
The Optimum Leakage Principle for Analyzing

Multi-threaded Programs

Han Chen and Pasquale Malacaria

School of Electronic Engineering and Computer Science,
Queen Mary University of London

hanchen@dcs.qmul.ac.uk,
pm@dcs.qmul.ac.uk

Abstract. Bellman’s optimality principle is a method for solving prob-
lems where one needs to find best decisions one after another. The prin-
ciple can be extended to assess the information leakage in multi-threaded
programs, and is formalized into the optimum leakage principle hereby
proposed in this paper. By modeling the state transitions in multi-
threaded programs, the principle is combined with information theory
to assess the leakage in multi-threaded programs, as the result of an op-
timal policy. This offers a new perspective to measure the information
leakage and enables to track the leakage at run-time. Examples are given
to demonstrate the analysis process. Finally, efficient implementation of
this methodology is also briefly discussed.

1 Introduction and Background

The quantitative analysis of multi-threaded programs and concurrent systems is
recognized as an important challenge. A multi-threaded program may have more
vulnerabilities when compared to a single-threaded one: not only from explicit
and implicit information flows but also from the timing channels and probabilistic
timing channels [26]. It is also a difficult problem because the leakage in the same
program may vary due to the additional uncertainty in scheduling. For example,
consider the following program:

l=h; | h=h & 0x07h;

Suppose the attacker observes the value of l in every single step of execution
[22]. If the second statement is run at first then 3 bits of h is leaked, otherwise
every bit of h is leaked. In this case the channel capacity is size(h) bits, which
is achieved by running the first statement at first.

An early quantitative assessment of leakage in multi-threaded programs has
been using the mutual information between the input and the output [13]. Fur-
ther proposals using algebraic or approximation methods to derive the channel
capacity as an leakage upper-bound include [12] and [29]. Recently, Smith [28]
proposed to use minimum entropy to evaluate the leakage. However, these ap-
proaches have remained preliminary; also, all of them are static, unable to track

K. Kurosawa (Ed.): ICITS 2009, LNCS 5973, pp. 177–193, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

178 H. Chen and P. Malacaria

the actual amount of information leaked when a program is run. Until today,
there is not yet a feasible solution for dynamically tracking the (quantitative)
information leakage of multi-threaded programs at run-time.

Now, by combining the Bellman optimality principle with recent progress on
the quantitative information flow, a method is proposed in this paper to provide
a more sensible analysis of the leakage (or the confidentiality) of programs as
well as to allow the tracking of leakage dynamically.

To apply this method, firstly the target multi-threaded program is modeled
by a state-transition automata. We consider a probabilistic scheduler (the Lot-
tery scheduler) which represents a general case for a range of modern schedulers.
The execution of the program can be seen as a Markov process and the state-
transition can be represented as a tree, where each possible state of the exe-
cution is a node in the tree with non-negative values on the edges. We assume
the attacker can observe each single step of the execution. Then by applying
the Bellman equation, the optimal or the pessimal leakage, which represents
the leakage generated using an optimal policy or a worst policy in the program
execution, can be derived. These can be derived either from the start of the
program, or from any point of execution.

The method has several unique qualities:

– general: it is generally applicable to analyze multi-threaded programs run
by a probabilistic scheduler, as well as similar probabilistic state-transition
systems;

– sensible: the Bellman equation gives the accurate optimal leakage bounds;
– flexible: it is able to track the current leakage bound at any point of the

execution tree;
– simple: a simplification algorithm can be applied prior to the Bellman al-

gorithm, such that only the state-transitions with interference between high
and low variables need to be considered.

In the longer term, this is aiming to build a policy which quantitatively restrict
and control the leakage. By applying such bounds decision can be made either to
accept or to reject a program, while dynamic measurement can reassure that an
attacker can not acquire a substantial quantity of information. Also, in a broader
sense, we believe the method can also be a template for tracking information
leaks in state transition systems.

The paper is organized as follows: the next subsection reviews existing liter-
ature and the background. Section 2 provides a short tutorial of the Bellman
equation and the optimality principle, and Section 3 presents the definition of
the information leakage in multi-threaded programs. In Section 4 we show how
multi-threaded programs are modeled and we develop the theorems and propo-
sitions of optimal leakage analysis. Then we present an analysis of two sample
programs. Finally, we investigate the complexity in the process and propose a
simplification algorithm to accelerate the solution process. Section 5 concludes
the paper and identifies our future work.

The Optimum Leakage Principle for Analyzing Multi-threaded Programs 179

1.1 Related Work

Learning theory, statistics and information flow analysis are naturally tied to-
gether by Shannon’s information theory [27]. A few pioneers have brought Bayesian
methods into the field of quantitative information flow, such as [6,5]. In this pa-
per, besides the application of the Bellman’s optimality principle to this field, we
hope to provoke discussions on identifying more interesting connections between
quantitative information flow and the learning theory.

