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Abstract. Isogeny volcanoes are graphs whose vertices are elliptic curves
and whose edges are �-isogenies. Algorithms allowing to travel on these
graphs were developed by Kohel in his thesis (1996) and later on, by Fou-
quet and Morain (2001). However, up to now, no method was known, to
predict, before taking a step on the volcano, the direction of this step.
Hence, in Kohel’s and Fouquet-Morain algorithms, we take many steps
before choosing the right direction. In particular, ascending or horizontal
isogenies are usually found using a trial-and-error approach. In this paper,
we propose an alternative method that efficiently finds all points P of or-
der � such that the subgroup generated by P is the kernel of an horizontal
or an ascending isogeny. In many cases, our method is faster than previous
methods.

1 Introduction

Let E be an elliptic curve defined over a finite field Fq, where q = pr is a prime
power. Let π be the Frobenius endomorphism, i.e. π(x, y) �→ (xq , yq) and denote
by t its trace. Assume that E is an ordinary curve and let OE denotes its ring of
endomorphisms. We know [21, Th. V.3.1] that OE is an order in an imaginary
quadratic field K. Let dπ = t2 − 4q be the discriminant of π. We can write
dπ = g2dK , where dK is the discriminant of the quadratic field K. There are
only a finite number of possibilities for OE , since Z[π] ⊂ OE ⊂ OdK . Indeed,
this requires that f the conductor of OE divides g the conductor of Z[π].

The cardinality of E over Fq is #E(Fq) = q + 1 − t. Two isogenous elliptic
curves over Fq have the same cardinality, and thus the same trace t. In his
thesis [14], Kohel studies how curves in Ellt(Fq), the set of curves defined over
Fq with trace t, are related via isogenies of degree �. More precisely, he describes
the structure of the graph of �-isogenies defined on Ellt(Fq). He relates this graph
to orders in OK and uses modular polynomials to find the conductor of End(E).

Fouquet and Morain [8] call the connected components of this graph isogeny
volcanoes and extend Kohel’s work. In particular, they give an algorithm that
computes the �-adic valuation of the trace t, for �|g. This can be used in Schoof’s
algorithm [20]. Recently, more applications of isogeny volcanoes were found: the
computation of Hilbert class polynomials [1,23], of modular polynomials [4] and
of endomorphism rings of elliptic curves [2].
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All the above methods make use of algorithms for traveling efficiently on
volcanoes. These algorithms either need to walk on the crater, to descend from
the crater to the floor or to ascend from the floor to the crater. In many cases, the
structure of the �-Sylow subgroup of the elliptic curve, allows, after taking a step
on the volcano, to decide whether this step is ascending, descending or horizontal
(see [16,17]). Note that, since a large fraction of isogenies are descending, finding
one of them is much easier. However, no known method can find horizontal or
ascending isogenies without using a trial-and-error approach. In this paper, we
describe a first solution to this open problem, which applies when the cardinality
of the curve is known, and propose a method that efficiently finds a point P
of order � that spans the kernel of an ascending (or horizontal isogeny). Our
approach relies on the computation of a few pairings on E. We then show that
our algorithms for traveling on the volcano are, in many cases, faster than the
ones from [14] and [8]. Moreover, we obtain a simple method that detects most
curves on the crater of their volcano. Until now, the only curves that were easily
identified were those on the floor of volcanoes.

This paper is organized as follows: sections 2 and 3 present definitions and
properties of isogeny volcanoes and pairings. Section 4 explains our method to
find ascending or horizontal isogenies using pairing computations. Finally, in
Section 5, we use this method to improve the algorithms for ascending a volcano
and for walking on its crater.

2 Background on Isogeny Volcanoes

In this paper, we rely on some results from complex multiplication theory and
on Deuring’s lifting theorems. We denote by Ell d(C) the set of C-isomorphism
classes of elliptic curves whose endomorphism ring is the order Od, with dis-
criminant d < 0. In this setting there is an action of the class group of Od on
Ell d(C). Let E ∈ Ell d(C), Λ its corresponding lattice and a an Od-ideal. We
have a canonical homomorphism from C/Λ to C/a−1Λ which induces an isogeny
usually denoted by E → â ∗E. This action on Ell d(C) is transitive and free [22,
Prop. II.1.2]. Moreover [22, Cor. II.1.5], the degree of the application E → â ∗E
is N(a), the norm of the ideal a. Now from Deuring’s theorems [6], if p is a
prime number that splits completely, we get a bijection Ell d(C) → Ell d(Fq),
where q = pr. Furthermore, the class group action in characteristic zero respects
this bijection, and we get an action of the class group also on Ell d(Fq).

Isogeny volcanoes. Consider E an elliptic curve defined over a finite field Fq.
Let � be a prime different from char(Fq) and I : E → E

′
be an �-isogeny, i.e. an

isogeny of degree �. As shown in [14], this means that OE contains OE′ or OE′

contains OE or the two endomorphism rings coincide. If OE contains OE′ , we
say that I is a descending isogeny. Otherwise, if OE is contained in OE′ , we say
that I is a ascending isogeny. If OE and OE′ are equal, then we call the isogeny
horizontal. In his thesis, Kohel shows that horizontal isogenies exist only if the
conductor of OE is not divisible by �. Moreover, in this case there are exactly



Pairing the Volcano 203

(
d
�

)
+ 1 horizontal �-isogenies, where d is the discriminant of OE . If

(
d
�

)
= 1,

then � is split in OE and the two horizontal isogenies correspond to the two
actions E → l̂ ∗ E and E → ˆ̄l ∗ E , where the two ideals l and l̄ satisfy (�) = l l̄.
In a similar way, if

(
d
�

)
= 0, then � is ramified, i.e. (�) = l2 and there is exactly

one horizontal isogeny starting from E. In order to describe the structure of the
graph whose vertices are curves with a fixed number of points and whose edges
are �-isogenies, we recall the following definition [23].

Definition 1. An �-volcano is a connected undirected graph with vertices parti-
tioned into levels V0, . . . , Vh, in which a subgraph on V0 (the crater) is a regular
connected graph of degree at most 2 and

(a) For i > 0, each vertex in Vi has exactly one edge leading to a vertex in
Vi−1, and every edge not on the crater is of this form.

