti})
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=df H

⎛⎜⎝true �

⎛⎜⎝∀i, j, k • eti /∈ π1((tr2′ − tr2)[j][k])∧∧
x∈{tr1,tr2} Env(x′ − x)∧

same(RQ, X, ttr, EN2, EN3)

⎞⎟⎠
⎞⎟⎠

trig(ori∈I{eti})

=df H

⎛⎜⎝true �

⎛⎜⎝ Instenv(tr2′ − tr2)∧∨
i∈I( last(last(last(tr2′ − tr2))) = 〈(eti, 0)〉 )∧

same(tr1, ttr, RQ, EN2, EN3)

⎞⎟⎠
⎞⎟⎠

Therefore, we can have:

wait(ori∈I{eti})
=df selftrig(ori∈I{eti}) ∨ ( await(ori∈I{eti}) ; trig(ori∈I{eti}) )

For time delay statements, we first consider the Δ delay (micro time delay).

holdΔ(1) =df H

⎛⎜⎜⎜⎜⎜⎝true �

⎛⎜⎜⎜⎜⎜⎝
wait′ ∧

∧
x∈{tr1,tr2} Instenv(x′ − x)∧

same(ttr, X, RQ, EN2, EN3) ∨
¬wait′ ∧ same(ttr, X, RQ, EN2, EN3)
∧
∧

x∈{tr1,tr2}( len(x′ − x) = 0∧
len((x′ − x)[0]) = 1 ∧ Env(x′ − x) )

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
holdΔ(1) stands for the behaviours of one unit micro time advancing. Before the
advancing, the environment can generate new states and new events at the cur-
rent micro time point. After the advancing, the environment can also do similar
behaviours at the new micro time point.

WupdΔ =df H

⎛⎜⎜⎜⎜⎜⎝true

⎛⎜⎜⎜⎜⎜⎝
¬wait′ ∧ len(tr2′ − tr2) = 0∧

len((tr2′ − tr2)[0]) = 0∧
π1((tr2′ − tr2)[0][0]) ∈ permu(EN2)∧

π2((tr2′ − tr2)[0][0]) ∈ 1∗ ∧
same(ttr, tr1, X, RQ, EN3) ∧ EN2′ = ∅

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
where, permu(A) stands for the set containing all permutations of set A.

WupdΔ indicates that a sequence of events will be attached to the end of trace
tr2 at the current time point. These sequences are the permutations of all the
events recorded in EN2.

Hence, wait(Δ1) =df UpdAtt ; holdΔ(1) ; WupdΔ

where, UpdAtt =df Skip2 ; update(RQ) ; attach

Next we consider the semantics of macro-time delay. Firstly, we introduce for-
mula hold#(n). hold#(n) models the behaviour that macro time can advance n
time units. If time has not advanced n units, the process is still at the waiting
state. Otherwise, the process is at the terminating state. During the time ad-
vancing period, only the environment can generate new states or new events.
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hold#(n) =df

H

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
true �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wait′ ∧ len(tr1′ − tr1) < n ∧ Env(tr1′ − tr1)∧
len(tr2′ − tr2) < n ∧ Env(tr2′ − tr2)∧

same(ttr, X, RQ, EN2, EN3)
∨

¬wait′ ∧ len(tr1′ − tr1) = n ∧ Env(tr1′ − tr1)∧
len(tr2′ − tr2) = n ∧ Env(tr2′ − tr2)∧

same(ttr, X, RQ, EN2, EN3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
After n macro time units elapse, new events need to be attached to the end of
trace tr2 at the current micro time point. These events are taken from the pairs
in EN3 whose time stamp is n. We use Wupd#(n) to model these behaviours.

Wupd#(n) =df H

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
true �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

len(tr2′ − tr2) = 0∧
len((tr2′ − tr2)[0]) = 0∧
( π1((tr2′ − tr2)[0][0]) ∈

permu({e | (e, n) ∈ EN3}) )∧
π2((tr2′ − tr2)[0][0]) ∈ 1∗ ∧

EN3′ = {(e, T ) | (e, n + T ) ∈ EN3}∧
same(tr1, ttr, X, RQ, EN2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Based on the above definitions, we can define macro-time delay.

wait(n) =df UpdAtt ; hold#(n) ; Wupd#(n)

3.5 Parallel Composition

For defining parallel composition, we first provide several merge functions.

pmerge(s, t, u) =df

⎛⎜⎜⎜⎜⎝
π1(s[0..len(t) − 1]) = π1(t[0..len(t) − 1])∧
π1(s[0..len(t) − 1]) = π1(u[0..len(t)− 1])∧

( π2(u[0..len(t)− 1]) = π2(s[0..len(t)− 1])+
π2(t[0..len(t) − 1]) )∧

2 /∈ π2(u[0..len(t) − 1]) ∧ len(u) = len(s)