The Bellman equation is regarded as one of the most fundamental theories in
reinforcement learning. It gives an accurate model of gaining information in a
state-transition system and underpin a vast extension of optimality algorithms
in various specific directions.

The other end of the connection is the quantification of information leakage.
The use of conditional mutual information in the context of information leakage
has been pioneered by Gray [11]. However his definition is not aimed to measure
leakage but to define it. Other pioneers on the use of information theory in the
context of security are Dennings, McLean and Millen [9,8,20,21]. In recent years,
a theoretical framework has been established based on Shannon’s information
theory to allow static, quantitative program analysis that provides an expecta-
tion of leakage in programs [15,16,17,23]. The theory is preliminarily extended
to multi-threaded programs [13]. Recently an automatic method for information
flow analysis is developed in [18]. Lowe’s work [19] defined quantitative channel
capacity in the context of CSP. Further, the channel capacity of a leakage chan-
nel under constraints was worked out by using Lagrange multiplier methodology
and Karush–Kuhn–Tucker conditions, which was also applied in programs and
anonymity protocols [22,12,14].

Besides, various other different, albeit inherently relevant definitions and meth-
ods have been proposed to quantify the information leakage. Among them, Di
Pierro et al. used the norm of a transition matrix as a measure of probabilistic
confinement [10]. Recently, Smith et al. proposed the use of minimum entropy,
and argued that it can better describe the risk of leakage in [28]. Moreover, the
idea of quantitative leakage in the context of protocols has been investigated in
[3]. A discussion of the relationship between min entropy and Shannon entropy
relevant to the context of this work can be found in [24].

In comparison, what our results represent is based on adopting the Bellman’s
optimality principle as the rule-of-thumb: it is not representing the very worst
case which may happen with a very rare chance, but instead representing the
expectation from an optimal strategy (or a most dangerous one) with which a
multi-threaded program can be set to run.

2 Bellman’s Optimality Equation and Optimality Principle

2.1 Bellman’s Optimality Equation

In reinforcement learning, a Bellman equation refers to a recursion for expected
rewards. The expected reward in a particular state s using a certain policy π
follows the Bellman equation:

180 H. Chen and P. Malacaria

V π(s) = R(s) + γ
∑

s′∈S

P (s′|s, π(s))V π(s′)

where:

1. S is the set of states.
2. s, s′ are states and s, s′ ∈ S.
3. R is the one-period return function (e.g., a utility function).
4. π is a policy which maps from S to A which is the set of actions. A policy

is hence a way to choose an action given a particular state of the system.
5. P (s′|s, π(s)) is a probability which describes the transition probability from

the state s to s′ with the action a ∈ A following a policy π. In deterministic
case, for each state and action, we specify a new state S × A → S while
in probabilistic case S × A → P (S). For each state and action we specify a
probability distribution P (s|s, a) over next states.

6. V π is the value function representing the expected objective value obtained
by following a policy π from each state in S.

7. γ is a weight value, we can take γ = 1 for simplicity.

This equation describes the expected reward for taking the action prescribed by
a given policy π. It is used to show how to use a model of the environment to
convert immediate rewards into values.

Value functions partially order the policies, but at least one optimal policy
π∗ exists, and all optimal policies have the same value function V ∗, which is
solvable by Bellman optimality equations.

The equation for the optimal policy is referred to as the Bellman optimality
equation:

V ∗(s) = R(s) + max
a

γ
∑

s′∈S

P (s′|s, a)V ∗(s′)

and

π∗ = argmax
a

γ
∑

s′∈S

P (s′|s, a)V ∗(s′)

the optimality of π∗ can be proved via negation: if a policy π selected an action
a does not give out the maximal value of

γ
∑

s′∈S

P (s′|s, a)V ∗(s′)

then there exists another policy π′, which is the same as π everywhere except at
state s. At state s, π′ chooses the action a′ which maximize the above expression.
Thus, π can not be optimal and can not be chosen. Inversely, every optimal policy
must choose actions to maximize the above one.

The Optimum Leakage Principle for Analyzing Multi-threaded Programs 181

2.2 Bellman Optimality Principle

The Bellman optimality equation is central throughout the theory of Markov
decision processes [25] (MDPs) and reflects the principle of optimality. The prin-
ciple states:

“Regardless of the decision taken to enter a particular state in a
particular stage, the remaining decision made for leaving that stage
must constitute an optimal policy”[2].

There is another way of saying that: an optimal policy always achieves optimal
value for every start state, or, in each state the optimal policy will always select
the same action as an optimal policy for which the state is the start state.

Therefore, it means if we entered the terminal state of an optimal policy we
can trace it back. The equation reflects the principle: in the solution process, the
Bellman equation is written forwards from the initial state but can be solved
backwards from terminal state. The following is a small example to show how
this principle is used.