(b) For i < h, each vertex in Vi has degree � + 1.

We call the level Vh the floor of the volcano. Vertices lying on the floor have
degree 1. The following proposition [23] follows essentially from [14, Prop. 23].

Proposition 1. Let p be a prime number, q = pr, and dπ = t2 − 4q. Take � �= p
another prime number. Let G be the undirected graph with vertex set Ellt(Fq)
and edges �-isogenies defined over Fq. We denote by �h the largest power of �
dividing the conductor of dπ. Then the connected components of G that do not
contain curves with j-invariant 0 or 1728 are �-volcanoes of height h and for
each component V , we have :

(a) The elliptic curve whose j-invariants lie in V0 have endomorphism rings
isomorphic to some Od0 ⊇ Odπ whose conductor is not divisible by �.

(b) The elliptic curve whose j-invariants lie in Vi have endomorphism rings
isomorphic to Odi , where di = �2id0.

Elliptic curves are determined by their j-invariant, up to a twist1. Throughout
the paper, we refer to a vertex in a volcano by giving the curve or its j-invariant.

Exploring the volcano. Given a curve E on an �-volcano, two methods are
known to find its neighbours. The first method relies on the use of modular
polynomials. The �-th modular polynomial, denoted by Φ�(X, Y ) is a polynomial
with integer coefficients. It satisfies the following property: given two elliptic
curves E and E′ with j-invariants j(E) and j(E′) in Fq, there is an �-isogeny
defined over Fq, if and only if, #E(Fq) = #E′(Fq) and Φ�(j(E), j(E′)) = 0. As
a consequence, the curves related to E via an �-isogeny can be found by solving
Φ�(X, j(E)) = 0. As stated in [20], this polynomial2 may have 0, 1, 2 or � + 1
roots in Fq. In order to find an edge on the volcano, it suffices to find a root j′ of
this polynomial. Finally, if we need the equation of the curve E′ with j-invariant
j′, we may use the formula in [20].

The second method to build �-isogenous curves constructs, given a point P of
order � on E, the �-isogeny I : E → E′ whose kernel G is generated by P using
1 For a definition of twists of elliptic curves, refer to [21].
2 The case where the modular polynomial does not have any root corresponds to a

degenerate case of isogeny volcanoes containing a single curve and no �-isogenies.
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Vélu’s classical formulae [24] in an extension field Fqr . To use this approach,
we need the explicit coordinates of points of order � on E. We denote by Gi,
1 ≤ i ≤ � + 1, the � + 1 subgroups of order � of E. In [17], Miret and al. give the
degree ri of the smallest extension field of Fq such that Gi ⊂ Fqri , 1 ≤ i ≤ �+1.
This degree is related to the order of q in the group F

∗
� , that we denote by

ord�(q).

Proposition 2. Let E defined over Fq be an elliptic curve with k rational �-
isogenies, � > 2, and let Gi, 1 ≤ i ≤ k, be their kernels, and let ri be the
minimum value for which Gi ⊂ E(Fqri ).

(a) If k = 1 then r1 = ord�(q) or r1 = 2ord�(q).
(b) If k = � + 1 then either ri = ord�(q) for all i, or ri = 2ord�(q) for all i.
(c) If k = 2 then ri|� − 1 for i = 1, 2.

We also need the following corollary [17].

Corollary 1. Let E/Fq be an elliptic curve over Fq and Ẽ its twist. If E/Fq

has 1 or � + 1 rational �-isogenies, then #E(Fqord�q) or #Ẽ(Fqord�q) is a multiple
of �. Moreover, if there are � + 1 rational isogenies, then it is a multiple of �2.

Z

�n1Z
× Z

�n2Z

Z

�n1+1
Z
× Z

�n2−1
Z

Z

�n1+n2−1
Z
× Z

� Z

Z

�n1+n2Z

Fig. 1. A regular volcano

The group structure of the elliptic curve on the volcano. Lenstra [13]
relates the group structure of an elliptic curve to its endomorphism ring by
proving that E(Fq) 
 OE/(π − 1) as OE-modules. It is thus natural to see how
this structure relates to the isogeny volcano. From Lenstra’s equation, we can
deduce that E(Fq) 
 Z/MZ × Z/NZ. We write π = a + gω, with:

a =
{

(t − g)/2
t/2 and ω =

{
1+

√
dK

2 if dK ≡ 1 (mod 4)√
dK if dK ≡ 2, 3 (mod 4)

where dK is the discriminant of the quadratic imaginary field containing OE .
Note that N is maximal such that E[N ] ⊂ E(Fq) and by [19, Lemma 1] we
get that N = gcd(a − 1, g/f). Note moreover that N |M , N |(q − 1) and MN =
#E(Fq). This implies that on a �-volcano the structure of all the curves in a
given level is the same.
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Let E be a curve on the isogeny volcano such that v�(N) < v�(M). As ex-
plained in [16] (in the case � = 2, but the result is general), a is such that
v�(a − 1) ≥ min {v�(g), v�(#E(Fq))/2} .

Since N = gcd(a−1, g/f) and v�(N) ≤ v�(#E(Fq))/2, it follows that v�(N) =
v�(g/f). As we descend, the valuation at � of the conductor f increases by 1 at
each level (by proposition 1b). This implies that the �-valuation of N for curves
at each level decreases by 1 and is equal to 0 for curves lying on the floor.
Note that if v�(#E(Fq)) is even and the height h of the volcano is greater than
v�(#E(Fq)), the structure of the �-torsion group is unaltered from the crater
down to the level h − v�(#E(Fq))/2. From this level down, the structure of the
�-torsion groups starts changing as explained above. In the sequel, we call this
level the first stability level.3 A volcano with first stability level equal to 0, i.e.
on the crater, is called regular.

Notations. Let n ≥ 0. We denote by E[�n] the �n-torsion subgroup, i.e. the
subgroup of points of order �n on the curve E(F̄q), by E[�n](Fqk) the subgroup
of points of order �n defined over an extension field of Fq and by E[�∞](Fq) the
�-Sylow subgroup of E(Fq).

