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Preface

ICITS 2009 was held at the Shizuoka Convention and Arts Center “GRANSHIP”
in Japan during December 3–6, 2009. This was the 4th International Conference
on Information Theoretic Security.

Over the last few decades, we have seen several research topics studied re-
quiring information theoretical security, also called unconditional security, where
there is no unproven computational assumption on the adversary. (This is the
framework proposed by Claude Shannon in his seminal paper.) Also, coding
as well as other aspects of information theory have been used in the design
of cryptographic schemes. Examples are authentication, secure communication,
key exchange, multi-party computation and information hiding to name a few.
A related area is quantum cryptography that predominantly uses information
theory for modeling and evaluation of security. Needless to say, information the-
oretically secure cryptosystems are secure even if the factoring assumption or
the discrete log assumption is broken. Seeing the multitude of topics in mod-
ern cryptography requiring information theoretical security or using information
theory, it is time to have a regular conference on this topic. This was the fourth
conference of this series, aiming to bring together the leading researchers in the
area of information and/or quantum theoretic security.

There were 50 submissions of which 13 papers were accepted. Each paper
was reviewed by at least three members of the Program Committee, while sub-
missions co-authored by the Program Committee member were reviewed by at
least five members. In addition to the accepted papers, the conference also
included six invited speakers. These proceedings contain the accepted papers
and the contribution by invited speakers. The invited speakers were: Yevgeniy
Dodis “Leakage-Resilience and The Bounded Retrieval Model,” Masato Koashi
“Security of Key Distribution and Complementarity in Quantum Mechanics,”
Kazukuni Kobara “Code-Based Public-Key Cryptosystems and Their Applica-
tions,” Prakash Narayan “Multiterminal Secrecy Generation and Tree Packing,”
Adi Shamir “Random Graphs in Security and Privacy” and Adam Smith “What
Can Cryptography Do for Coding Theory?”

The conference received financial support from the Support Center for Ad-
vance Telecommunications Technology Research, Kayamori Foundation of In-
formational Science Advancement, and Research Center for Information Secu-
rity (RCIS) of the National Institute of Advanced Industrial Science Technolo-
gies (AIST). We also received local support from the Shizuoka Convention and
Visitors Bureau.

There are many people who contributed to the success of ICITS 2009. I would
like to thank many authors from around the world for submitting their papers.
I am deeply grateful to the Program Committee for their hard work to ensure
that each paper received a thorough and fair review. I gratefully acknowledge
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the external reviewers listed on the following pages. I would like to thank Shai
Halevi for developing and maintaining his very nice Web Submission and Review
System. Finally, I would like to thank the general chair, Akira Otsuka, and
the local organizer, Yukiko Ito, for organizing the conference. In particular, the
unrelenting effort of Yukiko ensured the smooth running of the conference.

January 2010 Kaoru Kurosawa
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Survey: Leakage Resilience and the Bounded
Retrieval Model

Joël Alwen, Yevgeniy Dodis, and Daniel Wichs

Department of Computer Science, New York University
{jalwen,dodis,wichs}@cs.nyu.edu

Abstract. This survey paper studies recent advances in the field of Leakage-
Resilient Cryptography. This booming area is concerned with the design of cryp-
tographic primitives resistant to arbitrary side-channel attacks, where an attacker
can repeatedly and adaptively learn information about the secret key, subject only
to the constraint that the overall amount of such information is bounded by some
parameter �. We start by surveying recent results in the so called Relative Leakage
Model, where all the parameters of the system are allowed to depend on �, and
the goal is to make � large relative to the length of the secret key. We conclude
by showing how to extend the relative leakage results to the Bounded Retrieval
Model (aka “Absolute Leakage Model”), where only the secret key length is al-
lowed to be slightly larger than �, but all other system parameters (e.g., public-
key, communication, etc.) are independent of the absolute value of �. Throughout
the presentation we will emphasize the information-theoretic techniques used in
leakage-resilient cryptography.

1 Introduction

Traditionally, cryptographic systems rely on complete privacy of cryptographic keys.
Unfortunately, in real systems, this idealized assumption is hard to meet perfectly. In
many situations, the attacker might get some partial information about the secret keys
through means which were not anticipated by the designer of the system and, corre-
spondingly, not taken into account when arguing its security. Such attacks, typically re-
ferred to as side-channel attacks, come in a large variety (radiation, power, temperature,
running time, fault detection, etc.), and often lead to a complete break of an otherwise
“secure” system (e.g. [Koc96, BDL97, BS97, KJJ99, QS01, GMO01]). The situation
becomes even worse if one also takes into account various computer viruses, internet
worms and other malware, which might persist in a system inconspicuously for some
time and leak private information to a remote attacker, until it is eventually detected.

Given that one cannot hope to eliminate the problem of side-channel and malware
attacks altogether, it is natural to design cryptographic schemes which remain (prov-
ably) secure, even in the face of such attacks. To do so, we must first decide on an
appropriate model of what information the adversary can learn during a side-channel
attack. In this work, we assume that the attacker can repeatedly and adaptively learn
arbitrary functions of the secret key sk, as long as the total number of bits leaked is
bounded by some parameter �. Due to its generality, this model seems to include essen-
tially all known side-channel attacks, and has recently attracted a lot of attention from

K. Kurosawa (Ed.): ICITS 2009, LNCS 5973, pp. 1–18, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the research community. In particular, this model simultaneously covers the following
two typical scenarios, which seem to be treated differently in the existing literature.

RELATIVE LEAKAGE. Here, for a secret key of some particular length s, we assume
that the leakage � is bounded by some shrinking function of s; e.g., the attacker’s leak-
age is less than half of the key-size. This assumption seems to be natural for modeling
attacks where, no matter what the key-size is, the attacker gets some imperfect read-
ing of the key. For example, this naturally models “memory” attacks [HSH+08] (where
the attacker might get part of the key stored in RAM), “microwave” attacks (where the
attacker manages to extract a corrupted copy of the key from a smart-card), or vari-
ous power attacks (which repeatedly leak almost the same information about the secret,
such as its hamming weight), among others.

ABSOLUTE LEAKAGE. Here we assume that there is a natural bound � on the overall
amount of information the attacker can learn throughout the lifetime of the system, par-
ticularly concentrating on the setting when � can be extremely large. A prime example
of this comes from most malware attacks, where a persistent virus may transmit a large
amount of private data to a remote attacker. Nevertheless, in many situations it is either
impossible, too time-consuming, or simply not cost-effective for the virus to download
“too much data” (e.g. many gigabytes). In such situation one might resist side-channel
attacks, but only by making the secret key intentionally large, to dominate the retrieval
bound �. This by itself might not be a big problem for usability, given the extremely
cheap price of storage nowadays. Therefore, the main goal of this setting, usually ref-
ereed to as the Bounded Retrieval Model (BRM) [CLW06, Dzi06], is to ensure that the
necessary inefficiency in storage is essentially the only inefficiency that the users of
the system incur. In particular, honest users should only have to read a small portion of
the secret (this is called locality), and their computation and communication should not
be much larger than in conventional cryptosystems.

To summarize, both leakage models – relative and absolute – study essentially the
same technical question. However, the BRM setting additionally demands that: users
can increase their secret key size flexibly, so as to allow for an arbitrary large absolute
leakage �, but without degrading other efficiency parameters, such as computation,
communication and locality. This is the perspective we will take in this paper, treat-
ing both settings together, while striving to allow for the above flexibility. Indeed, we
will see that a natural paradigm for designing efficient BRM scheme often starts with
designing a relative leakage scheme first, and then extending the basic scheme to the
BRM model.

Another interesting feature of leakage-resilient cryptography is that information-
theoretic techniques are often used even in the design of computationally secure
schemes, such as password authentication, public-key encryption or digital signature
schemes. We will try to emphasize these techniques throughout the presentation.

1.1 Related Work

WEAK SECRETS, SIDE-CHANNEL ATTACKS AND BRM. The model of side-channel
attacks, as studied in this work, is very related to the study of cryptography with weak
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secrets. A weak secret is one which comes from some arbitrary distribution that has a
sufficient level of (min-)entropy, and one can think of a secret key that has been par-
tially compromised by side-channel attacks as coming from such a distribution. Most
of the prior work concerning weak secrets is specific to the symmetric key setting and
much of this work is information-theoretic in nature. For example, the study of privacy-
amplification [BBR88, Mau92b, BBCM95] shows how two users who share a weak
secret can agree on a uniformly random key in the presence of a passive attacker. The
works of [MW97, RW03, DKRS06, KR09, DW09] extend this to active attacks, and the
works of [Mau92a, AR99, ADR02, Lu02, Vad04] extended this to the case of huge se-
crets (motivated by the Bounded Storage Model, but also applicable to the BRM). Such
information-theoretically secure schemes can only be used once to convert a shared se-
cret, which may have been partially compromised by side-channel attacks, into a single
uniform session-key.

In the computational setting, users can agree on arbitrarily many session-keys using
Password Authenticated Key Agreement (PAKE) [BM93, BPR00, BMP00, KOY01,
GL06], where they use their shared weak (or partially compromised) secret key as the
password. However, these solutions do not scale to the BRM, as they do not preserve
low locality when the secret is large. The Bounded Retrieval Model (BRM), where
users have a huge secret key which is subject to large amounts of adversarial leakage,
was introduced by [CLW06, Dzi06]. In particular, Dziembowski [Dzi06] constructed
a symmetric key authenticated key agreement protocol for this setting in the Random
Oracle model. This was later extended to the standard model by [CDD+07]. Other
symmetric-key applications, such as password authentication and secret sharing, were
studied in the BRM setting by [CLW06] and [DP07], respectively. We also note that
non-interactive symmetric key encryption schemes using partially compromised keys
were constructed implicitly in [Pie09] (based on weak pseudorandom functions) and
explicitly in [DKL09] (based on “learning parity with noise”).

The study of side-channel attacks in the public-key setting was initiated by Akavia et
al. [AGV09], who showed that Regev’s public-key encryption scheme [Reg05] (based
on lattices) is secure against the side-channel attacks in the relative leakage model. Sub-
sequently, Naor and Segev [NS09] presented several new constructions of public-key
encryption schemes for this setting, based on other (non-lattice) assumptions, tolerat-
ing more leakage and achieving CCA2 security. Very recently, Alwen et al. [ADN+09]
showed how to build the first public-key encryption in the BRM based on a variety
of assumptions (lattices, quadratic residuosity, bilinear maps). Along the way, they
also build identity-based encryption (IBE) schemes in the relative leakage model. The
main drawback of these works is that (non-interactive) encryption schemes inherently
only allow the adversary to perform side-channel attacks prior to seeing a ciphertext.
This concern was addressed by Alwen et al. [ADW09] who showed how to construct
public-key (interactive) key-exchange protocols both in the relative leakage-model and
in the BRM, where the leakage was allowed to occur both before and after running
the protocol. Along the way, the work of [ADW09] built leakage-resilient identifica-
tion schemes (again, both in the relative leakage model and the BRM), used them to
construct leakage-resilient signature schemes (in the random oracle model), and also
developed general tools for converting schemes in the relative-leakage models into the
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more general BRM setting. Finally, Katz and Vaikuntanathan [KV09] recently devel-
oped leakage-resilient signature scheme in the standard model.

This survey article could be viewed as the digest of the main ideas and construc-
tions from [ADW09, NS09, ADN+09, KV09], with the emphasis of trying to unify the
different-looking techniques used in these works.

OTHER MODELS OF ADVERSARIAL KEY COMPROMISE. It is worth describing several
related models for key compromise. One possibility is to restrict the type of informa-
tion that the adversary can learn about the secret key. For example a line of work called
exposure resilient cryptography [CDH+00, DSS01] studies a restricted class of adver-
sarial leakage functions, where the adversary gets a subset of the bits of the secret key.
In this setting, one can secure keys against leakage generically, by encoding them using
an all-or-nothing transform (AONT). We note that some natural side-channel attacks
(e.g. learning the hamming weight of the key) and malware attacks are not captured by
this model.

Another line of work, initiated by Micali and Reyzin [MR04] and studied further
by [DP08, Pie09, FKPR09], designs various symmetric-key primitives and digital sig-
natures under the axiom that “only computation leaks information”. These models are
incomparable to our setting, as they restrict the type of information the attacker can
obtain, but can allow a greater overall amount of such information to be leaked. While
quite reasonable in some application scenarios, such as power/radiation attacks, the
above axiom does not seem to apply to many other natural attacks, such as the mem-
ory/microwave attacks or virtually all malware/virus attacks. A related model, where
the adversary can learn/influence the values on some subset of wires during the evalua-
tion of a circuit, was studied by Ishai et al. [ISW03, IPSW06], and recently generalized
by [FRT09].

Lastly, the recent works [DKL09, DGK+09] study auxiliary input, where the adver-
sary can learn functions f(sk) of the secret key sk subject only to the constraint that
such a function is hard to invert. Technically, this is a strictly stronger model than the
one considered in this work as such functions f can have output length larger than the
size of the secret key.

2 Preliminaries

ENTROPY. The min-entropy of a random variable W is H∞(W ) def= − log(maxw

Pr[W = w]). This is a standard notion of entropy used in cryptography, since it
measures the worst-case predictability of W . We also review a generalization from
[DORS08], called average conditional min-entropy defined by

H̃∞(W |Z)
def
=− log

(
Ez←Z

[
max

w
Pr[W =w|Z =z]

])
=− log

(
Ez←Z

[
2
−H∞(W |Z=z)

])
.

This measures the worst-case predictability of W by an adversary that may observe a
correlated variable Z . We will use the following lemmas to reason about entropy.

Lemma 1 ([DORS08]). Let W, X, Z be random variables where Z takes on values in
a set of size at most 2�. Then H̃∞(W |(X, Z)) ≥ H̃∞((W, X)|Z)−� ≥ H̃∞(W |X)−�

and, in particular, H̃∞(W |Z) ≥ H∞(W ) − �.
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In [ADW09], the authors define a more general notion of conditional min-entropy
H̃∞(W | E), where E can denote any arbitrary experiment (and not just some “one-
time” random variable Z). Intuitively, this measures the (log of the) best prediction
probability for W after running the experiment E . We refer to [ADW09] for the details.

REVIEW OF Σ-PROTOCOLS. Let R be a relation consisting of instance, witness pairs
(x, w) ∈ R and let LR = {x | ∃w, (x, w) ∈ R} be the language of R. A Σ-protocol for
R is a protocol between a PPT ITM proverP(x, w) and a PPT ITM verifier V(x), which
proceeds in three rounds where: (1) the prover P(x, w) sends an initial message a, (2)
the verifier V(x) sends a uniformly random challenge c, (3) the prover P(x, w) sends
a response z. The verifier V(x) either accepts or rejects the conversation by computing
some predicate of the instance x and the conversation (a, c, z). We require that Σ-
protocols satisfy the following three properties:

1. Perfect Completeness: For any (x, w) ∈ R, the execution {P(x, w) � V(x)} is
always accepting.

2. Special Soundness: There is an efficient algorithm such that, given an instance x
and two accepting conversations for x: (a, c, z), (a, c′, z′) where c �= c′, the algo-
rithm outputs w such that (x, w) ∈ R.

3. Perfect Honest Verifier Zero Knowledge (HVZK): There is a PPT simulator S such
that, for any (x, w) ∈ R, the simulator S(x) produces conversations (a, c, z) which
are identically distributed to the conversations produced by an honest execution
{P(x, w) � V(x)}.

As was shown in [CDS94], the HVZK property implies witness indistinguishability.
Here, we rephrase essentially the same property in a slightly different manner. We show
that, oracle access to a prover P(x, w) does not decrease the entropy of w in any exper-
iment in which x is given to the predictor.

Lemma 2. Let (P ,V) be an HVZK protocol for the relation R, and let (X, W ) be ran-
dom variables over R. Let E1 be an arbitrary experiment in which A is given X at the
start of the experiment, and let E2 be the same as E1, except that A is also given oracle
access to P(X, W ) throughout the experiment. Then H̃∞(W |E2) = H̃∞(W |E1).

ONE-WAY FUNCTIONS (OWF) AND SECOND-PREIMAGE RESISTANCE (SPR). We
review these two standard notions. In the full generality, the index i for the OW/SPR
function fi is sampled by a special index generation procedure Gen(1λ) (where λ is
the security parameter), which also defines the domain Di and the range Ri for the
function.

Definition 1 (One Way Functions (OWF)). A family of functions F = {fi : Di →
Ri} is one-way if:

– Easy to generate, sample and compute: There exist efficient algorithms for key gen-
eration i ← Gen(1λ), sampling w ← Di and for computing fi(w) in time poly(λ).

– Hard to invert: For any PPT algorithm A, we have Pr[fi(A(i, fi(w))) = fi(w)] ≤
negl(λ), where the probability is over random i ← Gen(1λ), w ← Di and the
random coins of A.
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Definition 2 (Second Pre-Image Resistant Functions (SPR)). A family of functions
F = {fi : Di → Ri} is second-preimage resistant (SPR) if F is easy to generate,
sample and compute (defined the same way as for OWF) and, for any PPT algorithm A,
Pr[w′ �= w ∧ fi(w′) = fi(w) | w′ = A(i, fi(w), w)] ≤ negl(λ), where the probability
is over random i ← Gen(1λ), w ← Di and the random coins of A. We define the loss
of fi to be L(fi)

def= (log(|Di|) − log(|Ri|)).

In theory, it is known [Rom90] that for any polynomial p(λ), the existence of OWFs
implies the existence of SPR functions with Di = {0, 1}p(λ), Ri = {0, 1}λ. In practice,
it is easy to construct SPR functions from most natural number-theoretic assumptions.
For example, if the discrete log problem is hard in some group G of prime order q, the
following is a simple SPR function from Zn

q → G: (w1 . . . wn) 
→
∏n

j=1 g
wj

j , where
g1 . . . gn are random generators of G (forming part of the function index i).

As we shall see, SPR functions will play a critical role in the design of leakage-
resilient schemes, but first we need to model leakage-resilience.

LEAKAGE ORACLE. We model adversarial side-channel attacks on a secret key sk, by
giving the adversary access to a side-channel oracle, which the adversary can (periodi-
cally) query to gain information about sk. Intuitively, we would like to capture the fact
that the adversary can compute arbitrary efficient functions of the secret key as long as
the total number of bits learned is bounded by some parameter �. In general, these leak-
age functions can be chosen adaptively, based on the results of prior leakage attacks and
any other events that may take place during the attack game. The following definition
formalizes the above concept.

Definition 3. A leakage oracle Oλ,�
sk (·) is parameterized by a secret key sk, a leakage

parameter � and a security parameter λ. A query to the oracle consists of (a description
of) a leakage function h : {0, 1}∗ → {0, 1}. The oracle computes the function h(sk)
for at most poly(λ) steps and, if the computation completes, responds with the output,
and otherwise, outputs 0. A leakage oracle Oλ,�

sk (·) responds to at most � queries, and
ignores all queries afterwards.

3 Relative Leakage Model

We start with the relative leakage model, where the goal is to design a cryptographic
scheme allowing one to tolerate relative leakage � as close to the length of the secret
key of the system as possible.

3.1 Password Authentication and OWF

Pasword authentication is, perhaps, the most basic cryptographic problem. A client Al-
ice has a secret key sk and wishes to authenticate herself to a server Bob, who stores
some function pk of Alice’s key. It is assumed the the communication channel between
Alice and Bob is secure, but server Bob’s storage pk is not. Thus, it must be the case
that no valid sk can be computed from pk. Therefore, it is clear that a necessary and
sufficient primitive for the problem of password-authentication is a OWF. Namely, the
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key generation algorithm KeyGen sets sk = w and pk = (i, fi(w)), where i is the in-
dex of a OWF from Di to Ri. In the setting of leakage, the adversary A is also given
oracle access to Oλ,�

sk (·). Notice, in this setting adaptive access to the leakage oracle is
equivalent to choosing a single leakage function h(sk) whose output is � bits. We call
the resulting OWF family F �-leakage-resilient (�-LR).

The first hope of building LR-OWFs is to hope that all OWF’s are LR. The good news
is that it is true for �(λ) = O(log λ), since one can always guess the proper leakage with
probability 1

2� ≥ 1
poly(λ) . The bad news is that it is unlikely we can say more about it.

As an example, consider f(x1, x2) = f ′(x1) where |x1| = λ0.01, |x2| = (λ − λ0.01)
and f ′ is some auxiliary OWF. Clearly, f is not even (λ0.01)-LR. The next hope is to try
some natural OWF’s and hope that they happen to be leakage-resilient. Unfortunately,
this is also problematic. For example, consider the modular exponentiation function
f(w) = gw over some group G of order q. It turns out that we do not have any attacks
on this f , and, yet, we cannot prove the leakage-resilience of this function based on
the discrete log assumption either. The difficulty is in simulating the leakage oracle:
given only f(w) = gw, there does not appear to be any way to compute (with any
decent probability) h(w) for an adversarially chosen function h : Zq → {0, 1}�, when
� = ω(log λ).

This is where the SPR functions come to the rescue. In the SPR attack on a function
f , the SPR attacker A is given a valid pre-image w of x = f(w). Thus, it is easy to
simulate the correct value z = h(w) for the leakage attacker B. However, if both z and
x are much shorter than w, the leakage attacker B still has a lot of uncertainty about
the original value w used by A. Hence, there is a good chance that B will compute a
different pre-image w′ �= w of x, therefore violating the SPR security of f . This easy
observation is formalized below, but will form the basis for building more complicated
leakage-resilient primitives.

Theorem 1. If F is an SPR family with loss � = �(λ) (see Definition 2), then F is
(� − ω(log λ))-LR-OWF.

Proof. Assume that fi is not a �′-LR-OWF, where �′ = (� − ω(log λ)). So there exists
an inverter B which inverts fi(w) (given fi(w) and leakage h(w)) with probability ε
which is non-negligible. We construct an algorithm A which breaks the SPR security
with non-negligible advantage (analyzed below).

On input (i, w, x = fi(w)), A invokes B(i, x). When B makes a leakage query h,
A responds with h(w) ∈ {0, 1}�′. If B then returns a valid pre-image w′ such that
fi(w′) = x, A returns w′ iff w′ �= w. It is clear that A simulated B perfectly. Hence,

Pr(A succeeds) ≥ Pr(B succeeds ∧ w �= w′) ≥ ε − Pr(w = w′)

Let W be the random variable corresponding to sampling w from Di, and denote by
X = fi(W ), Z = h(W ). It is clear that even if B is infinitely powerful, its best chance

to predict W from X and Z is 2−H̃∞(W |X,Z). However, using Lemma 1, we know that
H̃∞(W | X, Z) ≥ H̃∞(W ) − (log |Ri| + �′) = log(|Di|/|Ri|) − �′ = � − �′, which
gives Pr(w = w′) ≤ 2�′−�. Setting �′ = (� − ω(log λ)), we get that A succeeds with
non-negligible probability (ε − negl(λ)).
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As an example, recall the SPR function f(w1, . . . , wn) =
∏n

j=1 g
wj

j defined over some
group G of prime order q. We conclude that if the discrete logarithms in G are hard,
then f is �-LR-OWF for � = (n log q − log |G| −ω(log λ)). For large n, this value of �
approaches the length (n log q) of the secret key w = (w1 . . . wn).

3.2 Identification Schemes

Recall, (public-key) identification (ID) schemes are similar to password authentication
schemes, except the communication between the client Alice and the server Bob is no
longer assumed secure. As a result, ID schemes must be interactive. We informally re-
call two main notions of security for ID schemes: passive security and active security.
Both notions proceed in two stages. In the learning stage, the attacker A(pk) gets access
to the communication channel between Alice and the verifier. In the passive attack, this
is modeled by giving A oracle access to the transcript oracle T , which returns an hon-
estly generated communication transcript between Alice and Bob. In the active attack,
A is actually allowed to play the role of the verifier with Alice (and possibly deviate
from the honest verifier behavior). Formally, A is given oracle access to polynomially
many “copies of Alice”. After the end of the learning stage, A enters the impersonation
stage and loses its “learning oracle” (either T or Alice herself). In this stage A tries to
impersonate Alice to the honest verifier Bob, and wins the game if it succeeds.

LEAKAGE-RESILIENT ID SCHEMES. In the setting of leakage, the adversary A is also
given oracle access to the leakage oracle Oλ,�

sk (·). Not very surprisingly, it is easier to
handle leakage calls made during the learning stage than the leakage calls made during
the impersonation stage (which might depend on the actual challenges received). For
this reason, we will call the ID scheme (�1, �2)-leakage-resilient (LR) if the attacker
can learn up to �1 bits in the learning stage, and up to �2 bits in the impersonation
stage. For simplicity of exposition, from now now we assume that the attacker calls the
leakage oracle precisely once in each stage, learning �1 and �2 bits respectively.

CONSTRUCTIONS. Recall, in the leak-free setting, a Σ-protocol for proving the knowl-
edge of a pre-image of any OWF immediately gives a passively secure ID scheme.
Namely, setting sk = w, pk = (i, x = fi(w)), let R = {(x = f(w), w)} and Π be
a Σ-protocol for R with challenge size |c| = k = ω(log λ). Then Π is a passively
secure ID scheme. Intuitively, the HVZK property of Π enables us to perfectly simu-
late the transcript queries in the learning stage. On the other hand, if an attacker A can
respond to a random challenge c with probability ε in the impersonation stage, then by
rewinding the attacker with a new (random) challenge c′, one can obtain two accept-
ing conversations (a, c, z), (a, c′, z′) with c �= c′ with probability ε(ε − 1

2k ),1 which is
non-negligible if ε is non-negligible and k = ω(log λ). Then, the special soundness of
Π implies that we can extract a valid witness w′ from the attacker, contradicting the
one-wayness of fi.

It is easy to see that this analysis easily extends to the leakage-resilient setting, pro-
vided that: (a) one uses a leakage-resilient OWF instead of any OWF; and (b) the leak-
age threshold � of this OWF is greater than �1+2�2, since we need to rewind the attacker
in the impersonation stage, and hence double the leakage to 2�2 bits.

1 We omit this standard derivation.
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Theorem 2. Assume Π is a Σ-protocol for (�1 + 2�2)-LR-OWF with challenge size
ω(log λ). Then Π is (�1, �2)-LR passively secure ID scheme.

Using Theorem 1, this means we can use an SPR function with loss � = (�1 + 2�2 +
ω(log(λ)). It turns out, however, that this will immediately give an actively secure ID
scheme! The reason is that, in the SPR reduction, the SPR adversary actually knows
the pre-image w, so it can easily simulate the leakage oracle, as well as play the role of
the prover in the active learning stage. Moreover, since Σ-protocols are witness indis-
tinguishable, Lemma 2 implies that, information-theoretically, the oracle access to the
prover does not reduce the min-entropy of w conditioned on the leakage. Namely, all
the information the ID attacker learns about w comes from the leakage queries. Overall,
we get the following result:

Theorem 3. Assume Π is a Σ-protocol with challenge size ω(log λ) for an SPR func-
tion with loss �(λ) = (�1 + 2�2 + ω(log λ)). Then Π is (�1, �2)-LR actively secure ID
scheme.

We notice that, in principle, any SPR function has a Σ-protocol with challenge size
ω(log λ) if OWFs exist [FS89, GMW91]. However, concrete SPR functions often have
very efficient protocols. For example, such an efficient Σ-protocol for the SPR function
f(w1, . . . , wn) =

∏n
j=1 g

wj

j is given by Okamoto [Oka92]. This gives a very efficient
(�1, �2)-LR active ID scheme where �1 + 2�2 approaches the length of the secret key w
as n grows.

3.3 Signatures

Recall, a signature scheme consists of a key-generation procedure (pk, sk) ←
KeyGen(1λ), a signing procedure σ ← Sign(m, pk) which produces a signature σ for
the message m, and a verification procedure Ver(m, σ, sk), which uses the secret key sk
to assess the (in)validity of the signature σ of m. The standard existential unforgeabil-
ity (UF) against the chosen message attack (CMA) of the signature scheme states that
no efficient attacker A(pk), given oracle access to the signing procedure Sign(·, sk),
should be unable to forge a valid signature σ of some message m not queried to the
signing oracle. In the setting of leakage, the usual UF-CMA security is augmented and
the attacker A is also given oracle access to Oλ,�

sk (·). The resulting signature scheme is
called �-leakage-resilient (LR).

t-TIME LEAKAGE-RESILIENT SIGNATURES. In general, the forger A is allowed to
make an arbitrary polynomial number of oracle calls to the signing oracle. For the
special case where this number is a-priori bounded by a constant t ≥ 1, we call the
resulting signature scheme a t-time signature scheme. In the leak-free setting, such
t-time schemes are easier to construct [Lam79] and can be more efficient then gen-
eral schemes. Further, Naor and Yung [NY89] show how to construct general UF-
CMA secure signatures from any such 1-time scheme. Although this transformation
does not work in the setting of leakage, [FKPR09] show a similar transformation turns
any 3-time �-LR signature into and �-LR signature in the “only computation leaks in-
formation” model of [MR04]. Thus, it is still interesting to build leakage-resilient t-
time signatures for a small constant t. Two such constructions are given by Katz and
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Vaikuntanathan [KV09]. One general construction is a variant of Lamport’s t-time sig-
natures [Lam79] with � ≈ |sk|/4, and the other is a much more efficient construction
from any sufficiently shrinking “homomorphic collision-resistant hash function” (which
can be built from a variety of specific assumptions) with � ≈ |sk|/2. We refer to [KV09]
for the details.

LEAKAGE-RESILIENT SIGNATURES VIA FIAT-SHAMIR. Recall, the standard Fiat-
Shamir transformation [FS86, AABN02] builds a secure signature scheme from any
passively-secure, public-coin, 3-round ID scheme, such as the ID schemes originating
from Σ-protocols. To sign the message m, the signer generates the first flow a, sets the
challenge c = H(a, m), where H is modeled as a random oracle, and finally computes
the third flow z. The signature consists of the tuple (a, z). Not surprisingly, the con-
struction generalizes to the setting of leakage [ADW09, KV09], modulo the following
two caveats: (a) the ID scheme must be (0, �)-LR (i.e., leakage should be allowed in
the impersonation stage); and (b) the leakage oracle cannot depend on the random or-
acle. Luckily, using the construction of passively (in fact, even actively) secure LR ID
schemes from SPR functions given in Theorem 3, we satisfy the requirement (a) and
can easily eliminate the restriction (b) by direct analysis, obtaining the following result:

Theorem 4. Assume Π is a Σ-protocol with challenge size ω(log λ) for an SPR func-
tion with loss �(λ) = (2� + ω(log λ)). Then, applying the Fiat-Shamir heuristics to Π ,
we obtain an �-LR signature scheme in the random oracle model.

STANDARD MODEL LEAKAGE-RESILIENT SIGNATURE. On an abstract level, the
construction in Theorem 4 can be viewed as choosing a secret key sk = w, pk =
(i, x = fi(w)), and letting the signature of m be a “m-dependent, non-interactive,
zero-knowledge proof of knowledge (NIZK-POK) of w, in the Random Oracle Model”.
Katz and Vaikuntanathan [KV09] observed that one can instead use NIZK-POKs in
the common-reference string (CRS) model, as opposed to the Random Oracle model.
Formalizing this idea, they showed how to obtain a leakage-resilient signature scheme
in the standard model. Unfortunately, this is mainly a feasibility result, since existing
(so called simulation-sound) NIZK-POKs are extremely inefficient in the CRS model.
Constructing practical LR signatures in the standard model remains an important open
question.

3.4 Encryption and KEM

We will concentrate on leakage-resilient public-key encryption (PKE) schemes, notic-
ing only that leakage-resilient symmetric-key schemes were constructed implicitly
in [Pie09] (based on weak pseudorandom functions) and explicitly in [DKL09] (based
on “learning parity with noise”). In fact, for our use it will be more convenient
to use the notion of a key-encapsulation mechanism (KEM) [CS04], which implies
PKE (see below). Recall, a KEM consists of a key-generation procedure (pk, sk) ←
KeyGen(1λ), an encapsulation procedure (c, k) ← Encap(pk) which produces cipher-
text/randomness pairs (c, k), and a decapsulation procedure k = Decap(c, sk), which
uses the secret key sk to recover the randomness k from a ciphertext c. A KEM allows
a sender that knows pk, to securely agree on randomness k with a receiver that pos-
sesses sk, by sending an encapsulation-ciphertext c. Once this is done, one can use the
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randomness k to symmetrically encrypt the message m, giving a trivial way to get PKE
from KEM.

The standard chosen plaintext attack (CPA) security of a KEM requires that the dis-
tribution (pk, c, k), where (c, k) ← Encap(pk), is computationally indistinguishable
from (pk, k∗, c), where k∗ is truly random and independent of c. One can naturally
define �-leakage-resilient (LR) KEMs, where the attacker A(pk) gets access to the leak-
age oracle Oλ,�

sk (·)(sk) before the challenge encapsulation c is produced. Notice, in this
setting adaptive access to the leakage oracle is equivalent to choosing a single leakage
function h(sk) whose output is � bits.

HASH PROOF SYSTEMS AND LEAKAGE-RESILIENT KEMS. As with the other primi-
tives we studied, not every KEM is leakage-resilient. However, Naor and Segev [NS09]
showed that a special class of KEMs, called hash proof systems (HPS) [CS02, KPSY09],
can be used to easily construct leakage-resilient KEMs.2 Informally, am HPS is a KEM
with the following two properties:

– There exists an invalid-encapsulation procedure c ← Encap∗(pk), so that cipher-
texts generated by Encap∗(pk) are computationally indistinguishable from those
generated by Encap(pk), even given the secret key sk.

– For a fixed pk and invalid ciphertext c generated by Encap∗(pk), the output of
Decap(c, sk) is statistically uniform, over the randomness of sk. This property can
only hold if a fixed pk leaves statistical entropy in sk.

Notice the difference between valid and invalid ciphertexts. For a fixed pk, a valid c,
produced by (c, k) ← Encap(pk), always decapsulated to the same value k, no matter
which secret key sk is used to decapsulate it. On other hand, an invalid c produced by
c ← Encap∗(pk), decapsulated to a statistically random value based on the randomness
of sk.

The above two properties are sufficient to prove leak-free KEM security, showing
that for (c, k) ← Encap(pk), an attacker given c cannot distinguish k from uniform.
The proof by contradiction proceeds as follows. As the first step, we replace the honestly
generated (c, k) ← Encap(pk) with c′ ← Encap∗(pk) and k′ ← Decap(c′, sk). Since
valid ciphertexts are indistinguishable from invalid ciphertexts even given the secret
key sk, the attacker must still distinguish (pk, c′, k′) from (pk, c′, k∗). As the second
step, this is argued impossible, since k′ = Decap(c′, sk) is statistically uniform over
the choice of sk, which is unknown to the adversary.

As Naor and Segev noticed in [NS09], this proof also works in the presence of leak-
age, since the first argument of replacing (c, k) by (c′, k′) holds even if the adversary
saw all of sk, and the second argument is information-theoretic, so we can argue that �
bits of leakage about sk will only reduce the statistical entropy of k′ by at most � bits.
Thus, as long as decapsulation k′ of the invalid ciphertext has m > � bits of entropy
without leakage, it will still have at least (m − �) bits of entropy after the leakage (see
Lemma 1). To agree on a uniform value k in the presence of leakage, we just compose
the HPS KEM with a randomness extractor [NZ96], such as a universal hash function.

2 Our informal description and definition of HPS here is a simplified version of the standard
one. Although the two are not technically equivalent, the standard definition implies ours,
which is in-turn sufficient for leakage-resilience and captures the main essence of HPS.
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The main benefit of this proof strategy is that, after switching valid/invalid ciphertexts in
the first step, we can argue about leakage using a purely information-theoretic analysis.

Since HPS KEMs can be constructed from a variety of assumptions (see [NS09]),
we can construct leakage-resilient KEMs and PKEs from many assumptions as well.
We also mention that Alwen et al. [ADN+09] recently generalized the notion of HPS to
the identity-based setting, which allowed them to construct leakage-resilient identity-
based encryption (IBE) schemes in a similar manner (generalizing the prior LR-IBE
construction from [AGV09]).

4 Bounded Retrieval Model

Now that we saw how to build many leakage-resilient primitives in the relative-leakage
model, we would like to extend the constructions to the bounded retrieval model as
well. In the BRM, we want to have the flexibility to allow for arbitrarily large leakage-
bounds �, just by increasing the size of the secret, but without any other unnecessary
affect on efficiency. The main question that we address in the BRM is one of leakage-
resilience amplification: assuming we start with some �-leakage-resilient primitive in
the relative-leakage model, how can we construct an L-leakage-resilient primitive for
arbitrary values of L � �. Ideally, we would like to achieve leakage-resilience ampli-
fication with minimal efficiency degradation: even though the “secrets” of the scheme
will need to be made potentially huge so that L bits of leakage does not reveal the entire
value, we want to make sure that the computational effort and public-key sizes do not
need to grow proportionally. Following similar discussion in [ADN+09], we consider
several approaches, and hone in on the right one. We put most of our discussion into
the “toy example” of password authentication. However, this will be the simplest way
to showcase the methodology, and the ideas used to construct identification schemes,
signatures and public-key encryption in the BRM will be analogous.

4.1 Password Authentication in the BRM

Let us start with the question of building a leakage-resilient “password authentication
scheme” (as described in Section 3.1) in the BRM. We now want to build such a scheme
where, for any leakage bound L, we have a KeyGen() procedure that outputs a (pk, sk)
pair where the client’s password sk is made potentially huge depending on the leak-
age bound L. As a security guarantee, we would like to ensure that, given pk and
L bits of leakage about sk, it is infeasible to come up with any value sk′ for which
Verify(pk, sk′) = 1. In addition, the efficiency requirements of the BRM dictate that
the size of pk and the computation time of Verify(pk, sk) are independent of L. We start
with the question of leakage-amplification and then address efficiency.

BAD APPROACH: ARTIFICIALLY INFLATING THE SECURITY PARAMETER. As we
saw, many of the leakage-resilient primitives in the relative-leakage model have leakage-
bounds �(λ) being a large portion of the key-size s(λ) which, in turn, depends on a
security parameter λ. Therefore, one solution to leakage-amplification is to simply ar-
tificially inflate the security parameter λ sufficiently, until s(λ) and, correspondingly,
�(λ) reach the desired level of leakage L we would like to tolerate. Unfortunately, it
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is clear that this approach gets extremely inefficient very fast – e.g. to allow for Giga-
bytes worth of leakage, we may need to perform exponentiations on group elements
with Gigabyte-long description sizes.

NEW APPROACH: PARALLEL REPETITION. As an improvement over the previous
suggestion, we propose an alternative which we call parallel-repetition. Assume we
have a leakage-resilient scheme in the relative-leakage model, tolerating �-bits of leak-
age, for some small �. We can create a new “parallel-repetition scheme”, by taking n in-
dependent copies of the original scheme so that the new secret key sk = (sk1, . . . , skn)
and the public key pk = (pk1, . . . , pkn) consists of n independently sampled key-
pairs of the original scheme. To run verify in the new scheme, the server simply runs
Verify(pki, ski) for each of the component keys individually and accepts if all runs are
accepting. One may hope to show that, if the original scheme is �-leakage-resilient than
the new construction is L-leakage resilient for L = n�. Intuitively, if an adversary gets
≤ L = n� bits of leakage in the new scheme, than there should be many values ski for
which the adversary learned less than � bits and hence will be unable to come up with
any “good value” sk′i that verifies for the ith position.

Unfortunately, it is far from clear how to prove the above intuition, if we only as-
sume that the underlying scheme is �-leakage resilient. In particular, we would need a
reduction showing how to use an adversary that expects L bits of leakage on sk to break
the underlying scheme given � bits of leakage on some ski. Unfortunately, this seems
impossible in general: if the adversary expects to learn the output of some complicated
leakage function (for example a hash function) H(sk) with L bit output, it is unlikely
that we can evaluate this function correctly by learning only some h(ski) with � bit
output (even if we know all of skj for j �= i).

PARALLEL REPETITION OF SPR FUNCTIONS. To make leakage amplification via
parallel repetition work, let us look more specifically at some concrete examples of
leakage-resilient password authentication schemes. One such example (Theorem 2)
consisted of using �-leakage-resilient OWF where each pki = f(ski) for a uniformly
random ski. In addition, we showed (Theorem 1) that SPR functions f with loss L(f) ≥
� + ω(log(λ)) are �-leakage-resilient OWFs. It is fairly easy to see that n-wise parallel
repetition of such a scheme based on an SPR function f : D → R yields a new SPR
function f ′ : Dn → Rn with loss L(f ′) = n(L(f)). Therefore, we can show directly
that parallel-repetition amplifies leakage in this special case, producing an L = n�-
leakage-resilient “passwords authentication scheme”.

EFFICIENCY IMPROVEMENT: RANDOM SUBSET SELECTION. To decrease the com-
putational effort of the verification procedure, we have Verify∗(pk, sk) selects some
random subset {r1, . . . , rt} ⊆ {1 . . . n} of t indices, and only run the original verifi-
cation procedure Verify(pkri

, skri) for the t selected key-pairs at indices {r1, . . . , rt}.
Here t will be only proportional to the security parameter λ, and can be much smaller
than the keys size (which depends on n).

EFFICIENCY IMPROVEMENT: PUBLIC-KEY SIZE REDUCTION. Using parallel-
repetition and random-subset selection, we get a “password authentication scheme”
which can be made L-leakage-resilient for arbitrarily large L, with the computational
effort of verification only proportional to the security parameter λ and not proportional
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to L. Unfortunately, the public-key size pk is still large and proportional to the leakage-
bound L. We can reduce the public-key in the following way:

– The new KeyGen∗ procedure of the BRM scheme generates n pairs (pk1, sk1), . . . ,
(pkn, skn) of the underlying scheme in the relative-leakage model. It also generates
a signing/verification key (sigk, verk) for a (standard, non-leakage-resilient) signa-
ture scheme and computes signatures σi = Signsigk(pki) for each i = 1, . . . , n. It
outputs pk = verk and sk = (sk1, . . . , skn, σ1, . . . , σn).

– The new verification procedure Verify∗(pk, sk) of the BRM scheme selects t ran-
dom indices ri and, for each one verifies that Verify(pkri

, skri) = 1 and also
Ververk(pkri

, σi) = 1.

The security of this scheme follows from that of the previous paragraph, given the
unforgeability of the signature scheme (note that the signing key sigk is never stored by
the client or server).

4.2 Identification Schemes and Signatures in the BRM

Recall that our main construction of leakage-resilient ID schemes was based on Σ-
protocols for SPR functions. We can essentially use both techniques from the previous
section to build leakage-resilient ID schemes in the BRM. This leads to the main con-
struction given in [ADW09]. Essentially, the only difference between the identification
scheme and the “password authentication” scheme from the previous section is that,
instead of having the client simply “hand over” the secret keys skri , the client runs
Σ-protocols for the relation {(pk, sk) : pk = f(sk)}. We leverage the fact that the
Σ-protocol is Witness Indistinguishable, to argue that observing executions of the Σ-
protocol does not reduce the entropy of sk from the point of view of the attacker.

Once we have ID schemes in the BRM, we can just use the Fiat-Shamir transform to
get signature schemes in the BRM, as we showed in Section 3.3. We notice that Fiat-
Shamir preserves the efficiency properties (public-key size, computational effort, com-
munication complexity) of the ID scheme. However, to maintain short signatures and
allow for large leakage, one must relax the standard notion of existential unforgeability
to a slightly weaker notion of entropic unforgeability. As illustrated by [ADW09], this
(necessarily) weaker notion is still sufficient for many applications, such as bulding a
signature-based key exchange protocol in the BRM.

In [ADW09], it was shown that for some specific schemes, one can get additional
efficiency improvements in the communication complexity (res. signature size) of BRM
ID schemes (resp. signatures) by “compacting” the t parallel runs of the Σ-protocol.

4.3 Public-Key Encryption in the BRM

The recent work of [ADN+09] constructs public-key encryption and IBE schemes in
the BRM. Again, one of the main components is to show that (a variant) of parallel-
repetition can be used to amplify leakage-resilience for PKE schemes constructed out of
Hash Proof Systems. Also, a variant of “random-subset selection” can be used to reduce
encryption/decryption times and ciphertext sizes to be independent of the leakage bound
L. It turns out that the main difficulty, however, is in reducing the public-key size.
It is clear that our previous idea of signing the public-keys with a signature scheme
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and storing the signed values as part of the secret-key, will not work with PKE, where
the encryptor needs to encrypt non-interactively, without talking to the decryptor. The
difficulty is resolved using the idea of Identity Based Encryption (IBE), where there
is a single master-public-key and many secret-keys for various identities. However, we
still need the IBE to have the structure of an HPS scheme to prove leakage-resilience
of the scheme and leakage-amplification via parallel repetition. Interestingly (variants
of) several IBE schemes in the literature have an HPS-like structure. Such schemes can
therefore be used to construct Public-Key Encryption schemes in the BRM. We refer
to [ADN+09] for the details.
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Abstract. Forward-Secure Storage (FSS) was introduced by Dziem-

bowski (CRYPTO 2006). Informally, FSS is an encryption scheme (Encr,
Decr) that has the following non-standard property: even if the adversary

learns the value of some function h of the ciphertext C = Encr(K, M),

he should have essentially no information on the corresponding plain-

text M , even if he knows the key K. The only restriction is that h is

input-shrinking, i.e. |h(R)| ≤ σ, where σ is some parameter such that

σ ≤ |C|.
We study the problem of minimizing the length of the secret key

in the IT-secure FSS, and we establish an almost optimal lower bound

on the length of the secret key. The secret key of the FSS scheme of

Dziembowski has length |M |+ O(log σ). We show that in every FSS the

secret key needs to have length at least |M | + log2 σ − O(log2 log2 σ).

1 Introduction

Forward-Secure Storage (FSS) was introduced by Dziembowski in [5]. Informally,
FSS is an encryption scheme (Encr, Decr) that has the following non-standard
property: if the adversary has only partial information about the ciphertext
C = Encr(K, M), he should have essentially no information on the corresponding
plaintext M , even if he learns the key K. Here, “partial information” means that
the adversary knows some value U = h(C), where h is chosen by him. The only
restriction is that h is input-shrinking, i.e. |U | ≤ σ, where σ is some parameter
such that σ ≤ |C|. In the security definition one assumes that h has to be chosen
before the adversary learns K (as otherwise he could simply choose h to be the
function that decrypts M from C). Since usually one wants to construct schemes
that are secure for large values of σ, and since obviously σ < |C|, therefore
normally Encr(K, M) is much longer than M .

Originally FSS was proposed in the context of the so-called Bounded-Storage
Model (BSM)1 [4,3,5,7,10,2] as a tool for increasing security of data stored on
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the machines that can be attacked by internet viruses. In this model one assumes
that the ciphertext C is stored on a PC on which the adversary can install a
virus. The virus may perform any computation on C but he can communicate to
the adversary only a value |h(C)| ≤ σ. The practical relevance of this assumption
comes from the fact that in many cases it may be hard to retrieve large amounts
of data from an infected machine. Since in practice the length of C needs to be
huge (several gigabytes) it is often required that it should be possible to decrypt
M just by reading a small number of the bits of C.

Another application of FSS is to use it for storing data on hardware that can
leak information via the so-called side-channel attacks, which are the attacks
based on measuring the power consumption, electromagnetic radiation, timing
information, etc. As before, one can model such an attack by allowing the adver-
sary to compute some input-shrinking function on ciphertext (this method was
also used, in a different context in [8,1,11]). The only difference is that usually
the size of the secret data stored on the device is much smaller, and hence there
is no need to require that only a small portion of C has to be read to decrypt
the message.

In this paper we study the problem of constructing FSS schemes that are
information-theoretically (IT) secure, which means that the computing power of
the adversary is not limited, and there is no restriction on the computational
complexity of the function h. Such an IT-secure FSS scheme was already con-
structed in [5] (besides of this, [5] considers also computationally-secure and
so-called hybrid-secure schemes).

Our contribution: In this paper we revisit the IT-secure FSS construction of [5],
and establish an almost optimal lower bound on the length of the secret key. The
secret key of the FSS scheme of [5] has length |M | + O(log σ) (if built using an
appropriate randomness extractor). Obviously, since FSS has to be secure as an
information-theoretically encryption scheme, by Shannon’s theorem the length
of the key has to be at least |M |, one may ask, however, if the O(log σ) term is
necessary. In this paper we show that that the construction of [5] is essentially
optimal, by proving (cf. Corollary 1) that in every secure FSS the secret key
needs to have length at least |M | + log2 σ − O(log2 log2 σ).

2 FSS — The Formal Definition

Formally, a Forward-Secure Storage (FSS) scheme is a pair of randomized al-
gorithms Φ = (Encr, Decr). The algorithm Encr takes as input a key K ∈ K
and a plaintext M ∈ M and outputs a ciphertext C ∈ C. The algorithm
Decr takes as input a key K and a ciphertext C, and it outputs a string
M ′. The following correctness property has to be satisfied with probability 1:
Decr(K, Encr(K, M)) = M .

To define the security of an FSS scheme consider a σ-adversary A (that we
model as a Turing Machine), that plays the following game against an oracle Ω.
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FSS - distinguishing game

1. The adversary produces two messages M0, M1 ∈ {0, 1}μ and sends them to
Ω.

2. Ω selects a random key K ∈ {0, 1}κ, a random bit b ∈ {0, 1} and computes
C = Encr(K, M b).

3. The adversary gets access to C and can compute an arbitrary value U = h(C)
such that |U | ≤ σ. The adversary can store U , but he is not allowed to store
any other information.

4. The adversary learns K and has to guess b.

We say that an adversary A breaks the scheme Φ with an advantage ε if his
probability of winning the game is 1/2 + ε. We say that an FSS scheme Φ is
(ε, σ)-IT-secure if every σ-adversary A breaks Φ with advantage at most ε. With-
out loss of generality we can assume that A is deterministic. This is because a
computationally-unlimited deterministic adversary can always compute the op-
timal randomness for the randomized adversary.2

3 FSS — The Construction of [5]

3.1 Probability-Theoretic Preliminaries

Let random variables X0, X1, X2 be distributed over some set X and let Y be
a random variable distributed over Y. Define the statistical distance between X0

and X1 as δ(X0; X1) = 1
2

∑
x∈X |P (X0 = x) − P (X1 = x) |. If X is distributed

over X then let d(X) := δ(X ; UX ) denote the statistical distance of X from
a uniform distribution (over X ). Moreover, d(X0|X1) = δ((X0, X1); (UX , X1))
denotes the statistical distance of X0 from a uniform distribution given X1. It
is easy to verify that

d(X0|X1) =
∑

x

d(X0|X1 = x) · P (X1 = x) , (1)

and that the triangle inequality (δ(X0, X1) ≤ δ(X0, X2) + δ(X2, X1)) holds. We
will overload the symbols δ and d and sometimes apply them to the probability
distributions instead of the random variables. A min-entropy H∞ of a random
variable R is defined as

H∞(R) := min
r

log2(P (R = r)).

A function ext : {0, 1}ρ × {0, 1}κ → {0, 1}μ is an (ε, n)-extractor if for any
R with H∞(R) ≥ n and K distributed uniformly over {0, 1}κ we have that
d(ext(R, K)|K) ≤ ε (see e.g. [14] for an introduction to the theory of extractors).
2 More precisely suppose that A takes some random input �A and the oracle takes

some random input �Ω . Let p denote the probability (taken over �A and �Ω) that

A(�A) wins the game. Then there has to exist randomness r such that A(r) wins

with probability p. A computationally-unlimited adversary can find this r.
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3.2 The Construction

The construction of the IT-secure FSS scheme of [5] used as a building-block a
special type of randomness extractors called BSM-secure-functions, where BSM
stands for the Bounded-Storage Model (see [13,6,12,15]). The need to use this
special type of extractors came from the fact that originally FSS was proposed as
a primitive in the Bounded-Retrieval Model, were it is crucial that the decryption
function does not need to read the entire ciphertext. To be more general, in this
paper we drop this assumption, and build an FSS scheme using any randomness
extractor.

For completeness, in this section we review the construction [5], and prove
that it is secure (this security argument appeared already implicitly in [5]). Let
μ denote the length of the plaintext M and let ext : {0, 1}ρ×{0, 1}κ → {0, 1}μ be
an (ε, ρ− σ −α)-extractor (for any parameter α). The key for an FSS scheme is
a pair (K0, K1), where |K0| = κ and |K1| = μ, and the encryption procedure is
defined as Encr((K0, K1), M) := (R, ext(R, K0) ⊕ K1 ⊕ M), where R ∈ {0, 1}ρ

is uniformly random. The decryption is defined as Decr((K0, K1), (R, X)) =
ext(R, K0) ⊕ K1 ⊕ X .

Lemma 1. The (Encr, Decr) scheme constructed above is (2ε+2−α, σ)-IT-secure.

Before proving this lemma we show the following.

Lemma 2. Modify the distinguishing game from Sect. 2 in the following way.
The adversary (that we will call a weak adversary), instead of getting access to
the entire ciphertext C = (R, ext(R, K0)⊕K1 ⊕M) (in Step 3) gets only access
to R, and then in Step 4 he gets K0 and ext(R, K0)⊕M b. Then any σ-adversary
wins this game (i.e. guesses b correctly) with probability at most 1/2+ 2−α + 2ε.

Proof. Let y = h(R) be the value that the adversary retrieves in Step 3. We first
show that

P (H∞(R|h(R = y) ≤ ρ − σ − α) ≤ 2−α. (2)

Since |h(R)| ≤ σ, hence the number of all y’s is at most equal to 2σ. Therefore
the number of r’s for which there exists some y such that

|{r : h(r = y}| ≤ 2ρ−σ−α (3)

is at most 2ρ−σ−α · 2σ = 2ρ−α. Hence the probability that it exists for a random
r ∈ {0, 1}ρ is at most 2ρ−α/2ρ = 2−α. Clearly, since R is distributed uniformly,
we have that if y is such that (3) holds then

H∞(R|h(R = y)) ≤ ρ − σ − α. (4)

Thus (2) is proven. Now, since ext in an (ε, ρ−σ−α)-extractor, we have that if y
is such that H∞(R|h(R = y)) ≤ ρ − σ − α then d(ext(R, K0)|K, h(R) = y) ≤ ε.
Therefore in this case from the point of view of the adversary M b is simply
encrypted with a one-time pad X = ext(R, K0) such that d(X) ≤ ε. In [6]
(Lemma 7) it is shown that if this is the case then the adversary can distinguish



A Lower Bound on the Key Length of Information-Theoretic FSS Schemes 23

between the ciphertexts M0 ⊕ X and M1 ⊕ X (for any messages M0 and M1)
with an advantage at most 2d(X). Therefore the total advantage of the adversary
is at most

P (H∞(R|h(R = y) ≤ ρ − σ − α) · 1 + 2d(X)
≤ 2−α + 2ε.

We are now ready for the proof of Lemma 1.

Proof (of Lemma 1). We show that if there exists an adversary A that breaks
(Encr, Decr) with probability ξ then there exists a weak adversaryA′ that breaks
(Encr, Decr) with probability ξ. Clearly by Lemma 2, showing this will finish the
proof.

The adversary A′ simulates A in the following way. First, he starts A and
forwards to the oracle the messages M0 and M1 that A produces. Then, when
he gets access to R he chooses a uniformly random string Z ∈ {0, 1}μ and gives
(R, Z) to A. Later (in Step 4), when he receives K and X = ext(R, K0) ⊕ M b

he sets K0 = K and K1 = X ⊕Z (hence: K1 = ext(R, K0)⊕M b ⊕Z) and gives
(K0, K1) to A. At the end A′ outputs the bit b that A outputs.

Set T := ext(R, K0) ⊕ M b and observe that in the original game A can see
the following random variables

R, K0, K1, T ⊕ K1 (5)

(where K0, K1, R are uniformly random and independent) and in our simulation
we have

R, K0, T ⊕ Z, Z (6)

(where K0, R, Z are uniformly random and independent). Obviously the vari-
ables in (5) and (6) have an identical joint distribution, and therefore the simu-
lated A guesses b correctly with the same probability as A in a normal execution.
Hence the probability that A wins is equal to the probability that A′ wins. ��

Since randomness extractors with seed of length O(log k) are known (see e.g.
[14]), in particular the non-explicit extractor that extracts almost all the entropy
has seed of length log k + O(1), therefore we can conclude that there exists a
(δ, σ)-IT-secure FSS scheme with key of length |M | + O(log |R|) and δ being a
small constant. Since one can also construct extractors where σ is a constant
fraction of |R| we get that one can construct a (δ, σ)-IT-secure FSS scheme with
key of length |M | + O(log σ).

4 The Lower Bound

In this section we present the main result of the paper. We start with the fol-
lowing lemma.
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Lemma 3. Let Φ = (Encr, Decr) be an FSS scheme. Suppose the set K of the
keys is equal to {0, 1}κ, for some parameter κ. There exists a σ-adversary A that
breaks Φ with advantage at least 1/4, for

σ =
κ · 2κ+1

|M| + 1. (7)

Proof. We construct A as follows. For every message M and a ciphertext C let

KM,C := {K : P (Encr(K, M) = C) > 0} .

Of course a computationally-unlimited machine can always compute KM,C for
given M, C, by just examining all possible K’s and all possible random inputs
of the Encr algorithm. Clearly, from the correctness of the decryption, for any
C and any two distinct messages M0 and M1 we have that

KM0,C ∩KM1,C = ∅. (8)

Set x := (σ − 1)/κ. Therefore from (7) we have

x = 2κ+1/ |M| . (9)

The strategy of A is as follows. First, he chooses two messages M0 and M1 (such
that M0 �= M1) uniformly at random. He sends M0, M1 to the oracle. After
receiving C = Encr(K, M b) the adversary determines KM0,C and KM1,C and
checks if for some b′ ∈ {0, 1} it is the case that |KMb′ ,C | ≤ x (if it holds for both
b′ = 0, 1 then he chooses b′ arbitrarily). Denote this even with E . If such b′ does
not exist then he sets U to be equal to an empty string. Otherwise he sets U to be
equal to (Ũ , b′) where Ũ is the binary representation of KMb′ ,C . Clearly, KMb′ ,C
can be represented (just by listing all its elements) with |KMb′ ,C | ·κ = σ−1 bits,
so U has length at most σ.

After learning K the adversary does the following:

1. if E did not occurr, i.e. U is an empty string then he outputs b uniformly at
random,

2. otherwise suppose U = (Ũ , b′). The adversary checks if K is a member of
the set that Ũ represents. If yes, then he outputs b′, otherwise he outputs
1 − b′.

Clearly in the first case the probability that the adversary guesses b correctly
is equal to 1/2. It follows from (8) that in second case the probability that he
guesses b correctly is equal to 1. Hence, the total probability that the adversary
guesses b correctly is equal to

1/2 · (1 − P (E)) + 1 · P (E)
= 1/2 + 1/2 · P (E)

Therefore he wins the game with advantage 1/2 · P (E). Thus it remains to
give a bound on the probability of E , or in other words, to bound the following
probability:

P
(
there exists b′ such that |KMb′ ,C | ≤ x

)
. (10)
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From (8) it follows that for every C we have that

∑
M∈M

|KM,C | =

∣∣∣∣∣⋃
M

KM,C

∣∣∣∣∣ ≤ 2κ.

Hence, for a randomly chosen M the probability that |KM,C | ≥ x is at most
equal to 2κ/(x · |M|), which, from (9) is at most equal to 1/2. We now observe
that M1−b is distributed completely uniformly given C (since C is a function
of M b and K)3. Therefore the probability that |KM1−b,C | ≥ x is at most equal
to 2κ/(x · |M|). This implies that the (10) is at least 1/2. Hence, the adversary
wins the game with advantage at least 1/4. ��

Corollary 1. For every σ consider a family of FSS schemes that is (1/4, σ)-
secure. Suppose M = {0, 1}μ (where μ is constant) and K = {0, 1}κ. Then

κ ≥ μ + log2 σ − O(log2 log2 σ). (11)

Proof. From Lemma 3 we get that

σ ≤ κ · 2κ+1

2μ
+ 1.

This implies that:
κ ≥ μ + log2(σ − 1) − 1︸ ︷︷ ︸

log2(σ)+O(1)

− log2 κ︸ ︷︷ ︸
(∗)

(12)

Since we can assume that κ ≤ μ + log2 σ (as otherwise (11) is proven), we get
that (�) is O(log2 log2 σ). Hence (11) is proven. ��
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Abstract. Complementarity is one of the fundamental properties of

quantum mechanics, which prohibits the control of both of a pair of

physical quantities even if either one alone is accessible. This property

is useful in understanding the relation between quantum communica-

tion and secret communication: It gives a simple explanation why basic

quantum key distribution protocols are secure against any eavesdropping

attack. The imperfection in the final secret key is determined through

the failure probabilities of a pair of complementary tasks, which have a

clear operational meaning. It also serves as a powerful tool for proving

the security under the use of practical imperfect devices. Finally, it gives

a comprehensive understanding of how quantum correlations provide the

ability of secret communication, since one can prove that for every case

in which a secret key is obtained though quantum communication, there

exists an explanation in terms of complementarity.
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Abstract. The term indistinguishability amplification refers to a set-

ting where a certain construction combines two (or more) cryptographic

primitives of the same type to improve their indistinguishability from an

ideal primitive. Various constructions achieving this property have been

studied, both in the information-theoretic and computational setting.

In the former, a result due to Maurer, Pietrzak and Renner describes

the amplification achieved by a very general class of constructions called

neutralizing. Two types of amplification are observed: a product theorem

(bounding the advantage in distinguishing the construction by twice the

product of individual advantages) and the amplification of the distin-

guisher class (the obtained construction is secure against a wider class

of distinguishers).

In this paper, we combine these two aspects of information-theoretic

indistinguishability amplification. We derive a new bound for the general

case of a neutralizing construction that keeps the structure of a product

theorem, while also capturing the amplification of the distinguisher class.

This improves both bounds mentioned above.

The new technical notion we introduce, central to our analysis, is the

notion of free-start distinguishing of systems. This describes the setting

where the distinguisher is allowed to choose any common state for both

systems and then it is supposed to distinguish these systems starting

from that chosen state.

Keywords: Information-theoretic cryptography, indistinguishability

amplification, neutralizing constructions, projected systems, free-start

distinguishing.

1 Introduction

Indistinguishability Amplification. An important goal of cryptography is
to provide real objects (e.g. functions, permutations) such that their behavior
is indistinguishable from the corresponding ideal object (e.g. a truly random
function or permutation) by a distinguisher interacting with these objects. One
reasonable way to approach this task is to devise constructions that allow us

K. Kurosawa (Ed.): ICITS 2009, LNCS 5973, pp. 28–44, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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to combine objects of the same type to obtain a new one, with provably better
indistinguishability properties. This is called indistinguishability amplification.

A natural candidate for such an indistinguishability-amplifying construction
for permutations is the composition, while for random functions it is the quasi-
group combination of the outputs (e.g. XOR of the output bitstrings). Both these
constructions are widely used in the design of practical cryptographic primitives,
such as blockciphers. Therefore, the indistinguishability amplification achieved
by these constructions deserves being studied in detail. Both these examples as
well as other natural constructions are special cases of the general concept of a
neutralizing construction, introduced in [6].

In the information-theoretic setting, the most general treatment of indistin-
guishability amplification is due to Maurer, Pietrzak and Renner [6]. In their
work, two different types of indistinguishability amplification are presented. Both
are proved for the general class of neutralizing constructions, but for simplicity
we describe their contribution on the special case of the XOR of random func-
tions F ⊕ G. First, a product theorem is proved, stating that the advantage in
distinguishing F⊕G from the uniform random function R is upper-bounded by
twice the product of the individual distinguishing advantages for these functions.
Second, an amplification of the distinguishing class is observed, proving that the
advantage in distinguishing F ⊕ G from R adaptively is upper-bounded by the
sum of advantages in distinguishing F and G from R non-adaptively.

Our Contribution. First, we extend the random system framework from [3],
in which we perform our analysis. We introduce the concept of a system projected
to a specific state. Loosely speaking, any properly defined discrete system S and
a transcript t of interaction with this system together define a new system, which
behaves as the original system S would behave after this interaction t. We refer
to this new system as S projected to the state described by t. In particular,
any one-player game can be modelled as a special type of a discrete system.
Therefore, we are also able to model the intuitive situation where a player can
continue playing a given game from a specific position (where the game is not
won yet) or where it can pick an arbitrary such position in the game tree and
try to win the game from there.

This leads to the central new notion in this paper, free-start distinguishing.
Informally, the free-start distinguishing advantage of two systems is the best
advantage a distinguisher can achieve, assuming that it is allowed to project
both the distinguished systems to any one state consistent with both of them
and then try to distinguish the resulting systems.

This concept, besides giving an interesting new viewpoint on the distinguish-
ing of random systems, allows us to perform a more careful analysis of the
indistinguishability amplification achieved by neutralizing constructions in the
information-theoretic setting. We use the notion of free-start distinguishing to
combine the two types of amplification described in [6]. We derive a new bound
which keeps the structure of a product theorem, while involving also the non-
adaptive distinguishing advantages, thus describing the amplification of the dis-
tinguisher class.



30 P. Gaži and U. Maurer

Motivation and Intuition. As observed in [6], there is a tight correspondence
between distinguishing systems and winning an appropriately defined game. Dis-
tinguishing F⊕G from R can be reduced (by a factor of 2) to winning two games
constructed from F and G, while obtaining only the XOR of their outputs. As
long as none of the games is won, the output of the construction is useless to the
player, hence one of the games has to be won non-adaptively first. After achiev-
ing this, the player still has to win the other game, this time with access to
some (possibly useful) outputs. Since winning each of these games is as hard as
distinguishing the corresponding system from R, one could conjecture a bound
like

Δk(F ⊕ G,R) ≤ 2
(
ΔNA

k (F,R) · Δk(G,R) + ΔNA
k (G,R) · Δk(F,R)

)
,

where Δk(S,T) and ΔNA
k (S,T) denote the adaptive and non-adaptive advantage

in distinguishing S from T with k queries, respectively.
However, this is not correct, since winning the first game may involve getting

the second game into a state where winning it becomes much easier than if
played from scratch. We model this by allowing the player to choose the starting
position in the second game freely, with the only restriction being that the game
is not won yet in the chosen position. Translated back into the language of
systems distinguishing, this gives us a valid bound

Δk(F ⊕ G,R) ≤ 2
(
ΔNA

k (F,R) · Λk(G,R) + ΔNA
k (G,R) · Λk(F,R)

)
, (1)

where Λk(S,T) denotes the free-start distinguishing advantage for systems S and
T, as described above. In this paper we prove a general theorem for neutralizing
constructions, of which the bound (1) is a simple corollary.

Related Work. There has been a lot of previous research on indistinguishabi-
lity-amplifying constructions, both in the information-theoretic and the compu-
tational setting.

In the former, a product theorem for the composition of stateless permu-
tations was proved by Vaudenay using the decorrelation framework [11]. The
amplification of the distinguisher class was proved in [5] for a class of construc-
tions and in [4] also for the four-round Feistel network. As mentioned above, the
paper [6] addressed both these types of indistinguishability amplification for any
neutralizing construction.

On the other hand, computational product theorems for various constructions
were proved by Luby and Rackoff [2], Myers [8,9] and Dodis et al. [1]. For the gen-
eral case of a neutralizing construction a product theorem was proved by Maurer
and Tessaro [7]. The second type of amplification considered here, amplification
of the distinguisher class, does not in general translate to the computational
setting, as observed by Pietrzak [10].
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2 Preliminaries

2.1 Basic Notation

Throughout the paper, we denote sets by calligraphic letters (e.g. S). A k-tuple
is denoted by uk = (u1, . . . , uk), and the set of all k-tuples of elements of U
is denoted by Uk. The tuples can be concatenated, which we write as ukvl =
(u1, . . . , uk, v1, . . . , vl). By ms(i) we denote the set of monotone binary sequences
of length i where zeroes are preceding ones, i.e., ms(i) = {0i, 0i−11, . . . , 1i}.

We usually denote random variables and concrete values they can take on by
capital and small letters, respectively. Naturally, for any binary random variable
B, we denote the event that it takes on the value 1 also by B. The complement
of an event A is denoted by A. For events A and B and random variables U and
V with ranges U and V , respectively, we denote by PUA|V B the corresponding
conditional probability distribution, seen as a function U ×V → 〈0, 1〉. Here the
value PUA|V B(u, v) is well-defined for all u ∈ U and v ∈ V such that PV B(v) > 0
and undefined otherwise. Two probability distributions PU and PU ′ on the same
set U are equal, denoted PU = PU ′ , if PU (u) = PU ′ (u) for all u ∈ U . Conditional
probability distributions are equal if the equality holds for all arguments for
which both of them are defined. To emphasize the random experiment E in
consideration, we usually write it in the superscript, e.g. PE

U|V (u, v). By a lower-
case p we denote (conditional) probability distributions that by themselves do
not define a random experiment.

2.2 Random Systems

In this subsection, we present the basic notions of the random systems frame-
work introduced in [3], following the notational changes in [6]. The input-output
behavior of any discrete system can be described by a random system in the
spirit of the following definition.

Definition 1. An (X ,Y)-random system S is a (generally infinite) sequence of
conditional probability distributions pS

Yi|XiY i−1 for all i ≥ 1.

The behavior of the random system is specified by the sequence of conditional
probabilities pS

Yi|XiY i−1(yi, x
i, yi−1) (for i ≥ 1) of obtaining the output yi ∈ Y

on query xi ∈ X given the previous i − 1 queries xi−1 = (x1, . . . , xi−1) ∈ X i−1

and their corresponding outputs yi−1 = (y1, . . . , yi−1) ∈ Yi−1.
We shall use boldface letters (e.g. S) to denote both a discrete system and

a random system corresponding to it. This should cause no confusion. We em-
phasize that although the results of this paper are stated for random systems,
they hold for arbitrary systems, since the only property of a system that is rel-
evant here is its input-output behavior. It is reasonable to consider two discrete
systems equivalent if their input-output behaviors are the same, even if their
internal structure differs.