Example of Bellman optimality principle. Consider the following proba-
bilistic state transition system. In this transition system we assume s0 is the
initial state and s11 is the terminal state. We mark the probability and value
of the transition in the path. Here the value of the transition is computed by
the value function V as mentioned in the Bellman equation. We are going to use
Bellman’s optimality principle to find the policies for both maximal and minimal
profit for this transition system.

s0

1
2 :6

���

���
��

1
2 :8 �� s1

1
2 :10

���

���
��

1
2 :6 �� s2

1
2 :2

���

���
��

1
2 :4 �� s3

1:4
��

�

���
��

s4

1
2 :4

���

���
��

1
2 :4 �� s5

1
2 :6

���

���
��

1
2 :8 �� s6

1
2 :2

���

���
��

1
2 :8 �� s7

1:4
���

�

����
��

s8
1
2 :6 �� s9

1
2 :8 �� s10

1
2 :6 �� s11

According to Bellman’s optimality principle we start from the terminal state s11

and mark it as 0. We can reach this terminal node from nodes s7 and s10. If we
are at node s7 the value at transition is 4 and it is the only possibility transition
from s7, so we write s7 of “1 × 4 = 4” using “P (s′|s, a)V ∗(s′) ” where here we
assume the factor γ = 1. Similarly the value of only transition from s3 to s7 is
“1× 4 = 4” and we write s3 of 4 as well. Likewise s10 is marked by “3” because
the only transition from s10 → s11 has the value “ 1

2 × 6 = 3”. Not all node only
has one possibility, some states in the system have two possibilities, for example
s6 there are two transitions: one is to s7 with the value “ 1

2 × 8 + 4 = 8” where
in the equation “4” is the old value of s7 and “ 1

2 × 8” comes from the transition;
the other is to s10 with the value “ 1

2 × 2 + 3 = 4”. Because 8 > 4 we choose
the transition to s7 and write s6 of 8. We leave the transition chosen as solid
arrow and the transitions not chosen are marked with a dot arrow. Next we

182 H. Chen and P. Malacaria

consider the previous node to s6 which also has two possible transitions which
are: one is to s3 with the value “ 1

2 × 4 + 4 = 6”; the other is to s6 with the
value “ 1

2 × 2 + 8 = 9”. At node s2 we choose the transition to s6 because 9 > 6.
We continue this procedure back to state s0 with a value 21 which is the sought
maximal profit.

s21
0

1
2 :6

��

1
2 :8 �� s17

1

1
2 :10

���

���
��

1
2 :6 �� s10

2

1
2 :2

���

���
��

1
2 :4 �� s8

3

1:4
��

�

���
��

s14
4

1
2 :4

��

1
2 :4 �� s12

5

1
2 :6

��

1
2 :8 �� s8

6

1
2 :2

��

1
2 :8 �� s4

7

1:4
���

�

���
��

s10
8

1
2 :6 �� s7

9
1
2 :8 �� s3

10
1
2 :6 �� s0

11

The maximal profit is achieved by the path:

s0 → s1 → s5 → s6 → s7 → s11

Using the same principle and oppositely, if we choose minimal value at each
stage, when there are more than one choices, we can find the solution which
results in a minimal profit of the transition system. The solution is 12 where the
details are showing below:

s12
0

1
2 :6

��

1
2 :8 �� s8

1

1
2 :10

��

1
2 :6 �� s5

2

1
2 :2

���

���
��

1
2 :4 �� s8

3

1:4
��

�

���
��

s10
4

1
2 :4

��

1
2 :4 �� s8

5

1
2 :6

��

1
2 :8 �� s4

6

1
2 :2

���

���
��

1
2 :8 �� s4

7

1:4
���

�

���
��

s10
8

1
2 :6 �� s7

9
1
2 :8 �� s3

10
1
2 :6 �� s0

11

and the selected path is

s0 → s1 → s2 → s6 → s10 → s11

3 Information Leakage of Multi-threaded Programs

Information theory can be used to quantify the leakage in programs [15,16,17,13].
Generally speaking, the leakage of a system is the difference between the amount
of original confidential information and the amount of remaining confidential in-
formation after observations. In information theory, this difference is formulated
by mutual information:

I(h; l) = H(h) − H(h|l)

where

The Optimum Leakage Principle for Analyzing Multi-threaded Programs 183

1. h is the high (confidential) information and l is the low (public) one.
2. H(h) is the Shannon’s entropy defined as H(X) = −

∑
x∈X μ(x) log μ(x) in

which X = {x1, . . . , xn} with probabilities μ(x1), . . . , μ(xn).
3. H(h|l) is the conditional entropy defined as H(X |Y) = −ΣY =yμ(Y =

y)ΣX=xμ(X = x|Y = y)log(μ(X = x|Y = y)), where μ(X = x|Y = y)
is the conditional probability of X = x when Y = y.