Given a point P ∈ E[�n](Fq), we also need to know the degree of the smallest
extension field containing an �n+1-torsion point such that �P̃ = P . The following
result is taken from [7].

Proposition 3. Let E/Fq be an elliptic curve which lies on a �-volcano whose
height h(V ) is different from 0. Then the height of V ′, the �-volcano of the curve
E/Fqs is h(V ′) = h(V ) + v�(s).

From this proposition, it follows easily that if the structure of �-torsion on
the curve E/Fq is Z/�n1Z × Z/�n2Z, then the smallest extension in which the
structure of the �-torsion changes is Fq� . We sketch here the proof in the case
n1 = n2 = n, which is the only case in which we consider volcanoes over
extension fields in this paper4. First of all, note that E lies on a �-volcano
V/Fq of height at least n. We consider a curve E′ lying on the floor of V/Fq

such that there is a descending path of isogenies between E and E′. Obvi-
ously, we have E′[�∞](Fq) 
 Z/�2n

Z. By proposition 3, V/Fq� has one ex-
tra down level, which means that the curve E′ is no longer on the floor, but
on the level just above the floor. Consequently, we have that E′[�] ⊂ E′(Fq�)
and, moreover, E′[�∞](Fq�) 
 Z/�2n+Δ

Z × Z/�Z. By ascending on the volcano
from E′ to E, we deduce that the structure of the �-torsion of E over Fq� is
necessarily

E[�∞](Fq�) 
 Z/�n+Δ
Z × Z/�n+1

Z.

Moreover, Δ ≥ 1, because if it were 0, the height of V/Fq� would be n.

3 Miret et al. call it simply the stability level.
4 For the proof in the general case, see [11].
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3 Background on Pairings

Let E be an elliptic curve defined over some finite field Fq, m a number such
that m| gcd(#E(Fq), q − 1). Let P ∈ E[m](Fq) and Q ∈ E(Fq)/mE(Fq). Let
fm,P be the function whose divisor5 is m(P ) − m(O), where O is the point at
infinity of the curve E. Take R a random point in E(Fq) such as the support of
the divisor D = (Q + R) − (R) is disjoint from the support of fm,P . Then we
can define the Tate pairing as follows:

tm : E[m] × E(Fq)/mE(Fq) → F
∗
q/(F∗

q)
m

(P, Q) → fm,P (Q + R)/fm,P (R).

The Tate pairing is a bilinear non-degenerate application, i.e. for all P ∈ E[m](Fq)
different from O there is a Q ∈ E(Fq)/mE(Fq) such that Tm(P, Q) �= 1. The
output of the pairing is only defined up to a coset of (F∗

q)
m. However, for im-

plementation purposes, it is useful to have a uniquely defined value and to use
the reduced Tate pairing, i.e. Tm(P, Q) = tm(P, Q)(q−1)/m ∈ μm, where μm de-
notes the group of m-th roots of unity. Pairing computation can be done in
time O(log m) using Miller’s algorithm [15]. For more details and properties of
pairings, the reader can refer to [9]. Note that in the recent years, in view of
cryptographic applications, many implementation techniques have been devel-
oped and pairings on elliptic curves can be computed very efficiently6.

Suppose now that m = �n, with n ≥ 1 and � prime. Now let P and Q be two
�n-torsion points on E. We define the following symmetric pairing [12]

S(P, Q) = (T�n(P, Q)T�n(Q, P ))
1
2 . (1)

Note that for any point P , T�n(P, P ) = S(P, P ). In the remainder of this paper,
we call S(P, P ) the self-pairing of P . We focus on the case where the pairing
S is non-constant. Suppose now that P and Q are two linearly independent �n-
torsion points. Then all �n-torsion points R can be expressed as R = aP + bQ.
Using bilinearity and symmetry of the S-pairing, we get

log(S(R, R)) = a2 log(S(P, P )) + 2ab log(S(P, Q)) + b2 log(S(Q, Q)) (mod �n),

where log is a discrete logarithm function in μ�n . We denote by k the largest
integer such that the polynomial

P(a, b) = a2 log(S(P, P )) + 2ab log(S(P, Q)) + b2 log(S(Q, Q)) (2)

is identically zero modulo �k and nonzero modulo �k+1. Obviously, since S is
non-constant we have 0 ≤ k < n. Dividing by �k, we may thus view P as a
polynomial in F�[a, b]. When we want to emphasize the choice of E and �n, we
write PE,�n instead of P .

5 For background on divisors, see [21].
6 See [10] for a fast recent implementation.
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Since P is a non-zero quadratic polynomial, it has at most two homogeneous
roots, which means that that from all the � + 1 subgroups of E[�n]/E[�n−1] 

(Z/�Z)2, at most 2 have self-pairings in μ�k (see also [12]). In the remainder
of this paper, we denote by NE,�n the number of zeros of PE,�n . Note that
this number does not depend on the choice of the two generators P and Q of
the �n-torsion subgroup E[�n]. Moreover, we say that a �n-torsion point R has
degenerate self-pairing if T�n(R, R) is a �k-th root of unity and that R has non-
degenerate self-pairing if T�n(R, R) is a primitive �k+1-th root of unity. Also, if
T�n(R, R) is a primitive �n-th root of unity, we say that R has primitive self-
pairing.

4 Determining Directions on the Volcano

In this section, we explain how we can distinguish between different directions
on the volcano by making use of pairings. We give some lemmas explaining the
relations between pairings on two isogenous curves.

Lemma 1. Suppose E/Fq is an elliptic curve and P, Q are points in E(Fq) of
order �n, n ≥ 1. Denote by P̃ , Q̃ ∈ E[F̄q] the points such that �P̃ = P and
�Q̃ = Q. We have the following relations for the Tate pairing

(a) If P̃ , Q̃ ∈ E[Fq], then T�n+1(P̃ , Q̃)�2 = T�n(P, Q).
(b) Suppose � ≥ 3. If Q̃ ∈ E[Fq� ]\E[Fq], then T�n+1(P̃ , Q̃)� = T�n(P, Q).