32 P. Gaži and U. Maurer

Definition 2. Two systems S and T are equivalent, denoted S ≡ T, if they cor-
respond to the same random system, i.e., if pS

Yi|XiY i−1 = pT
Yi|XiY i−1 for all i ≥ 1.

A random system can also be defined by a sequence of conditional probabil-
ity distributions pS

Y i|Xi for i ≥ 1. This description is often convenient, but is
not minimal: the distributions pS

Y i|Xi must satisfy a consistency condition for
different i. The conversion between these two forms can be described by

pS
Y i|Xi =

i∏
j=1

pS
Yj |XjY j−1 and pS

Yi|XiY i−1 =
pS

Y i|Xi

pS
Y i−1|Xi−1

. (2)

A random function is a special type of random system that answers consistently,
i.e., it satisfies the condition Xi = Xj ⇒ Yi = Yj . For example, R denotes
a uniform random function, which answers every new query with an element
uniformly chosen from its (finite) range. A random permutation on X is a random
function X → X mapping distinct inputs to distinct outputs: Xi �= Xj ⇒ Yi �=
Yj . For example, P denotes a uniform random permutation, which for a domain
and range X realizes a function chosen uniformly at random from all bijective
functions X → X . Following [7], we say that a random function is convex-
combination stateless (cc-stateless) if it corresponds to a random variable taking
on as values function tables X → Y. For example, both R and P are cc-stateless.

We can define a distinguisher D for an (X ,Y)-system as a (Y,X )-system
which is one query ahead, i.e., it is defined by the conditional probability distri-
butions pD

Xi|Xi−1Y i−1 for all i ≥ 1. In particular, the first query of D is determined
by pD

X1
. After a certain number of queries (say k), the distinguisher outputs a

bit Wk depending on the transcript XkY k. For a random system S and a dis-
tinguisher D, let DS be the random experiment where D interacts with S. The
distribution of XkY k in this experiment can be expressed by

PDS
XkY k(xk, yk) =

k∏
i=1

pD
Xi|Xi−1Y i−1(xi, x

i−1, yi−1)pS
Yi|XiY i−1(yi, x

i, yi−1)

= pD
Xk|Y k−1(xk, yk−1) · pS

Y k|Xk(yk, xk), (3)

where the last equality follows from (2).
We consider two special classes of distinguishers. By NA we denote the class

of all (computationally unbounded) non-adaptive distinguishers which select all
queries X1, . . . , Xk in advance, i.e., independent of the outputs Y1, . . . , Yk. By
RI we denote the class of all (computationally unbounded) distinguishers which
cannot select queries but are given uniformly random values X1, . . . , Xk and the
corresponding outputs Y1, . . . , Yk. These distinguisher classes correspond to the
attacks nCPA (non-adaptive chosen-plaintext attack) and KPA (known-plaintext
attack) from the literature, respectively.

For two (X ,Y)-systems S and T, the distinguishing advantage of D in distin-
guishing systems S and T by k queries is defined as

ΔD
k (S,T) =

∣∣PDS(Wk = 1) − PDT(Wk = 1)
∣∣ .
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We shall denote by ΔD
k (S,T) and Δk(S,T) the maximal advantage over the

class D of distinguishers and over all distinguishers issuing at most k queries,
respectively. On the other hand, we define

δD
k (S,T) := ||PDS

XkY k − PDT
XkY k || =

1
2

∑
xkyk

|PDS
XkY k(xk, yk) − PDT

XkY k(xk, yk)|

to be the statistical distance of transcripts when D interacts with S and T,
respectively. Again, δDk (S,T) and δk(S,T) denote the maximal value over the
class D of distinguishers and over all distinguishers, respectively. The statisti-
cal distance of transcripts is closely related to the distinguishing advantage: in
general we have ΔD

k (S,T) ≤ δD
k (S,T), but for a computationally unbounded

distinguisher D that chooses the output bit optimally, we have ΔD
k (S,T) =

δD
k (S,T). In particular, we have Δk(S,T) = δk(S,T), ΔNA

k (S,T) = δNA
k (S,T)

and ΔRI
k (S,T) = δRI

k (S,T). Finally, using (3) to expand the definition of δD
k (S,T),

we obtain

δD
k (S,T) =

1
2

∑
xkyk

pD
Xk|Y k−1(xk, yk−1) ·

∣∣∣pS
Y k|Xk(yk, xk) − pT

Y k|Xk(yk, xk)
∣∣∣

=
∑
xkyk

pD
Xk|Y k−1(xk, yk−1) ·

(
pS

Y k|Xk(yk, xk) − pT
Y k|Xk(yk, xk)

)
, (4)

where the last summation goes only over all xkyk such that pS
Y k|Xk(yk, xk) >

pT
Y k|Xk(yk, xk) holds.
For two (X ,Y)-systems S and T and a uniform random bit B, 〈S/T〉B denotes

the random system which is equal to S if B = 0 and equal to T otherwise. If
mentioning the random variable B explicitly is not necessary, we only write
〈S/T〉. The following simple lemma comes from [6].

Lemma 1. For every distinguisher D, we have:

(i) ΔD
k (S,T) = 2

∣∣PD〈S/T〉B (Wk = B) − 1
2

∣∣ ,
(ii) ΔD

k (S, 〈S/T〉B) = 1
2ΔD

k (S,T).

We denote by C(·, ·) a construction that invokes two other systems as its subsys-
tems. If we instantiate these subsystems by S1 and S2, we denote the resulting
system by C(S1,S2). Upon each query to C(·, ·), the construction may adap-
tively issue 0 or more queries to its subsystems. A construction is neutralizing
for pairs of systems (F, I) and (G,J) if C(F,J) ≡ C(I,G) ≡ C(I,J). Moreover,
let k′ and k′′ denote the maximal number of queries made to the first and second
subsystem, respectively, during the first k queries issued to the construction (if
defined). There are two important examples of neutralizing constructions that
we shall consider in this paper:

Quasi-group combination. For (X ,Y)-random systems F and G and for a
quasi-group1 operation � on Y, the construction F � G feeds any query it

1 A binary operation � on X is a quasi-group operation if for every a, c ∈ X (every

b, c ∈ X ) there is a unique b ∈ X (a ∈ X ) such that a � b = c.
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receives to both subsystems and then combines their outputs using � to
determine its own output. This is a neutralizing construction for random
functions F, G and I ≡ J ≡ R.

Composition. For a (X ,Y)-random system F and a (Y,Z)-random system G,
F�G denotes the serial composition of systems: every input to F�G is fed to
F, its output is fed to G and the output of G is the output of F �G. This is
a neutralizing construction for a permutation F, a cc-stateless permutation
G and I ≡ J ≡ P.

2.3 Monotone Boolean Outputs and Games

Among random systems, we shall be in particular interested in systems having
a monotone bit as a part of their output, in the sense of the following definition
from [6].

Definition 3. For a (X ,Y × {0, 1})-system S the binary component Ai of the
output (Yi, Ai) is called a monotone binary output (MBO), if Ai = 1 implies
Aj = 1 for all j > i. For convenience, we define A0 = 0. For a system S with
MBO we define two derived systems:

(i) S− is the (X ,Y)-system obtained from S by ignoring the MBO.
(ii) S	 is the (X ,Y × {0, 1})-system which masks the Y-output to a dummy

symbol (⊥) as soon as the MBO turns to 1. More precisely, the following
function is applied to the outputs of S:

(y, a) 
→ (y′, a) where y′ =
{

y if a = 0
⊥ if a = 1.

The reason for studying this particular type of systems is that any one-player
game can be seen as a (X ,Y ×{0, 1})-system S with a monotone binary output.
Here the player makes moves X1, X2, . . . and receives game outputs Y1, Y2, . . ..
Additionally, the game after each move also outputs a monotone bit indicating
whether the game has already been won. The goal of the player2 is to provoke
the change of this bit, which is initially 0. Note that it is irrelevant whether the
player can see this bit, so we can think of it interacting only with the system S−.

For a (X ,Y × {0, 1})-system S with an MBO called Ai and for a player D,
we denote by νD

k (S) the probability that D wins the game S within k queries,
i.e., νD

k (S) = PDS
Ak

(1). As usually, νD
k (S) and νk(S) denote the maximal winning

probability over the class D of players and over all players, respectively.
The relationship between distinguishing two systems and winning an appro-

priately defined game was studied in [3] and later in [6], where the following
lemma was proved.

Lemma 2. For any two (X ,Y)-systems S and T there exist (X ,Y × {0, 1})-
systems Ŝ and T̂ such that
2 Note that a player is formally the same type of object as a distinguisher, hence we

shall use both terms, depending on the context.
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(i) Ŝ− ≡ S
(ii) T̂− ≡ T
(iii) Ŝ	 ≡ T̂	

(iv) δD
k (S,T) = νD

k (Ŝ) = νD
k (T̂) for all D.

Intuitively, Lemma 2 states that any two systems S and T can be extended by
adding an MBO to each of them that “signals” whether the system has deviated
from the common behavior of both S and T. The systems are equivalent as long
as the MBOs are 0 and the probability that a distinguisher D turns one of these
MBOs to 1 is equal to the statistical distance of transcripts of the experiments
DS and DT.

Moreover, it was proved in [6] that if any (X ,Y × {0, 1})-systems Ŝ and T̂
satisfy for every i ≥ 1 the conditions (for T̂, the conditions are analogous)

pŜ
Y iAi|Xi(yi, 0, xi) = mS,T

xi,yi

pŜ
Y iAi|Xi(yi, 1, xi) = pS

Y i|Xi(yi, xi) − mS,T
xi,yi

(5)

where
mS,T

xi,yi = min{pS
Y i|Xi(yi, xi), pT

Y i|Xi(yi, xi)},

then they also satisfy the properties stated in Lemma 2. In fact, Lemma 2 was
proved in [6] by demonstrating that the systems Ŝ and T̂ satisfying (5) can
always be constructed.

3 Projected Systems

Any system S and a transcript of the initial part of a possible interaction with it
together define a new system that simulates the behavior of S from the state at
the end of this interaction onwards. This is formalized in the following definition.

Definition 4. For an (X ,Y)-random system S and (xj, yj) ∈ X j × Yj, let
S[xj , yj ] denote the system S projected to the state xjyj, i.e. the random system
that behaves like S would behave after answering the first j queries xj by yj.
Formally, S[xj , yj ] is defined by the distributions

p
S[xj ,yj ]
Yi|XiY i−1(yi, x

i, yi−1) := pS
Yj+i|Xj+iY j+i−1 (yi, x

jxi, yjyi−1)

if pS
Y j |Xj (yj , xj) > 0 and undefined otherwise.

This is most intuitive if we consider a game (i.e., a special type of system with
an MBO), where the transcript represents a position in this game. For a (X ,Y×
{0, 1})-system S representing a game, the MBO bits are also a part of the output,
therefore we have to specify them when describing its answers to the first j
queries. To denote a position where the game is not won yet, we set these bits
to 0, obtaining the system S[xj , yj0j ].
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Definition 5. Let S be a (X ,Y × {0, 1})-system with the MBO Ai and let D
be a compatible player. Let j ≤ k be non-negative integers. For any xj ∈ X j

and yj ∈ Yj such that pS
Y jAj |Xj (yj , 0, xj) > 0, we call νD

k−j(S[xj , yj0j]) the
probability of D winning the game S from the position xjyj within the remaining
k − j queries. Moreover, we also define the probability of winning S within k
queries with a free start to be

λk(S) := max
j,xj ,yj

νk−j(S[xj , yj0j ]),

where the maximization3 goes over all j ≤ k, xj , yj such that the projected system
S[xj , yj0j] is defined.

Intuitively, if a player starts playing the game S from the position xjyj (assuming
the game is not won yet), νk−j(S[xj , yj0j ]) describes the probability that it wins
the game within the remaining k − j queries if he plays optimally from now on.
On the other hand, if the player is allowed to choose any position in the game
tree within the first k queries (where the game is not won yet) and play from
that position, it can win with probability λk(S). Obviously λk(S) ≥ νk(S).

Let us now consider a construction C(S1,S2). In this section, we assume that
S1 and S2 are two (X ,Y×{0, 1})-systems (games) with MBOs Ai and Bi, respec-
tively. Moreover, we assume that C(S1,S2) is a (X ,Y ×{0, 1})-construction and
it combines the last binary outputs of its subsystems using the AND operation
to determine its own binary output Ci. Note that although the construction may
determine the number and ordering of the queries to its subsystems adaptively,
we can assume that the order of the queries to the subsystems is well-defined for
every run of the experiment. This justifies the following definition.

Definition 6. In the experiment DC(S1,S2), let F i
j denote the event that the

game Si was won during the first j queries to C(S1,S2) and it was the first of
the games S1, S2 that was won.

Note that if both games are to be won, one of them always has to be won first.
Afterwards, the adversary needs to also win the second game in order to provoke
the MBO of the whole construction. This is captured by the following lemma.

Lemma 3. Let S denote the system C(S1,S2) with MBO as described above.
Then we have

νD
k (S) ≤ PDS(F 1

k ) · λk′′ (S2) + PDS(F 2
k ) · λk′ (S1).

Proof. Since the MBO of S is the AND of the MBOs of the subsystems, we have

νD
k (S) ≤ PDS(F 1

k ∧ Bk′′) + PDS(F 2
k ∧ Ak′)

= PDS(F 1
k ) · PDS(Bk′′ |F 1

k ) + PDS(F 2
k ) · PDS(Ak′ |F 2

k ).

3 Note that depending on the game S, any j ∈ {0, . . . , k − 1} may maximize the term

νD
k−j(S[xj , yj0j ]).
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It remains to upper-bound the terms PDS(Bk′′ |F 1
k ) and PDS(Ak′ |F 2

k ). Let Xi

and Yi be the random variables corresponding to the i-th input and Y-output
of S, respectively; and let Mi and Ni (Ui and Vi) be the random variables
corresponding to the i-th input and Y-output of S1 (S2), respectively. Let T
denote the random variable corresponding to the initial part of the transcript
of the experiment from its beginning until the MBO A is provoked or until the
end of the experiment, whichever comes first. This transcript contains all the
queries Xi to the construction, all the corresponding answers (Yi, Ci), as well as
all the query-answer pairs (Mi, (Ni, Ai)) and (Ui, (Vi, Bi)) of the subsystems, in
the order as they appeared during the execution. Conditioning over all possible
values of T , we have

PDS(Bk′′ |F 1
k ) =

∑
t

PDS
T |F 1

k
(t) · PDS

Bk′′ |TF 1
k
(t). (6)

Let now t be fixed such that PDS
T |F 1

k
(t) > 0, we need to prove PDS

Bk′′ |TF 1
k
(t) ≤

λk′′ (S2). Let us consider a player D′ defined as follows: it simulates the behavior
of the player DC(S1, ·). However, as long as the MBO A is not provoked, all its
choices are fixed to follow the transcript t. After these “cheated” choices, as soon
as the MBO A is provoked (and t ends), it simulates D, C and S1 faithfully.
Let j denote the number of queries issued to S2 in t, let uj and vj denote these
queries and the corresponding answers, respectively. For the described player D′,
we have

PDS
Bk′′ |TF 1

k
(t) = PD′S2

Bk′′ |UjV jBj
(uj , vj)

≤ max
D

PDS2

Bk′′ |UjV jBj
(uj , vj)

= νk′′−j(S[uj , vj0j ])
≤ λk′′ (S2),

and since
∑

t PDS
T |F 1

k
(t) = 1, from (6) we have PDS(Bk′′ |F 1

k ) ≤ λk′′ (S2). The

same argument gives us a symmetric bound for PDS(Ak′ |F 2
k ) and concludes the

proof. ��

4 Free-Start Distinguishing

The notion of winning a game with a free start, captured by the quantity λk(S),
has a counterpart in the language of systems indistinguishability, which we now
define formally.

Definition 7. For any random systems S and T, we define the free-start dis-
tinguishing advantage of S and T to be

Λk(S,T) := max
j,xj ,yj

Δk−j(S[xj , yj ],T[xj , yj]),

where the maximization goes over all j ∈ {0, . . . , k − 1} and all xj , yj such that
the systems on the right side are defined.
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Informally, suppose that the distinguisher is allowed to choose an arbitrary tran-
script xjyj compatible with both the systems it is supposed to distinguish,
project them to the states described by this transcript and then try to distin-
guish the resulting systems with the remaining k − j queries. Then the quantity
Λk(S,T) denotes the optimal advantage it can achieve.

To demonstrate the relationship between λk and Λk, we exploit the connection
between distinguishing two systems and winning an appropriately defined game
described in [6]. Let us consider the setting with a real system F (e.g. a random
function) and an ideal system I (e.g. a uniform random function). Using Lemma 2
(and, in particular, condition (5)), we can add MBOs to the systems F and I to
obtain systems F̂ and Î such that νk(〈F̂/Î〉) = Δk(F, I) and the systems behave
identically as long as the MBO is not provoked. Since provoking this MBO
corresponds to distinguishing the systems, one can expect νk−j(〈F̂/Î〉[xj , yj0j])
to be related to the advantage in distinguishing F and I projected to the state
described by the transcript xjyj on the remaining k−j queries. In the following,
we capture this intuition.

Lemma 4. Let F and I be two random systems, let F̂, Î be the systems obtained
from F, I by adding the MBOs according to Lemma 2 and condition (5). Then
we have

νk(〈F̂/Î〉[xj , yj0j]) = Δk(F̂[xj , yj0j]−, Î[xj , yj0j]−)

for any xj,yj such that the system on the left side is defined.

Proof. First note that νk(〈F̂/Î〉[xj , yj0j ]) = νk(F̂[xj , yj0j]), hence it suffices to
prove νk(F̂[xj , yj0j]) = Δk(F̂[xj , yj0j]−, Î[xj , yj0j]−). We prove this claim by
showing that the MBO of F̂[xj , yj0j], originally defined to capture the differences
between F and I, keeps the properties guaranteed by Lemma 2 also with respect
to the systems F̂[xj , yj0j]− and Î[xj , yj0j ]−. We achieve this by showing that
the system F̂[xj , yj0j ] satisfies the condition (5) with respect to the systems
F̂[xj , yj0j]− and Î[xj , yj0j]−. Seeing this, the claim follows from Lemma 2.

Throughout the proof let p denote the probability pF̂
Y jAj |Xj (yj , 0j , xj) =

pÎ
Y jAj |Xj (yj , 0j, xj) (by the assumptions of the lemma, p > 0). We first show

that the relevant probabilities describing the behavior of the random system
F̂[xj , yj0j] (and Î[xj, yj0j ]) correspond to the probabilities describing the origi-
nal system F̂ (and Î) scaled by the factor 1/p. More precisely, we have

p
F̂[xj ,yj0j ]
Y i|Xi (yi, xi) =

∑
ai∈ms(i)

p
F̂[xj ,yj0j ]
Y iAi|Xi (yi, ai, xi)

=
1
p
·
∑

ai∈ms(i)

pF̂
Y j+iAj+i|Xj+i(yjyi, 0jai, xjxi)

=
1
p
· pF̂

Y j+iAj |Xj+i(yjyi, 0j, xjxi)
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and similarly p
Î[xj ,yj0j ]
Y i|Xi (yi, xi) = 1

p · pÎ
Y j+iAj |Xj+i(yjyi, 0j, xjxi). We can use this

to express the quantity m
F̂[xj ,yj0j ]−,Î[xj ,yj0j ]−

xi,yi as

m
F̂[xj ,yj0j ]−,Î[xj ,yj0j ]−

xi,yi = min
{

p
F̂[xj ,yj0j ]−

Y i|Xi (yi, xi), pÎ[xj ,yj0j ]−

Y i|Xi (yi, xi)
}

=
1
p
· min

{
pF̂

Y j+iAj |Xj+i(yjyi, 0j , xjxi),

pÎ
Y j+iAj |Xj+i(yjyi, 0j , xjxi)

}
=

1
p
· pF̂

Y j+iAj+i|Xj+i(yjyi, 0j+i, xjxi) (7)

=
1
p
· mF̂,Î

xjxi,yjyi .

To justify the step (7), note that from the condition (5), which is satisfied for F̂
and Î, we have pF̂

Y j+iAj+i|Xj+i(yjyi, 0j+i, xjxi) = pÎ
Y j+iAj+i|Xj+i(yjyi, 0j+i, xjxi)

and also pY j+iAj |Xj+i(yjyi, 0j , xjxi) = pY j+iAj+i|Xj+i(yjyi, 0j+i, xjxi) for at
least one of the systems F̂ and Î.

Now we can verify that the condition (5) is satisfied also for the system
F̂[xj , yj0j] with respect to the systems F̂[xj , yj0j]− and Î[xj , yj0j ]−. For the
first equation of (5), we have

p
F̂[xj ,yj0j ]
Y iAi|Xi (yi, 0, xi) =

1
p
· pF̂

Y j+iAj+i|Xj+i(yjyi, 0, xjxi)

=
1
p
· mF̂,Î

xjxi,yjyi = m
F̂[xj ,yj0j ]−,Î[xj ,yj0j ]−

xi,yi

and since clearly p
F̂[xj ,yj0j ]
Y i|Xi (yi, xi) = p

F̂[xj ,yj0j ]−

Y i|Xi (yi, xi), the second equation of

(5) is satisfied as well. Therefore, by Lemma 2(iv), we have νk(F̂[xj , yj0j]) =
Δk(F̂[xj , yj0j ]−, Î[xj , yj0j ]−). ��

Lemma 4 involves the systems F̂ and Î projected to a specific state, but it is
more desirable to consider the original systems F and I instead. This is achieved
by the following lemma.

Lemma 5. In the setting described in Lemma 4, we have

Δk(F̂[xj , yj0j ]−, Î[xj , yj0j ]−) ≤ Δk(F[xj , yj ], I[xj , yj ])

for any xj,yj such that the systems on the left side are defined.

Proof. To prove the lemma, we show that for any distinguisher D we have
δD
k (F̂[xj , yj0j]−, Î[xj , yj0j ]−) ≤ δD

k (F[xj , yj ], I[xj , yj ]). Without loss of gener-
ality, let us assume pF

Y j |Xj (yj , xj) ≥ pI
Y j |Xj (yj , xj), otherwise the proof would
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be symmetric. This assumption implies Î[xj , yj0j]− ≡ I[xj , yj ], hence it suffices
to prove

δD
k (F̂[xj , yj0j ]−, I[xj , yj ]) ≤ δD

k (F[xj , yj ], I[xj , yj ]).

Using (4) to express both sides of this inequality, we see that we only need to
prove that for all xk ∈ X k and yk ∈ Yk,

p
F̂[xj ,yj0j ]−

Y k|Xk (yk, xk) < p
I[xj ,yj ]

Y k|Xk (yk, xk) ⇒ p
F[xj ,yj ]

Y k|Xk (yk, xk) ≤ p
F̂[xj ,yj0j ]−

Y k|Xk (yk, xk).
(8)

In the systems I[xj , yj ], F[xj , yj ] and F̂[xj , yj0j]−, the conditional distributions
pY k|Xk(yk, xk) are given by the following expressions, respectively:

p
I[xj ,yj ]

Y k|Xk (yk, xk) =
pI

Y j+k|Xj+k(yjyk, xjxk)

pI
Y j |Xj (yj , xj)

(9)

p
F[xj ,yj ]

Y k|Xk (yk, xk) =
pF

Y j+k|Xj+k(yjyk, xjxk)

pF
Y j |Xj (yj , xj)

(10)

p
F̂[xj ,yj0j ]−

Y k|Xk (yk, xk) =
pF̂

Y j+kAj |Xj+k(yjyk, 0j , xjxk)

pF̂
Y jAj |Xj (yj, 0j , xj)

(11)

Informally, the conditional distributions pY k|Xk of the systems I[xj , yj ], F[xj , yj ]
and F̂[xj , yj0j]− are again related to the conditional distributions pY j+k|Xj+k of
the original systems (I, F, and F̂ with Aj = 0, respectively) by some scaling
factors (the denominators in the above equations). The factor turns out to be
the same for I[xj , yj ] and F̂[xj , yj0j ]−, however for F[xj , yj ] it may be different.
This results into a different scaling of the distributions for F̂[xj , yj0j]− and
F[xj , yj ] and allows us to show that (8) is indeed satisfied. A more detailed
argument follows.

Let us fix xk and yk such that p
F̂[xj ,yj0j ]−

Y k|Xk (yk, xk) < p
I[xj ,yj ]

Y k|Xk (yk, xk). By

the definition of Ai we have pI
Y j |Xj (yj , xj) = pF̂

Y jAj |Xj (yj , 0j, xj), hence by

comparing the equations (9) and (11) we get pF̂
Y j+kAj |Xj+k(yjyk, 0j, xjxk) <

pI
Y j+k|Xj+k(yjyk, xjxk). This in turn implies pF̂

Y j+kAj+k|Xj+k(yjyk, 0j+k, xjxk) <

pI
Y j+k|Xj+k(yjyk, xjxk). Now, recalling that the MBO Ai is defined to satisfy the

properties (5), we see that pF
Y j+k|Xj+k(yjyk, xjxk) < pI

Y j+k|Xj+k(yjyk, xjxk) and

therefore also pF̂
Y j+kAj+k|Xj+k(yjyk, 0j+k, xjxk) = pF

Y j+k|Xj+k(yjyk, xjxk). This

in turn implies pF̂
Y j+kAj |Xj+k(yjyk, 0j , xjxk) = pF

Y j+k|Xj+k(yjyk, xjxk), hence the
numerators in (10) and (11) are the same. The denominators are easy to com-
pare, it obviously holds pF

Y j |Xj (yj , xj) ≥ pF̂
Y jAj |Xj (yj , 0j , xj), hence from (10)

and (11) we obtain p
F[xj ,yj ]

Y k|Xk (yk, xk) ≤ p
F̂[xj ,yj0j ]−

Y k|Xk (yk, xk), completing the proof
of (8). ��



Free-Start Distinguishing 41

Note that combining the technical Lemmas 4 and 5 gives us

λk(〈F̂/Î〉) = max
j,xj ,yj

Δk−j

(
F̂[xj , yj0j]−, Î[xj , yj0j]−

)
≤ Λk(F, I) (12)

for the systems described above.

5 Connection to Indistinguishability Amplification

We are now ready to prove our main theorem. First we define some intuitive no-
tation: by DC(·,J) we denote the class of distinguishers obtained by connecting
any distinguisher to C(·,J) and placing the system to be distinguished as the
first subsystem. The class of distinguishers DC(I, ·) is defined analogously.

Theorem 1. Let C(·, ·) be a neutralizing construction for the pairs (F, I) and
(G,J) of systems. Let Q denote the system C(I,J). Then, for all k,

Δk(C(F,G),Q) ≤ 2
(
δ
DC(·,J)
k′ (F, I) · Λk′′ (G,J) + δ

DC(I,·)
k′′ (G,J) · Λk′(F, I)

)
.

Proof. We use the technique from the proof of Theorem 1 in [6] to transform
the task of distinguishing C(F,G) from Q to the task of provoking the MBO of
the system S := Ĉ(〈F̂/Î〉Z1 , 〈Ĝ/Ĵ〉Z2 ), where F̂, Î and Ĝ, Ĵ are obtained using
Lemma 2 from F, I and G, J, respectively; and Ĉ is the same construction as C
except that it also has an MBO, which is defined as the AND of the two internal
MBOs. Then we use a different approach to bound the value νk(S), exploiting
the concept of free-start distinguishing.

First, by Lemma 1 (ii) we have Δk(C(F,G),Q) = 2 · Δk(〈C(F,G)/Q〉Z ,Q)
and by Lemma 1 (i) Δk(〈C(F,G)/Q〉Z ,Q) is the optimal advantage in guess-
ing the uniform random bit Z ′ in the system 〈〈C(F,G)/Q〉Z/Q〉Z′ . However,
thanks to the neutralizing property of C(·, ·). it can be easily verified that
〈〈C(F,G)/Q〉Z/Q〉Z′ ≡ C(〈F/I〉Z1 , 〈G/J〉Z2) for independent uniformly ran-
dom bits Z1 := Z and Z2 := Z ⊕ Z ′. Hence, Δk(〈C(F,G)/Q〉Z ,Q) is also the
optimal advantage in guessing the bit Z ′ = Z1 ⊕ Z2 in C(〈F/I〉Z1 , 〈G/J〉Z2).

We can now extend the systems F and I by adding MBOs satisfying the
equations (5) to obtain the systems F̂ and Î with the properties guaranteed by
Lemma 2. Similarly, we can extend G and J and obtain the systems Ĝ and Ĵ.
Since the MBO in S can always be ignored, the task of guessing Z1⊕Z2 can only
be easier in S compared to C(〈F/I〉Z1 , 〈G/J〉Z2). However, as long as one of the
MBOs in the subsystems of S is 0, the advantage in guessing the corresponding
bit Zi is 0 and hence also the advantage in guessing Z1 ⊕Z2 is 0. Therefore the
latter advantage can be upper-bounded by νk(S).

Using Lemma 3, for any distinguisher D we have

νD
k (S) ≤ PDS(F 1

k ) · λk′′ (〈Ĝ/Ĵ〉) + PDS(F 2
k ) · λk′ (〈F̂/Î〉).

Let us first bound the term PDS(F 1
k ). Since 〈F̂/Î〉	 ≡ F̂	 and 〈Ĝ/Ĵ〉	 ≡ Ĵ	,

we have PDS(F 1
k ) = PDĈ(F̂,Ĵ)(F 1

k ). Moreover, PDĈ(F̂,Ĵ)(F 1
k ) ≤ νD

k (C(F̂,J))
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since on the left side, we only consider the MBO of F̂ being provoked first,
while on the right side is the probability of it being provoked at any time.
Obviously νD

k (C(F̂,J)) ≤ ν
DC(·,J)
k′ (F̂) and by Lemma 2 we have ν

DC(·,J)
k′ (F̂) =

δ
DC(·,J)
k′ (F, I). By a symmetric reasoning we obtain PDS(F 2

k ) ≤ δ
DC(I,·)
k′′ (G,J).

Finally, using (12) we obtain the bounds λk′′ (〈Ĝ/Ĵ〉) ≤ Λk′′(G,J) and λk′ (〈F̂/

Î〉) ≤ Λk′(F, I), which together conclude the proof. ��

For the two particular neutralizing constructions that motivate our analysis, we
obtain the following corollaries.

Corollary 1. Let F and G be (X ,Y)-random functions, let � be a quasi-group
operation on Y. Then, for all k,

Δk(F � G,R) ≤ 2
(
ΔNA

k (F,R) · Λk(G,R) + ΔNA
k (G,R) · Λk(F,R)

)
.

Proof. Applying Theorem 1 to the neutralizing construction F � G, it only
remains to prove that D(· � R) corresponds to the class of non-adaptive dis-
tinguishers. This is indeed the case, since any distinguisher will only receive
random outputs from F � R. It could simulate these outputs itself, ignoring the
actual outputs, thus operating non-adaptively. The same holds for the class of
distinguishers D(R � ·). Recalling that δNA

k (S,T) = ΔNA
k (S,T) for any systems

S, T completes the proof. ��

Corollary 2. Let F and G be (X ,X )-random permutations, let G be cc-stateless.
Then, for all k,

Δk(F � G,P) ≤ 2
(
ΔNA

k (F,P) · Λk(G,P) + ΔRI
k (G,P) · Λk(F,P)

)
.

Proof. Again, when applying Theorem 1 to the neutralizing construction F �G,
we need to justify that the distinguisher classes D(·�P) and D(P� ·) correspond
to NA and RI, respectively. In the first case, the distinguisher only receives ran-
dom outputs, so it can again simulate them itself and hence corresponds to a
non-adaptive distinguisher. In the second case, the distinguisher D(P � ·) can
only provide random inputs to the distinguished system, with the possibility of
repeating an input. However, since both G and P are cc-stateless permutations,
repeated inputs will only produce repeated outputs and hence cannot help the
distinguisher. ��

6 Conclusion and Further Research

Our main theorem unifies the claims of both Theorem 1 and Theorem 2 in [6]
under reasonable assumptions. To see this, let us focus for example on the natural
case of random functions, assuming F ≡ G and I ≡ J ≡ R. Our theorem gives a
better bound than Theorem 2 in [6] as long as Λk(F,R) < 1/2. It also improves
the bound from Theorem 1 in [6] as long as

Λk(F,R)
Δk(F,R)

<
1
2
· Δk(F,R)
ΔNA

k (F,R)
.
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This means, loosely speaking, that the improvement occurs as long as the ratio
of advantage gained from the free choice of state is smaller than the ratio of
advantage gained from extending the distinguisher class.

This improvement is significant for any random function F that satisfies the
conditions

ΔNA
k (F,R) � Δk(F,R) ≈ Λk(F,R) � 1.

As an example, consider the simple cc-stateless random function F : {0, 1}n →
{0, 1}n that behaves as follows: with probability 2−n/2 it satisfies the (adaptively
verifiable) condition F(F(0)) = 0 and the remaining values (including F(0)) are
chosen uniformly at random, in the rest of the cases (with probability 1−2−n/2)
F behaves exactly like R.

In general, a small Δk(F,R) does not necessarily imply a small Λk(F,R), since
it is easy to construct a counterexample where some specific initial transcript
leads to a behavior that is easy to distinguish from the ideal system. However,
a small value of Λk(F,R) may be considered a desirable requirement for a good
quasi-random function.

Although it is not difficult to define the concept of free-start distinguishing
in the computational setting, our main result does not translate to this setting.
This is because such a translation would imply that for example composition of
non-adaptively secure pseudo-random permutations is adaptively secure, which
would contradict the results in [10] under standard assumptions. Therefore, the
implications of our result for the computational setting remain an open question.
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tional Science Foundation (SNF) project no. 200020-113700/1 and by the grants
VEGA 1/0266/09 and UK/385/2009.
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Abstract. Code-based public-key cryptosystems are based on the hardness of a
decoding problem. Their advantages include: 1) quantum tolerant, i.e. no poly-
nomial time algorithm is known even on quantum computers whereas number
theoretic public-key cryptosystems, such as RSA, Elliptic Curve Cryptosystems,
DH, DSA, are vulnerable against them. 2) arithmetic unit is small for encryp-
tion and signature verification since they consists mostly of exclusive-ors that are
highly parallelizable. The drawback is, however, that the public-key size is large,
which is around some hundreds KB to some MB for typical parameters. Sev-
eral attempts have been conducted to reduce the public-key size. Most of them,
however, failed except one, which is Quasi-Dyadic (QD) public-key (for large
extention degrees). While an attack has been proposed on QD public-key (for
small extension degrees), it can be prevented by making the extension degree m
larger, specifically by making q(m(m−1)) large enough where q is the base filed
and q = 2 for a binary code. QD approach can be improved further by using the
method proposed in this paper. We call it “Flexible” Quasi-Dyadic (FQD) since it
is flexible in its parameter choice, i.e. FQD can even achieve the maximum code
length n = 2m−t with one shot for given error correction capability t whereas QD
must hold n << 2m−t (at least n≤ 2m−1) and the key generation is performed by
trial and error. Achieving n = 2m − t or more loosely n = 2m −2�log2 t�) is crucial
for code-based digital signatures since they must make 2mt/

(n
t

)
small enough and

without making n close to 2m − t it cannot be satisfied. FQD can also be applied
to code-based digital signatures.

Keywords: Public-key, digital signature, lightweight, ubiquitous, linear code.

1 Introduction

Public-key cryptosystems (PKCs) can be divided into the categories1 shown in Fig. 1
and 2, respectively. Almost all of the currently deployed ones are based only on a small
class of hard problems, namely Integer Factoring Problem (IFP) or Discrete Logarithm
Problem (DLP). They are referred to as number theoretic problems. The number the-
oretic problem based PKCs have the following disadvantages that should be solved in

1 Multivariate polynomial based ones may be included, but all of them have been broken and no
relief method is known so far.

K. Kurosawa (Ed.): ICITS 2009, LNCS 5973, pp. 45–55, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Integer Factoring Based:
– RSA
– Rabin
– Okamoto-Uchiyama
– Paillier

Discrete Logarithm Based:
– Diffie-Hellman
– ElGamal
– ECC
– XTR
– Cramer-Shoup
– Kurosawa-Desmedt

Fig. 1. Examples of PKCs Based on Num-
ber Theoretic (Cyclic) Problem

Code Based:
– McEliece
– Niederreiter

Lattice Based:
– NTRU
– Ajtai-Dwork
– Goldreich-Goldwasser-Halevi
– Ajtai
– Regev
– Peikert

Subset Sum Based:
– Okamoto-Tanaka-Uchiyama

Fig. 2. Examples of PKCs Based on Com-
binatorial Problem

short term and long term, respectively. The long term problem is the lack of quantum
tolerance. The number theoretic problems are closely related to a problem to determine
the cycle (hence they may be referred to as a cyclic problem) and they will be solved in
(probabilistic) polynomial-time after the emergence of quantum computers [27] though
several breakthroughs are needed to realize quantum computers. The short term prob-
lem is the requirement of heavy multiple precision modular exponentiations that are not
easy to deploy with low cost on low-computational power devices, such as RFID (Radio
Frequency Identity), sensors and SCADA (Supervisory Control And Data Acquisition)
devices.

On the other hand, combinatorial-problems are quantum tolerant and only small
arithmetic units, e.g. addition in a small field or ring, are required for encryption and sig-
nature verification. Furthermore, among the combinatorial-problem based PKCs, code-
based PKCs are advantageous in redundancy, i.e. (Plaintext Size)− (Ciphertext Size),
and in the arithmetic unit, i.e. encryption and signature verification consists mostly on
exclusive-ors that are highly parallelizable.

The strongest security notion for PKCs is IND-CCA2 (Indistinguishability against
Adaptive Chosen Ciphertext Attack) and it can be achieved by applying “appropriate”
conversion scheme to the primitive code-based PKEs as long as it satisfies OW-CPA
(One-Wayness against Chosen Plaintext Attack). For the McEliece primitive PKC, spe-
cific conversion scheme [17] makes the redundancy smallest while maintaining prov-
able security in the random oracle model. For the Niederreiter primitive PKC, either
OAEP++ [16] for a long plaintext or OAEP+ [28] for a small plaintext can achieve
them. Not only in the random oracle model, provable security of IND-CPA and IND-
CCA2 have been achieved in the standard model in [25] and [11] respectively even
though the constructions in the standard model are less efficient compared to those in
the random oracle model. Anyway, secure constructions are available as long as the
underlying primitive code-based PKCs satisfy OW-CPA and the parameters meeting
OW-CPA are estimated in [13] against the most powerful attacks (Optimized) Informa-
tion Set Decoding (OISD2) and Generalized Birthday Attack (GBA).

2 In [13], it is referred to as ISD but in this paper we call it OISD to distinguish it from classical
ISDs.
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The drawback of code-based PKCs is, however, that the publick-key size is large,
which is k(n− k) bits if a binary code of length n with information rate k/n is used. To
overcome this problem, several attempts have been conducted. They are summarized as
follows.

(Potential approaches for reducing public-key size for code-based PKCs)
Enhancement of error correction capability:

– Capacity Approaching Codes
• LDPC codes
• QC-LDPC codes [4]

– List Decoding
• Exhaustive search
• List decoding for Goppa Code [7]

– Error expansion/hold [20]
Compression of public-key:

– Quasi-Cyclic Construction [5]
– Quasi-Dyadic Construction [23]
– Flexible-Quasi-Dyadic Construction (proposal)

Unfortunately, LDPC (Low-Density Parity Check) code approach has been broken
in [24,14] where [24] works if the density of the random nonsingular secret matrix
S is low and [14] works for any S. Error expansion/hold approach has been broken
in [18]. Quasi-Cyclic and QC-LDPC approaches have been broken in [2,32]. Quasi-
Dyadic approach has been broken in [32], but only for small extension degrees [22].
Hence the remaining approaches are list decoding and Quasi-Dyadic approach for large
extension degrees. While list decoding works, its effect is small since it can correct only
a couple of more errors for practical parameters within practical decoding complexity.
Hence the last resort is the quasi-dyadic approach with large extension degrees.

2 Quasi-Dyadic Construction

I will skip the preliminary of code-based PKCs, but you can find a lot of contents to
explain them, e.g. in the surveys section of [6] or in [10].

Quasi-Dyadic construction was proposed in [23]. It uses the inter section between
dyadic matrices and Goppa codes in Cauchy form. A 2v ×2v dyadic matrix M is in this
form:

M =
[

A B
B A

]
(1)

where A and B are 2v−1×2v−1 dyadic matrices, respectively. The advantage of a dyadic
matrix is that the whole matrix can be constructed from its one row or one column. This
is the trick to reduce the public matrix.

Due to the following Theorem, it is possible to make a parity check matrix of the
Goppa code Cauchy from.
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Table 1. Sample parameters of plain code-based PKE estimated in [13]

BWF Public-key
m t n OISD (p.l) size Plaintext/Ciphertext

11 32 2,048 286.8 (4,24) 72.9KB 233/352 [bits]
12 41 4,098 2128.5 (10.54) 216.5KB 327/492 [bits]

Table 2. Sample parameters of Quasi-Dyadic (QD) code-based PKE [23]

BWF Public-key
m t n OISD (p.l) size Plaintext/Ciphertext

16 64 2,560 291.3 (1,12) 3.0KB 427/1024 [bits]
16 64 3,072 2108.0 (2,17) 4.0KB 445/1024 [bits]
16 128 4,096 2135.8 (2,18) 4.0KB 817/1024 [bits]

Theorem 1 (Goppa Codes in Cauchy Form [31,21]). The Goppa code generated by
a monic polynomial g(x) = (x−z0) · · · (x−zt−1) without multiple zeros admits a parity-
check matrix H whose i-th row and j-th column is Hi j = 1/(zi −Lj) for 0 ≤ i < t and
0 ≤ j < n.

The Cauchy matrix can be dyadic by choosing distinct zi and Lj meeting the following
conditions:

1
hi⊕ j

=
1
hi

+
1
h j

+
1
h0

(2)

zi =
1
hi

+ ω (3)

Lj =
1
h j

+
1
h0

+ ω (4)

The construction algorithm proposed in [23] generates a sequence of hi for 0 ≤ i ≤ N
where n < N at random meeting (2) to (4). If they are not satisfied, it discards hi and
regenerates them until the conditions are satisfied. Using the generated hi, a N ×N full
dyadic matrix can be constructed. It finally picks up a t × n sub-matrix from the full
N ×N dyadic matrix.

This algorithm is, however, restrictive on its parameter choice, i.e. n << 2m− t must
hold otherwise it eventually fails to generate a distinct set of zi and Lj, or takes a lot of
time since it generates them by trial-and-error. This restriction prevents it from gener-
ating parameters for digital signatures since in digital signatures 2mt/

(n
t

)
must be small

enough and without making n close to 2m − t, 2mt/
(n

t

)
cannot be small.

3 Flexible-Quasi-Dyadic Construction

To overcome the problems in QD, we propose a more flexible and efficient construction,
which we call Flexible-Quasi-Dyadic (FQD) construction. FQD does not use trial-and-
error approach and generates distinct zi and Lj with one shot even for n = 2m − t. FQD
does not have any restriction such as n << 2m − t.



Code-Based Public-Key Cryptosystems and Their Applications 49

Table 3. Sample parameters of Flexible-Quasi-Dyadic (FQD) code-based PKE (proposal)

BWF Public-key
m t n OISD (p.l) UL size Plaintext/Ciphertext

11 32 2,016 286.0 (4,24) - 2.2KB 224/352 [bits]
11 37 1,984 290.3 (4,24) - 2.1KB 262/407 [bits]
11 64 1,984 2103.1 (4,25) - 1.7KB 404/704 [bits]
11 96 1,920 291.0 (2,16) - 1.2KB 546/1056 [bits]
11 112 1,920 280.0 (2,16) - 0.92KB 546/1056 [bits]

12 19 4,064 281.0 (8,44) - 5.6KB 171/228 [bits]
12 23 4,064 291.4 (8,44) - 5.5KB 202/276 [bits]
12 32 4,064 2111.6 (10,53) - 5.4KB 266/384 [bits]
12 42 4,032 2129.3 (9,49) - 5.2KB 333/504 [bits]
12 64 4,032 - 2157.4 4.8KB 470/768 [bits]
12 128 3,968 - 2156.4 3.6KB 811/1536 [bits]
12 186 3,840 - 2155.9 2.4KB 1069/2232 [bits]
12 256 3,840 291.3 (1,13) - 1.1KB 1352/3072 [bits]
12 256 3,728 280.0 (1,13) - 0.96KB 1340/3072 [bits]

Table 4. Sample parameters of plain code-based signature (CFS signature [8])

BWF Public-key
m t n GBA OISD (p.l) size Iteration Signature Size

19 11 524,288 283.6 - 13,370.7KB 225.3 209 (234.3) [bits]
15 12 32,768 281.5 - 716.0KB 228.8 180 (208.8) [bits]
15 13 32,768 284.8 - 775.4KB 232.5 195 (227.5) [bits]
14 14 16,384 - 284.0 (11,66) 387.3KB 236.4 196 (232.4) [bits]
14 15 16,384 - 289.2 (11,67) 414.6KB 240.3 210 (250.3) [bits]
13 16 8,192 - 283.5 (9,52) 202.7KB 244.3 208 (252.3) [bits]

FQD construction is as follows. It firstly generates one small u×u dyadic matrix us-
ing δi for 0 ≤ i < log2 u. We call them “inner delta” since they define the inner structure
of the u× u full dyadic matrix. Then FQD generates the other u× u full dyadic matri-
ces by duplicating the inner structure of the first u× u full dyadic matrix but shifting
them using both Δ j1 and Δ ′

i1
for 0 ≤ j1 < �n/u� and 1 ≤ i1 < �t/u�, respectively. We

call Δ j1 and Δ ′
i1

“outer delta” since they define the relationship among the full u× u
dyadic matrices. FQD can also remove the block-wise permutation and removal in the
key generation phase of QD since the choice of Δ j1 and n already includes them. This
is another advantage of FQD.

I will explain how to choose δi, Δ j1 and Δ ′
i1

later on, but once they are determined, zi

and Lj are given as follows:

zi0 = ⊕log2 u−1
b=0 i0[b] ·δb for 0 ≤ i0 < u (5)

zi1·u+i0 = zi0 ⊕Δ ′
i1 for 1 ≤ i1 < �t/u� (6)

Lj1·u+ j0 = z j0 ⊕Δ j1 for 0 ≤ j1 < �n/u� (7)
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Table 5. Sample parameters of Flexible-Quasi-Dyadic (FQD) code-based digital signature
(proposal)

BWF Public-key
m t n GBA OISD (p.l) size Iteration Signature Size

19 11 524,272 283.6 - 1,215.5KB 225.3 209 (234.3) [bits]
15 12 32,752 281.5 - 59.6KB 228.8 180 (208.8) [bits]
15 13 32,752 284.8 - 59.6KB 232.5 195 (227.5) [bits]
14 14 16,368 284.1 - 27.6KB 236.4 196 (232.4) [bits]
14 15 16,368 - 289.2 (11,67) 27.6KB 240.3 210 (250.3) [bits]
13 16 8,176 - 283.4 (9,52) 12.6KB 244.3 208 (252.3) [bits]

where ⊕ denotes exclusive-or, i[b] and j[b] denote (b+1)-th bit of i and j in the binary
form, respectively. One can easily verify that hi, j = 1/(zi ⊕Lj) makes a quasi-dyadic
matrix. When t ≤ u, zi1·u+i0 can be ignored. When �t/u� ·u > t and/or �·n/u�u > n, by
removing �t/u�u− t rows and �n/u�u− n columns respectively, the size can be t × n.
Another option is to add removed zi as Lj. This is useful to achieve n = 2m − t when
t �= 2x for any positive integer x.

The variables δi, Δ j1 and Δ ′
i1

must be chosen at random while making all the zi for
0 ≤ i < t and Lj for 0 ≤ j < n distinct, i.e.

zi ⊕ zi′ �= 0 for i �= i′ (8)

Lj ⊕Lj′ �= 0 for j �= j′ (9)

zi ⊕Lj �= 0 (10)

These conditions are equivalent to the following conditions:

1. δb for 0 ≤ b < log2 u are linearly independent.
2. ∀r ∈ {0,1}log2 u,

Δ ′
i1 ,Δ j1 ,(Δ

′
i1 ⊕Δ j1),(Δ

′
i1 ⊕Δ ′

i′1
),(Δ j1 ⊕Δ j′1

) �∈ ⊕log2 u−1
b=0 r[b] ·δb (11)

where r[b] denotes the (b + 1)-th bit of r in the binary form.
δb, Δ ′

i1
and Δ j1 satisfying the above conditions can be generated by the following

algorithm:

1. Generate a m×m random binary nonsingular matrix M.
2. Let the (b + 1)-th row from the top of M denote δb for 0 ≤ b ≤ (log2 u)−1.
3. Choose distinct Δ ′

i1
and Δ j1 from a linear combination of the bottom m− log2 u

rows of M.

The cardinality of a nonsingular matrix M is around π ·2(m(m−1)), which is one of the se-
crets of FQD construction. Other secrets include permutation among Δ j1 , random scalar
multiplication with each u×u full dyadic block and multiplication of non-singular ran-
dom dyadic matrix S.

We show some sample parameters for binary codes in Table 1 to 5, but the idea of
FQD construction can easily be extended to non-binary codes, too. In these tables, m,
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t and n are parameters of the underlying code. m is the extension degree, t is the error
correction capability and n is the code length. In plain (non-quasi-dyadic) schemes, n =
2m or n < 2m, in QD, n << 2m − t and in FQD, n = 2m − t (or n < 2m − t ). BWF is the
minimal binary workfactor to break the system, which is either Optimized Information
Set Decoding (OISD), Generalized Birthday Attack (GBA) or the attack in [32] on
QD/FQD (we call it UL attack). The values of OISD and GBA follow the estimation in
[13]. p and l are optimum parameters for OISD. In [32], the BWF of UL, BWFUL is
estimated as q2 × (log2 q2)3(v2 + 3v + b)2v(v + b) where v = log2 u and b = �n/u�, but
this estimation is for m = 2. For m ≥ 2, it is

BWFUL = qm(m−1)× (log2 q2)3(v2 + 3v + b)2v(v + b) (12)

In the columns of BWF “-” means the corresponding attack is less powerful. In the
column of public-key size, KB= 1024×8 bits. Plaintext/Ciphertext is the plaintext size
and the ciphertext size in bits in the Niederreiter form. Iteration shows the signature
generation cost, i.e. the number of trials to decode an error pattern corresponding to
given syndromes. The signature size in () is when the error pattern is expressed as the
positions of t errors. This increases the signature size but decreases the signature veri-
fication cost compared with the case where an error pattern is expressed as an integer
between 0 and

(n
t

)
− 1. The signature size can be reduced further by using the same

technique in [8], i.e. by removing some error positions in the signature even though this
increases the verification cost.

4 Applications of Code-Based Primitives

Not only, PKEs and digital signatures, code-based primitives can be used to construct
ZKIP (Zero Knowledge Interactive Proof) [29], Hash functions [3], OT (Oblivious
Transfer) [19,12] and so on.

In the code-based PKCs, encryption and signature verification do not require heavy
multiple precision modular exponentiations that are not easy to deploy with low cost on
low-computational devices, such as RFID, sensors and SCADA devices. Code-based
PKCs require mostly xors that are highly parallelizable. Hence, code-based PKCs are
suitable for heterogeneous applications where one side may have a reasonable compu-
tational power, but that of the other side is limited.

As such heterogeneous applications, we introduce Lightweight Broadcast Authenti-
cation for Emergency (LBAE) and Privacy-Preserving RFID.

4.1 Lightweight Broadcast Authentication for Emergency

Lightweight Broadcast Authentication is a scenario where one broadcasts a same mes-
sage to a huge number of light weight devices and then the devices verify the
authenticity and data integrity of the received message. The message may be mission-
critical commands, update packages and so on. Reasonable delay may be acceptable in
these cases. On the other hand, Lightweight Broadcast Authentication for Emergency
(LBAE) is intended for the cases where delay is not acceptable. E.g. such cases include
disaster warning for earthquake, tsunami, flood, tornado, thunderbolt, fire and so on.
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Table 6. Comparison Among Solutions for Lightweight Broadcast Authentication for Emergency

MAC with MAC with TESLA Digital Signature
one master key pair-wise keys Conventional Code-based

Authenticity and Data Integrity × ◦ ◦ ◦ ◦
Computational Cost ◦ ◦ ◦ × ◦

Header Size ◦ × ◦ ◦ ◦
Latency ◦ × × × ◦

In LBAE system, light weight devices may be deployed in anywhere, e.g. houses,
buildings, hospitals, (nuclear) power plants, public transport control systems, and then
take appropriate quick actions against disasters to mitigate the damages of them. E.g.,
in houses they may stop gas and/or open the doors when they receive earthquake early
warning broadcast3. In some cases, a few seconds are enough to mitigate serious dam-
ages, and delay is crucial in LBAE. On the other hand, such system may be abused
unless authentication and integrity of messages are not verified.

Table 6 shows the comparison among potential solutions for LBAE. In the “MAC
(Message Authentication Code) with one master key” solution, a master key is shared
among a broadcaster and its receivers. In LBAE, however, a huge number of lightweight
devices may be deployed anywhere and some of them must be cracked. Once a mas-
ter key is revealed the system can be abused completely. Hence this approach is not
recommended (though this must be the simplest way to achieve LBAE). In the “MAC
with pair-wise keys” solution, each pair between a receiver and a broadcaster shares a
unique key. This overcomes the above problem, but the broadcaster must broadcast a
huge number of MACs.4 This increases the header size in the broadcast data and latency
until the device’s MAC is delivered.

TESLA (Timed Efficient Stream Loss-tolerant Authentication) [26] uses hash-chain
and provides delayed authentication, i.e. the MAC key in the current time slot is released
in the next time slot. Hence each device must wait until the MAC key is released and this
causes latency. Duration of the time slot may be shortened but the drawback is that the
hash-chain is consumed rapidly or each device must update the hash-chain frequently.

The drawback of the conventional digital signatures including RSA, DSA, ECDSA is
the computational complexity for low cost lightweight devices and this causes latency.
This drawback can be removed by employing a code-based digital signature and by
tuning up to speed up the signature verification.

4.2 Privacy-Preserving RFID

Privacy-Preserving RFID provides unlinkability among IDs sent by tags against adver-
saries. It is necessary to prevent adversaries to trace a person who carries RFIDs that
may be read remotely. The solutions can categorized as follows[30].

3 The Earthquake Early Warning (EEW) broadcasts have already been deployed in Japan[1].
4 The number can be reduced by the techniques used in the broadcast encryptions, but they still

require certain amount of header size and/or complexity.
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(Privacy-Preserving RFIDs)
Tag disabling solutions (permanently):

– Manually removal or destruction
– Kill command

Tag disabling solutions (temporally):
– Faraday cage
– Access password
– Hash lock
– Blocker tag
– Mode switch

Tag enabling solutions:
– Randomized hash lock [33]
– HB+ [15] and its variants
– Code-Based Unlinkable-ID [9]

Tag disabling solutions disable RFID functions whereas tag enabling solutions en-
able them while providing unlinkability among IDs. Previous tag enabling solutions,
such as randomized hash lock [33], HB+ [15] and its variants, require exhaustive search
of candidate secret keys to identify the tag. Hence they are not scalable against the num-
ber of tags to manage. On the other hand, the tag identification cost of the code-based
unlinkable-ID [9] is constant regardless of the number of managing tags. It logically
uses the code-based PKE to send its ID but the server pre-computes the ID part and
then assigns it to the corresponding tag in advance. This reduces both the encryption
complexity and the public-key size, and makes the tag identification complexity inde-
pendent of the number of tags. Application of code-based unlinkable-ID is not limited
to RFID. It may be used in any application where anonymity and/or privacy is required.
It may even be used in PAKE (Password-Authenticated Key Exchange) to hide the ID
that must be sent in a plaintext in PAKE.

5 Conclusion

This paper reviewed code-based PKCs. While secure constructions are available for
them, public-key size was their drawback. This drawback can be improved using Quasi-
Dyadic (QD) construction and Flexible Quasi-Dyadic (FQD) construction. Advantage
of FQD is that it can achieve the maximum code length n = 2m−t with one shot whereas
QD must hold n << 2m− t and its parameter generation is performed by trial-and-error.
The condition of n << 2m − t prevents QD from applying it to digital signatures, but
FQD can be applied to them.

Code-based PKCs are suitable for heterogeneous applications where one side may
have a reasonable computational power and the other side consists of low-computational
power devices. Such application includes Broadcast Authentication and Unlinkable-ID
for low-computational power devices, such as RFID, sensors, SCADA devices, but not
limited to them.

Research themes left in this area include, further reduction of public-key sizes, new
attacks (especially on QD and FQD), new primitives/applications, implementation and
side-channel attacks, provable security and so on. There are a lot of interesting research
themes left in this area and new comers are welcome.
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Abstract. Dubrov and Ishai (STOC 2006) revealed, by generalizing the

notion of pseudorandom generators (PRGs), that under a computational

assumption, randomness in a protocol can be replaced with pseudoran-

domness in an indistinguishable way for an adversary even if his algo-

rithm has unbounded complexity. However, their argument was applied

only to some special protocols. In this article, we first show that their

argument is not effective for a wide class of more general protocols. Then

we propose a novel evaluation technique for such indistinguishability that

is based on usual PRGs and is effective for those more general protocols.

Examples of such protocols include parallel computation over honest-

but-curious modules, secret sharing, broadcast encryption, traitor trac-

ing, and collusion-secure codes.

Keywords: Randomness reduction, derandomization, information-

theoretic security, pseudorandom number generator, security evaluation.

1 Introduction

1.1 Backgrounds

Randomness is an essential resource for cryptography, and is one of the most im-
portant ingredients of applications in information theory, for instance, efficient
computation by probabilistic algorithms. Most of the existing schemes are based
on an (implicit) assumption that perfect random sources are freely available.
However, in practice such sources are either not available, or cost-consuming
even if available by, for instance, applying post-processing techniques [5,16,21]
to imperfect sources. Hence several works have been done on applications of
imperfect random sources, and on randomness reduction or complete derandom-
ization techniques for various information-theoretic and cryptographic schemes.

For the power of imperfect random sources, several results of preceding works
(such as [10,12,19,23,28,29]) are placed on the positive side. Roughly summariz-
ing, these results show that a single entropy source [10,24,29] suffices for speedup
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of non-cryptographic schemes (i.e., ones concerning no adversaries), and for some
cryptographic protocols that assure some kinds of unpredictability. However, re-
garding privacy and indistinguishability, many negative results have been shown.
McInnes and Pinkas [20] showed that a single entropy source alone is not enough
for information-theoretically secure encryption of even one bit, unless its min-
entropy is extremely high (in latter case one can extract an almost perfectly
random bit from the source [24] and then to approximate the one-time pad
[26]). Dodis et al. [12] extended the result to many other cryptographic proto-
cols. Moreover, Bosley and Dodis [7] proved that, unless the output length of an
imperfect random source is exponential in the bit length b of the plaintext, the
possibility of secure encryption with b-bit plaintexts implies the extractability of
nearly b almost perfectly random bits from the source. They also extended the
result to computational primitives which are perfectly-binding.

These negative results seem supporting the importance, particularly in cryp-
tographic situations, of randomness reduction techniques as a way of relaxing
the assumption on required randomness. There have been proposed a lot of
techniques, such as [1,3,8,17,22], for information-theoretically indistinguishable
randomness reduction, i.e., ones such that the result of a protocol after the ran-
domness reduction is statistically indistinguishable from the original. However,
those techniques are scheme-dependent, and the negative results mentioned in
the previous paragraph suggest that information-theoretically indistinguishable
universal randomness reduction techniques based on a single (imperfect) random
source are unlikely to exist. (Here the condition of using just a single source is
crucial in some sense, since two independent weak random sources can be used
to extract almost perfect random bits [10,24].) On the other hand, there ob-
viously exist computationally indistinguishable universal randomness reduction
techniques; simply replace the original randomness with outputs of (computa-
tionally) secure pseudorandom generators (PRGs).

Dubrov and Ishai [11] studied an intermediate case of randomness reduc-
tion that is information-theoretically indistinguishable under a computational
assumption, as follows. Generalizing a usual notion of PRGs that fool distin-
guishers with boolean output sets {0, 1}, they introduced (motivated by Ishai
and Kushilevits [15]) a notion of pseudorandom generators that fool non-boolean
distinguishers (nb-PRGs). It uses as a measure of indistinguishability the statis-
tical distance between outputs of a distinguisher (with bounded output size) in
random and pseudorandom cases, rather than the advantage of a boolean (i.e.,
usual) distinguisher. They constructed nb-PRGs under some computational as-
sumptions. Then randomness in a protocol is reduced simply by replacing it with
outputs of nb-PRGs. Now the statistical distance between the random and pseu-
dorandom elements, hence the statistical distance between information seen by
an adversary in the two cases, is bounded in terms of computational hardness of
the underlying problem. However, their evaluation technique for indistinguisha-
bility was applied only to special kinds of protocols, such as private multi-party
computation (see [11, Sect. 6.2]), and as we will show later, their technique is in
fact not effective for a wide class of more general protocols.
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1.2 Our Contributions

In this article, we propose a novel technique to evaluate indistinguishability of
randomness reduction based on PRGs. More precisely, when (a part of) ran-
domness used in a protocol is replaced with outputs of a PRG, our technique
evaluates the indistinguishability between random and pseudorandom cases for
any adversary’s attack algorithm with unbounded computational complexity, in
terms of the amount of information received by the adversary, the computa-
tional complexity of the protocol, and the computational indistinguishability of
the PRG. It sounds good that our technique is based on usual PRGs instead
of nb-PRGs as in [11], since PRGs are much more popular than nb-PRGs. Our
technique in fact shows that computationally secure PRGs with sufficiently long
seed lengths are also nb-PRGs (see [11, Observation 3.1]). Moreover, our tech-
nique is effective for a wide class of protocols for which the technique in [11] is
not effective. Hence our technique improves the one in [11] significantly.

An outline of the implication of nb-PRGs from PRGs is as follows. Let G be
a computationally secure PRG with output set OG. Let D : OG → X be an
algorithm that is regarded as a non-boolean distinguisher for G. Then we define
the following (boolean) distinguishers Dx : OG → {0, 1} parameterized by x ∈ X ,
where δx,· denotes an algorithm X → {0, 1} such that the output is 1 if and only
if the input is x (i.e., an algorithm computing Kronecker delta):

Dx = δx,· ◦ D : OG → {0, 1} (x ∈ X). (1)

This simple trick enables one to express the statistical distance of outputs of
D between random and pseudorandom cases in terms of the advantages of the
distinguishers Dx. Thus if the PRG G is sufficiently secure, the advantages of Dx

get sufficiently small, therefore the statistical distance under evaluation gets suf-
ficiently small as well. Although existence of this implication itself has appeared
in [11, Observation 3.1] and the implication seems less efficient than constructing
nb-PRGs directly as in [11], our idea of introducing such auxiliary distinguishers
will also play an important role in our following argument for more general cases.

Before a further explanation of our contributions, here we give a toy example
to help intuitive understanding of our result. Let Rb be a source that is either
perfectly random (when b = 0) or pseudorandom (when b = 1). Suppose that
R1 is the output distribution of a PRG G. Let an adversary Eve try to dis-
tinguish between random and pseudorandom cases by using an algorithm with
unbounded complexity, where the k-bit information xb ∈ {0, 1}k on the output
of Rb received by her is calculated by a fixed efficient algorithm H (see Fig. 1).
Now it is easily seen that the indistinguishability for Eve is purely information-
theoretic (i.e., needing no additional assumptions) when k = 0 (since Eve has
no information on the output of Rb), while it is just computational when k is
the output length of Rb (i.e., Eve has full information on the output of Rb).

Rb � w −→ H � x = xb −→ Eve � b′ ∈ {0, 1}

Fig. 1. Example of indistinguishability with partial information



Pseudorandomized Information-Theoretically Secure Schemes 59

The information-theoretic indistinguishability under a computational assump-
tion lives in the separation point of these extremal cases, and our technique can
evaluate, by regarding H as a non-boolean distinguisher for G, where the sepa-
ration point is (i.e., the corresponding value of k) in terms of the computational
indistinguishability of G and the efficiency of H. We emphasize that the compu-
tational indistinguishability of G used in our argument is evaluated with respect
to a fixed computational model, hence any hardware speedup for Eve’s computer
does not affect the evaluation result (see the remark after Definition 1).

Let us come back to our contributions. Recall that Dubrov and Ishai eval-
uated the indistinguishability of randomness reduction based on nb-PRGs for
private multi-party computation protocols [11, Sect. 6.2]. We observe that an
essential characteristic of the protocols is that the secret protected by the pro-
tocol is not derived from the randomness that is the target of the randomness
reduction. In fact, when the secret is derived from the target randomness, a naive
application of their evaluation technique yields an evaluation result that depends
on the amount of information possessed by the secret as well as the amount of
information received by the adversary. This means that their technique is not
effective for such situations, since in general the amount of information possessed
by the secret should be significantly large to make the protocol secure. On the
other hand, our proposed technique can remove the dependence on the amount
of information possessed by the secret, hence is effective for such situations as
well. Intuitively, our idea is to “factor out” the adversary’s algorithm (with un-
bounded complexity) from the picture of the situation and to obtain auxiliary
efficient distinguishers like Dx in (1). Our technique is also effective for more
general kinds of protocols, especially when the information received by the ad-
versary is small. A typical case is that a small piece of the target randomness
is distributed to each of a large number of players, including a limited number
of adversaries. Such applications include parallel computation over honest-but-
curious modules, secret sharing [4,25], broadcast encryption [14], traitor tracing
[2,9,18], and collusion-secure codes [6,27].

1.3 Organization of the Article

Section 2 presents definitions and notations. In Sect. 3, we briefly summarize
the preceding result of Dubrov and Ishai [11] on randomness reduction based on
nb-PRGs, and show that their technique is not effective for a wide class of more
general protocols. Section 4 explains our contributions mentioned in Sect. 1.2.
Finally, in Sect. 5 we give some further remarks and discussion on our results.

2 Definitions and Notations

In this article, any algorithm is probabilistic unless otherwise specified. Let UX

denote the uniform probability distribution over a (finite) set X . We often iden-
tify a probability distribution with the corresponding random variable. We write
x ← P to signify that x is a particular value of a random variable P . First, we
clarify the meaning of the term “computational model” used in this article:
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Definition 1. A computational model M = (AM, CM) consists of a set AM
of algorithms described in the model, and a map CM : AM → R that assigns to
each A ∈ AM its “complexity” CM(A) ∈ R.

Here the “complexity” of an algorithm may take various meanings depending
on the context, such as time complexity on a fixed Turing machine, circuit com-
plexity with fixed fundamental gates, average or worst-case running time on a
fixed PC, or space complexity. An important point is that computational models
based on machines with different performance are distinguished from each other.
Then any speedup of an adversary’s algorithm induced by hardware development
on his computer can be interpreted as a change of the underlying computational
model. For instance, a new computer twice as fast as the original corresponds
to a new computational model M′ such that CM′(A) = CM(A)/2 for any algo-
rithm A. The distinction of classical and quantum adversaries is also regarded
as difference of the underlying computational models. Note that in this article,
we mainly consider exact (concrete) security rather than asymptotic security.

Let G : SG → OG be a PRG with seed set SG and output set OG. Note again
that we deal with exact security in this article, therefore G is a single algorithm
rather than a sequence of algorithms with various seed lengths. The following
notion of indistinguishability for PRGs (except slight modification mentioned
later) is a natural translation of the conventional notion to the case of exact
security and has appeared in the literature, for instance, [13, Definition 1]:

Definition 2. An algorithm D : OG → {0, 1} is called a distinguisher for a PRG
G. For any distinguisher D for G, its advantage advG(D) is defined by

advG(D) = |Pr[D(G(USG
)) = 1] − Pr[D(UOG

) = 1] |.

Definition 3. Let M be a computational model (see Definition 1), C ⊂ AM,
and R(t) ≥ 0 a non-decreasing function. A PRG G is called R(t)-secure in (M, C)
if for any distinguisher D for G that belongs to C, its advantage is bounded by

advG(D) ≤ R(CM(D)).

For simplicity, we say that G is R(t)-secure in M if it is R(t)-secure in (M,AM).

The difference of Definition 3 from the one in the literature is that we restrict
the distinguisher to be chosen from a subclass C of algorithms. The authors
hope that this modification can make evaluation of the indistinguishability of a
given PRG easier, while this does not decrease practicality of our result if every
“ordinary” algorithm is included in C. Nevertheless, for intuitive understanding
of our argument, one may ignore the issue of the subclass C by putting C = AM.
An instance of R(t)-secure PRGs is recently given by Farashahi et al. [13] under
DDH assumption, where the function R(t) is estimated in terms of complexity
of the best known algorithm in a given computational model to solve the DDH
problem. Note that increase of the seed length of the PRG makes the function
R(t) smaller, hence makes the PRG more indistinguishable.
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We also recall the definition of statistical distances of two distributions:

Definition 4. For two probability distributions P1, P2 over the same finite set
X, their statistical distance SD(P1, P2) is defined by

SD(P1, P2) =
1
2

∑
x∈X

|Pr[x ← P1] − Pr[x ← P2] |

= max
E⊂X

(Pr[x ← P1 : x ∈ E] − Pr[x ← P2 : x ∈ E]) .

Note that SD(f(P1), f(P2)) ≤ SD(P1, P2) for any (probabilistic) function f .

3 The Preceding Result

In this section, first we briefly summarize the preceding result by Dubrov and
Ishai [11] on randomness reduction based on nb-PRGs. Then we observe that
their technique is in fact not effective for a wide class of protocols.