Intuitively, mutual information I(h; l) measures the information shared between
h and l. In other words, it measures how much uncertainty of a variable is
reduced by knowing the other. An extreme case is if h and l are independent,
then I(h; l) = 0.

Further, conditional mutual information, a form of ternary interaction will be
used to quantify interference. Conditional mutual information measures the cor-
relation between two random variables conditioned on a third random variable,
which is defined as:

I(h; l|Z) = H(h|Z) − H(h|l, Z) = H(l|Z) − H(l|h, Z)

Given the leakage formula defined from mutual information and conditional mu-
tual information, we can compute the leakage of the high variable h coming from
the observation of low variable l in a program.

Now, we consider the multi-threaded programs with probabilistic scheduling,
as in [13]. We assume the attacker has the ability to observe the value of l in each
single step; this represents the most conservative observational model in [22] and
can be easily adapted to the other models such as the widely-used input-output
model as in [16,23].

For example:

h=random(0, n); | l=h;

There are two threads and we assume each thread has probability 1
2 to be chosen

first and h is a k bit integer variable (n = 2k − 1). The statement h=random(0,
n) assigns a random number to h, while the other l=h leaks everything about
h, which is k bits. Due to different scheduling there are two possible kinds of
observations with equal probabilities of 1

2 , which will lead to either 0 bit or k
bits of leakage. Then the expected leakage (as in [23]) would be

1
2
× k +

1
2
× 0 =

k

2

while the upper bound is k and lower bound is 0. For more complex multi-
threaded programs, the computation of leakage could refer to the method in [13]
and [22].

In comparison, we propose the optimal leakage principle below. We assume
the attacker can make decision about the scheduling in the run time of multi-
threaded programs and we give a methodology to evaluate the optimistic deci-
sion. The modeling of multi-threaded programs is described below, followed by
theorems and propositions and then demonstrated by two program examples.

184 H. Chen and P. Malacaria

4 The Optimal Leakage Principle for Multi-threaded
Programs

4.1 Modeling Multi-threaded Programs

Here we model a multi-threaded program using a probabilistic state-space tran-
sition system:

〈S,A,P ,L〉

where

1. S is a set of possible states in the system; we note the initial state as s0.
2. A is a set of actions which are statements in multi-threaded programs and

we write them as ai.
3. P is a set of probabilities associated to S, and we note the probability from

si to sj as pij . We assume determinacy, i.e. given si and an action a there
is at most one sj s.t. pij > 0.

4. L is a set of values associated to S, and we note the value from si to sj as
Lij , where Lij is the information leaked in the state transition si to sj .

To this structure we can associate a state transition graph: we start from the
initial state and select the statement from the program to reach a new state.
We continue with this procedure until the last statement of the program. For
example we first write the state transition of above example as

s0

a2
���

�

���
���

a1 �� s1 a2 �� s2

s3 a1 �� s4

where a1=“l=random(0,n)” and a2=“l=h”. and we also have the 〈S,A,P ,L〉
where S = {s0, s1, s2, s3, s4};
A = {a1, a2};
P = {p01 = 1 − p, p12 = 1, p03 = p, p34 = 1};
L = {L01 = 0, L12 = k, L03 = k, L34 = 0}.

It is often easier to write the probabilities and values instead of actions in the
transition system. Thus, the above state transition can be written as

s0

p:k
��

�

���
��

−1−p:0 �� s1 1:k �� s2

s3 1:0 �� s4

A Note on Scheduler Sequence. There are many well-known schedulers that
provide a deterministic execution order, for example Round Robin and Shortest
Time First, however the execution sequences of multi-threaded programs in most
of today’s computing systems are non-deterministic.

The Optimum Leakage Principle for Analyzing Multi-threaded Programs 185

In this paper we specifically analyze probabilistic schedulers, also known as
the Lottery scheduler. Since a probabilistic scheduler represents a probabilistic
policy of choosing threads, almost all other simple schedulers can be seen as
specific examples of that. The only difference between different schedulers is in
the choice of statements in the execution sequence due to the different scheduling
policies.

We use the scheduler sequence to denote the execution order of a multi-
threaded program. After choosing a statement in each small step in the run
time, there is only one execution sequence chosen from all possible schedul-
ing sequences following a certain probability distribution. We assume there are
n threads and the scheduler sequence would be: ijk... which means the ith

thread is chosen first, followed by the jth thread, then the kth thread, where
0 ≤ i, j, k ≤ n − 1.

Different outputs may come from different scheduler sequences, but one sched-
uler sequence can only produce one output. In the transition system, one path
from the initial state to the terminal state represents a scheduler sequence.

We can now state an optimal leakage theorem.