Proof. a. By writing down the divisors of the functions f�n+1,P̃ , f�n,P̃ , f�n,P , one
can easily check that

f�n+1,P̃ = (f�,P̃ )�n · f�n,P .

We evaluate these functions at some points Q + R and R (where R is carefully
chosen) and raise the equality to the power (q − 1)/�n.
b. Due to the equality on divisors div(f�n+1,P ) = div(f �

�n,P ), we have

T�n+1(P̃ , Q̃)� = T
(F

q� )

�n (P, Q̃),

where T
(F

q�)

�n is the �n-Tate pairing for E defined over Fq� . It suffices then to

show that T
(F

q� )

�n (P, Q̃) = T�n(P, Q). We have

T
(F

q�)

�n (P, Q̃) = f�n,P ([Q̃ + R] − [R])
(1+q+···+q�−1)(q−1)

�n

= f�n,P ((Q̃ + R) + (π(Q̃) + R) + (π2(Q̃) + R) + . . .

+ (π�−1(Q̃) + R) − �(R))
(q−1)

�n (3)

where R is a random point defined over Fq. It is now easy to see that for � ≥ 3,

Q̃ + π(Q̃) + π2(Q̃) + . . . + π�−1(Q̃) = �Q̃ = Q,
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because π(Q̃) = Q̃ + T , where T is a point of order �. By applying Weil’s
reciprocity law [21, Ex. II.2.11], it follows that the equation (3) becomes:

T
(F

q� )

�n (P, Q̃) =
(

f�n,P (Q + R)
f�n,P (R)

) q−1
�n

f((P ) − (O))q−1,

where f is such that div(f) = (Q̃ + R) + (π(Q̃) + R) + (π2(Q̃) + R) + ... +
(π�−1(Q̃) + R) − (Q + R) − (� − 1)(R). Note that this divisor is Fq-rational, so
f((P ) − (O))q−1 = 1. This concludes the proof.

Lemma 2. (a) Let φ : E → E′ be a separable isogeny of degree d defined
over Fq, P a �-torsion on the curve E such that φ(P ) is a �-torsion point
on E′, and Q a point on E. Then we have T�(φ(P ), φ(Q)) = T�(P, Q)d.

(b) Let φ : E → E′ be a separable isogeny of degree � defined over Fq, P a
��′-torsion point such that Ker φ = 〈�′P 〉 and Q a point on the curve E.
Then we have T�(φ(P ), φ(Q)) = T��′(P, Q)�.

Proof. Proof omitted for lack of space. See [3, Th. IX.9.4] for (a), [11] for (b).

Proposition 4. Let E be an elliptic curve defined a finite field Fq and assume
that E[�∞](Fp) is isomorphic to Z/�n1Z × Z/�n2Z (with n1 ≥ n2). Suppose that
there is a �n2-torsion point P such that T�n2 (P, P ) is a primitive �n2-th root of
unity. Then the �-isogeny whose kernel is generated by �n2−1P is descending.
Moreover, the curve E does not lie above the first stability level of the corre-
sponding �-volcano.

Proof. Let I1 : E → E1 be the isogeny whose kernel is generated by �n2−1P
and suppose this isogeny is ascending or horizontal. This means that E1[�n2 ] is
defined over Fq. Take Q another �n2 -torsion point on E, such that E[�n2 ] = 〈P, Q〉
and denote by Q1 = I1(Q). One can easily check that the dual of I1 has kernel
generated by �n2−1Q1. It follows that there is a point P1 ∈ E1[�n2 ] such that
P = Î1(P1). By Lemma 2 this means that T�(P, P ) ∈ μ�n2−1 , which is false. This
proves not only that the isogeny is descending, but also that the structure of the
�-torsion is different at the level of E1. Hence E cannot be above the stability
level.

Proposition 5. Let � ≥ 3 a prime number and suppose that E/Fq is a curve
which lies in a �-volcano and on the first stability level. Suppose E[�∞](Fq) 

Z/�n1Z×Z/�n2Z, n1 ≥ n2. Then there is at least one �n2-torsion point R ∈ E(Fq)
with primitive self-pairing.

Proof. Let P be a �n1-torsion point and Q be a �n2-torsion point such that
{P, Q} generates E[�∞](Fq).

Case 1. Suppose n1 ≥ n2 ≥ 2. Let E
I1−→ E1 be a descending �-isogeny and

denote by P1 and Q1 the �n1+1 and �n2−1-torsion points generating E1[�∞](Fp).
Moreover, without loss of generality, we may assume that I1(P ) = �P1 and
I1(Q) = Q1. If T�n2−1(Q1, Q1) is a primitive �n2−1-th root of unity, T�n2 (Q, Q) is
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a primitive �n2-th root of unity by Lemma 2. If not, from the non-degeneration
of the pairing, we deduce that T�n2−1(Q1, P1) is a primitive �n2−1-th root of
unity, which means that T�n2−1(Q1, �P1) is a �n2−2-th primitive root of unity.
By applying Lemma 2, we get T�n2 (Q, P ) ∈ μ�n2−1 at best. It follows that
T�n2 (Q, Q) ∈ μ�n2 by the non-degeneracy of the pairing.
Case 2. If n2 = 1, then consider the volcano defined over the extension field Fq� .
There is a �2-torsion point Q̃ ∈ E(Fq�) with Q = �Q̃. We obviously have �2|q�−1
and from Lemma 1, we get T�2(P̃ , P̃ )� = T�(P, P ). By applying Case 1, we get
that T�2(P̃ , P̃ ) is a primitive �2-th root of unity, so T�(P, P ) is a primitive �-th
root of unity.