Roughly speaking, G : SG → OG is called a PRG that fools non-boolean distin-
guishers (nb-PRG) if for any algorithm (a non-boolean distinguisher) D : OG →
X with bounded complexity and output set X of bounded size, the statistical
distance between outputs of D in random and pseudorandom cases is sufficiently
small. See [11, Definition 3.1] for the precise definition. A construction of nb-
PRGs based on some computational assumptions is given in [11], where the sta-
tistical distance between the two cases is bounded in terms of the quantitative
hardness of the underlying computational problem.

They also discussed an application of an nb-PRG to randomness reduction
of private multi-party computation protocols [11, Sect. 6.2]. The outline is as
follows. Let k players P1, . . . , Pk wish to compute a function f(x1, . . . , xk) from
each player’s private input xi ∈ Xi. Let π be a multi-party protocol for this
purpose that requires an additional random element ri ∈ Ri for each Pi. After
the protocol, each Pi obtains the result yi ∈ Yi of computation and the message
mi ∈ Mi received by Pi during the protocol. We say that π is t-private if, for
any coalition T ⊂ {1, . . . , k} of at most t honest-but-curious players, they can-
not learn non-negligible information on inputs (xi)i�∈T of the remaining honest
players Pi (i �∈ T ) from their messages (mi)i∈T even if their attack algorithm
has unbounded complexity. Now the randomness reduction is done by replacing
each ri with an output of an nb-PRG G. We concern, for each 1 ≤ i ≤ k, the
statistical distance between information on private inputs (xj)j �∈T in cases of
random ri and pseudorandom ri, where the distribution of any other ri′ is com-
mon to the two cases. (Then the “hybrid argument” yields the total statistical
distance between random and pseudorandom cases.) Since the information is
learned from the coalition’s messages (mj)j∈T , the above distance is not larger
than the statistical distance between (mj)j∈T in the two cases. Now a bound of
the latter statistical distance is derived by regarding the protocol π as a non-
boolean distinguisher for G that computes (mj)j∈T from ri by using “internal
randomness” xj (1 ≤ j ≤ k) and ri′ (i′ �= i). This bound depends on the size
|
∏

j∈T Mj| of the coalition’s message space that is closely related to the amount
of information possessed by the messages (mj)j∈T received by the coalition.
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G � OG = X −→ L =⇒ Z −→ Ref −→ {0, 1}

� Y

�Leak A

F

Fig. 2. Example of randomness reduction and leakage of random elements (the dupli-

cated arrow means the adversary’s algorithm with unbounded complexity)

A characteristic of this successful example is that the secret (xj)j �∈T protected
by the protocol is not derived from the random elements ri that are the target of
the randomness reduction. On the other hand, we consider the following another
example where the secret protected by the protocol is derived from the target
randomness. Let a secret element y in a set Y be calculated from a random
element x ∈ X by an algorithm F : X → Y . During the calculation, certain
information on x is leaked to an adversary Eve according to a leakage function
Leak : X → L. Then she makes a guess z ∈ Z for the element y from the leaked
information l = Leak(x) by using an algorithm A : L → Z with unbounded
complexity. The “correctness” of her guess is evaluated by an auxiliary referee
Ref : Y × Z → {0, 1}, where Ref outputs 1 if the guess is “correct” and 0 if it
is “incorrect” (see Fig. 2). We assume that the algorithms F, Leak, and Ref are
all efficient. Now the randomness reduction is done by replacing x ∈ X with an
output of an nb-PRG G. We concern the difference of Eve’s success probabilities
between random and pseudorandom cases.

To bound the difference by an argument similar to the previous example, we
need to regard a certain part of the picture in Fig. 2 as an efficient non-boolean
distinguisher D for G. What are the candidates? Since it is hopeless to bound the
statistical distance of the (pseudo)random element x ∈ X itself, a possible and
probably the unique candidate of D is the product map Leak × F : X → L × Y .
Indeed, we cannot include A in D since A has unbounded complexity, while Leak
alone cannot be regarded as D since the evaluation result of Eve’s guess depends
also on the output of F that is also derived from the (pseudo)random element
x ∈ X . As a result, the bound of the difference derived by a naive application of
the argument in [11] does depend on the number |Y | of possible choices of the
secret element y as well as the size of L. This implies that, even if the size of
L is small, the obtained bound is not effective in general, since the possibility
of the secret should be significantly large in order to make the protocol itself
(in random case) secure. Hence a more advanced argument than that in [11] is
required to derive an effective bound for such a situation. In the next section,
we propose a novel technique to resolve the problem.

4 Our Results

In this section, we present the main results of this article. First, we show that
any computationally secure PRG (with sufficiently large seed length) is also an
nb-PRG in the sense of Sect. 3 or [11, Definition 3.1]. Although existence of the
implication itself has appeared in [11, Observation 3.1] and the implication seems
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less efficient than constructing nb-PRGs directly as in [11], here we mention this
fact since the technique used in the proof will also play an important role in our
following result. Then we propose a novel technique to derive an effective bound
of the difference between random and pseudorandom cases, based on usual PRGs
instead of nb-PRGs, for a wide class of situations where the preceding technique
by Dubrov and Ishai [11] is not effective (such as in Sect. 3). We emphasize
that the derived bound works even against an attack algorithm with unbounded
complexity, despite of just computational security of the PRG. In what follows,
let a PRG G : SG → OG be R(t)-secure in a fixed (M, C) (see Definition 3).

4.1 The Fundamental Idea

The fundamental idea underlying our results is as follows. Given an algorithm
D : OG → X , we introduce the following auxiliary distinguishers Dx : OG →
{0, 1} for the PRG G parameterized by x ∈ X , where δx,· denotes an algorithm
X → {0, 1} such that the output δx,·(y) is 1 if y = x and it is 0 if y �= x:

Dx = δx,· ◦ D : OG → {0, 1} (x ∈ X). (2)

In the following argument, the statistical distance under evaluation will be eval-
uated in terms of the advantages advG(Dx) of efficient distinguishers Dx that are
bounded by the definition of PRGs.

4.2 Implication of nb-PRGs from PRGs and Applications

We show the implication of nb-PRGs from PRGs based on the above idea. Re-
call that G : SG → OG is an nb-PRG if, for any efficient non-boolean distin-
guisher D : OG → X with output set X of bounded size, the statistical distance
SD(D(UOG

), D(G(USG
))) between outputs of D in random and pseudorandom

cases is sufficiently small, where UY denotes the uniform distribution over a set
Y (see [11, Definition 3.1] for the precise definition). Now by using the auxiliary
distinguishers Dx defined in (2), we have

SD(D(G(USG
), D(UOG

)) =
1
2

∑
x∈X

|Pr[D(G(USG
)) = x] − Pr[D(UOG

) = x] |

=
1
2

∑
x∈X

|Pr[Dx(G(USG
)) = 1] − Pr[Dx(UOG

) = 1] |

=
1
2

∑
x∈X

advG(Dx)

(3)

where the second step follows from the definition of Dx. We emphasize that
we did not yet use any computational assumption in the reduction process (3).
Owing to this relation, the following result is now almost obvious:
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Theorem 1. In the above setting, suppose that for every x ∈ X, the distin-
guisher Dx for G belongs to the given set C of algorithms and its complexity is
bounded by CM(Dx) ≤ T for a common constant T . Then we have

SD(D(G(USG
)), D(UOG

)) ≤ (|X |/2) · R(T ).

Proof. Since G is R(t)-secure in (M, C), the assumption implies that advG(Dx) ≤
R(CM(Dx)) ≤ R(T ) (recall that R(t) is non-decreasing) for each x ∈ X , hence
the rightmost-hand side of (3) is bounded by (|X |/2) · R(T ).

Hence G is also an nb-PRG if the value of R(T ) is sufficiently small relative to
the size of X , or equivalently, if the seed length of G is sufficiently long.

Based on this fact, an argument similar to Sect. 3 can derive an effective bound
of difference between random and pseudorandom cases in randomness reduction
based on usual PRGs for some kinds of schemes. First we consider reduction of
internal randomness over a set R for an efficient algorithm F : X → Y based on
a PRG G with output set OG = R. In this case, F can be regarded, by exchang-
ing the roles of X and R, as an efficient algorithm F′ : R → Y with “internal
randomness” over X . Then the statistical distance between outputs of F in ran-
dom and pseudorandom cases is evaluated by using Theorem 1 with D = F′.
Similarly, we consider randomness reduction in a protocol that protects some
elements independent of the randomness (such as private multi-party computa-
tion discussed in Sect. 3 and [11, Sect. 6.2]). Simplifying the situation, we assume
that information y ∈ Y received by the adversary is calculated from a random
element r ∈ R and a secret x ∈ X independent of r by an efficient algorithm.
For any fixed x, the independence allows us to regard the algorithm as being in
the form Hx : R → Y . Then for the fixed x, any information on x learned by the
adversary is calculated from y (and some other elements independent of y and
x), therefore the statistical distance between the learned information in random
and pseudorandom cases is bounded by the statistical distance between the y
in the two cases. Now the latter distance is also evaluated by using Theorem 1
with D = Hx. The resulting bound depends on the size of Y but not on the size
of X . Hence our technique is effective in such a situation.

The bound derived by our technique is a certain function of the amount of
information received by the adversary, the quantitative indistinguishability of
the PRG in a fixed (M, C), and the computational complexity of the protocol.
This characteristic is also common to the more general situations discussed later.

4.3 “Factoring-Out” Method: A Finer Evaluation Technique

The argument of Sect. 3 shows that, when the secret element protected by the
protocol is derived from the target randomness of the randomness reduction,
the estimation result on the difference between random and pseudorandom cases
by the arguments in Sect. 4.2 and in [11, Sect. 6.2] depends on the amount of
information possessed by the secret element, hence the estimation is not effective
in general. From now, we propose a novel technique to overcome the drawback.
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We consider the example in the latter part of Sect. 3 (see Fig. 2). In this
situation, the success probability succrnd,A in random case for the adversary Eve
of guessing the secret y ∈ Y from the leaked information Leak(x) ∈ L is

succrnd,A = Pr[x ← UOG
; y ← F(x); l ← Leak(x); z ← A(l) : Ref(y, z) = 1]

and the success probability succprnd,A in pseudorandom case is given by replacing
UOG

in succrnd,A with G(USG
), namely

succprnd,A = Pr[x ← G(USG
); y ← F(x); l ← Leak(x); z ← A(l) : Ref(y, z) = 1] .

We give a bound of the difference diff = |succrnd,A−succprnd,A| of the two success
probabilities. An intuitive idea is to obtain an auxiliary efficient distinguisher
(like Dx in (2)) by “factoring out” Eve’s algorithm A from the experiment in the
expression of the success probability. For the purpose, we perform the following
transformation, where x, y, l, and z in the summations run over the sets X =
OG, Y , L, and Z, respectively, and the probabilities are taken over internal
randomness of the algorithms specified in the notations:

succrnd,A

=
∑

x,y,l,z

Pr[x ← UX ] Pr[F(x) = y] Pr[Leak(x) = l] Pr[A(l) = z] Pr[Ref(y, z) = 1]

=
∑
l,z

Pr[A(l) = z]
∑
x,y

Pr[x ← UX ] Pr[F(x) = y]Pr[Leak(x) = l] Pr[Ref(y, z) = 1]

=
∑
l,z

Pr[A(l) = z] Pr
[
x ← UX ; y ← F(x); l′ ← Leak(x) : l′ = l ∧ Ref(y, z) = 1

]
.

By using the “Kronecker delta algorithm” δl,· introduced in Sect. 4.1 and 2-
bit AND operation {0, 1}2 → {0, 1}, the second term of the summation in the
rightmost-hand side can be written as

Pr[x ← UX ; y ← F(x); l′ ← Leak(x); b1 ← δl,·(l′);
b2 ← Ref(y, z); b ← AND(b1, b2) : b = 1].

(4)

To visualize the experiment in (4), we perform the following “factoring-out”
transformation for the diagram in Fig. 2. First, we remove the arrow corre-
sponding to Eve’s algorithm A with unbounded complexity, and replace the sets
L and Z at the origin and the destination of the removed arrow with their ar-
bitrary elements, obtaining a diagram in Fig. 3. Secondly, for the sink of the
last diagram denoted by an element l ∈ L, we replace the vertex with the “Kro-
necker delta algorithm” δl,· : L → {0, 1}, obtaining a diagram in Fig. 4. Finally,
we combine the two sinks {0, 1} in the last diagram by 2-bit AND operation,
obtaining a diagram with unique sink {0, 1} in Fig. 5. We regard this diagram
as a flowchart of an algorithm Dl,z : OG = X → {0, 1} parameterized by l ∈ L
and z ∈ Z. This Dl,z corresponds to the experiment in (4), namely (4) is now
rewritten as

Pr[x ← UOG
: Dl,z(x) = 1] = Pr[Dl,z(UOG

) = 1] .
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X −→ l z −→ Ref −→ {0, 1}

� Y

�Leak

F

Fig. 3. First step of “factoring-out” transformation (l ∈ L, z ∈ Z)

X −→ L z −→ Ref −→ {0, 1}

� Y

�Leak

F

�
δl,·

{0, 1}

Fig. 4. Second step of “factoring-out” transformation (l ∈ L, z ∈ Z)

By the above arguments, we have

succrnd,A =
∑

l∈L,z∈Z

Pr[A(l) = z]Pr[Dl,z(UOG
) = 1] ,

and a similar expression of succprnd,A is also obtained by replacing UOG
with

G(USG
). Then the triangle inequality implies that

diff =

∣∣∣∣∣∣
∑

l∈L,z∈Z

Pr[A(l) = z]
(
Pr[Dl,z(UOG

) = 1] − Pr[Dl,z(G(USG
)) = 1]

)∣∣∣∣∣∣
≤

∑
l∈L,z∈Z

Pr[A(l) = z] |Pr[Dl,z(UOG
) = 1] − Pr[Dl,z(G(USG

)) = 1]|

=
∑

l∈L,z∈Z

Pr[A(l) = z] advG(Dl,z).

(5)

Dl,z : X −→ L z −→ Ref −→ {0, 1}

� Y

�Leak

F

�
δl,·

{0, 1} � AND

�

−→ {0, 1}

Fig. 5. Third step of “factoring-out” transformation (l ∈ L, z ∈ Z)
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We emphasize that we used no computational assumption to derive the bound
(5). Now the following result is easily deduced:

Theorem 2. In the above setting, suppose that for every l ∈ L and every z ∈ Z,
the distinguisher Dl,z for G belongs to the given set C of algorithms and its
complexity is bounded by CM(Dl,z) ≤ T for a common constant T . Then

diff ≤ |L| · R(T ).

Proof. Since G is R(t)-secure in (M, C), the assumption implies that advG(Dl,z) ≤
R(CM(Dl,z)) ≤ R(T ) for every l ∈ L and z ∈ Z. Thus the rightmost-hand side
of (5) is bounded by∑

l∈L

∑
z∈Z

Pr[A(l) = z]R(T ) =
∑
l∈L

1 · R(T ) = |L| · R(T ).

Hence the theorem holds.

We emphasize that the complexity, or even the underlying computational model,
of the attack algorithm A is not relevant to the result of Theorem 2. The bound
given by Theorem 2 depends on the amount of information received by the
adversary (i.e. |L|), the quantitative indistinguishability of the PRG G, and the
complexity of the distinguishers Dl,z (that is closely related to the complexity
of the protocol), but not on the number |Y | of possible choices of the secret
element. (We notice for completeness that in a most strict sense, the complexity
of Dl,z in fact depends slightly on |Y | since Dl,z needs to compare an element y
of Y with z, but the dependence will be negligibly small in practical situations.)
Hence our evaluation technique indeed improves the one in [11].

4.4 Further Examples

To explain our “factoring-out” method further, we discuss a slightly more com-
plicated example. We consider probabilistic parallel computation over modules
(players) some of which may be honest but curious. First, the center sends to
k players P1, . . . , Pk their local inputs x1, . . . , xk that are randomly generated.
Each player Pi calculates his local output yi ∈ Yi from his local input xi ∈ Xi

and sends it back to the center. Then the center calculates his final output z ∈ Z
from the received intermediate elements y1, . . . , yk. We assume that some play-
ers Pi (i ∈ T ⊂ {1, . . . , k}) are honest but curious, and they collude and try to
make a guess for the final output z from their local inputs xT = (xi)i∈T together
with some other auxiliary element w ∈ W that follows a certain probability dis-
tribution W independent of the local inputs xj . The task of this protocol is to
keep the output z secret against such a coalition T . In the following explanation,
we consider for simplicity a simple case of one adversary P2 out of two players
(see Fig. 6), where Ref : Z × Z ′ → {0, 1} is an auxiliary referee who determines
whether the guess z′ ∈ Z ′ of the coalition is sufficiently correct or not. Now the
success probability succrnd,A for the adversary P2 in random case is given by

succrnd,A = Pr[r ← UOG
; x1 ← H1(r); x2 ← H2(r); y1 ← F1(x1); y2 ← F2(x2);

z ← F(y1, y2); w ← W ; z′ ← A(x2, w) : Ref(z, z′) = 1] .
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G � OG −→ X1 −→ Y1 −→ F −→ Z
H1 F1

�
��� X2 −→ Y2

�
���H2 F2

=⇒

W
⇓
A =⇒ Z′

�

�
Ref −→ {0, 1}

Fig. 6. Example of secure parallel computation (the duplicated arrows mean the ad-

versary’s algorithm)

This can be rewritten as follows, where r, xi, yi, z, z′, and w in the summation
run over the sets OG, Xi, Yi, Z, Z ′, and W , respectively:

succrnd,A

=
∑

x2,z′,w

Pr[w ← W] Pr
[
A(x2, w) = z′

] ∑
r,x1,y1,y2,z

Pr[r ← UOG ] Pr[H1(r) = x1]

· Pr[H2(r) = x2] Pr[F1(x1) = y1] Pr[F2(x2) = y2] Pr[F(y1, y2) = z] Pr
[
Ref(z, z′) = 1

]
=
∑

x2,z′,w

Pr[w ← W] Pr
[
A(x2, w) = z′

]
Pr
[
r ← UOG ; x1 ← H1(r); x

′
2 ← H2(r);

y1 ← F1(x1); y2 ← F2(x2); z ← F(y1, y2) : x′2 = x2 ∧ Ref(z, z′) = 1
]
.

The third term of the summation in the rightmost-hand side is equal to

Pr[r ← UOG
; x1 ← H1(r); x′

2 ← H2(r); y1 ← F1(x1); y2 ← F2(x2);
z ← F(y1, y2); b1 ← δx2,·(x′

2); b2 = Ref(z, z′); b = AND(b1, b2) : b = 1] .
(6)

The experiment in (6) is visualized by performing the following “factoring-out”
transformation for the diagram in Fig. 6. First, we remove the arrows corre-
sponding to the attack algorithm A, and replace the sets at the origin and the
destination of the removed arrows with their arbitrary elements. Now the result-
ing diagram has two connected components, and we focus on the one containing
the output set OG of the PRG, obtaining a diagram in Fig. 7. This diagram
has a vertex that is denoted by a fixed element (namely, x2) rather than a
set, and is neither a source nor a sink of the diagram. Secondly, we split this
vertex x2 into two copies, to one of which all the incoming arrows are associ-
ated and to another of which all the outgoing ones are associated, obtaining
a diagram in Fig. 8. Thirdly, for the sink of the last diagram denoted by an
x2 ∈ X2, we replace the vertex with the corresponding “Kronecker delta algo-
rithm” δx2,· : X2 → {0, 1}, obtaining a diagram in Fig. 9. Finally, we combine
the two sinks {0, 1} in the last diagram by 2-bit AND operation, obtaining a di-
agram with unique sink {0, 1} in Fig. 10. We regard this diagram as a flowchart
of an algorithm Dx2,z′ : OG → {0, 1} parameterized by x2 ∈ X2 and z′ ∈ Z ′.
This Dx2,z′ corresponds to the experiment in the expression (6), and (6) is equal
to

Pr[r ← UOG
: Dx2,z′(r) = 1] = Pr[Dx2,z′(UOG

) = 1] .
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OG −→ X1 −→ Y1 −→ F −→ Z
H1 F1

�
��� x2 −→ Y2

�
���H2 F2

z′

�

�
Ref −→ {0, 1}

Fig. 7. First step of “factoring-out” transformation (x2 ∈ X2, z′ ∈ Z′)

OG −→ X1 −→ Y1 −→ F −→ Z
H1 F1

	
	

x2 x2 −→ Y2 �

���H2 F2

z′

�

�
Ref −→ {0, 1}

Fig. 8. Second step of “factoring-out” transformation (x2 ∈ X2, z′ ∈ Z′)

OG −→ X1 −→ Y1 −→ F −→ Z
H1 F1

	
	

X2 x2 −→ Y2 �

���H2 F2

z′

�

�
Ref −→ {0, 1}

�
{0, 1}

δx2,·

Fig. 9. Third step of “factoring-out” transformation (x2 ∈ X2, z′ ∈ Z′)

By the above arguments, we have

succrnd,A =
∑

x2,z′,w

Pr[w ← W ] Pr[A(x2, w) = z′] Pr[Dx2,z′(UOG
) = 1] ,

and by replacing UOG
with G(USG

), the success probability succprnd,A in pseudo-
random case is similarly given by

succprnd,A =
∑

x2,z′,w

Pr[w ← W ] Pr[A(x2, w) = z′] Pr[Dx2,z′(G(USG
)) = 1] .

Then the triangle inequality implies that

|succrnd,A − succprnd,A| ≤
∑

x2,z′,w

Pr[w ← W ] Pr[A(x2, w) = z′] advG(Dx2,z′).
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Dx2,z′ : OG −→ X1 −→ Y1 −→ F −→ Z
H1 F1

	
	

X2 x2 −→ Y2 �

���H2 F2

z′

�

�
Ref −→ {0, 1}

�
{0, 1}

δx2,·

� AND

�

−→ {0, 1}

Fig. 10. Fourth step of “factoring-out” transformation (x2 ∈ X2, z′ ∈ Z′)

Now if all the advantages advG(Dx2,z′) are bounded by R(T ) with T > 0 a
constant, then it follows that

|succrnd,A − succprnd,A| ≤
∑
x2,w

Pr[w ← W ]
∑
z′

Pr[A(x2, w) = z′] R(T )

=
∑
x2,w

Pr[w ← W ] R(T )

=
∑
x2

R(T ) = |X2| · R(T ).

Thus, under some assumptions similar to Theorem 2, our technique derives a
similar bound for the difference of random and pseudorandom cases. We empha-
size that the resulting bound depends on the amount of information received by
the adversary, but not on the amount of choices for the secret elements.

Note that our proposed technique can be similarly applied to more general sit-
uations. (In fact, we can even formalize our “factoring-out” method in a general
and abstract way, which is omitted here due to its intricacy.) Since the bound
derived by our technique becomes better as the amount of information received
by the adversary gets smaller, our technique is effective especially in the fol-
lowing kind of situations: There are a large number of players, including a small
number of adversarial ones (like a leaf in a forest), and a small piece of the whole
randomness is distributed to each player. Such applications include secret shar-
ing [4,25], broadcast encryption [14], traitor tracing [2,9,18], and collusion-secure
codes [6,27].

5 Discussion and Miscellaneous Remarks

In this section, we give some further discussion and remarks on our argument
and result in this article.

1. A frequently asked question on our result is the following: Why the adversary
cannot recover the seed of the just computationally secure PRG, though he
is allowed to use algorithms with unbounded complexity? A simple answer
is: A common characteristic of our successful examples is that the amount of
information received by the adversary is sufficiently small. In such cases, the
information is too scanty to recover the seed even for the strong adversary.
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2. Although we have focused only on information-theoretically secure (or non-
cryptographic) protocols in the above argument, our evaluation technique
may give a significant insight in the case of computationally secure protocols
as well. For instance, when the protocol under randomness reduction is just
computationally secure but post-quantum, i.e., when the adversary may be
quantum, our technique can show that secure randomness reduction is still
possible even by using a PRG whose underlying computational problem is
easy for quantum computers. The reason is that the indistinguishability of
the PRG is evaluated in a fixed (M, C) that is not relevant to the underlying
computational model of the adversary’s (quantum) algorithm.

3. In our result, the derived bound of the difference between random and pseu-
dorandom cases depends on computational complexity of the protocol under
consideration. This means that the efficiency of the protocol contributes di-
rectly to the security evaluation result in our argument. On the other hand,
in usual situations, efficiency of the protocol contributes just indirectly to
the security of the scheme (for instance, the more efficient a protocol is, the
larger the encryption/decryption keys for the practical implementation can
be, hence the more secure the implementation will be).

4. We have mentioned in the last paragraph of Sect. 4.4 that our evaluation
technique is effective, for instance, when there are a large number of play-
ers, including a small number of adversaries, and a small piece of the whole
randomness is distributed to each player. In such a situation, if we could
know in advance who are the adversaries among all players, then smaller
randomness would suffice for fighting the exposed adversaries directly, since
the information on the randomness received by the adversaries is now small.
However, actually we have no practical way to know it in advance, and it is
inevitable to fight huge possibilities of where the adversaries are hiding, re-
quiring further randomness. The randomness for the latter purpose looks less
essential than the former one, and our PRG-based randomness reduction can
be intuitively thought of as acting on the latter inessential randomness. The
security notion for PRGs (Definition 3) fits the purpose very well; advantages
of distinguishers are bounded regardless of the bit positions (corresponding
to the place of adversaries) that are picked up from outputs of a PRG.

5. In the above argument, we have carefully avoided to use the term “computa-
tionally unbounded adversary”; instead, we used, for instance, “adversary’s
algorithm with unbounded complexity”. Whether or not the term “com-
putationally unbounded adversary” may be used in our argument seems to
depend on whether or not a “computationally unbounded adversary” and an
assumption on hardness of a problem (in a fixed computational model) may
be simultaneously considered, or whether or not the ability of a “computa-
tionally unbounded adversary” is restricted by innate hardness of a problem
in a fixed computational model. This would depend on the precise defini-
tion of “computationally unbounded adversary”. Anyway, our technique can
imply that random and pseudorandom cases in the PRG-based random-
ness reduction are indistinguishable even for an impractically strong adver-
sary who can perform arbitrary algorithms based on arbitrary (theoretically
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consistent) computational models (such an adversary would be able to per-
form infinitely fast computation in any practical situation, since complexity
of an algorithm can be infinitely reduced by choosing a computational model
M with the complexity function CM taking infinitely small values).

6 Conclusion

In this article, we proposed novel ideas and techniques for evaluation of indistin-
guishability between random and pseudorandom cases in randomness reduction
of cryptographic or non-cryptographic protocols based on PRGs. Our technique
can prove the indistinguishability even for an adversary who can use algorithms
with unbounded computational complexity. Our idea removes the requirement of
the generalized notion of nb-PRGs introduced and used in the preceding work of
Dubrov and Ishai [11], and our technique is effective in more general situations
than the case of their technique. Our technique is effective especially in cases
where the amount of information received by the adversary is small.
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Abstract. We present a new statistical asynchronous verifiable secret
sharing (AVSS) protocol with optimal resilience; i.e. with n = 3t + 1,

where n is the total number of participating parties and t is the maximum

number of parties that can be under the control of a computationally
unbounded active adversary At. Our protocol privately communicates

O((�n3 + n4κ)κ) bits and A-casts O(n3 log(n)) bits to simultaneously

share � ≥ 1 elements from a finite field F, where κ is the error parameter.

There are only two known statistical AVSS protocols with n = 3t+1,

reported in [11] and [26]. The AVSS protocol of [11] requires a private

communication of O(n9κ4) bits and A-cast of O(n9κ2 log(n)) bits to share

a single element from F. Thus our AVSS protocol shows a significant

improvement in communication complexity over the AVSS of [11]. The

AVSS protocol of [26] requires a private communication of O((�n3+n4)κ)

bits and A-cast of O((�n3 +n4)κ) bits to share � ≥ 1 elements. However,

the shared element(s) may be NULL 
∈ F. Thus our AVSS is better than

the AVSS of [26] due to two reasons: (a) The A-cast communication of

our AVSS is independent of the number of secrets i.e. �; (b) Our AVSS

makes sure that the shared value(s) always belong to F.

Using our AVSS, we design a new primitive called Asynchronous Com-

plete Secret Sharing (ACSS) which is an essential building block of asyn-
chronous multiparty computation (AMPC). Using our ACSS scheme,

we can design a statistical AMPC with optimal resilience; i.e., with

n = 3t + 1, that privately communicates O(n5κ) bits per multiplication
gate. This will significantly improve the only known statistical AMPC

of [8] with n = 3t + 1, which privately communicates Ω(n11κ4) bits and

A-cast Ω(n11κ2 log(n)) bits per multiplication gate.

1 Introduction

A Verifiable Secret Sharing (VSS) [13] protocol is carried out among a set of n
parties, say P = {P1, . . . , Pn}, where every two parties are directly connected by
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a secure channel and t out of the n parties can be under the influence of a compu-
tationally unbounded Byzantine (active) adversary, denoted as At. The Byzantine
adversaryAt completely dictates the parties under its control and can force them
to deviate from a protocol, in any arbitrary manner. Any VSS scheme consists
of a pair of protocols (Sh, Rec). Protocol Sh allows a special party in P , called
dealer (denoted as D), to share a secret s ∈ F (an element from a finite field F)
among all the parties in a way that allow for a unique reconstruction of s by ev-
ery body using protocol Rec. Moreover, if D is honest, then the secrecy of s from
At should be preserved till the end of Sh. VSS is one of the fundamental building
blocks for many secure distributed computing tasks, such as multiparty computa-
tion (MPC) [7,12,28,2,14,21,3,4,5], Byzantine Agreement (BA) [17,11,23,1,22,26],
etc. Over the past three decades, the problem has been studied in different settings
and computational models (see [20,7,12,16,28,14,15,19,18,22,24]). The VSS prob-
lem has been studied extensively over synchronous networks, which assumes that
there is a global clock and the delay of any message in the network is bounded.
However, VSS in asynchronous network has got comparatively less attention, due
to its inherent hardness. As asynchronous networks model real life networks like
Internet more precisely, it is important to investigate fundamental problem like
VSS in asynchronous network.

1.1 Definitions

Asynchronous Networks: In an asynchronous network, the communication
channels have arbitrary, yet finite delay (i.e the messages are guaranteed to reach
eventually). To model this, At is given the power to schedule the delivery of all
messages in the network. However,At can not access the messages communicated
between honest parties. Here the inherent difficulty in designing a protocol comes
from the fact that when a party does not receive an expected message then he
cannot decide whether the sender is corrupted (and did not send the message at
all) or the message is just delayed. So it is impossible to consider the values sent
by all uncorrupted parties and hence the values of up to t (potentially honest)
parties may get ignored, as waiting for them could turn out to be endless. Due
to this the protocols in asynchronous network are generally involved in nature
and require new set of primitives. For an excellent introduction to asynchronous
protocols, see [10].

We now give the definition of primitives which are used in this paper. For all
these primitives, we assume that all computations are carried over a finite field
F = GF (2κ), where κ is error parameter. So each field element can be represented
by O(κ) bits. Also without loss of generality, we assume n = poly(κ).

Definition 1 (Statistical Asynchronous Weak Secret Sharing (AWSS)
[26]). Let (Sh, Rec) be a pair of protocols in which a dealer D ∈ P shares a
secret s ∈ F using Sh. We say that (Sh, Rec) is a t-resilient statistically secure
AWSS scheme if all the following hold:
– Termination: With probability at least 1 − 2−Ω(κ), all the following holds:

(1) If D is honest then each honest party will eventually terminate protocol
Sh. (2) If some honest party has terminated protocol Sh, then irrespective of



76 A. Patra, A. Choudhary, and C.P. Rangan

the behavior of D, each honest party will eventually terminate Sh. (3) If all
the honest parties have terminated Sh and if all the honest parties invoke
protocol Rec, then each honest party will eventually terminate Rec.

– Correctness: With probability at least 1 − 2−Ω(κ), all the following holds:
(1) If D is honest then each honest party upon completing Rec outputs s. (2)
If D is corrupted and some honest party has terminated Sh, then there exists
a fixed s ∈ F∪ {NULL}, such that each honest party upon terminating Rec,
will output either s or NULL.

– Secrecy: If D is honest and no honest party has begun Rec, then At has no
information about s.

Definition 2 (Statistical Asynchronous Verifiable Secret Sharing (AV
SS) [6,10]). It is same as AWSS except that Correctness (2) is strengthened:

– Correctness (2): If D is corrupted and some honest party has terminated
Sh, then there exists a fixed s ∈ F, such that each honest party upon termi-
nating Rec, will output only s.

Definition 3 (t-sharing [3,5]). A value s ∈ F is said to be t-shared among
the parties in P if there exists a random degree-t polynomial f(x) over F, with
f(0) = s such that each (honest) party Pi ∈ P holds his share si = f(i) of secret
s. The vector of shares of s corresponding to the honest parties is called t-sharing
of s and is denoted by [s]t.

Typically, VSS is used as a tool for generating t-sharing of secret. For example,
see [7,22]. On the other hand, there do exists VSS scheme which do not generate
t-sharing of secret. They only ensure that a unique secret is shared (committed)
which will be uniquely reconstructed during reconstruction phase. Such schemes
are presented in [19,18,24]. So we call a VSS scheme as Complete Secret Sharing
(CSS) scheme if it generates t-sharing of secret.

Definition 4 (Statistical Asynchronous Complete Secret Sharing (AC
SS)). The termination, correctness and secrecy property of ACSS are same
as in AVSS. In addition, ACSS requires the following completeness property to
hold at the end of Sh with probability at least 1 − 2−Ω(κ):

– Completeness: at the end of Sh, there exists a random degree-t polynomial
f(x) over F, with f(0) = s such that each (honest) party Pi ∈ P holds his
share si = f(i) of secret s. Moreover, if D is honest, then s = s.

Remark 1 (AWSS, AVSS and ACSS with Private Reconstruction). The
definitions of AWSS, AVSS and ACSS as given above consider ”public recon-
struction”, where all parties reconstruct the secret in Rec. A common variant
of these definitions consider ”private reconstruction”, where only some specific
party, say Pα ∈ P , is allowed to reconstruct the secret in Rec. As per our re-
quirement in this paper, we present our AWSS and AVSS protocols with only
private reconstruction. However, the public reconstruction for these protocols
can be obtained by doing slight modification. For details, see [25].

In our protocols, we also use A-cast primitive, which is formally defined as follows:
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Definition 5 (A-cast [11,10]). It is an asynchronous broadcast primitive, which
allows a special party in P (called sender) to identically distribute a message
among all parties in P. It was implemented by Bracha [9] with n = 3t + 1. Let
Π be an asynchronous protocol initiated by a special party (called the sender),
having input m (the message to be broadcast). We say that Π is a t-resilient
A-cast protocol if the following hold, for every possible At:
– Termination

1. If the sender is honest and all the honest parties participate in the pro-
tocol, then each honest party will eventually terminate the protocol.

2. Irrespective of the behavior of the sender, if any honest party terminates
the protocol then each honest party will eventually terminate the protocol.

– Correctness: If honest parties terminate the protocol then they do so with
a common output m∗. Furthermore, if the sender is honest then m∗ = m.

The A-cast protocol of [9] requires a private communication of O(n2b) bits to
A-cast a b bit message.

1.2 Existing Results for Statistical AVSS with Optimal Resilience

Statistical AVSS tolerating At is possible iff n ≥ 3t + 1 [11]. So any statistical
AVSS with n = 3t+1 is said to have optimal resilience. The only known statistical
AVSS with optimal resilience are due to [11] and [26], which are used in designing
Asynchronous Byzantine Agreement (ABA) schemes. These two AVSS schemes
are summarized as follows:

1. The authors of [11] have presented a series of protocols for designing their
AVSS scheme. They first designed a tool called Information Checking Pro-
tocol (ICP) which is used as a black box for another primitive Asynchronous
Recoverable Sharing (A-RS). Subsequently, using A-RS, the authors have de-
signed an AWSS scheme, which is further used to design a variation of AWSS
called Two & Sum AWSS. Finally using their Two & Sum AWSS, an AVSS
scheme was presented. Pictorially, the route taken by AVSS scheme of [11]
is as follows: ICP → A-RS → AWSS → Two & Sum AWSS → AVSS. Since
the AVSS scheme is designed on top of so many sub-protocols, it becomes
highly communication intensive as well as very much involved. The scheme
requires a private communication of O(n9κ4) bits and A-cast O(n9κ2 log(n))
bits to share a single element from F.

2. Pictorially, the authors in [26] used the following simpler route to design
their AVSS scheme: ICP → AWSS → AVSS. Moreover, the authors in [26]
significantly improved each of the underlying building blocks, namely ICP
and AWSS, by employing new design approaches. The AVSS protocol of
[26] requires a private communication of O((�n3 + n4)κ) bits and A-cast of
O((�n3 + n4)κ) bits to share � ≥ 1 elements. However, the AVSS scheme
of [26] has the following shortcomings: (a) The AVSS scheme of [26] is not
an ACSS scheme and hence is not suitable for AMPC. (b) In AVSS of [26],
a corrupted D may choose secrets from F ∪ {NULL} instead of only F.
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1.3 Our Contribution

We present a new statistical AVSS with optimal resilience by following the simple
route of [26]. In the following table, we compare the communication complexity
of our AVSS with the AVSS of [11,26]. The table also shows the communication
complexity (CC) after simulating A-cast using the protocol of [9].

Ref. CC in bits CC in bits using A-cast of [9] # Secrets

[11] Private– O(n9κ4) private– O(n9κ4 + n11κ2 log n) 1

A-cast– O(n9κ2 log(n))

[26] Private– O((�n3 + n4)κ) private– O((�n5 + n6)κ) �
A-cast– O((�n3 + n4)κ)

This Private– O((�n3 + n4κ)κ) private– O((�n3 + n4κ)κ + n5 log n) �
Article A-cast– O(n3 log(n))

As shown in the table, our AVSS attains significantly better communication
complexity than the AVSS of [11] and [26] for any value of �. As mentioned in
the previous section, the AVSS of [26] has a weaker property: A corrupted D
may choose secrets from F ∪ {NULL}. Such an AVSS is sufficient for designing
ABA protocols. However, to be applicable for AMPC, we require that AVSS
should allow to share secret(s) only from F [8]. Our AVSS achieves this crucial
property at a lesser communication cost. Using our AVSS, we design a new ACSS
scheme, which is an essential component of AMPC [8]. Though there exists CSS
in synchronous settings, our ACSS scheme is first of its kind in asynchronous
settings with n = 3t + 1. In fact, using our ACSS, we can design an efficient
statistical AMPC with optimal resilience; i.e., with n = 3t + 1, which privately
communicates O(n5κ) bits per multiplication gate. This will be a significant
improvement over the only known statistical AMPC of [8] with n = 3t + 1,
which privately communicates Ω(n11κ4) bits and A-cast Ω(n11κ2 log(n)) bits
per multiplication gate. For details see full version of this paper [25].

In order to design AVSS, we first propose a new ICP which significantly
improves the communication complexity of the ICP of [26]. Using our ICP, we
design an AWSS which is inspired by AWSS of [26]. Using this AWSS, we design
a new AVSS. Finally our new AVSS is used in designing our ACSS scheme. The
design approach of our AVSS and ACSS are novel and first of their kind.

2 Information Checking Protocol and IC Signature
Information Checking Protocol (ICP) [28,27] is a tool for authenticating mes-
sages in the presence of At. Here we present an ICP, called A-ICP(D, INT, P, S)
in asynchronous settings. As in [26], A-ICP is executed among three entities: the
dealer D ∈ P , an intermediary INT ∈ P and entire set P acting as verifiers.
The dealer D hands a secret s to INT . At a later stage, INT has to hand over
s to the verifiers in P and convince them that s is indeed the value which INT
received from D. We may also run A-ICP to concurrently work on multiple se-
crets, denoted by S containing � ≥ 1 secrets. So, instead of repeating multiple
instances of ICP dealing with single secret, we can run a single instance of our
A-ICP dealing with multiple secrets concurrently, leading to significant reduction
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in communication complexity. We use A-ICP in our AWSS scheme, where it is
required to execute instances of A-ICP dealing with multiple secrets concurrently.

For � secrets, the A-ICP of [26] incurs a private communication of O((�+n)κ)
bits and A-cast of O((� + n)κ) bits. On the other hand, our A-ICP incurs only
private communication of O((� + nκ)κ) bits (and no A-cast). As in [11,26], our
A-ICP is also structured into sequence of following three phases:

1. Generation Phase: It is initiated D. Here D hands over the secret S,
containing � elements from F along with some authentication information to
INT and some verification information to individual verifiers in P .

2. Verification Phase: is carried out by INT and verifiers in P . Here INT
decides whether to continue or abort the protocol depending upon the pre-
diction whether in Revelation Phase, S held by INT will be (eventually)
accepted/will be considered as valid by the honest verifier(s) in P . INT
achieves this by setting a boolean variable Ver = 0/1, where Ver = 0 (resp. 1)
implies abortion (resp. continuation) of the protocol. If Ver = 1, then authen-
tication information, along with S, held by INT at the end of Verification
Phase is called D’s IC signature on S, denoted as ICSig(D, INT,P , S).

3. Revelation Phase: is carried out by INT and the verifiers in P . Rev-
elation Phase can be presented in two flavors: (a) Public Revelation of
ICSig(D, INT,P , S) to all the verifiers in P where all the verifiers can
publicly verify whether INT indeed received IC signature on S from D;
(b) Pα-private-revelation of ICSig(D, INT,P , S): Here INT privately re-
veals ICSig(D, INT,P , S) to only Pα. After doing some checking, if Pα

believes that INT indeed received IC signature on S from D then Pα sets
Revealα = S. Otherwise Pα sets Revealα = NULL.

Protocol A-ICP satisfies the following properties (assuming Public Revelation in
Revelation Phase):

1. If D and INT are honest, then S will be accepted in Revelation phase by
each honest verifier.

2. If INT is honest and Ver =1, then S held by INT will be accepted in
Revelation phase by each honest verifier, except with probability 2−Ω(κ).

3. If D is honest, then during Revelation phase, with probability at least
1 − 2−Ω(κ), every S′ �= S produced by a corrupted INT will be not be
accepted by any honest verifier.

4. If D and INT are honest and INT has not started Revelation phase, then
S will be information theoretically secure.

For A-ICP with Pα-private-revelation in Revelation Phase, the above prop-
erties are modified by replacing ”every/any honest verifier” with ”honest Pα”.
In the sequel, we present protocol A-ICP. As in reconstruction phase of our
of AWSS we require only Pα-private-revelation of ICSig(D, INT,P , S), we
present only that (though we have an implementation for public revelation of
ICSig(D, INT,P , S)). We now state the properties of protocol A-ICP. The com-
plete proof are given in [25] due to space constraints.
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Protocol A-ICP(D, INT,P, S)
Generation Phase: Gen(D, INT,P , S)

1. The dealer D, on having secret S = (s1, . . . , s�), selects a random � + tκ degree

polynomial f(x) whose lower order � coefficients are elements in S. D also picks

nκ random non-zero elements from F, denoted by αi
1, . . . , α

i
κ, for i = 1, . . . , n.

2. For i = 1, . . . , n, D sends f(x) to INT and the verification tags zi
1 =

(αi
1, a

i
1), . . . , z

i
κ = (αi

κ, ai
κ) to party Pi, where ai

j = f(αi
j), for j = 1, . . . , κ.

Verification Phase: Ver(D, INT,P , S)

1. Every verifier Pi randomly partitions the index set {1, . . . , κ} into two sets Ii and

Ii of equal size and sends Ii and zi
j for all j ∈ Ii to INT .

2. For every verifier Pi from whom INT has received values, INT checks whether

for every j ∈ Ii, f(αi
j)

?
= ai

j .

3. (a) If for at least 2t + 1 verifiers, the above condition is satisfied, then INT sets

Ver = 1. If Ver = 1, then ICSig(D, INT,P , S) = f(x).

(b) If for t+1 verifiers, the above condition is not satisfied, then INT sets Ver = 0.

Revelation Phase: Reveal-Private(D, INT,P , S, Pα): Pα-private-revelation of

ICSig(D, INT,P , S)

1. To party Pα, INT sends f(x).

2. To party Pα, every verifier Pi sends the index set Ii and all zi
j such that j ∈ Ii.

3. On receiving values from verifier Pi, party Pα checks whether for some j ∈ Ii,

f(αi
j)

?
= ai

j .

(a) If for at least t + 1 verifiers the above condition is satisfied, then Pα sets

Revealα = S, where S is lower order � coefficients of f(x). In this case, we say

that INT is ’successful’ in producing ICSig(D, INT,P , S) to Pα.

(b) If for at least 2t + 1 verifiers the above condition is not satisfied, then Pα

sets Revealα = NULL. In this case, we say that INT ’fails’ in producing

ICSig(D, INT,P , S) to Pα.

Lemma 1. If D, INT and Pα are honest, then S will be accepted by Pα.

Lemma 2. If INT is honest and Ver =1, then S held by INT will be accepted
in Reveal-Private by honest Pα, except with error probability of 2−Ω(κ).

Lemma 3. If D is honest, then in Reveal-Private, with probability 1 − 2−Ω(κ),
every S′ �= S produced by a corrupted INT will be rejected by honest Pα.

Lemma 4. If D and INT are honest and INT has not started Reveal-Private,
then S is information theoretically secure from At.

Lemma 5. Protocol Gen, Ver and Reveal-Private privately communicate O((� +
nκ)κ) bits each.

Notation 1 (Notation for Using A-ICP) . Recall that D and INT can be
any party from P. In the sequel we use the following convention: We say that:
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(1) ”Pi sends ICSig(Pi, Pj ,P , S) to Pj” to mean that Pi as a dealer D executes
Gen(Pi, Pj ,P , S); (2) ”Pi receives ICSig(Pj , Pi,P , S) from Pj” to mean that Pi

as INT has completed Ver(Pj , Pi,P , S) with Ver = 1 with the help of the verifiers
in P; (3) ”Pi reveals ICSig(Pj , Pi,P , S) to Pα” to mean Pi as INT executes
Reveal-Private(Pj , Pi,P , S, Pα) along with participation of the verifiers in P; (4)
”Pα completes revelation of ICSig(Pj , Pi,P , S) with Revealα = S ” to mean Pα

has successfully completed Reveal-Private(Pj , Pi,P , S, Pα) with Revealα = S.

3 Our Statistical AWSS Scheme with n = 3t + 1

We now present an AWSS scheme called AWSS with n = 3t + 1. AWSS consists
of protocols AWSS-Share and AWSS-Rec-Private. While AWSS-Share allows D to
share a single secret s among P , AWSS-Rec-Private enables private reconstruction
of s or NULL by a specific party, say Pα ∈ P . We call the private reconstruction
as Pα-weak-private-reconstruction. In AWSS-Share, a corrupted D may share s =
NULL �∈ F (the meaning of it will be clear in the sequel).

Our AWSS-Share is inspired by the sharing phase of AWSS-Single-Secret given
in [26]. However, instead of using the A-ICP of [26], we use our A-ICP in AWSS-
Share, which leads to better communication complexity.

Remark 2 (D’s Commitment in AWSS-Share). We say that D is committed to
s ∈ F in AWSS-Share if there is a unique degree-t univariate polynomial f(x) such
that f(0) = s and every honest Pi ∈ WCORE receives f(i) from D. Otherwise,
we say that D is committed to NULL. An honest D is always committed to
s ∈ F, as in this case f(x) = f0(x) = F (x, 0) and f(i) = f0(i) = fi(0) = F (0, i)
where F (x, y) is the symmetric degree-(t, t) bivariate polynomial chosen by D.
But AWSS-Share can not ensure that corrupted D also commits to s ∈ F.

The proof of the properties of AWSS follows using similar arguments as in AWSS-
Single-Secret [26]. For details, see [25].

Notation 2 (Notation for Using AWSS-Share). In subsequent sections, we
will invoke AWSS-Share as AWSS-Share(D,P , f(x)) to mean that D commits to
f(x) in AWSS-Share. Essentially here D is asked to choose a symmetric bivari-
ate polynomial F (x, y) of degree-t in x and y, where F (x, 0) = f(x). D then
gives F (x, i) and hence F (0, i) = f(i) to Pi. Similarly, AWSS-Rec-Private will be
invoked as AWSS-Rec-Private(D,P , f(x), Pα). �

Theorem 1. Protocols (AWSS-Share, AWSS-Rec-Private) constitutes a valid sta-
tistical AWSS scheme with n = 3t+1 with private reconstruction. Protocol AWSS-
Share incurs a private communication of O(n3κ2) bits and A-cast of O(n2 log(n))
bits. Protocol AWSS-Rec-Private privately communicates O(n3κ2) bits.
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Protocol AWSS(D,P, s)
AWSS-Share(D,P , s)

Distribution: Code for D – Only D executes this code.

1. Select a random, symmetric bivariate polynomial F (x, y) over F of degree-t in

x and y, such that F (0, 0) = s. For i = 1, . . . , n, let fi(x) = F (x, i).
2. For i = 1, . . . , n, send ICSig(D,Pi,P , fi(j)) to Pi for each j = 1, . . . , n.

Verification: Code for Pi – Every party including D executes this code.

1. Wait to receive ICSig(D, Pi,P , fi(j)) for each j = 1, . . . , n from D.

2. Check if (fi(1), . . . , fi(n)) defines degree-t univariate polynomial. If yes then

send ICSig(Pi, Pj ,P , fi(j)) to Pj for all j = 1, . . . , n.

3. If ICSig(Pj, Pi,P , fj(i)) is received from Pj and if fi(j) = fj(i), then A-cast
OK(Pi, Pj).

WCORE Construction : Code for D – Only D executes this code.

1. For each Pj , build a set OKPj =

{Pi|D receives OK(Pi, Pj) from the A-cast of Pi}. When |OKPj | = 2t+1, then

Pj ’s IC-Commitment on fj(0) is over (or we may say that Pj is IC-committed
to fj(0)) and add Pj in WCORE (which is initially empty).

2. Wait until |WCORE| = 2t + 1. Then A-cast WCORE and OKPj for all

Pj ∈ WCORE.

WCORE Verification & Agreement on WCORE : Code for Pi

1. Wait to obtain WCORE and OKPj for all Pj ∈ WCORE from D’s A-cast,
such that |WCORE| = 2t + 1 and |OKPj | = 2t + 1 for each Pj ∈ WCORE.

2. Wait to receive OK(Pk, Pj) for all Pk ∈ OKPj and Pj ∈ WCORE. After

receiving all these OKs, accept the WCORE and OKPj ’s received from D and

terminate AWSS-Share.

AWSS-Rec-Private(D,P , s, Pα): Pα-weak-private-reconstruction of s:

Signature Revelation: Code for Pi

1. If Pi belongs to OKPj for some Pj ∈ WCORE, then reveal

ICSig(D, Pi,P , fi(j)) and ICSig(Pj , Pi,P , fj(i)) to Pα.

Local Computation: Code for Pα

1. For every Pj ∈ WCORE, reconstruct Pj ’s IC-Commitment, say fj(0) as fol-

lows:

(a) Construct a set V alidPj = ∅.
(b) Add Pk ∈ OKPj to V alidPj if the following conditions hold:

i. Revelation of ICSig(D,Pk,P , fk(j)) and ICSig(Pj, Pk,P , fj(k)) are

completed with Revealα = fk(j) and Revealα = fj(k); and

ii. fk(j) = fj(k).

(c) Wait until |V alidPj | = t + 1. Construct a polynomial fj(x) passing

through the points (k, fj(k)) where Pk ∈ V alidPj . Associate fj(0) with

Pj ∈ WCORE.

2. Wait for every Pj in WCORE to be associated with corresponding fj(0).

3. Check whether the points (j, fj(0)) for Pj ∈ WCORE lie on a unique degree-t
univariate polynomial f0(x). If yes, then set s = f0(0) and terminate AWSS-
Rec-Private. Else set s = NULL and terminate AWSS-Rec-Private.
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4 Our Statistical AVSS Scheme with n = 3t + 1

We now present an AVSS scheme called AVSS, consisting of sub-protocols AVSS-
Share and AVSS-Rec-Private. AVSS-Share allows D to share a single secret from F.
Notice that unlike AWSS-Share, protocol AVSS-Share ensures that a corrupted D
always commits to a secret from F. Protocol AVSS-Rec-Private allows a specific
party, say Pα, to privately reconstruct D’s committed secret. We call the private
reconstruction as Pα-private-reconstruction. While Pα-private-reconstruction can
always ensure that Pα reconstructs D’s committed secret with high probability,
Pα-weak-private-reconstruction could only ensure that Pα reconstructs either D’s
committed secret or NULL. Structurally, we divide AVSS-Share into a sequence
of following three phases.

1. Commitment by D: Here D on having a secret s, commits to the secret
by transferring information to individual parties and by executing several
instances of AWSS-Share protocol.

2. Verification of D’s commitment: Here the parties verify whether indeed
D is committed a secret from F.

3. Re-commitment by Individual Parties: If the parties are convinced in
previous phase, then they together re-commit D’s committed secret using
instances of AWSS-Share protocol.

While first two phases of AVSS-Share are enough to ensure that D has committed
a secret from F, the sole purpose of third phase is to enable robust reconstruction
of D’s committed secret in AVSS-Rec-Private. That is if protocol AVSS-Share
stops after the second phase, then we may only ensure that either D’s committed
secret or NULL will be reconstructed in AVSS-Rec-Private. This would violate
the claim that AVSS is an AVSS scheme. The details are given in the sequel.

4.1 Commitment by D Phase

In this phase, D on having a secret s, selects a random bivariate polynomial
F (x, y) of degree-(t, t) (i.e degree-t in both x and y) such that F (0, 0) = s.
Now to party Pi, D passes fi(x) = F (x, i) and gi(y) = F (i, y). We refer fi(x)
polynomials as row polynomials and gi(y) polynomials as column polynomials.
Now D commits to f1(x), . . . , fn(x) using n distinct invocations of AWSS-Share
protocol. During the course of executing these n instances of AWSS-Share, a
party Pi receives ith point on f1(x), . . . , fn(x), namely f1(i), . . . , fn(i) which
should be n distinct points on gi(y). So Pi checks whether gi(j) = fj(i) for
all j = 1, . . . , n and informs this by A-casting a signal. While executing the n
instances of AWSS-Share, D employ a trick to guarantee that all the n instances
of AWSS-Share terminate with a common WCORE. Then D tries to make all
the honest parties agree on this common WCORE, using similar principle as
in AWSS-Share. Once this is done, Commitment by D Phase ends. We now
state the properties of Commitment by D Phase. For details, see [25].
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Lemma 6. In the code for Commitment by D Phase:

1. If D is honest then eventually he will generate a common WCORE of size
2t + 1 for all the n instances of AWSS-Share. Moreover, each honest party
will eventually accept the common WCORE.

2. If D is corrupted and some honest party has accepted the WCORE and
OKPjs received from the A-cast of D, then every other honest party will
also eventually accept the same.

Code Commitment(D,P, s)
i. Distribution by D: – Only D executes this code

1. Select a random degree-(t, t) bivariate polynomial F (x, y) such that F (0, 0) = s.
2. For i = 1, . . . , n, send row polynomial fi(x) = F (x, i) and column polynomial

gi(y) = F (i, y) to Pi.

3. For i = 1, . . . , n, initiate AWSS-Share(D,P , fi(x)) for sharing fi(x).

ii. Code for Pi – Every party in P , including D, executes this code

1. Wait to receive fi(x) and gi(y) from D.

2. Participate in AWSS-Share(D,P , fj(x)) by executing steps in [Verification:
Code for Pi] (of AWSS-Share) for all j = 1, . . . , n.

3. After the completion of step 1 of [Verification: Code for Pi] for all the n invo-

cations of AWSS-Share, check whether gi(j) = fj(i) holds for all j = 1, . . . , n. Here

fj(i) is obtained by Pi from D during the execution of first step of [Verification:
Code for Pi] of AWSS-Share(D,P , fj(x)). If yes then A-cast Matched-Column and

execute the rest of the steps of AWSS-Share(D,P , fj(x)), for all j = 1, . . . , n.

iii. WCORE Construction: Code for D – Only D executes this code.

1. Construct WCORE and corresponding OKPj ’s for each AWSS-Share(D,P , fi(x))

following the steps in [WCORE Construction] (of AWSS-Share). Denote them

by WCOREi and OKP i
j ’s.

2. Keep updating WCOREi’s and corresponding OKP i
j ’s.

3. Wait to obtain WCORE = ∩n
i=1WCOREi of size at least 2t+1 and for every Pj ∈

WCORE, OKPj = ∩n
i=1OKP i

j of size at least 2t + 1 such that Matched-Column

is received from A-cast of every Pj ∈ WCORE .

4. A-cast WCORE and OKPj for every Pj ∈ WCORE.

iv. WCORE verification & Agreement: Code for Pi

1. Wait to receive WCORE and OKPj for every Pj ∈ WCORE from A-cast of D,

such that |WCORE| = 2t + 1 and each |OKPj | = 2t + 1.

2. Wait to receive OK(Pk, Pj) from the A-cast of Pk for every Pk ∈ OKPj and every

Pj ∈ WCORE for all the n executions of AWSS-Share.
3. Wait to receive Matched-Column from A-cast of every Pj ∈ WCORE.

4. After receiving all desired OKs and Matched-Column signals, accept WCORE and

OKPj for every Pj ∈ WCORE received from A-cast of D and proceed to the next

phase (Verification Phase).
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4.2 Verification of D’s Commitment Phase

After accepting WCORE and corresponding OKPj ’s, in this phase, the parties
verifies whether indeed D has committed a secret from F. For this, we try to check
whether there exists a set of honest parties of size at least t+1, such that for every
two parties Pi, Pj in this set, fi(j) = gj(i) holds. If we can ensure the availability
of such a set then it implies that the row and column polynomials of the parties
in this set define a unique bivariate polynomial of degree-(t, t) and the constant
term of the polynomial is D’s committed secret. Checking for the availability of
such a set is quiet easy in synchronous settings, where the parties can simply
pair-wise exchange their common values on their row and column polynomial, as
done in several synchronous VSS protocols [7,19,18,22,24]. However, doing the
same is not easy in asynchronous settings with n = 3t + 1.

To check the availability of the set of parties described above, we proceed
as follows: recall that in the Commitment by D phase, D is committed to
f1(x), . . . , fn(x). So we execute AWSS-Rec-Private(D,P , fj(x), Pj) for enabling
Pj-weak-private-reconstruction of fj(x). If Pj has reconstructed fj(x) from the
execution of AWSS-Rec-Private and fj(x) is same as fj(x) received from D in
the previous phase, then Pj informs this to everyone by A-casting Matched-Row
signal. This is a public indication by Pj that fj(x) which is committed by D to
the parties in WCORE is same as the one which Pj has privately received from
D. Now if at least 2t + 1 parties, say R, A-cast Matched-Row, then it implies
that D is committed to a unique degree-(t, t) bivariate polynomial, say F (x, y)
(hence a unique secret s = F (0, 0)) such that for every honest Pi ∈ R, the
row polynomial fi(x) held by Pi satisfies F (x, i) = fi(x) and for every honest
Pj ∈ WCORE, the column polynomial gi(y) held by Pj satisfies F (j, y) = gj(y)
(see Lemma 7). The code for implementing this phase is as follows:

Code Verification(D,P, s)
Pj-Weak-Private-Reconstruction of fj(x) for j = 1, . . . , n:

i. Code for Pi – Every party in P executes this code.

1. After accepting WCORE and corresponding OKPj ’s, participate in

AWSS-Rec-Private(D,P , fj(x), Pj), for j = 1, . . . , n, to enable Pj-weak-private-

reconstruction of fj(x). Notice that the common WCORE acts as WCORE in

each AWSS-Rec-Private(D,P , fj(x), Pj), for j = 1, . . . , n
2. At the completion of AWSS-Rec-Private(D,P , fi(x), Pi), obtain either degree-t

polynomial fi(x) or NULL.

3. If fi(x) = fi(x), then A-cast Matched-Row.
4. If Matched-Row is received from A-cast of at least 2t + 1 parties then proceed to

third (Re-Commitment) phase.

Lemma 7. In code Verification, if Matched-Row is received from the A-cast of at
least 2t+1 parties, say R, then in code Commitment, D is committed to a unique
degree-(t, t) bivariate polynomial F (x, y) such that the row polynomial fi(x) held
by every honest Pi ∈ R satisfies F (x, i) = fi(x) and the column polynomial gj(y)
held by every honest Pj ∈ WCORE satisfies F (j, y) = gj(y). Moreover if D is
honest then F (x, y) = F (x, y).
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Proof: The proof completely follow from the proof of Lemma 4.26 of [10]. For
details see [25]. �

Lemma 8. In Verification, if D is honest then all the honest parties will even-
tually proceed to third phase. Moreover, if D is corrupted and some honest party
proceeds to the third phase, then all other honest party will also eventually proceed
to the third phase.

From Lemma 7, if an honest party, say Pi, receives A-cast of Matched-Row signal
during Verification from at least 2t + 1 parties, say R, then he is sure that D is
committed to a unique bivariate polynomial and thus a unique secret. Now the
question is: If Pi stops protocol AVSS-Share here after finding such a set R, then
is there any possible way of robustly reconstructing D’s secret in reconstruction
phase? Here we stop a moment and try to find the possibilities for the above
question. Our effort in this direction would also motivate the need of the third
phase of AVSS-Share which is actually required to enable robust reconstruction
of D’s committed secret in the reconstruction phase i.e in AVSS-Rec-Private.

One possible way to reconstruct D’s committed secret s is to execute AWSS-
Rec-Private(D,P , fj(x), ∗) corresponding to every Pj ∈ R, which may disclose
fj(x) polynomials and using those polynomial the bivariate polynomial and thus
the secret s may be reconstructed. But this does not work, because for a corrupted
D, all instances of AWSS-Rec-Private may output NULL. So it seems that most
likely there is no way to robustly reconstruct D’s committed secret s in protocol
AVSS-Rec-Private, if AVSS-Share stops after current phase. Hence, we require the
third phase which is described in the sequel.

4.3 Re-commitment by Individual Parties

The outline for this phase is as follows: If Pi A-casts Matched-Row in Verifica-
tion, then Pi acts as a dealer to re commit his row polynomial fi(x) by initiating
an instance of AWSS-Share. It is also enforced that if Pi attempts to re-commit
f ′

i(x) �= fi(x), then his re-commitment will not be terminated. Now AVSS-Share
terminates only when all the honest parties in P accept a common set of at least
2t + 1 parties, say V CORE, who have successfully re-committed their polyno-
mials. Now clearly, if AVSS-Share terminates, then the robust reconstruction of
D′s committed secret s is guaranteed with very high probability later in re-
construction phase. This is because, the AWSS-Rec-private instance of an honest
Pi ∈ V CORE will always reconstruct back fi(x). On the other hand, AWSS-
Rec-private instance of a corrupted Pi ∈ V CORE will output either fi(x) or
NULL. This guarantees the reconstruction of at least t + 1 fi(x) polynomials
which are enough to reconstruct D’s committed bivariate polynomial and hence
the s. The protocol for this phase is given in next page.

Lemma 9. In code Re-commitment if D is honest then D will eventually
generate V CORE of size 2t+1 and each honest party will accept this V CORE.
If D is corrupted and some honest party has accepted V CORE received from D,
then every other honest party will also eventually do the same.

Proof: For details see [25]. �
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Code Re-commitment(D,P, s)
i. Code for Pi:

1. If you have A-casted Matched-Row in Verification then as a dealer, initiate

AWSS-Share(Pi,P , fi(x)) to re commit fi(x).

2. If Pj has A-casted Matched-Row in Verification, then participate in

AWSS-Share(Pj ,P , fj(x)) by executing steps in [Verification: Code for
Pi] (of AWSS-Share) in the following way:

After the completion of step 1 of [Verification: Code for Pi], check whether

gi(j) = fj(i) holds, where fj(i) is obtained from Pj during the execution of

AWSS-Share(Pj ,P , fj(x)) and gi(y) was obtained from D during commitment
by D phase. If yes then participate in the remaining steps in [Verification:
Code for Pi] corresponding to AWSS-Share(Pj ,P , fj(x)).

3. WCOREPi Construction for AWSS-Share(Pi,P , fi(x)): If Pi as a dealer initi-

ated AWSS-Share(Pi,P , fi(x)) to re commit fi(x), then Pi as a dealer, constructs

WCORE and corresponding OKPjs for AWSS-Share(Pi,P , fi(x)) in a slightly dif-

ferent way than what is described in AWSS-Share (these steps also ensure that a
corrupted Pi will not be able to re-commit fi(x) 
= fi(x)).

(a) Construct a set ProbCOREPi ( = ∅ initially). Include Pj in ProbCOREPi

and A-cast (Pj , P robCOREPi) if at least 2t + 1 A-casts of the form OK(., Pj)

are heard in the instance AWSS-Share(Pi,P , fi(x)).

(b) Construct WCOREPi . Add Pj in WCOREPi if both the following holds:

(A) Pj ∈ ProbCOREPi and

(B) for at least 2t+1 Pk’s who are re-committing their corresponding fk(x)’s,

(Pj , P robCOREPk) is received from their A-cast.
(c) A-cast WCOREPi and OKPj for every Pj ∈ WCOREPi when

|WCOREPi | = 2t + 1.

ii. VCORE Construction: Code for D

1. If WCOREPi and OKPj for every Pj ∈ WCOREPi are received from the A-cast
of Pi, then add Pi to V CORE after performing the following:

(a) Wait to receive (Pj , P robCOREPi) for every Pj ∈ WCOREPi from the A-cast
of Pi.

(b) Wait to receive (Pj , P robCOREPk) for every Pj ∈ WCOREPi from A-cast of

at least 2t + 1 Pk’s who are re-committing their corresponding fk(x)’s.

(c) Wait to receive OK(Pj , Pk) for every Pk ∈ OKPj in execution

AWSS-Share(Pi,P , fi(x)).

2. A-cast V CORE when |V CORE| = 2t + 1.

iii. VCORE Verification & Agreement on VCORE: Code for Pi

1. Wait to receive V CORE from the A-cast of D.

2. For every Pi ∈ V CORE, wait to receive WCOREPi and OKPj for every Pj ∈
WCOREPi from the A-cast of Pi.

3. Once received, check the validity of received WCOREPi ’s and OKPj ’s for every

Pj ∈ WCOREPi by following the same steps as in ii-1(a), ii-1(b) and ii-1(c).

4. After checking the validity, accept (i) V CORE; (ii) WCOREPi and corresponding

OKPj ’s for every Pi ∈ V CORE which are received in previous two steps and

terminate AVSS-Share.
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Lemma 10. If V CORE is generated, then there exists a unique degree-(t, t)
bivariate polynomial F (x, y) such that every Pi ∈ V CORE is re-committed to
fi(x) = F (x, i). Moreover, if D is honest then F (x, y) = F (x, y).

Proof: By Lemma 7, there is a unique degree-(t, t) bivariate polynomial F (x, y)
such that the row polynomial of every honest Pi who has A-casted Matched-Row,
satisfies fi(x) = F (x, i). Since an honest party Pi who has re-committed his row
polynomial fi(x) in Re-Commitment, has also A-casted Matched-Row in Verifica-
tion, fi(x) = F (x, i) satisfies for every honest Pi in V CORE. Now we show that
even a corrupted Pi ∈ V CORE has re-committed fi(x) satisfying fi(x) = F (x, i).

We prove this by showing that every honest Pj ∈ WCOREPi has received
fi(j) from Pi during AWSS-Share(Pi,P , fi(x)) (and hence honest Pj is IC-
Committed to fi(j)). An honest Pj belongs to WCOREPi implies that Pj be-
longs to ProbCORE of at least 2t+1 parties out of which at least t+1 are honest.
Let H be the set of these (t+1) honest parties. So Pj ’s column polynomial gj(y)
satisfies gj(k) = fk(j) for every Pk ∈ H (see step i-(2) in Re-Commitment). This
implies that gj(y) = F (j, y). Now honest Pj ∈ WCOREPi implies that Pj be-
longs to ProbCORE of Pi as well which means Pj has ensured gj(i) = fi(j) (see
step i-(2)) in Re-Commitment. The second part of the lemma is trivially true. �

4.4 Protocol AVSS

Protocol AVSS(D,P , s)

AVSS-Share(D,P , S): Replicate Code Commitment(D,P , s), Code Verification(D,P , s)
and Code Re-commitment(D,P , s).

AVSS-Rec-Private(D,P , s, Pα): Private reconstruction of s by party Pα:

Pα-weak-private-reconstruction of fj(x) for every Pj ∈ V CORE: (Code
for Pi) : Participate in AWSS-Rec-Private(Pj ,P , fj(x), Pα) for every

Pj ∈ V CORE.

Local Computation: Code for Pα

1. For every Pj ∈ V CORE, obtain either fj(x) or NULL from Pα-weak-private-

reconstruction. Add Pj ∈ V CORE to REC if fj(x) is obtained.

2. Wait until |REC| = t + 1. Construct bivariate polynomial F (x, y) such that

F (x, j) = fj(x) for every Pj ∈ REC. Compute s = F (0, 0) and terminate.

Due to space constraints, we give the proof of our AVSS scheme in [25] and state
only the following theorem:

Theorem 2. Protocols (AVSS-Share, AVSS-Rec-Private) constitutes a valid sta-
tistical AVSS scheme with private reconstruction which incurs a private commu-
nication of O((n4κ)κ) bits and A-cast of O(n3 log(n)) bits.

5 Our Statistical ACSS Scheme with n = 3t + 1

Though AVSS is an AVSS scheme, it is not an ACSS scheme because it fails to
achieve completeness property. This is because in AVSS-Share, only the honest
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parties in V CORE receive their respective shares of the committed secret. But
it may happen that potentially t honest parties are not present in V CORE.
So we now present a statistical ACSS scheme called ACSS, which consists of
sub-protocols ACSS-Share and ACSS-Rec-Public. Protocol ACSS-Share allows D
to generate t-sharing of a secret s ∈ F. Given t-sharing of secret s, protocol
ACSS-Rec-Public allows every party in P to reconstruct D’s committed secret s.