4.2 Optimal Leakage Theorem

Theorem 1. Optimal Leakage Theorem
In a transition system, the upper bound of leakage L starting from a state s is
given by the optimality equation:

L∗(s) = L(s) + max
a

∑

s′
P (s′|s, a)L∗(s′)

and the corresponding scheduler for achieving this upper bound is

S∗ = argmax
a

∑

s′
P (s′|s, a)L∗(s′)

where

1. L is the leakage function, i.e. maxj Ls,sj and
2. P (s′|s, a) is the unique probability ps,s′ given the action a

Proof:
Proof by contradiction: if a scheduler sequence S∗ selected a statement a which
does not give out the maximal value of

∑

s′
P (s′|s, a)L∗(s′)

then we can find another scheduler sequence S′, which is the same as S∗ every-
where except at state s. At state s, S′ chooses the action a′ which maximize the
above expression.

186 H. Chen and P. Malacaria

Thus, S∗ can not be optimal and can not be chosen. Inversely, every optimal
policy must choose actions to maximize the above one.

The proof completes.

Similarly we can have the following proposition to get the lower bound.

Proposition 1. Pessimal Leakage Theorem
In a transition system, the lower bound of leakage L is given by the optimality
equation:

L∗(s) = L(s) + min
a

∑

s′
P (s′|s, a)L∗(s′)

where
S∗ = argmin

a

∑

s′
P (s′|s, a)L∗(s′)

We can also easily prove this proposition via negation. The proof is omitted due
to space limitation.

4.3 The Optimal Leakage Principle

Like the Bellman equation which reflects the optimal principle, Theorem 1 and
Proposition 1 reflect the principle of information leakage under optimal exploit
strategies. To build a transition system, we need to simulate all possible tran-
sitions for possible executions. As previously mentioned, in multi-threaded pro-
grams, different probabilistic scheduler may produce different outputs. Thus,
there will be a set of terminal states, rather than one terminal state, in the tran-
sition system for a multi-threaded program. Suppose the set of terminal states
is T , each item in T is noted as ti where ti ∈ S as well.

To find the optimal and pessimal leakage, every element in T needs to be
accessed, then traced back to the initial state. Formally, we have the proposition
below:

Proposition 2. Optimal Leakage Principle

1. Firstly we start from the elements in T . As these are terminal states, we
mark them as 0.

2. Now trace back one level to look for previous nodes si, sj , ... adjacent to each
element in T . For each state, use Theorem 1 and Proposition 1 to compute
the leakage at this stage and make the optimal or pessimal choice.

3. Repeat this process. At each stage compute the new value using Theorem 1
and Proposition 1 to make the optimal or pessimal choice. Trace backwards
until arriving at the initial state, then we can achieve the optimal or pessimal
leakage for the transition system.

4. Finally, the reverse path that starts from the initial state and constitutes of
the chosen decisions above forms an optimal path.

The Optimum Leakage Principle for Analyzing Multi-threaded Programs 187

Example I. In the previous example:

l=rand(n); | l=h;

Here we use p to represent the probability of choosing “l=h” first and we assume
p < 1. With the transition system previously established in Section 4.1, we use
Proposition 2 to solve the leakage bounds recursively. There are two terminal
states in this automata s2 and s4 so we mark them as 0. Then we look for the
previous level and find s1 and s3. We start from s1, the only reachable state is s2

and the only transition has a value of leakage k with probability 1 so Ls1
new = k;

thus we mark s1 to be k. For s3, the only transition is s3 → s4 which has a value
of leakage of 0 with probability 1 so we mark s3 as 0. We continue tracking back
to s0. s0 has two possible choices: s0 → s1 and s0 → s3. s0 → s1 has a leakage
value of k +0 = k where k is the previous leakage coming from s1 while s0 → s3

has 0 + p× k = pk. Since pk ≤ k we choose the transition s0 → s1 and we mark
s0 as k. We mark the unchosen edge as dotted line.

sk
0

pk

��

0 �� sk
1 k �� s0

2

spk
3

0 �� s0
4

The optimal leakage is achieved by the path

s0 → s1 → s2

Also, we can easily get the pessimal path in the transition system

spk
0

pk
��

�

���
��

0 �� sk
1 k �� s0

2

spk
3

0 �� s0
4

and the pessimal leakage pk is achieved by the path

s0 → s3 → s4

Example II. Let us consider another example from [26]. This is a nested multi-
threaded program. In the outer two threads, we use p as probability operator.
There are two nested threads in one of them, reflected by the introduction of an
additional probability operator q. Also, we assume that h is k bits long.

l=h|p(l=0|ql=1)

Here we assume p = q = 1
2 which is a coin-flip choice operator. Using the

modeling method in Section 4.1 we can got the transition system:

188 H. Chen and P. Malacaria

s0

1
4 :a3

��

1
4 :a2

��
��

��

���
��

��
�

1
2 :a1 �� s1

1
2 :a3

���

���
��

1
2 :a2 �� s4 1:a3 �� s10

s5 1:a2 �� s11

s2

1
2 :a3

���

���
��

1
2 :a1 �� s6 1:a3 �� s12

s7 1:a1 �� s13

s3

1
2 :a2

���

���
��

1
2 :a1 �� s8 1:a2 �� s14

s9 1:a1 �� s15

where a1= “l=h”; a2 = “l=0”; a3= “l=1”. We can see from the statements that
a1 leaks k bits while others do not leak. From this nested threads example, we
also note that if the program has dynamic thread creation, then its transition
system may similarly be constructed by reserving states and choices for the
upcoming threads.