Two stability levels. Remember that in any irregular volcano, v�(#E(Fq))
is even and the height h of the volcano is greater than v�(#E(Fq)). Moreover,
all curves at the top of the volcano have E[�∞](Fq) 
 Z/�n2Z × Z/�n2Z with
n2 = v�(#E(Fq)). The existence of a primitive self-pairing of a �n2 -torsion point
on any curve lying on the first stability level implies that the polynomial P is non-
zero at every level from the first stability level up to the level max(h+1−2n2, 0)
(by Lemma 2). We call this level the second level of stability. On the second
stability level there is at least one point of order �n2 with pairing equal to a
primitive �-th root of unity. At every level above the second stability level all
polynomials PE,�n2 may be zero7. Consider now E a curve on the second stability
level and I : E → E1 an ascending isogeny. Let P be a �n2-torsion point on E
and assume that T�n2 (P, P ) ∈ μ∗

� . We denote by P̃ ∈ E(Fq�)\E(Fq) the point
such that �P̃ = P . By Lemma 1 we get T�n2+1(P̃ , P̃ ) is a primitive �2-th root
of unity. It follows by Lemma 2 that T�n2 (I(P ), I(P )) is a primitive �-th root of
unity. We deduce that PE1,�n2+1 corresponding to E1/Fq� is non-zero. Applying
this reasoning repeatedly, we conclude that for every curve E above the second
stability level there is an extension field Fqs� such that the polynomial PE,�n2+s

associated to the curve defined over Fqs� is non-zero. When the second stability
level of a volcano is 0, we say that the volcano is almost regular.

We now make use of a result on the representation of ideal classes of orders
in imaginary quadratic fields. This is Corollary 7.17 from [5].

Lemma 3. Let O be an order in an imaginary quadratic field. Given a nonzero
integer M , then every ideal class in Cl(O) contains a proper O-ideal whose norm
is relatively prime to M .

Proposition 6. We use the notations and assumptions from Proposition 1. Fur-
thermore, we assume that for all curves Ei lying at a fixed level i in V the curve
structure is Z/�n1Z × Z/�n2Z, with n1 ≥ n2. The value of NEi,�n2 , the number
of zeros of the polynomial defined at 2, is constant for all curves lying at level i
in the volcano.

Proof. Let E1 and E2 be two curves lying at level i in the volcano V . Then by
Proposition 1 they both have endomorphism ring isomorphic to some order Odi .

7 In all the examples we considered for this case, P is always 0.
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Now by taking into account the fact that the action of Cl(Odi) on Ell di(Fq)
is transitive, we consider an isogeny φ : E1 → E2 of degree �1. By applying
Lemma 3, we may assume that (�1, �) = 1. Take now P and Q two indepen-
dent �n2-torsion points on E1 and denote by PE1,�n2 the quadratic polynomial
corresponding to the �n2-torsion on E1 as in (2). We use Lemma 2 to compute
S(φ(P ), φ(P )), S(φ(P ), φ(Q)) and S(φ(Q), φ(Q)) and deduce that a polynomial
PE2,�n2 (a, b) on the curve E2 computed from φ(P ) and φ(Q) is such that

PE1,�n2 (a, b) = PE2,�n2 (a, b).

This means that NE1,�n2 and NE2,�n2 coincide, which concludes the proof. More-
over, we have showed that the value of k for two curves lying on the same level
of a volcano is the same.

Proposition 7. Let E be an elliptic curve defined a finite field Fq and let
E[�∞](Fq) be isomorphic to Z/�n1Z × Z/�n2Z with � ≥ 3 and n1 ≥ n2 ≥ 1.
Suppose NE,�n2 ∈ {1, 2} and let P be a �n2-torsion point with degenerate self-
pairing. Then the �-isogeny whose kernel is generated by �n2−1P is either as-
cending or horizontal. Moreover, for any �n2-torsion point Q whose self-pairing
is non-degenerate, the isogeny with kernel spanned by �n2−1Q is descending.

Proof. Case 1. Suppose T�n2 (P, P ) ∈ μ�k , k ≥ 1 and that T�n2 (Q, Q) ∈ μ�k+1\μ�k .
Denote by I1 : E → E1 the isogeny whose kernel is generated by �n2−1P and
I2 : E → E2 the isogeny whose kernel is generated by �n2−1Q. By repeatedly
applying Lemmas 1 and 2, we get the following relations for points generating the
�n2−1-torsion on E1 and E2:

T�n2−1(I1(P ), I1(P )) ∈ μ�k−1 , T�n2−1(�I1(Q), �I1(Q)) ∈ μ�k−2\μ�k−3

T�n2−1(�I2(P ), �I2(P )) ∈ μ�k−3 , T�n2−1(I2(Q), I2(Q)) ∈ μ�k\μ�k−1

with the convention that μ�h = ∅ whenever h ≤ 0. From the relations above, we
deduce that on the �-volcano having E, E1 and E2 as vertices, E1 and E2 do
not lie at the same level. Given the fact that there are at least � − 1 descending
rational �-isogenies parting from E and that Q is any of the �− 1 (or more) �n2-
torsion points with non-degenerate self-pairing, we conclude that I1 is horizontal
or ascending and that I2 is descending.
Case 2. Suppose now that k = 0. Note that the case n2 = 1 was already treated
in proposition 4. Otherwise, consider the curve E defined over Fq� . By lemma 1
we have k = 1 for points on E/Fq� , and we may apply Case 1.

A special case. If E is a curve lying under the first stability level and that
E[�∞](Fq) 
 Z/�n1Z × Z/�n2Z, with n1 > n2, then it suffices to find a point
P1 of order �n1 and the point �n1−1P1 generates the kernel of an horizontal or
ascending isogeny (P1 has degenerate self-pairing).

Crater detection. Assume that P �= 0. When � is split in OE , there are two
horizontal isogenies from E and this is equivalent, by propositions 6 and 7, to
NE,�n2 = 2. Similarly, when � is inert in OE , there are neither ascending nor
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horizontal isogenies and NE,�n2 = 0. In these two cases, we easily detect that
the curve E is on the crater.

Note. All statements in the proof of Case 1 are true for � = 2 also. The statement
in Proposition 4 is also true for � = 2. The only case that is not clear is what
happens when k = 0 and n2 ≥ 1. We did not find a proof for the statement in
proposition 5 for � = 2, but in our computations with MAGMA we did not find
any counterexamples either.