⎞⎟⎟⎟⎟⎠
where, 〈i1, ... , in〉 + 〈j1, ... , jn〉 =df 〈(i1 + j1), ... , (in + jn)〉
A snapshot is expressed as a pair (σ, f). The first two lines indicate that the
sequence of the states (or events) for a parallel process is the same as the sequence
of states (or events) for its two components. The third and fourth lines inform
that any state contributed by a parallel process is actually the contribution by
one of its components. These two lines also indicate that any state (or event)
contributed by the environment of a parallel process cannot be the contribution
of either of its components. The fifth line means that any state contributed by
a parallel process cannot be contributed by both of its components.

pmerge(s, t, u) is to merge two sequences s and t, the result is stored in se-
quence u. Here, s and t are one dimensional sequences; i.e., the sequence of
type tr1 (or tr2) at some micro time points. For pmerge(s, t, u), the length of
sequence s is greater than or equal to the length of sequence t.
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Next we introduce merge(s, t, u), which merges two sequences s and t into
one single sequecne. Its definition is based on the above pmerge function. For
merge(s, t, u), there are no length restrictions on sequence s and t.

merge(s, t, u)

=df

⎛⎜⎜⎜⎜⎜⎝
len(s) > len(t) ⇒

(
pmerge(s, t, u)∧
u[len(t)..len(s)− 1] = s[len(t)..len(s) − 1]

)
∧

len(s) = len(t) ⇒ pmerge(s, t, u) ∧

len(s) < len(t) ⇒
(

pmerge(t, s, u)∧
u[len(s)..len(t)− 1] = t[len(s)..len(t) − 1]

)
⎞⎟⎟⎟⎟⎟⎠

Now we introduce the merge behaviour further. Pmerge(s, t, u) is to merge two
sequences s and t into one single sequence u, where the types of these sequences
are of tr1 and tr2. Similarly, the length of s is also greater than or equal to the
length of t.

Pmerge(s, t, u)
=df ∀i • 0 ≤ i ≤ len(t) − 1 ⇒⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

len(s[i]) > len(t[i]) ⇒

⎛⎜⎜⎝
∀j • 0 ≤ j ≤ len(t[i]) − 1 ⇒

merge(s[i][j], t[i][j], u[i][j]) ∧
u[i][len(t[i])..len(s[i])− 1] =

s[i][len(t[i])..len(s[i])− 1]

⎞⎟⎟⎠∧

len(s[i]) = len(t[i]) ⇒
(
∀j • 0 ≤ j ≤ len(t[i])− 1 ⇒

merge(s[i][j], t[i][j], u[i][j])

)
∧

len(s[i]) < len(t[i]) ⇒

⎛⎜⎜⎝
∀j • 0 ≤ j ≤ len(s[i]) − 1 ⇒

merge(t[i][j], s[i][j], u[i][j]) ∧
u[i][len(s[i])..len(t[i])− 1] =

t[i][len(s[i])..len(t[i])− 1]

⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Based on the above “Pmerge()” function, we introduce merge function
Merge(s, t, u). It has similar behaviours as function merge(s, t, u). The differ-
ence is that the types of sequence s and t here are of tr1 and tr2.

Merge(s, t, u)

=df

⎛⎜⎜⎜⎜⎜⎝
len(s) > len(t) ⇒

(
PMerge(s, t, u)∧
u[len(t)..len(s)− 1] = s[len(t)..len(s) − 1]

)
∧

len(s) = len(t) ⇒ PMerge(s, t, u) ∧

len(s) < len(t) ⇒
(

PMerge(t, s, u)∧
u[len(s)..len(t)− 1] = t[len(s)..len(t) − 1]

)
⎞⎟⎟⎟⎟⎟⎠

Finally we introduce the merge operator ⊗ for two behaviours P and Q. Its
definition is based on the above Merge function.

P ⊗ Q

=df ∃ tr1P , tr2P , tr1Q, tr2Q, ttrP , ttrQ,

EN2P , EN3P , EN2Q, EN3Q, RQP , RQQ •



Denotational Approach to an Event-Driven System-Level Language 275⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P [tr1P , tr2P , ttrP , RQP , EN2P , EN3P /

tr1, tr2, ttr, RQ, EN2, EN3] ∧
Q[tr1Q, tr2Q, ttrQ, RQQ, EN2Q, EN3Q/

tr1, tr2, ttr, RQ, EN2, EN3] ∧
Merge(tr1P , tr1Q, tr1) ∧
Merge(tr2P , tr2Q, tr2) ∧
RQ′ = 〈〉 ∧ EN2′ = ∅ ∧
EN3′ = EN3P ∪ EN3Q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We are now ready to define the denotational semantics for program P and Q.
This can be proceeded by considering the divergent, waiting and terminating
behaviours of P ‖ Q.