We are going to use Proposition 2 to solve the bounds of the leakage for this
transition system. Firstly we consider the optimal leakage. At each stage we use
Theorem 1 to achieve the optimal choice. We start from six possible terminal
states s10 . . . s15 and we mark them to be 0. We track back one level to find
the states s4 . . . s9. In these states we first consider the node s4, there is only
one reachable state from s4 which is s10 and the leakage in this transition is 0
with a probability of 1 so we mark s4 to be 1 × 0 = 0. Also we can easily find
that s11, s12, s13, s14, s15 can only be reached by s5, s6, s7, s8, s9. The leakage
values for these transitions are 0, 0, k, 0, k with the probability 1, because in the
transitions s7 → s13 and s9 → s15, a1 has k bits leakage while in the other
transitions, a2 and a3 has 0 leakage. So we mark s5, s6, s7, s8, s9 with 0, 0, k, 0, k
accordingly. We continue tracking back one level and find the states s1, s2 and
s3. s1 can be reached by s4 and s5 where the leakage from the two transitions are
both 0 so we mark s1 as 0. Then we consider s2, which can be reached by s6 and
s7. The leakage in transition s2 → s6 is k with probability 1

2 and in transition
s2 → s7 is 0. Considering the leakage previously we get 0+ 1

2 ×k < k+ 1
2 ×0, thus

at this stage we choose s2 → s7 and we put s2 → s6 as dotted line. Similarly we
know that for s3, the optimal choice is s3 → s9 with the leakage k. We mark it
as k and put s3 → s8 as dotted line. Then we arrive at the initial state s0. There
are three reachable states s1, s2, s3 from s0, the leakage for s0 → s1 is 0 + 1

2 × k
while for the other two transitions is k+ 1

4 ×0, so we could choose either s0 → s2

or s0 → s3. The solution is showing in the following graph.

The Optimum Leakage Principle for Analyzing Multi-threaded Programs 189

sk
0

1
4 :0

��

1
4 :0

��
��

��
�

		�
��

��
��

1
2 :k �� s0

1

1
2 :0

���

���
��

1
2 :0 �� s0

4 1:0 �� s0
10

s0
5 1:0 �� s0

11

sk
2

1
2 :0

			

��	
		

1
2 :k �� s0

6 1:0 �� s0
12

sk
7 1:k �� s0

13

sk
3

1
2 :0

��

1
2 :k �� s0

8 1:0 �� s0
14

sk
9 1:k �� s0

15

The optimal leakage k is achieved by:

s0 → s2 → s7 → s13 ({a2, a3, a1}), or s0 → s3 → s9 → s15 ({a3, a2, a1})

Alternatively, using Proposition 2, at each stage we can choose the minimal value
to get the pessimal leakage:

s
k
2
0

1
4 :0

��

1
4 :0

��
��

��
�

		�
��

��
��

1
2 :k �� s0

1

1
2 :0

		
	

��	
		

1
2 :0 �� s0

4 1:0 �� s0
10

s0
5 1:0 �� s0

11

s
k
2
2

1
2 :0

��

1
2 :k �� s0

6 1:0 �� s0
12

sk
7 1:k �� s0

13

s
k
2
3

1
2 :0

��

1
2 :k �� s0

8 1:0 �� s0
14

sk
9 1:k �� s0

15

190 H. Chen and P. Malacaria

and the pessimal leakage k
2 is achieved by one of the following paths:

s0 → s1 → s4 → s10 ({a1, a2, a3})
s0 → s1 → s5 → s11 ({a1, a3, a2})
s0 → s2 → s6 → s12 ({a2, a1, a3})
s0 → s3 → s8 → s14 ({a3, a1, a2})

4.4 Complexity

Computational complexity is a very important factor for implementation and
is considered a practical issue for the use of Bellman equation. We denote the
computational complexity as R here. Since the execution trees in our state tran-
sition systems are acyclic and strictly nondecreasing backwards, the computa-
tional complexity of the optimality leakage principle (Proposition 2) is bounded
by the number of vertexes (nodes) or edges in the tree, which can be bounded
by two factors: the number of choices at each stage and the other is the number
of stages.