The high level idea of ACSS-Share is similar as that of AVSS-Share with the
following difference: in AVSS-Share, we used AWSS-Share as a black-box. So if
D is corrupted and even if it is ensured that D is committed to a unique bi-
variate polynomial F (x, y) during Verification Phase, we could only ensure
that every honest Pi who A-cast Matched-Row signal, holds the corresponding
row polynomial fi(x) = F (x, i) and hence his share fi(0) of the secret s =
F (0, 0). It may happen that there are potential t honest Pi’s who have not A-
cast Matched-Row signal and who do not hold their corresponding F (x, i)’s, as
Pi-weak-private-reconstruction of fi(x)’s corresponding to these parties would
have reconstructed NULL during Verification Phase.

On the other hand, we use AVSS-Share as a black-box in ACSS-Share. This
avoids the above problem because now D would AVSS-Share each fi(x), instead
of AWSS-Share. So once it is ensured that D is committed to a unique bi-variate
polynomial F (x, y), by the property of AVSS-Rec-Private, each honest Pi ∈ P
would successfully reconstruct fi(x) = F (x, i) and hence his share fi(0) of the
secret s = F (0, 0).

ProtocolACSS-Rec-Public uses the properties of Online Error Correction (OEC)
[10]. Informally, given t-sharing of s which is t-shared using degree-t polynomial
f(x), OEC allows to reconstruct f(x) and hence s = f(0) in an on-line fashion in
asynchronous settings by using the properties of Reed-Solomon error correcting
codes. Since the technique is quiet familiar, we avoid giving the details of ACSS-
Rec-Public. For details, see [25].

We now state the properties of our ACSS scheme. The proof of these properties
are available in [25] due to space constraints.

Lemma 11. In protocol ACSS-Share:

1. If D is honest then eventually he will generate a common CCORE of size
2t + 1 for all the n instances of AVSS-Share. Moreover, each honest party
will eventually accept this common CCORE.

2. If D is corrupted and some honest party has accepted the CCORE received
from the A-cast of D, then every other honest party will also eventually accept
the same.

Lemma 12. In ACSS-Share, if the honest parties accept the common CCORE,
then it implies that D is committed to a unique degree-(t, t) bivariate polynomial
F (x, y) such that each row polynomial fi(x) committed by D in AVSS-Share(D,P ,
fi(x)) satisfies F (x, i) = fi(x) and the column polynomial gj(y) held by every
honest Pj ∈ CCORE satisfies F (j, y) = gj(y). Moreover if D is honest then
F (x, y) = F (x, y).
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Theorem 3. Protocols (ACSS-Share, ACSS-Rec-Public) constitutes a valid sta-
tistical ACSS scheme with public reconstruction. ACSS-Share privately communi-
cates O(n5κ2) bits and A-casts O(n4 log n) bits. ACSS-Rec-Public, which involves
n instances of OEC incurs a private communication of O(n2κ) bits.

Protocol ACSS(D,P, s)
ACSS-Share(D,P , s)
i. Distribution by D: Code for D – Only D executes this code

1. Select a random degree-(t, t) bivariate polynomial F (x, y) such that F (0, 0) = s.
2. Send gi(y) = F (i, y) to party Pi. We call gi(y) as ith column polynomial.

3. For i = 1, . . . , n, initiate AVSS-Share(D,P , fi(x)) for sharing fi(x), where fi(x) =

F (x, i). We call fi(x) as ith row polynomial.

ii. Code for Pi – Every party in P , including D, executes this code

1. Wait to receive gi(y) from D.

2. Participate in AVSS-Share(D,P , fj(x)) for all j = 1, . . . , n.

3. If fj(i) is received from D during AVSS-Share(D,P , fj(x)) then check whether

gi(j) = fj(i). When the test passes for all j = 1, . . . , n, then A-cast
Matched-Column.

iii. CCORE Construction: Code for D – Only D executes this code.

1. For i = 1, . . . , n, construct V CORE for AVSS-Share(D,P , fi(x)). Denote it by

V COREi.

2. Keep updating V COREi. Wait to obtain CCORE = ∩n
i=1V COREi of size at least

2t + 1 such that Matched-Column is received from A-cast of every Pj ∈ CCORE .

3. A-cast CCORE.

iv. CCORE verification & Agreement: Code for Pi — Every party including D
will execute this code.

1. Wait to receive CCORE from the A-cast of D.

2. Check whether CCORE is a valid V CORE for AVSS-Share(D,P , fj(x)) for every

j = 1, . . . , n (by following steps 2-4 as specified under [VCORE Verification &
Agreement on VCORE: Code for Pi] in Re-commitment of AVSS-Share).

v. Pj-private-reconstruction of fj(x) for j = 1, . . . , n: Code for Pi – Every

party in P executes this code.

1. If CCORE is a valid V CORE for AVSS-Share(D,P , fj(x)) for every j = 1, . . . , n,

then participate in AVSS-Rec-Private(D,P , fj(x), Pj), for j = 1, . . . , n, to enable

Pj-private-reconstruction of fj(x). Notice that CCORE is used as VCORE in each

AVSS-Rec-Private(D,P , fj(x), Pj), for j = 1, . . . , n.

2. At the completion of AVSS-Rec-Private(D,P , fi(x), Pi), obtain degree-t polynomial

fi(x), output fi(0) as ith share of s and terminate ACSS-Share.

6 ACSS Scheme for Sharing Multiple Secrets

We now present an overview of our statistical ACSS scheme ACSS-MS for sharing
multiple secrets concurrently. ACSS-MS consists of sub-protocols ACSS-MS-Share
and ACSS-MS-Rec-Public. ProtocolACSS-MS-Share allowsD to generate t-sharing
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of secret S = (s1, . . . , s�), consisting of � > 1 elements from F. While using � ex-
ecutions of ACSS-Share, one for each sl ∈ S, D can ACSS-share S with a private
communication of O((�n5κ)κ) and A-cast of O(�n4 log(n)) bits, protocol ACSS-
MS-Share achieves the same task with a private communication ofO((�n4+n5κ)κ)
and A-cast of O(n4 log(n)) (independent of �) bits. This shows that executing a
single instance of ACSS-MS dealing with multiple secrets concurrently is advan-
tageous over executing multiple instances of ACSS dealing with single secret. In
order to design ACSS-MS, we have to first extend AWSS and AVSS to share � se-
crets concurrently. Then using our AVSS scheme sharing � secrets concurrently, we
design our ACSS scheme sharing � secrets concurrently. Due to space constraints,
the complete details are available in [25].
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Abstract. Bipartite secret sharing schemes are those having a bipartite

access structure, that is, the set of participants is divided into two parts,

and all participants in each part play an equivalent role. The bipartite

access structures that admit an ideal secret sharing scheme have been

characterized, but it is not known which is the optimal complexity of

non-ideal bipartite access structures. By using the connection between

secret sharing schemes and polymatroids, we find new bounds on the

optimal complexity of these acess structures and, for some of them, we

find the exact value of this parameter. Some of these bounds are obtained

by using a method based on linear programming.

Keywords: Cryptography, secret sharing, multipartite secret sharing,

polymatroids, linear programming.

1 Introduction

A secret sharing scheme is a method to protect a secret value by distributing it
among a set of participants. In these protocols, each participant receives a share
of the secret, and certain qualified subsets of participants can recover the secret
by pooling their shares, while unqualified subsets cannot obtain any information
about the secret. The family Γ of qualified subsets is called the access structure of
the scheme. It is monotone, which means that any superset of a qualified subset
is qualified, and so any access structure Γ is determined by the family min Γ of
its minimal qualified subsets. Only unconditionally secure, perfect secret sharing
schemes are considered in this work. In particular, a subset is unqualified if and
only if it is not qualified.

Secret sharing schemes have important applications in cryptography as a
building block of many different protocols. The efficiency of such schemes is
commonly measured by the relation between the size of the secret and the size
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of the shares. The complexity is the result of dividing the size of the biggest
share by the size of the secret. Ito, Saito, Nishizeki [20] proved that there is a
secret sharing scheme for every access structure, and so it is natural to consider
the optimal complexity σ(Γ ) of an access structure Γ , which is the infimum of
the complexities of all secret sharing schemes with access structure Γ . A secret
sharing scheme is optimal if its complexity attain this infimum. In particular, if
its complexity is equal to 1, which is the best possible situation, then both the
scheme and its access structure are called ideal.

The first secret sharing schemes were presented by Shamir [28] and Blakley [8],
and are ideal. Brickell [10] generalized these schemes and presented a construc-
tion of ideal secret sharing schemes based on linear algebra. These schemes are
called linear, and can be generalized to the non-ideal case. The best known con-
structions provide linear secret sharing schemes, and their homomorphic prop-
erties are very useful in some applications of secret sharing. Hence it is worth
to know, for each access structure Γ , which is the infimum of the complexity of
all the linear schemes with access structure Γ . This value is denoted by λ(Γ ),
and it is an upper bound on σ(Γ ). The best known general upper bound on λ
is exponential on the number of participants [20].

A way to obtain lower bounds on σ is to use inequalities on the entropy of the
random variables determined by the shares. For every access structure Γ , κ(Γ )
is the bound on σ(Γ ) derived from the Shannon inequalities that the entropy
of the shares of the participants must satisfy, and from the fact that the shares
of subsets in Γ determine the secret but the shares of the other subsets do not
provide any information about the secret.

The study of the separation between σ, κ and λ, as well as the search of
ideal and optimal schemes have posed several deep and challenging mathematical
problems. The techniques used to find partial solutions to these problems involve
different mathematical objects as matroids, polymatroids and graphs, and results
in different areas as combinatorics, coding theory or algebra.

Fujishige [17] showed that the entropies of any set of random variables deter-
mine a polymatroid. Hence, for each secret sharing schemewe obtain a polymatroid
by considering the random variables associated to the shares of the participants.
Namely, for every subset of participants we define the rank of the subset as the
joint entropy of the random variables of the shares of the participants in the sub-
set divided by the entropy of the secret. In fact, κ(Γ ) can be obtained by analyzing
the polymatroids that are related to Γ . Csirmaz [12] proved that for any set of n
participants, any access structure Γ satisfies κ(Γ ) ≤ n, and that there exists an
access structure whose optimal complexity is at least about n/ logn.

Brickell and Davenport [11] proved that ideal access structures are matroid
ports, which means that for each ideal access structure there exists a matroid in
which the circuits containing a fixed point are in one to one relation with the
minimal authorized subsets. Moreover, if this matroid is representable, then the
access structure is ideal. This result was improved by Mart́ı-Farré and Padró [22]
by applying results on matroid ports. The applications of matroids to secret
sharing schemes have been widely studied, for instance in [2,3,23].
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Recently, the discovering of new inequalities on the entropy of random vari-
ables that are not derived from the Shannon inequalities, and the study of the
polymatroids related to secret sharing schemes have provided new interesting
results as [3,4,24,25].

The problem of determining the optimal complexity has been studied for sev-
eral particular classes of access structures. For instance, a great achievement has
been obtained recently by Csirmaz and Tardos [13] by determining the opti-
mal complexity of all access structures defined by trees. Many of these studied
families are formed by multipartite access structures, in which the set of partic-
ipants is divided into several parts and all participants in the same part play an
equivalent role in the structure. The first ideal schemes for multipartite access
structures were constructed by Brickell [10]. Padró and Sáez [27] studied the
bipartite access structures, characterized the ideal ones, and gave bounds on the
optimal complexity of those that are not ideal. There are other families of access
structures for which the ideal ones have been characterized, as the the family of
tripartite [14] and the family of hierarchical access structures [15], which were
characterized by means of the connection with integer polymatroids [14], and the
family of weighted threshold access structures [5]. However, the characterization
of ideal access structures and the construction of optimal schemes are still open
problems.

In this article we present new results on the parameters κ, λ and σ for bipartite
access structures that improve our knowledge on them. We show new bounds on
the optimal complexity by using polymatroids, we determine the value of this
parameter for some non-ideal bipartite access structures, and we present some
results on the polymatroids related to bipartite access structures.

In Section 6 we present a method to find the value of κ for bipartite access
structures. This method is based on the fact that the verification of Shannon-type
inequalities can be formulated as a linear programming problem [34]. A general
lower bound on κ for bipartite access structures is presented in Section 5. This
lower bound is derived from the independent sequence method and improves
the existing bounds for these access structures [27]. In addition, we present new
optimal linear constructions for non-ideal bipartite access structures. Some of
these access structures were previously considered by Mecalf-Burton [25]. By
taking into account the bounds obtained on κ, we show that for these access
structures, σ, λ and κ coincide.

The polymatroids related to bipartite access structures are studied in Sec-
tion 8. In particular, we show that there exist bipartite polymatroids that are
non-entropic, and linearly representable bipartite polymatriods that are not a
sum of matroids.

2 Preliminaries

Several definitions and basic facts as well as the main known results about the
optimization of secret sharing schemes for general access structures are surveyed
in this section. The reader is referred to the full version of [22] for a more detailed
exposition.
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Let Q be a finite set of participants , and consider a finite set E with a proba-
bility distribution on it. For every i ∈ Q, consider a finite set Ei and a surjective
map map πi : E → Ei. Those maps induce random variables on the sets Ei. Let
H(Ei) denote the Shannon entropy of one of these random variables. For a sub-
set A = {i1, . . . , ir} ⊆ Q, we write H(EA) for the joint entropy H(Ei1 . . . Eir ),
and a similar convention is used for conditional entropies as, for instance, in
H(Ej |EA) = H(Ej |Ei1 . . . Eir ).

Consider a distinguished participant p0 ∈ Q, which is usually called dealer ,
and an access structure Γ on the set P = Q − {p0}. The maps πi define an
unconditionally secure perfect secret sharing scheme Σ with access structure Γ
if the following properties are satisfied.

1. H(Ep0 |EA) = 0 if A ∈ Γ .
2. H(Ep0 |EA) = H(Ep0) if A /∈ Γ .

In this situation, every random choice of an element x ∈ E, according to the
given probability distribution, results in a distribution of shares ((si)i∈P , s),
where si = πi(x) ∈ Ei is the share of the participant i ∈ P and s = πp0(x) ∈ Ep0

is the shared secret value. Observe that the first requirement in the definition
implies that the qualified subsets can recover the secret value from their shares
and, by the second one, the shares of the participants in an unqualified subset
do not provide any information at all about the secret value.

We define the complexity σ(Σ) of a secret sharing scheme Σ as the ratio
between the maximum length of the shares and the length of the secret, that is,
σ(Σ) = maxi∈P H(Ei)/H(Ep0). For each participant i ∈ P , H(Ei) ≥ H(Ep0)
and so σ(Σ) ≥ 1. A secret sharing scheme Σ with σ(Σ) = 1 is said to be ideal ,
and its access structure is called ideal as well. The optimal complexity σ(Γ ) of
an access structure Γ is defined as the infimum of the complexities σ(Σ) of the
secret sharing schemes for Γ .

A secret sharing scheme is said to be linear if E and Ei are vector spaces
over a finite field K, the mappings πi are linear, and the uniform probability
distribution is taken on E. The security of these schemes, which are also called
geometric schemes or monotone span programs, is based on linear algebra. If
Ei = K for every i ∈ Q, then it is a K-vector space secret sharing scheme.
Every access structure admits a linear construction [20], so we notate λ(Γ ) for
the infimum of the complexities of the linear secret sharing schemes with access
structure Γ .

Proposition 1. For every access structure Γ it follows σ(Γ ) ≤ λ(Γ ).

Therefore, the construction of efficient linear schemes is interesting both for
practical applications and for finding upper bounds on the optimal complexity
of general access structures.

Definition 2. Let Q be a set, P(Q) the power set of Q, and h : P(Q) → R

a function. The pair S = (Q, h) is a polymatroid if it satisfies the following
properties.
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1. h(∅) = 0, and
2. h is monotone increasing: if X ⊆ Y ⊆ Q, then h(X) ≤ h(Y ), and
3. h is submodular: if X, Y ⊆ Q, then h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X) + h(Y ).

Let S1 = (Q, h1) and S2 = (Q, h2) be two polymatroids on the same ground
set. Clearly, h = h1 + h2 is the rank function of a polymatroid on Q, which
is called the sum of S1 and S2 and is denoted by S1 + S2 = (Q, h). For every
polymatroid (Q, h), the pair (Q, ah) is also a polymatroid for any a ∈ R with
a > 0. A polymatroid is said to be integer if its rank function is integer-valued.
A matroid is an integer polymatroid S = (Q, h) such that h(A) ≤ |A| for all
A ⊆ Q.

A polymatroid S = (Q, h) is entropic if there exist some random variables
{Ei}i∈Q and a real number a > 0 such that h(A) = aH(A) for every A ⊆
Q. And it is linearly representable if there exist a vector space E with finite
dimension over a finite field K, and a subspace Vi ⊆ E for every i ∈ Q such that
h(A) = dim(

∑
i∈A Vi) for every A ⊆ Q.

We say that p0 ∈ Q is an atomic point of the polymatroid S = (Q, h) if, for
every X ⊆ Q, either h(X ∪ {p0}) = h(X) or h(X ∪ {p0}) = h(X) + 1. In this
case, we define on the set P = Q � {p0} the access structure

Γp0(S) = {A ⊆ P : h(A ∪ {p0}) = h(A)}.

For an access structure Γ on P = Q � {p0}, a polymatroid S = (Q, h) is said to
be a Γ -polymatroid if p0 is an atomic point of S and Γ = Γp0(S).

Let Σ be a secret sharing scheme with access structure Γ on the set of par-
ticipants P = Q � {p0}, and {Ei}i∈Q the random variables associated to the
shares of the participants in Q. Consider the mapping h : P(Q) → R defined by

h : X → H(X)/H(Ep0).

Observe that the pair S(Σ) = (Q, h) is a Γ -polymatroid. In this way, Γ -poly-
matroids are studied in order to obtain properties of secret sharing schemes.
Actually, these properties are exactly those that derive from the Shannon in-
equalities satisfied by the random variables {Ei}i∈Q. Nevertheless, not all Γ -
polymatroids are associated to secret sharing schemes.

For a polymatroid S = (q, h) and an atomic point p0 ∈ Q, we define σp0(S) =
max{h({x}) : x ∈ P}, where P = Q � {p0}. Observe that σp0 (S) = σ(Σ) if S
is the polymatroid associated to a secret sharing Σ. For every access structure
Γ on P , we consider the value

κ(Γ ) = inf{σp0(S) : S is a Γ -polymatroid}.

Proposition 3. For every access structure Γ , it follows σ(Γ ) ≥ κ(Γ ).

Since κ(Γ ) ≤ σ(Γ ) ≤ λ(Γ ), upper and lower bounds on σ(Γ ) are obtained, re-
spectively, from the parameters λ and κ. Bounds on the first one can be obtained
by using linear algebra, while combinatorics is the tool to derive bounds on the
second one.
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An access structure Γ is a matroid port if there exists a matroid S = (Q, h)
with p0 ∈ Q such that Γ = Γp0(S). In this case κ(Γ ) = 1, and if S is K-
linearly representable, then Γ admits a vector space secret sharing scheme, and
so λ(Γ ) = 1. Brickell and Davenport [11] proved that ideal access structures are
matroid ports, and Mart́ı-Farré and Padró [22] generalized this result.

Theorem 4 ([22]). There is no access structure Γ with 1 < κ(Γ ) < 3/2. In
addition, an access structure Γ is a matroid port if and only if κ(Γ ) = 1.

The independent sequence method was introduced in [9] and subsequently im-
proved in [27]. We use the description of this method presented in [22], which is
in terms of polymatroids, to obtain bounds on the information rate of bipartite
access structures. We present these bounds in Section 5.

Consider A ⊆ P and an increasing sequence of subsets B1 ⊆ · · · ⊆ Bm ⊆ P .
We say that (B1, . . . , Bm | A) is an independent sequence in Γ with length m
and size s if |A| = s and, for every i = 1, . . . , m there exists Xi ⊆ A such that
Bi ∪ Xi ∈ Γ , while Bm /∈ Γ and Bi−1 ∪ Xi /∈ Γ if i ≥ 2. The independent
sequence method is based on the following result.

Theorem 5. Let Γ be an access structure on the set P and let S = (Q, h) be a
Γ -polymatroid on Q = P � {p0}. If there exists in Γ an independent sequence
(B1, . . . , Bm | A) with length m and size s, then h(A) ≥ m. As a consequence,
κ(Γ ) ≥ m/s.

3 Multipartite Access Structures and Multipartite
Polymatroids

We describe in this section the geometric representation of multipartite access
structures that was introduced in [14,27]. In addition, we prove that the param-
eter κ for multipartite access structures can be determined by considering only
a special class of polymatroids that is introduced here, the so-called multipartite
polymatroids .

An m-partition Π = (X1, . . . , Xm) of a set X is a disjoint family of m sub-
sets of X with X = X1 ∪ · · · ∪ Xm. A permutation τ on X is said to be a
Π-permutation if τ(Xi) = Xi for every i = 1, . . . , m. Roughly speaking, a com-
binatorial object defined on X is said to be Π-partite if every Π-permutation
on X is an automorphism of it. We will use as well the term m-partite to refer
to Π-partite objects in which Π is an m-partition of X .

In particular, a family of subsets Λ ⊆ P(X) is Π-partite if if τ(Λ) = {τ(A) :
A ∈ Λ} = Λ for every Π-permutation τ on X . Analogously, a polymatroid
S = (X, h) with ground set X is Π-partite if h(A) = h(τ(A)) for every A ⊆ X
and for every Π-permutation τ on X .

We describe in the following the geometric representation of multipartite
access structures that was introduced in [14,27]. We notate Z+ for the set
of the non-negative integers, and we consider in Zm

+ the order relation de-
fined as follows. For a pair of points x,y ∈ Zm

+ with x = (x1, . . . , xm) and
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y = (y1, . . . , ym), we say that x ≤ y if xi ≤ yi for every i = 1, . . . , m. For a
partition Π = (X1, . . . , Xm) of a set X , consider the mapping Π : P(X) → Zm

+

defined by
Π(A) = (|A ∩ X1|, . . . , |A ∩ Xm|).

For a Π-partite family of subsets Λ ⊆ P(X), we consider the set of integer points
Π(Λ) = {Π(A) : A ⊆ X, A ∈ Λ} ⊆ Zm

+ . We notate

X = Π(P(X)) = {x ∈ Zm
+ : x ≤ Π(X)}.

Obviously, Π(Λ) ⊆ X. Observe that A ⊆ X is in Λ if and only if Π(A) ∈ Π(Λ).
Then Λ is completely determined by the set of points Π(Λ). If Λ is monotone
increasing, that is, if Λ is a Π-partite access structure on X , then Π(Λ) is
monotone increasing as well. That is, if x,y ∈ X are such that x ∈ Π(Λ) and
x ≤ y, then y ∈ Π(Λ). Therefore, Λ is determined by Π(min Λ), which is the
family of minimal points of Π(Λ).

This geometric representation can be also applied to multipartite polyma-
troids. If S = (X, h) is a Π-partite polymatroid, then h(A) = h(B) if Π(A) =
Π(B). Therefore, the polymatroid S is univocally determined by the mapping
ĥ : X → R defined by ĥ(x) = h(A), where A ⊆ X is such that Π(A) = x.

For every m-partition Π = (X1, . . . , Xm) of P , we consider the (m + 1)-
partition Π0 = (X1, . . . , Xm, {p0}) of Q = P ∪ {p0}. We prove in the following
that, for every Π-partite access structure Γ ⊆ P(P ), the value of κ(Γ ) can be
determined by considering only the Γ -polymatroids that are Π0-partite.

Proposition 6. Let Π = (X1, . . . , Xm) be an m-partition of a set P and let Π0

be the corresponding (m + 1)-partition of Q = P ∪ {p0}. Let Γ be a Π-partite
access structure on P . Then

κ(Γ ) = inf{σp0(S) : S is a Π0-partite Γ -polymatroid }.

Proof. Consider ω(Γ ) = inf{σp0(S) : S is a Π0-partite Γ -polymatroid}. Clearly,
κ(Γ ) ≤ ω(Γ ). Let Ψ be the set of the Π0-permutations on Q. For every Γ -
polymatroid S = (Q, h), consider the mapping h̃ : P(Q) → R defined by

h̃(A) =
1
|Ψ |
∑
τ∈Ψ

h(τ(A)).

It is not difficult to check that S̃ = (Q, h̃) is a Π0-partite Γ -polymatroid with
σp0(S̃) ≤ σp0(S). Therefore, ω(Γ ) = κ(Γ ). ��

4 Duality and Minors

Duality and minors are operations on access structures, and also on matroids and
polymatroids, that are important in secret sharing. This is mainly due to the fact
of the parameters that are considered here have a good behavior with respect to
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those operations. In addition, minors of access structures correspond to a natural
scenario in secret sharing. Namely, if several participants leave the scheme and
maybe some of them reveal their shares, then the new access structure will be a
minor of the original one.

Let Γ be an access structure on a set P . For any B ⊆ P , we consider on
the set P � B the access structures Γ \ B and Γ/B defined by Γ \ B = {A ⊆
P � B : A ∈ Γ} and Γ/B = {A ⊆ P � B : A ∪ B ∈ Γ}. These operations
are called deletion and contraction, respectively. Any access structure obtained
by a sequence of deletions and contractions of subsets of P is a minor of Γ . For
a polymatroid S = (Q, h) and a subset B ⊆ Q, we consider the polymatroids
S \ B = (Q � B, h\B) and S/B = (Q � B, h/B) with h\B(X) = h(X) and
h/B(X) = h(X ∪ B) − h(B) for every X ⊆ Q � B. Every polymatroid that is
obtaind from S by a sequence of such operations is a minor of S.

If S is a Γ -polymatroid, then S \B is a (Γ \B)-polymatroid and S/B is a (Γ/
B)-polymatroid. Because of that, κ(Γ ′) ≤ κ(Γ ) if Γ ′ is a minor of Γ . In addition,
the aforementioned connection between minors and secret sharing implies that
σ(Γ ′) ≤ σ(Γ ) and λ(Γ ′) ≤ λ(Γ ).

The dual Γ ∗ of an access structure Γ on P is the access structure on the same
set defined by Γ ∗ = {A ⊆ P : P � A ∈ Γ}. From every linear secret sharing
scheme Σ for Γ , a linear secret sharing scheme Σ∗ for the dual access structure
Γ ∗ with σ(Σ∗) = σ(Σ) can be constructed [16,21]. In addition, it was proved
in [22] that κ(Γ ) = κ(Γ ∗). The relation between σ(Γ ) and σ(Γ ∗) is an open
problem.

If Γ is Π-partite for some partition Π = (P1, . . . , Pm) of the set P , then the
dual access structure Γ ∗ is Π-partite as well. If B ⊆ P , the minors Γ\B and
Γ/B are (Π\B)-partite access structures, where Π\B = (P1 � B, . . . , Pm � B).

We prove in the next theorem that the value of κ(Γ ) for a multipartite access
structure depends only on the minimal points, and it does not depend on the
number of participants in every part.

Theorem 7. Let Γ be a Π-partite access structure on P and let B ⊆ P be
such that the access structure Γ \ B has the same minimal points as Γ , that is,
Π(min Γ ) = Π ′(min(Γ \ B)), where Π ′ = Π \ B. Then κ(Γ ) = κ(Γ \ B).

Proof. Clearly, κ(Γ \ B) ≤ κ(Γ ). Take Π = (P1, . . . , Pm) and consider the sets
Q = P ∪{p0} and Q′ = (P �B)∪{p0} = Q�B. We prove the other inequality by
constructing, for every Π ′

0-partite (Γ \B)-polymatroid S′ = (Q′, h′), a Π0-partite
Γ -polymatroid S = (Q, h) with σp0(S) = σp0(S′). Consider Q′ = Π ′

0(P(Q′)) ⊆
Zm+1

+ and the mapping ĥ′ : Q′ → R that determines the Π ′
0-partite (Γ \ B)-

polymatroid S′ = (Q′, h′). For every vector x = (x1, . . . , xm, xm+1) ∈ Q =
Π0(P(Q)), take x′ = (min{x1, |P1 � B|}, . . . , min{xm, |Pm � B|}, xm+1) ∈ Q′

and consider the mapping ĥ : Q → R defined by ĥ(x) = ĥ′(x′). It is not difficult
to prove that this mapping defines a Π0-partite Γ -polymatroid S = (Q, h) with
σp0(S) = σp0(S′). ��

To determine whether the analogous result holds for the parameters κ and λ is
an open problem. Nevertheless, as a consequence of the results in [14], in the
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conditions of Theorem 7, if Γ \ B admits a vector space secret sharing scheme,
then the same applies for Γ . In the particular families of bipartite, tripartite
and hierarchical access structures, the ideal access structures coincide with the
vector space access structures [14,15,27]. Then, for the access structures in these
families, Γ \ B is ideal if and only if Γ is so.

5 The Optimal Complexity of Bipartite Access Structures

In this section we present bounds on the optimal complexity of bipartite access
structures, and we present an optimal construction for some non-ideal bipartite
access structures. Padró and Sáez [27] characterized the ideal bipartite access
structures. We rewrite the result as follows.

Theorem 8 ([27]). Let Π = (P1, P2) be a partition of P . A Π-partite access
structure Γ is ideal if and only if Π(min Γ ) = B1 ∪ B2, where

– Π(B1) ⊆ {(0, y), (x, 0)} for some x, y > 0 and
– B2 = ∅ or Π(B2) = {(x − m, y − 1), . . . , (x − 1, y − m)} for 0 < m < x, y.

In addition, every ideal bipartite access structure admits a vector space secret
sharing scheme. Moreover, σ(Γ ) ≥ 3/2 for every non-ideal bipartite access struc-
ture Γ .

Differently to the general case, the asymptotic behavior of the parameter σ is
known for bipartite access structures. Actually,, if Γ is Π = (P1, P2)-partite,
then λ(Γ ) ≤ min{|P1|, |P2|}. This is due to the fact that the bipartite access
structures with one minimal point admit a vector space secret sharing scheme
and Π(min Γ ) consists of at most min{|P1|, |P2|} points. It can be proved by
using well known basic decomposition techniques (see [31], for instance) that Γ
admits a linear secret sharing scheme Σ with σ(Σ) = |Π(min Γ )|.

We present next a new lower bound on κ for bipartite access structures. Our
result generalize and improve the one presented by Padró and Sáez in [27], and
for many access structures, some of them presented in this section, our bound is
tight. First, we present a lemma that is needed in the proof of the result. For a
polymatroid S = (Q, h) and subsets X, Y, Z ⊆ Q, we notate

– h(X | Y ) = h(X ∪ Y ) − h(Y ) ≥ 0,
– i(X ; Y ) = h(X) − h(X | Y ) = h(X) + h(Y ) − h(X ∪ Y ) ≥ 0, and
– i(X ; Y | Z) = h(X | Z) − h(X | Y ∪ Z) ≥ 0.

Lemma 9. Let S = (Q, h) be a Γ -polymatroid and X, Y, Z subsets of P =
Q � {p0}. If X ∪ Z and Y ∪ Z are in Γ but Z is not in Γ , then i(X ; Y |Z) ≥ 1.

Theorem 10. Let {(x0, y0), . . . , (xm, ym)} be the set of minimal points of a bi-
partite access structure, ordered in such a way that xi < xi+1 for every i =
1, . . . , m − 1. Set δ = 0 if x0 > 0 and δ = 1 if x0 = 0. Take

k = max
δ≤i≤m−1

{xi+1 − xi},
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r = xm − xδ, and s = yδ − ym−1. Then

κ(Γ ) ≥ k + r − 1
k + s

.

Proof. Let A ⊆ P be a subset with Π(A) = (k−1, s+1) and let B1 ⊆ . . . ⊆ Br+1

be a sequence of subsets with Π(Bi) = (xδ + i− 2, ym−1 − 1) and A∩Br+1 = ∅.
For every i = 1, . . . , r +1 we define γ(i) as the smallest integer for which xγ(i) ≥
xδ +i−2. Then for each i = 1, . . . , r+1 with γ(i) �= m, consider a subset Xi ⊆ A
with Π(Xi) = (xγ(i), yγ(i))−Π(Bi). If γ(i) = m, consider a subset Xi ⊆ A with
Π(Xi) = (xm, ym−1 − 1) − Π(Bi). Since (B1, . . . , Br+1 | A) is an independent
sequence, h(A) ≥ r + 1 by Theorem 5.

Define A∩P1 = {p1, . . . , pk−1} and A∩P2 = {q1, . . . , qs+1}. By Lemma 9 we
obtain that
h(A) = h(q1) +

∑s+1
i=2 h(qi | qi−1 . . . q1)+

+h(p1 | qs+1 . . . q1) +
∑k−1

i=2 h(pi | pi−1 . . . p1qs+1 . . . q1) ≤
≤
∑s+1

i=1 h(qi) + h(p1) +
∑k−1

i=2 h(pi | p1qs+1 . . . q1) =
=
∑s+1

i=1 h(qi) + h(p1) +
∑k−1

i=2 h(pi | qs+1 . . . q1) − i(pi; p1 | qs+1 . . . q1) ≤
≤
∑s+1

i=1 h(qi) + h(p1) +
∑k−1

i=2 h(pi | qs+1 . . . q1) − (k − 2) ≤
≤
∑s+1

i=1 h(qi) +
∑k−1

i=1 h(pi) − (k − 2).
Hence, taking into account the previous inequality it follows that k + r −

1 ≤
∑s+1

i=1 h(qi) +
∑k−1

i=1 h(pi). Therefore, there is some p ∈ A that satisfies
h(p) ≥ (k + r − 1)/(k + s) and so κ(Γ ) ≥ κ(Γ ′) ≥ (k + r − 1)/(k + s). ��
In particular, we find a lower bound on κ(Γ ) for the case of bipartite access
structures having exactly two minimal points.

Corollary 11. Let {(x1, y1), (x2, y2)} be the set of minimal points of a bipartite
access structure. If x1 > 0, then

κ(Γ ) ≥ 2(x2 − x1) − 1
x2 − x1

.

We present next a construction of optimal secret sharing schemes for a family
of non-ideal bipartite access structures. This family includes the access struc-
tures studied by Metcalf-Burton in [25]. It consists of all the access structures
Γ that are Π-partite for some partition Π = (P1, P2) such that Π(min Γ ) =
{(x1, y1), (x2, 0)} with 0 < x1 < x2 and y1 > 0. For these access structures,
κ(Γ ) ≥ (2(x2 − x1) − 1)/(x2 − x1) by Corollary 11. For every one of them,
we construct a linear secret sharing scheme with complexity equal to this lower
bound on κ(Γ ), and hence

λ(Γ ) ≤ 2(x2 − x1) − 1
x2 − x1

≤ κ(Γ ),

which implies that

κ(Γ ) = σ(Γ ) = λ(Γ ) =
2(x2 − x1) − 1

x2 − x1
.

for every one of those access structures.
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Define P1 = {p1, . . . , pN1} and P2 = {q1, . . . , qN2}, with N1 = |P1| and N2 =
|P2|. Suppose that N1 ≥ x2 and N2 ≥ y1. Let K be a finite field larger than
N1 + x2 − x1 and N2. Define r = x1, t = x2 − x1 and u = y1. Let Ep0 be a
K-vector space of dimension t. Every (s1, . . . , st) ∈ Ep0 is shared among the
participants in P by using two schemes, Σ1 and Σ2. The coordinate s1 is shared
by means of Σ1 and each one of the coordinates s2, . . . , st by means of Σ2.

Let k ∈ K be the secret of Σ1, and k1, k2 ∈ K elements that satisfy k = k1+k2.
Choose uniformly at random the polynomials

– g of degree t + u − 1 such that g(0) = k.
– f and h of degree r − 1 such that f(0) = k2 and h(0) = k1.

Choose x1, . . . , xN1 and y1, . . . , yN2 in K � {0} such that xi �= xj and yi �= yj for
i �= j. For every i = 1, . . . , N1, the share of the participant pi in the scheme Σ1

is (h(xi), g(xi)) ∈ K2, while for every i = 1, . . . , N2 the share of qi is f(yi) ∈ K.
Now let k ∈ K be the secret of the scheme Σ2. Choose x1, . . . , xN1+t and

y1, . . . , yN2 in K�{0} such that xi �= xj and yi �= yj for i �= j. Choose uniformly
at random the polynomials

– g of degree t + u − 1 such that g(0) = k.
– f1 . . . ft of degree r − 1 such that fi(0) = g(xi) for all 1 ≤ i ≤ t.

For every i = 1, . . . , N1, the share of the participant pi in the scheme Σ2 is
g(xs+i), while for all i = 1, . . . , N2 the share of qi is (f1(yi), . . . , fs(yt)).

Both Σ1 and Σ2 are linear and their access structure is Γ . Combining Σ1 and
Σ2 as detailed, we obtain a linear scheme with access structure Γ in which both
the participants in P1 and in P2 receive a sequence of 2t−1 elements of K. Since
dim(Ep0 ) = t, σ(Σ) = (2t − 1)/t.

Theorem 12. The bipartite access structure Γ defined by the minimal points
{(x1, y1), (x2, 0)} with x1, x2, y1 > 0 satisfy:

κ(Γ ) = σ(Γ ) = λ(Γ ) =
2(x2 − x1) − 1

x2 − x1
.

6 A Linear Programming Approach

In this section we present a procedure to compute the value of κ for bipartite
access structures. We search the minimum of h({p}) for all p ∈ Q � {p0} among
all bipartite polymatroids S = (Q, h) that satisfy Γ = Γp0(S). Yeung [34] showed
that this kind of problems, which are determined by the Shannon inequalities,
can be formulated as a linear programming problem. We improve this technique
by considering results by Matúš on polymatroids [24], and by using the results on
bipartite polymatroids presented in previous sections. The use of the pair (Q, ĥ)
instead of (Q, h) in the linear programming problem reduces dramatically the
size of the linear programming problem, because the size of the vector to consider
changes from 2|P1|+|P2|+1 to 2(|P1|+1)(|P2|+1). This procedure can be extended
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to m-partite access structures with m > 2, so it can be used to compute κ for
any access structure. Nevertheless, our method only makes sense if the number
of parts is much smaller than the number of participants. Linear programming
was previously used in secret sharing by Stinson [32] in order to find efficient
constructions of secret sharing schemes by using decomposition techniques.

Let Π = (P1, P2) be a partition of P and define N1 = |P1| and N2 =
|P2|. A Π0-partite polymatroid S is completely determined by a vector s =
(ĥ(x, y, z))(x,y,z)∈Q ∈ R|Q|, where (Q, ĥ) is the pair associated to S and every
entry of s is indexed by (x, y, z) ∈ Q. For every (x, y, z) ∈ Q, define the vector
e(x,y,z) ∈ R|Q| as the vector with entry 1 in the position (x, y, z) and 0 elsewhere.

For a bipartite access structure, we construct the matrices A and B, and the
vector b for which a vector s ∈ R|Q| corresponds to a Π0-partite Γ -polymatroid
S if and only if A · sT ≤ 0, B · sT = b, and s ≥ e(0,0,1). Then κ(Γ ) is obtained
by minimizing e(1,0,0) · sT and e(0,1,0) · sT for these vectors.

Let Γ be an access structure on P . A pair S = (Q, h) with Q = P ∪ {p0} is a
Γ -polymatroid if and only if the following conditions are satisfied:

1. h(∅) = 0, and
2. h(Q � {p}) ≤ h(Q), for all p ∈ Q, and
3. h(X) + h(X ∪ {p, q}) ≤ h(X ∪ {p}) + h(X ∪ {q}) for all p, q ∈ Q � X , and
4. h(X ∪ {p0}) = h(X) for every X ⊆ P in Γ , and h(X ∪ {p0}) = h(X)+ 1 for

every X ⊆ P not in Γ .

The first three conditions are an alternative characterization of polymatroids due
to Matúš [24], and the fourth condition characterizes the Γ -polymatroids. The
matrices A and B and the vector b are constructed according to the conditions
1 to 4 as follows.

1. Add the row e(0,0,0) to B and the element 0 in b in the corresponding
position.

2. Add the following rows to the matrix A: e(N1−1,N2,1)−e(N1,N2,1), e(N1,N2−1,1)

−e(N1,N2,1), and e(N1,N2,0) − e(N1,N2,1).
3. Add the following rows to A for all (x, y, z) ∈ Q satisfying the following

conditions:

(a) e(x,y,z) + e(x+2,y,z) − e(x+1,y,z) − e(x+1,y,z) if x < N1 − 1.
(b) e(x,y,z) + e(x,y+2,z) − e(x,y+1,z) − e(x,y+1,z) if y < N2 − 1.
(c) e(x,y,z) + e(x+1,y+1,z) − e(x+1,y,z) − e(x,y+1,z) if x < N1 − 1 and y < N2.
(d) e(x,y,0) + e(x+1,y,1) − e(x+1,y,0) − e(x,y,1) if x < N1.
(e) e(x,y,0) + e(x,y+1,z) − e(x,y+1,0) − e(x,y,1) if y < N2.

4. Add the row e(x,y,1) − e(x,y,0) to the matrix B for every (x, y) ∈ Π(P ) and
add the entry 0 to b if (x, y) ≥ (x′, y′) for some (x′, y′) ∈ Π(min Γ ) or 1
otherwise.

Since σp0(S) = max{ĥ(1, 0, 0), ĥ(0, 1, 0)}, we have to split the computation of
κ(S) into two different linear programming problems. In the first case, we sup-
pose that ĥ(0, 1, 0) ≤ ĥ(1, 0, 0), and so we add the row e(0,1,0) − e(1,0,0) to the
matrix A. Then we solve the following linear programming problem:
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min e(1,0,0) · sT (1)
subject to: A · sT ≤ 0 (2)

B · sT ≤ b (3)
s ∈ R|Q|

where (1) is the objective function, (2) and (3) are the linear constraints and
linear equalities, respectively. The smallest value of the objective function is
called the optimal value, and a vector s∗ that gives the optimal value is an
optimal solution.

In the second case, we solve the linear programming problem assuming that
ĥ(1, 0, 0) ≤ ĥ(0, 1, 0) instead of ĥ(0, 1, 0) ≤ ĥ(1, 0, 0).

In both problems, we observe that A, B and b determine a convex region
U ⊆ R|Q|. Moreover, since the number of linear constraints and linear equalities
involved is finite, U is a polytope. The set U is commonly called the feasible
region and a vector s ∈ U is called a feasible solution. Notice that polymatroids
from secret sharing schemes must be in at least one of the two possible feasible
regions. Thus, at least one of the two linear programming problems have solution
because the feasible region cannot be empty in both cases and all entries in every
feasible solution are lower bounded. If s1 is an optimal solution of the first linear
programming problem (when ĥ(0, 1, 0) ≤ ĥ(1, 0, 0)) and s2 is an optimal solution
of the second one, then κ(Γ ) = min{e(1,0,0) · sT

1 , e(0,1,0) · sT
2 }.

7 Some Experimental Results

We use MATLAB� and the optimization software MOZEK� to implement
the linear programming approach described in the previous section. The pro-
gram receives as input, the minimal points in the access structure, namely,
{(x1, y1), . . . , (xm, ym)} with xi < xi+1 for every i = 1, . . . , m − 1. As a conse-
quence of Theorem 7, we can consider that the number of elements in P1 and
P2 are N1 = xm and N2 = y1, respectively. For some structures κ coincides with
the bound given in Theorem 10. For instance, bipartite access structures with
two minimal points (Corollary 11), and bipartite access structures whose set of
minimal points are {(x, y), (x+ r, y− 1), . . . , (x+mr, y−m)} (where x, r, m > 0
and y − m ≥ 0).

However, in general κ does not attain the bound given in Theorem 10. We
present some examples. First we consider the structures Γ 1

r,s,t and Γ 2
r,s,t (over the

set of participants P = P1 ∪ P2) whose minimal points are {(r, 2), (s, 1), (t, 0)}
(where 0 ≤ r < s < t, N1 = t and N2 = 2) and {(r, 4), (s, 3), (t, 1)} (where
0 ≤ r < s < t, N1 = t and N2 = 4), respectively.

In the Tables 1, 2 and 3, we present some outputs for the access struc-
tures Γ 1

r,s,t and Γ 2
r,s,t. The first row of each table shows the values of r, s, t,

while the second one shows the value of κ.
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Table 1.

r, s, t 1,3,7 1,5,7 1,4,8 1,5,8 1,3,8 1,6,8 1,4,9 1,6,9 1,5,10 1,6,10

κ(Γ 1
r,s,t) 13/7 13/7 23/11 23/11 17/9 17/9 30/14 30/14 43/19 43/19

Table 2.

r, s, t 1,2,4 1,3,4 1,2,5 1,4,5 1,2,6 1,5,6 1,2,7 1,6,7 1,2,8 1,7,8

κ(Γ 1
r,s,t) 3/2 3/2 5/3 5/3 7/4 7/4 9/5 9/5 11/6 11/6

Table 3.

r, s, t 1,3,5 1,3,6 1,4,6 1,3,7 1,5,7 1,4,8 1,5,8 1,3,8 1,6,8 1,4,9

κ(Γ 2
r,s,t) 22/13 9/5 99/53 43/22 13/7 23/11 23/11 17/9 263/121 15/7

Notice that for each access structure Γ in Table 2, there is a minor Γ ′ for which
κ(Γ ) attains the lower bound of κ(Γ ′) given in Theorem 10. The minimal points
of Γ ′ are of the kind {(r, 2), (s, 1)} or {(s, 1), (t, 0)}.

8 Results on Bipartite Polymatroids

In this section we study the separation between σ, κ and λ by analyzing the
tripartite polymatroids associated to bipartite access structure. If for a certain
access structure Γ all Γ -polymatroids are entropic, then σ(Γ ) = κ(Γ ), and if
each entropic Γ -polymatroid is the sum of K-linearly representable matroids for
a finite field K, then σ(Γ ) = λ(Γ ). We show that all unipartite polymatroids
satisfy these properties, but this is not the case for m-partite polymatroids with
m ≥ 2. First we show a technical lemma.

Proposition 13. The sum of two integer polymatroids that are linearly repre-
sentable over K is linearly representable over K.

Proof. For i = 1, 2, let Si = (Q, hi) be two integer polymatroids that are lin-
early representable over K, and consider vector spaces Ei over K and subspaces
V i

1 , . . . , V i
n ⊆ Ei that provide a linear representation of Si. Consider E = E1⊕E2

and Vj = V 1
j ⊕ V 2

j ⊆ E for j = 1, . . . , n. Clearly, these subspaces linearly repre-
sent S1 + S2. ��

8.1 Unipartite Polymatroids

Let S = (Q, h) be a unipartite polymatroid and (Q, ĥ) the pair associated to
it. Define h0 = 0, and for every i = 1, . . . , n define the integers hi = ĥ(i)
and δi = hi − hi−1. A sequence of integers h0, . . . , hn with h0 = 0 defines a
unipartite polymatroid if and only if δ1 ≥ · · · ≥ δn ≥ 0. The vector (δ1, . . . , δn)
is called the increment vector of the unipartite polymatroid S. Obviously, a
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unipartite polymatroid is determined by its increment vector, and it is an integer
polymatroid if and only if its increment vector has integer components. If S =
(Q, h) is a unipartite matroid, then there exists an integer r with 0 ≤ r ≤ |Q|
such that the increment vector of S satisfies δi = 1 if i ≤ r and δi = 0 otherwise.
We notate Ur,n for such a unipartite matroid. It is well known that the unipartite
matroid Ur,n is linearly representable over every finite field K with |K| ≥ n.

Proposition 14. Every unipartite integer polymatroid is a sum of unipartite
matroids.

Proof. Given a unipartite integer polymatorid S = (Q, h), consider the integer
values δ1 ≥ · · · ≥ δn ≥ 0. Then there exists a sequence of integers n = r0 ≥
r1 ≥ · · · ≥ rδ1 ≥ rδ1+1 = 0 such that rδi ≥ i > rδi+1 for every i = 1, . . . , n. We
claim that S = Ur1,n + · · · + Urδ1 ,n. We have to check that δi = δ1

i + · · · + δδ1
i

for every i = 1, . . . , n, where δk is the increment vector of the uniform matroid
Urk,n. Recall that δk

i = 1 if rk ≥ i and δk
i = 0 otherwise. ��

Theorem 15. Every unipartite integer polymatroid is linearly representable,
and hence entropic.

Proof. Straightforward from Propositions 14 and 13 and the fact that the uni-
form matroid Ur,n is linearly representable over every finite field with at least n
elements. ��

All bipartite matroids are linearly representable [14] and so entropic. How-
ever, next we show that not all bipartite polymatroids are entropic. The Va-
mos matroid V is the matroid of dimension four on the set {1, . . . , 8} with
rank function r such that r(A) = 4 for every A ⊆ {1, . . . , 8} of size 4 except
{1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6} {3, 4, 7, 8} and {5, 6, 7, 8}. Define a = {1, 2},
b = {3, 4}, c = {5, 6}, d = {7, 8}, the set P = {a, b, c, d}, and the partition
Π = ({a, b}, {c, d}). Consider S the Π-partite polymatroid whose rank function
is derived from the rank function of V . Since S is non-entropic, we have the
following result.

Proposition 16. There exist bipartite integral polymatroids that are non-entro-
pic.

Let K be a finite field with |K| ≥ 10 and x1, . . . , x10 different elements in
K. Consider the function v : K → K7 defined by v(x) = (1, x, . . . , x6). Con-
sider P = {a, b, c, d} and the vector subspaces Va = 〈v(x1), v(x2), v(x3)〉, Vb =
〈v(x4), v(x5), v(x6)〉, Vc = 〈v(x4), v(x7), v(x8)〉, and Vd = 〈v(x4), v(x9), v(x10)〉.
Consider the partition Π = ({a}, {b, c, d}), and S the Π-partite polymatroid
whose rank function is the dimension of these subspaces. Let (Q, ĥ) be the pair
associated to S. After some computation, we see that this polymatroid is not a
sum of matroids. The details will appear in the full version of the paper.

Proposition 17. There exist bipartite integral entropic polymatroids that are
not the sum of bipartite matroids.
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9 Conclusions and Open Problems

In general it is not known how far is σ from κ and λ. In this article we study
this problem restricted to multipartite access structures and we obtain better
bounds on these parameters. We present a method to compute κ for any multi-
partite access structure, bounds on κ and λ, and optimal schemes for non-ideal
bipartite access structures. These non-ideal access structures have the property
that κ coincides with σ and λ. It is also satisfied by bipartite matroid ports,
but it is not known if it is true for all bipartite access structures. We study the
entropic polymatroids and the linearly representable ones in order to solve this
problem, but we just obtain negative results. The characterization of the bipar-
tite polymatroids that are entropic and the ones that are linearly representable
could be an interesting approximation to this open problem.

It has been proved in [3] that, for 4-partite access structures, the non-Shannon
inequalities give better bounds on σ for matroid ports. All bipartite matroid
ports are ideal, but maybe these inequalities could give better bounds on σ for
non-ideal access structures.

In Theorem 7, we prove that if two access structures have the same minimal
points, then κ is the same. However, it is not known if in general λ is also
the same. A positive answer would simplify a lot the search of optimal linear
constructions and the study of this parameter.
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Abstract. In a multisecret sharing scheme, several secret values are

distributed among a set of n users, and each secret may have a differ-

ent associated access structure. We consider here unconditionally secure

schemes with multithreshold access structures. Namely, for every subset

P of k users there is a secret key that can only be computed when at

least t of them put together their secret information. Coalitions with at

most w users with less than t of them in P cannot obtain any information

about the secret associated to P . The main parameters to optimize are

the length of the shares and the amount of random bits that are needed

to set up the distribution of shares, both in relation to the length of

the secret. In this paper, we provide lower bounds on this parameters.

Moreover, we present an optimal construction for t = 2 and k = 3, and

a construction that is valid for all w, t, k and n. The models presented

use linear algebraic techniques.

Keywords: Unconditional security, multisecret sharing schemes, thresh-

old access structures.

1 Introduction

1.1 Multisecret Sharing Schemes

In a secret sharing scheme some secret information is distributed into shares
among a set of users in such a way that only authorized coalitions of users can
reconstruct the secret from their shares. Such a scheme is said to be perfect if
unauthorized subsets of users do not obtain any information about the secret.

Multisecret sharing schemes are a generalization of such schemes. In a multi-
secret sharing scheme a number of secret values are distributed; we use J as the
set of indices for this secret values. For each one of these secrets there will be
some coalitions authorized to know it, and some other coalitions that will not
be able to obtain any information about it.

For every j ∈ J , we call Γj the access structure associated with the secret
corresponding to the index j, that is the collection of subsets authorized to
know that particular secret. We also call Δj the forbidden structure associated
with the secret corresponding to the index j, that is the collection of subsets
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unauthorized to know it. Naturally, the collection of subsets Γj is monotone
increasing, while Δj is monotone decreasing. Obviously, Γj ∩ Δj = ∅ for every
j ∈ J .

In a multisecret sharing scheme we define the specification structure Γ as the
collection of pairs of access and forbidden structures associated with the secret
indexed by the elements in J ,

Γ = {(Γj , Δj) : j ∈ J }.
Multisecret sharing schemes are defined as a collection of random variables sat-

isfying certain properties in terms of Shannon entropy. We denote by Si the ran-
dom variable associated with the share of user i ∈ U . Likewise, if A = {i1, . . . , ir}
is a set of users, then SA is the random variable associated with the shares of
users in A, that is SA = Si1 × · · · × Sir .

A perfect multisecret sharing scheme with specification structure Γ = {(Γj ,
Δj) : j ∈ J } is formed by two collections, {Si}i∈U and {Kj}j∈J , of random
variables satisfying:

1. If A ∈ Γj then H(Kj|SA) = 0.
2. If B ∈ Δj then H(Kj|SB) = H(Kj).

The random variables {Si}i∈U correspond to the secret information distributed
among the users, while the random variables {Kj}j∈J correspond to the shared
secret keys. Observe that, with this definition, we require the schemes to be un-
conditionally secure, namely the forbidden subsets cannot obtain any informa-
tion on the secrets, independently of the computational power of the adversary.

The efficiency of a multisecret sharing scheme is measured by means of the
complexity σ and the randomness σT . The complexity σ is the ratio between the
amount of information received by every user and the amount of information
corresponding to the key. The randomness σT is the ratio between the amount
of information distributed to the set of users U and the amount of information
corresponding to the key. Namely,

σ =
maxi∈U H(Si)
minj∈J H(Kj)

σT =
H(SU )

minj∈J H(Kj)

We observe that both complexity and randomness are greater or equal than 1.
These parameters are a generalization of the ones used to measure the efficiency
of secret sharing schemes. As for the easier case of secret sharing schemes, the
optimization of these parameters for general specification structures is a very
difficult open problem. Nevertheless, in the seminal paper on secret sharing by
Shamir [10], optimal schemes are presented for threshold access structures. In
contrast, no general optimal constructions of multisecret sharing schemes are
known for this simple case of threshold specification structures. The optimality
of such a construction is proved by comparing its complexity to some lower
bound. General lower bounds for the complexity of multisecret sharing schemes
with threshold structure were given in [7]. We present here general lower bounds
for the randomness of such schemes. Optimal constructions are only known for
very particular values of the thresholds [1,3,8]. Shamir’s polynomial construction
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of secret sharing schemes was generalized by Brickell [5] and Simmons [11], by
using linear algebra technics; specifically they introduced linear secret sharing
schemes. The same development took place in key predistribution schemes. The
polynomial construction by Blundo et al. [3] was generalized by Padró et al. [9]
to a linear construction. This linear framework is the starting point in our new
approach to multithreshold schemes.

1.2 Multithreshold Sharing Schemes

This paper presents constructions of multisecret sharing schemes for some type
of specification structures defined by thresholds. These kind of schemes are called
multisecret threshold sharing schemes, or multithreshold schemes for short, and
were introduced by Jackson, Martin and O’Keefe [7].

In these schemes, every secret is associated with a subset P⊂U of k users.
Shares distributed among users must be created in such a way that every subset
with at least t users in P is authorized to know P ’s secret, and every subset with
at most w users, having less than t users in P , is unauthorized.

The specification structure of a multithreshold schemes depends on four pos-
itive integers w, t, k and n satisfying:

• 1 ≤ t ≤ k ≤ n
• t − 1 ≤ w ≤ n − k + t − 1

On a set U of n users, the specification structure of a w-secure (t, k, n) multi-
threshold sharing scheme is defined as follows:

– J = {P ⊆ U : |P | = k}
– For every P ∈ J ,

• ΓP = {A ⊆ U : |A ∩ P | ≥ t}
• ΔP = {B ⊆ U : |B| ≤ w, |B ∩ P | ≤ t − 1}

When k = n, then a single secret is shared. In this case, we have a threshold
access structure, and the threshold sharing scheme by Shamir [10] provides an
optimal solution. If t = 1, then we have a Key Predistribution Scheme (KPS).
Optimal constructions were given in [3].

Complete w-secure (t, k, n) multithreshold schemes are those with w = n −
k + t − 1. If a multithreshold scheme is complete, for any P ∈ J and B ⊆ U , a
subset B such that |B ∩ P | < t is P -unauthorized.

1.3 Known Results

The first multisecret schemes were multithreshold schemes with t = 1, and they
were called Key Predistribution Schemes (KPS) [3]. In these schemes, any user
in P ∈ J can calculate P ’s secret by itself without any additional information.
There are some interesting constructions of KPSs: the model presented in [3],
based on symmetric polynomials, and the model in [9], called Linear KPS, de-
signed using linear maps. Linear KPS unify the previous proposals of KPS. On
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the other hand, when k = n and w = t − 1, then we have a threshold secret
sharing scheme [10].

In the rest of constructions of multithreshold schemes, t = 2. Namely, Jack-
son, Martin and O’Keefe found a geometric construction of an (n−k+1)-secure
(2, k, n) multithreshold scheme [8]. Moreover, Barwick and Jackson [1] gave an-
other geometric construction for w-secure (2, 3, n) multithreshold schemes.

Jackson, Martin and O’Keefe studied in [7] some bounds on the size of shares,
and gave a lower bound on the complexity of a w-secure (2, 3, n).

1.4 Our Results

We present here a new framework to study multisecret sharing schemes. We
introduce the concept of linear multisecret sharing scheme that extends the cor-
responding notion in secret sharing and key predistribution schemes. This formal
setting simplifies the security proofs in the constructions of multisecret sharing
schemes.

By using our approach, we present a new construction of a w-secure (2, 3, n)
multithreshold scheme with optimal complexity and randomness that is simpler
than the scheme with the same properties given by Barwick and Jackson [1].

We find a new lower bound on the randomness of a multithreshold scheme.
Furthermore, by using entropies we present a new proof for the lower bound on
the complexity given in [7].

Finally, in Section 5, we present a general construction of w-(t, k, n) multi-
threshold scheme for general values of the parameters. In general, this is not an
optimal scheme, but it is the best known construction that applies to all possible
values of the parameters w, t, k, n.

2 Lower Bounds on the Complexity and Randomness

The complexity and the randomness of a scheme, defined in Section 1.2, are
ratios that indicate the amount of information the trusted authority sends to
users. This section is devoted to study the information rates of multithreshold
schemes, namely to proof the next theorem, a result that provides bounds for
the complexity and the randomness of multithreshold schemes.

Theorem 1. Let U = {1, . . . , n} be the set of users of a w-secure (t, k, n) multi-
threshold scheme, such that H(KQ) is the same for every Q ∈ J and H(Si) is the
same for every i ∈ U . Then, we have following lower bounds on the complexity
σ and the randomness σT :

σ ≥
(
w+k−2t+1

k−t

)
σT ≥

((
w+k−2t+2

k−t+1

)
+ (t − 1)

(
w+k−2t+1

k−t

))
The following technical lemmas show properties of the entropy of keys in a
multithreshold scheme. They will be used to prove Theorem 1.

Lemma 1. Let X, Y , Z be three random variables, H(X) the entropy of the
variable X and H(Y |Z) the entropy of Y conditional on Z. If H(Y |Z) = 0, then
H(X |Y ) ≥ H(X |Z) and H(Z) ≥ H(Y ).
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Lemma 2. Let U = {1, . . . , n} be the set of participants of a w-secure (t, k, n)
multithreshold scheme. Let A ⊆ U ′ ⊆ U such that |U ′| = w + k − (t − 1) and
|A| = t− 1. Let A be the following collection of subsets: A = {Q ∈ J | A ⊆ Q ⊆
U ′} = {Q1, . . . , Qμ}, where μ =

(w+k−2(t−1)
k−(t−1)

)
.

Then, H(KQi |KQ1 , . . . , KQi−1 , KQi+1 , . . .KQμ) = H(KQi) for every Qi ∈ A.
That is, the random variables KQ1 , . . . , KQμ are independent.

Proof. Let Qi ∈ A and C = (U ′ � Qi) ∪ A. Observe that C consists of w users.
Since C ∩ Qi = A, then |C ∩ Qi| = t − 1, and therefore C is an unauthorized
subset related to the key associated with Qi. That is, H(KQi | SC) = H(KQi).

On the other hand, C∩Qj � A for every j �= i, hence |C∩Qj | ≥ t. Then, C is an
authorized subset related to the key associated with Qj, that is H(KQj | SC) = 0,
for every j �= i. Moreover, H(KQ1 , . . . , KQi−1 , KQi+1 , . . . , KQμ | SC) = 0.

Now, using Lemma 1, it follows that
H(KQi | KQ1 , . . . , KQi−1 , KQi+1 , . . . , KQμ) ≥ H(KQi | SC). Consequently,
H(KQi | KQ1 , . . . , KQi−1 , KQi+1 , . . . , KQμ) = H(KQi), and therefore the ran-
dom variables associated with the keys of subsets in A are independent.

Lemma 3. Let U = {1, . . . , n} be the set of participants of a w-secure (t, k, n)
multithreshold scheme. Let B ⊆ U ′ ⊆ U such that |U ′| = w + k − (t − 1) and
|B| = t. Consider the following collection of subsets of U : B = {Q ∈ J | B ⊆
Q ⊆ U ′} = {Q1, . . . , Qν}, where ν =

(
w+k−(t−1)−t

k−t

)
=
(
w+k−2t+1

k−t

)
.

Then, H(KQi | KQ1 . . .KQi−1, KQi+1, . . . , KQν ) = H(KQi) for every Qi ∈ B,
that is, the random variables KQ1 , . . . , KQν are independent.

Proof. Let A be a subset of B such with t − 1 elements. If we define A as in
Lemma 2, observe that B ⊆ A, thus the random variables KQ1 , . . . , KQν are
independent.

Lemma 4. Under the conditions and notation of the preceding two lemmas,
H(KB | SA) = H(KB) and H(KA | SB) = H(KA�B), for any subset A ⊆ B.

Proof. Suppose, without loss of generality, that A = {1, . . . , t − 1} and B =
{1, . . . , t}. For every Qi ∈ A we define Ci = (U ′ � Qi)∪A. Observe that, as seen
during the proof of Lemma 2,

H(KQi | SCi) = H(KQi) and H(KQj | SCi) = 0 for every j �= i.

On the other hand, due to entropy properties,

H(KB | SA) =
ν∑

i=1

H(KQi | SAKQ1 . . . KQi−1).

Since A ⊆ Ci, it follows that H(KQi | SAKQ1 . . . KQi−1) ≥ H(KQi | SCiKQ1 . . .
KQi−1). Furthermore, since H(KQ1 . . .KQi−1 | SCi) = 0, it follows, that

H(KQi | SCiKQ1 . . .KQi−1) = H(KQi | SCi) = H(KQi).
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Hence,

H(KB) ≥ H(KB | SA) ≥
ν∑

i=1

H(KQi) = H(KB),

which leads to H(KB | SA) = H(KB).
Using again entropy properties, we obtain

H(KA | SB) =
μ∑

i=1

H(KQi | SBKQ1 . . . KQi−1).

For every Qi in B we have H(KQi | SBKQ1 . . .KQi−1) = 0, because |Qi∩B| = t.
For every Qi in A � B, we have that B ⊆ Ci, thus

H(KQi | SBKQ1 . . .KQi−1) ≥ H(KQi | SCiKQ1 . . .KQi−1) =

= H(KQi | SCi) = H(KQi).

Hence,

H(KA | SB) =
∑

i∈A�B
H(KQi | SBKQ1 . . . KQi−1) =

∑
i∈A�B

H(KQi) = H(KA�B).

Finally, we provide the proof of Theorem 1.

Proof. First, we prove the upper bound on σ. Let B = {1, . . . , t}, A = {1, . . . , t−
1} and U ′⊂U such that B⊂U ′ and |U ′| = w+k−t+1, and consider the collection
of subsets B = {Q ∈ J | B ⊆ Q⊂U ′} = {Q1, . . . , Qν}, where ν =

(
w+k−(t−1)−t

k−t

)
.

Lemma 3 ensures that the variables KQ1 , . . . , KQν are independent, thus
H(KB) = νH(K). Now, for every Q ∈ B we know |B ∩ Q| = t and |A ∩ Q| =
t − 1, hence H(KQ | StSA) = 0 and H(KQ | SA) = H(KQ). Consequently,
H(KB | StSA) = 0 and, by Lemma 4, H(KB | SA) = H(KB). Lemma 1 leads
to H(S) = H(St) ≥ H(KB) = νH(K), and the desired upper bound on σ is
obtained.

Let A be the structure associated with A, defined in Lemma 2. In order to find
an upper bound on σT we use H(SU ) = H(SB)+H(SU | SB). First, we are going
to bound H(SB). Since H(SB) =

∑t
i=1 H(Si | S1 . . . ...Si−1), H(KB | StSA) = 0

and H(KB | SA) = H(KB), then it follows that H(St | SA) ≥ H(KB). Now,
since H(Si) = H(S) for every i, then H(Si | S1, . . . ...Si−1) ≥ H(St | SA), and
therefore H(SB) ≥ t · νH(K).

Now, we are going to bound H(SU | SB). Since H(KA | SU ) = 0, we have
H(SU | SB) ≥ H(KA | SB). Applying Lemma 4, it follows that H(KA | SB) =
(μ − ν)H(K), thus H(SU ) ≥ (μ + (t − 1)ν)H(K), and the desired upper bound
on σT is obtained.

3 Linear Multisecret Sharing Schemes

A useful method to define secret sharing schemes is to consider some linear maps
to define the share of each user and the keys in the scheme. Using this kind of
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maps, it will be easy to check whether a coalition can obtain a key through a
linear combination of their shares. Furthermore, the use of linear techniques can
simplify the construction of the scheme.

In linear multisecret schemes, there are some vector spaces over a finite field
K called E, Ei and VP for every i ∈ U and P ∈ J . There is a surjective linear
map φi : E → Ei for every i ∈ U that generates the secret information (the
share) of each user, and there is a surjective linear map πP : E → VP for every
P ∈ J . Choosing x ∈ E uniformly at random, πP (x) is P ’s secret and φi(x) is
the secret information of the user i.

Next result shows a property of linear maps widely used within the security
proofs for most of the schemes presented in this paper. This result is Lemma 3.1
in [9].

Lemma 5. Let E, E0 and E1 be vector spaces over a finite field K. Consider
two linear mappings, φ0 : E → E0 and φ1 : E → E1, where φ0 and φ1 are
surjective. Suppose that a vector x ∈ E is chosen uniformly at random. Then,

1. the value of x0 = φ0(x) can be uniquely determined from x1 = φ1(x) if and
only if kerφ1⊂ kerφ0.

2. the value of x1 provides no information about the value of x0 if and only if
kerφ1 + kerφ0 = E.

A Key Predistribution Scheme (KPS) is a method by which a trusted authority
distributes secret information among a set of users in such a way that every user
belonging to a set in a family of privileged subsets is able to compute a common
key associated with that set. This kind of schemes can be seen as multisecret
schemes where the minimal authorized sets are single users.

C. Padró, I. Gracia, S. Mart́ın and P. Morillo present in [9] some KPSs defined
trough linear maps, that they call Linear KPS (LKPS). That paper presents a
method to generate schemes that base their security on linear algebra properties.
Next theorem is a generalization of Theorem 3.2 in [9] for multisecret sharing
schemes with a given specification structure Γ .

Theorem 2. Let Γ be a specification structure on the set of n users U =
{1, . . . , n}. Let E and Ei �= {0}, for every i ∈ {0, 1, . . . , n}, be vector spaces
over a finite field K. Suppose there exist a surjective linear mapping φi : E → Ei

for every user i ∈ U and a surjective linear mapping πP : E → E0 for every
subset P ∈ J satisfying:

1.
⋂

i∈A kerφi⊂ kerπP for any A ∈ ΓP .
2.
⋂

j∈F kerφj + kerπP = E for any F ∈ ΔP .

Then there exists a linear multisecret sharing scheme with specification structure
Γ whose complexity and randomness are:

σ =
maxi∈U dim Ei

dim E0
σT =

dim E

dim E0
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Proof. The theorem is proven analogously to theorem 3.2 in [9]. We construct
a scheme where we assume that E, Ei, E0, πP and φi are publicly known, for
all i ∈ U and P ∈ J . Given an element x ∈ E randomly chosen, the secret of
P ∈ J is πP (x) and the share of user i is φi(x).

Let A = {i1, . . . , ir} be a subset of users. We consider φA a map from E to
Ei1 × · · · ×Eir defined as φA = φi1 × . . .× φir . Observe that φA(x) is the secret
information known by the users of A and, as φi is surjective for all i ∈ U , φA is
surjective for all A⊂U .

Let ΓP and ΔP be the collection of authorized and unauthorized subsets for
a given P in J . If A is in ΓP , Lemma 5 says that πP (x) can be obtained from
φA(x) if and only if kerφA⊂ kerπP . But kerφA =

⋂
i∈A kerφi, so by hypothesis

this property holds. But if F ∈ ΔP , by hypothesis
⋂

i∈F kerφi + kerπP = E, so
it implies that kerφF + kerπP = E. By Lemma 5, users in F cannot obtain any
information about πP , and the proof is concluded.