We conclude this section by presenting an algorithm which determines the
group structure of the �∞-torsion group of a curve E and also an algorithm
which outputs the kernel of an horizontal (ascending) isogeny from E, when
E[�∞](Fq) is given.

Algorithm 1. Computing the structure of the �∞-torsion of E over Fq

(assuming volcano height ≥ 1)
Require: A curve E defined over Fq, a prime �
Compute: Structure Z/�n1Z × Z/�n2Z, generators P1 and P2

1: Check that q ≡ 1 (mod �) (if not need to move to extension field: abort)
2: Let t be the trace of E(Fq)
3: Check q + 1 − t ≡ 0 (mod �) (if not consider twist or abort)
4: Let dπ = t2 − 4q, let z be the largest integer such that �z|dπ and h = � z

2
�

5: Let n be the largest integer such that �n|q + 1 − t and N = q+1−t
�n

6: Take a random point R1 on E(Fq), let P1 = N · R1

7: Let n1 be the smallest integer such that �n1P1 = 0
8: if n1 = n then
9: Output: Structure is Z

�nZ
, generator P1. Exit

(E is on the floor, ascending isogeny with kernel 〈�n−1P1〉)
10: end if
11: Take a random point R2 on E(Fq), let P2 = N · R2 and n2 = n − n1

12: Let α = log�n2P1
(�n2P2) (mod �n1−n2)

13: if α is undefined then
14: Goto 6 (�n2P2 does not belong to 〈�n2P1〉)
15: end if
16: Let P2 = P2 − αP1

17: If WeilPairing�(�
n1−1P1, �

n2−1P2) = 1 goto 6 (This checks linear independence)
18: Output: Structure is Z

�n1Z
× Z

�n2Z
, generators (P1, P2)

We assume that the height of the volcano is h ≤ 2n2 + 1, or, equivalently,
that the curve E lies on or below the second stability level, which implies that
the polynomial P is non-zero at every level in the volcano. This allows us to
distinguish between different directions of �-isogenies parting from E. Of course,
similar algorithms can be given for curves lying above the second stability level,
but in this case we are compelled to consider the volcano over an extension field
Fqs� . Since computing points defined over extension fields of degree greater than
� is expensive, our complexity analysis in section 5 will show that it is more
efficient to use Kohel’s and Fouquet-Morain algorithms to explore the volcano
until the second level of stability is reached and to use algorithms 1 and 2
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Algorithm 2. Finding the kernel of ascending or horizontal isogenies
(Assuming curve not on floor and below the second stability level)
Require: A curve E, its structure Z

�n1Z
× Z

�n2Z
and generators (P1, P2)

1: if n1 > n2 then
2: The isogeny with kernel 〈�n1−1P1〉 is ascending or horizontal
3: To check whether there is another, continue the algorithm
4: end if
5: Let g be a primitive �-th root of unity in Fq

6: Let Q1 = �n1−n2P1

7: Let a = T�n2 (Q1, Q1), b = T�n2 (Q1, P2) · T�n2 (P2, Q1) and c = T�n2 (P2, P2)
8: If (a, b, c) = (1, 1, 1) abort (Above the second stability level)
9: repeat

10: Let a′ = a, b′ = b and c′ = c
11: Let a = a�, b = b� and c = c�

12: until a = 1 and b = 1 and c = 1
13: Let La = logg(a′), Lb = logg(b′) and Lc = logg(c′) (mod �)

14: Let P(x, y) = Lax2 + Lbxy + Lcy
2 (mod �)

15: If P has no roots modulo �, Output: No isogeny (a single point on the crater)
16: If single root (x1, x2) Output: One isogeny with kernel 〈�n2−1(x1Q1 + x2P2)〉
17: if P has two roots (x1, x2) and (y1, y2) then
18: Two isogenies with kernel 〈�n2−1(x1Q1 + x2P2)〉 and 〈�n2−1(y1Q1 + y2P2)〉
19: end if

afterwards. We assume � ≥ 3, even though in many cases these methods work
also for � = 2.

5 Walking the Volcano: Modified Algorithms

As mentioned in the introduction, several applications of isogeny volcanoes have
recently been proposed. These applications require the ability to walk descending
and ascending paths on the volcano and also to walk on the crater of the volcano.
We recall that a path is a sequence of isogenies that never backtracks. We start
this section with a brief description of existing algorithms for these tasks, based
on methods given by Kohel [14] and by Fouquet and Morain in [8]. We present
modified algorithms, which rely on the method presented in Algorithm 2 to find
ascending or horizontal isogenies. Then, we give complexity analysis for these
algorithms and show that in many cases our method is competitive. Finally, we
give two concrete examples in which the new algorithms can walk the crater of
an isogeny volcano very efficiently compared to existing algorithms.

A brief description of existing algorithms. Existing algorithms rely on three
essential properties in isogeny volcanoes. Firstly, it is easy to detect that a curve
lies on the floor of a volcano, since in that case, there is a single isogeny from this
curve. Moreover, this isogeny can only be ascending (or horizontal if the height
is 0). Secondly, if in an arbitrary path in a volcano there is a descending isogeny,
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then all the subsequent isogenies in the path are also descending. Thirdly, from
a given curve, there is either exactly one ascending isogeny or at most two
horizontal ones. As a consequence, finding a descending isogeny from any curve
is easy: it suffices to walk three paths in parallel until one path reaches the floor.
This shortest path is necessarily descending and its length gives the level of the
starting curve in the volcano. To find an ascending or horizontal isogeny, the
classical algorithms try all possible isogenies until they find one which leads to
a curve either at the same level or above the starting curve. This property is
tested by contructing descending paths from the all the neighbours of the initial
curve and picking the curve which gave the longest path.

Note that alternatively, one could walk in parallel all of the �+1 paths starting
from the initial curve and keep the (two) longest as horizontal or ascending. As
far as we know, this has not been proposed in the literature, but this variant
of existing algorithms offers a slightly better asymptotic time complexity. For
completeness, we give a pseudo-code description of this parallel variant of Kohel
and Fouquet-Morain algorithms as Algorithm 3.