If the state transition system has n stages1, with two decisions taken at every
stage, this requires R = O(2n) arithmetical operations. In the general case, if
there are n stages in the transition system and at each stage there are m deci-
sions, the complexity for the implementation is of the order of O(mn) arithmeti-
cal operations. The computational complexity will increase significantly with the
decisions at every stage. For example, if there are 20 stages and 3 decisions at
every stage, we will get 3 486 784 401 operations; in a computer with a speed of
1 million arithmetical operations per second, it will take 3487 seconds i.e 0.97
hour to finish this computation. For this reason there is a strong motivation
to simplify the computation otherwise the method would be rarely applicable.
Then we have to consider the method to simplify the complexity.

Here we only consider the transition system without considering any transition
probabilities. Firstly a transition system can be written as a set of transitions
T , in which an element tij can be written as a triple

〈si, ak, sj〉

where si is a starting state and ak is an action on si which transit si to the
state sj .

We consider two kinds of improvements. Firstly, since the graph is a tree, there
are existing standard algorithms which are much more computationally efficient
than O(mn) for tree-search. Secondly, in the process of using Proposition 2 to
solve the leakage bounds, if L∗(s′) = 0 whatever P (s′|s, a) is, the edge will
not contribute to the new value of leakage. In the following algorithm, we are
removing these edges whose weight is 0, where there is no interference between
h and l.
1 In the examples, each line is seen as a stage. In reality however, instead of tracking

every line of program, it is rational to only track the lines which has something to
do with the high variable(s).

The Optimum Leakage Principle for Analyzing Multi-threaded Programs 191

Table 1. Algorithm to simplify the transition system

Algorithm 1. Simplification algorithm for transition system

Require: T a set of transitions
Ensure: T �= φ?
1: Visited =φ
2: Waiting = T
3: repeat
4: Get tij from Waiting
5: Visited =Visted ∪ {tij}
6: if L(tij) == 0
7: Remove tij from Waiting
8: Modify tj∗ ∈ Waiting as ti∗
9: endif
10: until Visited = T
11: Return Waiting;

For example, in the example 4.3, there are 15 transitions (edges). Now if we
use the above algorithm to cut some 0 weight edges, we can then simplify the
transition system to be

s0
1
2 :a1 ��

��������������� s1

1
2 :a1 ��

1:a1

��

s8
1
2 :a1 ��

1:a1

��
��

���
��

s6

s15 s13

There are only 5 remaining edges after simplification and the number of edges
has reduced by 67%.

4.5 Further Remarks

1. The optimality principle allows for an interesting characterization of leakage
in multi-threaded programs, based on what can be leaked from an optimal
or pessimal policy. In comparison, previous quantitative result for multi-
threaded programs is an overall expectation [13].

2. Since state-transition forms a tree graph, in the program run-time the tree
will continuously evolve into subtrees. This allows to track run-time leakage
at each time spot, by finding the optimal leakage in the subtree with the
knowledge of which previous steps have been taken. Further, this can hope-
fully allow automatic run-time leakage tracking of programs by attaching
such a builtin state-transition tree into the program code segment.

3. Furthermore, we should repeat that we have assumed the attacker can ob-
serve the low-variable in every single step of execution, and we have modeled

192 H. Chen and P. Malacaria

the state transitions based on that. The stages thus can be seen as a super-set
[22]. If other kinds of observational assumptions are desirable, our leakage
optimality principle can also be easily adapted to those assumptions by con-
sidering a subset of the stages, which would lead to a somewhat simpler state
transition graph.

4. Finally, the work remains preliminary with respect to real implementation.
For programs following a Turing-complete language (with imperative state-
ments, if statements and for loops) we can hopefully borrow experiences from
previous works [16,23,13], although several problems have to be solved, for
example, how to cope with non-terminating loops and breaks. This would
be an open problem for the next step.

5 Conclusions and Future Work

By extending the Bellman’s optimality principle into quantitative information
flow, we propose a novel principle for characterizing information leakage and
tracking the run-time leakage in multi-threaded programs.

This may create lots of exciting opportunities: according to the static results
further actions can be made either to accept or to reject a program, while dy-
namic measurement can be used for alert or guarantee that an attacker can not
acquire a certain quantity of information at run-time. Such a method can also
serve as a template for tracking information leaks in state transition systems. Fi-
nally, we believe this work demonstrates an interesting perspective by connecting
the field of information security with the theory of machine learning.