Observe that condition 1 in Theorem 2 guarantees H(KP | SA) = 0, so subsets
in ΓP can calculate P ’s secret. Besides, if the scheme satisfies condition 2, then
we can ensure that H(KP | SF ) = H(KP ) for all subset in ΔP , so the scheme
is perfect.

We will use Theorem 2 to construct our schemes, so we will use the same kind
of operators and notation used in [9]. For all schemes presented in this paper,
the keys are in K, E0 = VP = K for all P ∈ J .

4 An Optimal w-Secure (2, 3, n) Multithreshold Scheme

In this section we present an optimal w-secure (2, 3, n) multithreshold scheme
constructed using linear techniques, according to the model discussed in sec-
tion 3. In section 1.2 we have seen that w must be an integer between 0 and
n − k + t − 1, so in our case 0 ≤ w ≤ n − 2. When w = n − 2, this scheme is
complete and allows a simpler model, which is presented in subsection 4.3.

In a w-secure (2, 3, n) multithreshold scheme every subset of three users has
a common secret, that will only be revealed if at least two of them share their
secret information. If a subset P ∈ J has a secret, coalitions of w users or less
will have zero knowledge about P ’s secret if such coalitions have at most one
user in P . Considering the notation in 1.2, our case leads to:

– |U| = n
– J = {P ⊆ U : |P | = 3}
– For all P ∈ J ,

• ΓP = {A ⊆ U : |A ∩ P | ≥ 2}
• ΔP = {B ⊆ U : |B| ≤ w, |B ∩ P | ≤ 1}

4.1 Optimal w-Secure (2, 3, n) Multithreshold Scheme Construction

To design a linear multithreshold scheme, some vector spaces E, E0, E1, . . . , En,
defined over a finite field K are required. There is no restriction on the charac-
teristic of K but, as we will see in subsection 4.2, the field must be large enough.
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The understanding of the scheme requires familiarity with linear algebra con-
cepts such as dual vector space and tensor product. The appendix provides some
notions on these subjects.

The trusted authority creates an identifier xi ∈ K − {0} for each user i ∈ U ,
that is public; let X = {xi}i∈U . Then, the trusted authority privately sends to
each user a linear map that depends on its identifier.

In the scheme presented in this section,

– E = S2(Kw) × (Kw)∗

– Ei = (Kw)∗ for all i ∈ U
– E0 = K

– For every i ∈ U , the map φi : S2(Kw) × (Kw)∗ −→ (Kw)∗ is defined as
follows:

φi(T, S) = T (vi, ·) + λiS

– For every P = {i, j, k} ∈ J , the map πP : S2(Kw) × (Kw)∗ −→ K is defined
as follows:
πP (T, S) =

= xi·φi(T, S)(λkvj−λjvk)+xj ·φj(T, S)(λivk−λkvi)+xk·φk(T, S)(λjvi−λivj)

where

– λi = −xw
i for all i ∈ U

– vi = (1, xi, x
2
i , . . . , x

w−1
i ) for all i ∈ U

The trusted authority chooses some (T, S) ∈ S2(Kw) × (Kw)∗ and distributes
privately the linear forms φi(T, S) to every user in U . This linear form is the
secret information of each user. Given P = {i, j, k} a subset in J , if two users i
and j share their secrets, using linearity of S together with the symmetry and
bilinearity of T , they can calculate πP (T, S). Namely, since for any {i, j, k}⊂U
we have

[φi(T, S)](λkvj−λjvk)+[φj(T, S)](λivk−λkvi)+[φk(T, S)](λjvi−λivj) = 0 (1)

then,

πP (T, S) = xiφi(T, S)(λkvj − λjvk) + xjφj(T, S)(λivk − λkvi)+
+ xk(−φi(T, S)(λkvj − λjvk) − φj(T, S)(λivk − λkvi)).

For the sake of security in our constructions, in some cases X needs to fulfill a
condition. For a clearer formulation of this condition, we are going to introduce
the following rational functions:

• f(z, y) =
∑w

i=1 zw
i ·

w∏
j=1,j �=i

y − zj

zi − zj
,

where y ∈ K, z = (z1, · · · , zw) ∈ Kw, such that zi �= zj if i �= j.
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Observe that f(z, zi) = zw
i , for every i ∈ {1, · · · , w}.

• g(z, zw+1, zw+2, zw+3) =
= (zw+1 − zw+2)[zw

w+3f(z, zw+1)f(z, zw+2) + zw
w+1z

w
w+2f(z, zw+3)] +

+ (zw+2 − zw+3)[zw
w+1f(z, zw+2)f(z, zw+3) + zw

w+2z
w
w+3f(z, zw+1)] +

+ (zw+3 − zw+1)[zw
w+2f(z, zw+3)f(z, zw+1) + zw

w+3z
w
w+1f(z, zw+2)],

where zw+1, zw+2, zw+3 ∈ K, z = (z1, · · · , zw) ∈ Kw, such that zi �= zj if i �= j.

Observe that g(xi1 , . . . , xiw+3) is well defined for every (xi1 , . . . , xiw+3) ∈ Xw+3.
The condition on X is:

Condition 1. g(xi1 , . . . , xiw+3) �= 0 for every (xi1 , . . . , xiw+3) ∈ Xw+3.

Since the least common multiple of the denominators involved in the expression
of g is

m(z) =
w∏

1≤i<j≤w

(zi − zj)2

then we will require that the polynomial

p(z, zw+1, zw+2, zw+3) = g(z, zw+1, zw+2, zw+3) · m(z)

does not vanish for every (xi1 , . . . , xiw+3) ∈ Xw+3, for xij �= xik
for j �= k, and

this implies a restriction on the size of the field K. Namely, observe that the
degree of every numerator in f is 2w − 1, and so the degree of every numerator
in g is at most w + 1 + 2(2w − 1) = 5w − 1. Consequently, deg (p) ≤ (5w − 1) +
2[w(w − 1)].

Due to the symmetries in the definition of f and g, it suffices to check that
p(z, zw+1, zw+2, zw+3) �= 0 only for

(
n
3

)(
n−3
w

)
points in Xw+3. Therefore, applying

Schwartz’s Lemma (Theorem 6 in the appendix), the restriction on the size of
the field is |K| >

(
n
3

)(
n−3
w

)
[2(5w − 1)w(w − 1)] + 1.

Eventually, Condition 1 must be checked only once, at the beginning of the
protocol. As we will see in 4.3, this condition will not be necessary when the
scheme is complete.

4.2 Security Proof

Theorem 3. Under Condition 1, the scheme just defined is an optimal w-secure
(2, 3, n) multithreshold scheme.

Proof. In order to prove that this construction defines a w-secure (2, 3, n) mul-
tithreshold scheme we will use Theorem 2. Taking into account that the struc-
ture ΔP is monotone decreasing and the structure ΓP is monotone increasing
for all P ∈ J , it is enough to prove the conditions in Theorem 2 for minimal
subsets in ΓP and maximal subsets in ΔP . So we have to show that for any
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P = {i, j, k} ∈ J and for any subset of P with two elements, e.g. {i, j}, then
kerφi ∩ kerφj is included in kerπP , and for any B ∈ ΔP , with |B| = w, then
E =

⋂
i∈B kerφi + kerπP .

Suppose (T, S) belongs to kerφi ∩ kerφj for some i, j ∈ B. Then, for every
{i, j, k} ∈ J , it follows from (1) that [φk(T, S)](λjvi − λivj) = 0. Now, if we
calculate πP (T, S) for any (T, S) ∈ kerφi ∩ kerφj we see that πP (T, S) = 0, so
the first part is proved.

Now we have to prove the second part. Since πP is a linear map and the image
of πP is K, then dim kerπP = dim E − 1. Therefore it suffices to show that, for
every B ∈ ΔP , there exists an element belonging to

⋂
i∈B kerφi that does not

belong to kerπP .
As previously mentioned, it suffices to prove the second part for maximal

subsets in ΔP , namely the subsets B ∈ ΔP such that |B| = w. Observe that,
given P ∈ J from a w-secure (2, 3, n) multithreshold scheme, 0 ≤ |B ∩ P | ≤ 1
for any B ∈ ΔP . Thus, given P ∈ J we will separately prove the condition for
the cases |B ∩ P | = 0 and |B ∩ P | = 1.

First, we consider maximal subsets in ΔP with one element in P . In order to
simplify notation, we can assume, without loss of generality, that P = {1, 2, 3}
and B = {3, 4, . . . , w + 2}. Clearly, {v3, v4, . . . , vw+2} is a basis of Kw, since
xi �= xj for i �= j.

Consider the operator S ∈ (Kw)∗ such that S(vi) = −λi for all i ∈ B and
the operator T = S ⊗ S. Observe that T is a bilinear symmetrical operator,
T ∈ S2(Kw) (see Appendix A for more details). For any i ∈ B, φi(T, S) =
(S ⊗ S)(vi, ·) + λiS = (S(vi) + λi)S = 0, thus (T, S) belongs to

⋂
i∈B kerφi.

In particular, since {3} = P ∩ B, the chosen operator satisfies φ3(T, S) = 0
and S(v3) = −λ3. Thus, it is straightforward to check that πP (T, S) = (x1 −
x2)λ3(S(v1) + λ1)(S(v2) + λ2).

Now, we check that πP (T, S) �= 0 showing that each factor is nonzero. By
definition of xi and λi, (x1 − x2) and λ3 are different from zero. Let p(x) be the
polynomial of degree w − 1 defined by p(x) = S(1, x, . . . , xw−1). Observe that
p(xi) = xw

i for all i ∈ B = {3, . . . , w+2}. Suppose that p(x) satisfies p(x2) = xw
2

(analogously for p(x1) = xw
1 ). Then xw − p(x) is a polynomial of degree w with

w + 1 zeroes, which is a contradiction. Therefore, the result is proved for the
maximal subsets in ΔP having one element in common with P .

Now suppose B and P are disjoint and, without loss of generality, that P =
{1, 2, 3} and B = {4, . . . , w + 3}. Let S be the operator defined by S(vi) = −λi

for all i ∈ B and T = S ⊗ S ∈ S2(Kw). Analogously to the other case, (T, S)
belongs to

⋂
i∈B kerφi.

Let p(x) be a polynomial defined, as above, by p(x) = S(1, x, . . . , xw−1).
Since p(xi) = xw

i for all i ∈ B = {4, . . . , w + 3}, by Lagrange interpolation, the
expression of this polynomial is

p(x) =
w+3∑
i=4

xw
i ·

w+3∏
j=4,j �=i

x − xj

xi − xj
= f(x, x4, . . . , xw+3)



Linear Threshold Multisecret Sharing Schemes 121

If we express πP (T, S) replacing S(vi) by p(xi), we have

πP (T, S) = (x1 − x2)(λ3p(x1)p(x2) − λ1λ2p(x3))
+(x2 − x3)(λ1p(x2)p(x3) − λ2λ3p(x1))
+(x3 − x1)(λ2p(x3)p(x1) − λ1λ3p(x2)) = g(x1, . . . , xw+3)

Taking into account condition 1, we can conclude that πP (T, S) �= 0. Hence, for
all B ∈ ΔP ,

⋂
i∈B kerφi + kerπP = E, and the security proof is completed.

This scheme is optimal, so complexity and randomness obtained are minimum
for a w-secure (2, 3, n) multithreshold scheme.

Since dim(Ei) = dim(Kw)∗ = w for all i ∈ U and dim E = dim S2(Kw) +
dim(Kw)∗ =

(
w+1

2

)
+ w, then

σ = w σT = w(w+1)
2 + w

According to Theorem 1, our scheme is optimal.

4.3 Optimal (n − 2)- Secure (2, 3, n) Multithreshold Scheme
Construction

If the above scheme is complete, then w = n− 2, and Condition 1 is not needed
to obtain an (n − 2)- secure (2, 3, n) multithreshold scheme. The field K needs
only to satisfy |K| > n.

Theorem 4. The scheme defined in subsection 4.1 is an optimal (n−2)- secure
(2, 3, n) multithreshold scheme.

Proof. Observe that, in a (n − 2)- secure (2, 3, n) multithreshold scheme, given
P ∈ J , if B is a maximal subset in ΔP , since |B| = n − 2 then necessarily
|B ∩P | = 1. For this reason, in this case, Condition 1 is not needed in the proof
of Theorem 3.

5 w-Secure (t, k, n) Multithreshold Scheme

In this section, we will design a family of w-secure (t, k, n) multithreshold schemes
for any possible values of w, t, k, n. Namely, 1 ≤ t ≤ k ≤ n and 0 ≤ w ≤
n−k+ t−1, as seen in section 1.2. Unfortunately, these schemes are not optimal
in general.

We also show how to design linear w-secure (t, k′, n) multithreshold schemes,
for any k′ such that t ≤ k′ < k, from a given linear w-secure (t, k, n) multi-
threshold.

Observe that for t = 1 this is an optimal linear KPS, and when k = n and
w = t−1 the scheme presented is also optimal, since it is an ideal secret sharing
scheme.
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5.1 w-Secure (t, k, n) Multithreshold Scheme Construction

Taking into account the definition of linear multithreshold schemes, we are going
to define the vector spaces E and Ei, for i ∈ {0, . . . , n}, over a finite field K.
There is no restriction on the characteristic of K, but the size of this field must
be greater than n. Again, the understanding of the scheme requires some linear
algebra concepts as dual vector space and tensor product (see Appendix A).

During the setup phase, the trusted authority chooses X = {xi}i∈U ⊆ K�{0},
such that xi �= xj if i �= j, which will be the identifiers of users in U .

Let m = w − t + 2. For the scheme presented in this section,

– E = (Sk(Km))t = Sk(Km)×
t)
· · · ×Sk(Km)

– Ei = Sk−1(Km) for all i ∈ U
– E0 = K

– For every i ∈ U , the map φi : (Sk(Km))t −→ Sk−1(Km) is defined as follows:

φi(T1, . . . , Tt) = λi,1T1(vi, . . .) + · · · + λi,tTt(vi, . . .)

where
• vi = (1, xi, x

2
i , . . . , x

m−1
i ) ∈ Km for all i ∈ U .

• λi,j = xj−1
i for all i ∈ U , 1 ≤ j ≤ t.

– For every P = {i1, . . . , ik} ∈ J , the map πP : (Sk(Km))t −→ K is defined
as follows:

πP (T1, . . . , Tt) = T1(vi1 , . . . , vik
)

Let P be a set in J , and A a subset of t users in P . Without loss of generality,
we can suppose that P = {1, . . . , k} and A = {1, . . . , t}. Since Tj is symmetrical,
Tj(vi, v1, . . . , vi−1, vi+1, . . . , vk) = Tj(v1, . . . , vk), then user i can calculate

si,P = λi,1T1(v1, . . . , vk) + · · · + λi,tTt(v1, . . . , vk)

By sharing the values si,P , for i = 1, . . . , t, the users in A can solve the linear
system ⎛⎜⎝ 1 x1 . . . xt−1

1
...

...
. . .

...
1 xt . . . xt−1

t

⎞⎟⎠
⎛⎜⎝ T1(v1, . . . , vk)

...
Tt(v1, . . . , vk)

⎞⎟⎠ =

⎛⎜⎝ s1,P

...
st,P

⎞⎟⎠
and they obtain the secret T1(v1, . . . , vk).

The complexity and randomness of this scheme are:

σ =
(
w+k−t

k−1

)
σT = 1

t ·
(
w+k−t+1

k

)
Now we prove the validity of the scheme.
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Theorem 5. The scheme above defined is a w-secure (t, k, n) multithreshold
scheme.

Proof. We follow the same steps as in the proof of Theorem 3. That is, it suf-
fices to show that for any P ∈ J , then every A ⊆ P such that |A| = t sat-
isfies

⋂
i∈A kerφi ⊆ kerπP , and every B ∈ ΔP such that |B| = w, satisfies⋂

i∈B kerφi + kerπP = E.
Let P = {1, . . . , k} ∈ J and A = {1, . . . , t}⊂P . If we take (T1, . . . , Tt) in⋂t

i=1 kerφi, then λi,1T1(vi, . . .) + · · · + λi,tTt(vi, . . .) = 0 ∈ Sk−1(Km) for every
i ∈ A, and consequently λi,1T1(v1, . . . , vk)+ · · ·+λi,tTt(v1, . . . , vk) = 0 for every
i ∈ A.

Since λi,j = xj−1
i , the above equations can be expressed as follows:

⎛⎜⎝ 1 x1 . . . xt−1
1

...
...

. . .
...

1 xt . . . xt−1
t

⎞⎟⎠
⎛⎜⎝ T1(v1, . . . , vk)

...
Tt(v1, . . . , vk)

⎞⎟⎠ =

⎛⎜⎝ 0
...
0

⎞⎟⎠
Since

(
xj−1

i

)
i,j

is an invertible matrix, then Ti(v1, . . . , vk) = 0, for every i =

1, . . . , t. In particular, T1(v1, . . . , vk) = 0, and so (T1, . . . , Tt) ∈ kerπP .
Since πP is a non-zero linear form, then dim kerπP = dim E − dim Im(πP ) =

dim E−1. Thus, to prove that for any B ∈ ΔP we have
⋂

i∈B kerφi+kerπP = E,
it suffices to show that there exists an element belonging to

⋂
i∈B kerφi that does

not belong to kerπP .
Let B a maximal subset in ΔP , F ⊆ B �P such that |F | = w− t+1 = m−1,

and G the vector subspace of Km with dimension m − 1 spanned by 〈vi〉i∈F .
Observe that, if i /∈ F , then vi /∈ G. Let {e1, . . . , em−1} be an orthogonal basis of
G. Then, there exists a vector em ∈ Km such that {e1, . . . , em} is an orthogonal
basis of Km. Let (Km)∗ be the dual space of Km and {e1, . . . , em} its dual

basis. Now, consider the symmetric operator T̂ = em⊗
k)
· · · ⊗em ∈ Sk(Km). It is

straightforward to check that T̂ (vi, . . .) = 0 for every i ∈ F , and T̂ (v1, . . . , vk) �=
0, for P = {1, . . . , k}.

Let T = (μ1T̂ , . . . , μtT̂ ) ∈ (Sk(Km))t. We want to determine the coefficients
μ1, . . . , μt ∈ K such that T ∈

⋂
i∈B kerφi, but T �∈ kerπP . By definition of T̂ ,

φi(T ) = 0 for every i ∈ F . On the other hand, φi(T ) = φi(μ1T̂ , . . . , μtT̂ ) =
(λi,1μ1 + · · ·+λi,tμt) T̂ (vi, . . .), for every i ∈ B �F . The homogeneous (t−1)× t
linear system λi,1μ1 + · · ·+ λi,tμt = 0, where i ∈ B � F has non-trivial solution,
and μi �= 0 for every i ∈ B (if any μi were 0, then the resulting homogeneous
(t − 1) × (t − 1) linear system would have only the trivial solution, μj = 0 for
every j).

Hence, we have found an operator T in
⋂

i∈B kerφi such that πP (T ) =
μ1T̂ (v1, . . . , vk) is different from zero, so T does not belong to kerπP . There-
fore, the proof is completed.
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5.2 A Family of w-Secure (t, k′, n) Multithreshold Schemes,
from a Given w-Secure (t, k, n) Multithreshold Scheme

As a final observation, we show how to construct, from a given w-secure (t, k, n)
multithreshold scheme, a w-secure (t, k′, n) multithreshold scheme for any k′

satisfying t ≤ k′ < k.
The new scheme is like the one in subsection 5.1, except for the following

differences:

– The collection of subsets of users that have a key is J ′ = {P ′ ⊆ U : |P ′| =
k′}.

– To implement this scheme the set of users must be ordered, and this order
must be known by every user.

– For every ordered set P ′ = {i1, . . . , ik′} ∈ J ′, the map πP : (Sk(Km))t −→ K

is defined as follows:

πP ′ (T1, . . . , Tt) = T1(vi1 , . . . , vik′−1
, vik′ , . . . , vik′ )

Let P ′ be a set in J ′, and A a subset of t users in P ′. Without loss of generality,
we can suppose that P ′ = {1, . . . , k′} and A = {1, . . . , t}. Since Tj is symmetrical,
then user i can calculate

si,P ′ = λi,1T1(v1, . . . , vk′−1, vk′ , . . . , vk′) + · · · + λi,tTt(v1, . . . , vk′−1, vk′ , . . . , vk′ )

Users from A can share si,P ′ , i = 1, . . . , t, and consequently they obtain the
secret T1(v1, . . . , vk′−1, vk′ , . . . , vk′) associated with P ′, by solving the following
linear system:

⎛⎜⎝ 1 x1 . . . xt−1
1

...
...

. . .
...

1 xt . . . xt−1
t

⎞⎟⎠
⎛⎜⎝ T1(v1, . . . , vk′−1, vk′ , . . . , vk′)

...
Tt(v1, . . . , vk′−1, vk′ , . . . , vk′)

⎞⎟⎠ =

⎛⎜⎝ s1,P ′

...
st,P ′

⎞⎟⎠
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A Appendix

For the sake of completeness, this appendix contains some additional definitions
and results. Since the schemes presented in this paper are based on linear maps
and multilinear forms, we present here a brief introduction to the notions of dual
space and multilinear forms over a vector space.

Given a vector space E over a field K, we define the dual space E∗ as the set of
linear applications from E to K. The spaces E and E∗ have the same dimension.

If {e1, . . . , en} is a basis of E, then the dual basis {e1, . . . , en} of E∗ is defined
as follows:

ei(ej) =
{

1 if i = j
0 otherwise

Let v =
∑n

i=1 λiei ∈ E and w =
∑n

j=1 μje
j ∈ E∗, then

w(v) =
n∑

j=1

μje
j(

n∑
i=1

λiei) =
n∑

i=1

λiμi

Let F be a subspace of E, then the orthogonal subspace of F is the following
subspace of E∗:

F⊥ = {w ∈ E∗ : w(v) = 0 for every v ∈ F}

A multilinear form in En is a map from En to K that is separately linear in each
variable. If w is a multilinear form in En, then w = (w1, . . . , wn) ∈ (E∗)n, and
for every v = (v1, . . . , vn) ∈ En we have

w : En → K

v 
→ w(v) = w1(v1)w2(v2) · · ·wn(vn)

Multilinear forms that are invariant under permutation of its variables are called
symmetric multilinear forms, and the subspace of symmetric multilinear forms
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in En is Sn(E). Observe that, given w ∈ Sn(E), for every permutation σ of
{1, . . . , n} and for every (v1, . . . , vn) ∈ En we have:

w(v1, . . . , vn) = w(vσ(1), . . . , vσ(n))

If dim E = m, then dim Sn(E) =
(
n+m−1

n

)
.

Finally, we provide Schwartz’s Lemma.

Theorem 6. (Schwartz’s Lemma) Let p ∈ K[X1, . . . , XN ] be a nonzero polyno-
mial on N variables of degree d < |K|. Then, there exists a point (x1, . . . , xN )
in KN such that p(x1, . . . , xN ) �= 0.
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Abstract. Under the condition that all users can observe a common

object, each using an observation function independently chosen from

the same limited set of observation functions, we show necessary and

sufficient conditions for users to be able to generate secret keys by public

discussion.
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1 Introduction

As proven by Maurer [1], when two users have access to correlated random vari-
ables, it is possible for them to create a shared secret key, which is information
theoretically secure, by exchanging messages over a public channel. A scenario
known as the Satellite Scenario has been presented as an example of how in
principle such a scheme could be implemented. In the satellite scenario, a com-
mon random signal is received by all users, but the signal received by each user
is corrupted by independent noise. On the other hand, a model known as the
Bounded Storage Model [2][3] has been used to show that secret key agreement
is possible if the memory space of the attacker is bounded. In this model, all
users have noise-free access to a huge common data source before the public
discussion for secret key agreement.

In this paper, we study the problem where there is a common source as in
the satellite scenario, but instead of considering limitation on user information
due to noise error or bounded memory, we consider limitation on observation.
We show necessary and sufficient conditions for creating secret keys in this case.
Specifically, we suppose that the object of observation is an unpredictable in-
formation source, prepared by a separate legitimate entity, or by a legitimate
user. Also, we suppose that there exist multiple observation functions which
map states of the object to various different observation values, and each user
must independently choose just one of these multiple observation functions to
observe the object, before revealing his choice of function in a public discussion.
Furthermore, we assume that knowledge of the whole state cannot be obtained
using any single observation function, and different observation values may be

K. Kurosawa (Ed.): ICITS 2009, LNCS 5973, pp. 128–139, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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obtained using different observation functions, but users observe the same result
if they use the same observation function.

Intuitively, it is easy to understand that secret key agreement is impossible if
a user can obtain complete knowledge of the state of the object from the obser-
vation. In the Bounded Storage Model, it was shown that secure key agreement
is possible when the attacker’s memory is bounded so that they cannot store all
the information from the source. In this paper, we generalize this by consider-
ing limitations on the observation functions, and show necessary and sufficient
conditions for creating secret keys.

We consider this scenario to be physically plausible. Imagine that some phys-
ical instrument, corresponding to an observation function, is used to observe a
random physical phenomenon. It is physically plausible that knowledge of the
whole physical state cannot be obtained by using any single physical observation
method available to the users, but users can observe the same result if they use
the same observation method. The results of this paper show that it is possible
to create secret keys in this scenario.

2 Formal Description of Problem

In this section, we provide a formal description of the problem. We assume
that two legitimate users Alice and Bob and an eavesdropper Eve can observe
an object prepared by a legitimate entity. Formally, we define the following
terminology.

Definition 1. We call a member of a set S the state of an object and assume
that the state of an object is decided at random according to a probability distri-
bution μS , where S represents a random variable on S.

Definition 2. Let M be the set of all functions with the domain S, and let Vf

be the range of a function f ∈ M. We call a member of M an observation
function, and we call f(s) ∈ Vf the observed value of a state s ∈ S.

Note that an observed value f(s) is determined uniquely depending on the state
s ∈ S of the observed object.

Now, to specify the situation described in the introduction, we assume that
the following conditions hold.

1. Unknown State: The state s ∈ S of an object is completely unknown before
observation and can be observed only through an observation function. The
probability distribution μS can be set only by a legitimate entity.

2. Passive Observation: Every user observes the same state s ∈ S and the
state cannot be changed by observation.

3. Limited Observation: For each observation, each user independently se-
lects a single observation function f , where the selection is restricted to a
subset M of M, i.e., M ⊂ M. The observation is completed before the
public discussion, and the same state cannot be observed after the public
discussion.



130 J. Muramatsu, K. Yoshimura, and P. Davis

4. Public Discussion: Alice and Bob can use a public authenticated error-free
channel, which may be monitored by Eve.

The restriction on the observation functions is the key idea behind our problem.
Let us comment briefly on these assumed conditions. First, the assumption of
passive observation is different from the conditions of quantum cryptography [4],
where the effect of observation on the state is a key aspect of the scheme. Next,
let us consider the physical meaning of a limited observation. We rely on the limit
of observation technology. We could consider the fundamental physical limit of
observability of quantum states, but we have excluded this with our passive ob-
servation assumption. So we assume a technological limit rather than an absolute
physical limit. We assume the existence of physical phenomena that are too fast,
or too large, or too noisy or too complex to be completely observed with current
technology. We also note that the addition of noise during the observation is not
an essential part of the scheme. Of course, in actual implementations this may
affect the performance e.g. the key generation rate. Finally, we note that Alice
and Bob are free to adopt an arbitrary key agreement protocol using the knowl-
edge of the probability distribution μS and the set M of observation functions.
Also, Eve is free to adopt an optimal strategy using the public knowledge of μS ,
M and the protocol designed by Alice and Bob.

Next, we define a protocol for public discussion, which is used in Section 5,
and then define the secret key capacity introduced by Maurer [1].

Definition 3. Let X and Y be two sources available to Alice and Bob, respec-
tively. A protocol (C, X̂, Ŷ ) for (Xn, Y n) with step t is composed of a sequence
of random variables C = (C1, . . . , Ct), which represents communication between
a sender and a receiver, and random variables X̂ and Ŷ , which are generated by
the computations of the sender and the receiver, respectively, such that

– When 1 ≤ i ≤ t is odd, Alice sends Ci which is calculated deterministically
from Xn and (C1, . . . , Ct−1), where (C1, . . . , Ci−1) is a null sequence when
i = 1.

– When 2 ≤ i ≤ t is even, Bob sends Ci which is calculated deterministically
from Y n and (C1, . . . , Ci−1).

– After the public discussion, Alice obtains X̂, which is calculated determinis-
tically from Xn and (C1, . . . , Ct). Bob obtains Ŷ , which is calculated deter-
ministically from Y n and (C1, . . . , Ct).

Definition 4. Let X, Y , and Z be three sources available to Alice, Bob, and
Eve, respectively. A secret key agreement protocol (C, K, K ′) for (X, Y, Z) with
a rate R ≥ 0 is composed of two-way communication Ct = (C1, . . . , Ct) and
computations of secret keys K, K ′ ∈ K such that for all ε > 0 and all sufficiently
large n

H(K)
n

≥ R − ε

Pr[K �= K ′] ≤ ε
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I(K; ZnCt) ≤ ε

H(K) ≥ log |K| − ε,

where | · | denotes the cardinality of a set. The secret key capacity S(X ; Y ‖Z)
of the sources is defined as the least upper bound of such R for all possible key
agreement protocols.

3 Relationship with Maurer’s Secret Key Agreement
from Correlated Source Outputs

Our problem setting is motivated by the satellite scenario introduced by Mau-
rer [1], where a satellite broadcasts a signal, and all users are allowed to access
the signal through respective noisy receivers. In this setting, the satellite sig-
nal corresponds to the state of an object, and the noisy receivers correspond
to the observations. When the channels between the satellite and the receivers
are binary symmetric, we can let S ≡ {0, 1} and the following two deterministic
maps

f0(s) ≡ s

f1(s) ≡ s̄

are selected randomly depending on the random noise, where s̄ denotes the
reverse symbol of s ∈ {0, 1}. Let FA, FB, G ∈ {f0, f1} be random variables that
represent noise between the satellite signal and Alice, Bob, and Eve, respectively.
Then the random variable corresponding to the correlated sources is represented
by (FA(S), FB(S), G(S)). The possibility of a secret key agreement corresponds
to the fact that (FA(S), FB(S), G(S)) has the positive secret key capacity defined
above. The necessary and sufficient condition for the possibility of a secret key
agreement has been clarified by [5] when S is binary. However, it is still an open
problem for a general case. It should be noted that our setting is different from
the setting in Maurer’s satellite scenario because we assume that Alice, Bob,
and Eve can each choose their respective observation functions freely. We do
not discuss the case where Alice, Bob, and Eve are forced to select observation
functions.

4 Necessary and Sufficient Conditions for Possibility of
Secret Key Agreement Based on Limited Observation

In this section, we present the necessary and sufficient conditions for the possi-
bility of a secret key agreement based on limited observation.

We describe the strategy of Alice and Bob. Alice and Bob determine a fi-
nite set MAB ⊂ M. We can consider the set MAB as the specification of a
physical sensing device and f ∈ MAB as a parameter that represents the in-
put of this device. First, Alice and Bob choose one of the observation functions
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independently. Next they observe the state of an object by using their respec-
tive observation functions. Finally, they agree on a secret key by using public
discussion. On the other hand, we assume that Eve can choose one of the ob-
servation functions in the superset M of MAB, where Eve may know the set
MAB and the secret key agreement protocol. Furthermore, we assume that all
users are allowed to choose their respective observation functions independently
at random. This implies that the possible strategies of Alice, Bob, and Eve can
be represented by their respective probability distributions. Let FA, FB ∈ MAB

and G ∈ M be random variables corresponding to the random choice of the
respective observation functions. Then the respective observation values form
correlated sources ((FA, FA(S)), (FB , FB(S)), (G, G(S))) and the secret key ca-
pacity of these sources is described by S(FA, FA(S); FB, FB(S)‖G, G(S)).

We consider the following two situations, which differ with respect to the
identity of the legitimate entity who prepares the state of the observed object.

1. The probability distribution μS of the state of an object is set a priori by a
legitimate entity other than Alice, Bob or Eve. Alice, Bob, and Eve choose
observation functions FA, FB, and G, respectively, so that the random vari-
ables {S, FA, FB , G} are mutually independent. Then the secret key capacity
can be represented by the equilibrium point of a game (see [6])

sup
FA,FB

inf
G

S(FA, FA(S); FB , FB(S)‖G, G(S)).

2. Alice sets the probability distribution μS , including the possibility that FA

is correlated with S. Bob, and Eve choose observation functions FB and
G, respectively, so that the random variables {(S, FA), FB , G} are mutu-
ally independent. Then the secret key capacity can be represented by the
equilibrium point of a game (see [6])

sup
S,FA,FB

inf
G

S(FA, FA(S); FB , FB(S)‖G, G(S)).

In the following, we assume that the observation functions are measurable. Also,
for simplicity, we assume throughout the paper that S, Vf (f ∈ M) are discrete
sets. We believe the results can be extended to continuous sets under suitable
technical assumptions.

In the above two situations, the condition for the existence of the possibility
of a secret key agreement is equivalent to the condition whereby the equilibrium
point of the game has a positive value. We have the following theorem which
provides the necessary and sufficient condition for the possibility of a secret
key agreement based on bounded observability. The proof is presented in the
Appendix.

Theorem 1. When a probability distribution μS is given a priori and random
variables {S, FA, FB, G} are mutually independent, the following conditions are
equivalent.
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(C1) The secret key agreement is possible for Alice and Bob, that is,

sup
FA,FB

inf
G

S(FA, FA(S); FB, FB(S)‖G, G(S)) > 0.

(C2) The triplet (μS ,MAB,M) satisfies

inf
g∈M

max
f∈MAB

H(f(S)|g(S)) > 0. (1)

(C3) For any g ∈ M, there are f ∈ MAB and u, u′, v ∈ V such that

u �= u′ (2)
Prob(f(S) = u, g(S) = v) > 0 (3)
Prob(f(S) = u′, g(S) = v) > 0, (4)

where Prob denotes the probability with respect to the random variable S.

When a probability distribution μS is given by Alice and random variables {(S, FA),
FB, G} are mutually independent, the following conditions are equivalent.

(C’1) The secret key agreement is possible for Alice and Bob, that is,

sup
S,FA,FB

inf
G

S(FA, FA(S); FB, FB(S)‖G, G(S)) > 0.

(C’2) There is a probability distribution μS such that (μS ,MAB,M) satisfies
(1).

(C’3) For any g ∈ M, there are f ∈ MAB and s, s′ ∈ S such that

g(s) = g(s′) (5)
f(s) �= f(s′). (6)

Remark 1. In the first situation, we could also assume, as in the second situation,
that Alice chooses an observation function FA correlated with S, and Bob and
Eve choose observation functions FB and G, respectively, so that the random
variables {(S, FA), FB , G} are mutually independent. This is a more general but
less realistic situation.

We note that condition (1) is equivalent to

sup
g∈M

min
f∈MAB

I(f(S); g(S)) < H(f(S)). (7)

We propose that conditions (1) and (7) can be called “bounded observability.”
Let us remark on the intuitive meaning of these conditions. Condition (1)

corresponds to the fact that there is no universal observation function g ∈ M
that allows the determination of the observation value for all functions f ∈ MAB.
Conditions (2)–(4) correspond to the fact that Alice and Bob can choose f such
that there are two or more possibilities for Eve with respect to the observation
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value even by the best choice of g. Conditions (5) and (6) correspond to the fact
that Eve cannot distinguish two states s and s′, which can be distinguished by
using the observation function f , by using the observation function g. It should
be noted that the existence of s, s′ ∈ S satisfying (5) and (6) is equivalent to the
existence of v ∈ Im g such that

|f(g−1(v))| ≥ 2,

where | · | denotes the cardinality of a set.
From the above theorem, we have the following corollary, which is intuitively

trivial.

Corollary 1. If the invertible function (e.g. identity) g : S → Vg is included in
M, then a secret key agreement is impossible using any μS and MAB.

Proof. For any f ∈ M, we have

H(f(S)|g(S)) ≤ H(f(S)|g−1(g(S))) = H(f(S)|S) = 0.

This implies that
inf

g∈M
max

f∈MAB

H(f(S)|g(S)) = 0

for any S and MAB ⊂ M. From the theorem, we have the fact that a secret key
agreement is impossible by using any μS and MAB. ��

5 Advantage Distillation and Information Reconciliation
Protocol

In this section, we introduce an advantage distillation and information reconcili-
ation protocol (cf. [7]) for a secret key agreement based on bounded observability.
This protocol is used to prove Theorem 1. We assume that there is a finite set
MAB satisfying (1).

1. Alice and Bob choose fA, fB ∈ MAB independently and uniformly at ran-
dom, and observe the state S by using their respective observation func-
tions. Let FA and FB be random variables corresponding to their respective
choices of functions. Then Alice and Bob obtain the observed values FA(S)
and FB(S), respectively.

2. After Eve obtains a value g(S) using an observation function g, Alice and
Bob exchange the information FA and FB via a public channel.

3. Alice and Bob calculate X and Y , respectively, defined as

X ≡
{

FA(S), if FA = FB

φ, if FA �= FB

Y ≡
{

FB(S), if FB = FA

φ, if FB �= FA,

where φ denotes the erasure symbol.
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It should be noted that X = Y holds and the secret key generation rate is given
by

I(X ; Y ) − I(X ; FA, FB , G, G(S))
= H(X |FA, FB, G, G(S))
= Prob(FA = FB)H(FA(S)|FA, G, G(S)) + Prob(FA �= FB) · 0

=
H(FA(S)|FA, G, G(S))

|MAB| .

6 Bounded Storage Model

In this section, we investigate the bounded storage model introduced in [2][3]
from the viewpoint of bounded observability. Let n be a sufficiently large num-
ber and let S ≡ {0, 1}n. We define the set of observation functions M as the
following.

M ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
fI :

I ⊂ {1, 2, . . . , n}
|I| ≤ m < n

fI(s) ≡ (v1, v2, . . . , vn),

where vi ≡
{

si if i ∈ I
vi = φ if i �= I

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
It should be noted that fI ∈ M is characterized by a set I ⊂ {1, 2, . . . , n}. By
using an observation function f ∈ M, all users can observe at most m(< n) bits
of s ∈ S. The parameter m corresponds to the bound of storage space for Eve
in the context of the bounded storage model.

Assume that Alice and Bob define the set MAB ⊂ M as

MAB ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩fi :

i ∈ {1, 2, . . . , n}
fi(s) ≡ (v1, v2, . . . , vn),

where v′i ≡
{

s′i if i′ = i

φ if i′ �= i

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

This set corresponds to a situation where Alice and Bob observe only one bit of
s ∈ S. Let (v1, v2, . . . , vn) and (v′1, v′2, . . . , v′n) be sequences of fi(s) and fI′(s),
respectively. Then we have

vi = v′i = si if i ∈ I′

vi = si and v′i = φ if i /∈ I′

for all fi ∈ MAB and fI′ ∈ M. By letting μS(sn) ≡ 1/2n, we have the fact that
for any fI′ ∈ M there is i /∈ I′ such that

H(fi(S)|fI′(S)) = 1.
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This implies that

min
fI′∈M

max
fi∈MAB

H(fi(S)|fI′(S)) = 1 > 0.

Then, from the theorem, we have the fact that Alice and Bob can agree on a
secret key. On the other hand, the corollary implies that it is impossible for Alice
and Bob to agree on any secret key when f{1,2,...,n} ∈ M because this function
is the identity function.

7 Conclusion

We introduced the information theoretically secure key generation based on
bounded observability and derived the necessary and sufficient conditions for
the secret key agreement. We also show that the Bounded Storage Model can be
formulated within the framework of the bounded observability model.
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Appendix: Proof of Theorem

First, we prepare the following lemma.

Lemma 1. If (S, FA, G) and FB are independent and H(FB(S)|FB , G, G(S)) =
0, then

S(FA, FA(S); FB , FB(S)‖G, G(S)) = 0.

Proof. It is enough to show S(FA, FA(S); FB , FB(S)‖G, G(S)) ≤ 0, because
S(FA, FA(S); FB , FB(S)‖G, G(S)) ≥ 0 is trivial. Since (S, FA, G) and FB are
independent, we have

H(FB, FB(S)|G, G(S)) = H(FB|G, G(S)) + H(FB(S)|G, G(S), FB)
= H(FB|G, G(S))
= H(FB)

and

H(FB , FB(S)|FA, FA(S), G, G(S))
= H(FB |FA, FA(S), G, G(S)) + H(FB(S)|FA, FA(S), G, G(S), FB)
= H(FB |FA, FA(S), G, G(S))
= H(FB).

Then we have

S(FA, FA(S); FB , FB(S)‖G, G(S))
≤ I(FA, FA(S); FB, FB(S)|G, G(S))
= H(FB, FB(S)|G, G(S)) − H(FB , FB(S)|FA, FA(S), G, G(S))
= 0,

where the first inequality comes from [1, Theorem 2]. ��

Now, we prove the main theorem by showing

(C1) ⇔ (C2) ⇔ (C3)
(C’2) ⇒ (C’1) ⇒ (C’3) ⇒ (C’2).

First, we show the fact that (C1) does not hold for a given μS if (C2) does not
hold; that is, a secret key agreement is impossible if (μS ,MAB,M) does not
satisfy (1). This fact implies (C1) ⇒ (C2). When (C2) does not hold, we have

inf
g∈M

max
f∈MAB

H(f(S)|g(S)) = 0.

This implies that Eve can use g ∈ M, which satisfies H(f(S)|g(S)) = 0 for any
f ∈ MAB. By letting G be a random variable taking value g with probability
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one, G satisfies H(FB(S)|FB , G, G(S)) = 0 for any (FA, FB). From Lemma 1,
we have

sup
FA,FB

inf
G

S(FA, FA(S); FB , FB(S)‖G, G(S)) = 0.

Next, we show (C2)⇒(C1) for a given μS ; that is, a secret key agreement is pos-
sible when (μS ,MAB,M) satisfies (1). The proof of (C’2)⇒(C’1) is the same
as the following. Assume that the function g satisfies PG(g) > 0. From the as-
sumption, there is fg ∈ MAB such that H(fg(S)|g(S)) > 0. Let (X, Y, (FA, FB ,
G, G(S))) be the correlated random variables obtained after the advantage dis-
tillation protocol introduced in Section 5. We have

S(FA, FA(S); FB, FB(S)‖G, G(S))
≥ S(X, Y ‖FA, FB, G, G(S))
≥ I(X ; Y ) − I(X ; FA, FB, G, G(S))
= H(X |FA, FB, G, G(S))
= Prob(FA = FB)H(FA(S)|FA, G, G(S)) + Prob(FA �= FB) · 0
≥ PFA(fg)PFB (fg)PG(g)H(fg(S)|g(S))
> 0,

where the first inequality comes from [8, Theorem 1] and the second inequal-
ity comes from [1, Theorem 3]. Since this inequality holds for any g satisfy-
ing PG(g) > 0, we have the fact that a secret key agreement is possible from
(μS ,MAB,M) satisfying (1).

Next, we show the fact that (C2) does not hold if (C3) does not hold; that is,
if there is g ∈ M such that at least one of (2)–(4) does not hold for f ∈ MAB

and u, u′, v ∈ V , then g satisfies

max
f∈MAB

H(f(S)|g(S)) = 0. (8)

This implies (C2)⇒(C3). Assume that (3) holds for u, v ∈ V satisfying Prob(g(S)
= v) > 0. Then, we have the fact that

Prob(f(S) = u′, g(S) = v) = 0

for any u′ �= u because (C3) does not hold. This implies that

Prob(f(S) = u|g(S) = v) =
∑

u Prob(f(S) = u, g(S) = v)
Prob(g(S) = v)

= 1

for any u, v ∈ V satisfying Prob(g(S) = v) > 0. Then we have

H(f(S)|g(S)) = 0

for any f ∈ MAB and

0 ≤ max
f∈MAB

H(f(S)|g(S)) = 0,

which implies (8).
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Next, we show (C’3)⇒(C’2); that is, μS satisfying (1) exists if for any g ∈ M
there are fg ∈ MAB and sg, s

′
g ∈ S satisfying (5) and (6). Let μS be a probability

distribution that assigns a positive probability for every s ∈ S. Since

Prob(fg(S) = ug, g(S) = vg) ≥ Prob(S = sg) > 0
Prob(fg(S) = u′

g, g(S) = vg) ≥ Prob(S = s′g) > 0

by letting

ug ≡ fg(sg)
u′

g ≡ fg(s′g)

vg ≡ g(sg) = g(s′g),

we have

Prob(g(S) = vg) > 0 (9)
0 < Prob(fg(S) = ug|g(S) = vg) < 1 (10)
0 < Prob(fg(S) = u′

g|g(S) = vg) < 1 (11)

where (10) and (11) come from the fact that ug �= u′
g. Then we have

H(fg(S)|g(S)) =
∑
u,v

Prob(fg(S) = u, g(S) = v) log
1

Prob(fg(S) = u|g(S) = v)

≥ Prob(fg(S) = ug, g(S) = vg) log
1

Prob(fg(S) = ug|g(S) = vg)

+ Prob(fg(S) = u′
g, g(S) = vg) log

1
Prob(fg(S) = u′

g|g(S) = vg)

> 0,

where the last inequality comes from (9)—(11). Then we have the fact that

max
f∈MAB

H(f(S)|g(S)) ≥ H(fg(S)|g(S)) > 0

for any g ∈ M. This implies (1). Similarly, we can show (C3)⇒(C2) because
(9)–(11) can be shown immediately from (2)–(4).

Finally, we show that if (C’3) does not hold then (C’1) does not hold; that is,

S(FA, FA(S); FB , FB(S)‖G, G(S)) = 0 (12)

for any independent random variables (S, FA) and FB if there is a random vari-
able G ∈ M such that at least one of (5) and (6) does not hold for any f ∈ MAB

and s, s′ ∈ S. This fact implies (C’1)⇒(C’3). Since g(s) = g(s′) = v for any
v ∈ Im g and s, s′ ∈ g−1(v), we have f(s) = f(s′) for any f ∈ MAB from the
assumption. This implies that |f(g−1(v))| = 1 for any v ∈ Im g and f ∈ MAB.
Let u(f, v) be the unique element of f(g−1(v)). Then we have the fact that
FB(S) = u(FB, g(S)), which implies H(FB(S)|FB , G, G(S)) = 0, for any S and
FB. From Lemma 1, we have (12). ��
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Abstract. We observe that finding invalid signatures in batches of sig-

natures that fail batch verification is an instance of the classical group

testing problem. We survey relevant group testing techniques, and present

and compare new sequential and parallel algorithms for finding invalid

signatures based on group testing algorithms. Of the five new algorithms,

three show improved performance for many parameter choices, and the

performance gains are especially notable when multiple processors are

available.

1 Introduction

A batch verification algorithm for a digital signature scheme verifies a list of
n (message, signature) pairs as a group. It outputs 1 if all n signatures are
valid, and it outputs 0 if one or more are invalid. In the most general case, the
messages and signers may be different. Batch verification algorithms may provide
large gains in efficiency, as verification of the n signatures is significantly faster
than n individual verifications. In this paper, we address the problem of handling
batches which fail verification, i.e., finding the invalid signatures which caused
the batch to fail.

It has not been previously observed that finding invalid signatures in bad
batches is an instance of the group testing problem, which in brief, is as follows.
Given a set B, of n items, d of which are defective, determine which items are
defective by asking queries of the form “Does B′ ⊆ B contain a defective item?”.
Group testing is an old, well-studied problem, for which many algorithms ex-
ist. We re-cast some solutions to the group testing problem as solutions to the
invalid signature finding problem, which are then compared for efficiency, paral-
lelizability and accuracy. The group testing algorithms are well-known, but have
not been considered in the context of batch verification by previous work that
has studied methods to find invalid signatures [18,25,26,30,29]. Performance will
be measured by the number of subset tests required to find d invalid signatures.

In total, five new algorithms for finding invalid signatures are presented and
included in our comparison. Of these, three give performance improvements.
With a single processor, generalized binary splitting [16] gives a modest improve-
ment over the well-known binary splitting algorithm. In the case of two or more
processors, large improvements are possible using one of two new group testing-
based algorithms: Li’s s-stage algorithm [16] and the Karp, Upfal and Wigderson

K. Kurosawa (Ed.): ICITS 2009, LNCS 5973, pp. 140–157, 2010.
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algorithm [23]. The other two algorithms also have interesting properties. The
algorithm based on cover-free families is fully parallelizable, and is an improved
instance of a known algorithm for batch verification, the id-code algorithm [30]
(for some parameter choices). The random matrices algorithm is probabilistic,
fully parallelizable and enjoys a simple implementation. Some algorithms require
an a priori bound on d (this will be addressed in our comparison).

We also give some general results on the limits of group testing that are also
interesting in the context of finding invalid signatures in batches, such as the
conditions when the näıve testing strategy is optimal.

Contributions and Outline. The first contribution of this work is describing the
link between finding invalid signatures in bad batches and group testing (§1.1,
1.2), a connection previously overlooked. We then provide a survey of algorithms
from the group testing literature, and describe how they correspond to new al-
gorithms for finding invalid signatures (§2). These are classified according to the
adaptive (i.e. sequential §2.2) or nonadaptive (i.e. parallel §2.3) nature of the
algorithm. We then compare the performance of the new invalid signature find-
ing algorithms (and some previously known algorithms) and determine the best
one under various parameter choices (§3). For many parameter choices, espe-
cially with multiple processors, the new methods outperform previously known
methods.

1.1 Batch Verification

Let the algorithms (Gen, Sign, Verify) specify a signature scheme. Gen takes as
input a security parameter k, and outputs a signing and verification keypair
(sk, pk). Sign(sk, m) outputs a signature σ on the message m using the secret
key sk, and Verify(pk, σ, m) outputs 1 if σ is a valid signature of m under the
secret key sk which corresponds to pk, and 0 otherwise.

Here is the most general definition of batch verification.

Definition 1 ([8]). Let P1, . . . , Pn be n signers, with corresponding keypairs
K = {(sk1, pk1), . . . , (skn, pkn)} output by Gen(k) for some security param-
eter k. Let B be a list containing K, and n tuples of the form (Pti , σi, mi)
called the batch (note that the ti and mi values may be repeated.) The algorithm
Batch(B) is a batch verification algorithm provided Batch(B) = 1 if and only if
Verify(pkti , σ, mi) = 1 for all i.

A few variations appear in the literature, including the case with a single signer
or the case of multiple signers with a single message. We also mention the related
concept of aggregate signatures. Suppose σ1, . . . , σn are signatures on messages
m1, . . . , mn with corresponding verification keys pk1, . . . , pkn. An aggregation
algorithm is a public algorithm, which given the σi, mi and pki (i = 1, . . . , n)
outputs a compressed signature σ. An associated verification algorithm verifies
if σ is a valid compressed signature, given pki and mi (for i = 1, . . . n).

A number of signature schemes in the literature support batch verification.
Batch cryptography was introduced by Fiat [19,20] to improve efficiency of an
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RSA-like scheme, where large numbers of operations are performed at a central
site. History shows that secure batch verification algorithms are tricky to con-
struct; a number of schemes were presented and subsequently broken or shown
to be otherwise flawed. One example is the scheme of Al-Ibrahim et al. [1], which
was broken by Stinson in [40]. Camenisch et al. list and reference ten proposed
schemes which were later broken [8, §1.2]. Despite this poor track record, a
number of signature schemes have batch verification, many of them based on
the general techniques described in Bellare et al. [4].

We list a few examples, but omit details since the techniques in this work will
apply to any scheme with batch verification. RSA* is an RSA-variant with batch
verification presented by Boyd and Pavlovski [6]. DSA** is a signature scheme
based on DSA, given by Naccache et al. [28], which uses the small exponents
test from [4]. Camenisch et al. [8] give a variant of the Camenisch-Lysyanskaya
signature scheme [7] which supports batch verification, present a batch verifier for
the Π-IBS scheme of Chatterjee and Sarkar [11], and discuss batch verification
of BLS signatures [5]. Practical considerations and implementation timings of
batch verification are given in Ferrara et al. [18].

1.2 Finding Invalid Signatures in Bad Batches

Suppose we are given a batch B such that Batch(B) = 0. We know that B
contains at least one invalid signature, but what is the best way to determine
which of the signatures do not verify? Verifying each signature individually is
certainly an option, but can Batch be applied to subsets of B to perform less
work overall? This problem can be considered the computational version of the
batch verification problem (which is a decision problem). We name it the invalid
signature finding (ISF) problem. This does not apply to aggregate signatures,
where, since the batch is compressed, we do not have enough information to
determine which of the original signatures were invalid.

We will treat the algorithm Batch as a generic test for invalid signatures, and
present solutions which work for any signature scheme equipped with a Batch
function as described in Definition 1. There are several advantages of generic
ISFs.

1. Applicability. A generic ISF algorithm may be used with any signature
scheme which provides batch verification. This includes future schemes.

2. Implementation. A single implementation may be used to locate bad signa-
tures of multiple signature schemes, reducing the need to maintain multiple
ISF algorithm implementations. The single generic ISF algorithm may be
optimized, verified and otherwise improved since the effort is amortized over
a larger number of applications.

3. Ability to handle variations of the ISF problem. The group testing literature
has considered many variations of the problem, many of which are applicable
to variations of the ISF problem. As examples, group testing with competi-
tive algorithms [16, Ch. 4], or when the size of each test group is restricted
[17,32], or with unreliable tests [16, Ch. 5], all correspond to interesting
variations of the ISF problem.
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The performance of an ISF algorithm will be evaluated based on the number of
calls to Batch and the parallel performance of the algorithm (this is discussed
further in Sections 2 and 3).

Related Work. There have been five papers addressing the ISF problem. The
first two are by Pastuszak et al. [30,29]. They consider a generic Batch function
for a signature scheme and study the divide-and-conquer method of finding bad
signatures in [29]. The divide-and-conquer verifier was originally described in
[28] under the name cut and choose, and is referred to binary splitting in the
group testing literature. In brief, a batch B is divided in half, then Batch is
recursively called on each sub-batch, until 1 is output (this sub-batch contains
only valid signatures) or until the sub-batch has size one, which identifies the bad
signatures. This method was implemented in the work of Ferrara et al. [18], and
we discuss their findings in §2.2 when we relate the divide-and-conquer verifier
to well-known techniques from group testing.

The second paper [30] approaches the problem using identification codes (id-
codes), a code which encodes an ISF algorithm, by specifying subsets of B to test
with Batch in such a way that all bad signatures may be identified. This approach
is an instance of well-known non-adaptive group testing algorithms based on
cover-free, separable and disjunct matrices, discussed in §2.3. A limitation of
[30,29] is that either the number of bad signatures in a batch, or a bound on the
number of bad signatures is required a priori. This is common to most group
testing algorithms as well.

The work of Law and Matt [25] improves the divide-and-conquer method by
considering the details of the signature scheme. The second part of [25] gives an
improved invalid signature finder using a special version of Batch. The batch ver-
ification and invalid signature finding tasks are combined, to allow information
and intermediate computations from the verification step to be used in the ISF
step. This trades off general applicability for improved computational efficiency.
Along similar lines, Matt improves the performance of these methods when the
number of invalid signatures is large [26]. This addresses a limitation of [25]. The
improved techniques of [26] are applicable to the Cha-Cheon signature scheme
[10] and the pairing-based schemes discussed in Ferrara et al. [18].

2 Group Testing-Based ISF Algorithms

We begin with a general description of the group testing problem called the
(d, n)-problem. Consider a set of n items which contains exactly d defective items,
called the defective set. Identification of a defective item requires the application
of an error-free test, and we may test an arbitrary subset of the items. The test
outcome may be positive if the subset of items contains at least one defective
item, or negative if no defective items are present in the subset. An algorithm
A which finds all d defective items is a solution to the problem. An algorithm
where the tests are applied sequentially, and subsequent tests depend on the
results of previous tests is called an adaptive algorithm. Nonadaptive algorithms
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require all tests to be specified at the outset; hence they may be executed in
parallel.

Group testing has a long history, originating in World War II, motivated by
the task of testing blood samples of draftees to detect syphilis [14,16]. In this
application, a single test on a combination of blood samples will return positive
if any of the samples would test positive for syphilis. Since there were only a few
thousand cases of the disease in millions of draftees, large subsets would come
back negative, saving many individual tests. Group testing later found many
industrial applications, a line of research initiated by Sobel and Groll [41]. In
the past 50 years or so, a large literature has grown around the problem, and
many variants have been considered. The book of Du and Hwang [15,16] is a
comprehensive reference.

It should now be clear that the ISF problem is a group testing problem:
the items are signatures, the test applied to subsets is the batch verification
algorithm, and the defectives are invalid signatures. This basic model makes the
following assumptions:

– The subset tests all have the same cost, regardless of the number of items
being tested.

– The number of defectives d, or a bound on d, is known a priori.

The first assumption, which is standard in the group testing literature, is a sim-
plifying assumption for the ISF problem, since the cost of Batch(B) is typically
composed of a fixed overhead cost independent of |B|, plus a variable cost which
grows with |B|. The fixed cost is typically high (e.g. an exponentiation) while
the variable cost consists of |B| cheaper operations (e.g. multiplications). This
assumption does however, allow us to keep our analysis general, and ignore the
details of Batch. The second assumption allows some group testing algorithms
to be more efficient. We will discuss the importance of the bound on d for each
algorithm, and the behaviour of the algorithm when d is initially bounded in-
correctly.

Probabilistic group testing (PGT) assumes a probability distribution on the
defective set, while combinatorial group testing (CGT) does not. The only in-
formation CGT assumes about the defective set is that it is a d-subset of the
n items. Some applications of batch verification may benefit from PGT if it is
reasonable to make an assumption about the distribution of invalid signatures;
however, we do not consider PGT algorithms in this paper.

Denote the minimal number of calls to Batch required to find d invalid sig-
natures in a batch of size n by M(d, n). First note that M(d, n) ≤ n − 1, by
verifying n−1 signatures individually and inferring the validity of the last signa-
ture from knowledge of d and the other n − 1 signatures. The following general
lower bound is proven in [16, Cor. 2.1.11].

Theorem 1. M(d, n) ≥ min
{
n − 1, 2� +

⌈
log
(
n−�
d−�

)⌉}
for 0 < � ≤ d < n.

Unless stated otherwise, log x is the base two logarithm of x, lnx is the natural
logarithm of x, and e is the natural base.
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2.1 Individual Testing

The simplest way of identifying all invalid signatures in a bad batch is to individ-
ually verify each signature. The question is, when is this näıve testing strategy
optimal? Recall that M(d, n) is the smallest possible number of tests for any
(d, n) algorithm. Combining [16, Th. 3.5.1] and [16, Th. 3.5.3], we have the fol-
lowing result.

Theorem 2. Let d be the number of invalid signatures in a batch of size n, and
let M(d, n) be as defined above. Then

M(d, n) < n − 1 for n > 3d, and
M(d, n) = n − 1 for n ≤ 2.625d.

Therefore, when the number of bad signatures is at most n/3 it is possible
to do better than individual testing, and when there are more than n/2.625
bad signatures the näıve strategy is optimal. What is best when n < 3d and
n ≥ 2.625d remains unknown; however, Hu, Hwang and Wang [22] conjectured
that individual testing is optimal whenever n ≤ 3d.

We note that individual testing is trivially parallelizable.

2.2 Adaptive ISF Algorithms

In this section we will present some adaptive ISF algorithms, based on group
testing algorithms. In adaptive (or sequential) algorithms, the results of each test
determines the items to be tested in subsequent tests. We will use the notation
(d, n), where d is an upper bound on the number of bad signatures in the batch
of size n.

Binary Splitting. An adaptive group testing algorithm is naturally represented
as a binary tree. Nodes of the tree contain elements to be tested, starting at the
root, which contains all n items. In binary splitting, at each level of the tree,
we halve (i.e. divide as evenly as possible) the set of items in the parent node,
to create two child nodes. When a test returns negative, this node becomes
a leaf, since we know the set of items at this node is valid. Repeating this
process recursively, we ultimately end up with nodes containing a single item,
thus identifying the invalid items of the batch. By using depth first search from
the root of the tree we may locate an invalid item using at most �log(n)� tests. We
may remove the invalid item, and repeatedly apply the binary splitting algorithm
to find d invalid items using at most d �log(n)� tests.

An implementation of binary splitting for the BLS signature scheme [5] is
discussed in the work of Ferrara et al. [18]. They performed experiments with
n = 1024 and they found binary splitting was faster than individual verification
when d < 0.15n. In these experiments, a random fraction of the batch was
corrupted, however Ferrara et al. note that in practice if corrupted signatures
occur in bursts, the binary splitting algorithm will have better performance.
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Ordering of the batch may be an important consideration for applications using
binary splitting.

A variant of binary splitting is Hwang’s generalized binary splitting. The in-
tuition of the algorithm is that there is roughly one defective item in every n/d
items, and therefore a group smaller than n/2 could be tested and a defective
found with fewer tests. When d = 1 the number of tests required by generalized
binary splitting is $log(n)%+1, and when d ≥ 2, the number of tests is not more
than d− 1 +

⌈
log
(
n
d

)⌉
, which gives a noticeable saving as d gets larger [16, Cor.

2.2.4].
Karp, Upfal and Wigderson describe an algorithm to identify a single invalid

item using p processors in at most
⌈
logp+1 n

⌉
parallel tests [23]. The algorithm

is identical to binary splitting when p = 1, since it uses a (p + 1)-ary tree in
the same way that binary splitting does. At each level, p of the child sets are
tested in parallel, and (if necessary) the validity of the (p + 1)-th set is inferred.
We may repeatedly apply this algorithm to identify d invalid items in at most
d
⌈
logp+1 n

⌉
parallel tests. We will refer to this algorithm as the KUW algorithm.

Li’s s-Stage Algorithm. This algorithm has s rounds of testing, identifying
good items at each round, until the last round when the algorithm corresponds
to individual testing. Li’s algorithm begins by grouping the batch into g1 groups
of size k1 (some groups might have k1 − 1 items). The groups are tested, and
items in valid groups are set aside. The i-th stage divides the remaining elements
into gi groups of size ki, tests them, and then removes items in valid groups. The
final stage has ks = 1, and remaining items are identified as valid or invalid.

When optimal choices are made for gi, ki and s (see [16, §2.3]), the number of
tests is not more than

e

log e
d log

(n

d

)
.

When p processors are available, Li’s algorithm may be parallelized (see [15, p.
33]), and the number of parallel tests is not more than

e

log e

d

p
log
(

n

dp

)
+ ln

(
n

dp

)
+ d .

2.3 Nonadaptive Algorithms

As we have seen, some adaptive algorithms are somewhat parallelizable. All non-
adaptive algorithms are completely parallelizable. Recall that nonadaptive tests
may be completely specified without information from previous tests. This can
be especially useful for online batch verification in a system with time constraints
where a batch of n signatures arrive every time interval and must be processed
before the next batch arrives, with a known number of tests. This might be ap-
plicable in the example of public key authentication in vehicular networks (this
example is discussed in [8,18]) or authentication of data reported periodically
from sensors (as discussed in [9]). We continue to use the (d, n) notation defined
at the beginning of Section 2.
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Nonadaptive Group Testing with Cover-Free Families. A useful com-
binatorial structure for designing nonadaptive CGT (NACGT) algorithms is a
cover-free family. Cover-free families are also studied under the terms disjunct
matrices [16], binary superimposed codes [24], and strongly selective families [12].
Stinson et al. [38] discusses relations between these structures. We choose the
language of cover-free families since they have found multiple applications in
cryptography (see [21,27,37] for examples).

Definition 2. A d-cover-free family is a t × n binary matrix, with n ≥ d + 1,
such that for any set of columns C and single column c such that |C| = d and
c �∈ C the following property holds. Let U(C) be the binary OR of the columns in
C. The cover-free property ensures that c �∈ U(C), that is, c is 1 in at least one
position where U(C) is 0. We will use the notation d-CFF(t, n) for cover-free
families.

The cover-free property ensures that no d-set of columns “covers” any other col-
umn. A d-separable matrix satisfies a weaker property, namely, the OR of any two
sets of d columns are distinct. While any d-separable matrix yields a NACGT
algorithm, it is not efficient [16, Ch. 7]. We now describe how a d-CFF(t, n)
defines an efficient (d, n) NACGT algorithm.

Input: Signatures σ1, . . . , σn, batch verification function Batch.
Output: Up to d invalid signatures.

1. Construct a matrix A which is a d-CFF(t, n) .
2. Associate σi to column i of A. Each row of A will define a sub-batch to test;

if σi has a 1 in row j then σi is included in sub-batch j.
3. Compute Batch(B1), . . . , Batch(Bt) where Bi = {σj : Ai,j = 1}.
4. For each row i such that Batch(Bi) = 1 mark all σj ∈ Bi as valid.
5. Output all the remaining signatures as invalid, i.e., signatures which do not

belong to a valid batch.

We now explain how the algorithm correctly identifies valid signatures (and thus
correctly outputs invalid signatures in step 5). Suppose σi is a valid signature.
Let C be the set of columns corresponding to the invalid signatures. We are
assuming that |C| ≤ d. Let C′ be any set of d columns that contains C as a
subset and does not contain i (C′ exists because n ≥ d + 1). Since A is the
matrix of a d-CFF(t, n), there exists a row j such that Aj,i = 1 and Aj,c = 0 for
all c in C′. Therefore Batch(Bj) = 1 and σi is recognized as a valid signature in
step 4 of the algorithm.

Remark 1. Shultz makes the following observation for batches containing d′ > d
invalid signatures [34]. Let B′ be the resulting set of signatures after removing
all the signatures belonging to valid sub-batches, in step 4. If |B′| > d, the
number of invalid signatures in the input batch exceeds d. In this case some
valid signatures may be covered by U(D), but are not present in a valid test.
Thus B′ contains all d′ invalid signatures, but may contain some valid signatures
as well.
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A recent paper of Porat and Rothschild [31] explicitly constructs (n, d)-strongly
selective families from error correcting codes. This structure is equivalent to a
(d − 1)-CFF(t, n) (see [12]), and hence it gives a nonadaptive ISF.

Theorem 3 ([31], Th. 1). It is possible to construct a d-CFF(t, n) with t =
Θ((d + 1)2 log n) in Θ((d + 1)n log n) time.

In light of the bounds on t given in Appendix B, this construction is asymptot-
ically optimal. We choose to ignore the constant hidden by the Θ-notation, as
even with this assumption the CFF algorithm is outperformed by other methods.

Nonadaptive Group Testing with id-codes. The definition of identifica-
tion codes is very general: any binary matrix which specifies a group testing
algorithm is an id-code. Thus CFF are id-codes, and the d-separable property
defined in 2.3 is both necessary and sufficient for an id-code. The construction
of id-codes put forward in Pastuszak et al. [30] is a cover-free family with some
additional constraints on the number of nonzero row and column entries. Using
their construction gives the following ISF.

Theorem 4 ([30], Cor. 4). The number t of tests necessary to identify d bad
signatures in a batch of size n satisfies t ≤ (d + 1)

√
n.

Clearly, as n → ∞ for fixed d, this method will require a much larger number
of tests than CFF-based methods, since

√
n dominates log n. However, the CFF

constructions presented have a quadratic dependence on d, while d is linear in
Theorem 4. Therefore, for fixed n and increasing d, there will be a crossover
point after which the id-code ISF outperforms the CFF ISF. Comparing the
formulas,

(d + 1)2 log(n) < (d + 1)
√

n

d <

√
n

log n
− 1 .

This gives the value of d in terms of n before which the CFF ISF outperforms
the id-code ISF. For example, when n = 103, 104, 105, 106, d must be greater
than 2, 6, 18, 49 (resp.) for the id-code ISF to be more efficient.

Random Matrices. In this section we describe a probabilistic nonadaptive ISF
which is based on a random matrix, and fails with a given probability. Du and
Hwang give the probability that a random matrix is a d-CFF.

Theorem 5. Let C be a random t × n binary matrix where Ci,j = 1 with prob-
ability q = 1/(d + 1). Then C is a d-CFF(t, n) with probability at least

(d + 1)
(

n

d + 1

)[
1 − q(1 − q)d

]t
.
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Proof. Let D be a set of d columns of C, and let c a single column. In a single row,
the probability that c = 1 and D = 0, . . . , 0 is q(1−q)d. (Note that q = 1/(d+1)
maximizes this probability.) The probability that this pattern does not occur in
any of the t rows is

[
1 − q(1 − q)d

]t. Since the d +1 columns of D and c may be
chosen in (d + 1)

(
n

d+1

)
ways, this gives the bound on the probability that C is a

CFF stated in the theorem.

Now we consider constructing an ISF as described at the beginning of Section 2.3
using random matrices. Certainly, this approach would succeed with probability
at least that given by Theorem 5. However, the ISF will have significantly better
performance, since the only case that affects our result is when the d columns
corresponding to the bad signatures cover another column. If this occurs, then
the covered column may be valid, but it will not appear in a valid test. Columns
corresponding to valid signatures which cover each other will have no effect on
the ISF. Therefore, we need only consider the probability that a fixed set of d
columns covers another column. Since the d columns corresponding to defectives
are fixed with respect to a batch, the remaining column may be chosen in n− d
ways, which gives the following result. The same improvement may be used in
DNA library screening (see [16, Th. 9.3.3] and [2]).

Theorem 6. There exists an ISF which identifies d defectives in a batch of size
n using t tests with failure probability Pd,n ≤ (n − d)

[
1 − q(1 − q)d

]t, where
q = 1/(d + 1).

Remark 2. The error of this ISF is one-sided. It may output a valid signature
as invalid. To detect this, we must individually test the output signatures, to
confirm that they are invalid.

3 Comparison of Algorithms

In this section we compare the ISF algorithms given in Section 2. We compare
them based on the number of tests, and their behaviour when d (the number of
defectives) is unknown, or estimated incorrectly. Finally we discuss how the ISFs
given by Law and Matt [25,26] for a specific class of signature schemes compare
to the generic ISF algorithms given in this paper.