Algorithm 3. Parallel variant of ascending/horizontal step
(using modular polynomials)
Require: A j-invariant j0 in Fq, a prime �, the modular polynomial Φ�(X, Y ).
1: Let f(x) = Φ�(X, j0)
2: Compute J0 the list of roots of f(x) in Fq

3: If #J0 = 0 Output: “Trivial volcano” Exit
4: If #J0 = 1 Output: “On the floor, step leads to:”, J0[1] Exit
5: If #J0 = 2 Output: “On the floor, two horizontal steps to:”, J0[1] and J0[2] Exit

6: Let J = J0. Let J ′ and K be empty lists. Let Done = false.
7: repeat
8: Perform multipoint evaluation of Φ�(X, j), for each j ∈ J . Store in list F
9: for i from 1 to � + 1 do

10: Perform partial factorization of F [i], computing at most two roots r1 and r2

11: if F [i] has less than two roots then
12: Let Done = true. Append ⊥ to K (Reaching floor)
13: else
14: If r1 ∈ J ′ then append r1 to K else append r2 to K. (Don’t backtrack)
15: end if
16: end for
17: Let J ′ = J , J = K and K be the empty list
18: until Done
19: for each i from 1 to � + 1 such that J [i] 	= ⊥ append J0[i] to K
20: Output: “Possible step(s) lead to:” K (One or two outputs)

Basic idea of the modified algorithms. In our algorithms, we first need to choose a
large enough extension field to guarantee that the kernels of all required isogenies
are spanned by �-torsion points defined on this extension field. As explained in
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Corollary 1, the degree r of this extension field is the order of q modulo � and
it can be computed very quickly after factoring q − 1. As usual, we choose an
arbitrary irreducible polynomial of degree r to represent Fqr . The necessary
points of �∞-torsion are computed in Algorithm 1, multiplying random points
over Fqr by the cardinality of the curve divided by the highest possible power
of �. Once this is done, assuming that we are starting from a curve below the
second level of stability, we use Algorithms 1 and 2 to find all ascending or
horizontal isogenies from the initial curve. In order to walk a descending path,
it suffices to choose any other isogeny. Note that, in the subsequent steps of a
descending path, in the cases where the group structure satisfies n1 > n2, it is
not necessary to run Algorithm 2 as a whole. Indeed, since we know that we
are not on the crater, there is a single ascending isogeny and it is spanned by
�n1−1P1.

Finally, above the second stability level, we have two options. In theory, we
can consider curves over larger extension fields (in order to get polynomials
P �= 0. Note that this is too costly in practice. Therefore, we use preexisting
algorithms, but it is not necessary to follow descending paths all the way to the
floor. Instead, we can stop these paths at the second stabilty level, where our
methods can be used.

5.1 Complexity Analysis

Computing a single isogeny. Before analyzing the complete algorithms, we first
compare the costs of taking a single step on a volcano by using the two methods
existing in the literature: modular polynomials and classical Vélu’s formulae.
Suppose that we wish to take a step from a curve E. With the modular polyno-
mial approach, we have to evaluate the polynomial f(X) = Φ�(X, j(E)) and find
its roots in Fq. Assuming that the modular polynomial (modulo the characteristic
of Fq) is given as input and using asymptotically fast algorithms to factor f(X),
the cost of a step in terms of arithmetic operations in Fq is O(�2 + M(�) log q),
where M(�) denotes the operation count of multiplying polynomials of degree �.
In this formula, the first term corresponds to evaluation of Φ�(X, j(Ei−1)) and
the second term to root finding8.

With Vélu’s formulae, we need to take into account the fact that the required
�-torsion points are not necessarily defined over Fq. Let r denotes the smallest
integer such that the required points are all defined over Fqr . We know that
1 ≤ r ≤ � − 1. Using asymptotically efficient algorithms to perform arithmetic
operations in Fqr , multiplications in Fqr cost M(r) Fq-operations. Given an �-
torsion point P in E(Fqr ), the cost of using Vélu’s formulae is O(�) operations in
Fqr . As a consequence, in terms of Fq operations, each isogeny costs O(�M(r))
operations. As a consequence, when q is not too large and r is close to �, using
Vélu formulae is more expensive by a logarithmic factor.

8 Completely splitting f(X) to find all its roots would cost O(M(�) log � log q), but
this is reduced to O(M(�) log q) because we only need a constant number of roots
for each polynomial f(X).
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Computing an ascending or horizontal path. With the classical algorithms, each
step in an ascending or horizontal path requires to try O(�) steps and test each
by walking descending paths of height bounded by h. The cost of each descend-
ing path is O(h(�2 + M(�) log q)) and the total cost is O(h(�3 + �M(�) log q))
(see [14,23]). When � >> log q, this cost is dominated by the evaluations of
the polynomial Φ� at each j-invariant. Thus, by walking in parallel � + 1 paths
from the original curve, we can amortize the evaluation of Φ�(X, j) over many
j-invariants using fast multipoint evaluation, see [18, Section 3.7] or [25], thus re-
placing �3 by � M(�) log � and reducing the complexity of a step to
O(h� M(�)(log � + log q)). However, this increases the memory requirements.

With our modified algorithms, we need to find the structure of each curve,
compute some discrete logarithms in �-groups, perform a small number of pair-
ing computations and compute the roots of PE,�n2 . Except for the computation
of discrete logarithms, it is clear that all these additional operations are polyno-
mial in n2 and log � and they take negligible time in practice (see Section 5.2).
Using generic algorithms, the discrete logarithms cost O(

√
�) operations, and

this can be reduced to log � by storing a sorted table of precomputed logarithms.
After this is done, we have to compute at most two isogenies, ignoring the one
that backtracks. Thus, the computation of one ascending or horizontal step is
dominated by the computation of isogenies and costs O(�M(r)).

For completeness, we also mention the complexity analysis of Algorithm 1.
The dominating step here is the multiplication by N of randomly chosen points.
When we consider the curve over an extension field Fqr , this costs O(r log q)
operations in Fqr , i.e. O(rM(r) log q) operations in Fq.