• It stays at a waiting state if either component does so.

wait(P ‖ Q)) =df ( wait(P ) ⊗ wait(Q) ∨ wait(P ) ⊗ ter(Q) ∨
ter(P ) ⊗ wait(Q) )

• It terminates when both components complete their execution.
ter(P ‖ Q) =df ( ter(P ) ⊗ ter(Q) )

• It behaves chaotically when either component is divergent.

div(P ‖ Q)
=df ( div(P ) ⊗ div(Q) ∨ div(P ) ⊗ wait(Q) ∨ div(P ) ⊗ ter(Q) ∨

div(Q) ⊗ wait(P ) ∨ div(Q) ⊗ ter(P ) )

4 Algebraic Laws

Algebra is well-suited for direct use by engineers in symbolic calculation of pa-
rameters and the structure of an optimal design [5,6]. This section aims to explore
a set of algebraic laws for SystemC. These laws can be verified with respect to
the semantics given in the above section.

For assignment, conditional, iteration, nondeterministic choice and sequential
composition, our language enjoys similar algebraic properties as those reported
in [4,6]. Moreover, parallel composition can have similar expansion laws as those
in [13] by introducing an extra operator named “guarded choice”. In what follows,
we shall only focus on novel algebraic properties for SystemC.

4.1 Channel Statements

The behaviour of channel input statement ch??v is to assign the current value
of ch to variable v, which does no effect on channel ch. So the algebraic laws
associated with channel input statements are similar to those associated with
assignments.

Channel output statement is executed during the evaluation phase of a delta-
cycle. The new value will not be available to be read until the next delta-cycle.
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L1. ch!!exp ; S = S ; ch!!exp

where, S ∈ {Skip, x := exp, ch??x, notify(eΔ0),
notify(eΔ1), notify(eT ), cancel(e) }

If multiple channel output statements occur to the same channel, the last state-
ment executed determines the new value of the channel.

L2. ch!!exp ; ch1!!exp1 ; ch!!exp′ = ch1!!exp1 ; ch!!exp′

where, ch �= ch1.

From L1 and L2, we can have:
• For each channel, at most one output statement takes its effect in an atomic

action.

4.2 Event Statements

Events are used to synchronize concurrent processes. Therefore, the execution
order between statements dealing with events and statements dealing with vari-
ables and channels can be swapped in an atomic action.

L1 S1; S2 = S2; S1, where,

S1 ∈ {notify(eΔ0), notify(eΔ1), notify(eT ), cancel(e)},
S2 ∈ {Skip, x := exp, ch??x, ch!!exp}
The effect of delayed notifications does not occur immediately, so the order of
delayed notifications on different events can be changed in an atomic action.

L2 notify(eDT1) ; notify(fDT2) = notify(fDT2); notify(eDT1)

where, DT 1 ∈ {Δ0, Δ1, �T }, DT 2 ∈ {Δ1, �T }
An immediate notification can override the pending notification on the same
event.

L3 notify(eDT ); notify(eΔ0) = notify(eΔ0), where DT ∈ {Δ1, �T }
Only pending notifications can be cancelled. And at any moment, for one event
at most one pending notification can exist.

L4 (1) notify(eΔ0); cancel(e) = notify(eΔ0)

(2) notify(eDT ); cancel(e) = cancel(e)

(3) cancel(e); cancel(e) = cancel(e)

where, DT ∈ {Δ1, �T }
More than one delayed notification on the same event override each other and the
one scheduled to occur earlier overrides that scheduled to occur later. Delta-cycle
delayed notifications are scheduled to occur earlier than timed notifications.

L5 (1) notify(eDT1); notify(eDT2) (2) notify(eT1); notify(eT2)
= notify(eDT2); notify(eDT1) = notify(eT2); notify(eT1)
= notify(eΔ1) = notify(eT1)
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where, T 1 ≤ T 2, DT 1, DT 2 ∈ {Δ1, �T } and (DT 1 = Δ1) ∨ DT 2 = {Δ1}.
From the above laws, we can have:
• For each event, at most one delta-cycle delayed notification takes effect dur-

ing one delta-cycle.
• For each event, at most one timed delayed notification takes effect during

one simulation time unit.

5 Conclusion

Compared with traditional programming language, SystemC possesses several
novel features, including delayed notifications, notification cancelling, notifica-
tion overriding and delta-cycle. In this paper we studied its denotational se-
mantics via the concept of Unifying Theories of Programming [6]. The timed
model was formalised in a three dimensional structure. A refinement calculus
was designed for this three dimensional denotational model. A set of algebraic
laws has been studied, especially those which can represent the novel features of
SystemC. These laws can be verified via our denotational model.

For the future, we are continuing to work on the semantics for SystemC, espe-
cially the further unifying theories [1,6,13] for the various semantics of SystemC.
Further, program verification based on our achieved model for SystemC is also
an interesting topic to be explored.
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