3.1 Number of Tests

First, for each of the ISF algorithms in Section 2, we give the bound on the
worst case number of calls to Batch (Table 1). Table 1 gives the bound for the
trivial parallelization of (generalized) binary splitting: divide the original batch
into p equal-sized sub-batches. The KUW algorithm is a better parallelization
of binary splitting. For generalized binary splitting, the bounds given hold for
d ≥ 2, while for d = 1 the number of required tests is $log n% + 1.

Next we compare the number of tests required by each method for various
choices of n, d, and p (the number of processors available). In Ferrara et al. [18],
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Table 1. Summary of the number of tests required for the ISF algorithms presented

in §2. The number of tests required by the random matrices ISF must be computed

using Theorem 6. “PR CFF” is the ISF based on Theorem 3, and “PPS id-codes” is

the ISF in Theorem 4. The algorithms marked with an asterisk (∗) require an a priori
bound on d.

Method Sec. Tests (worst case) Tests with p processors

Individual Testing 2.1 n − 1 �n/p� − p

Binary Splitting (B.S.) 2.2 d �log n� d
⌈
log

(
n
p

)⌉
Gen. Bin. Splitting (G.B.S)∗ 2.2 d − 1 +

⌈
log
(

n
d

)⌉
d − 1 +

⌈
log
(

n/p
d

)⌉
Li’s s-stage∗ 2.2 e

log e
d log n

d
e

log e
d
p

log n
dp

+ ln n
dp

+ d

PR CFF∗ 2.3 (d + 1)2 log n ((d + 1)2 log n)/p

PPS id-codes∗ [30] 2.3 (d + 1)
√

n ((d + 1)
√

n)/p

KUW 2.2 d �log2 n� d
⌈
logp+1 n

⌉

the choices n = 1024, d = 1, . . . , 153 were used when investigating the practical
performance of the binary splitting method. In Pastuszak et al. [29], choices
of n ∈ [16, 1024] are used to give the average number of tests for the binary
splitting method when d = 1, . . . , 16. In Law and Matt [25], tables are given
with n = 24, 26, 28, 210, 212 and d = 1, . . . , 4. In Matt [26], the parameters chosen
for comparison are n = 24, 26, 28, 210 and d = 1, . . . , n (here the goal was to
show better performance with large d). All previous work considered p = 1, i.e., a
single processor. We will compare the ISF algorithms with n = 103, 104, 105, 106,
d = 1, 2, 3, 4, 10 and p = 2, 4, 8, 16. When p = 1 the algorithm requiring the
fewest tests is always generalized binary splitting, and for smaller values of d,
binary splitting performs equally well. Table 2 lists the algorithm requiring the
fewest number of tests when p ≥ 2 (according to the bounds in Table 1). A finer
grained comparison is given in Appendix A, where Tables 4, 5 and 6 give the
actual number of tests required under various combinations of parameters.

Discussion. In the case of a single processor (Table 4) we find that the adaptive
algorithms have the best performance. In particular, generalized binary splitting
slightly outperforms binary splitting, especially as d grows. With a single pro-
cessor the KUW algorithm has the same performance as binary splitting, hence
we have omitted it from the table.

When two or more processors are available to the ISF (Tables 2, 5 and 6), Li’s
s-stage algorithm and the KUW algorithm begin to show the best performance.
The performance gap is most pronounced as the number of processors grows for
any of the choices of (n, d) presented. In general, the nonadaptive algorithms
improve when more processors are available, as they provide a speedup linear in
the number of processors. Regarding the nonadaptive algorithms, the PR CFF
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Table 2. Algorithm requiring the fewest number of tests with p processors. The number

of tests required by all algorithms listed in Table 1 is given in Tables 5 and 6. Here, LI

stands for Li’s Algorithm (§2.2).

n d
Fewest Tests when p =

2 4 8 16

103 4 KUW LI LI LI

104 4 KUW KUW LI LI

105 4 KUW KUW LI LI

106 4 KUW KUW KUW LI

103 10 LI LI LI LI

104 10 KUW LI LI LI

105 10 KUW LI LI LI

106 10 KUW LI LI LI

algorithm (Th. 3) requires fewer tests than the PPS id-code algorithm (Th. 4)
when d <

√
n/ log n − 1. If a failure probability of 0.001 is tolerable (see Re-

mark 2), the random matrix ISF (RM ISF) outperforms the CFF and id-codes
methods since it requires a weaker property from the matrix, as discussed follow-
ing Theorem 5. The RM ISF with failure probability 0.001 is best overall when
p = 16, d = 4 and n = 104, 105, 106 (see Appendix A). However, determining
whether the RM ISF has failed requires d individual verifications.

In the detailed tables of Appendix A, there are many parameter combinations
where multiple ISFs require a nearly equal number of tests. In these cases, im-
plementation factors, average case performance, and the size of subset tests may
influence the best choice.

3.2 Unknown Number of Invalid Signatures

Table 3 lists the behaviour of each of the algorithms when the true number of
signatures, is d′, a value different from our estimate d.

The binary splitting algorithm has a certain grace with respect to handling
arbitrary d, in that the algorithm’s behaviour is unchanged, and the bound on
the number of tests holds as d changes. On the other hand, Li’s s-stage algorithm,
and generalized binary splitting begin by computing some parameters based on
n and d in order to meet the performance bound stated in Table 1. If a batch
contains d′ �= d invalid signatures these parameters will not be chosen optimally,
and it is unclear to what extent this will hurt the performance of the algorithm.
It is also unclear whether better performance is obtained by underestimating or
overestimating d′. Therefore, if no a priori information about d is available, the
best choice is binary splitting when p = 1, and KUW when p > 1.

When a batch contains d′ > d invalid signatures, the CFF and id-code al-
gorithms output a set B′ of � signatures, where d < � ≤ n. All d′ defectives
are in B′; however, it may contain valid signatures as well. As d′ increases, �
will increase as well, and less information is gained. The case d′ > d is easily
recognized (if |B′| > d), and we may restart the ISF with a larger estimate of d.
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Table 3. Behaviour of ISFs when the true number of invalid signatures d′ differs from

the estimated number d. Here, MA(d, n) represents the number of tests required by

algorithm A for a batch of size n with d defectives.

Algorithm When d′ < d When d′ > d

B.S. Outputs d′ invalid signatures in time MB.S.(d
′, n).

G.B.S., Li Outputs d′ invalid signatures but using suboptimal pa-

rameter choices thus requiring extra work.

KUW Outputs d′ invalid signatures in time MKUW(d′, n).

CFF,

id-codes

returns d′ invalid signatures returns a set of d ≤ � ≤ n potentially in-

valid signatures

RM Outputs d′ signatures in

MRM(d, n) tests

Outputs d bad signatures with probability

Pd,n and d′ bad signatures with probability

Pd′,n (see Th. 6)

The random matrix ISF outputs each d′ > d with probability Pd′,n, given
in Theorem 6. For these algorithms we may run t tests to identify some valid
signatures, remove them from the batch, re-estimate d, and re-run the ISF.

Another option when d is unknown is to use a competitive algorithm, i.e., one
which assumes no a priori information about d, yet completes in a bounded
number of tests (see [16, Ch. 4]). For example, the “jumping algorithm” of Bar-
Noy et al. [3], identifies d invalid signatures in at most 1.65d(log n

d + 1.031) + 6
tests, for 0 ≤ d ≤ n. Note that this flexibility comes at a cost because the
performance of a competitive algorithm when d is known to be small is poorer
than the other ISFs presented.

3.3 Comparison to Non-generic ISF Algorithms

Recall from Section 1.2 that a non-generic ISF is an ISF which is customized to
a particular signature scheme, integrated into the Batch algorithm. In the single
processor setting, the ISFs requiring the fewest number of tests were binary
splitting and generalized binary splitting. Since the non-generic ISF given by
Law and Matt [25,26] outperforms binary splitting, their ISF will outperform the
generic ISF algorithms presented here (for the pairing-based signature schemes
to which it applies).

The faster choice in the parallel case would depend on how well the specialized
ISFs described by Law and Matt parallelize. If their improved version of binary
splitting yields an improved version of the KUW test (which is similar to binary
splitting) then the parameter combinations where KUW is the best may be
improved upon.

A general comparison is beyond the scope of this work since the units are
different: number of calls to Batch() (this work) vs. number of multiplications in
a finite field (Law and Matt).
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4 Conclusion

We have introduced algorithms based on group testing for finding invalid signa-
tures in bad batches. For many parameter choices, and especially with multiple
processors, the new methods outperform known methods. Our comparison shows
that the best algorithm depends strongly on the choice of parameters, and no sin-
gle algorithm is best in all cases. One way to more precisely compare these al-
gorithms, while still maintaining some generality, would be to count the number
of calls to Batch() and the size the input to each, then assign values to the fixed
and variable cost, depending on the underlying Batch() function, to arrive at a
final performance number. Other topics for future work include: i) comparison of
implementations to compensate for not considering the sizes of sub-batches, and
ii) specializing the given ISFs to specific signature schemes, perhaps by using tech-
niques from Law and Matt’s specialized ISFs for pairing-based signature schemes.
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A Comparison Details

Table 4 gives the number of tests required by each algorithm when p = 1, with
varying n and d, while Tables 5 and 6 fix d = 4 and d = 10 respectively, with
varying n and p.

Table 4. Table showing the number of tests required by each group testing algorithm

from Table 1 when n = 103, 104, 105, 106 and d = 1, 2, 3, 4, 10. For random matrices a

success probability of 99.9% is required.

Method
n = 103, d = n = 104, d =

1 2 3 4 10 1 2 3 4 10

Binary Splitting 10 20 30 40 100 14 28 42 56 140

Gen. Bin. Splitting 10 20 30 39 87 14 27 40 52 121

Li’s s-stage 18 33 47 60 125 25 46 66 85 187

PR CFF 13 89 159 249 1205 16 119 212 332 1607

PPS id-codes 63 94 126 158 347 200 300 400 500 1100

Random Matrices 49 87 124 162 387 57 101 145 189 452

n = 105 n = 106

Binary Splitting 17 34 51 68 170 20 40 60 80 200

Gen. Bin. Splitting 17 34 50 65 154 20 40 60 79 187

Li’s s-stage 31 58 84 110 250 37 71 103 135 312

PR CFF 20 149 265 415 2009 23 179 318 498 2411

PPS id-codes 632 948 1264 1581 3478 2K 3K 4K 5K 11K

Random Matrices 65 115 166 216 517 73 130 186 243 581



156 G.M. Zaverucha and D.R. Stinson

Table 5. Table showing the number of tests required by each group testing algorithm

from Table 1 when n = 103, 104, d = 4 and the number of processors available is

p = 2, 4, 8, 16. For random matrices a success probability of 99.9% is required.

Method

d = 4

n = 103, p = n = 104, p =

2 4 8 16 2 4 8 16

Binary Splitting 36 32 28 24 52 48 44 40

Gen. Bin. Splitting 35 31 27 23 48 44 40 36

KUW 28 20 16 12 36 24 20 16

Li’s s-stage 35 19 12 8 49 27 17 12

PR CFF 125 63 32 16 166 83 42 21

PPS id-codes 79 40 20 10 250 125 63 32

Random Matrices 81 41 21 11 95 48 24 12

n = 105 n = 106

Binary Splitting 64 60 56 52 76 72 68 64

Gen. Bin. Splitting 61 57 53 49 75 71 67 63

KUW 44 32 24 20 52 36 28 20

Li’s s-stage 64 36 22 16 79 45 28 20

PR CFF 208 104 52 26 249 125 63 32

PPS id-codes 719 396 198 99 2.5K 1250 625 313

Random Matrices 108 54 27 14 122 61 31 16

Table 6. Table showing the number of tests required by each group testing algorithm

from Table 1 when n = 103, 104, d = 10 and the number of processors available is

p = 2, 4, 8, 16. For random matrices a success probability of 99.9% is required.

Method

d = 10

n = 103, p = n = 104, p =

2 4 8 16 2 4 8 16

Binary Splitting 90 80 70 60 130 120 110 100

Gen. Bin. Splitting 77 67 57 47 111 101 91 80

KUW 70 50 40 30 90 60 50 40

Li’s s-stage 67 35 21 14 100 53 31 21

PR CFF 603 302 151 76 804 402 201 101

PPS id-codes 174 87 44 22 550 275 138 69

Random Matrices 194 97 49 25 226 113 57 29

n = 105, p = n = 106, p =

2 4 8 16 2 4 8 16

Binary Splitting 160 150 140 130 190 180 170 160

Gen. Bin. Splitting 144 134 124 114 177 167 157 147

KUW 110 80 60 50 130 90 70 50

Li’s s-stage 134 70 41 27 167 88 51 33

PR CFF 1005 503 252 126 1206 603 302 151

PPS id-codes 1739 870 435 218 5500 2750 1375 688

Random Matrices 259 130 65 33 291 146 73 37
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B Bounds on Cover-Free Families

The number of rows, t, in the matrix representation of a d-CFF(t, n) gives the
number of tests required using the method of §2.3. In this section we present
bounds for t since this indicates how well (at best) we can expect CFF-based
nonadaptive group tests to perform. First we present a necessary condition for
the existence of CFF, a lower bound on the number of rows.

Theorem 7 (see [39], Th. 1.1). For any d ≥ 1, in a d-CFF(t, n)

t ≥ c

(
d2

log d

)
log n .

The constant c is approximately 1/8 (shown in [33]).

It is immediately clear that the nonadaptive feature comes at a cost, since the
number of tests will always be larger than d �log(n)�, the number of tests required
by binary splitting (c.f. 2.2).

De Bonis and Vaccaro bound t from the other direction.

Theorem 8 ([13], Cor. 1). There exists a d-CFF(t, n) with

t < 24d2 log(n + 2) .

Their proof method is constructive, based on a greedy algorithm, and it is effi-
cient for small CFF.
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Abstract. In the context of secure point-to-point message transmis-

sion in networks with minimal connectivity, previous studies showed

that feedbacks from the receiver to the sender can be used to reduce

the requirements of network connectivity. We observe that the way how

feedbacks were used in previous work does not guarantee perfect privacy

to the transmitted message, when the adversary performs a Guessing
Attack. In this paper, we shall describe our new Guessing Attack to

some existing protocols (in fact, we are the first to point out a flaw

in the protocols of Desmedt-Wang’s Eurocrypt’02 paper and of Patra-

Shankar-Choudhary-Srinathan-Rangan’s CANS’07 paper), and propose

a scheme defending against a general adversary structure. In addition, we

also show how to achieve almost perfectly secure message transmission

with feedbacks when perfect reliability or perfect privacy is not strictly

required.

Keywords: secure message transmission, privacy and reliability, Guess-

ing Attack, adversary structure, feedback.

1 Introduction

Secure point-to-point communication requires both private and reliable message
transmission from a sender A to a receiver B, despite the possibility that some
parties on the channels between them are corrupted. Dolev et al. [8] initialized the
problem of secure message transmission by showing that secure communication
is possible in a network graph that is not complete. The interplay of the network
connectivity and secure communication has been studied extensively [7,2,4,8,9,
5, 13, 6,25,14].

The general setting of this problem assumes an active Byzantine adversary,
who has unlimited computational power (not only a passive listener). An adver-
sary X can be characterized as threshold (k-bounded) or non-threshold (general
adversary structure). In the initial studies, Dolev [7] and Dolev et al. [8] showed
that 2k + 1 connectivity is required for reliable message transmission, and if all
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communication links are one-way, then the system’s network needs to be 3k + 1
connected. Some further studies on threshold adversaries have been done by
Franklin and Wright [9], Desmedt and Wang [5], and Kurozawa and Suzuki [14].
Furthermore, in the presence of a general adversary structure [11], Kumar et
al. [13] gave the necessary and sufficient conditions for perfectly secure message
transmission in bi-direction networks (all links are two-way), and later, Desmedt
et al. [6] extended the research and provided some results on all-one-way linked
networks.

Although the concerning problem may seem trivial, it is far from straightfor-
ward. Many solutions on the topic of secure message transmission require careful
examination. For instance, in Crypto 04, Srinathan et al. [24] proposed an op-
timal (in transmission rate) protocol for all-two-way communication. However,
that protocol was later proved not perfectly reliable as originally claimed, by
Agarwal et al. [1]. Similarly, in this work, we show that perfect privacy can be
breached in many schemes that use the so-called feedback channels (e.g. some
protocols of Desmedt and Wang [5] in Eurocrypt’02).

Given a sender A and a receiver B in a network. The channel that A uses
to transmit a message to B is called the forward channel, and the channel that
B transmits feedbacks to A is called the feedback channel. In an all-two-way
linked network, the forward channels and the feedback channels have the same
connectivity (symmetric). That is, if B can reliably receive message from A, then
A can reliably receive feedbacks from B. However, in general, the feedbacks that
A receives may not be reliable. That is, the feedback channels may have less
connectivity than the forward channels do. Desmedt and Wang [5] motivated
this with the following scenarios: a channel from A to B is cheap, but a channel
from B to A is expensive; in another scenario, A has access to more resources
than B does.

Some studies have been done concerning this network setting (with unreliable
feedback channels). This problem was initialized by Desmedt and Wang [5] in
Eurocrypt’02. In their paper they showed that if there are u directed node-
disjoint paths from B to A, then it is sufficient to have 3k + 1 − u > 2k + 1
directed node-disjoint paths from A to B against a k-active adversary. Another
study has been done by Patra et al. [19], in which they extended the previous
results and considered a general adversary structure.1 However, we observe that
all the protocols in these papers are not so perfectly secure as they claimed,
as those protocols actually leak some information about the message to the
adversary X , when X corrupts the feedback channel and acts on it. Thus we
shall show how X can attack those protocols in this paper.

Our contributions. In our work we study the use of the feedback channels in
depth. Particularly, we observe that the major functionality of the feedback
channels is to be used by the receiver B for reliable message transmission purpose
when faulty messages are received, but this may undermine perfect privacy of
the transmitted messages. We will describe a new Guessing Attack that the
1 We noticed that some recent studies have been done considering this network setting

(see [17,18]). However, those results are less relative to our concern.
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adversary may perform on many existing protocols that work in networks with
feedback channels.

Next we show how to construct a perfectly secure message transmission proto-
col that withstands the Guessing Attack and any other attack. In this paper we
consider a general adversary structure, thus our results can be applied in more
general cases. In addition, we study almost perfectly secure message transmis-
sion. First we show that the network connectivity required for achieving almost
perfectly private message transmission is exactly the same as that for achieving
perfect privacy. Next, we study almost perfectly reliable message transmission
tolerating a general adversary structure, and propose a protocol, which is a gen-
eralization of the result in [5].

Organization of this paper. We describe our model in Section 2. In Section 3
we propose our Guessing Attack that breaches perfect privacy of some existing
protocols. Section 4 is devoted to present the necessary and sufficient conditions
for perfectly secure message transmission, and we shall give our main protocol
that tolerates the Guessing Attack in this section. In Section 5, we show our
result on almost perfectly private message transmission, and in Section 6, we
discuss almost perfectly reliable message transmission.

2 Model and Background

Basic definitions. We abstract away the concrete network structure and model a
network by a directed graph G(V, E), whose nodes are the parties in the network
and edges are point-to-point secure communication links, where all the edges in
E have directions. We also denote F as the finite field that both A and B agree
on, and M ⊆ F as the message space that A chooses message from. Let S be a
set, we write |S| to denote the number of elements in S, and a ∈R S to indicate
that a is chosen from S with respect to the uniform distribution. Let a ∈ R. We
write $a% ∈ Z to denote the integer part of a. Let a, b, M ∈ F. We employ an
authentication function auth(M ; a, b) := aM + b, by which each authentication
key key = (a, b) can be used to authenticate one message M without revealing
any information about the authentication key (see [10,21,20,9]).

Throughout the paper, we assume that A, B ∈ V , and use P as the set of all
the directed paths from A to B and Q as the set of all the directed paths from B
to A (the directed paths are not necessarily node-disjoint). Let Z ⊆ V , we write
PZ to denote the set of all paths in P that pass through nodes in Z, and write
P̄Z to denote the set of all paths in P that are free of nodes in Z. Similarly, we
denote QZ and Q̄Z .

Secret sharing. We define a (k+1)-out-of-n ε-private secret sharing scheme ((k+
1, n, ε)-SSS).

Definition 1. Let ε < 1. A (k + 1, n, ε)-SSS is a probabilistic function S : F →
Fn such that for any m ∈ F and (v1, ..., vn) = S(m),
property-1 m can be recovered from any k + 1 entries of (v1, ..., vn) with proba-

bility 1, and
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property-2 m can also be recovered (without random guessing) from any r ≤ k
entries with probability at most ε.

Therefore, the classic Shamir’s scheme [22] is a (k + 1, n, 0)-SSS, and Blakely’s
scheme [3] is a (k +1, n, ε)-SSS (almost perfectly private). The set of all possible
(v1, ..., vn) can be viewed as a code and its elements codewords. When there is
no ambuiguity, we view S(m) as a subset of this code. We say a (k +1, n, ε)-SSS
can detect d errors if given any codeword (v1, ..., vn) and any tuple (u1, ..., un)
such that 0 < |i : ui �= vi, 1 ≤ i ≤ n| ≤ d, one can detect that (u1, ..., un) is not
a codeword; a (k + 1, n, ε)-SSS can correct c errors if given (v1, ..., vn) ∈ S(m),
from any tuple (u1, ..., un) such that |i : ui �= vi, 1 ≤ i ≤ n| ≤ c, one can recover
the secret m. It has been proved that a (k+1, n, 0)-SSS can detect n−k−1 errors
and correct (not simultaneously) $(n − k − 1)/2% errors using error-correcting
code [15, 16].

Adversary model. We consider an adversary X who is characterized by an ad-
versary structure Z that consists of all sets of parties that X can corrupt. A
definition of an adversary structure was given by Hirt and Maurer [11] (see
also [12]): Given a party set P , an adversary structure Z on P is a family of
subsets Z ⊂ 2P such that: Z ∈ Z, Z ′ ⊆ Z ⊆ P ⇒ Z ′ ∈ Z. A set Z ∈ Z is called
maximal if Z ′ ⊃ Z ⇒ Z ′ /∈ Z, and we use Z̃ as the set of all maximal sets in Z.

Throughout the paper we use Zx ∈ Z to denote the set of parties that the
adversary X chooses to control. We allow an active, or Byzantine, adversary, who
has unlimited computational power and resources. The adversary X can read
the traffic of Zx and perform any local computation on Zx. In this paper we only
consider a static adversary, whose choice of Zx does not change throughout the
protocol.

Message transmission protocol. Let Π be a message transmission protocol. A
starts with a message MA drawn from a message space M with respect to
a certain probability distribution. At the end of the protocol Π , B outputs a
message MB ∈ M. For any execution of the protocol Π , let adv be the adversary
X ’s view of the entire protocol. We write adv(M, r) to denote X ’s view when
MA = M and when the sequence of coin flips used by X is r (follows [9, 6]).

Privacy: Π is ε-private if, for any two messages M0, M1 ∈ M and every r,∑
c |Pr[adv(M0, r) = c] − Pr[adv(M1, r) = c]| ≤ 2ε.

Reliability: Π is δ-reliable if, with probability at least 1 − δ (0 ≤ δ < 1
2 ), B

terminates MB = MA.
Security: Π is (ε, δ)-secure if it is ε-private and δ-reliable.

We say Π is a perfectly secure message transmission protocol if it is (0, 0)-secure.
In this paper, we also discuss (0, δ)-secure and (ε, 0)-secure message transmis-
sions, which are almost perfectly secure.

In the presence of an adversary structure Z, Kumar et al. [13] showed that in a
bi-direction network, the necessary and sufficient condition for (0, 0)-secure mes-
sage transmission from A to B is that PZa∪Zb

� P for any Za, Zb ∈ Z. In the case
that all communication links are one-way without feedback, Desmedt et al. [6]
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proved that 0-reliable message transmission from A to B can be achieved if and
only if PZa∪Zb

� P for any Za, Zb ∈ Z, and (0, 0)-secure message transmission
is possible if and only if PZa∪Zb∪Zc � P for any Za, Zb, Zc ∈ Z. Furthermore,
we will discuss the case, in which the feedback channels exist, in Section 4.

3 Attack on Feedback Channels

In this section we propose a Guessing Attack that takes advantage of how the
feedback channels are normally used. In most protocols that work on networks
with feedback channels, the feedbacks are used by the receiver B to seek for
help from A when B does not have enough information to recover the message
(i.e., for reliability purpose). In our attack, we propose the following. Since the
adversary X can choose to corrupt some feedback paths, it can simulate how B
uses the feedback channels and learn from A the information it needs to recover
the message with better probability than guessing. This allows X to breach
perfect privacy, as we describe now in more detail.

Here we give an example of how Guessing Attack breaches perfect privacy of
one of Desmedt and Wang’s protocols in [5]. This DW protocol (the protocol
corresponding to [5, Theorem 5]) is for (0, 0)-secure message transmission against
a threshold adversary. First we shall sketch the DW protocol before we show that
it is not 0-private.

Condition for the DW protocol. There are 3k ≥ 2k+1 directed node-disjoint
paths from A to B and one directed node-disjoint path from B to A.2

Sketch of the DW protocol. Let p1, ..., p3k be the directed paths from A to
B and q be the directed path from B to A.
Step 1 ...
Step 2 A chooses a keyA ∈R F and constructs (k + 1, 3k, 0)-secret-shares

v = (s1, ..., s3k) of keyA. For each 1 ≤ i ≤ 3k, A sends si to B via
path pi.

Step 3 Let vB = (sB
1 , ..., sB

3k) be the shares B receives. If B finds that there
are at most k − 1 errors (using error-correcting code), B recovers
keyB from the shares, sends ‘stop’ to A via path q; otherwise, B
sends vB to A via path q.

Step 4 If A receives vA = (sA
1 , ..., sA

3k) from path q, A broadcasts P = {i :
sA

i �= si} (|P | = k) via all paths p1, ..., p3k; otherwise, A broadcasts
‘stop’.

Step 5 ...
Step 6 A broadcasts keyA + MA via all paths p1, ..., p3k, where MA is the

actual message.
Step 7 ...

2 This condition is sufficient for (0, 0)-secure message transmission from A to B, but

is stronger than the necessary condition. See [5] for more detail.
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The k-active adversary X chooses to control paths p1, ..., pk−1 and path q. Thus X is

able to get shares (s1, ..., sk−1) in Step 2. With these k − 1 shares, X performs the

following:

X chooses a share sX
k ∈R F and two keys keyX

1 , keyX
2 ∈R F (keyX

1 
= keyX
2 ). Corre-

sponding to keyX
1 , X assumes that (s1, ..., sk−1, s

X
k ) are k shares of keyX

1 , thus using

Lagrange interpolation, X gets another k shares (sX
k+1, ..., s

X
2k) of keyX

1 . Similarly, cor-

responding to keyX
2 , X assumes that (s1, ..., sk−1, s

X
k ) are k shares of keyX

2 , and gets

another k shares (sX
2k+1, ..., s

X
3k) of keyX

2 . X sets vX = (s1, ..., sk−1, s
X
k , ..., sX

3k).

In each execution step of the DW protocol, X acts passive on paths p1, ..., pk−1.

Thus B sends ‘stop’ to A in Step 3. On the feedback path q that X corrupts, X
ignores what B sends and forwards vX to A. Then in Step 4, if A finds exactly k
errors in vA = vX , A broadcasts P = {i : sX

i 
= si}, according to which X recovers

keyA = keyX
j (j ∈ {1, 2}); otherwise, A broadcasts ‘stop’, and X randomly guesses a

keyX .

Fig. 1. Guessing Attack to the DW protocol

This single feedback channel protocol is the basis of the main protocols in [5].
We observe that this DW protocol is 0-reliable, so in the above sketch we did
not describe how B recovers the message (see [5] for the entire protocol). Now
we show that using our Guessing Attack, the adversary X can learn the message
MA with probability better than guessing.

Theorem 1. This DW protocol is not a 0-private message transmission protocol
from A to B.

Proof. Due to the fact that keyA ∈R F, if this DW protocol is 0-private, then
the probability that the adversary X guesses keyA is 1

|F| . That is, X learns
nothing from the shares it gets, and can only guess a uniformly random number
keyX ∈ F, and with probability 1

|F| , keyX = keyA. We call this a random guess.
Now we show a Guessing Attack by which X can learn keyA with a probability
better than 1

|F| (see Fig.1).
In this Guessing Attack, X guesses a share sX

k and two keys keyX
1 and keyX

2 .
It is straightforward that A will broadcast P if and only if A finds exactly k
errors in vX , and the k errors can only be either (sX

k+1, ..., s
X
2k) or (sX

2k+1, ..., s
X
3k).

That is, the guess is successful if sX
k = sk and one of the two keys is correct (i.e.,

keyX
i = keyA, i ∈ {1, 2}). Thus the probability T that the guess is successful is

T =
1
|F| ×

(
2 × 1

|F|

)
=

2
|F|2 .

If the guess fails, then X will use a random guess with probability 1
|F| to get

keyX = keyA. Thus, the total probability G that X learns keyA by performing
Guessing Attack is

G = T + (1 − T )× 1
|F| >

1
|F| .
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Therefore, X can learn keyA with a probability better than 1
|F| and simultane-

ously recover MA with probability better than guessing.3 Hence we proved that
the DW protocol is not 0-private. ��

Note that in journal paper [26], Wang and Desmedt provided a new protocol
that uses induction when A receives tuples of shares in feedbacks (the case that
Guessing Attack may happen). When A notices that Guessing Attack may hap-
pen according to the feedbacks it receives, it uses an induction and re-sends the
message without revealing the message to the adversary (0-private). The prop-
erty of the threshold adversray, t-bounded, allows the induction to be continued
until the message is transmitted 0-reliably. Thus the protocol in [26] enables
perfect security. For details of the (0, 0)-secure message transmission protocol
tolerating a threshold adversary, we refer to [26, Theorem 4.2].

As we showed in the above example, the basic idea of Guessing Attack is to
replace the feedbacks from B to A on the feedback channel with something that
may reveal the message. There is some probability associated with this guessing
of being successful.

Besides the Desmedt-Wang protocols, we observe that all protocols given by
Patra et al. in [19] that tolerate either threshold or non-threshold adversaries
do not guarantee perfect privacy when the Guessing Attack takes place, and
hence they are not (0, 0)-secure. We show our Guessing Attacks to the protocols
from [19] in Appendix A and the full version of this paper [27].

4 (0, 0)-Secure Message Transmission

In this section, we address the question of perfectly secure message transmission,
for which both 0-private and 0-reliable message transmissions are required. That
is, we shall provide a new protocol that tolerates the Guessing Attack. We focus
on a (0, 0)-secure message transmission against a general adversary structure
(as Wang and Desmedt [26] recently provided a (0, 0)-secure protocol for the
threshold case), hence our protocol can be used in more general cases. Before we
show our protocol, we generalize the following theorem based on the result by
Patra et al. [19].

Theorem 2. Let G(V, E) be a directed graph, Z be an adversary structure on
V \ {A, B}, and Q �= ∅. The necessary and sufficient conditions (CONs) for
(0, 0)-secure message transmission from A to B are:

CON-1 for any two sets Za, Zb ∈ Z: PZa∪Zb
� P, and

CON-2 for any three sets Za, Zb, Zc ∈ Z, if PZa∪Zb∪Zc = P, then out of the
three sets, there is at most one Zi (i ∈ {a, b, c}) such that QZi = Q.

3 Although MA can be chosen with respect to any probability distribution (not neces-

sarily uniform), more knowledge of the key keyA gives better probability of getting

MA.
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We also employ a lemma from [19] for a simpler protocol, as using this lemma,
we only need to consider a set Ỹ of size 3 that contains the set Zx ∈ Z̃ that the
adversary X chooses to control.

Lemma 1. (see [19]) Let Z be an adversary structure on V \ {A, B}. (0, 0)-
secure message transmission from A to B tolerating Z is possible if: for any
monotone subset Y ⊆ Z such that |Ỹ| = 3 and Zx ∈ Ỹ, there is a (0, 0)-secure
message transmission protocol from A to B tolerating Ỹ.

In [19], Patra et al. proposed a Secure Protocol tolerating Ỹ. However, the Se-
cure Protocol is vulnerable to Guessing Attack, and hence is not 0-private (see
Appendix A for the proof).

Now we show a (0, 0)-secure message transmission protocol (PSP) under
CONs tolerating such a sub-structure Ỹ and defending Guessing Attack. First
we let Ỹ = {Z1, Z2, Z3}. The case that PZ1∪Z2∪Z3 � P has been proved in [6].
Now we consider the case that PZ1∪Z2∪Z3 = P . Here we employ the similar
settings to the proof to [19, Theorem 10]; that is, due to CON-1, three forward
paths p1 ∈ P̄Z2∪Z3 , p2 ∈ P̄Z1∪Z3 and p3 ∈ P̄Z1∪Z2 exist to transmit messages
from A to B. This implies that, since Zx ∈ Ỹ, the adversary X can corrupt at
most one pi (1 ≤ i ≤ 3). Thus if A sends a value via all three paths p1, p2, p3,
then B can recover this value using a majority vote. In our protocol we say that
A reliably sends a value to B to indicate this kind of transmission.

Based on CON-2, we assume that QZ1 � Q, QZ2 � Q and QZ3 ⊆ Q. More-
over, due to CON-2, two feedback paths q1 ∈ Q̄Z1 and q2 ∈ Q̄Z2 exist to transmit
feedbacks from B to A.

In our protocol, we use 0 as default received value. That is, when A is sending
to B, if B receives nothing on path p ∈ P , then B assumes that 0 is received on
path p. Similarly if A receives nothing on path q ∈ Q from B, then A assumes
that 0 is received on path q.
Underlying idea. Our protocol runs a loop. In each round of the loop, the feedback
paths q1 and q2 are used to transmit only one bit: either 0 or 1. This prevents
the Guessing Attack from happening at the first place. If in a round of the loop,
B found that one of the forward paths p1, p2 or p3 transmits a faulty message,
then B will send 0 via the feedback paths. If A receives 0 on qj (j ∈ {1, 2}),
then A will reliably send the message to B again, so B will then know which
path pf (1 ≤ f ≤ 3) is faulty. In the rest of the protocol, B will only recover
the message on pi and pj (i, j ∈ {1, 2, 3} \ {f}), and will not send 0 as feedback
again. Therefore, if A receive 0 on qj (j ∈ {1, 2}) more than once, then A knows
that qj is faulty, and will not consider the feedbacks received on qj again in the
rest of the protocol. In our protocol, we let A use err1 and err2 to count the
numbers of 0’s received on paths q1 and q2 respectively. Furthermore, if in a
round of the loop, A does not receive 0 on the feedback path(s) that A considers
not faulty, then A will not send any information about the message again, and
A knows that the message has been transmitted 0-privately. A sets a variable
pri = 1 in this case. We let the loop halt when A finds both q1 and q2 are faulty
(i.e., err1 > 1 and err2 > 1), or when A concludes that the message has been
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A sets err1 := 0, err2 := 0, pri := 0;
B sets f := 0, flag := 0;a

while (err1 ≤ 1 or err2 ≤ 1) and pri = 0 loop
A chooses an mA

1 ∈R F and constructs (2, 3, 0)-secret-shares (sA
1 , sA

2 , sA
3 ) of mA

1 ;
Step 1 For each 1 ≤ i ≤ 3, A sends sA

i to B via path pi;
Step 2 B receives three shares (sB

1 , sB
2 , sB

3 );
if f 
= 0 then

B recovers mA
1 from shares sB

i and sB
j where i, j ∈ {1, 2, 3} \ {f};

B sends 1 to A via path q1 and path q2;

else if B detectsb 1 error in (sB
1 , sB

2 , sB
3 ) then

B sends 0 to A via path q1 and path q2, and sets flag := 1;
else if B detects 0 error in (sB

1 , sB
2 , sB

3 ) then

B recovers mA
1 from (sB

1 , sB
2 , sB

3 ), and sends 1 to A via path q1 and q2;
end if;

Step 3 A receives fdb1 ∈ {0, 1} on path q1 and fdb2 ∈ {0, 1} on path q2;
if err1 > 1 or err2 > 1 then

A only considers fdbh where h ∈ {1, 2} and errh ≤ 1;
if fdbh = 0 then

A sets errh := errh + 1, and reliably sends mA
1 to B;

else if fdbh = 1 then
A sets pri := 1, and reliably sends ‘OK’ to B;

end if;
else if err1 ≤ 1 and err2 ≤ 1 then

if fdb1 = fdb2 = 1 then
A sets pri := 1, and reliably sends ‘OK’ to B;

else then
A sets errh := errh + 1 for each 1 ≤ h ≤ 2 such that fdbh = 0;
A reliably sends mA

1 to B;
end if;

end if;
Stepc 4 if flag = 1 then

if B reliably receives mB
1 := mA

1 then
B sets f := l such that sB

l is not a correct share of mB
1 ;

else if B reliably receives ‘OK’ then

B sets f = 3,d and recovers mB
1 from sB

1 and sB
2 ;

end if;
end if;

end loop; - while

a Later in PSP, if B concludes that a path pi (1 ≤ i ≤ 3) is faulty, then B sets f := i
to mark the faulty path pf .

b As we mentioned in Section 2, a (k + 1, n, 0)-SSS can detect n − k − 1 errors using

error-detecting code. Thus B can detect 1 error with the (2, 3, 0)-secret-shares.
c B does not come to Step 4 unless B sent 0 as feedback in Step 2.
d In this case, B knows that A did not receive 0, so B concludes that both paths

q1 ∈ Q̄Z1 and q2 ∈ Q̄Z2 are faulty. Thus B knows that Z3, and hence p3, are faulty.

Fig. 2. Perfectly Secure Protocol (PSP)
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A reliably sends ‘err1 > 1 and err2 > 1’ or ‘pri = 1’ to B;
B then halts the loop and keeps the last mB

1 ;
A sets mA

2 := mA − mA
1 ;

if err1 > 1 and err2 > 1 then

A sends mA
2 to B via paths p1;

e

B receives mB
2 on path p1, and recovers mB = mB

1 + mB
2 ;

else if pri = 1 then
A reliably sends mA

2 to B;
B reliably receives mB

2 = mA
2 , and recovers mB = mB

1 + mB
2 ;

end if; - end PSP

e In this case, A concludes that both paths q1 ∈ Q̄Z1 and q2 ∈ Q̄Z2 are faulty. Thus

A knows that Z3 is faulty, so p1 ∈ P̄Z2∪Z3 is honest.

Fig. 2. (continued)

transmitted 0-privately (i.e., pri = 1). Based on this idea, we give a (0, 0)-secure
message transmission protocol (PSP) that tolerates Guessing Attack to transmit
a message mA (see Fig.2).

Lemma 2. PSP is a (0, 0)-secure message transmission protocol from A to B.

Proof. First we show that PSP is 0-private. That is, the adversary X cannot
learn mA throughout the protocol. We consider the following two cases:

1. When while loop halts, err1 > 1 and err2 > 1. As we discussed before, this
case means that both paths q1 and q2 are faulty, and X can corrupt both
paths only if X chooses Z3 to control. Thus A knows that p3 is faulty and
only transmits mA

2 via path p1. It is straightforward that X is not able to
learn mA without knowing mA

2 .
2. When while loop halts, pri = 1. This case only happens when A receives 1

on each path qj where j ∈ {1, 2} and errj ≤ 1, and A will then reliably send
‘OK’ to B. Thus the adversary X who chooses Zx and corrupts px can get
only one share sA

x , and hence cannot recover mA
1 , and simultaneously cannot

learn mA.

Thus, we showed that in both cases, mA is transmitted 0-privately.
Next, we prove that PSP is 0-reliable. That is, B is guaranteed to recover

mB = mA. It is straightforward that if X keeps passive on path px (1 ≤ x ≤ 3)
that it corrupts, then B can reliably recover mB

1 = mA
1 . Now we show that if X

forwards faulty shares on px, then B can get f = x (i.e., pf = px). When f = 0
and B finds error in the received shares in Step 2, B sends 0 to A via paths q1

and q2. Then in Step 4, if B reliably receives mA
1 , then B can work out which

path transmitted the faulty share in the previous Step 2, thus B gets f = x; else
if B reliably receives ‘OK’, then it is straightforward that f = x = 3. Thus, B
can always identify which path pf = px is faulty, and recover mB

1 = mA
1 with the

shares received on the other two paths. Since it is straightforward that B can
reliable receive mB

2 = mA
2 , B can recover mB = mA. Thus PSP is 0-reliable. ��



Cryptanalysis of Secure Message Transmission Protocols with Feedback 169

5 (ε, 0)-Secure Message Transmission

In this section, we show that the necessary and sufficient conditions for achieving
(ε, 0)-secure message transmission are the same to those for achieving (0, 0)-
secure message transmission. That is, lowering privacy level does not reduce the
requirement of network connectivity. Before we prove this, we first show some
results on (k + 1, n, ε)-SSS where 0 ≤ ε < 1.4 It has been discussed that a
(k + 1, n, 0)-SSS can detect n − k − 1 errors and correct $(n − k − 1)/2% errors
(see [15,16,5]). In the following we show that a (k + 1, n, ε)-SSS can do just the
same.

Lemma 3. Let m be a secret, S be a (k + 1, n, ε)-SSS and (v1, ..., vn) ∈ S(m),
then any k + 1 entries of (v1, ..., vn) are unique to the codeword of S(m).

Proof. Assume there are some k + 1 entries that also belong to the codeword
of S(m′), where m′ �= m. Then with these k + 1 entries, one cannot distinguish
whether m or m′ is shared, so m cannot be recovered with probability 1. This
contradicts to property-1 of the (k + 1, n, ε)-SSS. ��

Lemma 4. Let m be a secret, S be a (k + 1, n, ε)-SSS and (v1, ..., vn) ∈ S(m).
For any k such entries vl1 , ..., vlk (1 ≤ l1 < ... < lk ≤ n), there exists a secret
m′ �= m such that (v′1, ..., v′n) ∈ S(m′) and for each 1 ≤ i ≤ k : v′li = vli .

Proof. Assume that there are k entries vl1 , ..., vlk that belong to a codeword in
S(m), but not to any in S(m′), where m′ �= m. That is, these k entries are
unique to the codeword of S(m), so m can be recovered from these k entries
with probability 1. This contradicts to property-2 of the (k + 1, n, ε)-SSS. ��

Theorem 3. A (k + 1, n, ε)-SSS can detect n − k − 1 errors, but not more.

Proof. Let S be a (k + 1, n, ε)-SSS and (v1, ..., vn) ∈ S(m) be a codeword. First
we show that if there is a tuple T = (u1, ..., un) such that |{i : ui �= vi, 1 ≤
i ≤ n}| = d and 0 < d ≤ n − k − 1, then one can detect that T is not a
codeword. Since n− d ≥ n− (n− k − 1) = k + 1, there are at least k + 1 entries
ul1 , ..., ulk+1 (1 ≤ l1 < ... < lk+1 ≤ n) such that for each 1 ≤ i ≤ k+1 : uli = vli .
Thus according to Lemma 3, ul1 , ..., ulk+1 are unique to the codeword of S(m).
Since the d errors are not in the codeword of S(m), it is easy to show that T is
not a codeword.

Next we show that if d ≥ n − k, then the tuple T can also be a codeword of
a secret m′ �= m. Since n − d ≤ n − (n − k) = k, there are at most k entries
ul1 , ..., ulk (1 ≤ l1 < ... < lk ≤ n) such that for each 1 ≤ i ≤ k : uli = vli .
According to Lemma 4, there exists a secret m′ such that the n − d entries
belong to the codeword of S(m′), and it is possible that the d errors are also in
the codeword of S(m′). Thus T can be codeword, and hence one cannot detect
d ≥ n − k errors. ��

4 See Definition 1 in Section 2 for the definition of (k + 1, n, ε)-SSS.
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Theorem 4. A (k+1, n, ε)-SSS can correct $(n−k−1)/2% errors, but not more.

Proof. Let S be a (k + 1, n, ε)-SSS and (v1, ..., vn) ∈ S(m) be a codeword. First
we show that if there is a tuple T = (u1, ..., un) such that |{i : ui �= vi, 1 ≤ i ≤
n}| = c and c ≤ $(n − k − 1)/2%, then one can recover the secret m from T .
To correct c errors, one selects n − c entries from T and put them into a new
tuple T ′ of length n − c. Since n − c ≥ k + 1, T ′ is a corrupted codeword of a
(k+1, n−c, ε)-SSS that shares m, with at most c errors. According to Theorem 3,
a (k + 1, n− c, ε)-SSS can detect

n − c − k − 1 ≥ n − $(n − k − 1)/2% − k − 1 ≥ $(n − k − 1)/2% ≥ c

errors. With at most c errors in T ′, one can detect if T ′ is a codeword. If one
finds that T ′ is not a codeword, it uses exhaustive search until it finds a T ′ that
is a codeword (i.e., the c errors are not entries in T ′), and finally recovers the
secret m from T ′.

Next we show that if c > $(n−k−1)/2%, then one cannot correct c errors and
recover m from T . We will construct the tuple T , in a way we explain further.
Assume that c = $(n−k−1)/2%+1. Since |{i : ui = vi, 1 ≤ i ≤ n}| = n− c ≥ k,
according to Lemma 4, there exists a secret m′ �= m such that some k error-free
entries in T not only belong to a codeword (v1, . . . , vn) ∈ S(m), but also belong
to a codeword of (v′1, . . . , v′n) ∈ S(m′). Let us analyze the remaining n−k entries
of T . They consist of c errors and c′ = n− k − c error-free entries, i.e., c′ entries
identical to the corresponding ones in (v1, . . . , vn). We now observe that:

c′ = n − k − c = n − k − ($(n − k − 1)/2%+ 1)
≤ 2 × $(n − k − 1)/2%+ 2 − ($(n − k − 1)/2% + 1)
= $(n − k − 1)/2%+ 1
= c.

We are now in a position to prove our claim. We first explain how we construct
the c entries ui in T that differ from (v1, . . . , vn). We let these correspond to the
corresponding c entries in (v′1, . . . , v

′
n). Now since c′ ≤ c, observe that given the

tuple T , one cannot distinguish whether the secret m is shared and the c entries
are errors, or the secret m′ is shared and the c′ entries are errors. Thus cannot
recover m with probability 1. ��

Now we show that the conditions for achieving (ε, 0)-secure message transmission
are the same to those for achieving (0, 0)-security.

Theorem 5. The CONs of Theorem 2 are also necessary and sufficient for
(ε, 0)-secure message transmission.

Proof. The sufficiency of CONs is straightforward, and Patra et al.’s Secure
Protocol in [19] is actually an (ε, 0)-secure protocol. Now we prove the necessity
of CONs, using a method similar to [5, 6].

It is straightforward that CON-1 is necessary for 0-reliable message transmis-
sion from A to B. Now we show that CON-2 is also necessary. For a contradic-
tion, we assume that there are three sets Z1, Z2, Z3 ∈ Z such that QZ1 � Q,
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QZ2 = QZ3 = Q and PZ1∪Z2∪Z3 = P . We assume an (ε, 0)-secure message trans-
mission protocol Π , and show how a non-threshold adversary X can defeat this
protocol Π .

Let mA be the message that A wants to send to B. X will simulate the possible
behaviors of A and B by executing Π to transmit another message m̂A ∈ M.
The strategy of X is to flip two coins c ∈ {00, 01, 10, 11}:

- c = 00. X re-flips.
- c = 01. X chooses Z1 to control, and acts passive on all paths in PZ1 and
QZ1 .

- c = 10 (or c = 11). X chooses Z2 (or Z3) to control. On all paths in PZ2 (or
PZ3), X ignores what A sends in each step of Π and simulates what A would
send to B if A was sending m̂A. On all paths in QZ2 = Q (or QZ3 = Q), X
ignores what B sends in each step of Π and simulates what B would send
to A if c = 01.

Note that the simulation of X on the feedback channel Q when c = 10 or c = 11
may not succeed, since B may send something that X fails to catch. However,
there is a non-zero probability that the simulation succeeds, given X knows
the protocol and can always guess. This non-zero probability can breach the
0-reliability, as we show next. It is straightforward that, when the simulation
succeeds, despite what the outcome of c is, the feedbacks that A receives are
the same. That is, according to the feedbacks, A will always learn that B has
reliably received mA without an error happening on the forward channel. At
the end of the protocol, the view viewB of B could be divided into three parts
viewZ1 , viewZ2 and viewZ3 , where viewZi (i = 1, 2, 3) consists of all information
that paths in PZi have learned (see [6]). Since the view viewA of A is the same
despite which set of Z1, Z2 or Z3 that X chooses, and Π is ε-private, mA can
be recovered from any single viewZi with probability at most ε (ε < 1). Thus we
regard (viewZ1 , viewZ2 , viewZ3) as shares of mA in a (2, 3, ε)-SSS. Next, since
Π is a 0-reliable, B should be able to recover the message mA from two of
the views (viewZ1 , viewZ2 , viewZ3) with probability 1. That is, when c = 10 or
c = 11, B should be able to distinguish which view of viewZ2 or viewZ3 contains
faulty information. To sum up, (viewZ1 , viewZ2 , viewZ3) is a (2, 3, ε)-SSS that
can correct 1 error (either viewZ2 or viewZ3). According to Theorem 4, a (2, 3, ε)-
SSS can only correct $(3 − 1 − 1)/2% = 0 error. We have a contradiction, which
concludes the proof. ��
Straightforwardly, using the result of Theorem 4 and similar proof to Theorem 5,
we give the following corollary:

Corollary 1. Let 0 ≤ δ < 1
2 and 0 ≤ ε1 < ε2 < 1. In any network model and

any adversary model, the network connectivity required for (ε1, δ)-secure message
transmission is the same as that for (ε2, δ)-secure message transmission.

6 (0, δ)-Secure Message Transmission

In this section we discuss (0, δ)-secure message transmission. Achieving prob-
abilistic reliability has been studied extensively in the presence of a threshold
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adversary (see [5,25,23]). We use the same network model to that in [5]. Thus
our result is a generalization of the results in [5], only that we consider a more
general adversary structure.

Theorem 6. Let G(V, E) be a directed graph, Z be an adversary structure on
V \ {A, B}, and Q �= ∅. The necessary and sufficient conditions for (0, δ)-secure
(0 < δ < 1

2 ) message transmission from A to B are:

(i) for any set Za ∈ Z: PZa � P, and
(ii) for any two sets Za, Zb ∈ Z: PZa∪Zb

∪ QZa∪Zb
� P ∪Q.

Proof. First we show that the conditions are necessary. It is straightforward that
condition (i) must be satisfied, since it must be ensured that at least one path
can transmit the correct message from A to B. To prove condition (ii) is also
necessary, we assume that there are two sets Z1, Z2 ∈ Z such that PZ1∪Z2 = P
and QZ1∪Z2 = Q, and there is a (0, δ)-secure (0 < δ < 1

2 ) message transmission
protocol Π . Let MA be the message A transmits, and the adversary X chooses
a faulty message M̂A. The strategy of X is to flip a coin and decide which set of
Zx (x ∈ {1, 2}) to control. In each execution step of Π , X causes each path in
PZx to follow the protocol as if the transmitted message is M̂A; if x = 1, then
on each path in QZ1 (if such path exists), X simulates what B will send if B

had received the faulty message M̂A from paths in PZ2 and received the actual
message MA from the other paths; else if x = 2, then on each path in Q̄Z1 (if
such path exists), X simulates what B will send if B had received M̂A from
paths in PZ1 and received MA from the other paths.

Therefore, at the end of the protocol, A receives the same feedbacks despite
whether x = 1 or x = 2. The view viewB of B could divided into two parts
viewZ1 and viewZ2 , where viewZr (r ∈ {1, 2}) consists of all information that
the nodes in Zr have learned (see similar proof in [6]). Due to the fact that the
forward channel is not reliable for message transmission, B cannot distinguish
whether x = 1 or x = 2, neither. Since Π is 0-private, MA must not be recovered
from any single viewZr . Since Π is δ-reliable, B should be able to recover the
MA from one of the two views viewZ1 or viewZ2 with high probability. Thus we
have a contradiction.

Next we show that the conditions are sufficient. Let Z̃ = {Z1, ..., Zt}, and
MA ∈ M be the message A wants to transmit to B. We shall construct a
(0, δ)-secure message transmission protocol (APRP), which is similar to that
in [5, Theorem 3] (see Fig.3).

Due to condition (ii), X cannot corrupt all paths in P̄Zi ∪Q̄Zi for any Zi ∈ Z̃.
Thus it is obvious that X cannot learn CA, DA and EA in any round i of for
loop, and hence cannot recover the message MA. Thus APRP is 0-private.

It is straightforward that in round x, all values are transmitted via paths in
P̄Zx ∪ Q̄Zx . It is clear that in this round, B can recover MB = MA, since X
who chooses Zx can do nothing with the message transmission. The reliability
is breached only if in a round i of APRP, X corrupts all paths in P̄Zi (then X
cannot corrupt all paths in Q̄Zi , due to condition (ii)), and X correctly guesses
the key (CA, DA) with small probability. This makes APRP δ-reliable. ��
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for 1 ≤ i ≤ t loop
Step 1 For each pj ∈ P̄Zi , A chooses (aA

i,j , b
A
i,j , c

A
i,j) ∈R F3 and sends the 3-tuple

(aA
i,j , b

A
i,j , c

A
i,j) to B via path pj;

Step 2 For each pj ∈ P̄Zi , B receives (aB
i,j , b

B
i,j , c

B
i,j) on path pj;

For each qj ∈ Q̄Zi , B chooses (dB
i,j , e

B
i,j , f

B
i,j) ∈R F3 and sends the 3-tuple

(dB
i,j , e

B
i,j , f

B
i,j) to A via path qj ;

Step 3 For each qj ∈ Q̄Zi , A receives (dA
i,j , e

A
i,j , f

A
i,j) on path qj ;

A computes CA :=
∑

pj∈P̄Zi
aA

i,j +
∑

qj∈Q̄Zi
dA

i,j ,

DA :=
∑

pj∈P̄Zi
bA
i,j +

∑
qj∈Q̄Zi

eA
i,j ,

EA :=
∑

pj∈P̄Zi
cA
i,j +

∑
qj∈Q̄Zi

fA
i,j ;

A sends the 2-tuple (MA + EA, auth(MA + EA; CA, DA)) to B via P̄Zi ;
Step 4 For each pj ∈ P̄Zi , B receives (gB

i,j , h
B
i,j) on path pj;

if (gB
i,j , h

B
i,j) = (gB

i,k, hB
i,k) for all pj , pk ∈ P̄Zi then

B computes CB :=
∑

pj∈P̄Zi
aB

i,j +
∑

qj∈Q̄Zi
dB

i,j ,

DB :=
∑

pj∈P̄Zi
bB
i,j +

∑
qj∈Q̄Zi

eB
i,j ,

EB :=
∑

pj∈P̄Zi
cB
i,j +

∑
qj∈Q̄Zi

fB
i,j ;

if hB
i,j = auth(gB

i,j ; C
B , DB) then

B recovers MB := gB
i,j − EB , and terminates the protocol;

end if;
end if;

end loop; - end APRP

Fig. 3. Almost Perfectly Reliable Protocol (APRP)
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Appendix

A Guessing Attack to Patra et al.’s Protocols

In [19], Patra et al. proposed three protocols for secure message transmission with
feedbacks: Protocol I and Protocol II were claimed to be (0, 0)-secure against a
k-active threshold adversary, and Secure Protocol was claimed to be (0, 0)-secure
against a general adversary structure. We observe that neither of the three pro-
tocols enables 0-private message transmission when Guessing Attack takes place.
We present our Guessing Attack against Secure Protocol (that tolerates an ad-
versary structure) here, and the similar attacks against Protocols I and II in the
full version of this paper [27]. Without loss of generality, we assume that the
transmitted message m ∈R F.

Now, we prove that Secure Protocol (SP), which is a three phase protocol toler-
ating a subset B of an adversary structure Z where |B̃| = 3, is not 0-private. To
show our Guessing Attack, we first sketch SP in the following.

Conditions for SP. Let B̃ = {Z1, Z2, Z3}. (1) there is a PRMT (perfectly
reliable message transmission) protocol from A to B, and (2) if PZ1∪Z2∪Z3 =
P , then there exist two paths qα ∈ Q̄Zα , qβ ∈ Q̄Zβ

(α, β ∈ {1, 2, 3}).
Sketch of SP. Due to the existence of PRMT, there exist three paths p1 ∈

P̄Z2∪Z3 , p2 ∈ P̄Z1∪Z3 , and p3 ∈ P̄Z1∪Z2 (see [6]). Let m be the message that
A transmits to B.

Phase I. A chooses a bivariate polynomial Q(x, y) =
∑1

i=0

∑1
j=0 ri,jx

iyj

uniformly at random such that Q(0, 0) = m. Q(x, y) is symmet-
ric; i.e., Q(i, j) = Q(j, i). A sends the polynomial Q(x, i) to B
via path pi, 1 ≤ i ≤ 3.

Phase II. B receives the polynomial QB
i (x) = QB(x, i) on path pi, 1 ≤ i ≤

3. Out of the three QB
i (x)-s, at most one is corrupted. B then

performs tests to determine which path pi is faulty.5 According
to the outcome of the tests:

- if B concludes that all pi-s (1 ≤ i ≤ 3) are honest, then B
recovers m and terminates the protocol;

- if B finds which pi (1 ≤ i ≤ 3) is faulty, then B recovers m
and terminates the protocol;

- if B finds one of the two paths pi and pj (1 ≤ i, j ≤ 3 and
i �= j) is faulty but cannot distinguish which one, then B
sends a 4-tuple (i, j, QB

i (j), QB
j (i)) to A via paths qα and qβ .

Phase III. A receives two 4-tuples: (iα, jα, viα , vjα) on path qα and
(iβ, jβ , viβ

, vjβ
) on path qβ .

- Corresponding to (iα, jα, viα , vjα), A checks whether viα =
Q(jα, iα) and whether vjα = Q(iα, jα). Depending on the
outcome, A concludes which path piα or pjα is faulty, and

5 The details of the tests are not important here. For more details see [19, Secure

Protocol].
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The adversary X chooses Z3 to control; that is, X corrupts both q1 and q2. In Phase

I of SP, X can only get Q(x, 3), with which X knows Q(1, 3) and Q(2, 3), thus it only

needs the value of Q(1, 2) to recover m. In each phase of SP, X acts passive on paths

in PZ3 . Thus B does not use the feedback channel throughout the protocol. In Phase

II of SP, X chooses four distinct random numbers vX
1 , vX

2 , vX
3 , vX

4 ∈R F, and transmits

two 4-tuples (1, 2, vX
1 , vX

2 ) and (1, 2, vX
3 , vX

4 ) to A. Then in Phase III, if corresponding

to a value vX
i (1 ≤ i ≤ 4), no appended error message “Path γ is faulty” (γ is either

p1 or p2) is broadcast by A, then X knows that vX
i is correct (i.e., = Q(1, 2)), and

hence recovers m; otherwise, X uses a random guess over F \ {vX
1 , vX

2 , vX
3 , vX

4 } to get

an m′.

Fig. 4. Guessing Attack to SP

appends an error message “Path γ is faulty” (γ is either piα

or pjα) to (iα, jα, viα , vjα).
- A performs similar computation to the other 4-tuple

(iβ, jβ , viβ
, vjβ

).
- A broadcasts the two 4-tuples along with the appended error

messages.
...

Next we show that the adversary X can learn the message m by performing
Guessing Attack (contradict to [19, Lemma 12]).

We assume there exist a path q1 ∈ Q̄Z1 and a path q2 ∈ Q̄Z2 , and q1, q2 ∈ QZ3 .
We show that by performing the Guessing Attack in Fig.5, X can learn m with
probability better than 1

|F| .
In this Guessing Attack, the guess is successful if there is a vX

i = Q(1, 2) =
Q(2, 1) (1 ≤ i ≤ 4), so A will broadcast the error message that indicates the
value of Q(1, 2) to X . Thus the probability T that the guess is successful is

T = 4 × 1
|F| =

4
|F| .

If the guess fails, then X knows that neither of the four random numbers it
chose is correct, so it will use a random guess over F\{vX

1 , vX
2 , vX

3 , vX
4 } and with

probability 1
|F|−4 , it will learn the message m. Thus the total probability G that

X learns m using Guessing Attack is

G = T + (1 − T ) × 1
|F| − 4

=
4
|F| +

(
1 − 4

|F|

)
× 1

|F| − 4
=

5
|F| .

It is straightforward that the probability that X learns m is much higher than
expected (i.e., 1

|F|), thus SP is not 0-private.
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Abstract. Bellman’s optimality principle is a method for solving prob-

lems where one needs to find best decisions one after another. The prin-

ciple can be extended to assess the information leakage in multi-threaded

programs, and is formalized into the optimum leakage principle hereby

proposed in this paper. By modeling the state transitions in multi-

threaded programs, the principle is combined with information theory

to assess the leakage in multi-threaded programs, as the result of an op-

timal policy. This offers a new perspective to measure the information

leakage and enables to track the leakage at run-time. Examples are given

to demonstrate the analysis process. Finally, efficient implementation of

this methodology is also briefly discussed.

1 Introduction and Background

The quantitative analysis of multi-threaded programs and concurrent systems is
recognized as an important challenge. A multi-threaded program may have more
vulnerabilities when compared to a single-threaded one: not only from explicit
and implicit information flows but also from the timing channels and probabilistic
timing channels [26]. It is also a difficult problem because the leakage in the same
program may vary due to the additional uncertainty in scheduling. For example,
consider the following program:

l=h; | h=h & 0x07h;

Suppose the attacker observes the value of l in every single step of execution
[22]. If the second statement is run at first then 3 bits of h is leaked, otherwise
every bit of h is leaked. In this case the channel capacity is size(h) bits, which
is achieved by running the first statement at first.

An early quantitative assessment of leakage in multi-threaded programs has
been using the mutual information between the input and the output [13]. Fur-
ther proposals using algebraic or approximation methods to derive the channel
capacity as an leakage upper-bound include [12] and [29]. Recently, Smith [28]
proposed to use minimum entropy to evaluate the leakage. However, these ap-
proaches have remained preliminary; also, all of them are static, unable to track

K. Kurosawa (Ed.): ICITS 2009, LNCS 5973, pp. 177–193, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the actual amount of information leaked when a program is run. Until today,
there is not yet a feasible solution for dynamically tracking the (quantitative)
information leakage of multi-threaded programs at run-time.

Now, by combining the Bellman optimality principle with recent progress on
the quantitative information flow, a method is proposed in this paper to provide
a more sensible analysis of the leakage (or the confidentiality) of programs as
well as to allow the tracking of leakage dynamically.

To apply this method, firstly the target multi-threaded program is modeled
by a state-transition automata. We consider a probabilistic scheduler (the Lot-
tery scheduler) which represents a general case for a range of modern schedulers.
The execution of the program can be seen as a Markov process and the state-
transition can be represented as a tree, where each possible state of the exe-
cution is a node in the tree with non-negative values on the edges. We assume
the attacker can observe each single step of the execution. Then by applying
the Bellman equation, the optimal or the pessimal leakage, which represents
the leakage generated using an optimal policy or a worst policy in the program
execution, can be derived. These can be derived either from the start of the
program, or from any point of execution.

The method has several unique qualities:

– general: it is generally applicable to analyze multi-threaded programs run
by a probabilistic scheduler, as well as similar probabilistic state-transition
systems;

– sensible: the Bellman equation gives the accurate optimal leakage bounds;
– flexible: it is able to track the current leakage bound at any point of the

execution tree;
– simple: a simplification algorithm can be applied prior to the Bellman al-

gorithm, such that only the state-transitions with interference between high
and low variables need to be considered.

In the longer term, this is aiming to build a policy which quantitatively restrict
and control the leakage. By applying such bounds decision can be made either to
accept or to reject a program, while dynamic measurement can reassure that an
attacker can not acquire a substantial quantity of information. Also, in a broader
sense, we believe the method can also be a template for tracking information
leaks in state transition systems.

The paper is organized as follows: the next subsection reviews existing liter-
ature and the background. Section 2 provides a short tutorial of the Bellman
equation and the optimality principle, and Section 3 presents the definition of
the information leakage in multi-threaded programs. In Section 4 we show how
multi-threaded programs are modeled and we develop the theorems and propo-
sitions of optimal leakage analysis. Then we present an analysis of two sample
programs. Finally, we investigate the complexity in the process and propose a
simplification algorithm to accelerate the solution process. Section 5 concludes
the paper and identifies our future work.
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1.1 Related Work

Learning theory, statistics and information flow analysis are naturally tied to-
gether by Shannon’s information theory [27]. A few pioneers have brought Bayesian
methods into the field of quantitative information flow, such as [6,5]. In this pa-
per, besides the application of the Bellman’s optimality principle to this field, we
hope to provoke discussions on identifying more interesting connections between
quantitative information flow and the learning theory.

The Bellman equation is regarded as one of the most fundamental theories in
reinforcement learning. It gives an accurate model of gaining information in a
state-transition system and underpin a vast extension of optimality algorithms
in various specific directions.

The other end of the connection is the quantification of information leakage.
The use of conditional mutual information in the context of information leakage
has been pioneered by Gray [11]. However his definition is not aimed to measure
leakage but to define it. Other pioneers on the use of information theory in the
context of security are Dennings, McLean and Millen [9,8,20,21]. In recent years,
a theoretical framework has been established based on Shannon’s information
theory to allow static, quantitative program analysis that provides an expecta-
tion of leakage in programs [15,16,17,23]. The theory is preliminarily extended
to multi-threaded programs [13]. Recently an automatic method for information
flow analysis is developed in [18]. Lowe’s work [19] defined quantitative channel
capacity in the context of CSP. Further, the channel capacity of a leakage chan-
nel under constraints was worked out by using Lagrange multiplier methodology
and Karush–Kuhn–Tucker conditions, which was also applied in programs and
anonymity protocols [22,12,14].

Besides, various other different, albeit inherently relevant definitions and meth-
ods have been proposed to quantify the information leakage. Among them, Di
Pierro et al. used the norm of a transition matrix as a measure of probabilistic
confinement [10]. Recently, Smith et al. proposed the use of minimum entropy,
and argued that it can better describe the risk of leakage in [28]. Moreover, the
idea of quantitative leakage in the context of protocols has been investigated in
[3]. A discussion of the relationship between min entropy and Shannon entropy
relevant to the context of this work can be found in [24].

In comparison, what our results represent is based on adopting the Bellman’s
optimality principle as the rule-of-thumb: it is not representing the very worst
case which may happen with a very rare chance, but instead representing the
expectation from an optimal strategy (or a most dangerous one) with which a
multi-threaded program can be set to run.

2 Bellman’s Optimality Equation and Optimality Principle

2.1 Bellman’s Optimality Equation

In reinforcement learning, a Bellman equation refers to a recursion for expected
rewards. The expected reward in a particular state s using a certain policy π
follows the Bellman equation:
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V π(s) = R(s) + γ
∑
s′∈S

P (s′|s, π(s))V π(s′)

where:

1. S is the set of states.
2. s, s′ are states and s, s′ ∈ S.
3. R is the one-period return function (e.g., a utility function).
4. π is a policy which maps from S to A which is the set of actions. A policy

is hence a way to choose an action given a particular state of the system.
5. P (s′|s, π(s)) is a probability which describes the transition probability from

the state s to s′ with the action a ∈ A following a policy π. In deterministic
case, for each state and action, we specify a new state S × A → S while
in probabilistic case S × A → P (S). For each state and action we specify a
probability distribution P (s|s, a) over next states.

6. V π is the value function representing the expected objective value obtained
by following a policy π from each state in S.

7. γ is a weight value, we can take γ = 1 for simplicity.

This equation describes the expected reward for taking the action prescribed by
a given policy π. It is used to show how to use a model of the environment to
convert immediate rewards into values.

Value functions partially order the policies, but at least one optimal policy
π∗ exists, and all optimal policies have the same value function V ∗, which is
solvable by Bellman optimality equations.

The equation for the optimal policy is referred to as the Bellman optimality
equation:

V ∗(s) = R(s) + max
a

γ
∑
s′∈S

P (s′|s, a)V ∗(s′)

and

π∗ = argmax
a

γ
∑
s′∈S

P (s′|s, a)V ∗(s′)

the optimality of π∗ can be proved via negation: if a policy π selected an action
a does not give out the maximal value of

γ
∑
s′∈S

P (s′|s, a)V ∗(s′)

then there exists another policy π′, which is the same as π everywhere except at
state s. At state s, π′ chooses the action a′ which maximize the above expression.
Thus, π can not be optimal and can not be chosen. Inversely, every optimal policy
must choose actions to maximize the above one.
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2.2 Bellman Optimality Principle

The Bellman optimality equation is central throughout the theory of Markov
decision processes [25] (MDPs) and reflects the principle of optimality. The prin-
ciple states:

“Regardless of the decision taken to enter a particular state in a
particular stage, the remaining decision made for leaving that stage
must constitute an optimal policy”[2].

There is another way of saying that: an optimal policy always achieves optimal
value for every start state, or, in each state the optimal policy will always select
the same action as an optimal policy for which the state is the start state.

Therefore, it means if we entered the terminal state of an optimal policy we
can trace it back. The equation reflects the principle: in the solution process, the
Bellman equation is written forwards from the initial state but can be solved
backwards from terminal state. The following is a small example to show how
this principle is used.