References

1. Bhargava, M., Palamidessi, C.: Probabilistic Anonymity. In: Abadi, M., de Al-
faro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 171–185. Springer, Heidelberg
(2005)

2. Bellman, R.: On the Theory of Dynamic Programming. In: Proceedings of the
National Academy of Sciences (1952)

3. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative notions of leakage
for one-try attacks. In: Proceedings of MFPS 2009 (2009)

4. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity Protocols as
Noisy Channels. Postproceedings of the Symp. on Trustworthy Global Computing.
LNCS. Springer, Heidelberg (2006)

5. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: On the bayes risk in
information-hiding protocols. Journal of Computer Security 16(5), 531–571 (2008)

6. Michael, R., Clarkson, A.C.: Myers, and Fred B. Schneider: Belief in information
flow. In: Proceedings of 18th IEEE Computer Security Foundations Workshop, pp.
31–45. Aix-en-Provence, France (2005)

7. Cover, T., Thomas, J.: Elements of Information Theory. John Wiley&Sons, Inc.,
Hoboken (2006)

8. Denning, D.E.: Cyptography and Data Security. Addison-Wesley, Reading (1982)
9. Denning, D.E.: A lattice model of secure information flow. Communications of the

ACM 19(5) (May 1976)

The Optimum Leakage Principle for Analyzing Multi-threaded Programs 193

10. Di Pierro, A., Hankin, C., Wiklicky, H.: Measuring the confinement of probabilistic
systems. Theoretical Computer Science 340(1), 3–56 (2005)

11. Gray III, J.W.: Toward a methematical foundataion for information flow security.
In: Proceedings of the 1991 IEEE Symposium on Security and Privacy, Oakland,
California (May 1991)

12. Chen, H., Malacaria, P.: Quantifying Maximal Loss of Anonymity in Protocols. In:
Proceedings of ASIACCS 2009, Sydney, NSW, Australia, March 10-12 (2009)

13. Chen, H., Malacaria, P.: Quantitative Analysis of Leakage for Multi-threaded Pro-
grams. In: Proceedings of ACM 2007 workshop on Programming languages and
analysis for security (2007)

14. Chen, H., Malacaria, P.: Studying Maximum Information Leakage Using Karush–
Kuhn–Tucker Conditions. In: Proceedings of the 7th International Workshop on
Security Issues in Concurrency

15. Clark, D., Hunt, S., Malacaria, P.: David Clark, Sebastian Hunt, Pasquale
Malacaria: A static analysis for quantifying information flow in a simple imper-
ative language. Journal of Computer Security 15 (2007)

16. Clark, D., Hunt, S., Malacaria, P.: Quantitative Analysis of the leakage of confi-
dential data. Electronic Notes in Theoretical Computer Science 59 (2002)

17. Clark, D., Hunt, S., Malacaria, P.: Quantified interference for a while language.
Electronic Notes in Theoretical Computer Science 112, 149–166 (2005)

18. Backes, M., Kopf, B., Rybalchenko, A.: Automatic Discovery and Quantification
of Information Leaks. In: Proceedings of the 30th IEEE Symposium on Security
and Privacy, S&P 2009 (2009)

19. Lowe, G.: Quantifying information flow. In: Proceedings of the Workshop on Au-
tomated Verification of Critical Systems (2001)

20. Mclean, J.: Security models and information flow. In: Proceedings of the 1990 IEEE
Symposium on Security and Privacy. Oakland, California (May 1990)

21. Millen, J.: Covert channel capacity. In: Proceedings of the 1987 IEEE Symposium
on Research in Security and Privacy (1987)

22. Malacaria, P., Chen, H.: Lagrange Multipliers and Maximum Information Leak-
age in Different Observational Models. In: Proceedings of ACM SIGPLAN Third
Workshop on Programming Languages and Analysis for Security (June 2008)

23. Malacaria, P.: Assessing security threats of looping constructs. In: Proceedings of
ACM Symposium on Principles of Programming Language (2007)

24. Malacaria, P.: Risk Assessment of Security Threats for Looping Constructs. Journal
of Computer Security (2009)

25. Puterman, M.L.: Markov decision processes: discrete stochastic dynamic program-
ming., 2nd edn., illustrated. Wiley-Interscience, Hoboken (2005)

26. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs.
In: Proceedings of IEEE Computer Security Foundations Workshop, July 2000, pp.
200–214 (2000)

27. Shannon, C.E., Weaver, W.: A Mathematical Theory of Communication. Univ. of
Illinois Press, Urbana (1963)

28. Smith, G.: On the Foundation of Quantitative Information Flow. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

29. Chatzikokolakis, K., Chothia, T., Guha, A.: Calculating Probabilistic Anonymity
from Sampled Data (manuscript) (2009), http://www.cs.bham.ac.uk/~tpc/

Papers/CalcProbAnon.pdf

http://www.cs.bham.ac.uk/~tpc/Papers/CalcProbAnon.pdf
http://www.cs.bham.ac.uk/~tpc/Papers/CalcProbAnon.pdf

	The Optimum Leakage Principle for Analyzing Multi-threaded Programs
	Introduction and Background
	Related Work

	Bellman's Optimality Equation and Optimality Principle
	Bellman's Optimality Equation
	Bellman Optimality Principle

	Information Leakage of Multi-threaded Programs
	The Optimal Leakage Principle for Multi-threaded Programs
	Modeling Multi-threaded Programs
	Optimal Leakage Theorem
	The Optimal Leakage Principle
	Complexity
	Further Remarks

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