Finally, comparing the two approaches on a regular volcano, we see that even
in the less favorable case, we gain a factor h compared to the classical algorithms.
More precisely, the two are comparable, when the height h is small and r is close
to �. In all the other cases, our modified algorithms are more efficient. This
analysis is summarized in Table 1. For compactness O(·)s are omitted from the
table.

Table 1. Walking the volcano: Order of the cost per step

Descending path Ascending/Horizontal

One step Many steps

[14,8] h(�2 + M(�) log q) (�2 + M(�) log q) h(�3 + �M(�) log q)
Parallel evaluation – – h� M(�)(log � + log q)

Regular volcanoes Structure determination
Best case log q log q

Worst case r ≈ �/2 r M(r) log q r M(r) log q

Regular volcanoes Isogeny construction
Best case � �

Worst case r ≈ �/2 r M(r) r M(r)

Irregular volcanoes
(worst case) No improvement
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Irregular volcanoes. Consider a fixed value of q and let s = v�(q − 1). First of
all, note that all curves lying on irregular volcanoes satisfy �2s|q + 1 − t and
�2s+2|t2 − 4q. For traces that satisfy only the first condition, we obtain a regular
volcano. We estimate the total number of different traces of elliptic curves lying
on �-volcanoes by #{t s.t. �2s|q + 1 − t and t ∈ [−2

√
q, 2

√
q]} ∼ 4

√
q

�2s .
Next, we estimate traces of curves lying on irregular volcanoes by

#{t s.t. �2s|q + 1 − t , �2s+2|t2 − 4q and t ∈ [−2
√

q, 2
√

q]} ∼ 4
√

q

�2s+2 .
Indeed, by writing q = 1+γ�s and t = 2+γ�s+μ�2s, and imposing the condition
�2s+2|t2 − 4q, we find that t ∼= t0(γ, μ)(mod �2s+2).

Thus, we estimate the probability of picking a curve whose volcano is not
regular, among curves lying on volcanoes of height greater than 0, by 1

�2 . (This
is a crude estimate because the number of curves for each trace is proportional
to the Hurwitz class number9 H(t2 − 4q)). This probability is not negligible for
small values of �. However, since our method also works everywhere on almost
regular volcano, the probability of finding a volcano where we need to combine
our modified algorithm with the classical algorithms is even lower. Furthermore,
in some applications, it is possible to restrict ourselves to regular volcanoes.

5.2 Two Practical Examples

A favorable case. In order to demonstrate the potential of the modified al-
gorithm, we consider the favorable case of a volcano of height 2, where all
the necessary �-torsion points are defined over the base field Fp, where p =
619074283342666852501391 is prime. We choose � = 100003.
Let E be the elliptic curve whose Weierstrass equation is

y2 = x3 + 198950713578094615678321 x+ 32044133215969807107747.
The group E[�∞] over Fp has structure Z

�4Z . It is spanned by the point
P = (110646719734315214798587, 521505339992224627932173).

Taking the �-isogeny I1 with kernel 〈�3P 〉, we obtain the curve
E1 : y2 = x3 + 476298723694969288644436x+ 260540808216901292162091,

with structure of the �∞-torsion Z

�3 × Z

� and generators
P1 = (22630045752997075604069, 207694187789705800930332) and
Q1 = (304782745358080727058129, 193904829837168032791973).

The �-isogeny I2 with kernel 〈�2P1〉 leads to the curve
E2 : y2 = x3 + 21207599576300038652790x+ 471086215466928725193841,

on the volcano’s crater and with structure Z

�2Z
× Z

�2Z
and generators

P2 = (545333002760803067576755, 367548280448276783133614) and
Q2 = (401515368371004856400951, 225420044066280025495795).

Using pairings on these points, we construct the polynomial:
P(x, y) = 97540 x2 + 68114 x y + 38120 y2,

having homogeneous roots (x, y) = (26568, 1) and (72407, 1). As a consequence,
we have two horizontal isogenies with kernels 〈�(26568 P2 + Q2)〉 and
〈�(72407 P2 + Q2)〉. We can continue and make a complete walk around the

9 See [5, Th. 14.18] for q prime.
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crater which contains 22 different curves. Using a simple implementation under
Magma 2.15-15, a typical execution takes about 134 seconds10 on a single core
of an Intel Core 2 Duo at 2.66 GHz. Most of the time is taken by the computa-
tion of Vélu’s formulas (132 seconds) and the computation of discrete logarithms
(1.5 seconds) which are not tabulated in the implementation. The computation
of pairings only takes 20 milliseconds.

A less favorable example. We have also implemented the computation for � =
1009 using an elliptic curve with j-invariant j = 34098711889917 in the prime
field defined by p = 953202937996763. The �-torsion appears in a extension field
of degree 84. The �-volcano has height two and the crater contains 19 curves.
Our implementation walks the crater in 20 minutes. More precisely, 750 seconds
are needed to generate the curves’ structures, 450 to compute Vélu’s formulas,
28 seconds for the pairings and 2 seconds for the discrete logarithms.

6 Conclusion and Perspectives

In this paper, we have proposed a method which allows, in the regular part of
an isogeny volcano, to determine, given a curve E and a �-torsion point P , the
type of the �-isogeny whose kernel is spanned by P . In addition, this method
also permits, given a basis for the �-torsion, to find the ascending isogeny (or
horizontal isogenies) from E. We expect that this method can be used to improve
the performance of several volcano-based algorithms, such as the computation
of the Hilbert class polynomial [23] or of modular polynomials [4].

Acknowledgments. The authors thank Jean-Marc Couveignes for the idea in
the proof of Lemma 1 and two anonymous reviewers for their helpful comments.
The first author is grateful to Ariane Mézard for many discussions on number
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pects algorithmiques. PhD thesis, Ecole Polytechnique (2001)

8. Fouquet, M., Morain, F.: Isogeny Volcanoes and the SEA Algorithm. In: Fieker, C.,
Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 276–291. Springer, Heidelberg
(2002)

9. Frey, G.: Applications of arithmetical geometry to cryptographic constructions. In:
Proceedings of the Fifth International Conference on Finite Fields and Applica-
tions, pp. 128–161. Springer, Heidelberg (2001)
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