Example of Bellman optimality principle. Consider the following proba-
bilistic state transition system. In this transition system we assume s0 is the
initial state and s11 is the terminal state. We mark the probability and value
of the transition in the path. Here the value of the transition is computed by
the value function V as mentioned in the Bellman equation. We are going to use
Bellman’s optimality principle to find the policies for both maximal and minimal
profit for this transition system.

s0

1
2 :6

���

���
��

1
2 :8 �� s1

1
2 :10

���

���
��

1
2 :6 �� s2

1
2 :2

���

���
��

1
2 :4 �� s3

1:4
��

�

���
��

s4

1
2 :4

���

���
��

1
2 :4 �� s5

1
2 :6

���

���
��

1
2 :8 �� s6

1
2 :2

���

���
��

1
2 :8 �� s7

1:4
���

�

����
��

s8
1
2 :6 �� s9

1
2 :8 �� s10

1
2 :6 �� s11

According to Bellman’s optimality principle we start from the terminal state s11

and mark it as 0. We can reach this terminal node from nodes s7 and s10. If we
are at node s7 the value at transition is 4 and it is the only possibility transition
from s7, so we write s7 of “1 × 4 = 4” using “P (s′|s, a)V ∗(s′) ” where here we
assume the factor γ = 1. Similarly the value of only transition from s3 to s7 is
“1× 4 = 4” and we write s3 of 4 as well. Likewise s10 is marked by “3” because
the only transition from s10 → s11 has the value “ 1

2 × 6 = 3”. Not all node only
has one possibility, some states in the system have two possibilities, for example
s6 there are two transitions: one is to s7 with the value “ 1

2 × 8 + 4 = 8” where
in the equation “4” is the old value of s7 and “ 1

2 × 8” comes from the transition;
the other is to s10 with the value “ 1

2 × 2 + 3 = 4”. Because 8 > 4 we choose
the transition to s7 and write s6 of 8. We leave the transition chosen as solid
arrow and the transitions not chosen are marked with a dot arrow. Next we
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consider the previous node to s6 which also has two possible transitions which
are: one is to s3 with the value “ 1

2 × 4 + 4 = 6”; the other is to s6 with the
value “ 1

2 × 2 + 8 = 9”. At node s2 we choose the transition to s6 because 9 > 6.
We continue this procedure back to state s0 with a value 21 which is the sought
maximal profit.

s21
0

1
2 :6

��

1
2 :8 �� s17

1

1
2 :10

���

���
��

1
2 :6 �� s10

2

1
2 :2

���

���
��

1
2 :4 �� s8

3

1:4
��

�

���
��

s14
4

1
2 :4

��

1
2 :4 �� s12

5

1
2 :6

��

1
2 :8 �� s8

6

1
2 :2

��

1
2 :8 �� s4

7

1:4
���

�

���
��

s10
8

1
2 :6 �� s7

9
1
2 :8 �� s3

10
1
2 :6 �� s0

11

The maximal profit is achieved by the path:

s0 → s1 → s5 → s6 → s7 → s11

Using the same principle and oppositely, if we choose minimal value at each
stage, when there are more than one choices, we can find the solution which
results in a minimal profit of the transition system. The solution is 12 where the
details are showing below:

s12
0

1
2 :6

��

1
2 :8 �� s8

1

1
2 :10

��

1
2 :6 �� s5

2

1
2 :2

���

���
��

1
2 :4 �� s8

3

1:4
��

�

���
��

s10
4

1
2 :4

��

1
2 :4 �� s8

5

1
2 :6

��

1
2 :8 �� s4

6

1
2 :2

���

���
��

1
2 :8 �� s4

7

1:4
���

�

���
��

s10
8

1
2 :6 �� s7

9
1
2 :8 �� s3

10
1
2 :6 �� s0

11

and the selected path is

s0 → s1 → s2 → s6 → s10 → s11

3 Information Leakage of Multi-threaded Programs

Information theory can be used to quantify the leakage in programs [15,16,17,13].
Generally speaking, the leakage of a system is the difference between the amount
of original confidential information and the amount of remaining confidential in-
formation after observations. In information theory, this difference is formulated
by mutual information:

I(h; l) = H(h) − H(h|l)

where
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1. h is the high (confidential) information and l is the low (public) one.
2. H(h) is the Shannon’s entropy defined as H(X) = −

∑
x∈X μ(x) log μ(x) in

which X = {x1, . . . , xn} with probabilities μ(x1), . . . , μ(xn).
3. H(h|l) is the conditional entropy defined as H(X |Y ) = −ΣY =yμ(Y =

y)ΣX=xμ(X = x|Y = y)log(μ(X = x|Y = y)), where μ(X = x|Y = y)
is the conditional probability of X = x when Y = y.

Intuitively, mutual information I(h; l) measures the information shared between
h and l. In other words, it measures how much uncertainty of a variable is
reduced by knowing the other. An extreme case is if h and l are independent,
then I(h; l) = 0.

Further, conditional mutual information, a form of ternary interaction will be
used to quantify interference. Conditional mutual information measures the cor-
relation between two random variables conditioned on a third random variable,
which is defined as:

I(h; l|Z) = H(h|Z) − H(h|l, Z) = H(l|Z) − H(l|h, Z)

Given the leakage formula defined from mutual information and conditional mu-
tual information, we can compute the leakage of the high variable h coming from
the observation of low variable l in a program.

Now, we consider the multi-threaded programs with probabilistic scheduling,
as in [13]. We assume the attacker has the ability to observe the value of l in each
single step; this represents the most conservative observational model in [22] and
can be easily adapted to the other models such as the widely-used input-output
model as in [16,23].

For example:

h=random(0, n); | l=h;

There are two threads and we assume each thread has probability 1
2 to be chosen

first and h is a k bit integer variable (n = 2k − 1). The statement h=random(0,
n) assigns a random number to h, while the other l=h leaks everything about
h, which is k bits. Due to different scheduling there are two possible kinds of
observations with equal probabilities of 1

2 , which will lead to either 0 bit or k
bits of leakage. Then the expected leakage (as in [23]) would be

1
2
× k +

1
2
× 0 =

k

2

while the upper bound is k and lower bound is 0. For more complex multi-
threaded programs, the computation of leakage could refer to the method in [13]
and [22].

In comparison, we propose the optimal leakage principle below. We assume
the attacker can make decision about the scheduling in the run time of multi-
threaded programs and we give a methodology to evaluate the optimistic deci-
sion. The modeling of multi-threaded programs is described below, followed by
theorems and propositions and then demonstrated by two program examples.
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4 The Optimal Leakage Principle for Multi-threaded
Programs

4.1 Modeling Multi-threaded Programs

Here we model a multi-threaded program using a probabilistic state-space tran-
sition system:

〈S,A,P ,L〉

where

1. S is a set of possible states in the system; we note the initial state as s0.
2. A is a set of actions which are statements in multi-threaded programs and

we write them as ai.
3. P is a set of probabilities associated to S, and we note the probability from

si to sj as pij . We assume determinacy, i.e. given si and an action a there
is at most one sj s.t. pij > 0.

4. L is a set of values associated to S, and we note the value from si to sj as
Lij , where Lij is the information leaked in the state transition si to sj .

To this structure we can associate a state transition graph: we start from the
initial state and select the statement from the program to reach a new state.
We continue with this procedure until the last statement of the program. For
example we first write the state transition of above example as

s0

a2
���

�

���
���

a1 �� s1 a2 �� s2

s3 a1 �� s4

where a1=“l=random(0,n)” and a2=“l=h”. and we also have the 〈S,A,P ,L〉
where S = {s0, s1, s2, s3, s4};
A = {a1, a2};
P = {p01 = 1 − p, p12 = 1, p03 = p, p34 = 1};
L = {L01 = 0, L12 = k, L03 = k, L34 = 0}.

It is often easier to write the probabilities and values instead of actions in the
transition system. Thus, the above state transition can be written as

s0

p:k
��

�

���
��

−1−p:0 �� s1 1:k �� s2

s3 1:0 �� s4

A Note on Scheduler Sequence. There are many well-known schedulers that
provide a deterministic execution order, for example Round Robin and Shortest
Time First, however the execution sequences of multi-threaded programs in most
of today’s computing systems are non-deterministic.
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In this paper we specifically analyze probabilistic schedulers, also known as
the Lottery scheduler. Since a probabilistic scheduler represents a probabilistic
policy of choosing threads, almost all other simple schedulers can be seen as
specific examples of that. The only difference between different schedulers is in
the choice of statements in the execution sequence due to the different scheduling
policies.

We use the scheduler sequence to denote the execution order of a multi-
threaded program. After choosing a statement in each small step in the run
time, there is only one execution sequence chosen from all possible schedul-
ing sequences following a certain probability distribution. We assume there are
n threads and the scheduler sequence would be: ijk... which means the ith

thread is chosen first, followed by the jth thread, then the kth thread, where
0 ≤ i, j, k ≤ n − 1.

Different outputs may come from different scheduler sequences, but one sched-
uler sequence can only produce one output. In the transition system, one path
from the initial state to the terminal state represents a scheduler sequence.

We can now state an optimal leakage theorem.

4.2 Optimal Leakage Theorem

Theorem 1. Optimal Leakage Theorem
In a transition system, the upper bound of leakage L starting from a state s is
given by the optimality equation:

L∗(s) = L(s) + max
a

∑
s′

P (s′|s, a)L∗(s′)

and the corresponding scheduler for achieving this upper bound is

S∗ = argmax
a

∑
s′

P (s′|s, a)L∗(s′)

where

1. L is the leakage function, i.e. maxj Ls,sj and
2. P (s′|s, a) is the unique probability ps,s′ given the action a

Proof:
Proof by contradiction: if a scheduler sequence S∗ selected a statement a which
does not give out the maximal value of∑

s′
P (s′|s, a)L∗(s′)

then we can find another scheduler sequence S′, which is the same as S∗ every-
where except at state s. At state s, S′ chooses the action a′ which maximize the
above expression.
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Thus, S∗ can not be optimal and can not be chosen. Inversely, every optimal
policy must choose actions to maximize the above one.

The proof completes.

Similarly we can have the following proposition to get the lower bound.

Proposition 1. Pessimal Leakage Theorem
In a transition system, the lower bound of leakage L is given by the optimality
equation:

L∗(s) = L(s) + min
a

∑
s′

P (s′|s, a)L∗(s′)

where
S∗ = argmin

a

∑
s′

P (s′|s, a)L∗(s′)

We can also easily prove this proposition via negation. The proof is omitted due
to space limitation.

4.3 The Optimal Leakage Principle

Like the Bellman equation which reflects the optimal principle, Theorem 1 and
Proposition 1 reflect the principle of information leakage under optimal exploit
strategies. To build a transition system, we need to simulate all possible tran-
sitions for possible executions. As previously mentioned, in multi-threaded pro-
grams, different probabilistic scheduler may produce different outputs. Thus,
there will be a set of terminal states, rather than one terminal state, in the tran-
sition system for a multi-threaded program. Suppose the set of terminal states
is T , each item in T is noted as ti where ti ∈ S as well.

To find the optimal and pessimal leakage, every element in T needs to be
accessed, then traced back to the initial state. Formally, we have the proposition
below:

Proposition 2. Optimal Leakage Principle

1. Firstly we start from the elements in T . As these are terminal states, we
mark them as 0.

2. Now trace back one level to look for previous nodes si, sj , ... adjacent to each
element in T . For each state, use Theorem 1 and Proposition 1 to compute
the leakage at this stage and make the optimal or pessimal choice.

3. Repeat this process. At each stage compute the new value using Theorem 1
and Proposition 1 to make the optimal or pessimal choice. Trace backwards
until arriving at the initial state, then we can achieve the optimal or pessimal
leakage for the transition system.

4. Finally, the reverse path that starts from the initial state and constitutes of
the chosen decisions above forms an optimal path.
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Example I. In the previous example:

l=rand(n); | l=h;

Here we use p to represent the probability of choosing “l=h” first and we assume
p < 1. With the transition system previously established in Section 4.1, we use
Proposition 2 to solve the leakage bounds recursively. There are two terminal
states in this automata s2 and s4 so we mark them as 0. Then we look for the
previous level and find s1 and s3. We start from s1, the only reachable state is s2

and the only transition has a value of leakage k with probability 1 so Ls1
new = k;

thus we mark s1 to be k. For s3, the only transition is s3 → s4 which has a value
of leakage of 0 with probability 1 so we mark s3 as 0. We continue tracking back
to s0. s0 has two possible choices: s0 → s1 and s0 → s3. s0 → s1 has a leakage
value of k +0 = k where k is the previous leakage coming from s1 while s0 → s3

has 0 + p× k = pk. Since pk ≤ k we choose the transition s0 → s1 and we mark
s0 as k. We mark the unchosen edge as dotted line.

sk
0

pk

��

0 �� sk
1 k �� s0

2

spk
3

0 �� s0
4

The optimal leakage is achieved by the path

s0 → s1 → s2

Also, we can easily get the pessimal path in the transition system

spk
0

pk
��

�

���
��

0 �� sk
1 k �� s0

2

spk
3

0 �� s0
4

and the pessimal leakage pk is achieved by the path

s0 → s3 → s4

Example II. Let us consider another example from [26]. This is a nested multi-
threaded program. In the outer two threads, we use p as probability operator.
There are two nested threads in one of them, reflected by the introduction of an
additional probability operator q. Also, we assume that h is k bits long.

l=h|p( l=0|ql=1)

Here we assume p = q = 1
2 which is a coin-flip choice operator. Using the

modeling method in Section 4.1 we can got the transition system:
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s0

1
4 :a3

��

1
4 :a2

��
��

��

���
��

��
�

1
2 :a1 �� s1

1
2 :a3

���

���
��

1
2 :a2 �� s4 1:a3 �� s10

s5 1:a2 �� s11

s2

1
2 :a3

���

���
��

1
2 :a1 �� s6 1:a3 �� s12

s7 1:a1 �� s13

s3

1
2 :a2

���

���
��

1
2 :a1 �� s8 1:a2 �� s14

s9 1:a1 �� s15

where a1= “l=h”; a2 = “l=0”; a3= “l=1”. We can see from the statements that
a1 leaks k bits while others do not leak. From this nested threads example, we
also note that if the program has dynamic thread creation, then its transition
system may similarly be constructed by reserving states and choices for the
upcoming threads.

We are going to use Proposition 2 to solve the bounds of the leakage for this
transition system. Firstly we consider the optimal leakage. At each stage we use
Theorem 1 to achieve the optimal choice. We start from six possible terminal
states s10 . . . s15 and we mark them to be 0. We track back one level to find
the states s4 . . . s9. In these states we first consider the node s4, there is only
one reachable state from s4 which is s10 and the leakage in this transition is 0
with a probability of 1 so we mark s4 to be 1 × 0 = 0. Also we can easily find
that s11, s12, s13, s14, s15 can only be reached by s5, s6, s7, s8, s9. The leakage
values for these transitions are 0, 0, k, 0, k with the probability 1, because in the
transitions s7 → s13 and s9 → s15, a1 has k bits leakage while in the other
transitions, a2 and a3 has 0 leakage. So we mark s5, s6, s7, s8, s9 with 0, 0, k, 0, k
accordingly. We continue tracking back one level and find the states s1, s2 and
s3. s1 can be reached by s4 and s5 where the leakage from the two transitions are
both 0 so we mark s1 as 0. Then we consider s2, which can be reached by s6 and
s7. The leakage in transition s2 → s6 is k with probability 1

2 and in transition
s2 → s7 is 0. Considering the leakage previously we get 0+ 1

2 ×k < k+ 1
2 ×0, thus

at this stage we choose s2 → s7 and we put s2 → s6 as dotted line. Similarly we
know that for s3, the optimal choice is s3 → s9 with the leakage k. We mark it
as k and put s3 → s8 as dotted line. Then we arrive at the initial state s0. There
are three reachable states s1, s2, s3 from s0, the leakage for s0 → s1 is 0 + 1

2 × k
while for the other two transitions is k+ 1

4 ×0, so we could choose either s0 → s2

or s0 → s3. The solution is showing in the following graph.
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sk
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1
4 :0

��

1
4 :0

��
��

��
�

		�
��

��
��

1
2 :k �� s0

1

1
2 :0

���

���
��

1
2 :0 �� s0

4 1:0 �� s0
10

s0
5 1:0 �� s0

11

sk
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1
2 :0

			

��	
		

1
2 :k �� s0

6 1:0 �� s0
12

sk
7 1:k �� s0

13

sk
3

1
2 :0






��





1
2 :k �� s0

8 1:0 �� s0
14

sk
9 1:k �� s0

15

The optimal leakage k is achieved by:

s0 → s2 → s7 → s13 ({a2, a3, a1}), or s0 → s3 → s9 → s15 ({a3, a2, a1})

Alternatively, using Proposition 2, at each stage we can choose the minimal value
to get the pessimal leakage:
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��
�

		�
��

��
��

1
2 :k �� s0

1

1
2 :0

		
	

��	
		

1
2 :0 �� s0

4 1:0 �� s0
10

s0
5 1:0 �� s0

11

s
k
2
2

1
2 :0

��

1
2 :k �� s0

6 1:0 �� s0
12

sk
7 1:k �� s0

13

s
k
2
3

1
2 :0

��

1
2 :k �� s0

8 1:0 �� s0
14

sk
9 1:k �� s0

15
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and the pessimal leakage k
2 is achieved by one of the following paths:

s0 → s1 → s4 → s10 ({a1, a2, a3})
s0 → s1 → s5 → s11 ({a1, a3, a2})
s0 → s2 → s6 → s12 ({a2, a1, a3})
s0 → s3 → s8 → s14 ({a3, a1, a2})

4.4 Complexity

Computational complexity is a very important factor for implementation and
is considered a practical issue for the use of Bellman equation. We denote the
computational complexity as R here. Since the execution trees in our state tran-
sition systems are acyclic and strictly nondecreasing backwards, the computa-
tional complexity of the optimality leakage principle (Proposition 2) is bounded
by the number of vertexes (nodes) or edges in the tree, which can be bounded
by two factors: the number of choices at each stage and the other is the number
of stages.

If the state transition system has n stages1, with two decisions taken at every
stage, this requires R = O(2n) arithmetical operations. In the general case, if
there are n stages in the transition system and at each stage there are m deci-
sions, the complexity for the implementation is of the order of O(mn) arithmeti-
cal operations. The computational complexity will increase significantly with the
decisions at every stage. For example, if there are 20 stages and 3 decisions at
every stage, we will get 3 486 784 401 operations; in a computer with a speed of
1 million arithmetical operations per second, it will take 3487 seconds i.e 0.97
hour to finish this computation. For this reason there is a strong motivation
to simplify the computation otherwise the method would be rarely applicable.
Then we have to consider the method to simplify the complexity.

Here we only consider the transition system without considering any transition
probabilities. Firstly a transition system can be written as a set of transitions
T , in which an element tij can be written as a triple

〈si, ak, sj〉

where si is a starting state and ak is an action on si which transit si to the
state sj .

We consider two kinds of improvements. Firstly, since the graph is a tree, there
are existing standard algorithms which are much more computationally efficient
than O(mn) for tree-search. Secondly, in the process of using Proposition 2 to
solve the leakage bounds, if L∗(s′) = 0 whatever P (s′|s, a) is, the edge will
not contribute to the new value of leakage. In the following algorithm, we are
removing these edges whose weight is 0, where there is no interference between
h and l.
1 In the examples, each line is seen as a stage. In reality however, instead of tracking

every line of program, it is rational to only track the lines which has something to

do with the high variable(s).
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Table 1. Algorithm to simplify the transition system

Algorithm 1. Simplification algorithm for transition system

Require: T a set of transitions

Ensure: T 
= φ?

1: Visited =φ
2: Waiting = T
3: repeat
4: Get tij from Waiting

5: Visited =Visted ∪ {tij}
6: if L(tij) == 0

7: Remove tij from Waiting

8: Modify tj∗ ∈ Waiting as ti∗
9: endif
10: until Visited = T
11: Return Waiting;

For example, in the example 4.3, there are 15 transitions (edges). Now if we
use the above algorithm to cut some 0 weight edges, we can then simplify the
transition system to be

s0
1
2 :a1 ��

��������������� s1

1
2 :a1 ��

1:a1

��

s8
1
2 :a1 ��

1:a1

��
��

���
��

s6

s15 s13

There are only 5 remaining edges after simplification and the number of edges
has reduced by 67%.

4.5 Further Remarks

1. The optimality principle allows for an interesting characterization of leakage
in multi-threaded programs, based on what can be leaked from an optimal
or pessimal policy. In comparison, previous quantitative result for multi-
threaded programs is an overall expectation [13].

2. Since state-transition forms a tree graph, in the program run-time the tree
will continuously evolve into subtrees. This allows to track run-time leakage
at each time spot, by finding the optimal leakage in the subtree with the
knowledge of which previous steps have been taken. Further, this can hope-
fully allow automatic run-time leakage tracking of programs by attaching
such a builtin state-transition tree into the program code segment.

3. Furthermore, we should repeat that we have assumed the attacker can ob-
serve the low-variable in every single step of execution, and we have modeled
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the state transitions based on that. The stages thus can be seen as a super-set
[22]. If other kinds of observational assumptions are desirable, our leakage
optimality principle can also be easily adapted to those assumptions by con-
sidering a subset of the stages, which would lead to a somewhat simpler state
transition graph.

4. Finally, the work remains preliminary with respect to real implementation.
For programs following a Turing-complete language (with imperative state-
ments, if statements and for loops) we can hopefully borrow experiences from
previous works [16,23,13], although several problems have to be solved, for
example, how to cope with non-terminating loops and breaks. This would
be an open problem for the next step.

5 Conclusions and Future Work

By extending the Bellman’s optimality principle into quantitative information
flow, we propose a novel principle for characterizing information leakage and
tracking the run-time leakage in multi-threaded programs.

This may create lots of exciting opportunities: according to the static results
further actions can be made either to accept or to reject a program, while dy-
namic measurement can be used for alert or guarantee that an attacker can not
acquire a certain quantity of information at run-time. Such a method can also
serve as a template for tracking information leaks in state transition systems. Fi-
nally, we believe this work demonstrates an interesting perspective by connecting
the field of information security with the theory of machine learning.
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Abstract. A c-secure fingerprint code is called robust if it is secure

against a limited number of bit erasure in undetectable positions in ad-

dition to usual collusion attacks. In this article, we propose the first

general conversion method of (non-robust) c-secure codes to robust c-
secure codes. It is also applicable to amplify robustness of given robust

c-secure codes. By applying our conversion to c-secure codes given by

Nuida et al. (AAECC 2007), we present robust c-secure codes with code

lengths of order Θ(c2 log2 c) with respect to c. The code length improves

preceding results by Sirvent (WCC 2007) and by Boneh and Naor (ACM

CCS 2008) and is close to the one by Billet and Phan (ICITS 2008),

where our result is based on a weaker assumption than those preceding

results. As an application, the use of the resulting code in construction

by Boneh and Naor also improves their traitor tracing scheme against

imperfect decoders in efficiency of key sizes and pirate tracing procedure.

Keywords: Fingerprint code, robust c-secure code, general conversion,

traitor tracing scheme, information-theoretic security.

1 Introduction

1.1 Background

Recently, digital content distribution services have been widespread with support
of the progress of information processing/communication technology. Digitiza-
tion of contents and content distribution has been promoted convenience for
many people. However, it does also work better for malicious pirates, and the
number of illegal content copying/redistribution has increased very rapidly. Thus
technical countermeasures for such illegal activities are strongly desired.

Digital fingerprinting is a possible solution for the above problems. Here we
focus on code-based schemes; a content server first encodes each user’s ID and
then embeds each codeword as a fingerprint into a content that will be sent to the
user. This intends to make the pirate traceable from the fingerprint embedded
in a pirated content, and this scheme would work effectively when a single pirate

K. Kurosawa (Ed.): ICITS 2009, LNCS 5973, pp. 194–212, 2010.
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redistributes the received content and the digital watermarking scheme used
to embed the fingerprint is sufficiently robust. However, it has been pointed
out that, if two or more pirates collude, then strong attacks (collusion attacks)
to the embedded fingerprint are possible. Hence any fingerprint code should
be equipped with a pirate tracing algorithm that determines a pirate correctly
with an overwhelming probability even from an attacked fingerprint. Such a
fingerprint code is called c-secure [5] if at least one of the pirates is traceable
(in the above sense) provided the number of pirates is not larger than c. Note
that usually no assumption is put on complexity of the attack algorithms of
pirates, hence c-secure fingerprint codes provide information-theoretic security.
The first concrete example of c-secure codes was given by Boneh and Shaw
[5], and then several construction of c-secure codes have been proposed, e.g.,
[3,7,8,9,10,11,12,14,15,16].

Intuitively, the conventional assumption for c-secure codes (Marking Assump-
tion [5]) is as follows. Suppose, for each (say, j-th) digit of the fingerprint code,
that the place in the content where j-th digit of a user’s codeword is embedded
is common to all users. If the j-th digits of codewords for pirates are not the
same, then by comparing their contents they will find some difference at that
place (such a digit is called “detectable”). In this case, pirates would be able
to create the pirated content in such a way that the j-th digit of the embed-
ded fingerprint is either modified or erased (the latter being formalized as an
erasure symbol ‘?’). On the other hand, if the j-th digits of codewords for all pi-
rates are the same (called “undetectable”), then they cannot recognize the digit
by comparing their contents in the above manner. In this case, the Marking As-
sumption states that j-th digit of the pirated fingerprint will remain not attacked
so that it will be the same as the j-th digit of some (or equivalently, any) pirate’s
codeword. Based on this assumption, several c-secure codes have been proposed
(e.g., [3,5,7,8,10,11,14,15,16]). However, it has also been pointed out that the
strict Marking Assumption seems not practical. In fact, even if the undetectable
digits in the above sense are really undetectable, it is still possible that pirates
add some noise randomly to the content, which may make some undetectable
digits not decodable. Thus some relaxation of Marking Assumption, allowing
some undetectable digits to be attacked, have been introduced in various ways
and several construction of c-secure codes under those assumptions, called ro-
bust c-secure codes, have been proposed, e.g., [9,11,12]. Recently, robust c-secure
codes are also studied in connection with traitor tracing schemes against pirates
with powerful decoders [13] or imperfect decoders [4]. Thus robust c-secure codes
are important in both theoretical and practical viewpoints.

However, constructing robust c-secure codes, or modifying non-robust c-secure
codes to make them robust, requires in general further intricate and scheme-
dependent arguments, which would significantly increase the difficulty of the
construction and understanding of the schemes. This tendency seems stronger
for c-secure codes with combinatorial construction (e.g., [7,8,16]) and those with
security highly depending on the characteristics of Marking Assumption (e.g.,
[3,10]).
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1.2 Our Contribution and Organization of the Article

Concerning the problem mentioned in Sect. 1.1, in this article we present the
first general conversion method of any c-secure fingerprint code to a robust c-
secure code. The same method can also amplify the robustness of given c-secure
codes, that is, our method converts less robust c-secure codes into more robust
ones (i.e., allowing a larger number of undetectable digits to be attacked). Our
method has the following good characteristics, for instance:

Black-box treatment. Our conversion requires no knowledge of specific prop-
erties for the target fingerprint code, except the relation between code length
and tracing error probability.

Information-theoretic security. The security proof of our conversion method
requires no computational assumptions, hence the resulting robust finger-
print code is also information-theoretically secure.

Simplicity and efficiency. Our conversion method is very simple, and the in-
crease of computational costs induced by our conversion is not large.

Generality. Our conversion is applicable to very general c-secure fingerprint
codes, including not only binary but also q-ary codes (e.g., [12,14]).

Extendibility. In our conversion method, the meaning of “error probability”
can be flexibly modified to concern various situations. By the property, our
method would also be applicable to some related schemes, such as two-level
fingerprinting codes introduced very recently in [1].

Here we explain the essential idea of our conversion method. For simplicity, we
assume that the target fingerprint code C is binary and not robust (the general
case is similar). To resist erasure of undetectable bits, whose number is bounded
by a certain fraction, denoted by δ, of the total code length (that is allowed by
our relaxed Marking Assumption), our method first expands each bit in each
codeword of C to a block of b identical bits, and appends L dummy bits to
every codeword that are common to all codewords. The resulting codewords
are sent to the users, where the distribution of bits in the undetectable blocks
is concealed from the pirates by using a random permutation and random bit
flippings. Now, when a pirated word for the expanded code is given, even if a
part of an undetectable block was erased, the undetectable bit corresponding to
the block can be still recovered provided at least one bit in the block survives.
Moreover, by choosing a sufficiently large block size b and a sufficiently large
number L of dummy bits, it becomes sufficiently difficult for the pirates to erase
all bits in an undetectable block. Thus a valid pirated word for the original code
is obtained with overwhelming probability, therefore the resulting fingerprint
code is equipped with the desired robustness (see Theorem 1).

We also investigate appropriate values of the parameters b and L, and give
formulae for these parameters (see Theorem 2). By using the result, we describe
the asymptotic behavior of code lengths of the resulting robust c-secure codes in
terms of those of the original c-secure codes. Moreover, by choosing the (less) ro-
bust c-secure codes proposed by Nuida et al. [11] as the original fingerprint code,
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we show that there exist robust c-secure binary fingerprint codes (for arbitrary
0 < δ < 1) with code lengths m satisfying

m ∼ 21.41244
(

c log c

1 − δ

)2

log(N/ε), (1)

where N denotes the number of users and ε denotes the error probability (see
Theorem 3). Comparing with the lower bound Ω(c2 log(N/ε)) of code lengths
of (non-robust) c-secure codes given by Tardos [15], it would be possible to say
that our code length is of “nearly optimal” order. The constant factor 21.41244
in (1) is also not very huge; e.g., the constant factor for Tardos code [15] is 100.

We give a remark on efficiency of our conversion. In the implementation of
fingerprint codes by embedding the codewords into digital contents by some
digital watermarking scheme, embedding less robust watermarks, say, with de-
coding error probability 10%, requires less redundancy than embedding more
robust watermarks, say, with decoding error probability 0.01%. Thus, although
our conversion method increases the code lengths, the actual increase of the
overall size of embedded objects in such implementation will be smaller than the
apparent increase of the code lengths. Theoretical evaluations for increase of the
amount of actual embedded objects would be a challenging research topic.

To be honest, the results of this article contain some points for improvement.
First, our proposed conversion method can be interpreted as concatenating the
original fingerprint code with a repetition code (and also some dummy digits); it
can be expected that the use of more sophisticated erasure codes would improve
the efficiency of the conversion method. Secondly, our analysis of code lengths is
not fully optimized and a more detailed and complicated analysis would be able
to reduce the resulting code lengths further. The reason of leaving such rooms
for improvement is that the main purpose of this article is to pioneer the study of
the general conversion methods by showing the first concrete, easy-to-understand
idea and example, not to give the best result at once by an involved and intricate
argument. Moreover, the relative simplicity of our formula of code lengths en-
abled us to determine the asymptotic behavior theoretically. The author hopes
that some subsequent future research will realize the above-mentioned improve-
ments for the current result. On the other hand, in this article we only concern
bit erasure in undetectable positions, but in some practical situation one may
wish for robustness against some bit flipping in undetectable positions as well
(as the case discussed in [11]). It would also be an important future research
topic to extend our conversion method to the more general situation, e.g., by
using more sophisticated error correcting codes instead of our repetition codes.

This article is organized as follows. After some remarks on related works
(Sect. 1.3) and notations and terminology (Sect. 1.4), in Sect. 2 we summarize
the notion of fingerprint codes and the relaxed Marking Assumption (called δ-
Marking Assumption) on which our construction is based. In Sect. 3, we present
the above-mentioned three main theorems of this article. Section 4 gives the
proofs of main theorems, where some part is left to the forthcoming full version
of this article. Finally, Sect. 5 shows some numerical examples of our results.
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1.3 Related Works

As mentioned in Sect. 1.1, there have been proposed several kinds of relaxation
of the Marking Assumption. Guth and Pfitzmann [9] considered the situation
that each undetectable bit is erased (i.e., marked with ‘?’) independently with
a certain probability, and extended Boneh-Shaw codes [5] to their assumption.
(Safavi-Naini and Wang [12] also considered the same assumption for q-ary fin-
gerprint codes.) There seems no overall implication between our relaxed Marking
Assumption and their relaxed one; however, our assumption would look weaker
due to the lack of the above-mentioned independence condition.

In connection with traitor tracing schemes against imperfect decoders, Sirvent
[13], Billet and Phan [2], and Boneh and Naor [4] considered another assumption
that is more relevant to ours. In their relaxed Marking Assumption, the digitwise
independence of erasure (assumed in [9]) is not required, but the number of
erased digits in the whole positions, not just in undetectable positions as in our
assumption, is bounded by δ fraction of the total code length (see e.g., Sect. 4.1
of [4]). Thus our relaxed Marking Assumption is readily weaker than theirs; i.e.,
our assumption allows a bounded number of erasure in undetectable positions
and arbitrarily many erasure in detectable positions. In [13,4], they extended
Boneh-Shaw codes to their relaxed assumption, with resulting code lengths m =
Θ(c4 log(N/ε) log(c2 log(N/ε)/ε)) in [13] (where the dependence of m on δ seems
not clarified) and m = Θ((N3/(1 − δ)2) log(2N/ε)) in [4] (in the full-collusion
case c = N). On the other hand, in [2], they extended Tardos codes [15] to their
relaxed assumption, with resulting code lengths m = Θ((c2/(1 − δ)) log(N/ε)).
Despite that our code is based on a weaker assumption, its code length in (1),
with c = N when compared with [4], is significantly more efficient than [13,4]
and is close to [2]. Moreover, by using our code instead of the extended Boneh-
Shaw code in the traitor tracing scheme in [4] with constant size ciphertext, we
can improve their scheme in efficiency of key sizes and pirate tracing procedure
(see [4] for the details of their construction).

On the other hand, Nuida et al. [11] considered another relaxation of Marking
Assumption; the number of undetectable bits that are either erased or flipped
is bounded by δ fraction of the total code length. Their assumption is thus
weaker than ours, and their δ-robust c-secure codes have code lengths m =
Θ(c2 log(N/ε)) that are shorter than (1). However, in their scheme the parameter
δ is restricted to be far from 1, i.e., δ = O(c−2) (see [11, Sect. 6.1]), while in our
scheme the parameter δ can be arbitrarily close to 1. (In fact, the construction
of our δ-robust c-secure codes with code lengths in (1) is based on their codes,
as mentioned in Sect. 1.2.) To extend our conversion method to their weaker
assumption would be an interesting future research topic.

1.4 Notations and Terminology

In this article, log x denotes the natural (i.e., base e) logarithm of x. The ex-
pression “x → x0” means “x converges to x0” (or “x diverges to x0”, when x0 =
±∞). For i, j ∈ Z, (i)j denotes the lower factorial: (i)j = i(i − 1) · · · (i − j + 1).



A General Conversion Method of Fingerprint Codes 199

The symbols $x% and �x� denote the largest M ∈ Z with M ≤ x and the small-
est M ∈ Z with M ≥ x, respectively. Moreover, Σq = {s0, s1, . . . , sq−1} denotes
a q-ary alphabet (including the binary case Σ2 = {0, 1}), and for s ∈ Σq and
j ∈ Z, the expression “rotate s by j” means to convert s = sh ∈ Σq into si ∈ Σq,
where i ≡ h + j (mod q).

2 Robust Fingerprint Codes

In this article, each user is identified with the corresponding index i, 1 ≤ i ≤ N .
A (q-ary) fingerprint code is a pair C = (Gen, Tr) of a code generation algorithm
Gen and a pirate tracing algorithm Tr with the following characteristics:

– The algorithm Gen takes a parameter ε for error probability (and implicitly
other relevant parameters such as the total number N of users) as input, and
outputs a collection W = (w1, . . . , wN ) of q-ary codewords wi of common
length m and a certain element st, called state information. The codeword
wi is sent to the user i, while st should be kept secret.

– The algorithm Tr takes, as input, W and st output by Gen, and a word y of
length m over an expanded alphabet Σq ∪ {?} called a pirated word. Then
Tr outputs a (possibly empty) subset Acc of the user set {1, 2, . . . , N}.

Here ‘?’ signifies erasure of a digit. An example of the state information st is the
collection of bias parameters p1, . . . , pm, 0 < pi < 1, for Tardos codes [15].

Let C be a subset of {1, 2, . . . , N}; users in C are called pirates. For 1 ≤
j ≤ m, j-th position in a codeword is called undetectable if the j-th digits wi,j

of codewords wi coincide for all i ∈ C; and detectable otherwise. A collusion
strategy is an algorithm ρ that takes the codewords wi for all i ∈ C as input and
outputs a pirated word y (of length m over Σq ∪ {?}). In this article, we put
one of the following two sorts of assumptions on the collusion strategies, where
0 ≤ δ < 1 is a parameter (the classification follows from the one given in [14]):

δ-Marking Assumption (unreadable digit model). We have yj ∈ {wi,j |
i ∈ C} ∪ {?} for any 1 ≤ j ≤ m. Moreover, the number of undetectable
positions with yj = ? is not larger than δm.

δ-Marking Assumption (general digit model). We have yj ∈ Σq ∪ {?} for
any detectable position, while we have yj ∈ {wi,j | i ∈ C} ∪ {?} for any
undetectable position. Moreover, the number of undetectable positions with
yj = ? is not larger than δm.

Which of the two assumptions is adopted is fixed throughout the argument.
Note that these two assumptions are identical for binary case. Any of the two
assumptions with δ = 0 coincides with the Marking Assumption [5].

We say that a fingerprint code C is δ-robust c-secure if, for any set C of pirates
with 1 ≤ |C| ≤ c and any collusion strategy ρ satisfying δ-Marking Assumption,
we have:

Pr[(W, st) ← Gen; y ← ρ((wi)i∈C); Acc ← Tr(W, st, y)
: Acc ∩ C = ∅ or Acc �⊂ C] ≤ ε.
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Such a code C with δ = 0 is called c-secure [5]. Intuitively, Acc signifies the set
of users accused as a pirate by the tracing algorithm, and the events Acc∩C = ∅
and Acc �⊂ C correspond to false-negative (i.e., no pirate is accused) and false-
positive (i.e., some innocent user is accused), respectively. The aim of this article
is to propose the first general conversion method from given δ0-robust c-secure
codes to δ-robust c-secure codes, where 0 ≤ δ0 < δ < 1.

3 Main Results

In this section, we present the main results of this article. In Sect. 3.1, we de-
scribe our proposed general conversion method and state its validity. In Sect.
3.2, we give an appropriate choice of code lengths and relevant parameters for
our conversion, and describe the asymptotic behavior of the resulting robust
c-secure codes. An outline of the proofs will be given in Sect. 4.

3.1 The Conversion

To state our conversion method, let C = (Gen, Tr) be an arbitrary δ0-robust c-
secure q-ary fingerprint code (0 ≤ δ0 < 1), with code length denoted by m. We
construct from C a δ-robust c-secure q-ary fingerprint code C = (Gen, Tr), where
0 < δ < 1. Given a security parameter 0 < ε < 1 for C, choose 0 < ε1 < 1 and
0 < ε2 < 1 such that

ε1 + ε2 ≤ ε. (2)

The parameter ε1 signifies the loss of security through our conversion, and ε2 is
a security parameter for the original code C.

Let b ≥ 1 and L ≥ 0 be integer parameters. Then our conversion from C to C,
where C has code length m = bm + L, is constructed in the following manner:

Algorithm Gen Input: security parameter 0 < ε < 1
(1) Perform Gen, with input security parameter ε2 chosen as above, to

obtain a collection W = (wi)N
i=1 of codewords and the corresponding

state information st.
(2) For every digit wi,j in W , replace it with a block of b digits each of

which is identical with wi,j .
(3) Append L ‘0’s, called dummy digits, to the tail of every word ob-

tained by the previous step. (Thus the resulting word has length
m = bm + L.)

(4) Choose a secret word fl = (fl1, . . . , flm), where flj ∈ {0, 1, . . . , q− 1},
uniformly at random. Then for every word obtained by the previous
step and for every 1 ≤ j ≤ m, rotate j-th digit of the word by flj

(see Sect. 1.4 for the terminology).
(5) Choose a secret permutation perm of m letters 1, . . . , m uniformly

at random, and permute the digits of every word obtained by the
previous step according to perm (i.e., j-th digit of the word becomes
perm(j)-th digit of the resulting word).
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(6) Output the collection W = (wi)N
i=1 of codewords and the corre-

sponding state information st = (st, fl, perm), where wi is the word
obtained from wi by Steps 2–5.

Algorithm Tr Input: W, st output by Gen, and a pirated word y =
(y1, . . . , ym)

(1) Permute the digits in y according to the inverse of perm, and for
every 1 ≤ j ≤ m, rotate j-th digit of the word after the inverse
permutation by −flj if and only if it is not ‘?’. Let y′ denote the
resulting word.

(2) Generate a word y = (y1, . . . , ym) in the following way: For each
1 ≤ j ≤ m, put
– yj = x ∈ Σq, if j-th block of y′ contains at least one digit x and

no digits different from x and ‘?’.
– yj = ?, otherwise.

(3) For every wi, permute the digits in wi according to the inverse of
perm; remove the last L digits (i.e., the dummy digits); rotate j-th
digit by −flj for every 1 ≤ j ≤ bm; and replace the j-th block with
its first digit for every 1 ≤ j ≤ m. Let wi denote the resulting word.

(4) Perform Tr, with W = (wi)N
i=1, st and y as input, and output what

this Tr outputs.

We give some intuitive explanation of the conversion method. First, the new
code generation algorithm Gen calls the original code generation algorithm Gen
with slightly smaller security parameter as a subroutine. The expansion pro-
cess in Steps 2–3 aims at making it difficult for pirates to erase all digits in an
undetectable block randomly. The shuffle process in Steps 4–5 aims at conceal-
ing the distribution of blocks and dummy digits from the pirates, forcing the
erasure strategy of pirates to be just random. The rotation of digits and per-
mutation of positions should be kept secret against pirates, thus these together
with the original state information form the new state information. Secondly, the
new tracing algorithm Tr first reverses the above shuffle process and expansion
process to obtain the codewords and a pirated word for the original code C, then
performs the original tracing algorithm Tr. If the parameters are appropriately
selected, the obtained pirated word for C is valid with overwhelming probability,
hence the overall error probability for C will be bounded by the specified value ε.

In order to prove the security of our conversion, we assume that the above
parameters satisfy the following condition:

L ≥ ν1 and
(

a

ν2

)(ba+L−bν2
ν1−bν2

)(
ba+L

ν1

) ≤ ε1 for every integer 0 ≤ a ≤ m,

where ν1 = $δ(bm + L)% and ν2 = $δ0m% + 1.

(3)

Note that some explicit choices of these parameters will be discussed in Sect.
3.2. Then we have the following result, which will be proven in Sect. 4.1:

Theorem 1. In the above situation, the resulting fingerprint code C = (Gen, Tr)
is δ-robust c-secure with error probability not higher than ε.
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3.2 Code Lengths and Parameters

Here we give some concrete and appropriate choices of the parameters. Note
that the following choices of parameters are not fully optimized yet, hence some
improvement would be possible by more precise analysis, either theoretically or
numerically, based on the conditions (2) and (3). The first priority in this article
is to make the formulae of parameters simple and our theoretical analysis easier.
A more tight and detailed analysis will be a future research topic.

We describe the choices of parameters. First, for parameters ε1 and ε2, put

ε1 = ε2 = ε/2,

satisfying the condition (2). Secondly, for parameter L, put

L = max

{⌈
bν2

1 − (1 − ν2/m)1/b

⌉
− bm + b − 1,

⌈
δbm

1 − δ

⌉}
. (4)

Moreover, for parameter b, if ν2 = 1 (i.e., the original fingerprint code C is not
robust), then put

b =
⌈

log(m/ε1)
log(1/δ)

⌉
; (5)

while, in a general case, put

b =
⌈

log(m/ν2) + 1 + ν−1
2 log(1/ε1)

log(1/δ)

⌉
. (6)

Note that the former choice (5) is better than the latter one (6) with ν2 = 1; the
reason is that in the case ν = 1 some quantities that will appear in the analysis
admit much simpler expressions than a general case, which allow us to perform
sharper estimate that improves the choice of b. Now we have the following result,
which will be proven in Sect. 4.2:

Theorem 2. In the above situation, the parameters b and L satisfy the condition
(3) for Theorem 1.

Hence by Theorem 1, the resulting fingerprint code C of length m = bm + L by
our conversion method becomes δ-robust c-secure with error probability ≤ ε by
using the above parameters.

From now, we discuss the asymptotic behavior of the code length m of C based
on the above parameters; thus we consider (implicitly) sequences of δ0-robust c-
secure fingerprint codes C and of the corresponding δ-robust c-secure fingerprint
codes C, rather than an individual fingerprint code. We may assume without
loss of generality that the parameter δ0 converges to a constant 0 ≤ d ≤ 1, by
applying Bolzano-Weierstrass theorem (which implies that any infinite sequence
of real numbers in a finite interval has a convergent subsequence) to the sequence
of parameters 0 ≤ δ0 < 1. Moreover, we assume d < 1 further to simplify our
argument. In what follows, we consider the asymptotic behaviors in the limit
case c → ∞, N/ε → ∞, and δ → 1. Note that m = Ω(c2 log(N/ε)) by the
celebrated lower bound of code lengths of c-secure codes given by Tardos [15].
Now we have the following results, which will be proven in Sect. 4.3:
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Theorem 3. In the above situation we have the followings:

1. We have m = Θ(b2m) for arbitrary δ0-robust c-secure fingerprint codes C.
2. If there exist δ0-robust c-secure fingerprint codes C of length m with error

probability not higher than ε2 = ε/2 such that δ0 = Ω(c−2), δ0 → d, 0 ≤
d < 1 and m = Θ(c2 log(N/ε2)), then the corresponding δ-robust c-secure
fingerprint codes C satisfy

m = Θ

((
c log(1/δ0)

1 − δ

)2

log(N/ε)

)
.

More precisely, if m ∼ Kc2 log(N/ε2) for a constant K > 0, and
(a) if δ0 = Θ(g(c)−1) for an eventually positive function g(c) such that

g(c) = O(c2) and g(c) = ω(1), then we have

m ∼ K

(
c log g(c)

1 − δ

)2

log(N/ε);

(b) if δ0 → d and 0 < d < 1, then we have

m ∼ DK

(
c

1 − δ

)2

log(N/ε),

where

D = max
{
−d(1 − log d)2

log(1 − d)
, 1 − log d

}
< ∞.

3. There exist δ-robust c-secure binary fingerprint codes C of length

m = Θ

((
c log c

1 − δ

)2

log(N/ε)

)

with error probability not higher than ε. Moreover, the constant factor can
be set to 21.41244; i.e., we have

m ∼ 21.41244
(

c log c

1 − δ

)2

log(N/ε).

The first part of Theorem 3 shows a general relation between code lengths of
the original code C and the new code C. The second part deals with the special
case that the original code C has code length of optimal order (with respect to
c, N and ε) and the parameter δ0 does not decrease too rapidly. The third part
shows the existence of “nearly optimal” robust codes by virtue of our conversion
method, which will be proven by applying the part 2(a) to the robust c-secure
codes in [11]. Moreover, the part 2(b) says that to obtain δ-robust c-secure
codes for any 0 < δ < 1 with code lengths of order Θ(c2) (with respect to
c) matching the lower bound, it suffices to construct such codes for (arbitrarily
small) constant 0 < δ < 1. This seems to reduce the difficulty of the construction
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of desired codes significantly. It is worthy to search for such construction, or to
investigate whether such construction is actually possible or not. Moreover, if
the construction is not possible, it is also interesting to find the tight lower
bound of the code lengths of δ-robust c-secure codes, lying between Ω(c2) and
Ω((c log c)2) (with respect to c) by virtue of our result.

4 Proofs of Main Results

In this section, we give (outlines of) proofs of three main theorems presented in
Sect. 3. We describe the proof of Theorem 1, an outline of the proof of Theorem
2, and an outline of the proof of Theorem 3 in Sect. 4.1, Sect. 4.2, and Sect. 4.3,
respectively. The omitted details for the proofs of Theorem 2 and Theorem 3
will be supplied in a forthcoming full version of this article.

4.1 Proof of Theorem 1

To prove Theorem 1, let ρ be an arbitrary collusion strategy, that satisfies δ-
Marking Assumption, for the fingerprint code C obtained by our conversion. Then
we construct from ρ a collusion strategy ρ for the original δ0-robust c-secure code
C in the following manner:

Algorithm ρ Input: The collection Wpirate of pirates’ codewords
(1) Convert Wpirate to a collection Ŵpirate of codewords for C in the same way

as Steps 2–5 of the algorithm Gen, using randomly chosen fl and perm.
(2) Execute ρ with input Ŵpirate and receives a word ŷ output by ρ.
(3) Convert ŷ to a word ỹ of length m in the same way as Steps 1–2 of the

algorithm Tr, using the same fl and perm as the first step above.
(4) If the number of undetectable positions in ỹ marked with ‘?’s is larger than

δ0m, then replace the ‘?’ in every such position with the common digit of
codewords in Wpirate in the same position. Otherwise, replace nothing. Then
output the resulting word ỹ′.

By definition, the output ỹ′ of ρ satisfies δ0-Marking Assumption with respect to
C. Intuitively, we show that the distributions of ỹ′ and the word y constructed in
Step 2 of the algorithm Tr are sufficiently close to each other, hence the security
of C implies the security of C. We summarize some notations:

– (W, st): The output of Gen with input ε
– (W, st): The output of Gen with input ε2, performed in Step 1 of Gen
– ỹ: The word of length m generated by Step 3 of ρ, with input being the

collection of pirates’ codewords in W
– ỹ′: The word of length m generated from ỹ by Step 4 of ρ
– y: The output of ρ of length m, with input being the collection of pirates’

codewords in W
– y′: The word of length m generated by Step 1 of Tr, with input (W, st, y)
– y: The word of length m generated from y′ by Step 2 of Tr
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In this situation, the definition of ρ implies that the two triples (W, st, ỹ) and
(W, st, y) follow the same probability distribution. On the other hand, the tracing
algorithm Tr against ρ takes input (W, st, ỹ′), not (W, st, ỹ). This implies that the
difference between the error probability of C against ρ and the error probability
of C against ρ, the latter being bounded by ε2 since C is δ0-robust c-secure, is
at most the probability that (W, st, ỹ′) differs from (W, st, ỹ). Thus the error
probability of C is bounded by ε provided Pr[(W, st, ỹ′) �= (W, st, ỹ)] ≤ ε1. Since
(W, st, ỹ) and (W, st, y) follow the same distribution, the definition of ỹ′ implies
that the probability of the event (W, st, ỹ′) �= (W, st, ỹ) is equal to the probability
that more than δ0m undetectable positions in y (with respect to W ) are marked
with ‘?’s. Moreover, the latter event is equivalent to the event, denoted by E,
that more than δ0m undetectable blocks in y′ (with respect to W ) are entirely
marked with ‘?’s. By the above argument, it suffices to prove that Pr[E] ≤ ε1.

We use the condition (3) in the proof. To prove the claim, it suffices to consider
the case that pirates always mark as many undetectable positions in y with
‘?’s as δ-Marking Assumption allows, i.e., they mark $δm% = ν1 undetectable
positions in total (note that there are at least ν1 undetectable positions in y
by the condition L ≥ ν1). For an integer a, let S(a, ν2) denote the set of all
subsets of {1, 2, . . . , a} with ν2 = $δ0m% + 1 elements (note that S(a, ν2) = ∅
when a < ν2). Moreover, for each J ∈ S(a, ν2), let E′(a, J) denote the event
that the number of undetectable positions in W (or equivalently, the number
of undetectable blocks in W ) is a and for every j ∈ J , the j-th undetectable
block in y′ is entirely marked with ‘?’s. By definition of the events, whenever the
above-mentioned event E occurs, the event E′(a, J) also occurs in the same time
for some 0 ≤ a ≤ m and J ∈ S(a, ν2). This implies that

Pr[E] ≤
m∑

a0=0

Pr[a = a0]
∑

J∈S(a0,ν2)

Pr[E′(a, J) | a = a0], (7)

where a denotes the number of undetectable blocks in W .
Since the undetectable digits in pirates’ codewords are completely shuffled by

Steps 4–5 of Gen, every ν1-element subset of the ba + L undetectable positions
in y is chosen by pirates with the same probability to be marked with ‘?’s. Thus
for each a0, the probabilities Pr[E′(a, J) | a = a0] for J ∈ S(a0, ν2) coincide with
each other. Note that |S(a0, ν2)| =

(
a0
ν2

)
. When ν2 out of a0 fixed undetectable

blocks in y′ corresponding to J ∈ S(a0, ν2) (containing bν2 digits in total) are
entirely marked with ‘?’s, there are

(
ba0+L−bν2

ν1−bν2

)
choices of the remaining ν1−bν2

digits out of the remaining ba0 + L − bν2 undetectable positions to be marked
with ‘?’s. On the other hand, there are

(
ba0+L

ν1

)
choices of the ν1 undetectable

positions to be marked with ‘?’s. Thus the right-hand side of (7) is equal to

m∑
a0=0

Pr[a = a0]
(

a0

ν2

)(ba0+L−bν2
ν1−bν2

)(
ba0+L

ν1

) ≤
m∑

a0=0

Pr[a = a0] ε1 = ε1, (8)

where we used the condition (3) in the first inequality. Hence we have Pr[E] ≤ ε1

as desired, therefore the proof of Theorem 1 is concluded.
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4.2 Proof of Theorem 2

Here we give an outline of the proof of Theorem 2. Let the parameter L satisfy
(4) and let the parameter b satisfy (5) (in the case ν2 = 1) or (6) (in the general
case). Our aim is to prove the property (3). First, the definition (4) of L implies
immediately that L ≥ δbm/(1− δ), therefore L ≥ δ(bm + L) and L ≥ ν1 by the
definition of ν1. The main part of the claim is thus the second inequality in (3).

To prove the inequality, we may assume that ν1 ≥ bν2, as otherwise the target
inequality is obvious. First, note that for any integer 0 ≤ a ≤ m, we have(

ba+L−bν2
ν1−bν2

)(
ba+L

ν1

) =
(ba + L − bν2)!ν1!(ba + L − ν1)!

(ν1 − bν2)!(ba + L − ν1)!(ba + L)!

=
(ba + L − bν2)!ν1!

(ν1 − bν2)!(ba + L)!
=

(ν1)bν2

(ba + L)bν2

(see Sect. 1.4 for the notation). Now we present the following lemma on the
left-hand side of the target inequality, whose proof is omitted here and will be
given in the full version of this article:

Lemma 1. In the above setting,
(

a
ν2

)
(ν1)bν2/(ba+L)bν2 is increasing for integer

0 ≤ a ≤ m.

Although we omit the proof of Lemma 1 here, we notice that the property (4) of
L is essential to prove this lemma. By virtue of Lemma 1, it suffices to prove that(

m
ν2

)
(ν1)bν2/(bm+L)bν2 ≤ ε1. To prove this, we use the following two inequalities:

Lemma 2 ([6]). For integers 0 ≤ k ≤ n, we have
(

n
k

)
≤ (ne/k)k.

Lemma 3. For integers h ≥ i ≥ j ≥ 1, we have (i)j/(h)j ≤ (i/h)j.

Proof. Apply the inequality (i − x)/(h − x) ≤ i/h for every 0 ≤ x ≤ j.

We consider the case of general ν2 first, therefore b satisfies (6). By Lemma 2
and Lemma 3, we have(

m

ν2

)
(ν1)bν2

(bm + L)bν2

≤
(

me

ν2

)ν2 ( ν1

bm + L

)bν2

=

(
me

ν2

(
ν1

bm + L

)b
)ν2

≤
(

me

ν2
δb

)ν2

,

(9)

where we used the fact ν1 ≤ δ(bm + L) (following from the definition of ν1) in
the last inequality. By (6), we have

bν2 log(1/δ) ≥ ν2 log(m/ν2) + ν2 + log(1/ε1),

therefore we have δ−bν2 ≥ (me/ν2)ν2ε−1
1 . This implies that the right-hand side

of (9) is not larger than ε1, therefore the claim holds in this case.
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Secondly, we consider the case ν2 = 1, therefore b satisfies (5). In this case,
we use the precise value

(
m
ν2

)
= m of the binomial coefficient

(
m
ν2

)
instead of the

bound in Lemma 2 to improve the result of analysis. Now we have(
m

ν2

)
(ν1)bν2

(bm + L)bν2

≤ m

(
ν1

bm + L

)b

≤ mδb, (10)

where we used the fact ν1 ≤ δ(bm + L) in the last inequality. By (5), we have
b log(1/δ) ≥ log(m/ε1), therefore the right-hand side of (10) is not larger than
ε1. Thus the claim also holds in this case, concluding the proof of Theorem 2.

4.3 Proof of Theorem 3

Here we give an outline of the proof of Theorem 3. To prove the first part of
Theorem 3, let L1 and L2 denote, respectively, the first and the second terms
in the “max” in the definition (4) of L, therefore L = max{L1, L2}. First we
present the following lemma, whose proof is omitted here and will be given in
the full version of this article:

Lemma 4. In the above setting, we have

1 −
(
1 − ν2

m

)1/b

∼

⎧⎨⎩
ν2

mb
if d = 0,

−ν2 log(1 − d)
mbd

if 0 < d < 1.

By virtue of Lemma 4, we have

bm + L1 ∼

⎧⎨⎩b2m if d = 0,
−d

log(1 − d)
b2m if 0 < d < 1,

(11)

On the other hand, to analyze L2, we use the following property:

Lemma 5. We have log(1/δ) ∼ 1 − δ when δ → 1.

Proof. Apply l’Hôpital’s rule to derive limδ→1 log(1/δ)/(1 − δ) = 1.

Let B denote the numerator of the fraction in the ceiling function in (5) or
(6), depending on which we have used to define b. Then we have b ∼ B/(1 −
δ) by Lemma 5, while B = Ω(1), therefore 1/(1 − δ) = O(b). Thus we have
L2 = O(b2m) and bm + L2 = O(b2m). This implies that bm + L1 is eventually
dominant among the two values bm + Li, i ∈ {1, 2}, therefore we have m =
max{bm + L1, bm + L2} = Θ(b2m). Hence the first part of Theorem 3 holds.

We prove the second part of Theorem 2. Here use the following lemma, whose
proof is omitted here and will be given in the full version of this article:

Lemma 6. Let x1 and x2 be eventually positive functions. If either x1 = Θ(x2)
and x2 = ω(1), or x1 ∼ x2 and log x2 = Ω(1), then we have log x1 ∼ log x2.
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We use the definition (6) for b, therefore the above-mentioned B satisfies B =
log(m/ν2) + 1 + ν−1

2 log(1/ε1). We have b ∼ B/(1 − δ) by Lemma 5. First, we
have δ0m = Ω(log(N/ε)) by the properties of m and δ0 in the statement (note
that log(N/ε2) = log 2 + log(N/ε) and log(N/ε2) ∼ log(N/ε)). Secondly, by the
definition of ν2, we have ν−1

2 log(1/ε1) ≤ (δ0m)−1 log(1/ε1) = O(1) (note that
we set ε1 = ε2 = ε/2). Moreover, we have ν2 ∼ δ0m (hence m/ν2 ∼ 1/δ0) since
δ0m = ω(1) as above, while log(1/δ0) = Ω(1) by the property of δ0. Now the
second part of Lemma 6 implies that log(m/ν2) ∼ log(1/δ0). By these results,
we have B ∼ log(1/δ0) and b ∼ log(1/δ0)/(1 − δ), therefore

m = Θ

((
c log(1/δ0)

1 − δ

)2

log(N/ε)

)
by the first part of Theorem 3. From now, we prove claims (a) and (b).

For the claim (a), note that d = 0 by the property of δ0 specified in the
statement, therefore bm + L1 ∼ b2m by (11). Since g(c) = ω(1), we have
log(1/δ0) ∼ log g(c) by the first part of Lemma 6. Now the argument in the
previous paragraph implies that b ∼ (log g(c))/(1 − δ). Hence we have

bm + L1 ∼
(

log g(c)
1 − δ

)2

m , bm + L2 ∼ bm

1 − δ
∼ log g(c)

(1 − δ)2
m.

Since log g(c) = ω(1), this implies that we have eventually m = bm + L1. Hence
the claim follows from the property of m specified in the statement.

For the claim (b), it was shown in the second last paragraph that log(m/ν2) ∼
log(1/δ0), ν−1

2 log(1/ε1) ≤ (δ0m)−1 log(1/ε1) and b ∼ B/(1 − δ). On the other
hand, since δ0 → d > 0, we have log(1/δ0) ∼ − log d and (δ0m)−1 log(1/ε1) =
o(1), therefore B ∼ 1 − log d. Thus we have b ∼ (1 − log d)/(1 − δ), and the
property (11) implies that

bm + L1 ∼ −db2m

log(1 − d)
∼ −d(1 − log d)2

(1 − δ)2 log(1 − d)
m , bm + L2 ∼ bm

1 − δ
∼ 1 − log d

(1 − δ)2
m.

Thus we have eventually m = max{bm+L1, bm+L2} ∼ Dm/(1− δ)2, therefore
the claim holds by the property of m. Hence the second part of Theorem 3 holds.

Finally, to prove the third part, we apply the part 2(a) of Theorem 3 to the
c-secure binary fingerprint codes given by Nuida et al. in [11]. Their fingerprint
codes are in fact c-secure under δ0-Marking Assumption with δ0 = Θ(c−2) (see
below). Now it follows from the argument in Sect. 6.1 of [11] that their code
length m satisfies m ∼ Kc2 log(N/ε2), K = (j2

1 (A0 log A0 − A0 + 1))−1, where
j1 = 2.40482 · · · and A0 = 1+ 2(π−1 −Δ0)/j1 (see [11] for the precise definition
of j1), provided 0 ≤ Δ0 ≤ (2π)−1 and 2c2δ0/j1 ∼ Δ0. Since K is a continuous
function of Δ0, and we have K ≤ 5.35311 when Δ0 = 0 (see [11, Theorem 6.3])
and K > 5.35311 when Δ0 = (2π)−1, it follows that there exists a constant
0 < Δ0 < (2π)−1 such that K = 5.35311. Now by putting δ0 = j1Δ0c

−2/2 =
Θ(c−2) to satisfy the above requirement, the part 2(a) of Theorem 3 implies that
m ∼ 4K(c log c/(1− δ))2 log(N/ε) with 4K = 21.41244. Hence the third part of
Theorem 3 holds, concluding the proof of Theorem 3.
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5 Examples

We have seen in Theorem 3 the asymptotic behavior of code lengths of δ-robust
c-secure fingerprint codes obtained by our conversion method. In this section, we
give some numerical examples for the case of smaller c. Here we use the δ0-robust
c-secure binary fingerprint codes in [11] as the target of our conversion method.
We choose c as c ∈ {2, 3, 4, 6, 8}, and we consider the following three choices of
the user number N and the error probability ε2 for these original codes:

– Case 1: N = 100c and ε2 = 10−11;
– Case 2: N = 109 and ε2 = 10−6;
– Case 3: N = 106 and ε2 = 10−3.

We deal with three families of the codes, referred to as “Original 1”, “Original 2”,
and “Original 3”, respectively, with various δ0 listed in Table 1. Now Original 1
is not robust at all; Original 2 is slightly robust (which appeared in the numerical
examples in Sect. 5 of [11]); and Original 3 is most robust, in the sense that the
values δ0 for Original 3 are maximal subject to the conditions given in [11]. The
code lengths for the three families are shown in Table 2. Here the lengths for
Original 1 and Original 2 are quoted from Table 4 and Table 5 in [11]. On the
other hand, for Original 3, we chose the parameters β for the formula [11] of
error probability as in Table 3 which are optimized by numerical calculation.

Table 1. Parameter δ0 for the original codes in [11]

c 2 3 4 6 8

Original 1 0 0 0 0 0

δ0 Original 2 0.005 2.58556 × 10−3 2.58556 × 10−3 1.78017 × 10−3 1.36437 × 10−3

Original 3 0.0625 1.76067 × 10−2 1.32044 × 10−2 5.61077 × 10−3 3.09638 × 10−3

We apply our conversion to the three original codes, obtaining δ-robust c-
secure codes referred to as “Conversion k”, k ∈ {1, 2, 3}, which result from
“Original k”. Here we set ε = 2ε2 and δ = 0.5 for the parameters, hence the
resulting codes are much more robust than the original codes. The code lengths
m for the resulting codes are also shown in Table 2, where we determined the
parameter L by (4) and the parameter b by (5) for Conversion 1 and by (6) for
Conversion 2 and Conversion 3. The block sizes b are also included in Table 2.

Table 2 shows that both Conversion 2 and Conversion 3 are always more
efficient than Conversion 1, however there is no overall superiority or inferiority
between Conversion 2 and Conversion 3, thus starting from more robust original
codes is not always a good strategy. Intuitively, if the original code becomes
more robust, then the efficiency of our conversion itself is improved (indeed, in
the table, the ratio of code lengths for Conversion 3/Original 3 is always better
than that for Conversion 2/Original 2), while the code length of the original code
increases. Hence there exists a trade-off between these two effects. To investigate
how to find the optimal point would be a significant future research topic.
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Table 2. Code lengths for conversion of c-secure codes in [11] (with δ = 0.5)

c code Case 1 Case 2 Case 3

Original 1 373 410 253

Original 2 403 444 273

2 Original 3 1, 429 1, 572 969

Conversion 1 788, 278 (b = 46) 344, 432 (b = 29) 81, 836 (b = 18)

Conversion 2 177, 113 (b = 21) 113, 319 (b = 16) 53, 339 (b = 14)

Conversion 3 50, 082 (b = 6) 55, 094 (b = 6) 33, 963 (b = 6)

Original 1 1, 309 1, 423 877

Original 2 1, 514 1, 646 1, 014
3 Original 3 4, 973 5, 404 3, 330

Conversion 1 2, 890, 548 (b = 47) 1, 367, 068 (b = 31) 350, 630 (b = 20)

Conversion 2 604, 859 (b = 20) 322, 174 (b = 14) 198, 484 (b = 14)

Conversion 3 315, 807 (b = 8) 343, 166 (b = 8) 211, 470 (b = 8)

Original 1 2, 190 2, 360 1, 454
Original 2 2, 671 2, 879 1, 774

4 Original 3 8, 420 9, 074 5, 591
Conversion 1 5, 044, 682 (b = 48) 2, 416, 177 (b = 32) 641, 024 (b = 21)

Conversion 2 682, 951 (b = 16) 485, 939 (b = 13) 255, 137 (b = 12)

Conversion 3 677, 987 (b = 9) 577, 375 (b = 8) 355, 754 (b = 8)

Original 1 5, 546 5, 909 3, 640
Original 2 7, 738 8, 244 5, 079

6 Original 3 21, 300 22, 691 13, 980
Conversion 1 13, 314, 843 (b = 49) 6, 434, 407 (b = 33) 1, 761, 551 (b = 22)

Conversion 2 1, 515, 387 (b = 14) 1, 186, 157 (b = 12) 730, 727 (b = 12)

Conversion 3 2, 124, 604 (b = 10) 2, 263, 344 (b = 10) 1, 394, 451 (b = 10)

Original 1 10, 469 11, 062 6, 815
Original 2 16, 920 17, 879 11, 015

8 Original 3 40, 185 42, 463 26, 161
Conversion 1 26, 171, 387 (b = 50) 12, 787, 166 (b = 34) 3, 604, 908 (b = 23)

Conversion 2 2, 857, 620 (b = 13) 2, 572, 937 (b = 12) 1, 585, 115 (b = 12)

Conversion 3 4, 855, 517 (b = 11) 4, 240, 366 (b = 10) 2, 612, 417 (b = 10)

Table 3. Parameter β for codes in [11], the case of Original 3

c 2 3 4 6 8

β 0.093099 0.032980 0.019780 0.0085396 0.0047522

6 Conclusion

In this article, we proposed the first general conversion method of c-secure finger-
print codes to robust c-secure codes. Our method deals with the target c-secure
code as a black-box, and it is applicable for the sake of both converting non-
robust c-secure codes to robust one and amplifying less robustness of the target
c-secure codes to provide more robustness. We estimated appropriate values
of parameters for our conversion method theoretically, deriving a closed-form
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formula of the resulting code length. By using the formula, we described the
asymptotic behavior of the resulting code length. Moreover, by applying our
conversion to some existing c-secure codes, we obtained robust c-secure codes
with code lengths of order (c log c)2 with respect to c, which improves some
preceding construction and is theoretically “nearly-optimal”.

Acknowledgments. The author would like to thank Professor Hideki Imai and
the anonymous referees for their precious comments.
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Abstract. Recently, the authors proposed an evaluation technique for

pseudorandom generator-based randomness reduction of cryptographic

schemes against computationally unbounded attack algorithms. In this

article, we apply the technique to the case of fingerprint codes and verify

the effectiveness. Then we propose a technique that improves the ran-

domness reduction by dividing the target randomness into suitable parts

and using a separate pseudorandom generator for each part. Considering

fingerprint codes as a typical example, we give a theoretical evaluation

of the proposed technique, and also a numerical evaluation showing that

our technique improves the effect of randomness reduction to about 29

times as good as the plain randomness reduction in a reasonable setting.

Keywords: Randomness reduction, fingerprint code, information-

theoretic security, pseudorandom number generator, security evaluation.

1 Introduction

1.1 Backgrounds

Collusion-secure fingerprint codes [2] are an example of cryptographic schemes
that aim at information-theoretic security. Usually, the standard security as-
sumption (Marking Assumption [2]) restricts bit positions in codewords which
the adversaries (pirates) can attack, while it allows the attack algorithm to have
unbounded complexity. Such information-theoretic security seems especially de-
sirable in this case, since fingerprint codes are usually not used alone but used
as a building block in combination with digital watermarking schemes or other
schemes such as traitor tracing schemes (e.g., [1,4]), and security assumptions
for a building block are generally expected to be as minimal as possible.

Many existing fingerprint codes, such as plain Boneh-Shaw codes Γ0(n, d) [2],
use random permutations of bit positions in codewords to conceal them from the
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pirates. Tardos [13,14] made use of further randomness in codeword generation
for improving the performance. His fingerprint codes (Tardos codes) have code
lengths of theoretically minimal order with respect to the maximal number of
pirates, and the minimal order has been achieved so far only by that code and its
variants. However, a drawback of Tardos codes is that auxiliary random elements
used in the codeword generation should be recorded throughout, as those will be
used in the pirate tracing process as well. This requires extra memories to store
those auxiliary data as well as extra random bits to generate them. There have
been given some results on reducing the extra memories (and also reducing code
lengths) [7,10,11] by replacing the continuous probability distributions used in
Tardos codes with finite (discrete) distributions. The replacement of probability
distributions also results in randomness reduction of the schemes, since the new
probability distributions are relatively simple and more efficient to implement.

A more naive and simple strategy for reducing such extra costs is to replace
the perfect random source with pseudorandom generators (PRGs). This obvi-
ously reduces the required randomness, while the required memories are also
reduced since now all the randomly generated data that should be recorded
throughout can be recovered from the seed of the PRG. However, although
the fingerprint code itself is information-theoretically secure, a naive evaluation
method can prove the security of the consequent scheme only against computa-
tionally bounded attack algorithms as no information-theoretically secure PRGs
exist. Very recently, the authors [12] proposed a security evaluation technique
for the PRG-based randomness reduction applied to information-theoretically
secure schemes. That technique can prove the security against computationally
unbounded attack algorithms only by accepting an assumption on hardness of
a problem in a fixed computational model that is irrelevant to the attack al-
gorithms. The aim of this article is to give a concrete example of the above-
mentioned evaluation technique, and moreover to propose another technique to
improve the PRG-based randomness reduction.

1.2 Our Contributions

In this article, first we apply the above-mentioned evaluation technique in [12] to
fingerprint codes in [10] that are an improvement of Tardos codes [13,14]. Then
we propose a novel technique to improve the PRG-based randomness reduction.

To explain the essence of our proposed technique, first we briefly show the
idea of the evaluation technique in [12]. Consider the following situation: Alice
converts an output x of a random source R, either perfectly random or given
by a PRG G, to an element w ∈ W by an efficient algorithm H. Eve tries
to distinguish the random and pseudorandom cases from the element w (see
Fig. 1(a)). Now the idea is that the difference of generation probabilities of
a fixed element w0 ∈ W in random and pseudorandom cases is nothing but
the advantage of a “distinguisher” for G that outputs 1 if H(x) = w0 and 0 if
H(x) �= w0, and the statistical distance of Eve’s elements w in the two cases
is a half of the sum of those advantages taken over all w0 ∈ W . Thus if G
is sufficiently secure and the set W is sufficiently small, then this statistical
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R � x �H w � Eve � b′

(a) (b)R1

R2

�x1

�x2

�H1

�H2

w1

w2

�

�
Eve � b′

Fig. 1. An example of (a) the argument in [12] and (b) our improvement

distance is also sufficiently small, therefore the two cases are indistinguishable
for Eve even with computationally unbounded algorithms. Intuitively, if W is very
small, then the amount of information on the output x of R received by Eve via
the element w ∈ W is too scanty even for computationally unbounded attack
algorithms. Although this is just a toy example, the technique in [12] enables
one to perform a similar evaluation for more practical situations of PRG-based
randomness reduction for information-theoretically secure schemes.

Now we explain our proposed technique. In the example, assume that W con-
sists of pairs (w1, w2) of elements wi ∈ Wi, i = 1, 2, and elements of each set Wi

are calculated from outputs of an independent random source Ri (see Fig. 1(b)).
Then the difference between random and pseudorandom cases is bounded by the
sum of the difference between the cases (R1,R2) = (T, T) and (R1,R2) = (P, T)
and the difference between the cases (R1,R2) = (P, T) and (R1,R2) = (P, P),
where T and P signify true random and pseudorandom sources, respectively.
Now each of the two differences can be evaluated by using the technique in [12],
where the evaluation result is much improved since the size of each Wi is sig-
nificantly smaller than W . Hence the total evaluation result is also significantly
improved. Our proposed technique is also applicable to more general situations
by finding a suitable decomposition as above.

We apply the above techniques to the case of fingerprint codes in [10], where
we use a provably secure PRG recently proposed by Farashahi et al. [6] based
on the DDH assumption. We describe a theoretical evaluation of the difference
between random and pseudorandom cases. Moreover, we also give a numerical
example showing that in a reasonable setting, our technique improves the effect
of randomness reduction (more precisely, the ratio of the total seed length to the
original number of required perfectly random bits) to about 29 times as good as
the case of plain randomness reduction without our proposed technique.

1.3 Related Works

Before the work [12], Dubrov and Ishai [5] also studied randomness reduction of
information-theoretically secure schemes by introducing a generalized notion of
PRGs. Their technique also proves security of the randomness reduction against
computationally unbounded attack algorithms only by accepting an assumption
on hardness of a problem. However, the types of applications in [5], e.g., private
multi-party computation, are restricted, and the technique in [5] is not effective
for more general schemes such as fingerprint codes (see [12]). The essential dif-
ference mentioned in [12] is that the secret elements in multi-party computation
(i.e., the local inputs for honest players) are independent of the target randomness
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of randomness reduction, while the secret elements in fingerprint codes (e.g., in-
nocent users’ codewords) depend on the target randomness. By this reason, our
argument in this article is based on the result in [12] rather than [5].

On the other hand, Kuribayashi et al. [8] discussed implementation of Tardos
codes in which the probability distributions used by Tardos codes are approxi-
mated by certain simple PRGs. However, security of the PRG used in [8] is not
yet proven and their security evaluation is due to computer experiments only.
They seem aiming at time and memory efficiency rather than provable security.

1.4 Organization of the Article, Notations and Terminology

In Sect. 2, we summarize a formulation of the notion of fingerprint codes and
the concrete construction of fingerprint codes in [10]. In Sect. 3, we summarize
some definitions relevant to PRGs and properties of the PRGs in [6, Sect. 4.1].
Our proposed technique is described in Sect. 4.1 for the case of fingerprint codes,
followed by theoretical evaluation in Sect. 4.2 and Sect. 4.3. Then Sect. 4.4 gives a
modification of PRGs in [6]. Finally, Sect. 4.5 presents some numerical examples.

Throughout this article, any algorithm is probabilistic unless otherwise speci-
fied. Let UX denote the uniform probability distribution over a (finite) set X . We
often identify a probability distribution with the corresponding random variable.
We write x ← P to signify that x is a particular value of a random variable P .
We naturally identify the set Zq of integers modulo q with {1, 2, . . . , q}. We put
Σ = {0, 1} and we identify the set Σh of h-bit sequences with {0, 1, . . . , 2h − 1}
via binary expressions of integers. Let |q|2 denote the bit length of an integer q.

2 Fingerprint Codes

In this article, we define a fingerprint code as a pair (Gen, Tr) of the codeword
generation algorithm Gen and the tracing algorithm Tr that are considered in the
following context. First, a provider runs the algorithm Gen that is given a random
element x ∈ X from a random source R as input and outputs secret information
s ∈ S. (Note that Gen and Tr may vary with respect to security parameters
or other parameters such as the number N of users.) The secret information s
consists of N codewords corresponding to the N users, who are identified with
the user IDs 1, 2, . . . , N , and some (possibly empty) element which we refer to as
a state element. Here the codewords are binary and of common length m. Then
the provider distributes each codeword to the corresponding user, either innocent
or adversarial, the latter being called a pirate. Let C ⊂ {1, . . . , N} denote the
unknown coalition of pirates. Since the innocent users play no active roles in the
argument, we ignore them in the formalization and let Dist denote the map (or
algorithm) that associates to s the collection w = Dist(s) ∈ W of all codewords
for the pirates. Then the pirates run an attack algorithm P to generate from w a
pirated word y = P(w) ∈ Y that is a word of length m over an extended alphabet
{0, 1, ?}, where ‘?’ denotes an erasure symbol. The only assumption we put on P is
the standard assumption called Marking Assumption [2]. The important feature
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R � X �Gen
S �Dist

W ��P
Y �A �Ref {0, 1}

�
Tr �

�

Fig. 2. Flowchart for fingerprint codes (here the duplicated arrow signifies the attack

algorithm with unbounded complexity)

is that Marking Assumption does not restrict the computational complexity of P.
The provider receives y, and runs the algorithm Tr that takes y and s as inputs
and outputs a (possibly empty) set a = Tr(y, s) ∈ A of accused users. Finally,
an auxiliary third-party referee receives a and s and decides by an algorithm Ref
whether or not the tracing process succeeded. Namely, we have Ref(s, a) = 0 if
the tracing succeeded (usually this means that a contains at least one pirate and
no innocent user) and Ref(s, a) = 1 if it failed. The attack success probability
succP = succRP is defined as the probability that Ref(s, a) = 1 taken over the
random source R. The situation is summarized in Fig. 2, where the duplicated
arrow means that the corresponding algorithm P has unbounded complexity.

In our argument, we deal with a fingerprint code in [10] that is an improvement
of Tardos code [13,14] as an example of information-theoretically secure schemes.
A main reason of considering the code in [10] rather than Tardos code is that the
finite probability distribution used in [10] is much simpler than the continuous
distribution in Tardos code, which can simplify our evaluation of randomness
reduction technique. We apply the above formulation to the fingerprint code
in [10]. In their fingerprint code, a state element consists of m random values
0 < pj < 1, 1 ≤ j ≤ m, each being independently generated according to
the common probability distribution P specified below. The algorithm Gen first
generates the state element. Then it generates each, say, j-th bit wi,j of i-th user’s
codeword wi independently by Pr[wi,j = 1] = pj and Pr[wi,j = 0] = 1 − pj . On
the other hand, the algorithm Tr first calculates the score sci =

∑m
j=1 sci,j of

i-th user, where the bitwise score sci,j for j-th bit is a function of yj , wi,j and
pj specified below. Then Tr outputs (any one of) the user(s) with highest score.
Hence the output a ∈ A is now a single user rather than a set of users.

We describe details of the choices of probability distributions P and scoring
functions in the fingerprint codes in [10]. Here we consider only the case of three
pirates (c = 3) for simplicity. First, let the probability distribution P take one
of the two values p(0) and p(1) with equal probability 1/2, where

p(0) = 0.211334228515625 = (0.001101100001101)2 and p(1) = 1 − p(0) .

These values are approximations of values of the probability distribution given
in [10, Definition 4] with approximation error less than 10−5 (here we require the
values p(0) and p(1) to have short binary expressions rather than short decimal
expressions; the same also holds for values u0 and u1 below). Secondly, for the
scoring function, we define two auxiliary values u0 and u1 by

u0 = 1.931793212890625 = (1.111011101000101)2 ,

u1 = 0.5176544189453125 = (0.1000010010000101)2 ,
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and define the bitwise score sci,j for j-th bit of i-th user in the following manner:
If pj = p(ν), ν ∈ {0, 1}, then put

sci,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
uν if yj = 1 and wi,j = 1 ,

−u1−ν if yj = 1 and wi,j = 0 ,

−uν if yj �= 1 and wi,j = 1 ,

u1−ν if yj �= 1 and wi,j = 0 .

These two values u0 and u1 are approximations of Tardos’s scoring function√
(1 − x)/x (that is also used in [10]) at x = p(0) and x = p(1), respectively,

with approximation error Δ < 4.2 × 10−6 < 10−5. Note that effects of such
approximation errors are also considered in the security proof of [10].

In our numerical examples, we consider the case that the attack success prob-
ability succRP , that is now the probability that the output a of Tr is not a pirate,
for perfectly random source R is bounded by ε = 10−3. We vary the number N
of users as N = 103, 104, . . . , 109. Then by the bound for attack success probabil-
ities given in the first part of [10, Theorem 1], we can calculate the code lengths
for these cases as in Table 1, where we used auxiliary values Δ = 4.2 × 10−6,
η = 1.93180, R = 0.40822, and β = 0.0613461 in the calculation.

Table 1. Code lengths of fingerprint codes in [10] with c = 3 and ε = 10−3

user number N 103 104 105 106 107 108 109

code length m 614 702 789 877 964 1052 1139

3 Pseudorandom Generators

In the following section, we will evaluate the security of fingerprint codes in the
case that the perfect random source is replaced with a pseudorandom generator
(PRG). This section summarizes definitions relevant to PRGs and some proper-
ties of PRGs recently proposed by Farashahi et al. [6]. For the purpose, first we
clarify the meaning of the term “computational model” used in this article:

Definition 1. A computational model M = (AM, CM) consists of a set AM
of algorithms described in the model, and a map CM : AM → R that assigns to
each A ∈ AM its “complexity” CM(A) ∈ R.

Here the “complexity” may take various meanings depending on the context,
such as time complexity on a fixed Turing machine, average or worst-case running
time on a fixed PC, and circuit complexity with fixed fundamental gates.

We define a PRG to be an algorithm G : SG → OG with seed set SG and
output set OG. We deal with exact (concrete) security in this article rather
than asymptotic security, thus G is a single algorithm rather than a sequence
of algorithms with various seed sets. The following notion of indistinguishability
for PRGs is a natural translation of the conventional notion to the case of exact
security and has essentially appeared in the literature such as [6, Definition 1]:
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Definition 2. An algorithm D : OG → {0, 1} is called a distinguisher for a PRG
G. For any distinguisher D for G, its advantage advG(D) is defined by

advG(D) = |Pr[D(G(USG
)) = 1] − Pr[D(UOG

) = 1] | .

Definition 3. Let M be a computational model (see Definition 1) and R(t) ≥
0 a non-decreasing function. A PRG G is called R(t)-secure in M if for any
distinguisher D ∈ AM for G, its advantage is bounded by

advG(D) ≤ R(CM(D)) .

An example of R(t)-secure PRGs is recently given by Farashahi et al. [6, Sect.
4.1] under the DDH assumption. The construction of their PRGs uses two prime
numbers p and q such that p = 2q + 1, thus p is a safe prime and q is a Sophie-
Germain prime. Let G1 be the multiplicative group of nonzero quadratic residues
modulo p, therefore |G1| = q. We identify the set G1 with Zq via the bijection
enum1 used in [6, Sect. 4.1]. Under the identification, their PRG G = GDDH,
called DDH generator, with parameter k0 > 0 has seed set SG = (Zq)3 and
output set OG = (Zq)k0 (in their construction, two elements of G1 denoted by x
and y are randomly chosen as well as the “seed” of the PRG denoted by s0 [6,
Sect. 3.1], and here we include the random x and y in the seed of the PRG). We
omit further details of the construction since it is not relevant to our argument.

The argument in [6] yields the following description of the function R(t) in
Definition 3 for GDDH. Since the numerical observation in [6] is based on the
experiments by Lenstra and Verheul [9], here we define the complexity function
CM for the computational model M by worst-case running times on a fixed
Pentium machine that was used in the experiments in [9]. (Note that it is not
clear in [6] whether the running times are in average-case or in worst-case, and
here we adopt worst-case ones since our choice can avoid at least overestimation
of security and it simplifies our argument than the case of average-case running
times.) The unit of time is set to be 360 Pentium clock cycles that is approxi-
mately the time for one encryption in a software implementation of DES accord-
ing to the experiment in [9] (see also [6, Sect. 2.4]). Now [6, Theorem 2] shows
that if there is a distinguisher D ∈ AM for GDDH such that CM(D) ≤ T and
advGDDH(D) > ε, then the DDH problem in G1 can be solved by some A ∈ AM
such that CM(A) ≤ T with advantage larger than ε/k0. Thus by assuming that
the time-success ratio T ′/ε′ for the complexity T ′ and the advantage ε′ of any
adversary in M for the DDH problem in G1 does not exceed a constant Rts, it
follows that GDDH is R(t)-secure in M with R(t) = k0t/Rts. In [6, Assumption
1], the value Rts is assumed to be the complexity of the best known algorithm
for solving the DDH problem in G1, which is estimated according to the data in
[9] as Rts = L(|q|2) where

L(n) = 4.7 × 10−5 exp(1.9229(n ln2)1/3(ln(n ln 2))2/3)

(see [6, Sect. 2.4]). These assumptions imply the following assumption which is
adopted in our numerical examples given in the following section:

GDDH is R(t)-secure in M with R(t) = k0t/L(|q|2). (1)
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Note that this has been derived by an assumption on the hardness of the DDH
problem in a fixed (classical) computational model.

4 Randomness Reduction and Its Evaluation

In this section, we evaluate the difference of attack success probabilities succRP
for fingerprint codes in Sect. 2 between the cases that R is a perfectly random
source and that R is a PRG by using the evaluation technique in [12]. Moreover,
we not only apply this evaluation technique straightforwardly but also introduce
a technique for randomness reduction to improve the evaluation result.

4.1 A Technique to Improve Randomness Reduction

Our technique to improve the PRG-based randomness reduction is first dividing
the set {1, 2, . . . , m} of bit positions in users’ codewords into plural, say, � parts
I1, I2, . . . , I� and generating each part (wi,j)1≤i≤N,j∈Iν of users’ codewords and
each part (pj)j∈Iν of the state element by a separate PRG. The new situation
is shown in Fig. 3 (we exhibit the picture only for the case � = 2, but a general
case is analogous). Namely, the ν-th part sν = Genν(xν) ∈ Sν of the secret infor-
mation is generated from ν-th random sequence xν ∈ Xν given by ν-th random
source Rν . We assume that the random sources Rν , 1 ≤ ν ≤ �, are independent.
Note that the ν-th part of codewords depends solely on the ν-th part of the state
element. The ν-th part Distν(sν) ∈ Wν of pirates’ codewords obviously depends
solely on sν . Roughly speaking, the main effect of our technique is to improve
the dependence of the security evaluation result on the product of sizes of Wν

to dependence on the sum of sizes of Wν . Although we only consider the case
of fingerprint codes here, our technique is applicable to other cases by finding a
suitable decomposition of the randomness used in the scheme.

R1 � X1
�Gen1

S1
�Dist1

W1 �
�

R2 � X2
�Gen2

S2
�Dist2

W2 ��������P Y �A �Ref {0, 1}
�

�

Tr �

���

�
�
��

Fig. 3. Modified flowchart for fingerprint codes, with � = 2 (here the duplicated arrows

signify the attack algorithm with unbounded complexity)

4.2 Security Evaluation for the Randomness Reduction

We apply the hybrid argument to the evaluation of the situation in Sect. 4.1. For
each 1 ≤ ν ≤ �, let Rrnd

ν denote the perfect random source on Xν , and let Rprnd
ν
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denote the random source on Xν produced by a separate PRG G(ν). Assume that
each G(ν) is Rν(t)-secure in the computational model M given in Sect. 3. Now
for each 0 ≤ ν ≤ �, let R∗

ν be the collection of random sources Rν′ , 1 ≤ ν′ ≤ �,
such that Rν′ = Rprnd

ν′ if 1 ≤ ν′ ≤ ν and Rν′ = Rrnd
ν′ if ν + 1 ≤ ν′ ≤ �. Let

succ
(ν)
P be the attack success probability with respect to the collection R∗

ν of
random sources. Now the difference diffP of attack success probabilities succ

(0)
P

and succ
(�)
P in entirely random and entirely pseudorandom cases, respectively,

is bounded by the sum of � values diff
(ν)
P = |succ

(ν−1)
P − succ

(ν)
P |, 1 ≤ ν ≤ �,

owing to the triangle inequality. Thus our task is reduced to evaluation of each
diff

(ν)
P .
Put succν,rnd

P = succ
(ν−1)
P and succν,prnd

P = succ
(ν)
P for simplicity. Hence in the

definition of succν,b
P where b ∈ {rnd, prnd}, we have Rν = Rb

ν and each of the
other random sources Rν′ is common to the two choices of b. In what follows,
let PrP [v] denote the probability of a random variable P taking a value v. Let
xν′ , sν′ , wν′ , y, and a denote elements of Xν′ , Sν′ , Wν′ , Y , and A, respectively.
Let x denote the tuple of all xν′ , 1 ≤ ν′ ≤ �, and let x¬ν denote the tuple
of all xν′ , 1 ≤ ν′ ≤ �, ν′ �= ν (similarly for s, s¬ν , w and w¬ν). Now by
the evaluation technique in [12], we express succν,b

P in the following form, where
each index in each summation runs over the corresponding set (e.g., x runs over∏�

ν′=1 Xν′):

succν,b
P =

∑
x,s,w,y,a

PrRb
ν
[xν ]

∏
ν′ �=ν

PrRν′ [xν′ ]
�∏

ν′=1

(
PrGenν′(xν′)[sν′ ] PrDistν′(sν′ )[wν′ ]

)
· PrP(w)[y] PrTr(y,s)[a] PrRef(a)[1]

=
∑

y,x¬ν ,s¬ν ,w

∏
ν′ �=ν

(
PrRν′ [xν′ ]PrGenν′(xν′)[sν′ ] PrDistν′(sν′ )[wν′ ]

)
PrP(w)[y]

·
∑

xν ,sν ,a

PrRb
ν
[xν ] PrGenν(xν)[sν ] PrDistν(sν)[wν ] PrTr(y,s)[a]PrRef(a)[1] .

(2)

To simplify the expression (2), we introduce auxiliary algorithms Dν
y,wν ,s¬ν

:
Xν → {0, 1}, that will play a role of distinguishers for the PRG G(ν), in the
following manner according to the technique in [12] again:

Algorithm Dν
y,wν ,s¬ν

(1 ≤ ν ≤ �, y ∈ Y , wν ∈ Wν , sν′ ∈ Sν′ for ν′ �= ν)
Input: xν ∈ Xν Output: 0 or 1
(1) Set sν ← Genν(xν)
(2) Set w′ ← Distν(sν)
(3) Set a ← Tr(y, s) = Tr(y, s1, . . . , sν , . . . , s�)
(4) Set b′ ← Ref(a)
(5) Output 1 if w′ = wν and b′ = 1; output 0 otherwise
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Now for each y, x¬ν , s¬ν and w, we have∑
xν ,sν ,a

PrRb
ν
[xν ] PrGenν(xν)[sν ] PrDistν(sν)[wν ] PrTr(y,s)[a]PrRef(a)[1]

=
∑
xν

PrRb
ν
[xν ]

∑
sν ,a

PrGenν(xν)[sν ] PrDistν(sν)[wν ] PrTr(y,s)[a] PrRef(a)[1]

=
∑
xν

PrRb
ν
[xν ] Pr

[
Dν

y,wν ,s¬ν
(xν) = 1

]
= Pr

[
Dν

y,wν ,s¬ν
(Rb

ν) = 1
]

.

By substituting this for (2), we have

succν,b
P =

∑
y,x¬ν ,s¬ν ,w

∏
ν′ �=ν

(
PrRν′ [xν′ ]PrGenν′(xν′)[sν′ ] PrDistν′(sν′ )[wν′ ]

)
PrP(w)[y]

· Pr
[
Dν

y,wν ,s¬ν
(Rb

ν) = 1
]

.

Now the triangle inequality implies that

diff
(ν)
P ≤

∑
y,x¬ν ,s¬ν ,w

∏
ν′ �=ν

(
PrRν′ [xν′ ] PrGenν′(xν′)[sν′ ] PrDistν′(sν′ )[wν′ ]

)
PrP(w)[y]

·
∣∣Pr
[
Dν

y,wν ,s¬ν
(Rrnd

ν ) = 1
]
− Pr

[
Dν

y,wν ,s¬ν
(Rprnd

ν ) = 1
]∣∣

=
∑

y,x¬ν ,s¬ν ,w

∏
ν′ �=ν

(
PrRν′ [xν′ ] PrGenν′(xν′)[sν′ ] PrDistν′(sν′ )[wν′ ]

)
PrP(w)[y]

· advG(ν)(Dν
y,wν ,s¬ν

) .

We assume that the complexity of the distinguisher Dν
y,wν ,s¬ν

for G(ν) is not
larger than a value Tν that is independent of y, wν , and s¬ν . Then, since G(ν) is
Rν(t)-secure, we have advG(ν)(Dν

y,wν ,s¬ν
) ≤ Rν(Tν), hence diff

(ν)
P is bounded by

Rν(Tν)
∑

y,x¬ν ,s¬ν ,w

∏
ν′ �=ν

(
PrRν′ [xν′ ] PrGenν′ (xν′)[sν′ ] PrDistν′(sν′)[wν′ ]

)
PrP(w)[y] .

The summation in this expression is equal to∑
x¬ν ,s¬ν ,w

∏
ν′ �=ν

(
PrRν′ [xν′ ] PrGenν′(xν′)[sν′ ]PrDistν′(sν′)[wν′ ]

)∑
y

PrP(w)[y]

=
∑

x¬ν ,s¬ν ,w

∏
ν′ �=ν

PrRν′ [xν′ ] PrGenν′(xν′)[sν′ ] PrDistν′(sν′)[wν′ ]

since
∑

y PrP(w)[y] = 1. Similarly, the last value is also equal to∑
wν

∑
x¬ν ,s¬ν ,w¬ν

∏
ν′ �=ν

PrRν′ [xν′ ] PrGenν′(xν′)[sν′ ] PrDistν′(sν′)[wν′ ]

=
∑
wν

∏
ν′ �=ν

∑
xν′ ,sν′ ,wν′

PrRν′ [xν′ ]PrGenν′(xν′)[sν′ ] PrDistν′(sν′ )[wν′ ]

=
∑
wν

∏
ν′ �=ν

⎛⎝ ∑
xν′ ,sν′

PrRν′ [xν′ ] PrGenν′(xν′)[sν′ ]
∑
wν′

PrDistν′(sν′)[wν′ ]

⎞⎠
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=
∑
wν

∏
ν′ �=ν

∑
xν′ ,sν′

PrRν′ [xν′ ] PrGenν′ (xν′)[sν′ ]

=
∑
wν

∏
ν′ �=ν

⎛⎝∑
xν′

PrRν′ [xν′ ]
∑
sν′

PrGenν′(xν′)[sν′ ]

⎞⎠
=
∑
wν

∏
ν′ �=ν

∑
xν′

PrRν′ [xν′ ] =
∑
wν

∏
ν′ �=ν

1 =
∑
wν

1 = |Wν |

(we used
∑

wν′ PrDistν′(sν′ )[wν′ ] = 1 in the third equality, and
∑

xν′ PrRν′ [xν′ ] =
1 in the fifth equality). Hence we have

diff
(ν)
P ≤ |Wν | · Rν(Tν) .

Summarizing, we have the following result:

Theorem 1. Assume that for 1 ≤ ν ≤ �, the PRG G(ν) is Rν(t)-secure in M
and the complexity CM(Dν

y,wν ,s¬ν
) of the distinguisher Dν

y,wν ,s¬ν
for G(ν) is not

larger than Tν for every y, wν , and s¬ν . Then the difference diffP of attack
success probabilities for the fingerprint code in Sect. 2 between the two cases

– every random source Rν , 1 ≤ ν ≤ �, is perfectly random; and
– each random source Rν , 1 ≤ ν ≤ �, is produced by the PRG G(ν)

is bounded by

diffP ≤
�∑

ν=1

|Wν | · Rν(Tν)

even if the attack algorithm P of pirates has unbounded complexity.

4.3 Complexity of the Distinguishers

To proceed the evaluation further, we estimate the complexity of the distin-
guisher Dν

y,wν ,s¬ν
for G(ν). For simplicity, we choose the partition (I1, . . . , I�)

of bit positions {1, . . . , m} such that each Iν consists of j-th positions with
mν−1 + 1 ≤ j ≤ mν , where mν = |Iν | and mν =

∑ν
ν′=1 mν′ (hence m� = m).

Let 1 ≤ i1 < i2 < i3 ≤ N be the three pirates (recall that now c = 3).
We give a pseudo-program for the algorithm Dν

y,wν ,s¬ν
for the sake of com-

plexity evaluation. For the purpose, we encode each digit yj of y ∈ Y in such
a way that 2-bit sequences 00, 01, and 10 represent ‘0’, ‘1’ and ‘?’, respectively
(hence one can determine whether yj = 1 or not by just one comparison in the
lower bit). Secondly, the element wν = w(ν) ∈ Wν consists of w

(ν)
i,j ∈ {0, 1} with

i ∈ {i1, i2, i3} and mν−1 + 1 ≤ j ≤ mν . Thirdly, for each ν′ �= ν, the element
sν′ ∈ Sν′ consists of the values pj (mν′−1 + 1 ≤ j ≤ mν′) and wi,j ∈ {0, 1}
(1 ≤ i ≤ N , mν′−1 + 1 ≤ j ≤ mν′). Since each pj is chosen from the two values
p(0) and p(1) given in Sect. 2, here we encode each pj into ξ ∈ {0, 1} such that
pj = p(ξ). We also use the two values u0 and u1 given in Sect. 2. Now we describe
a pseudo-program for Dν

y,w(ν),s¬ν
together with an estimate of its complexity
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(see below for details) as follows, where next_n(xν) denotes an operation to
load the next n bits from the input binary sequence xν (the subscript ‘n’ is
omitted in the case n = 1) and we put sc0 = −mu0:

Input: xν ∈ Xν Output: 0 or 1
01: for j in mν−1+1,...,mν do
02: set pj := next(xν) — 1 TU
03: end for — 3mν + 2 TUs for 01 - 03
04: for i in 1,...,N do
05: for j in mν−1+1,...,mν do
06: if next_15(xν) < p(0) then
07: set wi,j := 1-pj — 2 TUs
08: else
09: set wi,j := pj — 1 TU
10: end if — 3 TUs for 06 - 10
11: if i = i1 or i = i2 or i = i3 then
12: if not wi,j = w

(ν)
i,j then

13: return 0
14: end if — 1 TU for 12 - 14
15: end if — 4 TUs for 11 - 15
16: end for — 9mν + 2 TUs for 05 - 16
17: end for — (9mν + 4)N + 2 TUs for 04 - 17
18: set scmax := sc0 — 1 TU
19: for i in 1,...,N do
20: set sc := 0 — 1 TU
21: for j in 1,...,m do
22: if yj = 1 then
23: if wi,j = 1 then
24: if pj = 0 then
25: set sc := sc + u0 — 1 TU
26: else
27: set sc := sc + u1 — 1 TU
28: end if — 2 TUs for 24 - 28
29: else
30: if pj = 0 then
31: set sc := sc - u1 — 1 TU
32: else
33: set sc := sc - u0 — 1 TU
34: end if — 2 TUs for 30 - 34
35: end if — 3 TUs for 23 - 35
36: else
37: if wi,j = 0 then
38: if pj = 0 then
39: set sc := sc + u1 — 1 TU
40: else
41: set sc := sc + u0 — 1 TU
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42: end if — 2 TUs for 38 - 42
43: else
44: if pj = 0 then
45: set sc := sc - u0 — 1 TU
46: else
47: set sc := sc - u1 — 1 TU
48: end if — 2 TUs for 44 - 48
49: end if — 3 TUs for 37 - 49
50: end if — 4 TUs for 22 - 50
51: end for — 6m + 2 TUs for 21 - 51
52: if not sc < scmax then
53: set scmax := sc, a := i — 2 TUs
54: end if — 3 TUs for 52 - 54
55: end for — (6m + 8)N + 2 TUs for 19 - 55
56: if a = i1 or a = i2 or a = i3 then
57: return 0
58: end if — 3 TUs for 56 - 58
59: return 1

Since it is infeasible to determine the precise running time of the pseudo-program
executed on the machine used in the definition of M (see Sect. 3), in the above
estimate we approximated the worst-case running time by the following two
rules. First, we regard each of one substitution, one addition, one subtraction,
and one comparison as taking one time unit (in the above description, “TU”
stands for “time unit”). This would be justified since every such operation in
the above pseudo-program is either an operation between fixed-point numbers
with at most just 12-bit integer parts and at most just 16-bit fractional parts
or an operation between at most just 30-bit integers (see Sect. 2 for the pre-
cise values of p(0), p(1), u0, and u1 and see Table 1 for the precise choices of
N and m), which would be much more efficient than one DES encryption. In
fact, this estimate of complexity is likely to be overestimation. Secondly, we
ignore the complexity of loading a next bit from the input (i.e., an operation
next_n(xν)), outputting an element (i.e., an operation return), and jumping
in the execution flow (that is implicitly used in for loops and if statements),
which (together with any other unregarded issue on computational complexity)
seems negligibly small and would be absorbed by the above overestimation. It
follows from the two rules that the worst-case running time of a for loop of
the form “for CN in ST,...,EN do JOBCN end for” is (over)estimated to
be the sum of 2(EN − ST + 2) time units (i.e., 1 initialization of the counter
CN, EN− ST + 1 increments for CN and EN− ST + 2 checks for the terminating
condition) and the sum of running times of JOBCN for all ST ≤ CN ≤ EN. In
particular, if the running time of JOBCN is constantly equal to T time units,
then the estimated running time of the loop is (EN − ST + 1)(T + 2) + 2 time
units. The above estimates of running times of each line, each for loop and each
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if statement are thus obtained. By summing the running times presented at
lines 03, 17, 18, 55, and 58, we have CM(Dν

y,w(ν),s¬ν
) ≤ Tν where

Tν = (3mν + 2) + ((9mν + 4)N + 2) + 1 + ((6m + 8)N + 2) + 3
= (6m + 9mν + 12)N + 3mν + 10 .

Since |Wν | = |(Σmν )3| = 23mν , Theorem 1 implies that

diffP ≤
�∑

ν=1

23mν Rν(Tν) . (3)

4.4 Modification of the DDH Generators

In our numerical examples below, we use the following modification of DDH
generators GDDH described in Sect. 3. More precisely, the seeds and outputs of
GDDH are sequences of finite field elements, and we convert them into binary
sequences. For the purpose, for integer parameters h1 and h2, define two maps
γ : Σ3h1 → (Zq)3 = SG and γ′ : OG = (Zq)k0 → Σk0h2 by

γ(s1, s2, s3) = (γ0(s1), γ0(s2), γ0(s3)) , γ′(s1, . . . , sk0) = (γ′
0(s1), . . . , γ′

0(sk0))

where γ0 : Σh1 * x 
→ (x mod q)+1 ∈ Zq and γ′
0 : Zq * x 
→ (x mod 2h2) ∈ Σh2

(we let x mod n lie between 0 and n − 1). Intuitively, the map γ approximates
the seeds of GDDH by binary sequences, while γ′ converts the outputs of GDDH

into binary sequences. Before evaluating the effect of these two maps, we recall
the definition of statistical distances between two distributions:

Definition 4. For two probability distributions P1, P2 over the same finite set
X, their statistical distance SD(P1, P2) is defined by

SD(P1, P2) =
1
2

∑
x∈X

|Pr[x ← P1] − Pr[x ← P2] |

= max
E⊂X

(Pr[x ← P1 : x ∈ E] − Pr[x ← P2 : x ∈ E]) .

Note that SD(F (P1), F (P2)) ≤ SD(P1, P2) for any (probabilistic) function F .
Now the following property holds:

Lemma 1. We have

SD(γ(UΣ3h1 ), U(Zq)3) ≤ 3f(2h1 , q) and SD(UΣk0h2 , γ′(U(Zq)k0 )) ≤ k0f(q, 2h2) ,

where

f(z1, z2) =
(z1 mod z2) · (z2 − (z1 mod z2))

z1z2
.

Proof. First, if Pi and P ′
i are random variables on the same set for each i ∈ {1, 2},

P1 and P2 are independent, and P ′
1 and P ′

2 are independent, then we have

SD(P1 × P2, P
′
1 × P ′

2) ≤ SD(P1, P
′
1) + SD(P2, P

′
2) .
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Owing to this fact, it suffices to show that

SD(γ0(UΣh1 ), UZq) = f(2h1 , q) and SD(UΣh2 , γ′
0(UZq)) = f(q, 2h2) .

For the former claim, write 2h1 = aq + b with b = (2h1 mod q). Then we have
|γ−1

0 (x)| = a + 1 for b out of the q elements x ∈ Zq, while |γ−1
0 (x)| = a for the

remaining q − b elements x ∈ Zq. This implies that

SD(γ0(UΣh1 ), UZq) =
1
2
·
(

b

∣∣∣∣ a + 1
aq + b

− 1
q

∣∣∣∣+ (q − b)
∣∣∣∣ a

aq + b
− 1

q

∣∣∣∣)
=

1
2
·
(

b · q − b

q(aq + b)
+ (q − b)

b

q(aq + b)

)
=

b(q − b)
2h1q

= f(2h1, q) .

The latter claim is similarly proven. Hence Lemma 1 holds.

Let G′ = G′
DDH denote the composition γ′ ◦G of G = GDDH followed by γ′, which

is also a PRG with seed set SG′ = SG = (Zq)3 and output set OG′ = Σk0h2 . Now
the map γ′ just outputs some lower bits of the original output of G, therefore the
issue of complexity of γ′ may be practically ignored for simplicity. Then Lemma
1 and the assumption (1) imply (by ignoring complexity of γ′) that the PRG G′

is R′(t)-secure in M with

R′(t) = k0

(
t

L(|q|2)
+ f(q, 2h2)

)
. (4)

The other map γ will be used in the next subsection as well.

4.5 Numerical Examples

From now, we apply the above argument to the concrete choices of parameters
N and m given in Table 1. For simplicity, we choose the parameters mν such
that |mν −m/�| < 1, and let each PRG G(ν) be a copy of the same G′

DDH given
in Sect. 4.4. Then we have mν ≤ �m/��, and it follows from (3) and (4) that

diffP ≤
�∑

ν=1

23�m/��k0

(
Tν

L(|q|2)
+ f(q, 2h2)

)
= 23�m/��k0

(
(6�m + 9m + 12�)N + 3m + 10�

L(|q|2)
+ �f(q, 2h2)

)
.

(5)

On the other hand, the above pseudo-program shows that the minimal length
of the input xν is (15N + 1)mν , therefore the number of required random bits
in perfectly random case is (15N + 1)m and the parameters k0 and h2 should
satisfy k0h2 ≥ (15N + 1)�m/��. For simplicity, we assume that the integer k0 is
as small as possible, namely we have k0 = �(15N + 1)�m/��/h2�.
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Since the original bound of attack success probability is set to ε = 10−3,
the value diffP should be significantly smaller than 10−3 to make the scheme in
pseudorandom case secure as well. On the other hand, to evaluate the effect of
randomness reduction, we approximate the non-binary seeds in SG′ = (Zq)3 by
binary sequences via the map γ : Σ3h1 → (Zq)3 given in Sect. 3. Now the new
“seed set” is Σ3�h1 and the statistical distance between the distribution of an
element of (Zq)3� induced by the map γ and the uniform distribution on (Zq)3�

is bounded by 3�f(2h1, q) by Lemma 1. Hence the value 3�f(2h1, q) should be
significantly smaller than 10−3 as well. In the example below, we require the
sum of 3�f(2h1, q) and the right-hand side of (5) to be smaller than 10−6.

Table 2 shows the evaluation results and the corresponding parameters for the
PRG G′, where the case � = 1 coincides with the plain PRG-based randomness
reduction (without our proposed technique of dividing the randomness). In the
table, “difference” signifies the sum of 3�f(2h1, q) and the value in the right-hand
side of (5) (written in scientific E notation), and “ratio” signifies the ratio of the
seed length 3�h1 to the original number of random bits required in perfectly
random case. The Sophie-Germain primes q in the table are

q(1) = 790717071× 254254 − 1 , q(2) = 2566851867× 270001 − 1 ,

q(3) = 18912879× 298395 − 1 , q(4) = 7068555× 2121301 − 1 ,

q(5) = 137211941292195× 2171960 − 1 .

The last four primes are taken from the current (July 2009) version of a list by
Caldwell [3], while the first one is taken from an old (September 2008) version
of the list. On the other hand, for each case where no precise prime number q
is shown, an approximation was performed since the authors could not find a
suitable Sophie-Germain prime in the literature. In such a case, we calculated the
“difference” and the corresponding seed length as if both f(2h1 , q) and f(q, 2h2)
vanish and h1 = h2 = |q|2. This approximation seems not too bad since h1 and
h2 are not significantly far from q in the five cases with precise values of q. The
table shows that our proposed technique for the randomness reduction (in cases
� = 2 and � = 5) indeed improves the effect of randomness reduction from the
plain case (� = 1), with the case � = 5 being better than the case � = 2. This
table also shows that the new seed lengths are almost independent of the number
N of users, while the original numbers of required random bits are almost linear
in N , therefore the “ratio” becomes significantly better as N is getting larger.

Moreover, Fig. 4 shows a relation between the value � and the approximated
seed length for the case N = 103 calculated by the same rule as the previous
paragraph. By the observation in the previous paragraph, the overall tendency
would be similar for the other choices of N . In the graph, the approximated
seed length takes the minimum value 236, 220 at � = 31, which is about 2.57%
of the original number of required random bits (this ratio is further improved
in the case of larger N) and is about 29 times as short as the case � = 1.
Thus our proposed technique of dividing the randomness into plural parts and
generating each part by a separate PRG indeed improves the effect of randomness
reduction significantly. Moreover, as a by-product, our technique also reduces the
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Table 2. Evaluation of randomness reduction and parameters for DDH generators

user number N 103 104 105 106 107 108 109

code length m 614 702 789 877 964 1052 1139

# of random bits 9.21E6 1.05E8 1.18E9 1.31E10 1.44E11 1.57E12 1.70E13

q — — — — — — —

|q|2 2.29E6 3.24E6 4.41E6 5.82E6 7.47E6 9.41E6 1.17E7

h2

� = 1 h1

difference 1.48E-7 6.69E-7 2.63E-7 5.03E-7 5.81E-7 7.40E-7 1.15E-9

seed length 6.87E6 9.72E6 1.33E7 1.75E7 2.25E7 2.83E7 3.51E7

ratio 7.46E-1 9.26E-2 1.13E-2 1.34E-3 1.57E-4 1.81E-5 2.07E-6

q — — — — — — —

|q|2 4.07E5 5.73E5 7.76E5 1.02E6 1.30E6 1.63E6 2.01E6

h2

� = 2 h1

difference 9.57E-7 8.66E-7 8.09E-7 5.15E-7 3.88E-7 4.43E-7 3.28E-7

seed length 2.45E6 3.44E6 4.66E6 6.12E6 7.80E6 9.78E6 1.21E7

ratio 2.67E-1 3.28E-2 3.95E-3 4.68E-4 5.42E-5 6.23E-6 7.12E-7

q q(1) q(2) q(3) q(4) q(5) — —

|q|2 54, 284 70, 033 98, 420 121, 324 172, 007 1.90E5 2.30E5

h2 54, 254 70, 001 98, 395 121, 301 171, 960
� = 5 h1 54, 306 70, 056 98, 441 121, 347 172, 029

difference 4.56E-7 8.24E-7 9.67E-7 3.66E-7 4.78E-7 4.39E-7 9.57E-7

seed length 8.15E5 1.06E6 1.48E6 1.83E6 2.59E6 2.84E6 3.45E6

ratio 8.85E-2 1.01E-2 1.26E-3 1.40E-4 1.80E-5 1.81E-6 2.03E-7

2.4E5

2.8E5

3.2E5

3.6E5

4.0E5
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�

Fig. 4. Values of � and approximated seed lengths, for N = 103

computational cost of the PRGs since the sizes of the primes q used in the PRGs
are also significantly decreased.

5 Conclusion

In this article, we applied the authors’ recently proposed evaluation technique
for PRG-based randomness reduction to the case of fingerprint codes and veri-
fied the effectiveness. Although we used a PRG, the evaluation result is effective
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even against computationally unbounded attack algorithms. We also proposed
a novel technique for construction of the PRG-based randomness reduction to
improve the evaluation result further. We proved a bound of loss of security
through the improved randomness reduction method, and gave a numerical ex-
ample showing that in a reasonable setting, our proposed technique improves
the effect of randomness reduction to about 29 times as good as the case of
plain randomness reduction. Applications of our proposed technique to other
information-theoretically secure schemes will be a future research topic.

Acknowledgments. The authors would like to thank the anonymous referees
for their precious comments.
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Abstract. We formulated a Bayes optimum watermarking decoder and

derived sub-optimum decoding algorithms for spread spectrum digital

image watermarking. The optimum decoder can be obtained by consid-

ering the posterior probability under the Gaussian assumption for noise

and attacks. The amount of calculation for the decoder is NP-hard. We,

therefore, need to derive sub-optimum decoding algorithms in order to

decode the watermarks. The proposed decoders are multiple watermark

decoders that estimate multiple watermarks at the same time. These

methods are based on the multi-stage demodulation method and the par-

tial interference cancellation method, which are two CDMA multiuser

demodulation methods. We applied them to the digital watermarking

scheme. When the original image is blind, the image itself is regarded

as noise. We, therefore, evaluated bit error rates both for cases when

the original image is informed and blind. As a result, we found both the

multi-stage watermark decoder and the partial interference cancellation

decoder were effective for watermarking. The latter performed better

than the former.

1 Introduction

Misuse of digital content is emerging as a social issue. The copyright information
attached to additional headers of digital content does not work well for copyright
protection. Digital watermarking is one solution to this problem.

The basic idea of digital watermarking is that hidden messages or watermarks
are invisibly embedded in the cover of digital content. The cover content may be
images, video, audio, and so on. There are many different embedding schemes.
For images, watermarks are either simply embedded by adding them to the cover
content, or the cover content is transformed by discrete cosine transform (DCT)
or wavelet transform, and then the watermarks are embedded in the transform
domain [1–4]. On the other hand, messages are encrypted or spread in order to
hide them. Spectrum spreading is one efficient, robust method. The maximum
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likelihood estimation [5, 6] and the maximum a posteriori probability (MAP)
estimation [7, 8] have been used with existing methods.

Cox et al. [1–3] proposed a method based on the communication model. The
watermark sequences are chosen independently in accordance with Gaussian dis-
tribution, and then they are embedded in the spatial or transform domain. Since
embedded sequences can be generated independently and identically distributed
[2, 9], multiple watermarks can be embedded into the same pixel, since they be-
come almost orthogonal. The phrase “multiple watermarks” in this paper means
that several spread messages or watermarks are accumulated on the same pixel.
Cox et al. [1–3] performed multiple watermark by computer simulations. How-
ever, no decoder for multiple watermarks has been discussed in theory because
of multi-watermark interference.

In this paper, we formulate the Bayes optimum watermarking decoder for
spread spectrum digital image watermarking. The optimum decoder can be ob-
tained by considering the posterior probability under the condition of the Gaus-
sian assumption for noise and attacks. Unfortunately, the amount of calculation
to decode all embedded watermarks is NP-hard. We, therefore, need to derive
sub-optimum decoding algorithms. We derive sub-optimum decoding algorithms
from the optimum decoder. In this manner, because of the theoretical difficulty,
we consider a simple watermarking model in which watermarks are simply em-
bedded into the image domain.

We consider decoding algorithms for the spectrum spreading method. This
method is also now used in code division multiple access (CDMA)[10–13]. In
CDMA, more than one user can transmit information at the same time and
within the same cell. Therefore, multiuser interference needs to be considered for
the CDMA multiuser demodulator problem. Bayes optimum solutions have been
obtained by statistical mechanics. The maximum posterior marginal (MPM)
estimation gives the Bayes optimum [14]. Tanaka has evaluated this problem
using the replica method [14–16]. Methods of demodulating CDMA by applying
a dynamical theory of the Hopfield model have been described [17–19]. As in
the case of CDMA, statistical-mechanical approaches are progressing in several
fields, e.g., image restoration [20, 21], coding theory [22, 23], and rate distortion
[24]. Now, we are addressing theoretical analysis of the digital watermarking
model. It is important for a better understanding of watermarking to model,
formulate, and derive decoding methods.

By applying CDMA demodulation methods to watermarking, multiple water-
marks can be decoded simultaneously. Moreover, since multi-watermark inter-
ference can be reduced, bit error rate for watermarks will be improved. From a
theoretical viewpoint, the distinction between CDMA and watermarking is based
on assumptions about noise. Channel noise in the CDMA is usually assumed to
be independent, or thermal noise. In watermarking, artificial noise occurs as
the result attacked by illegal users. They are correlated types of noise, e.g., im-
age noise, block-noise, and distortion. Although the assumption for noise should
not intrinsically be Gaussian, in almost all cases, models with these noises would
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be intractable. Moreover, when the type of attack might be blind, we could not
formulate its model. Therefore, we have no other choice but to assume the noise
is Gaussian. Then, we evaluate decoding performance of the proposed decoders
theoretically and using simulations.

Section 2 outlines our watermarking model. Section 3 describes the Bayes op-
timum decoder for multiple watermarks, and Sec. 4 describes computable multi-
ple decoders. Section 5 shows results obtained theoretically and using computer
simulations. Section 6 concludes our methods.

2 Mathematical Model of Watermarking

2.1 Embedding Procedure

A gray scale image is divided into N pixels per block. There are no constrains on
how it is divided as long as there are no overlaps between blocks. For example,
each block may consist of 8 × 8 pixels, or 64 × 1 pixels by raster scanning. We
only assume the block length stays constant for all blocks. Since each block is
processed in turn, we refer to only one block in detail.

An image block consisting of N pixels is represented as I = (I1, I2, · · · , IN )T .
Hereinafter, we refer to this image block simply as “image.” K-bit messages s =
(s1, s2, · · · , sK)T are embedded in the original image in layers, where si = ±1.
Figure 1 is a diagram of the embedding procedure. Each bit of the message, si, is
spread by specific spreading code ξi = (ξ1

i , ξ2
i , · · · , ξN

i )T . The chip rate, or length
of the spreading codes is equal to N . Each element of the spreading codes ξμ

i

takes ±1 with probability

P [ξμ
i = ±1] =

1
2
. (1)

Here, we notice (ξμ
i )2 = 1. The spreading codes are usually generated by a PN

sequence generator. Any generating method is okay as long as it satisfies (1).
A watermark to be embedded at the μth pixel, wμ, is represented by

wμ =
K∑

i=1

ξμ
i si , μ = 1, 2, · · · , N, (2)

which is the sum of the spread messages. The stego image X is made by adding
the watermarks w = (w1, w2, · · · , wN )T to the original image I, that is,

Xμ = F0 (Iμ + wμ) (3)
+ Iμ + wμ + n0μ, (4)

where a function F0 is the function that limits each pixel value to interval
[0, 255]. We assume embedding error can be represented as noise n0μ by linear
approximation. In this way, the stego image X is generated and is distributed
widely.
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Fig. 1. Diagram of spreading and multiplexing of embedded watermarks

2.2 Attack

The stego image X is usually attacked by illegal users. Attacks by lossy com-
pression, band-pass filter, geometrical distortion, etc. are represented as noise.
Since there are many different kinds of attacks, we should intrinsically consider
each attacks individually. These effects cannot be represented as Gaussian dis-
tributions. Even if we can represent them by specific distributions, they may be
intractable for many cases. Because we want to formulate the Bayes optimum
decoder, we can introduce the Gaussian assumption. This condition is good case
for decoder. So, now the tampered stego image X̃ is given by

X̃μ = Xμ + n1μ. (5)

From (4), by combining the noise n0μ and n1μ, we obtain

X̃μ = Iμ + wμ + nμ, (6)
nμ = n0μ + n1μ. (7)

In the following discussions, we assume that noise nμ obeys the Gaussian distri-
bution N (0, σ2

s) and that the noise is independent of both the original image Iμ

and the watermark wμ.

2.3 Informed Decoder

The watermarks are decoded from the tampered image. When the original image
is known, extracted information rμ is calculated by subtracting the original image
Iμ from the tampered image X̃μ, that is,

rμ = X̃μ − Iμ, (8)
= wμ + nμ. (9)
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By multiplying rμ by the corresponding spreading code ξi, the output of the
correlator, hi, is given by

hi =
1
N

N∑
μ=1

ξμ
i rμ (10)

= si +
1
N

N∑
μ=1

K∑
j �=i

ξμ
i ξμ

j sj +
1
N

N∑
μ=1

ξμ
i nμ, (11)

where the second term of the right-hand side in (11) is a multi-watermark inter-
ference term and the third one is the noise term. Then, the estimated value of
the ith watermark, ŝi, is given by

ŝi = sgn (hi) , (12)

where a function sgn(h) is the signum function given by

sgn(h) =
{

+1, h >= 0
−1, h < 0 . (13)

The method of independently estimating each watermark is called a single de-
coder, like a single-user demodulator in CDMA.

2.4 Blind Decoder

When the original image is unknown, or blind, there are two ways to decode the
watermarks: direct inference without estimating the original image and double
inference with estimating the original image and watermarks. In the former case,
the tampered image X̃μ itself becomes the extracted information rμ, that is,

rμ = X̃μ (14)
= wμ + nμ + Iμ. (15)

The output of the correlator, hi, becomes

hi =
1
N

N∑
μ=1

ξμ
i rμ (16)

= si +
1
N

N∑
μ=1

K∑
j �=i

ξμ
i ξμ

j sj +
1
N

N∑
μ=1

ξμ
i nμ +

1
N

N∑
μ=1

ξμ
i Iμ, (17)

where the fourth term in (17), which differs from (11), is the image noise term.
Since Iμ takes a larger value than the value of watermarks, it is hard to estimate
the watermarks properly.

With the other method, we can infer an estimated image from the tampered
image X̃μ. The estimated image Îμ can be reconstructed by some filtering and so
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on. Then, the extracted information rμ is calculated by subtracting the estimated
image Îμ from the tampered image X̃μ, and is given by

rμ = X̃μ − Îμ (18)

= wμ + nμ + Iμ − Îμ. (19)

Therefore, the output of the correlator, hi, becomes

hi =
1
N

N∑
μ=1

ξμ
i rμ (20)

= si +
1
N

N∑
μ=1

K∑
j �=i

ξμ
i ξμ

j sj +
1
N

N∑
μ=1

ξμ
i nμ +

1
N

N∑
μ=1

ξμ
i

(
Iμ − Îμ

)
. (21)

Whenever the estimated image Îμ is sufficiently similar to the original image Iμ,
the image noise term of (21) can be reduced.

3 Optimum Multiple Watermarks Decoder

Since 1-bit messages are spread by N -bits spreading codes, the embedded capac-
ity, or payload decreases to 1/N . On the other hand, by spreading the messages,
more than one message can be embedded in the same pixel in layers. In this case,
multi-watermark interference cannot be eliminated. We, therefore, consider how
to eliminate this interference.

The multi-watermarks interference term consists of messages si and their cor-
responding spreading codes ξi. The spreading codes are available for the owner,
but information regarding the messages is blind. Therefore, the effect of the in-
terference term can be decreased by using both estimated messages ŝ and the
spreading codes ξi. Multiple watermark decoders in which all estimated mes-
sages are used to infer themselves simultaneously corresponds to the multiuser
demodulator method in CDMA [14–16]. The Bayes optimum decoder can elimi-
nate the multi-watermark interference. Next, we formulate a multiple watermark
decoder under the Gaussian assumption. Let us start to calculate the posterior
probability of messages s, given the extracted information r.

3.1 Posterior Probability

In the multiple watermark decoder, we start by obtaining the posterior prob-
ability. Since the estimated image Îμ can be reconstructed by a mean filter or
Wiener filter and we guess it is sufficiently similar to the original one, for sim-
plicity, we assume the original image is informed. From (2) and (19), the noise
term becomes

nμ = rμ −
K∑

i=1

ξμ
i si, (22)
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and obeys Gaussian distribution,

P (nμ) =
1√

2πσ2
s

exp

[
− (nμ)2

2σ2
s

]
. (23)

The conditional probability of the extracted information r, given the true mes-
sages s, is given by

P (r|s) =
N∏

μ=1

P (rμ|s, ξ) (24)

∝ exp

⎡⎣− βs

2N

N∑
μ=1

(
rμ −

K∑
i=1

ξμ
i si

)2
⎤⎦ , (25)

where σ2
s = N/βs. From Bayes’ theorem, the posterior probability of messages

s, given the extracted information r, is given by

P (s|r) =
P (r|s)P (s)

P (r)
(26)

=
P (r|s)P (s)∑
x P (r|x)P (x)

. (27)

The prior probability of the messages, P (s), is assumed to have uniform distri-
bution, that is,

P (s) = 2−K . (28)

Therefore, the posterior probability is given by

P (s|r) =
P (s)
Z(r)

exp

⎡⎣− β

2N

N∑
μ=1

(
rμ −

K∑
i=1

ξμ
i si

)2
⎤⎦ , (29)

where we set in a parameter β instead of the true parameter βs, since the true
parameter is unknown for the decoder. Also, Z(r) is defined as

Z(r) =
∑
s

P (s) exp

⎡⎣− β

2N

N∑
μ=1

(
rμ −

K∑
i=1

ξμ
i si

)2
⎤⎦ , (30)

where summation over s is defined as∑
s

=
∑

s1=±1

∑
s2=±1

· · ·
∑

sK=±1

. (31)

Therefore, the performance of the multiple watermark decoder can be evaluated
in the same way as the multiuser demodulators in CDMA [14–16]. The maxi-
mum a posteriori (MAP) estimation and maximum posterior marginal (MPM)
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estimation can be applied to infer the messages s. The MAP estimation is the
method minimizing block error rate, and the MPM estimation is minimizing bit
error rate. The estimated values by the MAP and MPM estimations are given
by

ŝMAP = arg max
s

P (s|r) , (32)

ŝMPM
i = arg max

si

P (si|r) , (33)

where probability P (si|r) is a marginal probability given by

P (si|r) =
∑
s\si

P (s|r) , (34)

where summation
∑

s\si
is the summation over s excepting si and is defined as∑

s\si

=
∑

s1=±1

· · ·
∑

si−1=±1

∑
si+1=±1

· · ·
∑

sK=±1

. (35)

The purpose of the MPM estimation is to find the code that maximizes the
marginal posterior probability P (si|r).

Now, we consider decoding algorithms that infer the messages s by MPM
estimation. From (33), estimated messages ŝMPM

i can be calculated by

ŝMPM
i = sgn

( ∑
si=±1

siP (si|r)

)
(36)

= sgn (〈si〉) , (37)

where 〈si〉 is the average over the posteriori distribution and is defined as

〈si〉 =
∑

si=±1

siP (si|r) (38)

As mentioned, we were able to formulate the Bayes optimum multiple watermark
decoder.

The estimation error is measured by the bit error rate Pb, which is defined as

Pb =
1 − M

2
, (39)

where M is an overlap or degree of coincidence between the true messages si

and the estimated messages ŝi, and is defined as

M =
1
K

K∑
i=1

siŝi. (40)

The estimation by (37) gives optimum solution, but unfortunately its computa-
tional complexity is NP-hard in the number of messages. Its proof is given in the
same way as the case of CDMA [10]. In other words, to decode watermarks using
(37), an enormous amount of computational time might be required to calculate
the posteriori probability. Therefore, dynamics or computation algorithms such
that it achieves an optimum or sub-optimum solution should be considered.
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Fig. 2. Decoding procedure for multiple watermarks

4 Decoding Procedure

We propose multiple watermark decoders on the basis of the Bayes optimum
decoder. The decoding procedure is shown in Fig. 2. We obtain the extracted
information rμ by (18) using the estimated image, Îμ, whose image is recon-
structed by a mean filter. Then, the output of the correlator, hi, is obtained
by (20). At the initial states, the estimated message ŝ0

i is given using the single
decoder by

ŝ0
i = sgn (hi) . (41)

Next, we consider how to reduce the multi-watermark interference. Since the
optimum decoder is hard to compute, we need step-by-step algorithms that
require relatively short computational time.

4.1 Multiple Watermark Decoders

From (29), we obtain the posterior probability in the form of a Hamiltonian or
energy function, H(s):

P (s|r) ∝ exp [−βH(s)] , (42)

H(s) =
1
2

K∑
i=1

K∑
j=1

Jijsisj −
K∑

i=1

hisi, (43)

where Jij is defined as

Jij =
1
N

N∑
μ=1

ξμ
i ξμ

j . (44)
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According to (32) and (33), maximizing the posterior probability P (s|r) corre-
sponds to minimizing the Hamiltonian H(s). We, therefore, obtain the following
equation using the steepest descent method,

− ∂H(s)
∂si

= hi −
K∑

j �=i

Jijsj . (45)

The steepest descent method can find one of the possible optimum or sub-
optimum solutions, since it stops at the local minimum.

We consider discrete dynamics, and introduce the multistage watermark de-
coder, which is obtained by

ŝt+1
i = sgn

⎛⎝hi −
K∑

j �=i

Jij ŝ
t
j

⎞⎠ , (46)

where ŝt
i represents the estimated message at the t-th stage. The basic idea

about multistage has appeared in the CDMA multiuser demodulation problem
[11, 12, 18].

The reliability of estimation for early stages in the multistage watermark
decoder (46) is low due to noise and use of the single decoder. Therefore, an
interference cancellation parameter Pt is introduced to the multi-watermark in-
terference term. A partial interference cancellation method has been proposed
for CDMA [13, 25–28]. The parameter Pt is initially a small value, and then it
becomes larger with time for increasing reliability. The estimated message at the
(t + 1)th stage, ŝt+1

i , in the partial interference cancellation decoder is given by

ŝt+1
i = sgn

⎛⎝hi − Pt

K∑
j �=i

Jij ŝ
t
j

⎞⎠ . (47)

At the initial stage, ŝ0
i is given by (41). When we put Pt = 1 for all stages, it is

equivalent to the multistage watermark decoder (46).

4.2 Theory

In CDMA, the performance of the partial interference cancellation method is
analyzed under the assumption that noise obeys Gaussian distribution [18, 19].
Mizutani el al.[18] proposed a decoding algorithm assuming that the last one-
step correlation between stages is only effective, and correlations between other
stages can be ignored.

In CDMA, we analyze the performance for multiple watermark estimation.
The variance of the noise is σ2

s . We consider the large-system limit K → ∞ and
N → ∞, while the ratio β ≡ K/N is kept finite. We define variance V as the
sum of the variance of the noise, σ2

s , and the ratio β:

V = β + σ2
s . (48)
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Under the random spreading assumption and the large-system limit, we redefine
the bit error rate as P t+1

b for time evolution. The value of P t+1
b is to be evaluated

by the following recursive formulas.

Mt+1 =
∑

λ=±1

1 + λMt−1

2
erf

(
1 − (1 − λPt−1)PtUt√

2V 2
t

)
, (49)

V 2
t = V − 2PtCt + P 2

t S2
t , (50)

Ut+1 = β
∑

λ=±1

1 + λMt−1√
2πV 2

t

exp

[
−{1 − (1 − Pt−1λ)PtUt}2

2V 2
t

]
, (51)

Ct = βMt + Ut (V − Pt−1Ct−1) , (52)
S2

t = β + U2
t V 2

t−1 + 2βUtMt (1 − Pt−1Mt−1) , (53)

where erf(x) is the error function, which is defined as

erf(x) =
2√
π

∫ x

0

exp
[
−u2

]
du. (54)

For the initial stage t = 0, equations are given by

M−1 = C−1 = S2
−1 = 0, (55)

M0 = erf

⎛⎝ 1√
2V 2−1

⎞⎠ , (56)

U0 = β

√
2

πV 2−1

exp
[
− 1

2V 2−1

]
, (57)

M1 = erf

(
1 − P0U0√

2V 2
0

)
, (58)

U1 = β

√
2

πV 2
0

exp
[
− (1 − P0U0)2

2V 2
0

]
. (59)

The parameter Pt for the partial interference cancellation decoder is given by

Pt =
UtV (Pt−1 + 1) − Ct

UtCt(Pt−1 + 1) − S2
t

, (60)

and for the multistage watermark decoder it is Pt = 1. For a detailed derivation,
refer to [18].

5 Simulation Results

We described decoding algorithms for multiple watermarks using spreading codes.
To evaluate the performance of the multistage watermark decoder and the partial
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Fig. 3. Bit error rate Pb for stage t when the original image is known, where (a).

β = 0.25, 0.375, 0.50, 0.625 (K = 64, 96, 128, 160) and (b). β = 0.25, 0.50, 0.75, 1.0 (K =

64, 128, 192, 256). Solid and broken lines represent results by computer simulations and

theory, respectively.

interference cancellation decoder, we analyzed the bit error rate Pb for several
multiple K using SIDBA GIRL. The length of the spreading codes was N =
256×1, and the variance of noise was σ2

s = 64, i.e., the noise obeyed the Gaussian
distribution N (0, σ2

s).

5.1 Results for Informed Decoder

When the original image is known and attacks can be considered as additive
white Gaussian noise (AWGN), the bit error rate Pb is evaluated. Figure 3 shows
Pb for stage t. The solid lines in Fig. 3 (a) represent results obtained by computer
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(b). with estimated image: r = X̃ − Î

Fig. 4. Bit error rate Pb for stage t when the original image is blind, (a). without

estimated image, and (b). with estimated image. Solid and broken lines represent results

by computer simulations and theory, respectively, where β = 0.03125, 0.25, 0.375, 0.50
(K = 8, 64, 96, 128).

simulations of the multistage watermark decoder. The broken lines represent
theoretical values by time evolutions of the equations (49)–(53), where Pt = 1.
The result of the initial stage, denoted by t = 0, was obtained by the single
decoder. From Fig.3 (a), the multistage watermark decoder improved the bit
error rate better than the single decoder for β = K/N = 0.50 (K = 128) or less.
For β = 0.625, the single decoder gave the better result, since estimation error
became large due to iterative calculation.

The solid lines in Fig. 3 (b) represent results obtained by computer simula-
tions of the partial interference cancellation decoder. The broken lines represent
theoretical values by time evolutions of equations (49)–(53), where Pt is given
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Fig. 5. Bit error rate Pb with estimated image for various images; (a) Moon, (b) Aerial,

(c) Facs, and (d) Title. Solid and broken lines represent results by computer simulations

and theory, respectively, where β = 0.03125, 0.25, 0.375, 0.50 (K = 8, 64, 96, 128).

by (60). The result of the initial stage, denoted by t = 0, was obtained by the
single decoder. As seen in Fig.3 (b), the partial interference cancellation decoder
improved the bit error rate better than the single decoder for β = 0.75 or less.
For β = 1.0, it cannot improve because of estimation error. Comparing these
two decoders, the partial interference cancellation decoder was better than the
multistage watermark decoder, because the interference cancellation parameter
Pt was introduced.

From Fig.3 (a) and (b), some differences occur due to approximation ignoring
higher-order correlations. In other words, we have taken care of stages t and t−1
in order to evaluate stage t+1. However, results of computer simulations agrees
with ones of theory sufficiently.

5.2 Results for Blind Decoder

When the original image was blind, the bit error rate Pb was evaluated. We ap-
plied a mean filter to the tampered image to obtain an estimated image Î. Figure
4 shows the bit error rate Pb for stage t, using the partial interference cancel-
lation decoder. Figure 4 (a) shows results of the case when no estimated image
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Table 1. Bit error rate Pb at stage t = 0 (single decoder) and t = 14 (multiple decoder)

Girl Moon Aerial Facs Title

β K t = 0 t = 14 t = 0 t = 14 t = 0 t = 14 t = 0 t = 14 t = 0 t = 14

0.03125 8 0.075 0.068 0.085 0.080 0.150 0.150 0.190 0.181 0.364 0.379∗

0.250 64 0.117 0.091 0.128 0.106 0.186 0.175 0.210 0.203 0.366 0.430∗

0.375 96 0.140 0.113 0.153 0.126 0.201 0.189 0.227 0.234∗ 0.368 0.445∗

0.500 128 0.162 0.130 0.167 0.139 0.213 0.223∗ 0.240 0.262∗ 0.368 0.446∗

was used, i.e., the extracted information was rμ = X̃μ from (14). Figure 4 (b)
shows results using the estimated image Î, i.e., rμ = X̃μ−Îμ from (18). The solid
lines represent results obtained by computer simulations, and the broken lines
represent theoretical values by time evolutions of equations (49)–(53), where Pt

is given by (60). Since we take into account the one-step correlation in theory in
4.2, these results agree for the first few steps. Without an estimated image, the
performance of the partial interference cancellation decoder became worse than
the single decoder gradually, because the estimation error became large due
to iterative calculation. Because an estimated image is used, it remains good
performance.

We also evaluated our method using other images: SIDBA Moon, Aerial, Facs,
and Title. Figure 5 shows results for these images by computer simulations using
estimated images and by the partial interference cancellation decoder. Table 1
shows the bit error rate Pb at stage t = 0 for the single decoder and at stage
t = 14 for the multiple decoder by computer simulations. When the results
using the multiple decoder become worse than those using the single decoder,
we marked the values with ∗. For low load cases, namely, small β = K/N , the
multiple decoder improved the bit error rate. Since we used a mean filter, the
performance for natural images, e.g., Moon and Aerial, was better than artificial
images which have many edges. The result for Title in Fig.5 (d) shows the worst
case. The brightness of the image was 0 and 255 in many pixels, and embedding
errors occurred. However, for many images, a multiple watermark decoder is
effective as an estimated image in terms of the bit error rate.

6 Conclusions

By spreading watermarks using spreading codes, the watermarks can be con-
cealed, and they can also have error-correcting capability. Although the payload
decreases to 1/N without multiplexing, multiple watermarks can be embedded
in the same pixel. We considered decoding algorithms for multiple watermarks
and used the bit error rate to evaluate their performance.

For multiple watermarks, the problem is how to estimate all messages si-
multaneously. We formulated the Bayes optimum decoder under the Gaussian
assumption. Since the optimum decoder is NP-hard, we derived dynamics or
computation algorithms as multiple watermark decoders. We introduced a mul-
tistage watermark decoder and a partial interference cancellation decoder for
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watermarking. Since watermarks are embedded in an image, image noise needs
to be taken into account in the blind case. Therefore, we analyzed cases both
when the original image is informed and blind. We reconstructed estimated im-
ages by using a mean filter.

When the original image is informed, the partial interference cancellation
decoder is better than the multistage watermark decoder, and both decoders to-
gether are better than the single decoder. When the bit error rate of the initial
stage is large, the estimation error may become large. When the original image
is unknown, or blind, the partial interference cancellation decoder is not effec-
tive without an estimated image. However, using the estimated image, which is
reconstructed by a mean filter, the performance by the decoder can be improved
sufficiently.

We consider simple watermarking models in order to discuss optimum or
sub-optimum decoders. We show that finding one of the optimum solutions is
computationally hard problem. When one will propose some decoders, it is nec-
essary to consider theoretical limit. For practical use, more elaborate procedures
are required. For a statistical-mechanical approach, these are interesting prob-
lems. Our approach can provide theoretical formulation of spectrum spreading
watermarks.
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